WorldWideScience

Sample records for rapid bacteria detection

  1. Rapid methods for detection of bacteria

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Andersen, B.Ø.; Miller, M.

    2006-01-01

    Traditional methods for detection of bacteria in drinking water e.g. Heterotrophic Plate Counts (HPC) or Most Probable Number (MNP) take 48-72 hours to give the result. New rapid methods for detection of bacteria are needed to protect the consumers against contaminations. Two rapid methods...

  2. ETV Tech Brief: Rapid Fungi and Bacteria Detection Technologies

    Science.gov (United States)

    Technical brief that summarizes the results for Mycometer, Inc. Mycometer®-test and Bactiquant®-test, which are rapid detection technologies for fungi and bacteria. The brief summarizes the results of the verification report and statement.

  3. Luciferase-Zinc-Finger System for the Rapid Detection of Pathogenic Bacteria.

    Science.gov (United States)

    Shi, Chu; Xu, Qing; Ge, Yue; Jiang, Ling; Huang, He

    2017-08-09

    Rapid and reliable detection of pathogenic bacteria is crucial for food safety control. Here, we present a novel luciferase-zinc finger system for the detection of pathogens that offers rapid and specific profiling. The system, which uses a zinc-finger protein domain to probe zinc finger recognition sites, was designed to bind the amplified conserved regions of 16S rDNA, and the obtained products were detected using a modified luciferase. The luciferase-zinc finger system not only maintained luciferase activity but also allowed the specific detection of different bacterial species, with a sensitivity as low as 10 copies and a linear range from 10 to 10 4 copies per microliter of the specific PCR product. Moreover, the system is robust and rapid, enabling the simultaneous detection of 6 species of bacteria in artificially contaminated samples with excellent accuracy. Thus, we envision that our luciferase-zinc finger system will have far-reaching applications.

  4. Rapid, highly sensitive detection of Gram-negative bacteria with lipopolysaccharide based disposable aptasensor.

    Science.gov (United States)

    Zhang, Jian; Oueslati, Rania; Cheng, Cheng; Zhao, Ling; Chen, Jiangang; Almeida, Raul; Wu, Jayne

    2018-07-30

    Gram-negative bacteria are one of the most common microorganisms in the environment. Their differential detection and recognition from Gram-positive bacteria has been attracting much attention over the years. Using Escherichia coli (E. coli) as a model, we demonstrated on-site detection of Gram-negative bacteria by an AC electrokinetics-based capacitive sensing method using commercial microelectrodes functionalized with an aptamer specific to lipopolysaccharides. Dielectrophoresis effect was utilized to enrich viable bacteria to the microelectrodes rapidly, achieving a detection limit of 10 2 cells/mL within a 30 s' response time. The sensor showed a negligible response to Staphylococcus aureus (S. aureus), a Gram-positive species. The developed sensor showed significant advantages in sensitivity, selectivity, cost, operation simplicity, and response time. Therefore, this sensing method has shown great application potential for environmental monitoring, food safety, and real-time diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Rapid fluorescence detection of pathogenic bacteria using magnetic enrichment technique combined with magnetophoretic chromatography.

    Science.gov (United States)

    Che, Yulan; Xu, Yi; Wang, Renjie; Chen, Li

    2017-08-01

    A rapid and sensitive analytical method was developed to detect pathogenic bacteria which combined magnetic enrichment, fluorescence labeling with polyethylene glycol (PEG) magnetophoretic chromatography. As pathogenic bacteria usually exist in complex matrixes at low concentration, an efficient enrichment is essential for diagnosis. In order to capture series types of pathogenic bacteria in samples, amino-modified magnetic nanoparticles (Fe 3 O 4 @SiO 2 -NH 2 ) were prepared for efficient enrichment by the electrostatic interaction with pathogenic bacteria. It was shown that the capture efficiency reached up to 95.4% for Escherichia coli (E. coli). Furthermore, quantitative analysis of the bacteria was achieved by using acridine orange (AO) as a fluorescence probe for the captured E. coli due to its ability of staining series types of bacteria and rapid labeling. In order to remove the free magnetic nanoparticles and redundant fluorescent reagent, the labeled suspension was poured into a PEG separation column and was separated by applying an external magnetic field. The presence of 100 cfu mL -1 E. coli could be detected for semi-quantitative analysis by observing the separation column with the naked eye, and the concentration could be further evaluated by fluorescence detection. All the above processes were finished within 80 min. It was demonstrated that a good linear relationship existed between the fluorescence intensity and the concentration of E. coli ranging from 10 2 to 10 6  cfu mL -1 , with a detection limit of 100 cfu mL -1 when E. coli acted as target bacteria. The recovery rate of E. coli was 93.6∼102.0% in tap water and cooked meat samples, and the RSD was lower than 7% (n = 6); the result coincided with the conventional plate count method. Graphical abstract ᅟ.

  6. Rationalizing and advancing the 3-MPBA SERS sandwich assay for rapid detection of bacteria in environmental and food matrices.

    Science.gov (United States)

    Pearson, Brooke; Mills, Alexander; Tucker, Madeline; Gao, Siyue; McLandsborough, Lynne; He, Lili

    2018-06-01

    Bacterial foodborne illness continues to be a pressing issue in our food supply. Rapid detection methods are needed for perishable foods due to their short shelf lives and significant contribution to foodborne illness. Previously, a sensitive and reliable surface-enhanced Raman spectroscopy (SERS) sandwich assay based on 3-mercaptophenylboronic acid (3-MBPA) as a capturer and indicator molecule was developed for rapid bacteria detection. In this study, we explored the advantages and constraints of this assay over the conventional aerobic plate count (APC) method and further developed methods for detection in real environmental and food matrices. The SERS sandwich assay was able to detect environmental bacteria in pond water and on spinach leaves at higher levels than the APC method. In addition, the SERS assay appeared to have higher sensitivity to quantify bacteria in the stationary phase. On the other hand, the APC method was more sensitive to cell viability. Finally, a method to detect bacteria in a challenging high-sugar juice matrix was developed to enhance bacteria capture. This study advanced the SERS technique for real applications in environment and food matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Rapid and Sensitive Detection of Bacteria Response to Antibiotics Using Nanoporous Membrane and Graphene Quantum Dot (GQDs-Based Electrochemical Biosensors

    Directory of Open Access Journals (Sweden)

    Weiwei Ye

    2017-05-01

    Full Text Available The wide abuse of antibiotics has accelerated bacterial multiresistance, which means there is a need to develop tools for rapid detection and characterization of bacterial response to antibiotics in the management of infections. In the study, an electrochemical biosensor based on nanoporous alumina membrane and graphene quantum dots (GQDs was developed for bacterial response to antibiotics detection. Anti-Salmonella antibody was conjugated with amino-modified GQDs by glutaraldehyde and immobilized on silanized nanoporous alumina membranes for Salmonella bacteria capture. The impedance signals across nanoporous membranes could monitor the capture of bacteria on nanoporous membranes as well as bacterial response to antibiotics. This nanoporous membrane and GQD-based electrochemical biosensor achieved rapid detection of bacterial response to antibiotics within 30 min, and the detection limit could reach the pM level. It was capable of investigating the response of bacteria exposed to antibiotics much more rapidly and conveniently than traditional tools. The capability of studying the dynamic effects of antibiotics on bacteria has potential applications in the field of monitoring disease therapy, detecting comprehensive food safety hazards and even life in hostile environment.

  8. A Rapid and Simple Real-Time PCR Assay for Detecting Foodborne Pathogenic Bacteria in Human Feces.

    Science.gov (United States)

    Hanabara, Yutaro; Ueda, Yutaka

    2016-11-22

    A rapid, simple method for detecting foodborne pathogenic bacteria in human feces is greatly needed. Here, we examined the efficacy of a method that employs a combination of a commercial PCR master mix, which is insensitive to PCR inhibitors, and a DNA extraction method which used sodium dodecyl benzene sulfonate (SDBS), and Tween 20 to counteract the inhibitory effects of SDBS on the PCR assay. This method could detect the target genes (stx1 and stx2 of enterohemorrhagic Escherichia coli, invA of Salmonella Enteritidis, tdh of Vibrio parahaemolyticus, gyrA of Campylobacter jejuni, ceuE of Campylobacter coli, SEA of Staphylococcus aureus, ces of Bacillus cereus, and cpe of Clostridium perfringens) in a fecal suspension containing 1.0 × 10 1 to 1.0 × 10 3 CFU/ml. Furthermore, the assay was neither inhibited nor influenced by individual differences among the fecal samples of 10 subjects or fecal concentration (40-160 mg/ml in the fecal suspension). When we attempted to detect the genes of pathogenic bacteria in 4 actual clinical cases, we found that this method was more sensitive than standard culture method. These results showed that this assay is a rapid, simple detection method for foodborne pathogenic bacteria in human feces.

  9. Rapid detection of pathogenic bacteria by volatile organic compound (VOC) analysis

    Science.gov (United States)

    Senecal, Andre G.; Magnone, Joshua; Yeomans, Walter; Powers, Edmund M.

    2002-02-01

    Developments in rapid detection technologies have made countless improvements over the years. However, because of the limited sample that these technologies can process in a single run, the chance of capturing and identifying a small amount of pathogens is difficult. The problem is further magnified by the natural random distribution of pathogens in foods. Methods to simplify pathogenic detection through the identification of bacteria specific VOC were studied. E. coli O157:H7 and Salmonella typhimurium were grown on selected agar medium to model protein, and carbohydrate based foods. Pathogenic and common spoilage bacteria (Pseudomonas and Morexella) were screened for unique VOC production. Bacteria were grown on agar slants in closed vials. Headspace sampling was performed at intervals up to 24 hours using Solid Phase Micro-Extraction (SPME) techniques followed by GC/MS analysis. Development of unique volatiles was followed to establish sensitivity of detection. E. coli produced VOC not found in either Trypticase Soy Yeast (TSY) agar blanks or spoilage organism samples were - indole, 1-decanol, and 2-nonanone. Salmonella specific VOC grown on TSY were 3-methyl-1-butanol, dimethyl sulfide, 2-undecanol, 2-pentadecanol and 1-octanol. Trials on potato dextrose agar (PDA) slants indicated VOC specific for E. coli and Salmonella when compared to PDA blanks and Pseudomonas samples. However, these VOC peaks were similar for both pathogens. Morexella did not grow on PDA slants. Work will continue with model growth mediums at various temperatures, and mixed flora inoculums. As well as, VOC production based on the dynamics of bacterial growth.

  10. Development of a multiplex PCR assay for rapid and simultaneous detection of four genera of fish pathogenic bacteria.

    Science.gov (United States)

    Zhang, D F; Zhang, Q Q; Li, A H

    2014-11-01

    Species of genus Aeromonas, Vibrio, Edwardsiella and Streptococcus are the most common fish pathogenic bacteria that cause economically devastating losses in aquaculture. A multiplex polymerase chain reaction (mPCR) was developed for the simultaneous detection and differentiation of the four genera of fish pathogenic bacteria. Through the use of genus-specific primers instead of species-specific ones, the current mPCR covered much more target bacterial species compared with previously reported species-specific mPCR methods. The specificity of the four putative genus-specific primers was validated experimentally while used exclusively (uniplex PCR) or combined (mPCR) against bacterial genomic DNA templates of the target bacteria and nontarget bacteria. The PCR amplicons for the following genera were obtained as expected: Aeromonas (875 bp), Vibrio (524 bp), Edwardsiella (302 bp) and Streptococcus (197 bp), and the fragments could be separated clearly on the agarose gel electrophoresis. The mPCR did not produce nonspecific amplification products when used to amplify 21 nontarget species of bacteria. The mPCR detection limits for each target bacterial genera were 50 colony-forming units (CFU) in pure culture and 100 CFU in fish tissue samples. In conclusion, the mPCR assay was proven to be a powerful alternative to the conventional culture-based method, given its rapid, specific, sensitive and reliable detection of target pathogens. The fish pathogenic bacteria of genus Aeromonas, Vibrio, Edwardsiella and Streptococcus frequently cause severe outbreaks of diseases in cultured fish, and the genus-specific multiplex PCR assay developed in this study can detect the bacteria of the four genera when present in the samples either alone or mixed. The mPCR assay is expected to identify the causative agents more efficiently than uniplex PCR or species-specific multiplex PCR for clinical diagnosis, resulting in the earlier implementation of control measures. This m

  11. Highly sensitive and rapid bacteria detection using molecular beacon-Au nanoparticles hybrid nanoprobes.

    Science.gov (United States)

    Cao, Jing; Feng, Chao; Liu, Yan; Wang, Shouyu; Liu, Fei

    2014-07-15

    Since many diseases are caused by pathogenic bacterial infections, accurate and rapid detection of pathogenic bacteria is in urgent need to timely apply appropriate treatments and to reduce economic costs. To end this, we designed molecular beacon-Au nanoparticle hybrid nanoprobes to improve the bacterial detection efficiency and sensitivity. Here, we show that the designed molecular beacon modified Au nanoparticles could specifically recognize synthetic DNAs targets and can readily detect targets in clinical samples. Moreover, the hybrid nanoprobes can recognize Escherichia coli within an hour at a concentration of 10(2) cfu/ml, which is 1000-folds sensitive than using molecular beacon directly. Our results show that the molecular beacon-Au nanoparticle hybrid nanoprobes have great potential in medical and biological applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Exploration of Simple Analytical Approaches for Rapid Detection of Pathogenic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Salma [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    Many of the current methods for pathogenic bacterial detection require long sample-preparation and analysis time, as well as complex instrumentation. This dissertation explores simple analytical approaches (e.g., flow cytometry and diffuse reflectance spectroscopy) that may be applied towards ideal requirements of a microbial detection system, through method and instrumentation development, and by the creation and characterization of immunosensing platforms. This dissertation is organized into six sections. In the general Introduction section a literature review on several of the key aspects of this work is presented. First, different approaches for detection of pathogenic bacteria will be reviewed, with a comparison of the relative strengths and weaknesses of each approach, A general overview regarding diffuse reflectance spectroscopy is then presented. Next, the structure and function of self-assembled monolayers (SAMs) formed from organosulfur molecules at gold and micrometer and sub-micrometer patterning of biomolecules using SAMs will be discussed. This section is followed by four research chapters, presented as separate manuscripts. Chapter 1 describes the efforts and challenges towards the creation of imunosensing platforms that exploit the flexibility and structural stability of SAMs of thiols at gold. 1H, 1H, 2H, 2H-perfluorodecyl-1-thiol SAM (PFDT) and dithio-bis(succinimidyl propionate)-(DSP)-derived SAMs were used to construct the platform. Chapter 2 describes the characterization of the PFDT- and DSP-derived SAMs, and the architectures formed when it is coupled to antibodies as well as target bacteria. These studies used infrared reflection spectroscopy (IRS), X-ray photoelectron spectroscopy (XPS), and electrochemical quartz crystal microbalance (EQCM), Chapter 3 presents a new sensitive, and portable diffuse reflection based technique for the rapid identification and quantification of pathogenic bacteria. Chapter 4 reports research efforts in the

  13. Microfluidic Transducer for Detecting Nanomechanical Movements of Bacteria

    Science.gov (United States)

    Kara, Vural; Ekinci, Kamil

    2017-11-01

    Various nanomechanical movements of bacteria are currently being explored as an indication of bacterial viability. Most notably, these movements have been observed to subside rapidly and dramatically when the bacteria are exposed to an effective antibiotic. This suggests that monitoring bacterial movements, if performed with high fidelity, can offer a path to various clinical microbiological applications, including antibiotic susceptibility tests. Here, we introduce a robust and sensitive microfluidic transduction technique for detecting the nanomechanical movements of bacteria. The technique is based on measuring the electrical fluctuations in a microchannel which the bacteria populate. These electrical fluctuations are caused by the swimming of motile, planktonic bacteria and random oscillations of surface-immobilized bacteria. The technique provides enough sensitivity to detect even the slightest movements of a single cell and lends itself to smooth integration with other microfluidic methods and devices; it may eventually be used for rapid antibiotic susceptibility testing. We acknowledge support from Boston University Office of Technology Development, Boston University College of Engineering, NIH (1R03AI126168-01) and The Wallace H. Coulter Foundation.

  14. Automated radiometric detection of bacteria

    International Nuclear Information System (INIS)

    Waters, J.R.

    1974-01-01

    A new radiometric method called BACTEC, used for the detection of bacteria in cultures or in supposedly sterile samples, was discussed from the standpoint of methodology, both automated and semi-automated. Some of the results obtained so far were reported and some future applications and development possibilities were described. In this new method, the test sample is incubated in a sealed vial with a liquid culture medium containing a 14 C-labeled substrate. If bacteria are present, they break down the substrate, producing 14 CO 2 which is periodically extracted from the vial as a gas and is tested for radioactivity. If this gaseous radioactivity exceeds a threshold level, it is evidence of bacterial presence and growth in the test vial. The first application was for the detection of bacteria in the blood cultures of hospital patients. Data were presented showing typical results. Also discussed were future applications, such as rapid screening for bacteria in urine industrial sterility testing and the disposal of used 14 C substrates. (Mukohata, S.)

  15. Rapid detection of single E. coli bacteria using a graphene-based field-effect transistor device.

    Science.gov (United States)

    Thakur, Bhawana; Zhou, Guihua; Chang, Jingbo; Pu, Haihui; Jin, Bing; Sui, Xiaoyu; Yuan, Xiaochen; Yang, Ching-Hong; Magruder, Matthew; Chen, Junhong

    2018-07-01

    Contamination of surface and drinking water due to the presence of Escherichia coli bacteria is a major cause of water-borne disease outbreak. To address unmet challenges for practical pathogen detection in contaminated samples, we report fabrication of thermally reduced graphene oxide-based field-effect transistor (rGO FET) passivated with an ultrathin layer of Al 2 O 3 for real-time detection of E. coli bacteria. The sensor could detect a single E. coli cell within 50 s in a 1 µL sample volume. The ultrathin layer of Al 2 O 3 acted as a barrier between rGO and potential interferents present in the sample. E. coli specific antibodies anchored on gold nanoparticles acted as probes for selective capture of E. coli. The high density of negative charge on the surface of E. coli cells strongly modulates the concentration of majority charge carriers in the rGO monolayer, thereby allowing real-time monitoring of E. coli concentration in a given sample. With a low detection limit of single cell, the FET sensor had a linear range of 1-100 CFU in 1 µL volume of sample (i.e., 10 3 to 10 5 CFU/ mL). The biosensor with good selectivity and rapid detection was further successfully demonstrated for E. coli sensing in river water. The rGO-based FET sensor provides a low cost and label-free approach, and can be mass produced for detection of a broad spectrum of pathogens in water or other liquid media. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Culture-Independent Techniques for Rapid Detection of Bacteria Associated with Loss of Chloramine Residual in a Drinking Water System

    Science.gov (United States)

    Hoefel, Daniel; Monis, Paul T.; Grooby, Warwick L.; Andrews, Stuart; Saint, Christopher P.

    2005-01-01

    Chloramination is often the disinfection regimen of choice for extended drinking water systems. However, this process is prone to instability due to the growth of nitrifying bacteria. This is the first study to use alternative approaches for rapid investigation of chloraminated drinking water system instability in which flow cytometric cell sorting of bacteria with intact membranes (membrane-intact fraction) (BacLight kit) or with active esterases (esterase-active fraction) (carboxyfluorescein diacetate) was combined with 16S rRNA gene-directed PCR and denaturing gradient gel electrophoresis (DGGE). No active bacteria were detected when water left the water treatment plant (WTP), but 12 km downstream the chloramine residual had diminished and the level of active bacteria in the bulk water had increased to more than 1 × 105 bacteria ml−1. The bacterial diversity in the system was represented by six major DGGE bands for the membrane-intact fraction and 10 major DGGE bands for the esterase-active fraction. PCR targeting of the 16S rRNA gene of chemolithotrophic ammonia-oxidizing bacteria (AOB) and subsequent DGGE and DNA sequence analysis revealed the presence of an active Nitrosospira-related species and Nitrosomonas cryotolerans in the system, but no AOB were detected in the associated WTP. The abundance of active AOB was then determined by quantitative real-time PCR (qPCR) targeting the amoA gene; 3.43 × 103 active AOB ml−1 were detected in the membrane-intact fraction, and 1.40 × 104 active AOB ml−1 were detected in the esterase-active fraction. These values were several orders of magnitude greater than the 2.5 AOB ml−1 detected using a routine liquid most-probable-number assay. Culture-independent techniques described here, in combination with existing chemical indicators, should allow the water industry to obtain more comprehensive data with which to make informed decisions regarding remedial action that may be required either prior to or during an

  17. Development of Electrochemical Biosensors for Ultrasensitive Detection of Bacteria in the Environment

    DEFF Research Database (Denmark)

    Fapyane, Deby

    2018-01-01

    to those conventional methods, are intensively studied. Biosensor technology is one of the strategies for rapid monitoring of pathogens such as bacteria, virus, and parasites in the environment. Among them, the electrochemical biosensor offers simple, rapid, cost-effective and possibility...... for ultrasensitive detection of bacterial cells, DNA and rRNA. Several key operational parameters were assessed such as the optimization of probe design and labeling molecules. Here, more specifically we used two novel labels for the development of the electrochemical biosensor for bacteria detection; cellulase...

  18. Aptasensors for rapid detection of Escherichia coli O157:H7 and Salmonella typhimurium

    Science.gov (United States)

    Wu, Wen-he; Li, Min; Wang, Yue; Ouyang, Hou-xian; Wang, Lin; Li, Ci-xiu; Cao, Yu-chen; Meng, Qing-he; Lu, Jian-xin

    2012-11-01

    Herein we reported the development of aptamer-based biosensors (aptasensors) based on label-free aptamers and gold nanoparticles (AuNPs) for detection of Escherichia coli ( E. coli) O157:H7 and Salmonella typhimurium. Target bacteria binding aptamers are adsorbed on the surface of unmodified AuNPs to capture target bacteria, and the detection was accomplished by target bacteria-induced aggregation of the aptasensor which is associated as red-to-purple color change upon high-salt conditions. By employing anti- E. coli O157:H7 aptamer and anti- S. typhimurium aptamer, we developed a convenient and rapid approach that could selectively detect bacteria without specialized instrumentation and pretreatment steps such as cell lysis. The aptasensor could detect as low as 105colony-forming units (CFU)/ml target bacteria within 20 min or less and its specificity was 100%. This novel method has a great potential application in rapid detection of bacteria in the near future.

  19. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review.

    Science.gov (United States)

    Liu, Yu; Zhou, Haibo; Hu, Ziwei; Yu, Guangxia; Yang, Danting; Zhao, Jinshun

    2017-08-15

    Rapid, accurate detection of pathogen bacteria is a highly topical research area for the sake of food safety and public health. Surface-enhanced Raman scattering (SERS) is being considered as a powerful and attractive technique for pathogen bacteria detection, due to its sensitivity, high speed, comparatively low cost, multiplexing ability and portability. This contribution aims to give a comprehensive overview of SERS as a technique for rapid detection of pathogen bacteria based on label and label-free strategies. A brief tutorial on SERS is given first of all. Then we summarize the recent trends and developments of label and label-free based SERS applied to detection of pathogen bacteria, including the relatively complete interpretation of SERS spectra. In addition, multifunctional SERS platforms for pathogen bacteria in matrix are discussed as well. Furthermore, an outlook of the work done and a perspective on the future directions of SERS as a reliable tool for real-time pathogen bacteria detection are given. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria.

    Science.gov (United States)

    Wang, Chongwen; Gu, Bing; Liu, Qiqi; Pang, Yuanfeng; Xiao, Rui; Wang, Shengqi

    2018-01-01

    Pathogenic bacteria have always been a significant threat to human health. The detection of pathogens needs to be rapid, accurate, and convenient. We present a sensitive surface-enhanced Raman scattering (SERS) biosensor based on the combination of vancomycin-modified Ag-coated magnetic nanoparticles (Fe 3 O 4 @Ag-Van MNPs) and Au@Ag nanoparticles (NPs) that can effectively capture and discriminate bacterial pathogens from solution. The high-performance Fe 3 O 4 @Ag MNPs were modified with vancomycin and used as bacteria capturer for magnetic separation and enrichment. The modified MNPS were found to exhibit strong affinity with a broad range of Gram-positive and Gram-negative bacteria. After separating and rinsing bacteria, Fe 3 O 4 @Ag-Van MNPs and Au@Ag NPs were synergistically used to construct a very large number of hot spots on bacteria cells, leading to ultrasensitive SERS detection. The dominant merits of our dual enhanced strategy included high bacterial-capture efficiency (>65%) within a wide pH range (pH 3.0-11.0), a short assay time (<30 min), and a low detection limit (5×10 2 cells/mL). Moreover, the spiked tests show that this method is still valid in milk and blood samples. Owing to these capabilities, the combined system enabled the sensitive and specific discrimination of different pathogens in complex solution, as verified by its detection of Gram-positive bacterium Escherichia coli , Gram-positive bacterium Staphylococcus aureus , and methicillin-resistant S. aureus . This method has great potential for field applications in food safety, environmental monitoring, and infectious disease diagnosis.

  1. Nanomaterial-enabled Rapid Detection of Water Contaminants.

    Science.gov (United States)

    Mao, Shun; Chang, Jingbo; Zhou, Guihua; Chen, Junhong

    2015-10-28

    Water contaminants, e.g., inorganic chemicals and microorganisms, are critical metrics for water quality monitoring and have significant impacts on human health and plants/organisms living in water. The scope and focus of this review is nanomaterial-based optical, electronic, and electrochemical sensors for rapid detection of water contaminants, e.g., heavy metals, anions, and bacteria. These contaminants are commonly found in different water systems. The importance of water quality monitoring and control demands significant advancement in the detection of contaminants in water because current sensing technologies for water contaminants have limitations. The advantages of nanomaterial-based sensing technologies are highlighted and recent progress on nanomaterial-based sensors for rapid water contaminant detection is discussed. An outlook for future research into this rapidly growing field is also provided. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A new ultrasonic signal amplification method for detection of bacteria

    Science.gov (United States)

    Kant Shukla, Shiva; Resa López, Pablo; Sierra Sánchez, Carlos; Urréjola, José; Segura, Luis Elvira

    2012-10-01

    A new method is presented that increases the sensitivity of ultrasound-based techniques for detection of bacteria. The technique was developed for the detection of catalase-positive microorganisms. It uses a bubble trapping medium containing hydrogen peroxide that is mixed with the sample for microbiological evaluation. The enzyme catalase is present in catalase-positive bacteria, which induces a rapid hydrolysis of hydrogen peroxide, forming bubbles which remain in the medium. This reaction results in the amplification of the mechanical changes that the microorganisms produce in the medium. The effect can be detected by means of ultrasonic wave amplitude continuous measurement since the bubbles increase the ultrasonic attenuation significantly. It is shown that microorganism concentrations of the order of 105 cells ml-1 can be detected using this method. This allows an improvement of three orders of magnitude in the ultrasonic detection threshold of microorganisms in conventional culture media, and is competitive with modern rapid microbiological methods. It can also be used for the characterization of the enzymatic activity.

  3. A new ultrasonic signal amplification method for detection of bacteria

    International Nuclear Information System (INIS)

    Shukla, Shiva Kant; López, Pablo Resa; Sánchez, Carlos Sierra; Segura, Luis Elvira; Urréjola, José

    2012-01-01

    A new method is presented that increases the sensitivity of ultrasound-based techniques for detection of bacteria. The technique was developed for the detection of catalase-positive microorganisms. It uses a bubble trapping medium containing hydrogen peroxide that is mixed with the sample for microbiological evaluation. The enzyme catalase is present in catalase-positive bacteria, which induces a rapid hydrolysis of hydrogen peroxide, forming bubbles which remain in the medium. This reaction results in the amplification of the mechanical changes that the microorganisms produce in the medium. The effect can be detected by means of ultrasonic wave amplitude continuous measurement since the bubbles increase the ultrasonic attenuation significantly. It is shown that microorganism concentrations of the order of 10 5 cells ml −1 can be detected using this method. This allows an improvement of three orders of magnitude in the ultrasonic detection threshold of microorganisms in conventional culture media, and is competitive with modern rapid microbiological methods. It can also be used for the characterization of the enzymatic activity. (paper)

  4. PCR detection of thermophilic spore-forming bacteria involved in canned food spoilage.

    Science.gov (United States)

    Prevost, S; Andre, S; Remize, F

    2010-12-01

    Thermophilic bacteria that form highly heat-resistant spores constitute an important group of spoilage bacteria of low-acid canned food. A PCR assay was developed in order to rapidly trace these bacteria. Three PCR primer pairs were designed from rRNA gene sequences. These primers were evaluated for the specificity and the sensitivity of detection. Two primer pairs allowed detection at the species level of Geobacillus stearothermophilus and Moorella thermoacetica/thermoautrophica. The other pair allowed group-specific detection of anaerobic thermophilic bacteria of the genera Thermoanaerobacterium, Thermoanaerobacter, Caldanerobium and Caldanaerobacter. After a single enrichment step, these PCR assays allowed the detection of 28 thermophiles from 34 cans of spoiled low-acid food. In addition, 13 ingredients were screened for the presence of these bacteria. This PCR assay serves as a detection method for strains able to spoil low-acid canned food treated at 55°C. It will lead to better reactivity in the canning industry. Raw materials and ingredients might be qualified not only for quantitative spore contamination, but also for qualitative contamination by highly heat-resistant spores.

  5. Eukaryote-Made Thermostable DNA Polymerase Enables Rapid PCR-Based Detection of Mycoplasma, Ureaplasma and Other Bacteria in the Amniotic Fluid of Preterm Labor Cases.

    Science.gov (United States)

    Ueno, Tomohiro; Niimi, Hideki; Yoneda, Noriko; Yoneda, Satoshi; Mori, Masashi; Tabata, Homare; Minami, Hiroshi; Saito, Shigeru; Kitajima, Isao

    2015-01-01

    Intra-amniotic infection has long been recognized as the leading cause of preterm delivery. Microbial culture is the gold standard for the detection of intra-amniotic infection, but several days are required, and many bacterial species in the amniotic fluid are difficult to cultivate. We developed a novel nested-PCR-based assay for detecting Mycoplasma, Ureaplasma, other bacteria and fungi in amniotic fluid samples within three hours of sample collection. To detect prokaryotes, eukaryote-made thermostable DNA polymerase, which is free from bacterial DNA contamination, is used in combination with bacterial universal primers. In contrast, to detect eukaryotes, conventional bacterially-made thermostable DNA polymerase is used in combination with fungal universal primers. To assess the validity of the PCR assay, we compared the PCR and conventional culture results using 300 amniotic fluid samples. Based on the detection level (positive and negative), 93.3% (280/300) of Mycoplasma, 94.3% (283/300) of Ureaplasma, 89.3% (268/300) of other bacteria and 99.7% (299/300) of fungi matched the culture results. Meanwhile, concerning the detection of bacteria other than Mycoplasma and Ureaplasma, 228 samples were negative according to the PCR method, 98.2% (224/228) of which were also negative based on the culture method. Employing the devised primer sets, mixed amniotic fluid infections of Mycoplasma, Ureaplasma and/or other bacteria could be clearly distinguished. In addition, we also attempted to compare the relative abundance in 28 amniotic fluid samples with mixed infection, and judged dominance by comparing the Ct values of quantitative real-time PCR. We developed a novel PCR assay for the rapid detection of Mycoplasma, Ureaplasma, other bacteria and fungi in amniotic fluid samples. This assay can also be applied to accurately diagnose the absence of bacteria in samples. We believe that this assay will positively contribute to the treatment of intra-amniotic infection and

  6. New Trends in Impedimetric Biosensors for the Detection of Foodborne Pathogenic Bacteria

    Science.gov (United States)

    Wang, Yixian; Ye, Zunzhong; Ying, Yibin

    2012-01-01

    The development of a rapid, sensitive, specific method for the foodborne pathogenic bacteria detection is of great importance to ensure food safety and security. In recent years impedimetric biosensors which integrate biological recognition technology and impedance have gained widespread application in the field of bacteria detection. This paper presents an overview on the progress and application of impedimetric biosensors for detection of foodborne pathogenic bacteria, particularly the new trends in the past few years, including the new specific bio-recognition elements such as bacteriophage and lectin, the use of nanomaterials and microfluidics techniques. The applications of these new materials or techniques have provided unprecedented opportunities for the development of high-performance impedance bacteria biosensors. The significant developments of impedimetric biosensors for bacteria detection in the last five years have been reviewed according to the classification of with or without specific bio-recognition element. In addition, some microfluidics systems, which were used in the construction of impedimetric biosensors to improve analytical performance, are introduced in this review. PMID:22737018

  7. Rapid Magnetic Nanobiosensor for the detection of Serratia marcescen

    Science.gov (United States)

    Aljabali, Alaa A. A.; Hussein, Emad; Aljumaili, Omar; Zoubi, Mazhar Al; Altrad, Bahaa; Albatayneh, Khaled; Al-razaq, Mutaz A. Abd

    2018-02-01

    The development of rapid, sensitive, accurate and reliable bacterial detection methods are of keen interest to ensure food safety and hospital security. Therefore, the development of a fast, specific, low-cost and trusted methods is in high demand. Magnetic nanoparticles with their unique material properties have been utilized as a tool for pathogen detection. Here, we present a novel iron oxide nanoparticles labeled with specific targeting antibodies to improve specificity and extend the use of nanoparticles as nanosensors. The results indicated that antibody labeled iron oxide platform that binds specifically to Serriata marcescenst in a straightforward method is very specific and sensitive. The system is capable of rapid and specific detection of various clinically relevant bacterial species, with sensitivity down to single bacteria. The generic platform could be used to identify pathogens for a variety of applications rapidly.

  8. Rapid separation of bacteria from blood - Chemical aspects.

    Science.gov (United States)

    Alizadeh, Mahsa; Wood, Ryan L; Buchanan, Clara M; Bledsoe, Colin G; Wood, Madison E; McClellan, Daniel S; Blanco, Rae; Ravsten, Tanner V; Husseini, Ghaleb A; Hickey, Caroline L; Robison, Richard A; Pitt, William G

    2017-06-01

    To rapidly diagnose infectious organisms causing blood sepsis, bacteria must be rapidly separated from blood, a very difficult process considering that concentrations of bacteria are many orders of magnitude lower than concentrations of blood cells. We have successfully separated bacteria from red and white blood cells using a sedimentation process in which the separation is driven by differences in density and size. Seven mL of whole human blood spiked with bacteria is placed in a 12-cm hollow disk and spun at 3000rpm for 1min. The red and white cells sediment more than 30-fold faster than bacteria, leaving much of the bacteria in the plasma. When the disk is slowly decelerated, the plasma flows to a collection site and the red and white cells are trapped in the disk. Analysis of the recovered plasma shows that about 36% of the bacteria is recovered in the plasma. The plasma is not perfectly clear of red blood cells, but about 94% have been removed. This paper describes the effects of various chemical aspects of this process, including the influence of anticoagulant chemistry on the separation efficiency and the use of wetting agents and platelet aggregators that may influence the bacterial recovery. In a clinical scenario, the recovered bacteria can be subsequently analyzed to determine their species and resistance to various antibiotics. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Rapid quantification of live/dead lactic acid bacteria in probiotic products using high-sensitivity flow cytometry

    Science.gov (United States)

    He, Shengbin; Hong, Xinyi; Huang, Tianxun; Zhang, Wenqiang; Zhou, Yingxing; Wu, Lina; Yan, Xiaomei

    2017-06-01

    A laboratory-built high-sensitivity flow cytometer (HSFCM) was employed for the rapid and accurate detection of lactic acid bacteria (LAB) and their viability in probiotic products. LAB were stained with both the cell membrane-permeable SYTO 9 green-fluorescent nucleic acid stain and the red-fluorescent nucleic acid stain, propidium iodide, which penetrates only bacteria with compromised membranes. The side scatter and dual-color fluorescence signals of single bacteria were detected simultaneously by the HSFCM. Ultra-high temperature processing milk and skim milk spiked with Lactobacillus casei were used as the model systems for the optimization of sample pretreatment and staining. The viable LAB counts measured by the HSFCM were in good agreement with those of the plate count method, and the measured ratios between the live and dead LAB matched well with the theoretical ratios. The established method was successfully applied to the rapid quantification of live/dead LAB in yogurts and fermented milk beverages of different brands. Moreover, the concentration and viability status of LAB in ambient yogurt, a relatively new yet popular milk product in China, are also reported.

  10. Amperometric biosensor based on a single antibody of dual function for rapid detection of Streptococcus agalactiae.

    Science.gov (United States)

    Vásquez, Gersson; Rey, Alba; Rivera, Camilo; Iregui, Carlos; Orozco, Jahir

    2017-01-15

    Pathogenic bacteria are responsible for several diseases in humans and in a variety of hosts. Detection of pathogenic bacteria is imperative to avoid and/or fight their potential harmful effects. This work reports on the first amperometric biosensor for the rapid detection of Streptococcus agalactiae (S. agalactiae). The biosensor relies on a single biotinylated antibody that immobilizes the bacteria on a screen-printed carbon electrode while is further linked to a streptavidin-conjugated HRP reporter. The biotinylated antibody provides selectivity to the biosensor whereas serves as an anchoring point to the reporter for further amplification of the electrochemical signal. The resultant immunosensor is simple, responds rapidly, and allows for the selective and highly sensitive quantification of S. agalactiae cells in a concentration range of 10 1 -10 7 CFUml -1 , with a detection limit of 10CFUml -1 . The approach not only enables a rapid detection and quantification of S. agalactiae in environmental samples but also opens up new opportunities for the simple fabrication of electrochemical immunosensors for different target pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Competitive binding of polyethyleneimine-coated gold nanoparticles to enzymes and bacteria: a key mechanism for low-level colorimetric detection of gram-positive and gram-negative bacteria

    International Nuclear Information System (INIS)

    Thiramanas, Raweewan; Laocharoensuk, Rawiwan

    2016-01-01

    The article describes a simple and rapid method for colorimetric detection of bacteria. It is based on competitive binding of positively charged polyethyleneimine-coated gold nanoparticles (PEI-AuNPs) to negatively charged enzymes and bacteria. The PEI-AuNPs are electrostatically attracted by both the bacterial surface and the enzyme β-galactosidase (β-Gal). Binding to the latter results in the inhibition of enzyme activity. However, in the presence of a large number of bacteria, the PEI-AuNPs preferentially bind to bacteria. Hence, the enzyme will not be inhibited and its activity can be colorimetrically determined via hydrolysis of the chromogenic substrate chlorophenol red β-D-galactopyranoside (CPRG). The detection limit of this assay is as low as 10 cfu·mL −1 , and the linear range extends from 10 6 to 10 8 cfu·mL −1 . The assay is applicable to both Gram-negative (such as enterotoxigenic Escherichia coli; ETEC) and Gram-positive (Staphylococcus aureus; S. aureus) bacteria. Results are obtained within 10 min using an optical reader, and within 2–3 h by bare-eye detection. The method was applied to the identification of ETEC contamination at a level of 10 cfu·mL −1 in spiked drinking water. Given its low detection limit and rapidity (sample preconcentration is not required), this method holds great promise for on-site detection of total bacterial contamination. (author)

  12. Rapid colorimetric sensing platform for the detection of Listeria monocytogenes foodborne pathogen.

    Science.gov (United States)

    Alhogail, Sahar; Suaifan, Ghadeer A R Y; Zourob, Mohammed

    2016-12-15

    Listeria monocytogenes is a serious cause of human foodborne infections worldwide, which needs spending billions of dollars for inspection of bacterial contamination in food every year. Therefore, there is an urgent need for rapid, in-field and cost effective detection techniques. In this study, rapid, low-cost and simple colorimetric assay was developed using magnetic nanoparticles for the detection of listeria bacteria. The protease from the listeria bacteria was detected using D-amino acid substrate. D-amino acid substrate was linked to the carboxylic acid on the magnetic nanoparticles using EDC/NHS chemistry. The cysteine residue at the C-terminal of the substrate was used for the self-assembled monolayer formation on the gold sensor surface, which in turn the black magnetic nanobeads will mask the golden color. The color will change from black to golden color upon the cleavage of the specific peptide sequence by the Listeria protease. The sensor was tested with serial dilutions of Listeria bacteria. It was found that the appearance of the gold surface area is proportional to the bacterial concentrations in CFU/ml. The lowest detection limit of the developed sensor for Listeria was found to be 2.17×10(2) colony forming unit/ml (CFU/ml). The specificity of the biosensor was tested against four different foodborne associated bacteria (Escherichia coli, Salmonella, Shigella flexnerii and Staphylococcus aureus). Finally, the sensor was tested with artificially spiked whole milk and ground meat spiked with listeria. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Culture-Independent Techniques for Rapid Detection of Bacteria Associated with Loss of Chloramine Residual in a Drinking Water System

    OpenAIRE

    Hoefel, Daniel; Monis, Paul T.; Grooby, Warwick L.; Andrews, Stuart; Saint, Christopher P.

    2005-01-01

    Chloramination is often the disinfection regimen of choice for extended drinking water systems. However, this process is prone to instability due to the growth of nitrifying bacteria. This is the first study to use alternative approaches for rapid investigation of chloraminated drinking water system instability in which flow cytometric cell sorting of bacteria with intact membranes (membrane-intact fraction) (BacLight kit) or with active esterases (esterase-active fraction) (carboxyfluorescei...

  14. Culture-free, highly sensitive, quantitative detection of bacteria from minimally processed samples using fluorescence imaging by smartphone.

    Science.gov (United States)

    Shrivastava, Sajal; Lee, Won-Il; Lee, Nae-Eung

    2018-06-30

    A critical unmet need in the diagnosis of bacterial infections, which remain a major cause of human morbidity and mortality, is the detection of scarce bacterial pathogens in a variety of samples in a rapid and quantitative manner. Herein, we demonstrate smartphone-based detection of Staphylococcus aureus in a culture-free, rapid, quantitative manner from minimally processed liquid samples using aptamer-functionalized fluorescent magnetic nanoparticles. The tagged S. aureus cells were magnetically captured in a detection cassette, and then fluorescence was imaged using a smartphone camera with a light-emitting diode as the excitation source. Our results showed quantitative detection capability with a minimum detectable concentration as low as 10 cfu/ml by counting individual bacteria cells, efficiently capturing S. aureus cells directly from a peanut milk sample within 10 min. When the selectivity of detection was investigated using samples spiked with other pathogenic bacteria, no significant non-specific detection occurred. Furthermore, strains of S. aureus from various origins showed comparable results, ensuring that the approach can be widely adopted. Therefore, the quantitative fluorescence imaging platform on a smartphone could allow on-site detection of bacteria, providing great potential assistance during major infectious disease outbreaks in remote and resource-limited settings. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Amperometric immunosensor for rapid detection of Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Hiraiwa, Morgan; Lee, Hyun-Boo; Inoue, Shinnosuke; Chung, Jae-Hyun; Kim, Jong-Hoon; Becker, Annie L; Weigel, Kris M; Cangelosi, Gerard A; Lee, Kyong-Hoon

    2015-01-01

    Tuberculosis (TB) has been a major public health problem, which can be better controlled by using accurate and rapid diagnosis in low-resource settings. A simple, portable, and sensitive detection method is required for point-of-care (POC) settings. This paper studies an amperometric biosensor using a microtip immunoassay for a rapid and low-cost detection of Mycobacterium tuberculosis (MTB) in sputum. MTB in sputum is specifically captured on the functionalized microtip surface and detected by electric current. According to the numerical study, the current signal on the microtip surface is linearly changed with increasing immersion depth. Using a reference microtip, the immersion depth is compensated for a sensing microtip. On the microtip surface, target bacteria are concentrated and organized by a coffee-ring effect, which amplifies the electric current. To enhance the signal-to-noise ratio, both the sample processing and rinsing steps are presented with the use of deionized water as a medium for the amperometric measurement. When applied to cultured MTB cells spiked into human sputum, the detection limit was 100 CFU mL −1 , comparable to a more labor-intensive fluorescence detection method reported previously. (paper)

  16. Amperometric immunosensor for rapid detection of Mycobacterium tuberculosis

    Science.gov (United States)

    Hiraiwa, Morgan; Kim, Jong-Hoon; Lee, Hyun-Boo; Inoue, Shinnosuke; Becker, Annie L.; Weigel, Kris M.; Cangelosi, Gerard A.; Lee, Kyong-Hoon; Chung, Jae-Hyun

    2015-05-01

    Tuberculosis (TB) has been a major public health problem, which can be better controlled by using accurate and rapid diagnosis in low-resource settings. A simple, portable, and sensitive detection method is required for point-of-care (POC) settings. This paper studies an amperometric biosensor using a microtip immunoassay for a rapid and low-cost detection of Mycobacterium tuberculosis (MTB) in sputum. MTB in sputum is specifically captured on the functionalized microtip surface and detected by electric current. According to the numerical study, the current signal on the microtip surface is linearly changed with increasing immersion depth. Using a reference microtip, the immersion depth is compensated for a sensing microtip. On the microtip surface, target bacteria are concentrated and organized by a coffee-ring effect, which amplifies the electric current. To enhance the signal-to-noise ratio, both the sample processing and rinsing steps are presented with the use of deionized water as a medium for the amperometric measurement. When applied to cultured MTB cells spiked into human sputum, the detection limit was 100 CFU mL-1, comparable to a more labor-intensive fluorescence detection method reported previously.

  17. Detection and identification of intestinal pathogenic bacteria by hybridization to oligonucleotide microarrays

    Science.gov (United States)

    Jin, Lian-Qun; Li, Jun-Wen; Wang, Sheng-Qi; Chao, Fu-Huan; Wang, Xin-Wei; Yuan, Zheng-Quan

    2005-01-01

    AIM: To detect the common intestinal pathogenic bacteria quickly and accurately. METHODS: A rapid (<3 h) experimental procedure was set up based upon the gene chip technology. Target genes were amplified and hybridized by oligonucleotide microarrays. RESULTS: One hundred and seventy strains of bacteria in pure culture belonging to 11 genera were successfully discriminated under comparatively same conditions, and a series of specific hybridization maps corresponding to each kind of bacteria were obtained. When this method was applied to 26 divided cultures, 25 (96.2%) were identified. CONCLUSION: Salmonella sp., Escherichia coli, Shigella sp., Listeria monocytogenes, Vibrio parahaemolyticus, Staphylococcus aureus, Proteus sp., Bacillus cereus, Vibrio cholerae, Enterococcus faecalis, Yersinia enterocolitica, and Campylobacter jejuni can be detected and identified by our microarrays. The accuracy, range, and discrimination power of this assay can be continually improved by adding further oligonucleotides to the arrays without any significant increase of complexity or cost. PMID:16437687

  18. Antisera production to detect indoleacetic acid in cultures of plant-growth promoting bacteria

    International Nuclear Information System (INIS)

    Rojas, Marcia M; Hernandez, Annia; Rives, Narovis; Tejera, Berto; Acebo, Yanelis; Heydrich, Mayra

    2012-01-01

    Rabbit polyclonal antisera against indoleacetic acid (IAA) bound to nitrocellulose membrane were obtained, which exhibited a high titer and specificity. The dot immunobinding technique with colloidal gold was used to detect auxin production by several strains belonging to Gluconacetobacter, Herbaspirillum, Azospirillum, Pseudomonas, Burkholderia and Bacillus genera, using culture supernatants as antigens. Moreover, auxin production was quantified by the Salkowski's method to corroborate the previous results. It was found that that all the studied microorganisms produce IAA and the feasibility of using these antisera to detect the metabolite was confirmed. Taking into account the potentialities of plant growth promoting bacteria as biofertilizers, the use of these antisera for a rapid and easy detection of IAA in bacteria associated with important crops is thus recommended.

  19. Method of Detecting Coliform Bacteria and Escherichia Coli Bacteria from Reflected Light

    Science.gov (United States)

    Vincent, Robert (Inventor)

    2013-01-01

    The present invention relates to a method of detecting coliform bacteria in water from reflected light and a method of detecting Eschericha Coli bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  20. Using Fluorescent Viruses for Detecting Bacteria in Water

    Science.gov (United States)

    Tabacco, Mary Beth; Qian, Xiaohua; Russo, Jaimie A.

    2009-01-01

    A method of detecting water-borne pathogenic bacteria is based partly on established molecular-recognition and fluorescent-labeling concepts, according to which bacteria of a species of interest are labeled with fluorescent reporter molecules and the bacteria can then be detected by fluorescence spectroscopy. The novelty of the present method lies in the use of bacteriophages (viruses that infect bacteria) to deliver the fluorescent reporter molecules to the bacteria of the species of interest.

  1. Rapid detection of food pathogens using RNA aptamers-immobilized slide.

    Science.gov (United States)

    Maeng, Jin-Soo; Kim, Namsoo; Kim, Chong-Tai; Han, Seung Ryul; Lee, Young Ju; Lee, Seong-Wook; Lee, Myung-Hyun; Cho, Yong-Jin

    2012-07-01

    The purpose of this study was to develop a simple and rapid detection system for foodborne bacteria, which consisted of an optical microscope and its slide chip with artificial antibodies, or RNA aptamers. From an RNA pool, three each RNA aptamers were built by the method of SELEX (systematic evolution of ligands by exponential enrichment) for components of cell wall, LPS (lipopolysaccharide) from E. coli O157:H7, teichoic acid from Staphylococcus aureus and a cell membrane protein of OmpC from Salmonella typhimurium, respectively. These aptamers were hybridized with thiol-conjugated 16 dT-linker molecules in order to be immobilized on silver surface which was, in advance, fabricated on glass slide, using a spin-coating method. To confirm that each aptamers retained its specific binding activities to their antigenic live bacteria, microscopic view of bound cells immobilized on silver film were observed. Furthermore, we observed the fluorescence-emitting bacteria-aptamer complex immobilized on silver film after adding RNA aptamers hybridized with fluorophore, FAM-conjugated 16 dT-linker molecules. As a result, the RNA aptamers-immobilized slide system developed in this study was a useful new tool to rapidly monitor individual food pathogens.

  2. Rapid Separation of Bacteria from Blood—Review and Outlook

    Science.gov (United States)

    Alizadeh, Mahsa; Husseini, Ghaleb A.; McClellan, Daniel S.; Buchanan, Clara M.; Bledsoe, Colin G.; Robison, Richard A.; Blanco, Rae; Roeder, Beverly L.; Melville, Madison; Hunter, Alex K.

    2017-01-01

    The high morbidity and mortality rate of bloodstream infections involving antibiotic-resistant bacteria necessitate a rapid identification of the infectious organism and its resistance profile. Traditional methods based on culturing the blood typically require at least 24 h, and genetic amplification by PCR in the presence of blood components has been problematic. The rapid separation of bacteria from blood would facilitate their genetic identification by PCR or other methods so that the proper antibiotic regimen can quickly be selected for the septic patient. Microfluidic systems that separate bacteria from whole blood have been developed, but these are designed to process only microliter quantities of whole blood or only highly diluted blood. However, symptoms of clinical blood infections can be manifest with bacterial burdens perhaps as low as 10 CFU/mL, and thus milliliter quantities of blood must be processed to collect enough bacteria for reliable genetic analysis. This review considers the advantages and shortcomings of various methods to separate bacteria from blood, with emphasis on techniques that can be done in less than 10 min on milliliter-quantities of whole blood. These techniques include filtration, screening, centrifugation, sedimentation, hydrodynamic focusing, chemical capture on surfaces or beads, field-flow fractionation, and dielectrophoresis. Techniques with the most promise include screening, sedimentation, and magnetic bead capture, as they allow large quantities of blood to be processed quickly. Some microfluidic techniques can be scaled up. PMID:27160415

  3. Rapid and high-throughput detection of highly pathogenic bacteria by Ibis PLEX-ID technology.

    Directory of Open Access Journals (Sweden)

    Daniela Jacob

    Full Text Available In this manuscript, we describe the identification of highly pathogenic bacteria using an assay coupling biothreat group-specific PCR with electrospray ionization mass spectrometry (PCR/ESI-MS run on an Ibis PLEX-ID high-throughput platform. The biothreat cluster assay identifies most of the potential bioterrorism-relevant microorganisms including Bacillus anthracis, Francisella tularensis, Yersinia pestis, Burkholderia mallei and pseudomallei, Brucella species, and Coxiella burnetii. DNA from 45 different reference materials with different formulations and different concentrations were chosen and sent to a service screening laboratory that uses the PCR/ESI-MS platform to provide a microbial identification service. The standard reference materials were produced out of a repository built up in the framework of the EU funded project "Establishment of Quality Assurances for Detection of Highly Pathogenic Bacteria of Potential Bioterrorism Risk" (EQADeBa. All samples were correctly identified at least to the genus level.

  4. Gold Nanoparticle Labeling Based ICP-MS Detection/Measurement of Bacteria, and Their Quantitative Photothermal Destruction

    Science.gov (United States)

    Lin, Yunfeng

    2015-01-01

    Bacteria such as Salmonella and E. coli present a great challenge in public health care in today’s society. Protection of public safety against bacterial contamination and rapid diagnosis of infection require simple and fast assays for the detection and elimination of bacterial pathogens. After utilizing Salmonella DT104 as an example bacterial strain for our investigation, we report a rapid and sensitive assay for the qualitative and quantitative detection of bacteria by using antibody affinity binding, popcorn shaped gold nanoparticle (GNPOPs) labeling, surfance enchanced Raman spectroscopy (SERS), and inductively coupled plasma mass spectrometry (ICP-MS) detection. For qualitative analysis, our assay can detect Salmonella within 10 min by Raman spectroscopy; for quantitative analysis, our assay has the ability to measure as few as 100 Salmonella DT104 in a 1 mL sample (100 CFU/mL) within 40 min. Based on the quantitative detection, we investigated the quantitative destruction of Salmonella DT104, and the assay’s photothermal efficiency in order to reduce the amount of GNPOPs in the assay to ultimately to eliminate any potential side effects/toxicity to the surrounding cells in vivo. Results suggest that our assay may serve as a promising candidate for qualitative and quantitative detection and elimination of a variety of bacterial pathogens. PMID:26417447

  5. Integration of nanoparticle cell lysis and microchip PCR for one-step rapid detection of bacteria.

    Science.gov (United States)

    Wan, Weijie; Yeow, John T W

    2012-04-01

    This paper describes an integrated microchip system as an efficient and cost-effective solution involving Nanotechnology and Lab-on-a-Chip technology for the rapid detection of bacteria. The system is based on using surface-modified gold nanoparticles for efficient cell lysis followed by microchip PCR without having to remove the nanoparticles from the PCR solution. Poly(quaternary ammonium) modified gold nanoparticles are used to provide a novel and efficient cell lysis method without the need to go through time-consuming, expensive and complicated microfabrication processes as most of current cell lysis methods for Lab-on-a-Chip applications do. It also facilitates the integration of cell lysis and PCR by sharing the same reaction chamber as PCR uses. It is integrated with a prototype microchip PCR system consisting of a physical microchip PCR device and an automated temperature control mechanism. The research work explores solutions for the problem of PCR inhibition caused by gold nanoparticles as well as for the problem of non-specific PCR amplification in the integrated microchip system. It also explores the possibility of greatly reducing PCR cycling time to achieve the same result compared to the protocol for a regular PCR machine. The simplicity of the setup makes it easy to be integrated with other Lab-on-a-Chip functional modules to create customized solutions for target applications.

  6. Rapid identification of bacteria in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Stevenson, Lindsay G; Drake, Steven K; Murray, Patrick R

    2010-02-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry is a rapid, accurate method for identifying bacteria and fungi recovered on agar culture media. We report herein a method for the direct identification of bacteria in positive blood culture broths by MALDI-TOF mass spectrometry. A total of 212 positive cultures were examined, representing 32 genera and 60 species or groups. The identification of bacterial isolates by MALDI-TOF mass spectrometry was compared with biochemical testing, and discrepancies were resolved by gene sequencing. No identification (spectral score of blood culture broth. Of the bacteria with a spectral score of > or = 1.7, 162 (95.3%) of 170 isolates were correctly identified. All 8 isolates of Streptococcus mitis were misidentified as being Streptococcus pneumoniae isolates. This method provides a rapid, accurate, definitive identification of bacteria within 1 h of detection in positive blood cultures with the caveat that the identification of S. pneumoniae would have to be confirmed by an alternative test.

  7. A Multiplex SYBR Green Real-Time PCR Assay for the Detection of Three Colistin Resistance Genes from Cultured Bacteria, Feces, and Environment Samples

    Directory of Open Access Journals (Sweden)

    Jiyun Li

    2017-10-01

    Full Text Available The aim of the study was to develop a multiplex assay for rapid detection of mcr-1, mcr-2, and mcr-3, a group of genes of conferring resistance to colistin mediated by plasmid in Enterobacteriaceae. A SYBR Green based real-time PCR assay has been designed to detect the mcr genes, and applied to cultured bacteria, feces and soil samples. All three mcr genes could be detected with a lower limit of 102 cultured bacteria. This test was highly specific and sensitive, and generated no false-positive results. The assay was also conclusive when applied to feces and soil samples containing mcr-1-positive Escherichia coli, which could facilitate the screening of mcr genes not only in the bacteria, but also directly from the environment. This simple, rapid, sensitive, and specific multiplex assay will be useful for rapid screening of the colistin resistance in both clinical medicine and animal husbandry.

  8. Aptamer-based hydrogel barcodes for the capture and detection of multiple types of pathogenic bacteria.

    Science.gov (United States)

    Xu, Yueshuang; Wang, Huan; Luan, Chengxin; Liu, Yuxiao; Chen, Baoan; Zhao, Yuanjin

    2018-02-15

    Rapid and sensitive diagnosing hematological infections based on the separation and detection of pathogenic bacteria in the patient's blood is a significant challenge. To address this, we herein present a new barcodes technology that can simultaneously capture and detect multiple types of pathogenic bacteria from a complex sample. The barcodes are poly (ethylene glycol) (PEG) hydrogel inverse opal particles with characteristic reflection peak codes that remain stable during bacteria capture on their surfaces. As the spherical surface of the particles has ordered porous nanostructure, the barcodes can provide not only more surface area for probe immobilization and reaction, but also a nanopatterned platform for highly efficient bioreactions. In addition, the PEG hydrogel scaffold could decrease the non-specificity adsorption by its anti-adhesive effect, and the decorated aptamer probes in the scaffolds could increase the sensitivity, reliability, and specificity of the bacteria capture and detection. Moreover, the tagged magnetic nanoparticles in the PEG scaffold could impart the barcodes with controllable movement under magnetic fields, which can be used to significantly increase the reaction speed and simplify the processing of the bioassays. Based on the describe barcodes, it was demonstrated that the bacteria could be captured and identified even at low bacterial concentrations (100 CFU mL -1 ) within 2.5h, which is effectively shortened in comparison with the "gold standard" in clinic. These features make the barcodes ideal for capturing and detecting multiple bacteria from clinical samples for hematological infection diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Rapid antibiotic efficacy screening with aluminum oxide nanoporous membrane filter-chip and optical detection system.

    Science.gov (United States)

    Tsou, Pei-Hsiang; Sreenivasappa, Harini; Hong, Sungmin; Yasuike, Masayuki; Miyamoto, Hiroshi; Nakano, Keiyo; Misawa, Takeyuki; Kameoka, Jun

    2010-09-15

    We have developed a filter-chip and optical detection system for rapid antibiotic efficacy screening. The filter-chip consisted of a 1-mL reservoir and an anodic aluminum oxide (AAO) nanoporous membrane. Sample solution with liquid growth media, bacteria, and antibiotics was incubated in the reservoir for a specific period of time. The number of live bacteria on the surface of membrane was counted after the incubation with antibiotics and filtration. Using this biosensing system, we have demonstrated a 1-h antibiotic screening for patients' clinical samples, significantly faster than the conventional antibiotic susceptibility tests that typically take more than 24h. This rapid screening nature makes the filter-chip and detection system ideal for tailoring antibiotic treatment to individual patients by reducing the microbial antibiotic resistance, and improving the survival rate for patients suffering from postoperative infections. Published by Elsevier B.V.

  10. Bile anaerobic bacteria detection and antibiotic susceptibility in patients with gallstone.

    Science.gov (United States)

    Lu, Yun; Xiang, Ting-Hai; Shi, Jing-Sen; Zhang, Bing-Yuan

    2003-08-01

    To detect bile anaerobic bacteria and antibiotic susceptibility in 59 patients with gallstones who had had cholecystectomy. BACT/ALERT 120 microbe detection system and SCEPTOR microbe detection system were used to detect bile anaerobic bacteria, antibiotic susceptibility. The ratio of anaerobic bacteria to the patients examined was 52.5% (31/59). Obligate anaerobe bile culture showed positive results in 4 patients. B. fragilis (37.8%) was the major type of anaerobic bacteria in bile. Most (81.8%) of anaerobic bacteria were sensitive to metronidazole, and imipenem was suitable for beta-lactamase bacteria. Culture of anaerobic bacteria in logarithmic phase can improve the positive rate of the culture. There are some relations between anaerobic infection and gallstone formation.

  11. Rapid deployment intrusion detection system

    International Nuclear Information System (INIS)

    Graham, R.H.

    1997-01-01

    A rapidly deployable security system is one that provides intrusion detection, assessment, communications, and annunciation capabilities; is easy to install and configure; can be rapidly deployed, and is reusable. A rapidly deployable intrusion detection system (RADIDS) has many potential applications within the DOE Complex: back-up protection for failed zones in a perimeter intrusion detection and assessment system, intrusion detection and assessment capabilities in temporary locations, protection of assets during Complex reconfiguration, and protection in hazardous locations, protection of assets during Complex reconfiguration, and protection in hazardous locations. Many DOE user-need documents have indicated an interest in a rapidly deployable intrusion detection system. The purpose of the RADIDS project is to design, develop, and implement such a system. 2 figs

  12. Rapid Detection of Salmonella enterica in Food Using a Compact Disc-Shaped Device

    Directory of Open Access Journals (Sweden)

    Shunsuke Furutani

    2016-01-01

    Full Text Available Rapid detection of food-borne pathogens is essential to public health and the food industry. Although the conventional culture method is highly sensitive, it takes at least a few days to detect food-borne pathogens. Even though polymerase chain reaction (PCR can detect food-borne pathogens in a few hours, it is more expensive and unsatisfactorily sensitive relative to the culture method. We have developed a method to rapidly detect Salmonella enterica by using a compact disc (CD-shaped device that can reduce reagent consumption in conventional PCR. The detection method, which combines culture and PCR, is more rapid than the conventional culture method and is more sensitive and cheaper than PCR. In this study, we also examined a sample preparation method that involved collecting bacterial cells from food. The bacteria collected from chicken meat spiked with S. enterica were mixed with PCR reagents, and PCR was performed on the device. At a low concentration of S. enterica, the collected S. enterica was cultured before PCR for sensitive detection. After cultivation for 4 h, S. enterica at 1.7 × 104 colony-forming units (CFUs·g−1 was detected within 8 h, which included the time needed for sample preparation and detection. Furthermore, the detection of 30 CFUs·g−1 of S. enterica was possible within 12 h including 8 h for cultivation.

  13. HB&L System: rapid determination of antibiotic sensitivity of bacteria isolated from blood cultures.

    Directory of Open Access Journals (Sweden)

    Simone Barocci

    2010-03-01

    Full Text Available Introduction. Blood culture is an important method to detect microbial pathogens on blood, very useful for diagnosing bacterial infections. Unfortunately, classical diagnostic protocols cannot directly identify bacteria responsible for sepsis and accordingly their antimicrobial profiles. This problem causes a delay of almost two days in the availability of a specific antimicrobial profile. Objective. Among the main causes of death, sepsis have a relevant importance. For this reason it is important both to identify pathogens and to perform an antimicrobial susceptibility test in the shortest time as possible. For this purpose, the main aim of this study is the evaluation of the performances of an antimicrobial susceptibility determination directly performed on positive blood cultures. Materials and methods. This study has been performed on 70 positive blood cultures, during the period from January to July 2009. A number of 35 blood cultures were positive for Gram negative bacteria, and 35 were positive for Gram positive bacteria. From these positive blood cultures, after a short sample preparation, it has been possible to directly determine antimicrobial susceptibility profiles by using the HB&L (formerly URO-QUICK instrument. Results. The HB&L system results showed a very good correlation with both the classical disk diffusion method and VITEK 2 automatic system.The performances between the methods carried out in this study were equivalent. Conclusions. From data reported, thanks to the rapidity and simplicity of the method used, we can assert that the direct susceptibility test available with the HB&L system, is useful for a rapid and early choice of the antibiotic treatment.

  14. Evaluation of the Verigene Gram-positive blood culture nucleic acid test for rapid detection of bacteria and resistance determinants.

    Science.gov (United States)

    Wojewoda, Christina M; Sercia, Linda; Navas, Maria; Tuohy, Marion; Wilson, Deborah; Hall, Geraldine S; Procop, Gary W; Richter, Sandra S

    2013-07-01

    Rapid identification of pathogens from blood cultures can decrease lengths of stay and improve patient outcomes. We evaluated the accuracy of the Verigene Gram-positive blood culture (BC-GP) nucleic acid test for investigational use only (Nanosphere, Inc., Northbrook, IL) for the identification of Gram-positive bacteria from blood cultures. The detection of resistance genes (mecA in Staphylococcus aureus and Staphylococcus epidermidis and vanA or vanB in Enterococcus faecium and Enterococcus faecalis) by the BC-GP assay also was assessed. A total of 186 positive blood cultures (in BacT/Alert FA bottles) with Gram-positive cocci observed with Gram staining were analyzed using the BC-GP assay. The BC-GP results were compared with the identification and susceptibility profiles obtained with routine methods in the clinical laboratory. Discordant results were arbitrated with additional biochemical, cefoxitin disk, and repeat BC-GP testing. The initial BC-GP organism identification was concordant with routine method results for 94.6% of the blood cultures. Only 40% of the Streptococcus pneumoniae identifications were correct. The detection of the mecA gene for 69 blood cultures with only S. aureus or S. epidermidis was concordant with susceptibility testing results. For 3 of 6 cultures with multiple Staphylococcus spp., mecA detection was reported but was correlated with oxacillin resistance in a species other than S. aureus or S. epidermidis. The detection of vanA agreed with susceptibility testing results for 45 of 46 cultures with E. faecalis or E. faecium. Comparison of the mean times to results for each organism group showed that BC-GP results were available 31 to 42 h earlier than phenotypic identifications and 41 to 50 h earlier than susceptibility results.

  15. A porous silicon optical microcavity for sensitive bacteria detection

    International Nuclear Information System (INIS)

    Li Sha; Huang Jianfeng; Cai Lintao

    2011-01-01

    A porous silicon microcavity (PSM) is highly sensitive to subtle interface changes due to its high surface area, capillary condensation ability and a narrow resonance peak (∼10 nm). Based on the well-defined optical properties of a PSM, we successfully fabricated a bacteria detection chip for molecular or subcellular analysis by surface modification using undecylenic acid (UA), and the specific recognition binding of vancomycin to the D-alanyl-D-alanine of bacteria. The red shift of the PSM resonance peak showed a good linear relationship with bacteria concentration ranging from 100 to 1000 bacteria ml -1 at the level of relative standard deviation of 0.994 and detection limit of 20 bacteria ml -1 . The resulting PSM sensors demonstrated high sensitivity, good reproducibility, fast response and low cost for biosensing.

  16. A porous silicon optical microcavity for sensitive bacteria detection

    Science.gov (United States)

    Li, Sha; Huang, Jianfeng; Cai, Lintao

    2011-10-01

    A porous silicon microcavity (PSM) is highly sensitive to subtle interface changes due to its high surface area, capillary condensation ability and a narrow resonance peak (~10 nm). Based on the well-defined optical properties of a PSM, we successfully fabricated a bacteria detection chip for molecular or subcellular analysis by surface modification using undecylenic acid (UA), and the specific recognition binding of vancomycin to the D-alanyl-D-alanine of bacteria. The red shift of the PSM resonance peak showed a good linear relationship with bacteria concentration ranging from 100 to 1000 bacteria ml - 1 at the level of relative standard deviation of 0.994 and detection limit of 20 bacteria ml - 1. The resulting PSM sensors demonstrated high sensitivity, good reproducibility, fast response and low cost for biosensing.

  17. A porous silicon optical microcavity for sensitive bacteria detection

    Energy Technology Data Exchange (ETDEWEB)

    Li Sha; Huang Jianfeng; Cai Lintao, E-mail: lt.cai@siat.ac.cn [CAS Key Lab of Health Informatics, Shenzhen Key Laboratory of Cancer Nanotechnology, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China)

    2011-10-21

    A porous silicon microcavity (PSM) is highly sensitive to subtle interface changes due to its high surface area, capillary condensation ability and a narrow resonance peak ({approx}10 nm). Based on the well-defined optical properties of a PSM, we successfully fabricated a bacteria detection chip for molecular or subcellular analysis by surface modification using undecylenic acid (UA), and the specific recognition binding of vancomycin to the D-alanyl-D-alanine of bacteria. The red shift of the PSM resonance peak showed a good linear relationship with bacteria concentration ranging from 100 to 1000 bacteria ml{sup -1} at the level of relative standard deviation of 0.994 and detection limit of 20 bacteria ml{sup -1}. The resulting PSM sensors demonstrated high sensitivity, good reproducibility, fast response and low cost for biosensing.

  18. Rapid and reliable identification of Gram-negative bacteria and Gram-positive cocci by deposition of bacteria harvested from blood cultures onto the MALDI-TOF plate.

    Science.gov (United States)

    Barnini, Simona; Ghelardi, Emilia; Brucculeri, Veronica; Morici, Paola; Lupetti, Antonella

    2015-06-18

    Rapid identification of the causative agent(s) of bloodstream infections using the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) methodology can lead to increased empirical antimicrobial therapy appropriateness. Herein, we aimed at establishing an easier and simpler method, further referred to as the direct method, using bacteria harvested by serum separator tubes from positive blood cultures and placed onto the polished steel target plate for rapid identification by MALDI-TOF. The results by the direct method were compared with those obtained by MALDI-TOF on bacteria isolated on solid media. Identification of Gram-negative bacilli was 100 % concordant using the direct method or MALDI-TOF on isolated bacteria (96 % with score > 2.0). These two methods were 90 % concordant on Gram-positive cocci (32 % with score > 2.0). Identification by the SepsiTyper method of Gram-positive cocci gave concordant results with MALDI-TOF on isolated bacteria in 87 % of cases (37 % with score > 2.0). The direct method herein developed allows rapid identification (within 30 min) of Gram-negative bacteria and Gram-positive cocci from positive blood cultures and can be used to rapidly report reliable and accurate results, without requiring skilled personnel or the use of expensive kits.

  19. Immunomagnetic nanoparticle based quantitative PCR for rapid detection of Salmonella

    International Nuclear Information System (INIS)

    Bakthavathsalam, Padmavathy; Rajendran, Vinoth Kumar; Saran, Uttara; Chatterjee, Suvro; Ali, Baquir Mohammed Jaffar

    2013-01-01

    We have developed a rapid and sensitive method for immunomagnetic separation (IMS) of Salmonella along with their real time detection via PCR. Silica-coated magnetic nanoparticles were functionalized with carboxy groups to which anti-Salmonella antibody raised against heat-inactivated whole cells of Salmonella were covalently attached. The immuno-captured target cells were detected in beverages like milk and lemon juice by multiplex PCR and real time PCR with a detection limit of 10 4 cfu.mL −1 and 10 3 cfu.mL −1 , respectively. We demonstrate that IMS can be used for selective concentration of target bacteria from beverages for subsequent use in PCR detection. PCR also enables differentiation of Salmonella typhi and Salmonella paratyphi A using a set of four specific primers. In addition, IMS—PCR can be used as a screening tool in the food and beverage industry for the detection of Salmonella within 3–4 h which compares favorably to the time of several days that is needed in case of conventional detection based on culture and biochemical methods. (author)

  20. FISHing for bacteria in food--a promising tool for the reliable detection of pathogenic bacteria?

    Science.gov (United States)

    Rohde, Alexander; Hammerl, Jens Andre; Appel, Bernd; Dieckmann, Ralf; Al Dahouk, Sascha

    2015-04-01

    Foodborne pathogens cause millions of infections every year and are responsible for considerable economic losses worldwide. The current gold standard for the detection of bacterial pathogens in food is still the conventional cultivation following standardized and generally accepted protocols. However, these methods are time-consuming and do not provide fast information about food contaminations and thus are limited in their ability to protect consumers in time from potential microbial hazards. Fluorescence in situ hybridization (FISH) represents a rapid and highly specific technique for whole-cell detection. This review aims to summarize the current data on FISH-testing for the detection of pathogenic bacteria in different food matrices and to evaluate its suitability for the implementation in routine testing. In this context, the use of FISH in different matrices and their pretreatment will be presented, the sensitivity and specificity of FISH tests will be considered and the need for automation shall be discussed as well as the use of technological improvements to overcome current hurdles for a broad application in monitoring food safety. In addition, the overall economical feasibility will be assessed in a rough calculation of costs, and strengths and weaknesses of FISH are considered in comparison with traditional and well-established detection methods. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Graphene-based wireless bacteria detection on tooth enamel

    Science.gov (United States)

    Mannoor, Manu S.; Tao, Hu; Clayton, Jefferson D.; Sengupta, Amartya; Kaplan, David L.; Naik, Rajesh R.; Verma, Naveen; Omenetto, Fiorenzo G.; McAlpine, Michael C.

    2012-03-01

    Direct interfacing of nanosensors onto biomaterials could impact health quality monitoring and adaptive threat detection. Graphene is capable of highly sensitive analyte detection due to its nanoscale nature. Here we show that graphene can be printed onto water-soluble silk. This in turn permits intimate biotransfer of graphene nanosensors onto biomaterials, including tooth enamel. The result is a fully biointerfaced sensing platform, which can be tuned to detect target analytes. For example, via self-assembly of antimicrobial peptides onto graphene, we show bioselective detection of bacteria at single-cell levels. Incorporation of a resonant coil eliminates the need for onboard power and external connections. Combining these elements yields two-tiered interfacing of peptide-graphene nanosensors with biomaterials. In particular, we demonstrate integration onto a tooth for remote monitoring of respiration and bacteria detection in saliva. Overall, this strategy of interfacing graphene nanosensors with biomaterials represents a versatile approach for ubiquitous detection of biochemical targets.

  2. Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR.

    Directory of Open Access Journals (Sweden)

    Kirill V Sergueev

    Full Text Available BACKGROUND: Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics. METHODOLOGY/PRINCIPAL FINDINGS: The objective of this work was to develop an alternative to conventional phage lysis tests--a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages phiA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. phiA1122-specific qPCR enabled the detection of an initial bacterial concentration of 10(3 CFU/ml (equivalent to as few as one Y. pestis cell per 1-microl sample in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, phiA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR. CONCLUSIONS/SIGNIFICANCE: Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria.

  3. Evaluation of the HB&L carbapenemase and extended spectrum beta lactamase-AmpC automated screening kits for the rapid detection of resistant Enterobacteriaceae in rectal swabs

    Directory of Open Access Journals (Sweden)

    Sara Marani

    2017-03-01

    Full Text Available Background. In the past two decades, a rapid increase of infections due to multidrug-resistant Enterobacteriaceae was reported worldwide, including in Italy. These bacteria express genes encoding for extended-spectrum β-lactamases (ESBL or bear a plasmid-mediated AmpC that induce phenotypically a resistance to the last-generation cephalosporins; even more worrying is the rapid increase of Enterobacteriaceae carrying genes conferring resistance to carbapenems (CPE. Materials and methods. The gut may serve as reservoir for these antibiotic drug-resistant bacteria: as a consequence, the rapid detection of drug resistant Enterobacteriaceae from rectal swabs is an important tool to identify rectal carriage of resistant bacteria. This procedure is the basic tool to successfully implement the infection control measures in the hospital wards. The study evaluated the capability of the HB&L ESBL/AmpC and CARBAPENEMASE screening kit (Alifax, Padua, Italy to rapidly identify the drug resistant enterobacteriaceae from rectal swabs: the performance was compared with the conventional method. Results and conclusions. The overall agreement was very good (91% for the detection of ESBL-AmpC, and 96.2% for the identification of CPE; this method is thus an efficient tool to quickly report positive multidrug resistant bacteria in rectal swabs.

  4. [Application of anaerobic bacteria detection in oral and maxillofacial infection].

    Science.gov (United States)

    Bao, Zhen-ying; Lin, Qin; Meng, Yan-hong; He, Chun; Su, Jia-zeng; Peng, Xin

    2016-02-18

    To investigate the distribution and drug resistance of anaerobic bacteria in the patients with oral and maxillofacial infection. Aerobic and anaerobic bacteria cultures from 61 specimens of pus from the patients with oral and maxillofacial infection in the Department of Oral and Maxillofacial Surgery, Peking University School of Stomatology were identified. The culture type was evaluated by API 20A kit and drug resistance test was performed by Etest method. The clinical data and antibacterial agents for the treatment of the 61 cases were collected, and the final outcomes were recorded. The bacteria cultures were isolated from all the specimens, with aerobic bacteria only in 6 cases (9.8%), anaerobic bacteria only in 7 cases (11.5%), and both aerobic and anaerobic bacteria in 48 cases (78.7%). There were 55 infected cases (90.2%) with anaerobic bacteria, and 81 anaerobic bacteria stains were isolated. The highest bacteria isolation rate of Gram positive anaerobic bacteria could be found in Peptostreptococcus, Bifidobacterium and Pemphigus propionibacterium. No cefoxitin, amoxicillin/carat acid resistant strain was detected in the above three Gram positive anaerobic bacteria. The highest bacteria isolation rate of Gram negative anaerobic bacteria could be detected in Porphyromonas and Prevotella. No metronidazole, cefoxitin, amoxicillin/carat acid resistant strain was found in the two Gram negative anaerobic bacteria. In the study, 48 patients with oral and maxillofacial infection were treated according to the results of drug resistance testing, and the clinical cure rate was 81.3%. Mixed aerobic and anaerobic bacteria cultures are very common in most oral and maxillofacial infection patients. Anaerobic bacteria culture and drug resistance testing play an important role in clinical treatment.

  5. A Rapid Detection Method of Brucella with Quantum Dots and Magnetic Beads Conjugated with Different Polyclonal Antibodies

    Science.gov (United States)

    Song, Dandan; Qu, Xiaofeng; Liu, Yushen; Li, Li; Yin, Dehui; Li, Juan; Xu, Kun; Xie, Renguo; Zhai, Yue; Zhang, Huiwen; Bao, Hao; Zhao, Chao; Wang, Juan; Song, Xiuling; Song, Wenzhi

    2017-03-01

    Brucella spp. are facultative intracellular bacteria that cause zoonotic disease of brucellosis worldwide. Traditional methods for detection of Brucella spp. take 48-72 h that does not meet the need of rapid detection. Herein, a new rapid detection method of Brucella was developed based on polyclonal antibody-conjugating quantum dots and antibody-modified magnetic beads. First, polyclonal antibodies IgG and IgY were prepared and then the antibody conjugated with quantum dots (QDs) and immunomagnetic beads (IMB), respectively, which were activated by N-(3-dimethylaminopropyl)- N'-ethylcar-bodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) to form probes. We used the IMB probe to separate the Brucella and labeled by the QD probe, and then detected the fluorescence intensity with a fluorescence spectrometer. The detection method takes 105 min with a limit of detection of 103 CFU/mL and ranges from 10 to 105 CFU/mL ( R 2 = 0.9983), and it can be well used in real samples.

  6. A rapid Salmonella detection method involving thermophilic helicase-dependent amplification and a lateral flow assay.

    Science.gov (United States)

    Du, Xin-Jun; Zhou, Tian-Jiao; Li, Ping; Wang, Shuo

    2017-08-01

    Salmonella is a major foodborne pathogen that is widespread in the environment and can cause serious human and animal disease. Since conventional culture methods to detect Salmonella are time-consuming and laborious, rapid and accurate techniques to detect this pathogen are critically important for food safety and diagnosing foodborne illness. In this study, we developed a rapid, simple and portable Salmonella detection strategy that combines thermophilic helicase-dependent amplification (tHDA) with a lateral flow assay to provide a detection result based on visual signals within 90 min. Performance analyses indicated that the method had detection limits for DNA and pure cultured bacteria of 73.4-80.7 fg and 35-40 CFU, respectively. Specificity analyses showed no cross reactions with Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, Enterobacter aerogenes, Shigella and Campylobacter jejuni. The results for detection in real food samples showed that 1.3-1.9 CFU/g or 1.3-1.9 CFU/mL of Salmonella in contaminated chicken products and infant nutritional cereal could be detected after 2 h of enrichment. The same amount of Salmonella in contaminated milk could be detected after 4 h of enrichment. This tHDA-strip can be used for the rapid detection of Salmonella in food samples and is particularly suitable for use in areas with limited equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Dual Recognition Strategy for Specific and Sensitive Detection of Bacteria Using Aptamer-Coated Magnetic Beads and Antibiotic-Capped Gold Nanoclusters.

    Science.gov (United States)

    Cheng, Dan; Yu, Mengqun; Fu, Fei; Han, Weiye; Li, Gan; Xie, Jianping; Song, Yang; Swihart, Mark T; Song, Erqun

    2016-01-05

    Food poisoning and infectious diseases caused by pathogenic bacteria such as Staphylococcus aureus (SA) are serious public health concerns. A method of specific, sensitive, and rapid detection of such bacteria is essential and important. This study presents a strategy that combines aptamer and antibiotic-based dual recognition units with magnetic enrichment and fluorescent detection to achieve specific and sensitive quantification of SA in authentic specimens and in the presence of much higher concentrations of other bacteria. Aptamer-coated magnetic beads (Apt-MB) were employed for specific capture of SA. Vancomycin-stabilized fluorescent gold nanoclusters (AuNCs@Van) were prepared by a simple one-step process and used for sensitive quantification of SA in the range of 32-10(8) cfu/mL with the detection limit of 16 cfu/mL via a fluorescence intensity measurement. And using this strategy, about 70 cfu/mL of SA in complex samples (containing 3 × 10(8) cfu/mL of other different contaminated bacteria) could be successfully detected. In comparison to prior studies, the developed strategy here not only simplifies the preparation procedure of the fluorescent probes (AuNCs@Van) to a great extent but also could sensitively quantify SA in the presence of much higher concentrations of other bacteria directly with good accuracy. Moreover, the aptamer and antibiotic used in this strategy are much less expensive and widely available compared to common-used antibodies, making it cost-effective. This general aptamer- and antibiotic-based dual recognition strategy, combined with magnetic enrichment and fluorescent detection of trace bacteria, shows great potential application in monitoring bacterial food contamination and infectious diseases.

  8. Rapid detection of Brucella spp. using loop-mediated isothermal amplification (LAMP).

    Science.gov (United States)

    Chen, Shouyi; Li, Xunde; Li, Juntao; Atwill, Edward R

    2013-01-01

    Brucella spp. are facultative intracellular bacteria that cause zoonotic disease of brucellosis worldwide. Livestock that are most vulnerable to brucellosis include cattle, goats, and pigs. Brucella spp. cause serious health problems to humans and animals and economic losses to the livestock industry. Traditional methods for detection of Brucella spp. take 48-72 h (Kumar et al., J Commun Dis 29:131-137, 1997; Barrouin-Melo et al., Res Vet Sci 83:340-346, 2007) that do not meet the food industry's need of rapid detection. Therefore, there is an urgent need of fast, specific, sensitive, and inexpensive method for diagnosing of Brucella spp. Loop-mediated isothermal amplification (LAMP) is a method to amplify nucleic acid at constant temperatures. Amplification can be detected by visual detection, fluorescent stain, turbidity, and electrophoresis. We targeted at the Brucella-specific gene omp25 and designed LAMP primers for detection of Brucella spp. Amplification of DNA with Bst DNA polymerase can be completed at 65 °C in 60 min. Amplified products can be detected by SYBR Green I stain and 2.0% agarose gel electrophoresis. The LAMP method is feasible for detection of Brucella spp. from blood and milk samples.

  9. Brief ultrasonication improves detection of biofilm-formative bacteria around a metal implant.

    Science.gov (United States)

    Kobayashi, Naomi; Bauer, Thomas W; Tuohy, Marion J; Fujishiro, Takaaki; Procop, Gary W

    2007-04-01

    Biofilms are complex microenvironments produced by microorganisms on surfaces. Ultrasonication disrupts biofilms and may make the microorganism or its DNA available for detection. We determined whether ultrasonication could affect our ability to detect bacteria adherent to a metal substrate. A biofilm-formative Staphylococcus aureus strain was used for an in vitro implant infection model (biofilm-formative condition). We used quantitative culture and real time-polymerase chain reaction to determine the influence of different durations of ultrasound on bacterial adherence and viability. Sonication for 1 minute increased the yield of bacteria. Sonication longer than 5 minutes led to fewer bacterial colonies by conventional culture but not by polymerase chain reaction. This suggests short periods of sonication help release bacteria from the metal substrate by disrupting the biofilm, but longer periods of sonication lyse bacteria prohibiting their detection in microbiologic cultures. A relatively short duration of sonication may be desirable for maximizing detection of biofilm-formative bacteria around implants by culture or polymerase chain reaction.

  10. Rapid Detection of the Chlamydiaceae and Other Families in the Order Chlamydiales: Three PCR Tests

    Science.gov (United States)

    Everett, Karin D. E.; Hornung, Linda J.; Andersen, Arthur A.

    1999-01-01

    Few identification methods will rapidly or specifically detect all bacteria in the order Chlamydiales, family Chlamydiaceae. In this study, three PCR tests based on sequence data from over 48 chlamydial strains were developed for identification of these bacteria. Two tests exclusively recognized the Chlamydiaceae: a multiplex test targeting the ompA gene and the rRNA intergenic spacer and a TaqMan test targeting the 23S ribosomal DNA. The multiplex test was able to detect as few as 200 inclusion-forming units (IFU), while the TaqMan test could detect 2 IFU. The amplicons produced in these tests ranged from 132 to 320 bp in length. The third test, targeting the 23S rRNA gene, produced a 600-bp amplicon from strains belonging to several families in the order Chlamydiales. Direct sequence analysis of this amplicon has facilitated the identification of new chlamydial strains. These three tests permit ready identification of chlamydiae for diagnostic and epidemiologic study. The specificity of these tests indicates that they might also be used to identify chlamydiae without culture or isolation. PMID:9986815

  11. Bacteria in atmospheric waters: Detection, characteristics and implications

    Science.gov (United States)

    Hu, Wei; Niu, Hongya; Murata, Kotaro; Wu, Zhijun; Hu, Min; Kojima, Tomoko; Zhang, Daizhou

    2018-04-01

    In this review paper, we synthesize the current knowledges about bacteria in atmospheric waters, e.g., cloud, fog, rain, and snow, most of which were obtained very recently. First, we briefly describe the importance of bacteria in atmospheric waters, i.e., the essentiality of studying bacteria in atmospheric waters in understanding aerosol-cloud-precipitation-climate interactions in the Earth system. Next, approaches to collect atmospheric water samples for the detection of bacteria and methods to identify the bacteria are summarized and compared. Then the available data on the abundance, viability and community composition of bacteria in atmospheric waters are summarized. The average bacterial concentration in cloud water was usually on the order 104-105 cells mL-1, while that in precipitation on the order 103-104 cells mL-1. Most of the bacteria were viable or metabolically active. Their community composition was highly diverse and differed at various sites. Factors potentially influencing the bacteria, e.g., air pollution levels and sources, meteorological conditions, seasonal effect, and physicochemical properties of atmospheric waters, are described. After that, the implications of bacteria present in atmospheric waters, including their effect on nucleation in clouds, atmospheric chemistry, ecosystems and public health, are briefly discussed. Finally, based on the current knowledges on bacteria in atmospheric waters, which in fact remains largely unknown, we give perspectives that should be paid attention to in future studies.

  12. The Effect of Bacteria Penetration on Chalk Permeability

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Shapiro, Alexander; Nielsen, Sidsel Marie

    number of B. licheniformis was detected on the effluent compared with P. putida. However, in the experiment with B. licheniformis mainly spores were detected in the effluent. The core permeability decreased rapidly during injection of bacteria and a starvation period of 12 days did not allow......Bacteria selective plugging is one of the mechanisms through which microorganisms can be applied for enhanced oil recovery. Bacteria can plug the water-bearing zones of a reservoir, thus altering the flow paths and improving sweep efficiency. It is known that the bacteria can penetrate deeply...... into reservoirs, however, a complete understanding of the penetration behavior of bacteria is lacking, especially in chalk formations where the pore throat sizes are almost comparable with the sizes of bacteria vegetative cells. This study investigates the penetration of bacteria into chalk. Two bacteria types...

  13. PCR detection and identification of histamine-forming bacteria in filleted tuna fish samples.

    Science.gov (United States)

    Ferrario, Chiara; Pegollo, Chiara; Ricci, Giovanni; Borgo, Francesca; Fortina, M Grazia

    2012-02-01

    Total of 14 filleted yellowfin tuna fish (Thunnus albacares) sold in wholesale fish market and supermarkets in Milan, Italy, were purchased and tested to determine microbial count, histamine level, histamine-forming bacteria, and their ability to produce histamine in culture broth. Although histamine level was less than 10 ppm, many samples showed high total viable bacterial and enterobacterial counts that reached dangerous levels after temperature abuse for short periods of time. A PCR assay targeting a 709-bp fragment of the histidine decarboxylase gene (hdc) revealed that 30.5% of the 141 enteric bacteria isolated from samples were positive and potentially able to produce histamine. The hdc positive strains were mainly isolated from fish bought at wholesale fish market, where we observed several possible risk factors, such as handling in poor and non-refrigerated conditions during fillet preparation. These positive strains were identified as Citrobacter koseri/Enterobacter spp. and Morganella morganii, by 16S/23S rRNA internal transcribed spacer amplification and 16S rRNA sequence analysis. The strains showed a variable ability of histamine production, with Morganella morganii being the most active histamine-producing species. A direct DNA extraction from fish and a PCR targeting the hdc gene showed a high degree of concordance with the results obtained through microbiological and chemical analyses, and could aid in the prompt detection of potentially contaminated fish products, before histamine accumulates. The use of methods for the early and rapid detection of bacteria producing biogenic amines is important for preventing accumulation of these toxic substances in food products. In this study, we used a molecular approach for the detection of histamine-forming bacteria in fish. PCR-based methods require expensive equipment and a high degree of training for the user, but are fast (marketing and can be used in the investigation of risk reduction strategies.

  14. Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring

    Science.gov (United States)

    Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner

    2015-04-01

    On-site detection of enzymatic activities has been suggested as a rapid surrogate for microbiological pollution monitoring of water resources (e.g. using glucuronidases, galactosidases, esterases). Due to the possible short measuring intervals enzymatic methods have high potential as near-real time water quality monitoring tools. This presentation describes results from a long termed field test. For twelve months, two ColiMinder devices (Vienna Water Monitoring, Austria) for on-site determination of enzymatic activity were tested for stream water monitoring at the experimental catchment HOAL (Hydrological Open Air Laboratory, Center for Water Resource Systems, Vienna University of Technology). The devices were overall able to follow and reflect the diverse hydrological and microbiological conditions of the monitored stream during the test period. Continuous data in high temporal resolution captured the course of enzymatic activity in stream water during diverse rainfall events. The method also proofed sensitive enough to determine diurnal fluctuations of enzymatic activity in stream water during dry periods. The method was able to capture a seasonal trend of enzymatic activity in stream water that matches the results gained from Colilert18 analysis for E. coli and coliform bacteria of monthly grab samples. Furthermore the comparison of ColiMinder data with measurements gained at the same test site with devices using the same method but having different construction design (BACTcontrol, microLAN) showed consistent measuring results. Comparative analysis showed significant differences between measured enzymatic activity (modified fishman units and pmol/min/100ml) and cultivation based analyses (most probable number, colony forming unit). Methods of enzymatic activity measures are capable to detect ideally the enzymatic activity caused by all active target bacteria members, including VBNC (viable but nonculturable) while cultivation based methods cannot detect VBNC

  15. A biosensor platform for rapid detection of E. coli in drinking water.

    Science.gov (United States)

    Hesari, Nikou; Alum, Absar; Elzein, Mohamad; Abbaszadegan, Morteza

    2016-02-01

    There remains a need for rapid, specific and sensitive assays for the detection of bacterial indicators for water quality monitoring. In this study, a strategy for rapid detection of Escherichia coli in drinking water has been developed. This strategy is based on the use of the substrate 4-methylumbelliferyl-β-d-glucuronide (MUG), which is hydrolyzed rapidly by the action of E. coli β-d-glucuronidase (GUD) enzyme to yield a fluorogenic 4-methylumbelliferone (4-MU) product that can be quantified and related to the number of E. coli cells present in water samples. In this study, the detection time required for the biosensor response ranged between 20 and 120 min, depending on the number of bacteria in the sample. This approach does not need extensive sample processing with a rapid detection capability. The specificity of the MUG substrate was examined in both, pure cultures of non-target bacterial genera such as Klebsiella, Salmonella, Enterobacter and Bacillus. Non-target substrates that included 4-methylumbelliferyl-β-d-galactopyranoside (MUGal) and l-leucine β-naphthylamide aminopeptidase (LLβ-N) were also investigated to identify nonspecific patterns of enzymatic activities in E. coli. GUD activity was found to be specific for E. coli and no further enzymatic activity was detected by other species. In addition, fluorescence assays were performed for the detection of E. coli to generate standard curves; and the sensitivity of the GUD enzymatic response was measured and repeatedly determined to be less than 10 E. coli cells in a reaction vial. The applicability of the method was tested by performing multiple fluorescence assays under pure and mixed bacterial flora in environmental samples. The results of this study showed that the fluorescence signals generated in samples using specific substrate molecules can be utilized to develop a bio-sensing platform for the detection of E. coli in drinking water. Furthermore, this system can be applied independently or

  16. The Performance of the Four Anaerobic Blood Culture Bottles BacT/ALERT-FN, -FN Plus, BACTEC-Plus and -Lytic in Detection of Anaerobic Bacteria and Identification by Direct MALDI-TOF MS.

    Science.gov (United States)

    Almuhayawi, Mohammed; Altun, Osman; Abdulmajeed, Adam Dilshad; Ullberg, Måns; Özenci, Volkan

    2015-01-01

    Detection and identification of anaerobic bacteria in blood cultures (BC) is a well-recognized challenge in clinical microbiology. We studied 100 clinical anaerobic BC isolates to evaluate the performance of BacT/ALERT-FN, -FN Plus (BioMérieux), BACTEC-Plus and -Lytic (Becton Dickinson BioSciences) BC bottles in detection and time to detection (TTD) of anaerobic bacteria. BACTEC Lytic had higher detection rate (94/100, 94%) than BacT/ALERT FN Plus (80/100, 80%) (panaerobic bacteria among the remaining bottle types. The 67 anaerobic bacteria that signalled positive in all four bottle types were analyzed to compare the time to detection (TTD) and isolates were directly identified by MALDI-TOF MS. There was a significant difference in TTD among the four bottle types (panaerobic BC bottles are equally suitable for direct MALDI-TOF MS for rapid and reliable identification of common anaerobic bacteria. Further clinical studies are warranted to investigate the performance of anaerobic BC bottles in detection of anaerobic bacteria and identification by direct MALDI-TOF MS.

  17. Lab on a chip sensor for rapid detection and antibiotic resistance determination of Staphylococcus aureus.

    Science.gov (United States)

    Abeyrathne, Chathurika D; Huynh, Duc H; Mcintire, Thomas W; Nguyen, Thanh C; Nasr, Babak; Zantomio, Daniela; Chana, Gursharan; Abbott, Iain; Choong, Peter; Catton, Mike; Skafidas, Efstratios

    2016-03-21

    The Gram-positive bacterium, Staphylococcus aureus (S. aureus), is a major pathogen responsible for a variety of infectious diseases ranging from cellulitis to more serious conditions such as septic arthritis and septicaemia. Timely treatment with appropriate antibiotic therapy is essential to ensure clinical defervescence and to prevent further complications such as infective endocarditis or organ impairment due to septic shock. To date, initial antibiotic choice is empirical, using a "best guess" of likely organism and sensitivity- an approach adopted due to the lack of rapid identification methods for bacteria. Current culture based methods take up to 5 days to identify the causative bacterial pathogen and its antibiotic sensitivity. This paper provides proof of concept for a biosensor, based on interdigitated electrodes, to detect the presence of S. aureus and ascertain its sensitivity to flucloxacillin rapidly (within 2 hours) in a cost effective manner. The proposed method is label-free and uses non-faradic measurements. This is the first study to successfully employ interdigitated electrodes for the rapid detection of antibiotic resistance. The method described has important potential outcomes of faster definitive antibiotic treatment and more rapid clinical response to treatment.

  18. Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay

    Science.gov (United States)

    Zhao, Yong; Wang, Haoran; Zhang, Pingping; Sun, Chongyun; Wang, Xiaochen; Wang, Xinrui; Yang, Ruifu; Wang, Chengbin; Zhou, Lei

    2016-01-01

    The rapid high-throughput detection of foodborne pathogens is essential in controlling food safety. In this study, a 10-channel up-converting phosphor technology-based lateral flow (TC-UPT-LF) assay was established for the rapid and simultaneous detection of 10 epidemic foodborne pathogens. Ten different single-target UPT-LF strips were developed and integrated into one TC-UPT-LF disc with optimization. Without enrichment the TC-UPT-LF assay had a detection sensitivity of 104 CFU mL−1 or 105 CFU mL−1 for each pathogen, and after sample enrichment it was 10 CFU/0.6 mg. The assay also showed good linearity, allowing quantitative detection, with a linear fitting coefficient of determination (R2) of 0.916–0.998. The 10 detection channels did not cross-react, so multiple targets could be specifically detected. When 279 real food samples were tested, the assay was highly consistent (100%) with culture-based methods. The results for 110 food samples artificially contaminated with single or multiple targets showed a high detection rate (≥80%) for most target bacteria. Overall, the TC-UPT-LF assay allows the rapid, quantitative, and simultaneous detection of 10 kinds of foodborne pathogens within 20 min, and is especially suitable for the rapid detection and surveillance of foodborne pathogens in food and water. PMID:26884128

  19. Rapid detection of bacteria in drinking water and water contamination case studies

    Science.gov (United States)

    Deininger, Rolf A.; Lee, Jiyoung; Clark, Robert M.

    2011-12-01

    Water systems are inherently vulnerable to physical, chemical and biologic threats that might compromise a systems' ability to reliably deliver safe water. The ability of a water supply to provide water to its customers can be compromised by destroying or disrupting key physical elements of the water system. However, contamination is generally viewed as the most serious potential terrorist threat to water systems. Chemical or biologic agents could spread throughout a distribution system and result in sickness or death among the consumers and for some agents the presence of the contaminant might not be known until emergency rooms report an increase in patients with a particular set of symptoms. Even without serious health impacts, just the knowledge that a water system had been breached could seriously undermine consumer confidence in public water supplies. Therefore, the ability to rapidly detect contamination, especially microbiological contamination, is highly desirable. The authors summarize water contamination case studies and discuss a technique for identifying microbiological contamination based on ATP bioluminescence. This assay allows an estimation of bacterial populations within minutes and can be applied using a local platform. Previous ATP-based methods requires one hour, one liter of water, and has a sensitivity of 100000 cells for detection. The improved method discussed here is 100 times more sensitive, requires one-hundredth of the sample volume, and is over 10 times faster than standard method. This technique has a great deal of potential for application in situations in which a water system has been compromised.

  20. Rapid detection of Escherichia coli and enterococci in recreational water using an immunomagnetic separation/adenosine triphosphate technique

    Science.gov (United States)

    Bushon, R.N.; Brady, A.M.; Likirdopulos, C.A.; Cireddu, J.V.

    2009-01-01

    Aims: The aim of this study was to examine a rapid method for detecting Escherichia coli and enterococci in recreational water. Methods and Results: Water samples were assayed for E. coli and enterococci by traditional and immunomagnetic separation/adenosine triphosphate (IMS/ATP) methods. Three sample treatments were evaluated for the IMS/ATP method: double filtration, single filtration, and direct analysis. Pearson's correlation analysis showed strong, significant, linear relations between IMS/ATP and traditional methods for all sample treatments; strongest linear correlations were with the direct analysis (r = 0.62 and 0.77 for E. coli and enterococci, respectively). Additionally, simple linear regression was used to estimate bacteria concentrations as a function of IMS/ATP results. The correct classification of water-quality criteria was 67% for E. coli and 80% for enterococci. Conclusions: The IMS/ATP method is a viable alternative to traditional methods for faecal-indicator bacteria. Significance and Impact of the Study: The IMS/ATP method addresses critical public health needs for the rapid detection of faecal-indicator contamination and has potential for satisfying US legislative mandates requiring methods to detect bathing water contamination in 2 h or less. Moreover, IMS/ATP equipment is considerably less costly and more portable than that for molecular methods, making the method suitable for field applications. ?? 2009 The Authors.

  1. Rapid identification of carbapenemase genes in gram-negative bacteria with an oligonucleotide microarray-based assay.

    Directory of Open Access Journals (Sweden)

    Sascha D Braun

    Full Text Available Rapid molecular identification of carbapenemase genes in Gram-negative bacteria is crucial for infection control and prevention, surveillance and for epidemiological purposes. Furthermore, it may have a significant impact upon determining the appropriate initial treatment and greatly benefit for critically ill patients. A novel oligonucleotide microarray-based assay was developed to simultaneously detect genes encoding clinically important carbapenemases as well as selected extended (ESBL and narrow spectrum (NSBL beta-lactamases directly from clonal culture material within few hours. Additionally, a panel of species specific markers was included to identify Escherichia coli, Pseudomonas aeruginosa, Citrobacter freundii/braakii, Klebsiella pneumoniae and Acinetobacter baumannii. The assay was tested using a panel of 117 isolates collected from urinary, blood and stool samples. For these isolates, phenotypic identifications and susceptibility tests were available. An independent detection of carbapenemase, ESBL and NSBL genes was carried out by various external reference laboratories using PCR methods. In direct comparison, the microarray correctly identified 98.2% of the covered carbapenemase genes. This included blaVIM (13 out of 13, blaGIM (2/2, blaKPC (27/27, blaNDM (5/5, blaIMP-2/4/7/8/13/14/15/16/31 (10/10, blaOXA-23 (12/13, blaOXA-40-group (7/7, blaOXA-48-group (32/33, blaOXA-51 (1/1 and blaOXA-58 (1/1. Furthermore, the test correctly identified additional beta-lactamases [blaOXA-1 (16/16, blaOXA-2 (4/4, blaOXA-9 (33/33, OXA-10 (3/3, blaOXA-51 (25/25, blaOXA-58 (2/2, CTX-M1/M15 (17/17 and blaVIM (1/1]. In direct comparison to phenotypical identification obtained by VITEK or MALDI-TOF systems, 114 of 117 (97.4% isolates, including Acinetobacter baumannii (28/28, Enterobacter spec. (5/5, Escherichia coli (4/4, Klebsiella pneumoniae (62/63, Klebsiella oxytoca (0/2, Pseudomonas aeruginosa (12/12, Citrobacter freundii (1/1 and Citrobacter

  2. Rapid detection of microbial contamination in grape juice by flow cytometry

    Directory of Open Access Journals (Sweden)

    Marielle Bouix

    1999-03-01

    Full Text Available This study presents an application of flow cytometry to evaluate rapidly the viable micro-organisms in grape juice. In this method, viable cells are firstly specitically labelled with a fluorescent reagent. The sample is then injected into the flow cytometer where the labelled micro-organisms are individually illuminated by a laser beam. The emission of fluorescence is measured. The system counts the number of fluorescent events and prints out a histogram of the fluorescence intensity which is characteristic of the micro-organism being analysed. In laboratory conditions, preliminary trials have been undertaken with an artificially inoculated grape juice with pure yeast and bacteria cultures. This method succeeded in counting simultaneously yeasts and bacteria within 15 minutes, with a high degree of sensitivity, 5.103 yeasts perml and 5.104 bacteria per ml. This technique can also be applied to the detection of mould contamination and the test has been done with Botrytis spores. The method makes direct cell counts possible and is capable of analysing 30 samples per hour. It can be automatised and easily used in industrial laboratory. During the last harvest, more than a thousand of must samples were controled using this technique. The results let to determine the yeast contamination level of a grape juice tank even before unloading. The results obtained by flow cytometry were compared to the plate count reference method. The correlation between cytometry and count by plate culture was 99 p. cent for the threshold of 5.1 04 yeasts/ml which seemed to point out a high contamination. By using this flow cytometry method during the harvest period, the results were supplied in real time. This allowed a rapid selection of the musts, depending upon the scale of their contamination and improved the quality of the wine by corrective actions.

  3. Development and evaluation of a real-time fluorogenic loop-mediated isothermal amplification assay integrated on a microfluidic disc chip (on-chip LAMP) for rapid and simultaneous detection of ten pathogenic bacteria in aquatic animals.

    Science.gov (United States)

    Zhou, Qian-Jin; Wang, Lei; Chen, Jiong; Wang, Rui-Na; Shi, Yu-Hong; Li, Chang-Hong; Zhang, De-Min; Yan, Xiao-Jun; Zhang, Yan-Jun

    2014-09-01

    Rapid, low-cost, and user-friendly strategies are urgently needed for early disease diagnosis and timely treatment, particularly for on-site screening of pathogens in aquaculture. In this study, we successfully developed a real-time fluorogenic loop-mediated isothermal amplification assay integrated on a microfluidic disc chip (on-chip LAMP), which was capable of simultaneously detecting 10 pathogenic bacteria in aquatic animals, i.e., Nocardia seriolae, Pseudomonas putida, Streptococcus iniae, Vibrio alginolyticus, Vibrio anguillarum, Vibrio fluvialis, Vibrio harveyi, Vibrio parahaemolyticus, Vibrio rotiferianus, and Vibrio vulnificus. The assay provided a nearly-automated approach, with only a single pipetting step per chip for sample dispensing. This technique could achieve limits of detection (LOD) ranging from 0.40 to 6.42pg per 1.414μL reaction in less than 30 min. The robust reproducibility was demonstrated by a little variation among duplications for each bacterium with the coefficient of variation (CV) for time to positive (Tp) value less than 0.10. The clinical sensitivity and specificity of this on-chip LAMP assay in detecting field samples were 96.2% and 93.8% by comparison with conventional microbiological methods. Compared with other well-known techniques, on-chip LAMP assay provides low sample and reagent consumption, ease-of-use, accelerated analysis, multiple bacteria and on-site detection, and high reproducibility, indicating that such a technique would be applicable for on-site detection and routine monitoring of multiple pathogens in aquaculture. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Method of Detecting Coliform Bacteria from Reflected Light

    Science.gov (United States)

    Vincent, Robert K. (Inventor)

    2014-01-01

    The present invention relates to a method of detecting coliform bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  5. A Rapid and Efficient Screening Method for Antibacterial Compound-Producing Bacteria.

    Science.gov (United States)

    Hettiarachchi, Sachithra; Lee, Su-Jin; Lee, Youngdeuk; Kwon, Young-Kyung; De Zoysa, Mahanama; Moon, Song; Jo, Eunyoung; Kim, Taeho; Kang, Do-Hyung; Heo, Soo-Jin; Oh, Chulhong

    2017-08-28

    Antibacterial compounds are widely used in the treatment of human and animal diseases. The overuse of antibiotics has led to a rapid rise in the prevalence of drug-resistant bacteria, making the development of new antibacterial compounds essential. This study focused on developing a fast and easy method for identifying marine bacteria that produce antibiotic compounds. Eight randomly selected marine target bacterial species ( Agrococcus terreus, Bacillus algicola, Mesoflavibacter zeaxanthinifaciens, Pseudoalteromonas flavipulchra, P. peptidolytica, P. piscicida, P. rubra , and Zunongwangia atlantica ) were tested for production of antibacterial compounds against four strains of test bacteria ( B. cereus, B. subtilis, Halomonas smyrnensis , and Vibrio alginolyticus ). Colony picking was used as the primary screening method. Clear zones were observed around colonies of P. flavipulchra, P. peptidolytica, P. piscicida , and P. rubra tested against B. cereus, B. subtilis , and H. smyrnensis . The efficiency of colony scraping and broth culture methods for antimicrobial compound extraction was also compared using a disk diffusion assay. P. peptidolytica, P. piscicida , and P. rubra showed antagonistic activity against H. smyrnensis, B. cereus , and B. subtilis , respectively, only in the colony scraping method. Our results show that colony picking and colony scraping are effective, quick, and easy methods of screening for antibacterial compound-producing bacteria.

  6. 9 CFR 113.25 - Culture media for detection of bacteria and fungi.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Culture media for detection of bacteria and fungi. 113.25 Section 113.25 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... STANDARD REQUIREMENTS Standard Procedures § 113.25 Culture media for detection of bacteria and fungi. (a...

  7. Rapid Isolation and Molecular Detection of Streptomycin-Producing Streptomycetes

    Directory of Open Access Journals (Sweden)

    M Motovali-bashi

    2006-07-01

    Full Text Available Introduction: Streptomyces species are mycelial, aerobic gram-positive bacteria that are isolated from soil and produce a diverse range of antibiotics. Streptomyces griseus produces the antibiotic, streptomycin and forms spores even in a liquid culture. The gene cluster for the production of Streptomycin antibiotic contains strR gene that encodes StrR, a pathway-specific regulator. Then, this pathway-specific regulator induces transcription of other streptomycin production genes in the gene cluster. The overall aim of this work was rapid isolation and molecular detection of streptomycin-producing Streptomycetes, especially S. griseus, from Iranian soils in order to manipulate them for increased production of streptomycin. Methods: This research used new initiative half-specific medium for isolation of Streptomycetes from natural environments, called FZmsn. The fifty colonies of Streptomyces strains grown on the surface of FZmsn medium isolated from environmental samples were defined on the basis of their morphological characteristics and light microscope studies. A set of primers was designed to detect strR by OLIGO software. Results: In colony-PCR reactions followed by gel electrophoresis, 6 colonies from Streptomyces strains colonies were detected as S. griseus colonies. Conclusion: These native Streptomyces strains will be used for genetic manipulation of S. griseus in order to increase production levels of streptomycin.

  8. Detection of bacteria in suspension using a superconducting Quantum interference device

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, H.L.; Myers, W.R.; Vreeland, V.J.; Alper, J.D.; Bertozzi, C.R.; Clarke, J.

    2003-06-09

    We demonstrate a technique for detecting magnetically-labeled Listeria monocytogenes and for measuring the binding rate between antibody-linked magnetic particles and bacteria. This assay, which is both sensitive and straightforward to perform, can quantify specific bacteria in a sample without the need to immobilize the bacteria or wash away unbound magnetic particles. In the measurement, we add 50 nm diameter superparamagnetic particles, coated with antibodies, to a liquid sample containing L. monocytogenes. We apply a pulsed magnetic field to align the magnetic dipole moments and use a high transition temperature Superconducting Quantum Interference Device (SQUID), an extremely sensitive detector of magnetic flux, to measure the magnetic relaxation signal when the field is turned off. Unbound particles randomize direction by Brownian rotation too quickly to be detected. In contrast, particles bound to L. monocytogenes are effectively immobilized and relax in about 1 s by rotation of the internal dipole moment. This Neel relaxation process is detected by the SQUID. The measurements indicate a detection limit of (5.6 {+-} 1.1) x 10{sup 6} L. monocytogenes for a 20 {micro}L sample volume. If the sample volume were reduced to 1 nL, we estimate that the detection limit could be improved to 230 {+-} 40 L. monocytogenes cells. Time-resolved measurements yield the binding rate between the particles and bacteria.

  9. Detection of bacteria in suspension using a superconducting Quantum interference device

    International Nuclear Information System (INIS)

    Grossman, H.L.; Myers, W.R.; Vreeland, V.J.; Alper, J.D.; Bertozzi, C.R.; Clarke, J.

    2003-01-01

    We demonstrate a technique for detecting magnetically-labeled Listeria monocytogenes and for measuring the binding rate between antibody-linked magnetic particles and bacteria. This assay, which is both sensitive and straightforward to perform, can quantify specific bacteria in a sample without the need to immobilize the bacteria or wash away unbound magnetic particles. In the measurement, we add 50 nm diameter superparamagnetic particles, coated with antibodies, to a liquid sample containing L. monocytogenes. We apply a pulsed magnetic field to align the magnetic dipole moments and use a high transition temperature Superconducting Quantum Interference Device (SQUID), an extremely sensitive detector of magnetic flux, to measure the magnetic relaxation signal when the field is turned off. Unbound particles randomize direction by Brownian rotation too quickly to be detected. In contrast, particles bound to L. monocytogenes are effectively immobilized and relax in about 1 s by rotation of the internal dipole moment. This Neel relaxation process is detected by the SQUID. The measurements indicate a detection limit of (5.6 ± 1.1) x 10 6 L. monocytogenes for a 20 (micro)L sample volume. If the sample volume were reduced to 1 nL, we estimate that the detection limit could be improved to 230 ± 40 L. monocytogenes cells. Time-resolved measurements yield the binding rate between the particles and bacteria

  10. Rapid identification and classification of bacteria by 16S rDNA restriction fragment melting curve analyses (RFMCA).

    Science.gov (United States)

    Rudi, Knut; Kleiberg, Gro H; Heiberg, Ragnhild; Rosnes, Jan T

    2007-08-01

    The aim of this work was to evaluate restriction fragment melting curve analyses (RFMCA) as a novel approach for rapid classification of bacteria during food production. RFMCA was evaluated for bacteria isolated from sous vide food products, and raw materials used for sous vide production. We identified four major bacterial groups in the material analysed (cluster I-Streptococcus, cluster II-Carnobacterium/Bacillus, cluster III-Staphylococcus and cluster IV-Actinomycetales). The accuracy of RFMCA was evaluated by comparison with 16S rDNA sequencing. The strains satisfying the RFMCA quality filtering criteria (73%, n=57), with both 16S rDNA sequence information and RFMCA data (n=45) gave identical group assignments with the two methods. RFMCA enabled rapid and accurate classification of bacteria that is database compatible. Potential application of RFMCA in the food or pharmaceutical industry will include development of classification models for the bacteria expected in a given product, and then to build an RFMCA database as a part of the product quality control.

  11. 9 CFR 113.26 - Detection of viable bacteria and fungi except in live vaccine.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Detection of viable bacteria and fungi... VECTORS STANDARD REQUIREMENTS Standard Procedures § 113.26 Detection of viable bacteria and fungi except... required to be free of viable bacteria and fungi, they shall also be tested as prescribed in this section...

  12. Sensitive detection of maltose and glucose based on dual enzyme-displayed bacteria electrochemical biosensor.

    Science.gov (United States)

    Liu, Aihua; Lang, Qiaolin; Liang, Bo; Shi, Jianguo

    2017-01-15

    Glucoamylase-displayed bacteria (GA-bacteria) and glucose dehydrogenase-displayed bacteria (GDH-bacteria) were co-immobilized on multi-walled carbon nanotubes (MWNTs) modified glassy carbon electrode (GCE) to construct GA-bacteria/GDH-bacteria/MWNTs/GCE biosensor. The biosensor was developed by optimizing the loading amount and the ratio of GA-bacteria to GDH-bacteria. The as-prepared biosensor exhibited a wide dynamic range of 0.2-10mM and a low detection limit of 0.1mM maltose (S/N=3). The biosensor also had a linear response to glucose in the range of 0.1-2.0mM and a low detection limit of 0.04mM glucose (S/N=3). Interestingly, at the same concentration, glucose was 3.75-fold sensitive than that of maltose at the proposed biosensor. No interferences were observed for other possible mono- and disaccharides. The biosensor also demonstrated good long-term storage stability and repeatability. Further, using both GDH-bacteria/MWNTs/GCE biosensor and GA-bacteria/GDH-bacteria/MWNTs/GCE biosensor, glucose and maltose in real samples can be detected. Therefore, the proposed biosensor is capable of monitoring the food manufacturing and fermentation process. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A PCR detection method for rapid identification of Melissococcus pluton in honeybee larvae.

    Science.gov (United States)

    Govan, V A; Brözel, V; Allsopp, M H; Davison, S

    1998-05-01

    Melissococcus pluton is the causative agent of European foulbrood, a disease of honeybee larvae. This bacterium is particularly difficult to isolate because of its stringent growth requirements and competition from other bacteria. PCR was used selectively to amplify specific rRNA gene sequences of M. pluton from pure culture, from crude cell lysates, and directly from infected bee larvae. The PCR primers were designed from M. pluton 16S rRNA sequence data. The PCR products were visualized by agarose gel electrophoresis and confirmed as originating from M. pluton by sequencing in both directions. Detection was highly specific, and the probes did not hybridize with DNA from other bacterial species tested. This method enabled the rapid and specific detection and identification of M. pluton from pure cultures and infected bee larvae.

  14. Development of Rapid Detection and Genetic Characterization of Salmonella in Poultry Breeder Feeds

    Science.gov (United States)

    Jarquin, Robin; Hanning, Irene; Ahn, Soohyoun; Ricke, Steven C.

    2009-01-01

    Salmonella is a leading cause of foodborne illness in the United States, with poultry and poultry products being a primary source of infection to humans. Poultry may carry some Salmonella serovars without any signs or symptoms of disease and without causing any adverse effects to the health of the bird. Salmonella may be introduced to a flock by multiple environmental sources, but poultry feed is suspected to be a leading source. Detecting Salmonella in feed can be challenging because low levels of the bacteria may not be recovered using traditional culturing techniques. Numerous detection methodologies have been examined over the years for quantifying Salmonella in feeds and many have proven to be effective for Salmonella isolation and detection in a variety of feeds. However, given the potential need for increased detection sensitivity, molecular detection technologies may the best candidate for developing rapid sensitive methods for identifying small numbers of Salmonella in the background of large volumes of feed. Several studies have been done using polymerase chain reaction (PCR) assays and commercial kits to detect Salmonella spp. in a wide variety of feed sources. In addition, DNA array technology has recently been utilized to track the dissemination of a specific Salmonella serotype in feed mills. This review will discuss the processing of feeds and potential points in the process that may introduce Salmonella contamination to the feed. Detection methods currently used and the need for advances in these methods also will be discussed. Finally, implementation of rapid detection for optimizing control methods to prevent and remove any Salmonella contamination of feeds will be considered. PMID:22346699

  15. Development of Rapid Detection and Genetic Characterization of Salmonella in Poultry Breeder Feeds

    Directory of Open Access Journals (Sweden)

    Steven C. Ricke

    2009-07-01

    Full Text Available Salmonella is a leading cause of foodborne illness in the United States, with poultry and poultry products being a primary source of infection to humans. Poultry may carry some Salmonella serovars without any signs or symptoms of disease and without causing any adverse effects to the health of the bird. Salmonella may be introduced to a flock by multiple environmental sources, but poultry feed is suspected to be a leading source. Detecting Salmonella in feed can be challenging because low levels of the bacteria may not be recovered using traditional culturing techniques. Numerous detection methodologies have been examined over the years for quantifying Salmonella in feeds and many have proven to be effective for Salmonella isolation and detection in a variety of feeds. However, given the potential need for increased detection sensitivity, molecular detection technologies may the best candidate for developing rapid sensitive methods for identifying small numbers of Salmonella in the background of large volumes of feed. Several studies have been done using polymerase chain reaction (PCR assays and commercial kits to detect Salmonella spp. in a wide variety of feed sources. In addition, DNA array technology has recently been utilized to track the dissemination of a specific Salmonella serotype in feed mills. This review will discuss the processing of feeds and potential points in the process that may introduce Salmonella contamination to the feed. Detection methods currently used and the need for advances in these methods also will be discussed. Finally, implementation of rapid detection for optimizing control methods to prevent and remove any Salmonella contamination of feeds will be considered.

  16. Development of bacteria-based bioassays for arsenic detection in natural waters.

    Science.gov (United States)

    Diesel, Elizabeth; Schreiber, Madeline; van der Meer, Jan Roelof

    2009-06-01

    Arsenic contamination of natural waters is a worldwide concern, as the drinking water supplies for large populations can have high concentrations of arsenic. Traditional techniques to detect arsenic in natural water samples can be costly and time-consuming; therefore, robust and inexpensive methods to detect arsenic in water are highly desirable. Additionally, methods for detecting arsenic in the field have been greatly sought after. This article focuses on the use of bacteria-based assays as an emerging method that is both robust and inexpensive for the detection of arsenic in groundwater both in the field and in the laboratory. The arsenic detection elements in bacteria-based bioassays are biosensor-reporter strains; genetically modified strains of, e.g., Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and Rhodopseudomonas palustris. In response to the presence of arsenic, such bacteria produce a reporter protein, the amount or activity of which is measured in the bioassay. Some of these bacterial biosensor-reporters have been successfully utilized for comparative in-field analyses through the use of simple solution-based assays, but future methods may concentrate on miniaturization using fiberoptics or microfluidics platforms. Additionally, there are other potential emerging bioassays for the detection of arsenic in natural waters including nematodes and clams.

  17. Development of bacteria-based bioassays for arsenic detection in natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Diesel, Elizabeth; Schreiber, Madeline [Virginia Tech, Department of Geosciences, Blacksburg, VA (United States); Meer, Jan Roelof van der [University of Lausanne, Department of Fundamental Microbiology, Lausanne (Switzerland)

    2009-06-15

    Arsenic contamination of natural waters is a worldwide concern, as the drinking water supplies for large populations can have high concentrations of arsenic. Traditional techniques to detect arsenic in natural water samples can be costly and time-consuming; therefore, robust and inexpensive methods to detect arsenic in water are highly desirable. Additionally, methods for detecting arsenic in the field have been greatly sought after. This article focuses on the use of bacteria-based assays as an emerging method that is both robust and inexpensive for the detection of arsenic in groundwater both in the field and in the laboratory. The arsenic detection elements in bacteria-based bioassays are biosensor-reporter strains; genetically modified strains of, e.g., Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and Rhodopseudomonas palustris. In response to the presence of arsenic, such bacteria produce a reporter protein, the amount or activity of which is measured in the bioassay. Some of these bacterial biosensor-reporters have been successfully utilized for comparative in-field analyses through the use of simple solution-based assays, but future methods may concentrate on miniaturization using fiberoptics or microfluidics platforms. Additionally, there are other potential emerging bioassays for the detection of arsenic in natural waters including nematodes and clams. (orig.)

  18. Tetrodotoxin-Producing Bacteria: Detection, Distribution and Migration of the Toxin in Aquatic Systems

    Directory of Open Access Journals (Sweden)

    Timur Yu. Magarlamov

    2017-05-01

    Full Text Available This review is devoted to the marine bacterial producers of tetrodotoxin (TTX, a potent non-protein neuroparalytic toxin. In addition to the issues of the ecology and distribution of TTX-producing bacteria, this review examines issues relating to toxin migration from bacteria to TTX-bearing animals. It is shown that the mechanism of TTX extraction from toxin-producing bacteria to the environment occur through cell death, passive/active toxin excretion, or spore germination of spore-forming bacteria. Data on TTX microdistribution in toxic organs of TTX-bearing animals indicate toxin migration from the digestive system to target organs through the transport system of the organism. The role of symbiotic microflora in animal toxicity is also discussed: despite low toxin production by bacterial strains in laboratory conditions, even minimal amounts of TTX produced by intestinal microflora of an animal can contribute to its toxicity. Special attention is paid to methods of TTX detection applicable to bacteria. Due to the complexity of toxin detection in TTX-producing bacteria, it is necessary to use several methods based on different methodological approaches. Issues crucial for further progress in detecting natural sources of TTX investigation are also considered.

  19. Development of a Flow Cytometry-Based Method for Rapid Detection of Escherichia coli and Shigella Spp. Using an Oligonucleotide Probe

    Science.gov (United States)

    Xue, Yong; Wilkes, Jon G.; Moskal, Ted J.; Williams, Anna J.; Cooper, Willie M.; Nayak, Rajesh; Rafii, Fatemeh; Buzatu, Dan A.

    2016-01-01

    Standard methods to detect Escherichia coli contamination in food use the polymerase chain reaction (PCR) and agar culture plates. These methods require multiple incubation steps and take a long time to results. An improved rapid flow-cytometry based detection method was developed, using a fluorescence-labeled oligonucleotide probe specifically binding a16S rRNA sequence. The method positively detected 51 E. coli isolates as well as 4 Shigella species. All 27 non-E. coli strains tested gave negative results. Comparison of the new genetic assay with a total plate count (TPC) assay and agar plate counting indicated similar sensitivity, agreement between cytometry cell and colony counts. This method can detect a small number of E.coli cells in the presence of large numbers of other bacteria. This method can be used for rapid, economical, and stable detection of E. coli and Shigella contamination in the food industry and other contexts. PMID:26913737

  20. Development of a Flow Cytometry-Based Method for Rapid Detection of Escherichia coli and Shigella Spp. Using an Oligonucleotide Probe.

    Directory of Open Access Journals (Sweden)

    Yong Xue

    Full Text Available Standard methods to detect Escherichia coli contamination in food use the polymerase chain reaction (PCR and agar culture plates. These methods require multiple incubation steps and take a long time to results. An improved rapid flow-cytometry based detection method was developed, using a fluorescence-labeled oligonucleotide probe specifically binding a16S rRNA sequence. The method positively detected 51 E. coli isolates as well as 4 Shigella species. All 27 non-E. coli strains tested gave negative results. Comparison of the new genetic assay with a total plate count (TPC assay and agar plate counting indicated similar sensitivity, agreement between cytometry cell and colony counts. This method can detect a small number of E.coli cells in the presence of large numbers of other bacteria. This method can be used for rapid, economical, and stable detection of E. coli and Shigella contamination in the food industry and other contexts.

  1. A novel surface-enhanced Raman scattering (SERS) detection for natural gas exploration using methane-oxidizing bacteria.

    Science.gov (United States)

    Liang, Weiwei; Chen, Qiao; Peng, Fang; Shen, Aiguo; Hu, Jiming

    2018-07-01

    Methane-oxidizing bacteria (MOB), a unique group of Gram-negative bacteria utilizing methane as a sole source of carbon and energy, have been proved to be a biological indicator for gas prospecting. Field and cultivation-free detection of MOB is important but still challenging in current microbial prospecting of oil and gas (MPOG) system. Herein, SERS was used for the first time to our knowledge to investigate two species of methanotrophs and four closely relevant bacteria that universally coexisted in the upper soil of natural gas. A special but very simple approach was utilized to make silver nanoparticles (Ag NPs) sufficiently contact with every single bacterial cell, and highly strong and distinct Raman signals free from any native fluorescence have been obtained, and successfully utilized for distinguishing MOB from other species. A more convincing multi-Raman criterion based on single Raman bands, and further the entire Raman spectrum in combination with statistical analysis (e.g., principal component analysis (PCA)), which were found capable of classifying MOB related bacterial cells in soil with an accuracy of 100%. This study therefore demonstrated sensitive and rapid SERS measurement technique accompanied by complete Raman database of various gas reservoirs related bacteria could aid field exploration of natural gas reservoir. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Detection of Sulphate-Reducing Bacteria and Others Cultivable Facultative Bacteria in Dental Tissues

    Directory of Open Access Journals (Sweden)

    Lúcio de Souza Gonçalves

    2014-01-01

    Full Text Available Aim: To detect for the presence of sulphate-reducing bacteria (SRB and evaluate the possible association between SRB and cultivable facultative bacterial of oral sites with different periodontal conditions. Methods: The study was carried out on 9 samples from different oral sites in 8 patients (two samples were collected from the same patient. Material was collected using modified Postgate E culture medium, indicated for the growth and isolation of SRB. In addition, a reducing solution for anaerobic bacteria was used as a transport solution for facultative bacteria and identified by polymerase chain reaction amplification (PCR and sequencing of the 16S rRNA gene. Results: SRB was found in 3 patient samples: the first in a root fragment, the second in a root fragment and a healthy tooth with vertical bone loss and a mobility degree of 3; and the third in a healthy tooth extracted for orthodontic treatment. In the final patient, the cultivable facultative species Lactobacillus casei was identified. Other facultative bacterial species were identified in patient 5 (Kurthia Gibsonii and patient 7 (Pseudomonas aeruginosa. Conclusions: The detection of SRB in different dental tissues with distinct periodontal features demonstrated that new studies need to be developed in order to determine the true role of SRB in the oral microbiota. In addition, it was possible to verify the presence of Lactobacillus casei together with SRB in one sample.

  3. Flow cytometry as a rapid test for detection of penicillin resistance directly in bacterial cells in Enterococcus faecalis and Staphylococcus aureus.

    Science.gov (United States)

    Jarzembowski, T; Wiśniewska, K; Józwik, A; Bryl, E; Witkowski, J

    2008-08-01

    We studied the usefulness of flow cytometry for detection of penicillin resistance in E. faecalis and S. aureus by direct binding of commercially available fluorescent penicillin, Bocillin FL, to cells obtained from culture. There were significantly lower percentages of fluorescent cells and median and mean fluorescence values per particle in penicillin-resistant than in penicillin-sensitive strains of both species observed. The method allows rapid detection of penicillin resistance in S. aureus and E. faecalis. The results encourage further investigations on the detection of antibiotic resistance in bacteria using flow cytometry.

  4. A C. elegans-based foam for rapid on-site detection of residual live virus.

    Energy Technology Data Exchange (ETDEWEB)

    Negrete, Oscar A.; Branda, Catherine; Hardesty, Jasper O. E. (Sandia National Laboratories, Albuquerque, NM); Tucker, Mark David (Sandia National Laboratories, Albuquerque, NM); Kaiser, Julia N. (Global Product Management, Hilden, Germany); Kozina, Carol L.; Chirica, Gabriela S.

    2012-02-01

    In the response to and recovery from a critical homeland security event involving deliberate or accidental release of biological agents, initial decontamination efforts are necessarily followed by tests for the presence of residual live virus or bacteria. Such 'clearance sampling' should be rapid and accurate, to inform decision makers as they take appropriate action to ensure the safety of the public and of operational personnel. However, the current protocol for clearance sampling is extremely time-intensive and costly, and requires significant amounts of laboratory space and capacity. Detection of residual live virus is particularly problematic and time-consuming, as it requires evaluation of replication potential within a eukaryotic host such as chicken embryos. The intention of this project was to develop a new method for clearance sampling, by leveraging Sandia's expertise in the biological and material sciences in order to create a C. elegans-based foam that could be applied directly to the entire contaminated area for quick and accurate detection of any and all residual live virus by means of a fluorescent signal. Such a novel technology for rapid, on-site detection of live virus would greatly interest the DHS, DoD, and EPA, and hold broad commercial potential, especially with regard to the transportation industry.

  5. Cultivation, detection, and ecophysiology of anaerobic ammonium-oxidizing bacteria.

    Science.gov (United States)

    Kartal, Boran; Geerts, Wim; Jetten, Mike S M

    2011-01-01

    Anaerobic ammonium-oxidizing (anammox) bacteria oxidize ammonium with nitrite under anoxic conditions. The anammox process is currently used to remove ammonium from wastewater and contributes significantly to the loss of fixed nitrogen from the oceans. In this chapter, we focus on the ecophysiology of anammox bacteria and describe new methodologies to grow these microorganisms. Now, it is possible to enrich anammox bacteria up to 95% with a membrane bioreactor that removes forces of selection for fast settling aggregates and facilitates the growth of planktonic cells. The biomass from this system has a high anaerobic ammonium oxidation rate (50 fmol NH(4)(+) · cell(-1) day(-1)) and is suitable for many ecophysiological and molecular experiments. A high throughput Percoll density gradient centrifugation protocol may be applied on this biomass for further enrichment (>99.5%) of anammox bacteria. Furthermore, we provide an up-to-date list of commonly used primers and introduce protocols for quantification and detection of functional genes of anammox bacteria in their natural environment. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. A Sortase A-Immobilized Mesoporous Hollow Carbon Sphere-Based Biosensor for Detection of Gram-Positive Bacteria

    Science.gov (United States)

    Wang, Hongsu; Luo, Ruiping; Chen, Yang; Si, Qi; Niu, Xiaodi

    2018-05-01

    A sensor based on mesoporous carbon materials immobilized with sortase A (SrtA) for determination of Staphylococcus aureus (S. aureus) is reported. To prepare the biosensor, we first synthesized carboxyl-functionalized mesoporous hollow carbon spheres, then applied them as carriers for immobilization of SrtA. Based on the catalytic mechanism of SrtA, a highly sensitive, inexpensive, and rapid method was developed for S. aureus detection. The sensor showed a linear response in the bacterial concentration range of 0.125 × 102 colony-forming units (CFU) mL-1 to 2.5 × 102 CFU mL-1, with detection limit as low as 9.0 CFU mL-1. The method was successfully used for quantitative detection of S. aureus in whole milk samples, giving results similar to experimental results obtained from the plate counting method. This biosensor could also be used to detect other Gram-positive bacteria that secrete SrtA.

  7. Tape Cassette Bacteria Detection System

    Science.gov (United States)

    1973-01-01

    The design, fabrication, and testing of an automatic bacteria detection system with a zero-g capability and based on the filter-capsule approach is described. This system is intended for monitoring the sterility of regenerated water in a spacecraft. The principle of detection is based on measuring the increase in chemiluminescence produced by the action of bacterial porphyrins (i.e., catalase, cytochromes, etc.) on a luminol-hydrogen peroxide mixture. Since viable as well as nonviable organisms initiate this luminescence, viable organisms are detected by comparing the signal of an incubated water sample with an unincubated control. Higher signals for the former indicate the presence of viable organisms. System features include disposable sealed sterile capsules, each containing a filter membrane, for processing discrete water samples and a tape transport for moving these capsules through a processing sequence which involves sample concentration, nutrient addition, incubation, a 4 Molar Urea wash and reaction with luminol-hydrogen peroxide in front of a photomultiplier tube. Liquids are introduced by means of a syringe needle which pierces a rubber septum contained in the wall of the capsule. Detection thresholds obtained with this unit towards E. coli and S. marcescens assuming a 400 ml water sample are indicated.

  8. Whole-bacterium SELEX of DNA aptamers for rapid detection of E.coli O157:H7 using a QCM sensor.

    Science.gov (United States)

    Yu, Xiaofan; Chen, Fang; Wang, Ronghui; Li, Yanbin

    2018-01-20

    The rapid detection of foodborne pathogens is critical to ensure food safety. The objective of this study is to select aptamers specifically bound to Escherichia coli O157:H7 using the whole-bacterium SELEX (Systematic Evolution of Ligands by Exponential Enrichment) and apply the selected aptamer to a QCM (quartz crystal microbalance) sensor for rapid and sensitive detection of target bacteria. A total of 19 rounds of selection against live E. coli O157:H7 and 6 rounds of counter selection against a mixture of Staphylococcus aureus, Listeria monocytogenes, and Salmonella Typhimurium, were performed. The aptamer pool from the last round was cloned and sequenced. One sequence S1 that appeared 16 times was characterized and a dissociation constant (K d ) of 10.30nM was obtained. Subsequently, a QCM aptasensor was developed for the rapid detection of E. coli O157:H7. The limit of detection (LOD) and the detection time of the aptasensor was determined to be 1.46×10 3 CFU/ml and 50min, respectively. This study demonstrated that the ssDNA aptamer selected by the whole-bacterium SELEX possessed higher sensitivity than previous work and the potential use of the constructed QCM aptasensor in rapid screening of foodborne pathogens. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A method for the specific detection of resident bacteria in brine shrimp larvae.

    Science.gov (United States)

    Niu, Yufeng; Defoirdt, Tom; Rekecki, Anamaria; De Schryver, Peter; Van den Broeck, Wim; Dong, Shuanglin; Sorgeloos, Patrick; Boon, Nico; Bossier, Peter

    2012-04-01

    In this study, we describe an easy but efficient method to specifically target the intestinal resident microbiota in brine shrimp larvae during DGGE analysis, hereby excluding the interference of both transient (luminal) bacteria and body surface bacteria. This effective technique has several advantages over alternative methods, with respect of ease of use and rapidity. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. PCR method for the rapid detection and discrimination of Legionella spp. based on the amplification of pcs, pmtA, and 16S rRNA genes.

    Science.gov (United States)

    Janczarek, Monika; Palusińska-Szysz, Marta

    2016-05-01

    Legionella bacteria are organisms of public health interest due to their ability to cause pneumonia (Legionnaires' disease) in susceptible humans and their ubiquitous presence in water supply systems. Rapid diagnosis of Legionnaires' disease allows the use of therapy specific for the disease. L. pneumophila serogroup 1 is the most common cause of infection acquired in community and hospital environments. The non-L. pneumophila infections are likely under-detected because of a lack of effective diagnosis. In this work, simplex and duplex PCR assays with the use of new molecular markers pcs and pmtA involved in phosphatidylcholine synthesis were specified for rapid and cost-efficient identification and distinguishing Legionella species. The sets of primers developed were found to be sensitive and specific for reliable detection of Legionella belonging to the eight most clinically relevant species. Among these, four primer sets I, II, VI, and VII used for duplex-PCRs proved to have the highest identification power and reliability in the detection of the bacteria. Application of this PCR-based method should improve detection of Legionella spp. in both clinical and environmental settings and facilitate molecular typing of these organisms.

  11. Rapid determination of the toxicity of quantum dots with luminous bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lingling [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715 (China); Zheng Huzhi, E-mail: zhenghz@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715 (China); Long Yijuan; Gao Mei; Hao Jianyu; Du Juan; Mao Xiaojiao; Zhou Dongbo [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, No. 2 Tiansheng Road, Beibei District, Chongqing 400715 (China)

    2010-05-15

    In this paper, a novel method so-called bioluminescence inhibition assay with luminous bacteria (Photobacterium phosphoreum) was introduced to evaluate the toxicity of quantum dots. The bioassay was based on measuring the decrease of the light emitted by luminous bacteria. With obvious advantages of simplicity, rapidity and sensitivity, it can dramatically improve the efficiency of probing the toxicity of QDs. Based on this method, we systemically explored the effect of the composition and surface modification on QDs' toxicity. The experiment of composition effect was performed using three kinds of QDs, namely CdSe, CdTe and ZnS-AgInS{sub 2} QDs with the same stabilizer - dihydrolipoic acid. As for the effect of different stabilizers, mercaptoacetic acid, L-cysteine and dihydrolipoic acid stabilized CdSe were researched, respectively. Our results demonstrated that both the composition and surface modification were the important factors affecting the toxicity of QDs. In addition, a concentration dependence of toxicity was also found.

  12. Rapid determination of the toxicity of quantum dots with luminous bacteria

    International Nuclear Information System (INIS)

    Wang Lingling; Zheng Huzhi; Long Yijuan; Gao Mei; Hao Jianyu; Du Juan; Mao Xiaojiao; Zhou Dongbo

    2010-01-01

    In this paper, a novel method so-called bioluminescence inhibition assay with luminous bacteria (Photobacterium phosphoreum) was introduced to evaluate the toxicity of quantum dots. The bioassay was based on measuring the decrease of the light emitted by luminous bacteria. With obvious advantages of simplicity, rapidity and sensitivity, it can dramatically improve the efficiency of probing the toxicity of QDs. Based on this method, we systemically explored the effect of the composition and surface modification on QDs' toxicity. The experiment of composition effect was performed using three kinds of QDs, namely CdSe, CdTe and ZnS-AgInS 2 QDs with the same stabilizer - dihydrolipoic acid. As for the effect of different stabilizers, mercaptoacetic acid, L-cysteine and dihydrolipoic acid stabilized CdSe were researched, respectively. Our results demonstrated that both the composition and surface modification were the important factors affecting the toxicity of QDs. In addition, a concentration dependence of toxicity was also found.

  13. A rapid and universal bacteria-counting approach using CdSe/ZnS/SiO2 composite nanoparticles as fluorescence probe.

    Science.gov (United States)

    Fu, Xin; Huang, Kelong; Liu, Suqin

    2010-02-01

    In this paper, a rapid, simple, and sensitive method was described for detection of the total bacterial count using SiO(2)-coated CdSe/ZnS quantum dots (QDs) as a fluorescence marker that covalently coupled with bacteria using glutaraldehyde as the crosslinker. Highly luminescent CdSe/ZnS were prepared by applying cadmium oxide and zinc stearate as precursors instead of pyrophoric organometallic precursors. A reverse-microemulsion technique was used to synthesize CdSe/ZnS/SiO(2) composite nanoparticles with a SiO(2) surface coating. Our results showed that CdSe/ZnS/SiO(2) composite nanoparticles prepared with this method possessed highly luminescent, biologically functional, and monodispersive characteristics, and could successfully be covalently conjugated with the bacteria. As a demonstration, it was found that the method had higher sensitivity and could count bacteria in 3 x 10(2) CFU/mL, lower than the conventional plate counting and organic dye-based method. A linear relationship of the fluorescence peak intensity (Y) and the total bacterial count (X) was established in the range of 3 x 10(2)-10(7) CFU/mL using the equation Y = 374.82X-938.27 (R = 0.99574). The results of the determination for the total count of bacteria in seven real samples were identical with the conventional plate count method, and the standard deviation was satisfactory.

  14. Improved bacteria detection by coupling magneto-immunocapture and amperometry at flow-channel microband electrodes

    DEFF Research Database (Denmark)

    Laczka, Olivier; Maesa, José-María; Godino, Neus

    2011-01-01

    This paper describes the first immunosensing system reported for the detection of bacteria combining immunomagnetic capture and amperometric detection in a one-step sandwich format, and in a microfluidic environment. Detection is based on the electrochemical monitoring of the activity of horserad......This paper describes the first immunosensing system reported for the detection of bacteria combining immunomagnetic capture and amperometric detection in a one-step sandwich format, and in a microfluidic environment. Detection is based on the electrochemical monitoring of the activity...... product is then pumped along a microchannel, where it is amperometrically detected by a set of microelectrodes. This design avoids direct contact of the biocomponents with the electrode, which lowers the risk of electrode fouling. The whole assay can be completed in 1h. The experiments performed...... with Escherichia coli evidenced a linear response for concentrations ranging 102–108cellml−1, with a limit of detection of 55cellsml−1 in PBS, without pre-enrichment steps. Furthermore, 100cellsml−1 could be detected in milk, and with negligible interference by non-target bacteria such as Pseudomonas....

  15. A rapid two dot filter assay for the detection of E. coli O157 in water samples.

    Science.gov (United States)

    Kamma, Sujatha; Tang, Lily; Leung, Kelvin; Ashton, Edie; Newman, Norman; Suresh, Mavanur R

    2008-07-31

    E. coli O157:H7 is an enterohemorrhagic bacteria that cause deadly water-borne infections implicated in outbreaks of a wide spectrum of human gastrointestinal diseases. It is therefore important to have a rapid convenient, simple and sensitive range of detection of E. coli O157:H7. A new E. coli O157 MAb designated P124 was developed for ultrasensitive detection of E. coli O157 in water, apple juice and beef for routine use. A prototype filter dot assay was designed with anti-E. coli O157 MAb bound to 0.2 microm nitrocellulose filter disk as the capture antibody. A 100 ml water sample spiked with 1-50 CFU of E. coli O157 either in the presence or absence of other non-specific bacteria were filtered for capture of the pathogen on the antibody coated nitrocellulose disk. The detection of the pathogen was successfully accomplished by the same antibody both as a capture and detecting antibody as a homosandwich. In a non-enriched format, detection of E. coli was possible with a sensitivity of 2500 CFU/100 ml. Ultrasensitive detection of ~1 CFU/100 ml sample could be achieved by a prior pathogen enrichment step before the addition of the labeled antibody. The design of this diagnostic test is based on the common architecture of all bacteria, viruses and spores, namely the manifestation of repeat lipopolysaccharide epitopes on the surface. We have developed an easy-to-use two dot visual filter assay for translation into current water testing in public health laboratories to detect E. coli O157:H7. In a 5 h assay approximately 1 CFU and approximately 5 CFU of E. coli O157 could be detected in 100 ml of water or juice and lake samples respectively. This simple homosandwich enrichment strategy can also be used to detect low levels of other water-borne pathogens.

  16. Validation of a Rapid Bacteria Endospore Enumeration System for Planetary Protection Application

    Science.gov (United States)

    Chen, Fei; Kern, Roger; Kazarians, Gayane; Venkateswaran, Kasthuri

    NASA monitors spacecraft surfaces to assure that the presence of bacterial endospores meets strict criteria at launch, to minimize the risk of inadvertent contamination of the surface of Mars. Currently, the only approved method for enumerating the spores is a culture based assay that requires three days to produce results. In order to meet the demanding schedules of spacecraft assembly, a more rapid spore detection assay is being considered as an alternate method to the NASA standard culture-based assay. The Millipore Rapid Microbiology Detection System (RMDS) has been used successfully for rapid bioburden enumeration in the pharmaceutical and food industries. The RMDS is rapid and simple, shows high sensitivity (to 1 colony forming unit [CFU]/sample), and correlates well with traditional culture-based methods. It combines membrane filtration, adenosine triphosphate (ATP) bioluminescence chemistry, and image analysis based on photon detection with a Charge Coupled Device (CCD) camera. In this study, we have optimized the assay conditions and evaluated the use of the RMDS as a rapid spore detection tool for NASA applications. In order to select for spores, the samples were subjected to a heat shock step before proceeding with the RMDS incubation protocol. Seven species of Bacillus (nine strains) that have been repeatedly isolated from clean room environments were assayed. All strains were detected by the RMDS in 5 hours and these assay times were repeatedly demonstrated along with low image background noise. Validation experiments to compare the Rapid Sore Assay (RSA) and NASA standard assay (NSA) were also performed. The evaluation criteria were modeled after the FDA Guideline of Process Validation, and Analytical Test Methods. This body of research demonstrates that the Rapid Spore Assay (RSA) is quick, and of equivalent sensitivity to the NASA standard assay, potentially reducing the assay time for bacterial endospores from over 72 hours to less than 8 hours

  17. Rapid and reliable identification of Gram-negative bacteria and Gram-positive cocci by deposition of bacteria harvested from blood cultures onto the MALDI-TOF plate.

    OpenAIRE

    Barnini, S; Ghelardi, Emilia; Brucculeri, V; Morici, Paola; Lupetti, Antonella

    2015-01-01

    Background Rapid identification of the causative agent(s) of bloodstream infections using the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) methodology can lead to increased empirical antimicrobial therapy appropriateness. Herein, we aimed at establishing an easier and simpler method, further referred to as the direct method, using bacteria harvested by serum separator tubes from positive blood cultures and placed onto the polished steel target plate for rapid identif...

  18. A colorimetric assay of 1-aminocyclopropane-1-carboxylate (ACC) based on ninhydrin reaction for rapid screening of bacteria containing ACC deaminase.

    Science.gov (United States)

    Li, Z; Chang, S; Lin, L; Li, Y; An, Q

    2011-08-01

    1-Aminocyclopropane-1-carboxylate (ACC) deaminase activity is an efficient marker for bacteria to promote plant growth by lowering ethylene levels in plants. We aim to develop a method for rapidly screening bacteria containing ACC deaminase, based on a colorimetric ninhydrin assay of ACC. A reliable colorimetric ninhydrin assay was developed to quantify ACC using heat-resistant polypropylene chimney-top 96-well PCR plates, having the wells evenly heated in boiling water, preventing accidental contamination from boiling water and limiting evaporation. With this method to measure bacterial consumption of ACC, 44 ACC-utilizing bacterial isolates were rapidly screened out from 311 bacterial isolates that were able to grow on minimal media containing ACC as the sole nitrogen source. The 44 ACC-utilizing bacterial isolates showed ACC deaminase activities and belonged to the genus Burkholderia, Pseudomonas or Herbaspirillum. Determination of bacterial ACC consumption by the PCR-plate ninhydrin-ACC assay is a rapid and efficient method for screening bacteria containing ACC deaminase from a large number of bacterial isolates. The PCR-plate ninhydrin-ACC assay extends the utility of the ninhydrin reaction and enables a rapid screening of bacteria containing ACC deaminase from large numbers of bacterial isolates. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  19. Rapid diagnostics of the bacteria in air

    Energy Technology Data Exchange (ETDEWEB)

    Belov Nikolai, N. [ATECH KFT, Budapest (Hungary)

    2000-07-01

    Presence of the bacteria and viruses in the air is great problem now. Terrorists are going to use the bacteria weapon. Now biotechnology provides very cheap equipment ({approx} $500) for modification of the bacteria sorts. It may be used for receiving of new variants of the bacteriological weapon. And presence of one small bacteria aerosol generator in the international airport during several days will start the dangerous epidemic incidence the entire world. From another side - poor countries with hot and wet weather are continuously producing new and new dangerous bacteria. Every year epidemic waves of influence are going from China, India or Africa. And once up a time it will be epidemic explosive with fast lethal finish. Methods of estimation of the bio-aerosols in Air of City are very poor. Standard Bio-aerosol sampler has two conflicting demands. From one side the bio-sampler needs in great air volume of sample with great efficiency of separation of aerosol particles from measured air. From another side all selected particles needs in great care. This demand carried out from method of measurement of bacteria in sample by counting of colonies that grew from bacteria on nutrient media after incubation time. It is a problem to prevent bacterial flora from death during collecting aerosol sample. This time of growth and counting of colony is so long that result of this measurement will be unusable if it will be terrorist action of start of bacteriological was. Here presented new methods for fast diagnostics of the bacteria in the air. It consists from 4 general parts: (1) Micro-droplet method for diagnostics of biological active substances in aerosol sample. This method allows to control the bio-particle position on the plate, to use series of biochemistry species for analytical reaction for this small bio-particle. Small volume of biochemical reaction reduces noise. This method provides extremely high sensitivity for discovering of biological material. (2

  20. Rapid detection of Mycobacterium tuberculosis by recombinase polymerase amplification.

    Directory of Open Access Journals (Sweden)

    David S Boyle

    Full Text Available Improved access to effective tests for diagnosing tuberculosis (TB has been designated a public health priority by the World Health Organisation. In high burden TB countries nucleic acid based TB tests have been restricted to centralised laboratories and specialised research settings. Requirements such as a constant electrical supply, air conditioning and skilled, computer literate operators prevent implementation of such tests in many settings. Isothermal DNA amplification technologies permit the use of simpler, less energy intensive detection platforms more suited to low resource settings that allow the accurate diagnosis of a disease within a short timeframe. Recombinase Polymerase Amplification (RPA is a rapid, low temperature isothermal DNA amplification reaction. We report here RPA-based detection of Mycobacterium tuberculosis complex (MTC DNA in <20 minutes at 39 °C. Assays for two MTC specific targets were investigated, IS6110 and IS1081. When testing purified MTC genomic DNA, limits of detection of 6.25 fg (IS6110 and 20 fg (IS1081were consistently achieved. When testing a convenience sample of pulmonary specimens from suspected TB patients, RPA demonstrated superior accuracy to indirect fluorescence microscopy. Compared to culture, sensitivities for the IS1081 RPA and microscopy were 91.4% (95%CI: 85, 97.9 and 86.1% (95%CI: 78.1, 94.1 respectively (n = 71. Specificities were 100% and 88.6% (95% CI: 80.8, 96.1 respectively. For the IS6110 RPA and microscopy sensitivities of 87.5% (95%CI: 81.7, 93.2 and 70.8% (95%CI: 62.9, 78.7 were obtained (n = 90. Specificities were 95.4 (95% CI: 92.3,98.1 and 88% (95% CI: 83.6, 92.4 respectively. The superior specificity of RPA for detecting tuberculosis was due to the reduced ability of fluorescence microscopy to distinguish Mtb complex from other acid fast bacteria. The rapid nature of the RPA assay and its low energy requirement compared to other amplification technologies suggest RPA-based TB

  1. Photonic Crystal Biosensor Chip for Label-Free Detection of Bacteria

    DEFF Research Database (Denmark)

    Kristensen, Martin; Krüger, Asger Christian; Groothoff, Nathaniel

    Narrow polarization-mixing resonances in planar photonic crystals are studied as candidate components for label-free refractive index sensors for detecting bacteria causing sepsis through the identification of DNA strands....

  2. [Rapid methods for the genus Salmonella bacteria detection in food and raw materials].

    Science.gov (United States)

    Sokolov, D M; Sokolov, M S

    2013-01-01

    The article considers sanitary and epidemiological aspects and the impact of Salmonella food poisoning in Russia and abroad. The main characteristics of the agent (Salmonella enterica subsp. Enteritidis) are summarized. The main sources of human Salmonella infection are products of poultry and livestock (poultry, eggs, dairy products, meat products, etc.). Standard methods of identifying the causative agent, rapid (alternative) methods of analysis of Salmonella using differential diagnostic medium (MSRV, Salmosyst, XLT4-agar, agar-Rambach et al.), rapid tests Singlepath-Salmonella and PCR (food proof Salmonella) in real time were stated. Rapid tests provide is a substantial (at 24-48 h) reducing the time to identify Salmonella.

  3. Development of a Calcium Phosphate Nanocomposite for Fast Fluorogenic Detection of Bacteria

    Directory of Open Access Journals (Sweden)

    Claudio R. Martínez

    2014-09-01

    Full Text Available Current procedures for the detection and identification of bacterial infections are laborious, time-consuming, and require a high workload and well-equipped laboratories. Therefore the work presented herein developed a simple, fast, and low cost method for bacterial detection based on hydroxyapatite nanoparticles with a nutritive mixture and the fluorogenic substrate. Calcium phosphate ceramic nanoparticles were characterized and integrated with a nutritive mixture for the early detection of bacteria by visual as well as fluorescence spectroscopy techniques. The composite was obtained by combining calcium phosphate nanoparticles (Ca:P ratio, 1.33:1 with a nutritive mixture of protein hydrolysates and carbon sources, which promote fast bacterial multiplication, and the fluorogenic substrate 4-methylumbellipheryl-β-d-glucuronide (MUG. The composite had an average particle size of 173.2 nm and did not show antibacterial activity against Gram-negative or Gram-positive bacteria. After an Escherichia coli suspension was in contact with the composite for 60–90 min, fluorescence detected under UV light or by fluorescence spectrophotometer indicated the presence of bacteria. Intense fluorescence was observed after incubation for a maximum of 90 min. Thus, this calcium phosphate nanocomposite system may be useful as a model for the development of other nanoparticle composites for detection of early bacterial adhesion.

  4. [Development of molecular detection of food-borne pathogenic bacteria using miniaturized microfluidic devices].

    Science.gov (United States)

    Iván, Kristóf; Maráz, Anna

    2015-12-20

    Detection and identification of food-borne pathogenic bacteria are key points for the assurance of microbiological food safety. Traditional culture-based methods are more and more replaced by or supplemented with nucleic acid based molecular techniques, targeting specific (preferably virulence) genes in the genomes. Internationally validated DNA amplification - most frequently real-time polymerase chain reaction - methods are applied by the food microbiological testing laboratories for routine analysis, which will result not only in shortening the time for results but they also improve the performance characteristics (e.g. sensitivity, specificity) of the methods. Beside numerous advantages of the polymerase chain reaction based techniques for routine microbiological analysis certain drawbacks have to be mentioned, such as the high cost of the equipment and reagents, as well as the risk of contamination of the laboratory environment by the polymerase chain reaction amplicons, which require construction of an isolated laboratory system. Lab-on-a-chip systems can integrate most of these laboratory processes within a miniaturized device that delivers the same specificity and reliability as the standard protocols. The benefits of miniaturized devices are: simple - often automated - use, small overall size, portability, sterility due to single use possibility. These miniaturized rapid diagnostic tests are being researched and developed at the best research centers around the globe implementing various sample preparation and molecular DNA amplification methods on-chip. In parallel, the aim of the authors' research is to develop microfluidic Lab-on-a-chip devices for the detection and identification of food-borne pathogenic bacteria.

  5. [Detection of endotoxins of Gram-negative bacteria on the basis of electromagnetic radiation frequency spectrum].

    Science.gov (United States)

    Likhoded, V G; Kuleshova, N V; Sergieva, N V; Konev, Iu V; Trubnikova, I A; Sudzhian, E V

    2007-01-01

    Method of Gram-negative bacteria endotoxins detection on the basis of their own spectrum of electromagnetic radiation frequency was developed. Frequency spectrum typical for chemotype Re glycolipid, which is a part of lypopolysaccharides in the majority of Gram-negative bacteria, was used. Two devices--"Mini- Expert-DT" (manufactured by IMEDIS, Moscow) and "Bicom" (manufactured by Regumed, Germany)--were used as generators of electromagnetic radiation. Detection of endotoxin using these devices was performed by electropuncture vegetative resonance test. Immunoenzyme reaction with antibodies to chemotype Re glycolipid was used during analysis of preparations for assessment of resonance-frequency method specificity. The study showed that resonance-frequency method can detect lypopolysaccharides of different enterobacteria in quantities up to 0.1 pg as well as bacteria which contain lypopolysaccharides. At the same time, this method does not detect such bacteria as Staphylococcus aureus, Bifidobacterium spp., Lactobacillus spp., and Candida albicans. The method does not require preliminary processing of blood samples and can be used for diagnostics of endotoxinemia, and detection of endotoxins in blood samples or injection solutions.

  6. Detection of multiple potentially pathogenic bacteria in Matang mangrove estuaries, Malaysia.

    Science.gov (United States)

    Ghaderpour, Aziz; Mohd Nasori, Khairul Nazrin; Chew, Li Lee; Chong, Ving Ching; Thong, Kwai Lin; Chai, Lay Ching

    2014-06-15

    The deltaic estuarine system of the Matang Mangrove Forest Reserve of Malaysia is a site where several human settlements and brackish water aquaculture have been established. Here, we evaluated the level of fecal indicator bacteria (FIB) and the presence of potentially pathogenic bacteria in the surface water and sediments. Higher levels of FIB were detected at downstream sampling sites from the fishing village, indicating it as a possible source of anthropogenic pollution to the estuary. Enterococci levels in the estuarine sediments were higher than in the surface water, while total coliforms and E. coli in the estuarine sediments were not detected in all samples. Also, various types of potentially pathogenic bacteria, including Klebsiella pneumoniae, Serratia marcescens and Enterobacter cloacae were isolated. The results indicate that the Matang estuarine system is contaminated with various types of potential human bacterial pathogens which might pose a health risk to the public. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Detection of periodontal bacteria in thrombi of patients with acute myocardial infarction by polymerase chain reaction.

    Science.gov (United States)

    Ohki, Takahiro; Itabashi, Yuji; Kohno, Takashi; Yoshizawa, Akihiro; Nishikubo, Shuichi; Watanabe, Shinya; Yamane, Genyuki; Ishihara, Kazuyuki

    2012-02-01

    Numerous reports have demonstrated that periodontal bacteria are present in plaques from atherosclerotic arteries. Although periodontitis has recently been recognized as a risk factor for coronary artery disease, the direct relationship between periodontal bacteria and coronary artery disease has not yet been clarified. It has been suggested that these bacteria might contribute to inflammation and plaque instability. We assumed that if periodontal bacteria induce inflammation of plaque, the bacteria would be released into the bloodstream when vulnerable plaque ruptures. To determine whether periodontal bacteria are present in thrombi at the site of acute myocardial infarction, we tried to detect periodontal bacteria in thrombi of patients with acute myocardial infarction by polymerase chain reaction (PCR). We studied 81 consecutive adults with ST-segment elevation acute myocardial infarction who underwent primary percutaneous coronary intervention (PCI). All patients underwent removal of thrombus with aspiration catheters at the beginning of percutaneous coronary intervention, and a small sample of thrombus was obtained for PCR. The detection rates of periodontal bacteria by PCR were 19.7% for Aggregatibacter actinomycetemcomitans, 3.4% for Porphyromonas gingivalis, and 2.3% for Treponema denticola. Three species of periodontal bacteria were detected in the thrombi of patients with acute myocardial infarction. This raises the possibility that such bacteria are latently present in plaque and also suggests that these bacteria might have a role in plaque inflammation and instability. Copyright © 2012 Mosby, Inc. All rights reserved.

  8. Detection of AmpC β lactamases in gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Gunjan Gupta

    2014-01-01

    Full Text Available Amp C β-lactamases are clinically important cephalosporinases encoded on the chromosomes of many Enterobacteriaceae and a few other organisms, where they mediate resistance to cephalothin, cefazolin, cefoxitin, most penicillins, and β-lactamase inhibitor/β-lactam combinations. The increase in antibiotic resistance among Gram-negative bacteria is a notable example of how bacteria can procure, maintain and express new genetic information that can confer resistance to one or several antibiotics. Detection of organisms producing these enzymes can be difficult, because their presence does not always produce a resistant phenotype on conventional disc diffusion or automated susceptibility testing methods. These enzymes are often associated with potentially fatal laboratory reports of false susceptibility to β-lactams phenotypically. With the world-wide increase in the occurrence, types and rate of dissemination of these enzymes, their early detection is critical. AmpC β-lactamases show tremendous variation in geographic distribution. Thus, their accurate detection and characterization are important from epidemiological, clinical, laboratory, and infection control point of view. This document describes the methods for detection for AmpC β-lactamases, which can be adopted by routine diagnostic laboratories.

  9. Rapid detection of Listeria monocytogenes in milk using confocal micro-Raman spectroscopy and chemometric analysis.

    Science.gov (United States)

    Wang, Junping; Xie, Xinfang; Feng, Jinsong; Chen, Jessica C; Du, Xin-jun; Luo, Jiangzhao; Lu, Xiaonan; Wang, Shuo

    2015-07-02

    Listeria monocytogenes is a facultatively anaerobic, Gram-positive, rod-shape foodborne bacterium causing invasive infection, listeriosis, in susceptible populations. Rapid and high-throughput detection of this pathogen in dairy products is critical as milk and other dairy products have been implicated as food vehicles in several outbreaks. Here we evaluated confocal micro-Raman spectroscopy (785 nm laser) coupled with chemometric analysis to distinguish six closely related Listeria species, including L. monocytogenes, in both liquid media and milk. Raman spectra of different Listeria species and other bacteria (i.e., Staphylococcus aureus, Salmonella enterica and Escherichia coli) were collected to create two independent databases for detection in media and milk, respectively. Unsupervised chemometric models including principal component analysis and hierarchical cluster analysis were applied to differentiate L. monocytogenes from Listeria and other bacteria. To further evaluate the performance and reliability of unsupervised chemometric analyses, supervised chemometrics were performed, including two discriminant analyses (DA) and soft independent modeling of class analogies (SIMCA). By analyzing Raman spectra via two DA-based chemometric models, average identification accuracies of 97.78% and 98.33% for L. monocytogenes in media, and 95.28% and 96.11% in milk were obtained, respectively. SIMCA analysis also resulted in satisfied average classification accuracies (over 93% in both media and milk). This Raman spectroscopic-based detection of L. monocytogenes in media and milk can be finished within a few hours and requires no extensive sample preparation. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Development of a colloidal gold immunochromatographic strip for rapid detection of Streptococcus agalactiae in tilapia.

    Science.gov (United States)

    Wen-de, Wu; Min, Li; Ming, Chen; Li-Ping, Li; Rui, Wang; Hai-Lan, Chen; Fu-Yan, Chen; Qiang, Mi; Wan-Wen, Liang; Han-Zhong, Chen

    2017-05-15

    A colloidal gold immunochromatographic strip was developed for rapid detection of Streptococcus agalactiae (S. agalactiae) infection in tilapia. The monoclonal antibodies (mAb) 4C12 and 3A9 were used to target S. agalactiae as colloidal gold-mAb conjugate and captured antibody, respectively. The colloidal gold immunochromatographic strip was assembled via routine procedures. Optimal pH and minimum antibody levels in the reaction system for gold colloidal-mAb 4C12 conjugation were pH 7.4 and 18μg/mL, respectively. Optimal concentrations of the captured antibody 3A9 and goat anti-mouse antibody were 0.6mg/mL and 2mg/mL, respectively. The sensitivity of the strip for detecting S. agalactiae was 1.5×10 5 colony forming units (CFU). No cross-reaction was observed with other commonly encountered bacteria, including Pseudomonas fluorescens, Aeromonas hydrophila, Vibrio anguillarum and Streptococcus iniae. The assay time for S. agalactiae was less than 15min. Tilapia samples artificially infected with S. agalactiae were tested using the newly developed strip. The results indicated that blood, brain, kidney, spleen, metanephros and intestine specimens of infected fish can be used for S. agalactiae detection. The validity of the strip was maintained for 6 months at 4°C. These findings suggested that the immunochromatographic strip was effective for spot and rapid detection of S. agalactiae infected tilapia. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Detection of Foodborne Pathogenic Bacteria using Bacteriophage Tail Spike Proteins

    Science.gov (United States)

    Poshtiban, Somayyeh

    Foodborne infections are worldwide health problem with tremendous social and financial impacts. Efforts are focused on developing accurate and reliable technologies for detection of food contaminations in early stages preferably on-site. This thesis focuses on interfacing engineering and biology by combining phage receptor binding proteins (RBPs) with engineered platforms including microresonator-based biosensors, magnetic particles and polymerase chain reaction (PCR) to develop bacterial detection sensors. We used phage RBPs as target specific bioreceptors to develop an enhanced microresonator array for bacterial detection. These resonator beams are optimized to feature a high natural frequency while offer large surface area for capture of bacteria. Theoretical analysis indicates a high mass sensitivity with a threshold for the detection of a single bacterial cell. We used phage RBPs as target specific bioreceptors, and successfully demonstrated the application of these phage RBB-immobilized arrays for specific detection of C. jejuni cells. We also developed a RBP-derivatized magnetic pre-enrichment method as an upstream sample preparation method to improve sensitivity and specificity of PCR for detection of bacterial cells in various food samples. The combination of RBP-based magnetic separation and real-time PCR allowed the detection of small number of bacteria in artificially contaminated food samples without any need for time consuming pre-enrichment step through culturing. We also looked into integration of the RBP-based magnetic separation with PCR onto a single microfluidic lab-on-a-chip to reduce the overall turnaround time.

  12. Carbon nanotubes field-effect transistor for rapid detection of DHA

    International Nuclear Information System (INIS)

    Nguyen Thi Thuy; Nguyen Duc Chien; Mai Anh Tuan

    2012-01-01

    This paper presents the development of DNA sensor based on a network carbon nanotubes field effect transistor (CNTFETs) for Escherichia coli bacteria detection. The DNA sequences were immobilized on single-walled carbon nanotubes of transistor CNTFETs by using absorption. The hybridization of the DNA probe sequences and complementary DNA strands was detected by electrical conductance change from the electron doping by DNA hybridization directly on the carbon nanotubes leading to the change in the metal-CNTs barrier energy through the modulation of the electrode work function of carbon nanotubes field effect transistor. The results showed that the response time of DNA sensor was approximately 1 min and the sensitivity of DNA sensor was at 0.565 μA/nM; the detection limit of the sensor was about 1 pM of E. coli bacteria sample. (author)

  13. A new rapid method for direct antimicrobial susceptibility testing of bacteria from positive blood cultures.

    Science.gov (United States)

    Barnini, Simona; Brucculeri, Veronica; Morici, Paola; Ghelardi, Emilia; Florio, Walter; Lupetti, Antonella

    2016-08-12

    Rapid identification and antimicrobial susceptibility testing (AST) of the causative agent(s) of bloodstream infections can lead to prompt appropriate antimicrobial therapy. To shorten species identification, in this study bacteria were recovered from monomicrobial blood cultures by serum separator tubes and spotted onto the target plate for direct MALDI-TOF MS identification. Proper antibiotics were selected for direct AST based on species identification. In order to obtain rapid AST results, bacteria were recovered from positive blood cultures by two different protocols: by serum separator tubes (further referred to as PR1), or after a short-term subculture in liquid medium (further referred to as PR2). The results were compared with those obtained by the method currently used in our laboratory consisting in identification by MALDI-TOF and AST by Vitek 2 or Sensititre on isolated colonies. The direct MALDI-TOF method concordantly identified with the current method 97.5 % of the Gram-negative bacteria and 96.1 % of the Gram-positive cocci contained in monomicrobial blood cultures. The direct AST by PR1 and PR2 for all isolate/antimicrobial agent combinations was concordant/correct with the current method for 87.8 and 90.5 % of Gram-negative bacteria and for 93.1 and 93.8 % of Gram-positive cocci, respectively. In particular, 100 % categorical agreement was found with levofloxacin for Enterobacteriaceae by both PR1 and PR2, and 99.0 and 100 % categorical agreement was observed with linezolid for Gram-positive cocci by PR1 and PR2, respectively. There was no significant difference in accuracy between PR1 and PR2 for Gram-negative bacteria and Gram-positive cocci. This newly described method seems promising for providing accurate AST results. Most importantly, these results would be available in a few hours from blood culture positivity, which would help clinicians to promptly confirm or streamline an effective antibiotic therapy in patients with bloodstream

  14. Evaluating the use of dedicated swab for rapid antigen detection ...

    African Journals Online (AJOL)

    Evaluating the use of dedicated swab for rapid antigen detection testing in group a ... African Journal of Clinical and Experimental Microbiology ... Several generations of rapid antigen detection tests (RADTs) have been developed to facilitate ...

  15. Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels.

    Science.gov (United States)

    Wu, Shijia; Duan, Nuo; Shi, Zhao; Fang, Congcong; Wang, Zhouping

    2014-03-18

    A highly sensitive and specific multiplex method for the simultaneous detection of three pathogenic bacteria was fabricated using multicolor upconversion nanoparticles (UCNPs) as luminescence labels coupled with aptamers as the molecular recognition elements. Multicolor UCNPs were synthesized via doping with various rare-earth ions to obtain well-separated emission peaks. The aptamer sequences were selected using the systematic evolution of ligands by exponential enrichment (SELEX) strategy for Staphylococcus aureus, Vibrio parahemolyticus, and Salmonella typhimurium. When applied in this method, aptamers can be used for the specific recognition of the bacteria from complex mixtures, including those found in real food matrixes. Aptamers and multicolor UCNPs were employed to selectively capture and simultaneously quantify the three target bacteria on the basis of the independent peaks. Under optimal conditions, the correlation between the concentration of three bacteria and the luminescence signal was found to be linear from 50-10(6) cfu mL(-1). Improved by the magnetic separation and concentration effect of Fe3O4 magnetic nanoparticles, the limits of detection of the developed method were found to be 25, 10, and 15 cfu mL(-1) for S. aureus, V. parahemolyticus, and S. typhimurium, respectively. The capability of the bioassay in real food samples was also investigated, and the results were consistent with experimental results obtained from plate-counting methods. This proposed method for the detection of various pathogenic bacteria based on multicolor UCNPs has great potential in the application of food safety and multiplex nanosensors.

  16. The Performance of the Four Anaerobic Blood Culture Bottles BacT/ALERT-FN, -FN Plus, BACTEC-Plus and -Lytic in Detection of Anaerobic Bacteria and Identification by Direct MALDI-TOF MS.

    Directory of Open Access Journals (Sweden)

    Mohammed Almuhayawi

    Full Text Available Detection and identification of anaerobic bacteria in blood cultures (BC is a well-recognized challenge in clinical microbiology. We studied 100 clinical anaerobic BC isolates to evaluate the performance of BacT/ALERT-FN, -FN Plus (BioMérieux, BACTEC-Plus and -Lytic (Becton Dickinson BioSciences BC bottles in detection and time to detection (TTD of anaerobic bacteria. BACTEC Lytic had higher detection rate (94/100, 94% than BacT/ALERT FN Plus (80/100, 80% (p<0.01 in the studied material. There was no significant difference in detection of anaerobic bacteria among the remaining bottle types. The 67 anaerobic bacteria that signalled positive in all four bottle types were analyzed to compare the time to detection (TTD and isolates were directly identified by MALDI-TOF MS. There was a significant difference in TTD among the four bottle types (p<0.0001. The shortest median TTD was 18 h in BACTEC Lytic followed by BacT/ALERT FN (23.5 h, BACTEC Plus (27 h and finally BacT/ALERT FN Plus (38 h bottles. In contrast, MALDI-TOF MS performed similarly in all bottle types with accurate identification in 51/67 (76% BacT/ALERT FN, 51/67 (76% BacT/ALERT FN Plus, 53/67 (79% BACTEC Plus and 50/67 (75% BACTEC Lytic bottles. In conclusion, BACTEC Lytic bottles have significantly better detection rates and shorter TTD compared to the three other bottle types. The anaerobic BC bottles are equally suitable for direct MALDI-TOF MS for rapid and reliable identification of common anaerobic bacteria. Further clinical studies are warranted to investigate the performance of anaerobic BC bottles in detection of anaerobic bacteria and identification by direct MALDI-TOF MS.

  17. [Clinical usefulness of urine-formed elements' information obtained from bacteria detection by flow cytometry method that uses nucleic acid staining].

    Science.gov (United States)

    Nakagawa, Hiroko; Yuno, Tomoji; Itho, Kiichi

    2009-03-01

    Recently, specific detection method for Bacteria, by flow cytometry method using nucleic acid staining, was developed as a function of automated urine formed elements analyzer for routine urine testing. Here, we performed a basic study on this bacteria analysis method. In addition, we also have a comparison among urine sediment analysis, urine Gram staining and urine quantitative cultivation, the conventional methods performed up to now. As a result, the bacteria analysis with flow cytometry method that uses nucleic acid staining was excellent in reproducibility, and higher sensitivity compared with microscopic urinary sediment analysis. Based on the ROC curve analysis, which settled urine culture method as standard, cut-off level of 120/microL was defined and its sensitivity = 85.7%, specificity = 88.2%. In the analysis of scattergram, accompanied with urine culture method, among 90% of rod positive samples, 80% of dots were appeared in the area of 30 degrees from axis X. In addition, one case even indicated that analysis of bacteria by flow cytometry and scattergram of time series analysis might be helpful to trace the progress of causative bacteria therefore the information supposed to be clinically significant. Reporting bacteria information with nucleic acid staining flow cytometry method is expected to contribute to a rapid diagnostics and treatment of urinary tract infections. Besides, the contribution to screening examination of microbiology and clinical chemistry, will deliver a more efficient solution to urine analysis.

  18. Application of immobilized synthetic anti-lipopolysaccharide peptides for the isolation and detection of bacteria.

    Science.gov (United States)

    Sandetskaya, N; Engelmann, B; Brandenburg, K; Kuhlmeier, D

    2015-08-01

    The molecular detection of microorganisms in liquid samples generally requires their enrichment or isolation. The aim of our study was to evaluate the capture and pre-concentration of bacteria by immobilized particular cationic antimicrobial peptides, called synthetic anti-lipopolysaccharide peptides (SALP). For the proof-of-concept and screening of different SALP, the peptides were covalently immobilized on glass slides, and the binding of bacteria was confirmed by microscopic examination of the slides or their scanning, in case of fluorescent bacterial cells. The most efficient SALP was further tethered to magnetic beads. SALP beads were used for the magnetic capture of Escherichia coli in liquid samples. The efficiency of this strategy was evaluated using polymerase chain reaction (PCR). Covalently immobilized SALP were capable of capturing bacteria in liquid samples. However, PCR was hampered by the unspecific binding of DNA to the positively charged peptide. We developed a method for DNA recovery by the enzymatic digestion of the peptide, which allowed for a successful PCR, though the method had its own adverse impact on the detection and, thus, did not allow for the reliable quantitative analysis of the pathogen enrichment. Immobilized SALP can be used as capture molecules for bacteria in liquid samples and can be recommended for the design of the assays or decontamination of the fluids. For the accurate subsequent detection of bacteria, DNA-independent methods should be used.

  19. Hyperspectral microscopy to identify foodborne bacteria with optimum lighting source

    Science.gov (United States)

    Hyperspectral microscopy is an emerging technology for rapid detection of foodborne pathogenic bacteria. Since scattering spectral signatures from hyperspectral microscopic images (HMI) vary with lighting sources, it is important to select optimal lights. The objective of this study is to compare t...

  20. Rapid Electrochemical Detection and Identification of Microbiological and Chemical Contaminants for Manned Spaceflight Project

    Science.gov (United States)

    Pierson, Duane; Botkin, Douglas; Gazda, Daniel

    2014-01-01

    Microbial control in the spacecraft environment is a daunting task, especially in the presence of human crew members. Currently, assessing the potential crew health risk associated with a microbial contamination event requires return of representative environmental samples that are analyzed in a ground-based laboratory. It is therefore not currently possible to quickly identify microbes during spaceflight. This project addresses the unmet need for spaceflight-compatible microbial identification technology. The electrochemical detection and identification platform is expected to provide a sensitive, specific, and rapid sample-to-answer capability for in-flight microbial monitoring that can distinguish between related microorganisms (pathogens and non-pathogens) as well as chemical contaminants. This will dramatically enhance our ability to monitor the spacecraft environment and the health risk to the crew. Further, the project is expected to eliminate the need for sample return while significantly reducing crew time required for detection of multiple targets. Initial work will focus on the optimization of bacterial detection and identification. The platform is designed to release nucleic acids (DNA and RNA) from microorganisms without the use of harmful chemicals. Bacterial DNA or RNA is captured by bacteria-specific probe molecules that are bound to a microelectrode, and that capture event can generate a small change in the electrical current (Lam, et al. 2012. Anal. Chem. 84(1): 21-5.). This current is measured, and a determination is made whether a given microbe is present in the sample analyzed. Chemical detection can be accomplished by directly applying a sample to the microelectrode and measuring the resulting current change. This rapid microbial and chemical detection device is designed to be a low-cost, low-power platform anticipated to be operated independently of an external power source, characteristics optimal for manned spaceflight and areas where power

  1. Rapid assessment of assignments using plagiarism detection software.

    Science.gov (United States)

    Bischoff, Whitney R; Abrego, Patricia C

    2011-01-01

    Faculty members most often use plagiarism detection software to detect portions of students' written work that have been copied and/or not attributed to their authors. The rise in plagiarism has led to a parallel rise in software products designed to detect plagiarism. Some of these products are configurable for rapid assessment and teaching, as well as for plagiarism detection.

  2. Rapid detection of small oscillation faults via deterministic learning.

    Science.gov (United States)

    Wang, Cong; Chen, Tianrui

    2011-08-01

    Detection of small faults is one of the most important and challenging tasks in the area of fault diagnosis. In this paper, we present an approach for the rapid detection of small oscillation faults based on a recently proposed deterministic learning (DL) theory. The approach consists of two phases: the training phase and the test phase. In the training phase, the system dynamics underlying normal and fault oscillations are locally accurately approximated through DL. The obtained knowledge of system dynamics is stored in constant radial basis function (RBF) networks. In the diagnosis phase, rapid detection is implemented. Specially, a bank of estimators are constructed using the constant RBF neural networks to represent the training normal and fault modes. By comparing the set of estimators with the test monitored system, a set of residuals are generated, and the average L(1) norms of the residuals are taken as the measure of the differences between the dynamics of the monitored system and the dynamics of the training normal mode and oscillation faults. The occurrence of a test oscillation fault can be rapidly detected according to the smallest residual principle. A rigorous analysis of the performance of the detection scheme is also given. The novelty of the paper lies in that the modeling uncertainty and nonlinear fault functions are accurately approximated and then the knowledge is utilized to achieve rapid detection of small oscillation faults. Simulation studies are included to demonstrate the effectiveness of the approach.

  3. Salivary detection of periodontopathic bacteria and periodontal health status in dental students.

    Science.gov (United States)

    Leblebicioglu, Binnaz; Kulekci, Guven; Ciftci, Sevgi; Keskin, Fahriye; Badur, Selim

    2009-06-01

    Saliva may become a potential source of contamination through vertical and horizontal transmissions as well as cross-infections. This study aims to use saliva as a screening tool to detect putative periodontal pathogens in a young population with fairly good oral hygiene. Stimulated saliva samples were obtained from 134 dental students (20.5+/-1 years, range 18-22 years). Among those, 77 subjects also completed a periodontal examination including attachment loss, modified dental, gingival and plaque indices (AL, mDI, GI and PI). The test bacteria were identified using a 16S rRNA-based PCR detection method. One or more of the test bacteria was found in 67% of the subjects. Prevotella nigrescens was detected as single bacterium in 16% of the subjects followed by Treponema denticola (4%), Porphyromonas gingivalis (2%), Aggregatibacter (formerly Actinobacillus) actinomycetemcomitans (1%) and Tannerella forsythia (1%). Two or more pathogens were detected in 42% of the subjects. Clinical examination revealed health with no attachment loss (AL) in 84% of the students. In no AL group, 38% of the students were pathogen free while this was 25% for students in localized AL group (p>0.05). There was a statistically significant association between the detection of salivary periodontal pathogen in general and higher PI (p=0.018) and GI (p=0.043). Within the limits of this study, it is possible to detect all six periodontal pathogens in the saliva of dental students. Although a correlation can be observed between the presence of salivary periodontal pathogen and clinical signs of inflammation such as plaque accumulation and gingival bleeding, detection of specific bacteria in saliva is not related to the presence of localized AL based on the presented study population.

  4. Advances in methods for detection of anaerobic ammonium oxidizing (anammox) bacteria.

    Science.gov (United States)

    Li, Meng; Gu, Ji-Dong

    2011-05-01

    Anaerobic ammonium oxidation (anammox), the biochemical process oxidizing ammonium into dinitrogen gas using nitrite as an electron acceptor, has only been recognized for its significant role in the global nitrogen cycle not long ago, and its ubiquitous distribution in a wide range of environments has changed our knowledge about the contributors to the global nitrogen cycle. Currently, several groups of methods are used in detection of anammox bacteria based on their physiological and biochemical characteristics, cellular chemical composition, and both 16S rRNA gene and selective functional genes as biomarkers, including hydrazine oxidoreductase and nitrite reductase encoding genes hzo and nirS, respectively. Results from these methods coupling with advances in quantitative PCR, reverse transcription of mRNA genes and stable isotope labeling have improved our understanding on the distribution, diversity, and activity of anammox bacteria in different environments both natural and engineered ones. In this review, we summarize these methods used in detection of anammox bacteria from various environments, highlight the strengths and weakness of these methods, and also discuss the new development potentials on the existing and new techniques in the future.

  5. Rapid on-site detection of Acidovorax citrulli by cross-priming amplification.

    Science.gov (United States)

    Zhang, Jing; Tian, Qian; Zhu, Shui-fang; Zhao, Wen-jun; Liu, Feng-quan

    2012-08-01

    Cross-priming amplification (CPA) for Acidovorax citrulli detection was evaluated in this study. The sensitivity of CPA assay for pure bacterial culture was 3.7 × 10(3) CFU/ml. Bacteria on naturally infected watermelon seeds were detected using CPA assay, suggesting this method is suitable for A. citrulli on-site detection from watermelon seeds. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Rapid PCR using nested primers of the 16S rRNA and the hippuricase (hipO) genes to detect Campylobacter jejuni and Campylobacter coli in environmental samples

    DEFF Research Database (Denmark)

    Bang, Dang Duong; Wedderkopp, A.; Pedersen, Karl

    2002-01-01

    sensitivity due to the use of selective media, the low number of bacteria in the samples and possibly also due to the presence of non-culturable or sub-lethally injured stages of the bacteria. The present paper describes a rapid PCR assay using nested primers of the 16S rRNA or the hippuricase (hipO) genes...... to detect Campylobacter jejuni and Campylobacter coli in environmental samples. The sensitivity of the nested PCR was determined to be 0.01 pg/PCR, corresponding to 2-3 colony forming units (cfu) per ml. The nested PCR assays were applied to detect C. jejuni and C. coli in 269 environmental samples...... collected from ten broiler farms. The sensitivity, specificity and the usefulness of the PCR assay for detection of C. jejuni and C coli in environmental samples are presented and discussed....

  7. Detection of Enteropathogenic Bacteria under Fingernails of Canteen Workers at Universitas Padjadjaran, Jatinangor

    Directory of Open Access Journals (Sweden)

    Nalinie Nalammah Nahenthran

    2016-06-01

    Full Text Available Background: Food poisoning is a major problem in Indonesia as most people do not clean under their fingernails to remove bacteria. This study was designed to detect enteropathogenic bacteria under the fingernails of canteen workers in Universitas Padjadjaran, Jatinangor. Methods: A cross-sectional study was conducted from October−November 2014 at the Faculty of Medicine’s Microbiology Laboratory to detect enteropathogenic bacteria under the fingernails of canteen workers in Universitas Padjadjaran, Jatinangor. Based on the inclusion and exclusion criteria of the study, 30 canteen workers were selected by random sampling from three canteens. Samples were collected from the fingernails of both the right and left hands by using a cotton swab. Sixty specimens were cultured for identification of the enteropathogenic bacteria by using gram staining method and biochemical tests. Results: The highest percentage of enteropathogenic bacteria found under the fingernails of canteen workers was Klebsiella pneumoniae with a percentage of 45% followed by Enterobacter aerogenes with a percentage of 25.7%, Salmonella paratyphii with a percentage of 9.7%, E. coli with a percentage of 6.4%, and Serratia sp, Proteus mirabillis, Klebsiella oxytoca and Shigella sp. with a percentage of 3.2%. Conclusions: The highest number of bacteria found under the fingernails of the canteen workers is Klebsiella pneumoniae, followed by Enterobacter aerogenes, Salmonella paratyphii and E. coli which has potential to cause gastroenteritis if cross-contamination occurs between the fingernails and the food.

  8. Detection and specifity of class specific antibodies to whole bacteria cells using a solid phase radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Czerkinsky, C.; Rees, A.S.; Bergimeier, L.A.; Challacombe, S.J. (Guy' s Hospital Medical and Dental Schools, London (UK))

    1983-07-01

    A solid phase radioimmunoassay has been developed which can be used for the detection of isotype specific antibodies to whole bacteria and other particulate antigens, and is applicable to a variety of species. Bacteria are bound to the solid phase by the use either of antibodies, or of methyl glyoxal. Both methods result in a sensitive and reproducible assay, and bacteria do not appear to desorb from the solid phase. The specificity of antibodies to whole bacteria was examined by absorption of antisera with various species of bacteria and retesting, or by determining the binding of antisera to various bacteria bound to the solid phase. Both methods revealed specificity for the bacteria examined. Inhibition studies showed that antibodies to Streptococcus mutans whole cells could be inhibited by purified cell surface antigens glucosyltransferase and antigen I/II, but only minimally by lipoteichoic acid, c polysaccharide or dextran. In murine antisera antibodies of the IgG, IgM, and IgA classes could be detected at amounts of less than 1 ng/ml.

  9. Survival and detection of coliforms, Enterobacteriaceae, and gram-negative bacteria in Greek yogurt.

    Science.gov (United States)

    Hervert, C J; Martin, N H; Boor, K J; Wiedmann, M

    2017-02-01

    Despite the widespread use of coliforms as indicator bacteria, increasing evidence suggests that the Enterobacteriaceae (EB) and total gram-negative groups more accurately reflect the hygienic status of high-temperature, short-time pasteurized milk and processing environments. If introduced into milk as postpasteurization contamination, these bacteria may grow to high levels and produce a wide range of sensory-related defects. However, limited information is available on the use and survival of bacterial hygiene indicators in dairy products outside of pasteurized fluid milk and cheese. The goal of this study was to (1) provide information on the survival of a diverse set of bacterial hygiene indicators in the low pH environment of Greek yogurt, (2) compare traditional and alternative detection methods for their ability to detect bacterial hygiene indicators in Greek yogurt, and (3) offer insight into optimal hygiene indicator groups for use in low-pH fermented dairy products. To this end, we screened 64 bacterial isolates, representing 24 dairy-relevant genera, for survival and detection in Greek yogurt using 5 testing methods. Before testing, isolates were inoculated into plain, 0% fat Greek yogurt (pH 4.35 to 4.65), followed by a 12-h hold period at 4 ± 1°C. Yogurts were subsequently tested using Coliform Petrifilm (3M, St. Paul, MN) to detect coliforms; Enterobacteriaceae Petrifilm (3M), violet red bile glucose agar and the D-Count (bioMérieux, Marcy-l'Étoile, France) to detect EB; and crystal violet tetrazolium agar (CVTA) to detect total gram-negative bacteria. Overall, the non-EB gram-negative isolates showed significantly larger log reductions 12 h after inoculation into Greek yogurt (based on bacterial numbers recovered on CVTA) compared with the coliform and noncoliform EB isolates tested. The methods evaluated varied in their ability to detect different microbial hygiene indicators in Greek yogurt. Crystal violet tetrazolium agar detected the highest

  10. Effect of irradiation on detection of bacteria in dehydrated vegetables with ATP bioluminescence assay

    International Nuclear Information System (INIS)

    Xiao Huan; Luo Shishi; Wang Zegang; Feng Min; Zhu Jiating; Chen Xiulan; Zhai Jianqing

    2011-01-01

    ATP bioluminescence intensity of 4 kinds of irradiated dehydrated vegetables was inconsistent with the bacteria number, the reasons were investigated in this paper. Results showed that irradiation had little effect on background luminescence, and there was no effect on luciferase-luminous system. When irradiation killed the bacteria, the ATPase activity also decreased. As a result, the ATP content in bacteria didn't decreased with the killed of bacteria, which contributed to the increase of free ATP in ATP extract and finally led to the disagreement between the bioluminescence intensity and the actual number of bacteria. When the free ATP in the dehydrated vegetable was removed, the bioluminescence intensity of ATP extract was consistent with the actual number of bacteria in irradiated dehydrated vegetable and ATP bioluminescence technology could be used in bacteria detection of irradiated samples. (authors)

  11. [Development and comparative evaluation of up-converting phosphor technology based lateral flow assay for rapid detection of Yersinia pestis, Bacillus anthracis spore and Brucella spp].

    Science.gov (United States)

    Li, Chunfeng; Zhang, Pingping; Wang, Xiaoying; Liu, Xiao; Zhao, Yong; Sun, Chongyun; Wang, Chengbin; Yang, Ruifu; Zhou, Lei

    2015-01-01

    To develop an up-converting phosphor technology based lateral flow (UPT-LF) assay for rapid and quantitative detection of Yersinia pestis, Bacillus anthracis spore and Brucella spp.and make the comparison with BioThreat Alert (BTA) test strips (Tetracore Inc., USA). Using up-converting phosphor nano-particles (UCP-NPs) as the bio-marker, three double-antibody-sandwich model based UPT-LF strips including Plague-UPT-LF, Anthrax-UPT-LF, Brucella-UPT-LF were prepared and its sensitivity, accuracy, linearity and specificity were determined by detecting 10(10), 10(9), 10(8), 10(7), 10(6), 10(5) and 0 CFU/ml series of concentrations of Y.pestis, B.anthracis, Brucella standards and other 27 kinds of 10(9) CFU/ml series of contrations of bacteria strains.Furthermore, the speed, sensitivity and accuracy of bacteria standards and simulated sample detection were compared between UPT-LF and BTA system. The detection limit of Plague-UPT-LF, Anthrax-UPT-LF and Brucella-LF was 10(5) CFU/ml. The CV of series of bacteria concentrations was ≤ 15%, and the r between lg (T/C-cut-off) and lg (concentration) was 0.996,0.998 and 0.999 (F values were 1 647.57, 743.51 and 1 822.17. All the P values were Brucella-LF were excellent, while that of Anthrax-UPT-LF was a little bit regretful because of non-specific reaction with two isolates of B. subtilis and one B.cereus. On-site evaluation showed the detection time of UPT-LF for all Y.pestis, B.anthracis spore and Brucella spp.was 33, 36 and 37 min, while BTA was 115, 115 and 111 min, which revealed the higher detection speed and sensitivity of UPT-LF comparing with BTA. The negative rate of two methods for blank standard was both 5/5, the sensitivity of UPT-LF for Y.pestis,B.anthracis spore and Brucella spp. was all 10(5) CFU/ml, then BTA was 10(6), 10(6) and 10(5) CFU/ml, respectively. The detection rate of UPT-LF for all three bacteria analog positive samples was 16/16, while BTA for B.anthracis was 7/16 only. The good performance

  12. A sensitive biosensor using double-layer capillary based immunomagnetic separation and invertase-nanocluster based signal amplification for rapid detection of foodborne pathogen.

    Science.gov (United States)

    Huang, Fengchun; Zhang, Huilin; Wang, Lei; Lai, Weihua; Lin, Jianhan

    2018-02-15

    Combining double-layer capillary based high gradient immunomagnetic separation, invertase-nanocluster based signal amplification and glucose meter based signal detection, a novel biosensor was developed for sensitive and rapid detection of E. coli O157:H7 in this study. The streptavidin modified magnetic nanobeads (MNBs) were conjugated with the biotinylated polyclonal antibodies against E. coli O157:H7 to form the immune MNBs, which were captured by the high gradient magnetic field in the double-layer capillary to specifically separate and efficiently concentrate the target bacteria. Calcium chloride was used with the monoclonal antibodies against E. coli O157:H7 and the invertase to form the immune invertase-nanoclusters (INCs), which were used to react with the target bacteria to form the MNB-bacteria-INC complexes in the capillary. The sucrose was then injected into the capillary and catalyzed by the invertase on the complexes into the glucose, which was detected using the glucose meter to obtain the concentration of the glucose for final determination of the E. coli O157:H7 cells in the sample. A linear relationship between the readout of the glucose meter and the concentration of the E. coli O157:H7 cells (from 10 2 to 10 7 CFU/mL) was found and the lower detection limit of this biosensor was 79 CFU/mL. This biosensor might be extended for the detection of other foodborne pathogens by changing the antibodies and has shown the potential for the detection of foodborne pathogens in a large volume of sample to further increase the sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A rapid detection method using flow cytometry to monitor the risk of Legionella in bath water.

    Science.gov (United States)

    Taguri, Toshitsugu; Oda, Yasunori; Sugiyama, Kanji; Nishikawa, Toru; Endo, Takuro; Izumiyama, Shinji; Yamazaki, Masayuki; Kura, Fumiaki

    2011-07-01

    Legionella species are the causative agents of human legionellosis, and bathing facilities have been identified as the sources of infection in several outbreaks in Japan. Researchers in Japan have recently reported evidence of significant associations between bacterial counts and the occurrence of Legionella in bathing facilities and in a hot tub model. A convenient and quantitative bacterial enumeration method is therefore required as an indicator of Legionella contamination or disinfection to replace existing methods such as time-consuming Legionella culture and expensive Legionella-DNA amplification. In this study, we developed a rapid detection method (RDM) to monitor the risk of Legionella using an automated microbial analyzing device based on flow cytometry techniques to measure the total number of bacteria in water samples within two minutes, by detecting typical patterns of scattered light and fluorescence. We first compared the results of our RDM with plate counting results for five filtered hot spring water samples spiked with three species of bacteria, including Legionella. Inactivation of these samples by chlorine was also assessed by the RDM, a live/dead bacterial fluorescence assay and plate counting. Using the RDM, the lower limit of quantitative bacterial counts in the spiked samples was determined as 3.0×10(3)(3.48log)counts mL(-1). We then used a laboratory model of a hot tub and found that the RDM could monitor the growth curve of naturally occurring heterotrophic bacteria with 1 and 2 days' delayed growth of amoeba and Legionella, respectively, and could also determine the killing curve of these bacteria by chlorination. Finally, samples with ≥3.48 or bacterial counts mL(-1) were tested using the RDM from 149 different hot tubs, and were found to be significantly associated with the positive or negative detection of Legionella with 95% sensitivity and 84% specificity. These findings indicated that the RDM can be used for Legionella control at

  14. A new method to extract dental pulp DNA: application to universal detection of bacteria.

    Directory of Open Access Journals (Sweden)

    Lam Tran-Hung

    Full Text Available BACKGROUND: Dental pulp is used for PCR-based detection of DNA derived from host and bacteremic microorganims. Current protocols require odontology expertise for proper recovery of the dental pulp. Dental pulp specimen exposed to laboratory environment yields contaminants detected using universal 16S rDNA-based detection of bacteria. METHODOLOGY/PRINCIPAL FINDINGS: We developed a new protocol by encasing decontaminated tooth into sterile resin, extracting DNA into the dental pulp chamber itself and decontaminating PCR reagents by filtration and double restriction enzyme digestion. Application to 16S rDNA-based detection of bacteria in 144 teeth collected in 86 healthy people yielded a unique sequence in only 14 teeth (9.7% from 12 individuals (14%. Each individual yielded a unique 16S rDNA sequence in 1-2 teeth per individual. Negative controls remained negative. Bacterial identifications were all confirmed by amplification and sequencing of specific rpoB sequence. CONCLUSIONS/SIGNIFICANCE: The new protocol prevented laboratory contamination of the dental pulp. It allowed the detection of bacteria responsible for dental pulp colonization from blood and periodontal tissue. Only 10% such samples contained 16S rDNA. It provides a new tool for the retrospective diagnostic of bacteremia by allowing the universal detection of bacterial DNA in animal and human, contemporary or ancient tooth. It could be further applied to identification of host DNA in forensic medicine and anthropology.

  15. METHODS FOR DETECTING BACTERIA USING POLYMER MATERIALS

    NARCIS (Netherlands)

    Van Grinsven Bart Robert, Nicolaas; Cleij, Thomas

    2017-01-01

    A method for characterizing bacteria includes passing a liquid containing an analyte comprising a first bacteria and a second bacteria over and in contact with a polymer material on a substrate. The polymer material is formulated to bind to the first bacteria, and the first bacteria binds to the

  16. PCR detection of groundwater bacteria associated with colloidal transport

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Perez, P.; Stetzenbach, L.D.; Alvarez, A.J.

    1996-02-29

    Colloidal transport may increase the amount of contaminant material than that which could be transported by water flow alone. The role of colloids in groundwater contaminant transport is complicated and may involve many different processes, including sorption of elements onto colloidal particles, coagulation/dissolution, adsorption onto solid surfaces, filtration, and migration. Bacteria are known to concentrate minerals and influence the transport of compounds in aqueous environments and may also serve as organic colloids, thereby influencing subsurface transport of radionuclides and other contaminants. The initial phase of the project consisted of assembling a list of bacteria capable of sequestering or facilitating mineral transport. The development and optimization of the PCR amplification assay for the detection of the organisms of interest, and the examination of regional groundwaters for those organisms, are presented for subsequent research.

  17. PCR detection of groundwater bacteria associated with colloidal transport

    International Nuclear Information System (INIS)

    Cruz-Perez, P.; Stetzenbach, L.D.; Alvarez, A.J.

    1996-01-01

    Colloidal transport may increase the amount of contaminant material than that which could be transported by water flow alone. The role of colloids in groundwater contaminant transport is complicated and may involve many different processes, including sorption of elements onto colloidal particles, coagulation/dissolution, adsorption onto solid surfaces, filtration, and migration. Bacteria are known to concentrate minerals and influence the transport of compounds in aqueous environments and may also serve as organic colloids, thereby influencing subsurface transport of radionuclides and other contaminants. The initial phase of the project consisted of assembling a list of bacteria capable of sequestering or facilitating mineral transport. The development and optimization of the PCR amplification assay for the detection of the organisms of interest, and the examination of regional groundwaters for those organisms, are presented for subsequent research

  18. Rapid detection, characterization, and enumeration of foodborne pathogens.

    Science.gov (United States)

    Hoorfar, J

    2011-11-01

    As food safety management further develops, microbiological testing will continue to play an important role in assessing whether Food Safety Objectives are achieved. However, traditional microbiological culture-based methods are limited, particularly in their ability to provide timely data. The present review discusses the reasons for the increasing interest in rapid methods, current developments in the field, the research needs, and the future trends. The advent of biotechnology has introduced new technologies that led to the emergence of rapid diagnostic methods and altered food testing practices. Rapid methods are comprised of many different detection technologies, including specialized enzyme substrates, antibodies and DNA, ranging from simple differential plating media to the use of sophisticated instruments. The use of non-invasive sampling techniques for live animals especially came into focus with the 1990s outbreak of bovine spongiform encephalopathy that was linked to the human outbreak of Creutzfeldt Jakob's Disease. Serology is still an important tool in preventing foodborne pathogens to enter the human food supply through meat and milk from animals. One of the primary uses of rapid methods is for fast screening of large number of samples, where most of them are expected to be test-negative, leading to faster product release for sale. This has been the main strength of rapid methods such as real-time Polymerase Chain Reaction (PCR). Enrichment PCR, where a primary culture broth is tested in PCR, is the most common approach in rapid testing. Recent reports show that it is possible both to enrich a sample and enumerate by pathogen-specific real-time PCR, if the enrichment time is short. This can be especially useful in situations where food producers ask for the level of pathogen in a contaminated product. Another key issue is automation, where the key drivers are miniaturization and multiple testing, which mean that not only one instrument is flexible

  19. Rapid and selective detection of E. coli O157:H7 combining phagomagnetic separation with enzymatic colorimetry.

    Science.gov (United States)

    Zhang, Yun; Yan, Chenghui; Yang, Hang; Yu, Junping; Wei, Hongping

    2017-11-01

    Mammal IgG antibodies are normally used in conventional immunoassays for E. coli O157:H7, which could lead to false positive results from the presence of protein A producing S. aureus. In this study, a natural specific bacteriophage was isolated and then conjugated with magnetic beads as a capture element in a sandwich format for the rapid and selective detection of E. coli O157:H7. To the best of our knowledge, it was the first time to utilize a natural bacteriophage to develop a phagomagnetic separation combined with colorimetric assay for E. coli O157:H7. The method has an overall time less than 2h with a detection limit of 4.9×10 4 CFU/mL. No interference from S. aureus was observed. Furthermore, the proposed method was successfully applied to detect E. coli O157:H7 in spiked skim milk. The proposed detection system provided a potential method for E. coli O157:H7 and other pathogenic bacteria in food samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Detection of bacteriocins produced by plant pathogenic bacteria from the general Erwinia, Pseudomonas and Xanthomonas

    International Nuclear Information System (INIS)

    Biagi, C.M.R. de

    1992-01-01

    Detection of bacteriocin production was studied under distinct conditions using strains of plant pathogenic bacteria from the genera Erwinia, Pseudomonas and Xanthomonas. 58.06%, 79.31% and 40.00% of producing strains were found respectively in the three groups of bacteria using the 523 medium which was the best for the detection of bacteriocin production. Increasing agar concentrations added to the medium up to 1,5% improved the detection. The amount of medium added to the Petri dishes did not affect bacteriocin production. The longest incubation time (72 h.) improved the detection of haloes production. Ultra-violet irradiation in low dosages seems to improve the visualization of haloes production but this is dependent on the tested strains. (author)

  1. Rapid detection of salmonella using SERS with silver nano-substrate

    Science.gov (United States)

    Sundaram, J.; Park, B.; Hinton, A., Jr.; Windham, W. R.; Yoon, S. C.; Lawrence, K. C.

    2011-06-01

    Surface Enhanced Raman Scattering (SERS) can detect the pathogen in rapid and accurate. In SERS weak Raman scattering signals are enhanced by many orders of magnitude. In this study silver metal with biopolymer was used. Silver encapsulated biopolymer polyvinyl alcohol nano-colloid was prepared and deposited on stainless steel plate. This was used as metal substrate for SERS. Salmonella typhimurium a common food pathogen was selected for this study. Salmonella typhimurium bacteria cells were prepared in different concentrations in cfu/mL. Small amount of these cells were loaded on the metal substrate individually, scanned and spectra were recorded using confocal Raman microscope. The cells were exposed to laser diode at 785 nm excitation and object 50x was used to focus the laser light on the sample. Raman shifts were obtained from 400 to 2400 cm-1. Multivariate data analysis was carried to predict the concentration of unknown sample using its spectra. Concentration prediction gave an R2 of 0.93 and standard error of prediction of 0.21. The results showed that it could be possible to find out the Salmonella cells present in a low concentration in food samples using SERS.

  2. Individual differences in detecting rapidly presented fearful faces.

    Directory of Open Access Journals (Sweden)

    Dandan Zhang

    Full Text Available Rapid detection of evolutionarily relevant threats (e.g., fearful faces is important for human survival. The ability to rapidly detect fearful faces exhibits high variability across individuals. The present study aimed to investigate the relationship between behavioral detection ability and brain activity, using both event-related potential (ERP and event-related oscillation (ERO measurements. Faces with fearful or neutral facial expressions were presented for 17 ms or 200 ms in a backward masking paradigm. Forty-two participants were required to discriminate facial expressions of the masked faces. The behavioral sensitivity index d' showed that the detection ability to rapidly presented and masked fearful faces varied across participants. The ANOVA analyses showed that the facial expression, hemisphere, and presentation duration affected the grand-mean ERP (N1, P1, and N170 and ERO (below 20 Hz and lasted from 100 ms to 250 ms post-stimulus, mainly in theta band brain activity. More importantly, the overall detection ability of 42 subjects was significantly correlated with the emotion effect (i.e., fearful vs. neutral on ERP (r = 0.403 and ERO (r = 0.552 measurements. A higher d' value was corresponding to a larger size of the emotional effect (i.e., fearful--neutral of N170 amplitude and a larger size of the emotional effect of the specific ERO spectral power at the right hemisphere. The present results suggested a close link between behavioral detection ability and the N170 amplitude as well as the ERO spectral power below 20 Hz in individuals. The emotional effect size between fearful and neutral faces in brain activity may reflect the level of conscious awareness of fearful faces.

  3. [A simple method for the rapid detection of bacterial hyaluronidase in K hyaluronate-containing gel].

    Science.gov (United States)

    Balke, E; Weiss, R

    1984-08-01

    For detection of hyaluronidase activities we investigated several groups of bacteria. The bacteria were inoculated on a 1,5% agarose gel in Petri plates of 4 cm diameter or gel discs of 7 mm diameter, containing 0,1% of K-hyaluronate as well as nutritient medium, and were incubated for 2-20 h at 37 degrees C in a moist chamber. Subsequently some ml of a 10% solution of cetylpyridiniumchloride were poured on the gel to precipitate the polymere hyaluronate. If the hyaluronate was depolymerized by hyaluronidase, a translucent area was visible around the colonies. We found out, that a gel layer of 1 mm was sufficient to detect the small amounts of hyaluronidase, which were produced by bacteria within an incubation time of 2 h. These results were confirmed by incubation for 20 h and in some cases 36 h. The hyaluronidase production by different anaerobic Clostridium strains was always proved after a 20 h growth period. The bacteria were inoculated with the whole loop of a self made platin sowing wire loop. By this method quantitative differences of hyaluronidase activities between different strains of bacteria could be detected.

  4. Rapid and Quantitative Detection of Vibrio parahemolyticus by the Mixed-Dye-Based Loop-Mediated Isothermal Amplification Assay on a Self-Priming Compartmentalization Microfluidic Chip.

    Science.gov (United States)

    Pang, Bo; Ding, Xiong; Wang, Guoping; Zhao, Chao; Xu, Yanan; Fu, Kaiyue; Sun, Jingjing; Song, Xiuling; Wu, Wenshuai; Liu, Yushen; Song, Qi; Hu, Jiumei; Li, Juan; Mu, Ying

    2017-12-27

    Vibrio parahemolyticus (VP) mostly isolated from aquatic products is one of the major causes of bacterial food-poisoning events worldwide, which could be reduced using a promising on-site detection method. Herein, a rapid and quantitative method for VP detection was developed by applying a mixed-dye-loaded loop-mediated isothermal amplification (LAMP) assay on a self-priming compartmentalization (SPC) microfluidic chip, termed on-chip mixed-dye-based LAMP (CMD-LAMP). In comparison to conventional approaches, CMD-LAMP was advantageous on the limit of detection, which reached down to 1 × 10 3 CFU/mL in food-contaminated samples without the pre-enrichment of bacteria. Additionally, as a result of the use of a mixed dye and SPC chip, the quantitative result could be easily acquired, avoiding the requirement of sophisticated instruments and tedious operation. Also, CMD-LAMP was rapid and cost-effective. Conclusively, CMD-LAMP has great potential in realizing the on-site quantitative analysis of VP for food safety.

  5. Rapid colorimetric assay for detection of Listeria monocytogenes in food samples using LAMP formation of DNA concatemers and gold nanoparticle-DNA probe complex

    Science.gov (United States)

    Wachiralurpan, Sirirat; Sriyapai, Thayat; Areekit, Supatra; Sriyapai, Pichapak; Augkarawaritsawong, Suphitcha; Santiwatanakul, Somchai; Chansiri, Kosum

    2018-04-01

    ABSTRACT Listeria monocytogenes is a major foodborne pathogen of global health concern. Herein, the rapid diagnosis of L. monocytogenes has been achieved using loop-mediated isothermal amplification (LAMP) based on the phosphatidylcholine-phospholipase C gene (plcB). Colorimetric detection was then performed through the formation of DNA concatemers and a gold nanoparticle/DNA probe complex (GNP/DNA probe). The overall detection process was accomplished within approximately 1 h with no need for complicated equipment. The limits of detection for L. monocytogenes in the forms of purified genomic DNA and pure culture were 800 fg and 2.82 CFU mL-1, respectively. No cross reactions were observed from closely related bacteria species. The LAMP-GNP/DNA probe assay was applied to the detection of 200 raw chicken meat samples and compared to routine standard methods. The data revealed that the specificity, sensitivity and accuracy were 100%, 90.20% and 97.50%, respectively. The present assay was 100% in conformity with LAMP-agarose gel electrophoresis assay. Five samples that were negative by both assays appeared to have the pathogen at below the level of detection. The assay can be applied as a rapid direct screening method for L. monocytogenes.

  6. The detection and specifity of class specific antibodies to whole bacteria cells using a solid phase radioimmunoassay

    International Nuclear Information System (INIS)

    Czerkinsky, C.; Rees, A.S.; Bergimeier, L.A.; Challacombe, S.J.

    1983-01-01

    A solid phase radioimmunoassay has been developed which can be used for the detection of isotype specific antibodies to whole bacteria and other particulate antigens, and is applicable to a variety of species. Bacteria are bound to the solid phase by the use either of antibodies, or of methyl glyoxal. Both methods result in a sensitive and reproducible assay, and bacteria do not appear to desorb from the solid phase. The specificity of antibodies to whole bacteria was examined by absorption of antisera with various species of bacteria and retesting, or by determining the binding of antisera to various bacteria bound to the solid phase. Both methods revealed specificity for the bacteria examined. Inhibition studies showed that antibodies to Streptococcus mutans whole cells could be inhibited by purified cell surface antigens glucosyltransferase and antigen I/II, but only minimally by lipoteichoic acid, c polysaccharide or dextran. In murine antisera antibodies of the IgG, IgM, and IgA classes could be detected at amounts of less than 1 ng/ml. (author)

  7. Single walled carbon nanotube-based electrical biosensor for the label-free detection of pathogenic bacteria

    DEFF Research Database (Denmark)

    Yoo, S. M.; Baek, Y. K.; Shin, S.

    2016-01-01

    We herein describe the development of a single-walled carbon nanotube (SWNT)-based electrical biosensor consisting of a two-terminal resistor, and report its use for the specific, label-free detection of pathogenic bacteria via changes in conductance. The ability of this biosensor to recognize...... different pathogenic bacteria was analyzed, and conditions were optimized with different probe concentrations. Using this system, the reference strains and clinical isolates of Staphylococcus aureus and Escherichia coli were successfully detected; in both cases, the sensor showed a detection limit of 10 CFU....... This SWNT-based electrical biosensor will prove useful for the development of highly sensitive and specific handheld pathogen detectors....

  8. Rapid detection of EBOLA VP40 in microchip immunofiltration assay

    Science.gov (United States)

    Miethe, Peter; Gary, Dominik; Hlawatsch, Nadine; Gad, Anne-Marie

    2015-05-01

    In the spring of 2014, the Ebola virus (EBOV) strain Zaire caused a dramatic outbreak in several regions of West Africa. The RT-PCR and antigen capture diagnostic proved to be effective for detecting EBOV in blood and serum. In this paper, we present data of a rapid antigen capture test for the detection of VP40. The test was performed in a microfluidic chip for immunofiltration analysis. The chip integrates all necessary assay components. The analytical sensitivity of the rapid test was 8 ng/ml for recombinant VP40. In serum and whole blood samples spiked with virus culture material, the detection limit was 2.2 x 102 PFU/ml. The performance data of the rapid test (15 min) are comparable to that of the VP40 laboratory ELISA.

  9. Modeling and Analysis of a Microresonating Biosensor for Detection of Salmonella Bacteria in Human Blood

    Directory of Open Access Journals (Sweden)

    Mahdi Bahadoran

    2014-07-01

    Full Text Available A new photonics biosensor configuration comprising a Double-side Ring Add-drop Filter microring resonator (DR-ADF made from SiO2-TiO2 material is proposed for the detection of Salmonella bacteria (SB in blood. The scattering matrix method using inductive calculation is used to determine the output signal’s intensities in the blood with and without presence of Salmonella. The change in refractive index due to the reaction of Salmonella bacteria with its applied antibody on the flagellin layer loaded on the sensing and detecting microresonator causes the increase in through and dropper port’s intensities of the output signal which leads to the detection of SB in blood. A shift in the output signal wavelength is observed with resolution of 0.01 nm. The change in intensity and shift in wavelength is analyzed with respect to the change in the refractive index which contributes toward achieving an ultra-high sensitivity of 95,500 nm/RIU which is almost two orders higher than that of reported from single ring sensors and the limit of detection is in the order of 1 × 10−8 RIU. In applications, such a system can be employed for a high sensitive and fast detection of bacteria.

  10. Detection of endocarditis bacteria in tonsillar mucosa of Afghan population.

    Science.gov (United States)

    Ruggiero, F; Carbone, D; Mugavero, R; Palmieri, A; Lauritano, D; Baggi, L; Nardone, M; Carinci, F; Martinelli, M

    2018-01-01

    Endocarditis is a cardiovascular disease caused by the inflammation of the inner tissues of the heart, the endocardium, usually of the valves. Bacteraemia is essential in the development of endocarditis, and there are some findings that the main pathogens of endocarditis are viridans group streptococci: Streptococcus oralis, Streptococcus sanguinis, and Enterococcus faecalis. There is strong evidence that endocarditis bacteria are present in the tonsillar microbiota, so that tonsillar infection is associated with an increased risk of endocarditis. The aim of this manuscript is to investigate the presence of the main pathogens of endocarditis in tonsillar microbiota of an Afghan population group. A sample of 80 tonsil swabs were analyzed by quantitative real time PCR to detect endocarditis pathogens and an estimation of the total bacterial load. The median bacterial load in PCR reaction was 1.4x106 (interquartile range 4,7x105 - 2,9x106). Three species, S. Oralis, S. Sanguinis, and E. Faecalis were found in large amounts in all specimens. On the other hand, S. Mitis was never detected. The S. Aureus was found in 3 samples with a prevalence of 0.04 (C.I. 0.01-0.10). The S. Mutans was found in 33 samples with a prevalence of 0.41 (C.I. 0.31-0.52). Endocarditis bacteria has been found into the tonsillar microbiota, so there is sufficient evidence to justify that the oral cavity is a reservoir of endocarditis bacteria that can have a significant impact on the cardiovascular function.

  11. A novel, optical, on-line bacteria sensor for monitoring drinking water quality

    DEFF Research Database (Denmark)

    Højris, Bo; Christensen, Sarah Christine Boesgaard; Albrechtsen, Hans-Jørgen

    2016-01-01

    Today, microbial drinking water quality is monitored through either time-consuming laboratory methods or indirect on-line measurements. Results are thus either delayed or insufficient to support proactive action. A novel, optical, on-line bacteria sensor with a 10-minute time resolution has been...... and quantifying bacteria and particles in pure and mixed suspensions, and the quantification correlates with total bacterial counts. Several field applications have demonstrated that the technology can monitor changes in the concentration of bacteria, and is thus well suited for rapid detection of critical...... conditions such as pollution events in drinking water....

  12. Direct immobilization of antibodies on Zn-doped Fe_3O_4 nanoclusters for detection of pathogenic bacteria

    International Nuclear Information System (INIS)

    Pal, Monalisa; Lee, Sanghee; Kwon, Donghoon; Hwang, Jeongin; Lee, Hyeonjeong; Hwang, Seokyung; Jeon, Sangmin

    2017-01-01

    Zinc-doped magnetic nanoclusters (Zn-MNCs) were synthesized and used to detect pathogenic bacteria in milk. Hydrothermally synthesized Zn-MNCs exhibited stronger magnetic properties than pure MNCs, which facilitated the magnetic separation from the sample using a permanent magnet. The presence of accessible Zn sites allows the direct immobilization of half-fragmented antibodies over Zn-MNCs through strong Zn−S bonds and prevents the tedious multiple steps of molecular functionalization or coating with costly noble metals prior to conjugation with an antibody. After the capture and magnetic separation of Salmonella in milk using the antibody-functionalized Zn-MNCs, the concentration of bacteria was determined with a portable ATP luminometer and the detection limit was found to be 10 CFU/mL. - Highlights: • Zn-doped Fe_3O_4 nanoclusters (Zn-MNCs) were synthesized by hydrothermal method. • Antibodies were directly immobilized over Zn-MNCs through strong Zn–S_t_h_i_o_l bonds. • Higher magnetization of Zn-MNCs than pure MNCs facilitates the magnetic separation. • Detection limit of pathogenic bacteria in milk was found to be 10 cfu/mL. • Cost effective, sensitive and selective detection of bacteria.

  13. Porous Silicon-Based Biosensors: Towards Real-Time Optical Detection of Target Bacteria in the Food Industry.

    Science.gov (United States)

    Massad-Ivanir, Naama; Shtenberg, Giorgi; Raz, Nitzan; Gazenbeek, Christel; Budding, Dries; Bos, Martine P; Segal, Ester

    2016-11-30

    Rapid detection of target bacteria is crucial to provide a safe food supply and to prevent foodborne diseases. Herein, we present an optical biosensor for identification and quantification of Escherichia coli (E. coli, used as a model indicator bacteria species) in complex food industry process water. The biosensor is based on a nanostructured, oxidized porous silicon (PSi) thin film which is functionalized with specific antibodies against E. coli. The biosensors were exposed to water samples collected directly from process lines of fresh-cut produce and their reflectivity spectra were collected in real time. Process water were characterized by complex natural micro-flora (microbial load of >10 7  cell/mL), in addition to soil particles and plant cell debris. We show that process water spiked with culture-grown E. coli, induces robust and predictable changes in the thin-film optical interference spectrum of the biosensor. The latter is ascribed to highly specific capture of the target cells onto the biosensor surface, as confirmed by real-time polymerase chain reaction (PCR). The biosensors were capable of selectively identifying and quantifying the target cells, while the target cell concentration is orders of magnitude lower than that of other bacterial species, without any pre-enrichment or prior processing steps.

  14. Detection of Escherichia Coli Bacteria in Wastewater by using Graphene as a Sensing Material

    Science.gov (United States)

    Wibowo, K. M.; Sahdan, M. Z.; Ramli, N. I.; Muslihati, A.; Rosni, N.; Tsen, V. H.; Saim, H.; Ahmad, S. A.; Sari, Y.; Mansor, Z.

    2018-04-01

    Graphene is a family of carbon bonded in hexagonal honeycomb crystalline structure that has many superior properties. It was very suitable to be applied on sensor application due to the superior properties on electrical, physical, and optical. Furthermore, graphene also provide a large detection area since it has 2D structure. In this research, we develop graphene as a nanosensor for detection of Escherichia coli (E. coli) bacteria. The sample E. coli bacteria were cultured from domestic wastewater by using plate culture method and then isolated to get pure single colony. The serial dilution was performed to create different concentration of bacteria. Field emission scanning electron microscope and biochemical test were performed to ensure the sample genuinely target E. coli that defined by the physical size and optical properties. Raman spectroscopy measurements were also performed on the grapheme films, and it was found that the ratio of G peak and D peak intensity changing do to the presence of E. coli. The electrical properties of graphene shows the increasing number of the bacteria 4 to 273 cfu result in decreasing the resistance from 4.371 to 3.903 ohm gradually.

  15. Polydiacetylene-Based Liposomes: An "Optical Tongue" for Bacteria Detection and Identification

    Science.gov (United States)

    West, Matthew R.; Hanks, Timothy W.; Watson, Rhett T.

    2009-01-01

    Food- and water-borne bacteria are a major health concern worldwide. Current detection methods are time-consuming and require sophisticated equipment that is not always readily available. However, new techniques based on nanotechnology are under development that will result in a new generation of sensors. In this experiment, liposomes are…

  16. Rapid detection of the positive side reactions in vanadium flow batteries

    International Nuclear Information System (INIS)

    Liu, Le; Li, Zhaohua; Xi, Jingyu; Zhou, Haipeng; Wu, Zenghua; Qiu, Xinping

    2017-01-01

    Highlights: • A method for rapid measurement of the positive side reactions in VFB is presented. • The SOC of positive electrolytes can be detected with resolution of 0.002%. • Side reaction ratios at different charge currents, flow rates are obtained. - Abstract: We present an optical detection method for rapid measurement of the positive side reactions in vanadium flow batteries (VFB). By measuring the transmittance of the positive electrolytes in VFB, the states of charge (SOC) of the positive electrolytes can be detected at very high resolution (better than 0.002% in the SOC range from 98% to 100%), due to the nonlinear transmittance spectra caused by the interactions between V(IV) and V(V) ions. The intensity of the positive side reactions of a VFB can be rapidly measured by a few steps, attributing to the fact that the positive side reactions occur only during the high voltage charging process. The ratios of the positive side reactions at different charge currents and different flow rates are obtained while causing no damage to the battery. This optical detection method can rapidly determine the optimal parameters of the VFB system, providing new means for studying the electrochemical reactions in the VFB system and rapid test in industrial production of VFBs.

  17. Rapid detection of Corynebacterium pseudotuberculosis in clinical samples from sheep.

    Science.gov (United States)

    Kumar, Jyoti; Tripathi, Bhupendra Nath; Kumar, Rajiv; Sonawane, Ganesh Gangaram; Dixit, Shivendra Kumar

    2013-08-01

    Corynebacterium pseudotuberculosis, a Gram-positive bacterium is the causative agent of caseous lymphadenitis (CLA), a chronic disease of sheep, goats and other warm blooded animals. In the present study, a total of 1,080 sheep reared under semi-intensive system on organized farms situated in the semi arid tropical region of Rajasthan, India, was clinically examined. Pus samples from superficial lymph nodes of 25 (2.31%) adult sheep showing clinical lesions similar to CLA were collected for laboratory analyses. On the basis of morphological, cultural and biochemical characteristics 12 (48%) bacterial isolates from pus identified it as C. pseudotuberculosis. A polymerase chain reaction (PCR) assay targeting Putative oligopeptide/dipeptide ABC transporter, nicotinamide adenine dinucleotide phosphate (NADP) oxidoreductase coenzyme F420-dependent and proline iminopeptidase (PIP) genes of C. pseudotuberculosis was developed that showed 14 pus samples as positive. All C. pseudotuberculosis isolates were also found positive for these genes in the PCR. The specificity of the PCR products was confirmed by sequencing of the amplified products that showed 98-100% homology with published sequences available in the NCBI database. The present study shows the incidence of CLA as 2.31%, 1.1% and 1.29% based on clinical, bacterial culture and direct pus PCR assay, respectively. The PCR assay was rapid, specific and as significant as bacterial culture in detecting bacteria directly in the clinical pus samples. The PCR assay developed in the study can be applied for the diagnosis and control of CLA. Furthermore, the assay can also be applied to detect C. pseudotuberculosis in various clinical samples.

  18. Quantitative Real-time PCR detection of putrescine-producing Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Kristýna Maršálková

    2017-01-01

    Full Text Available Biogenic amines are indispensable components of living cells; nevertheless these compounds could be toxic for human health in higher concentrations. Putrescine is supposed to be the major biogenic amine associated with microbial food spoilage. Development of reliable, fast and culture-independent molecular methods to detect bacteria producing biogenic amines deserves the attention, especially of the food industry in purpose to protect health. The objective of this study was to verify the newly designed primer sets for detection of two inducible genes adiA and speF together in Salmonella enterica and Escherichia coli genome by Real-time PCR. These forenamed genes encode enzymes in the metabolic pathway which leads to production of putrescine in Gram-negative bacteria. Moreover, relative expression of these genes was studied in E. coli CCM 3954 strain using Real-time PCR. In this study, sets of new primers for the detection two inducible genes (speF and adiA in Salmonella enterica and E. coli by Real-time PCR were designed and tested. Amplification efficiency of a Real-time PCR was calculated from the slope of the standard curves (adiA, speF, gapA. An efficiency in a range from 95 to 105 % for all tested reactions was achieved. The gene expression (R of adiA and speF genes in E. coli was varied depending on culture conditions. The highest gene expression of adiA and speF was observed at 6, 24 and 36 h (RadiA ~ 3, 5, 9; RspeF ~11, 10, 9; respectively after initiation of growth of this bacteria in nutrient broth medium enchired with amino acids. The results show that these primers could be used for relative quantification analysis of E. coli.

  19. Surface-enhanced Raman scattering detection of bacteria on microarrays at single cell levels using silver nanoparticles

    International Nuclear Information System (INIS)

    Zhou, Haibo; Yang, Danting; Mircescu, Nicoleta E.; Ivleva, Natalia P.; Schwarzmeier, Kathrin; Niessner, Reinhard; Haisch, Christoph; Wieser, Andreas; Schubert, Sören

    2015-01-01

    We describe a method for the synthesis of SERS-active silver nanoparticles (AgNPs) directly on the surface of bacteria (bacteria-AgNPs), specifically of E. coli cells. This straightforward strategy allows for the sensitive determination of bacteria on a microarray platform. Antibodies were used as selective receptors on the microarray surface. The Raman signal of bacteria-AgNPs is about 10 times higher than that obtained previously with microarrays based on mixing bacteria and AgNPs (bacteria+AgNPs). The optimum SERS enhancement of bacteria-AgNPs is obtained under 633-nm laser excitation, and this most likely is due to the plasmonic interaction of aggregated AgNPs. The method allows for an identification and quantification even of single E. coli bacteria. In our perception, this straightforward approach represents a most valuable tool for the detection of E. coli and, conceivably, of other bacteria, and thus has a large potential in environmental monitoring, medical diagnosis, and in food safety and quality control. (author)

  20. Rapid Aminoglycoside NP Test for Rapid Detection of Multiple Aminoglycoside Resistance in Enterobacteriaceae.

    Science.gov (United States)

    Nordmann, Patrice; Jayol, Aurélie; Dobias, Jan; Poirel, Laurent

    2017-04-01

    The rapid aminoglycoside NP (Nordmann/Poirel) test was developed to rapidly identify multiple aminoglycoside (AG) resistance in Enterobacteriaceae It is based on the detection of the glucose metabolism related to enterobacterial growth in the presence of a defined concentration of amikacin plus gentamicin. Formation of acid metabolites was evidenced by a color change (orange to yellow) of the red phenol pH indicator. The rapid aminoglycoside NP test was evaluated by using bacterial colonies of 18 AG-resistant isolates producing 16S rRNA methylases, 20 AG-resistant isolates expressing AG-modifying enzymes (acetyl-, adenyl-, and phosphotransferases), and 10 isolates susceptible to AG. Its sensitivity and specificity were 100% and 97%, respectively, compared to the broth dilution method, which was taken as the gold standard for determining aminoglycoside resistance. The test is inexpensive, rapid (<2 h), and implementable worldwide. Copyright © 2017 American Society for Microbiology.

  1. Method and apparatus for detecting phycocyanin-pigmented algae and bacteria from reflected light

    Science.gov (United States)

    Vincent, Robert (Inventor)

    2013-01-01

    The present invention relates to a method of detecting phycocyanin algae or bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  2. A luminescent hybridoma-based biosensor for rapid detection of V. cholerae upon induction of calcium signaling pathway.

    Science.gov (United States)

    Zamani, Parichehr; Sajedi, Reza H; Hosseinkhani, Saman; Zeinoddini, Mehdi; Bakhshi, Bita

    2016-05-15

    In this study, a hybridoma based biosensor was developed for rapid, sensitive and selective detection of Vibrio cholerae O1 which converts the antibody-antigen binding to bioluminescence light. After investigation on hybridoma performance, the biosensor was constructed by transfecting specific hybridoma cells with aequorin reporter gene and the bioluminescence activities of stable biosensor were measured. The sensitivity of biosensor was as few as 50 CFU/ml and it showed no responses to other entric bacteria. Moreover, the response time of biosensor was estimated in 7th second which means this method is considerably faster than many available detection assays. In addition, this biosensor was successfully applied to V. cholerae detection in environmental samples with no significant loss in sensitivity, demonstrating our proposed biosensor provides a sensitive and reliable method for detection of V. cholerae in natural samples. The application of whole hybridoma cell directly as a sensing element in biosensor construction which mentioned for the first time in present study suggests that hybridoma cells could provide a valuable tool for future studies in both basic and diagnostic sciences and could be considered as a fast and specific sensing element for detection of other pathogens in different applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Rapid detection of bacterial contamination in cell or tissue cultures based on Raman spectroscopy

    Science.gov (United States)

    Bolwien, Carsten; Sulz, Gerd; Becker, Sebastian; Thielecke, Hagen; Mertsching, Heike; Koch, Steffen

    2008-02-01

    Monitoring the sterility of cell or tissue cultures is an essential task, particularly in the fields of regenerative medicine and tissue engineering when implanting cells into the human body. We present a system based on a commercially available microscope equipped with a microfluidic cell that prepares the particles found in the solution for analysis, a Raman-spectrometer attachment optimized for non-destructive, rapid recording of Raman spectra, and a data acquisition and analysis tool for identification of the particles. In contrast to conventional sterility testing in which samples are incubated over weeks, our system is able to analyze milliliters of supernatant or cell suspension within hours by filtering relevant particles and placing them on a Raman-friendly substrate in the microfluidic cell. Identification of critical particles via microscopic imaging and subsequent image analysis is carried out before micro-Raman analysis of those particles is then carried out with an excitation wavelength of 785 nm. The potential of this setup is demonstrated by results of artificial contamination of samples with a pool of bacteria, fungi, and spores: single-channel spectra of the critical particles are automatically baseline-corrected without using background data and classified via hierarchical cluster analysis, showing great promise for accurate and rapid detection and identification of contaminants.

  4. Rapid Detection of the Varicella Zoster Virus

    Science.gov (United States)

    Lewis, Michelle P.; Harding, Robert

    2011-01-01

    1.Technology Description-Researchers discovered that when the Varicella Zoster Virus (VZV) reactivates from latency in the body, the virus is consistently present in saliva before the appearance of skin lesions. A small saliva sample is mixed with a specialized reagent in a test kit. If the virus is present in the saliva sample, the mixture turns a red color. The sensitivity and specificity emanates from an antibody-antigen reaction. This technology is a rapid, non-invasive, point of-of-care testing kit for detecting the virus from a saliva sample. The device is easy to use and can be used in clinics and in remote locations to quickly detect VZV and begin treatment with antiviral drugs. 2.Market Opportunity- RST Bioscience will be the first and only company to market a rapid, same day test kit for the detection of VZV in saliva. The RST detection test kit will have several advantages over existing, competitive technology. The test kit is self contained and laboratory equipment is not required for analysis of the sample. Only a single saliva sample is required to be taken instead of blood or cerebral spinal fluid. The test kit is portable, sterile and disposable after use. RST detection test kits require no electrical power or expensive storage equipment and can be used in remote locations. 3.Market Analysis- According to the CDC, it is estimated that 1 million cases of shingles occur each year in the U.S. with more than half over the age of sixty. There is a high demand for rapid diagnostics by the public. The point-of-care testing (POCT) market is growing faster than other segments of in vitro diagnostics. According to a July 2007 InteLab Corporation industry report the overall market for POCT was forecast to increase from $10.3 billion in 2005 to $18.7 billion by 2011. The market value of this test kit has not been determined. 4.Competition- The VZV vaccine prevents 50% of cases and reduces neuralgia by 66%. The most popular test detects VZV-specific IgM antibody

  5. An integrated micro-chip for rapid detection of magnetic particles

    KAUST Repository

    Gooneratne, Chinthaka P.; Liang, Cai; Giouroudi, Ioanna; Kosel, Jü rgen

    2012-01-01

    This paper proposes an integrated micro-chip for the manipulation and detection of magnetic particles (MPs). A conducting ring structure is used to manipulate MPs toward giant magnetoresistance(GMR) sensing elements for rapid detection

  6. Fluorescence techniques to detect and to assess viability of plant pathogenic bacteria

    NARCIS (Netherlands)

    Chitarra, L.G.

    2001-01-01

    Plant pathogenic bacteria cause major economic losses in commercial crop production worldwide every year. The current methods used to detect and to assess the viability of bacterial pathogens and to test seed lots or plants for contamination are usually based on plate assays or on

  7. Lab-on-a-chip for rapid electrochemical detection of nerve agent Sarin

    DEFF Research Database (Denmark)

    Tan, Hsih-Yin; Loke, Weng Keong; Nguyen, Nam-Trung

    2014-01-01

    This paper reports a lab-on-a-chip for the detection of Sarin nerve agent based on rapid electrochemical detection. The chemical warfare agent Sarin (C4H10FO2P, O-isopropyl methylphosphonofluoridate) is a highly toxic organophosphate that induces rapid respiratory depression, seizures and death...

  8. Advances in developing rapid, reliable and portable detection systems for alcohol.

    Science.gov (United States)

    Thungon, Phurpa Dema; Kakoti, Ankana; Ngashangva, Lightson; Goswami, Pranab

    2017-11-15

    Development of portable, reliable, sensitive, simple, and inexpensive detection system for alcohol has been an instinctive demand not only in traditional brewing, pharmaceutical, food and clinical industries but also in rapidly growing alcohol based fuel industries. Highly sensitive, selective, and reliable alcohol detections are currently amenable typically through the sophisticated instrument based analyses confined mostly to the state-of-art analytical laboratory facilities. With the growing demand of rapid and reliable alcohol detection systems, an all-round attempt has been made over the past decade encompassing various disciplines from basic and engineering sciences. Of late, the research for developing small-scale portable alcohol detection system has been accelerated with the advent of emerging miniaturization techniques, advanced materials and sensing platforms such as lab-on-chip, lab-on-CD, lab-on-paper etc. With these new inter-disciplinary approaches along with the support from the parallel knowledge growth on rapid detection systems being pursued for various targets, the progress on translating the proof-of-concepts to commercially viable and environment friendly portable alcohol detection systems is gaining pace. Here, we summarize the progress made over the years on the alcohol detection systems, with a focus on recent advancement towards developing portable, simple and efficient alcohol sensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Rapid radiometric method for detection of Salmonella in foods

    International Nuclear Information System (INIS)

    Stewart, B.J.; Eyles, M.J.; Murrell, W.G.

    1980-01-01

    A radiometric method for the detection of Salmonella in foods has been developed which is based on Salmonella poly H agglutinating serum preventing Salmonella from producing 14CO2 from [14C] dulcitol. The method will detect the presence or absence of Salmonella in a product within 30 h compared to 4 to 5 days by routine culture methods. The method has been evaluated against a routine culture method using 58 samples of food. The overall agreement was 91%. Five samples negative for Salmonella by the routine method were positive by the radiometric method. These may have been false positives. However, the routine method may have failed to detect Salmonella due to the presence of large numbers of lactose-fermenting bacteria which hindered isolation of Salmonella colonies on the selective agar plates

  10. Research advance in rapid detection of foodborne Staphylococcus aureus

    OpenAIRE

    Xihong Zhao; Caijiao Wei; Junliang Zhong; Shiwei Jin

    2016-01-01

    Staphylococcus aureus is a gram-positive, coccus-shaped facultative anaerobe and a member of the Staphylococcaceae family. In recent years, alimentary toxicosis caused by S. aureus is a very serious problem worldwide, which constitutes a great threat to public health. In this review, we tried to summarize the conventional methods and newly developed rapid detection techniques of S. aureus (traditional detection method, biochemical detection, immunology method, molecular biology, and biosensor...

  11. The IRIDICA BAC BSI Assay: Rapid, Sensitive and Culture-Independent Identification of Bacteria and Candida in Blood

    Science.gov (United States)

    Rothman, Richard E.; Peterson, Stephen; Carroll, Karen C.; Zhang, Sean X.; Avornu, Gideon D.; Rounds, Megan A.; Carolan, Heather E.; Toleno, Donna M.; Moore, David; Hall, Thomas A.; Massire, Christian; Richmond, Gregory S.; Gutierrez, Jose R.; Sampath, Rangarajan; Ecker, David J.; Blyn, Lawrence B.

    2016-01-01

    Bloodstream infection (BSI) and sepsis are rising in incidence throughout the developed world. The spread of multi-drug resistant organisms presents increasing challenges to treatment. Surviving BSI is dependent on rapid and accurate identification of causal organisms, and timely application of appropriate antibiotics. Current culture-based methods used to detect and identify agents of BSI are often too slow to impact early therapy and may fail to detect relevant organisms in many positive cases. Existing methods for direct molecular detection of microbial DNA in blood are limited in either sensitivity (likely the result of small sample volumes) or in breadth of coverage, often because the PCR primers and probes used target only a few specific pathogens. There is a clear unmet need for a sensitive molecular assay capable of identifying the diverse bacteria and yeast associated with BSI directly from uncultured whole blood samples. We have developed a method of extracting DNA from larger volumes of whole blood (5 ml per sample), amplifying multiple widely conserved bacterial and fungal genes using a mismatch- and background-tolerant PCR chemistry, and identifying hundreds of diverse organisms from the amplified fragments on the basis of species-specific genetic signatures using electrospray ionization mass spectrometry (PCR/ESI-MS). We describe the analytical characteristics of the IRIDICA BAC BSI Assay and compare its pre-clinical performance to current standard-of-care methods in a collection of prospectively collected blood specimens from patients with symptoms of sepsis. The assay generated matching results in 80% of culture-positive cases (86% when common contaminants were excluded from the analysis), and twice the total number of positive detections. The described method is capable of providing organism identifications directly from uncultured blood in less than 8 hours. Disclaimer: The IRIDICA BAC BSI Assay is not available in the United States. PMID:27384540

  12. Helicase-dependent isothermal amplification: a novel tool in the development of molecular-based analytical systems for rapid pathogen detection.

    Science.gov (United States)

    Barreda-García, Susana; Miranda-Castro, Rebeca; de-Los-Santos-Álvarez, Noemí; Miranda-Ordieres, Arturo J; Lobo-Castañón, María Jesús

    2018-01-01

    Highly sensitive testing of nucleic acids is essential to improve the detection of pathogens, which pose a major threat for public health worldwide. Currently available molecular assays, mainly based on PCR, have a limited utility in point-of-need control or resource-limited settings. Consequently, there is a strong interest in developing cost-effective, robust, and portable platforms for early detection of these harmful microorganisms. Since its description in 2004, isothermal helicase-dependent amplification (HDA) has been successfully applied in the development of novel molecular-based technologies for rapid, sensitive, and selective detection of viruses and bacteria. In this review, we highlight relevant analytical systems using this simple nucleic acid amplification methodology that takes place at a constant temperature and that is readily compatible with microfluidic technologies. Different strategies for monitoring HDA amplification products are described. In addition, we present technological advances for integrating sample preparation, HDA amplification, and detection. Future perspectives and challenges toward point-of-need use not only for clinical diagnosis but also in food safety testing and environmental monitoring are also discussed. Graphical Abstract Expanding the analytical toolbox for the detection of DNA sequences specific of pathogens with isothermal helicase dependent amplification (HDA).

  13. Current advances in molecular methods for detection of nitrite-dependent anaerobic methane oxidizing bacteria in natural environments.

    Science.gov (United States)

    Chen, Jing; Dick, Richard; Lin, Jih-Gaw; Gu, Ji-Dong

    2016-12-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) process uniquely links microbial nitrogen and carbon cycles. Research on n-damo bacteria progresses quickly with experimental evidences through enrichment cultures. Polymerase chain reaction (PCR)-based methods for detecting them in various natural ecosystems and engineered systems play a very important role in the discovery of their distribution, abundance, and biodiversity in the ecosystems. Important characteristics of n-damo enrichments were obtained and their key significance in microbial nitrogen and carbon cycles was investigated. The molecular methods currently used in detecting n-damo bacteria were comprehensively reviewed and discussed for their strengths and limitations in applications with a wide range of samples. The pmoA gene-based PCR primers for n-damo bacterial detection were evaluated and, in particular, several incorrectly stated PCR primer nucleotide sequences in the published papers were also pointed out to allow correct applications of the PCR primers in current and future investigations. Furthermore, this review also offers the future perspectives of n-damo bacteria based on current information and methods available for a better acquisition of new knowledge about this group of bacteria.

  14. Rapid Detection Strategies for the Global Threat of Zika Virus: Current State, New Hypotheses and Limitations

    Directory of Open Access Journals (Sweden)

    Shruti Shukla

    2016-10-01

    Full Text Available The current scenario regarding the widespread Zika virus (ZIKV has resulted in numerous diagnostic studies, specifically in South America and in locations where there is frequent entry of travelers returning from ZIKV-affected areas, including pregnant women with or without clinical symptoms of ZIKV infection. The World Health Organization, WHO, announced that millions of cases of ZIKV are likely to occur in the United States of America in the near future. This situation has created an alarming public health emergency of international concern requiring the detection of this life-threatening viral candidate due to increased cases of newborn microcephaly associated with ZIKV infection. Hence, this review reports possible methods and strategies for the fast and reliable detection of ZIKV with particular emphasis on current updates, knowledge and new hypotheses that might be helpful for medical professionals in poor and developing countries that urgently need to address this problem. In particular, we emphasize liposome-based biosensors. Although these biosensors are currently among the less popular tools for human disease detection, they have become useful tools for the screening and detection of pathogenic bacteria, fungi and viruses because of their versatile advantageous features compared to other sensing devices. This review summarizes the currently available methods employed for the rapid detection of ZIKV and suggests an innovative approach involving the application of a liposome-based hypothesis for the development of new strategies for ZIKV detection and their use as effective biomedicinal tools.

  15. Molecular detection of anaerobic ammonium-oxidizing (anammox) bacteria in high-temperature petroleum reservoirs.

    Science.gov (United States)

    Li, Hui; Chen, Shuo; Mu, Bo-Zhong; Gu, Ji-Dong

    2010-11-01

    Anaerobic ammonium-oxidizing (anammox) process plays an important role in the nitrogen cycle of the worldwide anoxic and mesophilic habitats. Recently, the existence and activity of anammox bacteria have been detected in some thermophilic environments, but their existence in the geothermal subterranean oil reservoirs is still not reported. This study investigated the abundance, distribution and functional diversity of anammox bacteria in nine out of 17 high-temperature oil reservoirs by molecular ecology analysis. High concentration (5.31-39.2 mg l(-1)) of ammonium was detected in the production water from these oilfields with temperatures between 55°C and 75°C. Both 16S rRNA and hzo molecular biomarkers indicated the occurrence of anammox bacteria in nine out of 17 samples. Most of 16S rRNA gene phylotypes are closely related to the known anammox bacterial genera Candidatus Brocadia, Candidatus Kuenenia, Candidatus Scalindua, and Candidatus Jettenia, while hzo gene phylotypes are closely related to the genera Candidatus Anammoxoglobus, Candidatus Kuenenia, Candidatus Scalindua, and Candidatus Jettenia. The total bacterial and anammox bacterial densities were 6.4 ± 0.5 × 10(3) to 2.0 ± 0.18 × 10(6) cells ml(-1) and 6.6 ± 0.51 × 10(2) to 4.9 ± 0.36 × 10(4) cell ml(-1), respectively. The cluster I of 16S rRNA gene sequences showed distant identity (<92%) to the known Candidatus Scalindua species, inferring this cluster of anammox bacteria to be a new species, and a tentative name Candidatus "Scalindua sinooilfield" was proposed. The results extended the existence of anammox bacteria to the high-temperature oil reservoirs.

  16. Extended-spectrum beta-lactamase-producing bacteria are not detected in supragingival plaque samples from human fecal carriers of ESBL-producing Enterobacteriaceae

    Directory of Open Access Journals (Sweden)

    Arne Søraas

    2014-08-01

    Full Text Available Background: The prevalence of infections caused by Cefotaximase-Munich (CTX-M-type extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-E has rapidly increased during the past 15 years. Enterobacteriaceae are commonly found in the gastrointestinal tract and long-term intestinal carriage is considered important for the spread of ESBL and as a source of clinical infections. Oral biofilm such as supragingival plaque is known to contain numerous antibiotic resistance determinants and may also represent a poorly investigated site for ESBL carriage and further spread. Objective: To investigate possible carriage of ESBL-producing bacteria in supragingival plaque of known fecal carriers of these bacteria. Design: We screened for the presence of aerobic and anaerobic ESBL-producing bacteria and blaCTX-M in supragingival plaque samples from healthy human adults with culture-verified fecal carriage of CTX-M-producing Escherichia coli. The presence or absence of Enterobacteriaceae and ESBL-producing bacteria in plaque samples was evaluated using culture-based methods and consensus CTX-M PCR. Results: Oral samples were obtained from 17 participants with known previous carriage of ESBL-producing E. coli. No ESBL-producing bacteria or ESBL genes were detected using culture-based and molecular methods. One colony of Rahnella aquatilis harboring the class A ESBL gene bla RAHN-1/2 was identified in an oral sample from one of the participants. Conclusion: This pilot study supports the notion that the presence of CTX-M-producing bacteria is uncommon in oral plaque of healthy human adult fecal carriers. Due to the limited number of persons tested, a low prevalence of oral ESBL-carriage in healthy adults or carriage in selected groups of patients cannot be excluded. To our knowledge, this is the first description of an R. aquatilis with the RAHN-1/2 gene in the oral cavity.

  17. Comparing rapid and culture indicator bacteria methods at inland lake beaches

    Science.gov (United States)

    Francy, Donna S.; Bushon, Rebecca N.; Brady, Amie M.G.; Kephart, Christopher M.

    2013-01-01

    A rapid method, quantitative polymerase chain reaction (qPCR), for quantifying indicator bacteria in recreational waters is desirable for public health protection. We report that replacing current Escherichia coli standards with new US Environmental Protection Agency beach action values (BAVs) for enterococci by culture or qPCR may result in more advisories being posted at inland recreational lakes. In this study, concentrations of E. coli and enterococci by culture methods were compared to concentrations of Enterococcus spp. by qPCR at 3 inland lake beaches in Ohio. The E. coli and enterococci culture results were significantly related at all beaches; however, the relations between culture results and Enterococcus spp. qPCR results were not always significant and differed among beaches. All the qPCR results exceeded the new BAV for Enterococcus spp. by qPCR, whereas only 23.7% of culture results for E. coli and 79% of culture results for enterococci exceeded the current standard for E. coli or BAV for enterococci.

  18. Detection of Salmonella sp., Vibrio sp. and total plate count bacteria on blood cockle (Anadara granosa)

    Science.gov (United States)

    Ekawati, ER; Yusmiati, S. N. H.

    2018-01-01

    Blood cockle (Anadara granosa) has high level of zinc and protein, which is beneficial for therapeutic function for malnourished particularly stunting case in children. Zinc in animal foods is more absorbable than that from vegetable food. Blood cockle (Anadara granosa) is rich in nutrient and an excellent environment for the growth of microorganisms. This research aimed to identify the contamination of Salmonella sp., Vibrio sp. and total plate count bacteria on blood cockle (Anadara granosa). This was observation research with laboratory analysis. Salmonella sp. and Vibrio sp. were detected from blood cockle. Total plate count was determine of the total amount of the bacteria. Results detected from 20 samples of blood cockle showed that all samples were negative of Salmonella sp. and 1 sample positive Vibrio sp. The result of total plate count bacteria was < 5 x 105 colony/g sample.

  19. Synthetic Culture Media Evaluated for the Detection of Coliform Bacteria in Milk, Cheese and Egg Melange

    Directory of Open Access Journals (Sweden)

    G. Szita

    2008-01-01

    Full Text Available Simple synthetic culture media of liquid and solid form (X broth and X agar were tested for selective isolation of coliform bacteria. Selectivity is based on the ability of coliform bacteria to grow when the minimal medium contains simple inorganic substances as nitrogen and carbon supply. Selectivity of the media was tested by inoculation of pure cultures of different microbes belonging to the genera of Staphylococcus, Bacillus and Pseudomonas and the family Enterobacteriaceae and was found to be complete in this range. The comparative investigation of milk, camembert cheese and egg melange samples in the traditional and new media proved good applicability of X broth and X agar for an effective and selective detection of coliform bacteria. When testing pasteurized milk samples, X agar detected coliforms in significantly higher counts than violet red-bile-lactose agar.

  20. Molecular methods routinely used to detect Coxiella burnetii in ticks cross-react with Coxiella-like bacteria

    Directory of Open Access Journals (Sweden)

    Jourdain Elsa

    2015-11-01

    Full Text Available Background: Q fever is a widespread zoonotic disease caused by Coxiella burnetii. Ticks may act as vectors, and many epidemiological studies aim to assess C. burnetii prevalence in ticks. Because ticks may also be infected with Coxiella-like bacteria, screening tools that differentiate between C. burnetii and Coxiella-like bacteria are essential. Methods: In this study, we screened tick specimens from 10 species (Ornithodoros rostratus, O. peruvianus, O. capensis, Ixodes ricinus, Rhipicephalus annulatus, R. decoloratus, R. geigy, O. sonrai, O. occidentalis, and Amblyomma cajennense known to harbor specific Coxiella-like bacteria, by using quantitative PCR primers usually considered to be specific for C. burnetii and targeting, respectively, the IS1111, icd, scvA, p1, and GroEL/htpB genes. Results: We found that some Coxiella-like bacteria, belonging to clades A and C, yield positive PCR results when screened with primers initially believed to be C. burnetii-specific. Conclusions: These results suggest that PCR-based surveys that aim to detect C. burnetii in ticks by using currently available methods must be interpreted with caution if the amplified products cannot be sequenced. Future molecular methods that aim at detecting C. burnetii need to take into account the possibility that cross-reactions may exist with Coxiella-like bacteria.

  1. Rapid Methods for the Detection of Foodborne Bacterial Pathogens: Principles, Applications, Advantages and Limitations

    Directory of Open Access Journals (Sweden)

    Law eJodi Woan-Fei

    2015-01-01

    Full Text Available The incidence of foodborne diseases has increased over the years and resulted in major public health problem globally. Foodborne pathogens can be found in various foods and it is important to detect foodborne pathogens to provide safe food supply and to prevent foodborne diseases. The conventional methods used to detect foodborne pathogen are time consuming and laborious. Hence, a variety of methods have been developed for rapid detection of foodborne pathogens as it is required in many food analyses. Rapid detection methods can be categorized into nucleic acid-based, biosensor-based and immunological-based methods. This review emphasizes on the principles and application of recent rapid methods for the detection of foodborne bacterial pathogens. Detection methods included are simple polymerase chain reaction (PCR, multiplex PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA, loop-mediated isothermal amplification (LAMP and oligonucleotide DNA microarray which classified as nucleic acid-based methods; optical, electrochemical and mass-based biosensors which classified as biosensor-based methods; enzyme-linked immunosorbent assay (ELISA and lateral flow immunoassay which classified as immunological-based methods. In general, rapid detection methods are generally time-efficient, sensitive, specific and labor-saving. The developments of rapid detection methods are vital in prevention and treatment of foodborne diseases.

  2. Comparison of PCR with Standard Method (MPN for detection of bacterial contamination in drinking water

    Directory of Open Access Journals (Sweden)

    Fatemeh Dehghan

    2014-11-01

    Full Text Available Background: Detection of bacterial contamination in drinking water by culture method is a time and cost consuming method and spends a few days depending on contamination degree. However, the people use the tap water during that time. Molecular methods are rapid and sensitive. In this study a rapid Multiplex PCR method was used for rapid analysis both coliform bacteria and E.coli, and probable detection of VBNC bacteria in drinking water, the experiments were performed in bacteriological lab of water and Wastewater Corporation in Markazi province. Material and Methods:Amplification of a fragment from each of lacZ and uidA genes in a Multiplex PCR was used for detection of coliforms. Eight samples was taken from Arak drinking water system including 36 samples of wells, 41 samples of water distribution network and 3 samples from water storages were examined by amplification of lacZ and uidA genes in a Multiplex PCR. Equivalently, the MPN test was applied as a standard method for all samples for comparison of results. Standard bacteria, pure bacteria isolated from positive MPN and CRM were examined by PCR and MPN method. Results: The result of most samples water network, water storages, and water well were same in both MPN and PCR method .The results of standard bacteria and pure cultures of bacteria isolated from positive MPN and CRM confirmed the PCR method. Five samples were positive in PCR but negative in MPN method. Duration time of PCR was decreased about 105 min by changing the PCR program and electrophoreses factors. Conclusion: The Multiplex PCR can detect coliform bacteria and E.coli synchronous in drinking water.

  3. Rapid detection, characterization, and enumeration of foodborne pathogens

    DEFF Research Database (Denmark)

    Hoorfar, Jeffrey

    2011-01-01

    . The present review discusses the reasons for the increasing interest in rapid methods; current developments in the field, the research needs, and the future trends. The advent of biotechnology has introduced new technologies that led to the emergence of rapid diagnostic methods and altered food testing...... of rapid methods is for fast screening of large number of samples, where most of them are expected to be test-negative, leading to faster product release for sale. This has been the main strength of rapid methods such as real-time Polymerase Chain Reaction (PCR). Enrichment PCR, where a primary culture...... of pathogen in a contaminated product. Another key issue is automation, where the key drivers are miniaturization and multiple testing, which mean that not only one instrument is flexible enough to test for many pathogens but also many pathogens can be detected with one test. The review is mainly based...

  4. Research advance in rapid detection of foodborne Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Xihong Zhao

    2016-09-01

    Full Text Available Staphylococcus aureus is a gram-positive, coccus-shaped facultative anaerobe and a member of the Staphylococcaceae family. In recent years, alimentary toxicosis caused by S. aureus is a very serious problem worldwide, which constitutes a great threat to public health. In this review, we tried to summarize the conventional methods and newly developed rapid detection techniques of S. aureus (traditional detection method, biochemical detection, immunology method, molecular biology, and biosensor method for their principles, advantages, disadvantages, and applications. Furthermore, the future perspectives of S. aureus detection methods were forecasted at last.

  5. Search Engine for Antimicrobial Resistance: A Cloud Compatible Pipeline and Web Interface for Rapidly Detecting Antimicrobial Resistance Genes Directly from Sequence Data.

    Science.gov (United States)

    Rowe, Will; Baker, Kate S; Verner-Jeffreys, David; Baker-Austin, Craig; Ryan, Jim J; Maskell, Duncan; Pearce, Gareth

    2015-01-01

    Antimicrobial resistance remains a growing and significant concern in human and veterinary medicine. Current laboratory methods for the detection and surveillance of antimicrobial resistant bacteria are limited in their effectiveness and scope. With the rapidly developing field of whole genome sequencing beginning to be utilised in clinical practice, the ability to interrogate sequencing data quickly and easily for the presence of antimicrobial resistance genes will become increasingly important and useful for informing clinical decisions. Additionally, use of such tools will provide insight into the dynamics of antimicrobial resistance genes in metagenomic samples such as those used in environmental monitoring. Here we present the Search Engine for Antimicrobial Resistance (SEAR), a pipeline and web interface for detection of horizontally acquired antimicrobial resistance genes in raw sequencing data. The pipeline provides gene information, abundance estimation and the reconstructed sequence of antimicrobial resistance genes; it also provides web links to additional information on each gene. The pipeline utilises clustering and read mapping to annotate full-length genes relative to a user-defined database. It also uses local alignment of annotated genes to a range of online databases to provide additional information. We demonstrate SEAR's application in the detection and abundance estimation of antimicrobial resistance genes in two novel environmental metagenomes, 32 human faecal microbiome datasets and 126 clinical isolates of Shigella sonnei. We have developed a pipeline that contributes to the improved capacity for antimicrobial resistance detection afforded by next generation sequencing technologies, allowing for rapid detection of antimicrobial resistance genes directly from sequencing data. SEAR uses raw sequencing data via an intuitive interface so can be run rapidly without requiring advanced bioinformatic skills or resources. Finally, we show that SEAR

  6. Deoxyribonucleic Acid Probes Analyses for the Detection of Periodontal Pathogens.

    Science.gov (United States)

    Al Yahfoufi, Zoubeida; Hadchiti, Wahib; Berberi, Antoine

    2015-09-01

    In clinical microbiology several techniques have been used to identify bacteria. Recently, Deoxyribonucleic acid (DNA)-based techniques have been introduced to detect human microbial pathogens in periodontal diseases. Deoxyribonucleic acid probes can detect bacteria at a very low level if we compared with the culture methods. These probes have shown rapid and cost-effective microbial diagnosis, good sensitivity and specificity for some periodontal pathogens in cases of severe periodontitis. Eighty-five patients were recruited for the study. Twenty-one subjects ranging between 22 and 48 years of age fulfilled the inclusion and exclusion criteria. Seventy-eight samples became available for DNA probe analysis from the deepest pockets in each quadrant. All 21 patients showed positive results for Prevotella intermedia; also, Prevotella gingivalis was identified in 19 subjects, Aggregatibacter actinomycetemcomitans in 6 subjects. P. intermedia was diagnosed positive in 82% of the subgingival samples taken, 79% for P. gingivalis, and 23% for A. actinomycetemcomitans. This study shows a high frequency of putative periodontal pathogens by using DNA probe technology, which is semi-quantitative in this study. Deoxyribonucleic acid probes can detect bacteria at very low level about 10(3) which is below the detection level of culture methods. The detection threshold of cultural methods. The three types of bacteria can be detected rapidly with high sensitivity by using the DNA probe by general practitioners, and thus can help in the diagnosis process and the treatment.

  7. Reflection-type long period grating biosensor for the detection of drug resistant bacteria: The Opto-bacteria Project

    Science.gov (United States)

    Consales, M.; Quero, G.; Zuppolini, S.; Sansone, L.; Borriello, A.; Giordano, M.; Venturelli, A.; Cusano, A.

    2014-05-01

    We report on the development of a multilayer coated reflection-type long period fiber grating (LPG) biosensor, useful for the detection of antibiotic resistance bacteria. A standard LPG is first transformed in a more practical probe working in reflection mode, then it is coated by a primary layer of aPS and a secondary layer of PMMA in order to increase its surrounding refractive index sensitivity and at the same time provide the necessary conditions for a correct biofunctionalization. Standard linkage chemistry has been applied to anchor the bioreceptors on the probe surface. We show some preliminary results demonstrating the capability of our LPG biosensor to successfully monitor all the biological steps of the biomolecular experiments, including β-lactamase binding detection tests.

  8. Rapid In-Place Composite Rotor Damage Detection, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations is proposing to further develop the Rapid In-Place Composite Rotor Damage Detection (RIPCoRDD) System for determining and tracking the structural...

  9. Rapid In-Place Composite Rotor Damage Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations is proposing to develop the Rapid In-Place Composite Rotor Damage Detection (RIPCoRDD) for determining and tracking the structural health of...

  10. Direct immobilization of antibodies on Zn-doped Fe{sub 3}O{sub 4} nanoclusters for detection of pathogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Monalisa; Lee, Sanghee; Kwon, Donghoon; Hwang, Jeongin; Lee, Hyeonjeong; Hwang, Seokyung; Jeon, Sangmin, E-mail: jeons@postech.ac.kr

    2017-02-01

    Zinc-doped magnetic nanoclusters (Zn-MNCs) were synthesized and used to detect pathogenic bacteria in milk. Hydrothermally synthesized Zn-MNCs exhibited stronger magnetic properties than pure MNCs, which facilitated the magnetic separation from the sample using a permanent magnet. The presence of accessible Zn sites allows the direct immobilization of half-fragmented antibodies over Zn-MNCs through strong Zn−S bonds and prevents the tedious multiple steps of molecular functionalization or coating with costly noble metals prior to conjugation with an antibody. After the capture and magnetic separation of Salmonella in milk using the antibody-functionalized Zn-MNCs, the concentration of bacteria was determined with a portable ATP luminometer and the detection limit was found to be 10 CFU/mL. - Highlights: • Zn-doped Fe{sub 3}O{sub 4} nanoclusters (Zn-MNCs) were synthesized by hydrothermal method. • Antibodies were directly immobilized over Zn-MNCs through strong Zn–S{sub thiol} bonds. • Higher magnetization of Zn-MNCs than pure MNCs facilitates the magnetic separation. • Detection limit of pathogenic bacteria in milk was found to be 10 cfu/mL. • Cost effective, sensitive and selective detection of bacteria.

  11. Detection of fiber-digesting bacteria in the forestomach contents of llamas (Lama glama by PCR

    Directory of Open Access Journals (Sweden)

    María E Cerón Cucchi

    Full Text Available The high fibrolytic activity and large biomass of strictly-anaerobic bacteria that inhabit the rumen makes them primarily responsible for the degradation of the forage consumed by ruminants. Llamas feed mainly on low quality fibrous roughages that are digested by an active and diverse microflora. The products of this fermentation are volatile fatty acids and microbial biomass, which will be used by the animals. The aim of this study was to detect the three major fiber-digesting anaerobic bacteria in the forestomach contents of llamas by PCR. In this study, we detected Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes in the forestomach contents of eight native llamas from Argentina.

  12. Rapid Detection of Biological and Chemical Threat Agents Using Physical Chemistry, Active Detection, and Computational Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Myung; Dong, Li; Fu, Rong; Liotta, Lance; Narayanan, Aarthi; Petricoin, Emanuel; Ross, Mark; Russo, Paul; Zhou, Weidong; Luchini, Alessandra; Manes, Nathan; Chertow, Jessica; Han, Suhua; Kidd, Jessica; Senina, Svetlana; Groves, Stephanie

    2007-01-01

    Basic technologies have been successfully developed within this project: rapid collection of aerosols and a rapid ultra-sensitive immunoassay technique. Water-soluble, humidity-resistant polyacrylamide nano-filters were shown to (1) capture aerosol particles as small as 20 nm, (2) work in humid air and (3) completely liberate their captured particles in an aqueous solution compatible with the immunoassay technique. The immunoassay technology developed within this project combines electrophoretic capture with magnetic bead detection. It allows detection of as few as 150-600 analyte molecules or viruses in only three minutes, something no other known method can duplicate. The technology can be used in a variety of applications where speed of analysis and/or extremely low detection limits are of great importance: in rapid analysis of donor blood for hepatitis, HIV and other blood-borne infections in emergency blood transfusions, in trace analysis of pollutants, or in search of biomarkers in biological fluids. Combined in a single device, the water-soluble filter and ultra-sensitive immunoassay technique may solve the problem of early warning type detection of aerosolized pathogens. These two technologies are protected with five patent applications and are ready for commercialization.

  13. New detection systems of bacteria using highly selective media designed by SMART: selective medium-design algorithm restricted by two constraints.

    Directory of Open Access Journals (Sweden)

    Takeshi Kawanishi

    Full Text Available Culturing is an indispensable technique in microbiological research, and culturing with selective media has played a crucial role in the detection of pathogenic microorganisms and the isolation of commercially useful microorganisms from environmental samples. Although numerous selective media have been developed in empirical studies, unintended microorganisms often grow on such media probably due to the enormous numbers of microorganisms in the environment. Here, we present a novel strategy for designing highly selective media based on two selective agents, a carbon source and antimicrobials. We named our strategy SMART for highly Selective Medium-design Algorithm Restricted by Two constraints. To test whether the SMART method is applicable to a wide range of microorganisms, we developed selective media for Burkholderia glumae, Acidovorax avenae, Pectobacterium carotovorum, Ralstonia solanacearum, and Xanthomonas campestris. The series of media developed by SMART specifically allowed growth of the targeted bacteria. Because these selective media exhibited high specificity for growth of the target bacteria compared to established selective media, we applied three notable detection technologies: paper-based, flow cytometry-based, and color change-based detection systems for target bacteria species. SMART facilitates not only the development of novel techniques for detecting specific bacteria, but also our understanding of the ecology and epidemiology of the targeted bacteria.

  14. Target-Specific Assay for Rapid and Quantitative Detection of Mycobacterium chimaera DNA.

    Science.gov (United States)

    Zozaya-Valdés, Enrique; Porter, Jessica L; Coventry, John; Fyfe, Janet A M; Carter, Glen P; Gonçalves da Silva, Anders; Schultz, Mark B; Seemann, Torsten; Johnson, Paul D R; Stewardson, Andrew J; Bastian, Ivan; Roberts, Sally A; Howden, Benjamin P; Williamson, Deborah A; Stinear, Timothy P

    2017-06-01

    Mycobacterium chimaera is an opportunistic environmental mycobacterium belonging to the Mycobacterium avium - M. intracellulare complex. Although most commonly associated with pulmonary disease, there has been growing awareness of invasive M. chimaera infections following cardiac surgery. Investigations suggest worldwide spread of a specific M. chimaera clone, associated with contaminated hospital heater-cooler units used during the surgery. Given the global dissemination of this clone, its potential to cause invasive disease, and the laboriousness of current culture-based diagnostic methods, there is a pressing need to develop rapid and accurate diagnostic assays specific for M. chimaera Here, we assessed 354 mycobacterial genome sequences and confirmed that M. chimaera is a phylogenetically coherent group. In silico comparisons indicated six DNA regions present only in M. chimaera We targeted one of these regions and developed a TaqMan quantitative PCR (qPCR) assay for M. chimaera with a detection limit of 100 CFU/ml in whole blood spiked with bacteria. In vitro screening against DNA extracted from 40 other mycobacterial species and 22 bacterial species from 21 diverse genera confirmed the in silico -predicted specificity for M. chimaera Screening 33 water samples from heater-cooler units with this assay highlighted the increased sensitivity of PCR compared to culture, with 15 of 23 culture-negative samples positive by M. chimaera qPCR. We have thus developed a robust molecular assay that can be readily and rapidly deployed to screen clinical and environmental specimens for M. chimaera . Copyright © 2017 American Society for Microbiology.

  15. Radiometric method for the rapid detection of Leptospira organisms

    International Nuclear Information System (INIS)

    Manca, N.; Verardi, R.; Colombrita, D.; Ravizzola, G.; Savoldi, E.; Turano, A.

    1986-01-01

    A rapid and sensitive radiometric method for detection of Leptospira interrogans serovar pomona and Leptospira interrogans serovar copenhageni is described. Stuart's medium and Middlebrook TB (12A) medium supplemented with bovine serum albumin, catalase, and casein hydrolysate and labeled with 14 C-fatty acids were used. The radioactivity was measured in a BACTEC 460. With this system, Leptospira organisms were detected in human blood in 2 to 5 days, a notably shorter time period than that required for the majority of detection techniques

  16. Rapid quantitative estimation of chlorinated methane utilizing bacteria in drinking water and the effect of nanosilver on biodegradation of the trichloromethane in the environment.

    Science.gov (United States)

    Zamani, Isaac; Bouzari, Majid; Emtiazi, Giti; Fanaei, Maryam

    2015-03-01

    Halomethanes are toxic and carcinogenic chemicals, which are widely used in industry. Also they can be formed during water disinfection by chlorine. Biodegradation by methylotrophs is the most important way to remove these pollutants from the environment. This study aimed to represent a simple and rapid method for quantitative study of halomethanes utilizing bacteria in drinking water and also a method to facilitate the biodegradation of these compounds in the environment compared to cometabolism. Enumeration of chlorinated methane utilizing bacteria in drinking water was carried out by most probable number (MPN) method in two steps. First, the presence and the number of methylotroph bacteria were confirmed on methanol-containing medium. Then, utilization of dichloromethane was determined by measuring the released chloride after the addition of 0.04 mol/L of it to the growth medium. Also, the effect of nanosilver particles on biodegradation of multiple chlorinated methanes was studied by bacterial growth on Bushnell-Haas Broth containing chloroform (trichloromethane) that was treated with 0.2 ppm nanosilver. Most probable number of methylotrophs and chlorinated methane utilizing bacteria in tested drinking water were 10 and 4 MPN Index/L, respectively. Chloroform treatment by nanosilver leads to dechlorination and the production of formaldehyde. The highest growth of bacteria and formic acid production were observed in the tubes containing 1% chloroform treated with nanosilver. By combining the two tests, a rapid approach to estimation of most probable number of chlorinated methane utilizing bacteria is introduced. Treatment by nanosilver particles was resulted in the easier and faster biodegradation of chloroform by bacteria. Thus, degradation of these chlorinated compounds is more efficient compared to cometabolism.

  17. Recent advances in biochemical and molecular diagnostics for the rapid detection of antibiotic-resistant Enterobacteriaceae: a focus on ß-lactam resistance.

    Science.gov (United States)

    Decousser, Jean-Winoc; Poirel, Laurent; Nordmann, Patrice

    2017-04-01

    The rapid detection of resistance is a challenge for clinical microbiologists who wish to prevent deleterious individual and collective consequences such as (i) delaying efficient antibiotic therapy, which worsens the survival rate of the most severely ill patients, or (ii) delaying the isolation of the carriers of multidrug-resistant bacteria and promoting outbreaks; this last consequence is of special concern, and there are an increasing number of approaches and market-based solutions in response. Areas covered: From simple, cheap biochemical tests to whole-genome sequencing, clinical microbiologists must select the most adequate phenotypic and genotypic tools to promptly detect and confirm β-lactam resistance from cultivated bacteria or from clinical specimens. Here, the authors review the published literature from the last 5 years about the primary technical approaches and commercial laboratory reagents for these purposes, including molecular, biochemical and immune assays. Furthermore, the authors discuss their intrinsic and relative performance, and we challenge their putative clinical impact. Expert commentary: Until the availability of fully automated wet and dry whole genome sequencing solutions, microbiologists should focus on inexpensive biochemical tests for cultured isolates or monomicrobial clinical specimen and on using the expensive molecular PCR-based strategies for the targeted screening of complex biological environments.

  18. Use of predictive models and rapid methods to nowcast bacteria levels at coastal beaches

    Science.gov (United States)

    Francy, Donna S.

    2009-01-01

    The need for rapid assessments of recreational water quality to better protect public health is well accepted throughout the research and regulatory communities. Rapid analytical methods, such as quantitative polymerase chain reaction (qPCR) and immunomagnetic separation/adenosine triphosphate (ATP) analysis, are being tested but are not yet ready for widespread use.Another solution is the use of predictive models, wherein variable(s) that are easily and quickly measured are surrogates for concentrations of fecal-indicator bacteria. Rainfall-based alerts, the simplest type of model, have been used by several communities for a number of years. Deterministic models use mathematical representations of the processes that affect bacteria concentrations; this type of model is being used for beach-closure decisions at one location in the USA. Multivariable statistical models are being developed and tested in many areas of the USA; however, they are only used in three areas of the Great Lakes to aid in notifications of beach advisories or closings. These “operational” statistical models can result in more accurate assessments of recreational water quality than use of the previous day's Escherichia coli (E. coli)concentration as determined by traditional culture methods. The Ohio Nowcast, at Huntington Beach, Bay Village, Ohio, is described in this paper as an example of an operational statistical model. Because predictive modeling is a dynamic process, water-resource managers continue to collect additional data to improve the predictive ability of the nowcast and expand the nowcast to other Ohio beaches and a recreational river. Although predictive models have been shown to work well at some beaches and are becoming more widely accepted, implementation in many areas is limited by funding, lack of coordinated technical leadership, and lack of supporting epidemiological data.

  19. Radiometric method for the rapid detection of Leptospira organisms

    Energy Technology Data Exchange (ETDEWEB)

    Manca, N.; Verardi, R.; Colombrita, D.; Ravizzola, G.; Savoldi, E.; Turano, A.

    1986-02-01

    A rapid and sensitive radiometric method for detection of Leptospira interrogans serovar pomona and Leptospira interrogans serovar copenhageni is described. Stuart's medium and Middlebrook TB (12A) medium supplemented with bovine serum albumin, catalase, and casein hydrolysate and labeled with /sup 14/C-fatty acids were used. The radioactivity was measured in a BACTEC 460. With this system, Leptospira organisms were detected in human blood in 2 to 5 days, a notably shorter time period than that required for the majority of detection techniques.

  20. Fluorescence immunoassay for detecting periodontal bacterial pathogens in plaque.

    OpenAIRE

    Wolff, L F; Anderson, L; Sandberg, G P; Aeppli, D M; Shelburne, C E

    1991-01-01

    A particle concentration fluorescence immunoassay has been modified into a bacterial concentration fluorescence immunoassay (BCFIA) to rapidly detect periodontopathic bacteria in human plaque samples. The BCFIA utilizes fluorescently tagged monoclonal antibodies (MAbs) directed against the lipopolysaccharide of selected gram-negative plaque bacteria. Microorganisms closely associated with periodontal disease that can be identified in plaque with the BCFIA include Porphyromonas gingivalis, Bac...

  1. The rapid isolation of mutants of some Gram-positive bacteria

    International Nuclear Information System (INIS)

    Dijkhuizen, L.; Keijer, L.

    1981-01-01

    In this communication the authors describe a method for isolating at high frequency independent mutants of a number of Gram-positive bacteria. The method was originally developed for use with an Arthrobacter sp. and appears to work best with this and other coryneform bacteria. All the bacteria used were from the culture collections maintained at the University of Warwick or the Centre for Applied Microbiological Research. For mutagenesis using UV light, cells were grown in complex media and used while still in the logarithmic phase of growth. Details of the irradiation procedure are given in the text. (Auth.)

  2. Raman Hyperspectral Imaging for Detection of Watermelon Seeds Infected with Acidovorax citrulli.

    Science.gov (United States)

    Lee, Hoonsoo; Kim, Moon S; Qin, Jianwei; Park, Eunsoo; Song, Yu-Rim; Oh, Chang-Sik; Cho, Byoung-Kwan

    2017-09-23

    The bacterial infection of seeds is one of the most important quality factors affecting yield. Conventional detection methods for bacteria-infected seeds, such as biological, serological, and molecular tests, are not feasible since they require expensive equipment, and furthermore, the testing processes are also time-consuming. In this study, we use the Raman hyperspectral imaging technique to distinguish bacteria-infected seeds from healthy seeds as a rapid, accurate, and non-destructive detection tool. We utilize Raman hyperspectral imaging data in the spectral range of 400-1800 cm -1 to determine the optimal band-ratio for the discrimination of watermelon seeds infected by the bacteria Acidovorax citrulli using ANOVA. Two bands at 1076.8 cm -1 and 437 cm -1 are selected as the optimal Raman peaks for the detection of bacteria-infected seeds. The results demonstrate that the Raman hyperspectral imaging technique has a good potential for the detection of bacteria-infected watermelon seeds and that it could form a suitable alternative to conventional methods.

  3. The friendly bacteria within us Commensal bacteria of the intestine ...

    Indian Academy of Sciences (India)

    Balance of bacterial species in the gut · Immunosensory detection of intestinal bacteria · Pathogenic bacteria release interleukin-8 from HT-29 cells · Lactobacillus GG prevents the IL-8 release in response to pathogens · Effect of probiotic bacteria on chemokine response of epithelia to pathogens · PCR array studies in colon ...

  4. A novel, optical, on-line bacteria sensor for monitoring drinking water quality.

    Science.gov (United States)

    Højris, Bo; Christensen, Sarah Christine Boesgaard; Albrechtsen, Hans-Jørgen; Smith, Christian; Dahlqvist, Mathis

    2016-04-04

    Today, microbial drinking water quality is monitored through either time-consuming laboratory methods or indirect on-line measurements. Results are thus either delayed or insufficient to support proactive action. A novel, optical, on-line bacteria sensor with a 10-minute time resolution has been developed. The sensor is based on 3D image recognition, and the obtained pictures are analyzed with algorithms considering 59 quantified image parameters. The sensor counts individual suspended particles and classifies them as either bacteria or abiotic particles. The technology is capable of distinguishing and quantifying bacteria and particles in pure and mixed suspensions, and the quantification correlates with total bacterial counts. Several field applications have demonstrated that the technology can monitor changes in the concentration of bacteria, and is thus well suited for rapid detection of critical conditions such as pollution events in drinking water.

  5. Validation of the Applied Biosystems RapidFinder Shiga Toxin-Producing E. coli (STEC) Detection Workflow.

    Science.gov (United States)

    Cloke, Jonathan; Matheny, Sharon; Swimley, Michelle; Tebbs, Robert; Burrell, Angelia; Flannery, Jonathan; Bastin, Benjamin; Bird, Patrick; Benzinger, M Joseph; Crowley, Erin; Agin, James; Goins, David; Salfinger, Yvonne; Brodsky, Michael; Fernandez, Maria Cristina

    2016-11-01

    The Applied Biosystems™ RapidFinder™ STEC Detection Workflow (Thermo Fisher Scientific) is a complete protocol for the rapid qualitative detection of Escherichia coli (E. coli) O157:H7 and the "Big 6" non-O157 Shiga-like toxin-producing E. coli (STEC) serotypes (defined as serogroups: O26, O45, O103, O111, O121, and O145). The RapidFinder STEC Detection Workflow makes use of either the automated preparation of PCR-ready DNA using the Applied Biosystems PrepSEQ™ Nucleic Acid Extraction Kit in conjunction with the Applied Biosystems MagMAX™ Express 96-well magnetic particle processor or the Applied Biosystems PrepSEQ Rapid Spin kit for manual preparation of PCR-ready DNA. Two separate assays comprise the RapidFinder STEC Detection Workflow, the Applied Biosystems RapidFinder STEC Screening Assay and the Applied Biosystems RapidFinder STEC Confirmation Assay. The RapidFinder STEC Screening Assay includes primers and probes to detect the presence of stx1 (Shiga toxin 1), stx2 (Shiga toxin 2), eae (intimin), and E. coli O157 gene targets. The RapidFinder STEC Confirmation Assay includes primers and probes for the "Big 6" non-O157 STEC and E. coli O157:H7. The use of these two assays in tandem allows a user to detect accurately the presence of the "Big 6" STECs and E. coli O157:H7. The performance of the RapidFinder STEC Detection Workflow was evaluated in a method comparison study, in inclusivity and exclusivity studies, and in a robustness evaluation. The assays were compared to the U.S. Department of Agriculture (USDA), Food Safety and Inspection Service (FSIS) Microbiology Laboratory Guidebook (MLG) 5.09: Detection, Isolation and Identification of Escherichia coli O157:H7 from Meat Products and Carcass and Environmental Sponges for raw ground beef (73% lean) and USDA/FSIS-MLG 5B.05: Detection, Isolation and Identification of Escherichia coli non-O157:H7 from Meat Products and Carcass and Environmental Sponges for raw beef trim. No statistically significant

  6. DGGE detection and screening of lignocellulolytic bacteria from the termite gut of Coptotermes formosanus

    Directory of Open Access Journals (Sweden)

    Mathew, G.M.

    2011-01-01

    Full Text Available Aims: Termites thrive in terrestrial ecosystems and play an important role in the bio-recycling of lignocellulose. The objective of this study is to isolate and detect bacteria from the termite gut of Coptotermes formosanus and to screen their various enzyme activities by qualitative methods. In addition, this study was aimed to isolate lignin and furfural tolerant strains for various industrial bioprocesses.Methodology and Results: In this study, 50 worker termites of Coptotermes formosanus were collected from dead trees, from a forest in Taichung, Taiwan in June 2008 and the composition of the microbial flora from the termite guts was analyzed by DGGE analysis. The results proved that anaerobic and facultatively anaerobic bacteria consisting of Acinetobacter, Bacteroides thetaiotaomicron, Escherichia coli, and Caulobacter readily existed in the guts of termites. Although the majority of these gut symbionts have not yet been cultivated or identified, some related bacteria were isolated. Two isolates 1-8 and 2-2 of Genus Bacillus, exhibited endocellulase, protease, lipase, amylase, peroxidase and lignin peroxidase activity. Under aerobic conditions, the growth density of isolate 1-8 cultured in 1000 ppm lignin containing MSM medium was two-folds higher than cultured in MSM medium without lignin. Furthermore, the isolate 1-8 was tolerant to 20 mM furfural supplemented in the MSM medium. HPLC analysis confirmed Bacillus isolate 1-8 could degrade up to 15 mM furfural.Conclusion, significance and impact of study: Hind gut bacteria from C. formosanus were detected by culture independent DGGE method. Also, Bacillus isolates 1-8 and 2-2 obtained by culture dependent methods could withstand higher concentration of furfural and as well as lignin. These isolates may be co-cultured with ethanologenic bacteria and be used as an industrial biocatalyst for biofuel production.

  7. Use of Tethered Enzymes as a Platform Technology for Rapid Analyte Detection.

    Directory of Open Access Journals (Sweden)

    Roy Cohen

    Full Text Available Rapid diagnosis for time-sensitive illnesses such as stroke, cardiac arrest, and septic shock is essential for successful treatment. Much attention has therefore focused on new strategies for rapid and objective diagnosis, such as Point-of-Care Tests (PoCT for blood biomarkers. Here we use a biomimicry-based approach to demonstrate a new diagnostic platform, based on enzymes tethered to nanoparticles (NPs. As proof of principle, we use oriented immobilization of pyruvate kinase (PK and luciferase (Luc on silica NPs to achieve rapid and sensitive detection of neuron-specific enolase (NSE, a clinically relevant biomarker for multiple diseases ranging from acute brain injuries to lung cancer. We hypothesize that an approach capitalizing on the speed and catalytic nature of enzymatic reactions would enable fast and sensitive biomarker detection, suitable for PoCT devices.We performed in-vitro, animal model, and human subject studies. First, the efficiency of coupled enzyme activities when tethered to NPs versus when in solution was tested, demonstrating a highly sensitive and rapid detection of physiological and pathological concentrations of NSE. Next, in rat stroke models the enzyme-based assay was able in minutes to show a statistically significant increase in NSE levels in samples taken 1 hour before and 0, 1, 3 and 6 hours after occlusion of the distal middle cerebral artery. Finally, using the tethered enzyme assay for detection of NSE in samples from 20 geriatric human patients, we show that our data match well (r = 0.815 with the current gold standard for biomarker detection, ELISA-with a major difference being that we achieve detection in 10 minutes as opposed to the several hours required for traditional ELISA.Oriented enzyme immobilization conferred more efficient coupled activity, and thus higher assay sensitivity, than non-tethered enzymes. Together, our findings provide proof of concept for using oriented immobilization of active

  8. Biocontrol and Rapid Detection of Food-borne Pathogens Using Bacteriophages and Endolysins

    Directory of Open Access Journals (Sweden)

    Jaewoo eBai

    2016-04-01

    Full Text Available Bacteriophages have been suggested as natural food preservatives as well as rapid detection materials for food-borne pathogens in various foods. Since Listeria monocytogenes-targeting phage cocktail (ListShield was approved for applications in foods, numerous phages have been screened and experimentally characterized for phage applications in foods. A single phage and phage cocktail treatments to various foods contaminated with food-borne pathogens including E. coli O157:H7, Salmonella enterica, Campylobacter jejuni, Listeria monocytogenes, Staphylococcus aureus, Cronobacter sakazakii, and Vibrio spp. revealed that they have great potential to control various food-borne pathogens and may be alternative for conventional food preservatives. In addition, phage-derived endolysins with high host specificity and host lysis activities may be preferred to food applications rather than phages. For rapid detection of food-borne pathogens, cell-wall binding domains (CBDs from endolysins have been suggested due to their high host-specific binding. Fluorescence-tagged CBDs have been successfully evaluated and suggested to be alternative materials of expensive antibodies for various detection applications. Most recently, reporter phage systems have been developed and tested to confirm their usability and accuracy for specific detection. These systems revealed some advantages like rapid detection of only viable pathogenic cells without interference by food components in a very short reaction time, suggesting that these systems may be suitable for monitoring of pathogens in foods. Consequently, phage is the next-generation biocontrol agent as well as rapid detection tool to confirm and even identify the food-borne pathogens present in various foods.

  9. Hydrothermal green synthesis of magnetic Fe3O4-carbon dots by lemon and grape fruit extracts and as a photoluminescence sensor for detecting of E. coli bacteria.

    Science.gov (United States)

    Ahmadian-Fard-Fini, Shahla; Salavati-Niasari, Masoud; Ghanbari, Davood

    2018-10-05

    The aim of this work is preparing of a photoluminescence nanostructures for rapid detection of bacterial pathogens. Firstly, carbon dots (CDs) were synthesized by grape fruit, lemon, turmeric extracts and hydrothermal method. Then Fe 3 O 4 (magnetite) nanoparticles was achieved using these bio-compatible capping agents. Finally, magnetite-carbon dots were synthesized as a novel magnetic and photoluminescence nanocomposite. X-ray diffraction (XRD) confirms the crystallinity and phase of the products, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigate the morphology, shape and size of the magnetite, carbon dot and nanocomposites. Fourier transform infrared (FT-IR) spectroscopy shows the purity of the nanostructures. Ultraviolet-visible (UV-Vis) absorption and photo-luminescence (PL) spectroscopy show suitable photo-luminescence under ultraviolet irradiation. Vibrating sample magnetometer (VSM) shows super paramagnetic property of the product. Interestingly carbon dots were used as a non-toxic photoluminescence sensor for detecting of Escherichia coli (E. coli) bacteria. Results show quenching of photoluminescence of the CDs nanocomposite by increasing amount of E. coli bacteria. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Using molecular techniques for rapid detection of Salmonella ...

    African Journals Online (AJOL)

    PRECIOUS

    2010-02-01

    Feb 1, 2010 ... A total of 152 samples of chicken and chicken products ... detection of Salmonella species in the collected field samples ... that 16 million new cases of typhoid fever occur each ... vative methods for the rapid identification of Salmonella ... saved for the PCR-Non Selective test (PCR-NS) and 1 ml of the.

  11. Indigenous people's detection of rapid ecological change.

    Science.gov (United States)

    Aswani, Shankar; Lauer, Matthew

    2014-06-01

    When sudden catastrophic events occur, it becomes critical for coastal communities to detect and respond to environmental transformations because failure to do so may undermine overall ecosystem resilience and threaten people's livelihoods. We therefore asked how capable of detecting rapid ecological change following massive environmental disruptions local, indigenous people are. We assessed the direction and periodicity of experimental learning of people in the Western Solomon Islands after a tsunami in 2007. We compared the results of marine science surveys with local ecological knowledge of the benthos across 3 affected villages and 3 periods before and after the tsunami. We sought to determine how people recognize biophysical changes in the environment before and after catastrophic events such as earthquakes and tsunamis and whether people have the ability to detect ecological changes over short time scales or need longer time scales to recognize changes. Indigenous people were able to detect changes in the benthos over time. Detection levels differed between marine science surveys and local ecological knowledge sources over time, but overall patterns of statistically significant detection of change were evident for various habitats. Our findings have implications for marine conservation, coastal management policies, and disaster-relief efforts because when people are able to detect ecological changes, this, in turn, affects how they exploit and manage their marine resources. © 2014 Society for Conservation Biology.

  12. Detection and Isolation of Novel Rhizopine-Catabolizing Bacteria from the Environment

    OpenAIRE

    Gardener, Brian B. McSpadden; de Bruijn, Frans J.

    1998-01-01

    Microbial rhizopine-catabolizing (Moc) activity was detected in serial dilutions of soil and rhizosphere washes. The activity observed generally ranged between 106 and 107 catabolic units per g, and the numbers of nonspecific culture-forming units were found to be approximately 10 times higher. A diverse set of 37 isolates was obtained by enrichment on scyllo-inosamine-containing media. However, none of the bacteria that were isolated were found to contain DNA sequences homologous to the know...

  13. Rapid identification of acetic acid bacteria using MALDI-TOF mass spectrometry fingerprinting.

    Science.gov (United States)

    Andrés-Barrao, Cristina; Benagli, Cinzia; Chappuis, Malou; Ortega Pérez, Ruben; Tonolla, Mauro; Barja, François

    2013-03-01

    Acetic acid bacteria (AAB) are widespread microorganisms characterized by their ability to transform alcohols and sugar-alcohols into their corresponding organic acids. The suitability of matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS) for the identification of cultured AAB involved in the industrial production of vinegar was evaluated on 64 reference strains from the genera Acetobacter, Gluconacetobacter and Gluconobacter. Analysis of MS spectra obtained from single colonies of these strains confirmed their basic classification based on comparative 16S rRNA gene sequence analysis. MALDI-TOF analyses of isolates from vinegar cross-checked by comparative sequence analysis of 16S rRNA gene fragments allowed AAB to be identified, and it was possible to differentiate them from mixed cultures and non-AAB. The results showed that MALDI-TOF MS analysis was a rapid and reliable method for the clustering and identification of AAB species. Copyright © 2012 Elsevier GmbH. All rights reserved.

  14. MALDI-TOF mass spectrometry for rapid diagnosis of postoperative endophthalmitis.

    Science.gov (United States)

    Mailhac, Adriane; Durand, Harmonie; Boisset, Sandrine; Maubon, Danièle; Berger, Francois; Maurin, Max; Chiquet, Christophe; Bidart, Marie

    2017-01-30

    This study describes an innovative strategy for rapid detection and identification of bacteria causing endophthalmitis, combining the use of an automated blood culture system with MALDI-TOF mass spectrometry methodology. Using this protocol, we could identify 96% of 45 bacterial strains isolated from vitreous samples collected in acute post-operative endophthalmitis patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Rapid detection of Avian Influenza Virus - Towards point of care diagnosis

    DEFF Research Database (Denmark)

    Dhumpa, Raghuram

    barcode and fluorescent beads were also developed for rapid detection and identification of the AIV. In both methods, the detection involved sandwiching of the target AIV between monoclonal antibodies for nucleoproteins and for matrix proteins. In the fluorescent DNA barcode-based immunoassay, fluorophore...

  16. Rapid measurement of meat spoilage using fluorescence spectroscopy

    Science.gov (United States)

    Wu, Binlin; Dahlberg, Kevin; Gao, Xin; Smith, Jason; Bailin, Jacob

    2017-02-01

    Food spoilage is mainly caused by microorganisms, such as bacteria. In this study, we measure the autofluorescence in meat samples longitudinally over a week in an attempt to develop a method to rapidly detect meat spoilage using fluorescence spectroscopy. Meat food is a biological tissue, which contains intrinsic fluorophores, such as tryptophan, collagen, nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) etc. As meat spoils, it undergoes various morphological and chemical changes. The concentrations of the native fluorophores present in a sample may change. In particular, the changes in NADH and FAD are associated with microbial metabolism, which is the most important process of the bacteria in food spoilage. Such changes may be revealed by fluorescence spectroscopy and used to indicate the status of meat spoilage. Therefore, such native fluorophores may be unique, reliable and nonsubjective indicators for detection of spoiled meat. The results of the study show that the relative concentrations of all above fluorophores change as the meat samples kept in room temperature ( 19° C) spoil. The changes become more rapidly after about two days. For the meat samples kept in a freezer ( -12° C), the changes are much less or even unnoticeable over a-week-long storage.

  17. Method for rapid detection and identification of chaetomium and evaluation of resistance to peracetic acid.

    Science.gov (United States)

    Nakayama, Motokazu; Hosoya, Kouichi; Tomiyama, Daisuke; Tsugukuni, Takashi; Matsuzawa, Tetsuhiro; Imanishi, Yumi; Yaguchi, Takashi

    2013-06-01

    In the beverage industry, peracetic acid has been increasingly used as a disinfectant for the filling machinery and environment due to merits of leaving no residue, it is safe for humans, and its antiseptic effect against fungi and endospores of bacteria. Recently, Chaetomium globosum and Chaetomium funicola were reported resistant to peracetic acid; however, little is known concerning the detail of peracetic acid resistance. Therefore, we assessed the peracetic acid resistance of the species of Chaetomium and related genera under identical conditions and made a thorough observation of the microstructure of their ascospores by transmission electron microscopy. The results of analyses revealed that C. globosum and C. funicola showed the high resistance to peracetic acid (a 1-D antiseptic effect after 900 s and 3-D antiseptic effect after 900 s) and had thick cell walls of ascospores that can impede the action mechanism of peracetic acid. We also developed specific primers to detect the C. globosum clade and identify C. funicola by using PCR to amplify the β-tubulin gene. PCR with the primer sets designed for C. globosum (Chae 4F/4R) and C. funicola (Cfu 2F/2R) amplified PCR products specific for the C. globosum clade and C. funicola, respectively. PCR with these two primer sets did not detect other fungi involved in food spoilage and environmental contamination. This detection and identification method is rapid and simple, with extremely high specificity.

  18. Microfluidic-Based Bacteria Isolation from Whole Blood for Diagnostics of Blood Stream Infection.

    Science.gov (United States)

    Zelenin, Sergey; Ramachandraiah, Harisha; Faridi, Asim; Russom, Aman

    2017-01-01

    Bacterial blood stream infection (BSI) potentially leads to life-threatening clinical conditions and medical emergencies such as severe sepsis, septic shock, and multi organ failure syndrome. Blood culturing is currently the gold standard for the identification of microorganisms and, although it has been automated over the decade, the process still requires 24-72 h to complete. This long turnaround time, especially for the identification of antimicrobial resistance, is driving the development of rapid molecular diagnostic methods. Rapid detection of microbial pathogens in blood related to bloodstream infections will allow the clinician to decide on or adjust the antimicrobial therapy potentially reducing the morbidity, mortality, and economic burden associated with BSI. For molecular-based methods, there is a lot to gain from an improved and straightforward method for isolation of bacteria from whole blood for downstream processing.We describe a microfluidic-based sample-preparation approach that rapidly and selectively lyses all blood cells while it extracts intact bacteria for downstream analysis. Whole blood is exposed to a mild detergent, which lyses most blood cells, and then to osmotic shock using deionized water, which eliminates the remaining white blood cells. The recovered bacteria are 100 % viable, which opens up possibilities for performing drug susceptibility tests and for nucleic-acid-based molecular identification.

  19. The combined rapid detection and species-level identification of yeasts in simulated blood culture using a colorimetric sensor array.

    Science.gov (United States)

    Shrestha, Nabin K; Lim, Sung H; Wilson, Deborah A; SalasVargas, Ana Victoria; Churi, Yair S; Rhodes, Paul A; Mazzone, Peter J; Procop, Gary W

    2017-01-01

    A colorimetric sensor array (CSA) has been demonstrated to rapidly detect and identify bacteria growing in blood cultures by obtaining a species-specific "fingerprint" of the volatile organic compounds (VOCs) produced during growth. This capability has been demonstrated in prokaryotes, but has not been reported for eukaryotic cells growing in culture. The purpose of this study was to explore if a disposable CSA could differentially identify 7 species of pathogenic yeasts growing in blood culture. Culture trials of whole blood inoculated with a panel of clinically important pathogenic yeasts at four different microorganism loads were performed. Cultures were done in both standard BacT/Alert and CSA-embedded bottles, after adding 10 mL of spiked blood to each bottle. Color changes in the CSA were captured as images by an optical scanner at defined time intervals. The captured images were analyzed to identify the yeast species. Time to detection by the CSA was compared to that in the BacT/Alert system. One hundred sixty-two yeast culture trials were performed, including strains of several species of Candida (Ca. albicans, Ca. glabrata, Ca. parapsilosis, and Ca. tropicalis), Clavispora (synonym Candida) lusitaniae, Pichia kudriavzevii (synonym Candida krusei) and Cryptococcus neoformans, at loads of 8.2 × 105, 8.3 × 103, 8.5 × 101, and 1.7 CFU/mL. In addition, 8 negative trials (no yeast) were conducted. All negative trials were correctly identified as negative, and all positive trials were detected. Colorimetric responses were species-specific and did not vary by inoculum load over the 500000-fold range of loads tested, allowing for accurate species-level identification. The mean sensitivity for species-level identification by CSA was 74% at detection, and increased with time, reaching almost 95% at 4 hours after detection. At an inoculum load of 1.7 CFU/mL, mean time to detection with the CSA was 6.8 hours (17%) less than with the BacT/Alert platform. The CSA

  20. Affinity reagent technology development and application to rapid immunochromatographic pathogen detection

    Science.gov (United States)

    Sooter, Letha J.; Stratis-Cullum, Dimitra N.; Zhang, Yanting; Daugherty, Patrick S.; Soh, H. Tom; Pellegrino, Paul; Stagliano, Nancy

    2007-09-01

    Immunochromatography is a rapid, reliable, and cost effective method of detecting biowarfare agents. The format is similar to that of an over-the-counter pregnancy test. A sample is applied to one end of a cassette and then a control line, and possibly a sample line, are visualized at the other end of the cassette. The test is based upon a sandwich assay. For the control, a line of Protein A is immobilized on the membrane. Gold nanoparticle bound IgG flows through the membrane and binds the Protein A, creating a visible line on the membrane. For the sample, one epitope is immobilized on the membrane and another epitope is attached to gold nanoparticles. The sample binds gold bound epitope, travels through the membrane, and binds membrane bound epitope. The two epitopes are not cross-reactive, therefore a sample line is only visible if the sample is present. In order to efficiently screen for binders to a sample target, a novel, Continuous Magnetic Activated Cell Sorter (CMACS) has been developed on a disposable, microfluidic platform. The CMACS chip quickly sorts E. coli peptide libraries for target binders with high affinity. Peptide libraries, are composed of approximately ten million bacteria, each displaying a different peptide on their surface. The target of interest is conjugated to a micrometer sized magnetic particle. After the library and the target are incubated together to allow binding, the mixture is applied to the CMACS chip. In the presence of patterned nickel and an external magnet, separation occurs of the bead-bound bacteria from the bulk material. The bead fraction is added to bacterial growth media where any attached E. coli grow and divide. These cells are cloned, sequenced, and the peptides are assayed for target binding affinity. As a proof-of-principle, assays were developed for human C-reactive protein. More defense relevant targets are currently being pursued.

  1. Use of rapid-scan EPR to improve detection sensitivity for spin-trapped radicals.

    Science.gov (United States)

    Mitchell, Deborah G; Rosen, Gerald M; Tseitlin, Mark; Symmes, Breanna; Eaton, Sandra S; Eaton, Gareth R

    2013-07-16

    The short lifetime of superoxide and the low rates of formation expected in vivo make detection by standard continuous wave (CW) electron paramagnetic resonance (EPR) challenging. The new rapid-scan EPR method offers improved sensitivity for these types of samples. In rapid-scan EPR, the magnetic field is scanned through resonance in a time that is short relative to electron spin relaxation times, and data are processed to obtain the absorption spectrum. To validate the application of rapid-scan EPR to spin trapping, superoxide was generated by the reaction of xanthine oxidase and hypoxanthine with rates of 0.1-6.0 μM/min and trapped with 5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide (BMPO). Spin trapping with BMPO to form the BMPO-OOH adduct converts the very short-lived superoxide radical into a more stable spin adduct. There is good agreement between the hyperfine splitting parameters obtained for BMPO-OOH by CW and rapid-scan EPR. For the same signal acquisition time, the signal/noise ratio is >40 times higher for rapid-scan than for CW EPR. Rapid-scan EPR can detect superoxide produced by Enterococcus faecalis at rates that are too low for detection by CW EPR. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Development of a miniaturised microarray-based assay for the rapid identification of antimicrobial resistance genes in Gram-negative bacteria

    DEFF Research Database (Denmark)

    Batchelor, Miranda; Hopkins, Katie L; Liebana, Ernesto

    2008-01-01

    We describe the development of a miniaturised microarray for the detection of antimicrobial resistance genes in Gram-negative bacteria. Included on the array are genes encoding resistance to aminoglycosides, trimethoprim, sulphonamides, tetracyclines and beta-lactams, including extended-spectrum ...

  3. Biological Threats Detection Technologies

    International Nuclear Information System (INIS)

    Bartoszcze, M.

    2007-01-01

    Among many decisive factors, which can have the influence on the possibility of decreases the results of use biological agents should be mentioned obligatory: rapid detection and identification of biological factor used, the proper preventive treatment and the medical management. The aims of identification: to identify the factor used, to estimate the area of contamination, to evaluate the possible countermeasure efforts (antibiotics, disinfectants) and to assess the effectiveness of the decontamination efforts (decontamination of the persons, equipment, buildings, environment etc.). The objects of identification are: bacteria and bacteria's spores, viruses, toxins and genetically modified factors. The present technologies are divided into: based on PCR techniques (ABI PRISM, APSIS, BIOVERIS, RAPID), immuno (BADD, RAMP, SMART) PCR and immuno techniques (APDS, LUMINEX) and others (BDS2, LUNASCAN, MALDI). The selected technologies assigned to field conditions, mobile and stationary laboratories will be presented.(author)

  4. Chromogenic culture media or rapid immunochromatographic test: Which is better for detecting Klebsiella pneumoniae that produce OXA-48 and can they be used in blood and urine specimens.

    Science.gov (United States)

    Genc, Ozlem; Aksu, Evrim

    2018-05-01

    Our goal was to compare a rapid test (OXA-48K-SeT) and four different chromogenic media (CHROMagar KPC, CHROMagar mSuperCARBA, ChromID Carba and ChromID OXA-48) for the detection of OXA-48 producing Klebsiella pneumoniae isolates and spiked urine/blood samples with these bacteria. In total 100 K.pneumoniae isolates, including 60 OXA-48 positive, 15 other carbapenemase producing, 15 Extended spectrum betalactamases (ESBL) positive and 10 carbapenem sensitive K.pneumoniae were included in the study. After all samples were inoculated into all chromogenic media, temocillin discs were placed onto the media. OXA-48K-SeT was studied according to the manufacturer's instructions and the lower detection limit was determined. Sensitivities and specificities of all chromogenic media and rapid test were detected as 100%. All of the OXA-48 producers were found resistant to temocillin on all chromogenic media. The lower detection limit of the rapid assay was determined as 10 6 in both direct bacterial samples and in spiked urine/blood samples. As a result, four chromogenic culture media and OXA-48 K-SeT can be used safely for detection of OXA-48 positive K.pneumoniae isolates. Although direct clinical specimens were not used, our study suggests that this media and OXA-48 K-SeT may be used in patient samples like blood and urine. Further studies are needed to assess this suggestion. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Integrated Circuits for Rapid Sample Processing and Electrochemical Detection of Biomarkers

    Science.gov (United States)

    Besant, Justin

    The trade-off between speed and sensitivity of detection is a fundamental challenge in the design of point-of-care diagnostics. As the relevant molecules in many diseases exist natively at extremely low levels, many gold-standard diagnostic tests are designed with high sensitivity at the expense of long incubations needed to amplify the target analytes. The central aim of this thesis is to design new strategies to detect biologically relevant analytes with both high speed and sensitivity. The response time of a biosensor is limited by the ability of the target analyte to accumulate to detectable levels at the sensor surface. We overcome this limitation by designing a range of integrated devices to optimize the flux of the analyte to the sensor by increasing the effective analyte concentration, shortening the required diffusion distance, and confining the analyte in close proximity to the sensor. We couple these devices with novel ultrasensitive electrochemical transduction strategies to convert rare analytes into a detectable signal. We showcase the clinical utility of these approaches with several applications including cancer diagnosis, bacterial identification, and antibiotic susceptibility profiling. We design and optimize a device to isolate rare cancer cells from the bloodstream with near 100% efficiency and 10 000-fold specificity. We analyse pathogen specific nucleic acids by lysing bacteria in close proximity to an electrochemical sensor and find that this approach has 10-fold higher sensitivity than standard lysis in bulk solution. We design an electronic chip to readout the antibiotic susceptibility profile with an hour-long incubation by concentrating bacteria into nanoliter chambers with integrated electrodes. Finally, we report a strategy for ultrasensitive visual readout of nucleic acids as low as 100 fM within 10 minutes using an amplification cascade. The strategies presented could guide the development of fast, sensitive and low-cost diagnostics

  6. Sulfate reducing bacteria detection in gas pipelines; Deteccao de bacterias redutoras de sulfato em gasodutos

    Energy Technology Data Exchange (ETDEWEB)

    Lutterbach, Marcia Teresa S.; Oliveira, Ana Lucia C. de; Cavalcanti, Eduardo H. de S. [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil). Div. de Corrosao e Degradacao]. E-mails: marciasl@int.gov.br; analucia@int.gov.br; eduardoh@int.gov.br

    2004-07-01

    Microbiology induced corrosion (MIC) process associated with sulfate reducing bacteria (BRS) are one of the most important matter of concern for the oil and gas industry as 77% of failures have been attributed this sort of degradation. Corrosion products found present in gas transportation pipelines, the so-called 'black-powder' problem, are also a nuisance and source of economic losses for the gas industry. According to the literature, the incidence of black-powder can be ascribed to the metabolism of BRS that can be found in the gas environment. Integrity monitoring programs of gas pipelines adopt pigging as an important tool for internal corrosion monitoring. Solid residue such as the black-powder, collected by pigging, as well as the condensed, can be seen as a very valuable samples for microbiological analyses that can be used to detect and quantify bacteria related to the incidence of MIC processes. In the present work results concerning samples collected by pigging and condensed are presented. Small populations of viable BRS have been found in the pipeline. It can be seen that the inclusion of microbiological analyses of solid and liquid residues as a complementary action in the integrity monitoring programs adopted by gas transportation industry can be very helpful on the decision making concerning preventive and corrective actions to be taken in order to maintain the CIM processes under control. (author)

  7. Fluoromycobacteriophages for Rapid, Specific, and Sensitive Antibiotic Susceptibility Testing of Mycobacterium tuberculosis

    Science.gov (United States)

    Piuri, Mariana; Jacobs, William R.; Hatfull, Graham F.

    2009-01-01

    Rapid antibiotic susceptibility testing of Mycobacterium tuberculosis is of paramount importance as multiple- and extensively- drug resistant strains of M. tuberculosis emerge and spread. We describe here a virus-based assay in which fluoromycobacteriophages are used to deliver a GFP or ZsYellow fluorescent marker gene to M. tuberculosis, which can then be monitored by fluorescent detection approaches including fluorescent microscopy and flow cytometry. Pre-clinical evaluations show that addition of either Rifampicin or Streptomycin at the time of phage addition obliterates fluorescence in susceptible cells but not in isogenic resistant bacteria enabling drug sensitivity determination in less than 24 hours. Detection requires no substrate addition, fewer than 100 cells can be identified, and resistant bacteria can be detected within mixed populations. Fluorescence withstands fixation by paraformaldehyde providing enhanced biosafety for testing MDR-TB and XDR-TB infections. PMID:19300517

  8. Use of Tethered Enzymes as a Platform Technology for Rapid Analyte Detection

    Science.gov (United States)

    Cohen, Roy; Lata, James P.; Lee, Yurim; Hernández, Jean C. Cruz; Nishimura, Nozomi; Schaffer, Chris B.; Mukai, Chinatsu; Nelson, Jacquelyn L.; Brangman, Sharon A.; Agrawal, Yash; Travis, Alexander J.

    2015-01-01

    Background Rapid diagnosis for time-sensitive illnesses such as stroke, cardiac arrest, and septic shock is essential for successful treatment. Much attention has therefore focused on new strategies for rapid and objective diagnosis, such as Point-of-Care Tests (PoCT) for blood biomarkers. Here we use a biomimicry-based approach to demonstrate a new diagnostic platform, based on enzymes tethered to nanoparticles (NPs). As proof of principle, we use oriented immobilization of pyruvate kinase (PK) and luciferase (Luc) on silica NPs to achieve rapid and sensitive detection of neuron-specific enolase (NSE), a clinically relevant biomarker for multiple diseases ranging from acute brain injuries to lung cancer. We hypothesize that an approach capitalizing on the speed and catalytic nature of enzymatic reactions would enable fast and sensitive biomarker detection, suitable for PoCT devices. Methods and findings We performed in-vitro, animal model, and human subject studies. First, the efficiency of coupled enzyme activities when tethered to NPs versus when in solution was tested, demonstrating a highly sensitive and rapid detection of physiological and pathological concentrations of NSE. Next, in rat stroke models the enzyme-based assay was able in minutes to show a statistically significant increase in NSE levels in samples taken 1 hour before and 0, 1, 3 and 6 hours after occlusion of the distal middle cerebral artery. Finally, using the tethered enzyme assay for detection of NSE in samples from 20 geriatric human patients, we show that our data match well (r = 0.815) with the current gold standard for biomarker detection, ELISA—with a major difference being that we achieve detection in 10 minutes as opposed to the several hours required for traditional ELISA. Conclusions Oriented enzyme immobilization conferred more efficient coupled activity, and thus higher assay sensitivity, than non-tethered enzymes. Together, our findings provide proof of concept for using

  9. Modified DNA extraction for rapid PCR detection of methicillin-resistant staphylococci

    International Nuclear Information System (INIS)

    Japoni, A.; Alborzi, A.; Rasouli, M.; Pourabbas, B.

    2004-01-01

    Nosocomial infection caused by methicillin-resistant staphylococci poses a serious problem in many countries. The aim of this study was to rapidly and reliably detect methicillin-resistant-staphylococci in order to suggest appropriate therapy. The presence or absence of the methicillin-resistance gene in 115 clinical isolates of staphylococcus aureus and 50 isolates of coagulase negative staphylococci was examined by normal PCR. DNA extraction for PCR performance was then modified by omission of achromopeptadiase and proteinase K digestion, phenol/chloroform extraction and ethanol precipitation. All isolates with Mic>8 μ g/ml showed positive PCR. No differences in PCR detection have been observed when normal and modified DNA extractions have been performed. Our modified DNA extraction can quickly detect methicillin-resistant staphylococci by PCR. The advantage of rapid DNA extraction extends to both reduction of time and cost of PCR performance. This modified DNA extraction is suitable for different PCR detection, when staphylococci are the subject of DNA analysis

  10. Rapid and specific detection of Asian- and African-lineage Zika viruses.

    Science.gov (United States)

    Chotiwan, Nunya; Brewster, Connie D; Magalhaes, Tereza; Weger-Lucarelli, James; Duggal, Nisha K; Rückert, Claudia; Nguyen, Chilinh; Garcia Luna, Selene M; Fauver, Joseph R; Andre, Barb; Gray, Meg; Black, William C; Kading, Rebekah C; Ebel, Gregory D; Kuan, Guillermina; Balmaseda, Angel; Jaenisch, Thomas; Marques, Ernesto T A; Brault, Aaron C; Harris, Eva; Foy, Brian D; Quackenbush, Sandra L; Perera, Rushika; Rovnak, Joel

    2017-05-03

    Understanding the dynamics of Zika virus transmission and formulating rational strategies for its control require precise diagnostic tools that are also appropriate for resource-poor environments. We have developed a rapid and sensitive loop-mediated isothermal amplification (LAMP) assay that distinguishes Zika viruses of Asian and African lineages. The assay does not detect chikungunya virus or flaviviruses such as dengue, yellow fever, or West Nile viruses. The assay conditions allowed direct detection of Zika virus RNA in cultured infected cells; in mosquitoes; in virus-spiked samples of human blood, plasma, saliva, urine, and semen; and in infected patient serum, plasma, and semen samples without the need for RNA isolation or reverse transcription. The assay offers rapid, specific, sensitive, and inexpensive detection of the Asian-lineage Zika virus strain that is currently circulating in the Western hemisphere, and can also detect the African-lineage Zika virus strain using separate, specific primers. Copyright © 2017, American Association for the Advancement of Science.

  11. Rapid and specific detection of Asian- and African-lineage Zika viruses

    Science.gov (United States)

    Chotiwan, Nunya; Brewster, Connie D.; Magalhaes, Tereza; Weger-Lucarelli, James; Duggal, Nisha K.; Rückert, Claudia; Nguyen, Chilinh; Garcia Luna, Selene M.; Fauver, Joseph R.; Andre, Barb; Gray, Meg; Black, William C.; Kading, Rebekah C.; Ebel, Gregory D.; Kuan, Guillermina; Balmaseda, Angel; Jaenisch, Thomas; Marques, Ernesto T. A.; Brault, Aaron C.; Harris, Eva; Foy, Brian D.; Quackenbush, Sandra L.; Perera, Rushika; Rovnak, Joel

    2017-01-01

    Understanding the dynamics of Zika virus transmission and formulating rational strategies for its control require precise diagnostic tools that are also appropriate for resource-poor environments. We have developed a rapid and sensitive loop-mediated isothermal amplification (LAMP) assay that distinguishes Zika viruses of Asian and African lineages. The assay does not detect chikungunya virus or flaviviruses such as dengue, yellow fever, or West Nile viruses. The assay conditions allowed direct detection of Zika virus RNA in cultured infected cells; in mosquitoes; in virus-spiked samples of human blood, plasma, saliva, urine, and semen; and in infected patient serum, plasma, and semen samples without the need for RNA isolation or reverse transcription. The assay offers rapid, specific, sensitive, and inexpensive detection of the Asian-lineage Zika virus strain that is currently circulating in the Western hemisphere, and can also detect the African-lineage Zika virus strain using separate, specific primers. PMID:28469032

  12. Detection and characterization of foodborne pathogenic bacteria with hyperspectral microscope imaging

    Science.gov (United States)

    Rapid detection and identification of pathogenic microorganisms naturally occurring during food processing are important in developing intervention and verification strategies. In the poultry industry, contamination of poultry meat with foodborne pathogens (especially, Salmonella and Campylobacter) ...

  13. Classification of human pathogen bacteria for early screening using electronic nose

    Science.gov (United States)

    Zulkifli, Syahida Amani; Mohamad, Che Wan Syarifah Robiah; Abdullah, Abu Hassan

    2017-10-01

    This paper present human pathogen bacteria for early screening using electronic nose. Electronic nose (E-nose) known as gas sensor array is a device that analyze the odor measurement give the fast response and less time consuming for clinical diagnosis. Many bacterial pathogens could lead to life threatening infections. Accurate and rapid diagnosis is crucial for the successful management of these infections disease. The conventional method need more time to detect the growth of bacterial. Alternatively, the bacteria are Pseudomonas aeruginosa and Shigella cultured on different media agar can be detected and classifies according to the volatile compound in shorter time using electronic nose (E-nose). Then, the data from electronic nose (E-nose) is processed using statistical method which is principal component analysis (PCA). The study shows the capability of electronic nose (E-nose) for early screening for bacterial infection in human stomach.

  14. Rapid antemortem detection of CWD prions in deer saliva.

    Directory of Open Access Journals (Sweden)

    Davin M Henderson

    Full Text Available Chronic wasting disease (CWD is an efficiently transmitted prion disease of cervids, now identified in 22 United States, 2 Canadian provinces and Korea. One hallmark of CWD is the shedding of infectious prions in saliva, as demonstrated by bioassay in deer. It is also clear that the concentration of prions in saliva, blood, urine and feces is much lower than in the nervous system or lymphoid tissues. Rapid in vitro detection of CWD (and other prions in body fluids and excreta has been problematic due to the sensitivity limits of direct assays (western blotting, ELISA and the presence of inhibitors in these complex biological materials that hamper detection. Here we use real-time quaking induced conversion (RT-QuIC to demonstrate CWD prions in both diluted and prion-enriched saliva samples from asymptomatic and symptomatic white-tailed deer. CWD prions were detected in 14 of 24 (58.3% diluted saliva samples from CWD-exposed white-tailed deer, including 9 of 14 asymptomatic animals (64.2%. In addition, a phosphotungstic acid enrichment enhanced the RT-QuIC assay sensitivity, enabling detection in 19 of 24 (79.1% of the above saliva samples. Bioassay in Tg[CerPrP] mice confirmed the presence of infectious prions in 2 of 2 RT-QuIC-positive saliva samples so examined. The modified RT-QuIC analysis described represents a non-invasive, rapid ante-mortem detection of prions in complex biologic fluids, excreta, or environmental samples as well as a tool for exploring prion trafficking, peripheralization, and dissemination.

  15. Multifunctional Nanotechnology-Enabled Sensors for Rapid Capture and Detection of Pathogens.

    Science.gov (United States)

    Mustafa, Fatima; Hassan, Rabeay Y A; Andreescu, Silvana

    2017-09-15

    Nanomaterial-based sensing approaches that incorporate different types of nanoparticles (NPs) and nanostructures in conjunction with natural or synthetic receptors as molecular recognition elements provide opportunities for the design of sensitive and selective assays for rapid detection of contaminants. This review summarizes recent advancements over the past ten years in the development of nanotechnology-enabled sensors and systems for capture and detection of pathogens. The most common types of nanostructures and NPs, their modification with receptor molecules and integration to produce viable sensing systems with biorecognition, amplification and signal readout are discussed. Examples of all-in-one systems that combine multifunctional properties for capture, separation, inactivation and detection are also provided. Current trends in the development of low-cost instrumentation for rapid assessment of food contamination are discussed as well as challenges for practical implementation and directions for future research.

  16. Monitoring of β-d-Galactosidase Activity as a Surrogate Parameter for Rapid Detection of Sewage Contamination in Urban Recreational Water

    Directory of Open Access Journals (Sweden)

    Ingun Tryland

    2016-02-01

    Full Text Available Simple, automated methods are required for rapid detection of wastewater contamination in urban recreational water. The activity of the enzyme β-d-galactosidase (GAL can rapidly (<2 h be measured by field instruments, or a fully automated instrument, and was evaluated as a potential surrogate parameter for estimating the level of fecal contamination in urban waters. The GAL-activity in rivers, affected by combined sewer overflows, increased significantly during heavy rainfall, and the increase in GAL-activity correlated well with the increase in fecal indicator bacteria. The GAL activity in human feces (n = 14 was high (mean activity 7 × 107 ppb MU/hour and stable (1 LOG10 variation, while the numbers of Escherichia coli and intestinal enterococci varied by >5 LOG10. Furthermore, the GAL-activity per gram feces from birds, sheep and cattle was 2–3 LOG10 lower than the activity from human feces, indicating that high GAL-activity in water may reflect human fecal pollution more than the total fecal pollution. The rapid method can only be used to quantify high levels of human fecal pollution, corresponding to about 0.1 mg human feces/liter (or 103 E. coli/100 mL, since below this limit GAL-activity from non-fecal environmental sources may interfere.

  17. Potential of MALDI-TOF mass spectrometry as a rapid detection technique in plant pathology: identification of plant-associated microorganisms.

    Science.gov (United States)

    Ahmad, Faheem; Babalola, Olubukola O; Tak, Hamid I

    2012-09-01

    Plant diseases caused by plant pathogens substantially reduce crop production every year, resulting in massive economic losses throughout the world. Accurate detection and identification of plant pathogens is fundamental to plant pathogen diagnostics and, thus, plant disease management. Diagnostics and disease-management strategies require techniques to enable simultaneous detection and quantification of a wide range of pathogenic and non-pathogenic microorganisms. Over the past decade, rapid development of matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) techniques for characterization of microorganisms has enabled substantially improved detection and identification of microorganisms. In the biological sciences, MALDI-TOF MS is used to analyze specific peptides or proteins directly desorbed from intact bacteria, fungal spores, nematodes, and other microorganisms. The ability to record biomarker ions, in a broad m/z range, which are unique to and representative of individual microorganisms, forms the basis of taxonomic identification of microorganisms by MALDI-TOF MS. Recent advances in mass spectrometry have initiated new research, i.e. analysis of more complex microbial communities. Such studies are just beginning but have great potential for elucidation not only of the interactions between microorganisms and their host plants but also those among different microbial taxa living in association with plants. There has been a recent effort by the mass spectrometry community to make data from large scale mass spectrometry experiments publicly available in the form of a centralized repository. Such a resource could enable the use of MALDI-TOF MS as a universal technique for detection of plant pathogens and non-pathogens. The effects of experimental conditions are sufficiently understood, reproducible spectra can be obtained from computational database search, and microorganisms can be rapidly characterized by genus, species

  18. The application of automatic chemiluminescence machine in rapid immune detection

    International Nuclear Information System (INIS)

    Lin Aizhen; Li Xuanwei; Chen Binhong; Li Zhenqian; Chen Zhaoxuan

    2004-01-01

    Objective: To provide high-quality, rapid and dependable result for clinical practice, and give satisfactory service to patients of different economical status by supplementation with other labeling immune examination. With an innovative attitude, we carried out efficient technical reform on ACS180 automatic chemiluminescence machine, making it possible for patients to complete the whole process including examination, check-out, diagnosis and getting drugs. The reported will be issued within an hour, thus a rapid immune detection service was established in out-patients department. Methods: 1. ACS-180 automatic chemiluminescence machine is used based on the principle of chemiluminescence immune methods. 2. The reagents are provided by Ciba-Comig Company of USA, composed of anti acridinium ester antibody of liquid phase and particulate antigen of solid phase wrapped in magnetic powder. 3. Calibration and quality control: high and low concentration are set for each calibration fluid with attached standard curve. Product for quality controlling includes three concentration of low, moderate and high. Results: 1. rapid machine detection for sample: serum is replaced with plasma coagulated by heparin, and comparison among series of methods using serum or plasma suggest no significant difference exists. 2. The problem about fasting detection: chemiluminescence machine measure optical density directly, with the results hardly being influenced by turbidity. But attention should be paid to the treatment of lipid turbid samples. 3. Other innovations: (1) direct placement of sample tube on machine: a cushion is placed on sample plate to transfer sample to machine directly after centrifugation, saving time and reducing the accident in sample transference. (2) for HCG quantification in blood and urine, 'gold criteria' is used firstly in screening to determine approximately the dilution range, with an advantage of saving time and reagent as well as accuracy. (3) we design a

  19. Molecular detection of bacteria associated to dental caries in 4-12-year-old Tunisian children.

    Science.gov (United States)

    Kouidhi, Bochra; Fdhila, Kais; Ben Slama, Rihab; Mahdouani, Kacem; Hentati, Hajer; Najjari, Fayrouz; Bakhrouf, Amina; Chaieb, Kamel

    2014-01-01

    The occurrence of several microbial species in the oral cavity of 4-12-year-old Tunisian children was investigated. Samples were taken from 158 children (81 caries actives and 77 caries free). Genomic DNA was extracted and analyzed for the presence of 17 microbial species using a polymerase chain reaction assay. All samples were positive for at least one of the target microbial strains. Streptococcus mutans was the most prevalent species (76.5%) detected in genomic DNA collected from carious lesions. Other prevalent species were Candida spp (63%), Streptococcus salivarius (59%) and Streptococcus oralis (42%). The frequency of Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus casei-group in caries lesions was 29.5%, 34.5% and 22% respectively. Pathogenic bacteria such as Staphylococcus aureus was found in 28.5% of carious lesion samples compared to 15.5% in the control. Frequency of Porphyromonas endodontali, Actinomyces radicidentis and Treponema denticola recovery did not differ significantly between origins of samples. PCR analysis of genomic DNA detect various oral bacteria that differ between caries actives and caries-free children. In addition, the association of same aciduric bacteria (S. mutans, S. salivarius, L. acidophilus) and caries formation was noticed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Evaluation of different phenotypic methods for detection of amp c beta-lactamase producing bacteria in clinical isolates

    International Nuclear Information System (INIS)

    Hassan, A.; Usman, J.; Kalim, F.; Gill, M.M.; Khalid, A.; Iqbal, M.; Ingram, P.

    2013-01-01

    To compare the sensitivity and specificity of different phenotypic methods for detection of Amp C betalactamase producing bacteria. Study Design: Analytical study. Place and Duration of Study: Department of Microbiology, Army Medical College / National University of Sciences and Technology (NUST), Islamabad, Pakistan, from June 2010 to December 2010. Methodology: A total of 150 clinical isolates were screened for presence of Amp C beta-lactamase by using the cefoxitin disc. The confirmatory methods evaluated were inhibitor based assay (boronic acid), Amp C disc test and Amp C Etest. Three dimensional enzyme extract assay was used as the reference method for determining the sensitivity and specificity. Results: Among the total isolates tested, 62.8% bacteria showed the presence of Amp C beta-lactamase by standard three dimensional enzyme extract assay. Among the three methods compared, boronic acid disk test found out to be highly sensitive (88%) and specific (92%) for the detection of Amp C beta-lactamase producing bacteria. Conclusion: Detection of Amp C production is crucial in order to establish the antibiotic therapy and to attain the favourable clinical outcomes. Implementation of simple tests like boronic acid disk tests in the laboratories will help to alleviate the spread of Amp C beta-lactamase harboring organisms. (author)

  1. A duplex endpoint PCR assay for rapid detection and differentiation of Leptospira strains.

    Science.gov (United States)

    Benacer, Douadi; Zain, Siti Nursheena Mohd; Lewis, John W; Khalid, Mohd Khairul Nizam Mohd; Thong, Kwai Lin

    2017-01-01

    This study aimed to develop a duplex endpoint PCR assay for rapid detection and differentiation of Leptospira strains. Primers were designed to target the rrs (LG1/LG2) and ligB (LP1/LP2) genes to confirm the presence of the Leptospira genus and the pathogenic species, respectively. The assay showed 100% specificity against 17 Leptospira strains with a limit of detection of 23.1pg/µl of leptospiral DNA and sensitivity of 103 leptospires/ml in both spiked urine and water. Our duplex endpoint PCR assay is suitable for rapid early detection of Leptospira with high sensitivity and specificity.

  2. CONCEPTUAL APPROACHES TO THE RAPID DETECTION OF CAMPYLOBACTER SPP. IN MEAT OF SLAUGHTER ANIMALS

    Directory of Open Access Journals (Sweden)

    D. S. Bataeva

    2017-01-01

    Full Text Available The modern approach to quality assurance of food products based on the ISO 9000 standards indicates the need for the implementation of quality management systems in processing plants. According to the analysis of scientific publication databases (Science Direct and Web of Science, it is established that only 0.5–1.7% of publications are related to studying meat of slaughter animals (except for birds concerning the presence of Campylobacter. The priority method of investigation is PCR. Ready-to-use PCR test system was developed for the detection of Campylobacter spp. on the basis of selected gene-specific primers to bacteria of Campylobacter genus. Specificity of the test system is established for Gram-negative bacteria of Salmonella, Escherichia, and Proteus genera, and for oxidase-positive Aeromonas. Gene-specific primers for Campylobacter were selected and ready-to-use PCR test system was developed on their basis. It was found that the selected primers have 100% convergence to the genome of Campylobacter genus bacteria, the PCR efficiency is not less than 95%, and the detection limit is not more than 1× 104 CFU/g. When estimating the specificity of the primers, it was taken into account that the bacteria of Campylobacter genus may be incorporated in a consortium with intestine microbiome, mainly with Enterobacteriaceae and lactic acid bacteria. However, Bolton’s enrichment medium is selective and, during the cultivation process, suppresses the growth of Gram-positive lactic acid bacteria. It was found that the selected primers were 100% specific and did not give false positive reactions with this group of microorganisms. The developed test system was successfully validated in a cycle of qualitative tests in the FEPAS system and implemented into laboratory practice. It was proved that the developed test system may be used both in screening at the stages of Campylobacter enrichment and in identification of pure culture of the

  3. Rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with heterodyne detection.

    Science.gov (United States)

    Hiramatsu, Kotaro; Luo, Yizhi; Ideguchi, Takuro; Goda, Keisuke

    2017-11-01

    High-speed Raman spectroscopy has become increasingly important for analyzing chemical dynamics in real time. To address the need, rapid-scan Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy has been developed to realize broadband CARS measurements at a scan rate of more than 20,000 scans/s. However, the detection sensitivity of FT-CARS spectroscopy is inherently low due to the limited number of photons detected during each scan. In this Letter, we show our experimental demonstration of enhanced sensitivity in rapid-scan FT-CARS spectroscopy by heterodyne detection. Specifically, we implemented heterodyne detection by superposing the CARS electric field with an external local oscillator (LO) for their interference. The CARS signal was amplified by simply increasing the power of the LO without the need for increasing the incident power onto the sample. Consequently, we achieved enhancement in signal intensity and the signal-to-noise ratio by factors of 39 and 5, respectively, compared to FT-CARS spectroscopy with homodyne detection. The sensitivity-improved rapid-scan FT-CARS spectroscopy is expected to enable the sensitive real-time observation of chemical dynamics in a broad range of settings, such as combustion engines and live biological cells.

  4. Optimizing Taq polymerase concentration for improved signal-to-noise in the broad range detection of low abundance bacteria.

    Directory of Open Access Journals (Sweden)

    Rudolph Spangler

    Full Text Available BACKGROUND: PCR in principle can detect a single target molecule in a reaction mixture. Contaminating bacterial DNA in reagents creates a practical limit on the use of PCR to detect dilute bacterial DNA in environmental or public health samples. The most pernicious source of contamination is microbial DNA in DNA polymerase preparations. Importantly, all commercial Taq polymerase preparations inevitably contain contaminating microbial DNA. Removal of DNA from an enzyme preparation is problematical. METHODOLOGY/PRINCIPAL FINDINGS: This report demonstrates that the background of contaminating DNA detected by quantitative PCR with broad host range primers can be decreased greater than 10-fold through the simple expedient of Taq enzyme dilution, without altering detection of target microbes in samples. The general method is: For any thermostable polymerase used for high-sensitivity detection, do a dilution series of the polymerase crossed with a dilution series of DNA or bacteria that work well with the test primers. For further work use the concentration of polymerase that gave the least signal in its negative control (H(2O while also not changing the threshold cycle for dilutions of spiked DNA or bacteria compared to higher concentrations of Taq polymerase. CONCLUSIONS/SIGNIFICANCE: It is clear from the studies shown in this report that a straightforward procedure of optimizing the Taq polymerase concentration achieved "treatment-free" attenuation of interference by contaminating bacterial DNA in Taq polymerase preparations. This procedure should facilitate detection and quantification with broad host range primers of a small number of bona fide bacteria (as few as one in a sample.

  5. A photometric high-throughput method for identification of electrochemically active bacteria using a WO3 nanocluster probe.

    Science.gov (United States)

    Yuan, Shi-Jie; He, Hui; Sheng, Guo-Ping; Chen, Jie-Jie; Tong, Zhong-Hua; Cheng, Yuan-Yuan; Li, Wen-Wei; Lin, Zhi-Qi; Zhang, Feng; Yu, Han-Qing

    2013-01-01

    Electrochemically active bacteria (EAB) are ubiquitous in environment and have important application in the fields of biogeochemistry, environment, microbiology and bioenergy. However, rapid and sensitive methods for EAB identification and evaluation of their extracellular electron transfer ability are still lacking. Herein we report a novel photometric method for visual detection of EAB by using an electrochromic material, WO(3) nanoclusters, as the probe. This method allowed a rapid identification of EAB within 5 min and a quantitative evaluation of their extracellular electron transfer abilities. In addition, it was also successfully applied for isolation of EAB from environmental samples. Attributed to its rapidness, high reliability, easy operation and low cost, this method has high potential for practical implementation of EAB detection and investigations.

  6. PCR-based detection of bacterial DNA after antimicrobial treatment is indicative of persistent, viable bacteria in the chinchilla model of otitis media.

    Science.gov (United States)

    Post, J C; Aul, J J; White, G J; Wadowsky, R M; Zavoral, T; Tabari, R; Kerber, B; Doyle, W J; Ehrlich, G D

    1996-01-01

    Bacterial deoxyribonucleic acid (DNA) has been previously detected by polymerase chain reactions (PCR) in a significant percentage of culturally-sterile pediatric middle-ear effusions. The current study was designed to determine whether this represents the existence of viable bacteria or the persistence of residual DNA in the middle-ear cleft. The middle-ear cavities of two sets of chinchillas were inoculated with either: 1) 100 colony-forming units (CFU) of live Haemophilus influenzae, 2.2 x 10(6) CFU of pasteurized Moraxella catarrhalis, and 1000 ng of DNA (>10(8) genomic equivalents) from Streptococcus pneumoniae; or 2) 100 CFU of live S pneumoniae, 2.2 x 10(6) CFU of pasteurized M catarrhalis and 1000 ng of purified DNA from H influenzae. Animals were treated with ampicillin for 5 days beginning on day 3. A single-point longitudinal study design was used for sampling to eliminate the possibility of contamination. No DNA was detectable from the heat-killed bacteria or the purified DNA after day 3. However, DNA from the live bacteria persisted through day 21, even though all specimens were culture-negative following the initiation of antimicrobial therapy. These findings indicate that purified DNA and DNA from intact but nonviable bacteria do not persist in the middle-ear cleft in the presence of an effusion, even following high copy inoculation. In contrast, antibiotic-treated bacteria persist in some viable state for weeks as evidenced by the differential ability of the PCR-based assay systems to detect the live bacteria, but not detect the heat-killed organisms.

  7. Rapid detection of urinary polyomavirus BK by heterodyne-based surface plasmon resonance biosensor

    Science.gov (United States)

    Su, Li-Chen; Tian, Ya-Chung; Chang, Ying-Feng; Chou, Chien; Lai, Chao-Sung

    2014-01-01

    In renal transplant patients, immunosuppressive therapy may result in the reactivation of polyomavirus BK (BKV), leading to polyomavirus-associated nephropathy (PVAN), which inevitably causes allograft failure. Since the treatment outcomes of PVAN remain unsatisfactory, early identification and continuous monitoring of BKV reactivation and reduction of immunosuppressants are essential to prevent PVAN development. The present study demonstrated that the developed dual-channel heterodyne-based surface plasmon resonance (SPR) biosensor is applicable for the rapid detection of urinary BKV. The use of a symmetrical reference channel integrated with the poly(ethylene glycol)-based low-fouling self-assembled monolayer to reduce the environmental variations and the nonspecific noise was proven to enhance the sensitivity in urinary BKV detection. Experimentally, the detection limit of the biosensor for BKV detection was estimated to be around 8500 copies/mL. In addition, urine samples from five renal transplant patients were tested to rapidly distinguish PVAN-positive and PVAN-negative renal transplant patients. By virtue of its simplicity, rapidity, and applicability, the SPR biosensor is a remarkable potential to be used for continuous clinical monitoring of BKV reactivation.

  8. Rapid Detection Of Escherichia coli Enterohemorragic (EHEC) Bacteria by PCR (Polymerase Chain Reaction) methods

    International Nuclear Information System (INIS)

    Sudrajat, Dadang; R, Maria Lina; Suhadi, F.

    2000-01-01

    A polymerase Chain Reaction (PCR) assay for detect presence of enterohemmoragic Eschericha coli O157:H7 was carried out. DNA was extracted from bacterial cells with CTBA-phenol-chloroform and precipitated with isopropanol. To test sensitivity of PCR amplifies reaction, serial dilutions of E. coli DNA solution were prepared bwtween 1 mu g-1 ng/mu l. A single pair oligonucleotide primer SLTI-F and SLTI-R derived from shiga-like-toxin genes was used in amplification method. The results shows that 1 ng/mu l of E. coli DNA could be detected using the primers SLTI-F and SLTI-R with the position of 140 bp DNA fragment

  9. Algal and water-quality data for Rapid Creek and Canyon Lake near Rapid City, South Dakota, 2007

    Science.gov (United States)

    Hoogestraat, Galen K.; Putnam, Larry D.; Graham, Jennifer L.

    2008-01-01

    This report summarizes the results of algae and water-quality sampling on Rapid Creek and Canyon Lake during May and September 2007. The overall purpose of the study was to determine the algal community composition of Rapid Creek and Canyon Lake in relation to organisms that are known producers of unwanted tastes and odors in drinking-water supplies. Algal assemblage structure (phytoplankton and periphyton) was examined at 16 sites on Rapid Creek and Canyon Lake during May and September 2007, and actinomycetes bacteria were sampled at the Rapid City water treatment plant intake in May 2007, to determine if taste-and-odor producing organisms were present. During the May 2007 sampling, 3 Rapid Creek sites and 4 Canyon Lake sites were quantitatively sampled for phytoplankton in the water column, 7 Rapid Creek sites were quantitatively sampled for attached periphyton, and 4 lake and retention pond sites were qualitatively sampled for periphyton. Five Rapid Creek sites were sampled for geosmin and 2-methylisoborneol, two common taste-and-odor causing compounds known to affect water supplies. During the September 2007 sampling, 4 Rapid Creek sites were quantitatively sampled for attached periphyton, and 3 Canyon Lake sites were qualitatively sampled for periphyton. Water temperature, dissolved oxygen, pH, and specific conductance were measured during each sampling event. Methods of collection and sample analysis are presented for the various types of biological and chemical constituent samples. Diatoms comprised 91-100 percent of the total algal biovolume in periphyton samples collected during May and September. Cyanobacteria (also called blue-green algae) were detected in 7 of the 11 quantitative periphyton samples and ranged from 0.01 to 2.0 percent of the total biovolume. Cyanobacteria were present in 3 of the 7 phytoplankton samples collected in May, but the relative biovolumes were small (0.01-0.2 percent). Six of seven qualitative samples collected from Canyon Lake

  10. Biosynthesis of CdS nanoparticles: A fluorescent sensor for sulfate-reducing bacteria detection.

    Science.gov (United States)

    Qi, Peng; Zhang, Dun; Zeng, Yan; Wan, Yi

    2016-01-15

    CdS nanoparticles were synthesized with an environmentally friendly method by taking advantage of the characteristic metabolic process of sulfate-reducing bacteria (SRB), and used as fluorescence labels for SRB detection. The presence of CdS nanoparticles was observed within and immediately surrounded bacterial cells, indicating CdS nanoparticles were synthesized both intracellularly and extracellularly. Moreover, fluorescent properties of microbial synthesized CdS nanoparticles were evaluated for SRB detection, and a linear relationship between fluorescence intensity and the logarithm of bacterial concentration was obtained in the range of from 1.0×10(2) to 1.0×10(7)cfu mL(-1). The proposed SRB detection method avoided the use of biological bio-recognition elements which are easy to lose their specific recognizing abilities, and the bacterial detection time was greatly shortened compared with the widely used MPN method which would take up to 15 days to accomplish the detection process. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Application of rapid microbiological screening methods for detection of irradiated frozen foods

    International Nuclear Information System (INIS)

    Hussain, A.A.; Rady, A.H.; ElBary, N.A.A.

    2003-01-01

    The exposure of food to ionizing radiation is being progressively used in many countries to, inactivate food pathogens, eradicate pests and extend shelf-life. To ensure free consumer choice, irradiated food. The direct epi fluorescent filter technique (DEFT) was applied as recent and rapid technique for determination of total bacterial count in irradiated minced chicken (2,4,6, and 8 kGy) as well as non-irradiated samples. Also aerobic plate count (APC) was used to determine the viable bacterial cells. A large significant differences between the profiteered DEFT and APC counts were obtained with the irradiated samples of each chicken and fish where the conventional plating gives a much lower values than the (DEFT) technique compared with non-irradiated samples. A highly correlation (r=0.99 and 1.00) were detected at 8 and 6 kGy with irradiated minced chicken and fish respectively. The Gram-negative bacteria belonging to (Enterobacteriaceae and fluorescence pseudomonas) showed very low count in the irradiated selected fish samples compared with control while the endotoxin selected fish samples compared with control while the endotoxin levels did not affect under the same conditions. Micro-gel electrophoresis indicated that gamma irradiation at 8 kGy can induce DNA damage in the cells of both minced chicken and fish where, some bands disappeared compared with the non-irradiated samples

  12. Variation in bacterial ATP concentration during rapid changes in extracellular pH and implications for the activity of attached bacteria.

    Science.gov (United States)

    Albert, Lynal S; Brown, Derick G

    2015-08-01

    In this study we investigated the relationship between a rapid change in extracellular pH and the alteration of bacterial ATP concentration. This relationship is a key component of a hypothesis indicating that bacterial bioenergetics - the creation of ATP from ADP via a proton gradient across the cytoplasmic membrane - can be altered by the physiochemical charge-regulation effect, which results in a pH shift at the bacteria's surface upon adhesion to another surface. The bacterial ATP concentration was measured during a rapid change in extracellular pH from a baseline pH of 7.2 to pH values between 3.5 and 10.5. Experiments were conducted with four neutrophilic bacterial strains, including the Gram-negative Escherichia coli and Pseudomonas putida and the Gram-positive Bacillus subtilis and Staphylococcus epidermidis. A change in bulk pH produced an immediate response in bacterial ATP, demonstrating a direct link between changes in extracellular pH and cellular bioenergetics. In general, the shifts in ATP were similar across the four bacterial strains, with results following an exponential relationship between the extracellular pH and cellular ATP concentration. One exception occurred with S. epidermidis, where there was no variation in cellular ATP at acidic pH values, and this finding is consistent with this species' ability to thrive under acidic conditions. These results provide insight into obtaining a desired bioenergetic response in bacteria through (i) the application of chemical treatments to vary the local pH and (ii) the selection and design of surfaces resulting in local pH modification of attached bacteria via the charge-regulation effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Rapid diagnosis of sepsis with TaqMan-Based multiplex real-time PCR.

    Science.gov (United States)

    Liu, Chang-Feng; Shi, Xin-Ping; Chen, Yun; Jin, Ye; Zhang, Bing

    2018-02-01

    The survival rate of septic patients mainly depends on a rapid and reliable diagnosis. A rapid, broad range, specific and sensitive quantitative diagnostic test is the urgent need. Thus, we developed a TaqMan-Based Multiplex real-time PCR assays to identify bloodstream pathogens within a few hours. Primers and TaqMan probes were designed to be complementary to conserved regions in the 16S rDNA gene of different kinds of bacteria. To evaluate accurately, sensitively, and specifically, the known bacteria samples (Standard strains, whole blood samples) are determined by TaqMan-Based Multiplex real-time PCR. In addition, 30 blood samples taken from patients with clinical symptoms of sepsis were tested by TaqMan-Based Multiplex real-time PCR and blood culture. The mean frequency of positive for Multiplex real-time PCR was 96% at a concentration of 100 CFU/mL, and it was 100% at a concentration greater than 1000 CFU/mL. All the known blood samples and Standard strains were detected positively by TaqMan-Based Multiplex PCR, no PCR products were detected when DNAs from other bacterium were used in the multiplex assay. Among the 30 patients with clinical symptoms of sepsis, 18 patients were confirmed positive by Multiplex real-time PCR and seven patients were confirmed positive by blood culture. TaqMan-Based Multiplex real-time PCR assay with highly sensitivity, specificity and broad detection range, is a rapid and accurate method in the detection of bacterial pathogens of sepsis and should have a promising usage in the diagnosis of sepsis. © 2017 Wiley Periodicals, Inc.

  14. Rapid and quantitative detection of the microbial spoilage in milk using Fourier transform infrared spectroscopy and chemometrics.

    Science.gov (United States)

    Nicolaou, Nicoletta; Goodacre, Royston

    2008-10-01

    Microbiological safety plays a very significant part in the quality control of milk and dairy products worldwide. Current methods used in the detection and enumeration of spoilage bacteria in pasteurized milk in the dairy industry, although accurate and sensitive, are time-consuming. FT-IR spectroscopy is a metabolic fingerprinting technique that can potentially be used to deliver results with the same accuracy and sensitivity, within minutes after minimal sample preparation. We tested this hypothesis using attenuated total reflectance (ATR), and high throughput (HT) FT-IR techniques. Three main types of pasteurized milk - whole, semi-skimmed and skimmed - were used and milk was allowed to spoil naturally by incubation at 15 degrees C. Samples for FT-IR were obtained at frequent, fixed time intervals and pH and total viable counts were also recorded. Multivariate statistical methods, including principal components-discriminant function analysis and partial least squares regression (PLSR), were then used to investigate the relationship between metabolic fingerprints and the total viable counts. FT-IR ATR data for all milks showed reasonable results for bacterial loads above 10(5) cfu ml(-1). By contrast, FT-IR HT provided more accurate results for lower viable bacterial counts down to 10(3) cfu ml(-1) for whole milk and, 4 x 10(2) cfu ml(-1) for semi-skimmed and skimmed milk. Using FT-IR with PLSR we were able to acquire a metabolic fingerprint rapidly and quantify the microbial load of milk samples accurately, with very little sample preparation. We believe that metabolic fingerprinting using FT-IR has very good potential for future use in the dairy industry as a rapid method of detection and enumeration.

  15. Detection of Campylobacter Bacteria in Air Samples for Continuous Real-Time Monitoring of Campylobacter Colonization in Broiler Flocks

    DEFF Research Database (Denmark)

    Olsen, Katja Nyholm; Lund, Marianne; Skov, J.

    2009-01-01

    Improved monitoring tools are important for the control of Campylobacter bacteria in broiler production. In this study, we compare the sensitivities of detection of Campylobacter by PCR with feces, dust, and air samples during the lifetimes of broilers in two poultry houses and conclude that the ......Improved monitoring tools are important for the control of Campylobacter bacteria in broiler production. In this study, we compare the sensitivities of detection of Campylobacter by PCR with feces, dust, and air samples during the lifetimes of broilers in two poultry houses and conclude...... that the sensitivity of detection of Campylobacter in air is comparable to that in other sample materials. Profiling of airborne particles in six poultry houses revealed that the aerodynamic conditions were dependent on the age of the chickens and very comparable among different poultry houses, with low proportions...

  16. Automated microfluidically controlled electrochemical biosensor for the rapid and highly sensitive detection of Francisella tularensis.

    Science.gov (United States)

    Dulay, Samuel B; Gransee, Rainer; Julich, Sandra; Tomaso, Herbert; O'Sullivan, Ciara K

    2014-09-15

    Tularemia is a highly infectious zoonotic disease caused by a Gram-negative coccoid rod bacterium, Francisella tularensis. Tularemia is considered as a life-threatening potential biological warfare agent due to its high virulence, transmission, mortality and simplicity of cultivation. In the work reported here, different electrochemical immunosensor formats for the detection of whole F. tularensis bacteria were developed and their performance compared. An anti-Francisella antibody (FB11) was used for the detection that recognises the lipopolysaccharide found in the outer membrane of the bacteria. In the first approach, gold-supported self-assembled monolayers of a carboxyl terminated bipodal alkanethiol were used to covalently cross-link with the FB11 antibody. In an alternative second approach F(ab) fragments of the FB11 antibody were generated and directly chemisorbed onto the gold electrode surface. The second approach resulted in an increased capture efficiency and higher sensitivity. Detection limits of 4.5 ng/mL for the lipopolysaccharide antigen and 31 bacteria/mL for the F. tularensis bacteria were achieved. Having demonstrated the functionality of the immunosensor, an electrode array was functionalised with the antibody fragment and integrated with microfluidics and housed in a tester set-up that facilitated complete automation of the assay. The only end-user intervention is sample addition, requiring less than one-minute hands-on time. The use of the automated microfluidic set-up not only required much lower reagent volumes but also the required incubation time was considerably reduced and a notable increase of 3-fold in assay sensitivity was achieved with a total assay time from sample addition to read-out of less than 20 min. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Rapid Detection Technology for Pesticides Residues Based on Microelectrodes Impedance Immunosensor

    Directory of Open Access Journals (Sweden)

    Wen Ping Zhao

    2014-09-01

    Full Text Available Compared with conventional methods, electrochemical immunosensors have many advantages, such as low cost, high sensitivity, and rapid detection, and has certain prospects for realizing real-time-monitoring. In this paper, a design of portable pesticide residues detection instrument was presented based on an electrochemical impedance immunosensor. Firstly, we studied on an impedance immunosensor based on interdigitated array microelectrode (IDAM coupled with magnetic nanobeads-antibody conjugates (MNAC for the pesticide detection. Magnetic nanobeads (diameter 150 nm coated with anti-carbofuran antibodies were used for further amplification of the binding reaction between antibody and hapten (carbofuran. Secondly, in order to develop a portable pesticide residue apparatus, we designed the impedance detection electric circuit. Main work included designing and constructing of the system circuit, designing and debugging of the system software and so on. Thirdly, the apparatus was used for the standard pesticides solutions testing combined with immunosensor to test the reliability and stability. The pesticide added standard recovery was more than 70 % and the impedance test error was less than 5 %. The results showed that the proposed instrument had a good consistence compared with the traditional analytical methods. Thus, it would be a promising rapid detection instrument for pesticide residues in agricultural products.

  18. RNA aptasensor for rapid detection of natively folded type A botulinum neurotoxin.

    Science.gov (United States)

    Janardhanan, Pavithra; Mello, Charlene M; Singh, Bal Ram; Lou, Jianlong; Marks, James D; Cai, Shuowei

    2013-12-15

    A surface plasmon resonance based RNA aptasensor for rapid detection of natively folded type A botulinum neurotoxin is reported. Using detoxified recombinant type A botulinum neurotoxin as the surrogate, the aptasensor detects active toxin within 90 min. The detection limit of the aptasensor in phosphate buffered saline, carrot juice, and fat free milk is 5.8 ng/ml, 20.3 ng/ml and 23.4 ng/ml, respectively, while that in 5-fold diluted human serum is 22.5 ng/ml. Recovery of toxin from disparate sample matrices are within 91-116%. Most significant is the ability of this aptasensor to effectively differentiate the natively folded toxin from denatured, inactive toxin, which is important for homeland security surveillance and threat assessment. The aptasensor is stable for more than 30 days and over 400 injections/regeneration cycles. Such an aptasensor holds great promise for rapid detection of active botulinum neurotoxin for field surveillance due to its robustness, stability and reusability. © 2013 Elsevier B.V. All rights reserved.

  19. The combined rapid detection and species-level identification of yeasts in simulated blood culture using a colorimetric sensor array.

    Directory of Open Access Journals (Sweden)

    Nabin K Shrestha

    Full Text Available A colorimetric sensor array (CSA has been demonstrated to rapidly detect and identify bacteria growing in blood cultures by obtaining a species-specific "fingerprint" of the volatile organic compounds (VOCs produced during growth. This capability has been demonstrated in prokaryotes, but has not been reported for eukaryotic cells growing in culture. The purpose of this study was to explore if a disposable CSA could differentially identify 7 species of pathogenic yeasts growing in blood culture.Culture trials of whole blood inoculated with a panel of clinically important pathogenic yeasts at four different microorganism loads were performed. Cultures were done in both standard BacT/Alert and CSA-embedded bottles, after adding 10 mL of spiked blood to each bottle. Color changes in the CSA were captured as images by an optical scanner at defined time intervals. The captured images were analyzed to identify the yeast species. Time to detection by the CSA was compared to that in the BacT/Alert system.One hundred sixty-two yeast culture trials were performed, including strains of several species of Candida (Ca. albicans, Ca. glabrata, Ca. parapsilosis, and Ca. tropicalis, Clavispora (synonym Candida lusitaniae, Pichia kudriavzevii (synonym Candida krusei and Cryptococcus neoformans, at loads of 8.2 × 105, 8.3 × 103, 8.5 × 101, and 1.7 CFU/mL. In addition, 8 negative trials (no yeast were conducted. All negative trials were correctly identified as negative, and all positive trials were detected. Colorimetric responses were species-specific and did not vary by inoculum load over the 500000-fold range of loads tested, allowing for accurate species-level identification. The mean sensitivity for species-level identification by CSA was 74% at detection, and increased with time, reaching almost 95% at 4 hours after detection. At an inoculum load of 1.7 CFU/mL, mean time to detection with the CSA was 6.8 hours (17% less than with the BacT/Alert platform

  20. Use of Cepheid Xpert Carba-R® for Rapid Detection of Carbapenemase-Producing Bacteria in Abdominal Septic Patients Admitted to Intensive Care Unit.

    Directory of Open Access Journals (Sweden)

    Andrea Cortegiani

    Full Text Available Early institution of effective antibiotic therapy and source control are pivotal to improve survival of abdominal septic patients. Xpert® Carba-R is a real time polymerase chain reaction assay for rapid detection and differentiation of five genes (blaKPC, blaVIM, blaOXA-48, blaIMP-1, blaNDM responsible for carbapenem resistance. We performed an observational study investigating the clinical usefulness and applicability of Xpert® Carba-R to detect carbapenem resistance in abdominal septic patients admitted to intensive care unit. We compared the results of Xpert® Carba-R with standard microbiological culture. We collected a set of two rectal/stomia swabs and two swabs from abdominal drainage fluid for each patient. We included 20 patients for a total of 45 comparisons between the two methods. In our clinical setting, the overall performance of Xpert® Carba-R for detection of carbapenem resistance in the presence of genes detectable and non-detectable by the method was: sensitivity 50% (95% CI 24.6-75.3; specificity 93.1% (95% CI 77.2-99.1; positive predictive value (PPV 80% (95% CI 44.4-97.5; negative predictive value (NPV 77.1% (95% CI 56.9-89.6. The inter-rater agreement was 0.47 (SE 0.14; 95% CI 0.20-0.74. When considering the only 5 mechanisms of resistance detected by both methods, the overall diagnostic performance was: sensitivity 100% (95% CI 69.1-100, specificity 94.2 (95% CI 80.8-99.3, PPV 83.3 (95% CI 59.6-97.9 and NPV 100% (95% CI 89.4-100. The inter-rater agreement was 0.88 (SE 0.08; 95% CI 0.71-1. Xpert® Carba-R may be considered an additional diagnostic tool for early diagnosis of carbapenem resistance in abdominal septic patients. Clinicians should be aware of their epidemiology before its introduction in the diagnostic protocol of their intensive care units.

  1. Use of Cepheid Xpert Carba-R® for Rapid Detection of Carbapenemase-Producing Bacteria in Abdominal Septic Patients Admitted to Intensive Care Unit.

    Science.gov (United States)

    Cortegiani, Andrea; Russotto, Vincenzo; Graziano, Giorgio; Geraci, Daniela; Saporito, Laura; Cocorullo, Gianfranco; Raineri, Santi Maurizio; Mammina, Caterina; Giarratano, Antonino

    2016-01-01

    Early institution of effective antibiotic therapy and source control are pivotal to improve survival of abdominal septic patients. Xpert® Carba-R is a real time polymerase chain reaction assay for rapid detection and differentiation of five genes (blaKPC, blaVIM, blaOXA-48, blaIMP-1, blaNDM) responsible for carbapenem resistance. We performed an observational study investigating the clinical usefulness and applicability of Xpert® Carba-R to detect carbapenem resistance in abdominal septic patients admitted to intensive care unit. We compared the results of Xpert® Carba-R with standard microbiological culture. We collected a set of two rectal/stomia swabs and two swabs from abdominal drainage fluid for each patient. We included 20 patients for a total of 45 comparisons between the two methods. In our clinical setting, the overall performance of Xpert® Carba-R for detection of carbapenem resistance in the presence of genes detectable and non-detectable by the method was: sensitivity 50% (95% CI 24.6-75.3); specificity 93.1% (95% CI 77.2-99.1); positive predictive value (PPV) 80% (95% CI 44.4-97.5); negative predictive value (NPV) 77.1% (95% CI 56.9-89.6). The inter-rater agreement was 0.47 (SE 0.14; 95% CI 0.20-0.74). When considering the only 5 mechanisms of resistance detected by both methods, the overall diagnostic performance was: sensitivity 100% (95% CI 69.1-100), specificity 94.2 (95% CI 80.8-99.3), PPV 83.3 (95% CI 59.6-97.9) and NPV 100% (95% CI 89.4-100). The inter-rater agreement was 0.88 (SE 0.08; 95% CI 0.71-1). Xpert® Carba-R may be considered an additional diagnostic tool for early diagnosis of carbapenem resistance in abdominal septic patients. Clinicians should be aware of their epidemiology before its introduction in the diagnostic protocol of their intensive care units.

  2. Rapid Detection of Food Allergens by Microfluidics ELISA-Based Optical Sensor

    Directory of Open Access Journals (Sweden)

    Xuan Weng

    2016-06-01

    Full Text Available The risks associated with the presence of hidden allergens in food have increased the need for rapid, sensitive, and reliable methods for tracing food allergens in commodities. Conventional enzyme immunosorbent assay (ELISA has usually been performed in a centralized lab, requiring considerable time and sample/reagent consumption and expensive detection instruments. In this study, a microfluidic ELISA platform combined with a custom-designed optical sensor was developed for the quantitative analysis of the proteins wheat gluten and Ara h 1. The developed microfluidic ELISA biosensor reduced the total assay time from hours (up to 3.5 h to 15–20 min and decreased sample/reagent consumption to 5–10 μL, compared to a few hundred microliters in commercial ELISA kits, with superior sensitivity. The quantitative capability of the presented biosensor is a distinctive advantage over the commercially available rapid methods such as lateral flow devices (LFD and dipstick tests. The developed microfluidic biosensor demonstrates the potential for sensitive and less-expensive on-site determination for rapidly detecting food allergens in a complex sample system.

  3. Rapid and real-time detection technologies for emerging viruses of ...

    Indian Academy of Sciences (India)

    2008-10-17

    Oct 17, 2008 ... The development of technologies with rapid and sensitive detection capabilities and increased throughput have become crucial for responding to greater number threats posed by emerging and re-emerging viruses in the recent past. The conventional identification methods require time-consuming culturing ...

  4. Rapid Change Detection Algorithm for Disaster Management

    Science.gov (United States)

    Michel, U.; Thunig, H.; Ehlers, M.; Reinartz, P.

    2012-07-01

    This paper focuses on change detection applications in areas where catastrophic events took place which resulted in rapid destruction especially of manmade objects. Standard methods for automated change detection prove not to be sufficient; therefore a new method was developed and tested. The presented method allows a fast detection and visualization of change in areas of crisis or catastrophes. While often new methods of remote sensing are developed without user oriented aspects, organizations and authorities are not able to use these methods because of absence of remote sensing know how. Therefore a semi-automated procedure was developed. Within a transferable framework, the developed algorithm can be implemented for a set of remote sensing data among different investigation areas. Several case studies are the base for the retrieved results. Within a coarse dividing into statistical parts and the segmentation in meaningful objects, the framework is able to deal with different types of change. By means of an elaborated Temporal Change Index (TCI) only panchromatic datasets are used to extract areas which are destroyed, areas which were not affected and in addition areas where rebuilding has already started.

  5. Nano-particle enhanced impedimetric biosensor for detection of foodborne pathogens

    International Nuclear Information System (INIS)

    Kim, G; Om, A S; Mun, J H

    2007-01-01

    Recent outbreaks of foodborne illness have been increased the need for rapid and sensitive methods for detection of these pathogens. Conventional methods for pathogens detection and identification involve prolonged multiple enrichment steps. Even though some immunological rapid assays are available, these assays still need enrichment steps result in delayed detection. Biosensors have shown great potential for rapid detection of foodborne pathogens. They are capable of direct monitoring the antigen-antibody reactions in real time. Among the biosensors, impedimetric biosensors have been widely adapted as an analysis tool for the study of various biological binding reactions because of their high sensitivity and reagentless operation. In this study a nanoparticle-enhanced impedimetric biosensor for Salmonella enteritidis detection was developed which detected impedance changes caused by the attachment of the cells to the anti-Salmonella antibodies immobilized on interdigitated gold electrodes. Successive immobilization of neutravidin followed by anti-Salmonella antibodies was performed to the sensing area to create a biological detection surface. To enhance the impedance responses generated by antigen-antibody reactions, anti-Salmonella antibody conjugated nanoparticles were introduced on the sensing area. Using a portable impedance analyzer, the impedance across the interdigital electrodes was measured after the series of antigen-antibody bindings. Bacteria cells present in solution attached to capture antibodies and became tethered to the sensor surface. Attached bacteria cells changed the dielectric constant of the media between the electrodes thereby causing a change in measured impedance. Optimum input frequency was determined by analyzing frequency characteristics of the biosensor over ranges of applied frequencies from 10 Hz to 400 Hz. At 100 Hz of input frequency, the biosensor was most sensitive to the changes of the bacteria concentration and this frequency

  6. Rapid and Sensitive Detection of BLAD in Cattle Population

    Directory of Open Access Journals (Sweden)

    Daniela Elena Ilie

    2014-05-01

    Full Text Available Bovine leukocyte adhesion deficiency (BLAD is an autosomal recessive disorder with negative impact on dairy cattle breeding. The molecular basis of BLAD is a single point mutation (A→G, resulting in a single amino acid substitution (aspartic acid → glycine at amino acid 128 in the adhesion molecule CD18. The object of this study was to establish a fast and sensitive molecular genotyping assay to detect BLAD carriers using high-resolution melting (HRM curve analysis. We tested animals with known genotypes for BLAD that were previously confirmed by PCR-RFLP method, and then examined the sensitivity of mutation detection using PCR followed by HRM curve analysis. BLAD carriers were readily detectable using HRM assay. Thus, the PCR-HRM genotyping method is a rapid, easily interpretable, reliable and cost-effective assay for BLAD mutant allele detection. This assay can be useful in cattle genotyping and genetic selection.

  7. Detection and Characterizations of Genes Resistant to Tetracycline and Sulfa among the Bacteria in Mariculture Water

    Science.gov (United States)

    Qu, L.; Li, Y.; Zhu, P.

    2013-12-01

    One hundred and thirty-five bacteria from maricultural environments were tested for sensitivity to tetracycline and sulfa. Result show that 72% of the bacteria were sulfa-resistant, 36% of the bacteria were tetracycline-resistant, and 16.5% of bacteria showed resistance to both tetracyclines and sulfa ,indicating that the proportion of sulfa and tetracycline resistance bacteria isvery large in the maricultural environments. PCR methods were used to detect if these resistant bacteria carry tetracycline and sulfa resistance genes. Out of the 33 tetracycline-resistant bacteria screened, 3 were positive for tetA, 6 were positive for tetB and no isolate wasboth positive for tetA and tetB. Of the 97 sulfa-resistant bacteria screened, 9 were positive for sul2, 6 were positive for sul1, 1 isolate was positive for bothsul1 and sul2. The minimum inhibitory concentration (MIC) of tetracycline for tetA-carrying isolates were higher than those tetB-carrying isolates.while The MIC of sulfa for sul2-carrying isolates were higher than those sul1-carrying isolates. Indicating that tetA and sul2 gene may play ubknown roles in resisting tetracycline and sulfa than tetB and sul1 genes. The results showed the 4 kinds of genes (tetA,tetB,sul1,sul2) has no host specificity. All these 16S sequence are from the isolates which are positive for the above genes, it indicated the above antibiotic resistance genes are widespread in the environment regardless of the host. While the DNA sequence of these four genes showed tetA, sul1, sul2 genes are conservative in different bacteria , etB gene conserved poorly. The research aim is to get a preliminary understanding of resistance mechanism related to the resistant bacteria and the resistance genes in marine aquaculture environment through the analysis of resistant genes, providing research base for the prevention and treatment of drug-resistant bacteria so as to reduce the threat to the ecological environment, aquaculture and human health.

  8. An integrated micro-chip for rapid detection of magnetic particles

    KAUST Repository

    Gooneratne, Chinthaka P.

    2012-03-09

    This paper proposes an integrated micro-chip for the manipulation and detection of magnetic particles (MPs). A conducting ring structure is used to manipulate MPs toward giant magnetoresistance(GMR) sensing elements for rapid detection. The GMRsensor is fabricated in a horseshoe shape in order to detect the majority of MPs that are trapped around the conducting structure. The GMR sensing elements are connected in a Wheatstone bridge circuit topology for optimum noise suppression. Full fabrication details of the micro-chip, characterization of the GMRsensors, and experimental results with MPs are presented in this paper. Experimental results showed that the micro-chip can detect MPs from low concentration samples after they were guided toward the GMRsensors by applying current to the conducting ring structure.

  9. Design of a surface-scanning coil detector for direct bacteria detection on food surfaces using a magnetoelastic biosensor

    Science.gov (United States)

    Chai, Yating; Wikle, Howard C.; Wang, Zhenyu; Horikawa, Shin; Best, Steve; Cheng, Zhongyang; Dyer, Dave F.; Chin, Bryan A.

    2013-09-01

    The real-time, in-situ bacteria detection on food surfaces was achieved by using a magnetoelastic biosensor combined with a surface-scanning coil detector. This paper focuses on the coil design for signal optimization. The coil was used to excite the sensor's vibration and detect its resonant frequency signal. The vibrating sensor creates a magnetic flux change around the coil, which then produces a mutual inductance. In order to enhance the signal amplitude, a theory of the sensor's mutual inductance with the measurement coil is proposed. Both theoretical calculations and experimental data showed that the working length of the coil has a significant effect on the signal amplitude. For a 1 mm-long sensor, a coil with a working length of 1.3 mm showed the best signal amplitude. The real-time detection of Salmonella bacteria on a fresh food surface was demonstrated using this new technology.

  10. Rapid Communication. Monitoring the occurrence of bacteria in stored cabbage heads

    Directory of Open Access Journals (Sweden)

    Eichmeier Aleš

    2016-08-01

    Full Text Available Twenty-six cabbage heads stored under typical conditions in a storage hall in Moravia, Czech Republic, were tested for the presence of bacteria by the method of isolation from three different parts of the cabbage heads. Isolations were carried out from stalks, inner and superficial leaves. Two samplings were done; in November 2015 and February 2016. Bacterial cultures were sequenced in the part of 16S rRNA region; bacteria were identified according to the sequences obtained. The most prevalent bacteria were of the genus Pseudomonas. Genera: Klebsiella, Erwinia, Pantoea, Bacillus were also identified. The results provided an interesting insight into the bacterial spectrum in stored cabbage heads and their dynamics during storage. The nucleotide sequences which were found were saved in GenBank/NCBI under accession numbers KX160104-KX160145.

  11. [Rapid test for detection of susceptibility to cefotaxime in Enterobacteriaceae].

    Science.gov (United States)

    Jiménez-Guerra, Gemma; Hoyos-Mallecot, Yannik; Rodríguez-Granger, Javier; Navarro-Marí, José María; Gutiérrez-Fernández, José

    In this work an "in house" rapid test based on the change in pH that is due to hydrolysis for detecting Enterobacteriaceae susceptible to cefotaxime is evaluated. The strains of Enterobacteriaceae from 1947 urine cultures were assessed using MicroScan panels and the "in house" test. This rapid test includes red phenol solution and cefotaxime. Using MicroScan panels, 499 Enterobacteriaceae isolates were evaluated, which included 27 isolates of Escherichia coli producing extended-spectrum beta-lactamases (ESBL), 16 isolates of Klebsiella pneumoniae ESBL and 1 isolate of Klebsiella oxytoca ESBL. The "in house" test offers the following values: sensitivity 98% and specificity 97%, with negative predictive value 100% and positive predictive value 78%. The "in house" test based on the change of pH is useful in our area for detecting presumptively cefotaxime-resistant Enterobacteriaceae strains. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. A Rapid and Reproducible Genomic DNA Extraction Protocol for Sequence-Based Identification of Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and Green Algae

    OpenAIRE

    Farkhondeh Saba; Moslem Papizadeh; Javad Khansha; Mahshid Sedghi; Mehrnoosh Rasooli; Mohammad Ali Amoozegar; Mohammad Reza Soudi; Seyed Abolhassan Shahzadeh Fazeli

    2016-01-01

    Background:  Sequence-based identification of various microorganisms including Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and green algae necessitates an efficient and reproducible genome extraction procedure though which a pure template DNA is yielded and it can be used in polymerase chain reactions (PCR). Considering the fact that DNA extraction from these microorganisms is time consuming and laborious, we developed and standardized a safe, rapid and inexpensive miniprep protocol. Me...

  13. Development of microLIPS (Luciferase Immunoprecipitation Systems): a novel microfluidic assay for rapid serum antibody detection

    Science.gov (United States)

    Chandrangsu, Matt; Burbelo, Peter D.; Iadarola, Michael J.; Smith, Paul D.; Morgan, Nicole Y.

    2012-06-01

    There is considerable interest in the development of rapid, point-of-care antibody detection for the diagnosis of infectious and auto-immune diseases. In this paper, we present work on the development of a self-contained microfluidic format for the Luciferase Immunoprecipitation Systems (LIPS) assay. Whereas the majority of immunoassays for antigen-specific antibodies employ either bacteria- or yeast-expressed proteins and require the use of secondary antibodies, the LIPS technique uses a fusion protein comprised of a Renilla luciferase reporter and the antigen of interest produced via mammalian cell culture, ensuring the addition of mammalian post-translational modifications. Patient serum is mixed with the fusion protein and passed over immobilized Protein A/G; after washing, the only remaining luciferase-tagged antigens are those retained by specific antibodies. These can be quantitatively measured using chemiluminescence upon the introduction of coelenterazine. The assay has been successfully employed for a wide variety of diseases in a microwell format. We report on a recent demonstration of rapid HSV-2 diagnosis with the LIPS assay in a microfluidic format, using one microliter of serum and obtaining results in under ten minutes. We will also discuss recent progress on two fronts, both aimed at the deployment of this technology in the field: first, simplifying assay operation through the automation of flow control using power-free means; and second, efforts to increase signal levels, primarily through strategies to increase antibody binding capacity, in order to move towards portable battery powered electronics.

  14. Detection of airborne psychrotrophic bacteria and fungi in food storage refrigerators

    Directory of Open Access Journals (Sweden)

    Sema Sandikci Altunatmaz

    2012-12-01

    Full Text Available The purpose of this study was to determine the microbiological air quality (psychrotrophic bacteria and airborne fungi and distribution of fungi in different types of ready-to-eat (RTE food-storage refrigerators (n=48 at selected retail stores in the city of Edirne, Turkey. Refrigerators were categorized according to the type of RTE food-storage: meat products, vegetables, desserts, or a mix of food types. Microbiological quality of air samples was evaluated by using a Mas-100 Eco Air Sampler. Four refrigerators (all containing meat products, 8.3% produced air samples with undetectable microorganisms. The highest detected mean value of airborne psychrotrophic bacteria and fungi was 82.3 CFU/m³ and 54.6 CFU/m³, respectively and were found in mixed-food refrigerators. The dominant airborne fungal genera found were Penicillium (29.0%, Aspergillus (12.0%, Mucor (9%, Cladosporium (8%, Botyrtis (7%, and Acremonium (6%. By definition, RTE food does not undergo a final treatment to ensure its safety prior to consumption. Therefore, ensuring a clean storage environment for these foods is important to prevent food-borne disease and other health risks.

  15. Analytic Method on Characteristic Parameters of Bacteria in Water by Multiwavelength Transmission Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yuxia Hu

    2017-01-01

    Full Text Available An analytic method together with the Mie scattering theory and Beer-Lambert law is proposed for the characteristic parameter determination of bacterial cells (Escherichia coli 10389 from multiwavelength transmission spectroscopy measurements. We calculate the structural parameters of E. coli cells, and compared with the microscopy, the relative error of cell volume is 7.90%, the cell number is compared with those obtained by plate counting, the relative error is l.02%, and the nucleic content and protein content of single E. coli cells are consistent with the data reported elsewhere. The proposed method can obtain characteristic parameters of bacteria as an excellent candidate for the rapid detection and identification of bacteria in the water.

  16. Application of a rapid screening method to detect irradiated meat in Brazil

    International Nuclear Information System (INIS)

    Villavicencio, A.L.C.H.; Delincee, H.

    1998-01-01

    Complete text of publication follows. Based on the enormous potential for food irradiation in Brazil, and to ensure free consumer choice, there is a need to find a convenient and rapid method for detection of irradiated food. Since treatment with ionizing radiation causes DNA fragmentation, the analysis of DNA damage might be promising. In fact, DNA fragmentation measured in single cells by agarose gel electrophoresis - DNA Comet Assay - has shown to offer great potential as a rapid tool to detect whether a wide variety of foodstuffs has been radiation processed. However, more work is needed to exploit the full potential of this promising technique. In this paper, the DNA Comet Assay was used to identify exotic meat (boar, jacare and capybara), irradiated with 60 Co gamma-rays. The applied radiation doses were 0, 1.5, 3.0 and 4.5 kGy. Analysis of the DNA migration enable a rapid identification of the radiation treatment

  17. Rapid and sensitive detection of Pseudomonas aeruginosa in chlorinated water and aerosols targeting gyrB gene using real-time PCR.

    Science.gov (United States)

    Lee, C S; Wetzel, K; Buckley, T; Wozniak, D; Lee, J

    2011-10-01

    For the rapid detection of Pseudomonas aeruginosa from chlorinated water and aerosols, gyrB gene-based real-time PCR assay was developed and investigated. Two novel primer sets (pa722F/746MGB/899R and pa722F/746MGB/788R) were designed using the most updated 611 Pseudomonas and 748 other bacterial gyrB genes for achieving high specificity. Their specificity showed 100% accuracy when tested with various strains including clinical isolates from cystic fibrosis patients. The assay was tested with Ps. aeruginosa-containing chlorinated water and aerosols to simulate the waterborne and airborne transmission routes (detection limit 3·3 × 10² CFU per PCR-2·3 × 10³ CFU per PCR). No chlorine interference in real-time PCR was observed at drinking water level (c. 1 mg l⁻¹), but high level of chorine (12 mg l⁻¹) interfered the assay, and thus neutralization was needed. Pseudomonas aeruginosa in aerosol was successfully detected after capturing with gelatin filters with minimum 2 min of sampling time when the initial concentration of 10⁴ CFU ml⁻¹ bacteria existed in the nebulizer. A highly specific and rapid assay (2-3 h) was developed by targeting gyrB gene for the detection of Ps. aeruginosa in chlorinated water and aerosols, combined with optimized sample collection methods and sample processing, so the direct DNA extraction from either water or aerosol was possible while achieving the desired sensitivity of the method.   The new assay can provide timely and accurate risk assessment to prevent Ps. aeruginosa exposure from water and aerosol, resulting in reduced disease burden, especially among immune-compromised and susceptible individuals. This approach can be easily utilized as a platform technology for the detection of other types of micro-organisms, especially for those that are transmitted via water and aerosol routes, such as Legionella pneumophila. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  18. Detection of Bacteria by Fluorescence in Situ Hybridization in Culture-Negative Soft Tissue Filler Lesions

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2009-01-01

    BACKGROUND Adverse reactions to polyacrylamide gel occur as swellings or nodules, and controversy exists whether these are due to bacterial infection or an autoimmune reaction to the filler. OBJECTIVES Biopsies from culture-negative long-lasting nodules after injection with different types...... of polyacrylamide gel were examined with a combination of Gram stain and fluorescence in situ hybridization. RESULTS Bacteria were detected in biopsies from seven of eight patients. They inhabited gel and intervening tissue and tended to lie in aggregates. CONCLUSION This study supports the assumption...... that infection with bacteria in aggregates causes culture-negative late adverse reactions to polyacrylamide gel, suggesting a biofilm environment. The authors have indicated no significant interest with commercial supporters....

  19. Aptamer-based viability impedimetric sensor for bacteria.

    Science.gov (United States)

    Labib, Mahmoud; Zamay, Anna S; Kolovskaya, Olga S; Reshetneva, Irina T; Zamay, Galina S; Kibbee, Richard J; Sattar, Syed A; Zamay, Tatiana N; Berezovski, Maxim V

    2012-11-06

    The development of an aptamer-based viability impedimetric sensor for bacteria (AptaVISens-B) is presented. Highly specific DNA aptamers to live Salmonella typhimurium were selected via the cell-systematic evolution of ligands by exponential enrichment (SELEX) technique. Twelve rounds of selection were performed; each comprises a positive selection step against viable S. typhimurium and a negative selection step against heat killed S. typhimurium and a mixture of related pathogens, including Salmonella enteritidis, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Citrobacter freundii to ensure the species specificity of the selected aptamers. The DNA sequence showing the highest binding affinity to the bacteria was further integrated into an impedimetric sensor via self-assembly onto a gold nanoparticle-modified screen-printed carbon electrode (GNP-SPCE). Remarkably, this aptasensor is highly selective and can successfully detect S. typhimurium down to 600 CFU mL(-1) (equivalent to 18 live cells in 30 μL of assay volume) and distinguish it from other Salmonella species, including S. enteritidis and S. choleraesuis. This report is envisaged to open a new venue for the aptamer-based viability sensing of a variety of microorganisms, particularly viable but nonculturable (VBNC) bacteria, using a rapid, economic, and label-free electrochemical platform.

  20. Rapid focused sequencing: a multiplexed assay for simultaneous detection and strain typing of Bacillus anthracis, Francisella tularensis, and Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Rosemary S Turingan

    Full Text Available BACKGROUND: The intentional release of Bacillus anthracis in the United States in 2001 has heightened concern about the use of pathogenic microorganisms in bioterrorism attacks. Many of the deadliest bacteria, including the Class A Select Agents Bacillus anthracis, Francisella tularensis, and Yersinia pestis, are highly infectious via the pulmonary route when released in aerosolized form. Hence, rapid, sensitive, and reliable methods for detection of these biothreats and characterization of their potential impact on the exposed population are of critical importance to initiate and support rapid military, public health, and clinical responses. METHODOLOGY/PRINCIPAL FINDINGS: We have developed microfluidic multiplexed PCR and sequencing assays based on the simultaneous interrogation of three pathogens per assay and ten loci per pathogen. Microfluidic separation of amplified fluorescently labeled fragments generated characteristic electrophoretic signatures for identification of each agent. The three sets of primers allowed significant strain typing and discrimination from non-pathogenic closely-related species and environmental background strains based on amplicon sizes alone. Furthermore, sequencing of the 10 amplicons per pathogen, termed "Rapid Focused Sequencing," allowed an even greater degree of strain discrimination and, in some cases, can be used to determine virulence. Both amplification and sequencing assays were performed in microfluidic biochips developed for fast thermal cycling and requiring 7 µL per reaction. The 30-plex sequencing assay resulted in genotypic resolution of 84 representative strains belonging to each of the three biothreat species. CONCLUSIONS/SIGNIFICANCE: The microfluidic multiplexed assays allowed identification and strain differentiation of the biothreat agents Bacillus anthracis, Francisella tularensis, and Yersinia pestis and clear discrimination from closely-related species and several environmental

  1. Rapid evolution of the sequences and gene repertoires of secreted proteins in bacteria.

    Directory of Open Access Journals (Sweden)

    Teresa Nogueira

    Full Text Available Proteins secreted to the extracellular environment or to the periphery of the cell envelope, the secretome, play essential roles in foraging, antagonistic and mutualistic interactions. We hypothesize that arms races, genetic conflicts and varying selective pressures should lead to the rapid change of sequences and gene repertoires of the secretome. The analysis of 42 bacterial pan-genomes shows that secreted, and especially extracellular proteins, are predominantly encoded in the accessory genome, i.e. among genes not ubiquitous within the clade. Genes encoding outer membrane proteins might engage more frequently in intra-chromosomal gene conversion because they are more often in multi-genic families. The gene sequences encoding the secretome evolve faster than the rest of the genome and in particular at non-synonymous positions. Cell wall proteins in Firmicutes evolve particularly fast when compared with outer membrane proteins of Proteobacteria. Virulence factors are over-represented in the secretome, notably in outer membrane proteins, but cell localization explains more of the variance in substitution rates and gene repertoires than sequence homology to known virulence factors. Accordingly, the repertoires and sequences of the genes encoding the secretome change fast in the clades of obligatory and facultative pathogens and also in the clades of mutualists and free-living bacteria. Our study shows that cell localization shapes genome evolution. In agreement with our hypothesis, the repertoires and the sequences of genes encoding secreted proteins evolve fast. The particularly rapid change of extracellular proteins suggests that these public goods are key players in bacterial adaptation.

  2. Review on SERS of Bacteria

    Directory of Open Access Journals (Sweden)

    Pamela A. Mosier-Boss

    2017-11-01

    Full Text Available Surface enhanced Raman spectroscopy (SERS has been widely used for chemical detection. Moreover, the inherent richness of the spectral data has made SERS attractive for use in detecting biological materials, including bacteria. This review discusses methods that have been used to obtain SERS spectra of bacteria. The kinds of SERS substrates employed to obtain SERS spectra are discussed as well as how bacteria interact with silver and gold nanoparticles. The roll of capping agents on Ag/Au NPs in obtaining SERS spectra is examined as well as the interpretation of the spectral data.

  3. A constant flux of diverse thermophilic bacteria into the cold arctic seabed

    DEFF Research Database (Denmark)

    Hubert, Casey; Loy, Alexander; Nickel, Maren

    2009-01-01

    Microorganisms have been repeatedly discovered in environments that do not support their metabolic activity. Identifying and quantifying these misplaced organisms can reveal dispersal mechanisms that shape natural microbial diversity. Using endospore germination experiments, we estimated a stable...... supply of thermophilic bacteria into permanently cold Arctic marine sediment at a rate exceeding 108 spores per square meter per year. These metabolically and phylogenetically diverse Firmicutes show no detectable activity at cold in situ temperatures but rapidly mineralize organic matter by hydrolysis......, fermentation, and sulfate reduction upon induction at 50°C. The closest relatives to these bacteria come from warm subsurface petroleum reservoir and ocean crust ecosystems, suggesting that seabed fluid flow from these environments is delivering thermophiles to the cold ocean. These transport pathways may...

  4. Loop-mediated isothermal amplification: Rapid and sensitive detection of the antibiotic resistance gene ISAba1-blaOXA-51-like in Acinetobacter baumannii.

    Science.gov (United States)

    Mu, Xiaoqin; Nakano, Ryuichi; Nakano, Akiyo; Ubagai, Tsuneyuki; Kikuchi-Ueda, Takane; Tansho-Nagakawa, Shigeru; Kikuchi, Hirotoshi; Kamoshida, Go; Endo, Shiro; Yano, Hisakazu; Ono, Yasuo

    2016-02-01

    Carbapenem-resistant Acinetobacter baumannii, which are mainly induced by the production of OXA-type β-lactamases, are among the leading causes of nosocomial infections worldwide. Among the β-lactamase genes, the presence of the OXA-51-like gene carrying the upstream insertion sequence, ISAba1, was found to be one of the most prevalent carbapenem resistance mechanisms utilized by these bacteria. Consequently, it is necessary to develop a rapid detection method for ISAba1-blaOXA-51-like sequence for the timely and appropriate antibiotic treatment of A. baumannii infection. In this study, a loop-mediated isothermal amplification (LAMP) assay was optimized for ISAba1-blaOXA-51-like detection. The LAMP primer set was designed to recognize distinct sequences in the ISAba1-blaOXA-51-like gene and could amplify the gene within 25 min at an isothermal temperature of 60°C. This LAMP assay was able to detect the ISAba1-blaOXA-51-like gene with high specificity; in addition, no cross-reactivity was observed for other types of β-lactamase producers (OXA-23-like, OXA-40-like, OXA-58-like, and IMP-1), as indicated by the absence of false positive or false negative results. The detection limit for this assay was found to be 10(0)CFU per tube which was 100-fold more sensitive than a polymerase chain reaction assay for ISAba1-blaOXA-51-like detection. Furthermore, the LAMP assay provided swift detection of the ISAba1-blaOXA-51-like gene, even directly from clinical specimens. In summary, we have described a new, rapid assay for the detection of the ISAba1-blaOXA-51-like gene from A. baumannii that could be useful in a clinical setting. This method might facilitate epidemiological studies and allow monitoring of the emergence of drug resistant strains. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Rapid antigen detection test for respiratory syncytial virus diagnosis as a diagnostic tool.

    Science.gov (United States)

    Mesquita, Flávio da Silva; Oliveira, Danielle Bruna Leal de; Crema, Daniela; Pinez, Célia Miranda Nunes; Colmanetti, Thaís Cristina; Thomazelli, Luciano Matsumia; Gilio, Alfredo Elias; Vieira, Sandra Elisabeth; Martinez, Marina Baquerizo; Botosso, Viviane Fongaro; Durigon, Edison Luiz

    The aim of this study was to evaluate the QuickVue ® RSV Test Kit (QUIDEL Corp, CA, USA) as a screening tool for respiratory syncytial virus in children with acute respiratory disease in comparison with the indirect immunofluorescence assay as gold standard. In Brazil, rapid antigen detection tests for respiratory syncytial virus are not routinely utilized as a diagnostic tool, except for the diagnosis of dengue and influenza. The authors retrospectively analyzed 486 nasopharyngeal aspirate samples from children under age 5 with acute respiratory infection, between December 2013 and August 2014, the samples were analyzed by indirect immunofluorescence assay and QuickVue ® RSV Test kit. Samples with discordant results were analyzed by real time PCR and nucleotide sequencing. From 313 positive samples by immunofluorescence assays, 282 (90%) were also positive by the rapid antigen detection test, two were positive only by rapid antigen detection test, 33 were positive only by immunofluorescence assays, and 171 were positive by both methods. The 35 samples with discordant results were analyzed by real time PCR; the two samples positive only by rapid antigen detection test and the five positive only by immunofluorescence assays were also positive by real time PCR. There was no relation between the negativity by QuickVue ® RSV Test and viral load or specific strain. The QuickVue ® RSV Test showed sensitivity of 90%, specificity of 98.8%, predictive positive value of 99.3%, and negative predictive value of 94.6%, with accuracy of 93.2% and agreement κ index of 0.85 in comparison to immunofluorescence assay. This study demonstrated that the QuickVue ® RSV Test Kit can be effective in early detection of Respiratory syncytial virus in nasopharyngeal aspirate and is reliable for use as a diagnostic tool in pediatrics. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  6. Rapid antigen detection test for respiratory syncytial virus diagnosis as a diagnostic tool,

    Directory of Open Access Journals (Sweden)

    Flávio da Silva Mesquita

    Full Text Available Abstract Objective: The aim of this study was to evaluate the QuickVue® RSV Test Kit (QUIDEL Corp, CA, USA as a screening tool for respiratory syncytial virus in children with acute respiratory disease in comparison with the indirect immunofluorescence assay as gold standard. In Brazil, rapid antigen detection tests for respiratory syncytial virus are not routinely utilized as a diagnostic tool, except for the diagnosis of dengue and influenza. Methods: The authors retrospectively analyzed 486 nasopharyngeal aspirate samples from children under age 5 with acute respiratory infection, between December 2013 and August 2014, the samples were analyzed by indirect immunofluorescence assay and QuickVue® RSV Test kit. Samples with discordant results were analyzed by real time PCR and nucleotide sequencing. Results: From 313 positive samples by immunofluorescence assays, 282 (90% were also positive by the rapid antigen detection test, two were positive only by rapid antigen detection test, 33 were positive only by immunofluorescence assays, and 171 were positive by both methods. The 35 samples with discordant results were analyzed by real time PCR; the two samples positive only by rapid antigen detection test and the five positive only by immunofluorescence assays were also positive by real time PCR. There was no relation between the negativity by QuickVue® RSV Test and viral load or specific strain. The QuickVue® RSV Test showed sensitivity of 90%, specificity of 98.8%, predictive positive value of 99.3%, and negative predictive value of 94.6%, with accuracy of 93.2% and agreement κ index of 0.85 in comparison to immunofluorescence assay. Conclusions: This study demonstrated that the QuickVue® RSV Test Kit can be effective in early detection of Respiratory syncytial virus in nasopharyngeal aspirate and is reliable for use as a diagnostic tool in pediatrics.

  7. Exploiting pH-Regulated Dimer-Tetramer Transformation of Concanavalin A to Develop Colorimetric Biosensing of Bacteria.

    Science.gov (United States)

    Xu, Xiahong; Yuan, Yuwei; Hu, Guixian; Wang, Xiangyun; Qi, Peipei; Wang, Zhiwei; Wang, Qiang; Wang, Xinquan; Fu, Yingchun; Li, Yanbin; Yang, Hua

    2017-05-03

    Gold nanoparticles (AuNPs) aggregation-based colorimetric biosensing remains a challenge for bacteria due to their large size. Here we propose a novel colorimetric biosensor for rapid detection of Escherichia coli O157:H7 (E. coli O157:H7) in milk samples based on pH-regulated transformation of dimer/tetramer of Concanavalin A (Con A) and the Con A-glycosyl recognition. Briefly, antibody-modified magnetic nanoparticles was used to capture and concentrate E. coli O157:H7 and then to label with Con A; pH adjusted to 5 was then applied to dissociate Con A tetramer to release dimer, which was collected and re-formed tetramer at pH of 7 to cause the aggregation of dextran-modified AuNPs. The interesting pH-dependent conformation-transformation behavior of Con A innovated the design of the release from the bacteria surface and then the reconstruction of Con A. Therefore, we realized the sensitive colorimetric biosensing of bacteria, which are much larger than AuNPs that is generally not suitable for this kind of method. The proposed biosensor exhibited a limit of detection down to 41 CFU/mL, short assay time (~95 min) and satisfactory specificity. The biosensor also worked well for the detection in milk sample, and may provide a universal concept for the design of colorimetric biosensors for bacteria and virus.

  8. A direct pre-screen for marine bacteria producing compounds inhibiting quorum sensing reveals diverse planktonic bacteria that are bioactive.

    Science.gov (United States)

    Linthorne, Jamie S; Chang, Barbara J; Flematti, Gavin R; Ghisalberti, Emilio L; Sutton, David C

    2015-02-01

    A promising new strategy in antibacterial research is inhibition of the bacterial communication system termed quorum sensing. In this study, a novel and rapid pre-screening method was developed to detect the production of chemical inhibitors of this system (quorum-quenching compounds) by bacteria isolated from marine and estuarine waters. This method involves direct screening of mixed populations on an agar plate, facilitating specific isolation of bioactive colonies. The assay showed that between 4 and 46 % of culturable bacteria from various samples were bioactive, and of the 95 selectively isolated bacteria, 93.7 % inhibited Vibrio harveyi bioluminescence without inhibiting growth, indicating potential production of quorum-quenching compounds. Of the active isolates, 21 % showed further activity against quorum-sensing-regulated pigment production by Serratia marcescens. The majority of bioactive isolates were identified by 16S ribosomal DNA (rDNA) amplification and sequencing as belonging to the genera Vibrio and Pseudoalteromonas. Extracts of two strongly bioactive Pseudoalteromonas isolates (K1 and B2) were quantitatively assessed for inhibition of growth and quorum-sensing-regulated processes in V. harveyi, S. marcescens and Chromobacterium violaceum. Extracts of the isolates reduced V. harveyi bioluminescence by as much as 98 % and C. violaceum pigment production by 36 % at concentrations which had no adverse effect on growth. The activity found in the extracts indicated that the isolates may produce quorum-quenching compounds. This study further supports the suggestion that quorum quenching may be a common attribute among culturable planktonic marine and estuarine bacteria.

  9. Development of a novel genetically modified bioluminescent-bacteria-based assay for detection of fluoroquinolones in animal-derived foods.

    Science.gov (United States)

    Cheng, Guyue; Dong, Xiaobing; Wang, Yulian; Peng, Dapeng; Wang, Xu; Hao, Haihong; Xie, Shuyu; Qu, Wei; Liu, Zhenli; Yuan, Zonghui

    2014-12-01

    Fluoroquinolones (FQNs) are broad-spectrum antibacterial agents widely used in animal husbandry and aquaculture. The residues and antimicrobial resistance of such antibiotics are a major public health concern. To realize multianalyte detection of FQN residues, a genetically modified bacterium, Escherichia coli pK12 harboring plasmid pRecAlux3, was constructed in this study to develop a bioluminescent-bacteria-based assay for the detection of FQNs in animal-derived foods. This assay was based on the principle of induction of an SOS response by FQNs via inducing the recA-promoter-fused luciferase reporter gene existing on the plasmid pRecAlux3. E. coli pK12 was able to recognize 11 FQNs: difloxacin, enrofloxacin, ciprofloxacin, sarafloxacin, norfloxacin, danofloxacin, ofloxacin, pefloxacin, lomefloxacin, marbofloxacin, and orbifloxacin. This method could be applied to 11 edible tissues, including milk, fish muscle, and the muscles, livers, and kidneys of cattle, chickens, and pigs, with a very simple and rapid sample extraction procedure using only phosphate-buffered saline. The limits of detection of the FQNs were between 12.5 and 100 μg kg(-1), all of which were lower than the maximum residue limits. Most of the recoveries of the FQNs were in the range from 60 to 120 %, and the interassay coefficients of variation were less than 30 %. This method, confirmed by high-performance liquid chromatography, is reliable and can be used as both a screening test and a semiquantitative assay, when the identity of a single type of FQN is known.

  10. Portable Diagnostics and Rapid Germination

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Zachary Spencer [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-12-01

    In the Bioenergy and Defense Department of Sandia National Laboratories, characterization of the BaDx (Bacillus anthracis diagnostic cartridge) was performed and rapid germination chemistry was investigated. BaDx was tested with complex sample matrixes inoculated with Bacillus anthracis, and the trials proved that BaDx will detect Bacillus anthracis in a variety of the medium, such as dirt, serum, blood, milk, and horse fluids. The dimensions of the device were altered to accommodate an E. coli or Listeria lateral flow immunoassay, and using a laser printer, BaDx devices were manufactured to identify E. coli and Listeria. Initial testing with E. coli versions of BaDx indicate that the device will be viable as a portable diagnostic cartridge. The device would be more effective with faster bacteria germination; hence studies were performed the use of rapid germination chemistry. Trials with calcium dipicolinic acid displayed increased cell germination, as shown by control studies using a microplate reader. Upon lyophilization the rapid germination chemistry failed to change growth patterns, indicating that the calcium dipicolinic acid was not solubilized under the conditions tested. Although incompatible with the portable diagnostic device, the experiments proved that the rapid germination chemistry was effective in increasing cell germination.

  11. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens.

    Science.gov (United States)

    Kant, Krishna; Shahbazi, Mohammad-Ali; Dave, Vivek Priy; Ngo, Tien Anh; Chidambara, Vinayaka Aaydha; Than, Linh Quyen; Bang, Dang Duong; Wolff, Anders

    2018-03-10

    Rapid detection of foodborne pathogens at an early stage is imperative for preventing the outbreak of foodborne diseases, known as serious threats to human health. Conventional bacterial culturing methods for foodborne pathogen detection are time consuming, laborious, and with poor pathogen diagnosis competences. This has prompted researchers to call the current status of detection approaches into question and leverage new technologies for superior pathogen sensing outcomes. Novel strategies mainly rely on incorporating all the steps from sample preparation to detection in miniaturized devices for online monitoring of pathogens with high accuracy and sensitivity in a time-saving and cost effective manner. Lab on chip is a blooming area in diagnosis, which exploits different mechanical and biological techniques to detect very low concentrations of pathogens in food samples. This is achieved through streamlining the sample handling and concentrating procedures, which will subsequently reduce human errors and enhance the accuracy of the sensing methods. Integration of sample preparation techniques into these devices can effectively minimize the impact of complex food matrix on pathogen diagnosis and improve the limit of detections. Integration of pathogen capturing bio-receptors on microfluidic devices is a crucial step, which can facilitate recognition abilities in harsh chemical and physical conditions, offering a great commercial benefit to the food-manufacturing sector. This article reviews recent advances in current state-of-the-art of sample preparation and concentration from food matrices with focus on bacterial capturing methods and sensing technologies, along with their advantages and limitations when integrated into microfluidic devices for online rapid detection of pathogens in foods and food production line. Copyright © 2018. Published by Elsevier Inc.

  12. Portable microfluidic raman system for rapid, label-free early disease signature detection

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meiye [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Davis, Ryan Wesley [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Hatch, Anson [Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2015-09-01

    In the early stages of infection, patients develop non-specific or no symptoms at all. While waiting for identification of the infectious agent, precious window of opportunity for early intervention is lost. The standard diagnostics require affinity reagents and sufficient pathogen titers to reach the limit of detection. In the event of a disease outbreak, triaging the at-risk population rapidly and reliably for quarantine and countermeasure is more important than the identification of the pathogen by name. To expand Sandia's portfolio of Biological threat management capabilities, we will utilize Raman spectrometry to analyze immune subsets in whole blood to rapidly distinguish infected from non-infected, and bacterial from viral infection, for the purpose of triage during an emergency outbreak. The goal of this one year LDRD is to determine whether Raman spectroscopy can provide label-free detection of early disease signatures, and define a miniaturized Raman detection system meeting requirements for low- resource settings.

  13. Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles.

    Science.gov (United States)

    Chang, Yi-Chung; Yang, Chia-Ying; Sun, Ruei-Lin; Cheng, Yi-Feng; Kao, Wei-Chen; Yang, Pan-Chyr

    2013-01-01

    Staphylococcus aureus is one of the most important human pathogens, causing more than 500,000 infections in the United States each year. Traditional methods for bacterial culture and identification take several days, wasting precious time for patients who are suffering severe bacterial infections. Numerous nucleic acid-based detection methods have been introduced to address this deficiency; however, the costs and requirement for expensive equipment may limit the widespread use of such technologies. Thus, there is an unmet demand of new platform technology to improve the bacterial detection and identification in clinical practice. In this study, we developed a rapid, ultra-sensitive, low cost, and non-polymerase chain reaction (PCR)-based method for bacterial identification. Using this method, which measures the resonance light-scattering signal of aptamer-conjugated gold nanoparticles, we successfully detected single S. aureus cell within 1.5 hours. This new platform technology may have potential to develop a rapid and sensitive bacterial testing at point-of-care.

  14. Detection of gonococcal infection : pros and cons of a rapid test.

    Science.gov (United States)

    Vickerman, Peter; Peeling, Rosanna W; Watts, Charlotte; Mabey, David

    2005-01-01

    WHO estimates that 62 million cases of gonorrhea occur annually worldwide. Untreated infection can cause serious long-term complications, especially in women. In addition, Neisseria gonorrheae infection can facilitate HIV transmission, and babies born to infected mothers are at risk of ocular infection, which can lead to blindness. Where diagnostic facilities are lacking, gonorrhea can be treated syndromically. However, this inevitably leads to over-treatment, especially in women in whom the syndrome of vaginal discharge may be due not to N. gonorrheae infection but to several other more prevalent conditions. Over-treatment is a major concern because of widespread N. gonorrheae antibiotic resistance. Moreover, a high proportion of gonorrhea cases are asymptomatic and so do not present for syndromic management. Such cases will only be detected by screening tests. The gold standard test for the detection of N. gonorrheae is culture, which has high sensitivity and specificity. However, it requires well trained staff and its performance is affected by specimen transport conditions. Other options include microscopy and tests that detect gonococcal antigen or nucleic acid. Nucleic acid amplification tests (NAATs) have higher sensitivity and can be used on non-invasive samples (urine). However, they can cross-react with other Neisseria species and are expensive, requiring highly trained staff and sophisticated equipment. In settings where patients are asked to return for laboratory results, some infected patients never receive treatment as they fail to return for their test results. This reduction in treatment, and the possible onward transmission of N. gonorrheae during any delay in treatment, means that a rapid test of lower sensitivity may be more effective if it results in patients being treated at the initial visit. Indeed, even with the low sensitivity of currently available rapid tests (50-70%), modeling shows that they can outperform gold standard tests in

  15. Raman Hyperspectral Imaging for Detection of Watermelon Seeds Infected with Acidovorax citrulli

    OpenAIRE

    Lee, Hoonsoo; Kim, Moon S.; Qin, Jianwei; Park, Eunsoo; Song, Yu-Rim; Oh, Chang-Sik; Cho, Byoung-Kwan

    2017-01-01

    The bacterial infection of seeds is one of the most important quality factors affecting yield. Conventional detection methods for bacteria-infected seeds, such as biological, serological, and molecular tests, are not feasible since they require expensive equipment, and furthermore, the testing processes are also time-consuming. In this study, we use the Raman hyperspectral imaging technique to distinguish bacteria-infected seeds from healthy seeds as a rapid, accurate, and non-destructive det...

  16. Rapid identification of bacteria in positive blood culture by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Schmidt, V; Jarosch, A; März, P; Sander, C; Vacata, V; Kalka-Moll, W

    2012-03-01

    Blood culture is probably the most significant specimen used for the diagnosis of bacterial infections, especially for bloodstream infections. In the present study, we compared the resin-containing BD BACTEC™ Plus-Aerobic (Becton Dickinson), non-charcoal-containing BacT/Alert(®) SA (bioMérieux), and charcoal-containing BacT/Alert(®) FA (bioMérieux) blood culture bottles with direct identification by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). A total of 103 bacterial isolates, from clinical blood cultures, representing the most frequent 13 genera and 24 species were examined. Bacteria were extracted from positive blood culture broth by density centrifugation and then subjected to identification by MALDI-TOF MS using two different volumes and chemical treatments. Overall, correct identification by MALDI-TOF MS was obtained for the BD BACTEC™ Plus-Aerobic, BacT/Alert(®) SA, and BacT/Alert(®) FA blood culture bottles in 72%, 45.6%, and 23%, respectively, for gram-negative bacteria in 86.6%, 69.2%, and 47.1%, respectively, and for gram-positive bacteria in 60.0%, 28.8%, and 5.4%, respectively. The lack of identification was observed mainly with viridans streptococci. Depending on the blood culture bottles used in routine diagnostic procedures and the protocol for bacterial preparation, the applied MALDI-TOF MS represents an efficient and rapid method for direct bacterial identification.

  17. Rapid visual and spectrophotometric nitrite detection by cyclometalated ruthenium complex.

    Science.gov (United States)

    Lo, Hoi-Shing; Lo, Ka-Wai; Yeung, Chi-Fung; Wong, Chun-Yuen

    2017-10-16

    Quantitative determination of nitrite ion (NO 2 - ) is of great importance in environmental and clinical investigations. A rapid visual and spectrophotometric assay for NO 2 - detection was developed based on a newly designed ruthenium complex, [Ru(npy)([9]aneS3)(CO)](ClO 4 ) (denoted as RuNPY; npy = 2-(1-naphthyl)pyridine, [9]aneS3 = 1,4,7-trithiacyclononane). This complex traps NO + produced in acidified NO 2 - solution, and yields observable color change within 1 min at room temperature. The assay features excellent dynamic range (1-840 μmol L -1 ) and high selectivity, and its limit of detection (0.39 μmol L -1 ) is also well below the guideline values for drinking water recommended by WHO and U.S. EPA. Practical use of this assay in tap water and human urine was successfully demonstrated. Overall, the rapidity and selectivity of this assay overcome the problems suffered by the commonly used modified Griess assays for nitrite determination. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Label-free bimodal waveguide immunosensor for rapid diagnosis of bacterial infections in cirrhotic patients.

    Science.gov (United States)

    Maldonado, Jesús; González-Guerrero, Ana Belén; Domínguez, Carlos; Lechuga, Laura M

    2016-11-15

    Spontaneous bacterial peritonitis is an acute bacterial infection of ascitic fluid; it has a high incidence in cirrhotic patients and it is associated with high mortality. In such a situation, early diagnosis and treatment is crucial for the survival of the patient. However, bacterial analysis in ascitic fluid is currently based on culture methods, which are time-consuming and laborious. We report here the application of a photonic interferometer biosensor based on a bimodal waveguide (BiMW) for the rapid and label-free detection of bacteria directly in ascitic fluid. The device consists of a straight waveguide in which two modes of the same polarization interfere while interacting with the external medium through their evanescent fields. A bimolecular event occurring on the sensor area of the device (e.g. capturing bacteria) will differently affect each light mode, inducing a variation in the phase of the light exiting at the output of the waveguide. In this work, we demonstrate the quantitative detection of Bacillus cereus in buffer medium and Escherichia coli in undiluted ascitic fluid from cirrhotic patients. In the case of Bacillus cereus detection, the device was able to specifically detect bacteria at relevant concentrations in 12.5min and in the case of Escherichia coli detection, the analysis time was 25min. Extrapolation of the data demonstrated that the detection limits of the biosensor could reach few bacteria per milliliter. Based on the results obtained, we consider that the BiMW biosensor is positioned as a promising new clinical tool for user-friendly, cost-effective and real-time microbiological analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A novel kit for rapid detection of Vibrio cholerae O1.

    OpenAIRE

    Hasan, J A; Huq, A; Tamplin, M L; Siebeling, R J; Colwell, R R

    1994-01-01

    We report on the development and testing of a novel, rapid, colorimetric immunodiagnostic kit, Cholera SMART, for direct detection of the presence of Vibrio cholerae O1 in clinical specimens. Unlike conventional culture methods requiring several days to complete, the Cholera SMART kit can be used directly in the field by untrained or minimally skilled personnel to detect V. cholerae O1 in less than 15 min, without cumbersome laboratory equipment. A total of 120 clinical and environmental bact...

  20. Impedance spectral fingerprint of E. coli cells on interdigitated electrodes: A new approach for label free and selective detection

    Directory of Open Access Journals (Sweden)

    Maria Mallén-Alberdi

    2016-03-01

    Full Text Available Impedance-based biosensors for bacterial detection offer a rapid and cost-effective alternative to conventional techniques that are time-consuming and require specialized equipment and trained users. In this work, a new bacteria detection scheme is presented based on impedance measurements with antibody-modified polysilicon interdigitated electrodes (3 μm pitch, IDEs. The detection approach was carried out taking advantage of the E. coli structure which, in electrical terms, is constituted by two insulating cell membranes that separate a conductive cytoplasmatic medium and a more conductive periplasm. Impedance detection of bacteria is usually analyzed using electrical equivalent circuit models that show limitations for the interpretation of such complex cell structure. Here, a differential impedance spectrum representation is used to study the unique fingerprint that arises when bacteria attach to the surface of IDEs. That fingerprint shows the dual electrical behavior, insulating and conductive, at different frequency ranges. In parallel, finite-element simulations of this system using a three-shell bacteria model are performed to explain such phenomena. Overall, a new approach to detect bacteria is proposed that also enables to differentiate viable bacteria from other components non-specifically attached to the IDE surface by just detecting their spectral fingerprints. Keywords: Impedance spectroscopy, Bacterial detection, Interdigitated electrodes, Label-free detection, Immuno-detection, E. coli O157:H7

  1. Rapid on-site detection of Acidovorax avenae subsp. citrulli by gold-labeled DNA strip sensor.

    Science.gov (United States)

    Zhao, Wenjun; Lu, Jie; Ma, Wenwei; Xu, Chuanlai; Kuang, Hua; Zhu, Shuifang

    2011-06-15

    Acidovorax avenae subsp. citrulli (AAC) is one of the most harmful diseases in cucurbit production. A rapid and sensitive DNA strip sensor was constructed based on gold nanoparticle-labeled oligonucleotide probes for the detection of AAC. Both the qualitative and semi-quantitative detections of target DNA were successfully achieved using the developed DNA strip sensor. The qualitative limit of detection (LOD) of the strip sensor was determined as 4 nM. The LOD for the semi-quantitative detection was calculated to be 0.48 nM in the range of 0-10 nM. The genomic DNA was detected directly using the DNA strip sensor without any further treatment. This DNA strip sensor is a potentially useful tool for rapid on-site DNA screening. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Toward the use of genomics to study microevolutionary change in bacteria.

    LENUS (Irish Health Repository)

    Falush, Daniel

    2009-10-01

    Bacteria evolve rapidly in response to the environment they encounter. Some environmental changes are experienced numerous times by bacteria from the same population, providing an opportunity to dissect the genetic basis of adaptive evolution. Here I discuss two examples in which the patterns of rapid change provide insight into medically important bacterial phenotypes, namely immune escape by Neisseria meningitidis and host specificity of Campylobacter jejuni. Genomic analysis of populations of bacteria from these species holds great promise but requires appropriate concepts and statistical tools.

  3. Toward the use of genomics to study microevolutionary change in bacteria.

    Directory of Open Access Journals (Sweden)

    Daniel Falush

    2009-10-01

    Full Text Available Bacteria evolve rapidly in response to the environment they encounter. Some environmental changes are experienced numerous times by bacteria from the same population, providing an opportunity to dissect the genetic basis of adaptive evolution. Here I discuss two examples in which the patterns of rapid change provide insight into medically important bacterial phenotypes, namely immune escape by Neisseria meningitidis and host specificity of Campylobacter jejuni. Genomic analysis of populations of bacteria from these species holds great promise but requires appropriate concepts and statistical tools.

  4. Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation

    Science.gov (United States)

    Iriya, Rafael; Syal, Karan; Jing, Wenwen; Mo, Manni; Yu, Hui; Haydel, Shelley E.; Wang, Shaopeng; Tao, Nongjian

    2017-12-01

    Diagnosing antibiotic-resistant bacteria currently requires sensitive detection of phenotypic changes associated with antibiotic action on bacteria. Here, we present an optical imaging-based approach to quantify bacterial membrane deformation as a phenotypic feature in real-time with a nanometer scale (˜9 nm) detection limit. Using this approach, we found two types of antibiotic-induced membrane deformations in different bacterial strains: polymyxin B induced relatively uniform spatial deformation of Escherichia coli O157:H7 cells leading to change in cellular volume and ampicillin-induced localized spatial deformation leading to the formation of bulges or protrusions on uropathogenic E. coli CFT073 cells. We anticipate that the approach will contribute to understanding of antibiotic phenotypic effects on bacteria with a potential for applications in rapid antibiotic susceptibility testing.

  5. Quantum Dot-Fullerene Based Molecular Beacon Nanosensors for Rapid, Highly Sensitive Nucleic Acid Detection.

    Science.gov (United States)

    Liu, Ye; Kannegulla, Akash; Wu, Bo; Cheng, Li-Jing

    2018-05-15

    Spherical fullerene (C 60 ) can quench the fluorescence of a quantum dot (QD) through energy transfer and charge transfer processes, with the quenching efficiency regulated by the number of proximate C 60 on each QD. With the quenching property and its small size compared with other nanoparticle-based quenchers, it is advantageous to group a QD reporter and multiple C 60 -labeled oligonucleotide probes to construct a molecular beacon (MB) probe for sensitive, robust nucleic acid detection. We demonstrated a rapid, high-sensitivity DNA detection method using the nanosensors composed of QD-C 60 based MBs carried by magnetic nanoparticles (MNPs). The assay was accelerated by first dispersing the nanosensors in analytes for highly efficient DNA capture resulting from short-distance 3-dimensional diffusion of targets to the sensor surface and then concentrating the nanosensors to a substrate by magnetic force to amplify the fluorescence signal for target quantification. The enhanced mass transport enabled a rapid detection (< 10 min) with a small sample volume (1-10 µl). The high signal-to-noise ratio produced by the QD-C 60 pairs and magnetic concentration yielded a detection limit of 100 fM (~106 target DNA copies for a 10 µl analyte). The rapid, sensitive, label-free detection method will benefit the applications in point-of-care molecular diagnostic technologies.

  6. Pathogen detection and gut bacteria identification in Apis cerana ...

    African Journals Online (AJOL)

    acer

    other lactic acid bacteria, were isolated from larvae and adult workers, but gave conflicting preliminary identities based on their biochemistry-morphology versus sequence analysis of a partial fragment (1.4 kb) of their 16S rRNA. Key words: Apis cerana indica, bee pathogens, gut bacteria, multiplex polymerase chain ...

  7. Flow cytometry for rapid detection of Salmonella spp. in seed sprouts

    Directory of Open Access Journals (Sweden)

    Bledar Bisha

    2014-12-01

    Full Text Available Seed sprouts (alfalfa, mung bean, radish, etc. have been implicated in several recent national and international outbreaks of salmonellosis. Conditions used for sprouting are also conducive to the growth of Salmonella. As a result, this pathogen can quickly grow to very high cell densities during sprouting without any detectable organoleptic impact. Seed sprouts typically also support heavy growth (~108 CFU g−1 of a heterogeneous microbiota consisting of various bacterial, yeast, and mold species, often dominated by non-pathogenic members of the family Enterobacteriaceae. This heavy background may present challenges to the detection of Salmonella, especially if this pathogen is present in relatively low numbers. We combined DNA-based fluorescence in situ hybridization (FISH with flow cytometry (FCM for the rapid molecular detection of Salmonella enterica ser. Typhimurium in artificially contaminated alfalfa and other seed sprouts. Components of the assay included a set of cooperatively binding probes, a chemical blocking treatment intended to reduce non-specific background, and sample concentration via tangential flow filtration (TFF. We were able to detect S. Typhimurium in sprout wash at levels as low as 103 CFU ml−1 sprout wash (104 CFU g−1 sprouts against high microbial backgrounds (~108 CFU g−1 sprouts. Hybridization times were typically 30 min, with additional washing, but we ultimately found that S. Typhimurium could be readily detected using hybridization times as short as 2 min, without a wash step. These results clearly demonstrate the potential of combined DNA-FISH and FCM for rapid detection of Salmonella in this challenging food matrix and provide industry with a useful tool for compliance with sprout production standards proposed in the Food Safety Modernization Act (FSMA.

  8. 16S rRNA based microarray analysis of ten periodontal bacteria in patients with different forms of periodontitis.

    Science.gov (United States)

    Topcuoglu, Nursen; Kulekci, Guven

    2015-10-01

    DNA microarray analysis is a computer based technology, that a reverse capture, which targets 10 periodontal bacteria (ParoCheck) is available for rapid semi-quantitative determination. The aim of this three-year retrospective study was to display the microarray analysis results for the subgingival biofilm samples taken from patient cases diagnosed with different forms of periodontitis. A total of 84 patients with generalized aggressive periodontitis (GAP,n:29), generalized chronic periodontitis (GCP, n:25), peri-implantitis (PI,n:14), localized aggressive periodontitis (LAP,n:8) and refractory chronic periodontitis (RP,n:8) were consecutively selected from the archives of the Oral Microbiological Diagnostic Laboratory. The subgingival biofilm samples were analyzed by the microarray-based identification of 10 selected species. All the tested species were detected in the samples. The red complex bacteria were the most prevalent with very high levels in all groups. Fusobacterium nucleatum was detected in all samples at high levels. The green and blue complex bacteria were less prevalent compared with red and orange complex, except Aggregatibacter actinomycetemcomitas was detected in all LAP group. Positive correlations were found within all the red complex bacteria and between red and orange complex bacteria especially in GCP and GAP groups. Parocheck enables to monitoring of periodontal pathogens in all forms of periodontal disease and can be alternative to other guiding and reliable microbiologic tests. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Rapid radiometric methods to detect and differentiate Mycobacterium tuberculosis/M. bovis from other mycobacterial species

    International Nuclear Information System (INIS)

    Siddiqi, S.H.; Hwangbo, C.C.; Silcox, V.; Good, R.C.; Snider, D.E. Jr.; Middlebrook, G.

    1984-01-01

    Rapid methods for the differentiation of Mycobacterium tuberculosis/M. bovis (TB complex) from other mycobacteria (MOTT bacilli) were developed and evaluated in a three-phase study. In the first phase, techniques for identification of Mycobacterium species were developed by using radiometric technology and BACTEC Middlebrook 7H12 liquid medium. Based on 14 CO 2 evolution, characteristic growth patterns were established for 13 commonly encountered mycobacterial species. Mycobacteria belonging to the TB complex were differentiated from other mycobacteria by cellular morphology and rate of 14 CO 2 evolution. For further differentiation, radiometric tests for niacin production and inhibition by Q-nitro-alpha-acetyl amino-beta-hydroxy-propiophenone (NAP) were developed. In the second phase, 100 coded specimens on Lowenstein-Jensen medium were identified as members of the TB complex, MOTT bacilli, bacteria other than mycobacteria, or ''no viable organisms'' within 3 to 12 (average 6.4) days of receipt from the Centers for Disease Control. Isolation and identification of mycobacteria from 20 simulated sputum specimens were carried out in phase III. Out of 20 sputum specimens, 16 contained culturable mycobacteria, and all of the positives were detected by the BACTEC method in an average of 7.3 days. The positive mycobacterial cultures were isolated and identified as TB complex or MOTT bacilli in an average of 12.8 days. The radiometric NAP test was found to be highly sensitive and specific for a rapid identification of TB complex, whereas the radiometric niacin test was found to have some inherent problems. Radiometric BACTEC and conventional methodologies were in complete agreement in Phase II as well as in Phase III

  10. Quantification of viable bacteria in wastewater treatment plants by using propidium monoazide combined with quantitative PCR (PMA-qPCR).

    Science.gov (United States)

    Li, Dan; Tong, Tiezheng; Zeng, Siyu; Lin, Yiwen; Wu, Shuxu; He, Miao

    2014-02-01

    The detection of viable bacteria in wastewater treatment plants (WWTPs) is very important for public health, as WWTPs are a medium with a high potential for waterborne disease transmission. The aim of this study was to use propidium monoazide (PMA) combined with the quantitative polymerase chain reaction (PMA-qPCR) to selectively detect and quantify viable bacteria cells in full-scale WWTPs in China. PMA was added to the concentrated WWTP samples at a final concentration of 100 micromol/L and the samples were incubated in the dark for 5 min, and then lighted for 4 min prior to DNA extraction and qPCR with specific primers for Escherichia coli and Enterococci, respectively. The results showed that PMA treatment removed more than 99% of DNA from non-viable cells in all the WWTP samples, while matrices in sludge samples markedly reduced the effectiveness of PMA treatment. Compared to qPCR, PMA-qPCR results were similar and highly linearly correlated to those obtained by culture assay, indicating that DNA from non-viable cells present in WWTP samples can be eliminated by PMA treatment, and that PMA-qPCR is a reliable method for detection of viable bacteria in environmental samples. This study demonstrated that PMA-qPCR is a rapid and selective detection method for viable bacteria in WWTP samples, and that WWTPs have an obvious function in removing both viable and non-viable bacteria. The results proved that PMA-qPCR is a promising detection method that has a high potential for application as a complementary method to the standard culture-based method in the future.

  11. Early Detection Rapid Response Program Targets New Noxious Weed Species in Washington State

    Science.gov (United States)

    Andreas, Jennifer E.; Halpern, Alison D.; DesCamp, Wendy C.; Miller, Timothy W.

    2015-01-01

    Early detection, rapid response is a critical component of invasive plant management. It can be challenging, however, to detect new invaders before they become established if landowners cannot identify species of concern. In order to increase awareness, eye-catching postcards were developed in Washington State as part of a noxious weed educational…

  12. Screen-printed fluorescent sensors for rapid and sensitive anthrax biomarker detection

    International Nuclear Information System (INIS)

    Lee, Inkyu; Oh, Wan-Kyu; Jang, Jyongsik

    2013-01-01

    Highlights: •We fabricated flexible anthrax sensors with a simple screen-printing method. •The sensors selectively detected B. anthracis biomarker. •The sensors provide the visible alarm against anthrax attack. -- Abstract: Since the 2001 anthrax attacks, efforts have focused on the development of an anthrax detector with rapid response and high selectivity and sensitivity. Here, we demonstrate a fluorescence sensor for detecting anthrax biomarker with high sensitivity and selectivity using a screen-printing method. A lanthanide–ethylenediamine tetraacetic acid complex was printed on a flexible polyethersulfone film. Screen-printing deposition of fluorescent detecting moieties produced fluorescent patterns that acted as a visual alarm against anthrax

  13. Succession of cable bacteria and electric currents in marine sediment

    DEFF Research Database (Denmark)

    Schauer, Regina; Risgaard-Petersen, Nils; Kjeldsen, Kasper Urup

    2014-01-01

    conductivity, we followed a population for 53 days after exposing sulphidic sediment with initially no detectable filaments to oxygen. After 10 days, cable bacteria and electric currents were established throughout the top 15[thinsp]mm of the sediment, and after 21 days the filament density peaked with a total......][mu]m, with a general increase over time and depth, and yet they shared 16S rRNA sequence identity of >98%. Comparison of the increase in biovolume and electric current density suggested high cellular growth efficiency. While the vertical expansion of filaments continued over time and reached 30[thinsp]mm, the electric...... current density and biomass declined after 13 and 21 days, respectively. This might reflect a breakdown of short filaments as their solid sulphide sources became depleted in the top layers of the anoxic zone. In conclusion, cable bacteria combine rapid and efficient growth with oriented movement...

  14. Expulsion of swimming bacteria by a circular flow

    Science.gov (United States)

    Sokolov, Andrey; Aronson, Igor

    Macroscopic shear flow alters swimming trajectories in a highly nontrivial way and results in dramatic reduction of viscosity and heterogeneous bacterial distributions. We report on experimental and theoretical studies of rapid expulsion of microswimmers, such as motile bacteria, by a circular flow created by a rotating microparticle. We observed a formation of a macroscopic depletion area in a high-shear region, in the vicinity of a microparticle. The rapid migration of bacteria from the shear-rich area is caused by a circular structure of the flow rather than intrinsic random fluctuations of bacteria orientations, in stark contrast to planar shear flow. Our mathematical model revealed that expulsion is a combined effect of motility and alignment by a vortical flow. Our findings offer a novel approach for manipulation of motile microorganisms and shed new light on bacteria-flow interactions. Was supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science And Engineering, under Contract No. DE AC02-06CH11357.

  15. RAPID DETECTION OF PNEUMOCOCCAL ANTIGEN IN PLEURAL FLUID OF PATIENTS WITH COMMUNITY ACQUIRED PNEUMONIA

    NARCIS (Netherlands)

    BOERSMA, WG; LOWENBERG, A; HOLLOWAY, Y; KUTTSCHRUTTER, H; SNIJDER, JAM; KOETER, GH

    Background Detection of pneumococcal antigen may help to increase the rate of diagnosis of pneumococcal pneumonia. This study was designed to determine the value of rapid detection of pneumococcal antigen in pleural fluid from patients with community acquired pneumonia. Methods Thoracentesis was

  16. Characterization of spoilage bacteria in pork sausage by PCR-DGGE analysis

    Directory of Open Access Journals (Sweden)

    Francesca Silva Dias

    2013-09-01

    Full Text Available To investigate microbial diversity and identify spoilage bacteria in fresh pork sausages during storage, twelve industrial pork sausages of different trademarks were stored at 4 ºC for 0, 14, 28 and 42 days, 80% relative humidity and packaged in sterile plastic bags. Microbiological analysis was performed. The pH and water activity (a w were measured. The culture-independent method performed was the Polymerase Chain Reaction - Denaturing Gradient Gel Electrophoresis (PCR-DGGE. The culture-dependent method showed that the populations of mesophilic bacteria and Lactic Acid Bacteria (LAB increased linearly over storage time. At the end of the storage time, the average population of microorganisms was detected, in general, at the level of 5 log cfu g-1. A significant (P < 0.005 increase was observed in pH and a w values at the end of the storage time. The PCR-DGGE allowed a rapid identification of dominant communities present in sausages. PCR-DGGE discriminated 15 species and seven genera of bacteria that frequently constitute the microbiota in sausage products. The most frequent spoilage bacteria identified in the sausages were Lactobacillus sakei and Brochothrix thermosphacta. The identification of dominant communities present in fresh pork sausages can help in the choice of the most effective preservation method for extending the product shelf-life.

  17. Characterization of the spoilage lactic acid bacteria in “sliced vacuum-packed cooked ham”

    Science.gov (United States)

    Kalschne, Daneysa Lahis; Womer, Rute; Mattana, Ademir; Sarmento, Cleonice Mendes Pereira; Colla, Luciane Maria; Colla, Eliane

    2015-01-01

    The lactic acid bacteria are involved with food fermentation and in such cases with food spoilage. Considering the need to reduce the lactic acid bacteria growth in meat products, the aim of this work was to enumerated and investigated the lactic acid bacteria present on sliced vacuum-packed cooked ham stored at 4 °C and 8 °C for 45 days by phenotypic and molecular techniques. The quantification showed that the lactic acid bacteria were present from the first day with mean count of 1.98 log cfu/g for the four batches analyzed. The lactic acid bacteria grew rapidly on the samples, and plate counts around 7.59 log cfu/g and 8.25 log cfu/g were detected after 45 days of storage at 4 °C and 8 °C, respectively; storage temperatures studied showed significant influence on the microorganism in study growth. The predominant lactic acid bacteria associated with the spoilage samples at one day of storage includes Lactobacillus sp., the phenotypic overlap Leuconostoc / Weissella sp. and Enterococcus sp. At 45 days of storage at 4 and 8 °C the mainly specie was Lactobacillus curvatus , following by Lactobacillus sakei and Leuconostoc mesentereoides ; the Enterococcus sp. was not present in the samples. PMID:26221105

  18. Dual Enlargement of Gold Nanoparticles: From Mechanism to Scanometric Detection of Pathogenic Bacteria

    DEFF Research Database (Denmark)

    Cao, Cuong; Gontard, Lionel Cervera; Le Ly, Tram Thuy

    2011-01-01

    the electron density of the nanostructures, leading to a stronger intensity for colorimetric discrimination as well as better sensitivity for quantitative measurement. Based on this, a simple scanometric assay for the on‐slide detection of the food‐born pathogen Campylobacter jejuni is developed. After...... capturing the target bacteria, gold‐tagged immunoprobes are added to create a signal on a solid substrate. The signal is then amplified by the dual enlargement process, resulting in a strong color intensity that can easily be recognized by the unaided eye, or measured by an inexpensive flatbed scanner...

  19. Fat Content Modulates Rapid Detection of Food: A Visual Search Study Using Fast Food and Japanese Diet

    Directory of Open Access Journals (Sweden)

    Reiko Sawada

    2017-06-01

    Full Text Available Rapid detection of food is crucial for the survival of organisms. However, previous visual search studies have reported discrepant results regarding the detection speeds for food vs. non-food items; some experiments showed faster detection of food than non-food, whereas others reported null findings concerning any speed advantage for the detection of food vs. non-food. Moreover, although some previous studies showed that fat content can affect visual attention for food, the effect of fat content on the detection of food remains unclear. To investigate these issues, we measured reaction times (RTs during a visual search task in which participants with normal weight detected high-fat food (i.e., fast food, low-fat food (i.e., Japanese diet, and non-food (i.e., kitchen utensils targets within crowds of non-food distractors (i.e., cars. Results showed that RTs for food targets were shorter than those for non-food targets. Moreover, the RTs for high-fat food were shorter than those for low-fat food. These results suggest that food is more rapidly detected than non-food within the environment and that a higher fat content in food facilitates rapid detection.

  20. Fat Content Modulates Rapid Detection of Food: A Visual Search Study Using Fast Food and Japanese Diet.

    Science.gov (United States)

    Sawada, Reiko; Sato, Wataru; Toichi, Motomi; Fushiki, Tohru

    2017-01-01

    Rapid detection of food is crucial for the survival of organisms. However, previous visual search studies have reported discrepant results regarding the detection speeds for food vs. non-food items; some experiments showed faster detection of food than non-food, whereas others reported null findings concerning any speed advantage for the detection of food vs. non-food. Moreover, although some previous studies showed that fat content can affect visual attention for food, the effect of fat content on the detection of food remains unclear. To investigate these issues, we measured reaction times (RTs) during a visual search task in which participants with normal weight detected high-fat food (i.e., fast food), low-fat food (i.e., Japanese diet), and non-food (i.e., kitchen utensils) targets within crowds of non-food distractors (i.e., cars). Results showed that RTs for food targets were shorter than those for non-food targets. Moreover, the RTs for high-fat food were shorter than those for low-fat food. These results suggest that food is more rapidly detected than non-food within the environment and that a higher fat content in food facilitates rapid detection.

  1. Fat Content Modulates Rapid Detection of Food: A Visual Search Study Using Fast Food and Japanese Diet

    Science.gov (United States)

    Sawada, Reiko; Sato, Wataru; Toichi, Motomi; Fushiki, Tohru

    2017-01-01

    Rapid detection of food is crucial for the survival of organisms. However, previous visual search studies have reported discrepant results regarding the detection speeds for food vs. non-food items; some experiments showed faster detection of food than non-food, whereas others reported null findings concerning any speed advantage for the detection of food vs. non-food. Moreover, although some previous studies showed that fat content can affect visual attention for food, the effect of fat content on the detection of food remains unclear. To investigate these issues, we measured reaction times (RTs) during a visual search task in which participants with normal weight detected high-fat food (i.e., fast food), low-fat food (i.e., Japanese diet), and non-food (i.e., kitchen utensils) targets within crowds of non-food distractors (i.e., cars). Results showed that RTs for food targets were shorter than those for non-food targets. Moreover, the RTs for high-fat food were shorter than those for low-fat food. These results suggest that food is more rapidly detected than non-food within the environment and that a higher fat content in food facilitates rapid detection. PMID:28690568

  2. Rapid Detection and Characterization of Emerging Foreign Animal Disease Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Jaing, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-18

    To best safeguard human and animal health requires early detection and characterization of disease events. This must include effective surveillance for emerging infectious diseases. Both deliberate and natural outbreaks have enormous economic and public health impacts, and can present serious threats to national security. In this project, we developed novel next generation detection technologies to protect the agricultural economy and biosecurity. The first technology is a multiplexed assay to simultaneously detection 10 swine viral and bacterial pathogens. The second one is the Lawrence Livermore Microbial Detection Array (LLMDA) which can detect more than 10,000 microbial species including 4219 viruses, 5367 bacteria, 265 fungi, 117 protozoa and 293 archaea. We analyzed a series of swine clinical samples from past disease events to demonstrate the utility of the assays for faster and cheaper detection of emerging and foreign animal disease pathogens, and their utility as s routine diagnosis and surveillance tool. A second goal of the study is to better understand mechanisms of African swine fever virus (ASFV) infection in pigs to aid the development of countermeasures and diagnostics. There is no vaccine available for ASF. ASF outbreak is on the rise on several European countries. Though ASF is not currently in the U.S., a potential outbreak in the U.S. would be detrimental to the swine industry and the US agricultural economy. We pursued a genome-wide approach to characterize the pig immune responses after ASFV infection. We used RNA sequencing and bioinformatics methods to identify genes and pathways that are affected during ASF infection. We have identified a list of most differentially expressed genes that are in the immune response pathways.

  3. In vitro model of production of antibodies; a new approach to reveal the presence of key bacteria in polymicrobial environments.

    Science.gov (United States)

    Wu, Chongcong; Nakka, Sravya; Mansouri, Sepahdar; Bengtsson, Torbjörn; Nayeri, Tayeb; Nayeri, Fariba

    2016-09-09

    There is a rapid emergence of multiple resistant gram-negative bacteria due to overuse of antibiotics in the treatment of infections. Biofilms consist of polymicrobial communities that survive the host's defense system. The key bacteria in biofilms are slow growing and support an attachment and rapid growth of other microorganisms. Current antimicrobial strategies often fail due to poor diagnosis of key pathogens in biofilms. The study aims to develop anti-bacterial human antibodies in vitro from patients who had recently undergone a systemic infection by pathogenic bacteria and to use these antibodies as a tool for detecting bacteria in biofilms. Lymphocytes were separated from whole blood of patients (n = 10) and stimulated with heat-killed bacteria to produce antibodies in vitro. The specificity of antibodies in recognizing the bacteria against which they were directed was evaluated by surface plasmon resonance system (SPR) and electron microscopy. The ulcer secretions from patients with chronic and acute leg ulcers and healthy controls were analyzed by the SPR system and the results were compared with culture studies. The produced antibodies recognized bacteria with high sensitivity (SPR). The antibodies against Enterococcus fecalis bound specifically to the microorganism in a bacterial co-culture that was visualized by electron microscopy. In the present work, a method for producing specific antibodies against bacteria is introduced to recognize bacterial components in body fluids of patients suffering from pathogenic biofilms. This diagnostic technique may be most useful in clinical microbiology and in the choice of antibiotics in the treatment of serious infections.

  4. Detection and identification of bacteria in a juice matrix with Fourier transform-near infrared spectroscopy and multivariiate analysis.

    Science.gov (United States)

    Rodriguez-Saona, L E; Khambaty, F M; Fry, F S; Dubois, J; Calvey, E M

    2004-11-01

    The use of Fourier transform-near infrared (FT-NIR) spectroscopy combined with multivariate pattern recognition techniques was evaluated to address the need for a fast and senisitive method for the detection of bacterial contamination in liquids. The complex cellular composition of bacteria produces FT-NIR vibrational transitions (overtone and combination bands), forming the basis for identification and subtyping. A database including strains of Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Bacillus cereus, and Bacillus thuringiensis was built, with special care taken to optimize sample preparation. The bacterial cells were treated with 70% (vol/vol) ethanolto enhance safe handling of pathogenic strains and then concentrated on an aluminum oxide membrane to obtain a thin bacterial film. This simple membrane filtration procedure generated reproducible FT-NIR spectra that allowed for the rapid discrimination among closely related strains. Principal component analysis and soft independent modeling of class analogy of transformed spectra in the region 5,100 to 4,400 cm(-1) were able to discriminate between bacterial species. Spectroscopic analysis of apple juices inoculated with different strains of E. coli at approximately 10(5) CFU/ml showed that FT-NIR spectralfeatures are consistent with bacterial contamination and soft independent modeling of class analogy correctly predicted the identity of the contaminant as strains of E. coli. FT-NIR in conjunction with multivariate techniques can be used for the rapid and accurate evaluation of potential bacterial contamination in liquids with minimal sample manipulation, and hence limited exposure of the laboratory worker to the agents.

  5. Bioconjugated fluorescent silica nanoparticles for the rapid detection of Entamoeba histolytica.

    Science.gov (United States)

    Hemadi, Ahmad; Ekrami, Alireza; Oormazdi, Hormozd; Meamar, Ahmad Reza; Akhlaghi, Lame; Samarbaf-Zadeh, Ali Reza; Razmjou, Elham

    2015-05-01

    Rapid detection of Entamoeba histolytica based on fluorescent silica nanoparticle (FSNP) indirect immunofluorescence microscopy was evaluated. Silica nanoparticles were synthesized using Stöber's method, with their surface activated to covalently bind to, and immobilize, protein A. For biolabeling, FSNP was added to conjugated E. histolytica trophozoites with monoclonal anti-E. histolytica IgG1 for microscopic observation of fluorescence. Fluorescent silica nanoparticle sensitivity was determined with axenically cultured E. histolytica serially diluted to seven concentrations. Specificity was evaluated using other intestinal protozoa. Fluorescent silica nanoparticles detected E. histolytica at the lowest tested concentration with no cross-reaction with Entamoeba dispar, Entamoeba moshkovskii, Blastocystis sp., or Giardia lamblia. Visualization of E. histolytica trophozoites with anti-E. histolytica antibody labeled with fluorescein isothiocyanate (FITC) was compared with that using anti-E. histolytica antibody bioconjugated FSNP. Although FITC and FSNP produced similar results, the amount of specific antibody required for FITC to induce fluorescence of similar intensity was fivefold that for FSNP. Fluorescent silica nanoparticles delivered a rapid, simple, cost-effective, and highly sensitive and specific method of detecting E. histolytica. Further study is needed before introducing FSNP for laboratory diagnosis of amoebiasis. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. [Development and evaluation of a rapid PCR detection kit for Ophiocordyceps sinensis].

    Science.gov (United States)

    Hou, Fei-Xia; Cao, Jing; Wang, Sha-Sha; Wang, Xi; Yuan, Yuan; Peng, Cheng; Wan, De-Guang; Guo, Jin-Lin

    2017-03-01

    Ophiocordyceps sinensis is a valuable traditional Chinese medicine. Due to resource shortage, expensive price and huge market demand, there are many adulterants of O. sinensis in markets. Therefore, it is necessary to establish a rapid and effective method for distinguishing O. sinensis. Based on the species-specific PCR of O. sinensis, this study developed a detection kit by optimizing the components and evaluated the specificity, detection limit, repeatability and shelf life of the kit. The results showed that when the quality of O. sinensis accounted for more than 1/200 of that mixture, it could be detected successfully. Moreover, only O. sinensis could be amplified and glowed bright green fluorescence under ultraviolet light. The kit was still in effect when it was placed at 37 ℃ for three days, which indicated that it was stable and effective for one year stored in 4 ℃. The kit in the same batch under different operation conditions, and in different batch under the same operation conditions gave the same result and accuracy, which showed good repeatability of the kit. It is simple, rapid and accurate to distinguish O. sinensis from its adulterants using the kit, and lays the foundation for commercialization of traditional Chinese medicine fast detection kit. Copyright© by the Chinese Pharmaceutical Association.

  7. Highly sensitive multianalyte immunochromatographic test strip for rapid chemiluminescent detection of ractopamine and salbutamol

    International Nuclear Information System (INIS)

    Gao, Hongfei; Han, Jing; Yang, Shijia; Wang, Zhenxing; Wang, Lin; Fu, Zhifeng

    2014-01-01

    Graphical abstract: A multianalyte immunochromatographic test strip was developed for the rapid detection of two β 2 -agonists. Due to the application of chemiluminescent detection, this quantitative method shows much higher sensitivity. - Highlights: • An immunochromatographic test strip was developed for detection of multiple β 2 -agonists. • The whole assay process can be completed within 20 min. • The proposed method shows much higher sensitivity due to the application of CL detection. • It is a portable analytical tool suitable for field analysis and rapid screening. - Abstract: A novel immunochromatographic assay (ICA) was proposed for rapid and multiple assay of β 2 -agonists, by utilizing ractopamine (RAC) and salbutamol (SAL) as the models. Owing to the introduction of chemiluminescent (CL) approach, the proposed protocol shows much higher sensitivity. In this work, the described ICA was based on a competitive format, and horseradish peroxidase-tagged antibodies were used as highly sensitive CL probes. Quantitative analysis of β 2 -agonists was achieved by recording the CL signals of the probes captured on the two test zones of the nitrocellulose membrane. Under the optimum conditions, RAC and SAL could be detected within the linear ranges of 0.50–40 and 0.10–50 ng mL −1 , with the detection limits of 0.20 and 0.040 ng mL −1 (S/N = 3), respectively. The whole process for multianalyte immunoassay of RAC and SAL can be completed within 20 min. Furthermore, the test strip was validated with spiked swine urine samples and the results showed that this method was reliable in measuring β 2 -agonists in swine urine. This CL-based multianalyte test strip shows a series of advantages such as high sensitivity, ideal selectivity, simple manipulation, high assay efficiency and low cost. Thus, it opens up new pathway for rapid screening and field analysis, and shows a promising prospect in food safety

  8. Highly sensitive multianalyte immunochromatographic test strip for rapid chemiluminescent detection of ractopamine and salbutamol

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hongfei; Han, Jing; Yang, Shijia; Wang, Zhenxing; Wang, Lin; Fu, Zhifeng, E-mail: fuzf@swu.edu.cn

    2014-08-11

    Graphical abstract: A multianalyte immunochromatographic test strip was developed for the rapid detection of two β{sub 2}-agonists. Due to the application of chemiluminescent detection, this quantitative method shows much higher sensitivity. - Highlights: • An immunochromatographic test strip was developed for detection of multiple β{sub 2}-agonists. • The whole assay process can be completed within 20 min. • The proposed method shows much higher sensitivity due to the application of CL detection. • It is a portable analytical tool suitable for field analysis and rapid screening. - Abstract: A novel immunochromatographic assay (ICA) was proposed for rapid and multiple assay of β{sub 2}-agonists, by utilizing ractopamine (RAC) and salbutamol (SAL) as the models. Owing to the introduction of chemiluminescent (CL) approach, the proposed protocol shows much higher sensitivity. In this work, the described ICA was based on a competitive format, and horseradish peroxidase-tagged antibodies were used as highly sensitive CL probes. Quantitative analysis of β{sub 2}-agonists was achieved by recording the CL signals of the probes captured on the two test zones of the nitrocellulose membrane. Under the optimum conditions, RAC and SAL could be detected within the linear ranges of 0.50–40 and 0.10–50 ng mL{sup −1}, with the detection limits of 0.20 and 0.040 ng mL{sup −1} (S/N = 3), respectively. The whole process for multianalyte immunoassay of RAC and SAL can be completed within 20 min. Furthermore, the test strip was validated with spiked swine urine samples and the results showed that this method was reliable in measuring β{sub 2}-agonists in swine urine. This CL-based multianalyte test strip shows a series of advantages such as high sensitivity, ideal selectivity, simple manipulation, high assay efficiency and low cost. Thus, it opens up new pathway for rapid screening and field analysis, and shows a promising prospect in food safety.

  9. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens

    DEFF Research Database (Denmark)

    Kant, Krishna; Shahbazi, Mohammad-Ali; Dave, Vivek Priy

    2018-01-01

    and improve the limit of detections. Integration of pathogen capturing bio-receptors on microfluidic devices is a crucial step, which can facilitate recognition abilities in harsh chemical and physical conditions, offering a great commercial benefit to the food-manufacturing sector. This article reviews...... diagnosis competences. This has prompted researchers to call the current status of detection approaches into question and leverage new technologies for superior pathogen sensing outcomes. Novel strategies mainly rely on incorporating all the steps from sample preparation to detection in miniaturized devices...... recent advances in current state-of-the-art of sample preparation and concentration from food matrices with focus on bacterial capturing methods and sensing technologies, along with their advantages and limitations when integrated into microfluidic devices for online rapid detection of pathogens in foods...

  10. Detection of viruses and atypical bacteria associated with acute respiratory infection of children in Hubei, China.

    Science.gov (United States)

    Wu, Zegang; Li, Yan; Gu, Jian; Zheng, Hongyun; Tong, Yongqing; Wu, Qing

    2014-02-01

    Acute respiratory infection is the major cause of disease and death in children, particularly in developing countries. However, the spectrum of pathogenic viruses and atypical bacteria that exist in many of these countries remains incompletely characterized. The aim of this study was to examine the spectrum of pathogenic viruses and atypical bacteria associated with acute respiratory infection in children under the age of 16. A total of 10 435 serum sera specimens were collected from hospitalized children presenting with acute respiratory infection symptoms. Indirect immunofluorescence assays were performed to detect immunoglobulin M antibodies against nine common pathogens: mycoplasma pneumonia, influenza virus B, respiratory syncytial virus, parainfluenza virus, adenovirus, influenza virus A, legionella pneumophila, coxiella burnetii and chamydophila pneumonia. Of the 10 435 specimens examined, 7046 tested positive for at least one pathogen. Among all of the tested pathogens, mycoplasma pneumonia had the highest detection rate (56.9%). Influenza virus A and influenza virus B epidemics occurred during both winter and summer. The detection rate of respiratory syncytial virus and adenovirus was higher in spring. Cases of mixed infection were more complex: 4136 specimens (39.6%) tested positive for ≥2 pathogens. There were statistically significant difference in detection rates of mycoplasma pneumonia, influenza virus B, respiratory syncytial virus, parainfluenza virus, adenovirus, influenza virus A, legionella pneumophila and chamydophila pneumonia among different age groups (P acute respiratory infection among children in Hubei of China were mycoplasma pneumonia, influenza virus B and respiratory syncytial virus. The detection rates for each pathogen displayed specific seasonal and age group variations. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  11. Rapid identification of bacteria and candida using pna-fish from blood and peritoneal fluid cultures: a retrospective clinical study

    Directory of Open Access Journals (Sweden)

    Harris Dana M

    2013-01-01

    Full Text Available Abstract Background Peptide nucleic acid fluorescent in situ hybridization (PNA-FISH is a rapid and established method for identification of Candida sp., Gram positive, and Gram negative bacteria from positive blood cultures. This study reports clinical experience in the evaluation of 103 positive blood cultures and 17 positive peritoneal fluid cultures from 120 patients using PNA-FISH. Our study provides evidence as to potential pharmaceutical cost savings based on rapid pathogen identification, in addition to the novel application of PNA-FISH to peritoneal fluid specimens. Methods Identification accuracy and elapsed time to identification of Gram positives, Gram negatives, and Candida sp., isolated from blood and peritoneal fluid cultures were assessed using PNA-FISH (AdvanDx, as compared to standard culture methods. Patient charts were reviewed to extrapolate potential pharmaceutical cost savings due to adjustment of antimicrobial or antifungal therapy, based on identification by PNA-FISH. Results In blood cultures, time to identification by standard culture methods for bacteria and Candida sp., averaged 83.6 hours (95% CI 56.7 to 110.5. Identification by PNA-FISH averaged 11.2 hours (95% CI 4.8 to 17.6. Overall PNA-FISH identification accuracy was 98.8% (83/84, 95% CI 93.5% to 99.9% as compared to culture. In peritoneal fluid, identification of bacteria by culture averaged 87.4 hours (95% CI −92.4 to 267.1. Identification by PNA-FISH averaged 16.4 hours (95% CI −57.3 to 90.0. Overall PNA-FISH identification accuracy was 100% (13/13, 95% CI 75.3% to 100%. For Candida sp., pharmaceutical cost savings based on PNA-FISH identification could be $377.74/day. For coagulase-negative staphylococcus (CoNS, discontinuation of vancomycin could result in savings of $20.00/day. Conclusions In this retrospective study, excellent accuracy of PNA-FISH in blood and peritoneal fluids with reduced time to identification was observed, as compared to

  12. Detection of selected periodontal bacteria in preschool children affected by early childhood caries.

    Science.gov (United States)

    Pantuckova, Pavla; Bartosova, Michaela; Broukal, Zdenek; Kukletova, Martina; Holla, Lydie Izakovicova

    2016-11-01

    The aim of this study was to compare the detection frequency of periodontal bacteria in dental plaque in children with early childhood caries (ECC) with and without gingival inflammation. A convenience sample of 25 preschool children (mean age 3.61 years, SD 1.42) was recruited. Dental plaque was taken from periodontal areas with and without visible signs of inflammation and processed using the StomaGene® (Protean s.r.o. Czech Republic) and ParoCheck® 20 (Greiner Bio-one GmbH, Germany) detection kits. The two sample t tests between percents for differences between inflammatory and healthy sites and kappa statistics for the agreement of both systems were used. At the inflammatory sites, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans were significantly more frequently detected by StomaGene® while Fusobacterium nucleatum, A. actinomycetemcomitans, Tanarella forsythia and Prevotella intermedia were significantly more frequently identified by ParoCheck® test. The agreement between the two detection systems was substantial for A. actinomycetemcomitans and F. nucleatum in the samples collected from inflamed sites and only for F. nucleatum from clinically healthy sites. Therefore, we recommend that the same system should be used when the same patient is examined repeatedly.

  13. A recombinase polymerase amplification assay for rapid detection of Crimean-Congo Haemorrhagic fever Virus infection.

    Directory of Open Access Journals (Sweden)

    Laura C Bonney

    2017-10-01

    Full Text Available Crimean-Congo Haemorrhagic fever Virus (CCHFV is a rapidly emerging vector-borne pathogen and the cause of a virulent haemorrhagic fever affecting large parts of Europe, Africa, the Middle East and Asia.An isothermal recombinase polymerase amplification (RPA assay was successfully developed for molecular detection of CCHFV. The assay showed rapid (under 10 minutes detection of viral extracts/synthetic virus RNA of all 7 S-segment clades of CCHFV, with high target specificity. The assay was shown to tolerate the presence of inhibitors in crude preparations of mock field samples, indicating that this assay may be suitable for use in the field with minimal sample preparation. The CCHFV RPA was successfully used to screen and detect CCHFV positives from a panel of clinical samples from Tajikistan.The assay is a rapid, isothermal, simple-to-perform molecular diagnostic, which can be performed on a light, portable real-time detection device. It is ideally placed therefore for use as a field-diagnostic or in-low resource laboratories, for monitoring of CCHF outbreaks at the point-of-need, such as in remote rural regions in affected countries.

  14. Biosensors for Whole-Cell Bacterial Detection

    Science.gov (United States)

    Rushworth, Jo V.; Hirst, Natalie A.; Millner, Paul A.

    2014-01-01

    SUMMARY Bacterial pathogens are important targets for detection and identification in medicine, food safety, public health, and security. Bacterial infection is a common cause of morbidity and mortality worldwide. In spite of the availability of antibiotics, these infections are often misdiagnosed or there is an unacceptable delay in diagnosis. Current methods of bacterial detection rely upon laboratory-based techniques such as cell culture, microscopic analysis, and biochemical assays. These procedures are time-consuming and costly and require specialist equipment and trained users. Portable stand-alone biosensors can facilitate rapid detection and diagnosis at the point of care. Biosensors will be particularly useful where a clear diagnosis informs treatment, in critical illness (e.g., meningitis) or to prevent further disease spread (e.g., in case of food-borne pathogens or sexually transmitted diseases). Detection of bacteria is also becoming increasingly important in antibioterrorism measures (e.g., anthrax detection). In this review, we discuss recent progress in the use of biosensors for the detection of whole bacterial cells for sensitive and earlier identification of bacteria without the need for sample processing. There is a particular focus on electrochemical biosensors, especially impedance-based systems, as these present key advantages in terms of ease of miniaturization, lack of reagents, sensitivity, and low cost. PMID:24982325

  15. Rapid Detection of Herpes Viruses for Clinical Applications

    Science.gov (United States)

    Pierson, Duane; Mehta, Satish

    2013-01-01

    There are eight herpes viruses that infect humans, causing a wide range of diseases resulting in considerable morbidity and associated costs. Varicella zoster virus (VZV) is a human herpes virus that causes chickenpox in children and shingles in adults. Approximately 1,000,000 new cases of shingles occur each year; post-herpetic neuralgia (PHN) follows shingles in 100,000 to 200,000 people annually. PHN is characterized by debilitating, nearly unbearable pain for weeks, months, and even years. The onset of shingles is characterized by pain, followed by the zoster rash, leading to blisters and severe pain. The problem is that in the early stages, shingles can be difficult to diagnose; chickenpox in adults can be equally difficult to diagnose. As a result, both diseases can be misdiagnosed (false positive/negative). A molecular assay has been adapted for use in diagnosing VZV diseases. The polymerase chain reaction (PCR) assay is a non-invasive, rapid, sensitive, and highly specific method for VZV DNA detection. It provides unequivocal results and can effectively end misdiagnoses. This is an approximately two-hour assay that allows unequivocal diagnosis and rapid antiviral drug intervention. It has been demonstrated that rapid intervention can prevent full development of the disease, resulting in reduced likelihood of PHN. The technology was extended to shingles patients and demonstrated that VZV is shed in saliva and blood of all shingles patients. The amount of VZV in saliva parallels the medical outcome.

  16. SERS substrates fabricated using ceramic filters for the detection of bacteria

    Science.gov (United States)

    Mosier-Boss, P. A.; Sorensen, K. C.; George, R. D.; Obraztsova, A.

    2016-01-01

    SERS substrates were fabricated by filtering either Ag or Au colloidal particles onto rigid, ceramic filters - onto which suspensions of bacteria were then filtered. SERS spectra of the bacteria were obtained using a Raman spectrometer that has an 'orbital raster scan' capability. It was shown that bacteria samples prepared in this manner were uniformly distributed onto the surface of the SERS substrate. The effect of common buffer systems on the SERS spectra was investigated and the utility of using the SERS technique for speciation of bacteria was explored.

  17. Heterogeneous asymmetric recombinase polymerase amplification (haRPA) for rapid hygiene control of large-volume water samples.

    Science.gov (United States)

    Elsäßer, Dennis; Ho, Johannes; Niessner, Reinhard; Tiehm, Andreas; Seidel, Michael

    2018-04-01

    Hygiene of drinking water is periodically controlled by cultivation and enumeration of indicator bacteria. Rapid and comprehensive measurements of emerging pathogens are of increasing interest to improve drinking water safety. In this study, the feasibility to detect bacteriophage PhiX174 as a potential indicator for virus contamination in large volumes of water is demonstrated. Three consecutive concentration methods (continuous ultrafiltration, monolithic adsorption filtration, and centrifugal ultrafiltration) were combined to concentrate phages stepwise from 1250 L drinking water into 1 mL. Heterogeneous asymmetric recombinase polymerase amplification (haRPA) is applied as rapid detection method. Field measurements were conducted to test the developed system for hygiene online monitoring under realistic conditions. We could show that this system allows the detection of artificial contaminations of bacteriophage PhiX174 in drinking water pipelines. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Rapid detection of cancer related DNA nanoparticulate biomarkers and nanoparticles in whole blood

    Science.gov (United States)

    Heller, Michael J.; Krishnan, Raj; Sonnenberg, Avery

    2010-08-01

    The ability to rapidly detect cell free circulating (cfc) DNA, cfc-RNA, exosomes and other nanoparticulate disease biomarkers as well as drug delivery nanoparticles directly in blood is a major challenge for nanomedicine. We now show that microarray and new high voltage dielectrophoretic (DEP) devices can be used to rapidly isolate and detect cfc-DNA nanoparticulates and nanoparticles directly from whole blood and other high conductance samples (plasma, serum, urine, etc.). At DEP frequencies of 5kHz-10kHz both fluorescent-stained high molecular weight (hmw) DNA, cfc-DNA and fluorescent nanoparticles separate from the blood and become highly concentrated at specific DEP highfield regions over the microelectrodes, while blood cells move to the DEP low field-regions. The blood cells can then be removed by a simple fluidic wash while the DNA and nanoparticles remain highly concentrated. The hmw-DNA could be detected at a level of <260ng/ml and the nanoparticles at <9.5 x 109 particles/ml, detection levels that are well within the range for viable clinical diagnostics and drug nanoparticle monitoring. Disease specific cfc-DNA materials could also be detected directly in blood from patients with Chronic Lymphocytic Leukemia (CLL) and confirmed by PCR genotyping analysis.

  19. Beer spoilage bacteria and hop resistance.

    Science.gov (United States)

    Sakamoto, Kanta; Konings, Wil N

    2003-12-31

    For brewing industry, beer spoilage bacteria have been problematic for centuries. They include some lactic acid bacteria such as Lactobacillus brevis, Lactobacillus lindneri and Pediococcus damnosus, and some Gram-negative bacteria such as Pectinatus cerevisiiphilus, Pectinatus frisingensis and Megasphaera cerevisiae. They can spoil beer by turbidity, acidity and the production of unfavorable smell such as diacetyl or hydrogen sulfide. For the microbiological control, many advanced biotechnological techniques such as immunoassay and polymerase chain reaction (PCR) have been applied in place of the conventional and time-consuming method of incubation on culture media. Subsequently, a method is needed to determine whether the detected bacterium is capable of growing in beer or not. In lactic acid bacteria, hop resistance is crucial for their ability to grow in beer. Hop compounds, mainly iso-alpha-acids in beer, have antibacterial activity against Gram-positive bacteria. They act as ionophores which dissipate the pH gradient across the cytoplasmic membrane and reduce the proton motive force (pmf). Consequently, the pmf-dependent nutrient uptake is hampered, resulting in cell death. The hop-resistance mechanisms in lactic acid bacteria have been investigated. HorA was found to excrete hop compounds in an ATP-dependent manner from the cell membrane to outer medium. Additionally, increased proton pumping by the membrane bound H(+)-ATPase contributes to hop resistance. To energize such ATP-dependent transporters hop-resistant cells contain larger ATP pools than hop-sensitive cells. Furthermore, a pmf-dependent hop transporter was recently presented. Understanding the hop-resistance mechanisms has enabled the development of rapid methods to discriminate beer spoilage strains from nonspoilers. The horA-PCR method has been applied for bacterial control in breweries. Also, a discrimination method was developed based on ATP pool measurement in lactobacillus cells. However

  20. Rapid Detection of Enterobacter Sakazakii in milk Powder using amino modified chitosan immunomagnetic beads.

    Science.gov (United States)

    Zhu, Yinglian; Wang, Dongfeng

    2016-12-01

    Chitosan immunomagnetic beads (CIBs) were first prepared through converting hydroxyl groups of natural polymer material-chitosan into amino groups using epichlorohydrin and ethylenediamine as modification agent and then coupling with polyclonal antibodies of Enterobacter sakazakii using glutaraldehyde as cross-linking agent. The beads before coupling with antibodies were characterized by magnetic property measurement, FTIR, SEM and XRD technologies. In the assay a natural polysaccharide-chitosan, which has good biological and chemical properties such as non-toxicity, biocompatibility and high chemical reactivity was first used for synthesis of immunomagnetic beads. The detection method first established in this paper that combined the beads with chromogenic medium together to rapid detect E. sakazakii in milk powder could greatly improve the detection specificity and working efficiency. The beads exhibited a maximum capturing capacity of 1×10 6 cfu/g with the detection sensitivity of 4cfu/g. The results demonstrate that the assay is a straightforward, specific and sensitive alternative for rapid detection of E.sakazakii in food matrix. The total analysis time was as little as about 25h, which greatly shorten the detection time. The method can provides new ideas not only to preparation technique of immunomagnetic beads but to imunne detection technique in food safety. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Rapid detection of acetamiprid in foods using surface-enhanced Raman spectroscopy (SERS).

    Science.gov (United States)

    Wijaya, Wisiani; Pang, Shintaro; Labuza, Theodore P; He, Lili

    2014-04-01

    Acetamiprid is a neonicotinoid pesticide that is commonly used in modern farming. Acetamiprid residue in food commodities can be a potential harm to human and has been implicated in the honey bee hive die off crisis. In this study, we developed rapid, simple, and sensitive methods to detect acetamiprid in apple juice and on apple surfaces using surface-enhanced Raman spectroscopy (SERS). No pretreatment of apple juice sample was performed. A simple surface swab method was used to recover acetamiprid from the apple surface. Samples were incubated with silver dendrites for several minutes and SERS spectra were taken directly from the silver surface. Detection of a set of 5 apple juice samples can be done within 10 min. The swab-SERS method took 15 min for a set of 5 samples. Resulting spectral data were analyzed using principal component analysis. The highest acetamiprid peak at 634 cm(-1) was used to detect and quantify the amount of acetamiprid spiked in 1:1 water-methanol solvent, apple juice, and on apple surface. The SERS method was able to successfully detect acetamiprid at 0.5 μg/mL (0.5 ppm) in solvent, 3 μg/mL (3 ppm) in apple juice, and 0.125 μg/cm(2) on apple surfaces. The SERS methods provide simple, rapid, and sensitive ways to detect acetamiprid in beverages and on the surfaces of thick skinned fruits and vegetables. © 2014 Institute of Food Technologists®

  2. A nationwide web-based automated system for early outbreak detection and rapid response in China

    Directory of Open Access Journals (Sweden)

    Yilan Liao

    2011-03-01

    Full Text Available Timely reporting, effective analyses and rapid distribution of surveillance data can assist in detecting the aberration of disease occurrence and further facilitate a timely response. In China, a new nationwide web-based automated system for outbreak detection and rapid response was developed in 2008. The China Infectious Disease Automated-alert and Response System (CIDARS was developed by the Chinese Center for Disease Control and Prevention based on the surveillance data from the existing electronic National Notifiable Infectious Diseases Reporting Information System (NIDRIS started in 2004. NIDRIS greatly improved the timeliness and completeness of data reporting with real time reporting information via the Internet. CIDARS further facilitates the data analysis, aberration detection, signal dissemination, signal response and information communication needed by public health departments across the country. In CIDARS, three aberration detection methods are used to detect the unusual occurrence of 28 notifiable infectious diseases at the county level and to transmit that information either in real-time or on a daily basis. The Internet, computers and mobile phones are used to accomplish rapid signal generation and dissemination, timely reporting and reviewing of the signal response results. CIDARS has been used nationwide since 2008; all Centers for Disease Control and Prevention (CDC in China at the county, prefecture, provincial and national levels are involved in the system. It assists with early outbreak detection at the local level and prompts reporting of unusual disease occurrences or potential outbreaks to CDCs throughout the country.

  3. Comparing rapid methods for detecting Listeria in seafood and environmental samples using the most probably number (MPN) technique.

    Science.gov (United States)

    Cruz, Cristina D; Win, Jessicah K; Chantarachoti, Jiraporn; Mutukumira, Anthony N; Fletcher, Graham C

    2012-02-15

    The standard Bacteriological Analytical Manual (BAM) protocol for detecting Listeria in food and on environmental surfaces takes about 96 h. Some studies indicate that rapid methods, which produce results within 48 h, may be as sensitive and accurate as the culture protocol. As they only give presence/absence results, it can be difficult to compare the accuracy of results generated. We used the Most Probable Number (MPN) technique to evaluate the performance and detection limits of six rapid kits for detecting Listeria in seafood and on an environmental surface compared with the standard protocol. Three seafood products and an environmental surface were inoculated with similar known cell concentrations of Listeria and analyzed according to the manufacturers' instructions. The MPN was estimated using the MPN-BAM spreadsheet. For the seafood products no differences were observed among the rapid kits and efficiency was similar to the BAM method. On the environmental surface the BAM protocol had a higher recovery rate (sensitivity) than any of the rapid kits tested. Clearview™, Reveal®, TECRA® and VIDAS® LDUO detected the cells but only at high concentrations (>10(2) CFU/10 cm(2)). Two kits (VIP™ and Petrifilm™) failed to detect 10(4) CFU/10 cm(2). The MPN method was a useful tool for comparing the results generated by these presence/absence test kits. There remains a need to develop a rapid and sensitive method for detecting Listeria in environmental samples that performs as well as the BAM protocol, since none of the rapid tests used in this study achieved a satisfactory result. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. An optimized staining technique for the detection of Gram positive and Gram negative bacteria within tissue.

    Science.gov (United States)

    Becerra, Sandra C; Roy, Daniel C; Sanchez, Carlos J; Christy, Robert J; Burmeister, David M

    2016-04-12

    Bacterial infections are a common clinical problem in both acute and chronic wounds. With growing concerns over antibiotic resistance, treatment of bacterial infections should only occur after positive diagnosis. Currently, diagnosis is delayed due to lengthy culturing methods which may also fail to identify the presence of bacteria. While newer costly bacterial identification methods are being explored, a simple and inexpensive diagnostic tool would aid in immediate and accurate treatments for bacterial infections. Histologically, hematoxylin and eosin (H&E) and Gram stains have been employed, but are far from optimal when analyzing tissue samples due to non-specific staining. The goal of the current study was to develop a modification of the Gram stain that enhances the contrast between bacteria and host tissue. A modified Gram stain was developed and tested as an alternative to Gram stain that improves the contrast between Gram positive bacteria, Gram negative bacteria and host tissue. Initially, clinically relevant strains of Pseudomonas aeruginosa and Staphylococcus aureus were visualized in vitro and in biopsies of infected, porcine burns using routine Gram stain, and immunohistochemistry techniques involving bacterial strain-specific fluorescent antibodies as validation tools. H&E and Gram stain of serial biopsy sections were then compared to a modification of the Gram stain incorporating a counterstain that highlights collagen found in tissue. The modified Gram stain clearly identified both Gram positive and Gram negative bacteria, and when compared to H&E or Gram stain alone provided excellent contrast between bacteria and non-viable burn eschar. Moreover, when applied to surgical biopsies from patients that underwent burn debridement this technique was able to clearly detect bacterial morphology within host tissue. We describe a modification of the Gram stain that provides improved contrast of Gram positive and Gram negative microorganisms within host

  5. Biosensor for the detection of Listeria monocytogenes: emerging trends

    KAUST Repository

    Soni, Dharmendra Kumar

    2018-05-23

    The early detection of Listeria monocytogenes (L. monocytogenes) and understanding the disease burden is of paramount interest. The failure to detect pathogenic bacteria in the food industry may have terrible consequences, and poses deleterious effects on human health. Therefore, integration of methods to detect and trace the route of pathogens along the entire food supply network might facilitate elucidation of the main contamination sources. Recent research interest has been oriented towards the development of rapid and affordable pathogen detection tools/techniques. An innovative and new approach like biosensors has been quite promising in revealing the foodborne pathogens. In spite of the existing knowledge, advanced research is still needed to substantiate the expeditious nature and sensitivity of biosensors for rapid and in situ analysis of foodborne pathogens. This review summarizes recent developments in optical, piezoelectric, cell-based, and electrochemical biosensors for Listeria sp. detection in clinical diagnostics, food analysis, and environmental monitoring, and also lists their drawbacks and advantages.

  6. Dual-Recognition Förster Resonance Energy Transfer Based Platform for One-Step Sensitive Detection of Pathogenic Bacteria Using Fluorescent Vancomycin-Gold Nanoclusters and Aptamer-Gold Nanoparticles.

    Science.gov (United States)

    Yu, Mengqun; Wang, Hong; Fu, Fei; Li, Linyao; Li, Jing; Li, Gan; Song, Yang; Swihart, Mark T; Song, Erqun

    2017-04-04

    The effective monitoring, identification, and quantification of pathogenic bacteria is essential for addressing serious public health issues. In this study, we present a universal and facile one-step strategy for sensitive and selective detection of pathogenic bacteria using a dual-molecular affinity-based Förster (fluorescence) resonance energy transfer (FRET) platform based on the recognition of bacterial cell walls by antibiotic and aptamer molecules, respectively. As a proof of concept, Vancomycin (Van) and a nucleic acid aptamer were employed in a model dual-recognition scheme for detecting Staphylococcus aureus (Staph. aureus). Within 30 min, by using Van-functionalized gold nanoclusters and aptamer-modified gold nanoparticles as the energy donor and acceptor, respectively, the FRET signal shows a linear variation with the concentration of Staph. aureus in the range from 20 to 10 8 cfu/mL with a detection limit of 10 cfu/mL. Other nontarget bacteria showed negative results, demonstrating the good specificity of the approach. When employed to assay Staph. aureus in real samples, the dual-recognition FRET strategy showed recoveries from 99.00% to the 109.75% with relative standard derivations (RSDs) less than 4%. This establishes a universal detection platform for sensitive, specific, and simple pathogenic bacteria detection, which could have great impact in the fields of food/public safety monitoring and infectious disease diagnosis.

  7. Rapid detection of fungal keratitis with DNA-stabilizing FTA filter paper.

    Science.gov (United States)

    Menassa, Nardine; Bosshard, Philipp P; Kaufmann, Claude; Grimm, Christian; Auffarth, Gerd U; Thiel, Michael A

    2010-04-01

    Purpose. Polymerase chain reaction (PCR) is increasingly important for the rapid detection of fungal keratitis. However, techniques of specimen collection and DNA extraction before PCR may interfere with test sensitivity. The purpose of this study was to investigate the use of DNA-stabilizing FTA filter paper (Indicating FTA filter paper; Whatman International, Ltd., Maidstone, UK) for specimen collection without DNA extraction in a single-step, nonnested PCR for fungal keratitis. Methods. Specimens were collected from ocular surfaces with FTA filter discs, which automatically lyse collected cells and stabilize nucleic acids. Filter discs were directly used in single-step PCR reactions to detect fungal DNA. Test sensitivity was evaluated with serial dilutions of Candida albicans, Fusarium oxysporum, and Aspergillus fumigatus cultures. Test specificity was analyzed by comparing 196 and 155 healthy individuals from Switzerland and Egypt, respectively, with 15 patients with a diagnosis of microbial keratitis. Results. PCR with filter discs detected 3 C. albicans, 25 F. oxysporum, and 125 A. fumigatus organisms. In healthy volunteers, fungal PCR was positive in 1.0% and 8.4% of eyes from Switzerland and Egypt, respectively. Fungal PCR remained negative in 10 cases of culture-proven bacterial keratitis, became positive in 4 cases of fungal keratitis, but missed 1 case of culture-proven A. fumigatus keratitis. Conclusions. FTA filter paper for specimen collection together with direct PCR is a promising method of detecting fungal keratitis. The analytical sensitivity is high without the need for a semi-nested or nested second PCR, the clinical specificity is 91.7% to 99.0%, and the method is rapid and inexpensive.

  8. High-throughput DNA microarray detection of pathogenic bacteria in shallow well groundwater in the Kathmandu Valley, Nepal.

    Science.gov (United States)

    Inoue, Daisuke; Hinoura, Takuji; Suzuki, Noriko; Pang, Junqin; Malla, Rabin; Shrestha, Sadhana; Chapagain, Saroj Kumar; Matsuzawa, Hiroaki; Nakamura, Takashi; Tanaka, Yasuhiro; Ike, Michihiko; Nishida, Kei; Sei, Kazunari

    2015-01-01

    Because of heavy dependence on groundwater for drinking water and other domestic use, microbial contamination of groundwater is a serious problem in the Kathmandu Valley, Nepal. This study investigated comprehensively the occurrence of pathogenic bacteria in shallow well groundwater in the Kathmandu Valley by applying DNA microarray analysis targeting 941 pathogenic bacterial species/groups. Water quality measurements found significant coliform (fecal) contamination in 10 of the 11 investigated groundwater samples and significant nitrogen contamination in some samples. The results of DNA microarray analysis revealed the presence of 1-37 pathogen species/groups, including 1-27 biosafety level 2 ones, in 9 of the 11 groundwater samples. While the detected pathogens included several feces- and animal-related ones, those belonging to Legionella and Arthrobacter, which were considered not to be directly associated with feces, were detected prevalently. This study could provide a rough picture of overall pathogenic bacterial contamination in the Kathmandu Valley, and demonstrated the usefulness of DNA microarray analysis as a comprehensive screening tool of a wide variety of pathogenic bacteria.

  9. Natural soil reservoirs for human pathogenic and fecal indicator bacteria

    Science.gov (United States)

    Boschiroli, Maria L; Falkinham, Joseph; Favre-Bonte, Sabine; Nazaret, Sylvie; Piveteau, Pascal; Sadowsky, Michael J.; Byappanahalli, Muruleedhara; Delaquis, Pascal; Hartmann, Alain

    2016-01-01

    Soils receive inputs of human pathogenic and indicator bacteria through land application of animal manures or sewage sludge, and inputs by wildlife. Soil is an extremely heterogeneous substrate and contains meso- and macrofauna that may be reservoirs for bacteria of human health concern. The ability to detect and quantify bacteria of human health concern is important in risk assessments and in evaluating the efficacy of agricultural soil management practices that are protective of crop quality and protective of adjacent water resources. The present chapter describes the distribution of selected Gram-positive and Gram-negative bacteria in soils. Methods for detecting and quantifying soilborne bacteria including extraction, enrichment using immunomagnetic capture, culturing, molecular detection and deep sequencing of metagenomic DNA to detect pathogens are overviewed. Methods for strain phenotypic and genotypic characterization are presented, as well as how comparison with clinical isolates can inform the potential for human health risk.

  10. Rapid detection and quantification of haptophyte alkenones by Fourier transform infrared spectroscopy (FTIR)

    Czech Academy of Sciences Publication Activity Database

    Pelusi, A.; Hanawa, Y.; Araie, H.; Suzuki, I.; Giordano, Mario; Shiraiwa, I.

    2016-01-01

    Roč. 19, NOVEMBER 2016 (2016), s. 48-56 ISSN 2211-9264 Institutional support: RVO:61388971 Keywords : Rapid detection * haptophyte alkenones * Fourier spectroscopy Subject RIV: EE - Microbiology, Virology Impact factor: 3.994, year: 2016

  11. Rapid and sensitive detection of ketamine in blood using novel fluorescence genosensor.

    Science.gov (United States)

    Ding, Yanjun; Li, Xingmei; Guo, Yadong; Yan, Jie; Ling, Jiang; Li, Weichen; Lan, Lingmei; Chang, Yunfeng; Cai, Jifeng; Zha, Lagabaiyla

    2017-12-01

    In recent years, drug abuse has been considered as a most challenging social problem that aroused public attention. Ketamine has increased in unregulated use as a 'recreational drug' in teenagers. However, there is no suitable and maneuverable detection method for ketamine in situ at the moment. Fluorescence sensor technique, with predominant recognition and simple operation, is a good potential application in drug detection. Here, we first reported a highly sensitive and selective fluorescence genosensor for rapid detection of ketamine based on DNA-templated silver nanoclusters (DNA-AgNCs) probes, in which the DNA sequence could specially recognize ketamine with high affinity. Parameters affecting detection efficiency were investigated and optimized. Under optimum conditions, the as-prepared genosensor can allow for the determination of ketamine in the concentration range of 0.0001-20 μg/mL with two linear equations: one is y = 2.84x-7.139 (R 2 = 0.987) for 0.0001-0.1 μg/mL, and the other is y = 1.87x-0.091 (R 2 = 0.962) for 0.1-20 μg/mL, and the estimated detection limit of ketamine is 0.06 ng/mL. Moreover, the feasibility of this proposed method was also demonstrated by analyzing forensic blood samples. Compared with official gas chromatography/mass spectrometry (GC/MS), this fluorescence genosensor is simple, rapid, and accurate for quantitative determination of ketamine in blood for pharmaceutical and forensic analysis. Overall, it is the first report on a fluorescence genosensor for detecting ketamine directly in blood. This research may provide a new insight for the analyst to band fluorescence genosensor technology together with drug monitoring in the battle against drug abuse and forensic examination. Graphical abstract High selectively detection of ketamine using a novel fluorescence genosensor based on DNA-AgNCs probe.

  12. Development of an immunochromatographic assay for the rapid detection of bromoxynil in water

    International Nuclear Information System (INIS)

    Zhu Jiang; Chen Wenchao; Lu Yitong; Cheng Guohua

    2008-01-01

    A rapid immunochromatographic one-step strip test was developed to specifically determine bromoxynil in surface and drinking water by competitive inhibition with the nano colloidal gold-conjugated monoclonal antibody (mAb). Bromoxynil standard samples of 0.01-10 mg L -1 in water were tested by this method and the visual limit was 0.06 mg L -1 . The assay only required 5 min and one-step by dispensing a drop of sample solution onto a strip. Parallel analysis of water samples with bromoxynil showed comparable results from one-step strip test and ELISA. Therefore, the one-step strip test is very useful as a screening method for qualitative detection of bromoxynil in water. - One-step strip test is a rapid method for qualitative detection of bromoxynil residues in water

  13. Development of a multiplex real time PCR to detect thermophilic lactic acid bacteria in natural whey starters.

    Science.gov (United States)

    Bottari, Benedetta; Agrimonti, Caterina; Gatti, Monica; Neviani, Erasmo; Marmiroli, Nelson

    2013-01-01

    A multiplex real time PCR (mRealT-PCR) useful to rapidly screen microbial composition of thermophilic starter cultures for hard cooked cheeses and to compare samples with potentially different technological properties was developed. Novel primers directed toward pheS gene were designed and optimized for multiple detection of Lactobacillus helveticus, Lactobacillus delbrueckii, Streptococcus thermophilus and Lactobacillus fermentum. The assay was based on SYBR Green chemistry followed by melting curves analysis. The method was then evaluated for applications in the specific detection of the 4 lactic acid bacteria (LAB) in 29 different natural whey starters for Parmigiano Reggiano cheese production. The results obtained by mRealT-PCR were also compared with those obtained on the same samples by Fluorescence in Situ Hybridization (FISH) and Length-Heterogeneity PCR (LH-PCR). The mRealT-PCR developed in this study, was found to be effective for analyzing species present in the samples with an average sensitivity down to less than 600 copies of DNA and therefore sensitive enough to detect even minor LAB community members of thermophilic starter cultures. The assay was able to describe the microbial population of all the different natural whey starter samples analyzed, despite their natural variability. A higher number of whey starter samples with S. thermophilus and L. fermentum present in their microbial community were revealed, suggesting that these species could be more frequent in Parmigiano Reggiano natural whey starter samples than previously shown. The method was more effective than LH-PCR and FISH and, considering that these two techniques have to be used in combination to detect the less abundant species, the mRealT-PCR was also faster. Providing a single step sensitive detection of L. helveticus, L. delbrueckii, S. thermophilus and L. fermentum, the developed mRealT-PCR could be used for screening thermophilic starter cultures and to follow the presence of

  14. A Portable Impedance Immunosensing System for Rapid Detection of Salmonella Typhimurium.

    Science.gov (United States)

    Wen, Tao; Wang, Ronghui; Sotero, America; Li, Yanbin

    2017-08-28

    Salmonella Typhimurium is one of the most dangerous foodborne pathogens and poses a significant threat to human health. The objective of this study was to develop a portable impedance immunosensing system for rapid and sensitive detection of S . Typhimurium in poultry. The developed portable impedance immunosensing system consisted of a gold interdigitated array microelectrode (IDAM), a signal acquisitive interface and a laptop computer with LabVIEW software. The IDAM was first functionalized with 16-Mercaptohexadecanoic acid, and streptavidin was immobilized onto the electrode surface through covalent bonding. Then, biotin-labelled S . Typhimurium -antibody was immobilized onto the IDAM surface. Samples were dropped on the surface of the IDAM and the S . Typhimurium cells in the samples were captured by the antibody on the IDAM. This resulted in impedance changes that were measured and displayed with the LabVIEW software. An equivalent circuit of the immunosensor demonstrated that the largest change in impedance was due to the electron-transfer resistance. The equivalent circuit showed an increase of 35% for the electron-transfer resistance value compared to the negative control. The calibration result indicated that the portable impedance immunosensing system could be used to measure the standard impedance elements, and it had a maximum error of measurement of approximately 13%. For pure culture detection, the system had a linear relationship between the impedance change and the logarithmic value of S . Typhimurium cells ranging from 76 to 7.6 × 10⁶ CFU (colony-forming unit) (50 μL) -1 . The immunosensor also had a correlation coefficient of 0.98, and a high specificity for detection of S . Typhimurium cells with a limit of detection (LOD) of 10² CFU (50 μL) -1 . The detection time from the moment a sample was introduced to the display of the results was 1 h. To conclude, the portable impedance immunosensing system for detection of S . Typhimurium achieved

  15. A Portable Impedance Immunosensing System for Rapid Detection of Salmonella Typhimurium

    Directory of Open Access Journals (Sweden)

    Tao Wen

    2017-08-01

    Full Text Available Salmonella Typhimurium is one of the most dangerous foodborne pathogens and poses a significant threat to human health. The objective of this study was to develop a portable impedance immunosensing system for rapid and sensitive detection of S. Typhimurium in poultry. The developed portable impedance immunosensing system consisted of a gold interdigitated array microelectrode (IDAM, a signal acquisitive interface and a laptop computer with LabVIEW software. The IDAM was first functionalized with 16-Mercaptohexadecanoic acid, and streptavidin was immobilized onto the electrode surface through covalent bonding. Then, biotin-labelled S. Typhimurium-antibody was immobilized onto the IDAM surface. Samples were dropped on the surface of the IDAM and the S. Typhimurium cells in the samples were captured by the antibody on the IDAM. This resulted in impedance changes that were measured and displayed with the LabVIEW software. An equivalent circuit of the immunosensor demonstrated that the largest change in impedance was due to the electron-transfer resistance. The equivalent circuit showed an increase of 35% for the electron-transfer resistance value compared to the negative control. The calibration result indicated that the portable impedance immunosensing system could be used to measure the standard impedance elements, and it had a maximum error of measurement of approximately 13%. For pure culture detection, the system had a linear relationship between the impedance change and the logarithmic value of S. Typhimurium cells ranging from 76 to 7.6 × 106 CFU (colony-forming unit (50 μL−1. The immunosensor also had a correlation coefficient of 0.98, and a high specificity for detection of S. Typhimurium cells with a limit of detection (LOD of 102 CFU (50 μL−1. The detection time from the moment a sample was introduced to the display of the results was 1 h. To conclude, the portable impedance immunosensing system for detection of S. Typhimurium

  16. A parylene-based dual channel microelectrophoresis system for rapid mutation detection via heteroduplex analysis

    NARCIS (Netherlands)

    Sukas, S.; Erson, Ayse Elif; Sert, Cuneyt; Kulah, Haluk

    2008-01-01

    A new dual channel micro-electrophoresis system for rapid mutation detection based on heteroduplex analysis was designed and implemented. Mutation detection was successfully achieved in a total separation length of 250 μm in less than 3 min for a 590 bp DNA sample harboring a 3 bp mutation causing

  17. Rapid detection and identification of Bacillus anthracis in food using pyrosequencing technology.

    Science.gov (United States)

    Amoako, Kingsley K; Janzen, Timothy W; Shields, Michael J; Hahn, Kristen R; Thomas, Matthew C; Goji, Noriko

    2013-08-01

    The development of advanced methodologies for the detection of Bacillus anthracis has been evolving rapidly since the release of the anthrax spores in the mail in 2001. Recent advances in detection and identification techniques could prove to be an essential component in the defense against biological attacks. Sequence based such as pyrosequencing, which has the capability to determine short DNA stretches in real-time using biotinylated PCR amplicons, has potential biodefense applications. Using markers from the virulence plasmids (pXO1 and pXO2) and chromosomal regions, we have demonstrated the power of this technology in the rapid, specific and sensitive detection of B. anthracis spores in food matrices including milk, juice, bottled water, and processed meat. The combined use of immunomagnetic separation and pyrosequencing showed positive detection when liquid foods (bottled water, milk, juice), and processed meat were experimentally inoculated with 6CFU/mL and 6CFU/g, respectively, without an enrichment step. Pyrosequencing is completed in about 60min (following PCR amplification) and yields accurate and reliable results with an added layer of confidence. The entire assay (from sample preparation to sequencing information) can be completed in about 7.5h. A typical run on food samples yielded 67-80bp reads with 94-100% identity to the expected sequence. This sequence based approach is a novel application for the detection of anthrax spores in food with potential application in foodborne bioterrorism response and biodefense involving the use of anthrax spores. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  18. Development of Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid Detection of Cannabis sativa.

    Science.gov (United States)

    Kitamura, Masashi; Aragane, Masako; Nakamura, Kou; Watanabe, Kazuhito; Sasaki, Yohei

    2016-07-01

    In many parts of the world, the possession and cultivation of Cannabis sativa L. are restricted by law. As chemical or morphological analyses cannot identify the plant in some cases, a simple yet accurate DNA-based method for identifying C. sativa is desired. We have developed a loop-mediated isothermal amplification (LAMP) assay for the rapid identification of C. sativa. By optimizing the conditions for the LAMP reaction that targets a highly conserved region of tetrahydrocannabinolic acid (THCA) synthase gene, C. sativa was identified within 50 min at 60-66°C. The detection limit was the same as or higher than that of conventional PCR. The LAMP assay detected all 21 specimens of C. sativa, showing high specificity. Using a simple protocol, the identification of C. sativa could be accomplished within 90 min from sample treatment to detection without use of special equipment. A rapid, sensitive, highly specific, and convenient method for detecting and identifying C. sativa has been developed and is applicable to forensic investigations and industrial quality control.

  19. A rapid and simple method of detection of Blepharisma japonicum using PCR and immobilisation on FTA paper

    Science.gov (United States)

    Hide, Geoff; Hughes, Jacqueline M; McNuff, Robert

    2003-01-01

    Background The rapid expansion in the availability of genome and DNA sequence information has opened up new possibilities for the development of methods for detecting free-living protozoa in environmental samples. The protozoan Blepharisma japonicum was used to investigate a rapid and simple detection system based on polymerase chain reaction amplification (PCR) from organisms immobilised on FTA paper. Results Using primers designed from the α-tubulin genes of Blepharisma, specific and sensitive detection to the equivalent of a single Blepharisma cell could be achieved. Similar detection levels were found using water samples, containing Blepharisma, which were dried onto Whatman FTA paper. Conclusion This system has potential as a sensitive convenient detection system for Blepharisma and could be applied to other protozoan organisms. PMID:14516472

  20. The application of flow cytometry and fluorescent probe technology for detection and assessment of viability of plant pathogenic bacteria

    NARCIS (Netherlands)

    Chitarra, L.G.; Bulk, van den R.W.

    2003-01-01

    Conventional methods to detect and assess the viability of plant pathogenic bacteria are usually based on plating assays or serological techniques. Plating assays provide information about the number of viable cells, expressed as colony-forming units, but are time-consuming and laborious.

  1. Rapid and label-free bioanalytical method of alpha fetoprotein detection using LSPR chip

    Science.gov (United States)

    Kim, Dongjoo; Kim, Jinwoon; Kwak, Cheol Hwan; Heo, Nam Su; Oh, Seo Yeong; Lee, Hoomin; Lee, Go-Woon; Vilian, A. T. Ezhil; Han, Young-Kyu; Kim, Woo-Sik; Kim, Gi-bum; Kwon, Soonjo; Huh, Yun Suk

    2017-07-01

    Alpha fetoprotein (AFP) is a cancer marker, particularly for hepatocellular carcinoma. Normal levels of AFP are less than 20 ng/mL; however, its levels can reach more than 400 ng/mL in patients with HCC. Enzyme linked immunosorbent assay (ELISA) and radioimmunoassay (RIA) have been employed for clinical diagnosis of AFP; however, these methods are time consuming and labor intensive. In this study, we developed a localized surface plasmon resonance (LSPR) based biosensor for simple and rapid detection of AFP. This biosensor consists of a UV-Vis spectrometer, a cuvette cell, and a biosensor chip nanopatterned with gold nanoparticles (AuNPs). In our LSPR biosensor, binding of AFP to the surface of the sensor chip led to an increasing magnitude of the LSPR signals, which was measured by an ultraviolet-visible (UV-Vis) spectrometer. Our LSPR biosensor showed sufficient detectability of AFP at concentrations of 1 ng/mL to 1 μg/mL. Moreover, the overall procedure for detection of AFP was completed within 20 min. This biosensor could also be utilized for a point of care test (POCT) by employing a portable UV-Vis spectrometer. Owing to the simplicity and rapidity of the detection process, our LSPR biosensor is expected to replace traditional diagnostic methods for the early detection of diseases.

  2. [Research on rapid and quantitative detection method for organophosphorus pesticide residue].

    Science.gov (United States)

    Sun, Yuan-Xin; Chen, Bing-Tai; Yi, Sen; Sun, Ming

    2014-05-01

    The methods of physical-chemical inspection is adopted in the traditional pesticide residue detection, which require a lot of pretreatment processes, are time-consuming and complicated. In the present study, the authors take chlorpyrifos applied widely in the present agricultural field as the research object and propose a rapid and quantitative detection method for organophosphorus pesticide residues. At first, according to the chemical characteristics of chlorpyrifos and comprehensive chromogenic effect of several colorimetric reagents and secondary pollution, the pretreatment of the scheme of chromogenic reaction of chlorpyrifos with resorcin in a weak alkaline environment was determined. Secondly, by analyzing Uv-Vis spectrum data of chlorpyrifos samples whose content were between 0. 5 and 400 mg kg-1, it was confirmed that the characteristic information after the color reaction mainly was concentrated among 360 approximately 400 nm. Thirdly, the full spectrum forecasting model was established based on the partial least squares, whose correlation coefficient of calibration was 0. 999 6, correlation coefficient of prediction reached 0. 995 6, standard deviation of calibration (RMSEC) was 2. 814 7 mg kg-1, and standard deviation of verification (RMSEP) was 8. 012 4 mg kg-1. Fourthly, the wavelengths whose center wavelength is 400 nm was extracted as characteristic region to build a forecasting model, whose correlation coefficient of calibration was 0. 999 6, correlation coefficient of prediction reached 0. 999 3, standard deviation of calibration (RMSEC) was 2. 566 7 mg kg-1 , standard deviation of verification (RMSEP) was 4. 886 6 mg kg-1, respectively. At last, by analyzing the near infrared spectrum data of chlorpyrifos samples with contents between 0. 5 and 16 mg kg-1, the authors found that although the characteristics of the chromogenic functional group are not obvious, the change of absorption peaks of resorcin itself in the neighborhood of 5 200 cm

  3. Development and Evaluation of a Rapid Antigen Detection and Serotyping Lateral Flow Antigen Detection System for Foot-and-Mouth Disease Virus.

    Directory of Open Access Journals (Sweden)

    Kazuki Morioka

    Full Text Available We developed a lateral flow strip using monoclonal antibodies (MAbs which allows for rapid antigen detection and serotyping of foot-and-mouth disease virus (FMDV. This FMDV serotyping strip was able to detect all 7 serotypes and distinguish serotypes O, A, C and Asia1. Its sensitivities ranged from 10(3 to 10(4 of a 50% tissue culture infectious dose of each FMDV stain; this is equal to those of the commercial product Svanodip (Boehringer Ingelheim Svanova, Uppsala, Sweden, which can detect all seven serotypes of FMDV, but does not distinguish them. Our evaluation of the FMDV serotyping strip using a total of 118 clinical samples (vesicular fluids, vesicular epithelial emulsions and oral and/or nasal swabs showed highly sensitive antigen detection and accuracy in serotyping in accordance with ELISA or RT-PCR. To the best of our knowledge, this is the first report on any FMDV serotyping strip that provides both rapid antigen detection and serotyping of FMDV at the same time on one strip without extra devices. This method will be useful in both FMD-free countries and FMD-infected countries, especially where laboratory diagnosis cannot be carried out.

  4. Impact of the rapid antigen detection test in diagnosis and treatment of acute pharyngotonsillitis in a pediatric emergency room.

    Science.gov (United States)

    Cardoso, Débora Morais; Gilio, Alfredo Elias; Hsin, Shieh Huei; Machado, Beatriz Marcondes; de Paulis, Milena; Lotufo, João Paulo B; Martinez, Marina Baquerizo; Grisi, Sandra Josefina E

    2013-01-01

    To evaluate the impact of the routine use of rapid antigen detection test in the diagnosis and treatment of acute pharyngotonsillitis in children. This is a prospective and observational study, with a protocol compliance design established at the Emergency Unit of the University Hospital of Universidade de São Paulo for the care of children and adolescents diagnosed with acute pharyngitis. 650 children and adolescents were enrolled. Based on clinical findings, antibiotics would be prescribed for 389 patients (59.8%); using the rapid antigen detection test, they were prescribed for 286 patients (44.0%). Among the 261 children who would not have received antibiotics based on the clinical evaluation, 111 (42.5%) had positive rapid antigen detection test. The diagnosis based only on clinical evaluation showed 61.1% sensitivity, 47.7% specificity, 44.9% positive predictive value, and 57.5% negative predictive value. The clinical diagnosis of streptococcal pharyngotonsillitis had low sensitivity and specificity. The routine use of rapid antigen detection test led to the reduction of antibiotic use and the identification of a risk group for complications of streptococcal infection, since 42.5% positive rapid antigen detection test patients would not have received antibiotics based only on clinical diagnosis.

  5. Rapid, portable detection of endocrine disrupting chemicals through ligand-nuclear hormone receptor interactions.

    Science.gov (United States)

    Hunt, J Porter; Schinn, Song-Min; Jones, Matthew D; Bundy, Bradley C

    2017-12-04

    Endocrine disrupting chemicals (EDC) are structurally diverse compounds that can interact with nuclear hormone receptors, posing significant risk to human and ecological health. Unfortunately, many conventional biosensors have been too structure-specific, labor-intensive or laboratory-oriented to detect broad ranges of EDC effectively. Recently, several technological advances are providing more rapid, portable, and affordable detection of endocrine-disrupting activity through ligand-nuclear hormone receptor interactions. Here, we overview these recent advances applied to EDC biosensors - including cell lyophilization, cell immobilization, cell-free systems, smartphone-based signal detection, and improved competitive binding assays.

  6. Engineering of Bacteriophages Y2::dpoL1-C and Y2::luxAB for Efficient Control and Rapid Detection of the Fire Blight Pathogen, Erwinia amylovora.

    Science.gov (United States)

    Born, Yannick; Fieseler, Lars; Thöny, Valentin; Leimer, Nadja; Duffy, Brion; Loessner, Martin J

    2017-06-15

    Erwinia amylovora is the causative agent of fire blight, a devastating plant disease affecting members of the Rosaceae Alternatives to antibiotics for control of fire blight symptoms and outbreaks are highly desirable, due to increasing drug resistance and tight regulatory restrictions. Moreover, the available diagnostic methods either lack sensitivity, lack speed, or are unable to discriminate between live and dead bacteria. Owing to their extreme biological specificity, bacteriophages are promising alternatives for both aims. In this study, the virulent broad-host-range E. amylovora virus Y2 was engineered to enhance its killing activity and for use as a luciferase reporter phage, respectively. Toward these aims, a depolymerase gene of E. amylovora virus L1 ( dpoL1-C ) or a bacterial luxAB fusion was introduced into the genome of Y2 by homologous recombination. The genes were placed downstream of the major capsid protein orf68 , under the control of the native promoter. The modifications did not affect viability of infectivity of the recombinant viruses. Phage Y2:: dpoL1-C demonstrated synergistic activity between the depolymerase degrading the exopolysaccharide capsule and phage infection, which greatly enhanced bacterial killing. It also significantly reduced the ability of E. amylovora to colonize the surface of detached flowers. The reporter phage Y2:: luxAB transduced bacterial luciferase into host cells and induced synthesis of large amounts of a LuxAB luciferase fusion. After the addition of aldehyde substrate, bioluminescence could be readily monitored, and this enabled rapid and specific detection of low numbers of viable bacteria, without enrichment, both in vitro and in plant material. IMPORTANCE Fire blight, caused by Erwinia amylovora , is the major threat to global pome fruit production, with high economic losses every year. Bacteriophages represent promising alternatives to not only control the disease, but also for rapid diagnostics. To enhance

  7. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...... C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... P60, were isolated and characterized as Desulfotomaculum kuznetsovii. The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50 degrees-70 degrees C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic...

  8. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...... P60, were isolated and characterized as Desulfotomaculum kuznetsovii. The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50 degrees-70 degrees C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic...

  9. Detecting and Remembering Simultaneous Pictures in a Rapid Serial Visual Presentation

    Science.gov (United States)

    Potter, Mary C.; Fox, Laura F.

    2009-01-01

    Viewers can easily spot a target picture in a rapid serial visual presentation (RSVP), but can they do so if more than 1 picture is presented simultaneously? Up to 4 pictures were presented on each RSVP frame, for 240 to 720 ms/frame. In a detection task, the target was verbally specified before each trial (e.g., "man with violin"); in a…

  10. Application of a rapid screening method to detect irradiated meat in Brazil

    International Nuclear Information System (INIS)

    Villavicencio, A.L.C.H.; Mancini-Filho, J.; Delincee, H.

    2000-01-01

    Based on the enormous potential for food irradiation in Brazil, and to ensure free consumer choice, there is a need to find a convenient and rapid method for detection of irradiated food. Since treatment with ionising radiation causes DNA fragmentation, the analysis of DNA damage might be promising. In this paper, the DNA Comet Assay was used to identify exotic meat (boar, jacare and capybara), irradiated with 60 Co gamma rays. The applied radiation doses were 0, 1.5, 3.0 and 4.5 kGy. Analysis of the DNA migration enabled a rapid identification of the radiation treatment

  11. A Rapid, Onsite, Ultrasensitive Melamine Quantitation Method for Protein Beverages Using Time-Resolved Fluorescence Detection Paper.

    Science.gov (United States)

    Li, Guanghua; Wang, Du; Zhou, Aijun; Sun, Yimin; Zhang, Qi; Poapolathep, Amnart; Zhang, Li; Fan, Zhiyong; Zhang, Zhaowei; Li, Peiwu

    2018-05-02

    To ensure protein beverage safety and prevent illegal melamine use to artificially increase protein content, a rapid, onsite, ultrasensitive detection method for melamine must be developed because melamine is detrimental to human health and life. Herein, an ultrasensitive time-resolved fluorescence detection paper (TFDP) was developed to detect melamine in protein beverages within 15 min using a one-step sample preparation. The lower limits of detection were 0.89, 0.94, and 1.05 ng/mL, and the linear ranges were 2.67-150, 2.82-150, and 3.15-150 ng/mL (R2>0.982) for peanut, walnut, and coconut beverages, respectively. The recovery rates were 85.86-110.60% with a coefficient of variation beverage samples, the TFDP and ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS) results were consistent. This method is a promising alternative for rapid, onsite detection of melamine in beverages.

  12. Multiresistant Bacteria Isolated from Chicken Meat in Austria

    Directory of Open Access Journals (Sweden)

    Gernot Zarfel

    2014-12-01

    Full Text Available Multidrug resistant bacteria (MDR bacteria, such as extended spectrum beta-lactamase (ESBL Enterobacteriaceae, methicillin resistant Staphylococcus aureus (MRSA, and vancomycin-resistant Enterococci (VRE, pose a challenge to the human health care system. In recent years, these MDR bacteria have been detected increasingly outside the hospital environment. Also the contamination of food with MDR bacteria, particularly of meat and meat products, is a concern. The aim of the study was to evaluate the occurrence of MDR bacteria in chicken meat on the Austrian market. For this study, 50 chicken meat samples were analysed. All samples originated from chickens slaughtered in Austrian slaughterhouses and were marked as produced in Austria. Samples were analysed for the presence of ESBL Enterobacteriaceae, methicillin resistant Staphylococci and VRE. Resistance genes of the isolated bacteria were characterised by PCR and sequencing. In the present study 26 ESBL producing E. coli, five mecA gene harbouring Staphylococci (but no MRSA, and four VRE were detected in chicken meat samples of Austrian origin. In 24 (48% of the samples no ESBL Enterobacteriaceae, MRSA, methicillin resistant coagulase negative Staphylococcus (MRCNS or VRE could be detected. None of the samples contained all three types of investigated multiresistant bacteria. In concordance to previous studies, CTX-M-1 and SHV-12 were the dominant ESBL genes.

  13. Computational modeling and experimental characterization of bacterial microcolonies for rapid detection using light scattering

    Science.gov (United States)

    Bai, Nan

    A label-free and nondestructive optical elastic forward light scattering method has been extended for the analysis of microcolonies for food-borne bacteria detection and identification. To understand the forward light scattering phenomenon, a model based on the scalar diffraction theory has been employed: a bacterial colony is considered as a biological spatial light modulator with amplitude and phase modulation to the incoming light, which continues to propagate to the far-field to form a distinct scattering 'fingerprint'. Numerical implementation via angular spectrum method (ASM) and Fresnel approximation have been carried out through Fast Fourier Transform (FFT) to simulate this optical model. Sampling criteria to achieve unbiased and un-aliased simulation results have been derived and the effects of violating these conditions have been studied. Diffraction patterns predicted by these two methods (ASM and Fresnel) have been compared to show their applicability to different simulation settings. Through the simulation work, the correlation between the colony morphology and its forward scattering pattern has been established to link the number of diffraction rings and the half cone angle with the diameter and the central height of the Gaussian-shaped colonies. In order to experimentally prove the correlation, a colony morphology analyzer has been built and used to characterize the morphology of different bacteria genera and investigate their growth dynamics. The experimental measurements have demonstrated the possibility of differentiating bacteria Salmonella, Listeria, Escherichia in their early growth stage (100˜500 µm) based on their phenotypic characteristics. This conclusion has important implications in microcolony detection, as most bacteria of our interest need much less incubation time (8˜12 hours) to grow into this size range. The original forward light scatterometer has been updated to capture scattering patterns from microcolonies. Experiments have

  14. Computer aided detection of suspicious regions on digital mammograms : rapid segmentation and feature extraction

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, C; Giacomini, M; Sacile, R [DIST - Department of Communication Computer and System Sciences, University of Genova, Via Opera Pia 13, 16145 Genova (Italy); Rosselli Del Turco, M [Centro per lo studio e la prevenzione oncologica, Firenze (Italy)

    1999-12-31

    A method is presented for rapid detection of suspicious regions which consists of two steps. The first step is segmentation based on texture analysis consisting of : histogram equalization, Laws filtering for texture analysis, Gaussian blur and median filtering to enhance differences between tissues in different respects, histogram thresholding to obtain a binary image, logical masking in order to detect regions to be discarded from the analysis, edge detection. This method has been tested on 60 images, obtaining 93% successful detection of suspicious regions. (authors) 4 refs, 9 figs, 1 tabs.

  15. Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling

    Science.gov (United States)

    Magennis, E. Peter; Fernandez-Trillo, Francisco; Sui, Cheng; Spain, Sebastian G.; Bradshaw, David; Churchley, David; Mantovani, Giuseppe; Winzer, Klaus; Alexander, Cameron

    2014-01-01

    The detection and inactivation of pathogenic strains of bacteria continues to be an important therapeutic goal. Hence, there is a need for materials that can bind selectively to specific microorganisms, for diagnostic or anti-infective applications, but which can be formed from simple and inexpensive building blocks. Here, we exploit bacterial redox systems to induce a copper-mediated radical polymerisation of synthetic monomers at cell surfaces, generating polymers in situ that bind strongly to the microorganisms which produced them. This ‘bacteria-instructed synthesis’ can be carried out with a variety of microbial strains, and we show that the polymers produced are self-selective binding agents for the ‘instructing’ cell types. We further expand on the bacterial redox chemistries to ‘click’ fluorescent reporters onto polymers directly at the surfaces of a range of clinical isolate strains, allowing rapid, facile and simultaneous binding and visualisation of pathogens. PMID:24813421

  16. Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling

    Science.gov (United States)

    Magennis, E. Peter; Fernandez-Trillo, Francisco; Sui, Cheng; Spain, Sebastian G.; Bradshaw, David J.; Churchley, David; Mantovani, Giuseppe; Winzer, Klaus; Alexander, Cameron

    2014-07-01

    The detection and inactivation of pathogenic strains of bacteria continues to be an important therapeutic goal. Hence, there is a need for materials that can bind selectively to specific microorganisms for diagnostic or anti-infective applications, but that can be formed from simple and inexpensive building blocks. Here, we exploit bacterial redox systems to induce a copper-mediated radical polymerization of synthetic monomers at cell surfaces, generating polymers in situ that bind strongly to the microorganisms that produced them. This ‘bacteria-instructed synthesis’ can be carried out with a variety of microbial strains, and we show that the polymers produced are self-selective binding agents for the ‘instructing’ cell types. We further expand on the bacterial redox chemistries to ‘click’ fluorescent reporters onto polymers directly at the surfaces of a range of clinical isolate strains, allowing rapid, facile and simultaneous binding and visualization of pathogens.

  17. Rapid determination of ampicillin in bovine milk by liquid chromatography with fluorescence detection

    Energy Technology Data Exchange (ETDEWEB)

    Ang, C.Y.W.; Luo, Wenhong [National Center for Toxicological Research, Jefferson, AR (United States)

    1997-01-01

    A rapid and sensitive liquid chromatographic (LC) method was developed for the determination of ampicillin residues in raw bovine milk, processed skim milk, and pasteurized, homogenized whole milk with vitamin D. Milk samples were deproteinized with trichloroacetic acid (TCA) and acetonictrile. After centrifugation, the clear supernatant was reacted with formaldehyde and TCA under heat. The major fluorescent derivative of ampicillin was then determined by reversed-phase LC with fluorescence detection. Average recoveries of ampicillin fortified at 5, 10, and 20 ppb (ng/mL) were all >85% with coefficients of variation <10%. Limits of detection ranged from 0.31 to 0.51 ppb and limits of quantitation, from 0.66 to 1.2 ppb. After appropriate validation, this method should be suitable for rapid analysis of milk for ampicillin residues at the tolerance level of 10 ppb. 16 refs., 4 figs., 3 tabs.

  18. Microbiological evaluation of a new growth-based approach for rapid detection of methicillin-resistant Staphylococcus aureus

    NARCIS (Netherlands)

    von Eiff, Christof; Maas, Dominik; Sander, Gunnar; Friedrich, Alexander W; Peters, Georg; Becker, Karsten

    OBJECTIVES: Recently, a rapid screening tool for methicillin-resistant Staphylococcus aureus (MRSA) has been introduced that applies a novel detection technology allowing the rapid presence or absence of MRSA to be determined from an enrichment broth after only a few hours of incubation. To evaluate

  19. Seasonal to hour variation scales in abundance and production of total and particle-attached bacteria in the open NW Mediterranean Sea (0–1000 m

    Directory of Open Access Journals (Sweden)

    G. Mével

    2008-11-01

    Full Text Available We present the vertical and temporal dynamics of total vs. particle-attached bacterial abundance and activity over a 5 week period under summer to autumn transition in NW Mediterranean Sea. At a weekly time scale, total bacterial biomass and production in the euphotic layers was significantly correlated with phytoplanktonic biomass. At an hourly time scale, total bacterial biomass responded very rapidly to chlorophyll a fluctuations, suggesting a tight coupling between phytoplankton and bacteria for resource partitioning during the summer-autumn transition. In contrast, no influence of diel changes on bacterial parameters was detected. Episodic events such as coastal water intrusions had a significant positive effect on total bacterial abundance and production, whereas we could not detect any influence of short wind events whatever the magnitude. Finally, we show that particle-attached bacteria can represent a large proportion (up to 49% of the total bacterial activity in the euphotic layer but display rapid and sporadic changes at hourly time scales. In the mesopelagic layers, bacterial abundance and production linearly decreased with depth, except some production peaks at 400–750 m. This study underlines the value of large datasets covering different temporal scales to clarify the biogeochemical role of bacteria in the cycling of organic matter in open seawater.

  20. Human anti-HIV IgM detection by the OraQuick ADVANCE® Rapid HIV 1/2 Antibody Test.

    Science.gov (United States)

    Guillon, Geraldine; Yearwood, Graham; Snipes, Casey; Boschi, Daniel; Reed, Michael R

    2018-01-01

    The Centers for Disease Control and Prevention (CDC) and many public health jurisdictions continue to advocate for the most sensitive rapid HIV test that is available. Currently, the recommendation is to utilize tests that can detect HIV infection biomarkers within 30 days of infection, when initial immune responses are mounted. The infected patient's IgM response is often used to detect acute infection within a 20-25 days window after infection. This requirement applies to lab-based testing with automated analyzers and rapid, point of care (POC) testing used for screening in a non-clinical setting. A recent study has demonstrated that POC tests using a Protein A-based detection system can detect samples with predominantly HIV-1 IgM reactivity (Moshgabadi et al., 2015). The OraQuick ADVANCE ® Rapid HIV-1/2 Antibody Test (OraQuick ADVANCE ®) also uses Protein A as the detection protein in the antibody-binding colloidal gold conjugate, so it is expected that the OraQuick ADVANCE ® Test will also detect samples with predominantly IgM reactivity. This report definitively demonstrates that the OraQuick ADVANCE ® Test can detect IgM antibodies during an acute infection window period of approximately 20-25 days after infection, and is therefore suitable for use in testing environments requiring adherence to current CDC recommendations.

  1. Detection of possible AI-2-mediated quorum sensing system in commensal intestinal bacteria.

    Science.gov (United States)

    Lukás, F; Gorenc, G; Kopecný, J

    2008-01-01

    The Vibrio harveyi strain BB170-autoinducer bioassay was used to detect possible quorum sensing autoinducer-2 molecule (AI-2) in culture fluids of commensal intestinal bacteria. Culture fluids of Bacteroides vulgatus, Clostridium proteoclasticum, Escherichia coli, Eubacterium rectale, Lachnospira multipara, Pseudobutyrivibrio ruminis, Roseburia intestinalis, Ruminococcus albus and Ruminococcus flavefaciens contained AI-2-like molecules. The PCR bands from some of the tested strains could be also amplified using primers designed for the luxS gene. These findings suggest that AI-2 is present in the gastrointestinal tract; however, it has not yet been proved whether it is used for bacterial cell-to-cell communication.

  2. Rapid and quantitative detection of the microbial spoilage of meat by fourier transform infrared spectroscopy and machine learning.

    Science.gov (United States)

    Ellis, David I; Broadhurst, David; Kell, Douglas B; Rowland, Jem J; Goodacre, Royston

    2002-06-01

    Fourier transform infrared (FT-IR) spectroscopy is a rapid, noninvasive technique with considerable potential for application in the food and related industries. We show here that this technique can be used directly on the surface of food to produce biochemically interpretable "fingerprints." Spoilage in meat is the result of decomposition and the formation of metabolites caused by the growth and enzymatic activity of microorganisms. FT-IR was exploited to measure biochemical changes within the meat substrate, enhancing and accelerating the detection of microbial spoilage. Chicken breasts were purchased from a national retailer, comminuted for 10 s, and left to spoil at room temperature for 24 h. Every hour, FT-IR measurements were taken directly from the meat surface using attenuated total reflectance, and the total viable counts were obtained by classical plating methods. Quantitative interpretation of FT-IR spectra was possible using partial least-squares regression and allowed accurate estimates of bacterial loads to be calculated directly from the meat surface in 60 s. Genetic programming was used to derive rules showing that at levels of 10(7) bacteria.g(-1) the main biochemical indicator of spoilage was the onset of proteolysis. Thus, using FT-IR we were able to acquire a metabolic snapshot and quantify, noninvasively, the microbial loads of food samples accurately and rapidly in 60 s, directly from the sample surface. We believe this approach will aid in the Hazard Analysis Critical Control Point process for the assessment of the microbiological safety of food at the production, processing, manufacturing, packaging, and storage levels.

  3. Specific detection of Pectobacterium carotovorum by loop-mediated isothermal amplification.

    Science.gov (United States)

    Yasuhara-Bell, Jarred; Marrero, Glorimar; De Silva, Asoka; Alvarez, Anne M

    2016-12-01

    Potatoes are an important agroeconomic crop worldwide and maceration diseases caused by pectolytic bacterial pathogens result in significant pre- and post-harvest losses. Pectobacterium carotovorum shares a common host range with other Pectobacterium spp. and other members of the Enterobacteriaceae, such as Dickeya spp. As these pathogens cannot be clearly differentiated on the basis of the symptoms they cause, improved methods of identification are critical for the determination of sources of contamination. Current standardized methods for the differentiation of pectolytic species are time consuming and require trained personnel, as they rely on traditional bacteriological practices that do not always produce conclusive results. In this growing world market, there is a need for rapid diagnostic tests that can differentiate between pectolytic pathogens, as well as separate them from non-pectolytic enteric bacteria associated with soft rots of potato. An assay has been designed previously to detect the temperate pathogen Pectobacterium atrosepticum, but there is currently no recognized rapid assay for the detection of the tropical/subtropical counterpart, Pectobacterium carotovorum. This report describes the development of a loop-mediated isothermal amplification (LAMP) assay that detects P. carotovorum with high specificity. The assay was evaluated using all known species of Pectobacterium and only showed positive reactions for P. carotovorum. This assay was also tested against 15 non-target genera of plant-associated bacteria and did not produce any false positives. The LAMP assay described here can be used as a rapid test for the differentiation of P. carotovorum from other pectolytic pathogens, and its gene target can be the basis for the development of other molecular-based detection assays. © 2016 BSPP and John Wiley & Sons Ltd.

  4. Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest.

    Science.gov (United States)

    Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Zhang, Yun; Topp, Edward

    2013-09-01

    Consumption of vegetables represents a route of direct human exposure to bacteria found in soil. The present study evaluated the complement of bacteria resistant to various antibiotics on vegetables often eaten raw (tomato, cucumber, pepper, carrot, radish, lettuce) and how this might vary with growth in soil fertilized inorganically or with dairy or swine manure. Vegetables were sown into field plots immediately following fertilization and harvested when of marketable quality. Vegetable and soil samples were evaluated for viable antibiotic-resistant bacteria by plate count on Chromocult medium supplemented with antibiotics at clinical breakpoint concentrations. DNA was extracted from soil and vegetables and evaluated by PCR for the presence of 46 gene targets associated with plasmid incompatibility groups, integrons, or antibiotic resistance genes. Soil receiving manure was enriched in antibiotic-resistant bacteria and various antibiotic resistance determinants. There was no coherent corresponding increase in the abundance of antibiotic-resistant bacteria enumerated from any vegetable grown in manure-fertilized soil. Numerous antibiotic resistance determinants were detected in DNA extracted from vegetables grown in unmanured soil. A smaller number of determinants were additionally detected on vegetables grown only in manured and not in unmanured soil. Overall, consumption of raw vegetables represents a route of human exposure to antibiotic-resistant bacteria and resistance determinants naturally present in soil. However, the detection of some determinants on vegetables grown only in freshly manured soil reinforces the advisability of pretreating manure through composting or other stabilization processes or mandating offset times between manuring and harvesting vegetables for human consumption.

  5. Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Common Strains of Escherichia coli▿

    Science.gov (United States)

    Hill, Joshua; Beriwal, Shilpa; Chandra, Ishwad; Paul, Vinod K.; Kapil, Aarti; Singh, Tripti; Wadowsky, Robert M.; Singh, Vinita; Goyal, Ankur; Jahnukainen, Timo; Johnson, James R.; Tarr, Phillip I.; Vats, Abhay

    2008-01-01

    We developed a highly sensitive and specific LAMP assay for Escherichia coli. It does not require DNA extraction and can detect as few as 10 copies. It detected all 36 of 36 E. coli isolates and all 22 urine samples (out of 89 samples tested) that had E. coli. This assay is rapid, low in cost, and simple to perform. PMID:18550738

  6. Loop-mediated isothermal amplification assay for rapid detection of common strains of Escherichia coli.

    Science.gov (United States)

    Hill, Joshua; Beriwal, Shilpa; Chandra, Ishwad; Paul, Vinod K; Kapil, Aarti; Singh, Tripti; Wadowsky, Robert M; Singh, Vinita; Goyal, Ankur; Jahnukainen, Timo; Johnson, James R; Tarr, Phillip I; Vats, Abhay

    2008-08-01

    We developed a highly sensitive and specific LAMP assay for Escherichia coli. It does not require DNA extraction and can detect as few as 10 copies. It detected all 36 of 36 E. coli isolates and all 22 urine samples (out of 89 samples tested) that had E. coli. This assay is rapid, low in cost, and simple to perform.

  7. Proteus Mirabilis Bacteria Biosensor Development Based on Modified Gold Electrode with 4-Carboxyphenyl Diazonium Salts for Heavy Metals Toxicity Detection

    Directory of Open Access Journals (Sweden)

    Yosra BRAHAM

    2014-05-01

    Full Text Available In this work we describe a new biosensor for heavy metals detection, based on the immobilization of bacteria, Proteus mirabilis on gold electrode modified with aryl electrografting film. To enhance the stability of the biosystem, additional materials were used such as functionalized Fe3O4 nanoparticles (NPs, cationic (PAH, anionic (PSS polyelectrolytes, Bovine Serum Albumin (BSA and glutaraldehyde as a cross-linking agent. Before the immobilization step, the activity of Proteus mirabilis bacteria in the presence of heavy metals ions was attempted using the ion ammonium selective electrodes (ISEs. The modication of the gold electrodes with the electrochemical reduction of 4- carboxyphenyl diazonium salts to form stable layers for sensing applications was characterized by cyclic voltammetry and chronoamperometry measurements. The adhesion of the bacteria cell on gold electrode was evaluated using contact angle measurements. The immobilized bacteria-metal interaction was evaluated using the electrochemical impedance spectroscopy (EIS measurements. A notable effect of metal on the bacteria activity is observed in the concentration range from 10-3 to 1 µM and from 1µM to 1nM for Co2+, Cd2+, Cu2+ and Hg2+, respectively.

  8. Development of a dielectrophoresis-assisted surface plasmon resonance fluorescence biosensor for detection of bacteria

    Science.gov (United States)

    Kuroda, Chiaki; Iizuka, Ryota; Ohki, Yoshimichi; Fujimaki, Makoto

    2018-05-01

    To detect biological substances such as bacteria speedily and accurately, a dielectrophoresis-assisted surface plasmon resonance (SPR) fluorescence biosensor is being developed. Using Escherichia coli as a target organism, an appropriate voltage frequency to collect E. coli cells on indium tin oxide quadrupole electrodes by dielectrophoresis is analyzed. Then, E. coli is stained with 4‧,6-diamidino-2-phenylindole (DAPI). To clearly detect fluorescence signals from DAPI-stained E. coli cells, the sensor is optimized so that we can excite SPR on Al electrodes by illuminating 405 nm photons. As a result, the number of fluorescence signals is increased on the electrodes by the application of a low-frequency voltage. This indicates that E. coli cells with a lower permittivity than the surrounding water are collected by negative dielectrophoresis onto the electrodes where the electric field strength is lowest.

  9. Dual channel detection of ultra low concentration of bacteria in real time by scanning fluorescence correlation spectroscopy

    Science.gov (United States)

    Altamore, Ilaria; Lanzano, Luca; Gratton, Enrico

    2013-06-01

    We describe a novel method to detect very low concentrations of bacteria in water. Our device consists of a portable horizontal geometry small confocal microscope with large pinhole and a holder for cylindrical cuvettes containing the sample. Two motors provide fast rotational and slow vertical motion of the cuvette so the device looks like a simplified flow cytometer without flow. To achieve high sensitivity, the design has two detection channels. Bacteria are stained by two different nucleic acid dyes and excited with two different lasers. Data are analyzed with a correlation filter based on particle passage pattern recognition. The passage of a particle through the illumination volume is compared with a Gaussian pattern in both channels. The width of the Gaussian correlates with the time of passage of the particle so one particle is counted when the algorithm finds a match with a Gaussian in both channels. The concentration of particles in the sample is deduced from the total number of coincident hits and the total volume scanned. This portable setup provides higher sensitivity, low-cost advantage, and it can have a wide use ranging from clinical applications to pollution monitors and water and air quality control.

  10. Dual channel detection of ultra low concentration of bacteria in real time by scanning fluorescence correlation spectroscopy

    International Nuclear Information System (INIS)

    Altamore, Ilaria; Lanzano, Luca; Gratton, Enrico

    2013-01-01

    We describe a novel method to detect very low concentrations of bacteria in water. Our device consists of a portable horizontal geometry small confocal microscope with large pinhole and a holder for cylindrical cuvettes containing the sample. Two motors provide fast rotational and slow vertical motion of the cuvette so the device looks like a simplified flow cytometer without flow. To achieve high sensitivity, the design has two detection channels. Bacteria are stained by two different nucleic acid dyes and excited with two different lasers. Data are analyzed with a correlation filter based on particle passage pattern recognition. The passage of a particle through the illumination volume is compared with a Gaussian pattern in both channels. The width of the Gaussian correlates with the time of passage of the particle so one particle is counted when the algorithm finds a match with a Gaussian in both channels. The concentration of particles in the sample is deduced from the total number of coincident hits and the total volume scanned. This portable setup provides higher sensitivity, low-cost advantage, and it can have a wide use ranging from clinical applications to pollution monitors and water and air quality control. (paper)

  11. Rapid method for Detection of Irradiation Mango Fruits

    International Nuclear Information System (INIS)

    El Salhy, F.T.

    2011-01-01

    To detect mango fruits which have been exposed to low doses of gamma rays (0.5-3.0 kGy), three recommended methods by European Committee for Standardization (EN 1784:1996, EN 1785:1996 and EN 1787:2000) were used to study the possibility for identification of irradiated mango fruits (Ewais variety). Fresh mangoes were irradiated to different doses (0.5, 0.75, 1.0 and 3.0 kGy). The first method for determining the volatile hydrocarbons (VHC) was carried out by using florisil column then identified by gas chromatography and mass spectrometry (GC-MS). The major VHCs were C14:1, C15:0 and C17:1 at different doses which increased linearly with increasing doses either at low or high doses. The second one for determining the 2-alkyl cyclobutanone (2-DCB) was carried out using florisil chromatography method activated with 20% for separation and identified by GC-MS. 2-DCB bio marker specific for irradiated food proved its presence at the applied doses from 0.75-3.0 kGy but not at 0.5 kGy. All the mentioned compounds could not detected in non-irradiated samples, which mean that these radiolytic products (VHC and 2-DCB) can be used as a detection markers for irradiated mangoes even at low doses. The third one (EN 1787:2000) was conducted by electron spin resonance (ESR) on dried petioles of mangoes. The results proved that ESR was more sensitive for all applied doses.It could be concluded that using the three methods can be succeeded for detection of irradiated mangoes but the rapid one even at low doses with high accuracy was ESR.

  12. Rapid detection of pandemic influenza in the presence of seasonal influenza

    Science.gov (United States)

    2010-01-01

    Background Key to the control of pandemic influenza are surveillance systems that raise alarms rapidly and sensitively. In addition, they must minimise false alarms during a normal influenza season. We develop a method that uses historical syndromic influenza data from the existing surveillance system 'SERVIS' (Scottish Enhanced Respiratory Virus Infection Surveillance) for influenza-like illness (ILI) in Scotland. Methods We develop an algorithm based on the weekly case ratio (WCR) of reported ILI cases to generate an alarm for pandemic influenza. From the seasonal influenza data from 13 Scottish health boards, we estimate the joint probability distribution of the country-level WCR and the number of health boards showing synchronous increases in reported influenza cases over the previous week. Pandemic cases are sampled with various case reporting rates from simulated pandemic influenza infections and overlaid with seasonal SERVIS data from 2001 to 2007. Using this combined time series we test our method for speed of detection, sensitivity and specificity. Also, the 2008-09 SERVIS ILI cases are used for testing detection performances of the three methods with a real pandemic data. Results We compare our method, based on our simulation study, to the moving-average Cumulative Sums (Mov-Avg Cusum) and ILI rate threshold methods and find it to be more sensitive and rapid. For 1% case reporting and detection specificity of 95%, our method is 100% sensitive and has median detection time (MDT) of 4 weeks while the Mov-Avg Cusum and ILI rate threshold methods are, respectively, 97% and 100% sensitive with MDT of 5 weeks. At 99% specificity, our method remains 100% sensitive with MDT of 5 weeks. Although the threshold method maintains its sensitivity of 100% with MDT of 5 weeks, sensitivity of Mov-Avg Cusum declines to 92% with increased MDT of 6 weeks. For a two-fold decrease in the case reporting rate (0.5%) and 99% specificity, the WCR and threshold methods

  13. Rapid molecular assays for the detection of yellow fever virus in low-resource settings.

    Science.gov (United States)

    Escadafal, Camille; Faye, Oumar; Sall, Amadou Alpha; Faye, Ousmane; Weidmann, Manfred; Strohmeier, Oliver; von Stetten, Felix; Drexler, Josef; Eberhard, Michael; Niedrig, Matthias; Patel, Pranav

    2014-03-01

    Yellow fever (YF) is an acute viral hemorrhagic disease transmitted by Aedes mosquitoes. The causative agent, the yellow fever virus (YFV), is found in tropical and subtropical areas of South America and Africa. Although a vaccine is available since the 1930s, YF still causes thousands of deaths and several outbreaks have recently occurred in Africa. Therefore, rapid and reliable diagnostic methods easy to perform in low-resources settings could have a major impact on early detection of outbreaks and implementation of appropriate response strategies such as vaccination and/or vector control. The aim of this study was to develop a YFV nucleic acid detection method applicable in outbreak investigations and surveillance studies in low-resource and field settings. The method should be simple, robust, rapid and reliable. Therefore, we adopted an isothermal approach and developed a recombinase polymerase amplification (RPA) assay which can be performed with a small portable instrument and easy-to-use lyophilized reagents. The assay was developed in three different formats (real-time with or without microfluidic semi-automated system and lateral-flow assay) to evaluate their application for different purposes. Analytical specificity and sensitivity were evaluated with a wide panel of viruses and serial dilutions of YFV RNA. Mosquito pools and spiked human plasma samples were also tested for assay validation. Finally, real-time RPA in portable format was tested under field conditions in Senegal. The assay was able to detect 20 different YFV strains and demonstrated no cross-reactions with closely related viruses. The RPA assay proved to be a robust, portable method with a low detection limit (<21 genome equivalent copies per reaction) and rapid processing time (<20 min). Results from real-time RPA field testing were comparable to results obtained in the laboratory, thus confirming our method is suitable for YFV detection in low-resource settings.

  14. Rapid molecular assays for the detection of yellow fever virus in low-resource settings.

    Directory of Open Access Journals (Sweden)

    Camille Escadafal

    2014-03-01

    Full Text Available BACKGROUND: Yellow fever (YF is an acute viral hemorrhagic disease transmitted by Aedes mosquitoes. The causative agent, the yellow fever virus (YFV, is found in tropical and subtropical areas of South America and Africa. Although a vaccine is available since the 1930s, YF still causes thousands of deaths and several outbreaks have recently occurred in Africa. Therefore, rapid and reliable diagnostic methods easy to perform in low-resources settings could have a major impact on early detection of outbreaks and implementation of appropriate response strategies such as vaccination and/or vector control. METHODOLOGY: The aim of this study was to develop a YFV nucleic acid detection method applicable in outbreak investigations and surveillance studies in low-resource and field settings. The method should be simple, robust, rapid and reliable. Therefore, we adopted an isothermal approach and developed a recombinase polymerase amplification (RPA assay which can be performed with a small portable instrument and easy-to-use lyophilized reagents. The assay was developed in three different formats (real-time with or without microfluidic semi-automated system and lateral-flow assay to evaluate their application for different purposes. Analytical specificity and sensitivity were evaluated with a wide panel of viruses and serial dilutions of YFV RNA. Mosquito pools and spiked human plasma samples were also tested for assay validation. Finally, real-time RPA in portable format was tested under field conditions in Senegal. CONCLUSION/SIGNIFICANCE: The assay was able to detect 20 different YFV strains and demonstrated no cross-reactions with closely related viruses. The RPA assay proved to be a robust, portable method with a low detection limit (<21 genome equivalent copies per reaction and rapid processing time (<20 min. Results from real-time RPA field testing were comparable to results obtained in the laboratory, thus confirming our method is suitable for

  15. Detection of emerging antibiotic resistance in bacteria isolated from subclinical mastitis in cattle in West Bengal

    Directory of Open Access Journals (Sweden)

    Arnab Das

    2017-05-01

    Full Text Available Aim: The aim of this work was to detect antibiotic resistance in Gram-negative bacteria isolated from subclinical mastitis in cattle in West Bengal. Materials and Methods: The milk samples were collected from the cattle suffering with subclinical mastitis in West Bengal. The milk samples were inoculated into the nutrient broth and incubated at 37°C. On the next day, the growth was transferred into nutrient agar and MacConkey agar. All the pure cultures obtained from nutrient agar slant were subjected to Gram-staining and standard biochemical tests. All the bacterial isolates were tested in vitro for their sensitivity to different antibiotics commonly used in veterinary practices. All Gram-negative isolates including positive control were subjected to polymerase chain reaction (PCR for detection of blaCTX-M, blaTEM, blaSHV, blaVIM, tetA, tetB, tetC, and tetM genes considered for extended-spectrum β-lactamase (ESBL, metallo-β-lactamase, and tetracycline resistance. Results: In total, 50 Gram-negative organisms (Escherichia coli, Proteus, Pseudomonas, Klebsiella, and Enterobacter were isolated from milk samples of subclinical mastitis infected cattle. Among these Gram-negative isolates, 48% (24/50 were found either ESBL producing or tetracycline resistant. Out of total 50 Gram-negative isolates, blaCTX-M was detected in 18 (36% isolates, and 6 (12% harbored blaTEM genes in PCR. None of the isolates carried blaSHV genes. Further, in this study, 5 (10% isolates harbored tet(A gene, and 8 (16% isolates carried tet(B gene. No tet(C gene was detected from the isolates. Conclusion: This study showed emerging trend of antibiotic-resistant Gram-negative bacteria associated with subclinical mastitis in cattle in West Bengal, India.

  16. A technique to detect periodic and non-periodic ultra-rapid flux time variations with standard radio-astronomical data

    Science.gov (United States)

    Borra, Ermanno F.; Romney, Jonathan D.; Trottier, Eric

    2018-06-01

    We demonstrate that extremely rapid and weak periodic and non-periodic signals can easily be detected by using the autocorrelation of intensity as a function of time. We use standard radio-astronomical observations that have artificial periodic and non-periodic signals generated by the electronics of terrestrial origin. The autocorrelation detects weak signals that have small amplitudes because it averages over long integration times. Another advantage is that it allows a direct visualization of the shape of the signals, while it is difficult to see the shape with a Fourier transform. Although Fourier transforms can also detect periodic signals, a novelty of this work is that we demonstrate another major advantage of the autocorrelation, that it can detect non-periodic signals while the Fourier transform cannot. Another major novelty of our work is that we use electric fields taken in a standard format with standard instrumentation at a radio observatory and therefore no specialized instrumentation is needed. Because the electric fields are sampled every 15.625 ns, they therefore allow detection of very rapid time variations. Notwithstanding the long integration times, the autocorrelation detects very rapid intensity variations as a function of time. The autocorrelation could also detect messages from Extraterrestrial Intelligence as non-periodic signals.

  17. A method to detect metal–drug complexes and their interactions with pathogenic bacteria via graphene nanosheet assist laser desorption/ionization mass spectrometry and biosensors

    International Nuclear Information System (INIS)

    Abdelhamid, Hani Nasser; Wu, Hui-Fen

    2012-01-01

    Highlights: ► Probe transition metals-complexes based on noncovalent functionalized graphene for MALDI-MS. ► Study interaction of transition metals complexes with pathogenic bacteria. ► Propose a new biosensor for two pathogenic bacteria. - Abstract: A new method was proposed to probe the interactions between transition metals of Fe(II), Fe(III), Cu(II) with a non steroidal anti-inflammatory drug (NSAID), flufenamic acid (FF) using graphene as a matrix for Graphene assisted laser desorption ionization mass spectrometry (GALDI-MS). Metal–drug complexation was confirmed via UV absorption spectroscopy, fluorescence spectroscopy, pH meter, and change in solution conductivity. The optimal molar ratios for these complexation interactions are stoichiometry 1:2 in both Cu(II) and Fe(II) complexes, and 1:3 in Fe(III) complexes at physiological pH (7.4). Metal complexation of the drug could enhance fluorescence for 20 fold which is due to the charge transfer reaction or increase rigidity of the drug. The main interaction between graphene and flufenamic acid is the Π–Π interaction which allows us to probe the metal–drug complexation. The GALDI-MS could sensitively detect the drug at m/z 281.0 Da (protonated molecule) with detection limit 2.5 pmol (1.0 μM) and complexation at m/z 661.0, 654.0 and 933.0 Da corresponding to [Cu(II)(FF) 2 (H 2 O) 2 + H] + , [Fe(II)(FF) 2 (H 2 O) 2 + H] + and [Fe(III) (FF) 3 (H 2 O) 2 + H] + , respectively (with limit of detection (LOD) 2.0 pmol (10.0 μM). Matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) spectra show change in the protein profile of intact pathogenic bacteria (Pseudomonas aeroginosa, Staphylococcus aureus). The change in the ionization ability (mainly proton affinity) of pathogenic bacteria may be due to the interactions between the bacteria with the drug (or its complexes). Shielding carboxylic group by metals and increase the hydrophilicity could enhance the biocompatibility of complexes

  18. Detection of bacteria based on the thermomechanical noise of a nanomechanical resonator: origin of the response and detection limits

    International Nuclear Information System (INIS)

    Ramos, D; Tamayo, J; Mertens, J; Calleja, M; Villanueva, L G; Zaballos, A

    2008-01-01

    We have measured the effect of bacteria adsorption on the resonant frequency of microcantilevers as a function of the adsorption position and vibration mode. The resonant frequencies were measured from the Brownian fluctuations of the cantilever tip. We found that the sign and amount of the resonant frequency change is determined by the position and extent of the adsorption on the cantilever with regard to the shape of the vibration mode. To explain these results, a theoretical one-dimensional model is proposed. We obtain analytical expressions for the resonant frequency that accurately fit the data obtained by the finite element method. More importantly, the theory data shows a good agreement with the experiments. Our results indicate that there exist two opposite mechanisms that can produce a significant resonant frequency shift: the stiffness and the mass of the bacterial cells. Based on the thermomechanical noise, we analyse the regions of the cantilever of lowest and highest sensitivity to the attachment of bacteria. The combination of high vibration modes and the confinement of the adsorption to defined regions of the cantilever allows the detection of single bacterial cells by only measuring the Brownian fluctuations. This study can be extended to smaller cantilevers and other biological systems such as proteins and nucleic acids

  19. Bienzymatic Biosensor for Rapid Detection of Aspartame by Flow Injection Analysis

    Directory of Open Access Journals (Sweden)

    Maria-Cristina Radulescu

    2014-01-01

    Full Text Available A rapid, simple and stable biosensor for aspartame detection was developed. Alcohol oxidase (AOX, carboxyl esterase (CaE and bovine serum albumin (BSA were immobilised with glutaraldehyde (GA onto screen-printed electrodes modified with cobalt-phthalocyanine (CoPC. The biosensor response was fast. The sample throughput using a flow injection analysis (FIA system was 40 h−1 with an RSD of 2.7%. The detection limits for both batch and FIA measurements were 0.1 µM for methanol and 0.2 µM for aspartame, respectively. The enzymatic biosensor was successfully applied for aspartame determination in different sample matrices/commercial products (liquid and solid samples without any pre-treatment step prior to measurement.

  20. Bienzymatic biosensor for rapid detection of aspartame by flow injection analysis.

    Science.gov (United States)

    Radulescu, Maria-Cristina; Bucur, Bogdan; Bucur, Madalina-Petruta; Radu, Gabriel Lucian

    2014-01-09

    A rapid, simple and stable biosensor for aspartame detection was developed. Alcohol oxidase (AOX), carboxyl esterase (CaE) and bovine serum albumin (BSA) were immobilised with glutaraldehyde (GA) onto screen-printed electrodes modified with cobalt-phthalocyanine (CoPC). The biosensor response was fast. The sample throughput using a flow injection analysis (FIA) system was 40 h⁻¹ with an RSD of 2.7%. The detection limits for both batch and FIA measurements were 0.1 µM for methanol and 0.2 µM for aspartame, respectively. The enzymatic biosensor was successfully applied for aspartame determination in different sample matrices/commercial products (liquid and solid samples) without any pre-treatment step prior to measurement.

  1. Rapid Newcastle Disease Virus Detection Based on Loop-Mediated Isothermal Amplification and Optomagnetic Readout

    DEFF Research Database (Denmark)

    Tian, Bo; Ma, Jing; Zardán Gómez de la Torre, Teresa

    2016-01-01

    Rapid and sensitive diagnostic methods based on isothermal amplification are ideal substitutes for PCR in out-of-lab settings. However, there are bottlenecks in terms of establishing low-cost and user-friendly readout methods for isothermal amplification schemes. Combining the high amplification...... efficiency of loop-mediated isothermal amplification (LAMP) with an optomagnetic nanoparticle-based readout system, we demonstrate ultrasensitive and rapid detection of Newcastle disease virus RNA. Biotinylated amplicons of LAMP and reverse transcription LAMP (RT-LAMP) bind to streptavidin-coated magnetic...... nanoparticles (MNPs) resulting in a dramatical increase in the hydrodynamic size of the MNPs. This increase was measured by an optomagnetic readout system and provided quantitative information on the amount of LAMP target sequence. Our assay resulted in a limit of detection of 10 aM of target sequence...

  2. Plasmonic Nanobubbles Rapidly Detect and Destroy Drug-Resistant Tumors

    Science.gov (United States)

    Lukianova-Hleb, Ekaterina Y.; Ren, Xiaoyang; Townley, Debra; Wu, Xiangwei; Kupferman, Michael E.; Lapotko, Dmitri O.

    2012-01-01

    The resistance of residual cancer cells after oncological resection to adjuvant chemoradiotherapies results in both high recurrence rates and high non-specific tissue toxicity, thus preventing the successful treatment of such cancers as head and neck squamous cell carcinoma (HNSCC). The patients' survival rate and quality of life therefore depend upon the efficacy, selectivity and low non-specific toxicity of the adjuvant treatment. We report a novel, theranostic in vivo technology that unites both the acoustic diagnostics and guided intracellular delivery of anti-tumor drug (liposome-encapsulated doxorubicin, Doxil) in one rapid process, namely a pulsed laser-activated plasmonic nanobubble (PNB). HNSCC-bearing mice were treated with gold nanoparticle conjugates, Doxil, and single near-infrared laser pulses of low energy. Tumor-specific clusters of gold nanoparticles (solid gold spheres) converted the optical pulses into localized PNBs. The acoustic signals of the PNB detected the tumor with high specificity and sensitivity. The mechanical impact of the PNB, co-localized with Doxil liposomes, selectively ejected the drug into the cytoplasm of cancer cells. Cancer cell-specific generation of PNBs and their intracellular co-localization with Doxil improved the in vivo therapeutic efficacy from 5-7% for administration of only Doxil or PNBs alone to 90% thus demonstrating the synergistic therapeutic effect of the PNB-based intracellular drug release. This mechanism also reduced the non-specific toxicity of Doxil below a detectable level and the treatment time to less than one minute. Thus PNBs combine highly sensitive diagnosis, overcome drug resistance and minimize non-specific toxicity in a single rapid theranostic procedure for intra-operative treatment. PMID:23139725

  3. Rapid and robust detection methods for poison and microbial contamination.

    Science.gov (United States)

    Hoehl, Melanie M; Lu, Peter J; Sims, Peter A; Slocum, Alexander H

    2012-06-27

    Real-time on-site monitoring of analytes is currently in high demand for food contamination, water, medicines, and ingestible household products that were never tested appropriately. Here we introduce chemical methods for the rapid quantification of a wide range of chemical and microbial contaminations using a simple instrument. Within the testing procedure, we used a multichannel, multisample, UV-vis spectrophotometer/fluorometer that employs two frequencies of light simultaneously to interrogate the sample. We present new enzyme- and dye-based methods to detect (di)ethylene glycol in consumables above 0.1 wt % without interference and alcohols above 1 ppb. Using DNA intercalating dyes, we can detect a range of pathogens ( E. coli , Salmonella , V. Cholera, and a model for Malaria) in water, foods, and blood without background signal. We achieved universal scaling independent of pathogen size above 10(4) CFU/mL by taking advantage of the simultaneous measurement at multiple wavelengths. We can detect contaminants directly, without separation, purification, concentration, or incubation. Our chemistry is stable to ± 1% for >3 weeks without refrigeration, and measurements require <5 min.

  4. Detection of Alicyclobacillus species in fruit juice using a random genomic DNA microarray chip.

    Science.gov (United States)

    Jang, Jun Hyeong; Kim, Sun-Joong; Yoon, Bo Hyun; Ryu, Jee-Hoon; Gu, Man Bock; Chang, Hyo-Ihl

    2011-06-01

    This study describes a method using a DNA microarray chip to rapidly and simultaneously detect Alicyclobacillus species in orange juice based on the hybridization of genomic DNA with random probes. Three food spoilage bacteria were used in this study: Alicyclobacillus acidocaldarius, Alicyclobacillus acidoterrestris, and Alicyclobacillus cycloheptanicus. The three Alicyclobacillus species were adjusted to 2 × 10(3) CFU/ml and inoculated into pasteurized 100% pure orange juice. Cy5-dCTP labeling was used for reference signals, and Cy3-dCTP was labeled for target genomic DNA. The molar ratio of 1:1 of Cy3-dCTP and Cy5-dCTP was used. DNA microarray chips were fabricated using randomly fragmented DNA of Alicyclobacillus spp. and were hybridized with genomic DNA extracted from Bacillus spp. Genomic DNA extracted from Alicyclobacillus spp. showed a significantly higher hybridization rate compared with DNA of Bacillus spp., thereby distinguishing Alicyclobacillus spp. from Bacillus spp. The results showed that the microarray DNA chip containing randomly fragmented genomic DNA was specific and clearly identified specific food spoilage bacteria. This microarray system is a good tool for rapid and specific detection of thermophilic spoilage bacteria, mainly Alicyclobacillus spp., and is useful and applicable to the fruit juice industry.

  5. Rapid detection and subtyping of human influenza A viruses and reassortants by pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Yi-Mo Deng

    Full Text Available BACKGROUND: Given the continuing co-circulation of the 2009 H1N1 pandemic influenza A viruses with seasonal H3N2 viruses, rapid and reliable detection of newly emerging influenza reassortant viruses is important to enhance our influenza surveillance. METHODOLOGY/PRINCIPAL FINDINGS: A novel pyrosequencing assay was developed for the rapid identification and subtyping of potential human influenza A virus reassortants based on all eight gene segments of the virus. Except for HA and NA genes, one universal set of primers was used to amplify and subtype each of the six internal genes. With this method, all eight gene segments of 57 laboratory isolates and 17 original specimens of seasonal H1N1, H3N2 and 2009 H1N1 pandemic viruses were correctly matched with their corresponding subtypes. In addition, this method was shown to be capable of detecting reassortant viruses by correctly identifying the source of all 8 gene segments from three vaccine production reassortant viruses and three H1N2 viruses. CONCLUSIONS/SIGNIFICANCE: In summary, this pyrosequencing assay is a sensitive and specific procedure for screening large numbers of viruses for reassortment events amongst the commonly circulating human influenza A viruses, which is more rapid and cheaper than using conventional sequencing approaches.

  6. Rapid detection and subtyping of human influenza A viruses and reassortants by pyrosequencing.

    Science.gov (United States)

    Deng, Yi-Mo; Caldwell, Natalie; Barr, Ian G

    2011-01-01

    Given the continuing co-circulation of the 2009 H1N1 pandemic influenza A viruses with seasonal H3N2 viruses, rapid and reliable detection of newly emerging influenza reassortant viruses is important to enhance our influenza surveillance. A novel pyrosequencing assay was developed for the rapid identification and subtyping of potential human influenza A virus reassortants based on all eight gene segments of the virus. Except for HA and NA genes, one universal set of primers was used to amplify and subtype each of the six internal genes. With this method, all eight gene segments of 57 laboratory isolates and 17 original specimens of seasonal H1N1, H3N2 and 2009 H1N1 pandemic viruses were correctly matched with their corresponding subtypes. In addition, this method was shown to be capable of detecting reassortant viruses by correctly identifying the source of all 8 gene segments from three vaccine production reassortant viruses and three H1N2 viruses. In summary, this pyrosequencing assay is a sensitive and specific procedure for screening large numbers of viruses for reassortment events amongst the commonly circulating human influenza A viruses, which is more rapid and cheaper than using conventional sequencing approaches.

  7. Inexpensive and fast pathogenic bacteria screening using field-effect transistors.

    Science.gov (United States)

    Formisano, Nello; Bhalla, Nikhil; Heeran, Mel; Reyes Martinez, Juana; Sarkar, Amrita; Laabei, Maisem; Jolly, Pawan; Bowen, Chris R; Taylor, John T; Flitsch, Sabine; Estrela, Pedro

    2016-11-15

    While pathogenic bacteria contribute to a large number of globally important diseases and infections, current clinical diagnosis is based on processes that often involve culturing which can be time-consuming. Therefore, innovative, simple, rapid and low-cost solutions to effectively reduce the burden of bacterial infections are urgently needed. Here we demonstrate a label-free sensor for fast bacterial detection based on metal-oxide-semiconductor field-effect transistors (MOSFETs). The electric charge of bacteria binding to the glycosylated gates of a MOSFET enables quantification in a straightforward manner. We show that the limit of quantitation is 1.9×10(5) CFU/mL with this simple device, which is more than 10,000-times lower than is achieved with electrochemical impedance spectroscopy (EIS) and matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-ToF) on the same modified surfaces. Moreover, the measurements are extremely fast and the sensor can be mass produced at trivial cost as a tool for initial screening of pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Rapid islanding detection using multi-level inverter for grid-interactive PV system

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2014-01-01

    Graphical abstract: - Highlights: • Novel reference signal is used to form an islanding detection scheme for PV system. • Supply fixed magnitude sinusoidal signal even if utility grid is disconnected. • Seamless transfer between grid-connected and stand-alone modes is possible. - Abstract: A novel reference signal generator is combined with a multi-level inverter to form a rapid islanding detection scheme for grid-interactive PV system. The reference signal generator can easily be synchronized with the utility grid signal and produced a fixed magnitude and very low total harmonic distortion (THD) sinusoidal signal which is in phase with the utility grid signal. Unlike conventional phase-locked loop (PLL) circuitry, the reference signal generator can also provide a fixed magnitude sinusoidal signal even if the utility grid is disconnected and automatically re-synchronous with the grid rapidly. Consequently, seamless transfer between grid-connected and stand-alone modes could easily be achieved if anti-islanding protection is not required. If a saturation element is applied to the raw reference signal followed by the synthesis of the truncated signal using a multi-level inverter, the distinct flat-top feature of the synthesized signal can quickly and easily be identified if the network is in islanding mode at the point of common coupling. Experimental results are included to demonstrate the effectiveness of the proposed detection scheme

  9. Rapid detection of human fecal Eubacterium species and related genera by nested PCR method.

    Science.gov (United States)

    Kageyama, A; Benno, Y

    2001-01-01

    PCR procedures based on 16S rDNA gene sequence specific for seven Eubacterium spp. and Eggerthella lenta that predominate in the human intestinal tract were developed, and used for direct detection of these species in seven human feces samples. Three species of Eggerthella lenta, Eubacterium rectale, and Eubacterium eligens were detected from seven fecal samples. Eubacterium biforme was detected from six samples. It was reported that E. rectale, E. eligens, and E. biforme were difficult to detect by traditional culture method, but the nested PCR method is available for the detection of these species. This result shows that the nested PCR method utilizing a universal primer pair, followed by amplification with species-specific primers, would allow rapid detection of Eubacterium species in human feces.

  10. A single method for recovery and concentration of enteric viruses and bacteria from fresh-cut vegetables.

    Science.gov (United States)

    Sánchez, G; Elizaquível, P; Aznar, R

    2012-01-03

    Fresh-cut vegetables are prone to be contaminated with foodborne pathogens during growth, harvest, transport and further processing and handling. As most of these products are generally eaten raw or mildly treated, there is an increase in the number of outbreaks caused by viruses and bacteria associated with fresh vegetables. Foodborne pathogens are usually present at very low levels and have to be concentrated (i.e. viruses) or enriched (i.e. bacteria) to enhance their detection. With this aim, a rapid concentration method has been developed for the simultaneous recovery of hepatitis A virus (HAV), norovirus (NV), murine norovirus (MNV) as a surrogate for NV, Escherichia coli O157:H7, Listeria monocytogenes and Salmonella enterica. Initial experiments focused on evaluating the elution conditions suitable for virus release from vegetables. Finally, elution with buffered peptone water (BPW), using a Pulsifier, and concentration by polyethylene glycol (PEG) precipitation were the methods selected for the elution and concentration of both, enteric viruses and bacteria, from three different types of fresh-cut vegetables by quantitative PCR (qPCR) using specific primers. The average recoveries from inoculated parsley, spinach and salad, were ca. 9.2%, 43.5%, and 20.7% for NV, MNV, and HAV, respectively. Detection limits were 132 RT-PCR units (PCRU), 1.5 50% tissue culture infectious dose (TCID₅₀), and 6.6 TCID₅₀ for NV, MNV, and HAV, respectively. This protocol resulted in average recoveries of 57.4%, 64.5% and 64.6% in three vegetables for E. coli O157:H7, L. monocytogenes and Salmonella with corresponding detection limits of 10³, 10² and 10³ CFU/g, respectively. Based on these results, it can be concluded that the procedure herein is suitable to recover, detect and quantify enteric viruses and foodborne pathogenic bacteria within 5 h and can be applied for the simultaneous detection of both types of foodborne pathogens in fresh-cut vegetables. Copyright

  11. Rapid Detection of Salmonella in Food and Beverage Samples by Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Radji, M.

    2010-01-01

    Full Text Available Polymerase chain reaction (PCR assay had been used to detect Salmonella in food and beverage samples using suitable primers which are based on specific invA gene of Salmonella. Twenty nine samples were collected from street food counters and some canteens in Margonda Street, Depok, West Java, Indonesia. It was found that five of twenty nine samples were detected to contain Salmonella and showed the presence of the amplified product of the size 244 bp. The method of PCR demonstrated the specificity of invA primers for detection of Salmonella as confirmed by biochemical and serological assay. The results of this study revealed that PCR was a rapid and useful tool for detection of Salmonella in food and beverage samples.

  12. Original Article. Evaluation of Rapid Detection of Nasopharyngeal Colonization with MRSA by Real-Time PCR

    Directory of Open Access Journals (Sweden)

    Kang Feng-feng

    2012-03-01

    Full Text Available Objective To investigate the clinical application of Real-Time PCR for rapid detection of methicillin-resistant Staphylococcus aureus (MRSA directly from nasopharyngeal swab specimens.

  13. Determination of foodborne pathogenic bacteria by multiplex PCR-microchip capillary electrophoresis with genetic algorithm-support vector regression optimization.

    Science.gov (United States)

    Li, Yongxin; Li, Yuanqian; Zheng, Bo; Qu, Lingli; Li, Can

    2009-06-08

    A rapid and sensitive method based on microchip capillary electrophoresis with condition optimization of genetic algorithm-support vector regression (GA-SVR) was developed and applied to simultaneous analysis of multiplex PCR products of four foodborne pathogenic bacteria. Four pairs of oligonucleotide primers were designed to exclusively amplify the targeted gene of Vibrio parahemolyticus, Salmonella, Escherichia coli (E. coli) O157:H7, Shigella and the quadruplex PCR parameters were optimized. At the same time, GA-SVR was employed to optimize the separation conditions of DNA fragments in microchip capillary electrophoresis. The proposed method was applied to simultaneously detect the multiplex PCR products of four foodborne pathogenic bacteria under the optimal conditions within 8 min. The levels of detection were as low as 1.2 x 10(2) CFU mL(-1) of Vibrio parahemolyticus, 2.9 x 10(2) CFU mL(-1) of Salmonella, 8.7 x 10(1) CFU mL(-1) of E. coli O157:H7 and 5.2 x 10(1) CFU mL(-1) of Shigella, respectively. The relative standard deviation of migration time was in the range of 0.74-2.09%. The results demonstrated that the good resolution and less analytical time were achieved due to the application of the multivariate strategy. This study offers an efficient alternative to routine foodborne pathogenic bacteria detection in a fast, reliable, and sensitive way.

  14. Rapid detection of MERS coronavirus-like viruses in bats: pote1ntial for tracking MERS coronavirus transmission and animal origin.

    Science.gov (United States)

    Woo, Patrick C Y; Lau, Susanna K P; Chen, Yixin; Wong, Emily Y M; Chan, Kwok-Hung; Chen, Honglin; Zhang, Libiao; Xia, Ningshao; Yuen, Kwok-Yung

    2018-03-07

    Recently, we developed a monoclonal antibody-based rapid nucleocapsid protein detection assay for diagnosis of MERS coronavirus (MERS-CoV) in humans and dromedary camels. In this study, we examined the usefulness of this assay to detect other lineage C betacoronaviruses closely related to MERS-CoV in bats. The rapid MERS-CoV nucleocapsid protein detection assay was tested positive in 24 (88.9%) of 27 Tylonycteris bat CoV HKU4 (Ty-BatCoV-HKU4) RNA-positive alimentary samples of Tylonycteris pachypus and 4 (19.0%) of 21 Pipistrellus bat CoV HKU5 (Pi-BatCoV-HKU5) RNA-positive alimentary samples of Pipistrellus abramus. There was significantly more Ty-BatCoV-HKU4 RNA-positive alimentary samples than Pi-BatCoV-HKU5 RNA-positive alimentary samples that were tested positive by the rapid MERS-CoV nucleocapsid protein detection assay (P < 0.001 by Chi-square test). The rapid assay was tested negative in all 51 alimentary samples RNA-positive for alphacoronaviruses (Rhinolophus bat CoV HKU2, Myotis bat CoV HKU6, Miniopterus bat CoV HKU8 and Hipposideros batCoV HKU10) and 32 alimentary samples positive for lineage B (SARS-related Rhinolophus bat CoV HKU3) and lineage D (Rousettus bat CoV HKU9) betacoronaviruses. No significant difference was observed between the viral loads of Ty-BatCoV-HKU4/Pi-BatCoV-HKU5 RNA-positive alimentary samples that were tested positive and negative by the rapid test (Mann-Witney U test). The rapid MERS-CoV nucleocapsid protein detection assay is able to rapidly detect lineage C betacoronaviruses in bats. It detected significantly more Ty-BatCoV-HKU4 than Pi-BatCoV-HKU5 because MERS-CoV is more closely related to Ty-BatCoV-HKU4 than Pi-BatCoV-HKU5. This assay will facilitate rapid on-site mass screening of animal samples for ancestors of MERS-CoV and tracking transmission in the related bat species.

  15. Development of a multiplex real-time PCR for the rapid detection of the predominant beta-lactamase genes CTX-M, SHV, TEM and CIT-type AmpCs in Enterobacteriaceae.

    Directory of Open Access Journals (Sweden)

    Nicole Roschanski

    Full Text Available Beta-lactamase resistant bacteria and especially ESBL producing Enterobacteriaceae are an increasing problem worldwide. For this reason a major interest in efficient and reliable methods for rapid screening of high sample numbers is recognizable. Therefore, a multiplex real-time PCR was developed to detect the predominant class A beta-lactamase genes blaCTX-M, blaSHV, blaTEM and CIT-type AmpCs in a one-step reaction. A set of 114 Enterobacteriaceae containing previously identified resistance gene subtypes and in addition 20 undefined animal and environmental isolates were used for the validation of this assay. To confirm the accessibility in variable settings, the real-time runs were performed analogous in two different laboratories using different real-time cyclers. The obtained results showed complete accordance between the real-time data and the predetermined genotypes. Even if sequence analyses are further necessary for a comprehensive characterization, this method was proofed to be reliable for rapid screening of high sample numbers and therefore could be an important tool for e. g. epidemiological purposes or support infection control measures.

  16. Rapid optical determination of β-lactamase and antibiotic activity

    Science.gov (United States)

    2014-01-01

    Background The absence of rapid tests evaluating antibiotic susceptibility results in the empirical prescription of antibiotics. This can lead to treatment failures due to escalating antibiotic resistance, and also furthers the emergence of drug-resistant bacteria. This study reports a rapid optical method to detect β-lactamase and thereby assess activity of β-lactam antibiotics, which could provide an approach for targeted prescription of antibiotics. The methodology is centred on a fluorescence quenching based probe (β-LEAF – β-Lactamase Enzyme Activated Fluorophore) that mimics the structure of β-lactam antibiotics. Results The β-LEAF assay was performed for rapid determination of β-lactamase production and activity of β-lactam antibiotic (cefazolin) on a panel of Staphylococcus aureus ATCC strains and clinical isolates. Four of the clinical isolates were determined to be lactamase producers, with the capacity to inactivate cefazolin, out of the twenty-five isolates tested. These results were compared against gold standard methods, nitrocefin disk test for β-lactamase detection and disk diffusion for antibiotic susceptibility, showing results to be largely consistent. Furthermore, in the sub-set of β-lactamase producers, it was demonstrated and validated that multiple antibiotics (cefazolin, cefoxitin, cefepime) could be assessed simultaneously to predict the antibiotic that would be most active for a given bacterial isolate. Conclusions The study establishes the rapid β-LEAF assay for β-lactamase detection and prediction of antibiotic activity using S. aureus clinical isolates. Although the focus in the current study is β-lactamase-based resistance, the overall approach represents a broad diagnostic platform. In the long-term, these studies form the basis for the development of assays utilizing a broader variety of targets, pathogens and drugs. PMID:24708478

  17. A real-time loop-mediated isothermal amplification assay for rapid detection of Shigella species.

    Science.gov (United States)

    Liew, P S; Teh, C S J; Lau, Y L; Thong, K L

    2014-12-01

    Shigellosis is a foodborne illness caused by the genus Shigella and is an important global health issue. The development of effective techniques for rapid detection of this pathogen is essential for breaking the chain of transmission. Therefore, we have developed a novel loop-mediated isothermal amplification (LAMP) assay targeting the invasion plasmid antigen H (ipaH) gene to rapidly detect Shigella species. This assay could be performed in 90 min at an optimal temperature of 64ºC, with endpoint results visualized directly. Notably, the method was found to be more sensitive than conventional PCR. Indeed, the detection limit for the LAMP assay on pure bacterial cultures was 5.9 x 10(5) CFU/ml, while PCR displayed a limit of 5.9 x 10(7) CFU/ml. In spiked lettuce samples, the sensitivity of the LAMP assay was 3.6 x 10(4) CFU/g, whereas PCR was 3.6 x 10(5) CFU/g. Overall, the assay accurately identified 32 Shigella spp. with one enteroinvasive Escherichia coli displaying positive reaction while the remaining 32 non-Shigella strains tested were negative.

  18. Rapid and label-free detection of protein a by aptamer-tethered porous silicon nanostructures.

    Science.gov (United States)

    Urmann, Katharina; Reich, Peggy; Walter, Johanna-Gabriela; Beckmann, Dieter; Segal, Ester; Scheper, Thomas

    2017-09-10

    Protein A, which is secreted by and displayed on the cell membrane of Staphylococcus aureus is an important biomarker for S. aureus. Thus, its rapid and specific detection may facilitate the pathogen identification and initiation of proper treatment. Herein, we present a simple, label-free and rapid optical biosensor enabling specific detection of protein A. Protein A-binding aptamer serves as the capture probe and is immobilized onto a nanostructured porous silicon thin film, which serves as the optical transducer element. We demonstrate high sensitivity of the biosensor with a linear detection range between 8 and 23μM. The apparent dissociation constant was determined as 13.98μM and the LoD is 3.17μM. Harnessing the affinity between protein A and antibodies, a sandwich assay format was developed to amplify the optical signal associated with protein A capture by the aptamer. Using this approach, we increase the sensitivity of the biosensor, resulting in a three times lower LoD. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Rapid detection of predation of Escherichia coli O157:H7 and sorting of bacterivorous Tetrahymena by flow cytometry

    Directory of Open Access Journals (Sweden)

    Bradley J. Hernlem

    2014-05-01

    Full Text Available Protozoa are known to harbor bacterial pathogens, alter their survival in the environment and make them hypervirulent. Rapid non-culture based detection methods are required to determine the environmental survival and transport of enteric pathogens from point sources such as dairies and feedlots to food crops grown in proximity. Grazing studies were performed on a soil isolate of Tetrahymena fed green fluorescent protein (GFP expressing Escherichia coli O157:H7 to determine the suitability of the use of such fluorescent prey bacteria to locate and sort bacterivorous protozoa by flow cytometry. In order to overcome autofluorescence of the target organism and to clearly discern Tetrahymena with ingested prey versus those without, a ratio of prey to host of at least 100:1 was determined to be preferable. Under these conditions, we successfully sorted the two populations using short 5 to 45 min exposures of the prey and verified the internalization of E. coli O157:H7 cells in protozoa by confocal microscopy. This technique can be easily adopted for environmental monitoring of rates of enteric pathogen destruction versus protection in protozoa.

  20. Rapid capacitive detection of femtomolar levels of bisphenol A using an aptamer-modified disposable microelectrode array

    International Nuclear Information System (INIS)

    Cui, Haochen; Wu, Jayne; Eda, Shigetoshi; Chen, Jiangang; Chen, Wei; Zheng, Lei

    2015-01-01

    A label-free and single-step method is reported for rapid and highly sensitive detection of bisphenol A (BPA) in aqueous samples. It utilizes an aptamer acting as a probe molecule immobilized on a commercially available array of interdigitated aluminum microelectrodes. BPA was quantified by measuring the interfacial capacitance change rate caused by the specific binding between bisphenol A and the immobilized aptamer. The AC signal also induces an AC electrokinetic effect to generate microfluidic motion for enhanced binding. The capacitive aptasensor achieves a limit of detection as low as 10 fM(2.8 fg ⋅ mL −1 ) with a 20 s response time. The method is inexpensive, highly sensitive, rapid and therefore provides a promising technology for on-site detection of BPA in food and water samples. (author)

  1. Colonization of the oral cavity by probiotic bacteria.

    Science.gov (United States)

    Ravn, I; Dige, I; Meyer, R L; Nyvad, B

    2012-01-01

    The aim of this study was to investigate if three probiotic bacteria present in the milk product Cultura Dofilus® naturell could be detected in saliva and on oral mucosal surfaces, and if they colonized dental surfaces in situ in 8 caries-inactive individuals after 8 daily exposures to the milk product for up to 3 days. Bacteria were identified by fluorescence in situ hybridization and confocal laser scanning microscopy. While probiotic bacteria were present sporadically in the oral cavity on mucosal surfaces and in saliva after 3 days of frequent use of the probiotic milk, they were not detected on dental surfaces. Probiotic bacteria may thus contribute to general oral health, but their potential role in biofilm-induced dental diseases remains unclear. Copyright © 2012 S. Karger AG, Basel.

  2. DNA isolation protocols affect the detection limit of PCR approaches of bacteria in samples from the human gastrointestinal tract

    NARCIS (Netherlands)

    Zoetendal, E.G.; Ben-Amor, K.; Akkermans, A.D.L.; Abee, T.; Vos, de W.M.

    2001-01-01

    A major concern in molecular ecological studies is the lysis efficiency of different bacteria in a complex ecosystem. We used a PCR-based 16S rDNA approach to determine the effect of two DNA isolation protocols (i.e. the bead beating and Triton-X100 method) on the detection limit of seven

  3. Bovine intestinal bacteria inactivate and degrade ceftiofur and ceftriaxone with multiple beta-lactamases.

    Science.gov (United States)

    Wagner, R Doug; Johnson, Shemedia J; Cerniglia, Carl E; Erickson, Bruce D

    2011-11-01

    The veterinary cephalosporin drug ceftiofur is rapidly degraded in the bovine intestinal tract. A cylinder-plate assay was used to detect microbiologically active ceftiofur, and high-performance liquid chromatography-mass spectrometry analysis was used to quantify the amount of ceftiofur remaining after incubation with bovine intestinal anaerobic bacteria, which were isolated from colon contents or feces from 8 cattle. Ninety-six percent of the isolates were able to inactivate ceftiofur to some degree, and 54% actually degraded the drug. None of 9 fungal isolates inactivated or degraded ceftiofur. Facultative and obligate anaerobic bacterial species that inactivated or degraded ceftiofur were identified with Vitek and Biolog systems, respectively. A subset of ceftiofur degraders also degraded the chemically similar drug ceftriaxone. Most of the species of bacteria that degraded ceftiofur belonged to the genera Bacillus and Bacteroides. PCR analysis of bacterial DNA detected specific β-lactamase genes. Bacillus cereus and B. mycoides isolates produced extended-spectrum β-lactamases and metallo-β-lactamases. Seven isolates of Bacteroides spp. produced multiple β-lactamases, including possibly CepA, and metallo-β-lactamases. Isolates of Eubacterium biforme, Bifidobacterium breve, and several Clostridium spp. also produced ceftiofur-degrading β-lactamases. An agar gel overlay technique on isoelectric focusing separations of bacterial lysates showed that β-lactamase enzymes were sufficient to degrade ceftiofur. These results suggest that ceftiofur is inactivated nonenzymatically and degraded enzymatically by multiple β-lactamases from bacteria in the large intestines of cattle.

  4. Bovine Intestinal Bacteria Inactivate and Degrade Ceftiofur and Ceftriaxone with Multiple β-Lactamases▿

    Science.gov (United States)

    Wagner, R. Doug; Johnson, Shemedia J.; Cerniglia, Carl E.; Erickson, Bruce D.

    2011-01-01

    The veterinary cephalosporin drug ceftiofur is rapidly degraded in the bovine intestinal tract. A cylinder-plate assay was used to detect microbiologically active ceftiofur, and high-performance liquid chromatography-mass spectrometry analysis was used to quantify the amount of ceftiofur remaining after incubation with bovine intestinal anaerobic bacteria, which were isolated from colon contents or feces from 8 cattle. Ninety-six percent of the isolates were able to inactivate ceftiofur to some degree, and 54% actually degraded the drug. None of 9 fungal isolates inactivated or degraded ceftiofur. Facultative and obligate anaerobic bacterial species that inactivated or degraded ceftiofur were identified with Vitek and Biolog systems, respectively. A subset of ceftiofur degraders also degraded the chemically similar drug ceftriaxone. Most of the species of bacteria that degraded ceftiofur belonged to the genera Bacillus and Bacteroides. PCR analysis of bacterial DNA detected specific β-lactamase genes. Bacillus cereus and B. mycoides isolates produced extended-spectrum β-lactamases and metallo-β-lactamases. Seven isolates of Bacteroides spp. produced multiple β-lactamases, including possibly CepA, and metallo-β-lactamases. Isolates of Eubacterium biforme, Bifidobacterium breve, and several Clostridium spp. also produced ceftiofur-degrading β-lactamases. An agar gel overlay technique on isoelectric focusing separations of bacterial lysates showed that β-lactamase enzymes were sufficient to degrade ceftiofur. These results suggest that ceftiofur is inactivated nonenzymatically and degraded enzymatically by multiple β-lactamases from bacteria in the large intestines of cattle. PMID:21876048

  5. Structural Changes in Stx1 Engineering Monoclonal Antibody Improves Its Functionality as Diagnostic Tool for a Rapid Latex Agglutination Test

    Directory of Open Access Journals (Sweden)

    Daniela Luz

    2018-02-01

    Full Text Available Stx1 toxin is one of the AB5 toxins of Shiga toxin-producing Escherichia coli (STEC responsible for foodborne intoxication during outbreaks. The single-chain variable fragment (scFv is the most common recombinant antibody format; it consists of both variable chains connected by a peptide linker with conserved specificity and affinity for antigen. The drawbacks of scFv production in bacteria are the heterologous expression, conformation and stability of the molecule, which could change the affinity for the antigen. In this work, we obtained a stable and functional scFv-Stx1 in bacteria, starting from IgG produced by hybridoma cells. After structural modifications, i.e., change in protein orientation, vector and linker, its solubility for expression in bacteria was increased as well as the affinity for its antigen, demonstrated by a scFv dissociation constant (KD of 2.26 × 10−7 M. Also, it was able to recognize purified Stx1 and cross-reacted with Stx2 toxin by ELISA (Enzyme-Linked Immunosorbent Assay, and detected 88% of Stx1-producing strains using a rapid latex agglutination test. Thus, the scFv fragment obtained in the present work is a bacteria-produced tool for use in a rapid diagnosis test, providing an alternative for STEC diagnosis.

  6. Comprehensive and Rapid Real-Time PCR Analysis of 21 Foodborne Outbreaks

    Directory of Open Access Journals (Sweden)

    Hiroshi Fukushima

    2009-01-01

    Full Text Available A set of four duplex SYBR Green I PCR (SG-PCR assay combined with DNA extraction using QIAamp DNA Stool Mini kit was evaluated for the detection of foodborne bacteria from 21 foodborne outbreaks. The causative pathogens were detected in almost all cases in 2 hours or less. The first run was for the detection of 8 main foodborne pathogens in 5 stool specimens within 2 hours and the second run was for the detection of other unusual suspect pathogens within a further 45 minutes. After 2 to 4 days, the causative agents were isolated and identified. The results proved that for comprehensive and rapid molecular diagnosis in foodborne outbreaks, Duplex SG-PCR assay is not only very useful, but is also economically viable for one-step differentiation of causative pathogens in fecal specimens obtained from symptomatic patients. This then allows for effective diagnosis and management of foodborne outbreaks.

  7. Rapid detection of TiO2 (E171) in table sugar using Raman spectroscopy.

    Science.gov (United States)

    Tan, Chen; Zhao, Bin; Zhang, Zhiyun; He, Lili

    2017-02-01

    The potential toxic effects of titanium dioxide (TiO 2 ) to humans remain debatable despite its broad application as a food additive. Thus, confirmation of the existence of TiO 2 particles in food matrices and subsequently quantifying them are becoming increasingly critical. This study developed a facile, rapid (E171) from food products (e.g., table sugar) by Raman spectroscopy. To detect TiO 2 particles from sugar solution, sequential centrifugation and washing procedures were effectively applied to separate and recover 97% of TiO 2 particles from the sugar solution. The peak intensity of TiO 2 sensitively responded to the concentration of TiO 2 with a limit of detection (LOD) of 0.073 mg kg -1 . In the case of sugar granules, a mapping technique was applied to directly estimate the level of TiO 2 , which can be potentially used for rapid online monitoring. The plot of averaged intensity to TiO 2 concentration in the sugar granules exhibited a good linear relationship in the wide range of 5-2000 mg kg -1 , with an LOD of 8.46 mg kg -1 . Additionally, we applied Raman spectroscopy to prove the presence of TiO 2 in sugar-coated doughnuts. This study begins to fill in the analytical gaps that exist regarding the rapid detection and quantification of TiO 2 in food, which facilitate the risk assessment of TiO 2 through food exposure.

  8. Rapid Quantification of Viable Campylobacter Bacteria on Chicken Carcasses, Using Real-Time PCR and Propidium Monoazide Treatment, as a Tool for Quantitative Risk Assessment

    DEFF Research Database (Denmark)

    Josefsen, Mathilde Hartmann; Löfström, Charlotta; Hansen, Tina Beck

    2010-01-01

    A number of intervention strategies against Campylobacter contaminated poultry focus on post-slaughter reduction of the number of cells, emphasizing the need for rapid and reliable quantitative detection of only viable Campylobacter. We present a new and rapid quantitative approach for enumeration...... method does not detect DNA from dead Campylobacter, but recognises the infectious potential of the VBNC state, and is thereby able to assess the effect of control strategies, and provide trustworthy data for risk assessment....

  9. Prevalence of AmpC β-lactamase among Gram-negative bacteria ...

    African Journals Online (AJOL)

    Purpose: Infections caused by AmpC-positive bacteria results in high patient morbidity and mortality making their detection clinically important as they cannot be detected in routine susceptibility testing. This study aim to determine the prevalence of AmpC β-lactamase among Gram negative bacteria recovered from clinical ...

  10. Rapid eye movement sleep behavior disorder as an outlier detection problem

    DEFF Research Database (Denmark)

    Kempfner, Jacob; Sørensen, Gertrud Laura; Nikolic, M.

    2014-01-01

    OBJECTIVE: Idiopathic rapid eye movement (REM) sleep behavior disorder is a strong early marker of Parkinson's disease and is characterized by REM sleep without atonia and/or dream enactment. Because these measures are subject to individual interpretation, there is consequently need...... for quantitative methods to establish objective criteria. This study proposes a semiautomatic algorithm for the early detection of Parkinson's disease. This is achieved by distinguishing between normal REM sleep and REM sleep without atonia by considering muscle activity as an outlier detection problem. METHODS......: Sixteen healthy control subjects, 16 subjects with idiopathic REM sleep behavior disorder, and 16 subjects with periodic limb movement disorder were enrolled. Different combinations of five surface electromyographic channels, including the EOG, were tested. A muscle activity score was automatically...

  11. Rapid detection of pandemic influenza in the presence of seasonal influenza

    Directory of Open Access Journals (Sweden)

    Robertson Chris

    2010-11-01

    Full Text Available Abstract Background Key to the control of pandemic influenza are surveillance systems that raise alarms rapidly and sensitively. In addition, they must minimise false alarms during a normal influenza season. We develop a method that uses historical syndromic influenza data from the existing surveillance system 'SERVIS' (Scottish Enhanced Respiratory Virus Infection Surveillance for influenza-like illness (ILI in Scotland. Methods We develop an algorithm based on the weekly case ratio (WCR of reported ILI cases to generate an alarm for pandemic influenza. From the seasonal influenza data from 13 Scottish health boards, we estimate the joint probability distribution of the country-level WCR and the number of health boards showing synchronous increases in reported influenza cases over the previous week. Pandemic cases are sampled with various case reporting rates from simulated pandemic influenza infections and overlaid with seasonal SERVIS data from 2001 to 2007. Using this combined time series we test our method for speed of detection, sensitivity and specificity. Also, the 2008-09 SERVIS ILI cases are used for testing detection performances of the three methods with a real pandemic data. Results We compare our method, based on our simulation study, to the moving-average Cumulative Sums (Mov-Avg Cusum and ILI rate threshold methods and find it to be more sensitive and rapid. For 1% case reporting and detection specificity of 95%, our method is 100% sensitive and has median detection time (MDT of 4 weeks while the Mov-Avg Cusum and ILI rate threshold methods are, respectively, 97% and 100% sensitive with MDT of 5 weeks. At 99% specificity, our method remains 100% sensitive with MDT of 5 weeks. Although the threshold method maintains its sensitivity of 100% with MDT of 5 weeks, sensitivity of Mov-Avg Cusum declines to 92% with increased MDT of 6 weeks. For a two-fold decrease in the case reporting rate (0.5% and 99% specificity, the WCR and

  12. Development of a rapid method for direct detection of tet(M) genes in soil from Danish farmland

    DEFF Research Database (Denmark)

    Agersø, Yvonne; Sengeløv, Gitte; Jensen, Lars Bogø

    2004-01-01

    . The tet(M) gene was directly detected in 10-80% of the samples from the various farmland soils and could be detected in all samples tested after selective enrichment. To validate the obtained results, the method was applied to garden soil samples where lower prevalence of resistance was found. Result......A method for direct detection of antibiotic resistance genes in soil samples has been developed. The tetracycline resistance gene, tet(M), was used as a model. The method was validated on Danish farmland soil that had repeatedly been treated with pig manure slurry containing resistant bacteria......: A detection limit of 10(2)-10(3) copies of the tet(M) gene per gram of soil (in a Bacillus cereus group bacterium) was achieved. tet(M) gene was detected in soil samples with the highest prevalence on farmland treated with pig manure slurry....

  13. Mini-column assay for rapid detection of malachite green in fish.

    Science.gov (United States)

    Shalaby, Ali R; Emam, Wafaa H; Anwar, Mervat M

    2017-07-01

    A simple, rapid and economical mini-column method for detecting malachite green (MG) residue in fish was developed. The method used a column with 2mm ID that was tightly packed with silica gel followed by alumina. Detection of MG was performed by viewing the developed mini-column at visible light by naked eye; where MG was seen as compact green band at the confluence of the silica gel layer with alumina layer. The limit of detection of the assay was 2ng which conform the minimum required performance limit (MRPL). Evaluation utility of the method indicated that all blank and spiked samples at levels below MRPL were assessed as accepted. The intensity of the green band increased whenever MG level in the extract increased; indicated that suggested mini-column technique could be used for semi-quantitative determination of MG in fish samples. The method can be used to select the questionable samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Facile preparation of a DNA sensor for rapid herpes virus detection

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Phuong Dinh, E-mail: tampd-hast@mail.hut.edu.vn [Hanoi Advanced School of Science and Technology, Hanoi University of Technology (Viet Nam); Tuan, Mai Anh, E-mail: tuanma-itims@mail.hut.edu.vn [International Training Institute for Materials Science, Hanoi University of Technology (Viet Nam); Huy, Tran Quang [National Institute of Hygiene and Epidemiology (NIHE), 01 Yersin, Hai Ba Trung District, Hanoi (Viet Nam); Le, Anh-Tuan [Hanoi Advanced School of Science and Technology, Hanoi University of Technology (Viet Nam); Hieu, Nguyen Van, E-mail: hieu@itims.edu.vn [International Training Institute for Materials Science, Hanoi University of Technology (Viet Nam)

    2010-10-12

    In this paper, a simple DNA sensor platform was developed for rapid herpes virus detection in real samples. The deoxyribonucleic acid (DNA) sequences of the herpes simplex virus (DNA probe) were directly immobilized on the surface of interdigitated electrodes by electrochemical polymerization along with pyrrole monomers. The potential was scanned from - 0.7 to + 0.6 V, and the scanning rate was 100 mV/s. Fourier transform infrared spectroscopy was employed to verify specific DNA sequence binding and the conducting polymer. The morphology of the conducting polymer doped with DNA strands was characterized using a field emission scanning electron microscope. As-obtained DNA sensor was used to detect the herpes virus DNA in the real samples. The results show that the current DNA sensors detected the lowest DNA concentration of 2 nM. This sensitivity appears to be better than that of the DNA sensors prepared by immobilization of the DNA probe on the 3-aminopropyl-triethoxy-silance (APTS) membrane.

  15. Facile preparation of a DNA sensor for rapid herpes virus detection

    International Nuclear Information System (INIS)

    Tam, Phuong Dinh; Tuan, Mai Anh; Huy, Tran Quang; Le, Anh-Tuan; Hieu, Nguyen Van

    2010-01-01

    In this paper, a simple DNA sensor platform was developed for rapid herpes virus detection in real samples. The deoxyribonucleic acid (DNA) sequences of the herpes simplex virus (DNA probe) were directly immobilized on the surface of interdigitated electrodes by electrochemical polymerization along with pyrrole monomers. The potential was scanned from - 0.7 to + 0.6 V, and the scanning rate was 100 mV/s. Fourier transform infrared spectroscopy was employed to verify specific DNA sequence binding and the conducting polymer. The morphology of the conducting polymer doped with DNA strands was characterized using a field emission scanning electron microscope. As-obtained DNA sensor was used to detect the herpes virus DNA in the real samples. The results show that the current DNA sensors detected the lowest DNA concentration of 2 nM. This sensitivity appears to be better than that of the DNA sensors prepared by immobilization of the DNA probe on the 3-aminopropyl-triethoxy-silance (APTS) membrane.

  16. Detection of five potentially periodontal pathogenic bacteria in peri-implant disease: A comparison of PCR and real-time PCR.

    Science.gov (United States)

    Schmalz, Gerhard; Tsigaras, Sandra; Rinke, Sven; Kottmann, Tanja; Haak, Rainer; Ziebolz, Dirk

    2016-07-01

    The aim of this study was to compare the microbial analysis methods of polymerase chain reaction (PCR) and real-time PCR (RT-PCR) in terms of detection of five selected potentially periodontal pathogenic bacteria in peri-implant disease. Therefore 45 samples of healthy, mucositis and peri-implantitis (n = 15 each) were assessed according to presence of the following bacteria using PCR (DNA-strip technology) and RT-PCR (fluorescent dye SYBR green-system): Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), Treponema denticola (Td), Tanerella forsythia (Tf), and Fusobacterium nucleatum (Fn). There were no significant correlations between the bacterial and disease patterns, so the benefit of using microbiological tests for the diagnosis of peri-implant diseases is questionable. Correlations between the methods were highest for Tf (Kendall's Tau: 0.65, Spearman: 0.78), Fn (0.49, 0.61) and Td (0.49, 0.59). For Aa (0.38, 0.42) and Pg (0.04, 0.04), lower correlation values were detected. Accordingly, conventional semi-quantitative PCR seems to be sufficient for analyzing potentially periodontal pathogenic bacterial species. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Rapid methods: the detection of foodborne pathogens

    NARCIS (Netherlands)

    Beumer, R.R.; Hazeleger, W.C.

    2009-01-01

    Although bacteria are the first type of microorganisms that come to mind when discussing microbial food safety, they are by no means the only pathogenic foodborne microorganisms. Mycotoxin producing moulds, human enteric viruses, protozoan parasites and marine biotoxins are also of importance.

  18. Detection of unculturable bacteria in periodontal health and disease by PCR.

    Science.gov (United States)

    Harper-Owen, R; Dymock, D; Booth, V; Weightman, A J; Wade, W G

    1999-05-01

    Recently developed molecular methods have made it possible to characterize mixed microflora in their entirety, including the substantial numbers of bacteria which do not grow on artificial culture media. In a previous study, molecular analysis of the microflora associated with acute oral infections resulted in the identification of three phylotypes, PUS3.42, PUS9.170, and PUS9.180, representing as-yet-uncultured organisms. The aim of this study was to design and validate specific PCR primers for these phylotypes and to determine their incidences in samples collected from healthy and diseased periodontal tissues. Two specific reverse primers were devised for each phylotype, and these were used in duplex PCRs with universal forward and reverse primers. All three phylotypes were detected in periodontal sites; PUS9.170, related to oral asaccharolytic Eubacterium spp., was significantly associated with disease. This study demonstrates the possibility of using unculturable, and therefore uncharacterized, organisms as markers of disease.

  19. Detection and isolation of novel rhizopine-catabolizing bacteria from the environment

    Science.gov (United States)

    Gardener; de Bruijn FJ

    1998-12-01

    Microbial rhizopine-catabolizing (Moc) activity was detected in serial dilutions of soil and rhizosphere washes. The activity observed generally ranged between 10(6) and 10(7) catabolic units per g, and the numbers of nonspecific culture-forming units were found to be approximately 10 times higher. A diverse set of 37 isolates was obtained by enrichment on scyllo-inosamine-containing media. However, none of the bacteria that were isolated were found to contain DNA sequences homologous to the known mocA, mocB, and mocC genes of Sinorhizobium meliloti L5-30. Twenty-one of the isolates could utilize an SI preparation as the sole carbon and nitrogen source for growth. Partial sequencing of 16S ribosomal DNAs (rDNAs) amplified from these strains indicated that five distinct bacterial genera (Arthrobacter, Sinorhizobium, Pseudomonas, Aeromonas, and Alcaligenes) were represented in this set. Only 6 of these 21 isolates could catabolize 3-O-methyl-scyllo-inosamine under standard assay conditions. Two of these, strains D1 and R3, were found to have 16S rDNA sequences very similar to those of Sinorhizobium meliloti. However, these strains are not symbiotically effective on Medicago sativa, and DNA sequences homologous to the nodB and nodC genes were not detected in strains D1 and R3 by Southern hybridization analysis.

  20. [Experimental rationale for the parameters of a rapid method for oxidase activity determination].

    Science.gov (United States)

    Butorina, N N

    2010-01-01

    Experimental rationale is provided for the parameters of a rapid (1-2-min) test to concurrently determine the oxidase activity of all bacteria grown on the membrane filter after water filtration. Oxidase reagents that are the aqueous solutions of tetramethyl-p-phenylenediamine dihydrochloride and demethyl-p-phenylenediamine dihydrochloride have been first ascertained to exert no effect on the viability and enzymatic activity of bacteria after one-hour contact. An algorithm has been improved for the rapid oxidase activity test: the allowable time for bacteria to contact oxidase reagents and procedures for minimizing the effect on bacterial biochemical activity following the contact. An accelerated method based on lactose medium with tergitol 7 and Endo agar has been devised to determine coliform bacteria, by applying the rapid oxidase test: the time of a final response is 18-24 hours. The method has been included into GOST 52426-2005.

  1. Rapid detection of methicillin-resistant Staphylococcus aureus directly from clinical samples: methods, effectiveness and cost considerations

    Directory of Open Access Journals (Sweden)

    Stürenburg, Enno

    2009-07-01

    Full Text Available Methicillin-resistant Staphylococcus aureus (MRSA isolates is a serious public health problem whose ever-increasing rate is commensurate with the pressure it is exerting on the healthcare system. At present, more than 20% of clinical S. aureus isolates in German hospitals are methicillin resistant. Strategies from low-prevalence countries show that this development is not necessarily inevitable. In the Scandinavian countries and the Netherlands, thanks to a rigorous prevention programme, MRSA prevalence has been kept at an acceptably low level (<1–3%. Central to these ‘search and destroy’ control strategies is an admission screening using several MRSA swabs taken from mucocutaneous colonisation sites of high-risk patients (‘MRSA surveillance’. It has also been reported that the speed with which MRSA carriage is detected has an important role to play, as it is a key component of any effective strategy to prevent the pathogen from spreading. Since MRSA culturing involves a 2–3 day delay before the final results are available, rapid detection techniques (commonly referred to as ‘MRSA rapid tests’ using PCR methods and, most recently, rapid culturing methods have been developed. The implementation of rapid tests reduces the time of detection of MRSA carriers from 48–72 to 2–5 h. Clinical evaluation data have shown that MRSA can thus be detected with very high sensitivity. Specificity however is sometimes impaired due to false-positive PCR signals occurring in mixed flora specimens. In order to rule out any false-positive PCR results, a culture screen must always be carried out simultaneously.The data provide preliminary evidence that a PCR assay can reduce nosocomial MRSA transmission in high-risk patients or high-risk areas, whereas an approach that screens all patients admitted to the hospital is probably not effective. Information concerning the cost-effectiveness of rapid MRSA tests is still sparse and thus the issue remains

  2. Rapid determination of antibiotic resistance in E. coli using dielectrophoresis

    International Nuclear Information System (INIS)

    Hoettges, Kai F; Dale, Jeremy W; Hughes, Michael P

    2007-01-01

    In recent years, infections due to antibiotic-resistant strains of bacteria such as methillicin-resistant Staphylococcus aureus and ciprofloxacin-resistant Escherichia coli are on the rise, and with them the demand for rapid antibiotic testing is also rising. Conventional tests, such as disc diffusion testing, require a primary sample to be tested in the presence of a number of antibiotics to verify which antibiotics suppress growth, which take approximately 24 h to complete and potentially place the patient at severe risk. In this paper we describe the use of dielectrophoresis as a rapid marker of cell death, by detecting changes in the electrophysiology of the cell caused by the administration of an antibiotic. In contrast to other markers, the electrophysiology of the cell changes rapidly during cell death allowing live cells to be distinguished from dead (or dying) cells without the need for culturing. Using polymyxin B as an example antibiotic, our studies indicate that significant changes in cell characteristics can be observed as soon as 1 h passes after isolating a culture from nutrient broth

  3. A method to detect metal-drug complexes and their interactions with pathogenic bacteria via graphene nanosheet assist laser desorption/ionization mass spectrometry and biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Abdelhamid, Hani Nasser [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan (China); Wu, Hui-Fen, E-mail: hwu@faculty.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan (China); School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 800, Taiwan (China); Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan (China); Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan (China)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer Probe transition metals-complexes based on noncovalent functionalized graphene for MALDI-MS. Black-Right-Pointing-Pointer Study interaction of transition metals complexes with pathogenic bacteria. Black-Right-Pointing-Pointer Propose a new biosensor for two pathogenic bacteria. - Abstract: A new method was proposed to probe the interactions between transition metals of Fe(II), Fe(III), Cu(II) with a non steroidal anti-inflammatory drug (NSAID), flufenamic acid (FF) using graphene as a matrix for Graphene assisted laser desorption ionization mass spectrometry (GALDI-MS). Metal-drug complexation was confirmed via UV absorption spectroscopy, fluorescence spectroscopy, pH meter, and change in solution conductivity. The optimal molar ratios for these complexation interactions are stoichiometry 1:2 in both Cu(II) and Fe(II) complexes, and 1:3 in Fe(III) complexes at physiological pH (7.4). Metal complexation of the drug could enhance fluorescence for 20 fold which is due to the charge transfer reaction or increase rigidity of the drug. The main interaction between graphene and flufenamic acid is the {Pi}-{Pi} interaction which allows us to probe the metal-drug complexation. The GALDI-MS could sensitively detect the drug at m/z 281.0 Da (protonated molecule) with detection limit 2.5 pmol (1.0 {mu}M) and complexation at m/z 661.0, 654.0 and 933.0 Da corresponding to [Cu(II)(FF){sub 2}(H{sub 2}O){sub 2} + H]{sup +}, [Fe(II)(FF){sub 2}(H{sub 2}O){sub 2} + H]{sup +} and [Fe(III) (FF){sub 3}(H{sub 2}O){sub 2} + H]{sup +}, respectively (with limit of detection (LOD) 2.0 pmol (10.0 {mu}M). Matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) spectra show change in the protein profile of intact pathogenic bacteria (Pseudomonas aeroginosa, Staphylococcus aureus). The change in the ionization ability (mainly proton affinity) of pathogenic bacteria may be due to the interactions between the bacteria with the drug (or its

  4. Impedance Measurements Could Accelerate Phage-Based Identification of Bacillus anthracis and Other Bacteria

    Science.gov (United States)

    2016-09-01

    Impedance Measurements Could Accelerate Phage-Based Identification of Bacillus anthracis And Other Bacteria Thomas Brown, Salwa Shan, Teresa...infection can be detected as early as one hour after exposing as few as 105 CFU bacteria to the stressor. We predicted that similar responses could be used... bacteria to form confluent growth and for phage-induced plaques to appear. Techniques that permit faster detection of species-specific bacteria /phage

  5. Rapid and sensitive detection of malachite green in aquaculture water by electrochemical preconcentration and surface-enhanced Raman scattering.

    Science.gov (United States)

    Xu, Kai-Xuan; Guo, Mei-Hong; Huang, Yu-Ping; Li, Xiao-Dong; Sun, Jian-Jun

    2018-04-01

    A highly sensitive and rapid method of in-situ surface-enhanced Raman spectroscopy (SERS) combining with electrochemical preconcentration (EP) in detecting malachite green (MG) in aquaculture water was established. Ag nanoparticles (AgNPs) were synthesized and spread onto the surface of gold electrodes after centrifuging to produce SERS-active substrates. After optimizing the pH values, preconcentration potentials and times, in-situ EP-SERS detection was carried out. A sensitive and rapid analysis of the low-concentration MG was accomplished within 200s and the limit of detection was 2.4 × 10 -16 M. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Multiresistant opportunistic pathogenic bacteria isolated from polluted rivers and first detection of nontuberculous mycobacteria in the Algerian aquatic environment.

    Science.gov (United States)

    Djouadi, Lydia Neïla; Selama, Okba; Abderrahmani, Ahmed; Bouanane-Darenfed, Amel; Abdellaziz, Lamia; Amziane, Meriam; Fardeau, Marie-Laure; Nateche, Farida

    2017-08-01

    Opportunistic infections constitute a major challenge for modern medicine mainly because the involved bacteria are usually multiresistant to antibiotics. Most of these bacteria possess remarkable ability to adapt to various ecosystems, including those exposed to anthropogenic activities. This study isolated and identified 21 multiresistant opportunistic bacteria from two polluted rivers, located in Algiers. Cadmium, lead, and copper concentrations were determined for both water samples to evaluate heavy metal pollution. High prevalence of Enterobacteria and non-fermentative Gram-negative rods was found and a nontuberculous Mycobacterium (NTM) strain was isolated. To the best of our knowledge, this is the first detection of NTM in the Algerian environment. The strains were tested for their resistance against 34 antibiotics and 8 heavy metals. Multiple antibiotics and heavy metals resistance was observed in all isolates. The two most resistant strains, identified as Acinetobacter sp. and Citrobacter freundii, were submitted to plasmid curing to determine if resistance genes were plasmid or chromosome encoded. Citrobacter freundii strain P18 showed a high molecular weight plasmid which seems to code for resistance to zinc, lead, and tetracycline, at the same time. These findings strongly suggest that anthropized environments constitute a reservoir for multiresistant opportunistic bacteria and for circulating resistance genes.

  7. Detection of Bar Transgenic Sugarcane with a Rapid and Visual Loop-Mediated Isothermal Amplification Assay.

    Science.gov (United States)

    Zhou, Dinggang; Wang, Chunfeng; Li, Zhu; Chen, Yun; Gao, Shiwu; Guo, Jinlong; Lu, Wenying; Su, Yachun; Xu, Liping; Que, Youxiong

    2016-01-01

    Genetic engineering offers an attractive alternative in sugarcane breeding for increasing cane and sugar yields as well as disease and insect resistance. Bar transgenic sugarcane employing the herbicide tolerance is a useful agronomical trait in weed control. In this study, a loop-mediated isothermal amplification (LAMP) assay for rapid detection of the bar gene in transgenic sugarcane has been developed and evaluated. A set of six primers was designed for LAMP-based amplification of the bar gene. The LAMP reaction conditions were optimized as follows: 5.25 mM of Mg(2+), 6:1 ratio of inner vs. outer primer, and 6.0 U of Bst DNA polymerase in a reaction volume of 25.0 μL. The detection limit of the recombinant plasmid 1Ac0229 was as low as 10 copies in the developed LAMP, which was 10-fold higher sensitive than that of conventional PCR. In 100 putative transgenic lines, the bar gene was detected in 100/100 cases (100%) by LAMP and 97/100 cases (97%) by conventional PCR, respectively. In conclusion, the developed LAMP assay is visual, rapid, sensitive, reliable, and cost-effective for detection of the bar specific transgenic sugarcane.

  8. Detection of bar transgenic sugarcane with a rapid and visual loop-mediated isothermal amplification assay

    Directory of Open Access Journals (Sweden)

    Dinggang eZhou

    2016-03-01

    Full Text Available Genetic engineering offers an attractive alternative in sugarcane breeding for increasing cane and sugar yields as well as disease and insect resistance. Bar transgenic sugarcane employing the herbicide tolerance is a useful agronomical trait in weed control. In this study, a loop-mediated isothermal amplification (LAMP assay for rapid detection of the bar gene in transgenic sugarcane has been developed and evaluated. A set of six primers was designed for LAMP-based amplification of the bar gene. The LAMP reaction conditions were optimized as follows: 5.25 mM of Mg2+, 6:1 ratio of inner vs outer primer, and 6.0 U of Bst DNA polymerase in a reaction volume of 25.0 μL. The detection limit of the recombinant plasmid 1Ac0229 was as low as 10 copies in the developed LAMP, which was ten-fold higher sensitive than that of conventional PCR. In 100 putative transgenic lines, the bar gene was detected in 100/100 cases (100% by LAMP and 97/100 cases (97% by conventional PCR, respectively. In conclusion, the developed LAMP assay is visual, rapid, sensitive, reliable and cost-effective for detection of the bar specific transgenic sugarcane.

  9. 9 CFR 113.27 - Detection of extraneous viable bacteria and fungi in live vaccines.

    Science.gov (United States)

    2010-01-01

    ... bacteria and fungi in live vaccines. 113.27 Section 113.27 Animals and Animal Products ANIMAL AND PLANT... bacteria and fungi in live vaccines. Unless otherwise specified by the Administrator or elsewhere exempted... Seed Bacteria shall be tested for extraneous viable bacteria and fungi as prescribed in this section. A...

  10. Uptake of crude petroleum hydrocarbons by mudflat bacteria ...

    African Journals Online (AJOL)

    SERVER

    2007-08-06

    Aug 6, 2007 ... bacteria exposed to nitrogenous fertilizer plant ... accompanied by a rapid decline in the level of crude petroleum in the amended .... conductivity, turbidity, salinity, dissolved oxygen (fresh sample only) ... Nutrient uptake was.

  11. Extracellular communication in bacteria

    DEFF Research Database (Denmark)

    Chhabra, S.R.; Philipp, B.; Eberl, L.

    2005-01-01

    molecules, in different Gram-positive and Gram-negative bacteria they control pathogenicity, secondary metabolite production, biofilm differentiation, DNA transfer and bioluminescence. The development of biosensors for the detection of these signal molecules has greatly facilitated their subsequent chemical...

  12. Detection of Extended Spectrum Beta-Lactamases Resistance Genes among Bacteria Isolated from Selected Drinking Water Distribution Channels in Southwestern Nigeria.

    Science.gov (United States)

    Adesoji, Ayodele T; Ogunjobi, Adeniyi A

    2016-01-01

    Extended Spectrum Beta-Lactamases (ESBL) provide high level resistance to beta-lactam antibiotics among bacteria. In this study, previously described multidrug resistant bacteria from raw, treated, and municipal taps of DWDS from selected dams in southwestern Nigeria were assessed for the presence of ESBL resistance genes which include bla TEM, bla SHV, and bla CTX by PCR amplification. A total of 164 bacteria spread across treated (33), raw (66), and municipal taps (68), belonging to α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Flavobacteriia, Bacilli, and Actinobacteria group, were selected for this study. Among these bacteria, the most commonly observed resistance was for ampicillin and amoxicillin/clavulanic acid (61 isolates). Sixty-one isolates carried at least one of the targeted ESBL genes with bla TEM being the most abundant (50/61) and bla CTX being detected least (3/61). Klebsiella was the most frequently identified genus (18.03%) to harbour ESBL gene followed by Proteus (14.75%). Moreover, combinations of two ESBL genes, bla SHV + bla TEM or bla CTX + bla TEM, were observed in 11 and 1 isolate, respectively. In conclusion, classic bla TEM ESBL gene was present in multiple bacterial strains that were isolated from DWDS sources in Nigeria. These environments may serve as foci exchange of genetic traits in a diversity of Gram-negative bacteria.

  13. Detection and Antibiotic Susceptibility Pattern of Biofilm Producing Gram Positive and Gram Negative Bacteria Isolated From a Tertiary Care Hospital of Pakistan

    Directory of Open Access Journals (Sweden)

    Iqbal, M.

    2011-01-01

    Full Text Available Microorganisms adhere to non-living material or living tissue, and form biofilms made up of extracellular polymers/slime. Biofilm-associated microorganisms behave differently from free-floating bacteria with respect to growth rates and ability to resist antimicrobial treatments and therefore pose a public health problem. The objective of this study is to detect the prevalence of biofilm producers among Gram positive and Gram negative bacteria isolated from clinical specimens, and to study their antimicrobial susceptibility pattern. The study was carried out from October 2009 to March 2010, at the Department of Microbiology, Army Medical College/ National University of Sciences and Technology (NUST, Rawalpindi, Pakistan. Clinical specimens were received from various wards of a tertiary care hospital. These were dealt by standard microbiological procedures. Gram positive and Gram negative bacteria isolated were subjected to biofilm detection by congo red agar method (CRA. Antimicrobial susceptibility testing of those isolates, which showed positive results (slime production, was done according to the Kirby-Bauer disc diffusion technique. A total of 150 isolates were tested for the production of biofilm/slime. Among them, 81 isolates showed positive results. From these 81, 51 were Gram positive and 30 were Gram negative. All the 81(54% slime producers showed reduced susceptibility to majority of antibiotics. Bacterial biofilms are an important virulence factor associated with chronic nosocomial infection. Detection of biofilm forming organisms can help in appropriate antibiotic choice.

  14. A rapid qualitative assay for detection of Clostridium perfringens in canned food products.

    Science.gov (United States)

    Dave, Gayatri Ashwinkumar

    2017-01-01

    Clostridium perfringens (MTCC 1349) is a Gram-positive, anaerobic, endospore forming, and rod-shaped bacterium. This bacterium produces a variety of toxins under strict anaerobic environment. C. perfringens can grow at temperatures ranging between 20°C and 50°C. It is the major causetive agent for gas gangrene, cellulitis, septicemia, necrotic enteritis and food poisoning, which are common toxin induced conditions noted in human and animals. C. perfringens can produce produce four major types of toxins that are used for the classification of strains, classified under type A-E. Across the globe many countries, including the United States, are affected by C. perfringens food poisonings where it is ranked as one of the most common causes of food borne infections. To date, no direct one step assay for the detection of C. perfringens has been developed and only few methods are known for accurate detection of C. perfringens. Long detection and incubation time is the major consideration of these reporter assays. The prensent study proposes a rapid and reliable colorimetric assay for the detection of C. perfringens. In principale, this assay detects the para nitrophenyl (yellow colour end product) liberated due to the hydrolysis of paranitrophenyl phosphetidyl choline (PNPC) through phospholipase C (lecithinase). Constitutive secretion of phospholipase C is a charactristic feature of C. perfringens. This assay detects the presence of the extracellular lecithinse through the PNPC impragnated impregnated probe. The probe is impregnated with peranitrophenyl phosphotidyl choline ester, which is colourless substrate used by lecithinase. The designed assay is specific towards PNPC and detectes very small quantites of lecithinase under conditions used. The reaction is substrate specific, no cross reaction was observed upon incubation with other substrates. In addition, this assay gave negative results with other clostridium strains, no cross reactions were observed with other

  15. A simple, rapid, cost-effective and sensitive method for detection of Salmonella in environmental and pecan samples.

    Science.gov (United States)

    Dobhal, S; Zhang, G; Rohla, C; Smith, M W; Ma, L M

    2014-10-01

    PCR is widely used in the routine detection of foodborne human pathogens; however, challenges remain in overcoming PCR inhibitors present in some sample matrices. The objective of this study was to develop a simple, sensitive, cost-effective and rapid method for processing large numbers of environmental and pecan samples for Salmonella detection. This study was also aimed at validation of a new protocol for the detection of Salmonella from in-shell pecans. Different DNA template preparation methods, including direct boiling, prespin, multiple washing and commercial DNA extraction kits, were evaluated with pure cultures of Salmonella Typhimurium and with enriched soil, cattle feces and in-shell pecan each spiked individually with Salmonella Typhimurium. PCR detection of Salmonella was conducted using invA and 16S rRNA gene (internal amplification control) specific primers. The effect of amplification facilitators, including bovine serum albumin (BSA), polyvinylpyrrolidone (PVP), polyethylene glycol (PEG) and gelatin on PCR sensitivity, was also evaluated. Conducting a prespin of sample matrices in combination with the addition of 0·4% (w/v) BSA and 1% (w/v) PVP in PCR mix was the simplest, most rapid, cost-effective and sensitive method for PCR detection of Salmonella, with up to 40 CFU Salmonella per reaction detectable in the presence of over 10(9 ) CFU ml(-1) of background micro-organisms from enriched feces soil or pecan samples. The developed method is rapid, cost-effective and sensitive for detection of Salmonella from different matrices. This study provides a method with broad applicability for PCR detection of Salmonella in complex sample matrices. This method has a potential for its application in different research arenas and diagnostic laboratories. © 2014 The Society for Applied Microbiology.

  16. Limnoithona sinensis as refuge for bacteria: protection from UV radiation and chlorine disinfection in drinking water treatment.

    Science.gov (United States)

    Lin, Tao; Cai, Bo; Chen, Wei

    2014-11-01

    In this study, we tested the potential of Limnoithona sinensis to provide its attached bacteria refuge against disinfection. The experimental results indicated that in water devoid of zooplankton, both UV radiation and chlorine disinfection significantly decreased the viability of free-living bacteria. In the presence of L. sinensis, however, the attached bacteria could survive and rapidly recover from disinfection. This demonstrated that L. sinensis provided protection from external damage to various aquatic bacteria that were attached to its body. The surviving bacteria remained on L. sinensis after disinfection exposure, which enabled a rapid increase in the bacterial population followed by their subsequent release into the surrounding water. Compared with UV radiation, chlorine disinfection was more effective in terms of inactivating attached bacteria. Both UV radiation and chlorine disinfection had little effect in terms of preventing the spread of undesirable bacteria, due to the incomplete inactivation of the bacteria associated with L. sinensis.

  17. Biosensors for plant pathogen detection.

    Science.gov (United States)

    Khater, Mohga; de la Escosura-Muñiz, Alfredo; Merkoçi, Arben

    2017-07-15

    Infectious plant diseases are caused by pathogenic microorganisms such as fungi, bacteria, viruses, viroids, phytoplasma and nematodes. Worldwide, plant pathogen infections are among main factors limiting crop productivity and increasing economic losses. Plant pathogen detection is important as first step to manage a plant disease in greenhouses, field conditions and at the country boarders. Current immunological techniques used to detect pathogens in plant include enzyme-linked immunosorbent assays (ELISA) and direct tissue blot immunoassays (DTBIA). DNA-based techniques such as polymerase chain reaction (PCR), real time PCR (RT-PCR) and dot blot hybridization have also been proposed for pathogen identification and detection. However these methodologies are time-consuming and require complex instruments, being not suitable for in-situ analysis. Consequently, there is strong interest for developing new biosensing systems for early detection of plant diseases with high sensitivity and specificity at the point-of-care. In this context, we revise here the recent advancement in the development of advantageous biosensing systems for plant pathogen detection based on both antibody and DNA receptors. The use of different nanomaterials such as nanochannels and metallic nanoparticles for the development of innovative and sensitive biosensing systems for the detection of pathogens (i.e. bacteria and viruses) at the point-of-care is also shown. Plastic and paper-based platforms have been used for this purpose, offering cheap and easy-to-use really integrated sensing systems for rapid on-site detection. Beside devices developed at research and development level a brief revision of commercially available kits is also included in this review. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Development of a nested-PCR assay for the rapid detection of Pilidiella granati in pomegranate fruit

    Science.gov (United States)

    Yang, Xue; Hameed, Uzma; Zhang, Ai-Fang; Zang, Hao-Yu; Gu, Chun-Yan; Chen, Yu; Xu, Yi-Liu

    2017-01-01

    Pilidiella granati, a causal agent of twig blight and crown rot of pomegranate, is an emerging threat that may cause severe risk to the pomegranate industry in the future. Development of a rapid assay for the timely and accurate detection of P. granati will be helpful in the active surveillance and management of the disease caused by this pathogen. In this study, a nested PCR method was established for the detection of P. granati. Comparative analysis of genetic diversity within 5.8S rDNA internal transcribed spacer (ITS) sequences of P. granati and 21 other selected fungal species was performed to design species-specific primers (S1 and S2). This primer pair successfully amplified a 450 bp product exclusively from the genomic DNA of P. granati. The developed method can detect 10 pg genomic DNA of the pathogen in about 6 h. This technique was successfully applied to detect the natural infection of P. granati in the pomegranate fruit. The designed protocol is rapid and precise with a high degree of sensitivity. PMID:28106107

  19. Rapid detection of undesired cosmetic ingredients by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Ouyang, Jie; An, Dongli; Chen, Tengteng; Lin, Zhiwei

    2017-10-01

    In recent years, cosmetic industry profits soared due to the widespread use of cosmetics, which resulted in illicit manufacturers and products of poor quality. Therefore, the rapid and accurate detection of the composition of cosmetics has become crucial. At present, numerous methods, such as gas chromatography and liquid chromatography-mass spectrometry, were available for the analysis of cosmetic ingredients. However, these methods present several limitations, such as failure to perform comprehensive and rapid analysis of the samples. Compared with other techniques, matrix-assisted laser desorption ionization time-of-flight mass spectrometry offered the advantages of wide detection range, fast speed and high accuracy. In this article, we briefly summarized how to select a suitable matrix and adjust the appropriate laser energy. We also discussed the rapid identification of undesired ingredients, focusing on antibiotics and hormones in cosmetics.

  20. Loop-Mediated Isothermal Amplification Assay Targeting the MOMP Gene for Rapid Detection of Chlamydia psittaci Abortus Strain

    Directory of Open Access Journals (Sweden)

    Guo-Zhen Lin, Fu-Ying Zheng, Ji-Zhang Zhou, Guang-Hua Wang, Xiao-An Cao, Xiao-Wei Gong and Chang-Qing Qiu*

    2012-05-01

    Full Text Available For rapid detection of the Chlamydia psittaci abortus strain, a loop-mediated isothermal amplification (LAMP assay was developed and evaluated in this study. The primers for the LAMP assay were designed on the basis of the main outer membrane protein (MOMP gene sequence of C. psittaci. Analysis showed that the assay could detect the abortus strain of C. psittaci with adequate specificity. The sensitivity of the test was the same as that of the nested-conventional PCR and higher than that of chick embryo isolation. Testing of 153 samples indicated that the LAMP assay could detect the genome of the C. psittaci abortus strain effectively in clinical samples. This assay is a useful tool for rapid diagnosis of C. psittaci infection in sheep, swine and cattle.

  1. Rapid detection of Ganoderma-infected oil palms by microwave ergosterol extraction with HPLC and TLC.

    Science.gov (United States)

    Muniroh, M S; Sariah, M; Zainal Abidin, M A; Lima, N; Paterson, R R M

    2014-05-01

    Detection of basal stem rot (BSR) by Ganoderma of oil palms was based on foliar symptoms and production of basidiomata. Enzyme-Linked Immunosorbent Assays-Polyclonal Antibody (ELISA-PAB) and PCR have been proposed as early detection methods for the disease. These techniques are complex, time consuming and have accuracy limitations. An ergosterol method was developed which correlated well with the degree of infection in oil palms, including samples growing in plantations. However, the method was capable of being optimised. This current study was designed to develop a simpler, more rapid and efficient ergosterol method with utility in the field that involved the use of microwave extraction. The optimised procedure involved extracting a small amount of Ganoderma, or Ganoderma-infected oil palm suspended in low volumes of solvent followed by irradiation in a conventional microwave oven at 70°C and medium high power for 30s, resulting in simultaneous extraction and saponification. Ergosterol was detected by thin layer chromatography (TLC) and quantified using high performance liquid chromatography with diode array detection. The TLC method was novel and provided a simple, inexpensive method with utility in the field. The new method was particularly effective at extracting high yields of ergosterol from infected oil palm and enables rapid analysis of field samples on site, allowing infected oil palms to be treated or culled very rapidly. Some limitations of the method are discussed herein. The procedures lend themselves to controlling the disease more effectively and allowing more effective use of land currently employed to grow oil palms, thereby reducing pressure to develop new plantations. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Rapid detection of SMARCB1 sequence variation using high resolution melting

    Directory of Open Access Journals (Sweden)

    Ashley David M

    2009-12-01

    Full Text Available Abstract Background Rhabdoid tumors are rare cancers of early childhood arising in the kidney, central nervous system and other organs. The majority are caused by somatic inactivating mutations or deletions affecting the tumor suppressor locus SMARCB1 [OMIM 601607]. Germ-line SMARCB1 inactivation has been reported in association with rhabdoid tumor, epitheloid sarcoma and familial schwannomatosis, underscoring the importance of accurate mutation screening to ascertain recurrence and transmission risks. We describe a rapid and sensitive diagnostic screening method, using high resolution melting (HRM, for detecting sequence variations in SMARCB1. Methods Amplicons, encompassing the nine coding exons of SMARCB1, flanking splice site sequences and the 5' and 3' UTR, were screened by both HRM and direct DNA sequencing to establish the reliability of HRM as a primary mutation screening tool. Reaction conditions were optimized with commercially available HRM mixes. Results The false negative rate for detecting sequence variants by HRM in our sample series was zero. Nine amplicons out of a total of 140 (6.4% showed variant melt profiles that were subsequently shown to be false positive. Overall nine distinct pathogenic SMARCB1 mutations were identified in a total of 19 possible rhabdoid tumors. Two tumors had two distinct mutations and two harbored SMARCB1 deletion. Other mutations were nonsense or frame-shifts. The detection sensitivity of the HRM screening method was influenced by both sequence context and specific nucleotide change and varied from 1: 4 to 1:1000 (variant to wild-type DNA. A novel method involving digital HRM, followed by re-sequencing, was used to confirm mutations in tumor specimens containing associated normal tissue. Conclusions This is the first report describing SMARCB1 mutation screening using HRM. HRM is a rapid, sensitive and inexpensive screening technology that is likely to be widely adopted in diagnostic laboratories to

  3. Rapid detection of SMARCB1 sequence variation using high resolution melting

    International Nuclear Information System (INIS)

    Dagar, Vinod; Chow, Chung-Wo; Ashley, David M; Algar, Elizabeth M

    2009-01-01

    Rhabdoid tumors are rare cancers of early childhood arising in the kidney, central nervous system and other organs. The majority are caused by somatic inactivating mutations or deletions affecting the tumor suppressor locus SMARCB1 [OMIM 601607]. Germ-line SMARCB1 inactivation has been reported in association with rhabdoid tumor, epitheloid sarcoma and familial schwannomatosis, underscoring the importance of accurate mutation screening to ascertain recurrence and transmission risks. We describe a rapid and sensitive diagnostic screening method, using high resolution melting (HRM), for detecting sequence variations in SMARCB1. Amplicons, encompassing the nine coding exons of SMARCB1, flanking splice site sequences and the 5' and 3' UTR, were screened by both HRM and direct DNA sequencing to establish the reliability of HRM as a primary mutation screening tool. Reaction conditions were optimized with commercially available HRM mixes. The false negative rate for detecting sequence variants by HRM in our sample series was zero. Nine amplicons out of a total of 140 (6.4%) showed variant melt profiles that were subsequently shown to be false positive. Overall nine distinct pathogenic SMARCB1 mutations were identified in a total of 19 possible rhabdoid tumors. Two tumors had two distinct mutations and two harbored SMARCB1 deletion. Other mutations were nonsense or frame-shifts. The detection sensitivity of the HRM screening method was influenced by both sequence context and specific nucleotide change and varied from 1: 4 to 1:1000 (variant to wild-type DNA). A novel method involving digital HRM, followed by re-sequencing, was used to confirm mutations in tumor specimens containing associated normal tissue. This is the first report describing SMARCB1 mutation screening using HRM. HRM is a rapid, sensitive and inexpensive screening technology that is likely to be widely adopted in diagnostic laboratories to facilitate whole gene mutation screening

  4. Development of Colloidal Gold-Based Immunochromatographic Assay for Rapid Detection of Goose Parvovirus

    Directory of Open Access Journals (Sweden)

    Xianglong Yu

    2018-05-01

    Full Text Available Goose parvovirus (GPV remains as a worldwide problem in goose industry. For this reason, it is necessary to develop a new diagnostic approach that is easier and faster than conventional tests. A rapid immunochromatographic assay based on antibody colloidal gold nanoparticles specific to GPV was developed for the detection of GPV in goose allantoic fluid and supernatant of tissue homogenate. The monoclonal antibodies (Mab was produced by immunizing the BALB/c mice with purified GPV suspension, and the polyclonal antibody (pAb was produced by immunizing the rabbits with recombinant VP3 protein. The colloidal gold was prepared by the reduction of gold salt with sodium citrate coupled with Mab against GPV. The optimal concentrations of the coating antibody and capture antibody were determined to be 1.6 mg/ml and 9 μg/ml. With visual observation, the lower limit was found to be around 1.2 μg/ml. Common diseases of goose were tested to evaluate the specificity of the immune colloidal gold (ICG strip, and no cross-reaction was observed. The clinical detection was examined by carrying out the ICG strip test with 92 samples and comparing the results of these tests with those obtained via agar diffusion test and polymerase chain reaction (PCR test. Therefore, the ICG strip test was a sufficiently sensitive and accurate detection method for a rapid screening of GPV.

  5. Detection of BCG bacteria using a magnetoresistive biosensor: A step towards a fully electronic platform for tuberculosis point-of-care detection.

    Science.gov (United States)

    Barroso, Teresa G; Martins, Rui C; Fernandes, Elisabete; Cardoso, Susana; Rivas, José; Freitas, Paulo P

    2018-02-15

    Tuberculosis is one of the major public health concerns. This highly contagious disease affects more than 10.4 million people, being a leading cause of morbidity by infection. Tuberculosis is diagnosed at the point-of-care by the Ziehl-Neelsen sputum smear microscopy test. Ziehl-Neelsen is laborious, prone to human error and infection risk, with a limit of detection of 10 4 cells/mL. In resource-poor nations, a more practical test, with lower detection limit, is paramount. This work uses a magnetoresistive biosensor to detect BCG bacteria for tuberculosis diagnosis. Herein we report: i) nanoparticle assembly method and specificity for tuberculosis detection; ii) demonstration of proportionality between BCG cell concentration and magnetoresistive voltage signal; iii) application of multiplicative signal correction for systematic effects removal; iv) investigation of calibration effectiveness using chemometrics methods; and v) comparison with state-of-the-art point-of-care tuberculosis biosensors. Results present a clear correspondence between voltage signal and cell concentration. Multiplicative signal correction removes baseline shifts within and between biochip sensors, allowing accurate and precise voltage signal between different biochips. The corrected signal was used for multivariate regression models, which significantly decreased the calibration standard error from 0.50 to 0.03log 10 (cells/mL). Results show that Ziehl-Neelsen detection limits and below are achievable with the magnetoresistive biochip, when pre-processing and chemometrics are used. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Rapid and early detection of salmonella serotypes with hyperspectral microscope and multivariate data analysis

    Science.gov (United States)

    This study was designed to evaluate hyperspectral microscope images for early and rapid detection of Salmonella serotypes: S. Enteritidis, S. Heidelberg, S. Infantis, S. Kentucky, and S. Typhimurium at incubation times of 6, 8, 10, 12, and 24 hours. Images were collected by an acousto-optical tunab...

  7. Rapid surface enhanced Raman scattering detection method for chloramphenicol residues

    Science.gov (United States)

    Ji, Wei; Yao, Weirong

    2015-06-01

    Chloramphenicol (CAP) is a widely used amide alcohol antibiotics, which has been banned from using in food producing animals in many countries. In this study, surface enhanced Raman scattering (SERS) coupled with gold colloidal nanoparticles was used for the rapid analysis of CAP. Density functional theory (DFT) calculations were conducted with Gaussian 03 at the B3LYP level using the 3-21G(d) and 6-31G(d) basis sets to analyze the assignment of vibrations. Affirmatively, the theoretical Raman spectrum of CAP was in complete agreement with the experimental spectrum. They both exhibited three strong peaks characteristic of CAP at 1104 cm-1, 1344 cm-1, 1596 cm-1, which were used for rapid qualitative analysis of CAP residues in food samples. The use of SERS as a method for the measurements of CAP was explored by comparing use of different solvents, gold colloidal nanoparticles concentration and absorption time. The method of the detection limit was determined as 0.1 μg/mL using optimum conditions. The Raman peak at 1344 cm-1 was used as the index for quantitative analysis of CAP in food samples, with a linear correlation of R2 = 0.9802. Quantitative analysis of CAP residues in foods revealed that the SERS technique with gold colloidal nanoparticles was sensitive and of a good stability and linear correlation, and suited for rapid analysis of CAP residue in a variety of food samples.

  8. Molecular detection of Rickettsia, Anaplasma, Coxiella and Francisella bacteria in ticks collected from Artiodactyla in Thailand.

    Science.gov (United States)

    Sumrandee, Chalao; Baimai, Visut; Trinachartvanit, Wachareeporn; Ahantarig, Arunee

    2016-07-01

    A total of 79 ticks collected from Sambar deer (Cervus unicolor), Barking deer (Muntiacus muntjak) and Wild boar (Sus scrofa) were examined by PCR for the presence of Rickettsia, Anaplasma, Coxiella, and Francisella bacteria. Of the 79 ticks, 13% tested positive for Rickettsia, 15% tested positive for Anaplasma, 4% tested positive for Coxiella, and 3% tested positive for Francisella. Interestingly, triple infection with Anaplasma, Rickettsia and Francisella was determined in a Dermacentor auratus tick. Moreover, another triple infection with Rickettsia, Anaplasma, and Coxiella was found in a Haemaphysalis lagrangei tick. Double infection of Rickettsia with Coxiella was also detected in another H. lagrangei tick. From the phylogenetic analyses, we found a Rickettsia sp. with a close evolutionary relationship to Rickettsia bellii in the H. lagrangei tick. We also found the first evidence of a Rickettsia sp. that is closely related to Rickettsia tamurae in Rhipicephalus (Boophilus) microplus ticks from Thailand. H. lagrangei and Haemaphysalis obesa ticks collected from Sambar deer tested positive for Anaplasma species form the same clade with Anaplasma bovis. In contrast, other H. lagrangei ticks collected from Sambar deer and D. auratus ticks collected from Wild boar were also reported for the first time to be infected with an Anaplasma species that is closely related to Anaplasma platys. The phylogenetic analysis of the 16S rRNA gene of Coxiella bacteria revealed that Coxiella symbionts from H. lagrangei formed a distinctly different lineage from Coxiella burnetii (a human pathogen). Additionally, Francisella bacteria identified in D. auratus ticks were found to be distantly related to a group of pathogenic Francisella species. The identification of these bacteria in several feeding ticks suggests the risk of various emerging tick-borne diseases and endosymbionts in humans, wildlife, and domestic animals in Thailand. Copyright © 2016 Elsevier GmbH. All rights

  9. Alienness: Rapid Detection of Candidate Horizontal Gene Transfers across the Tree of Life

    Directory of Open Access Journals (Sweden)

    Corinne Rancurel

    2017-09-01

    Full Text Available Horizontal gene transfer (HGT is the transmission of genes between organisms by other means than parental to offspring inheritance. While it is prevalent in prokaryotes, HGT is less frequent in eukaryotes and particularly in Metazoa. Here, we propose Alienness, a taxonomy-aware web application available at http://alienness.sophia.inra.fr. Alienness parses BLAST results against public libraries to rapidly identify candidate HGT in any genome of interest. Alienness takes as input the result of a BLAST of a whole proteome of interest against any National Center for Biotechnology Information (NCBI protein library. The user defines recipient (e.g., Metazoa and donor (e.g., bacteria, fungi branches of interest in the NCBI taxonomy. Based on the best BLAST E-values of candidate donor and recipient taxa, Alienness calculates an Alien Index (AI for each query protein. An AI > 0 indicates a better hit to candidate donor than recipient taxa and a possible HGT. Higher AI represent higher gap of E-values between candidate donor and recipient and a more likely HGT. We confirmed the accuracy of Alienness on phylogenetically confirmed HGT of non-metazoan origin in plant-parasitic nematodes. Alienness scans whole proteomes to rapidly identify possible HGT in any species of interest and thus fosters exploration of HGT more easily and largely across the tree of life.

  10. Growth and death of bacteria and fungi underlie rainfall-induced carbon dioxide pulses from seasonally dried soil.

    Science.gov (United States)

    Blazewicz, Steven J; Schwartz, Egbert; Firestone, Mary K

    2014-05-01

    The rapid increase in microbial activity that occurs when a dry soil is rewetted has been well documented and is of great interest due to implications of changing precipitation patterns on soil C dynamics. Several studies have shown minor net changes in microbial population diversity or abundance following wet-up, but the gross population dynamics of bacteria and fungi resulting from soil wet-up are virtually unknown. Here we applied DNA stable isotope probing with H218O coupled with quantitative PCR to characterize new growth, survival, and mortality of bacteria and fungi following the rewetting of a seasonally dried California annual grassland soil. Microbial activity, as determined by CO2 production, increased significantly within three hours of wet-up, yet new growth was not detected until after three hours, suggesting a pulse of nongrowth activity immediately following wet-up, likely due to osmo-regulation and resuscitation from dormancy in response to the rapid change in water potential. Total microbial abundance revealed little change throughout the seven-day post-wet incubation, but there was substantial turnover of both bacterial and fungal populations (49% and 52%, respectively). New growth was linear between 24 and 168 hours for both bacteria and fungi, with average growth rates of 2.3 x 10(8) bacterial 16S rRNA gene copies x [g dry mass](-1) x h(-1) and 4.3 x 10(7) fungal ITS copies x [g dry mass](-1) x h(-1). While bacteria and fungi differed in their mortality and survival characteristics during the seven-day incubation, mortality that occurred within the first three hours was similar, with 25% and 27% of bacterial and fungal gene copies disappearing from the pre-wet community, respectively. The rapid disappearance of gene copies indicates that cell death, occurring either during the extreme dry down period (preceding five months) or during the rapid change in water potential due to wet-up, generates a significant pool of available C that likely

  11. Rapid-viability PCR method for detection of live, virulent Bacillus anthracis in environmental samples.

    Science.gov (United States)

    Létant, Sonia E; Murphy, Gloria A; Alfaro, Teneile M; Avila, Julie R; Kane, Staci R; Raber, Ellen; Bunt, Thomas M; Shah, Sanjiv R

    2011-09-01

    In the event of a biothreat agent release, hundreds of samples would need to be rapidly processed to characterize the extent of contamination and determine the efficacy of remediation activities. Current biological agent identification and viability determination methods are both labor- and time-intensive such that turnaround time for confirmed results is typically several days. In order to alleviate this issue, automated, high-throughput sample processing methods were developed in which real-time PCR analysis is conducted on samples before and after incubation. The method, referred to as rapid-viability (RV)-PCR, uses the change in cycle threshold after incubation to detect the presence of live organisms. In this article, we report a novel RV-PCR method for detection of live, virulent Bacillus anthracis, in which the incubation time was reduced from 14 h to 9 h, bringing the total turnaround time for results below 15 h. The method incorporates a magnetic bead-based DNA extraction and purification step prior to PCR analysis, as well as specific real-time PCR assays for the B. anthracis chromosome and pXO1 and pXO2 plasmids. A single laboratory verification of the optimized method applied to the detection of virulent B. anthracis in environmental samples was conducted and showed a detection level of 10 to 99 CFU/sample with both manual and automated RV-PCR methods in the presence of various challenges. Experiments exploring the relationship between the incubation time and the limit of detection suggest that the method could be further shortened by an additional 2 to 3 h for relatively clean samples.

  12. Rapid and sensitive detection of Didymella bryoniae by visual loop-mediated isothermal amplification assay

    Directory of Open Access Journals (Sweden)

    Xiefeng Yao

    2016-08-01

    Full Text Available Didymella bryoniae is a pathogenic fungus that causes gummy stem blight (GSB in Cucurbitaceae crops (e.g. cantaloupe, muskmelon, cucumber, and watermelon. GSB produces lesions on the stems and leaves, and can also be spread by seeds. Here, we developed a rapid, visual, and sensitive loop-mediated amplification (LAMP assay for D. bryoniae detection based on sequence-characterized amplified regions (GenBank accession nos GQ872461 and GQ872462 common to the two random amplification of polymorphic DNA group genotypes (RGI and RGII of D. bryoniae; ideal conditions for detection were optimized for completion in 45 min at 63°C. The sensitivity and specificity of the LAMP assay were further analyzed in comparison with those of a conventional polymerase chain reaction (PCR. The sensitivity of the LAMP assay was 1000-fold higher than that of conventional PCR with a detection limit of 0.1 fg μL−1 of targeted DNA. The LAMP assay could be accomplished in about 45 min, with the results visible to the naked eye. The assay showed high specificity in discriminating all D. bryoniae isolates from seven other fungal pathogens that occur in Cucurbitaceae crops. The LAMP assay also detected D. bryoniae infection in young muskmelon leaves with suspected early symptoms of GSB disease. Hence, the technique has great potential for developing rapid and sensitive visual detection methods for the D. bryoniae pathogen in crops and seeds. This method has potential application in early prediction of disease and reducing the risk of epidemics.

  13. Rapid Reagentless Detection of M. tuberculosis H37Ra in Respiratory Effluents

    International Nuclear Information System (INIS)

    Adams, K.L.; Steele, P.T.; Bogan, M.J.; Sadler, N.M.; Martin, S.; Martin, A.N.; Frank, M.

    2008-01-01

    Two similar mycobacteria, Mycobacteria tuberculosis H37Ra and Mycobacteria smegmatis are rapidly detected and identified within samples containing a complex background of respiratory effluents using Single Particle Aerosol Mass Spectrometry (SPAMS). M. tuberculosis H37Ra (TBa), an avirulent strain, is used as a surrogate for virulent tuberculosis (TBv); M. smegmatis (MSm) is utilized as a near neighbor confounder for TBa. Bovine lung surfactant and human exhaled breath condensate are used as first-order surrogates for infected human lung expirations from patients with pulmonary tuberculosis. This simulated background sputum is mixed with TBa or MSm and nebulized to produce conglomerate aerosol particles, single particles that contain a bacterium embedded within a background respiratory matrix. Mass spectra of single conglomerate particles exhibit ions associated with both respiratory effluents and mycobacteria. Spectral features distinguishing TBa from MSm in pure and conglomerate particles are shown. SPAMS pattern matching alarm algorithms are able to distinguish TBa containing particles from background matrix and MSm for >50% of the test particles, which is sufficient to enable a high probability of detection and a low false alarm rate if an adequate number of such particles are present. These results indicate the potential usefulness of SPAMS for rapid, reagentless tuberculosis screening

  14. Rapid Reagentless Detection of M. tuberculosis H37Ra in Respiratory Effluents

    Energy Technology Data Exchange (ETDEWEB)

    Adams, K L; Steele, P T; Bogan, M J; Sadler, N M; Martin, S; Martin, A N; Frank, M

    2008-01-29

    Two similar mycobacteria, Mycobacteria tuberculosis H37Ra and Mycobacteria smegmatis are rapidly detected and identified within samples containing a complex background of respiratory effluents using Single Particle Aerosol Mass Spectrometry (SPAMS). M. tuberculosis H37Ra (TBa), an avirulent strain, is used as a surrogate for virulent tuberculosis (TBv); M. smegmatis (MSm) is utilized as a near neighbor confounder for TBa. Bovine lung surfactant and human exhaled breath condensate are used as first-order surrogates for infected human lung expirations from patients with pulmonary tuberculosis. This simulated background sputum is mixed with TBa or MSm and nebulized to produce conglomerate aerosol particles, single particles that contain a bacterium embedded within a background respiratory matrix. Mass spectra of single conglomerate particles exhibit ions associated with both respiratory effluents and mycobacteria. Spectral features distinguishing TBa from MSm in pure and conglomerate particles are shown. SPAMS pattern matching alarm algorithms are able to distinguish TBa containing particles from background matrix and MSm for >50% of the test particles, which is sufficient to enable a high probability of detection and a low false alarm rate if an adequate number of such particles are present. These results indicate the potential usefulness of SPAMS for rapid, reagentless tuberculosis screening.

  15. A magnetic particles-based chemiluminescence enzyme immunoassay for rapid detection of ovalbumin.

    Science.gov (United States)

    Feng, Xiao-Li; Ren, Hong-Lin; Li, Yan-Song; Hu, Pan; Zhou, Yu; Liu, Zeng-Shan; Yan, Dong-Ming; Hui, Qi; Liu, Dong; Lin, Chao; Liu, Nan-Nan; Liu, Yan-Yan; Lu, Shi-Ying

    2014-08-15

    Egg allergy is an important public health and safety concern, so quantification and administration of food or vaccines containing ovalbumin (OVA) are urgently needed. This study aimed to establish a rapid and sensitive magnetic particles-chemiluminescence enzyme immunoassay (MPs-CLEIA) for the determination of OVA. The proposed method was developed on the basis of a double antibodies sandwich immunoreaction and luminol-H2O2 chemiluminescence system. The MPs served as both the solid phase and separator, the anti-OVA MPs-coated polyclonal antibodies (pAbs) were used as capturing antibody, and the horseradish peroxidase (HRP)-labeled monoclonal antibody (mAb) was taken as detecting antibody. The parameters of the method were evaluated and optimized. The established MPs-CLEIA method had a linear range from 0.31 to 100ng/ml with a detection limit of 0.24ng/ml. The assays showed low reactivities and less than 5% of intraassay and interassay coefficients of variation (CVs), and the average recoveries were between 92 and 97%. Furthermore, the developed method was applied in real samples analysis successfully, and the correlation coefficient with the commercially available OVA kit was 0.9976. Moreover, it was more rapid and sensitive compared with the other methods for testing OVA. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Automatic RST-based system for a rapid detection of man-made disasters

    Science.gov (United States)

    Tramutoli, Valerio; Corrado, Rosita; Filizzola, Carolina; Livia Grimaldi, Caterina Sara; Mazzeo, Giuseppe; Marchese, Francesco; Pergola, Nicola

    2010-05-01

    Man-made disasters may cause injuries to citizens and damages to critical infrastructures. When it is not possible to prevent or foresee such disasters it is hoped at least to rapidly detect the accident in order to intervene as soon as possible to minimize damages. In this context, the combination of a Robust Satellite Technique (RST), able to identify for sure actual (i.e. no false alarm) accidents, and satellite sensors with high temporal resolution seems to assure both a reliable and a timely detection of abrupt Thermal Infrared (TIR) transients related to dangerous explosions. A processing chain, based on the RST approach, has been developed in the framework of the GMOSS and G-MOSAIC projects by DIFA-UNIBAS team, suitable for automatically identify on MSG-SEVIRI images harmful events. Maps of thermal anomalies are generated every 15 minutes (i.e. SEVIRI temporal repetition rate) over a selected area together with kml files (containing information on latitude and longitude of "thermally" anomalous SEVIRI pixel centre, time of image acquisition, relative intensity of anomalies, etc.) for a rapid visualization of the accident position even on Google Earth. Results achieved in the cases of gas pipelines recently exploded or attacked in Russia and in Iraq will be presented in this work.

  17. Isolation, Antimicrobial Susceptibility Profile and Detection of Sul1, blaTEM, and blaSHV in Amoxicillin-Clavulanate-Resistant Bacteria Isolated From Retail Sausages in Kampar, Malaysia.

    Science.gov (United States)

    Tew, Lih-Shin; She, Li-Yen; Chew, Choy-Hoong

    2016-10-01

    Due to the overuse of antibiotics in livestock as a growth-promoting agent, the emergence of multi-antibiotic resistant bacteria is becoming a concern. In this study, we aimed to detect the presence and discover the molecular determinants of foodborne bacteria in retail sausages resistant towards the antibacterial agent amoxicillin-clavulanate. Two grams of sausages were chopped into small pieces and transferred into sterile Luria-Bertani (LB) enrichment broths overnight before they were plated on MacConkey agar petri dishes. The bacteria isolated were then screened for amoxicillin-clavulanate resistance, and an antimicrobial susceptibility test of each isolate was performed by using the disc diffusion method. Double synergy and phenotypic tests were carried out to detect the presence of extended spectrum β-lactamase (ESBL). API 20E kit was used to identify the Enterobacteriaceae . All isolates were further examined by polymerase chain reaction (PCR) for resistant genes bla OXA-1, bla OXA-10, plasmid-mediated AmpC ( bla CMY and bla DHA), and the chromosome-mediated AmpC, Sul 1, bla TEM, and bla SHV genes. A total of 18 amoxicillin-clavulanate resistant isolates were obtained from seven different types of retail sausages. Only half of them were identified as Enterobacteriaceae , but none were ESBL-producers. All the 18 isolated strains demonstrated resistance towards amoxicillin-clavulanate, penicillin and oxacillin (100%), cefotaxime (71.4%), cefpodoxime (66.7%), and ampicillin (83.3%). bla TEM was the most frequently detected β-lactamase gene. Both plasmid- and chromosomal-bound bla TEM genes were detected in all of the isolated Enterobacteriaceae . bla SHV and Sul 1 accounted for 22.2% and 11.1% of the amoxicillin-clavulanate resistant isolates, respectively, whereas bla AMPC, bla CMY, bla DHA, bla OXA-1, and bla OXA-10 were not found in any of the isolates. The only one ESBL-producing bacteria detected in this study was Chryseobacterium meningosepticum , which

  18. Isolation, Antimicrobial Susceptibility Profile and Detection of Sul1, blaTEM, and blaSHV in Amoxicillin-Clavulanate-Resistant Bacteria Isolated From Retail Sausages in Kampar, Malaysia

    Science.gov (United States)

    Tew, Lih-Shin; She, Li-Yen; Chew, Choy-Hoong

    2016-01-01

    Background Due to the overuse of antibiotics in livestock as a growth-promoting agent, the emergence of multi-antibiotic resistant bacteria is becoming a concern. Objectives In this study, we aimed to detect the presence and discover the molecular determinants of foodborne bacteria in retail sausages resistant towards the antibacterial agent amoxicillin-clavulanate. Methods Two grams of sausages were chopped into small pieces and transferred into sterile Luria-Bertani (LB) enrichment broths overnight before they were plated on MacConkey agar petri dishes. The bacteria isolated were then screened for amoxicillin-clavulanate resistance, and an antimicrobial susceptibility test of each isolate was performed by using the disc diffusion method. Double synergy and phenotypic tests were carried out to detect the presence of extended spectrum β-lactamase (ESBL). API 20E kit was used to identify the Enterobacteriaceae. All isolates were further examined by polymerase chain reaction (PCR) for resistant genes blaOXA-1, blaOXA-10, plasmid-mediated AmpC (blaCMY and blaDHA), and the chromosome-mediated AmpC, Sul1, blaTEM, and blaSHV genes. Results A total of 18 amoxicillin-clavulanate resistant isolates were obtained from seven different types of retail sausages. Only half of them were identified as Enterobacteriaceae, but none were ESBL-producers. All the 18 isolated strains demonstrated resistance towards amoxicillin-clavulanate, penicillin and oxacillin (100%), cefotaxime (71.4%), cefpodoxime (66.7%), and ampicillin (83.3%). blaTEM was the most frequently detected β-lactamase gene. Both plasmid- and chromosomal-bound blaTEM genes were detected in all of the isolated Enterobacteriaceae. blaSHV and Sul1 accounted for 22.2% and 11.1% of the amoxicillin-clavulanate resistant isolates, respectively, whereas blaAMPC, blaCMY, blaDHA, blaOXA-1, and blaOXA-10 were not found in any of the isolates. The only one ESBL-producing bacteria detected in this study was Chryseobacterium

  19. Development of a loop-mediated Isothermal amplification assay for sensitive and rapid detection of Vibrio parahaemolyticus

    Directory of Open Access Journals (Sweden)

    Kawahara Ryuji

    2008-09-01

    Full Text Available Abstract Background Vibrio parahaemolyticus is a marine seafood-borne pathogen causing gastrointestinal disorders in humans. Thermostable direct hemolysin (TDH and TDH-related hemolysin (TRH are known as major virulence determinants of V. parahaemolyticus. Most V. parahaemolyticus isolates from the environment do not produce TDH or TRH. Total V. parahaemolyticus has been used as an indicator for control of seafood contamination toward prevention of infection. Detection of total V. parahaemolyticus using conventional culture- and biochemical-based assays is time-consuming and laborious, requiring more than three days. Thus, we developed a novel and highly specific loop-mediated isothermal amplification (LAMP assay for the sensitive and rapid detection of Vibrio parahaemolyticus. Results The assay provided markedly more sensitive and rapid detection of V. parahaemolyticus strains than conventional biochemical and PCR assays. The assay correctly identified 143 V. parahaemolyticus strains, but did not detect 33 non-parahaemolyticus Vibrio and 56 non-Vibrio strains. Sensitivity of the LAMP assay for direct detection of V. parahaemolyticus in pure cultures and in spiked shrimp samples was 5.3 × 102 CFU per ml/g (2.0 CFU per reaction. The sensitivity of the LAMP assay was 10-fold more sensitive than that of the conventional PCR assay. The LAMP assay was markedly faster, requiring for amplification 13–22 min in a single colony on TCBS agar from each of 143 V. parahaemolyticus strains and less than 35 min in spiked shrimp samples. The LAMP assay for detection of V. parahaemolyticus required less than 40 min in a single colony on thiosulfate citrate bile salt sucrose (TCBS agar and 60 min in spiked shrimp samples from the beginning of DNA extraction to final determination. Conclusion The LAMP assay is a sensitive, rapid and simple tool for the detection of V. parahaemolyticus and will facilitate the surveillance for control of contamination of V

  20. "Salvage microbiology": detection of bacteria directly from clinical specimens following initiation of antimicrobial treatment.

    Directory of Open Access Journals (Sweden)

    John J Farrell

    Full Text Available PCR coupled with electrospray ionization mass spectrometry (ESI-MS is a diagnostic approach that has demonstrated the capacity to detect pathogenic organisms from culture negative clinical samples after antibiotic treatment has been initiated. [1] We describe the application of PCR/ESI-MS for detection of bacteria in original patient specimens that were obtained after administration of antibiotic treatment in an open investigation analysis.We prospectively identified cases of suspected bacterial infection in which cultures were not obtained until after the initiation of antimicrobial treatment. PCR/ESI-MS was performed on 76 clinical specimens that were submitted for conventional microbiology testing from 47 patients receiving antimicrobial treatment.In our series, 72% (55/76 of cultures obtained following initiation of antimicrobial treatment were non-diagnostic (45 negative cultures; and 10 respiratory specimens with normal flora (5, yeast (4, or coagulase-negative staphylococcus (1. PCR/ESR-MS detected organisms in 83% (39/47 of cases and 76% (58/76 of the specimens. Bacterial pathogens were detected by PCR/ESI-MS in 60% (27/45 of the specimens in which cultures were negative. Notably, in two cases of relapse of prosthetic knee infections in patients on chronic suppressive antibiotics, the previous organism was not recovered in tissue cultures taken during extraction of the infected knee prostheses, but was detected by PCR/ESI-MS.Molecular methods that rely on nucleic acid amplification may offer a unique advantage in the detection of pathogens collected after initiation of antimicrobial treatment and may provide an opportunity to target antimicrobial therapy and "salvage" both individual treatment regimens as well as, in select cases, institutional antimicrobial stewardship efforts.