WorldWideScience

Sample records for rapid angular oscillations

  1. Coupling a small torsional oscillator to large optical angular momentum

    Science.gov (United States)

    Shi, H.; Bhattacharya, M.

    2013-03-01

    We propose a new configuration for realizing torsional optomechanics: an optically trapped windmill-shaped dielectric interacting with Laguerre-Gaussian cavity modes containing both angular and radial nodes. In contrast to existing schemes, our method can couple mechanical oscillators smaller than the optical beam waist to the in-principle unlimited orbital angular momentum that can be carried by a single photon, and thus generate substantial optomechanical interactions. Combining the advantages of small mass, large coupling, and low clamping losses, our work conceptually opens the way for the observation of quantum effects in torsional optomechanics.

  2. Fast vortex oscillations in a ferrimagnetic disk near the angular momentum compensation point

    Science.gov (United States)

    Kim, Se Kwon; Tserkovnyak, Yaroslav

    2017-07-01

    We theoretically study the oscillatory dynamics of a vortex core in a ferrimagnetic disk near its angular momentum compensation point, where the spin density vanishes but the magnetization is finite. Due to the finite magnetostatic energy, a ferrimagnetic disk of suitable geometry can support a vortex as a ground state similar to a ferromagnetic disk. In the vicinity of the angular momentum compensation point, the dynamics of the vortex resemble those of an antiferromagnetic vortex, which is described by equations of motion analogous to Newton's second law for the motion of particles. Owing to the antiferromagnetic nature of the dynamics, the vortex oscillation frequency can be an order of magnitude larger than the frequency of a ferromagnetic vortex, amounting to tens of GHz in common transition-metal based alloys. We show that the frequency can be controlled either by applying an external field or by changing the temperature. In particular, the latter property allows us to detect the angular momentum compensation temperature, at which the lowest eigenfrequency attains its maximum, by performing ferromagnetic resonance measurements on the vortex disk. Our work proposes a ferrimagnetic vortex disk as a tunable source of fast magnetic oscillations and a useful platform to study the properties of ferrimagnets.

  3. Interaction of a magnetic island chain in a tokamak plasma with a resonant magnetic perturbation of rapidly oscillating phase

    Science.gov (United States)

    Fitzpatrick, Richard

    2017-12-01

    An investigation is made into the interaction of a magnetic island chain, embedded in a tokamak plasma, with an externally generated magnetic perturbation of the same helicity whose helical phase is rapidly oscillating. The analysis is similar in form to the classic analysis used by Kapitza [Sov. Phys. JETP 21, 588 (1951)] to examine the angular motion of a rigid pendulum whose pivot point undergoes rapid vertical oscillations. The phase oscillations are found to modify the existing terms, and also to give rise to new terms, in the equations governing the secular evolution of the island chain's radial width and helical phase. An examination of the properties of the new secular evolution equation reveals that it is possible to phase-lock an island chain to an external magnetic perturbation with an oscillating helical phase in a stabilizing phase relation provided that the amplitude, ɛ, of the phase oscillations (in radians) is such that |J0(ɛ )|≪1 , and the mean angular frequency of the perturbation closely matches the natural angular frequency of the island chain.

  4. Power enhancement of angular polarizer spin torque oscillator in magnetic tunnel junction

    Science.gov (United States)

    Zhang, Yisong; Zhao, Hui; Lyle, Andrew; Wang, Jian-Ping

    2011-04-01

    The power angular dependence for spin torque oscillators (STOs) is systematically investigated in magnetic tunnel junctions by varying the in-plane polarizer angle (IPPA) which refers to the angle between the free and fixed layer. The polarizer angle is adjusted by integrating a lithography process and a post-annealing process. An increase of power with increasing IPPA is experimentally demonstrated. STOs with a 30° and 60° IPPA show a 2-3 and 5-6 times higher efficiency in the power spectral density of the main peak than that with the traditional 0° IPPA, respectively. This increase of the power efficiency with IPPA for STOs can be explained by the power dependence on the precession angle at different IPPA.

  5. Multidimensional Nature of Molecular Organic Conductors Revealed by Angular Magnetoresistance Oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Pashupati Dhakal, Harukazu Yoshino, Jeong-Il Oh, Koichi Kikuchi, Michael J. Naughton

    2012-09-01

    Angle-dependent magnetoresistance experiments on organic conductors exhibit a wide range of angular oscillations associated with the dimensionality and symmetry of the crystal structure and electron energy dispersion. In particular, characteristics associated with 1, 2, and 3-dimensional electronic motion are separately revealed when a sample is rotated through different crystal planes in a magnetic field. Originally discovered in the TMTSF-based conductors, these effects are particularly pronounced in the related system (DMET){sub 2}I{sub 3}. Here, experimental and computational results for magnetoresistance oscillations in this material, over a wide range of magnetic field orientations, are presented in such a manner as to uniquely highlight this multidimensional behavior. The calculations employ the Boltzmann transport equation that incorporates the system's triclinic crystal structure, which allows for accurate estimates of the transfer integrals along the crystallographic axes, verifying the 1D, 2D and 3D nature of (DMET){sub 2}I{sub 3}, as well as crossovers between dimensions in the electronic behavior.

  6. Oscillation modes of rapidly rotating neutron stars in scalar-tensor theories of gravity

    Science.gov (United States)

    Yazadjiev, Stoytcho S.; Doneva, Daniela D.; Kokkotas, Kostas D.

    2017-09-01

    We perform the first study of the oscillation frequencies of rapidly rotating neutron stars in alternative theories of gravity, focusing mainly on the fundamental f modes. We concentrated on a particular class of alternative theories—the (massive) scalar-tensor theories. The generalization to rapid rotation is important because on one hand the rapid rotation can magnify the deviations from general relativity compared to the static case and on the other hand some of the most efficient emitters of gravitational radiation, such as the binary neutron star merger remnants, are supposed to be rotating close to their Kepler (mass-shedding) limits shortly after their formation. We have constructed several sequences of models starting from the nonrotating case and reaching up to the Kepler limit, with different values of the scalar-tensor theory coupling constant and the scalar field mass. The results show that the deviations from pure Einstein's theory can be significant, especially in the case of nonzero scalar field mass. An important property of the oscillation modes of rapidly rotating stars is that they can become secularly unstable due to the emission of gravitational radiation, the so-called Chandrasekhar-Friedman-Schutz instability. Such unstable modes are efficient emitters of gravitational radiation. Our studies show that the inclusion of a nonzero scalar field would decrease the threshold value of the normalized angular momentum where this instability starts to operate, but the growth time of the instability seems to be increased compared to pure general relativity.

  7. Angular analysis of the cyclic impacting oscillations in a robotic grinding process

    Science.gov (United States)

    Rafieian, Farzad; Girardin, François; Liu, Zhaoheng; Thomas, Marc; Hazel, Bruce

    2014-02-01

    In a robotic machining process, a light-weight cutter or grinder is usually held by an articulated robot arm. Material removal is achieved by the rotating cutting tool while the robot end effector ensures that the tool follows a programmed trajectory in order to work on complex curved surfaces or to access hard-to-reach areas. One typical application of such process is maintenance and repair work on hydropower equipment. This paper presents an experimental study of the dynamic characteristics of material removal in robotic grinding, which is unlike conventional grinding due to the lower structural stiffness of the tool-holder robot. The objective of the study is to explore the cyclic nature of this mechanical operation to provide the basis for future development of better process control strategies. Grinding tasks that minimize the number of iterations to converge to the target surface can be better planned based on a good understanding and modeling of the cyclic material removal mechanism. A single degree of freedom dynamic analysis of the process suggests that material removal is performed through high-frequency impacts that mainly last for only a small fraction of the grinding disk rotation period. To detect these discrete cutting events in practice, a grinder is equipped with a rotary encoder. The encoder's signal is acquired through the angular sampling technique. A running cyclic synchronous average is applied to the speed signal to remove its non-cyclic events. The measured instantaneous rotational frequency clearly indicates the impacting nature of the process and captures the transient response excited by these cyclic impacts. The technique also locates the angular positions of cutting impacts in revolution cycles. It is thus possible to draw conclusions about the cyclic nature of dynamic changes in impact-cutting behavior when grinding with a flexible robot. The dynamics of the impacting regime and transient responses to impact-cutting excitations

  8. Rapid and Sustained Nuclear-Cytoplasmic ERK Oscillations Induced by Epidermal Growth Factor

    Energy Technology Data Exchange (ETDEWEB)

    Shankaran, Harish; Ippolito, Danielle L.; Chrisler, William B.; Resat, Haluk; Bollinger, Nikki; Opresko, Lee K.; Wiley, H. S.

    2009-12-01

    Mathematical modeling has predicted that ERK activity should oscillate in response to cell stimulation, but this has never been observed. To explore this inconsistency, we expressed an ERK1-GFP fusion protein in mammary epithelial cells. Following EGF stimulation, we observed rapid and continuous ERK oscillations between the nucleus and cytoplasm with a periodicity of approximately 15 minutes. These oscillations were remarkably persistent (>45 cycles), displayed an asymmetric waveform, and were highly dependent on cell density, essentially disappearing at confluency. We conclude that the ERK pathway is an intrinsic oscillator. Although the functional implications of the observed oscillations are uncertain, this property can be used to continuously monitor ERK activity in single cells.

  9. Asteroseismic Theory of Rapidly Oscillating Ap Stars Margarida S ...

    Indian Academy of Sciences (India)

    roAp) stars depends strongly on our ability to understand their oscillation spectra. Questions like: which modes are excited and why, what is the expected spacing between eigenfrequencies, how many components are expected to be found in ...

  10. Estimating the Error of an Asymptotic Solution Describing the Angular Oscillations of the Axis of Symmetry of a Rotating Rigid Body

    Science.gov (United States)

    Konosevich, B. I.

    2014-07-01

    The error of the Wentzel-Kramers-Brillouin solution of the equations describing the angular motion of the axis of symmetry of rotation of a rigid body (projectile) is estimated. It is established that order of this estimate does not depend on whether the low-frequency oscillations of the axis of symmetry are damped or not

  11. Applying the Averaging Principle to a Logistic Equation with Rapidly Oscillating Delay

    Directory of Open Access Journals (Sweden)

    N. D. Bykova

    2014-01-01

    Full Text Available The problem about the local dynamics of the logistic equation with rapidly oscillating time-periodic piecewise constant coefficient of delay was considered. It was shown that the averaged equation is a logistic equation with two delays. The criterion of equilibrium point stability was obtained. Dynamical properties of the original equation was considered provided that the critical case of equilibrium point stability problem was implemented. It was found that an increase of delay coefficient oscillation frequency may lead to an unlimited process of “birth” and “death” steady mode.

  12. Dependencies of lepton angular distribution coefficients on the transverse momentum and rapidity of Z bosons produced in p p collisions at the LHC

    Science.gov (United States)

    Chang, Wen-Chen; McClellan, Randall Evan; Peng, Jen-Chieh; Teryaev, Oleg

    2017-09-01

    High precision data of lepton angular distributions for γ*/Z production in p p collisions at the LHC, covering broad ranges of dilepton transverse momenta (qT) and rapidity (y ), were recently reported. Strong qT dependencies were observed for several angular distribution coefficients, Ai, including A0-A4. Significant y dependencies were also found for the coefficients A1, A3 and A4, while A0 and A2 exhibit very weak rapidity dependence. Using an intuitive geometric picture, we show that the qT and y dependencies of the angular distributions coefficients can be well described.

  13. Rapidly oscillating scatteringless non-Hermitian potentials and the absence of Kapitza stabilization

    Science.gov (United States)

    Longhi, S.

    2017-04-01

    In the framework of the ordinary non-relativistic quantum mechanics, it is known that a quantum particle in a rapidly oscillating bound potential with vanishing time average can be scattered off or even trapped owing to the phenomenon of dynamical (Kapitza) stabilization. A similar phenomenon occurs for scattering and trapping of optical waves. Such a remarkable result stems from the fact that, even though the particle is not able to follow the rapid external oscillations of the potential, these are still able to affect the average dynamics by means of an effective —albeit small— nonvanishing potential contribution. Here we consider the scattering and dynamical stabilization problem for matter or classical waves by a bound potential with oscillating ac amplitude f(t) in the framework of a non-Hermitian extension of the Schrödinger equation, and predict that for a wide class of imaginary amplitude modulations f(t) possessing a one-sided Fourier spectrum, the oscillating potential is effectively canceled, i.e., it does not have any effect on the particle dynamics, contrary to what happens in the Hermitian case.

  14. Mood Oscillations and Coupling Between Mood and Weather in Patients with Rapid Cycling Bipolar Disorder

    OpenAIRE

    Boker, Steven M.; Leibenluft, Ellen; Deboeck, Pascal R.; Virk, Gagan; Postolache, Teodor T.

    2008-01-01

    Rapid Cycling Bipolar Disorder (RCBD) outpatients completed twice-daily mood self-ratings for 3 consecutive months. These ratings were matched with local measurements of atmospheric pressure, cloud cover, and temperature. Several alternative second order differential equation models were fit to the data in which mood oscillations in RCBD were allowed to be linearly coupled with daily weather patterns. The modeling results were consistent with an account of mood regulation that included intrin...

  15. Prompt photon-jet angular correlations at central rapidities in p +A collisions

    Science.gov (United States)

    Benić, Sanjin; Dumitru, Adrian

    2018-01-01

    Photon-jet azimuthal correlations in proton-nucleus collisions are a promising tool for gaining information on the gluon distribution of the nucleus in the regime of nonlinear color fields. We compute such correlations from the process g →q q ¯ γ in the rapidity regime where both the projectile and target light-cone momentum fractions are small. By integrating over the phase space of the quark which emits the photon, subject to the restriction that the photon picks up most of the transverse momentum (to pass an isolation cut), we effectively obtain a g +A →q γ process. For nearly back-to-back photon-jet configurations we find that it dominates over the leading-order process q +A →q γ by two less powers of Q⊥/QS, where Q⊥ and QS denote the net photon-jet pair momentum and the saturation scale of the nucleus, respectively. We determine the transverse-momentum-dependent gluon distributions involved in g +A →q γ and the scale where they are evaluated. Finally, we provide analytic expressions for ⟨cos n ϕ ⟩ moments, where ϕ is the angle between Q⊥ and the average photon-jet transverse momentum P˜ ⊥ , and first qualitative estimates of their transverse momentum dependence.

  16. Interannual variations in length of day and atmospheric angular momentum, and their seasonal associations with El Niño/Southern Oscillation-like sea surface temperature patterns

    Science.gov (United States)

    Li, Yuefeng; Xiao, Ziniu; Shi, Wenjing; Zhong, Qi; Wang, Qiguang; Li, Huanlian

    2017-12-01

    This study examines the seasonal connections between the interannual variations in LOD (length of day)/AAMglobe (the relative atmospheric angular momentum for the whole globe) and the ENSO-like SST (El Niño/Southern Oscillation-like sea surface temperature) pattern and corresponding zonal and vertical circulations. Consistent with previous studies, the ENSO-like SST impact the following season LOD/AAMglobe, with the strongest correlations in DJF (December, January, and February), when it is likely to be the peak El Niño/La Niña period. Lag correlations between the interannual variations in LOD/AAMglobe and surface temperature, and the interannual variations in LOD and both zonal circulation and vertical airflow around the equator, consistently indicate that the LOD/AAMglobe reflect the potential impacts of variations in the Earth's rotation rate on the following season's sea surface temperatures (SST) over the tropical central and eastern Pacific (where the ENSO-like SST pattern is located). Moreover, the centers of strongest variation in the AAMcolumn (the relative atmospheric angular momentum for an air column and the unit mass over a square meter) are located over the mid-latitudinal North Pacific in DJF and MAM (March, April, and May), and over the mid-latitudinal South Pacific in JJA (June, July, and August) and SON (September, October, and November). This suggests that the AAMcolumn over the mid-latitudinal Pacific around 30°N (30°S) dominate the modulation of Earth's rotation rate, and then impact the variations in LOD during DJF and MAM (JJA and SON).

  17. Fibonacci oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Arik, M. (Istanbul Technical Univ. (Turkey). Dept. of Mathematics Bogazici Univ., Istanbul (Turkey). Dept. of Physics); Demircan, E.; Turgut, T. (Texas Univ., Austin, TX (United States). Dept. of Physics); Ekinci, L.; Mungan, M. (Bogazici Univ., Istanbul (Turkey). Dept. of Physics)

    1992-07-01

    We discuss the properties of oscillators whose spectrum is given by a generalized Fibonacci sequence. The properties include: Invariance under the unitary quantum group, generalized angular momentum, coherent states and difference calculus, relativistic interpretation. (orig.).

  18. ON THE RELATIVISTIC PRECESSION AND OSCILLATION FREQUENCIES OF TEST PARTICLES AROUND RAPIDLY ROTATING COMPACT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Pachon, Leonardo A. [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia); Rueda, Jorge A. [Dipartimento di Fisica and ICRA, Sapienza Universita di Roma, P.le Aldo Moro 5, I-00185 Rome (Italy); Valenzuela-Toledo, Cesar A., E-mail: leonardo.pachon@fisica.udea.edu.co, E-mail: jorge.rueda@icra.it, E-mail: cesar.valenzuela@correounivalle.edu.co [Departamento de Fisica, Universidad del Valle, A.A. 25360, Santiago de Cali (Colombia)

    2012-09-01

    Whether or not analytic exact vacuum (electrovacuum) solutions of the Einstein (Einstein-Maxwell) field equations can accurately describe the exterior space-time of compact stars still remains an interesting open question in relativistic astrophysics. As an attempt to establish their level of accuracy, the radii of the innermost stable circular orbits (ISCOs) of test particles given by analytic exterior space-time geometries have been compared with those given by numerical solutions for neutron stars (NSs) obeying a realistic equation of state (EOS). It has been so shown that the six-parametric solution of Pachon et al. (PRS) more accurately describes the NS ISCO radii than other analytic models do. We propose here an additional test of accuracy for analytic exterior geometries based on the comparison of orbital frequencies of neutral test particles. We compute the Keplerian, frame-dragging, and precession and oscillation frequencies of the radial and vertical motions of neutral test particles for the Kerr and PRS geometries and then compare them with the numerical values obtained by Morsink and Stella for realistic NSs. We identify the role of high-order multipole moments such as the mass quadrupole and current octupole in the determination of the orbital frequencies, especially in the rapid rotation regime. The results of this work are relevant to cast a separatrix between black hole and NS signatures and to probe the nuclear-matter EOS and NS parameters from the quasi-periodic oscillations observed in low-mass X-ray binaries.

  19. Rapidly tunable optical parametric oscillator based on aperiodic quasi-phase matching.

    Science.gov (United States)

    Descloux, Delphine; Dherbecourt, Jean-Baptiste; Melkonian, Jean-Michel; Raybaut, Myriam; Lai, Jui-Yu; Drag, Cyril; Godard, Antoine

    2016-05-16

    A new optical parametric oscillator (OPO) architecture with high tuning speed capability is demonstrated. This device exploits the versatility offered by aperiodic quasi-phase matching (QPM) to provide a broad parametric gain spectrum without changing the temperature, angle, or position of the nonlinear crystal. Rapid tuning is then straightforwardly achieved using a fast intracavity spectral filter. This concept is demonstrated here for a picosecond synchronously pumped OPO containing an aperiodically poled MgO-doped LiNbO3 crystal and a rapidly tunable spectral filter based on a diffraction grating. Tuning over 160 nm around 3.86 μm is achieved at fixed temperature and a fast tuning over 30 nm in 40 μs is demonstrated. Different configurations are tested and compared. The cavity length detuning is analyzed and discussed. This device is successfully used to detect N2O by absorption. This approach could be generalized to other spectral ranges (e.g., visible) and temporal regimes (e.g., continuous-wave or nanosecond).

  20. Kepler observations of rapidly oscillating Ap, δ Scuti and γ Doradus pulsations in Ap stars

    DEFF Research Database (Denmark)

    Balona, Luis A.; Cunha, Margarida S.; Kurtz, Donald W.

    2011-01-01

    Observations of the A5p star KIC 8677585 obtained during the Kepler 10-d commissioning run with 1-min time resolution show that it is a rapidly oscillating Ap (roAp) star with several frequencies with periods near 10 min. In addition, a low frequency at 3.142 d−1 is also clearly present....... Multiperiodic γ Doradus (γ Dor) and δ Scuti (δ Sct) pulsations, never before seen in any Ap star, are present in Kepler observations of at least three other Ap stars. Since γ Dor pulsations are seen in Ap stars, it is likely that the low frequency in KIC 8677585 is also a γ Dor pulsation. The simultaneous...... presence of both γ Dor and roAp pulsations and the unexpected detection of δ Sct and γ Dor pulsations in Ap stars present new opportunities and challenges for the interpretation of these stars. Since it is easy to confuse Am and Ap stars at classification dispersions, the nature of these Ap stars...

  1. Rapid morphological oscillation of mitochondrion-rich cell in estuarine mudskipper following salinity changes.

    Science.gov (United States)

    Sakamoto, T; Yokota, S; Ando, M

    2000-05-01

    Morphological changes in the chloride cells or mitochondrion-rich (MR) cells in the skin under the pectoral fin of the estuarine mudskipper (Periophthalmus modestus) were examined in relation to intertidal salinity oscillation in river mouth. MR cells were distinguished between those in contact with the water (cells labeled with both mitochondrial probe DASPEI and Concanavalin-A, an apical surface marker of MR cells) and those that are not (DASPEI-positive only). After transfer of the fish from seawater to freshwater, no difference in the total MR cell density was observed, but the subpopulation of MR cells that are Concanavalin-A-positive decreased dramatically within 30 min. After 6 hr in freshwater, the fish were returned to seawater; the number of Con-A-positive MR cells increased to the initial levels rapidly. Thus, in seawater, mudskippers seem to open the apical crypts of the MR cells to secrete salt; in freshwater, they close the crypt of the MR cells tentatively, and tolerate hypotonicity until the rising tide. This unique response of chloride cells may also be seen in gills of other estuarine species.

  2. Averaging of the Equations of the Standard Cosmological Model over Rapid Oscillations

    Science.gov (United States)

    Ignat'ev, Yu. G.; Samigullina, A. R.

    2017-11-01

    An averaging of the equations of the standard cosmological model (SCM) is carried out. It is shown that the main contribution to the macroscopic energy density of the scalar field comes from its microscopic oscillations with the Compton period. The effective macroscopic equation of state of the oscillations of the scalar field corresponds to the nonrelativistic limit.

  3. Mood Oscillations and Coupling Between Mood and Weather in Patients with Rapid Cycling Bipolar Disorder.

    Science.gov (United States)

    Boker, Steven M; Leibenluft, Ellen; Deboeck, Pascal R; Virk, Gagan; Postolache, Teodor T

    2008-01-01

    Rapid Cycling Bipolar Disorder (RCBD) outpatients completed twice-daily mood self-ratings for 3 consecutive months. These ratings were matched with local measurements of atmospheric pressure, cloud cover, and temperature. Several alternative second order differential equation models were fit to the data in which mood oscillations in RCBD were allowed to be linearly coupled with daily weather patterns. The modeling results were consistent with an account of mood regulation that included intrinsic homeostatic regulation as well as coupling between weather and mood. Models were tested first in a nomothetic method where models were fit over all individuals and fit statistics of each model compared to one another. Since substantial individual differences in intrinsic dynamics were observed, the models were next fit using an ideographic method where each individual's data were fit separately and best-fitting models identified. The best-fitting within-individual model for the largest number of individuals was also the best-fitting nomothetic model: temperature and the first derivative of temperature coupled to mood and no effect of barometric pressure or cloud cover. But this model was not the best-fitting model for all individuals, suggesting that there may be substantial individual differences in the dynamic association between weather and mood in RCBD patients. Heterogeneity in the parameters of the differential equation model of homeostatic equilibrium as well as the coupling of mood to an inherently unpredictable (i.e., nonstationary) process such as weather provide an alternative account for reported broadband frequency spectra of daily mood in RCBD.

  4. Mood Oscillations and Coupling Between Mood and Weather in Patients with Rapid Cycling Bipolar Disorder

    Science.gov (United States)

    Boker, Steven M.; Leibenluft, Ellen; Deboeck, Pascal R.; Virk, Gagan; Postolache, Teodor T.

    2008-01-01

    Rapid Cycling Bipolar Disorder (RCBD) outpatients completed twice-daily mood self-ratings for 3 consecutive months. These ratings were matched with local measurements of atmospheric pressure, cloud cover, and temperature. Several alternative second order differential equation models were fit to the data in which mood oscillations in RCBD were allowed to be linearly coupled with daily weather patterns. The modeling results were consistent with an account of mood regulation that included intrinsic homeostatic regulation as well as coupling between weather and mood. Models were tested first in a nomothetic method where models were fit over all individuals and fit statistics of each model compared to one another. Since substantial individual differences in intrinsic dynamics were observed, the models were next fit using an ideographic method where each individual’s data were fit separately and best-fitting models identified. The best-fitting within-individual model for the largest number of individuals was also the best-fitting nomothetic model: temperature and the first derivative of temperature coupled to mood and no effect of barometric pressure or cloud cover. But this model was not the best-fitting model for all individuals, suggesting that there may be substantial individual differences in the dynamic association between weather and mood in RCBD patients. Heterogeneity in the parameters of the differential equation model of homeostatic equilibrium as well as the coupling of mood to an inherently unpredictable (i.e., nonstationary) process such as weather provide an alternative account for reported broadband frequency spectra of daily mood in RCBD. PMID:19266057

  5. Non-radial oscillations of the rapidly rotating Be star HD 163868

    NARCIS (Netherlands)

    Savonije, G.J.

    2007-01-01

    Context: Oscillations in rotating stars with frequency barsigma of the same order or smaller than the rotation rate Omega cannot be described by a single spherical harmonic due to the effect of the Coriolis force. This is a serious complication which is usually treated by writing the eigenfunctions

  6. Dynamic changes in single unit activity and γ oscillations in a thalamocortical circuit during rapid instrumental learning.

    Directory of Open Access Journals (Sweden)

    Chunxiu Yu

    Full Text Available The medial prefrontal cortex (mPFC and mediodorsal thalamus (MD together form a thalamocortical circuit that has been implicated in the learning and production of goal-directed actions. In this study we measured neural activity in both regions simultaneously, as rats learned to press a lever to earn food rewards. In both MD and mPFC, instrumental learning was accompanied by dramatic changes in the firing patterns of the neurons, in particular the rapid emergence of single-unit neural activity reflecting the completion of the action and reward delivery. In addition, we observed distinct patterns of changes in the oscillatory LFP response in MD and mPFC. With learning, there was a significant increase in theta band oscillations (6-10 Hz in the MD, but not in the mPFC. By contrast, gamma band oscillations (40-55 Hz increased in the mPFC, but not in the MD. Coherence between these two regions also changed with learning: gamma coherence in relation to reward delivery increased, whereas theta coherence did not. Together these results suggest that, as rats learned the instrumental contingency between action and outcome, the emergence of task related neural activity is accompanied by enhanced functional interaction between MD and mPFC in response to the reward feedback.

  7. Rapid response of alpine timberline vegetation to the Younger Dryas climate oscillation in the Colorado Rocky Mountains, USA

    Energy Technology Data Exchange (ETDEWEB)

    Reasoner, M.A.; Jodry, M.A.

    2000-01-01

    Paleobotanical records from two high-altitude (>3,300 m) sites in Colorado show a clear and immediate response to the Younger Dryas climate oscillation. The Black Mountain Lake and Sky Pond records indicate that alpine timberline migrated upslope to near-modern elevations during the late Bolling-Allerod (13.6--12.9 ka). Subsequent declines in arboreal pollen percentages and accumulation rates during the Younger Dryas interval (12.9--11.7 ka) reflect a downslope displacement of the alpine timberline ecotone of 60--120 m in elevation. This change translates to a cooling of summer temperature by {approximately}0.4--0.9 C and is consistent with proposed Younger Dryas advances of alpine glaciers in the Rocky Mountains to positions close to Little Ice Age maxima. Alpine timberline readvanced upslope to elevations above both sites between 11.7 and 11.4 ka. The concomitant response of temperature-sensitive alpine timberline vegetation in Colorado and late-glacial changes in North Atlantic thermohaline circulating implicates a rapid, widespread atmospheric transmission of the Younger Dryas climate oscillation.

  8. The first evidence for multiple pulsation axes: a new rapidly oscillating Ap star in the Kepler field, KIC 10195926

    DEFF Research Database (Denmark)

    Kurtz, Donald W.; Cunha, Margarida S.; Saio, H.

    2011-01-01

    We have discovered a new rapidly oscillating Ap (roAp) star among the Kepler mission target stars, KIC 10195926. This star shows two pulsation modes with periods that are amongst the longest known for roAp stars at 17.1 and 18.1 min, indicating that the star is near the terminal-age main sequence...... of νrot/2. We propose that this and other subharmonics are the first observed manifestation of torsional modes in an roAp star. From high-resolution spectra, we determine Teff= 7400 K, log g= 3.6 and v sin i= 21 km s−1. We have found a magnetic pulsation model with fundamental parameters close...

  9. Rapid-Fire” Spectroscopy of Kepler Solar-Like Oscillators

    Science.gov (United States)

    Thygesen, Anders O.; Bruntt, Hans; Chaplin, William J.; Basu, Sarbani

    The NASA Kepler mission has been continuously monitoring the same field of the sky since the successful launch in March 2009, providing high-quality stellar lightcurves that are excellent data for asteroseismology, far superior to any other observations available at the present. In order to make a meaningful analysis and interpretation of the asteroseismic data, accurate fundamental parameters for the observed stars are needed. The currently available parameters are quite uncertain as illustrated by e.g. Thygesen et al. (A&A 543:A160, 2012), who found deviations as extreme as 2 dex in [Fe/H] and logg, compared to catalogue values. Thus, additional follow-up observations for these targets are needed in order to put firm limits on the parameter space investigated by the asteroseismic modellers. Here, we propose a method for deriving accurate metallicities of main sequence and subgiant solar-like oscillators from medium resolution spectra with a moderate S/N. The method takes advantage of the additional constraints on the fundamental parameters, available from asteroseismology and multi-color photometry. The approach enables us to reduce the analysis overhead significantly when doing spectral synthesis, which in turn will increases the efficiency of follow-up observations.

  10. Orbital angular momentum exchange in parametric down conversion

    Science.gov (United States)

    Huguenin, J. A. O.; Martinelli, M.; Caetano, D. P.; Coutinho Dos Santos, B.; Almeida, M. P.; Souto Ribeiro, P. H.; Nussenzveig, P.; Khoury, A. Z.

    2006-05-01

    Orbital angular momentum exchange, both in cavity free stimulated parametric down conversion and in an optical parametric oscillator, is studied. In both cases, the conditions for parametric amplification are discussed in terms of the orbital angular momentum exchange between the interacting fields. It is shown that in cavity free parametric down conversion, parametric amplification is conditioned to conserve orbital angular momentum. However, for parametric oscillation, cavity and anisotropy effects play a crucial role in the orbital angular momentum exchange between the interacting fields.

  11. Evaluation of surgically assisted rapid maxillary expansion with piezosurgery versus oscillating saw and chisel osteotomy - a randomized prospective trial

    Science.gov (United States)

    2013-01-01

    Background Ultrasonic bone-cutting surgery has been introduced as a feasible alternative to the conventional sharp instruments used in craniomaxillofacial surgery because of its precision and safety. The piezosurgery medical device allows the efficient cutting of mineralized tissues with minimal trauma to soft tissues. Piezoelectric osteotome has found its role in surgically assisted rapid maxillary expansion (SARME), a procedure well established to correct transverse maxillary discrepancies. The advantages include minimal risk to critical anatomic structures. The purpose of this clinical comparative study (CIS 2007-237-M) was to present the advantages of the piezoelectric cut as a minimally invasive device in surgically assisted, rapid maxillary expansion by protecting the maxillary sinus mucosal lining. Methods Thirty patients (18 females and 12 males) at the age of 18 to 54 underwent a surgically assisted palatal expansion of the maxilla with a combined orthodontic and surgical approach. The patients were randomly divided into two separate treatment groups. While Group 1 received conventional surgery using an oscillating saw, Group 2 was treated with piezosurgery. The following parameters were examined: blood pressure, blood values, required medication, bleeding level in the maxillary sinus, duration of inpatient stay, duration of surgery and height of body temperature. Results The results displayed no statistically significant differences between the two groups regarding laboratory blood values and inpatient stay. The duration of surgery revealed a significant discrepancy. Deploying piezosurgery took the surgeon an average of 10 minutes longer than working with a conventional-saw technique. However, the observation of the bleeding level in the paranasal sinus presented a major and statistically significant advantage of piezosurgery: on average the bleeding level was one category above the one of the remaining patients. Conclusion This method of piezoelectric

  12. Whole Earth Telescope discovery of a strongly distorted quadrupole pulsation in the largest amplitude rapidly oscillating Ap star

    Science.gov (United States)

    Holdsworth, Daniel L.; Kurtz, D. W.; Saio, H.; Provencal, J. L.; Letarte, B.; Sefako, R. R.; Petit, V.; Smalley, B.; Thomsen, H.; Fletcher, C. L.

    2018-01-01

    We present a new analysis of the rapidly oscillating Ap (roAp) star, 2MASS J19400781 - 4420093 (J1940; V = 13.1). The star was discovered using SuperWASP broad-band photometry to have a frequency of 176.39 d-1 (2041.55 μHz; P = 8.2 min; Holdsworth et al. 2014a) and is shown here to have a peak-to-peak amplitude of 34 mmag. J1940 has been observed during three seasons at the South African Astronomical Observatory, and has been the target of a Whole Earth Telescope campaign. The observations reveal that J1940 pulsates in a distorted quadrupole mode with unusual pulsational phase variations. A higher signal-to-noise ratio spectrum has been obtained since J1940's first announcement, which allows us to classify the star as A7 Vp Eu(Cr). The observing campaigns presented here reveal no pulsations other than the initially detected frequency. We model the pulsation in J1940 and conclude that the pulsation is distorted by a magnetic field of strength 1.5 kG. A difference in the times of rotational maximum light and pulsation maximum suggests a significant offset between the spots and pulsation axis, as can be seen in roAp stars.

  13. Angular coefficients of Z bosons produced in pp collisions at $\\sqrt{s}$ = 8 TeV and decaying to $\\mu^{+}\\mu^{-}$ as a function of transverse momentum and rapidity

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Fasanella, Giuseppe; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Randle-conde, Aidan; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Molina, Jorge; Mora Herrera, Clemencia; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Hadjiiska, Roumyana; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Tao, Junquan; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Zhang, Fengwangdong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Zghiche, Amina; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Chapon, Emilien; Charlot, Claude; Dahms, Torsten; Davignon, Olivier; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Heister, Arno; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Sammet, Jan; Schael, Stefan; Schulte, Jan-Frederik; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrens, Ulf; Bell, Alan James; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Roland, Benoit; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Nowatschin, Dominik; Ott, Jochen; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Akbiyik, Melike; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Gilbert, Andrew; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Tziaferi, Eirini; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Kumar, Ramandeep; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Sharma, Seema; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Montecassiano, Fabio; Passaseo, Marina; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Magnani, Alice; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Mazza, Giovanni; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Tae Jeong; Ryu, Min Sang; Kim, Jae Yool; Moon, Dong Ho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Yoo, Hwi Dong; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Wan Abdullah, Wan Ahmad Tajuddin; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Korenkov, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Mitsyn, Valeri Valentinovitch; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Tikhonenko, Elena; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Palencia Cortezon, Enrique; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kortelainen, Matti J; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Mohr, Niklas; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Perrozzi, Luca; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Robmann, Peter; Ronga, Frederic Jean; Taroni, Silvia; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Petrakou, Eleni; Tsai, Jui-fa; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Isildak, Bora; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Albayrak, Elif Asli; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Taylan; Cankocak, Kerem; Vardarlı, Fuat Ilkehan; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Senkin, Sergey; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Dunne, Patrick; Elwood, Adam; Ferguson, William; Fulcher, Jonathan; Futyan, David; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Pastika, Nathaniel; Scarborough, Tara; Wu, Zhenbin; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Lawson, Philip; Rankin, Dylan; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Zou, David; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Sagir, Sinan; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova Rikova, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Mullin, Sam Daniel; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Yoo, Jaehyeok; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Pierini, Maurizio; Spiropulu, Maria; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Krohn, Michael; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carver, Matthew; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Yelton, John; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Zakaria, Mohammed; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Xiao, Meng; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Gray, Julia; Kenny III, Raymond Patrick; Majumder, Devdatta; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Chakaberia, Irakli; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Mignerey, Alice; Pedro, Kevin; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Niu, Xinmei; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Nourbakhsh, Shervin; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Meier, Frank; Ratnikov, Fedor; Snow, Gregory R; Zvada, Marian; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Lynch, Sean; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Smith, Geoffrey; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Malik, Sudhir; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; Gutay, Laszlo; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Miller, David Harry; Neumeister, Norbert; Primavera, Federica; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Zablocki, Jakub; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Hindrichs, Otto; Khukhunaishvili, Aleko; Korjenevski, Sergey; Petrillo, Gianluca; Verzetti, Mauro; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Dalchenko, Mykhailo; De Mattia, Marco; Dildick, Sven; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Suarez, Indara; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wolfe, Evan; Wood, John; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Taylor, Devin; Vuosalo, Carl; Woods, Nathaniel

    2015-09-01

    Measurements of the five most significant angular coefficients, $A_{0}$ through $A_{4}$, for Z bosons produced in pp collisions at $\\sqrt{s}$ = 8 TeV and decaying to $\\mu^{+}\\mu^{-}$ are presented as a function of the transverse momentum and rapidity of Z boson. The integrated luminosity of the dataset collected with the CMS detector at the LHC corresponds to 19.7 fb$^{-1}$. These measurements provide comprehensive information about Z boson production mechanisms, and are compared to QCD predictions at leading order, next-to-leading order, and next-to-next-to-leading order in perturbation theory.

  14. 110 GHz rapid, continous tuning from an optical parametric oscillator pumped by a fiber-amplified DBR diode laser

    NARCIS (Netherlands)

    Lindsay, I.D.; Adhimoolam, B.; Gross, P.; Klein, M.E.; Boller, Klaus J.

    2005-01-01

    A singly-resonant continuous-wave optical parametric oscillator (cw-OPO) pumped by a fiber-amplified diode laser is described. Tuning of the pump source allowed the OPO output to be tuned continuously, without mode-hops, over 110 GHz in 29 ms. Discontinuous pump tuning over 20 nm in the region of

  15. Slow oscillating transcranial direct current stimulation during non-rapid eye movement sleep improves behavioral inhibition in attention-deficit/ hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Manuel Tobias Munz

    2015-08-01

    Full Text Available Background: Behavioral inhibition, which is a later-developing executive function (EF and anatomically located in prefrontal areas, is impaired in attention-deficit and hyperactivity disorder (ADHD. While optimal EFs have been shown to depend on efficient sleep in healthy subjects, the impact of sleep problems, frequently reported in ADHD, remains elusive. Findings of macroscopic sleep changes in ADHD are inconsistent, but there is emerging evidence for distinct microscopic changes with a focus on prefrontal cortical regions and non-rapid eye movement (non-REM slow-wave sleep. Recently, slow oscillations (SO during non-REM sleep were found to be less functional and, as such, may be involved in sleep-dependent memory impairments in ADHD. Objective: By augmenting slow-wave power through bilateral, slow oscillating transcranial direct current stimulation (so-tDCS, frequency = 0.75 Hz during non-REM sleep, we aimed to improve daytime behavioral inhibition in children with ADHD. Methods: 14 boys (10-14 yrs diagnosed with ADHD were included. In a randomized, double-blind, cross-over design, patients received so-tDCS either in the first or in the second experimental sleep night. Inhibition control was assessed with a visuomotor go/no-go task. Intrinsic alertness was assessed with a simple stimulus response task. To control for visuomotor performance, motor memory was assessed with a finger sequence tapping task. Results: SO-power was enhanced during early non-REM sleep, accompanied by slowed reaction times and decreased standard deviations of reaction times, in the go/no-go task after so-tDCS. In contrast, intrinsic alertness and motor memory performance were not improved by so-tDCS. Conclusion: Since behavioral inhibition but not intrinsic alertness or motor memory was improved by so-tDCS, our results suggest that lateral prefrontal slow oscillations during sleep might play a specific role for executive functioning in ADHD.

  16. Rapid production of human liver scaffolds for functional tissue engineering by high shear stress oscillation-decellularization

    NARCIS (Netherlands)

    Mazza, G. (Giuseppe); Al-Akkad, W. (Walid); Telese, A. (Andrea); Longato, L. (Lisa); Urbani, L. (Luca); Robinson, B. (Benjamin); Hall, A. (Andrew); Kong, K. (Kenny); Frenguelli, L. (Luca); Marrone, G. (Giusi); Willacy, O. (Oliver); Shaeri, M. (Mohsen); A.J. Burns (Alan); Malago, M. (Massimo); Gilbertson, J. (Janet); Rendell, N. (Nigel); Moore, K. (Kevin); Hughes, D. (David); Notingher, I. (Ioan); Jell, G. (Gavin); Del Rio Hernandez, A. (Armando); P. de Coppi (Paolo); Rombouts, K. (Krista); Pinzani, M. (Massimo)

    2017-01-01

    textabstractThe development of human liver scaffolds retaining their 3-dimensional structure and extra-cellular matrix (ECM) composition is essential for the advancement of liver tissue engineering. We report the design and validation of a new methodology for the rapid and accurate production of

  17. β oscillation during slow wave sleep and rapid eye movement sleep in the electroencephalogram of a transgenic mouse model of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Yannick Jeantet

    Full Text Available STUDY OBJECTIVES: To search for early abnormalities in electroencephalogram (EEG during sleep which may precede motor symptoms in a transgenic mouse model of hereditary neurodegenerative Huntington's disease (HD. DESIGN: In the R6/1 transgenic mouse model of HD, rhythmic brain activity in EEG recordings was monitored longitudinally and across vigilance states through the onset and progression of disease. MEASUREMENTS AND RESULTS: Mice with chronic electrode implants were recorded monthly over wake-sleep cycles (4 hours, beginning at 9-11 weeks (presymptomatic period through 6-7 months (symptomatic period. Recording data revealed a unique β rhythm (20-35 Hz, present only in R6/1 transgenic mice, which evolves in close parallel with the disease. In addition, there was an unusual relationship between this β oscillation and vigilance states: while nearly absent during the active waking state, the β oscillation appeared with drowsiness and during slow wave sleep (SWS and, interestingly, strengthened rather than dissipating when the brain returned to an activated state during rapid eye movement (REM sleep. CONCLUSIONS: In addition to providing a new in vivo biomarker and insight into Huntington's disease pathophysiology, this serendipitous observation opens a window onto the rarely explored neurophysiology of the cortico-basal ganglia circuit during SWS and REM sleep.

  18. β oscillation during slow wave sleep and rapid eye movement sleep in the electroencephalogram of a transgenic mouse model of Huntington's disease.

    Science.gov (United States)

    Jeantet, Yannick; Cayzac, Sebastien; Cho, Yoon H

    2013-01-01

    To search for early abnormalities in electroencephalogram (EEG) during sleep which may precede motor symptoms in a transgenic mouse model of hereditary neurodegenerative Huntington's disease (HD). In the R6/1 transgenic mouse model of HD, rhythmic brain activity in EEG recordings was monitored longitudinally and across vigilance states through the onset and progression of disease. Mice with chronic electrode implants were recorded monthly over wake-sleep cycles (4 hours), beginning at 9-11 weeks (presymptomatic period) through 6-7 months (symptomatic period). Recording data revealed a unique β rhythm (20-35 Hz), present only in R6/1 transgenic mice, which evolves in close parallel with the disease. In addition, there was an unusual relationship between this β oscillation and vigilance states: while nearly absent during the active waking state, the β oscillation appeared with drowsiness and during slow wave sleep (SWS) and, interestingly, strengthened rather than dissipating when the brain returned to an activated state during rapid eye movement (REM) sleep. In addition to providing a new in vivo biomarker and insight into Huntington's disease pathophysiology, this serendipitous observation opens a window onto the rarely explored neurophysiology of the cortico-basal ganglia circuit during SWS and REM sleep.

  19. Spatial Pattern of Rapid Climatic Oscillations and Vegetation Response During the Last Deglaciation in Northeastern North America

    Science.gov (United States)

    Yu, Z.

    2003-12-01

    Large and abrupt climatic oscillations occurred during the last deglaciation evident from ice, lacustrine and marine records in different regions. Stable isotopes retrieved from these records could provide a common proxy in correlating the records and detecting temporal and spatial patterns. The emerging pattern is critical in understanding the nature and forcing mechanisms of climate changes. Here I provide new isotopic and pollen results from the Mid-Atlantic region of USA to expand the existing late-glacial records from the Great Lakes region to the Atlantic Seaboard. White Lake, a marl lake in NW New Jersey, provides high-resolution sedimentary records since ca. 15,000 cal yr BP (15 ka). The chronology of late-glacial and early Holocene period was controlled by 6 AMS 14C dates on terrestrial macrofossils. Oxygen isotopes of marl samples (contain >90% carbonates) from this period vary between -8 and -4 permil (VPDB) and show multiple oscillations at millennial and centennial scales, including the Younger Dryas (YD) with ca. 3 permil shifts in δ 18O at 12.6-11.3 ka and three cold events of 1-2 permil shifts during the Bølling-Allerød (B-A) period at 14.3-12.6 ka. Pollen diagram from this site shows strong similarity with previously published pollen records from this region, with the YD event having high boreal taxa (Alnus, Abies, Betula) after establishment of a mixed deciduous-coniferous forest containing Quercus, Fraxinus and Ostrya/Carpinus. A plateau-like B-A period is similar to some (Ammersee, Germany; Cariaco Basin, Caribbean) but not other records (ice cores form Greenland Summit; Crawford Lake, Ontario) around the Atlantic Ocean, suggesting that a strong climate gradient might have existed then. Vegetation shows different sensitivity in responding to the YD at sites along a transect from New Jersey, through western New York, to southern Ontario, which was probably caused by a combination of species migration/availability, location of then ecotones

  20. Determining the masses and radii of rapidly rotating, oblate neutron stars using energy-resolved waveforms of their X-ray burst oscillations

    Science.gov (United States)

    Lamb, Frederick K.; Miller, M. Coleman

    2014-08-01

    We have developed new, more sophisticated, and much faster Bayesian analysis methods that enable us to estimate the masses and radii of rapidly rotating, oblate neutron stars using the energy-resolved waveforms of their X-ray burst oscillations and to determine the uncertainties in these mass and radius estimates. We first generate the energy-resolved burst oscillation waveforms that would be produced by a hot spot on various rapidly rotating, oblate stars, using the oblate-star Schwarzschild-spacetime (OS) approximation. In generating these synthetic data, we assume that 1 million counts have been collected from the hot spot and that the background is 9 million counts. This produces a realistic modulation amplitude and a total number of counts comparable to the number that could be obtained by a future space mission such as the proposed LOFT or AXTAR missions or the accepted NICER mission by combining data from many bursts from a given star. We then compute the joint posterior distribution of the mass M and radius R in standard models, for each synthetic waveform, and use these posterior distributions to determine the 1-, 2-, and 3-sigma confidence regions in the M-R plane for each synthetic waveform and model. We report here the confidence regions obtained when Schwarzschild+Doppler (S+D) and OS waveform models are used, including results obtained when the properties of the star used to generate the synthetic waveform data differ from the properties of the star used in modeling the waveform. These results are based on research supported by NSF grant AST0709015 at the University of Illinois and NSF grant AST0708424 at the University of Maryland.

  1. Professional AngularJS

    CERN Document Server

    Karpov, Valeri

    2015-01-01

    A comprehensive guide to AngularJS, Google's open-source client-side framework for app development. Most of the existing guides to AngularJS struggle to provide simple and understandable explanations for more advanced concepts. As a result, some developers who understand all the basic concepts of AngularJS struggle when it comes to building more complex real-world applications. Professional AngularJS provides a thorough understanding of AngularJS, covering everything from basic concepts, such as directives and data binding, to more advanced concepts like transclusion, build systems, and auto

  2. Isotropy of Angular Frequencies and Weak Chimeras with Broken Symmetry

    Science.gov (United States)

    Bick, Christian

    2017-04-01

    The notion of a weak chimeras provides a tractable definition for chimera states in networks of finitely many phase oscillators. Here, we generalize the definition of a weak chimera to a more general class of equivariant dynamical systems by characterizing solutions in terms of the isotropy of their angular frequency vector—for coupled phase oscillators the angular frequency vector is given by the average of the vector field along a trajectory. Symmetries of solutions automatically imply angular frequency synchronization. We show that the presence of such symmetries is not necessary by giving a result for the existence of weak chimeras without instantaneous or setwise symmetries for coupled phase oscillators. Moreover, we construct a coupling function that gives rise to chaotic weak chimeras without symmetry in weakly coupled populations of phase oscillators with generalized coupling.

  3. Early gamma oscillations during rapid auditory processing in children with a language-learning impairment: changes in neural mass activity after training.

    Science.gov (United States)

    Heim, Sabine; Keil, Andreas; Choudhury, Naseem; Thomas Friedman, Jennifer; Benasich, April A

    2013-04-01

    Children with language-learning impairment (LLI) have consistently shown difficulty with tasks requiring precise, rapid auditory processing. Remediation based on neural plasticity assumes that the temporal precision of neural coding can be improved by intensive training protocols. Here, we examined the extent to which early oscillatory responses in auditory cortex change after audio-visual training, using combined source modeling and time-frequency analysis of the human electroencephalogram (EEG). Twenty-one elementary school students diagnosed with LLI underwent the intervention for an average of 32 days. Pre- and post-training assessments included standardized language/literacy tests and EEG recordings in response to fast-rate tone doublets. Twelve children with typical language development were also tested twice, with no intervention given. Behaviorally, improvements on measures of language were observed in the LLI group following completion of training. During the first EEG assessment, we found reduced amplitude and phase-locking of early (45-75 ms) oscillations in the gamma-band range (29-52 Hz), specifically in the LLI group, for the second stimulus of the tone doublet. Amplitude reduction for the second tone was no longer evident for the LLI children post-intervention, although these children still exhibited attenuated phase-locking. Our findings suggest that specific aspects of inefficient sensory cortical processing in LLI are ameliorated after training. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Implementation of the dynamic laser goniometer for noncontact measurement of angular movement

    Science.gov (United States)

    Bohkman, Eugene; Burnashev, Mikhail; Filatov, Yuri; Pavlov, Petr

    2016-07-01

    The dynamic laser goniometer (LG) implementation for noncontact measurements of an object's angular position is presented. One of the possible implementations involves determining the time dependence of the scanning mirror's angular position. Another application is aimed at determining the oscillatory movement parameters on the test table. The results obtained in the course of the research show that the dynamic LG makes it possible to calibrate various kinds of test beds making angular oscillations or angular movement of arbitrary law.

  5. Turbulent Fluctuations in G-band and K-line Intensities Observed with the Rapid Oscillations in the Solar Atmosphere (ROSA) Instrument

    Science.gov (United States)

    Cadavid, A. C.; Lawrence, J. K.; Christian, D. J.; Jess, D. B.; Mathioudakis, M.

    2012-12-01

    Using the Rapid Oscillation in the Solar Atmosphere (ROSA) instrument at the Dunn Solar Telescope we have found that the spectra of fluctuations of the G-band (cadence 1.05 s) and Ca II K-line (cadence 4.2 s) intensities show correlated fluctuations above white noise out to frequencies beyond 300 mHz and up to 70 mHz, respectively. The noise-corrected G-band spectrum presents a scaling range (Ultra High Frequency “UHF”) for f = 25-100 mHz, with an exponent consistent with the presence of turbulent motions. The UHF power, is concentrated at the locations of magnetic bright points in the intergranular lanes, it is highly intermittent in time and characterized by a positive kurtosis κ. Combining values of G-band and K-line intensities, the UHF power, and κ, reveals two distinct “states” of the internetwork solar atmosphere. State 1, with κ ≍ 6, which includes almost all the data, is characterized by low intensities and low UHF power. State 2, with κ ≍ 3, including a very small fraction of the data, is characterized by high intensities and high UHF power. Superposed epoch analysis shows that for State 1, the K-line intensity presents 3.5 min chromospheric oscillations with maxima occurring 21 s after G-band intensity maxima implying a 150-210 km effective height difference. For State 2, the G-band and K-line intensity maxima are simultaneous, suggesting that in the highly magnetized environment sites of G-band and K-line emission may be spatially close together. Analysis of observations obtained with Hinode/SOT confirm a scaling range in the G-band spectrum up to 53 mHz also consistent with turbulent motions as well as the identification of two distinct states in terms of the H-line intensity and G-band power as functions of G-band intensity.

  6. Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Burkardt Matthias

    2015-01-01

    Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.

  7. Solar Dynamo Driven by Periodic Flow Oscillation

    Science.gov (United States)

    Mayr, Hans G.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    We have proposed that the periodicity of the solar magnetic cycle is determined by wave mean flow interactions analogous to those driving the Quasi Biennial Oscillation in the Earth's atmosphere. Upward propagating gravity waves would produce oscillating flows near the top of the radiation zone that in turn would drive a kinematic dynamo to generate the 22-year solar magnetic cycle. The dynamo we propose is built on a given time independent magnetic field B, which allows us to estimate the time dependent, oscillating components of the magnetic field, (Delta)B. The toroidal magnetic field (Delta)B(sub phi) is directly driven by zonal flow and is relatively large in the source region, (Delta)(sub phi)/B(sub Theta) much greater than 1. Consistent with observations, this field peaks at low latitudes and has opposite polarities in both hemispheres. The oscillating poloidal magnetic field component, (Delta)B(sub Theta), is driven by the meridional circulation, which is difficult to assess without a numerical model that properly accounts for the solar atmosphere dynamics. Scale-analysis suggests that (Delta)B(sub Theta) is small compared to B(sub Theta) in the dynamo region. Relative to B(sub Theta), however, the oscillating magnetic field perturbations are expected to be transported more rapidly upwards in the convection zone to the solar surface. As a result, (Delta)B(sub Theta) (and (Delta)B(sub phi)) should grow relative to B(sub Theta), so that the magnetic fields reverse at the surface as observed. Since the meridional and zonai flow oscillations are out of phase, the poloidal magnetic field peaks during times when the toroidal field reverses direction, which is observed. With the proposed wave driven flow oscillation, the magnitude of the oscillating poloidal magnetic field increases with the mean rotation rate of the fluid. This is consistent with the Bode-Blackett empirical scaling law, which reveals that in massive astrophysical bodies the magnetic moment tends

  8. Induced Angular Momentum

    Science.gov (United States)

    Parker, G. W.

    1978-01-01

    Discusses, classically and quantum mechanically, the angular momentum induced in the bound motion of an electron by an external magnetic field. Calculates the current density and its magnetic moment, and then uses two methods to solve the first-order perturbation theory equation for the required eigenfunction. (Author/GA)

  9. Angular momentum sensitive two-center interference.

    Science.gov (United States)

    Ilchen, M; Glaser, L; Scholz, F; Walter, P; Deinert, S; Rothkirch, A; Seltmann, J; Viefhaus, J; Decleva, P; Langer, B; Knie, A; Ehresmann, A; Al-Dossary, O M; Braune, M; Hartmann, G; Meissner, A; Tribedi, L C; AlKhaldi, M; Becker, U

    2014-01-17

    In quantum mechanics the Young-type double-slit experiment can be performed with electrons either traveling through a double slit or being coherently emitted from two inversion symmetric molecular sites. In the latter one the valence photoionization cross sections of homonuclear diatomic molecules were predicted to oscillate over kinetic energy almost 50 years ago. Beyond the direct proof of the oscillatory behavior of these photoionization cross sections σ, we show that the angular distribution of the emitted electrons reveals hitherto unexplored information on the relative phase shift between the corresponding partial waves through two-center interference patterns.

  10. Neurodynamic oscillators

    Science.gov (United States)

    Espinosa, Ismael; Gonzalez, Hortensia; Quiza, Jorge; Gonazalez, J. Jesus; Arroyo, Ruben; Lara, Ritaluz

    1995-01-01

    Oscillation of electrical activity has been found in many nervous systems, from invertebrates to vertebrates including man. There exists experimental evidence of very simple circuits with the capability of oscillation. Neurons with intrinsic oscillation have been found and also neural circuits where oscillation is a property of the network. These two types of oscillations coexist in many instances. It is nowadays hypothesized that behind synchronization and oscillation there is a system of coupled oscillators responsible for activities that range from locomotion and feature binding in vision to control of sleep and circadian rhythms. The huge knowledge that has been acquired on oscillators from the times of Lord Rayleigh has made the simulation of neural oscillators a very active endeavor. This has been enhanced with more recent physiological findings about small neural circuits by means of intracellular and extracellular recordings as well as imaging methods. The future of this interdisciplinary field looks very promising; some researchers are going into quantum mechanics with the idea of trying to provide a quantum description of the brain. In this work we describe some simulations using neuron models by means of which we form simple neural networks that have the capability of oscillation. We analyze the oscillatory activity with root locus method, cross-correlation histograms, and phase planes. In the more complicated neural network models there is the possibility of chaotic oscillatory activity and we study that by means of Lyapunov exponents. The companion paper shows an example of that kind.

  11. Quantum Oscillators

    CERN Document Server

    Blaise, Paul

    2011-01-01

    An invaluable reference for an overall but simple approach to the complexity of quantum mechanics viewed through quantum oscillators Quantum oscillators play a fundamental role in many areas of physics; for instance, in chemical physics with molecular normal modes, in solid state physics with phonons, and in quantum theory of light with photons. Quantum Oscillators is a timely and visionary book which presents these intricate topics, broadly covering the properties of quantum oscillators which are usually dispersed in the literature at varying levels of detail and often combined with other p

  12. Quantum Heuristics of Angular Momentum

    Science.gov (United States)

    Levy-Leblond, Jean-Marc

    1976-01-01

    Discusses the quantization of angular momentum components, Heisenberg-type inequalities for their spectral dispersions, and the quantization of the angular momentum modulus, without using operators or commutation relations. (MLH)

  13. Chemical Oscillations

    Indian Academy of Sciences (India)

    processes at the cellular level like the glycolytic pathway, peroxi- dase-catalysed reaction or the biosynthesis of certain proteins. A systematic study of oscillating chemical reactions is of consider- able interest, since these oscillating reactions can be used as prototype examples of the behaviours possible in reactions gov-.

  14. Oscillations of a polarizable vacuum

    Directory of Open Access Journals (Sweden)

    James G. Gilson

    1991-01-01

    Full Text Available A classical basis for one-dimensional Schrödinger quantum theory is constructed from simple vacuum polarization harmonic oscillators within standard stochastic theory. The model is constructed on a two-dimensional phase configuration surface with phase velocity vectors that have a speed of light zitterbewegung behaviour character. The system supplies a natural Hermitian scalar product describing probability density which is derived from angular momentum considerations. The generality of the model which is extensive is discussed.

  15. Optical angular momentum and atoms.

    Science.gov (United States)

    Franke-Arnold, Sonja

    2017-02-28

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  16. AngularJS directives

    CERN Document Server

    Vanston, Alex

    2013-01-01

    This book uses a practical, step-by-step approach, starting with how to build directives from the ground up before moving on to creating web applications comprised of multiple modules all working together to provide the best user experience possible.This book is intended for intermediate JavaScript developers who are looking to enhance their understanding of single-page web application development with a focus on AngularJS and the JavaScript MVC frameworks.It is expected that readers will understand basic JavaScript patterns and idioms and can recognize JSON formatted data.

  17. Continuous Variable Entanglement and Squeezing of Orbital Angular Momentum States

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Leuchs, Gerd; Andersen, Ulrik Lund

    2009-01-01

    We report the first experimental characterization of the first-order continuous variable orbital angular momentum states. Using a spatially nondegenerate optical parametric oscillator (OPO) we produce quadrature entanglement between the two first-order Laguerre-Gauss modes. The family of orbital...... angular momentum modes is mapped on an orbital Poincaré sphere, where the mode's position on the sphere is spanned by the three orbital parameters. Using a nondegenerate OPO we produce squeezing of these parameters, and as an illustration, we reconstruct the “cigar-shaped” uncertainty volume...

  18. Angular Distribution of GRBs

    Directory of Open Access Journals (Sweden)

    L. G. Balázs

    2012-01-01

    Full Text Available We studied the complete randomness of the angular distribution of BATSE gamma-ray bursts (GRBs. Based on their durations and peak fluxes, we divided the BATSE sample into 5 subsamples (short1, short2, intermediate, long1, long2 and studied the angular distributions separately. We used three methods to search for non-randomness in the subsamples: Voronoi tesselation, minimal spanning tree, and multifractal spectra. To study any non-randomness in the subsamples we defined 13 test-variables (9 from Voronoi tesselation, 3 from the minimal spanning tree and one from the multifractal spectrum. We made Monte Carlo simulations taking into account the BATSE’s sky-exposure function. We tested therandomness by introducing squared Euclidean distances in the parameter space of the test-variables. We recognized that the short1, short2 groups deviate significantly (99.90%, 99.98% from the fully random case in the distribution of the squared Euclidean distances but this is not true for the long samples. In the intermediate group, the squared Euclidean distances also give significant deviation (98.51%.

  19. Electronic orbital angular momentum and magnetism of graphene

    OpenAIRE

    Luo, Ji

    2013-01-01

    Orbital angular momentum (OAM) of graphene electrons in a perpendicular magnetic field is calculated and corresponding magnetic moment is used to investigate the magnetism of perfect graphene. Variation in magnetization demonstrates its decrease with carrier-doping, plateaus in a large field, and de Haas-van Alphen oscillation. Regulation of magnetism by a parallel electric field is presented. The OAM originates from atomic-scale electronic motion in graphene lattice, and vector hopping inter...

  20. Prominence Oscillations

    Directory of Open Access Journals (Sweden)

    Iñigo Arregui

    2012-04-01

    Full Text Available Prominences are intriguing, but poorly understood, magnetic structures of the solar corona. The dynamics of solar prominences has been the subject of a large number of studies, and of particular interest is the study of prominence oscillations. Ground- and space-based observations have confirmed the presence of oscillatory motions in prominences and they have been interpreted in terms of magnetohydrodynamic (MHD waves. This interpretation opens the door to perform prominence seismology, whose main aim is to determine physical parameters in magnetic and plasma structures (prominences that are difficult to measure by direct means. Here, we review the observational information gathered about prominence oscillations as well as the theoretical models developed to interpret small amplitude oscillations and their temporal and spatial attenuation. Finally, several prominence seismology applications are presented.

  1. Atmospheric neutrino oscillations for earth tomography

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Walter

    2016-04-05

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can measure the lower mantle density of the earth with a precision at the level of a few percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  2. Atmospheric neutrino oscillations for Earth tomography

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Walter, E-mail: walter.winter@desy.de

    2016-07-15

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can measure the lower mantle density of the earth with a precision at the level of a few percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  3. Atmospheric neutrino oscillations for Earth tomography

    Science.gov (United States)

    Winter, Walter

    2016-07-01

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can measure the lower mantle density of the earth with a precision at the level of a few percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  4. Nuclear scissors modes and hidden angular momenta

    Energy Technology Data Exchange (ETDEWEB)

    Balbutsev, E. B., E-mail: balbuts@theor.jinr.ru; Molodtsova, I. V. [Joint Institute for Nuclear Research (Russian Federation); Schuck, P. [Université Paris-Sud, Institut de Physique Nucléaire, IN2P3–CNRS (France)

    2017-01-15

    The coupled dynamics of low-lying modes and various giant resonances are studied with the help of the Wigner Function Moments method generalized to take into account spin degrees of freedom and pair correlations simultaneously. The method is based on Time-Dependent Hartree–Fock–Bogoliubov equations. The model of the harmonic oscillator including spin–orbit potential plus quadrupole–quadrupole and spin–spin interactions is considered. New low-lying spin-dependent modes are analyzed. Special attention is paid to the scissors modes. A new source of nuclear magnetism, connected with counter-rotation of spins up and down around the symmetry axis (hidden angular momenta), is discovered. Its inclusion into the theory allows one to improve substantially the agreement with experimental data in the description of energies and transition probabilities of scissors modes.

  5. Shocks in the relativistic transonic accretion with low angular momentum

    Science.gov (United States)

    Suková, P.; Charzyński, S.; Janiuk, A.

    2017-12-01

    We perform 1D/2D/3D relativistic hydrodynamical simulations of accretion flows with low angular momentum, filling the gap between spherically symmetric Bondi accretion and disc-like accretion flows. Scenarios with different directional distributions of angular momentum of falling matter and varying values of key parameters such as spin of central black hole, energy and angular momentum of matter are considered. In some of the scenarios the shock front is formed. We identify ranges of parameters for which the shock after formation moves towards or outwards the central black hole or the long-lasting oscillating shock is observed. The frequencies of oscillations of shock positions which can cause flaring in mass accretion rate are extracted. The results are scalable with mass of central black hole and can be compared to the quasi-periodic oscillations of selected microquasars (such as GRS 1915+105, XTE J1550-564 or IGR J17091-3624), as well as to the supermassive black holes in the centres of weakly active galaxies, such as Sgr A*.

  6. Chromosperic oscillations

    NARCIS (Netherlands)

    Rutten, R.J.

    1999-01-01

    This review concentrates on the quiet-Sun chromosphere. Its internetwork areas are dynamically dominated by the so-called chromospheric three-minute oscillation. They are interpretationally dominated by the so-called Ca II K 2V and H 2V grains. The main points of this review are that the one

  7. The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Harrington, Kathleen; Marriage, Tobias; Ali, Aamir; Appel, John; Bennett, Charles; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; hide

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from inflation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  8. The Cosmology Large Angular Scale Surveyor (CLASS)

    Science.gov (United States)

    Harrington, Kathleen; Marriange, Tobias; Aamir, Ali; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; hide

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  9. A neural circuit for angular velocity computation

    Directory of Open Access Journals (Sweden)

    Samuel B Snider

    2010-12-01

    Full Text Available In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly-tunable wing-steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuro-mechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob.

  10. A neural circuit for angular velocity computation.

    Science.gov (United States)

    Snider, Samuel B; Yuste, Rafael; Packer, Adam M

    2010-01-01

    In one of the most remarkable feats of motor control in the animal world, some Diptera, such as the housefly, can accurately execute corrective flight maneuvers in tens of milliseconds. These reflexive movements are achieved by the halteres, gyroscopic force sensors, in conjunction with rapidly tunable wing steering muscles. Specifically, the mechanosensory campaniform sensilla located at the base of the halteres transduce and transform rotation-induced gyroscopic forces into information about the angular velocity of the fly's body. But how exactly does the fly's neural architecture generate the angular velocity from the lateral strain forces on the left and right halteres? To explore potential algorithms, we built a neuromechanical model of the rotation detection circuit. We propose a neurobiologically plausible method by which the fly could accurately separate and measure the three-dimensional components of an imposed angular velocity. Our model assumes a single sign-inverting synapse and formally resembles some models of directional selectivity by the retina. Using multidimensional error analysis, we demonstrate the robustness of our model under a variety of input conditions. Our analysis reveals the maximum information available to the fly given its physical architecture and the mathematics governing the rotation-induced forces at the haltere's end knob.

  11. AngularJS testing cookbook

    CERN Document Server

    Bailey, Simon

    2015-01-01

    This book is intended for developers who have an understanding of the basic principles behind both AngularJS and test-driven development. You, as a developer, are interested in eliminating the fear related to either introducing tests to an existing codebase or starting out testing on a fresh AngularJS application. If you're a team leader or part of a QA team with the responsibility of ensuring full test coverage of an application, then this book is ideal for you to comprehend the full testing scope required by your developers. Whether you're new to or are well versed with AngularJS, this book

  12. FEL Oscillators

    Energy Technology Data Exchange (ETDEWEB)

    George Neil

    2003-05-12

    FEL Oscillators have been around since 1977 providing not only a test bed for the physics of Free Electron Lasers and electron/photon interactions but as a workhorse of scientific research. More than 30 FEL oscillators are presently operating around the world spanning a wavelength range from the mm region to the ultraviolet using DC and rf linear accelerators and storage rings as electron sources. The characteristics that have driven the development of these sources are the desire for high peak and average power, high micropulse energies, wavelength tunability, timing flexibility, and wavelengths that are unavailable from more conventional laser sources. Substantial user programs have been performed using such sources encompassing medicine, biology, solid state research, atomic and molecular physics, effects of non-linear fields, surface science, polymer science, pulsed laser vapor deposition, to name just a few.

  13. Oscillators and Eigenvalues

    DEFF Research Database (Denmark)

    Lindberg, Erik

    1997-01-01

    In order to obtain insight in the nature of nonlinear oscillators the eigenvalues of the linearized Jacobian of the differential equations describing the oscillator are found and displayed as functions of time. A number of oscillators are studied including Dewey's oscillator (piecewise linear wit...... with negative resistance), Kennedy's Colpitts-oscillator (with and without chaos) and a new 4'th order oscillator with hyper-chaos.......In order to obtain insight in the nature of nonlinear oscillators the eigenvalues of the linearized Jacobian of the differential equations describing the oscillator are found and displayed as functions of time. A number of oscillators are studied including Dewey's oscillator (piecewise linear...

  14. On the κ-Dirac oscillator revisited

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, F.M., E-mail: fmandrade@uepg.br [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900 Ponta Grossa, PR (Brazil); Silva, E.O., E-mail: edilbertoos@pq.cnpq.br [Departamento de Física, Universidade Federal do Maranhão, Campus Universitário do Bacanga, 65085-580 São Luís, MA (Brazil); Ferreira, M.M., E-mail: manojr.ufma@gmail.com [Departamento de Física, Universidade Federal do Maranhão, Campus Universitário do Bacanga, 65085-580 São Luís, MA (Brazil); Rodrigues, E.C., E-mail: ednilson.fisica@gmail.com [Departamento de Física, Universidade Federal do Maranhão, Campus Universitário do Bacanga, 65085-580 São Luís, MA (Brazil)

    2014-04-04

    This Letter is based on the κ-Dirac equation, derived from the κ-Poincaré–Hopf algebra. It is shown that the κ-Dirac equation preserves parity while breaks charge conjugation and time reversal symmetries. Introducing the Dirac oscillator prescription, p→p−imωβr, in the κ-Dirac equation, one obtains the κ-Dirac oscillator. Using a decomposition in terms of spin angular functions, one achieves the deformed radial equations, with the associated deformed energy eigenvalues and eigenfunctions. The deformation parameter breaks the infinite degeneracy of the Dirac oscillator. In the case where ε=0, one recovers the energy eigenvalues and eigenfunctions of the Dirac oscillator.

  15. Oscillator circuits

    CERN Document Server

    Graf, Rudolf F

    1996-01-01

    This series of circuits provides designers with a quick source for oscillator circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listing

  16. A study of nuclear effects using forward-rapidity hadron production and di-hadron angular correlations in square root of S(NN) = 200 GeV deuteron-gold and proton-proton collisions with the PHENIX detector at RHIC

    Science.gov (United States)

    Meredith, Beau Anthony

    Measurements using the PHENIX forward detectors at the Relativistic Heavy Ion Collider (RHIC) in high-energy deuteron-gold (d+Au) collisions enable us to study cold nuclear matter effects in nucleon structure at small parton-momentum fraction, or Bjorken-x. The large gluon densities in Lorentz-contracted gold nuclei enable us to search for the yet-unobserved saturation of the gluon distribution at small x, which is caused by a balance between gluon fusion and splitting. Gluon saturation is described by the Color Glass Condensate (CGC) theory [1], which predicts a suppression of inclusive particle production in heavy-ion collisions, in particular at forward rapidity, because of a decreased gluon density. In addition, it has been suggested that forward rapidity di-hadron correlations may elucidate CGC effects with two signatures that are specific predictions from CGC: awayside-yield suppression and angular broadening [2]. This thesis describes the first experimental measurements of these forward di-hadron correlations in PHENIX. Previously, RHIC experiments have shown a suppression in the single-particle nuclear modification factors (RdA, R cp) for sNN = 200 GeV d+Au collisions in the forward (deuteron) direction [3, 4]. Multiple theories can explain the observed suppression (including CGC), but a conclusive measurement discriminating amongst the models has yet to be carried out. Two new forward-rapidity electromagnetic calorimeters (Muon Piston Calorimeters or MPCs, --3.7 BRAHMS experiment in the forward direction wherein the suppression increases with decreasing collision impact parameter [3]. We also observe a larger suppression in the higher-rapidity bin (3.4 monte-carlo simulations does not seem to originate from di-jet production, but from some other momentum-conserving process. While PYTHIA admittedly does not correctly simulate the partonic interactions, this study still raises questions about the nature of di-jet production in this region.

  17. Power oscillation damping controller

    DEFF Research Database (Denmark)

    2012-01-01

    A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...... signal in response to the oscillation indicating signal, by processing the oscillation damping control signal in a signal processing chain. The signal processing chain includes a filter configured for passing only signals within a predetermined frequency range....

  18. Instant AngularJS starter

    CERN Document Server

    Menard, Dan

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. This book is written in an easytoread style, with a strong emphasis on realworld, practical examples. Stepbystep explanations are provided for performing important tasks.This book is for web developers familiar with JavascriptIt doesn't cover the history of AngularJS, and it's not a pitch to convince you that AngularJS is the best framework on the entire web. It's a guide to help you learn everything you need to know about AngularJS in as few pa

  19. Non-Colinearity of Angular Velocity and Angular Momentum

    Science.gov (United States)

    Burr, A. F.

    1974-01-01

    Discusses the principles, construction, and operation of an apparatus which serves to demonstrate the non-colinearity of the angular velocity and momentum vectors as well as the inertial tensors. Applications of the apparatus to teaching of advanced undergraduate mechanics courses are recommended. (CC)

  20. Angular Limb Deformities: Growth Retardation.

    Science.gov (United States)

    McCarrel, Taralyn M

    2017-08-01

    Angular limb deformities are common in foals; however, the importance of the deformity and if treatment is required depend on the degree of deformity relative to normal conformation for stage of growth, the breed and discipline expectations, age, and response to conservative therapies. This article addresses the importance of the foal conformation examination to determine which foals need surgical intervention to correct an angular deformity and when. Techniques for surgical growth retardation include the transphyseal staple, screw and wire transphyseal bridge, and transphyseal screw. Appropriate timing for intervention for each location and complications associated with each procedure are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Short periodic variations of polar motion and hemispheric atmospheric angular momentum excitation functions in the period 1984-1992

    Directory of Open Access Journals (Sweden)

    J. Nastula

    Full Text Available Short periodic oscillations with the periods from 10 up to 110 days of the hemispheric components of effective atmospheric angular momentum (EAAM excitation function and their correlation with polar motion excitation function have been analyzed. The EAAM data of the Japan Meteorological Agency (JMA computed for the two hemispheres and the very long baseline interferometry (VLBI polar motion NGS 92 R01 data (NGS 1992, determined by the National Geodetic Survey were applied. The distinct oscillations with periods of about 28, 35-55 and 60-80 days were detected in the χy-component of both polar motion excitation function and northern EAAM excitation functions containing wind and pressure, with and without inverted barometric correction terms. The χy-component of the polar motion excitation function is significanly correlated (correlation coefficient equal to 0.55-0.75 with the χy-components of the northern EAAM excitation functions mentioned above, which are mostly induced by the atmospheric circulation over lands. No meaningful correlation between polar motion excitation function and the southern EAAM excitation functions was found. The χx-components of the EAAM and polar motion excitation functions are not significantly correlated. The strong short periodic variation of the length of day (LOD and χy in the early 1988 seems to be caused by the above-mentioned 35-55 days oscillations of the northern hemisphere atmosphere. This variation can be related to the rapid passing from the El Niño to the La Niña phenomenon or from the minimum to the maximum in the Southern Oscillation Index in 1987-1989.

  2. Phase of the quantum harmonic oscillator with applications to optical polarization

    Science.gov (United States)

    Shepard, Scott R.

    1993-01-01

    The phase of the quantum harmonic oscillator, the temporal distribution of a particle in a square-well potential, and a quantum theory of angles are derived from a general theory of complementarity. Schwinger's harmonic oscillator model of angular momenta is modified for the case of photons. Angular distributions for systems of identical and distinguishable particles are discussed. Unitary and antiunitary time reversal operators are then presented and applied to optical polarization states in birefringent media.

  3. The Cosmology Large Angular Scale Surveyor (CLASS)

    Science.gov (United States)

    Cleary, Joseph

    2018-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an array of four telescopes designed to measure the polarization of the Cosmic Microwave Background. CLASS aims to detect the B-mode polarization from primordial gravitational waves predicted by cosmic inflation theory, as well as the imprint left by reionization upon the CMB E-mode polarization. This will be achieved through a combination of observing strategy and state-of-the-art instrumentation. CLASS is observing 70% of the sky to characterize the CMB at large angular scales, which will measure the entire CMB power spectrum from the reionization peak to the recombination peak. The four telescopes operate at frequencies of 38, 93, 145, and 217 GHz, in order to estimate Galactic synchrotron and dust foregrounds while avoiding atmospheric absorption. CLASS employs rapid polarization modulation to overcome atmospheric and instrumental noise. Polarization sensitive cryogenic detectors with low noise levels provide CLASS the sensitivity required to constrain the tensor-to-scalar ratio down to levels of r ~ 0.01 while also measuring the optical depth the reionization to sample-variance levels. These improved constraints on the optical depth to reionization are required to pin down the mass of neutrinos from complementary cosmological data. CLASS has completed a year of observations at 38 GHz and is in the process of deploying the rest of the telescope array. This poster provides an overview and update on the CLASS science, hardware and survey operations.

  4. Asteroseismic Theory of Rapidly Oscillating Ap Stars

    Indian Academy of Sciences (India)

    Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately.

  5. Quantum/classical mode evolution in free electron laser oscillators

    Science.gov (United States)

    Bosco, P.; Colson, W. B.; Freedman, R. A.

    1983-01-01

    The problem of oscillator evolution and mode competition in free electron lasers is studied. Relativistic quantum field theory is used to calculate electron wave functions, the angular distribution of spontaneous emission, and the transition rates for stimulated emission and absorption in each mode. The photon rate equation for the weakfield regime is presented. This rate equation is applied to oscillator evolution with a conventional undulator, a two-stage optical klystron, and a tapered undulator. The effects of noise are briefly discussed.

  6. The Angular Momentum of Baryons and Dark Matter Halos Revisited

    Science.gov (United States)

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated

  7. Angular momentum in QGP holography

    Directory of Open Access Journals (Sweden)

    Brett McInnes

    2014-10-01

    Full Text Available The quark chemical potential is one of the fundamental parameters describing the quark–gluon plasma produced by sufficiently energetic heavy-ion collisions. It is not large at the extremely high temperatures probed by the LHC, but it plays a key role in discussions of the beam energy scan programmes at the RHIC and other facilities. On the other hand, collisions at such energies typically (that is, in peripheral collisions give rise to very high values of the angular momentum density. Here we explain that holographic estimates of the quark chemical potential of a rotating sample of plasma can be very considerably improved by taking the angular momentum into account.

  8. AngularJS test-driven development

    CERN Document Server

    Chaplin, Tim

    2015-01-01

    This book is for developers who want to learn about AngularJS development by applying testing techniques. You are assumed to have a basic knowledge and understanding of HTML, JavaScript, and AngularJS.

  9. Unsteady flow due to a disk executing non-torsional oscillation and ...

    Indian Academy of Sciences (India)

    This paper is concerned with the unsteady flow of a disk performing non-torsional oscillation in its own plane and a Newtonian fluid at infinity while they are initially rotating with the same angular velocity about non-coaxial axes. For a more general study, it is considered that the disk executes non-torsional oscillation along ...

  10. AngularJS web application development

    CERN Document Server

    Darwin, Peter Bacon

    2013-01-01

    The book will be a step-by-step guide showing the readers how to build a complete web app with AngularJSJavaScript developers who want to learn AngularJS for developing web apps. Knowledge of JavaScript and HTML is expected. No knowledge of AngularJS is required.

  11. Dependency injection with AngularJS

    CERN Document Server

    Knol, Alex

    2013-01-01

    This book is a practical, hands-on approach to using dependency injection and implementing test-driven development using AngularJS. Dependency Injection with AngularJS is aimed at developers who are aware of AngularJS but need to get started with using it in real life applications. Also, developers who want to get into test-driven development with AngularJS can use this book as practical guide. Even if you know about dependency injection, it can serve as a good reference on how it is used within AngularJS. Readers are expected to have some experience with JavaScript.

  12. Volcanoes drive climate variability by emitting ozone weeks before eruptions, by forming lower stratospheric aerosols, by causing sustained ozone depletion, and by causing rapid changes in regional ozone concentrations affecting temperature and pressure differences driving atmospheric oscillations

    Science.gov (United States)

    Ward, P. L.

    2016-12-01

    Total column ozone observed by satellite on February 19, 2010, increased 75% in a plume from Eyjafjallajökull volcano in southern Iceland eastward past Novaya Zemlya, extending laterally from northern Greenland to southern Norway (http://youtu.be/wJFZcPEfoR4). Contemporaneous ground deformation and rapidly increasing numbers of earthquakes imply magma began rising from a sill 4-6 km below the volcano, erupting a month later. Whether the ozone formed from the magma or from very hot gases rising through cracks in the ground is unclear. On February 20-22, 1991, similar increases in ozone were observed north of Pinatubo volcano before its initial eruption on April 2 (http://youtu.be/5y1PU2Qu3ag). Annual average total column ozone during the year of most moderate to large explosive volcanic eruptions since routine observations of ozone began in 1927 has been substantially higher than normal. Increased total column ozone absorbs more solar ultraviolet-B radiation, warming the ozone layer and cooling Earth. Most major volcanic eruptions form sulfuric-acid aerosols in the lower part of the ozone layer providing aqueous surfaces on which heterogeneous chemical reactions enhance ozone depletion. Within a year, aerosol droplets grew large enough to reflect and scatter high-frequency solar radiation, cooling Earth 0.5oC for 2-3 years. Temperature anomalies in the northern hemisphere rose 0.7oC in 28 years from 1970 to 1998 (HadCRUT4), while annual average ozone at Arosa dropped 27 DU because of manufactured CFC gases. Beginning in August 2014, temperature anomalies in the northern hemisphere rose another 0.6oC in less than two years apparently because of the 6-month eruption of Bárðarbunga volcano in central Iceland, the highest rate of basaltic lava extrusion since 1783. Large extrusions of basaltic lava are typically contemporaneous with the greatest periods of warming throughout Earth history. Ozone concentrations at Arosa change by season typically from 370 DU during

  13. U.S. Hail Frequency and the Global Wind Oscillation

    Science.gov (United States)

    Gensini, Vittorio A.; Allen, John T.

    2018-02-01

    Changes in Earth relative atmospheric angular momentum can be described by an index known as the Global Wind Oscillation. This global index accounts for changes in Earth's atmospheric budget of relative angular momentum through interactions of tropical convection anomalies, extratropical dynamics, and engagement of surface torques (e.g., friction and mountain). It is shown herein that U.S. hail events are more (less) likely to occur in low (high) atmospheric angular momentum base states when excluding weak Global Wind Oscillation days, with the strongest relationships found in the boreal spring and fall. Severe, significant severe, and giant hail events are more likely to occur during Global Wind Oscillation phases 8, 1, 2, and 3 during the peak of U.S. severe weather season. Lower frequencies of hail events are generally found in Global Wind Oscillation phases 4-7 but vary based on Global Wind Oscillation amplitude and month. In addition, probabilistic anomalies of atmospheric ingredients supportive of hail producing supercell thunderstorms closely mimic locations of reported hail frequency, helping to corroborate report results.

  14. BAO from Angular Clustering: Optimization and Mitigation of Theoretical Systematics

    Energy Technology Data Exchange (ETDEWEB)

    Crocce, M.; et al.

    2018-01-13

    We study the theoretical systematics and optimize the methodology in Baryon Acoustic Oscillations (BAO) detections using the angular correlation function with tomographic bins. We calibrate and optimize the pipeline for the Dark Energy Survey Year 1 dataset using 1800 mocks. We compare the BAO fitting results obtained with three estimators: the Maximum Likelihood Estimator (MLE), Profile Likelihood, and Markov Chain Monte Carlo. The MLE method yields the least bias in the fit results (bias/spread $\\sim 0.02$) and the error bar derived is the closest to the Gaussian results (1% from 68% Gaussian expectation). When there is mismatch between the template and the data either due to incorrect fiducial cosmology or photo-$z$ error, the MLE again gives the least-biased results. The BAO angular shift that is estimated based on the sound horizon and the angular diameter distance agree with the numerical fit. Various analysis choices are further tested: the number of redshift bins, cross-correlations, and angular binning. We propose two methods to correct the mock covariance when the final sample properties are slightly different from those used to create the mock. We show that the sample changes can be accommodated with the help of the Gaussian covariance matrix or more effectively using the eigenmode expansion of the mock covariance. The eigenmode expansion is significantly less susceptible to statistical fluctuations relative to the direct measurements of the covariance matrix because the number of free parameters is substantially reduced [$p$ parameters versus $p(p+1)/2$ from direct measurement].

  15. Spinning Photons and Twisting Oscillators

    Science.gov (United States)

    Shi, Hao

    2014-05-01

    Optomechanics is the study of the interaction between optical radiation and mechanical motion. Typically, an optomechanical system is composed of an optical resonator coupled to a mechanical degree of freedom. Some of the most striking experimental achievements include the quantum ground state preparation for a macroscopic oscillator, the detection of optomechanical quantum back-action, and generation of optomechanically induced transparency and slow light. Most optomechanical systems depend on linear coupling between the optical field and the displacement of the mechanical oscillator. In this talk, I will start instead by discussing the basic quantum mechanics of a generic quadratically coupled optomechanical system, followed by our efforts towards extending optomechanics to torsional and rotational systems. Specifically, I will describe our theoretical proposal to couple a windmill-shaped dielectric to cavity Laguerre Gaussian modes. In addition, I will present an optoacoustic system, composed of a LG mode coupled t surface acoustic waves of a spherical mirror, as a new platform for storage of photons carrying orbital angular momentum. Finally, I will discuss our most recent investigation of the prospects of cooling full rotational motion to the quantum regime.

  16. Microelectronic oscillator, 2

    Science.gov (United States)

    Kleinberg, L. L.

    1969-01-01

    Microelectronic oscillator uses a bipolar transistor to circumvent the problem of developing suitable inductors for lower frequencies. The oscillator is fabricated by hybrid thin film techniques or by monolithic construction. Discrete microminiature components may also be employed.

  17. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  18. Phenomenology of neutrino oscillations

    Indian Academy of Sciences (India)

    Abstract. The phenomenology of solar, atmospheric, supernova and laboratory neutrino oscillations is described. Analytical formulae for matter effects are reviewed. The results from oscillations are confronted with neutrinoless double beta decay.

  19. The colpitts oscillator family

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamasevicius, A.

    A tutorial study of the Colpitts oscillator family defined as all oscillators based on a nonlinear amplifier and a three- terminal linear resonance circuit with one coil and two capacitors. The original patents are investigated. The eigenvalues of the linearized Jacobian for oscillators based...

  20. Management of angular cheilitis for children

    Directory of Open Access Journals (Sweden)

    Fajriani Fajriani

    2016-06-01

    Full Text Available Angular cheilitis is one type of oral soft tissue disease that can occur in both children and adults, the condition is characterized by cracks and inflammation in both corners of the mouth. Although this disease does not cause severe disruption but quite disturbing activity and also one's physical appearance. Angular cheilitis light will disappear on their own over time.Severe conditions that can cause pain and bleading. aims to give feedback on peers about managment angular cheilitis in children.

  1. Hyperbolic chaotic attractor in amplitude dynamics of coupled self-oscillators with periodic parameter modulation

    DEFF Research Database (Denmark)

    Isaeva, Olga B.; Kuznetsov, Sergey P.; Mosekilde, Erik

    2011-01-01

    model corresponds to the situation of equality of natural frequencies of the partial oscillators, and another to a nonresonant ratio of the oscillation frequencies relating to each of the two pairs. Dynamics of all models are illustrated with diagrams indicating the transformation of the angular......The paper proposes an approach to constructing feasible examples of dynamical systems with hyperbolic chaotic attractors based on the successive transfer of excitation between two pairs of self-oscillators that are alternately active. An angular variable that measures the relations of the current...... amplitudes for the two oscillators of each pair undergoes a transformation in accordance with the expanding circle map during each cycle of the process. We start with equations describing the dynamics in terms of complex or real amplitudes and then examine two models based on van der Pol oscillators. One...

  2. Coherent Transfer between Low-Angular-Momentum and Circular Rydberg States.

    Science.gov (United States)

    Signoles, A; Dietsche, E K; Facon, A; Grosso, D; Haroche, S; Raimond, J M; Brune, M; Gleyzes, S

    2017-06-23

    We realize a coherent transfer between a laser-accessible low-angular-momentum Rydberg state and the circular Rydberg level with maximal angular momentum. It is induced by a radio frequency field with a high-purity σ^{+} polarization resonant on Stark transitions inside the hydrogenic Rydberg manifold. We observe over a few microseconds more than 20 coherent Rabi oscillations between the initial Rydberg state and the circular level. We characterize these many-Rydberg-level oscillations and find them in perfect agreement with a simple model. This coherent transfer opens the way to hybrid quantum gates bridging the gap between optical communication and quantum information manipulations with microwave cavity and circuit quantum electrodynamics.

  3. Steady flows in rotating spherical cavity excited by multi-frequency oscillations of free inner core

    Science.gov (United States)

    Kozlov, Victor G.; Kozlov, Nikolai V.; Subbotin, Stanislav V.

    2017-01-01

    Fluid motion in a rotating spherical cavity in the conditions of resonant oscillations of free inner core is experimentally investigated. The centrifugal force retains a solid core with density less than the fluid density near the center of the cavity. In the absence of external force field the system "solid core - liquid" performs solid body rotation. The oscillations of the core are excited by an external oscillating force field and this results in differential rotation of the core with respect to the cavity. The direction of rotation is determined by the ratio of the oscillation frequency to the cavity angular velocity. The core oscillations with the radian frequency, which exceeds the cavity angular velocity, are investigated. It is found that a steady flow in the form of a system of nested fluid columns of circular cross section, which rotate at different angular velocities, is generated in the cavity as a result of oscillations of the core and the fluid. It is shown that at simultaneous influence of several oscillating fields the resulting steady flow is determined by a linear superposition of the flows, which are excited by the oscillations of the inner core with different frequencies. At a certain ratio of the vibration frequency to the rotation one the transformation of the circular shape of the column into the elliptical one is observed.

  4. Nature's Autonomous Oscillators

    Science.gov (United States)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  5. Collapse and Nonlinear Instability of AdS Space with Angular Momentum

    Science.gov (United States)

    Choptuik, Matthew W.; Dias, Óscar J. C.; Santos, Jorge E.; Way, Benson

    2017-11-01

    We present a numerical study of rotational dynamics in AdS5 with equal angular momenta in the presence of a complex doublet scalar field. We determine that the endpoint of gravitational collapse is a Myers-Perry black hole for high energies and a hairy black hole for low energies. We investigate the time scale for collapse at low energies E , keeping the angular momenta J ∝E in anti-de Sitter (AdS) length units. We find that the inclusion of angular momenta delays the collapse time, but retains a t ˜1 /E scaling. We perturb and evolve rotating boson stars, and find that boson stars near AdS space appear stable, but those sufficiently far from AdS space are unstable. We find that the dynamics of the boson star instability depend on the perturbation, resulting either in collapse to a Myers-Perry black hole, or development towards a stable oscillating solution.

  6. Oscillation theory for second order dynamic equations

    CERN Document Server

    Agarwal, Ravi P; O''Regan, Donal

    2003-01-01

    The qualitative theory of dynamic equations is a rapidly developing area of research. In the last 50 years, the Oscillation Theory of ordinary, functional, neutral, partial and impulsive differential equations, and their discrete versions, has inspired many scholars. Hundreds of research papers have been published in every major mathematical journal. Many books deal exclusively with the oscillation of solutions of differential equations, but most of these books appeal only to researchers who already know the subject. In an effort to bring Oscillation Theory to a new and broader audience, the authors present a compact, but thorough, understanding of Oscillation Theory for second order differential equations. They include several examples throughout the text not only to illustrate the theory, but also to provide new direction.

  7. Accelerated rotation with orbital angular momentum modes

    CSIR Research Space (South Africa)

    Schulze, C

    2015-04-01

    Full Text Available . As the angular acceleration takes place in a bounded space, the azimuthal degree of freedom, such fields accelerate periodically as they propagate. Notably, the amount of angular acceleration is not limited by paraxial considerations, may be tailored for large...

  8. Angular-Rate Estimation Using Quaternion Measurements

    Science.gov (United States)

    Azor, Ruth; Bar-Itzhack, Y.; Deutschmann, Julie K.; Harman, Richard R.

    1998-01-01

    In most spacecraft (SC) there is a need to know the SC angular rate. Precise angular rate is required for attitude determination, and a coarse rate is needed for attitude control damping. Classically, angular rate information is obtained from gyro measurements. These days, there is a tendency to build smaller, lighter and cheaper SC, therefore the inclination now is to do away with gyros and use other means and methods to determine the angular rate. The latter is also needed even in gyro equipped satellites when performing high rate maneuvers whose angular-rate is out of range of the on board gyros or in case of gyro failure. There are several ways to obtain the angular rate in a gyro-less SC. When the attitude is known, one can differentiate the attitude in whatever parameters it is given and use the kinematics equation that connects the derivative of the attitude with the satellite angular-rate and compute the latter. Since SC usually utilize vector measurements for attitude determination, the differentiation of the attitude introduces a considerable noise component in the computed angular-rate vector.

  9. Angular momentum transfer in incomplete fusion

    Indian Academy of Sciences (India)

    The angular momentum of the intermediate nucleus formed in incomplete fusion was deduced from the isomeric cross-section ratio by considering the statistical de-excitation of the incompletely fused composite nucleus. The data show that incomplete fusion is associated with angular momenta slightly smaller than critical ...

  10. Responsive web design with AngularJS

    CERN Document Server

    Patel, Sandeep Kumar

    2014-01-01

    If you are an AngularJS developer who wants to learn about responsive web application development, this book is ideal for you. Responsive Web Design with AngularJS is intended for web developers or designers with a basic knowledge of HTML, CSS, and JavaScript.

  11. Orbital angular momentum: a personal memoir

    Science.gov (United States)

    Allen, L.

    2017-02-01

    A definitive statement of the model used to describe orbital angular momentum is essentially now available. Its early history, and the interaction of those who played key roles in its development over 20 years ago in its development, is outlined in this Memoir. This article is part of the themed issue 'Optical orbital angular momentum'.

  12. Concepts of radial and angular kinetic energies

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Schleich, W.P.

    2002-01-01

    We consider a general central-field system in D dimensions and show that the division of the kinetic energy into radial and angular parts proceeds differently in the wave-function picture and the Weyl-Wigner phase-space picture, Thus, the radial and angular kinetic energies are different quantities...

  13. Angular Momentum of Dwarf Galaxies

    Science.gov (United States)

    Butler, Kirsty M.; Obreschkow, Danail; Oh, Se-Heon

    2017-01-01

    We present measurements of baryonic mass {M}{{b}} and specific angular momentum (sAM) {j}{{b}} in 14 rotating dwarf Irregular (dIrr) galaxies from the LITTLE THINGS sample. These measurements, based on 21 cm kinematic data from the Very Large Array and stellar mass maps from the Spitzer Space Telescope, extend previous AM measurements by more than two orders of magnitude in {M}{{b}}. The dwarf galaxies show systematically higher {j}{{b}} values than expected from the {j}{{b}}\\propto {M}{{b}}2/3 scaling of spiral galaxies, representative of a scale-free galaxy formation scenario. This offset can be explained by decreasing baryon mass fractions {f}{{M}}={M}{{b}}/{M}{dyn} (where {M}{dyn} is the dynamical mass) with decreasing {M}{{b}} (for {M}{{b}}< {10}11 {M}⊙ ). We find that the sAM of neutral atomic hydrogen (H I) alone is about 2.5 times higher than that of the stars. The M-j relation of H I is significantly steeper than that of the stars, as a direct consequence of the systematic variation of the H I fraction with {M}{{b}}.

  14. Does high harmonic generation conserve angular momentum?

    CERN Document Server

    Fleischer, Avner; Diskin, Tzvi; Sidorenko, Pavel; Cohen, Oren

    2013-01-01

    High harmonic generation (HHG) is a unique and useful process in which infrared or visible radiation is frequency up converted into the extreme ultraviolet and x ray spectral regions. As a parametric process, high harmonic generation should conserve the radiation energy, momentum and angular momentum. Indeed, conservation of energy and momentum have been demonstrated. Angular momentum of optical beams can be divided into two components: orbital and spin (polarization). Orbital angular momentum is assumed to be conserved and recently observed deviations were attributed to propagation effects. On the other hand, conservation of spin angular momentum has thus far never been studied, neither experimentally nor theoretically. Here, we present the first study on the role of spin angular momentum in extreme nonlinear optics by experimentally generating high harmonics of bi chromatic elliptically polarized pump beams that interact with isotropic media. While observing that the selection rules qualitatively correspond...

  15. A memristor-based third-order oscillator: beyond oscillation

    Science.gov (United States)

    Talukdar, A.; Radwan, A. G.; Salama, K. N.

    2011-09-01

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  16. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-10-06

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  17. Golden quantum oscillator and Binet-Fibonacci calculus

    Energy Technology Data Exchange (ETDEWEB)

    Pashaev, Oktay K; Nalci, Sengul, E-mail: oktaypashaev@iyte.edu.tr [Department of Mathematics, Izmir Institute of Technology, Urla-Izmir 35430 (Turkey)

    2012-01-13

    The Binet formula for Fibonacci numbers is treated as a q-number and a q-operator with Golden ratio bases q = {phi} and Q = -1/{phi}, and the corresponding Fibonacci or Golden calculus is developed. A quantum harmonic oscillator for this Golden calculus is derived so that its spectrum is given only by Fibonacci numbers. The ratio of successive energy levels is found to be the Golden sequence, and for asymptotic states in the limit n {yields} {infinity} it appears as the Golden ratio. We call this oscillator the Golden oscillator. Using double Golden bosons, the Golden angular momentum and its representation in terms of Fibonacci numbers and the Golden ratio are derived. Relations of Fibonacci calculus with a q-deformed fermion oscillator and entangled N-qubit states are indicated. (paper)

  18. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  19. Stabilization of a linear nanomechanical oscillator to its thermodynamic limit

    National Research Council Canada - National Science Library

    Gavartin, Emanuel; Verlot, Pierre; Kippenberg, Tobias J

    2013-01-01

    The rapid development of micro- and nanomechanical oscillators in the past decade has led to the emergence of novel devices and sensors that are opening new frontiers in both applied and fundamental science...

  20. Angular momentum conservation for dynamical black holes

    OpenAIRE

    Hayward, Sean A.

    2006-01-01

    Angular momentum can be defined by rearranging the Komar surface integral in terms of a twist form, encoding the twisting around of space-time due to a rotating mass, and an axial vector. If the axial vector is a coordinate vector and has vanishing transverse divergence, it can be uniquely specified under certain generic conditions. Along a trapping horizon, a conservation law expresses the rate of change of angular momentum of a general black hole in terms of angular momentum densities of ma...

  1. Accelerated rotation with orbital angular momentum modes

    CSIR Research Space (South Africa)

    Schulze, C

    2015-01-01

    Full Text Available ) Accelerated rotation with orbital angular momentum modes Christian Schulze,1 Filippus S. Roux,2 Angela Dudley,2 Ronald Rop,3 Michael Duparre´,1 and Andrew Forbes2,4,* 1Institute of Applied Optics, Friedrich Schiller University, Fro¨belstieg 1, 07743 Jena... from the transverse acceleration discussed before. We tailor our “twisted light” (fields carrying orbital angular momentum) to have a nonlinear phase variation with azimuthal angle, which we show is the building block for angular accelerating light...

  2. Mediolateral Angular Momentum Changes in Persons With Amputation During Perturbed Walking✰

    Science.gov (United States)

    Sheehan, Riley C.; Beltran, Eduardo J.; Dingwell, Jonathan B.; Wilken, Jason M.

    2015-01-01

    Over 50% of individuals with lower limb amputation fall at least once each year. These individuals also exhibit reduced ability to effectively respond to challenges to frontal plane stability. The range of whole body angular momentum has been correlated with stability and fall risk. This study determined how lateral walking surface perturbations affected the regulation of whole body and individual leg angular momentum in able-bodied controls and individuals with unilateral transtibial amputation. Participants walked at fixed speed in a Computer Assisted Rehabilitation ENvironment with no perturbations and continuous, pseudo-random, mediolateral platform oscillations. Both the ranges and variability of angular momentum for both the whole body and both legs were significantly greater (p amputation than for controls for all segments (p amputation. However, for the prosthetic leg, angular momentum ranges were less for patients than controls. Patients with amputation were significantly more affected by the perturbations. Though patients with amputation were able to maintain similar patterns of whole body angular momentum during unperturbed walking, they were more highly destabilized by the walking surface perturbations. Individuals with transtibial amputation appear to predominantly use altered motion of the intact limb to maintain mediolateral stability. PMID:25797789

  3. The Oscillator Principle of Nature

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2012-01-01

    Oscillators are found on all levels in Nature. The general oscillator concept is defined and investigated. Oscillators may synchronize into fractal patterns. Apparently oscillators are the basic principle in Nature. The concepts of zero and infinite are discussed. Electronic manmade oscillators...

  4. A Conspiracy of Oscillators

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    2008-01-01

    We discuss nonlinear mechanical systems containing several oscillators whose frequecies are all much higher than frequencies associated with the remaining degrees of freedom. In this situation a near constant of the motion, an adiabatic invariant, exists which is the sum of all the oscillator...

  5. Hyperchaotic Oscillator with Gyrators

    DEFF Research Database (Denmark)

    Tamasevicius, A; Cenys, A; Mykolaitis, G.

    1997-01-01

    A fourth-order hyperchaotic oscillator is described. It contains a negative impedance converter, two gyratots, two capacitors and a diode. The dynamics of the oscillator is shown to be characterised by two positive Lyapunov exponents. The performance of the circuit is investigated by means...

  6. Grazing Impact Oscillations

    NARCIS (Netherlands)

    Weger, J.G.; Water, van de W.; Molenaar, J.

    2000-01-01

    An impact oscillator is a periodically driven system that hits a wall when its amplitude exceeds a critical value. We study impact oscillations where collisions with the wall are with near-zero velocity (grazing impacts). A characteristic feature of grazing impact dynamics is a geometrically

  7. Synchronization of hyperchaotic oscillators

    DEFF Research Database (Denmark)

    Tamasevicius, A.; Cenys, A.; Mykolaitis, G.

    1997-01-01

    Synchronization of chaotic oscillators is believed to have promising applications in secure communications. Hyperchaotic systems with multiple positive Lyapunov exponents (LEs) have an advantage over common chaotic systems with only one positive LE. Three different types of hyperchaotic electronic...... oscillators are investigated demonstrating synchronization by means of only one properly selected variable....

  8. Prediction of resonant oscillation

    DEFF Research Database (Denmark)

    2010-01-01

    oscillations and compare the measured oscillations using FFT analysis of signal correlations, variance analysis of signals and other comparisons. As an example, the presence of a growing peak around a frequency that doubles the roll natural frequency indicates the possibility that parametric roll is going...

  9. Radiofrequency encoded angular-resolved light scattering

    DEFF Research Database (Denmark)

    Buckley, Brandon W.; Akbari, Najva; Diebold, Eric D.

    2015-01-01

    The sensitive, specific, and label-free classification of microscopic cells and organisms is one of the outstanding problems in biology. Today, instruments such as the flow cytometer use a combination of light scatter measurements at two distinct angles to infer the size and internal complexity...... of cells at rates of more than 10,000 per second. However, by examining the entire angular light scattering spectrum it is possible to classify cells with higher resolution and specificity. Current approaches to performing these angular spectrum measurements all have significant throughput limitations...... Encoded Angular-resolved Light Scattering (REALS), this technique multiplexes angular light scattering in the radiofrequency domain, such that a single photodetector captures the entire scattering spectrum from a particle over approximately 100 discrete incident angles on a single shot basis. As a proof...

  10. Magnetostatic wave oscillator frequencies

    Science.gov (United States)

    Sethares, J. C.; Stiglitz, M. R.; Weinberg, I. J.

    1981-03-01

    The frequencies of magnetostatic wave (MSW) oscillators employing three principal modes of propagation, surface (MSSW), forward (MSFVW), and backward (MSBVW) volume waves, have been investigated. Previous (MSW) oscillator papers dealt with MSSW. Oscillators were fabricated using LPE-YIG MSW delay lines in a feedback loop of a 2-4 GHz amplifier. Wide and narrow band transducers were employed. Oscillator frequency as a function of biasing field is in agreement with a theoretical analysis. The analysis predicts frequency in terms of material parameters, biasing field, and transducer geometry. With wide band transducers a comb of frequencies is generated. Narrow band transducers for MSSW and MSFVW select a single mode; and MSBVW selects two modes. Spurious modes, attributed to instrumentation, are more than 20 dB below the main response, and bandwidths are less than 0.005 percent. No other spurious modes are observed. MSW oscillators produce clean electronically tunable signals and appear attractive in frequency agile systems.

  11. Mastering AngularJD for .NET developers

    CERN Document Server

    Majid, Mohammad Wadood

    2015-01-01

    This book is envisioned for traditional developers and programmers who want to develop client-side applications using the AngularJS framework and ASP.NET Web API 2 with Visual Studio. .NET developers who have already built web applications or web services and who have a fundamental knowledge of HTML, JavaScript, and CSS and want to explore single-page applications will also find this guide useful. Basic knowledge of AngularJS would be helpful.

  12. Linear stability analysis of collective neutrino oscillations without spurious modes

    Science.gov (United States)

    Morinaga, Taiki; Yamada, Shoichi

    2018-01-01

    Collective neutrino oscillations are induced by the presence of neutrinos themselves. As such, they are intrinsically nonlinear phenomena and are much more complex than linear counterparts such as the vacuum or Mikheyev-Smirnov-Wolfenstein oscillations. They obey integro-differential equations, for which it is also very challenging to obtain numerical solutions. If one focuses on the onset of collective oscillations, on the other hand, the equations can be linearized and the technique of linear analysis can be employed. Unfortunately, however, it is well known that such an analysis, when applied with discretizations of continuous angular distributions, suffers from the appearance of so-called spurious modes: unphysical eigenmodes of the discretized linear equations. In this paper, we analyze in detail the origin of these unphysical modes and present a simple solution to this annoying problem. We find that the spurious modes originate from the artificial production of pole singularities instead of a branch cut on the Riemann surface by the discretizations. The branching point singularities on the Riemann surface for the original nondiscretized equations can be recovered by approximating the angular distributions with polynomials and then performing the integrals analytically. We demonstrate for some examples that this simple prescription does remove the spurious modes. We also propose an even simpler method: a piecewise linear approximation to the angular distribution. It is shown that the same methodology is applicable to the multienergy case as well as to the dispersion relation approach that was proposed very recently.

  13. Measurement and analysis of instantaneous torque and angular velocity variations of a low speed two stroke diesel engine

    Science.gov (United States)

    Jiménez Espadafor, Francisco J.; A. Becerra Villanueva, José; Palomo Guerrero, Daniel; Torres García, Miguel; Carvajal Trujillo, Elisa; Fernández Vacas, Francisco

    2014-12-01

    This paper presents an investigation into the potential of using direct measurement of engine torque for diagnostic purposes in large engines - in this case applied to power generation. The procedures for measuring and analyzing the instantaneous torque, the angular displacement on the generator output end and the angular displacement on its free end for a ten-cylinder, low speed two stroke diesel engine are presented. Angular speed oscillations are frequently used for combustion engine diagnostics although they cannot be used to measure engine power directly. In addition, and for engines with huge inertia generators such as those used in power plants, speed oscillations are very low and this reduces the signal to noise ratio and makes the evaluation of the instantaneous angular speed very noisy. In the work described here, torque and angular displacement measurements carried out at the same point and with the same engine conditions are compared and the superior performance of torque is demonstrated. Harmonic analysis of instantaneous torque allowed the identification of the dynamic characteristics of the power train of the diesel group and clearly suggests that this signal can be used as a diagnostic tool for excitation, combustion malfunctions, or for the mechanical characteristics of the system and crankshaft stiffness. The torque distortion introduced by the generator due to the discontinuity imposed by the pole pairs is also observed in the torque signal, suggesting that the torque signal can be used to identify generator malfunction.

  14. Application of He’s Energy Balance Method to Duffing-Harmonic Oscillators

    DEFF Research Database (Denmark)

    Momeni, M.; Jamshidi, j.; Barari, Amin

    2011-01-01

    In this article, He's energy balance method is applied for calculating angular frequencies of nonlinear Duffing oscillators. This method offers a promising approach by constructing a Hamiltonian for the nonlinear oscillator. We illustrate that the energy balance is very effective and convenient...... and does not require linearization or small perturbation. Contrary to the conventional methods, in energy balance, only one iteration leads to high accuracy of the solutions. It is predicted that the energy balance method finds wide applications in engineering problems....

  15. Terahertz Photovoltaic Detection of Cyclotron Resonance in the Regime of Radiation-Induced Magnetoresistance Oscillations

    Science.gov (United States)

    2013-06-17

    these radiation-induced oscillations do overlap the more-rapidly- varying-with-B Shubnikov–de Haas ( SdH ) oscillations; see also Refs. 17, 21, and 22. A... SdH Oscillations RIMRO FIG. 2. (Color online) Microwave (f < 300 GHz) and terahertz (f 300 GHz) radiation-induced magnetoresistance oscillations in...Shubnikov–de Haas ( SdH ) oscillations. A subset of oscillations of each type are marked on the figure. The solid vertical lines below 0.1 T marks the

  16. Out-of-plane buckled cantilever microstructures with adjustable angular positions using thermal bimorph actuation for transducer applications

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2015-10-27

    The integration of thermal bimorph actuators and buckled cantilever structures to form an out-of-plane plate with adjustable angular positions is reported. This structure could be used as a platform to build other transducers such as optical micromirrors, scanning antennas, switches or low-frequency oscillators. The electromechanical characterisation has shown that these structures can adjust their angular position by 6° when they are operated using a DC source. The thermal characterisation performed by an infrared camera showed that the heat-affected zone reaches a maximum temperature of 125°C while the rest of the structure remains unaffected by the generated heat.

  17. Neutrino Oscillation Physics

    CERN Document Server

    Kayser, Boris

    2014-04-10

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures.

  18. Oscillation of large air bubble cloud

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Y.Y.; Kim, H.Y.; Park, J.K. [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2001-07-01

    The behavior of a large air bubble cloud, which is generated by the air discharged from a perforated sparger, is analyzed by solving Rayleigh-Plesset equation, energy equations and energy balance equation. The equations are solved by Runge-Kutta integration and MacCormack finite difference method. Initial conditions such as driving pressure, air volume, and void fraction strongly affect the bubble pressure amplitude and oscillation frequency. The pool temperature has a strong effect on the oscillation frequency and a negligible effect on the pressure amplitude. The polytropic constant during the compression and expansion processes of individual bubbles ranges from 1.0 to 1.4, which may be attributed to the fact that small bubbles oscillated in frequencies different from their resonance. The temperature of the bubble cloud rapidly approaches the ambient temperature, as is expected from the polytropic constants being between 1.0 and 1.4. (authors)

  19. Classical oscillator driven by an oscillating chirped force

    NARCIS (Netherlands)

    Khachatryan, A.G.; van Goor, F.A.; Boller, Klaus J.

    2006-01-01

    The motion of a classical (harmonic) oscillator is studied in the case where the oscillator is driven by a pulsed oscillating force with a frequency varying in time (frequency chirp). The amplitude and phase of the oscillations left after the pulsed force in dependence on the profile and strength of

  20. An angular multigrid method for computing mono-energetic particle beams in Flatland

    Science.gov (United States)

    Börgers, Christoph; MacLachlan, Scott

    2010-04-01

    Beams of microscopic particles penetrating scattering background matter play an important role in several applications. The parameter choices made here are motivated by the problem of electron-beam cancer therapy planning. Mathematically, a steady particle beam penetrating matter, or a configuration of several such beams, is modeled by a boundary value problem for a Boltzmann equation. Grid-based discretization of such a problem leads to a system of algebraic equations. This system is typically very large because of the large number of independent variables in the Boltzmann equation—six if no dimension-reducing assumptions other than time independence are made. If grid-based methods are to be practical for these problems, it is therefore necessary to develop very fast solvers for the discretized problems. For beams of mono-energetic particles interacting with a passive background, but not with each other, in two space dimensions, the first author proposed such a solver, based on angular domain decomposition, some time ago. Here, we propose and test an angular multigrid algorithm for the same model problem. Our numerical experiments show rapid, grid-independent convergence. For high-resolution calculations, our method is substantially more efficient than the angular domain decomposition method. In addition, unlike angular domain decomposition, the angular multigrid method works well even when the angular diffusion coefficient is fairly large.

  1. Angular momentum conservation for dynamical black holes

    Science.gov (United States)

    Hayward, Sean A.

    2006-11-01

    Angular momentum can be defined by rearranging the Komar surface integral in terms of a twist form, encoding the twisting around of space-time due to a rotating mass, and an axial vector. If the axial vector is a coordinate vector and has vanishing transverse divergence, it can be uniquely specified under certain generic conditions. Along a trapping horizon, a conservation law expresses the rate of change of angular momentum of a general black hole in terms of angular momentum densities of matter and gravitational radiation. This identifies the transverse-normal block of an effective gravitational-radiation energy tensor, whose normal-normal block was recently identified in a corresponding energy conservation law. Angular momentum and energy are dual, respectively, to the axial vector and a previously identified vector, the conservation equations taking the same form. Including charge conservation, the three conserved quantities yield definitions of an effective energy, electric potential, angular velocity and surface gravity, satisfying a dynamical version of the so-called first law of black-hole mechanics. A corresponding zeroth law holds for null trapping horizons, resolving an ambiguity in taking the null limit.

  2. Transverse angular momentum in topological photonic crystals

    Science.gov (United States)

    Deng, Wei-Min; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen

    2018-01-01

    Engineering local angular momentum of structured light fields in real space enables applications in many fields, in particular, the realization of unidirectional robust transport in topological photonic crystals with a non-trivial Berry vortex in momentum space. Here, we show transverse angular momentum modes in silicon topological photonic crystals when considering transverse electric polarization. Excited by a chiral external source with either transverse spin angular momentum or transverse phase vortex, robust light flow propagating along opposite directions is observed in several kinds of sharp-turn interfaces between two topologically-distinct silicon photonic crystals. A transverse orbital angular momentum mode with alternating phase vortex exists at the boundary of two such photonic crystals. In addition, unidirectional transport is robust to the working frequency even when the ring size or location of the pseudo-spin source varies in a certain range, leading to the superiority of the broadband photonic device. These findings enable one to make use of transverse angular momentum, a kind of degree of freedom, to achieve unidirectional robust transport in the telecom region and other potential applications in integrated photonic circuits, such as on-chip robust delay lines.

  3. High frequency nanotube oscillator

    Science.gov (United States)

    Peng, Haibing [Houston, TX; Zettl, Alexander K [Kensington, TX

    2012-02-21

    A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.

  4. Neutrino anomalies without oscillations

    Indian Academy of Sciences (India)

    conventional' neutrino oscillations induced by mass-mixing. Several of these require non-zero neutrino masses as well. Author Affiliations. Sandip Pakvasa1. Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822, USA ...

  5. Neural Oscillators Programming Simplified

    Directory of Open Access Journals (Sweden)

    Patrick McDowell

    2012-01-01

    Full Text Available The neurological mechanism used for generating rhythmic patterns for functions such as swallowing, walking, and chewing has been modeled computationally by the neural oscillator. It has been widely studied by biologists to model various aspects of organisms and by computer scientists and robotics engineers as a method for controlling and coordinating the gaits of walking robots. Although there has been significant study in this area, it is difficult to find basic guidelines for programming neural oscillators. In this paper, the authors approach neural oscillators from a programmer’s point of view, providing background and examples for developing neural oscillators to generate rhythmic patterns that can be used in biological modeling and robotics applications.

  6. Variation in Angular Velocity and Angular Acceleration of a Particle in Rectilinear Motion

    Science.gov (United States)

    Mashood, K. K.; Singh, V. A.

    2012-01-01

    We discuss the angular velocity ([image omitted]) and angular acceleration ([image omitted]) associated with a particle in rectilinear motion with constant acceleration. The discussion was motivated by an observation that students and even teachers have difficulty in ascribing rotational motion concepts to a particle when the trajectory is a…

  7. Orbital angular momentum in optical fibers

    Science.gov (United States)

    Bozinovic, Nenad

    Internet data traffic capacity is rapidly reaching limits imposed by nonlinear effects of single mode fibers currently used in optical communications. Having almost exhausted available degrees of freedom to orthogonally multiplex data in optical fibers, researchers are now exploring the possibility of using the spatial dimension of fibers, via multicore and multimode fibers, to address the forthcoming capacity crunch. While multicore fibers require complex manufacturing, conventional multi-mode fibers suffer from mode coupling, caused by random perturbations in fibers and modal (de)multiplexers. Methods that have been developed to address the problem of mode coupling so far, have been dependent on computationally intensive digital signal processing algorithms using adaptive optics feedback or complex multiple-input multiple-output algorithms. Here we study the possibility of using the orbital angular momentum (OAM), or helicity, of light, as a means of increasing capacity of future optical fiber communication links. We first introduce a class of specialty fibers designed to minimize mode coupling and show their potential for OAM mode generation in fibers using numerical analysis. We then experimentally confirm the existence of OAM states in these fibers using methods based on fiber gratings and spatial light modulators. In order to quantify the purity of created OAM states, we developed two methods based on mode-image analysis, showing purity of OAM states to be 90% after 1km in these fibers. Finally, in order to demonstrate data transmission using OAM states, we developed a 4-mode multiplexing and demultiplexing systems based on free-space optics and spatial light modulators. Using simple coherent detection methods, we successfully transmit data at 400Gbit/s using four OAM modes at a single wavelength, over 1.1 km of fiber. Furthermore, we achieve data transmission at 1.6Tbit/s using 10 wavelengths and two OAM modes. Our study indicates that OAM light can exist

  8. solar neutrino oscillation phenomenology

    Indian Academy of Sciences (India)

    The sMA region and a large part of the vacuum oscillation region are seen to have been washed away with the inclusion of the sK spectrum data. In the left panel of figure 4 we show the dependence of the probabilities on energy. In the sMA and the VO oscillation regions the probability has a non- monotonic dependence ...

  9. Angular Spectral Analysis and Lowpass Filtering of Aeromagnetic ...

    African Journals Online (AJOL)

    Total-field aeromagnetic data over the western half of the Bornu basin and its surrounding areas were analyzed using angular spectral analysis, upward continuation and lowpass filtering techniques. Results revealed several angular spectral peaks at various angular orientations. The angular orientations correlated with the ...

  10. Data-oriented development with AngularJS

    CERN Document Server

    Waikar, Manoj

    2015-01-01

    This book helps beginner-level AngularJS developers organize AngularJS applications by discussing important AngularJS concepts and best practices. If you are an experienced AngularJS developer but haven't written directives or haven't created custom HTML controls before, then this book is ideal for you.

  11. Angular Size Measurements of 18 Mira Variable Stars at 2.2 microns

    Science.gov (United States)

    van Belle, G. T.; Dyck, H. M.; Benson, J. A.; Lacasse, M. G.

    1996-11-01

    We present angular size measurements of 18 oxygen-rich Mira variable stars. These data are part of a long term observational program using the Infrared Optical Telescope Array (IOTA) to characterize the observable behavior of these stars. Complementing the infrared angular size measurements, values for variable star phase, spectral type, bolometric flux, and distance were established for stars in the sample; flux and distance led to values for effective temperature (TEFF), and linear radius, respectively. We are able to define an effective temperature versus spectral type scale for Mira variables that we compare to the temperature scales for K and M giants and supergiants. TEFF'S and linear radii for these stars are shown to lie between approximately 2100 and 3200 K, and 200 and 600 Rsun, respectively. Relationships among the Mira variable parameters are explored for significant trends. Notably, the phase dependence of TEFF is shown to follow simple expectations, and examination of the radius-T relationship yields a plausible description of the V and K band light curves of these stars. A simple examination of the oscillation mode of the stars in the sample does not strongly suggest either fundamental or first-overtone oscillation as the primary mode of oscillation. This conclusion differs from that recently presented by Haniff et al. (1995), who argue that Mira variables are all first-overtone pulsators. We discuss some possible reasons for the different conclusions between the two studies.

  12. Self-oscillation

    CERN Document Server

    Jenkins, Alejandro

    2011-01-01

    Physicists are very familiar with forced and parametric resonance, but usually not with self-oscillation, a property of certain linear systems that gives rise to a great variety of vibrations, both useful and destructive. In a self-oscillator, the driving force is controlled by the oscillation itself so that it acts in phase with the velocity, causing a negative damping that feeds energy from the environment into the vibration: no external rate needs to be tuned to the resonant frequency. A paper from 1830 by G. B. Airy gives us the opening to introduce self-oscillation as a sort of "perpetual motion" responsible for the human voice. The famous collapse of the Tacoma Narrows bridge in 1940, often attributed by introductory physics texts to forced resonance, was actually a self-oscillation, as was the more recent swaying of the London Millenium Footbridge. Clocks are self-oscillators, as are bowed and wind musical instruments, and the heartbeat. We review the criterion that determines whether an arbitrary line...

  13. Chirality and angular momentum in optical radiation

    CERN Document Server

    Coles, Matt M

    2012-01-01

    This paper develops, in precise quantum electrodynamic terms, photonic attributes of the "optical chirality density", one of several measures long known to be conserved quantities for a vacuum electromagnetic field. The analysis lends insights into some recent interpretations of chiroptical experiments, in which this measure, and an associated chirality flux, have been treated as representing physically distinctive "superchiral" phenomena. In the fully quantized formalism the chirality density is promoted to operator status, whose exploration with reference to an arbitrary polarization basis reveals relationships to optical angular momentum and helicity operators. Analyzing multi-mode beams with complex wave-front structures, notably Laguerre-Gaussian modes, affords a deeper understanding of the interplay between optical chirality and optical angular momentum. By developing theory with due cognizance of the photonic character of light, it emerges that only the spin angular momentum of light is engaged in such...

  14. Energy angular momentum closed-loop guidance

    Science.gov (United States)

    Patera, Russell P.

    2015-03-01

    A novel guidance algorithm for launch vehicle ascent to the desired mission orbit is proposed. The algorithm uses total specific energy and orbital angular momentum as new state vector parameters. These parameters are ideally suited for the ascent guidance task, since the guidance algorithm steers the launch vehicle along a pre-flight optimal trajectory in energy angular momentum space. The guidance algorithm targets apogee, perigee, inclination and right ascension of ascending node. Computational complexities are avoided by eliminating time in the guidance computation and replacing it with angular momentum magnitude. As a result, vehicle acceleration, mass, thrust, length of motor burns, and staging times are also eliminated from the pitch plane guidance calculations. The algorithm does not involve launch vehicle or target state propagation, which results in minimal computational effort. Proof of concept of the new algorithm is presented using several numerical examples that illustrate performance results.

  15. Dynamics of microcapsules in oscillating shear flow

    Science.gov (United States)

    Zhao, Mengye; Bagchi, Prosenjit

    2011-11-01

    We present a three-dimensional numerical study on the dynamics of deformable capsules in sinusoidally oscillating shear flow. We consider capsules of spherical and oblate spheroid resting shapes. For spherical resting shapes, we find an identical deformation response during positive and negative vorticities. However, the deformation response becomes unequal and shows complex behavior for nonspherical resting shapes. The average elongation is higher in the retarding phase of the shear flow than in the accelerating phase. Primarily two types of dynamics are observed for nonspherical shapes: a clockwise/counter-clockwise swinging motion in response to the altering flow direction that occurs at both high and low values of shear rate amplitudes, and a continuous/unidirectional tumbling motion that occurs at intermediate values. The unidirectional tumbling motion occurs despite the fact that the time-average vorticity is zero. Such a tumbling motion is accompanied by a continuous tank-treading motion of the membrane in the opposite direction. We obtain phase diagram that shows existence of two critical shear rates and two oscillation frequencies. The unidirectional tumbling motion occurs in the intermediate range, and the clockwise/counter-clockwise swinging motion occurs otherwise. We also find that the dynamics is highly sensitive to the initial condition. A swinging is generally observed when the capsule is released aligned with the extensional or compressional axis of the shear flow, and a tumbling is observed otherwise. These results suggest the possibility of chaotic behavior of cells in time-dependent flows. We provide explanations of such complex dynamics by analyzing the coupling between the shape and angular oscillation and the imposed flow oscillation.

  16. Matter effects in upward-going muons and sterile neutrino oscillations

    CERN Document Server

    Ambrosio, M; Auriemma, G; Bakari, D; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Becherini, Y; Bellotti, R; Bemporad, C; Bernardini, P; Bilokon, H; Bisi, V; Bloise, C; Bower, C; Brigida, M; Bussino, S; Cafagna, F; Calicchio, M; Campana, D; Carboni, M; Caruso, R; Cecchini, S; Cei, F; Chiarella, V; Choudhary, B C; Coutu, S; De Cataldo, G; Dekhissi, H; De Marzo, C; De Mitri, I; Derkaoui, J E; De Vincenzi, M; Di Credico, A; Erriquez, O; Favuzzi, C; Forti, C; Fusco, P; Giacomelli, G; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Gray, L; Grillo, A; Guarino, F; Gustavino, C; Habig, A; Hanson, K; Heinz, R; Iarocci, Enzo; Katsavounidis, E; Katsavounidis, I; Kearns, E T; Kim, H; Kyriazopoulou, S; Lammanna, E; Lane, C; Levins, D S; Lipari, P; Longley, N P; Longo, M J; Loparco, F; Maaroufi, F; Mancarella, G; Mandrioli, G; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Mazziotta, M N; Michael, D G; Mikheyev, S P; Miller, L; Monacelli, P; Montaruli, T; Monteno, M; Mufson, S L; Musser, J; Nicolò, D; Nolty, R; Orth, C; Osteria, G; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; Pistilli, P; Popa, V; Rainó, A; Reynoldson, J; Ronga, F; Rrhioua, A; Satriano, C; Scapparone, E; Scholberg, K; Sciubba, A; Serra, P; Sioli, M; Sirri, G; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Steinberg, R; Stone, J L; Sulak, Lawrence R; Surdo, A; Tarle, G; Togo, V; Vakili, M; Walter, C W; Webb, R

    2001-01-01

    The angular distribution of upward-going muons produced by atmospheric neutrinos in the rock below the MACRO detector shows anomalies in good agreement with two flavor nu /sub mu / to nu /sub tau / oscillations with maximum mixing and Delta m/sup 2/ around 0.0024 eV/sup 2/. Exploiting the dependence of magnitude of the matter effect on the oscillation channel, and using a set of 809 upward-going muons observed in MACRO, we show that the two flavor nu /sub mu / to nu /sub s/ oscillation is disfavored with 99% C.L. with respect to nu /sub mu / to nu /sub tau /. (29 refs).

  17. Matter Effects in Upward-Going Muons and Sterile Neutrino Oscillations

    CERN Document Server

    Ronga, F

    2001-01-01

    The angular distribution of upward-going muons produced by atmospheric neutrinos in the rock below the MACRO detector show anomalies in good agreement with two flavor neutrino-mu ==> neutrino-tau oscillations with maximum mixing and Delta m**2 around 0.0024 eV**2. Exploiting the dependence of magnitude of the matter effect on oscillation channel, and using a set of 809 upward-going muons observed in MACRO, we show that the two flavor neutrino-mu ==> neutrino-tau oscillation is disfavored with 99% C.L. with respect to neutrino-mu ==> neutrino-tau.

  18. Doppler Shift Oscillations from a Hot Line Observed by IRIS

    Science.gov (United States)

    Li, D.; Ning, Z. J.; Huang, Y.; Chen, N.-H.; Zhang, Q. M.; Su, Y. N.; Su, W.

    2017-11-01

    We present a detailed investigation of the Doppler shift oscillations in a hot loop during an M7.1 flare on 2014 October 27 observed by the Interface Region Imaging Spectrograph. The periodic oscillations are observed in the Doppler shift of Fe xxi 1354.09 Å (log T˜ 7.05), and the dominant period is about 3.1 minutes. However, such 3.1 minute oscillations are not found in the line-integrated intensity of Fe xxi 1354.09 Å, AIA EUV fluxes, or microwave emissions. Solar Dynamics Observatory/AIA and Hinode/XRT imaging observations indicate that the Doppler shift oscillations locate at the hot loop-top region (≥11 MK). Moreover, the differential emission measure results show that the temperature is increasing rapidly when the Doppler shift oscillates, but the number density does not exhibit the corresponding increases nor oscillations, implying that the flare loop is likely to oscillate in an incompressible mode. All of these facts suggest that the Doppler shift oscillations at the shorter period are most likely the standing kink oscillations in a flare loop. Meanwhile, a longer period of about 10 minutes is identified in the time series of Doppler shift and line-integrated intensity, GOES SXR fluxes, and AIA EUV light curves, indicating the periodic energy release in this flare, which may be caused by a slow mode wave.

  19. Aspects Of 40- to 50-Day Oscillations In LOD And AAM

    Science.gov (United States)

    Dickey, Jean O.; Marcus, Steven L.; Ghil, Michael

    1992-01-01

    Report presents study of fluctuations in rotation of Earth, focusing on irregular intraseasonal oscillations in length of day (LOD) and atmospheric angular momentum (AAM) with periods varying from 40 to 50 days. Study draws upon and extends results of prior research.

  20. Observation of planar oscillations of MeV protons in silicon using ion channeling patterns

    NARCIS (Netherlands)

    Breese, M.B.H.; King, P.J.C.; Grime, G.W.; Smulders, P.J M; Seiberling, L.E.; Boshart, M.A.

    1996-01-01

    This paper describes the observation of {110} planar oscillations of 3 MeV protons transmitted through a 0.5 mu m thick [001] silicon crystal using ion channeling patterns produced on a fluorescent viewing screen. Gradual variations in the crystal thickness allowed the exit angular distribution of

  1. Oscillations of the fusion cross-sections in the O+ O reaction

    Indian Academy of Sciences (India)

    These oscillations are related to the quantum character of the orbital angular momen- tum increase as well as to the ... light nuclei at energies well above the Coulomb barrier, when the capture into orbital motion always results in ... 2UB0 has been analysed using the trajectory model with surface friction (TMSF) (UB0 is the ...

  2. Combining spectroscopic and photometric surveys using angular cross-correlations II: Parameter constraints from different physical effects

    OpenAIRE

    Eriksen, M.B.; Gaztañaga, E.

    2015-01-01

    Future spectroscopic and photometric surveys will measure accurate positions and shapes of an increasing number of galaxies. In the previous paper of this series we studied the effects of Redshift Space Distortions (RSD), baryon acoustic oscillations (BAO) and Weak gravitational Lensing (WL) using angular cross-correlation. Here, we provide a new forecast that explores the contribution of including different observables, physical effects (galaxy bias, WL, RSD, BAO) and approximations (non-lin...

  3. A Novel Permanent Magnetic Angular Acceleration Sensor

    Directory of Open Access Journals (Sweden)

    Hao Zhao

    2015-07-01

    Full Text Available Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s−2. Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability.

  4. Temperature and angular momentum dependence of the ...

    Indian Academy of Sciences (India)

    Temperature and angular momentum dependence of the quadrupole deformation is studied in the middle of the sd-shell for 28Si and 27Si isotopes using the spherical shell model approach. The shell model calculations have been performed using the standard universal sd-shell (USD) interaction and the canonical ...

  5. Angular Momentum Transport in Accretion Disks

    DEFF Research Database (Denmark)

    E. Pessah, Martin; Chan, Chi-kwan; Psaltis, Dimitrios

    2007-01-01

    if the resolution were set equal to the natural dissipation scale in astrophysical disks. We conclude that, in order for MRI-driven turbulent angular momentum transport to be able to account for the large value of the effective alpha viscosity inferred observationally, the disk must be threaded by a significant...

  6. Angular and linear momentum of excited ferromagnets

    NARCIS (Netherlands)

    Yan, P.; Kamra, A.; Cao, Y.; Bauer, G.E.W.

    2013-01-01

    The angular momentum vector of a Heisenberg ferromagnet with isotropic exchange interaction is conserved, while under uniaxial crystalline anisotropy the projection of the total spin along the easy axis is a constant of motion. Using Noether's theorem, we prove that these conservation laws persist

  7. Angular correlations near the Fermi energy

    NARCIS (Netherlands)

    Fox, D.; Cebra, D.A.; Karn, J.; Parks, C.; Pradhan, A.; Plicht, J. van der; Westfall, G.D.; Wilson, W.K.; Tickle, R.S.

    1988-01-01

    Angular correlations between light particles have been studied to probe the extent to which a thermally equilibrated system is formed in heavy ion collisions near the Fermi energy. Single-light-particle inclusive energy spectra and two-particle large-angle correlations were measured for 40 and 50

  8. Angular Spectrum Simulation of Pulsed Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2009-01-01

    geometries for any kind of focusing and apodization. The Angular Spectrum Approach (ASA) is capable of simulating monochromatic non-linear acoustic wave propagation. However, for ultrasound imaging the time response of each specific point in space is required, and a pulsed ASA simulation with multi temporal...

  9. Optical, UV, and EUV Oscillations of SS Cygni in Outburst

    Science.gov (United States)

    Mauche, Christopher W.

    2004-07-01

    I provide a review of observations in the optical, UV (HST), and EUV (EUVE and Chandra LETG) of the rapid periodic oscillations of nonmagnetic, disk-accreting, high mass-accretion rate cataclysmic variables (CVs), with particular emphasis on the dwarf nova SS Cyg in outburst. In addition, I drawn attention to a correlation, valid over nearly six orders of magnitude in frequency, between the frequencies of the quasi-periodic oscillations (QPOs) of white dwarf, neutron star, and black hole binaries. This correlation identifies the high frequency quasi-coherent oscillations (so-called ``dwarf nova oscillations'') of CVs with the kilohertz QPOs of low mass X-ray binaries (LMXBs), and the low frequency and low coherence QPOs of CVs with the horizontal branch oscillations (or the broad noise component identified as such) of LMXBs. Assuming that the same mechanisms produce the QPOs of white dwarf, neutron star, and black hole binaries, this correlation has important implications for QPO models.

  10. Magnetoelectric-field microwave antennas: Far-field orbital angular momenta from chiral-topology near fields

    CERN Document Server

    Berezin, M; Shavit, R

    2015-01-01

    The near fields in the proximity of a small ferrite particle with magnetic-dipolar-mode (MDM) oscillations have space and time symmetry breakings. Such MDM originated fields, called magnetoelectric (ME) fields, carry both spin and orbital angular momentums. By virtue of unique topology, ME fields are strongly different from free-space electromagnetic (EM) fields. In this paper, we show that because of chiral topology of ME fields in a nearfield region, far-field orbital angular momenta (OAM) can be observed, both numerically and experimentally. In a single element antenna, we obtain a radiation pattern with an angular squint. We reveal that in far field microwave radiation a crucial role is played by the ME energy distribution in the near-field region.

  11. Oscillations in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Hoeye, Gudrun Kristine

    1999-07-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  12. Angularly resolved RABBITT using a second harmonic pulse

    Science.gov (United States)

    Loriot, Vincent; Marciniak, Alexandre; Karras, Gabriel; Schindler, Baptiste; Renois-Predelus, Gina; Compagnon, Isabelle; Concina, Bruno; Brédy, Richard; Celep, Gulabi; Bordas, Christian; Constant, Eric; Lépine, Franck

    2017-11-01

    Processes in atoms or molecules on the attosecond timescale have been measured using XUV attosecond and IR femtosecond pulses overlapping in time and controlled with attosecond accuracy. Within this general framework, many strategies have been developed using the harmonics of the fundamental pulse. In this paper, we focus on a specific configuration where the attosecond pulse train is composed by odd harmonics and is dressed by the second harmonic of the fundamental light. Measuring the angularly resolved photoelectron spectrum as a function of the delay between the pulses, a clear oscillation of the anisotropy parameters appears revealing attosecond controlled interferences. This process, is assigned to interferences between two quantum paths involving one XUV photon, on one path, and a XUV+UV photons on the other path. The XUV-UV delay dependent up–down asymmetry can be interpreted following the usual RABBITT formalism, where the dressing photon energy corresponds to the energy separation between the XUV photons of the attosecond pulse train. This approach allows an intuitive analysis of the interference and provides a well suited method for the study of complex valence band systems thanks to the limited congestion of the resulting spectrum.

  13. Non-linear oscillations

    CERN Document Server

    Hagedorn, Peter

    1982-01-01

    Thoroughly revised and updated, the second edition of this concise text provides an engineer's view of non-linear oscillations, explaining the most important phenomena and solution methods. Non-linear descriptions are important because under certain conditions there occur large deviations from the behaviors predicted by linear differential equations. In some cases, completely new phenomena arise that are not possible in purely linear systems. The theory of non-linear oscillations thus has important applications in classical mechanics, electronics, communications, biology, and many other branches of science. In addition to many other changes, this edition has a new section on bifurcation theory, including Hopf's theorem.

  14. Brownian parametric oscillators

    Science.gov (United States)

    Zerbe, Christine; Jung, Peter; Hänggi, Peter

    1994-05-01

    We discuss the stochastic dynamics of dissipative, white-noise-driven Floquet oscillators, characterized by a time-periodic stiffness. Thus far, little attention has been paid to these exactly solvable nonstationary systems, although they carry a rich potential for several experimental applications. Here, we calculate and discuss the mean values and variances, as well as the correlation functions and the Floquet spectrum. As one main result, we find for certain parameter values that the fluctuations of the position coordinate are suppressed as compared to the equilibrium value of a harmonic oscillator (parametric squeezing).

  15. Friedel oscillations in graphene

    DEFF Research Database (Denmark)

    Lawlor, J. A.; Power, S. R.; Ferreira, M.S.

    2013-01-01

    Symmetry breaking perturbations in an electronically conducting medium are known to produce Friedel oscillations in various physical quantities of an otherwise pristine material. Here we show in a mathematically transparent fashion that Friedel oscillations in graphene have a strong sublattice...... asymmetry. As a result, the presence of impurities and/or defects may impact the distinct graphene sublattices very differently. Furthermore, such an asymmetry can be used to explain the recent observations that nitrogen atoms and dimers are not randomly distributed in graphene but prefer to occupy one...

  16. Offset tolerance of an orbital angular momentum optical communication system with angular deflection

    Science.gov (United States)

    Yin, Xiao-li; Sang, Hong-qing; Cui, Xiao-Zhou; Chang, Huan; Li, Li; Wu, Guo-hua

    2017-06-01

    This work studied the offset tolerance (OT) with a particular focus on the angular deflection of an orbital angular momentum (OAM) system in free space. We derived an analytical expression of the OT for an angular-deflected Laguerre-Gaussian (LG) beam via Fourier series (FS) expansion and determined the upper bound of the OT for OAM-multiplexed systems. Next, we analyzed the effects of the beam waist, transmitted distance and OAM state number on the OT numerically. The calculation results indicate that the OT of the deflected beam is inversely proportional to the square root of the OAM number and approximately reciprocal to the propagation distance. Finally, we calculated the bit-error rate (BER) and aggregated capacity of multiplexed systems with different sets of channels. The results confirmed that the estimated upper bound is reasonable, especially for larger mode spacings. This work can provide guidance for the design and optimization of angular-deflected OAM-multiplexed communication systems.

  17. Marine algae are `taught' the basics of angular momentum

    Science.gov (United States)

    Allen, John Taylor

    2017-11-01

    Advanced modelling studies and high-resolution observations have shown that flows related to instability of the mesoscale ( 1-10 km scale) may provide both the fertilisation mechanism for nutrient-depleted (oligotrophic) surface waters and a subduction mechanism for the rapid export of phytoplankton biomass to the deep ocean. Here, a detailed multidisciplinary analysis of the data from an example high-resolution observational campaign is presented. The data provide direct observations of the transport of phytoplankton through baroclinic instability. Furthermore, the data confirm that this transport is constrained by the requirement to conserve angular momentum, expressed in a stratified water column as the conservation of potential vorticity. This constraint is clearly seen to produce long thin filaments of phytoplankton populations strained out along isopycnal vorticity annuli associated with mesoscale frontal instabilities.

  18. Integrating multibeam backscatter angular response, mosaic and bathymetry data for benthic habitat mapping.

    Directory of Open Access Journals (Sweden)

    Rozaimi Che Hasan

    Full Text Available Multibeam echosounders (MBES are increasingly becoming the tool of choice for marine habitat mapping applications. In turn, the rapid expansion of habitat mapping studies has resulted in a need for automated classification techniques to efficiently map benthic habitats, assess confidence in model outputs, and evaluate the importance of variables driving the patterns observed. The benthic habitat characterisation process often involves the analysis of MBES bathymetry, backscatter mosaic or angular response with observation data providing ground truth. However, studies that make use of the full range of MBES outputs within a single classification process are limited. We present an approach that integrates backscatter angular response with MBES bathymetry, backscatter mosaic and their derivatives in a classification process using a Random Forests (RF machine-learning algorithm to predict the distribution of benthic biological habitats. This approach includes a method of deriving statistical features from backscatter angular response curves created from MBES data collated within homogeneous regions of a backscatter mosaic. Using the RF algorithm we assess the relative importance of each variable in order to optimise the classification process and simplify models applied. The results showed that the inclusion of the angular response features in the classification process improved the accuracy of the final habitat maps from 88.5% to 93.6%. The RF algorithm identified bathymetry and the angular response mean as the two most important predictors. However, the highest classification rates were only obtained after incorporating additional features derived from bathymetry and the backscatter mosaic. The angular response features were found to be more important to the classification process compared to the backscatter mosaic features. This analysis indicates that integrating angular response information with bathymetry and the backscatter mosaic, along with

  19. Evidence of electron saddle swap oscillations in angular differential ion-atom charge exchange cross sections

    NARCIS (Netherlands)

    Otranto, S.; Blank, I.; Olson, R. E.; Hoekstra, R.

    2012-01-01

    State selective charge exchange processes in 1-10 keV/amu Ne8+ +Na(3s) collisions were measured by means of the magneto-optical trap recoil-ion momentum spectroscopy technique and compared to classical trajectory Monte Carlo calculations. We find that for electron capture to n-levels >= 10, the

  20. A simple violin oscillator

    Science.gov (United States)

    Jones, R. T.

    1976-01-01

    For acoustic tests the violin is driven laterally at the bridge by a small speaker of the type commonly found in pocket transistor radios. An audio oscillator excites the tone which is picked up by a sound level meter. Gross patterns of vibration modes are obtained by the Chladni method.

  1. Oscillators and operational amplifiers

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2005-01-01

    A generalized approach to the design of oscillators using operational amplifiers as active elements is presented. A piecewise-linear model of the amplifier is used so that it make sense to investigate the eigenvalues of the Jacobian of the differential equations. The characteristic equation...

  2. Phenomenology of neutrino oscillations

    CERN Document Server

    Kobzarev, I Yu; Okun, Lev Borisovich; Shchepkin, M G

    1980-01-01

    A complete phenomenological description of neutrino oscillations is given. The most general form of the mass matrix of N types of neutrino and of the matrix of neutrino mixing in the left charged current is analyzed. Measuring the parameters of the charged current matrix in oscillatory experiments and in the experimental studies of the beta -decay electron spectra, is discussed. (20 refs).

  3. Neutrino oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Camilleri, L. [European Organization for Nuclear Research, Geneva (Switzerland)

    1996-11-01

    Neutrino oscillation experiments ({nu}{sub {mu}}{yields}{nu}{sub e} and {nu}{sub {mu}}{yields}{nu}{sub {tau}}) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs.

  4. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, Sidse M; Hansen, Lars Kai; Parnas, Josef

    2007-01-01

    to evoke gamma oscillations. EEG was recorded using 64 channels in 14 healthy subjects. In each of three runs a stimulus of 100 g load increment in each hand was presented in 120 trials. Data were wavelet transformed and runs collapsed. Inter-trial phase coherence (ITPC) was computed as the best measure...

  5. Ultra-sensitive and super-resolving angular rotation measurement based on photon orbital angular momentum using parity measurement.

    Science.gov (United States)

    Zhang, Zijing; Qiao, Tianyuan; Ma, Kun; Cen, Longzhu; Zhang, Jiandong; Wang, Feng; Zhao, Yuan

    2016-08-15

    Photon orbital angular momentum has led to many novel insights and applications in quantum measurement. Photon orbital angular momentum can increase the resolution and sensitivity of angular rotation measurement. However, quantum measurement strategy can further surpass this limit and improve the resolution of angular rotation measurement. This Letter proposes and demonstrates a parity measurement method in angular rotation measurement scheme for the first time. Parity measurement can make the resolution superior to the limit of the existing method. The sensitivity can be improved with higher orbital angular momentum photons. Moreover, this Letter gives a detailed discussion of the change of resolution and sensitivity in the presence of photon loss.

  6. Power spectra of the angular fractals

    Science.gov (United States)

    Zhong, Xihua; Zhu, Yafen; Zhou, Yueming

    1993-09-01

    Based on the angular backbone taken from the triangular Sierpinski gasket, several seLf-similar structures are disigned, corresponding diffraction screens are made, and the Fraunhofer patterns as power spectra of them are given. Based upon a viewpoint of generative production and by means of the ui-branched displacement operation, we have found the recurrence formulae of spectral structure factor for these angular fractals. As a example, the recurrence formulae of power spectra for a coherent point group is given, corresponding a series of curves as well as an isogram are plotted. The analysis of result shows that the power spectra of this fractal point group has a rotation symmetry and a mirror symmetry, and appears a period doubling phenomenon which follows the process of generative production.

  7. Quantum entanglement of high angular momenta.

    Science.gov (United States)

    Fickler, Robert; Lapkiewicz, Radek; Plick, William N; Krenn, Mario; Schaeff, Christoph; Ramelow, Sven; Zeilinger, Anton

    2012-11-02

    Single photons with helical phase structures may carry a quantized amount of orbital angular momentum (OAM), and their entanglement is important for quantum information science and fundamental tests of quantum theory. Because there is no theoretical upper limit on how many quanta of OAM a single photon can carry, it is possible to create entanglement between two particles with an arbitrarily high difference in quantum number. By transferring polarization entanglement to OAM with an interferometric scheme, we generate and verify entanglement between two photons differing by 600 in quantum number. The only restrictive factors toward higher numbers are current technical limitations. We also experimentally demonstrate that the entanglement of very high OAM can improve the sensitivity of angular resolution in remote sensing.

  8. Photonic local oscillator development

    Science.gov (United States)

    Kimberk, Robert; Tong, Edward; Hunter, Todd R.; Christensen, Robert; Blundell, Ray

    2006-12-01

    In the receiver lab, we have developed a 200 GHz to 230 GHz local oscillator constructed from mostly commercially available 1550 nm laser communication components. Theoretical and experimental work show that the laser adds negligible phase noise to this photonic local oscillator system and that spectral purity and phase stability are similar to Gunn oscillator based local oscillator output. The optical path consists of a single 1550 nm diode laser, a lithium niobate optical phase modulator, a Mach Zehnder interferometer (MZI) with a free spectral range of 75 GHz, and a 160 GHz to 260 GHz photomixer whose output is connected to a horn antenna. All of the optical devices and connections are polarization maintaining, and the photomixer was designed and fabricated at the CCLRC Rutherford Appleton Laboratory. The electrical path consists of a YIG synthesizer, operating in the frequency range 14-20 GHz, a frequency doubler, and a power amplifier connected to the RF port of the phase modulator. At the SMA on Mauna Kea, we incorporated the photonic LO into one element (Antenna 6) of a five antenna array for test observations of CO J=2-1 made towards the ultracompact HII region G138.295+1.555. Spectral features of comparable width occur on baselines with and without antenna 6, and noise increases with baseline length independent of antenna number. Continuum observations were also made toward the quasar 3c454.3 for a period of about one hour. In summary, the SMA has proven that the photonic local oscillator operates with adequate phase and frequency stability for radio-interferometry.

  9. Identifying neuronal oscillations using rhythmicity

    NARCIS (Netherlands)

    Fransen, A.M.M.; Ede, F.L. van; Maris, E.G.G.

    2015-01-01

    Neuronal oscillations are a characteristic feature of neuronal activity and are typically investigated through measures of power and coherence. However, neither of these measures directly reflects the distinctive feature of oscillations: their rhythmicity. Rhythmicity is the extent to which future

  10. The Angular Trispectrum of the CMB

    OpenAIRE

    Hu, Wayne

    2001-01-01

    We study the general properties of the CMB temperature four-point function, specifically its harmonic analogue the angular trispectrum, and illustrate its utility in finding optimal quadratic statistics through the weak gravitational lensing effect. We determine the general form of the trispectrum, under the assumptions of rotational, permutation, and parity invariance, its estimators on the sky, and their Gaussian noise properties. The signal-to-noise in the trispectrum can be highly configu...

  11. Coherent Control of Photoelectron Wavepacket Angular Interferograms

    OpenAIRE

    Hockett, Paul; Wollenhaupt, Matthias; Baumert, Thomas

    2015-01-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the cohere...

  12. Diffracted optical vortices by an angular aperture

    Science.gov (United States)

    López H., Paula A.; Reyes Q., Zayda P.; Guzmán, Ángela M.; Torres M., Yezid; Mendoza C., Jesús H.

    2017-08-01

    The measurement of the topological charge of laser beams with orbital angular momentum (OAM) is key to many applications like deciphering information encoded in several channels. Current techniques useful for that purpose are interferometry, diffraction through different poligonal apertures like triangular or pentagonal and, azimuthal and radial decomposition. A less explored issue is the diffraction of OAM beams through circular sectors. Jack et al. studied the angular diffraction of Gaussian beams (whose OAM is null) through a circular sector. By means of a Fourier transform of the truncated Gaussian beam they showed that the orbital angular momentum spectrum of the transmitted beam has a sinc-shaped envelope centered at zero orbital angular momentum, the width of which increases as the central angle of the circular sector decreases. We analyze here the spectrum of a laser beam with integer OAM that has been diffracted by a circular sector. We present results for circular sectors of different central angles. For circular π-sector, we also study the influence of the transmittance in the OAM spectra of the transmitted beam, using straight borders of nanometric thin films of titanium oxide with different thicknesses. We use a spatial light modulator with a fork hologram placed on to generate the incoming OAM beam and measure the evolution of the intensity profile of the diffracted beam as it propagates away from the circular sector. The spectra of the diffracted OAM beams are shown numerically and experimentally to have a sinc shaped envelope centered at the OAM value of the incoming OAM wave.

  13. Optical communication beyond orbital angular momentum

    OpenAIRE

    Trichili, Abderrahmen; Rosales-Guzm?n, Carmelo; Dudley, Angela; Ndagano, Bienvenu; Ben Salem, Amine; Zghal, Mourad; Forbes, Andrew

    2016-01-01

    Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexing using both the radial and azimuthal degrees of freedom. We achieve this with a holographic approac...

  14. Sorting and quantifying orbital angular momentum of laser beams

    CSIR Research Space (South Africa)

    Schulze, C

    2013-10-01

    Full Text Available We present a novel tool for sorting the orbital angular momentum and to determine the orbital angular momentum density of laser beams, which is based on the use of correlation filters....

  15. Verification of angular dependence in MOSFET detector

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Clayton H.; Shorto, Julian M.B.; Siqueira, Paulo T.D.; Nunes, Maíra G.; Silva Junior, Iremar A.; Yoriyaz, Hélio, E-mail: chsouza@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    In vivo dosimetry is an essential tool for quality assurance programs, being a procedure commonly performed with thermoluminescent dosimeters (TLDs) or diodes. However, a type of dosimeter that has increasing popularity in recent years is the metal-oxide-semiconductor field effect transistor (MOSFET) detector. MOSFET dosimeters fulfill all the necessary characteristics to realize in vivo dosimetry since it has a small size, good precision and feasibility of measurement, as well as easy handling. Nevertheless, its true differential is to allow reading of the dose in real time, enabling immediate intervention in the correction of physical parameters deviations and anticipation of small anatomical changes in a patient during treatment. In order for MOSFET dosimeter to be better accepted in clinical routine, information reporting performance should be available frequently. For this reason, this work proposes to verify reproducibility and angular dependence of a standard sensitivity MOSFET dosimeter (TN-502RD-H) for Cs-137 and Co-60 sources. Experimental data were satisfactory and MOSFET dosimeter presented a reproducibility of 3.3% and 2.7% (1 SD) for Cs-137 and Co-60 sources, respectively. In addition, an angular dependence of up to 6.1% and 16.3% for both radioactive sources, respectively. It is conclusive that MOSFET dosimeter TN-502RD-H has satisfactory reproducibility and a considerable angular dependence, mainly for the Co-60 source. This means that although precise measurements, special attention must be taken for applications in certain anatomical regions in a patient. (author)

  16. Angular momentum evolution of galaxies in EAGLE

    Science.gov (United States)

    Lagos, Claudia del P.; Theuns, Tom; Stevens, Adam R. H.; Cortese, Luca; Padilla, Nelson D.; Davis, Timothy A.; Contreras, Sergio; Croton, Darren

    2017-02-01

    We use the EAGLE cosmological hydrodynamic simulation suite to study the specific angular momentum of galaxies, j, with the aims of (i) investigating the physical causes behind the wide range of j at fixed mass and (ii) examining whether simple, theoretical models can explain the seemingly complex and non-linear nature of the evolution of j. We find that j of the stars, jstars, and baryons, jbar, are strongly correlated with stellar and baryon mass, respectively, with the scatter being highly correlated with morphological proxies such as gas fraction, stellar concentration, (u-r) intrinsic colour, stellar age and the ratio of circular velocity to velocity dispersion. We compare with available observations at z = 0 and find excellent agreement. We find that jbar follows the theoretical expectation of an isothermal collapsing halo under conservation of specific angular momentum to within ≈50 per cent, while the subsample of rotation-supported galaxies are equally well described by a simple model in which the disc angular momentum is just enough to maintain marginally stable discs. We extracted evolutionary tracks of the stellar spin parameter of EAGLE galaxies and found that the fate of their jstars at z = 0 depends sensitively on their star formation and merger histories. From these tracks, we identified two distinct physical channels behind low jstars galaxies at z = 0: (i) galaxy mergers, and (ii) early star formation quenching. The latter can produce galaxies with low jstars and early-type morphologies even in the absence of mergers.

  17. Angular light modulator using optical blinds.

    Science.gov (United States)

    Bian, Zichao; Alhudaithy, Soliman; Wang, Zhe; Zhang, Zibang; Guo, Kaikai; Bian, Liheng; Tomizawa, Yuji; Satonick, Peter; Hoshino, Kazunori; Zheng, Guoan

    2016-12-12

    Spatial light modulator (SLM) is widely used in imaging applications for modulating light intensity and phase delay. In this paper, we report a novel device concept termed angular light modulator (ALM). Different from the SLM, the reported ALM employs a tunable blind structure to modulate the angular components of the incoming light waves. For spatial-domain light modulation, the ALM can be directly placed in front of an image sensor for selecting different angular light components. In this case, we can sweep the slat angle of the blind structure and capture multiple images corresponding to different perspectives. These images can then be back-projected for 3D tomographic refocusing. By using a fixed slat angle, we can also convert the incident-angle information into intensity variations for wavefront sensing or introduce a translational shift to the defocused object for high-speed autofocusing. For Fourier-domain light modulation, the ALM can be placed at the pupil plane of an optical system for reinforcing the light propagating trajectories. We show that a pupil-plane-modulated system is able to achieve a better resolution for out-of-focus objects while maintaining the same resolution for in-focus objects. The reported ALM can be fabricated on the chip level and controlled by an external magnetic field. It may provide new insights for developing novel imaging and vision devices.

  18. Bimodal oscillations in nephron autoregulation

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Pavlov, A.N.; Mosekilde, Erik

    2002-01-01

    The individual functional unit of the kidney (the nephron) displays oscillations in its pressure and flow regulation at two different time scales: fast oscillations associated with a myogenic dynamics of the afferent arteriole, and slower oscillations arising from a delay in the tubuloglomerular...

  19. Spectral linewidths of Josephson oscillators

    DEFF Research Database (Denmark)

    Salerno, M; Samuelsen, Mogens Rugholm; Yulin, AV

    2001-01-01

    We show that the linewidth of a Josephson flux-flow oscillator has the same functional dependence on temperature, static, and dynamic resistances as the ones of Josephson single-fluxon oscillators and small Josephson junctions. This suggests a universal formula for the linewidth of Josephson...... oscillators....

  20. Spherical angular spectrum and the fractional order Fourier transform.

    Science.gov (United States)

    Pellat-Finet, Pierre; Durand, Pierre-Emmanuel; Fogret, Eric

    2006-12-01

    The notion of a spherical angular spectrum leads to the decomposition of the field amplitude on a spherical emitter into a sum of spherical waves that converge onto the Fourier sphere of the emitter. Unlike the usual angular spectrum, the spherical angular spectrum is propagated as the field amplitude, in a way that can be expressed by a fractional order Fourier transform.

  1. Electra: Repetitively Pulsed Angularly Multiplexed KrF Laser System Performance

    Science.gov (United States)

    Wolford, Matthew; Myers, Matthew; Giuliani, John; Sethian, John; Burns, Patrick; Hegeler, Frank; Jaynes, Reginald

    2008-11-01

    As in a full size fusion power plant beam line, Electra is a multistage laser amplifier system. The multistage amplifier system consists of a commercial discharge laser and two doubled sided electron beam pumped amplifiers. Angular multiplexing is used in the optical layout to provide pulse length control and to maximize laser extraction from the amplifiers. Two angularly multiplexed beams have extracted 30 J of KrF laser light with an aperture 8 x 10 cm^2, which is sufficient to extract over 500 J from the main amplifier and models agree. The main amplifier of Electra in oscillator mode has demonstrated single shot and rep-rate laser energies exceeding 700 J with 100 ns pulsewidth at 248 nm with an aperture 29 x 29 cm^2. Continuous operation of the KrF electron beam pumped oscillator has lasted for more than 2.5 hours without failure at 1 Hz and 2.5 Hz. The measured intensity and pulse energy for durations greater than thousand shots are consistent at measurable rep-rates of 1 Hz, 2.5 Hz and 5 Hz.

  2. Application of the Angular Overlap Model to Lanthanide Phthalocyanines (Aplicacion Del Modelo de Traslape Angular a Ftalocinaninas de Lantanidos)

    Science.gov (United States)

    1989-07-15

    IWORK UNIT ELEMENT NO NO. NO. ACCESSION NO. 11. TITLE (Include Security Classification) UNCLASSIFIED: Aplicacion Del Modelo De Traslape Angular A...Justificatio Aplicacion Del Medelo De Traslape Angular A By Ftalocinaninas De Lantanidos Disributon/ (Application of the Angular Overlap Model to...Control Data - DD Form 1473. Copies of the form are available from the cognizant contract administrator. APLICACION DEL MODELO DE TRASLAPE ANGULAR A

  3. Nonlinear (Anharmonic Casimir Oscillator

    Directory of Open Access Journals (Sweden)

    Habibollah Razmi

    2011-01-01

    Full Text Available We want to study the dynamics of a simple linear harmonic micro spring which is under the influence of the quantum Casimir force/pressure and thus behaves as a (an nonlinear (anharmonic Casimir oscillator. Generally, the equation of motion of this nonlinear micromechanical Casimir oscillator has no exact solvable (analytical solution and the turning point(s of the system has (have no fixed position(s; however, for particular values of the stiffness of the micro spring and at appropriately well-chosen distance scales and conditions, there is (are approximately sinusoidal solution(s for the problem (the variable turning points are collected in a very small interval of positions. This, as a simple and elementary plan, may be useful in controlling the Casimir stiction problem in micromechanical devices.

  4. Entanglement in neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, M.; Dell' Anno, F.; De Siena, S.; Illuminati, F. [Universita degli Studi di Salerno Via Ponte don Melillon, Dipt. di Matematica e Informatica, Fisciano SA (Italy); INFN Sezione di Napoli, Gruppo collegato di Salerno - Baronissi SA (Italy); Dell' Anno, F.; De Siena, S.; Illuminati, F. [CNR-INFM Coherentia - Napoli (Italy); Blasone, M. [ISI Foundation for Scientific Interchange, Torino (Italy)

    2009-03-15

    Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)

  5. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  6. Convection and stellar oscillations

    DEFF Research Database (Denmark)

    Aarslev, Magnus Johan

    2017-01-01

    of stars. For stars like the sun, energy transport in the outer layers occurs mainly through turbulent convection. Here, pressure mode oscillations are essentially propagating sound waves, whose properties can be altered by interaction with the turbulent motion of the gas. This has always been a problem...... for asteroseismology, because of the challenges inherent in modelling turbulent convection in 1D stellar models. As a result of oversimplifying the physics near the surface, theoretical calculations systematically overestimate the oscillation frequencies. This has become known as the asteroseismic surface effect. Due...... to lacking better options, this frequency difference is typically corrected for with ad-hoc formulae. The topic of this thesis is the improvement of 1D stellar convection models and the effects this has on asteroseismic properties. The source of improvements is 3D simulations of radiation...

  7. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, S.M.; Hansen, Lars Kai; Parnas, J.

    2007-01-01

    A proprioceptive stimulus consisting of a weight change of a handheld load has recently been shown to elicit an evoked potential. Previously, somatosensory gamma oscillations have only been evoked by electrical stimuli. We conjectured that a natural proprioceptive stimulus also would be able...... to evoke gamma oscillations. EEG was recorded using 64 channels in 14 healthy subjects. In each of three runs a stimulus of 100 g load increment in each hand was presented in 120 trials. Data were wavelet transformed and runs collapsed. Inter-trial phase coherence (ITPC) was computed as the best measure...... contralateral to stimulus side and additionally an unexpected 20 Hz activity was observed slightly lateralized in the frontal central region. The gamma phase locking may be a manifestation of early somatosensory feature integration. The analyses suggest that the high frequency activity consists of two distinct...

  8. Neutrino Masses and Oscillations

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Treille, Daniel

    2002-01-01

    This course will not cover its subject in the customary way. The emphasis will be on the simple theoretical concepts (helicity, handedness, chirality, Majorana masses) which are obscure in most of the literature, and on the quantum mechanics of oscillations, that ALL books get wrong. Which, hopefully, will not deter me from discussing some of the most interesting results from the labs and from the cosmos.

  9. Decay of oscillating universes

    Science.gov (United States)

    Mithani, Audrey Todhunter

    2016-08-01

    It has been suggested by Ellis et al that the universe could be eternal in the past, without beginning. In their model, the "emergent universe'' exists forever in the past, in an "eternal'' phase before inflation begins. We will show that in general, such an "eternal'' phase is not possible, because of an instability due to quantum tunneling. One candidate model, the "simple harmonic universe'' has been shown by Graham et al to be perturbatively stable; we find that it is unstable with respect to quantum tunneling. We also investigate the stability of a distinct oscillating model in loop quantum cosmology with respect to small perturbations and to quantum collapse. We find that the model has perturbatively stable and unstable solutions, with both types of solutions occupying significant regions of the parameter space. All solutions are unstable with respect to collapse by quantum tunneling to zero size. In addition, we investigate the effect of vacuum corrections, due to the trace anomaly and the Casimir effect, on the stability of an oscillating universe with respect to decay by tunneling to the singularity. We find that these corrections do not generally stabilize an oscillating universe. Finally, we determine the decay rate of the oscillating universe. Although the wave function of the universe lacks explicit time dependence in canonical quantum cosmology, time evolution may be present implicitly through the semiclassical superspace variables, which themselves depend on time in classical dynamics. Here, we apply this approach to the simple harmonic universe, by extending the model to include a massless, minimally coupled scalar field φ which has little effect on the dynamics but can play the role of a "clock''.

  10. Oscillating stagnation point flow

    Science.gov (United States)

    Grosch, C. E.; Salwen, H.

    1982-01-01

    A solution of the Navier-Stokes equations is given for an incompressible stagnation point flow whose magnitude oscillates in time about a constant, non-zero, value (an unsteady Hiemenz flow). Analytic approximations to the solution in the low and high frequency limits are given and compared with the results of numerical integrations. The application of these results to one aspect of the boundary layer receptivity problem is also discussed.

  11. The beat frequency model for QPOs. [Quasi-Periodic-Oscillations

    Science.gov (United States)

    Shaham, Jacob

    1987-01-01

    The quasi-periodic oscillation (QPO) phenomenon has come to pose increasingly complex problems as sources have been discovered; these currently number 12, of which at least seven are X-ray binaries. The beat-frequency model (BFM), originally devised to characterize the first and simplest of the QPOs, GX5-1, is presently discussed with a view to its assumptions and applicability to other QPOs. The most important problem with the BFM is identified as the assumption that the neutron star involved rotates at an angular frequency of the order, in the case of GX5-1, of 10 msec.

  12. Self-oscillating resonant power converter

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to resonant power converters and inverters comprising a self-oscillating feedback loop coupled from a switch output to a control input of a switching network comprising one or more semiconductor switches. The self-oscillating feedback loop sets a switching frequency...... of the power converter and comprises a first intrinsic switch capacitance coupled between a switch output and a control input of the switching network and a first inductor. The first inductor is coupled in-between a first bias voltage source and the control input of the switching network and has...... a substantially fixed inductance. The first bias voltage source is configured to generate an adjustable bias voltage applied to the first inductor. The output voltage of the power converter is controlled in a flexible and rapid manner by controlling the adjustable bias voltage....

  13. Oscillations in the Umbral Atmosphere

    Science.gov (United States)

    Brynildsen, N.; Maltby, P.; Foley, C. R.; Fredvik, T.; Kjeldseth-Moe, O.

    2004-06-01

    The results of simultaneous observations of oscillations in the chromosphere, transition region, and corona above nine sunspots are presented. The data are obtained through coordinated observing with the Solar and Heliospheric Observatory — SOHO and the Transition Region And Coronal Explorer — TRACE. Oscillations are detected above each umbra. The power spectra show one dominant frequency corresponding to a period close to 3 min. We show that the oscillations in the sunspot transition region can be modeled by upwardly propagating acoustic waves. In the corona the oscillations are limited to small regions that often coincide with the endpoints of sunspot coronal loops. Spectral observations show that oscillations in the corona contribute to the observed oscillations in the TRACE 171 Å channel observations. We show that a recent suggestion regarding a connection between sunspot plumes and 3-min oscillations conflicts with the observations.

  14. Relaxation damping in oscillating contacts.

    Science.gov (United States)

    Popov, M; Popov, V L; Pohrt, R

    2015-11-09

    If a contact of two purely elastic bodies with no sliding (infinite coefficient of friction) is subjected to superimposed oscillations in the normal and tangential directions, then a specific damping appears, that is not dependent on friction or dissipation in the material. We call this effect "relaxation damping". The rate of energy dissipation due to relaxation damping is calculated in a closed analytic form for arbitrary axially-symmetric contacts. In the case of equal frequency of normal and tangential oscillations, the dissipated energy per cycle is proportional to the square of the amplitude of tangential oscillation and to the absolute value of the amplitude of normal oscillation, and is dependent on the phase shift between both oscillations. In the case of low frequency tangential oscillations with superimposed high frequency normal oscillations, the dissipation is proportional to the ratio of the frequencies. Generalization of the results for macroscopically planar, randomly rough surfaces as well as for the case of finite friction is discussed.

  15. Angular momentum evolution in laser-plasma accelerators

    CERN Document Server

    Thaury, C; Corde, S; Lehe, R; Bouteiller, M Le; Phuoc, K Ta; Davoine, X; Rax, J -M; Rousse, A; Malka, V

    2013-01-01

    The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extend in the phase space and the angular momentum which allows for non-planar electron trajectories. Whereas the emittance of electron beams produced in laser- plasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in laser-plasma accelerator carry some angular momentum, but its origin was not established. Here we identify one source of angular momentum growth and we present experimental results showing that the angular momentum content evolves during the acceleration.

  16. Angular-Momentum Evolution in Laser-Plasma Accelerators

    CERN Document Server

    Thaury, Cédric; Corde, Sébastien; Lehe, Rémi; Le Bouteiller, Madeleine; Ta Phuoc, Kim; Davoine, Xavier; Rax, J. M.; Rousse, Antoine; Malka, Victor

    2013-01-01

    The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extent in the phase space and the angular momentum which allows for non-planar electron trajectories. Whereas the emittance of electron beams produced in laserplasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in laser-plasma accelerator carry some angular momentum, but its origin was not established. Here we identify one source of angular momentum growth and we present experimental results showing that the angular momentum content evolves during the acceleration.

  17. Short-period pulsar oscillations following a glitch

    Energy Technology Data Exchange (ETDEWEB)

    Van Eysden, C. A. [NORDITA, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)

    2014-07-10

    Following a glitch, the crust and magnetized plasma in the outer core of a neutron star are believed to rapidly establish a state of co-rotation within a few seconds by process analogous to classical Ekman pumping. However, in ideal magnetohydrodynamics, a final state of co-rotation is inconsistent with conservation of energy of the system. We demonstrate that, after the Ekman-like spin up is completed, magneto-inertial waves continue to propagate throughout the star, exciting torsional oscillations in the crust and plasma. The crust oscillation is irregular and quasi-periodic, with a dominant frequency of the order of seconds. Crust oscillations commence after an Alfvén crossing time, approximately half a minute at the magnetic pole, and are subsequently damped by the electron viscosity over approximately an hour. In rapidly rotating stars, the magneto-inertial spectrum in the core approaches a continuum, and crust oscillations are damped by resonant absorption analogous to quasi-periodic oscillations in magnetars. The oscillations predicted are unlikely to be observed in timing data from existing radio telescopes, but may be visible to next generation telescope arrays.

  18. Baryon acoustic oscillation intensity mapping of dark energy.

    Science.gov (United States)

    Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B; McDonald, Patrick

    2008-03-07

    The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called "dark energy." To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 10(9) individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.

  19. Baryon Acoustic Oscillation Intensity Mapping of Dark Energy

    Science.gov (United States)

    Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B.; McDonald, Patrick

    2008-03-01

    The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called “dark energy.” To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 109 individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.

  20. Research on static angular stiffness measurement of flexible joint

    Directory of Open Access Journals (Sweden)

    Yongchao HUANG

    2016-10-01

    Full Text Available Measurement accuracy of the angular stiffness of flexible joint is directly related to the control accuracy and sensitivity of gyro, but the traditional measurement methods have many problems. According to the principle of angular stiffness measurement of flexible joint, two static measurement methods of angular stiffness are proposed based on different loading ways, namely mechanical loading angular stiffness measurement and piezoelectric loading angular stiffness measurement. The mechanical loading angular stiffness measurement system is built by using a motor driven indexing feeding tilting table, the measure experiment if the angular stiffness of flexible joint is conducted, and the angular stiffness of flexible joint is measured. For the excessive fluctuation problem of the measure result in mechanical load test, a piezoelectric loading structure is designed and a measurement method employing piezoelectric actuator is proposed for angular stiffness measurement of flexible joint. Based on ANSYS Workbench, the displacement output of the piezoelectric loading structure is analyzed by simulations. The simulation results illustrate that the displacement output meets the requirement of static loading angular stiffness measurement of flexible joint, and the theoretical feasibility of piezoelectric loading angular stiffness measurement method is validated.

  1. Angular Rate Estimation Using a Distributed Set of Accelerometers

    Directory of Open Access Journals (Sweden)

    Sung Kyung Hong

    2011-11-01

    Full Text Available A distributed set of accelerometers based on the minimum number of 12 accelerometers allows for computation of the magnitude of angular rate without using the integration operation. However, it is not easy to extract the magnitude of angular rate in the presence of the accelerometer noises, and even worse, it is difficult to determine the direction of a rotation because the angular rate is present in its quadratic form within the inertial measurement system equations. In this paper, an extended Kalman filter scheme to correctly estimate both the direction and magnitude of the angular rate through fusion of the angular acceleration and quadratic form of the angular rate is proposed. We also provide observability analysis for the general distributed accelerometers-based inertial measurement unit, and show that the angular rate can be correctly estimated by general nonlinear state estimators such as an extended Kalman filter, except under certain extreme conditions.

  2. Angular correlation studies in noble gases

    Science.gov (United States)

    Coleman, P. G.

    1990-01-01

    There has been a recent revival of interest in the measurement of angular correlation of annihilation photons from the decay of positrons and positronium in gases. This revival has been stimulated by the possibility offered by the technique to shed new light on the apparently low positronium formation fraction in the heavier noble gases and to provide information on positronium quenching processes in gases such as oxygen. There is also the potential for learning about positronium slowing down in gases. This review focuses on experimental noble gas work and considers what new information has been, and may be, gained from these studies.

  3. Angular Distributions of Discrete Mesoscale Mapping Functions

    Science.gov (United States)

    Kroszczyński, Krzysztof

    2015-08-01

    The paper presents the results of analyses of numerical experiments concerning GPS signal propagation delays in the atmosphere and the discrete mapping functions defined on their basis. The delays were determined using data from the mesoscale non-hydrostatic weather model operated in the Centre of Applied Geomatics, Military University of Technology. A special attention was paid to investigating angular characteristics of GPS slant delays for low angles of elevation. The investigation proved that the temporal and spatial variability of the slant delays depends to a large extent on current weather conditions.

  4. Optical communication beyond orbital angular momentum

    CSIR Research Space (South Africa)

    Trichili, A

    2016-06-01

    Full Text Available . 3CSIR National Laser Centre, PO Box 395, Pretoria 0001, South Africa. 4Institut Mines-Télécom/Télécom SudParis, 9 rue Charles Fourier, 91011 Evry, France. Correspondence and requests for materials should be addressed to C.R.-G. (email: carmelo..., Y. et al. Free-space optical communications using orbital-angular-momentum multiplexing combined with mimo-based spatial multiplexing. Opt. Lett. 40, 4210–4213 (2015). 19. Zhao, N., Li, X., Li, G. & Kahn, J. M. Capacity limits of spatially...

  5. The angular momentum of isolated white dwarfs

    Directory of Open Access Journals (Sweden)

    Brassard P.

    2013-03-01

    Full Text Available This is a very brief report on an ongoing program aimed at mapping the internal rotation profiles of stars through asteroseismology. Three years ago, we developed and applied successfully a new technique to the pulsating GW Vir white dwarf PG 1159−035, and were able to infer that it rotates very slowly and rigidly over some 99% of its mass. We applied the same approach to the three other GW Vir pulsators with available rotational splitting data, and found similar results. We discuss the implications of these findings on the question of the angular momentum of white dwarfs resulting from single star evolution.

  6. Projection of angular momentum via linear algebra

    Science.gov (United States)

    Johnson, Calvin W.; O'Mara, Kevin D.

    2017-12-01

    Projection of many-body states with good angular momentum from an initial state is usually accomplished by a three-dimensional integral. We show how projection can instead be done by solving a straightforward system of linear equations. We demonstrate the method and give sample applications to 48Cr and 60Fe in the p f shell. This new projection scheme, which is competitive against the standard numerical quadrature, should also be applicable to other quantum numbers such as isospin and particle number.

  7. Developmental Changes in Sleep Oscillations during Early Childhood

    Directory of Open Access Journals (Sweden)

    Eckehard Olbrich

    2017-01-01

    Full Text Available Although quantitative analysis of the sleep electroencephalogram (EEG has uncovered important aspects of brain activity during sleep in adolescents and adults, similar findings from preschool-age children remain scarce. This study utilized our time-frequency method to examine sleep oscillations as characteristic features of human sleep EEG. Data were collected from a longitudinal sample of young children (n=8; 3 males at ages 2, 3, and 5 years. Following sleep stage scoring, we detected and characterized oscillatory events across age and examined how their features corresponded to spectral changes in the sleep EEG. Results indicated a developmental decrease in the incidence of delta and theta oscillations. Spindle oscillations, however, were almost absent at 2 years but pronounced at 5 years. All oscillatory event changes were stronger during light sleep than slow-wave sleep. Large interindividual differences in sleep oscillations and their characteristics (e.g., “ultrafast” spindle-like oscillations, theta oscillation incidence/frequency also existed. Changes in delta and spindle oscillations across early childhood may indicate early maturation of the thalamocortical system. Our analytic approach holds promise for revealing novel types of sleep oscillatory events that are specific to periods of rapid normal development across the lifespan and during other times of aberrant changes in neurobehavioral function.

  8. Developmental Changes in Sleep Oscillations during Early Childhood.

    Science.gov (United States)

    Olbrich, Eckehard; Rusterholz, Thomas; LeBourgeois, Monique K; Achermann, Peter

    2017-01-01

    Although quantitative analysis of the sleep electroencephalogram (EEG) has uncovered important aspects of brain activity during sleep in adolescents and adults, similar findings from preschool-age children remain scarce. This study utilized our time-frequency method to examine sleep oscillations as characteristic features of human sleep EEG. Data were collected from a longitudinal sample of young children (n = 8; 3 males) at ages 2, 3, and 5 years. Following sleep stage scoring, we detected and characterized oscillatory events across age and examined how their features corresponded to spectral changes in the sleep EEG. Results indicated a developmental decrease in the incidence of delta and theta oscillations. Spindle oscillations, however, were almost absent at 2 years but pronounced at 5 years. All oscillatory event changes were stronger during light sleep than slow-wave sleep. Large interindividual differences in sleep oscillations and their characteristics (e.g., "ultrafast" spindle-like oscillations, theta oscillation incidence/frequency) also existed. Changes in delta and spindle oscillations across early childhood may indicate early maturation of the thalamocortical system. Our analytic approach holds promise for revealing novel types of sleep oscillatory events that are specific to periods of rapid normal development across the lifespan and during other times of aberrant changes in neurobehavioral function.

  9. Glucose Oscillations Can Activate an Endogenous Oscillator in Pancreatic Islets.

    Directory of Open Access Journals (Sweden)

    Joseph P McKenna

    2016-10-01

    Full Text Available Pancreatic islets manage elevations in blood glucose level by secreting insulin into the bloodstream in a pulsatile manner. Pulsatile insulin secretion is governed by islet oscillations such as bursting electrical activity and periodic Ca2+ entry in β-cells. In this report, we demonstrate that although islet oscillations are lost by fixing a glucose stimulus at a high concentration, they may be recovered by subsequently converting the glucose stimulus to a sinusoidal wave. We predict with mathematical modeling that the sinusoidal glucose signal's ability to recover islet oscillations depends on its amplitude and period, and we confirm our predictions by conducting experiments with islets using a microfluidics platform. Our results suggest a mechanism whereby oscillatory blood glucose levels recruit non-oscillating islets to enhance pulsatile insulin output from the pancreas. Our results also provide support for the main hypothesis of the Dual Oscillator Model, that a glycolytic oscillator endogenous to islet β-cells drives pulsatile insulin secretion.

  10. Supramolecular architectures constructed using angular bipyridyl ligands

    CERN Document Server

    Barnett, S A

    2003-01-01

    This work details the synthesis and characterization of a series of coordination frameworks that are formed using bidentate angular N-donor ligands. Pyrimidine was reacted with metal(ll) nitrate salts. Reactions using Cd(NO sub 3) sub 2 receive particular focus and the analogous reactions using the linear ligand, pyrazine, were studied for comparison. In all cases, two-dimensional coordination networks were prepared. Structural diversity is observed for the Cd(ll) centres including metal-nitrate bridging. In contrast, first row transition metal nitrates form isostructural one-dimensional chains with only the bridging N-donor ligands generating polymeric propagation. The angular ligand, 2,4-bis(4-pyridyl)-1,3,5-triazine (dpt), was reacted with Cd(NO sub 3) sub 2 and Zn(NO sub 3) sub 2. Whereas Zn(NO sub 3) sub 2 compounds exhibit solvent mediated polymorphism, a range of structures were obtained for the reactions with Cd(NO sub 3) sub 2 , including the first example of a doubly parallel interpenetrated 4.8 sup...

  11. The Cosmology Large Angular Scale Surveyor (CLASS)

    Science.gov (United States)

    Xu, Zhilei; CLASS Collaboration

    2018-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an array of telescopes that observe Cosmic Microwave Background (CMB) polarization over ~65% of the sky from the Atacama Desert, Chile in frequency bands at 40 GHz, 90 GHz, 150 GHz, and 220 GHz. Multi-frequency observation enables CLASS to distinguish CMB from galactic foregrounds. CLASS is making large angular scale CMB polarization measurements as part of a five-year survey that will constrain the tensor-to-scalar ratio at the 0.01 level by measuring both the reionization and recombination peaks. CLASS will measure the optical depth to last scattering to near the cosmic variance limit, significantly improving on current constraints. Combining the CLASS optical depth measurement with higher resolution data will improve constraints on the sum of neutrino masses. CLASS will also provide the deepest wide-sky-area Galactic microwave polarization maps for Galactic studies. CLASS has been observing for over one year at 40 GHz frequency band. In my talk, I will introduce the science, design, and current status of the CLASS experiment.

  12. Fast diffusion imaging with high angular resolution.

    Science.gov (United States)

    Chao, Tzu-Cheng; Chiou, Jr-Yuan George; Maier, Stephan E; Madore, Bruno

    2017-02-01

    High angular resolution diffusion imaging (HARDI) is a well-established method to help reveal the architecture of nerve bundles, but long scan times and geometric distortions inherent to echo planar imaging (EPI) have limited its integration into clinical protocols. A fast imaging method is proposed here that combines accelerated multishot diffusion imaging (AMDI), multiplexed sensitivity encoding (MUSE), and crossing fiber angular resolution of intravoxel structure (CFARI) to reduce spatial distortions and reduce total scan time. A multishot EPI sequence was used to improve geometrical fidelity as compared to a single-shot EPI acquisition, and acceleration in both k-space and diffusion sampling enabled reductions in scan time. The method is regularized and self-navigated for motion correction. Seven volunteers were scanned in this study, including four with volumetric whole brain acquisitions. The average similarity of microstructural orientations between undersampled datasets and their fully sampled counterparts was above 85%, with scan times below 5 min for whole-brain acquisitions. Up to 2.7-fold scan time acceleration along with four-fold distortion reduction was achieved. The proposed imaging strategy can generate HARDI results with relatively good geometrical fidelity and low scan duration, which may help facilitate the transition of HARDI from a successful research tool to a practical clinical one. Magn Reson Med 77:696-706, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  13. Critique of the angular momentum sum rules and a new angular momentum sum rule

    NARCIS (Netherlands)

    Bakker, B.L.G.; Leader, E.; Trueman, T. L.

    2004-01-01

    We present a study of the tensorial structure of the hadronic matrix elements of the angular momentum operators J. Well known results in the literature are shown to be incorrect, and we have taken pains to derive the correct expressions in three different ways, two involving explicit physical wave

  14. Modeling microtubule oscillations

    DEFF Research Database (Denmark)

    Jobs, E.; Wolf, D.E.; Flyvbjerg, H.

    1997-01-01

    Synchronization of molecular reactions in a macroscopic volume may cause the volume's physical properties to change dynamically and thus reveal much about the reactions. As an example, experimental time series for so-called microtubule oscillations are analyzed in terms of a minimal model...... for this complex polymerization-depolymerization cycle. The model reproduces well the qualitatively different time series that result from different experimental conditions, and illuminates the role and importance of individual processes in the cycle. Simple experiments are suggested that can further test...... and define the model and the polymer's reaction cycle....

  15. From excitability to oscillations

    DEFF Research Database (Denmark)

    Postnov, D. E.; Neganova, A. Y.; Jacobsen, J. C. B.

    2013-01-01

    One consequence of cell-to-cell communication is the appearance of synchronized behavior, where many cells cooperate to generate new dynamical patterns. We present a simple functional model of vasomotion based on the concept of a two-mode oscillator with dual interactions: via relatively slow...... diffusive coupling that gives rise to wave dynamics and via fast changes in membrane potential that propagate almost instantly over significant distances. The model reproduces the basic calcium dynamics of the vascular smooth muscle cell: calcium waves which upon increased activity of cGMP-sensitive calcium...

  16. Oscillations in nonlinear systems

    CERN Document Server

    Hale, Jack K

    2015-01-01

    By focusing on ordinary differential equations that contain a small parameter, this concise graduate-level introduction to the theory of nonlinear oscillations provides a unified approach to obtaining periodic solutions to nonautonomous and autonomous differential equations. It also indicates key relationships with other related procedures and probes the consequences of the methods of averaging and integral manifolds.Part I of the text features introductory material, including discussions of matrices, linear systems of differential equations, and stability of solutions of nonlinear systems. Pa

  17. Brain Oscillations, Hypnosis, and Hypnotizability.

    Science.gov (United States)

    Jensen, Mark P; Adachi, Tomonori; Hakimian, Shahin

    2015-01-01

    This article summarizes the state-of-science knowledge regarding the associations between hypnosis and brain oscillations. Brain oscillations represent the combined electrical activity of neuronal assemblies, usually measured as specific frequencies representing slower (delta, theta, alpha) and faster (beta, gamma) oscillations. Hypnosis has been most closely linked to power in the theta band and changes in gamma activity. These oscillations are thought to play a critical role in both the recording and recall of declarative memory and emotional limbic circuits. The authors propose that this role may be the mechanistic link between theta (and perhaps gamma) oscillations and hypnosis, specifically, that the increases in theta oscillations and changes in gamma activity observed with hypnosis may underlie some hypnotic responses. If these hypotheses are supported, they have important implications for both understanding the effects of hypnosis and for enhancing response to hypnotic treatments.

  18. Hyperchaos in coupled Colpitts oscillators

    DEFF Research Database (Denmark)

    Cenys, Antanas; Tamasevicius, Arunas; Baziliauskas, Antanas

    2003-01-01

    The paper suggests a simple solution of building a hyperchaotic oscillator. Two chaotic Colpitts oscillators, either identical or non-identical ones are coupled by means of two linear resistors R-k. The hyperchaotic output signal v(t) is a linear combination, specifically the mean of the individu...... oscillators. The spectrum of the Lyapunov exponents (LE) have been calculated versus the coefficient k. For weakly coupled oscillators there are two positive LE indicating hyperchaotic behaviour of the overall system.......The paper suggests a simple solution of building a hyperchaotic oscillator. Two chaotic Colpitts oscillators, either identical or non-identical ones are coupled by means of two linear resistors R-k. The hyperchaotic output signal v(t) is a linear combination, specifically the mean of the individual...

  19. Angular momentum transport and particle acceleration during magnetorotational instability in a kinetic accretion disk.

    Science.gov (United States)

    Hoshino, Masahiro

    2015-02-13

    Angular momentum transport and particle acceleration during the magnetorotational instability (MRI) in a collisionless accretion disk are investigated using three-dimensional particle-in-cell simulation. We show that the kinetic MRI can provide not only high-energy particle acceleration but also enhancement of angular momentum transport. We find that the plasma pressure anisotropy inside the channel flow with p(∥)>p(⊥) induced by active magnetic reconnection suppresses the onset of subsequent reconnection, which, in turn, leads to high-magnetic-field saturation and enhancement of the Maxwell stress tensor of angular momentum transport. Meanwhile, during the quiescent stage of reconnection, the plasma isotropization progresses in the channel flow and the anisotropic plasma with p(⊥)>p(∥) due to the dynamo action of MRI outside the channel flow contribute to rapid reconnection and strong particle acceleration. This efficient particle acceleration and enhanced angular momentum transport in a collisionless accretion disk may explain the origin of high-energy particles observed around massive black holes.

  20. India plate angular velocity and contemporary deformation rates from continuous GPS measurements from 1996 to 2015.

    Science.gov (United States)

    Jade, Sridevi; Shrungeshwara, T S; Kumar, Kireet; Choudhury, Pallabee; Dumka, Rakesh K; Bhu, Harsh

    2017-09-12

    We estimate a new angular velocity for the India plate and contemporary deformation rates in the plate interior and along its seismically active margins from Global Positioning System (GPS) measurements from 1996 to 2015 at 70 continuous and 3 episodic stations. A new India-ITRF2008 angular velocity is estimated from 30 GPS sites, which include stations from western and eastern regions of the plate interior that were unrepresented or only sparsely sampled in previous studies. Our newly estimated India-ITRF2008 Euler pole is located significantly closer to the plate with ~3% higher angular velocity than all previous estimates and thus predicts more rapid variations in rates and directions along the plate boundaries. The 30 India plate GPS site velocities are well fit by the new angular velocity, with north and east RMS misfits of only 0.8 and 0.9 mm/yr, respectively. India fixed velocities suggest an approximate of 1-2 mm/yr intra-plate deformation that might be concentrated along regional dislocations, faults in Peninsular India, Kachchh and Indo-Gangetic plain. Relative to our newly-defined India plate frame of reference, the newly estimated velocities for 43 other GPS sites along the plate margins give insights into active deformation along India's seismically active northern and eastern boundaries.

  1. An Energetic Approach to Homogenization Problems with Rapidly Oscillating Potentials

    Science.gov (United States)

    1979-08-01

    34 (studied by Benssoussan, Lions, and Papanicolau ) pus A + . W(’ Nu;; f on Q; u 0, as e goes n to zero. W is a periodic function (in each variable) from 3R...obe conjectured by Lionoussan, ian a d Papanicolau 12), Re ark 17.7, We are going to prove that unfortunately it Is not correct in the general caseo in

  2. Linearization of conservative nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Belendez, A; Alvarez, M L [Departamento de Fisica, IngenierIa de Sistemas y TeorIa de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, E; Pascual, I [Departamento de Optica, FarmacologIa y AnatomIa, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es

    2009-03-11

    A linearization method of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force which allows us to obtain a frequency-amplitude relation which is valid not only for small but also for large amplitudes and, sometimes, for the complete range of oscillation amplitudes. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of the technique.

  3. Detailed structure of pipe flow with water hammer oscillations | Kioni ...

    African Journals Online (AJOL)

    Herein, the evolution and detailed structure of velocity and pressure fields of an oscillating axi-symmetric pipe flow arising from a rapid closure of a valve has been determined through the solution, by the Finite Volume technique, of the full Navier Stokes equations. The method correctly predicts the distortion of the pressure ...

  4. A Matterwave Transistor Oscillator

    CERN Document Server

    Caliga, Seth C; Zozulya, Alex A; Anderson, Dana Z

    2012-01-01

    A triple-well atomtronic transistor combined with forced RF evaporation is used to realize a driven matterwave oscillator circuit. The transistor is implemented using a metalized compound glass and silicon substrate. On-chip and external currents produce a cigar-shaped magnetic trap, which is divided into transistor source, gate, and drain regions by a pair of blue-detuned optical barriers projected onto the magnetic trap through a chip window. A resonant laser beam illuminating the drain portion of the atomtronic transistor couples atoms emitted by the gate to the vacuum. The circuit operates by loading the source with cold atoms and utilizing forced evaporation as a power supply that produces a positive chemical potential in the source, which subsequently drives oscillation. High-resolution in-trap absorption imagery reveals gate atoms that have tunneled from the source and establishes that the circuit emits a nominally mono-energetic matterwave with a frequency of 23.5(1.0) kHz by tunneling from the gate, ...

  5. Heat exchanger with oscillating flow

    Science.gov (United States)

    Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)

    1993-01-01

    Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.

  6. The Duffing oscillator with damping

    DEFF Research Database (Denmark)

    Johannessen, Kim

    2015-01-01

    An analytical solution to the differential equation describing the Duffing oscillator with damping is presented. The damping term of the differential equation and the initial conditions satisfy an algebraic equation, and thus the solution is specific for this type of damping. The nonlinear term....... It is established that the period of oscillation is shorter compared to that of a linearized model but increasing with time and asymptotically approaching the period of oscillation of the linear damped model. An explicit expression for the period of oscillation has been derived, and it is found to be very accurate....

  7. Unstable oscillators based hyperchaotic circuit

    DEFF Research Database (Denmark)

    Murali, K.; Tamasevicius, A.; G. Mykolaitis, A.

    1999-01-01

    A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations in the circ......A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations...

  8. Forced Oscillation Wind Tunnel Testing for FASER Flight Research Aircraft

    Science.gov (United States)

    Hoe, Garrison; Owens, Donald B.; Denham, Casey

    2012-01-01

    As unmanned air vehicles (UAVs) continue to expand their flight envelopes into areas of high angular rate and high angle of attack, modeling the complex unsteady aerodynamics for simulation in these regimes has become more difficult using traditional methods. The goal of this experiment was to improve the current six degree-of-freedom aerodynamic model of a small UAV by replacing the analytically derived damping derivatives with experimentally derived values. The UAV is named the Free-flying Aircraft for Sub-scale Experimental Research, FASER, and was tested in the NASA Langley Research Center 12- Foot Low-Speed Tunnel. The forced oscillation wind tunnel test technique was used to measure damping in the roll and yaw axes. By imparting a variety of sinusoidal motions, the effects of non-dimensional angular rate and reduced frequency were examined over a large range of angle of attack and side-slip combinations. Tests were performed at angles of attack from -5 to 40 degrees, sideslip angles of -30 to 30 degrees, oscillation amplitudes from 5 to 30 degrees, and reduced frequencies from 0.010 to 0.133. Additionally, the effect of aileron or elevator deflection on the damping coefficients was examined. Comparisons are made of two different data reduction methods used to obtain the damping derivatives. The results show that the damping derivatives are mainly a function of angle of attack and have dependence on the non-dimensional rate and reduced frequency only in the stall/post-stall regime

  9. Untangling Galaxy Components - The Angular Momentum Parameter

    Science.gov (United States)

    Tabor, Martha; Merrifield, Michael; Aragon-Salamanca, Alfonso

    2017-06-01

    We have developed a new technique to decompose Integral Field spectral data cubes into separate bulge and disk components, allowing us to study the kinematic and stellar population properties of the individual components and how they vary with position. We present here the application of this method to a sample of fast rotator early type galaxies from the MaNGA integral field survey, and demonstrate how it can be used to explore key properties of the individual components. By extracting ages, metallicities and the angular momentum parameter lambda of the bulges and disks, we show how this method can give us new insights into the underlying structure of the galaxies and discuss what this can tell us about their evolution history.

  10. Angular filter refractometry analysis using simulated annealing.

    Science.gov (United States)

    Angland, P; Haberberger, D; Ivancic, S T; Froula, D H

    2017-10-01

    Angular filter refractometry (AFR) is a novel technique used to characterize the density profiles of laser-produced, long-scale-length plasmas [Haberberger et al., Phys. Plasmas 21, 056304 (2014)]. A new method of analysis for AFR images was developed using an annealing algorithm to iteratively converge upon a solution. A synthetic AFR image is constructed by a user-defined density profile described by eight parameters, and the algorithm systematically alters the parameters until the comparison is optimized. The optimization and statistical uncertainty calculation is based on the minimization of the χ(2) test statistic. The algorithm was successfully applied to experimental data of plasma expanding from a flat, laser-irradiated target, resulting in an average uncertainty in the density profile of 5%-20% in the region of interest.

  11. Mean angular momenta in heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, D. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, 35020 Legnaro (Padova) (Italy); Scarlassara, F. [Dipartimento di Fisica, Universita di Padova and Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova (Italy); Bednarczyk, P. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, 35020 Legnaro (Padova) (Italy); Beghini, S. [Dipartimento di Fisica, Universita di Padova and Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova (Italy); Corradi, L. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, 35020 Legnaro (Padova) (Italy); Montagnoli, G. [Dipartimento di Fisica, Universita di Padova and Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova (Italy); Mueller, L. [Dipartimento di Fisica, Universita di Padova and Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova (Italy); Napoli, D.R. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, 35020 Legnaro (Padova) (Italy); Petrache, C.M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, 35020 Legnaro (Padova) (Italy); Varier, K.M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, 35020 Legnaro (Padova) (Italy); Soramel, F. [Dipartimento di Fisica, Universita di Udine, Udine (Italy); Spolaore, P. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, 35020 Legnaro (Padova) (Italy); Stefanini, A.M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, 35020 Legnaro (Padova) (Italy); Segato, G.F. [Dipartimento di Fisica, Universita di Padova and Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova (Italy); Signorini, C. [Dipartimento di Fisica, Universita di Padova and Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova (Italy); Zhang, H. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, 35020 Legnaro (Padova) (Italy)

    1995-02-06

    The results of the measurement of fusion cross sections {sigma}{sub fus} and mean angular momenta left angle l right angle for the five systems {sup 16}O+{sup 112}Cd, {sup 28}Si+{sup 94,100}Mo and {sup 58,64}Ni+{sup 64}Ni are reported. The direct comparison between the fusion excitation function and left angle l right angle (E) confirms consistency of the two independent observables. By analyzing the data in the framework of the coupled channels (CC) approach a good overall agreement between experiment and model predictions has been found. In particular the influence of 2n-transfer channels with positive Q-values is put in evidence. ((orig.)).

  12. Coherent control of photoelectron wavepacket angular interferograms

    Science.gov (United States)

    Hockett, P.; Wollenhaupt, M.; Baumert, T.

    2015-11-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process, where the final (time-integrated) observable coherently samples all instantaneous states of the light-matter interaction. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable.

  13. Angular size-redshift: Experiment and calculation

    Science.gov (United States)

    Amirkhanyan, V. R.

    2014-10-01

    In this paper the next attempt is made to clarify the nature of the Euclidean behavior of the boundary in the angular size-redshift cosmological test. It is shown experimentally that this can be explained by the selection determined by anisotropic morphology and anisotropic radiation of extended radio sources. A catalogue of extended radio sources with minimal flux densities of about 0.01 Jy at 1.4 GHz was compiled for conducting the test. Without the assumption of their size evolution, the agreement between the experiment and calculation was obtained both in the ΛCDM model (Ω m = 0.27, Ω v = 0.73) and the Friedman model (Ω = 0.1).

  14. Cierre angular primario: opciones quirúrgicas

    Directory of Open Access Journals (Sweden)

    Henry Pérez-González

    2014-10-01

    Full Text Available Se realizó una revisión bibliográfica con el objetivo de exponer las principales opciones quirúrgicas en el tratamiento del cierre angular primario efectuando una búsqueda de los principales artículos científicos de los últimos años, así como de la literatura impresa que incluye el tema, siendo seleccionados los contenidos más relevantes para la confección del informe final. Las opciones de tratamiento incluyen la cirugía láser (iridotomía, iridoplastia y la cirugía incisional (filtrante, extracción del cristalino, dependiendo de los factores fisiopatológicos involucrados y la forma clínica en el momento del diagnóstico.

  15. Optical communication beyond orbital angular momentum

    Science.gov (United States)

    Trichili, Abderrahmen; Rosales-Guzmán, Carmelo; Dudley, Angela; Ndagano, Bienvenu; Ben Salem, Amine; Zghal, Mourad; Forbes, Andrew

    2016-06-01

    Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexing using both the radial and azimuthal degrees of freedom. We achieve this with a holographic approach that allows over 100 modes to be encoded on a single hologram, across a wide wavelength range, in a wavelength independent manner. Our results offer a new tool that will prove useful in realizing higher bit rates for next generation optical networks.

  16. High orbital angular momentum harmonic generation

    CERN Document Server

    Vieira, J; Alves, E P; Fonseca, R A; Mendonça, J T; Bingham, R; Norreys, P; Silva, L O

    2016-01-01

    We identify and explore a high orbital angular momentum (OAM) harmonics generation and amplification mechanism that manipulates the OAM independently of any other laser property, by preserving the initial laser wavelength, through stimulated Raman backscattering in a plasma. The high OAM harmonics spectra can extend at least up to the limiting value imposed by the paraxial approximation. We show with theory and particle-in-cell simulations that the orders of the OAM harmonics can be tuned according to a selection rule that depends on the initial OAM of the interacting waves. We illustrate the high OAM harmonics generation in a plasma using several examples including the generation of prime OAM harmonics. The process can also be realised in any nonlinear optical Kerr media supporting three-wave interactions.

  17. Angular filter refractometry analysis using simulated annealing

    Science.gov (United States)

    Angland, P.; Haberberger, D.; Ivancic, S. T.; Froula, D. H.

    2017-10-01

    Angular filter refractometry (AFR) is a novel technique used to characterize the density profiles of laser-produced, long-scale-length plasmas [Haberberger et al., Phys. Plasmas 21, 056304 (2014)]. A new method of analysis for AFR images was developed using an annealing algorithm to iteratively converge upon a solution. A synthetic AFR image is constructed by a user-defined density profile described by eight parameters, and the algorithm systematically alters the parameters until the comparison is optimized. The optimization and statistical uncertainty calculation is based on the minimization of the χ2 test statistic. The algorithm was successfully applied to experimental data of plasma expanding from a flat, laser-irradiated target, resulting in an average uncertainty in the density profile of 5%-20% in the region of interest.

  18. Coherent Control of Photoelectron Wavepacket Angular Interferograms

    CERN Document Server

    Hockett, Paul; Baumert, Thomas

    2015-01-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable.

  19. Angular Position Tracking Control of a Quadcopter

    Directory of Open Access Journals (Sweden)

    T. V. Glazkov

    2017-01-01

    Full Text Available The paper dwells on tracking the quad-copter angular position with desired quality parameters of transient processes. The aerial vehicle is considered as a rigid body with six degrees of freedom.  A full rigid body quad-copter mathematical model is considered without the assumption of smallness of the Euler angles.Among the most well known methods of non-linear stabilization are feedback linearization and backstepping. The backstepping approach allows us to have an effective solution of the stabilization problems with uncertainties available in the system. However, in synthesis of the feedback through backstepping, there is still an urgent issue: how to ensure desirable quality of transients in the closed-loop system. The paper presents a solution of this problem using as an example the tracking a given (programmed change of the angular position of a quad-copter.The control algorithms obtained in this paper are implemented using the Rolling Spider MATLAB Toolbox (ROSMAT tool package on the Parrot Rolling Spider quad-copter. A numerical simulation and experiments have shown the efficiency of obtained control laws, with the transient processes taking into account the desired quality indicators. However, the experiments showed that lack of terms in the mathematical model to describe the aerodynamic effects, resulted in the instability of the quad-copter flight near the obstacle (the effect of the reflected airflow.Further research can be aimed at solving the control problem in question using a mathematical model of the quad-copter motion that takes into account various aerodynamic effects.One of the potential application areas for the theoretical results, obtained in the paper, is to solve the problems of automatic control of unmanned aerial vehicles.

  20. Angular Approach Scanning Ion Conductance Microscopy.

    Science.gov (United States)

    Shevchuk, Andrew; Tokar, Sergiy; Gopal, Sahana; Sanchez-Alonso, Jose L; Tarasov, Andrei I; Vélez-Ortega, A Catalina; Chiappini, Ciro; Rorsman, Patrik; Stevens, Molly M; Gorelik, Julia; Frolenkov, Gregory I; Klenerman, David; Korchev, Yuri E

    2016-05-24

    Scanning ion conductance microscopy (SICM) is a super-resolution live imaging technique that uses a glass nanopipette as an imaging probe to produce three-dimensional (3D) images of cell surface. SICM can be used to analyze cell morphology at nanoscale, follow membrane dynamics, precisely position an imaging nanopipette close to a structure of interest, and use it to obtain ion channel recordings or locally apply stimuli or drugs. Practical implementations of these SICM advantages, however, are often complicated due to the limitations of currently available SICM systems that inherited their design from other scanning probe microscopes in which the scan assembly is placed right above the specimen. Such arrangement makes the setting of optimal illumination necessary for phase contrast or the use of high magnification upright optics difficult. Here, we describe the designs that allow mounting SICM scan head on a standard patch-clamp micromanipulator and imaging the sample at an adjustable approach angle. This angle could be as shallow as the approach angle of a patch-clamp pipette between a water immersion objective and the specimen. Using this angular approach SICM, we obtained topographical images of cells grown on nontransparent nanoneedle arrays, of islets of Langerhans, and of hippocampal neurons under upright optical microscope. We also imaged previously inaccessible areas of cells such as the side surfaces of the hair cell stereocilia and the intercalated disks of isolated cardiac myocytes, and performed targeted patch-clamp recordings from the latter. Thus, our new, to our knowledge, angular approach SICM allows imaging of living cells on nontransparent substrates and a seamless integration with most patch-clamp setups on either inverted or upright microscopes, which would facilitate research in cell biophysics and physiology. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. The Source of Planetary Period Oscillations in Saturn's Magnetosphere

    Science.gov (United States)

    Khurana, Krishan K.; Mitchell, Jonathan L.; Mueller, Ingo C. F.

    2017-04-01

    In this presentation, we resolve a three-decades old mystery of how Saturn is able to modulate its kilometric wave radiation and many field and plasma parameters at the planetary rotation period even though its magnetic field is extremely axisymmetric. Such waves emanating from the auroral regions of planets lacking solid surfaces have been used as clocks to measure the lengths of their days, because asymmetric internal magnetic fields spin-modulate wave amplitudes. A review by Carbary and Mitchell (2013, Periodicities in Saturn's magnetosphere, Reviews of Geophysics, 51, 1-30) on the topic summarized findings from over 200 research articles, on what the phenomena is, how it is manifested in a host of magnetospheric and auroral parameters; examined several proposed models and pointed out their shortcomings. The topic has now been explored in several topical international workshops, but the problem has remained unsolved so far. By quantitatively modeling the amplitudes and phases of these oscillations in the magnetic field observed by the Cassini spacecraft, we have now uncovered the generation mechanism responsible for these oscillations. We show that the observed oscillations are the manifestations of two global convectional conveyor belts excited in Saturn's upper atmosphere by auroral heating below its northern and southern auroral belts. We demonstrate that a feedback process develops in Saturn system such that the magnetosphere expends energy to drive convection in Saturn's upper stratosphere but gains back an amplified share in the form of angular momentum that it uses to enforce corotation in the magnetosphere and power its aurorae and radio waves. In essence, we have uncovered a new mechanism (convection assisted loss of angular momentum in an atmosphere) by which gaseous planets lose their angular momentum to their magnetospheres and outflowing plasma at rates far above previous predictions. We next show how the m = 1 convection system in the upper

  2. Angular dynamics of small crystals in viscous flow

    Science.gov (United States)

    Fries, J.; Einarsson, J.; Mehlig, B.

    2017-01-01

    The angular dynamics of a very small ellipsoidal particle in a viscous flow decouples from its translational dynamics and the particle angular velocity is given by Jeffery's theory. It is known that cuboid particles share these properties. In the literature a special case is most frequently discussed, namely that of axisymmetric particles with a continuous rotation symmetry. Here we compute the angular dynamics of crystals that possess a discrete rotation symmetry and certain mirror symmetries but do not have a continuous rotation symmetry. We give examples of such particles that nevertheless obey Jeffery's theory. However, there are other examples where the angular dynamics is determined by a more general equation of motion.

  3. Coronal Waves and Oscillations

    Directory of Open Access Journals (Sweden)

    Nakariakov Valery M.

    2005-07-01

    Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.

  4. Hyperchaotic system with unstable oscillators

    DEFF Research Database (Denmark)

    Murali, K.; Tamasevicius, A.; Mykolaitis, G.

    2000-01-01

    A simple electronic system exhibiting hyperchaotic behaviour is described. The system includes two nonlinearly coupled 2nd order unstable oscillators, each composed of an LC resonance loop and an amplifier. The system is investigated by means of numerical integration of appropriate differential...... equations, PSPICE simulations and hardware experiments. The Lyapunov exponents are presented to confirm hyperchaotic mode of the oscillations....

  5. The Wien Bridge Oscillator Family

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2006-01-01

    A tutorial in which the Wien bridge family of oscillators is defined and investigated. Oscillators which do not fit into the Barkhausen criterion topology may be designed. A design procedure based on initial complex pole quality factor is reported. The dynamic transfer characteristic...

  6. Energy Conservative Limit Cycle Oscillations

    NARCIS (Netherlands)

    Stramigioli, Stefano; van Dijk, Michel

    This paper shows how globally attractive limit cycle oscillations can be induced in a system with a nonlinear feedback element. Based on the same principle as the Van der Pol oscillator, the feedback behaves as a negative damping for low velocities but as an ordinary damper for high velocities. This

  7. Mechanical Parametric Oscillations and Waves

    Science.gov (United States)

    Dittrich, William; Minkin, Leonid; Shapovalov, Alexander S.

    2013-01-01

    Usually parametric oscillations are not the topic of general physics courses. Probably it is because the mathematical theory of this phenomenon is relatively complicated, and until quite recently laboratory experiments for students were difficult to implement. However parametric oscillations are good illustrations of the laws of physics and can be…

  8. Augmenting cognition by neuronal oscillations

    NARCIS (Netherlands)

    Horschig, J.M.; Zumer, J.; Bahramisharif, A.

    2014-01-01

    Cortical oscillations have been shown to represent fundamental functions of a working brain, e.g., communication, stimulus binding, error monitoring, and inhibition, and are directly linked to behavior. Recent studies intervening with these oscillations have demonstrated effective modulation of both

  9. Tomography on f-oscillators

    Science.gov (United States)

    Dudinets, I. V.; Man’ko, V. I.; Marmo, G.; Zaccaria, F.

    2017-11-01

    Symplectic tomographies of classical and quantum states are shortly reviewed. The concept of nonlinear f-oscillators and their properties are recalled. The tomographic probability representations of oscillator coherent states and the problem of entanglement are then discussed. The entanglement of even and odd f-coherent states is evaluated by the linear entropy.

  10. Quasi Periodic Oscillations in Blazars

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy; Volume 35; Issue 3. Quasi Periodic Oscillations in Blazars ... Here we report our recent discoveries of Quasi-Periodic Oscillations (QPOs) in blazars time series data in X-ray and optical electromagnetic bands. Any such detection can give important ...

  11. Oscillating scalar fields in extended quintessence

    Science.gov (United States)

    Li, Dan; Pi, Shi; Scherrer, Robert J.

    2018-01-01

    We study a rapidly oscillating scalar field with potential V (ϕ )=k |ϕ |n nonminimally coupled to the Ricci scalar R via a term of the form (1 -8 π G0ξ ϕ2)R in the action. In the weak coupling limit, we calculate the effect of the nonminimal coupling on the time-averaged equation of state parameter γ =(p +ρ )/ρ . The change in ⟨γ ⟩ is always negative for n ≥2 and always positive for n values of n . Constraints on the time variation of G force this change to be infinitesimally small at the present time whenever the scalar field dominates the expansion, but constraints in the early universe are not as stringent. The rapid oscillation induced in G also produces an additional contribution to the Friedman equation that behaves like an effective energy density with a stiff equation of state, but we show that, under reasonable assumptions, this effective energy density is always smaller than the density of the scalar field itself.

  12. Prospects for Neutrino Oscillation Physics

    Directory of Open Access Journals (Sweden)

    Silvia Pascoli

    2013-01-01

    Full Text Available Recently the last unknown lepton mixing angle θ 13 has been determined to be relatively large, not too far from its previous upper bound. This opens exciting possibilities for upcoming neutrino oscillation experiments towards addressing fundamental questions, among them the type of the neutrino mass hierarchy and the search for CP violation in the lepton sector. In this paper we review the phenomenology of neutrino oscillations, focusing on subleading effects, which will be the key towards these goals. Starting from a discussion of the present determination of three-flavour oscillation parameters, we give an outlook on the potential of near-term oscillation physics as well as on the long-term program towards possible future precision oscillation facilities. We discuss accelerator-driven long-baseline experiments as well as nonaccelerator possibilities from atmospheric and reactor neutrinos.

  13. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... that at resonance a stationary state arise consisting of multiple oscillating shock waves. Off resonance driving leads to a nearly linear oscillating ground state but superimposed by bursts of a fast oscillating shock wave. Based on a travelling wave ansatz for the fluid velocity potential with an added 2'nd order...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....

  14. Orbital angular momentum filter of photon based on spin-orbital angular momentum coupling

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dong-Xu; Zhang, Pei, E-mail: zhangpei@mail.ustc.edu.cn; Liu, Rui-Feng; Li, Hong-Rong; Gao, Hong; Li, Fu-Li

    2015-10-16

    Highlights: • We propose a scheme that can filter the orbital angular momentum of photons. • Our scheme filters the specific mode with destroying the mode. • Our scheme can theoretically filter infinity modes. • The orientation of Dove lens and HWP decides which mode will output. - Abstract: Determination of the orbital angular momentum (OAM) of vortex beams has been hotly discussed. We propose a new type of method to determine the orbital angular momentum of photons, filtering. We present an OAM filter scheme which consists of a cavity with a polarization-based Mach–Zehnder interferometer inside. Our scheme can purify the specific OAM with unitary efficiency theoretically without the pre-knowledge of the OAM spectrum of the input light. We also implemented a proof-of-principle experiment to demonstrate the feasibility of our scheme by cascading three interferometers. Our method offers a new way to determine the OAM spectrum of a light and this method can also be exploited to prepare the eigenstate of vortex beams.

  15. Higher-dimensional oscillations of quantum particles

    Science.gov (United States)

    Hedin, Eric

    2013-04-01

    A theoretical framework is developed in which elementary particles have a component of their wave function extending into higher spatial dimensions, based on an extension of the Schr"odinger equation to include 4^th and 5^th spatial components [E. R. Hedin, Physics Essays 25, 2 (2012)]. A higher-dimensional harmonic oscillator confining potential localizes particles into 3-d space (characterizing the ``brane tension'' which confines Standard Model particles to the sub-manifold). Several consistency checks of this model are: a match with the quantum phenomenon of ``zitterbewegung''; the predicted intrinsic spin angular momentum is of order h/2π; the magnetic moment of the electron is determined (with a gyromagnetic ratio of 2); the nuclear force ``hard core'' radius is accurately predicted; the ratio of quark masses (of the up and down quarks) is found to be consistent with QCD theory; and possible explanations of the Planck mass and Planck length. An application of higher-dimensional particle effects to the astrophysics of stars shows that radical physical inconsistencies are not evident. Finally, this model suggests a possible explanation of dark matter as the fractional probability manifestations of a ladder of the higher-dimensional symmetric excited states of ordinary particles.

  16. Semiclassical analysis of angular differential cross sections for single-electron capture in 250-eV H++H collisions

    Science.gov (United States)

    Frémont, F.

    2015-05-01

    A classical model based on the resolution of Hamilton equations of motion is used to determine the angular distribution of H projectiles following single-electron capture in H++H collisions at an incident projectile energy of 250 eV. At such low energies, the experimental charge-exchange probability and angular differential cross sections exhibit oscillatory structures that are classically related to the number of swaps the electron experiences between the target and the projectile during the collision. These oscillations are well reproduced by models based on quantum mechanics. In the present paper, the angular distribution of H projectiles is determined classically, at angles varying from 0.1° up to 7°. The variation in intensity due to interferences caused by the indiscernibility between different trajectories is calculated, and the role of these interferences is discussed.

  17. Transverse momentum asymmetry of the extracted electron in field ionization of a Hydrogen Atom with angular momentum

    CERN Document Server

    Artru, Xavier

    2014-01-01

    The tunneling ionization of a hydrogen atom excited in the presence of a static electric field is investigated for the case where, before being extracted, the electron has an orbital angular momentum L perpendicular to the field E. The escaping electron has a nonzero mean transverse velocity in the direction of E cross . This asymmetry is similar to the Collins effect in the fragmentation into hadrons of a transversely polarized quark. In addition, the linear Stark effect make and oscillate in time. The degree of asymmetry is calculated at leading order in E for an initial state of maximum transverse . The conditions for the observation of this asymmetry are discussed.

  18. Neutrinos from SN1987A: a reanalysis of the angular distribution

    Energy Technology Data Exchange (ETDEWEB)

    Costantini, M.L. [Universita dell' Aquila and INFN, L' Aquila (Italy); Ianni, A. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (AQ) (Italy); Vissani, F. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (AQ) (Italy)

    2005-02-15

    We reanalyze the neutrino events from SN1987A and compare them with the expectations from simple theoretical models of neutrino emission. The assumption that a few events have been caused by elastic scattering is not in contrast with the 'standard' picture of the collapse, and yields a more satisfactory angular distribution. The mean energy of electron antineutrinos is in the range E=12-15 MeV and the total energy radiated in the range (2-5)x10{sup 53} erg. These values are not in disagreement with those suggested by current theoretical paradigm, but leave wide space to non-standard pictures, especially when neutrino oscillations are included.

  19. Learning web development with Bootstrap and AngularJS

    CERN Document Server

    Radford, Stephen

    2015-01-01

    Whether you know a little about Bootstrap or AngularJS, or you're a complete beginner, this book will enhance your capabilities in both frameworks and you'll build a fully functional web app. A working knowledge of HTML, CSS, and JavaScript is required to fully get to grips with Bootstrap and AngularJS.

  20. A kinematic model for calculating the magnitude of angular ...

    African Journals Online (AJOL)

    Here we have formulated a model for calculating the magnitude of angular momentum transfer in a steady-state accretion disk using only two parameters; the transport coefficient of vorticity,w and the rate of change of angular velocity with radial distance, dW/ dR . With this model, the mass accretion rate in an accretion disk ...

  1. Cubature/ Unscented/ Sigma Point Kalman Filtering with Angular Measurement Models

    Science.gov (United States)

    2015-07-06

    Cubature/ Unscented/ Sigma Point Kalman Filtering with Angular Measurement Models David Frederic Crouse Naval Research Laboratory 4555 Overlook Ave...measurement and process non- linearities, such as the cubature Kalman filter, can perform ex- tremely poorly in many applications involving angular... Kalman filtering is a realization of the best linear unbiased estimator (BLUE) that evaluates certain integrals for expected values using different forms

  2. Angular Momentum Transport in Quasi-Keplerian Accretion Disks ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The specific angular momentum (angular momentum per unit mass) carried by a parcel of gas ... have used the Einstein summation convention in equation (2). For the .... incorrect. 3.3 Correction proposed by HM. HM claim that this is because Frank et al. (1992) have used an incorrect expression for vrel (i.e., equation (10)).

  3. Epidemiology Of Angular Deformities Of The Knee In Children In ...

    African Journals Online (AJOL)

    Background: Bony problems such as angular deformities and metabolic bone disease are of high frequency in Nigeria. Objective: The aim of this study was to define the pattern of presentation in children with angular deformities of the knee. Methodology: It was an 18-month prospective study involving children aged ...

  4. Poisson algebra of quasilocal angular momentum and its asymptotic limit

    Science.gov (United States)

    Yoon, Jong Hyuk; Oh, Seung Hun

    2018-01-01

    We study the previously proposed quasilocal angular momentum of gravitational fields in the absence of isometries. The quasilocal angular momentum L(ξ) has the following attractive properties; (i) it follows from Einstein’s constraint equations, (ii) it satisfies the Poisson algebra \

  5. CLASS: The Cosmology Large Angular Scale Surveyor

    Science.gov (United States)

    Essinger-Hileman, Thomas; Ali, Aamir; Amiri, Mandana; Appel, John W.; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; hide

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is an experiment to measure the signature of a gravitational wave background from inflation in the polarization of the cosmic microwave background (CMB). CLASS is a multi-frequency array of four telescopes operating from a high-altitude site in the Atacama Desert in Chile. CLASS will survey 70% of the sky in four frequency bands centered at 38, 93, 148, and 217 GHz, which are chosen to straddle the Galactic-foreground minimum while avoiding strong atmospheric emission lines. This broad frequency coverage ensures that CLASS can distinguish Galactic emission from the CMB. The sky fraction of the CLASS survey will allow the full shape of the primordial B-mode power spectrum to be characterized, including the signal from reionization at low-length. Its unique combination of large sky coverage, control of systematic errors, and high sensitivity will allow CLASS to measure or place upper limits on the tensor-to-scalar ratio at a level of r = 0:01 and make a cosmic-variance-limited measurement of the optical depth to the surface of last scattering, tau. (c) (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  6. Tracing the Angular Dependence of the CGM

    Science.gov (United States)

    Nattinger, Michael; Christensen, Charlotte

    2017-01-01

    The circumgalactic media (CGM) is enriched with metals through a process called the baryon cycle, which may play a significant role in the regulation of star formation. While the relationship between the CGM’s baryonic makeup and impact parameter is well documented, the relationship between the baryonic distribution of the CGM and the azimuthal angle out of the plane of the galaxy remains an open question. We investigated the angular distribution of baryons in the CGM by creating mock-absorption line spectra for a high-resolution simulation of a Milky Way-like galaxy at redshift zero. By comparison with data from the Cosmic Origins Spectrograph-Halos survey, we determined that our equivalent widths of HI, MgII, CIII, SiII, and SiIII are consistent with observations. Using our data, we found that low ionization state material is more prevalent at low azimuthal angles and that high ionization state material is more prevalent at high angles within the virial radius. We attributed this increased ionization to higher temperatures at high angles. We also found that the highest metallicity levels appear at high and low azimuthal angles, with lower metallicities at middle angles. This evidence supports the recycled accretion model of CGM baryon flow.

  7. Optical communications beyond orbital angular momentum

    Science.gov (United States)

    Rosales-Guzmán, Carmelo; Trichili, Abderrahmen; Dudley, Angela; Ndagano, Bienvenu; Ben Salem, Amine; Zghal, Mourad; Forbes, Andrew

    2016-09-01

    Current optical communication technologies are predicted to face a bandwidth capacity limit in the near future. The nature of the limitation is fundamental rather than technological and is set by nonlinearities in optical fibers. One solution, suggested over 30 years ago, comprises the use of spatial modes of light as information carriers. Along this direction, light beams endowed with orbital angular momentum (OAM) have been demonstrated as potential information carriers in both, free space and fibres. However, recent studies suggest that purely OAM modes does not increase the bandwidth of optical communication systems. In fact, in all work to date, only the azimuthal component of transverse spatial modes has been used. Crucially, all transverse spatial modes require two degrees of freedom to be described; in the context of Laguerre-Gaussian (LGp`) beams these are azimuthal (l) and radial (p), the former responsible for OAM. Here, we demonstrate a technique where both degrees of freedom of LG modes are used as information carrier over free space. We transfer images encoded using 100 spatial modes in three wavelengths as our basis, and employ a spatial demultiplexing scheme that detects all 100 modes simultaneously. Our scheme is a hybrid of MIMO and SMM, and serves as a proof-of-principle demonstration. The cross-talk between the modes is small and independent of whether OAM modes are used or not.

  8. The Effect of Systematic Error in Forced Oscillation Testing

    Science.gov (United States)

    Williams, Brianne Y.; Landman, Drew; Flory, Isaac L., IV; Murphy, Patrick C.

    2012-01-01

    One of the fundamental problems in flight dynamics is the formulation of aerodynamic forces and moments acting on an aircraft in arbitrary motion. Classically, conventional stability derivatives are used for the representation of aerodynamic loads in the aircraft equations of motion. However, for modern aircraft with highly nonlinear and unsteady aerodynamic characteristics undergoing maneuvers at high angle of attack and/or angular rates the conventional stability derivative model is no longer valid. Attempts to formulate aerodynamic model equations with unsteady terms are based on several different wind tunnel techniques: for example, captive, wind tunnel single degree-of-freedom, and wind tunnel free-flying techniques. One of the most common techniques is forced oscillation testing. However, the forced oscillation testing method does not address the systematic and systematic correlation errors from the test apparatus that cause inconsistencies in the measured oscillatory stability derivatives. The primary objective of this study is to identify the possible sources and magnitude of systematic error in representative dynamic test apparatuses. Sensitivities of the longitudinal stability derivatives to systematic errors are computed, using a high fidelity simulation of a forced oscillation test rig, and assessed using both Design of Experiments and Monte Carlo methods.

  9. Magnetization oscillations and waves driven by pure spin currents

    Energy Technology Data Exchange (ETDEWEB)

    Demidov, V.E. [Institute for Applied Physics and Center for Nanotechnology, University of Muenster, Corrensstrasse 2-4, 48149 Muenster (Germany); Urazhdin, S. [Department of Physics, Emory University, Atlanta, GA 30322 (United States); Loubens, G. de [SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette (France); Klein, O. [INAC-SPINTEC, CEA/CNRS and Univ. Grenoble Alpes, 38000 Grenoble (France); Cros, V.; Anane, A. [Unité Mixte de Physique CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, 91767 Palaiseau (France); Demokritov, S.O., E-mail: demokrit@uni-muenster.de [Institute for Applied Physics and Center for Nanotechnology, University of Muenster, Corrensstrasse 2-4, 48149 Muenster (Germany); Institute of Metal Physics, Ural Division of RAS, Yekaterinburg 620041 (Russian Federation)

    2017-02-23

    Recent advances in the studies of pure spin currents–flows of angular momentum (spin) not accompanied by the electric currents–have opened new horizons for the emerging technologies based on the electron’s spin degree of freedom, such as spintronics and magnonics. The main advantage of pure spin current, as compared to the spin-polarized electric current, is the possibility to exert spin transfer torque on the magnetization in thin magnetic films without the electrical current flow through the material. In addition to minimizing Joule heating and electromigration effects, this enables the implementation of spin torque devices based on the low-loss insulating magnetic materials, and offers an unprecedented geometric flexibility. Here we review the recent experimental achievements in investigations of magnetization oscillations excited by pure spin currents in different nanomagnetic systems based on metallic and insulating magnetic materials. We discuss the spectral properties of spin-current nano-oscillators, and relate them to the spatial characteristics of the excited dynamic magnetic modes determined by the spatially-resolved measurements. We also show that these systems support locking of the oscillations to external microwave signals, as well as their mutual synchronization, and can be used as efficient nanoscale sources of propagating spin waves.

  10. Bimodal oscillations in nephron autoregulation

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Pavlov, A N; Mosekilde, E

    2002-01-01

    The individual functional unit of the kidney (the nephron) displays oscillations in its pressure and flow regulation at two different time scales: fast oscillations associated with a myogenic dynamics of the afferent arteriole, and slower oscillations arising from a delay in the tubuloglomerular...... feedback. We investigate the intra- and internephron entrainment of the two time scales. In addition to full synchronization, both wavelet analyses of experimental data and numerical simulations reveal a partial entrainment in which neighboring nephrons attain a state of chaotic synchronization...

  11. Collective oscillations in a plasma

    CERN Document Server

    Akhiezer, A I; Polovin, R V; ter Haar, D

    2013-01-01

    International Series of Monographs in Natural Philosophy: Collective Oscillations in a Plasma, Volume 7 presents specific topics within the general field of radio waves propagation. This book contains five chapters that address the theory of linear oscillations in a plasma, the spectra of the eigen oscillations, and the mechanism of high-frequency heating. The opening chapters deal with the self-consistent fields; development of initial perturbation; dispersion permittivity tensor of a plasma in a magnetic field; effect of thermal motion of particles on low-frequency resonances; excitation of

  12. Close binary evolution. II. Impact of tides, wind magnetic braking, and internal angular momentum transport

    Science.gov (United States)

    Song, H. F.; Meynet, G.; Maeder, A.; Ekström, S.; Eggenberger, P.; Georgy, C.; Qin, Y.; Fragos, T.; Soerensen, M.; Barblan, F.; Wade, G. A.

    2018-01-01

    treatment of the internal angular momentum transport has a strong impact on the evolutionary tracks in the Hertzsprung-Russell Diagram as well as on the changes of the surface abundances resulting from rotational mixing. Our modelling suggests that the presence of an undetected close companion might explain rapidly rotating stars with strong surface magnetic fields, having ages well above the magnetic braking timescale. Our models predict that the rotation of most stars of this type increases as a function of time, except for a first initial phase in spin-down systems. The measure of their surface abundances, together, when possible, with their mass-luminosity ratio, provide interesting constraints on the transport efficiencies of angular momentum and chemical species. Conclusions: Close binaries, when studied at phases predating any mass transfer, are key objects to probe the physics of rotation and magnetic fields in stars.

  13. Production of black holes and their angular momentum distribution in models with split fermions

    Science.gov (United States)

    Dai, De-Chang; Starkman, Glenn D.; Stojkovic, Dejan

    2006-05-01

    In models with TeV-scale gravity it is expected that mini black holes will be produced in near-future accelerators. On the other hand, TeV-scale gravity is plagued with many problems like fast proton decay, unacceptably large n-n¯ oscillations, flavor changing neutral currents, large mixing between leptons, etc. Most of these problems can be solved if different fermions are localized at different points in the extra dimensions. We study the cross section for the production of black holes and their angular momentum distribution in these models with “split” fermions. We find that, for a fixed value of the fundamental mass scale, the total production cross section is reduced compared with models where all the fermions are localized at the same point in the extra dimensions. Fermion splitting also implies that the bulk component of the black hole angular momentum must be taken into account in studies of the black hole decay via Hawking radiation.

  14. Detection of polarization in the cosmic microwave background using DASI. Degree Angular Scale Interferometer.

    Science.gov (United States)

    Kovac, J M; Leitch, E M; Pryke, C; Carlstrom, J E; Halverson, N W; Holzapfel, W L

    The past several years have seen the emergence of a standard cosmological model, in which small temperature differences in the cosmic microwave background (CMB) radiation on angular scales of the order of a degree are understood to arise from acoustic oscillations in the hot plasma of the early Universe, arising from primordial density fluctuations. Within the context of this model, recent measurements of the temperature fluctuations have led to profound conclusions about the origin, evolution and composition of the Universe. Using the measured temperature fluctuations, the theoretical framework predicts the level of polarization of the CMB with essentially no free parameters. Therefore, a measurement of the polarization is a critical test of the theory and thus of the validity of the cosmological parameters derived from the CMB measurements. Here we report the detection of polarization of the CMB with the Degree Angular Scale Interferometer (DASI). The polarization is deteced with high confidence, and its level and spatial distribution are in excellent agreement with the predictions of the standard theory.

  15. Observed hierarchy of student proficiency with period, frequency, and angular frequency

    Science.gov (United States)

    Young, Nicholas T.; Heckler, Andrew F.

    2018-01-01

    In the context of a generic harmonic oscillator, we investigated students' accuracy in determining the period, frequency, and angular frequency from mathematical and graphical representations. In a series of studies including interviews, free response tests, and multiple choice tests developed in an iterative process, we assessed students in both algebra-based and calculus-based, traditionally instructed university-level introductory physics courses. Using the results, we categorized nine skills necessary for proficiency in determining period, frequency, and angular frequency. Overall results reveal that, postinstruction, proficiency is quite low: only about 20%-40% of students mastered most of the nine skills. Next, we used a semiquantitative, intuitive method to investigate the hierarchical structure of the nine skills. We also employed the more formal item tree analysis method to verify this structure and found that the skills form a multilevel, nonlinear hierarchy, with mastery of some skills being prerequisite for mastery in other skills. Finally, we implemented a targeted, 30-min group-work activity to improve proficiency in these skills and found a 1 standard deviation gain in accuracy. Overall, the results suggest that many students currently lack these essential skills, targeted practice may lead to required mastery, and that the observed hierarchical structure in the skills suggests that instruction should especially attend to the skills lower in the hierarchy.

  16. Model of stochastic self-oscillation in Gunn diode oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Bocharov, E.P.; Korostelev, G.N.; Khripunov, M.V.

    1987-07-01

    The applicability of the two-mode nonlinear model of decay stochasticity for explanation of the transition from monochromatic self-oscillation to developed stochasticity in the Gunn diode oscillator is demonstrated. Numerical realizations of the basic regimes corresponding to various cases of consideration of the weak nonlinearity of the falling portion of the current-voltage characteristic are presented. A comparative analysis of calculation results of time realizations and experimentally observed oscillograms of stochastic regimes is performed.

  17. Oscillations in Mathematical Biology

    CERN Document Server

    1983-01-01

    The papers in this volume are based on talks given at a one day conference held on the campus of Adelphi University in April 1982. The conference was organized with the title "Oscillations in Mathematical Biology;" however the speakers were allowed considerable latitutde in their choice of topics. In the event, the talks all concerned the dynamics of non-linear systems arising in biology so that the conference achieved a good measure of cohesion. Some of the speakers cho~e not to submit a manuscript for these proceedings, feeling that their material was too conjectural to be committed to print. Also the paper of Rinzel and Troy is a distillation of the two separate talks that the authors gave. Otherwise the material reproduces the conference proceedings. The conference was made possible by the generous support of the Office of the Dean of the College of Arts and Sciences at Adelphi. The bulk of the organization of the conference was carried out by Dr. Ronald Grisell whose energy was in large measure responsib...

  18. Damping time of transverse kink oscillations in active region coronal loops observed by AIA/SDO

    Directory of Open Access Journals (Sweden)

    Abbas Abedini

    2017-05-01

    Full Text Available A coronal loop can be oscillated in various directions. A basic type of coronal loop oscillation is called transverse oscillation that can be caused by different factors, such as nearby active regions and flares. The damping of transverse oscillation may be produced by the dissipation mechanism or the wake of the traveling disturbance. The aim of this paper is to estimate the damping time of transverse (kink coronal loop oscillations and the quantitative dependence of these oscillations on their frequencies in the solar corona loops that are situated near an active region with the Atmospheric Imaging Assembly (AIA onboard Solar Dynamic Observatory (SDO. The observed data on 2014-Oct-17, consisting of 130 images with an interval of 24 seconds in the 171 A0 pass band is analyzed for evidence of transvers kink oscillations along the coronal loops and for estimate of physical parameters by fast Fourier transform (FFT of data times series. In this analyzed signatures of transvers oscillations that are damped rapidly were found, with oscillation periods in the range of P=2-9.5 minutes. Also, damping times and damping qualities of filtered intensities centered on the dominant frequencies are measured in the range of minutes and , respectively. The observational results of this study indicate that the damping times increase with increasing the oscillation periods, and are highly sensitive function of oscillation period, but damping qualities are not very sensitive to the oscillations period. The order of magnitude of the damping times and damping qualities that obtained from this analysis are in good agreement with previous findings by authors and the theoretical prediction for damping of fast kink mode oscillations.

  19. Strong nonlinear oscillators analytical solutions

    CERN Document Server

    Cveticanin, Livija

    2017-01-01

    This book outlines an analytical solution procedure of the pure nonlinear oscillator system, offering a solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter. Includes exercises.

  20. Long period oscillations in sunspots

    Science.gov (United States)

    Chorley, N.; Hnat, B.; Nakariakov, V. M.; Inglis, A. R.; Bakunina, I. A.

    2010-04-01

    Long period oscillations of the gyroresonant emission from sunspot atmospheres are studied. Time series data generated from the sequences of images obtained by the Nobeyama Radioheliograph operating at a frequency of 17 GHz for three sunspots have been analysed and are found to contain significant periods in the range of several tens of minutes. Wavelet analysis shows that these periods are persistent throughout the observation periods. The presence of the oscillations is confirmed by several methods (periodogram, wavelets, Fisher randomisation and empirical mode decomposition). Spatial analysis using the techniques of period, power, correlation and time lag mapping reveals regions of enhanced oscillatory power in the umbral regions. Also seen are two regions of coherent oscillation of about 25 pixels in size, that oscillate in anti-phase with each other. Possible interpretation of the observed periodicities is discussed, in terms of the shallow sunspot model and the leakage of the solar g-modes.

  1. Building a Synthetic Transcriptional Oscillator.

    Science.gov (United States)

    Schwarz-Schilling, Matthaeus; Kim, Jongmin; Cuba, Christian; Weitz, Maximilian; Franco, Elisa; Simmel, Friedrich C

    2016-01-01

    Reaction circuits mimicking genetic oscillators can be realized with synthetic, switchable DNA genes (so-called genelets), and two enzymes only, an RNA polymerase and a ribonuclease. The oscillatory behavior of the genelets is driven by the periodic production and degradation of RNA effector molecules. Here, we describe the preparation, assembly, and testing of a synthetic, transcriptional two-node negative-feedback oscillator, whose dynamics can be followed in real-time by fluorescence read-out.

  2. An Oscillating Magnet Watt Balance

    OpenAIRE

    Ahmedov, H.

    2015-01-01

    We establish the principles for a new generation of simplified and accurate watt balances in which an oscillating magnet generates Faraday's voltage in a stationary coil. A force measuring system and a mechanism providing vertical movements of the magnet are completely independent in an oscillating magnet watt balance. This remarkable feature allows to establish the link between the Planck constant and a macroscopic mass by a one single experiment. Weak dependence on variations of environment...

  3. Interferometric measurement of the angular velocity of moving humans

    Science.gov (United States)

    Nanzer, Jeffrey A.

    2012-06-01

    This paper presents an analysis of the measurement of the angular velocity of walking humans using a millimeter-wave correlation interferometer. Measurement of the angular velocity of moving objects is a desirable function in remote sensing applications. Doppler radar sensors are able to measure the signature of moving humans based on micro-Doppler analysis; however, a person moving with little to no radial velocity produces negligible Doppler returns. Measurement of the angular movement of humans can be done with traditional radar techniques, however the process involves either continuous tracking with narrow beamwidth or angle-of-arrival estimation algorithms. A new method of measuring the angular velocity of moving objects using interferometry has recently been developed which measures the angular velocity of an object without tracking or complex processing. The frequency of the interferometer signal response is proportional to the angular velocity of the object as it passes through the interferometer beam pattern. In this paper, the theory of the interferometric measurement of angular velocity is covered and simulations of the response of a walking human are presented. Simulations are produced using a model of a walking human to show the significant features associated with the interferometer response, which may be used in classification algorithms.

  4. Modeling nonlinearities in MEMS oscillators.

    Science.gov (United States)

    Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A

    2013-08-01

    We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.

  5. A Spinning Mirror for Fast Angular Scans of EBW Emission for Magnetic Pitch Profile Measurement

    CERN Document Server

    Volpe, Francesco

    2010-01-01

    A tilted spinning mirror rapidly steers the line of sight of the electron Bernstein wave (EBW) emission radiometer at the Mega Amp Spherical Tokamak (MAST). In order to resist high mechanical stresses at rotation speeds of up to 12,000 rpm and to avoid eddy current induced magnetic braking, the mirror consists of a glass-reinforced nylon substrate of a special self-balanced design, coated with a reflecting layer. By completing an angular scan every 2.5-10ms, it allows one to characterize with good time resolution the Bernstein-extraordinary-ordinary mode-conversion efficiency as a function of the view angles. Angular maps of conversion efficiency are directly related to the magnetic pitch angle at the cutoff layer for the ordinary mode. Hence, measurements at various frequencies provide the safety factor profile at the plasma edge. Initial measurements and indications of the feasibility of the diagnostic are presented. Moreover, angular scans indicate the best launch conditions for EBW heating.

  6. On Angular Sampling Methods for 3-D Spatial Channel Models

    DEFF Research Database (Denmark)

    Fan, Wei; Jämsä, Tommi; Nielsen, Jesper Ødum

    2015-01-01

    This paper discusses generating three dimensional (3D) spatial channel models with emphasis on the angular sampling methods. Three angular sampling methods, i.e. modified uniform power sampling, modified uniform angular sampling, and random pairing methods are proposed and investigated in detail....... The random pairing method, which uses only twenty sinusoids in the ray-based model for generating the channels, presents good results if the spatial channel cluster is with a small elevation angle spread. For spatial clusters with large elevation angle spreads, however, the random pairing method would fail...

  7. Control of Angular Intervals for Angle-Multiplexed Holographic Memory

    Science.gov (United States)

    Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Shimidzu, Naoki

    2009-03-01

    In angle-multiplexed holographic memory, the full width at half maximum of the Bragg selectivity curves is dependent on the angle formed between the medium and incident laser beams. This indicates the possibility of high density and high multiplexing number by varying the angular intervals between adjacent holograms. We propose an angular interval scheduling for closely stacking holograms into medium even when the angle range is limited. We obtained bit error rates of the order of 10-4 under the following conditions: medium thickness of 1 mm, laser beam wavelength of 532 nm, and angular multiplexing number of 300.

  8. Notes on the quantum theory of angular momentum

    CERN Document Server

    Feenberg, Eugene

    1999-01-01

    This classic, concise text has served a generation of physicists as an exceptionally useful guide to the mysteries of angular momenta and Clebsch-Gordon Coefficients. Derived from notes originally prepared to assist graduate students in reading research papers on atomic, molecular, and nuclear structure, the text first reviews the basic elements of quantum theory. It then examines the development of the fundamental commutation relations for angular momentum components and vector operators, and the ways in which matrix elements and eigenvalues of the angular momentum operators are worked out f

  9. Angular resolution of air-shower array-telescopes

    Science.gov (United States)

    Linsley, J.

    1985-01-01

    A fundamental limit on the angular resolution of air shower array-telescopes is set by the finite number of shower particles coupled with the finite thickness of the particle swarm. Consequently the angular resolution which can be achieved in practice depends in a determinant manner on the size and number of detectors in an array-telescope, as well as on the detector separation and the timing resolution. It is also necessary to examine the meaning of particle density in whatever type of detector is used. Results are given which can be used to predict the angular resolution of a given instrument for showers of various sizes, and to compare different instruments.

  10. Where angular momentum goes in a precessing black hole binary

    OpenAIRE

    Lousto, Carlos O.; Zlochower, Yosef

    2013-01-01

    We evolve a set of 32 equal-mass black-hole binaries with collinear spins (with intrinsic spin magnitudes $|\\vec{S}_{1,2}/m^2_{1,2}|=0.8$) to study the effects of precession in the highly nonlinear plunge and merger regimes. We compare the direction of the instantaneous radiated angular momentum, $\\hat{\\delta J}_{\\rm rad}(t)$, to the directions of the total angular momentum, $\\hat{J}(t)$, and the orbital angular momentum, $\\hat{L}(t)$. We find that $\\hat{\\delta J}_{\\rm rad}(t)$ approximately ...

  11. On the nonlinear modeling of ring oscillators

    KAUST Repository

    Elwakil, Ahmed S.

    2009-06-01

    We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.

  12. Optical, UV, and EUV Oscillations of SS Cygni in Outburst

    Energy Technology Data Exchange (ETDEWEB)

    Mauche, C W

    2003-12-19

    I provide a review of observations in the optical, UV (HST), and EUV (EUVE and Chandra LETG) of the rapid periodic oscillations of nonmagnetic, disk-accreting, high mass-accretion rate cataclysmic variables (CVs), with particular emphasis on the dwarf nova SS Cyg in outburst. In addition, I drawn attention to a correlation, valid over nearly six orders of magnitude in frequency, between the frequencies of the quasi-periodic oscillations (QPOs) of white dwarf, neutron star, and black hole binaries. This correlation identifies the high frequency quasi-coherent oscillations (so-called ''dwarf nova oscillations'') of CVs with the kilohertz QPOs of low mass X-ray binaries (LMXBs), and the low frequency and low coherence QPOs of CVs with the horizontal branch oscillations (or the broad noise component identified as such) of LMXBs. Assuming that the same mechanisms produce the QPOs of white dwarf, neutron star, and black hole binaries, this correlation has important implications for QPO models.

  13. Measurement of the dijet angular distributions and search for quark compositeness with the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hinzmann, Andreas Dominik

    2011-10-07

    The Large Hadron Collider (LHC) at the Conseil Europeen pour la Recherche Nucleaire (CERN) allows to study the interactions of quarks and gluons in a yet unexplored energy regime. In 2010, the LHC delivered an integrated luminosity of more than 36 pb{sup -1} of proton-proton collisions at a center-of-mass energy of {radical}(s)=7 TeV. In these proton-proton collisions, the interactions of the constituent quarks and gluons produced a considerable amount of jets of particles with transverse momenta above 1 TeV. Well suited for the study of these jet processes is the Compact Muon Solenoid (CMS) experiment situated at the LHC point 5 as it can measure jets with the necessary energy and angular resolutions over a large range of transverse momentum ({proportional_to}30 GeVrapidity (vertical stroke {eta} vertical stroke {<=} 5, where {eta} {identical_to} -ln tan ({theta}/2) and {theta} is the polar angle relative to the proton beam). In this analysis, the data collected by the CMS experiment is used to test the theory of Quantum Chromodynamics which predicts the cross section of jet processes and at the same time to identify deviations as signals of new physics. A natural idea of new physics beyond the Standard Model of elementary particle physics is the existence of a substructure of quarks (quark compositeness). Models describing quarks as bound states of constituent particles may be able to explain the number of quark generations, quark masses and charges. A common signature of these models are additional contact interactions between quarks in high-momentum-transfer interactions, observable in the cross section of jet processes. Inspired by the Rutherford experiment, the scattering angle of two-jet processes (dijets) is measured to study the point-like quark and gluon scattering processes predicted by QCD. The dijet scattering angle is expressed in terms of {chi}{sub dijet} = e {sup vertical} {sup stroke} {sup y{sub 1}-y

  14. A theory of generalized Bloch oscillations

    DEFF Research Database (Denmark)

    Duggen, Lars; Lew Yan Voon, L. C.; Lassen, Benny

    2016-01-01

    Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact cal...... oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics.......Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact...... calculation is given to confirm this phenomenon. Our results allow for a greater freedom of design for experimentally observing Bloch oscillations. For strongly coupled oscillator systems displaying Bloch oscillations, it is further demonstrated that reordering of oscillators leads to destruction of Bloch...

  15. On the mechanism of oscillations in neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Barington, Torben; Olsen, Lars Folke

    2010-01-01

    of the external glucose concentration and the oscillations in H(2)O(2) production are 180 degrees out of phase with the oscillations in NAD(P)H. Cytochalasin B blocked the oscillations in shape and size whereas it increased the period of the oscillations in H(2)O(2) production. 1- and 2-butanol also blocked...... the oscillations in shape and size, but only 1-butanol inhibited the oscillations in H(2)O(2) production. We conjecture that the oscillations are likely to be due to feedback regulations in the signal transduction cascade involving phosphoinositide 3-kinases (PI3K). We have tested this using a simple mathematical......We have investigated the regulation of the oscillatory generation of H(2)O(2) and oscillations in shape and size in neutrophils in suspension. The oscillations are independent of cell density and hence do not represent a collective phenomena. Furthermore, the oscillations are independent...

  16. Grazing function g and collimation angular acceptance

    Directory of Open Access Journals (Sweden)

    Stephen G. Peggs

    2009-11-01

    Full Text Available The grazing function g is introduced—a synchrobetatron optical quantity that is analogous (and closely connected to the Twiss and dispersion functions β, α, η, and η^{′}. It parametrizes the rate of change of total angle with respect to synchrotron amplitude for grazing particles, which just touch the surface of an aperture when their synchrotron and betatron oscillations are simultaneously (in time at their extreme displacements. The grazing function can be important at collimators with limited acceptance angles. For example, it is important in both modes of crystal collimation operation—in channeling and in volume reflection. The grazing function is independent of the collimator type—crystal or amorphous—but can depend strongly on its azimuthal location. The rigorous synchrobetatron condition g=0 is solved, by invoking the close connection between the grazing function and the slope of the normalized dispersion. Propagation of the grazing function is described, through drifts, dipoles, and quadrupoles. Analytic expressions are developed for g in perfectly matched periodic FODO cells, and in the presence of β or η error waves. These analytic approximations are shown to be, in general, in good agreement with realistic numerical examples. The grazing function is shown to scale linearly with FODO cell bend angle, but to be independent of FODO cell length. The ideal value is g=0 at the collimator, but finite nonzero values are acceptable. Practically achievable grazing functions are described and evaluated, for both amorphous and crystal primary collimators, at RHIC, the SPS (UA9, the Tevatron (T-980, and the LHC.

  17. MHD simulations of oscillating cusp-filling tori around neutron stars - missing upper kHz QPO

    Science.gov (United States)

    Parthasarathy, Varadarajan; Kluźniak, Włodzimierz; Čemeljić, Miljenko

    2017-09-01

    We performed axisymmetric, grid-based, ideal magnetohydrodynamic simulations of oscillating cusp-filling tori orbiting a non-rotating neutron star. A pseudo-Newtonian potential was used to construct the constant angular momentum tori in equilibrium. The inner edge of the torus is terminated by a 'cusp' in the effective potential. The initial motion of the model tori was perturbed with uniform sub-sonic vertical and diagonal velocity fields. As the configuration evolved in time, we measured the mass accretion rate on the neutron star surface and obtained the power spectrum. The prominent mode of oscillation in the cusp torus is the radial epicyclic mode. It would appear that vertical oscillations are suppressed by the presence of the cusp. From our analysis, it follows that the mass accretion rate carries a modulation imprint of the oscillating torus, and hence so does the boundary layer luminosity.

  18. Comparison of Virtual Oscillator and Droop Control

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Brian B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rodriguez, Miguel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sinha, Mohit [University of Minnesota; Dhople, Sairaj [University of Minnesota

    2017-08-21

    Virtual oscillator control (VOC) and droop control are distinct methods to ensure synchronization and power sharing of parallel inverters in islanded systems. VOC is a control strategy where the dynamics of a nonlinear oscillator are used to derive control states to modulate the switch terminals of an inverter. Since VOC is a time-domain controller that reacts to instantaneous measurements with no additional filters or computations, it provides a rapid response during transients and stabilizes volatile dynamics. In contrast, droop control regulates the inverter voltage in response to the measured average real and reactive power output. Given that real and reactive power are phasor quantities that are not well-defined in real time, droop controllers typically use multiplicative operations in conjunction with low-pass filters on the current and voltage measurements to calculate such quantities. Since these filters must suppress low frequency ac harmonics, they typically have low cutoff frequencies that ultimately impede droop controller bandwidth. Although VOC and droop control can be engineered to produce similar steady-state characteristics, their dynamic performance can differ markedly. This paper presents an analytical framework to characterize and compare the dynamic response of VOC and droop control. The analysis is experimentally validated with three 120 V inverters rated at 1kW, demonstrating that for the same design specifications VOC is roughly 8 times faster and presents almost no overshoot after a transient.

  19. Universal, computer facilitated, steady state oscillator, closed loop analysis theory and some applications to precision oscillators

    Science.gov (United States)

    Parzen, Benjamin

    1992-01-01

    The theory of oscillator analysis in the immittance domain should be read in conjunction with the additional theory presented here. The combined theory enables the computer simulation of the steady state oscillator. The simulation makes the calculation of the oscillator total steady state performance practical, including noise at all oscillator locations. Some specific precision oscillators are analyzed.

  20. Angular-dependent Raman study of a- and s-plane InN

    Energy Technology Data Exchange (ETDEWEB)

    Filintoglou, K.; Katsikini, M., E-mail: katsiki@auth.gr; Arvanitidis, J.; Lotsari, A.; Dimitrakopulos, G. P.; Vouroutzis, N.; Ves, S. [School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Christofilos, D.; Kourouklis, G. A. [Chemical Engineering Department, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Ajagunna, A. O.; Georgakilas, A. [Microelectronics Research Group, Department of Physics, University of Crete, P.O. Box 2208, GR 71003 Heraklion, Greece and IESL, FORTH, P.O. Box 1385, GR 71110 Heraklion (Greece); Zoumakis, N. [Department of Food Technology, Technological Educational Institute of Thessaloniki, 57400 Sindos (Greece)

    2015-02-21

    Angular-dependent polarized Raman spectroscopy was utilized to study nonpolar a-plane (11{sup ¯}20) and semipolar s-plane (101{sup ¯}1) InN epilayers. The intensity dependence of the Raman peaks assigned to the vibrational modes A{sub 1}(TO), E{sub 1}(TO), and E{sub 2}{sup h} on the angle ψ that corresponds to rotation around the growth axis, is very well reproduced by using expressions taking into account the corresponding Raman tensors and the experimental geometry, providing thus a reliable technique towards assessing the sample quality. The s- and a-plane InN epilayers grown on nitridated r-plane sapphire (Al{sub 2}O{sub 3}) exhibit good crystalline quality as deduced from the excellent fitting of the experimental angle-dependent peak intensities to the theoretical expressions as well as from the small width of the Raman peaks. On the contrary, in the case of the s-plane epilayer grown on non-nitridated r-plane sapphire, fitting of the angular dependence is much worse and can be modeled only by considering the presence of two structural modifications, rotated so as their c-axes are almost perpendicular to each other. Although the presence of the second variant is verified by transmission electron and atomic force microscopies, angular dependent Raman spectroscopy offers a non-destructive and quick way for its quantification. Rapid thermal annealing of this sample did not affect the angular dependence of the peak intensities. The shift of the E{sub 1}(TO) and E{sub 2}{sup h} Raman peaks was used for the estimation of the strain state of the samples.

  1. Study on Improvement of Multibeam Backscatter Angular Response Model

    National Research Council Canada - National Science Library

    YAN Jun; ZHANG Hongmei; ZHAO Jianhu; MENG Junxia

    2016-01-01

    Because multibeam backscatter data is greatly affected by the AR (angular response) and the AR correction models are not perfect in the complex seabed, the multibeam image quality is seriously reduced...

  2. Design and Implementation of a Digital Angular Rate Sensor

    Directory of Open Access Journals (Sweden)

    Zhen Peng

    2010-10-01

    Full Text Available With the aim of detecting the attitude of a rotating carrier, the paper presents a novel, digital angular rate sensor. The sensor consists of micro-sensing elements (gyroscope and accelerometer, signal processing circuit and micro-processor (DSP2812. The sensor has the feature of detecting three angular rates of a rotating carrier at the same time. The key techniques of the sensor, including sensing construction, sensing principles, and signal processing circuit design are presented. The test results show that the sensor can sense rolling, pitch and yaw angular rate at the same time and the measurement error of yaw (or pitch angular rate and rolling rate of the rotating carrier is less than 0.5%.

  3. The mass and angular momentum of reconstructed metric perturbations

    Science.gov (United States)

    van de Meent, Maarten

    2017-06-01

    We prove a key result regarding the mass and angular momentum content of linear vacuum perturbations of the Kerr metric obtained through the formalism developed by Chrzarnowski, Cohen, and Kegeles (CCK). More precisely, we prove that the Abbott-Deser mass and angular momentum integrals of any such perturbation vanish when that perturbation was obtained from a regular Fourier mode of the Hertz potential. As a corollary we obtain a generalization of previous results on the completion of the ‘no string’ radiation gauge metric perturbation generated by a point particle. We find that for any bound orbit around a Kerr black hole, the mass and angular momentum perturbations completing the CCK metric are simply the energy and angular momentum of the particle ‘outside’ the orbit and vanish ‘inside’ the orbit.

  4. Grating angle magnification enhanced angular sensor and scanner

    Science.gov (United States)

    Sun, Ke-Xun (Inventor); Byer, Robert L. (Inventor)

    2009-01-01

    An angular magnification effect of diffraction is exploited to provide improved sensing and scanning. This effect is most pronounced for a normal or near-normal incidence angle in combination with a grazing diffraction angle, so such configurations are preferred. Angular sensitivity can be further enhanced because the width of the diffracted beam can be substantially less than the width of the incident beam. Normal incidence configurations with two symmetric diffracted beams are preferred, since rotation and vertical displacement can be readily distinguished. Increased sensitivity to vertical displacement can be provided by incorporating an interferometer into the measurement system. Quad cell detectors can be employed to provide sensitivity to rotation about the grating surface normal. A 2-D grating can be employed to provide sensitivity to angular displacements in two different planes (e.g., pitch and yaw). Combined systems can provide sensitivity to vertical displacement and to all three angular degrees of freedom.

  5. The decay of orbital angular momentum entanglement in atmospheric turbulence

    CSIR Research Space (South Africa)

    Roux, FS

    2013-07-01

    Full Text Available Salam International Centre for Theoretical Physics, Trieste, Italy, 8-12 July 2013 The decay of orbital angular momentum entanglement in atmospheric turbulence Roux FS CSIR, National Laser Centre, Pretoria, 0001 Corresponding email: FSroux...

  6. Superpositions of light fields carrying orbital angular momentum

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2012-01-01

    Full Text Available The work presented in this thesis is centred on the generation of superimposed optical fields which each carry orbital angular momentum (OAM) and the development of OAM measurement techniques. Optical fields which carry OAM have found applications...

  7. Demonstrating the Direction of Angular Velocity in Circular Motion

    Science.gov (United States)

    Demircioglu, Salih; Yurumezoglu, Kemal; Isik, Hakan

    2015-09-01

    Rotational motion is ubiquitous in nature, from astronomical systems to household devices in everyday life to elementary models of atoms. Unlike the tangential velocity vector that represents the instantaneous linear velocity (magnitude and direction), an angular velocity vector is conceptually more challenging for students to grasp. In physics classrooms, the direction of an angular velocity vector is taught by the right-hand rule, a mnemonic tool intended to aid memory. A setup constructed for instructional purposes may provide students with a more easily understood and concrete method to observe the direction of the angular velocity. This article attempts to demonstrate the angular velocity vector using the observable motion of a screw mounted to a remotely operated toy car.

  8. Effect of angular momentum conservation on hydrodynamic simulations of colloids.

    Science.gov (United States)

    Yang, Mingcheng; Theers, Mario; Hu, Jinglei; Gompper, Gerhard; Winkler, Roland G; Ripoll, Marisol

    2015-07-01

    In contrast to most real fluids, angular momentum is not a locally conserved quantity in some mesoscopic simulation methods. Here we quantify the importance of this conservation in the flow fields associated with different colloidal systems. The flow field is analytically calculated with and without angular momentum conservation for the multiparticle collision dynamics (MPC) method, and simulations are performed to verify the predictions. The flow field generated around a colloidal particle moving under an external force with slip boundary conditions depends on the conservation of angular momentum, and the amplitude of the friction force is substantially affected. Interestingly, no dependence on the angular momentum conservation is found for the flow fields generated around colloids under the influence of phoretic forces. Moreover, circular Couette flow between a no-slip and a slip cylinder is investigated, which allows us to validate one of the two existing expressions for the MPC stress tensor.

  9. The INCAS Project: An Innovative Contact-Less Angular Sensor

    Science.gov (United States)

    Ghislanzoni, L.; Di Cintio, A.; Solimando, M.; Parzianello, G.

    2013-09-01

    Angular Positions sensors are widely used in all spacecrafts, including re-entry vehicles and launchers, where mechanisms and pointing-scanning devices are required. The main applications are on mechanisms for TeleMeasure (TM) related to the release and deployment of devices, or on rotary mechanisms such as Solar Array Drive Mechanism (SADM) and Antenna Pointing Mechanism (APM). Longer lifetime (up to 7- 10 years) is becoming a new driver for the coming missions and contact technology sensors often incur in limitations due to the wear of the contacting parts [1].A Self-Compensating Absolute Angular Encoder was developed and tested in the frame of an ESA's ARTES 5.2 project, named INCAS (INnovative Contact-less Angular Sensor). More in particular, the INCAS sensor addresses a market need for contactless angular sensors aimed at replacing the more conventional rotary potentiometers, while featuring the same level of accuracy performances and extending the expected lifetime.

  10. Angular resolved light scattering microscopy on human chromosomes

    Science.gov (United States)

    Müller, Dennis; Stark, Julian; Kienle, Alwin

    2017-07-01

    Angular resolved scattering light measurements on chromosomes are compared to Discrete Dipole Approximation (DDA) simulations using Atomic Force Microscopy (AFM) based geometrical models. This could present a novel, marker-free method for human chromosome karyotyping.

  11. Pluto Moons exhibit Orbital Angular Momentum Quantization per Mass

    Directory of Open Access Journals (Sweden)

    Potter F.

    2012-10-01

    Full Text Available The Pluto satellite system of the planet plus five moons is shown to obey the quan- tum celestial mechanics (QCM angular momentum per mass quantization condition predicted for any gravitationally bound system.

  12. Spacecraft Angular Velocity Estimation Algorithm Based on Orientation Quaternion Measurements

    Directory of Open Access Journals (Sweden)

    M. V. Li

    2016-01-01

    Full Text Available The spacecraft (SC mission involves providing the appropriate orientation and stabilization of the associated axes in space. One of the main sources of information for the attitude control system is the angular rate sensor blocks. One way to improve a reliability of the system is to provide a back up of the control algorithms in case of failure of these blocks. To solve the problem of estimation of SP angular velocity vector in the inertial system of coordinates with a lack of information from the angular rate sensors is supposed the use of orientation data from the star sensors; in this case at each clock of the onboard digital computer. The equations in quaternions are used to describe the kinematics of rotary motion. Their approximate solution is used to estimate the angular velocity vector. Methods of modal control and multi-dimensional decomposition of a control object are used to solve the problem of observation and identification of the angular rates. These methods enabled us to synthesize the SP angular velocity vector estimation algorithm and obtain the equations, which relate the error quaternion with the calculated estimate of the angular velocity. Mathematical modeling was carried out to test the algorithm. Cases of different initial conditions were simulated. Time between orientation quaternion measurements and angular velocity of the model was varied. The algorithm was compared with a more accurate algorithm, built on more complete equations. Graphs of difference in angular velocity estimation depending on the number of iterations are presented. The difference in angular velocity estimation is calculated from results of the synthesized algorithm and the algorithm for more accurate equations. Graphs of error distribution for angular velocity estimation with initial conditions being changed are also presented, and standard deviations of estimation errors are calculated. The synthesized algorithm is inferior in accuracy assessment to

  13. Gas kinematics, morphology and angular momentum in the FIRE simulations

    Science.gov (United States)

    El-Badry, Kareem; Quataert, Eliot; Wetzel, Andrew; Hopkins, Philip F.; Weisz, Daniel R.; Chan, T. K.; Fitts, Alex; Boylan-Kolchin, Michael; Kereš, Dušan; Faucher-Giguère, Claude-André; Garrison-Kimmel, Shea

    2018-01-01

    We study the z = 0 gas kinematics, morphology and angular momentum content of isolated galaxies in a suite of cosmological zoom-in simulations from the FIRE project spanning Mstar = 106-11 M⊙. Gas becomes increasingly rotationally supported with increasing galaxy mass. In the lowest mass galaxies (Mstar < 108 M⊙), gas fails to form a morphological disc and is primarily dispersion and pressure supported. At intermediate masses (Mstar = 108-10 M⊙), galaxies display a wide range of gas kinematics and morphologies, from thin, rotating discs to irregular spheroids with negligible net rotation. All the high-mass (Mstar = 1010-11 M⊙) galaxies form rotationally supported gas discs. Many of the haloes whose galaxies fail to form discs harbour high angular momentum gas in their circumgalactic medium. The ratio of the specific angular momentum of gas in the central galaxy to that of the dark matter halo increases significantly with galaxy mass, from 〈jgas〉/〈jDM〉 ∼ 0.1 at M_star=10^{6-7} M_{⊙} to 〈jgas〉/〈jDM〉 ∼ 2 at Mstar = 1010-11 M⊙. The reduced rotational support in the lowest mass galaxies owes to (a) stellar feedback and the UV background suppressing the accretion of high angular momentum gas at late times, and (b) stellar feedback driving large non-circular gas motions. We broadly reproduce the observed scaling relations between galaxy mass, gas rotation velocity, size and angular momentum, but may somewhat underpredict the incidence of disky, high angular momentum galaxies at the lowest observed masses (Mstar = (106-2 × 107) M⊙). Stars form preferentially from low angular momentum gas near the galactic centre and are less rotationally supported than gas. The common assumption that stars follow the same rotation curve as gas thus substantially overestimates the simulated galaxies' stellar angular momentum, particularly at low masses.

  14. Temperature Dependence of Angular Momentum Transport Across Interfaces

    OpenAIRE

    Chen, Kai; Lin, Weiwei; Chien, C. L.; Zhang, Shufeng

    2016-01-01

    Angular momentum transport in magnetic multilayered structures plays a central role in spintronic physics and devices. The angular momentum currents or spin currents are carried by either quasi-particles such as electrons and magnons, or by macroscopic order parameters such as local magnetization of ferromagnets. Based on the generic interface exchange interaction, we develop a microscopic theory that describes interfacial spin conductance for various interfaces among non-magnetic metals, fer...

  15. Unidentified angular recurrent ulceration responsive to antiviral therapy

    OpenAIRE

    Rahmi Amtha; Siti Aliyah Pradono

    2013-01-01

    Background: Recurrent ulcer on angular area is usually called stomatitis angularis. It is caused by many factors such as vertical dimension reduce, vitamin B12, and immune system deficiency, C. albicans and staphylococcus involvement. Clinically is characterized by painful fissure with erythematous base without fever. Purpose: to describe an unidentified angular ulcer proceeded by recurrent ulcers with no response of topical therapy. Case: An 18-years old male came to Oral Medicine clinic in ...

  16. Generation of angular momentum in cold gravitational collapse

    Science.gov (United States)

    Benhaiem, D.; Joyce, M.; Sylos Labini, F.; Worrakitpoonpon, T.

    2016-01-01

    During the violent relaxation of a self-gravitating system, a significant fraction of its mass may be ejected. If the time-varying gravitational field also breaks spherical symmetry, this mass can potentially carry angular momentum. Thus, starting initial configurations with zero angular momentum can, in principle, lead to a bound virialised system with non-zero angular momentum. Using numerical simulations we explore here how much angular momentum can be generated in a virialised structure in this way, starting from configurations of cold particles that are very close to spherically symmetric. For the initial configurations in which spherical symmetry is broken only by the Poissonian fluctuations associated with the finite particle number N, with N in range 103 to 105, we find that the relaxed structures have standard "spin" parameters λ ~ 10-3, and decreasing slowly with N. For slightly ellipsoidal initial conditions, in which the finite-N fluctuations break the residual reflection symmetries, we observe values λ ~ 10-2, I.e. of the same order of magnitude as those reported for elliptical galaxies. The net angular momentum vector is typically aligned close to normal to the major semi-axis of the triaxial relaxed structure and of the ejected mass. This simple mechanism may provide an alternative, or complement, to the so-called tidal torque theory for understanding the origin of angular momentum in astrophysical structures.

  17. Effect of nutritional intake towards Angular cheilitis of orphanage children

    Directory of Open Access Journals (Sweden)

    Nurdiani Rakhmayanthie

    2016-11-01

    Full Text Available Introduction: Angular cheilitis is one of the oral manifestations of iron, vitamin B12, and folate deficiency. This manifestation frequently seen in people at first and second decade. The purpose of this study was to obtain the prevalence of angular cheilitis and its classifications related to the nutritional intake level in 6-18 years old children. Methods: This research was a descriptive study with 53 children between 6-18 years old from Muhammadiyah Orphanage Bandung as the samples. The oral cavity was examined clinically and their food consumption in a week was noted in Food Recall 24 hours and Food Frequency Questionnaire (FFQ in order to measure their nutritional intake level. Results: There are 23 children with angular cheilitis. 13% has iron and folate deficiencies, and 87% has iron, vitamin B12, and folate deficiencies. Angular cheilitis types that has been found are Type I (39%, Type II (48% and Type III (13%. Conclusion: The prevalence of angular cheilitis in 6-18 years old children in Muhammadiyah Orphanage Bandung was moderately high, most of them were having iron, vitamin B12, and folate deficiencies. Type II angular cheilitis was the most frequently seen.

  18. Modeling stock return distributions with a quantum harmonic oscillator

    Science.gov (United States)

    Ahn, K.; Choi, M. Y.; Dai, B.; Sohn, S.; Yang, B.

    2017-11-01

    We propose a quantum harmonic oscillator as a model for the market force which draws a stock return from short-run fluctuations to the long-run equilibrium. The stochastic equation governing our model is transformed into a Schrödinger equation, the solution of which features “quantized” eigenfunctions. Consequently, stock returns follow a mixed χ distribution, which describes Gaussian and non-Gaussian features. Analyzing the Financial Times Stock Exchange (FTSE) All Share Index, we demonstrate that our model outperforms traditional stochastic process models, e.g., the geometric Brownian motion and the Heston model, with smaller fitting errors and better goodness-of-fit statistics. In addition, making use of analogy, we provide an economic rationale of the physics concepts such as the eigenstate, eigenenergy, and angular frequency, which sheds light on the relationship between finance and econophysics literature.

  19. [Human walk in spacesuit as a self-oscillating process].

    Science.gov (United States)

    Panfilov, V E; Gurfinkel', V S

    2009-01-01

    A series of 40 biomechanic and physiological tests of semi-rigid and flexible spacesuits as possible candidates for Moon explorations purposes were conducted with involvement of 20 volunteered subjects. Ability to walk in the spacesuits with the internal positive pressure of 0.4 kg/cm2 in the normal gravity was assessed simultaneously with energy expenditure for moving over preset distances. Also, mating of the leg movements with the spacesuit shell was investigated The longest distance test elicited the fact of acquisition of stable motor skills in the unusual circumstances. The acquired motor skills bring about restructuring of step kinematics and make equal knee flexures during leg transfer and stepping on platform (matching the angular movement of the spacesuit knee joint) to an accuracy of tenths of degree. This phenomenon is used by the authors as the ground for proposing a reasoned optimization of the walk pattern in spacesuits as a self-oscillating process.

  20. Burst Oscillation Studies with NICER

    Science.gov (United States)

    Mahmoodifar, Simin; Strohmayer, Tod E.

    2017-08-01

    Type I X-ray bursts are thermonuclear flashes observed from the surfaces of accreting neutron stars in Low Mass X-ray Binaries. Oscillations have been observed during the rise and/or decay of some of these X-ray bursts. Those seen during the rise can be well explained by a spreading hot spot model, but large amplitude oscillations in the decay phase remain mysterious because of the absence of a clear-cut source of asymmetry. Here we present the results of our computations of the light curves and amplitudes of oscillations in X-ray burst models that realistically account for both flame spreading and subsequent cooling. For the cooling phase of the burst we use two simple phenomenological models. The first considers asymmetric cooling that can achieve high amplitudes in the tail. The second considers a sustained temperature pattern on the stellar surface that is produced by r-modes propagating in the surface fluid ocean of the star. We will present some simulated burst light curves/spectra using these models and NICER response files, and will show the capabilities of NICER to detect and study burst oscillations. NICER will enable us to study burst oscillations in the energy band below ~3 keV, where there has been no previous measurements of these phenomena.

  1. ALG-2 oscillates in subcellular localization, unitemporally with calcium oscillations

    DEFF Research Database (Denmark)

    la Cour, Jonas Marstrand; Mollerup, Jens; Berchtold, Martin Werner

    2007-01-01

    discovered that the subcellular distribution of a tagged version of ALG-2 could be directed by physiological external stimuli (including ATP, EGF, prostaglandin, histamine), which provoke intracellular Ca2+ oscillations. Cellular stimulation led to a redistribution of ALG-2 from the cytosol to a punctate...... localization in an oscillatory fashion unitemporally with Ca2+ oscillations, whereas a Ca2+-binding deficient mutant of ALG-2 did not redistribute. Using tagged ALG-2 as bait we identified its novel target protein Sec31A and based on the partial colocalization of endogenous ALG-2 and Sec31A we propose that ALG...

  2. Restoration of oscillation in network of oscillators in presence of direct and indirect interactions

    Energy Technology Data Exchange (ETDEWEB)

    Majhi, Soumen; Bera, Bidesh K. [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India); Bhowmick, Sourav K. [Department of Electronics, Asutosh College, Kolkata-700026 (India); Ghosh, Dibakar, E-mail: diba.ghosh@gmail.com [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India)

    2016-10-23

    The suppression of oscillations in coupled systems may lead to several unwanted situations, which requires a suitable treatment to overcome the suppression. In this paper, we show that the environmental coupling in the presence of direct interaction, which can suppress oscillation even in a network of identical oscillators, can be modified by introducing a feedback factor in the coupling scheme in order to restore the oscillation. We inspect how the introduction of the feedback factor helps to resurrect oscillation from various kinds of death states. We numerically verify the resurrection of oscillations for two paradigmatic limit cycle systems, namely Landau–Stuart and Van der Pol oscillators and also in generic chaotic Lorenz oscillator. We also study the effect of parameter mismatch in the process of restoring oscillation for coupled oscillators. - Highlights: • Amplitude death is observed using direct and indirect coupling. • Revival of oscillation using feedback parameter is discussed. • Restoration of oscillation is observed in limit cycle and chaotic systems.

  3. Damping of prominence longitudinal oscillations due to mass accretion

    Science.gov (United States)

    Ruderman, Michael S.; Luna, Manuel

    2016-06-01

    thread at the moment when it is perturbed. First we consider small amplitude oscillations and use the linear description. Then we consider nonlinear oscillations and assume that the damping is slow, meaning that the damping time is much larger that the characteristic oscillation time. The thread oscillations are described by the solution of the nonlinear pendulum problem with slowly varying amplitude. The nonlinearity reduces the damping time, however this reduction is small. Again the damping time is inversely proportional to the accretion rate. We also obtain that the oscillation periods decrease with time. However even for the largest initial oscillation amplitude considered in our article the period reduction does not exceed 20%. We conclude that the mass accretion can damp the motion of the threads rapidly. Thus, this mechanism can explain the observed strong damping of large-amplitude longitudinal oscillations. In addition, the damping time can be used to determine the mass accretion rate and indirectly the coronal heating.

  4. Investigation of Transverse Oscillation Method

    DEFF Research Database (Denmark)

    Udesen, Jesper; Jensen, Jørgen Arendt

    2006-01-01

    oscillation and an axial oscillation in the pulse echo field. The theory behind the creation of the double oscillation pulse echo field is explained as well as the theory behind the estimation of the vector velocity. A parameter study of the method is performed, using the ultrasound simulation program Field...... II. A virtual linear array transducer with center frequency 7 MHz and 128 active elements is created, and a virtual blood vessel of radius 6.4 mm is simulated. The performance of the TO method is found around an initial point in the parameter space. The parameters varied are: flow angle, transmit...... focus depth, receive apodization, pulse length, transverse wave length, number of emissions, signal to noise ratio, and type of echo canceling filter used. Using the experimental scanner RASMUS, the performance of the TO method is evaluated. An experimental flowrig is used to create laminar parabolic...

  5. Prediction of pilot induced oscillations

    Directory of Open Access Journals (Sweden)

    Valentin PANĂ

    2011-03-01

    Full Text Available An important problem in the design of flight-control systems for aircraft under pilotedcontrol is the determination of handling qualities and pilot-induced oscillations (PIO tendencieswhen significant nonlinearities exist in the vehicle description. The paper presents a method to detectpossible pilot-induced oscillations of Category II (with rate and position limiting, a phenomenonusually due to a misadaptation between the pilot and the aircraft response during some tasks in whichtight closed loop control of the aircraft is required from the pilot. For the analysis of Pilot in the LoopOscillations an approach, based on robust stability analysis of a system subject to uncertainparameters, is proposed. In this analysis the nonlinear elements are substituted by linear uncertainparameters. This approach assumes that PIO are characterized by a limit cycle behavior.

  6. Rapid Prototyping

    Science.gov (United States)

    1999-01-01

    Javelin, a Lone Peak Engineering Inc. Company has introduced the SteamRoller(TM) System as a commercial product. The system was designed by Javelin during a Phase II NASA funded small commercial product. The purpose of the invention was to allow automated-feed of flexible ceramic tapes to the Laminated Object Manufacturing rapid prototyping equipment. The ceramic material that Javelin was working with during the Phase II project is silicon nitride. This engineered ceramic material is of interest for space-based component.

  7. Hidden symmetries of deformed oscillators

    Directory of Open Access Journals (Sweden)

    Sergey Krivonos

    2017-11-01

    Full Text Available We associate with each simple Lie algebra a system of second-order differential equations invariant under a non-compact real form of the corresponding Lie group. In the limit of a contraction to a Schrödinger algebra, these equations reduce to a system of ordinary harmonic oscillators. We provide two clarifying examples of such deformed oscillators: one system invariant under SO(2,3 transformations, and another system featuring G2(2 symmetry. The construction of invariant actions requires adding semi-dynamical degrees of freedom; we illustrate the algorithm with the two examples mentioned.

  8. Oscillating-Coolant Heat Exchanger

    Science.gov (United States)

    Scotti, Stephen J.; Blosser, Max L.; Camarda, Charles J.

    1992-01-01

    Devices useful in situations in which heat pipes inadequate. Conceptual oscillating-coolant heat exchanger (OCHEX) transports heat from its hotter portions to cooler portions. Heat transported by oscillation of single-phase fluid, called primary coolant, in coolant passages. No time-averaged flow in tubes, so either heat removed from end reservoirs on every cycle or heat removed indirectly by cooling sides of channels with another coolant. Devices include leading-edge cooling devices in hypersonic aircraft and "frost-free" heat exchangers. Also used in any situation in which heat pipe used and in other situations in which heat pipes not usable.

  9. Ladder operators for isospectral oscillators

    Science.gov (United States)

    Seshadri, S.; Balakrishnan, V.; Lakshmibala, S.

    1998-02-01

    We present, for the isospectral family of oscillator Hamiltonians, a systematic procedure for constructing raising and lowering operators satisfying any prescribed "distorted" Heisenberg algebra (including the q-generalization). This is done by means of an operator transformation implemented by a shift operator. The latter is obtained by solving an appropriate partial isometry condition in the Hilbert space. Formal representations of the nonlocal operators concerned are given in terms of pseudo-differential operators. Using the new annihilation operators, new classes of coherent states are constructed for isospectral oscillator Hamiltonians. The corresponding Fock-Bargmann representations are also considered, with specific reference to the order of the entire function family in each case.

  10. Oscillator strengths for Be I

    Energy Technology Data Exchange (ETDEWEB)

    Ates, Sule, E-mail: suleates@selcuk.edu.tr; Oezarslan, Selma; Celik, Gueltekin; Taser, Mehmet

    2012-07-15

    The electric dipole oscillator strengths for lines between some singlet and triplet levels have been calculated using the weakest bound electron potential model theory and the quantum defect orbital theory for Be I. In the calculations both multiplet and fine structure transitions are studied. We employed both the numerical Coulomb approximation method and numerical non-relativistic Hartree-Fock wavefunctions for expectation values of radii. The necessary energy values have been taken from experimental energy data in the literature. The calculated oscillator strengths have been compared with available theoretical results. A good agreement with the results in the literature has been obtained.

  11. The non-local oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Maccari, A. [Istituto Tecnico `G. Cardano`, Monterotondo, Rome (Italy)

    1996-08-01

    The most important characteristics of the non-local oscillator, an oscillator subjected to an additional non-local force, are extensively studied by means of a new asymptotic perturbation method that is able to furnish an approximate solution of weakly non-linear differential equations. The resulting motion is doubly periodic, because a second little frequency appears, in addition to the fundamental harmonic frequency. Comparison with the numerical solution obtained by the Runge-Kitta method confirms the validity of the asymptotic perturbation method and its importance for the study of non-linear dynamical systems.

  12. Smoothed dissipative particle dynamics with angular momentum conservation

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Kathrin, E-mail: k.mueller@fz-juelich.de; Fedosov, Dmitry A., E-mail: d.fedosov@fz-juelich.de; Gompper, Gerhard, E-mail: g.gompper@fz-juelich.de

    2015-01-15

    Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier–Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor–Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.

  13. TOWARDS THRESHOLD FREQUENCY IN CHAOTIC COLPITTS OSCILLATOR

    DEFF Research Database (Denmark)

    Lindberg, Erik; Tamasevicius, Arunas; Mykolaitis, Gytis

    2007-01-01

    A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations at the funda......A novel version of chaotic Colpitts oscillator is described. Instead of a linear loss resistor, it includes an extra inductor and diode in the collector circuit of the transistor. The modified circuit in comparison with the common Colpitts oscillator may generate chaotic oscillations...

  14. Temperature dependence of microwave oscillations in magnetic tunnel junctions with a perpendicularly magnetized free layer

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Peng; Feng, Jiafeng, E-mail: hxwei@iphy.ac.cn, E-mail: jiafengfeng@iphy.ac.cn; Wei, Hongxiang, E-mail: hxwei@iphy.ac.cn, E-mail: jiafengfeng@iphy.ac.cn; Han, Xiufeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Fang, Bin; Zhang, Baoshun; Zeng, Zhongming [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Ruoshui Road 398, Suzhou 215123 (China)

    2015-01-05

    We experimentally study the temperature dependence of the spin-transfer-torque-induced microwave oscillations in MgO-based magnetic tunnel junction nanopillars with a perpendicularly magnetized free layer. We demonstrate that the oscillation frequency increases rapidly with decreasing temperature, which is mainly ascribed to the temperature dependence of both the saturation magnetization and the perpendicular magnetic anisotropy. We also find that a strong temperature dependence of the output power while a nonmonotonic temperature dependence of spectral linewidth are maintained for a constant dc bias in measured temperature range. Possible mechanisms leading to the different dependences of oscillation frequency, output power, and linewidth are discussed.

  15. Annual and seasonal tornado activity in the United States and the global wind oscillation

    Science.gov (United States)

    Moore, Todd W.

    2017-08-01

    Previous studies have searched for relationships between tornado activity and atmospheric teleconnections to provide insight on the relationship between tornadoes, their environments, and larger scale patterns in the climate system. Knowledge of these relationships is practical because it can improve seasonal and sub-seasonal predictions of tornado probability and, therefore, help mitigate tornado-related losses. This study explores the relationships between the annual and seasonal tornado activity in the United States and the Global Wind Oscillation. Time series herein show that phases of the Global Wind Oscillation, and atmospheric angular momentum anomalies, vary over a period of roughly 20-25 years. Rank correlations indicate that tornado activity is weakly correlated with phases 2, 3, and 4 (positive) and 6, 7, and 8 (negative) of the Global Wind Oscillation in winter, spring, and fall. The correlation is not as clear in summer or at the annual scale. Non-parametric Mann-Whitney U tests indicate that winters and springs with more phase 2, 3, and 4 and fewer phase 6, 7, and 8 days tend to have more tornadoes. Lastly, logistic regression models indicate that winters and springs with more phase 2, 3, and 4 days have greater likelihoods of having more than normal tornado activity. Combined, these analyses suggest that seasons with more low atmospheric angular momentum days, or phase 2, 3, and 4 days, tend to have greater tornado activity than those with fewer days, and that this relationship is most evident in winter and spring.

  16. High-temperature quantum oscillations of the Hall resistance in bulk Bi2Se3.

    Science.gov (United States)

    Busch, Marco; Chiatti, Olivio; Pezzini, Sergio; Wiedmann, Steffen; Sánchez-Barriga, Jaime; Rader, Oliver; Yashina, Lada V; Fischer, Saskia F

    2018-01-11

    Helically spin-polarized Dirac fermions (HSDF) in protected topological surface states (TSS) are of high interest as a new state of quantum matter. In three-dimensional (3D) materials with TSS, electronic bulk states often mask the transport properties of HSDF. Recently, the high-field Hall resistance and low-field magnetoresistance indicate that the TSS may coexist with a layered two-dimensional electronic system (2DES). Here, we demonstrate quantum oscillations of the Hall resistance at temperatures up to 50 K in nominally undoped bulk Bi2Se3 with a high electron density n of about 2·1019 cm-3. From the angular and temperature dependence of the Hall resistance and the Shubnikov-de Haas oscillations we identify 3D and 2D contributions to transport. Angular resolved photoemission spectroscopy proves the existence of TSS. We present a model for Bi2Se3 and suggest that the coexistence of TSS and 2D layered transport stabilizes the quantum oscillations of the Hall resistance.

  17. B0s Oscillation Results

    CERN Document Server

    Willocq, S

    2002-01-01

    We review new studies of the time dependence of B0s - B0s-bar mixing by the ALEPH, DELPHI and SLD Collaborations, with an emphasis on the different analysis methods used. Combining all available results yields a preliminary lower limit on the oscillation frequency of dms > 14.4 ps-1 at the 95% C.L.

  18. Oscillating solitons in nonlinear optics

    Indian Academy of Sciences (India)

    Abstract. Oscillating solitons are obtained in nonlinear optics. Analytical study of the variable- coefficient nonlinear Schrödinger equation, which is used to describe the soliton propagation in those systems, is carried out using the Hirota's bilinear method. The bilinear forms and analytic soliton solutions are derived, and the ...

  19. Chemical Oscillations-Mathematical Modelling

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 7. Chemical Oscillations - Mathematical Modelling ... Protein Science and Engineering Unit Institute of Microbial Technology Sector 39A Chandigarh 160 036; Department of Chemistry and Centre for Advanced Studies in Chemistry Punjab ...

  20. Cubication of Conservative Nonlinear Oscillators

    Science.gov (United States)

    Belendez, Augusto; Alvarez, Mariela L.; Fernandez, Elena; Pascual, Immaculada

    2009-01-01

    A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear…

  1. Linearization of Conservative Nonlinear Oscillators

    Science.gov (United States)

    Belendez, A.; Alvarez, M. L.; Fernandez, E.; Pascual, I.

    2009-01-01

    A linearization method of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force which allows us to obtain a frequency-amplitude relation which is valid not only for small but also for large amplitudes and, sometimes, for…

  2. Sum rules for neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Kobzarev, I.Yu.; Nartem' yanov, B.V.; Okun, L.B.; Shchepkin, M.G. (Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Teoreticheskoj i Ehksperimental' noj Fiziki)

    1982-05-01

    Sum rules for neutrino oscillations have been obtained. The effects due to the neutrino masses are taken into account, msub(..nu..) being not assumed to be a small parameter. Study of the ''binary'' lsub(i)sup(-) ..-->.. ..nu.. ..-->.. lsub(k)sup(+-) process permits to accurately take into account neutrino masses and to obtain expressions for the cross sections oscillating as functions of distance L between the points of neutrino production and absorption. In the case of Dirac or left Majoran masses obtained is the sum rule according to which the cross section sigma(lsub(i)sup(-) ..-->.. lsub(k)sup(-)) summarized with the weight 1/vsub(k) by aromas of final lepton remains constant (exactly, decrease as 1/L/sup 2/) and it does not oscillate. In the case of left Majoran masses there is admixture of antineutrino due to which the lsub(i)sup(-) ..-->.. lsub(k)sup(+) process is possible. In this case both components (neutrino with antineutrino admixture) oscillates independently and there exists analogous sum rule for the sigma(lsub(i)sup(-) ..-->.. lsub(k)sup(+)) cross section.

  3. Discovery of atmospheric neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Kajita, Takaaki [Tokyo Univ., Inst. for Cosmic Ray Research, Kashiwa, Chiba (Japan)

    2003-05-01

    Cosmic ray particles entering the atmosphere interact with the air nuclei produce neutrinos. These neutrinos are called atmospheric neutrinos. The atmospheric neutrino anomaly observed in Kamiokande is now understood as due to neutrino oscillations by high statistics measurements of the atmospheric neutrinos in Super-Kamiokande. The studies of the atmospheric neutrinos have matured into detailed studies of neutrino masses and mixings. (author)

  4. Sustained oscillations in living cells

    Science.gov (United States)

    Danø, Sune; Sørensen, Preben Graae; Hynne, Finn

    1999-11-01

    Glycolytic oscillations in yeast have been studied for many years simply by adding a glucose pulse to a suspension of cells and measuring the resulting transient oscillations of NADH. Here we show, using a suspension of yeast cells, that living cells can be kept in a well defined oscillating state indefinitely when starved cells, glucose and cyanide are pumped into a cuvette with outflow of surplus liquid. Our results show that the transitions between stationary and oscillatory behaviour are uniquely described mathematically by the Hopf bifurcation. This result characterizes the dynamical properties close to the transition point. Our perturbation experiments show that the cells remain strongly coupled very close to the transition. Therefore, the transition takes place in each of the cells and is not a desynchronization phenomenon. With these two observations, a study of the kinetic details of glycolysis, as it actually takes place in a living cell, is possible using experiments designed in the framework of nonlinear dynamics. Acetaldehyde is known to synchronize the oscillations. Our results show that glucose is another messenger substance, as long as the glucose transporter is not saturated.

  5. Sound oscillation of dropwise cluster

    Energy Technology Data Exchange (ETDEWEB)

    Shavlov, A.V., E-mail: shavlov@ikz.ru [Institute of the Earth Cryosphere, RAS Siberian Branch, P.O. 1230, 625000 Tyumen (Russian Federation); Dzhumandzhi, V.A.; Romanyuk, S.N. [Institute of the Earth Cryosphere, RAS Siberian Branch, P.O. 1230, 625000 Tyumen (Russian Federation)

    2012-06-04

    There was registered sound oscillation of a dropwise cluster formed over the warmed-up water surface. We have calculated the electrical charge of drops on the basis of experimental data on ion-sound oscillation. It was demonstrated that the charge is proportional to surface area of the drops and does not depend on intensity of their evaporation (condensation) in the range of 60–100 °C. The charge of drops reaches 10{sup 2}–10{sup 3} units of elementary charge and coincides on magnitude order with the literary value of a charge calculated by another method. -- Highlights: ► The present investigation registered short-wave sound oscillations of water drops in a dropwise cluster in the range of 60–100 °C. ► We have found autocorrelation functions and Fourier transforms of time series of interdroplet distance; defined oscillation frequencies. ► Calculated electrical charge of drops and specified that the charge is proportional to the drop surface area.

  6. Chromatophore activity during natural pattern expression by the squid Sepioteuthis lessoniana: contributions of miniature oscillation.

    Directory of Open Access Journals (Sweden)

    Mamiko Suzuki

    Full Text Available Squid can rapidly change the chromatic patterns on their body. The patterns are created by the expansion and retraction of chromatophores. The chromatophore consists of a central pigment-containing cell surrounded by radial muscles that are controlled by motor neurons located in the central nervous system (CNS. In this study we used semi-intact squid (Sepioteuthis lessoniana displaying centrally controlled natural patterns to analyze spatial and temporal activities of chromatophores located on the dorsal mantle skin. We found that chromatophores oscillated with miniature expansions/retractions at various frequencies, even when the chromatic patterns appear macroscopically stable. The frequencies of this miniature oscillation differed between "feature" and "background" areas of chromatic patterns. Higher frequencies occurred in feature areas, whereas lower frequencies were detected in background areas. We also observed synchronization of the oscillation during chromatic pattern expression. The expansion size of chromatophores oscillating at high frequency correlated with the number of synchronized chromatophores but not the oscillation frequency. Miniature oscillations were not observed in denervated chromatophores. These results suggest that miniature oscillations of chromatophores are driven by motor neuronal activities in the CNS and that frequency and synchrony of this oscillation determine the chromatic pattern and the expansion size, respectively.

  7. A micromachined angular-acceleration sensor for geophysical applications

    Science.gov (United States)

    Liu, Huafeng; Pike, W. T.

    2016-10-01

    This paper presents an angular-acceleration sensor that works as either an angular accelerometer or a gravity gradiometer and is based on the micro electromechanical system (MEMS) technology. The changes in the angle of the sensor mass are sensed by a rotational capacitive array transducer that is formed by electrodes on both the stator and rotor dies of the flip-chip-bonded MEMS chip (21 mm × 12.5 mm × 1 mm). The prototype was characterized, demonstrating a fundamental frequency of 27 Hz, a quality factor of 230 in air, and a sensitivity of 6 mV/(rad/s2). The demonstrated noise floor was less than 0.003 rad/s2/ √{ Hz } within a bandwidth of 0.1 Hz to 10 Hz, which is comparable with the conventional angular accelerometer and is better than the other reported MEMS sensors in low-frequency ranges. The features of small size and low cost suggest that this MEMS angular-acceleration sensor could be mounted on a drone, a satellite or even a Mars rover, and it is promising to be used for monitoring angular accelerations, aiding seismic recording, mapping gravity anomalies, and other geophysical applications for large-scale terrestrial and space deployments.

  8. Astrophysical applications of high angular resolution array-telescopes

    Science.gov (United States)

    Linsley, J.

    1985-01-01

    The air shower array-telescopes which are currently being used to search for and study point sources of UHE gamma-rays have angular resolution similar to 1 deg, limited by either the small total area of particle detectors or poor timing resolution. As the signal to noise ratio depends sensitively on the angular resolution, it seems certain that this figure will quickly be surpassed when second generation instruments come into operation. Since the trajectories of galactic cosmic rays with E 100,000 GeV are practically straight lines on scales of 1 A.U. or less, these new instruments will be able to observe a shadow cast by the Moon (angular diameter 0.5 deg). Although the angular diameter of the Sun is practically the same, its shadow will be more complex because of its magnetic field. Thus, high angular resolution observations of the Sun afford a means of investigating the solar magnetic field, and also the charge composition of cosmic rays, including the ratio of antiprotons to protons.

  9. A Computational Technique to Determine the Angular Displacement, Velocity and Momentum of a Human Body.

    Science.gov (United States)

    Hay, James G.; Wilson, Barry D.

    The angular momentum of a human body derived from both the angular velocity and angular displacement, utilizing cinematographic records has not been adequately assessed, prior to this study. Miller (1970) obtained the angular momentum but only during the airborne phase of activity. The method used by Ramey (1973) involved a force platform, but…

  10. Analytic Neutrino Oscillation Probabilities in Matter: Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen J. [Fermilab; Denton, Peter B. [Copenhagen U.; Minakata, Hisakazu [Madrid, IFT

    2018-01-02

    We summarize our recent paper on neutrino oscillation probabilities in matter, explaining the importance, relevance and need for simple, highly accurate approximations to the neutrino oscillation probabilities in matter.

  11. Rapidly rotating red giants

    Science.gov (United States)

    Gehan, Charlotte; Mosser, Benoît; Michel, Eric

    2017-10-01

    Stellar oscillations give seismic information on the internal properties of stars. Red giants are targets of interest since they present mixed modes, wich behave as pressure modes in the convective envelope and as gravity modes in the radiative core. Mixed modes thus directly probe red giant cores, and allow in particular the study of their mean core rotation. The high-quality data obtained by CoRoT and Kepler satellites represent an unprecedented perspective to obtain thousands of measurements of red giant core rotation, in order to improve our understanding of stellar physics in deep stellar interiors. We developed an automated method to obtain such core rotation measurements and validated it for stars on the red giant branch. In this work, we particularly focus on the specific application of this method to red giants having a rapid core rotation. They show complex spectra where it is tricky to disentangle rotational splittings from mixed-mode period spacings. We demonstrate that the method based on the identification of mode crossings is precise and efficient. The determination of the mean core rotation directly derives from the precise measurement of the asymptotic period spacing ΔΠ1 and of the frequency at which the crossing of the rotational components is observed.

  12. Neutrino Oscillation Parameter Sensitivity in Future Long-Baseline Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bass, Matthew [Colorado State Univ., Fort Collins, CO (United States)

    2014-01-01

    The study of neutrino interactions and propagation has produced evidence for physics beyond the standard model and promises to continue to shed light on rare phenomena. Since the discovery of neutrino oscillations in the late 1990s there have been rapid advances in establishing the three flavor paradigm of neutrino oscillations. The 2012 discovery of a large value for the last unmeasured missing angle has opened the way for future experiments to search for charge-parity symmetry violation in the lepton sector. This thesis presents an analysis of the future sensitivity to neutrino oscillations in the three flavor paradigm for the T2K, NO A, LBNE, and T2HK experiments. The theory of the three flavor paradigm is explained and the methods to use these theoretical predictions to design long baseline neutrino experiments are described. The sensitivity to the oscillation parameters for each experiment is presented with a particular focus on the search for CP violation and the measurement of the neutrino mass hierarchy. The variations of these sensitivities with statistical considerations and experimental design optimizations taken into account are explored. The effects of systematic uncertainties in the neutrino flux, interaction, and detection predictions are also considered by incorporating more advanced simulations inputs from the LBNE experiment.

  13. Determination of 1-naphthylamine by using oscillating chemical reaction.

    Science.gov (United States)

    Gao, Jinzhang; Wei, Xiaoxia; Yang, Wu; Lv, Dongyu; Qu, Jie; Chen, Hua; Dai, Hongxia

    2007-06-01

    A simple and rapid analytical method for determining 1-naphthylamine was proposed by perturbation with different amounts of 1-naphthylamine on the classical Belousov-Zhabotinskii (B-Z) oscillating chemical system. The results show that the changes both in oscillating period and amplitude were linearly proportional to the logarithm of the concentration of 1-naphthylamine (logC) very well ranging from 7.08x10(-5) to 7.08x10(-6) molL(-1) and 7.08x10(-5) to 1.0x10(-6) molL(-1), with the corresponding regression coefficient are 0.9957 and 0.9922, respectively. For the later, a lower detection limit of 5.64x10(-9) molL(-1) was obtained. Influence of injection point, temperature and reactant variables on this oscillating system was also investigated in detailed. The results obtained were compared with other determination methods. A possible reaction mechanism was interpreted by using bromide ion selective electrode to inspect the concentration change of Br(-) ion in the oscillating process.

  14. Angular Magnetoresistance of Nanowires with Alternating Cobalt and Nickel Segments

    KAUST Repository

    Mohammed, Hanan

    2017-06-22

    Magnetization reversal in segmented Co/Ni nanowires with varying number of segments was studied using angular Magnetoresistance (MR) measurements on isolated nanowires. The MR measurements offer an insight into the pinning of domain walls within the nanowires. Angular MR measurements were performed on nanowires with two and multiple segments by varying the angle between the applied magnetic field and nanowire (−90° ≤θ≤90°). The angular MR measurements reveal that at lower values of θ the switching fields are nearly identical for the multisegmented and two-segmented nanowires, whereas at higher values of θ, a decrease in the switching field is observed in the case of two segmented nanowires. The two segmented nanowires generally exhibit a single domain wall pinning event, whereas an increased number of pinning events are characteristic of the multisegmented nanowires at higher values of θ. In-situ magnetic force microscopy substantiates reversal by domain wall nucleation and propagation in multisegmented nanowires.

  15. A quantum memory for orbital angular momentum photonic qubits

    Science.gov (United States)

    Nicolas, A.; Veissier, L.; Giner, L.; Giacobino, E.; Maxein, D.; Laurat, J.

    2014-03-01

    Among the optical degrees of freedom, the orbital angular momentum of light provides unique properties, including mechanical torque action, which has applications for light manipulation, enhanced sensitivity in imaging techniques and potential high-density information coding for optical communication systems. Recent years have also seen a tremendous interest in exploiting orbital angular momentum at the single-photon level in quantum information technologies. In pursuing this endeavour, we demonstrate here the implementation of a quantum memory for quantum bits encoded in this optical degree of freedom. We generate various qubits with computer-controlled holograms, store and retrieve them on demand using a dynamic electromagnetically induced transparency protocol. We further analyse the retrieved states by quantum tomography and thereby demonstrate fidelities exceeding the classical benchmark, confirming the quantum functioning of our storage process. Our results provide an essential capability for future networks exploring the promises of orbital angular momentum of photons for quantum information applications.

  16. Angular spectrum and localized model of Davis-type beam.

    Science.gov (United States)

    Lock, James A

    2013-03-01

    The angular spectrum of the Davis fifth-order linearly polarized, dual, and symmetrized fields of a focused Gaussian laser beam is obtained. Since the original Davis fields are not an exact solution of the vector wave equation and Maxwell's equations, a beam remodeling procedure within the angular spectrum is described that produces an exact solution. The spherical multipole beam shape coefficients of the remodeled beam are then obtained, and it is shown that in the weak focusing limit they simplify to the localized model Gaussian beam shape coefficients for both on-axis and off-axis beams. The angular spectrum method is then applied to a transversely confined electromagnetic beam with arbitrary profile in the focal plane, and to a general zero-order Bessel beam.

  17. Partial-wave expansions of angular spectra of plane waves.

    Science.gov (United States)

    Lock, James A

    2006-11-01

    Focused electromagnetic beams are frequently modeled by either an angular spectrum of plane waves or a partial-wave sum of spherical multipole waves. The connection between these two beam models is explored here. The partial-wave expansion of an angular spectrum containing evanescent components is found to possess only odd partial waves. On the other hand, the partial-wave expansion of an alternate angular spectrum constructed so as to be free of evanescent components contains all partial waves but describes a propagating beam with a small amount of standing-wave component mixed in. A procedure is described for minimizing the standing-wave component so as to more accurately model a purely forward propagating experimental beam.

  18. Tunable orbital angular momentum in high-harmonic generation.

    Science.gov (United States)

    Gauthier, D; Ribič, P Rebernik; Adhikary, G; Camper, A; Chappuis, C; Cucini, R; DiMauro, L F; Dovillaire, G; Frassetto, F; Géneaux, R; Miotti, P; Poletto, L; Ressel, B; Spezzani, C; Stupar, M; Ruchon, T; De Ninno, G

    2017-04-05

    Optical vortices are currently one of the most intensively studied topics in optics. These light beams, which carry orbital angular momentum (OAM), have been successfully utilized in the visible and infrared in a wide variety of applications. Moving to shorter wavelengths may open up completely new research directions in the areas of optical physics and material characterization. Here, we report on the generation of extreme-ultraviolet optical vortices with femtosecond duration carrying a controllable amount of OAM. From a basic physics viewpoint, our results help to resolve key questions such as the conservation of angular momentum in highly nonlinear light-matter interactions, and the disentanglement and independent control of the intrinsic and extrinsic components of the photon's angular momentum at short-wavelengths. The methods developed here will allow testing some of the recently proposed concepts such as OAM-induced dichroism, magnetic switching in organic molecules and violation of dipolar selection rules in atoms.

  19. Angular momentum dependence of the nuclear level density parameter

    Directory of Open Access Journals (Sweden)

    Gohil M.

    2014-03-01

    Full Text Available Neutron evaporation spectra alongwith γ-multiplicity has been measured from the 185Re* compound nucleus at the excitation energies ~27 and 37 MeV. Statistical model analysis of the experimental data has been carried out to extract the value of the inverse level density parameter k at different angular momentum regions (J corresponding to different γ-multiplicity. It is observed that, for the present system the value of k remains almost constant for different J. The present results on the angular momentum dependence of the nuclear level density (NLD parameter ã (=A/k, for nuclei with A ~180 is quite different from our earlier measurements in case of light and medium mass systems. The present analysis provides useful information to understand the angular momentum dependence of NLD at different nuclear mass regions.

  20. Origins and demonstrations of electrons with orbital angular momentum

    Science.gov (United States)

    McMorran, Benjamin J.; Agrawal, Amit; Ercius, Peter A.; Grillo, Vincenzo; Herzing, Andrew A.; Harvey, Tyler R.; Linck, Martin; Pierce, Jordan S.

    2017-02-01

    The surprising message of Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)) was that photons could possess orbital angular momentum in free space, which subsequently launched advancements in optical manipulation, microscopy, quantum optics, communications, many more fields. It has recently been shown that this result also applies to quantum mechanical wave functions describing massive particles (matter waves). This article discusses how electron wave functions can be imprinted with quantized phase vortices in analogous ways to twisted light, demonstrating that charged particles with non-zero rest mass can possess orbital angular momentum in free space. With Allen et al. as a bridge, connections are made between this recent work in electron vortex wave functions and much earlier works, extending a 175 year old tradition in matter wave vortices. This article is part of the themed issue 'Optical orbital angular momentum'.

  1. Measuring average angular velocity with a smartphone magnetic field sensor

    Science.gov (United States)

    Pili, Unofre; Violanda, Renante

    2018-02-01

    The angular velocity of a spinning object is, by standard, measured using a device called a tachometer. However, by directly using it in a classroom setting, the activity is likely to appear as less instructive and less engaging. Indeed, some alternative classroom-suitable methods for measuring angular velocity have been presented. In this paper, we present a further alternative that is smartphone-based, making use of the real-time magnetic field (simply called B-field in what follows) data gathering capability of the B-field sensor of the smartphone device as the timer for measuring average rotational period and average angular velocity. The in-built B-field sensor in smartphones has already found a number of uses in undergraduate experimental physics. For instance, in elementary electrodynamics, it has been used to explore the well-known Bio-Savart law and in a measurement of the permeability of air.

  2. Spin-to-orbital angular momentum conversion in dielectric metasurfaces

    CERN Document Server

    Devlin, Robert Charles; Wintz, Daniel; Oscurato, Stefano Luigi; Zhu, Alexander Yutong; Khorasaninejad, Mohammadreza; Oh, Jaewon; Maddalena, Pasqualino; Capasso, Federico

    2016-01-01

    Spin-to-orbital-angular-momentum conversion has attracted considerable interest as a tool to create exotic light beams, leading to the emergence of novel devices that implement this function. These converters exploit the geometrical phase to create helical beams of handedness determined by the chirality of the incident light. This property is finding important applications in quantum optics thanks to the demonstration of liquid crystal spin-to-orbital angular momentum converters (SOC) known as q-plates. Here we demonstrate high-efficiency SOCs in the visible based on dielectric metasurfaces that generate vortex beams with high and even fractional topological charge and show for the first time the simultaneous generation of collinear helical beams with different and arbitrary orbital angular momentum. We foresee that this versatile method of creating vortex beams, which circumvents the limitations of q-plates, will significant impact microscopy and vector beam shaping.

  3. ANGULAR LIGHT-SCATTERING STUDIES ON ISOLATED MITOCHONDRIA

    Science.gov (United States)

    Gotterer, Gerald S.; Thompson, Thomas E.; Lehninger, Albert L.

    1961-01-01

    Angular light-scattering studies have been carried out on suspensions of isolated rat liver mitochondria. The angular scatter pattern has a large forward component, typical of large particles. Changes in dissymmetry and in the intensity of light scattered at 90° have been correlated with changes in optical density during the course of mitochondrial swelling and contraction. Such changes can be measured at mitochondrial concentrations much below those required for optical density measurements. Changes in mitochondrial geometry caused by factors "leaking" from mitochondria, not detectable by optical density measurements, have been demonstrated by measuring changes in dissymmetry. Angular light-scattering measurements therefore offer the advantages of increased sensitivity and of added indices of changes in mitochondrial conformation. PMID:19866589

  4. Quantum oscillations in the chiral magnetic conductivity

    Science.gov (United States)

    Kaushik, Sahal; Kharzeev, Dmitri E.

    2017-06-01

    In strong magnetic field, the longitudinal magnetoconductivity in three-dimensional chiral materials is shown to exhibit a new type of quantum oscillations arising from the chiral magnetic effect (CME). These quantum CME oscillations are predicted to dominate over the Shubnikov-de Haas (SdH) ones in chiral materials with an approximately conserved chirality of quasiparticles at strong magnetic fields. The phase of quantum CME oscillations differs from the phase of the conventional SdH oscillations by π /2 .

  5. Nonlinear analysis of ring oscillator circuits

    KAUST Repository

    Ge, Xiaoqing

    2010-06-01

    Using nonlinear systems techniques, we analyze the stability properties and synchronization conditions for ring oscillator circuits, which are essential building blocks in digital systems. By making use of its cyclic structure, we investigate local and global stability properties of an n-stage ring oscillator. We present a sufficient condition for global asymptotic stability of the origin and obtain necessity if the ring oscillator consists of identical inverter elements. We then give a synchronization condition for identical interconnected ring oscillators.

  6. Assessing the quality of stochastic oscillations

    Indian Academy of Sciences (India)

    Population dynamics; stochastic oscillations. ... We propose a quantification of the oscillatory appearance of the fluctuating populations, and show that good stochastic oscillations are present if a parameter of the macroscopic model is small, and that no microscopic model will show oscillations if that parameter is large.

  7. Internal dynamics of long Josephson junction oscillators

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Lomdahl, P. S.; Scott, Alwyn C.

    1981-01-01

    Numerical computations on a sine-Gordon model of the Josephson junction fluxon oscillator are compared with experimental measurements. Good agreement is found for the voltage current characteristic, oscillator power output, and range of current bias over which oscillation is observed. Our numerical...

  8. Comparison of Methods for Oscillation Detection

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Trangbæk, Klaus

    2006-01-01

    This paper compares a selection of methods for detecting oscillations in control loops. The methods are tested on measurement data from a coal-fired power plant, where some oscillations are occurring. Emphasis is put on being able to detect oscillations without having a system model and without...

  9. Scleronomic Holonomic Constraints and Conservative Nonlinear Oscillators

    Science.gov (United States)

    Munoz, R.; Gonzalez-Garcia, G.; Izquierdo-De La Cruz, E.; Fernandez-Anaya, G.

    2011-01-01

    A bead sliding, under the sole influence of its own weight, on a rigid wire shaped in the fashion of a plane curve, will describe (generally anharmonic) oscillations around a local minimum. For given shapes, the bead will behave as a harmonic oscillator in the whole range, such as an unforced, undamped, Duffing oscillator, etc. We also present…

  10. Coherent states for the Legendre oscillator

    OpenAIRE

    Borzov, V. V.; Damaskinsky, E. V.

    2003-01-01

    A new oscillator-like system called by the Legendre oscillator is introduced in this note. The two families of coherent states (coherent states as eigenvectors of the annihilation operator and the Klauder-Gazeau temporally stable coherent states) are defined and investigated for this oscillator.

  11. Alignment of angular velocity sensors for a vestibular prosthesis

    Directory of Open Access Journals (Sweden)

    DiGiovanna Jack

    2012-02-01

    Full Text Available Abstract Vestibular prosthetics transmit angular velocities to the nervous system via electrical stimulation. Head-fixed gyroscopes measure angular motion, but the gyroscope coordinate system will not be coincident with the sensory organs the prosthetic replaces. Here we show a simple calibration method to align gyroscope measurements with the anatomical coordinate system. We benchmarked the method with simulated movements and obtain proof-of-concept with one healthy subject. The method was robust to misalignment, required little data, and minimal processing.

  12. Angular distribution of plasma in the vacuum arc ion source.

    Science.gov (United States)

    Nikolaev, A G; Yushkov, G Yu; Savkin, K P; Oks, E M

    2012-02-01

    This paper presents measurements of the angular distribution of the plasma components and different charge states of metal ions generated by a MEVVA-type ion source and measured by a time-of-flight mass-spectrometer. The experiments were performed for different cathode materials (Al, Cu, and Ti) and for different parameters of the vacuum arc discharge. The results are compared with prior results reported by other authors. The influence of different discharge parameters on the angular distribution in a vacuum arc source is discussed.

  13. Tehnologija Angular 2 na primeru vtičnika Wordpress

    OpenAIRE

    Kenda, Mario

    2017-01-01

    V diplomskem delu je predstavljena implementacija vtičnika Wordpress, ki zagotavlja hitro in predvsem enostavno rezervacijo željenega turističnega aranžmaja. To dosežemo s tehnologijama Angular 2 in TypeScript ter vsemi drugimi povezanimi tehnologijami za razvoj spletnih aplikacij. Uporabniški vmesnik aplikacije je implementiran v jezikih HTML in CSS ter ogrodjem Bootstrap. Interakcija z uporabnikom ter logika aplikacije pa je implementirana s tehnologijama Angular 2 in jezikom TypeScript.

  14. Implementing quantum walks using orbital angular momentum of classical light.

    Science.gov (United States)

    Goyal, Sandeep K; Roux, Filippus S; Forbes, Andrew; Konrad, Thomas

    2013-06-28

    We present an implementation scheme for a quantum walk in the orbital angular momentum space of a laser beam. The scheme makes use of a ring interferometer, containing a quarter-wave plate and a q plate. This setup enables one to perform an arbitrary number of quantum walk steps. In addition, the classical nature of the implementation scheme makes it possible to observe the quantum walk evolution in real time. We use nonquantum entanglement of the laser beam's polarization with its orbital angular momentum to implement the quantum walk.

  15. Spatial distribution of angular momentum inside the nucleon

    Science.gov (United States)

    Lorcé, Cédric; Mantovani, Luca; Pasquini, Barbara

    2018-01-01

    We discuss in detail the spatial distribution of angular momentum inside the nucleon. We show that the discrepancies between different definitions originate from terms that integrate to zero. Even though these terms can safely be dropped at the integrated level, they have to be taken into account when discussing distributions. Using the scalar diquark model, we illustrate our results and, for the first time, check explicitly that the equivalence between kinetic and canonical orbital angular momentum persists at the level of distributions, as expected in a system without gauge degrees of freedom.

  16. Investigating pointing tasks across angularly coupled display areas

    DEFF Research Database (Denmark)

    Hennecke, Fabian; De Luca, Alexander; Nguyen, Ngo Dieu Huong

    2013-01-01

    user performance still hold – in particular when pointing is performed across differently oriented areas. To answer this question, we conducted an experiment on an angularly coupled display – the Curve – with two input conditions: direct touch and indirect mouse pointer. Our findings show...... that the target position affects overall pointing speed and offset in both conditions. However, we also found that Fitts’ Law can in fact still be used to predict performance as on flat displays. Our results help designers to optimize user interfaces on angularly coupled displays when pointing tasks are involved....

  17. Vorticity Measurement using LG Laser Beams with Orbital Angular Momentum

    Science.gov (United States)

    Kooochesfahani, Manoochehr; Pouya, Shahram; Safaripour, Alireza; Ryabtsev, Anton; Dantus, Marcos

    2016-11-01

    We present direct measurement of vorticity in a fluid flow based on angular velocity measurement of microparticles contained in the fluid. The method uses Laguerre-Gaussian (LG) laser beams that possess orbital angular momentum (OAM), a spatial (azimuthal) modulation of the beam phase front, and takes advantage of the rotational Doppler shift from microparticles intersecting the beam focus. Results are shown for the flow field of solid body rotation, where the flow vorticity is known precisely. This work was supported by AFOSR Award Number FA9550-14-1-0312.

  18. Dawn and Dusk Set States of the Circadian Oscillator in Sprouting Barley (Hordeum vulgare) Seedlings.

    Science.gov (United States)

    Deng, Weiwei; Clausen, Jenni; Boden, Scott; Oliver, Sandra N; Casao, M Cristina; Ford, Brett; Anderssen, Robert S; Trevaskis, Ben

    2015-01-01

    The plant circadian clock is an internal timekeeper that coordinates biological processes with daily changes in the external environment. The transcript levels of clock genes, which oscillate to control circadian outputs, were examined during early seedling development in barley (Hordeum vulgare), a model for temperate cereal crops. Oscillations of clock gene transcript levels do not occur in barley seedlings grown in darkness or constant light but were observed with day-night cycles. A dark-to-light transition influenced transcript levels of some clock genes but triggered only weak oscillations of gene expression, whereas a light-to-dark transition triggered robust oscillations. Single light pulses of 6, 12 or 18 hours induced robust oscillations. The light-to-dark transition was the primary determinant of the timing of subsequent peaks of clock gene expression. After the light-to-dark transition the timing of peak transcript levels of clock gene also varied depending on the length of the preceding light pulse. Thus, a single photoperiod can trigger initiation of photoperiod-dependent circadian rhythms in barley seedlings. Photoperiod-specific rhythms of clock gene expression were observed in two week old barley plants. Changing the timing of dusk altered clock gene expression patterns within a single day, showing that alteration of circadian oscillator behaviour is amongst the most rapid molecular responses to changing photoperiod in barley. A barley EARLY FLOWERING3 mutant, which exhibits rapid photoperiod-insensitive flowering behaviour, does not establish clock rhythms in response to a single photoperiod. The data presented show that dawn and dusk cues are important signals for setting the state of the circadian oscillator during early development of barley and that the circadian oscillator of barley exhibits photoperiod-dependent oscillation states.

  19. Slow oscillations orchestrating fast oscillations and memory consolidation.

    Science.gov (United States)

    Mölle, Matthias; Born, Jan

    2011-01-01

    Slow-wave sleep (SWS) facilitates the consolidation of hippocampus-dependent declarative memory. Based on the standard two-stage memory model, we propose that memory consolidation during SWS represents a process of system consolidation which is orchestrated by the neocortical memory. The slow oscillations temporally group neuronal activity into up-states of strongly enhanced neuronal activity and down-states of neuronal silence. In a feed-forward efferent action, this grouping is induced not only in the neocortex but also in other structures relevant to consolidation, namely the thalamus generating 10-15Hz spindles, and the hippocampus generating sharp wave-ripples, with the latter well known to accompany a replay of newly encoded memories taking place in hippocampal circuitries. The feed-forward synchronizing effect of the slow oscillation enables the formation of spindle-ripple events where ripples and accompanying reactivated hippocampal memory information become nested into the single troughs of spindles. Spindle-ripple events thus enable reactivated memory-related hippocampal information to be fed back to neocortical networks in the excitable slow oscillation up-state where they can induce enduring plastic synaptic changes underlying the effective formation of long-term memories. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Measuring neutrino oscillation parameters using $\

    Energy Technology Data Exchange (ETDEWEB)

    Backhouse, Christopher James [Oriel College, Oxford (United Kingdom)

    2011-01-01

    MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters (Δmatm2 and sin2atm). The oscillation signal consists of an energy-dependent deficit of vμ interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the vμ-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the vμ-disappearance analysis, incorporating this new estimator were: Δm2 = 2.32-0.08+0.12 x 10-3 eV2, sin 2 2θ > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly $\\bar{v}$μ beam, yielded somewhat different best-fit parameters Δ$\\bar{m}${sup 2} = (3.36-0.40+0.46(stat.) ± 0.06(syst.)) x 10-3eV2, sin2 2$\\bar{θ}$ = 0.86-0.12_0

  1. Time domain oscillating poles: Stability redefined in Memristor based Wien-oscillators

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-07-28

    Traditionally, the necessary and sufficient condition for any system to be oscillating is that its poles are located on the imaginary (jω) axis. In this paper, for the first time, we have shown that systems can oscillate with time-domain oscillating poles. The idea is verified using a Memristor based Wien oscillator. Sustained oscillations are observed without having the poles of the system fixed on the imaginary axis and the oscillating behavior of the system poles is reported. The oscillating resistance and triangular shape of FFT are also demonstrated with mathematical reasoning and simulation results to support the unusual and surprising characteristics. © 2009 IEEE.

  2. Phase response curves of a molecular model oscillator: implications for mutual coupling of paired oscillators.

    Science.gov (United States)

    Petri, B; Stengl, M

    2001-04-01

    Increasing evidence indicates that the accessory medulla is the circadian pacemaker controlling locomotor activity rhythms in insects. A prominent group of neurons of this neuropil shows immunoreactivity to the peptide pigment-dispersing hormone (PDH). In Drosophila melanogaster, the PDH-immunoreactive (PDH-ir) lateral neurons, which also express the clock genes period and timeless, are assumed to be circadian pacemaker cells themselves. In other insects, such as Leucophaea maderae, a subset of apparently homologue PDH-ir cells is a candidate for the circadian coupling pathway of the bilaterally symmetric clocks. Although knowledge about molecular mechanisms of the circadian clockwork is increasing rapidly, very little is known about mechanisms of circadian coupling. The authors used a computer model, based on the molecular feedback loop of the clock genes in D. melanogaster, to test the hypothesis that release of PDH is involved in the coupling between bilaterally paired oscillators. They can show that a combination of all-delay- and all-advance-type interactions between two model oscillators matches best the experimental findings on mutual pacemaker coupling in L. maderae. The model predicts that PDH affects the phosphorylation rate of clock genes and that in addition to PDH, another neuroactive substance is involved in the coupling pathway, via an all-advance type of interaction. The model suggests that PDH and light pulses, represented by two distinct classes of phase response curves, have different targets in the oscillatory feedback loop and are, therefore, likely to act in separate input pathways to the clock.

  3. Multifrequency Oscillator-Type Active Printed Antenna Using Chaotic Colpitts Oscillator

    OpenAIRE

    Bibha Kumari; Nisha Gupta

    2014-01-01

    This paper presents a new concept to realize a multifrequency Oscillator-type active printed monopole antenna. The concept of period doubling route to chaos is exploited to generate the multiple frequencies. The chaotic Colpitts oscillator is integrated with the printed monopole antenna (PMA) on the same side of the substrate to realize an Oscillator-type active antenna where the PMA acts as a load and radiator to the chaotic oscillator. By changing the bias voltage of the oscillator, the ant...

  4. Experimental studies of neutrino oscillations

    CERN Document Server

    Kajita, Takaaki

    2016-01-01

    The 2015 Nobel Prize in physics has been awarded to Takaaki Kajita and Arthur McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass". Takaaki Kajita of Tokyo University is a Japanese physicist, known for neutrino experiments at the Kamiokande and its successor, Super-Kamiokande. This volume of collected works of Kajita on neutrino oscillations provides a good glimpse into as well as a record of the rise and the role of Asian research in the frontiers of neutrino physics. Japan is now a major force in the study of the 3 families of neutrinos. Much remains to be done to clarify the Dirac vs. Majorana nature of the neutrino, and the cosmological implications of the neutrino. The collected works of Kajita and his Super-Kamiokande group will leave an indelible foot-print in the history of big and better science.

  5. Cubication of conservative nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Belendez, Augusto; Alvarez, Mariela L [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, Elena; Pascual, Inmaculada [Departamento de Optica, FarmacologIa y Anatomia, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es

    2009-09-15

    A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A, while in a Taylor expansion of the restoring force these coefficients are independent of A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain an approximate frequency-amplitude relation as a function of the complete elliptic integral of the first kind. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of this scheme.

  6. Quantum transduction with mechanical oscillators

    Science.gov (United States)

    Lehnert, Konrad

    In modern information technology, micromechanical oscillators are ubiquitous signal processing elements. Because the speed of sound is so slow compared to the speed of light, mechanical structures create superb compact filters and clocks. Moreover they convert force and acceleration signals into more easily processed electrical signals. Although these humble devices appear manifestly classical, they can exhibit quantum behavior when their vibrations are strongly coupled to optical light or to microwave electricity. I will describe our progress in using this recent result to develop quantum information processing elements. First, we are developing a device that uses a mechanical oscillator to transfer information noiselessly between electrical and optical domains. Second, we prepare propagating microwave fields in superpositions of 0 and 1 photon, and use an electromechanical device to store and amplify these fragile quantum bits. Work supported by AFOSR MURI:FA9550-15-1-0015, NSF under Grant Number 1125844, and the Gordon and Betty Moore Foundation.

  7. Memristor-based reactance-less oscillator

    KAUST Repository

    Zidan, Mohammed A.

    2012-10-02

    The first reactance-less oscillator is introduced. By using a memristor, the oscillator can be fully implemented on-chip without the need for any capacitors or inductors, which results in an area-efficient fully integrated solution. The concept of operation of the proposed oscillator is explained and detailed mathematical analysis is introduced. Closed-form expressions for the oscillation frequency and oscillation conditions are derived. Finally, the derived equations are verified with circuit simulations showing excellent agreement. © 2011 The Institution of Engineering and Technology.

  8. Cyanohydrin reactions enhance glycolytic oscillations in yeast

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Nielsen, Astrid Gram; Tortzen, Christian

    2015-01-01

    Synchronous metabolic oscillations can be induced in yeast by addition of glucose and removal of extracellular acetaldehyde (ACAx). Compared to other means of ACAx removal, cyanide robustly induces oscillations, indicating additional cyanide reactions besides ACA to lactonitrile conversion. Here...... for ~66% of total cyanide removal. Simulations of our updated computational model show that intracellular cyanide reactions increase the amplitude of oscillations and that cyanide addition lowers [ACA] instantaneously. We conclude that cyanide provides the following means of inducing global oscillations......: a) by reducing [ACAx] relative to oscillation amplitude, b) by targeting multiple intracellular carbonyl compounds during fermentation, and c) by acting as a phase resetting stimulus....

  9. Multipartite entanglement in neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2009-06-01

    Particle mixing is related to multi-mode entanglement of single-particle states The occupation number of both flavor eigenstates and mass eigenstates can be used to define a multiqubit space. In such a framework, flavor neutrino states can be interpreted as multipartite mode-entangled states. By using two different entanglement measures, we analyze the behavior of multipartite entanglement in the phenomenon of neutrino oscillations.

  10. Oscillations and Waves in Sunspots

    Directory of Open Access Journals (Sweden)

    Elena Khomenko

    2015-11-01

    Full Text Available A magnetic field modifies the properties of waves in a complex way. Significant advances have been made recently in our understanding of the physics of sunspot waves with the help of high-resolution observations, analytical theories, as well as numerical simulations. We review the current ideas in the field, providing the most coherent picture of sunspot oscillations as by present understanding.

  11. Renormalization for free harmonic oscillators

    OpenAIRE

    Sonoda, H.

    2013-01-01

    We introduce a model of free harmonic oscillators that requires renormalization. The model is similar to but simpler than the soluble Lee model. We introduce two concrete examples: the first, resembling the three dimensional $\\phi^4$ theory, needs only mass renormalization, and the second, resembling the four dimensional $\\phi^4$ theory and the Lee model, needs additional renormalization of a coupling and a wave function.

  12. Antiferromagnetic nano-oscillator in external magnetic fields

    Science.gov (United States)

    Checiński, Jakub; Frankowski, Marek; Stobiecki, Tomasz

    2017-11-01

    We describe the dynamics of an antiferromagnetic nano-oscillator in an external magnetic field of any given time distribution. The oscillator is powered by a spin current originating from spin-orbit effects in a neighboring heavy metal layer and is capable of emitting a THz signal in the presence of an additional easy-plane anisotropy. We derive an analytical formula describing the interaction between such a system and an external field, which can affect the output signal character. Interactions with magnetic pulses of different shapes, with a sinusoidal magnetic field and with a sequence of rapidly changing magnetic fields are discussed. We also perform numerical simulations based on the Landau-Lifshitz-Gilbert equation with spin-transfer torque effects to verify the obtained results and find a very good quantitative agreement between analytical and numerical predictions.

  13. Oscillators and relaxation phenomena in Pleistocene climate theory

    CERN Document Server

    Crucifix, Michel

    2011-01-01

    Ice sheets appeared in the northern hemisphere around 3 million years ago and glacial-interglacial cycles have paced Earth's climate since then. Superimposed on these long glacial cycles comes an intricate pattern of millennial and sub-millennial variability, including Dansgaard-Oeschger and Heinrich events. There are numerous theories about theses oscillations. Here, we review a number of them in order draw a parallel between climatic concepts and dynamical system concepts, including, in particular, the relaxation oscillator, excitability, slow-fast dynamics and homoclinic orbits. Namely, almost all theories of ice ages reviewed here feature a phenomenon of synchronisation between internal climate dynamics and the astronomical forcing. However, these theories differ in their bifurcation structure and this has an effect on the way the ice age phenomenon could grow 3 million years ago. All theories on rapid events reviewed here rely on the concept of a limit cycle in the ocean circulation, which may be excited...

  14. Learning increases human electroencephalographic coherence during subsequent slow sleep oscillations.

    Science.gov (United States)

    Mölle, Matthias; Marshall, Lisa; Gais, Steffen; Born, Jan

    2004-09-21

    Learning is assumed to induce specific changes in neuronal activity during sleep that serve the consolidation of newly acquired memories. To specify such changes, we measured electroencephalographic (EEG) coherence during performance on a declarative learning task (word pair associations) and subsequent sleep. Compared with a nonlearning control condition, learning performance was accompanied with a strong increase in coherence in several EEG frequency bands. During subsequent non-rapid eye movement sleep, coherence only marginally increased in a global analysis of EEG recordings. However, a striking and robust increase in learning-dependent coherence was found when analyses were performed time-locked to the occurrence of slow oscillations (learning in the slow-oscillatory, delta, slow-spindle, and gamma bands. The findings identify the depolarizing phase of the slow oscillations in humans as a time period particularly relevant for a reprocessing of memories in sleep.

  15. Automatic oscillator frequency control system

    Science.gov (United States)

    Smith, S. F. (Inventor)

    1985-01-01

    A frequency control system makes an initial correction of the frequency of its own timing circuit after comparison against a frequency of known accuracy and then sequentially checks and corrects the frequencies of several voltage controlled local oscillator circuits. The timing circuit initiates the machine cycles of a central processing unit which applies a frequency index to an input register in a modulo-sum frequency divider stage and enables a multiplexer to clock an accumulator register in the divider stage with a cyclical signal derived from the oscillator circuit being checked. Upon expiration of the interval, the processing unit compares the remainder held as the contents of the accumulator against a stored zero error constant and applies an appropriate correction word to a correction stage to shift the frequency of the oscillator being checked. A signal from the accumulator register may be used to drive a phase plane ROM and, with periodic shifts in the applied frequency index, to provide frequency shift keying of the resultant output signal. Interposition of a phase adder between the accumulator register and phase plane ROM permits phase shift keying of the output signal by periodic variation in the value of a phase index applied to one input of the phase adder.

  16. Neutrino Oscillation Experiment at JHF

    CERN Multimedia

    2002-01-01

    T2K is a long baseline neutrino experiment designed to investigate how neutrinos change from one flavor to another as they travel (neutrino oscillations). An intense beam of muon neutrinos is generated at the J-PARC nuclear physics site on the East coast of Japan and directed across the country to the Super-Kamiokande neutrino detector in the mountains of western Japan. The beam is measured once before it leaves the J-PARC site, using the near detector ND280, and again at Super-K, 295 km away: the change in the measured intensity and composition of the beam is used to provide information on the properties of neutrinos. The high intensity neutrino beam is produced in an off-axis configuration. The peak neutrino energy is tuned to the oscillation maximum of ∼ 0.6 GeV to maximize the sensitivity to neutrino oscillations. The science goals of T2K can be summarized as follows: •\tsearch for CP violation in the neutrino sector •\tdiscovery of νμ → νe ( i.e. the confirmation that θ13 > 0 ) •\tprecision ...

  17. The vorticity and angular momentum budgets of Asian summer ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 113; Issue 3. The vorticity and angular momentum ... The flux convergence of omega and relative momenta over the monsoon domain is effectively balanced by pressure torque during the evolution and established phases. Nevertheless, the balance is stronger ...

  18. Implementing quantum walks using orbital angular momentum of classical light

    CSIR Research Space (South Africa)

    Goyal, SK

    2013-06-01

    Full Text Available We present an implementation scheme for a quantum walk in the orbital angular momentum space of a laser beam. The scheme makes use of a ring interferometer, containing a quarter-wave plate and a q plate. This setup enables one to perform...

  19. Numerical simulation of side heating for controlling angular ...

    Indian Academy of Sciences (India)

    Side heating; finite element analysis; element birth and death method; manual metal arc welding; angular distortions. ... Element birth and death technique is used to simulate the filler material deposition. ... Institute of Engineering Education and Research, Nashik (Affiliated to University of Pune), Nashik, 422 003, India ...

  20. Cosmology Large Angular Scale Surveyor (CLASS) Focal Plane Development

    Science.gov (United States)

    Chuss, D. T.; Ali, A.; Amiri, M.; Appel, J.; Bennett, C. L.; Colazo, F.; Denis, K. L.; Dunner, R.; Essinger-Hileman, T.; Eimer, J.; hide

    2015-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization of the Cosmic Microwave Background to search for and characterize the polarized signature of inflation. CLASS will operate from the Atacama Desert and observe approx.70% of the sky. A variable-delay polarization modulator provides modulation of the polarization at approx.10Hz to suppress the 1/f noise of the atmosphere and enable the measurement of the large angular scale polarization modes. The measurement of the inflationary signal across angular scales that spans both the recombination and reionization features allows a test of the predicted shape of the polarized angular power spectra in addition to a measurement of the energy scale of inflation. CLASS is an array of telescopes covering frequencies of 38, 93, 148, and 217 GHz. These frequencies straddle the foreground minimum and thus allow the extraction of foregrounds from the primordial signal. Each focal plane contains feedhorn-coupled transition-edge sensors that simultaneously detect two orthogonal linear polarizations. The use of single-crystal silicon as the dielectric for the on-chip transmission lines enables both high efficiency and uniformity in fabrication. Integrated band definition has been implemented that both controls the bandpass of the single-mode transmission on the chip and prevents stray light from coupling to the detectors.

  1. Energy and angular distributions of backscattered electrons from ...

    Indian Academy of Sciences (India)

    a new interest has grown in recent years as its properties have become important in electron beam lithography [8] and scanning electron microscopy (SEM) [9]. Ob- servable properties of backscattered electrons (BEs) consist of their absolute yield per incident electron (the BE coefficient η), their angular and energy ...

  2. inheritance of resistance to angular leaf spot in yellow beans ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    African Crop Science Journal, Vol. 19, No. 4, pp. ... Department of Plant Science and Crop Protection, University of Nairobi, P. O. Box 30197-00100,. Nairobi ..... Colombia. Santos-Filho, H.P., Ferraz, H.P. and Vieira, C. 1976. Inheritance of resistance to angular leaf spot in Phaseolus vulgaris L. Annual Report of the Bean ...

  3. Angular momentum transport with twisted exciton wave packets

    Science.gov (United States)

    Zang, Xiaoning; Lusk, Mark T.

    2017-10-01

    A chain of cofacial molecules with CN or CN h symmetry supports excitonic states with a screwlike structure. These can be quantified with the combination of an axial wave number and an azimuthal winding number. Combinations of these states can be used to construct excitonic wave packets that spiral down the chain with well-determined linear and angular momenta. These twisted exciton wave packets can be created and annihilated using laser pulses, and their angular momentum can be optically modified during transit. This allows for the creation of optoexcitonic circuits in which information, encoded in the angular momentum of light, is converted into excitonic wave packets that can be manipulated, transported, and then reemitted. A tight-binding paradigm is used to demonstrate the key ideas. The approach is then extended to quantify the evolution of twisted exciton wave packets in a many-body, multilevel time-domain density functional theory setting. In both settings, numerical methods are developed that allow the site-to-site transfer of angular momentum to be quantified.

  4. Dichroism for Orbital Angular Momentum using Stimulated Parametric Down Conversion

    CERN Document Server

    Lowney, Joseph; Faccio, Daniele; Wright, Ewan M

    2014-01-01

    We theoretically analyze stimulated parametric down conversion as a means to produce dichroism based on the orbital angular momentum (OAM) of an incident signal field. The nonlinear interaction is shown to provide differential gain between signal states of differing OAM, the peak gain occurring at half the OAM of the pump field.

  5. Prospects of Measuring the Angular Power Spectrum of the Diffuse ...

    Indian Academy of Sciences (India)

    ISM) of our galaxy. In this paper we briefly review the Tapered. Gridded Estimator (TGE) which can be used to quantify the angular power spectrum Cl of the sky signal directly from the visibilities mea- sured in radio-interferometric observations.

  6. Generation of ultraviolet radiation with wide angular tolerance in ...

    Indian Academy of Sciences (India)

    CLBO) crystal for the first time for the generation of fourth harmonic (266 nm) of Nd:YAG and third harmonic. (226.7 nm) of a dye laser radiation by second harmonic generation and sum-frequency mixing with the angular tolerance as large as ...

  7. Generation of ultraviolet radiation with wide angular tolerance in ...

    Indian Academy of Sciences (India)

    Tangential phase-matching has been realised in cesium lithium borate (CLBO) crystal for the first time for the generation of fourth harmonic (266 nm) of Nd:YAG and third harmonic (226.7 nm) of a dye laser radiation by second harmonic generation and sum-frequency mixing with the angular tolerance as large as 22 mrad ...

  8. Obtaining the Electron Angular Momentum Coupling Spectroscopic Terms, jj

    Science.gov (United States)

    Orofino, Hugo; Faria, Roberto B.

    2010-01-01

    A systematic procedure is developed to obtain the electron angular momentum coupling (jj) spectroscopic terms, which is based on building microstates in which each individual electron is placed in a different m[subscript j] "orbital". This approach is similar to that used to obtain the spectroscopic terms under the Russell-Saunders (LS) coupling…

  9. The vorticity and angular momentum budgets of Asian summer ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    1School of Geography and Geology, McMaster University, Hamilton, ON, Canada L8S 4K1. 2Centre for Atmospheric Sciences, Indian Institute of Technology-Delhi Hauz Khas, New Delhi 110 016, India. The study delineates the vorticity and angular momentum balances of Asian summer monsoon dur- ing the evolution and ...

  10. Exact angular momentum projection based on cranked HFB solution

    Energy Technology Data Exchange (ETDEWEB)

    Enami, Kenichi; Tanabe, Kosai; Yosinaga, Naotaka [Saitama Univ., Urawa (Japan). Dept. of Physics

    1998-03-01

    Exact angular momentum projection of cranked HFB solutions is carried out. It is reconfirmed from this calculation that cranked HFB solutions reproduce the intrinsic structure of deformed nucleus. The result also indicates that the energy correction from projection is important for further investigation of nuclear structure. (author)

  11. Angular momentum projection of tilted axis rotating states

    Energy Technology Data Exchange (ETDEWEB)

    Oi, M.; Onishi, N.; Tajima, N. [Tokyo Univ. (Japan); Horibata, T.

    1998-03-01

    We applied an exact angular momentum projection to three dimensional cranked HFB (3d-CHFB) states. Tilted axis rotating states (TAR) and principal axis rotating states (PAR) are compared. It is shown that TAR is more adequate than PAR for description of the back bending phenomena driven by tilted rotation or wobbling motion. (author)

  12. Variation in aggressiveness of Phaeoisariopsis griseola and angular ...

    African Journals Online (AJOL)

    Aggressiveness of fifteen isolates of Phaeoisariopsis griseola and variations in angular leaf spot symptom development in common bean were studied. The isolates were selected based on their virulence and genetic differences and represented Andean, Afro-Andean and Mesoamerican groups of P. griseola.

  13. Equal channel angular pressing of pure aluminium—an analysis

    Indian Academy of Sciences (India)

    Equal channel angular pressing (ECAP) is a novel technique for producing ultra fine grain structures in submicron level by introducing a large amount of shear strain into the materials without changing the billet shape or dimensions. This process is well suited for aluminium alloys and is capable of producing ultra fine grain ...

  14. Energy and angular distributions of backscattered electrons from ...

    Indian Academy of Sciences (India)

    The energy and angular distributions of backscattered electrons produced under the impact of 5 keV electrons with thick Al, Ti, Ag, W and Pt targets are measured. The energy range of backscattered electrons is considered between B = 50 eV and 5000 eV. The angle of incidence α and take-off angle are chosen to have ...

  15. Determination Of Segmented Angular Shapes For Circular Areas Of ...

    African Journals Online (AJOL)

    These segmented angular shapes are not standardized, so depending on the make of the thermal equipment, suitable segments must be fabricated to fit. Moulds have to be fabricated and shapes cast out, using high temperature castables. These intricate procedures for the design and construction of circular segmented ...

  16. Classical Angular Momentum of Light: A Paradox and its Resolution

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 10. Classical Angular Momentum of Light: A Paradox and its Resolution. K Vijay Kumar N Kumar. Classroom Volume 8 Issue 10 October 2003 pp 69-75. Fulltext. Click here to view fulltext PDF. Permanent link:

  17. Strong eld ionization of naphthalene: angular shifts and molecular potential

    DEFF Research Database (Denmark)

    Dimitrovski, Darko; Maurer, Jochen; Christensen, Lauge

    We analyze the photoelectron momentum distributions from strong eld ionization of xed-in-space naphthalene molecules by circularly polarized laser pulses. By direct comparison between experiment and theory, we show that the angular shifts in the photoelectron momentum distributions are very...

  18. The operator method for angular momentum and SU3

    NARCIS (Netherlands)

    Eekelen, H.A.M. van; Ruijgrok, Th.W.

    It is well known how Schwinger's1) operator method can be used to construct all representations of the angular momentum operators. We give a brief account of this method and show that it is very convenient for a short derivation of the general Clebsch-Gordan coefficients. The method is then applied

  19. Inheritance of resistance to angular leaf spot in yellow beans ...

    African Journals Online (AJOL)

    The backcross to Lusaka Yellow showed a 1:1 segregation ratio, while the backcrosses to Mexico 54 were all resistant. Pembela was susceptible to angular leaf spot, while the F1 were resistant. The ratio of 3:1 represents resistant : susceptible F2 populations. All backcrosses to Mexico 54 were resistant, confirming that ...

  20. Earth Rotation and Coupling to Changes in Atmospheric Angular Momentum

    Science.gov (United States)

    Rosen, Richard D.; Frey, H. (Technical Monitor)

    2000-01-01

    The research supported under the contract dealt primarily with: (a) the mechanisms responsible for the exchange of angular momentum between the solid Earth and atmosphere; (b) the quality of the data sets used to estimate atmospheric angular momentum; and (c) the ability of these data and of global climate models to detect low-frequency signals in the momentum and, hence, circulation of the atmosphere. Three scientific papers reporting on the results of this research were produced during the course of the contract. These papers identified the particular torques responsible for the peak in atmospheric angular momentum and length-of-day during the 1982-93 El Nino event, and, more generally, the relative roles of torques over land and ocean in explaining the broad spectrum of variability in the length-of-day. In addition, a tendency for interannual variability in atmospheric angular momentum to increase during the last several decades of the 20th century was found in both observations and a global climate model experiment.

  1. Photofission and electrofission. [Review, cross sections, fission yield, angular distribution

    Energy Technology Data Exchange (ETDEWEB)

    Berman, B.L.

    1978-08-17

    Recent experimental progress in the fields of photofission and electrofission of actinide nuclei is summarized. In particular, experimental results which throw light on the delineation of the characteristics of the giant resonances are highlighted. Measurements of especial interest in this regard include photofission cross-section studies with monoenergetic photons and electrofission yield and angular-distribution studies. 36 references.

  2. Data visualization with D3 and AngularJS

    CERN Document Server

    Körner, Christoph

    2015-01-01

    If you are a web developer with experience in AngularJS and want to implement interactive visualizations using D3.js, this book is for you. Knowledge of SVG or D3.js will give you an edge to get the most out of this book.

  3. Angular Deformities of the Knee in Children | Solagberu | Nigerian ...

    African Journals Online (AJOL)

    Reports from Ibadan and Zaria showed variations in the types of angular deformities of the knee in children. This work was done to determine the varieties of the deformities and their causes at the University of Ilorin Teaching Hospital Ilorin, Nigeria and review the problem in Nigeria. A prospective analysis of all children with ...

  4. Demonstrating the Direction of Angular Velocity in Circular Motion

    Science.gov (United States)

    Demircioglu, Salih; Yurumezoglu, Kemal; Isik, Hakan

    2015-01-01

    Rotational motion is ubiquitous in nature, from astronomical systems to household devices in everyday life to elementary models of atoms. Unlike the tangential velocity vector that represents the instantaneous linear velocity (magnitude and direction), an angular velocity vector is conceptually more challenging for students to grasp. In physics…

  5. Angular Momentum across the Hubble sequence from the CALIFA survey

    NARCIS (Netherlands)

    Falcón-Barroso, Jesús; Lyubenova, Mariya; van de Ven, Glenn

    We investigate the stellar angular momentum of galaxies across the Hubble sequence from the CALIFA survey. The distribution of CALIFA elliptical and lenticular galaxies in the λRe - ɛe diagram is consistent with that shown by the Atlas3D survey. Our data, however, show that the location of spiral

  6. Angular correlation of annihilation photons in ice single crystals

    DEFF Research Database (Denmark)

    Mogensen, O. E.; Kvajic, G.; Eldrup, Morten Mostgaard

    1971-01-01

    Linear-slit angular-correlation curves were obtained at - 148 °C for the [0001], [10¯10], and [11¯20] directions in single crystals of ice. Besides the narrow central peak, pronounced narrow side peaks were also observed. They occurred at angles θ=2πℏgz/mc, where gz is the projection of reciproca...

  7. Capacitive coupling synchronizes autonomous microfluidic oscillators.

    Science.gov (United States)

    Lesher-Perez, Sasha Cai; Zhang, Chao; Takayama, Shuichi

    2018-01-31

    Even identically-designed autonomous microfluidic oscillators have device-to-device oscillation variability that arises due to inconsistencies in fabrication, materials, and operation conditions. This work demonstrates, experimentally and theoretically, that with appropriate capacitive coupling these microfluidic oscillators can be synchronized. The size and characteristics of the capacitive coupling needed and the range of input flow rate differences that can be synchronized are also characterized. In addition to device-to-device variability, there is also within-device oscillation noise that arises. An additional advantage of coupling multiple fluidic oscillators together is that the oscillation noise decreases. The ability to synchronize multiple autonomous oscillators is also a first step towards enhancing their usefulness as tools for biochemical research applications where multiplicate experiments with identical temporal-stimulation conditions are required. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Microwave balanced oscillators and frequency doublers

    CERN Document Server

    Siripon, N

    2002-01-01

    The research presented in this thesis is on the application of the injection-locked oscillator technique to microwave balanced oscillators. The balanced oscillator design is primarily analysed using the extended resonance technique. A transmission line is connected between the two active devices, so that the active device resonate each other. The electrical length of the transmission line is also analysed for the balanced oscillation condition. The balanced oscillator can be viewed with the negative resistance model and the feedback model. The former model is characterised at a circuit plane where the feedback network is cut. By using both the negative-resistance oscillator model and the feedback model, the locking range of the oscillator is analysed by extending Kurokawa's theory. This analysis demonstrates the locking range of the injection phenomenon, where the injection frequency is either close to the free-running frequency, close to (1/n) x free-running frequency or close to n x the free-running frequen...

  9. Oscillator strengths and branching fractions of 4d75p-4d75s Rh II transitions

    Science.gov (United States)

    Bouazza, Safa

    2017-01-01

    This work reports semi-empirical determination of oscillator strengths, transition probabilities and branching fractions for Rh II 4d75p-4d75s transitions in a wide wavelength range. The angular coefficients of the transition matrix, beforehand obtained in pure SL coupling with help of Racah algebra are transformed into intermediate coupling using eigenvector amplitudes of these two configuration levels determined for this purpose; The transition integral was treated as free parameter in the least squares fit to experimental oscillator strength (gf) values found in literature. The extracted value: 5s|r1|4d75p> =2.7426 ± 0.0007 is slightly smaller than that computed by means of ab-initio method. Subsequently to oscillator strength evaluations, transition probabilities and branching fractions were deduced and compared to those obtained experimentally or through another approach like pseudo-relativistic Hartree-Fock model including core-polarization effects.

  10. arXiv Search for baryon-number-violating $\\Xi_b^0$ oscillations

    CERN Document Server

    Aaij, Roel; LHCb Collaboration; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Alfonso Albero, Alejandro; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Archilli, Flavio; d'Argent, Philippe; Arnau Romeu, Joan; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Babuschkin, Igor; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baker, Sophie; Balagura, Vladislav; Baldini, Wander; Baranov, Alexander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Baryshnikov, Fedor; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Beiter, Andrew; Bel, Lennaert; Beliy, Nikita; Bellee, Violaine; Belloli, Nicoletta; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Beranek, Sarah; Berezhnoy, Alexander; Bernet, Roland; Berninghoff, Daniel; Bertholet, Emilie; Bertolin, Alessandro; Betancourt, Christopher; Betti, Federico; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bezshyiko, Iaroslava; Bifani, Simone; Billoir, Pierre; Birnkraut, Alex; Bitadze, Alexander; Bizzeti, Andrea; Bjørn, Mikkel; Blake, Thomas; Blanc, Frederic; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Boettcher, Thomas; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Bordyuzhin, Igor; Borgheresi, Alessio; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bossu, Francesco; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britton, Thomas; Brodzicka, Jolanta; Brundu, Davide; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Byczynski, Wiktor; Cadeddu, Sandro; Cai, Hao; Calabrese, Roberto; Calladine, Ryan; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel Hugo; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cavallero, Giovanni; Cenci, Riccardo; Chamont, David; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu Faye; Chitic, Stefan-Gabriel; Chobanova, Veronika; Chrzaszcz, Marcin; Chubykin, Alexsei; Ciambrone, Paolo; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collins, Paula; Colombo, Tommaso; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombs, George; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Costa Sobral, Cayo Mar; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Currie, Robert; D'Ambrosio, Carmelo; Da Cunha Marinho, Franciole; Dall'Occo, Elena; Dalseno, Jeremy; Davis, Adam; De Aguiar Francisco, Oscar; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Serio, Marilisa; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Del Buono, Luigi; Dembinski, Hans Peter; Demmer, Moritz; Dendek, Adam; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Nezza, Pasquale; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Douglas, Lauren; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Durante, Paolo; Dzhelyadin, Rustem; Dziewiecki, Michal; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Ebert, Marcus; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Farley, Nathanael; Farry, Stephen; Fazzini, Davide; Federici, Luca; Ferguson, Dianne; Fernandez, Gerard; Fernandez Declara, Placido; Fernandez Prieto, Antonio; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fini, Rosa Anna; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fohl, Klaus; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Franco Lima, Vinicius; Frank, Markus; Frei, Christoph; Fu, Jinlin; Funk, Wolfgang; Furfaro, Emiliano; Färber, Christian; Gabriel, Emmy; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garcia Martin, Luis Miguel; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Garsed, Philip John; Gascon, David; Gaspar, Clara; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gizdov, Konstantin; Gligorov, Vladimir; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gorelov, Igor Vladimirovich; Gotti, Claudio; Govorkova, Ekaterina; Grabowski, Jascha Peter; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greim, Roman; Griffith, Peter; Grillo, Lucia; Gruber, Lukas; Gruberg Cazon, Barak Raimond; Grünberg, Oliver; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Göbel, Carla; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hamilton, Brian; Han, Xiaoxue; Hancock, Thomas Henry; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; Hasse, Christoph; Hatch, Mark; He, Jibo; Hecker, Malte; Heinicke, Kevin; Heister, Arno; Hennessy, Karol; Henrard, Pierre; Henry, Louis; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hombach, Christoph; Hopchev, Plamen Hristov; Huard, Zachary; Hulsbergen, Wouter; Humair, Thibaud; Hushchyn, Mikhail; Hutchcroft, David; Ibis, Philipp; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jiang, Feng; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Karacson, Matthias; Kariuki, James Mwangi; Karodia, Sarah; Kazeev, Nikita; Kecke, Matthieu; Kelsey, Matthew; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Kirn, Thomas; Klaver, Suzanne; Klimaszewski, Konrad; Klimkovich, Tatsiana; Koliiev, Serhii; Kolpin, Michael; Komarov, Ilya; Kopecna, Renata; Koppenburg, Patrick; Kosmyntseva, Alena; Kotriakhova, Sofia; Kozeiha, Mohamad; Kravchuk, Leonid; Kreps, Michal; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lanfranchi, Gaia; Langenbruch, Christoph; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; Leflat, Alexander; Lefrançois, Jacques; Lefèvre, Regis; Lemaitre, Florian; Lemos Cid, Edgar; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Pei-Rong; Li, Tenglin; Li, Yiming; Li, Zhuoming; Likhomanenko, Tatiana; Lindner, Rolf; Lionetto, Federica; Lisovskyi, Vitalii; Liu, Xuesong; Loh, David; Loi, Angelo; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Lyu, Xiao-Rui; Machefert, Frederic; Maciuc, Florin; Macko, Vladimir; Mackowiak, Patrick; Maddrell-Mander, Samuel; Maev, Oleg; Maguire, Kevin; Maisuzenko, Dmitrii; Majewski, Maciej Witold; Malde, Sneha; Malinin, Alexander; Maltsev, Timofei; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Marangotto, Daniele; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marinangeli, Matthieu; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massacrier, Laure Marie; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurice, Emilie; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McNab, Andrew; McNulty, Ronan; Mead, James Vincent; Meadows, Brian; Meaux, Cedric; Meier, Frank; Meinert, Nis; Melnychuk, Dmytro; Merk, Marcel; Merli, Andrea; Michielin, Emanuele; Milanes, Diego Alejandro; Millard, Edward James; Minard, Marie-Noelle; Minzoni, Luca; Mitzel, Dominik Stefan; Mogini, Andrea; Molina Rodriguez, Josue; Mombacher, Titus; Monroy, Igancio Alberto; Monteil, Stephane; Morandin, Mauro; Morello, Michael Joseph; Morgunova, Olga; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Mulder, Mick; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Thi Dung; Nguyen-Mau, Chung; Nieswand, Simon; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Nogay, Alla; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Oldeman, Rudolf; Onderwater, Gerco; Ossowska, Anna; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Aranzazu; Pais, Preema Rennee; Palano, Antimo; Palutan, Matteo; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Pastore, Alessandra; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petrov, Aleksandr; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pikies, Malgorzata; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Placinta, Vlad-Mihai; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poli Lener, Marco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Pomery, Gabriela Johanna; Ponce, Sebastien; Popov, Alexander; Popov, Dmitry; Poslavskii, Stanislav; Potterat, Cédric; Price, Eugenia; Prisciandaro, Jessica; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Pullen, Hannah Louise; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Quintana, Boris; Rachwal, Bartlomiej; Rademacker, Jonas; Rama, Matteo; Ramos Pernas, Miguel; Rangel, Murilo; Raniuk, Iurii; Ratnikov, Fedor; Raven, Gerhard; Ravonel Salzgeber, Melody; Reboud, Meril; Redi, Federico; Reichert, Stefanie; dos Reis, Alberto; Remon Alepuz, Clara; Renaudin, Victor; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vicente; Robbe, Patrick; Robert, Arnaud; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Rogozhnikov, Alexey; Roiser, Stefan; Rollings, Alexandra Paige; Romanovskiy, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Rudolph, Matthew Scott; Ruf, Thomas; Ruiz Valls, Pablo; Ruiz Vidal, Joan; Saborido Silva, Juan Jose; Sadykhov, Elnur; Sagidova, Naylya; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarpis, Gediminas; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schael, Stefan; Schellenberg, Margarete; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schreiner, HF; Schubert, Konstantin; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepulveda, Eduardo Enrique; Sergi, Antonino; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Simone, Saverio; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Soares Lavra, Lais; Sokoloff, Michael; Soler, Paul; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefko, Pavol; Stefkova, Slavomira; Steinkamp, Olaf; Stemmle, Simon; Stenyakin, Oleg; Stepanova, Margarita; Stevens, Holger; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Stramaglia, Maria Elena; Straticiuc, Mihai; Straumann, Ulrich; Sun, Jiayin; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Syropoulos, Vasileios; Szczekowski, Marek; Szumlak, Tomasz; Szymanski, Maciej Pawel; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Tellarini, Giulia; Teubert, Frederic; Thomas, Eric; van Tilburg, Jeroen; Tilley, Matthew James; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Toriello, Francis; Tourinho Jadallah Aoude, Rafael; Tournefier, Edwige; Traill, Murdo; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tully, Alison; Tuning, Niels; Ukleja, Artur; Usachov, Andrii; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagner, Alexander; Vagnoni, Vincenzo; Valassi, Andrea; Valat, Sebastien; Valenti, Giovanni; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vecchi, Stefania; van Veghel, Maarten; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Venkateswaran, Aravindhan; Verlage, Tobias Anton; Vernet, Maxime; Vesterinen, Mika; Viana Barbosa, Joao Vitor; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Viemann, Harald; Vilasis-Cardona, Xavier; Vitti, Marcela; Volkov, Vladimir; Vollhardt, Achim; Voneki, Balazs; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Vázquez Sierra, Carlos; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wang, Jianchun; Ward, David; Wark, Heather Mckenzie; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wicht, Jean; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Winn, Michael Andreas; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wraight, Kenneth; Wyllie, Kenneth; Xie, Yuehong; Xu, Zhirui; Yang, Zhenwei; Yang, Zishuo; Yao, Yuezhe; Yin, Hang; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zarebski, Kristian Alexander; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zheng, Yangheng; Zhu, Xianglei; Zhukov, Valery; Zonneveld, Jennifer Brigitta; Zucchelli, Stefano

    2017-11-03

    A search for baryon-number-violating $\\Xi_b^0$ oscillations is performed with a sample of $pp$ collision data recorded by the LHCb experiment, corresponding to an integrated luminosity of 3 fb$^{-1}$. The baryon number at the moment of production is identified by requiring that the $\\Xi_b^0$ come from the decay of a resonance $\\Xi_b^{*-} \\to \\Xi_b^0 \\pi^-$ or $\\Xi_b^{\\prime-} \\to \\Xi_b^0 \\pi^-$, and the baryon number at the moment of decay is identified from the final state using the decays $\\Xi_b^0 \\to \\Xi_c^+ \\pi^-, ~ \\Xi_c^+ \\to p K^- \\pi^+$. No evidence of baryon number violation is found, and an upper limit is set on the oscillation rate of $\\omega < 0.08$ ps$^{-1}$, where $\\omega$ is the associated angular frequency.

  11. Neutrino oscillation tomography of the Earth with KM3NeT-ORCA

    Science.gov (United States)

    Bourret, Simon; Coelho, João A. B.; Van Elewyck, Véronique; KM3NeT Collaboration

    2017-09-01

    KM3NeT-ORCA is a water-Cherenkov neutrino detector designed for studying the oscillations of atmospheric neutrinos, with the primary objective of measuring the neutrino mass ordering. Atmospheric neutrinos crossing the Earth undergo matter effects, modifying the pattern of their flavour oscillations. The study of the angular and energy distribution of neutrino events in ORCA can therefore provide tomographic information on the Earth’s interior with an independent technique, complementary to the standard geophysics methods. Preliminary estimations based on a full Monte Carlo simulation of the detector response show that after ten years of operation the electron density can be measured with a precision of 3-5% in the mantle and 7-10% in the outer core - depending on the mass ordering.

  12. Search for Baryon-Number Violating Ξb0 Oscillations

    Science.gov (United States)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Alfonso Albero, A.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Baranov, A.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Beliy, N.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Beranek, S.; Berezhnoy, A.; Bernet, R.; Berninghoff, D.; Bertholet, E.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Bjørn, M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Bordyuzhin, I.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britton, T.; Brodzicka, J.; Brundu, D.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Byczynski, W.; Cadeddu, S.; Cai, H.; Calabrese, R.; Calladine, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chitic, S.-G.; Chobanova, V.; Chrzaszcz, M.; Chubykin, A.; Ciambrone, P.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Colombo, T.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; Davis, A.; De Aguiar Francisco, O.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Del Buono, L.; Dembinski, H.-P.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Nezza, P.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Douglas, L.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Durante, P.; Dzhelyadin, R.; Dziewiecki, M.; Dziurda, A.; Dzyuba, A.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fazzini, D.; Federici, L.; Ferguson, D.; Fernandez, G.; Fernandez Declara, P.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gabriel, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Grabowski, J. P.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Griffith, P.; Grillo, L.; Gruber, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hancock, T. H.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hasse, C.; Hatch, M.; He, J.; Hecker, M.; Heinicke, K.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, P. H.; Huard, Z. C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Ibis, P.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kazeev, N.; Kecke, M.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Komarov, I.; Kopecna, R.; Koppenburg, P.; Kosmyntseva, A.; Kotriakhova, S.; Kozeiha, M.; Kravchuk, L.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, P.-R.; Li, T.; Li, Y.; Li, Z.; Likhomanenko, T.; Lindner, R.; Lionetto, F.; Lisovskyi, V.; Liu, X.; Loh, D.; Loi, A.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Macko, V.; Mackowiak, P.; Maddrell-Mander, S.; Maev, O.; Maguire, K.; Maisuzenko, D.; Majewski, M. W.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Marangotto, D.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Mead, J. V.; Meadows, B.; Meaux, C.; Meier, F.; Meinert, N.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Millard, E.; Minard, M.-N.; Minzoni, L.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Mombacher, T.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Ossowska, A.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poli Lener, M.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Ponce, S.; Popov, A.; Popov, D.; Poslavskii, S.; Potterat, C.; Price, E.; Prisciandaro, J.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Pullen, H.; Punzi, G.; Qian, W.; Quagliani, R.; Quintana, B.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Ravonel Salzgeber, M.; Reboud, M.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Robert, A.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Ruiz Vidal, J.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarpis, G.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H. F.; Schubert, K.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepulveda, E. S.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stepanova, M.; Stevens, H.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M. E.; Straticiuc, M.; Straumann, U.; Sun, J.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; Szymanski, M.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Toriello, F.; Tourinho Jadallah Aoude, R.; Tournefier, E.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Usachov, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagner, A.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Verlage, T. A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Winn, M.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zonneveld, J. B.; Zucchelli, S.; LHCb Collaboration

    2017-11-01

    A search for baryon-number violating Ξb0 oscillations is performed with a sample of p p collision data recorded by the LHCb experiment, corresponding to an integrated luminosity of 3 fb-1 . The baryon number at the moment of production is identified by requiring that the Ξb0 come from the decay of a resonance Ξb*-→Ξb0π- or Ξb'-→Ξb0π-, and the baryon number at the moment of decay is identified from the final state using the decays Ξb0→Ξc+π-,Ξc+→p K-π+. No evidence of baryon-number violation is found, and an upper limit at the 95% confidence level is set on the oscillation rate of ω <0.08 ps-1, where ω is the associated angular frequency.

  13. High power master oscillator power amplifier (MOPA) AlGaAs laser for intersatellite communications

    Science.gov (United States)

    Cornwell, Donald M., Jr.

    1992-01-01

    A master oscillator power amplifier (MOPA) configuration has been developed using an anti-reflection-coated AlGaAs semiconductor broad area laser in a reflective amplifier mode. For CW injection, the MOPA produced 340 mW of diffraction-limited power. The semiconductor MOPA configuration also produced peak diffraction-limited powers of 360 mW and 320 mW for quaternary pulse position Q-PPM modulation rates of 50 Mbps and 325 Mbps, respectively, for a peak injected power of 100 mW. Angular beamsteering during modulation was minimized by collimating the injected beam. The diffraction-limited peak power was limited by the frequency chirp of the master oscillator and also by the coupling losses of the injected beam.

  14. Testing gravity of a regular and slowly rotating phantom black hole by quasi-periodic oscillations

    CERN Document Server

    Chen, Songbai; Jing, Jiliang

    2016-01-01

    We extend firstly the regular phantom black hole solution to a slowly rotating black hole case and find that the phantom field depresses the angular velocity of the event horizon and suppresses the super-radiation of black hole. We also probe the dependence of quasi-periodic oscillations frequencies in relativistic precession model on the phantom parameter. With the observation data of GRO J1655-40, we make a constraint on the parameters of the regular and slowly rotating phantom black hole. Our results show that although the best-fit value of the phantom parameter $b$ is small, the allowed value of $b$ in the $1\\sigma$ region is $b<0.619$, which means that the phantom theoretical model can not be excluded by the constraint from quasi-periodic oscillations with the observation data of GRO J1655-40.

  15. RECOVERY OF LARGE ANGULAR SCALE CMB POLARIZATION FOR INSTRUMENTS EMPLOYING VARIABLE-DELAY POLARIZATION MODULATORS

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N. J.; Marriage, T. A.; Appel, J. W.; Bennett, C. L.; Eimer, J.; Essinger-Hileman, T.; Harrington, K.; Rostem, K.; Watts, D. J. [Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (United States); Chuss, D. T. [Department of Physics, Villanova University, 800 E Lancaster, Villanova, PA 19085 (United States); Wollack, E. J.; Fixsen, D. J.; Moseley, S. H.; Switzer, E. R., E-mail: Nathan.J.Miller@nasa.gov [Observational Cosmology Laboratory, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-02-20

    Variable-delay Polarization Modulators (VPMs) are currently being implemented in experiments designed to measure the polarization of the cosmic microwave background on large angular scales because of their capability for providing rapid, front-end polarization modulation and control over systematic errors. Despite the advantages provided by the VPM, it is important to identify and mitigate any time-varying effects that leak into the synchronously modulated component of the signal. In this paper, the effect of emission from a 300 K VPM on the system performance is considered and addressed. Though instrument design can greatly reduce the influence of modulated VPM emission, some residual modulated signal is expected. VPM emission is treated in the presence of rotational misalignments and temperature variation. Simulations of time-ordered data are used to evaluate the effect of these residual errors on the power spectrum. The analysis and modeling in this paper guides experimentalists on the critical aspects of observations using VPMs as front-end modulators. By implementing the characterizations and controls as described, front-end VPM modulation can be very powerful for mitigating 1/f noise in large angular scale polarimetric surveys. None of the systematic errors studied fundamentally limit the detection and characterization of B-modes on large scales for a tensor-to-scalar ratio of r = 0.01. Indeed, r < 0.01 is achievable with commensurately improved characterizations and controls.

  16. Recovery of Large Angular Scale CMB Polarization for Instruments Employing Variable-Delay Polarization Modulators

    Science.gov (United States)

    Miller, N. J.; Chuss, D. T.; Marriage, T. A.; Wollack, E. J.; Appel, J. W.; Bennett, C. L.; Eimer, J.; Essinger-Hileman, T.; Fixsen, D. J.; Harrington, K.; hide

    2016-01-01

    Variable-delay Polarization Modulators (VPMs) are currently being implemented in experiments designed to measure the polarization of the cosmic microwave background on large angular scales because of their capability for providing rapid, front-end polarization modulation and control over systematic errors. Despite the advantages provided by the VPM, it is important to identify and mitigate any time-varying effects that leak into the synchronously modulated component of the signal. In this paper, the effect of emission from a 300 K VPM on the system performance is considered and addressed. Though instrument design can greatly reduce the influence of modulated VPM emission, some residual modulated signal is expected. VPM emission is treated in the presence of rotational misalignments and temperature variation. Simulations of time-ordered data are used to evaluate the effect of these residual errors on the power spectrum. The analysis and modeling in this paper guides experimentalists on the critical aspects of observations using VPMs as front-end modulators. By implementing the characterizations and controls as described, front-end VPM modulation can be very powerful for mitigating 1/ f noise in large angular scale polarimetric surveys. None of the systematic errors studied fundamentally limit the detection and characterization of B-modes on large scales for a tensor-to-scalar ratio of r= 0.01. Indeed, r less than 0.01 is achievable with commensurately improved characterizations and controls.

  17. Motion of a ballistic missile angularly misaligned with the flight path upon entering the atmosphere and its effect upon aerodynamic heating, aerodynamic loads, and miss distance

    Science.gov (United States)

    Allen, Julian H

    1957-01-01

    An analysis is given of the oscillating motion of a ballistic missile which upon entering the atmosphere is angularly misaligned with respect to the flight path. The history of the motion for some example missiles is discussed from the point of view of the effect of the motion on the aerodynamic heating and loading. The miss distance at the target due to misalignment and to small accidental trim angles is treated. The stability problem is also discussed for the case where the missile is tumbling prior to atmospheric entry.

  18. The role of angular momentum conservation law in statistical mechanics

    Directory of Open Access Journals (Sweden)

    I.M. Dubrovskii

    2008-12-01

    Full Text Available Within the limits of Khinchin ideas [A.Y. Khinchin, Mathematical Foundation of Statistical Mechanics. NY, Ed. Dover, 1949] the importance of momentum and angular momentum conservation laws was analyzed for two cases: for uniform magnetic field and when magnetic field is absent. The law of momentum conservation does not change the density of probability distribution in both cases, just as it is assumed in the conventional theory. It is shown that in systems where the kinetic energy depends only on particle momenta canonically conjugated with Cartesian coordinates being their diagonal quadric form,the angular momentum conservation law changes the density of distribution of the system only in case the full angular momentum of a system is not equal to zero. In the gas of charged particles in a uniform magnetic field the density of distribution also varies if the angular momentum is zero [see Dubrovskii I.M., Condensed Matter Physics, 2206, 9, 23]. Two-dimensional gas of charged particles located within a section of an endless strip filled with gas in magnetic field is considered. Under such conditions the angular momentum is not conserved. Directional particle flows take place close to the strip boundaries, and, as a consequence, the phase trajectory of the considered set of particles does not remain within the limited volume of the phase space. In order to apply a statistical thermodynamics method, it was suggested to consider near-boundary trajectories relative to a reference system that moves uniformly. It was shown that if the diameter of an orbit having average thermal energy is much smaller than a strip width, the corrections to thermodynamic functions are small depending on magnetic field. Only the average velocity of near-boundary particles that form near-boundary electric currents creating the paramagnetic moment turn out to be essential.

  19. Turbulence heterodyne coherent mitigation of orbital angular momentum multiplexing in a free space optical link by auxiliary light.

    Science.gov (United States)

    Yang, Chunyong; Xu, Chuang; Ni, Wenjun; Gan, Yu; Hou, Jin; Chen, Shaoping

    2017-10-16

    A novel scheme is proposed to mitigate the atmospheric turbulence effect in free space optical (FSO) communication employing orbital angular momentum (OAM) multiplexing. In this scheme, the Gaussian beam is used as an auxiliary light with a common-path to obtain the distortion information caused by atmospheric turbulence. After turbulence, the heterodyne coherent detection technology is demonstrated to realize the turbulence mitigation. With the same turbulence distortion, the OAM beams and the Gaussian beam are respectively utilized as the signal light and the local oscillation light. Then the turbulence distortion is counteracted to a large extent. Meanwhile, a phase matching method is proposed to select the specific OAM mode. The discrimination between the neighboring OAM modes is obviously improved by detecting the output photocurrent. Moreover, two methods of beam size adjustment have been analyzed to achieve better performance for turbulence mitigation. Numerical results show that the system bit error rate (BER) can reach 10-5 under strong turbulence in simulation situation.

  20. From steady-state to synchronized yeast glycolytic oscillations II: model validation.

    Science.gov (United States)

    du Preez, Franco B; van Niekerk, David D; Snoep, Jacky L

    2012-08-01

    In an accompanying paper [du Preez et al., (2012) FEBS J279, 2810-2822], we adapt an existing kinetic model for steady-state yeast glycolysis to simulate limit-cycle oscillations. Here we validate the model by testing its capacity to simulate a wide range of experiments on dynamics of yeast glycolysis. In addition to its description of the oscillations of glycolytic intermediates in intact cells and the rapid synchronization observed when mixing out-of-phase oscillatory cell populations (see accompanying paper), the model was able to predict the Hopf bifurcation diagram with glucose as the bifurcation parameter (and one of the bifurcation points with cyanide as the bifurcation parameter), the glucose- and acetaldehyde-driven forced oscillations, glucose and acetaldehyde quenching, and cell-free extract oscillations (including complex oscillations and mixed-mode oscillations). Thus, the model was compliant, at least qualitatively, with the majority of available experimental data for glycolytic oscillations in yeast. To our knowledge, this is the first time that a model for yeast glycolysis has been tested against such a wide variety of independent data sets. The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database and can be accessed at http://jjj.biochem.sun.ac.za/database/dupreez/index.html. © 2012 The Authors Journal compilation © 2012 FEBS.

  1. Multi-component ground motion response spectra for coupled horizontal, vertical, angular accelerations, and tilt

    Science.gov (United States)

    Kalkan, E.; Graizer, V.

    2007-01-01

    Rotational and vertical components of ground motion are almost always ignored in design or in the assessment of structures despite the fact that vertical motion can be twice as much as the horizontal motion and may exceed 2g level, and rotational excitation may reach few degrees in the proximity of fault rupture. Coupling of different components of ground excitation may significantly amplify the seismic demand by introducing additional lateral forces and enhanced P-?? effects. In this paper, a governing equation of motion is postulated to compute the response of a SDOF oscillator under a multi-component excitation. The expanded equation includes secondary P-?? components associated with the combined impacts of tilt and vertical excitations in addition to the inertial forcing terms due to the angular and translational accelerations. The elastic and inelastic spectral ordinates traditionally generated considering the uniaxial input motion are compared at the end with the multi-component response spectra of coupled horizontal, vertical and tilting motions. The proposed multi-component response spectrum reflects kinematic characteristics of the ground motion that are not identifiable by the conventional spectrum itself, at least for the near-fault region where high intensity vertical shaking and rotational excitation are likely to occur.

  2. Stimulated scattering of electromagnetic waves carrying orbital angular momentum in quantum plasmas.

    Science.gov (United States)

    Shukla, P K; Eliasson, B; Stenflo, L

    2012-07-01

    We investigate stimulated scattering instabilities of coherent circularly polarized electromagnetic (CPEM) waves carrying orbital angular momentum (OAM) in dense quantum plasmas with degenerate electrons and nondegenerate ions. For this purpose, we employ the coupled equations for the CPEM wave vector potential and the driven (by the ponderomotive force of the CPEM waves) equations for the electron and ion plasma oscillations. The electrons are significantly affected by the quantum forces (viz., the quantum statistical pressure, the quantum Bohm potential, as well as the electron exchange and electron correlations due to electron spin), which are included in the framework of the quantum hydrodynamical description of the electrons. Furthermore, our investigation of the stimulated Brillouin instability of coherent CPEM waves uses the generalized ion momentum equation that includes strong ion coupling effects. The nonlinear equations for the coupled CPEM and quantum plasma waves are then analyzed to obtain nonlinear dispersion relations which exhibit stimulated Raman, stimulated Brillouin, and modulational instabilities of CPEM waves carrying OAM. The present results are useful for understanding the origin of scattered light off low-frequency density fluctuations in high-energy density plasmas where quantum effects are eminent.

  3. Electra: durable repetitively pulsed angularly multiplexed KrF laser system

    Science.gov (United States)

    Wolford, Matthew F.; Myers, Matthew C.; Giuliani, John L.; Sethian, John D.; Burns, Patrick M.; Hegeler, Frank; Jaynes, Reginald

    2008-02-01

    Electra is a repetitively pulsed, electron beam pumped Krypton Fluoride (KrF) laser at the Naval Research Laboratory that is developing the technologies that can meet the Inertial Fusion Energy (IFE) requirements for durability, efficiency, and cost. The technologies developed on Electra should be directly scalable to a full size fusion power plant beam line. As in a full size fusion power plant beam line, Electra is a multistage laser amplifier system which, consists of a commercial discharge laser (LPX 305i, Lambda Physik), 175 keV electron beam pumped (40 ns flat-top) preamplifier, and 530 keV (100 ns flat-top) main amplifier. Angular multiplexing is used in the optical layout to provide pulse length control and to maximize laser extraction from the amplifiers. Single shot yield of 452 J has been extracted from the initial shots of the Electra laser system using a relatively low energy preamplifier laser beam. In rep-rate burst of 5 Hz for durations of one second a total energy of 1.585 kJ (average 317 J/pulse) has been attained. Total energy of 2.5 kJ has been attained over a two second period. For comparison, the main amplifier of Electra in oscillator mode has demonstrated at 2.5 Hz rep-rate average laser yield of 270 J over a 2 hour period.

  4. Studies of the angular function of a Duncker-type induced motion illusion.

    Science.gov (United States)

    Farrell-Whelan, Max; Wenderoth, Peter; Wiese, Mark

    2012-01-01

    Duncker (1929/1955, Source Book of Gestalt Psychology, pp 161-172) demonstrated a laboratory version of induced motion. He showed that, when a stationary spot of light in a dark laboratory is enclosed in an oscillating rectangular frame, the frame is perceived as stationary and the dot appears to move in the direction opposite the true motion of the frame. Zivotofsky (2004, Investigative Ophthalmology & Visual Science 45 2867-2872) studied a more complex variant of the Duncker illusion, in which both the inducing and the test stimuli moved: a single red test dot moved horizontally left or right while a dense background set of black dots on a white background moved vertically up or down. When the background inducing dots moved up (down), the truly horizontally translating test dot appeared to drift at an angle down (up) from the horizontal. In experiment 1, we used two methods to measure the complete angular function of the Zivotofsky effect and found it to peak with an inducer-test direction separation of approximately 30 degrees, similar to the inducing angle that has been found to maximise other direction illusions. Experiment 2 tested and confirmed predictions regarding the effects of relative test and inducer speeds based on the vectorial subtraction of the inducing velocity from the test velocity.

  5. Acoustically levitated dancing drops: Self-excited oscillation to chaotic shedding

    Science.gov (United States)

    Lin, Po-Cheng; I, Lin

    2016-02-01

    We experimentally demonstrate self-excited oscillation and shedding of millimeter-sized water drops, acoustically levitated in a single-node standing waves cavity, by decreasing the steady acoustic wave intensity below a threshold. The perturbation of the acoustic field by drop motion is a possible source for providing an effective negative damping for sustaining the growing amplitude of the self-excited motion. Its further interplay with surface tension, drop inertia, gravity and acoustic intensities, select various self-excited modes for different size of drops and acoustic intensity. The large drop exhibits quasiperiodic motion from a vertical mode and a zonal mode with growing coupling, as oscillation amplitudes grow, until falling on the floor. For small drops, chaotic oscillations constituted by several broadened sectorial modes and corresponding zonal modes are self-excited. The growing oscillation amplitude leads to droplet shedding from the edges of highly stretched lobes, where surface tension no longer holds the rapid expanding flow.

  6. On-chip microfluid induced by oscillation of microrobot for noncontact cell transportation

    Science.gov (United States)

    Feng, Lin; Liang, Shuzhang; Zhou, Xiangcong; Yang, Jianlei; Jiang, Yonggang; Zhang, Deyuan; Arai, Fumihito

    2017-11-01

    The importance of cell manipulation and cultivation is increasing rapidly in various fields, such as drug discovery, regenerative medicine, and investigation of new energy sources. This paper presents a method to transport cells in a microfluidic chip without contact. A local vortex was generated when high-frequency oscillation of a microtool was induced in a microfluidic chip. The vortex was controlled by tuning the tool's oscillation parameters, such as the oscillation amplitude and frequency. The cells were then transported in the chip based on the direction of the tool's movement, and their position, posture, and trajectories were controlled. Bovine oocyte manipulations, that is, transportation and rotation, were conducted to demonstrate the capability of the proposed method, without any contact by the microrobot with high-frequency oscillation.

  7. Effective field analysis using the full angular spin-orbit torque magnetometry dependence

    Science.gov (United States)

    Schulz, Tomek; Lee, Kyujoon; Krüger, Benjamin; Lo Conte, Roberto; Karnad, Gurucharan V.; Garcia, Karin; Vila, Laurent; Ocker, Berthold; Ravelosona, Dafiné; Kläui, Mathias

    2017-06-01

    Spin-orbit torques promise ultraefficient magnetization switching used for advanced devices based on emergent quasiparticles such as domain walls and skyrmions. Recently, the spin structure dynamics, materials, and systems with tailored spin-orbit torques are being developed. A method, which allows one to detect the acting torques in a given system as a function of the magnetization direction is the torque magnetometry method based on a higher harmonics analysis of the anomalous Hall effect. Here we show that the effective fields acting on magnetic domain walls that govern the efficiency of their dynamics require a sophisticated analysis taking into account the full angular dependence of the torques. Using a one-dimensional model, we compared the spin-orbit torque efficiencies by depinning measurements and spin torque magnetometry. We show that the effective fields can be accurately determined and we find good agreement. Thus, our method allows us now to rapidly screen materials and predict the resulting quasiparticle dynamics.

  8. Separation control with fluidic oscillators in water

    Science.gov (United States)

    Schmidt, H.-J.; Woszidlo, R.; Nayeri, C. N.; Paschereit, C. O.

    2017-08-01

    The present study assesses the applicability of fluidic oscillators for separation control in water. The first part of this work evaluates the properties of the fluidic oscillators including frequency, cavitation effects, and exerted thrust. Derived from the governing internal dynamics, the oscillation frequency is found to scale directly with the jet's exit velocity and the size of the fluidic oscillator independent of the working fluid. Frequency data from various experiments collapse onto a single curve. The occurrence of cavitation is examined by visual inspection and hydrophone measurements. The oscillation frequency is not affected by cavitation because it does not occur inside the oscillators. The spectral information obtained with the hydrophone provide a reliable indicator for the onset of cavitation at the exit. The performance of the fluidic oscillators for separation control on a bluff body does not seem to be affected by the presence of cavitation. The thrust exerted by an array of fluidic oscillators with water as the working fluid is measured to be even larger than theoretically estimated values. The second part of the presented work compares the performance of fluidic oscillators for separation control in water with previous results in air. The array of fluidic oscillators is installed into the rear end of a bluff body model. The drag improvements based on force balance measurements agree well with previous wind tunnel experiments on the same model. The flow field is examined by pressure measurements and with particle image velocimetry. Similar performance and flow field characteristics are observed in both water and air.

  9. Waves and Oscillations in Plasmas

    CERN Document Server

    Pecseli, Hans L

    2012-01-01

    The result of more than 15 years of lectures in plasma sciences presented at universities in Denmark, Norway, and the United States, Waves and Oscillations in Plasmas addresses central issues in modern plasma sciences. The book covers fluid models as well as kinetic plasma models, including a detailed discussion of, for instance, collisionless Landau damping. Offering a clear separation of linear and nonlinear models, the book can be tailored for readers of varying levels of expertise.Designed to provide basic training in linear as well as nonlinear plasma dynamics, and practical in areas as d

  10. Pair creation and plasma oscillations.

    Energy Technology Data Exchange (ETDEWEB)

    Prozorkevich, A. V.; Vinnik, D. V.; Schmidt, S. M.; Hecht, M. B.; Roberts, C. D.

    2000-12-15

    We describe aspects of particle creation in strong fields using a quantum kinetic equation with a relaxation-time approximation to the collision term. The strong electric background field is determined by solving Maxwell's equation in tandem with the Vlasov equation. Plasma oscillations appear as a result of feedback between the background field and the field generated by the particles produced. The plasma frequency depends on the strength of the initial background fields and the collision frequency, and is sensitive to the necessary momentum-dependence of dressed-parton masses.

  11. Wave Physics Oscillations - Solitons - Chaos

    CERN Document Server

    Nettel, Stephen

    2009-01-01

    This textbook is intended for those second year undergraduates in science and engineering who will later need an understanding of electromagnetic theory and quantum mechanics. The classical physics of oscillations and waves is developed at a more advanced level than has been customary for the second year, providing a basis for the quantum mechanics that follows. In this new edition the Green's function is explained, reinforcing the integration of quantum mechanics with classical physics. The text may also form the basis of an "introduction to theoretical physics" for physics majors. The concluding chapters give special attention to topics in current wave physics: nonlinear waves, solitons, and chaotic behavior.

  12. Making space for harmonic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Michelotti, Leo; /Fermilab

    2004-11-01

    If we restrict the number of harmonic oscillator energy eigenstates to some finite value, N, then the discrete spectrum of the corresponding position operator comprise the roots of the Hermite polynomial H{sub N+1}. Its range is just large enough to accommodate classical motion at high energy. A negative energy term must be added to the Hamiltonian which affects only the last eigenstate, |N>, suggesting it is concentrated at the extrema of this finite ''space''. Calculations support a conjecture that, in the limit of large N, the global distribution of points approaches the differential form for classical action.

  13. Neutrino Oscillation Studies with Reactors

    CERN Document Server

    Vogel, Petr; Zhang, Chao

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  14. Phase noise and frequency stability in oscillators

    CERN Document Server

    Rubiola, Enrico

    2009-01-01

    Presenting a comprehensive account of oscillator phase noise and frequency stability, this practical text is both mathematically rigorous and accessible. An in-depth treatment of the noise mechanism is given, describing the oscillator as a physical system, and showing that simple general laws govern the stability of a large variety of oscillators differing in technology and frequency range. Inevitably, special attention is given to amplifiers, resonators, delay lines, feedback, and flicker (1/f) noise. The reverse engineering of oscillators based on phase-noise spectra is also covered, and end-of-chapter exercises are given. Uniquely, numerous practical examples are presented, including case studies taken from laboratory prototypes and commercial oscillators, which allow the oscillator internal design to be understood by analyzing its phase-noise spectrum. Based on tutorials given by the author at the Jet Propulsion Laboratory, international IEEE meetings, and in industry, this is a useful reference for acade...

  15. Angular resolution of the gaseous micro-pixel detector Gossip

    Energy Technology Data Exchange (ETDEWEB)

    Bilevych, Y.; Blanco Carballo, V.; Dijk, M. van; Fransen, M.; Graaf, H. van der; Hartjes, F.; Hessey, N.; Koppert, W.; Nauta, S. [Nikhef, P.O. Box 41882, 1009 DB Amsterdam (Netherlands); Rogers, M. [Radboud University, P.O. Box 9102, 6500HC Nijmegen (Netherlands); Romaniouk, A.; Veenhof, R. [CERN, CH-1211, Geneve 23 (Switzerland)

    2011-06-15

    Gossip is a gaseous micro-pixel detector with a very thin drift gap intended for a high rate environment like at the pixel layers of ATLAS at the sLHC. The detector outputs not only the crossing point of a traversing MIP, but also the angle of the track, thus greatly simplifying track reconstruction. In this paper we describe a testbeam experiment to examine the angular resolution of the reconstructed track segments in Gossip. We used here the low diffusion gas mixture DME/CO{sub 2} 50/50. An angular resolution of 20 mrad for perpendicular tracks could be obtained from a 1.5 mm thin drift volume. However, for the prototype detector used at the testbeam experiment, the resolution of slanting tracks was worsened by poor time resolution of the pixel chip used.

  16. Angular resolution of the gaseous micro-pixel detector Gossip

    Science.gov (United States)

    Bilevych, Y.; Blanco Carballo, V.; van Dijk, M.; Fransen, M.; van der Graaf, H.; Hartjes, F.; Hessey, N.; Koppert, W.; Nauta, S.; Rogers, M.; Romaniouk, A.; Veenhof, R.

    2011-06-01

    Gossip is a gaseous micro-pixel detector with a very thin drift gap intended for a high rate environment like at the pixel layers of ATLAS at the sLHC. The detector outputs not only the crossing point of a traversing MIP, but also the angle of the track, thus greatly simplifying track reconstruction. In this paper we describe a testbeam experiment to examine the angular resolution of the reconstructed track segments in Gossip. We used here the low diffusion gas mixture DME/CO 2 50/50. An angular resolution of 20 mrad for perpendicular tracks could be obtained from a 1.5 mm thin drift volume. However, for the prototype detector used at the testbeam experiment, the resolution of slanting tracks was worsened by poor time resolution of the pixel chip used.

  17. Efficient polarization of high-angular-momentum systems

    CERN Document Server

    Rochester, Simon; Raizen, Mark; Pustelny, Szymon; Auzinsh, Marcis; Budker, Dmitry

    2016-01-01

    We propose methods of optical pumping that are applicable to open, high-angular-momentum transitions in atoms and molecules, for which conventional optical pumping would lead to significant population loss. Instead of applying circularly polarized cw light, as in conventional optical pumping, we propose to use techniques for coherent population transfer (e.g., adiabatic fast passage) to arrange the atoms so as to increase the entropy removed from the system with each spontaneous decay from the upper state. This minimizes the number of spontaneous-emission events required to produce a stretched state, thus reducing the population loss due to decay to other states. To produce a stretched state in a manifold with angular momentum J, conventional optical pumping requires about 2J spontaneous decays per atom; one of our proposed methods reduces this to about log_2(2J), while another of the methods reduces it to about one spontaneous decay, independent of J.

  18. A New Shape Description Method Using Angular Radial Transform

    Science.gov (United States)

    Lee, Jong-Min; Kim, Whoi-Yul

    Shape is one of the primary low-level image features in content-based image retrieval. In this paper we propose a new shape description method that consists of a rotationally invariant angular radial transform descriptor (IARTD). The IARTD is a feature vector that combines the magnitude and aligned phases of the angular radial transform (ART) coefficients. A phase correction scheme is employed to produce the aligned phase so that the IARTD is invariant to rotation. The distance between two IARTDs is defined by combining differences in the magnitudes and aligned phases. In an experiment using the MPEG-7 shape dataset, the proposed method outperforms existing methods; the average BEP of the proposed method is 57.69%, while the average BEPs of the invariant Zernike moments descriptor and the traditional ART are 41.64% and 36.51%, respectively.

  19. Angular-dependent magnetization reversal processes in artificial spin ice

    Science.gov (United States)

    Burn, D. M.; Chadha, M.; Branford, W. R.

    2015-12-01

    The angular dependence of the magnetization reversal in interconnected kagome artificial spin ice structures has been studied through experimental MOKE measurements and micromagnetic simulations. This reversal is mediated by the propagation of magnetic domain walls along the interconnecting bars, which either nucleate at the vertex or arrive following an interaction in a neighboring vertex. The physical differences in these processes show a distinct angular dependence allowing the different contributions to be identified. The configuration of the initial magnetization state, either locally or on a full sublattice of the system, controls the reversal characteristics of the array within a certain field window. This shows how the available magnetization reversal routes can be manipulated and the system can be trained.

  20. Angular distribution and atomic effects in condensed phase photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.F.

    1981-11-01

    A general concept of condensed phase photoelectron spectroscopy is that angular distribution and atomic effects in the photoemission intensity are determined by different mechanisms, the former being determined largely by ordering phenomena such as crystal momentum conservation and photoelectron diffraction while the latter are manifested in the total (angle-integrated) cross section. In this work, the physics of the photoemission process is investigated in several very different experiments to elucidate the mechanisms of, and correlation between, atomic and angular distribution effects. Theoretical models are discussed and the connection betweeen the two effects is clearly established. The remainder of this thesis, which describes experiments utilizing both angle-resolved and angle-integrated photoemission in conjunction with synchrotron radiation in the energy range 6 eV less than or equal to h ..nu.. less than or equal to 360 eV and laboratory sources, is divided into three parts.

  1. Modes of nanosatellite aerodynamic oscillations in atmosphere

    Science.gov (United States)

    Gerasimov, Yu V.; Ivanov, E. A.; Karetnikov, G. K.; Konstantinova, I. A.; Selivanov, A. B.

    2017-11-01

    The paper is devoted to the results of investigating the dependencies of nanosatellite aerodynamic oscillations frequency on attack angle at different altitudes up to 70 km are defined. The oscillations bandwidths are determined with respect to the geometric parameters for a nanosatellite with 10 kg mass and 6000 kg/m3 average density. The model allows estimating the bandwidth aerodynamic oscillations in the suborbital nanosatellite trajectory based on the given geometry and mass-dimensional parameters.

  2. Characterizing correlations of flow oscillations at bottlenecks

    OpenAIRE

    Kretz, Tobias; Woelki, Marko; Schreckenberg, Michael

    2006-01-01

    "Oscillations" occur in quite different kinds of many-particle-systems when two groups of particles with different directions of motion meet or intersect at a certain spot. We present a model of pedestrian motion that is able to reproduce oscillations with different characteristics. The Wald-Wolfowitz test and Gillis' correlated random walk are shown to hold observables that can be used to characterize different kinds of oscillations.

  3. Characterizing correlations of flow oscillations at bottlenecks

    Science.gov (United States)

    Kretz, Tobias; Wölki, Marko; Schreckenberg, Michael

    2006-02-01

    'Oscillations' occur in quite different kinds of many-particle systems when two groups of particles with different directions of motion meet or intersect at a certain spot. In this work a model of pedestrian motion is presented that is able to reproduce oscillations with different characteristics. The Wald-Wolfowitz test and Gillis' correlated random walk are shown to include observables that can be used to characterize different kinds of oscillations.

  4. Oscillations of neutral B mesons systems

    CERN Document Server

    Boucrot, J

    1999-01-01

    The oscillation phenomenon in the neutral B mesons systems is now well established. The motivations and principles of the measurements are given; then the most recent results from the LEP experiments, the CDF collaboration at Fermilab and the SLD collaboration at SLAC are reviewed. The present world average of the $\\bd$ meson oscillation frequency is $\\dmd = 0.471 \\pm 0.016 \\ps$ and the lower limit on the $\\bs$ oscillation frequency is

  5. Phase-locked Josephson soliton oscillators

    DEFF Research Database (Denmark)

    Holst, T.; Hansen, Jørn Bindslev; Grønbech-Jensen, N.

    1991-01-01

    Detailed experimental characterization of the phase-locking at both DC and at microwave frequencies is presented for two closely spaced Josephson soliton (fluxon) oscillators. In the phase-locked state, the radiated microwave power exhibited an effective gain. With one common bias source......, a frequency tunability of the phase-locked oscillators up to 7% at 10 GHz was observed. The interacting soliton oscillators were modeled by two inductively coupled nonlinear transmission lines...

  6. On Rabi oscillations between Bloch bands

    OpenAIRE

    Plötz, Patrick

    2010-01-01

    We study Rabi oscillations between the bands of an arbitrary biased superlattice in a tight-binding model. We reduce the problem to an equation of Whittaker--Hill type and, in absence of any known solutions in closed form, discuss different approximations to describe the oscillations between the Bloch bands. We identify regimes of weak and strong inter-band coupling and compare predictions for these Rabi oscillations to numerical results.

  7. SPIRAL, FUNCTIONS AND OSCILLATING SYSTEMS BESSEL

    OpenAIRE

    Gil Benitez, W.; Universidad Nacional Mayor de San Marcos, Facultad de Química e Ingeniería Química Departamento de Analisis y Diseño de Procesos Av. Venezuela sin - Ciudad Universitaria UNMSM - Lima - Peru

    2014-01-01

    lt is shown a mathematics analysis that link spirals, differential equations of second order of the Bessel function type and the oscillant systems with constant and variable frequency. lt is found that the oscillant systems are consecuents to a spiral mathematical functions and Bessel is only some of its varieties. Consequently is shown an exact solution of the Bessel equations which does l'lot require tables. The math model it is a tool which will be used to simulate oscillant phenomena with...

  8. Small oscillations via conservation of energy

    Science.gov (United States)

    Troy, Tia; Reiner, Megan; Haugen, Andrew J.; Moore, Nathan T.

    2017-11-01

    The work describes an analogy-based small oscillations analysis of a standard static equilibrium lab problem. In addition to force analysis, a potential energy function for the system is developed, and by drawing out mathematical similarities to the simple harmonic oscillator, we are able to describe (and experimentally verify) the period of small oscillations about the static equilibrium state. The problem was developed and implemented in a standard University Physics course at Winona State University.

  9. Q-oscillators and relativistic position operators

    Energy Technology Data Exchange (ETDEWEB)

    Arik, M. (Dept. of Mathematics, Istanbul Technical Univ. (Turkey)); Mungan, M. (Dept. of Physics, Bogazici Univ., Istanbul (Turkey))

    1992-05-21

    We investigate the multi-dimensional q-oscillator whose commutation relations are invariant under the quantum group. The no-interaction limit corresponds to a contraction of the q-oscillator algebra and yields relativistic position operators which can be expressed in terms of the generators of the Poincare group. This leads to the interpretation of the interacting q-oscillator as an relativistic quantum system and results in a hamiltonian whose spectrum is exactly exponential. (orig.).

  10. Toward precision study of atmospheric neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Kajita, Takaaki [Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, Univ. of Tokyo, Kashiwa-no-ha 5-1-5, Kashiwa, Chiba 277-8582 (Japan)

    2006-09-15

    Atmospheric neutrinos have been playing a major role in studying neutrino oscillations. Because of the unique feature of atmospheric neutrinos, future atmospheric neutrino experiments are likely to contribute to precision studies of neutrino oscillations. Possible contribution of future atmospheric neutrino experiments to the neutrino oscillation physics are discussed, including the measurements of {theta}{sub 13}, the sign of {delta}m{sub 23}{sup 2}, the determination of octant of {theta}{sub 23} and possibly the CP phase.

  11. Lighthouses with two lights: Burst oscillations from the accretion-powered millisecond pulsars

    NARCIS (Netherlands)

    Watts, A.L.

    2008-01-01

    The key contribution of the discovery of nuclear-powered pulsations from the accretion-powered millisecond pulsars (AMPs) has been the establishment of burst oscillation frequency as a reliable proxy for stellar spin rate. This has doubled the sample of rapidly-rotating accreting neutron stars and

  12. Angular distributions and total yield of laser ablated silver

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Nordskov, A.; Schou, Jørgen

    1997-01-01

    The angular distribution of laser ablated silver has been measured in situ with a newly constructed setup with an array of microbalances. The distribution is strongly peaked in the forward direction corresponding to cospθ, where p varies between 5 and 9 for laser fluences from 2 to 7 J/cm2 at 355...... nm for a beam spot of 0.015 cm2. The total deposited yield is of the order 1015 Ag-atoms per pulse....

  13. QCD corrections to decay-lepton polar and azimuthal angular ...

    Indian Academy of Sciences (India)

    Abstract. QCD corrections to order αs in the soft-gluon approximation to angular distributions of decay charged leptons in the process e·e tt, followed by semileptonic decay of t or t, are obtained in the e·e centre-of-mass frame. As compared to distributions in the top rest frame, these have the advantage that they would allow ...

  14. Metamaterials-based Salisbury screens with reduced angular sensitivity

    Science.gov (United States)

    Wells, Brian M.; Roberts, Christopher M.; Podolskiy, Viktor A.

    2014-10-01

    We demonstrate that the incorporation of nonlocal nanowire metamaterials into Salisbury screens allows for a substantial reduction of the dependence of incident angle on the absorption maximum. Realizations of angle-independent Salisbury screens for the near-IR, mid-IR, and GHz frequencies are proposed and their performances are analyzed analytically and numerically. It is shown that nonlocal effective medium theory adequately describes the angular dependence of nanowire-based Salisbury screens.

  15. Spatial Angular Compounding Technique for H-Scan Ultrasound Imaging.

    Science.gov (United States)

    Khairalseed, Mawia; Xiong, Fangyuan; Kim, Jung-Whan; Mattrey, Robert F; Parker, Kevin J; Hoyt, Kenneth

    2017-10-11

    H-Scan is a new ultrasound imaging technique that relies on matching a model of pulse-echo formation to the mathematics of a class of Gaussian-weighted Hermite polynomials. This technique may be beneficial in the measurement of relative scatterer sizes and in cancer therapy, particularly for early response to drug treatment. Because current H-scan techniques use focused ultrasound data acquisitions, spatial resolution degrades away from the focal region and inherently affects relative scatterer size estimation. Although the resolution of ultrasound plane wave imaging can be inferior to that of traditional focused ultrasound approaches, the former exhibits a homogeneous spatial resolution throughout the image plane. The purpose of this study was to implement H-scan using plane wave imaging and investigate the impact of spatial angular compounding on H-scan image quality. Parallel convolution filters using two different Gaussian-weighted Hermite polynomials that describe ultrasound scattering events are applied to the radiofrequency data. The H-scan processing is done on each radiofrequency image plane before averaging to get the angular compounded image. The relative strength from each convolution is color-coded to represent relative scatterer size. Given results from a series of phantom materials, H-scan imaging with spatial angular compounding more accurately reflects the true scatterer size caused by reductions in the system point spread function and improved signal-to-noise ratio. Preliminary in vivo H-scan imaging of tumor-bearing animals suggests this modality may be useful for monitoring early response to chemotherapeutic treatment. Overall, H-scan imaging using ultrasound plane waves and spatial angular compounding is a promising approach for visualizing the relative size and distribution of acoustic scattering sources. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  16. Angular correlation of annihilation photons in frozen aqueous solutions

    DEFF Research Database (Denmark)

    Milosevic-Kvajic, M.; Mogensen, O. E.; Kvajic, G.

    1972-01-01

    Linear‐slit angular correlation curves were obtained at about −140°C for frozen aqueous solutions of HF, HCl, HBr, HI, NH3, FeCl2, FeCl3, NaI, H2SO4, NHO3, MnSO4, KMnO4, K2Cr2O7, NaOH, and LiOH. We found no appreciable influence of a 4% concentration of the last seven impurities. Only halide...

  17. Monitoring Location and Angular Orientation of a Pill

    Science.gov (United States)

    Schipper, John F.

    2012-01-01

    A mobile pill transmitter system moves through, or adjacent to, one or more organs in an animal or human body, while transmitting signals from its present location and/or present angular orientation. The system also provides signals from which the present roll angle of the pill, about a selected axis, can be determined. When the location coordinates angular orientation and the roll angle of the pill are within selected ranges, an aperture on the pill container releases a selected chemical into, or onto, the body. Optionally, the pill, as it moves, provides a sequence of visually perceptible images. The times for image formation may correspond to times at which the pill transmitter system location or image satisfies one of at least four criteria. This invention provides and supplies an algorithm for exact determination of location coordinates and angular orientation coordinates for a mobile pill transmitter (PT), or other similar device that is introduced into, and moves within, a GI tract of a human or animal body. A set of as many as eight nonlinear equations has been developed and applied, relating propagation of a wireless signal between either two, three, or more transmitting antennas located on the PT, to four or more non-coplanar receiving antennas located on a signal receiver appliance worn by the user. The equations are solved exactly, without approximations or iterations, and are applied in several environments: (1) association of a visual image, transmitted by the PT at each of a second sequence of times, with a PT location and PT angular orientation at that time; (2) determination of a position within the body at which a drug or chemical substance or other treatment is to be delivered to a selected portion of the body; (3) monitoring, after delivery, of the effect(s) of administration of the treatment; and (4) determination of one or more positions within the body where provision and examination of a finer-scale image is warranted.

  18. Unveiling the orbital angular momentum and acceleration of electron beams.

    Science.gov (United States)

    Shiloh, Roy; Tsur, Yuval; Remez, Roei; Lereah, Yossi; Malomed, Boris A; Shvedov, Vladlen; Hnatovsky, Cyril; Krolikowski, Wieslaw; Arie, Ady

    2015-03-06

    New forms of electron beams have been intensively investigated recently, including vortex beams carrying orbital angular momentum, as well as Airy beams propagating along a parabolic trajectory. Their traits may be harnessed for applications in materials science, electron microscopy, and interferometry, and so it is important to measure their properties with ease. Here, we show how one may immediately quantify these beams' parameters without need for additional fabrication or nonstandard microscopic tools. Our experimental results are backed by numerical simulations and analytic derivation.

  19. Holographic tool kit for optical communication beyond orbital angular momentum

    OpenAIRE

    Trichili, Abderrahmen; Rosales-Guzmán, Carmelo; Dudley, Angela; Ndagano, Bienvenu; Salem, Amine Ben; Zghal, Mourad; Forbes, Andrew

    2016-01-01

    Mode division multiplexing (MDM) is mooted as a technology to address future bandwidth issues, and has been successfully demonstrated in free space using spatial modes with orbital angular momentum (OAM). To further increase the data transmission rate, more degrees of freedom are required to form a densely packed mode space. Here we move beyond OAM and demonstrate multiplexing and demultiplexing using both the radial and azimuthal degrees of freedom. We achieve this with a holographic approac...

  20. Characterization of the Bell-Shaped Vibratory Angular Rate Gyro

    Directory of Open Access Journals (Sweden)

    Junfang Fan

    2013-08-01

    Full Text Available The bell-shaped vibratory angular rate gyro (abbreviated as BVG is a novel shell vibratory gyroscope, which is inspired by the Chinese traditional bell. It sensitizes angular velocity through the standing wave precession effect. The bell-shaped resonator is a core component of the BVG and looks like the millimeter-grade Chinese traditional bell, such as QianLong Bell and Yongle Bell. It is made of Ni43CrTi, which is a constant modulus alloy. The exciting element, control element and detection element are uniformly distributed and attached to the resonator, respectively. This work presents the design, analysis and experimentation on the BVG. It is most important to analyze the vibratory character of the bell-shaped resonator. The strain equation, internal force and the resonator's equilibrium differential equation are derived in the orthogonal curvilinear coordinate system. When the input angular velocity is existent on the sensitive axis, an analysis of the vibratory character is performed using the theory of thin shells. On this basis, the mode shape function and the simplified second order normal vibration mode dynamical equation are obtained. The coriolis coupling relationship about the primary mode and secondary mode is established. The methods of the signal processing and control loop are presented. Analyzing the impact resistance property of the bell-shaped resonator, which is compared with other shell resonators using the Finite Element Method, demonstrates that BVG has the advantage of a better impact resistance property. A reasonable means of installation and a prototypal gyro are designed. The gyroscopic effect of the BVG is characterized through experiments. Experimental results show that the BVG has not only the advantages of low cost, low power, long work life, high sensitivity, and so on, but, also, of a simple structure and a better impact resistance property for low and medium angular velocity measurements.