WorldWideScience

Sample records for rapid aneuploidy detection

  1. Individualized choice in prenatal diagnosis : the impact of karyotyping and standalone rapid aneuploidy detection on quality of life

    NARCIS (Netherlands)

    Boormans, E. M. A.; Birnie, E.; Oepkes, D.; Boekkooi, P. F.; Bonsel, G. J.; van Lith, J. M. M.

    2010-01-01

    Objective To assess the reasons and perceptions of women who are offered a choice between karyotyping and standalone rapid aneuploidy detection (RAD) and to compare the impact of both tests on anxiety and health-related quality of life Methods In this prospective comparative study, women undergoing

  2. BACs-on-Beads Technology: A Reliable Test for Rapid Detection of Aneuploidies and Microdeletions in Prenatal Diagnosis

    Directory of Open Access Journals (Sweden)

    Sandra García-Herrero

    2014-01-01

    Full Text Available The risk of fetal aneuploidies is usually estimated based on high resolution ultrasound combined with biochemical determination of criterion in maternal blood, with invasive procedures offered to the population at risk. The purpose of this study was to investigate the effectiveness of a new rapid aneuploidy screening test on amniotic fluid (AF or chorionic villus (CV samples based on BACs-on-Beads (BoBs technology and to compare the results with classical karyotyping by Giemsa banding (G-banding of cultured cells in metaphase as the gold standard technique. The prenatal-BoBs kit was used to study aneuploidies involving chromosomes 13, 18, 21, X, and Y as well as nine microdeletion syndromes in 321 AF and 43 CV samples. G-banding of metaphase cultured cells was performed concomitantly for all prenatal samples. A microarray-based comparative genomic hybridization (aCGH was also carried out in a subset of samples. Prenatal-BoBs results were widely confirmed by classical karyotyping. Only six karyotype findings were not identified by Prenatal-BoBs, all of them due to the known limitations of the technique. In summary, the BACs-on-Beads technology was an accurate, robust, and efficient method for the rapid diagnosis of common aneuploidies and microdeletion syndromes in prenatal samples.

  3. Rapid diagnosis of aneuploidy using segmental duplication quantitative fluorescent PCR.

    Directory of Open Access Journals (Sweden)

    Xiangdong Kong

    Full Text Available The aim of this study was use a simple and rapid procedure, called segmental duplication quantitative fluorescent polymerase chain reaction (SD-QF-PCR, for the prenatal diagnosis of fetal chromosomal aneuploidies. This method is based on the co-amplification of segmental duplications located on two different chromosomes using a single pair of fluorescent primers. The PCR products of different sizes were subsequently analyzed through capillary electrophoresis, and the aneuploidies were determined based on the relative dosage between the two chromosomes. Each primer set, containing five pairs of primers, was designed to simultaneously detect aneuploidies located on chromosomes 21, 18, 13, X and Y in a single reaction. We applied these two primer sets to DNA samples isolated from individuals with trisomy 21 (n = 36; trisomy 18 (n = 6; trisomy 13 (n = 4; 45, X (n = 5; 47, XXX (n = 3; 48, XXYY (n = 2; and unaffected controls (n = 40. We evaluated the performance of this method using the karyotyping results. A correct and unambiguous diagnosis with 100% sensitivity and 100% specificity, was achieved for clinical samples examined. Thus, the present study demonstrates that SD-QF-PCR is a robust, rapid and sensitive method for the diagnosis of common aneuploidies, and these analyses can be performed in less than 4 hours for a single sample, providing a competitive alternative for routine use.

  4. Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation.

    Science.gov (United States)

    Wells, Dagan; Kaur, Kulvinder; Grifo, Jamie; Glassner, Michael; Taylor, Jenny C; Fragouli, Elpida; Munne, Santiago

    2014-08-01

    The majority of human embryos created using in vitro fertilisation (IVF) techniques are aneuploid. Comprehensive chromosome screening methods, applicable to single cells biopsied from preimplantation embryos, allow reliable identification and transfer of euploid embryos. Recently, randomised trials using such methods have indicated that aneuploidy screening improves IVF success rates. However, the high cost of testing has restricted the availability of this potentially beneficial strategy. This study aimed to harness next-generation sequencing (NGS) technology, with the intention of lowering the costs of preimplantation aneuploidy screening. Embryo biopsy, whole genome amplification and semiconductor sequencing. A rapid (cost only two-thirds that of the most widely used method for embryo aneuploidy detection. Validation involved blinded analysis of 54 cells from cell lines or biopsies from human embryos. Sensitivity and specificity were 100%. The method was applied clinically, assisting in the selection of euploid embryos in two IVF cycles, producing healthy children in both cases. The NGS approach was also able to reveal specified mutations in the nuclear or mitochondrial genomes in parallel with chromosome assessment. Interestingly, elevated mitochondrial DNA content was associated with aneuploidy (pcost diagnosis of aneuploidy in cells from human preimplantation embryos and is rapid enough to allow testing without embryo cryopreservation. The method described also has the potential to shed light on other aspects of embryo genetics of relevance to health and viability. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Rapid-prenatal diagnosis through fluorescence in situ hybridization for preventing aneuploidy related birth defects.

    Science.gov (United States)

    Fauzdar, Ashish; Chowdhry, Mohit; Makroo, R N; Mishra, Manoj; Srivastava, Priyanka; Tyagi, Richa; Bhadauria, Preeti; Kaul, Anita

    2013-01-01

    Women with high-risk pregnancies are offered prenatal diagnosis through amniocentesis for cytogenetic analysis of fetal cells. The aim of this study was to evaluate the effectiveness of the rapid fluorescence in situ hybridization (FISH) technique for detecting numerical aberrations of chromosomes 13, 21, 18, X and Y in high-risk pregnancies in an Indian scenario. A total of 163 samples were received for a FISH and/or a full karyotype for prenatal diagnosis from high-risk pregnancies. In 116 samples both conventional culture techniques for getting karyotype through G-banding techniques were applied in conjunction to FISH test using the AneuVysion kit (Abbott Molecular, Inc.), following standard recommended protocol to compare the both the techniques in our setup. Out of 116 patients, we got 96 normal for the five major chromosome abnormality and seven patients were found to be abnormal (04 trisomy 21, 02 monosomy X, and 01 trisomy 13) and all the FISH results correlated with conventional cytogenetics. To summarize the results of total 163 patients for the major chromosomal abnormalities analyzed by both/or cytogenetics and FISH there were 140 (86%) normal, 9 (6%) cases were abnormal and another 4 (2.5%) cases were suspicious mosaic and 10 (6%) cases of culture failure. The diagnostic detection rate with FISH in 116 patients was 97.5%. There were no false-positive and false-negative autosomal or sex chromosomal results, within our established criteria for reporting FISH signals. Rapid FISH is a reliable and prompt method for detecting numerical chromosomal aberrations and has now been implemented as a routine diagnostic procedure for detection of fetal aneuploidy in India.

  6. Rapid aneuploidy testing (knowing less) versus traditional karyotyping (knowing more) for advanced maternal age: what would be missed, who should decide?

    Science.gov (United States)

    Leung, W C; Lau, E T; Lau, W L; Tang, Rebecca; Wong, Shell Fean; Lau, T K; Tse, K T; Wong, S F; To, W K; Ng, Lucy K L; Lao, T T; Tang, Mary H Y

    2008-02-01

    The application of rapid aneuploidy testing as a stand-alone approach in prenatal diagnosis is much debated. The major criticism of this targeted approach is that it will not detect other chromosomal abnormalities that will be picked up by traditional karyotyping. This study aimed to study the nature of such chromosomal abnormalities and whether parents would choose to terminate affected pregnancies. Retrospective study on a cytogenetic database. Eight public hospitals in Hong Kong. The karyotype results of 19 517 amniotic fluid cultures performed for advanced maternal age (>or=35 years) from 1997 to 2002 were classified according to whether they were detectable by rapid aneuploidy testing. The outcomes of pregnancies with abnormal karyotypes were reviewed from patient records. In all, 333 (1.7%) amniotic fluid cultures yielded abnormal karyotypes; 175 (52.6%) of these were detected by rapid aneuploidy testing, and included trisomy 21 (n=94, 28.2%), trisomy 18 or 13 (n=21, 6.3%), and sex chromosome abnormalities (n=60, 18.0%). The other 158 (47.4%) chromosomal abnormalities were not detectable by rapid aneuploidy testing, of which 63 (18.9%) were regarded to be of potential clinical significance and 95 (28.5%) of no clinical significance. Pregnancy outcomes in 327/333 (98.2%) of these patients were retrieved. In total, 143 (42.9%) of these pregnancies were terminated: 93/94 (98.9%) for trisomy 21, 20/21 (95.2%) for trisomy 18 or 13, 19/60 (31.7%) for sex chromosome abnormalities, and 11/63 (17.5%) for other chromosomal abnormalities with potential clinical significance. There were no terminations in the 95 pregnancies in which karyotyping results were regarded to be of no clinical significance. 'Knowing less' by the rapid aneuploidy stand-alone testing could miss about half of all chromosomal abnormalities detectable by amniocentesis performed for advanced maternal age. Findings from two fifths of the latter were of potential clinical significance, and the parents

  7. Rapid aneuploidy diagnosis by multiplex ligation-dependent probe amplification and array comparative genomic hybridization in pregnancy with major congenital malformations

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2011-03-01

    Conclusions: Prenatal diagnosis of major congenital malformations should alert one to the possibility of chromosomal abnormalities. Multiplex ligation-dependent probe amplification and aCGH have the advantage of rapid aneuploidy diagnosis of common aneuploidies in cases with major congenital malformations.

  8. Establishment of a 10-Plex Quantitative Fluorescent-PCR Assay for rapid diagnosis of sex chromosome aneuploidies.

    Directory of Open Access Journals (Sweden)

    Xingmei Xie

    Full Text Available Sex chromosome aneuploidies occur commonly in the general population, with an incidence of 1 in 400 newborns. However, no tests specifically targeting sex chromosomes have been carried out in prenatal diagnosis or newborn screening, resulting in late recognition of these diseases. In this study, a rapid diagnostic method for sex chromosome aneuploidies was established using Quantitative Fluorescent-PCR (QF-PCR. Ten markers were included in one multiplex QF-PCR assay, including two sex determination genes (AMXY and SRY, five X-linked short tandem repeats (STRs; DXS1053, DXS981, DXS6809, DXS1187, and DXS8377, one X/Y-common STR (X22, and two autosomal STRs (D13S305 and D21S11. Retrospective tests of 70 cases with known cytogenetic results indicated that the 10-plex QF-PCR assay could well determine sex chromosome copy numbers by both allelic peak numbers and a sex chromosome dosage calculation with the autosomal STRs as internal controls. Prospective comparison with cytogenetic karyotyping on 534 cases confirmed that the 10-plex QF-PCR assay could be well employed for sex chromosome aneuploidy diagnosis in at least the Chinese Han population. This is the first QF-PCR test for the diagnosis of sex chromosome aneuploidies in the Chinese population. This test is superior to previous designs by including up to 8 sex-linked markers covering different parts of sex chromosomes as well as employing internal controls for copy number dosage calculation in a single PCR reaction. Due to simple technique and data analysis, as well as easy implementation within routine clinical services, this method is of great clinical application value and could be widely applied.

  9. Phase II: Automated System for Aneuploidy Detection in Sperm Final Report CRADA No. TC-1554-98

    Energy Technology Data Exchange (ETDEWEB)

    Wyrobek, W. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunlay, R. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-28

    This was a collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and Cellomics, Inc. (formerly BioDx and Biological Detection, Inc.) to develop an automated system for detecting human sperm aneuploidy. Aneuploidy (an abnormal number of chromosomes) is one of the major categories of chromosomally abnormal sperm, which results in chromosomally defective pregnancies and babies. An automated system would be used for testing the effects of toxic agents and for other research and clinical applications. This collaborated effort was funded by a National Institutes of Environmental Health Services, Phase II, Small Business Innovation Research Program (SBIR) grant to Cellornics (Contract No. N44-ES-82004).

  10. Rapid detection of aneuploidy in Musa using flow cytometry

    Czech Academy of Sciences Publication Activity Database

    Roux, N.; Toloza, A.; Radecki, Z.; Zapata-Arias, F. J.; Doležel, Jaroslav

    2003-01-01

    Roč. 21, - (2003), s. 483-490 ISSN 0721-7714 R&D Projects: GA AV ČR IAA6038204 Institutional research plan: CEZ:AV0Z5038910 Keywords : banana * flow cytometry * nuclear DNA content Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.423, year: 2003

  11. Meiotic aneuploidy: its origins and induction following chemical treatment in Sordaria brevicollis.

    Science.gov (United States)

    Bond, D J; McMillan, L

    1979-08-01

    A system suitable for the detection of meiotic aneuploidy is described in which various different origins of the aneuploidy can be distinguished. Aneuploid meiotic products are detected as black disomic spores held in asci containing all the products of a single meiosis. Aneuploidy may result from nondisjunction or from a meiosis in which an extra replica of one of the chromosomes has been generated in some other way, e.g., extra replication. By using this system it has been shown that pFPA treatment increase aneuploidy, primarily through an effect on nondisjunction. Preliminary results with trifluralin have indicated that this compound, too, may increase aneuploidy. There is a good possibility that the system can be further developed to permit a more rapid screening using a random plating method; this will allow a more efficient two-part analysis of the effects of compounds under test.

  12. Genomics-based non-invasive prenatal testing for detection of fetal chromosomal aneuploidy in pregnant women.

    Science.gov (United States)

    Badeau, Mylène; Lindsay, Carmen; Blais, Jonatan; Nshimyumukiza, Leon; Takwoingi, Yemisi; Langlois, Sylvie; Légaré, France; Giguère, Yves; Turgeon, Alexis F; Witteman, William; Rousseau, François

    2017-11-10

    pooled analyses (246 T21 cases, 112 T18 cases, 20 T13 cases and 4282 unaffected pregnancies), the clinical sensitivity (95% CI) of TMPS was 99.2% (96.8% to 99.8%), 98.2% (93.1% to 99.6%), 100% (83.9% to 100%) and 92.4% (84.1% to 96.5%) for T21, T18, T13 and 45,X respectively. The clinical specificities were above 100% for T21, T18 and T13 and 99.8% (98.3% to 100%) for 45,X. Indirect comparisons of MPSS and TMPS for T21, T18 and 45,X showed no statistical difference in clinical sensitivity, clinical specificity or both. Due to limited data, comparative meta-analysis of MPSS and TMPS was not possible for T13.We were unable to perform meta-analyses of gNIPT for 47,XXX, 47,XXY and 47,XYY because there were very few or no studies in one or more risk groups. These results show that MPSS and TMPS perform similarly in terms of clinical sensitivity and specificity for the detection of fetal T31, T18, T13 and sex chromosome aneuploidy (SCA). However, no study compared the two approaches head-to-head in the same cohort of patients. The accuracy of gNIPT as a prenatal screening test has been mainly evaluated as a second-tier screening test to identify pregnancies at very low risk of fetal aneuploidies (T21, T18 and T13), thus avoiding invasive procedures. Genomics-based non-invasive prenatal testing methods appear to be sensitive and highly specific for detection of fetal trisomies 21, 18 and 13 in high-risk populations. There is paucity of data on the accuracy of gNIPT as a first-tier aneuploidy screening test in a population of unselected pregnant women. With respect to the replacement of invasive tests, the performance of gNIPT observed in this review is not sufficient to replace current invasive diagnostic tests.We conclude that given the current data on the performance of gNIPT, invasive fetal karyotyping is still the required diagnostic approach to confirm the presence of a chromosomal abnormality prior to making irreversible decisions relative to the pregnancy outcome

  13. A randomized and blinded comparison of qPCR and NGS-based detection of aneuploidy in a cell line mixture model of blastocyst biopsy mosaicism.

    Science.gov (United States)

    Goodrich, David; Tao, Xin; Bohrer, Chelsea; Lonczak, Agnieszka; Xing, Tongji; Zimmerman, Rebekah; Zhan, Yiping; Scott, Richard T; Treff, Nathan R

    2016-11-01

    A subset of preimplantation stage embryos may possess mosaicism of chromosomal constitution, representing a possible limitation to the clinical predictive value of comprehensive chromosome screening (CCS) from a single biopsy. However, contemporary methods of CCS may be capable of predicting mosaicism in the blastocyst by detecting intermediate levels of aneuploidy within a trophectoderm biopsy. This study evaluates the sensitivity and specificity of aneuploidy detection by two CCS platforms using a cell line mixture model of a mosaic trophectoderm biopsy. Four cell lines with known karyotypes were obtained and mixed together at specific ratios of six total cells (0:6, 1:5, 2:4, 3:3, 4:2, 5:1, and 6:0). A female euploid and a male trisomy 18 cell line were used for one set, and a male trisomy 13 and a male trisomy 15 cell line were used for another. Replicates of each mixture were prepared, randomized, and blinded for analysis by one of two CCS platforms (quantitative polymerase chain reaction (qPCR) or VeriSeq next-generation sequencing (NGS)). Sensitivity and specificity of aneuploidy detection at each level of mosaicism was determined and compared between platforms. With the default settings for each platform, the sensitivity of qPCR and NGS were not statistically different, and 100 % specificity was observed (no false positives) at all levels of mosaicism. However, the use of previously published custom criteria for NGS increased sensitivity but also significantly decreased specificity (33 % false-positive prediction of aneuploidy). By demonstrating increased false-positive diagnoses when reducing the stringency of predicting an abnormality, these data illustrate the importance of preclinical evaluation of new testing paradigms before clinical implementation.

  14. Rapid deployment intrusion detection system

    International Nuclear Information System (INIS)

    Graham, R.H.

    1997-01-01

    A rapidly deployable security system is one that provides intrusion detection, assessment, communications, and annunciation capabilities; is easy to install and configure; can be rapidly deployed, and is reusable. A rapidly deployable intrusion detection system (RADIDS) has many potential applications within the DOE Complex: back-up protection for failed zones in a perimeter intrusion detection and assessment system, intrusion detection and assessment capabilities in temporary locations, protection of assets during Complex reconfiguration, and protection in hazardous locations, protection of assets during Complex reconfiguration, and protection in hazardous locations. Many DOE user-need documents have indicated an interest in a rapidly deployable intrusion detection system. The purpose of the RADIDS project is to design, develop, and implement such a system. 2 figs

  15. Non-invasive detection of urothelial cancer through the analysis of driver gene mutations and aneuploidy

    Science.gov (United States)

    Li, Lu; Douville, Christopher; Wang, Yuxuan; Cohen, Joshua David; Taheri, Diana; Silliman, Natalie; Schaefer, Joy; Ptak, Janine; Dobbyn, Lisa; Papoli, Maria; Kinde, Isaac; Afsari, Bahman; Tregnago, Aline C; Bezerra, Stephania M; VandenBussche, Christopher; Fujita, Kazutoshi; Ertoy, Dilek; Cunha, Isabela W; Yu, Lijia; Bivalacqua, Trinity J; Grollman, Arthur P; Diaz, Luis A; Karchin, Rachel; Danilova, Ludmila; Huang, Chao-Yuan; Shun, Chia-Tung; Turesky, Robert J; Yun, Byeong Hwa; Rosenquist, Thomas A; Pu, Yeong-Shiau; Hruban, Ralph H; Tomasetti, Cristian; Papadopoulos, Nickolas; Kinzler, Ken W

    2018-01-01

    Current non-invasive approaches for detection of urothelial cancers are suboptimal. We developed a test to detect urothelial neoplasms using DNA recovered from cells shed into urine. UroSEEK incorporates massive parallel sequencing assays for mutations in 11 genes and copy number changes on 39 chromosome arms. In 570 patients at risk for bladder cancer (BC), UroSEEK was positive in 83% of those who developed BC. Combined with cytology, UroSEEK detected 95% of patients who developed BC. Of 56 patients with upper tract urothelial cancer, 75% tested positive by UroSEEK, including 79% of those with non-invasive tumors. UroSEEK detected genetic abnormalities in 68% of urines obtained from BC patients under surveillance who demonstrated clinical evidence of recurrence. The advantages of UroSEEK over cytology were evident in low-grade BCs; UroSEEK detected 67% of cases whereas cytology detected none. These results establish the foundation for a new non-invasive approach for detection of urothelial cancer. PMID:29557778

  16. Constitutional aneuploidy and cancer predisposition.

    Science.gov (United States)

    Ganmore, Ithamar; Smooha, Gil; Izraeli, Shai

    2009-04-15

    Constitutional aneuploidies are rare syndromes associated with multiple developmental abnormalities and the alterations in the risk for specific cancers. Acquired somatic chromosomal aneuploidies are the most common genetic aberrations in sporadic cancers. Thus studies of these rare constitutional aneuploidy syndromes are important not only for patient counseling and clinical management, but also for deciphering the mechanisms by which chromosomal aneuploidy affect cancer initiation and progression. Here we review the major constitutional aneuploidy syndromes and suggest some general mechanisms for the associated cancer predisposition.

  17. Constitutional aneuploidy and cancer predisposition†

    Science.gov (United States)

    Ganmore, Ithamar; Smooha, Gil; Izraeli, Shai

    2009-01-01

    Constitutional aneuploidies are rare syndromes associated with multiple developmental abnormalities and the alterations in the risk for specific cancers. Acquired somatic chromosomal aneuploidies are the most common genetic aberrations in sporadic cancers. Thus studies of these rare constitutional aneuploidy syndromes are important not only for patient counseling and clinical management, but also for deciphering the mechanisms by which chromosomal aneuploidy affect cancer initiation and progression. Here we review the major constitutional aneuploidy syndromes and suggest some general mechanisms for the associated cancer predisposition. PMID:19297405

  18. Rapid methods for detection of bacteria

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Andersen, B.Ø.; Miller, M.

    2006-01-01

    Traditional methods for detection of bacteria in drinking water e.g. Heterotrophic Plate Counts (HPC) or Most Probable Number (MNP) take 48-72 hours to give the result. New rapid methods for detection of bacteria are needed to protect the consumers against contaminations. Two rapid methods...

  19. Non-invasive aneuploidy detection using free fetal DNA and RNA in maternal plasma: recent progress and future possibilities.

    NARCIS (Netherlands)

    Go, A.T.; Vugt, J.M.G. van; Oudejans, C.B.

    2011-01-01

    BACKGROUND: Cell-free fetal DNA (cff DNA) and RNA can be detected in maternal plasma and used for non-invasive prenatal diagnostics. Recent technical advances have led to a drastic change in the clinical applicability and potential uses of free fetal DNA and RNA. This review summarizes the latest

  20. Automated System for Aneuploidy Detection in Sperm Final Report CRADA No. TC-1364-96: Phase I SBIR

    Energy Technology Data Exchange (ETDEWEB)

    Wyrobek, A. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunlay, R. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-19

    This project was a relationship between Lawrence Livermore National Laboratory (LLNL) and Biological Detection, Inc. (now known as Cellomics, Inc.) It was funded as a Phase I SBIR from the National Institutes of Health (NIH) awarded to Cellomics, Inc. with a subcontract to LLNL.

  1. Detection Of Aneuploidy In Chromosomes 3,7,9 And 17 In Bladder Cancer Patients Using Urovysion Assay

    International Nuclear Information System (INIS)

    Abd-Elsattar, N.A.; Yossef, M.F.; Saleh, S.A.R.; Shahin, R.S.; Ali, H.H.; Kotb, Y.M.

    2012-01-01

    Background: Cystoscopy is considered up till now the gold standard as well as urine cytology for diagnosis and follow up of urinary bladder cancer patients. Cystoscopy is an invasive inconclusive technique while cytology have low sensitivity. Therefore search for a more sensitive, non-invasive highly reliable method is important. Aim of the study: To assess the diagnostic sensitivity and specificity of Urovysion to be used as a non-invasive tool for early detection of bladder cancer patients. Furthermore, to assess its relationship with histopathological stages and grades of the disease. Subjects and methods: This study was conducted on 30 patients with urinary bladder cancer( Group I) which were subdivided according to cancer stages and grades into subgroups and 15 diseased control patients (Group II). One urine sample was taken from each patient for Urovysion assay and another sample taken for urine cytology. Results: Urovysion showed higher positive results in (Group I) than urine cytology. In (Group II) the latter did not miss any negative case while urovysion showed only one false positive case. Moreover, Urovysion results revealed significant association with both bladder cancer histopathological stages and grades while urine cytology showed significant association with tumor grades only. Conclusion: Urovysion; both by itself and in combination with urine cytology; offers a sensitive, reliable and non invasive approach to bladder cancer diagnosis. Urovysion is associated with invasiveness of bladder cancer from stage Tis, T1 to T4 and from grades G1 to G3. Thus, urovysion assay can be used as an important diagnostic and prognostic indicator of this disease

  2. Indigenous people's detection of rapid ecological change.

    Science.gov (United States)

    Aswani, Shankar; Lauer, Matthew

    2014-06-01

    When sudden catastrophic events occur, it becomes critical for coastal communities to detect and respond to environmental transformations because failure to do so may undermine overall ecosystem resilience and threaten people's livelihoods. We therefore asked how capable of detecting rapid ecological change following massive environmental disruptions local, indigenous people are. We assessed the direction and periodicity of experimental learning of people in the Western Solomon Islands after a tsunami in 2007. We compared the results of marine science surveys with local ecological knowledge of the benthos across 3 affected villages and 3 periods before and after the tsunami. We sought to determine how people recognize biophysical changes in the environment before and after catastrophic events such as earthquakes and tsunamis and whether people have the ability to detect ecological changes over short time scales or need longer time scales to recognize changes. Indigenous people were able to detect changes in the benthos over time. Detection levels differed between marine science surveys and local ecological knowledge sources over time, but overall patterns of statistically significant detection of change were evident for various habitats. Our findings have implications for marine conservation, coastal management policies, and disaster-relief efforts because when people are able to detect ecological changes, this, in turn, affects how they exploit and manage their marine resources. © 2014 Society for Conservation Biology.

  3. Constitutional and acquired autosomal aneuploidy.

    Science.gov (United States)

    Jackson-Cook, Colleen

    2011-12-01

    Chromosomal imbalances can result from numerical or structural anomalies. Numerical chromosomal abnormalities are often referred to as aneuploid conditions. This article focuses on the occurrence of constitutional and acquired autosomal aneuploidy in humans. Topics covered include frequency, mosaicism, phenotypic findings, and etiology. The article concludes with a consideration of anticipated advances that might allow for the development of screening tests and/or lead to improvements in our understanding and management of the role that aneuploidy plays in the aging process and acquisition of age-related and constitutional conditions.

  4. Karyotyping or rapid aneuploidy detection in prenatal diagnosis? The different views of users and providers of prenatal care

    NARCIS (Netherlands)

    Boormans, E. M. A.; Birnie, E.; Bilardo, C. M.; Oepkes, D.; Bonsel, G. J.; van Lith, J. M. M.

    2009-01-01

    Developments in prenatal diagnosis raise the question which test strategy should be implemented. However, preferences of women and caregivers are underexposed. This study investigates what kind of prenatal test pregnant women and caregivers prefer and if differences between the groups exist, using

  5. Rapid Detection of the Varicella Zoster Virus

    Science.gov (United States)

    Lewis, Michelle P.; Harding, Robert

    2011-01-01

    1.Technology Description-Researchers discovered that when the Varicella Zoster Virus (VZV) reactivates from latency in the body, the virus is consistently present in saliva before the appearance of skin lesions. A small saliva sample is mixed with a specialized reagent in a test kit. If the virus is present in the saliva sample, the mixture turns a red color. The sensitivity and specificity emanates from an antibody-antigen reaction. This technology is a rapid, non-invasive, point of-of-care testing kit for detecting the virus from a saliva sample. The device is easy to use and can be used in clinics and in remote locations to quickly detect VZV and begin treatment with antiviral drugs. 2.Market Opportunity- RST Bioscience will be the first and only company to market a rapid, same day test kit for the detection of VZV in saliva. The RST detection test kit will have several advantages over existing, competitive technology. The test kit is self contained and laboratory equipment is not required for analysis of the sample. Only a single saliva sample is required to be taken instead of blood or cerebral spinal fluid. The test kit is portable, sterile and disposable after use. RST detection test kits require no electrical power or expensive storage equipment and can be used in remote locations. 3.Market Analysis- According to the CDC, it is estimated that 1 million cases of shingles occur each year in the U.S. with more than half over the age of sixty. There is a high demand for rapid diagnostics by the public. The point-of-care testing (POCT) market is growing faster than other segments of in vitro diagnostics. According to a July 2007 InteLab Corporation industry report the overall market for POCT was forecast to increase from $10.3 billion in 2005 to $18.7 billion by 2011. The market value of this test kit has not been determined. 4.Competition- The VZV vaccine prevents 50% of cases and reduces neuralgia by 66%. The most popular test detects VZV-specific IgM antibody

  6. Unisexual and heterosexual meiotic reproduction generate aneuploidy and phenotypic diversity de novo in the yeast Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    Min Ni

    2013-09-01

    Full Text Available Aneuploidy is known to be deleterious and underlies several common human diseases, including cancer and genetic disorders such as trisomy 21 in Down's syndrome. In contrast, aneuploidy can also be advantageous and in fungi confers antifungal drug resistance and enables rapid adaptive evolution. We report here that sexual reproduction generates phenotypic and genotypic diversity in the human pathogenic yeast Cryptococcus neoformans, which is globally distributed and commonly infects individuals with compromised immunity, such as HIV/AIDS patients, causing life-threatening meningoencephalitis. C. neoformans has a defined a-α opposite sexual cycle; however, >99% of isolates are of the α mating type. Interestingly, α cells can undergo α-α unisexual reproduction, even involving genotypically identical cells. A central question is: Why would cells mate with themselves given that sex is costly and typically serves to admix preexisting genetic diversity from genetically divergent parents? In this study, we demonstrate that α-α unisexual reproduction frequently generates phenotypic diversity, and the majority of these variant progeny are aneuploid. Aneuploidy is responsible for the observed phenotypic changes, as chromosome loss restoring euploidy results in a wild-type phenotype. Other genetic changes, including diploidization, chromosome length polymorphisms, SNPs, and indels, were also generated. Phenotypic/genotypic changes were not observed following asexual mitotic reproduction. Aneuploidy was also detected in progeny from a-α opposite-sex congenic mating; thus, both homothallic and heterothallic sexual reproduction can generate phenotypic diversity de novo. Our study suggests that the ability to undergo unisexual reproduction may be an evolutionary strategy for eukaryotic microbial pathogens, enabling de novo genotypic and phenotypic plasticity and facilitating rapid adaptation to novel environments.

  7. Molecular diagnostic testing for Klinefelter syndrome and other male sex chromosome aneuploidies

    Directory of Open Access Journals (Sweden)

    Hager Karl

    2012-04-01

    Full Text Available Abstract Background Male sex chromosome aneuploidies are underdiagnosed despite concomitant physical and behavioral manifestations. Objective To develop a non-invasive, rapid and high-throughput molecular diagnostic assay for detection of male sex chromosome aneuploidies, including 47,XXY (Klinefelter, 47,XYY, 48,XXYY and 48,XXXY syndromes. Methods The assay utilizes three XYM and four XA markers to interrogate Y:X and X:autosome ratios, respectively. The seven markers were PCR amplified using genomic DNA isolated from a cohort of 323 males with aneuploid (n = 117 and 46,XY (n = 206 karyotypes. The resulting PCR products were subjected to Pyrosequencing, a quantitative DNA sequencing method. Results Receiver operator characteristic (ROC curves were used to establish thresholds for the discrimination of aneuploid from normal samples. The XYM markers permitted the identification of 47,XXY, 48,XXXY and 47,XYY syndromes with 100% sensitivity and specificity in both purified DNA and buccal swab samples. The 48,XXYY karyotype was delineated by XA marker data from 46,XY; an X allele threshold of 43% also permitted detection of 48,XXYY with 100% sensitivity and specificity. Analysis of X chromosome-specific biallelic SNPs demonstrated that 43 of 45 individuals (96% with 48,XXYY karyotype had two distinct X chromosomes, while 2 (4% had a duplicate X, providing evidence that 48,XXYY may result from nondisjunction during early mitotic divisions of a 46,XY embryo. Conclusions Quantitative Pyrosequencing, with high-throughput potential, can detect male sex chromosome aneuploidies with 100% sensitivity.

  8. Rapid Change Detection Algorithm for Disaster Management

    Science.gov (United States)

    Michel, U.; Thunig, H.; Ehlers, M.; Reinartz, P.

    2012-07-01

    This paper focuses on change detection applications in areas where catastrophic events took place which resulted in rapid destruction especially of manmade objects. Standard methods for automated change detection prove not to be sufficient; therefore a new method was developed and tested. The presented method allows a fast detection and visualization of change in areas of crisis or catastrophes. While often new methods of remote sensing are developed without user oriented aspects, organizations and authorities are not able to use these methods because of absence of remote sensing know how. Therefore a semi-automated procedure was developed. Within a transferable framework, the developed algorithm can be implemented for a set of remote sensing data among different investigation areas. Several case studies are the base for the retrieved results. Within a coarse dividing into statistical parts and the segmentation in meaningful objects, the framework is able to deal with different types of change. By means of an elaborated Temporal Change Index (TCI) only panchromatic datasets are used to extract areas which are destroyed, areas which were not affected and in addition areas where rebuilding has already started.

  9. Is metal contamination responsible for increasing aneuploidy levels in the Manila clam Ruditapes philippinarum?

    KAUST Repository

    Piló , D.; Carvalho, Susana; Pereira, P.; Gaspar, M.B.; Leitã o, A.

    2016-01-01

    The present study assessed the metal genotoxicity potential at chromosome-level in the bivalve Ruditapes philippinarum collected along different areas of the Tagus estuary. Higher levels of aneuploidy on gill cells were detected at the most sediment

  10. Evaluating the use of dedicated swab for rapid antigen detection ...

    African Journals Online (AJOL)

    Evaluating the use of dedicated swab for rapid antigen detection testing in group a ... African Journal of Clinical and Experimental Microbiology ... Several generations of rapid antigen detection tests (RADTs) have been developed to facilitate ...

  11. Radiation- induced aneuploidy in mammalian germ cells

    International Nuclear Information System (INIS)

    Tease, C.

    1989-01-01

    The ability of ionizing radiation to induce aneuploidy in mammalian germ cells has been investigated experimentally in the laboratory mouse using a variety of cytogenetic and genetic methods. These studies have provided unambiguous evidence of induced nondisjunction in both male and female germ cells when the effect of irradiation is screened in meiotic cells or preimplantation embryos. In contrast, however, cytogenetic analyses of post-implantation embryos and genetic assays for induced chromosome gains have not found a significant radiation effect. These apparently contradictory findings may be reconciled if (a) radiation induces tertiary rather than primary trisomy, or (b) induces embryo-lethal genetic damage, such as deletions, in addition to numerical anomalies. Either or both of these explanations may account for the apparent loss during gestation of radiation-induced trisomic embryos. Extrapolating from the information so far available, it seems unlikely that environmental exposure to low doses if low dose rate radiation will result in a detectable increase in the rate of aneuploidy in the human population. (author)

  12. Oocyte Development, Meiosis and Aneuploidy

    OpenAIRE

    Maclennan, Marie; Crichton, James; Playfoot, Christopher J; Adams, Ian

    2015-01-01

    Meiosis is one of the defining events in gametogenesis. Male and female germ cells both undergo one round of meiotic cell division during their development in order to reduce the ploidy of the gametes, and thereby maintain the ploidy of the species after fertilisation. However, there are some aspects of meiosis in the female germline, such as the prolonged arrest in dictyate, that appear to predispose oocytes to missegregate their chromosomes and transmit aneuploidies to the next generation. ...

  13. Assessing the cost of implementing the 2011 Society of Obstetricians and Gynecologists of Canada and Canadian College of Medical Genetics practice guidelines on the detection of fetal aneuploidies.

    Science.gov (United States)

    Lilley, Margaret; Hume, Stacey; Karpoff, Nina; Maire, Georges; Taylor, Sherry; Tomaszewski, Robert; Yoshimoto, Maisa; Christian, Susan

    2017-09-01

    The Society of Obstetricians and Gynecologists of Canada and the Canadian College of Medical Genetics published guidelines, in 2011, recommending replacement of karyotype with quantitative fluorescent polymerase chain reaction when prenatal testing is performed because of an increased risk of a common aneuploidy. This study's objective is to perform a cost analysis following the implementation of quantitative fluorescent polymerase chain reaction as a stand-alone test. A total of 658 samples were received between 1 April 2014 and 31 August 2015: 576 amniocentesis samples and 82 chorionic villi sampling. A chromosome abnormality was identified in 14% (93/658) of the prenatal samples tested. The implementation of the 2011 Society of Obstetricians and Gynecologists of Canada and the Canadian College of Medical Genetics guidelines in Edmonton and Northern Alberta resulted in a cost savings of $46 295.80. The replacement of karyotype with chromosomal microarray for some indications would be associated with additional costs. The implementation of new test methods may provide cost savings or added costs. Cost analysis is important to consider during the implementation of new guidelines or technologies. © 2017 John Wiley & Sons, Ltd. © 2017 John Wiley & Sons, Ltd.

  14. Rapid prenatal diagnosis of cytogenetic abnormalities by array CGH analysis

    Science.gov (United States)

    Array CGH analysis has been shown to be highly accurate for rapid detection of chromosomal aneuploidies and submicroscopic deletions or duplications on fetal DNA samples in a clinical prenatal diagnostic setting. The objective of this study is to present our "post-validation phase" experience with ...

  15. Rapid detection of Mycobacterium avium subsp. paratuberculosis ...

    African Journals Online (AJOL)

    Therefore, alternative diagnostic tests such as PCR, are needed for quick detection of infected animals. In this study, the conventional enrichment and isolation procedure and two IS900-based PCR methods for detection of Mycobactrium avium subsp. paratuberculosis in clinical samples from zoo animals and cattle were ...

  16. Rapid assessment of assignments using plagiarism detection software.

    Science.gov (United States)

    Bischoff, Whitney R; Abrego, Patricia C

    2011-01-01

    Faculty members most often use plagiarism detection software to detect portions of students' written work that have been copied and/or not attributed to their authors. The rise in plagiarism has led to a parallel rise in software products designed to detect plagiarism. Some of these products are configurable for rapid assessment and teaching, as well as for plagiarism detection.

  17. Is metal contamination responsible for increasing aneuploidy levels in the Manila clam Ruditapes philippinarum?

    KAUST Repository

    Piló, D.

    2016-11-03

    The present study assessed the metal genotoxicity potential at chromosome-level in the bivalve Ruditapes philippinarum collected along different areas of the Tagus estuary. Higher levels of aneuploidy on gill cells were detected at the most sediment contaminated area both in May (31.7%) and October (36.0%) when compared to a less contaminated area over the same periods (20.3% and 29.0% respectively). Interestingly, metal bioaccumulation in gills was higher in the specimens collected at the least contaminated area with the exception of Pb. Indeed, the multivariate analysis revealed a stronger relation between aneuploidy and sediment contamination than between aneuploidy and the bioaccumulation of the metals. The temporal and spatial inconsistency found for the bioaccumulation of metals in R. philippinarum and the positive correlation between sediment contamination and aneuploidy at the most contaminated area suggest that these chromosome-level effects might be due to chronic metal contamination occurring in the Tagus estuary, rather than a direct result of the temporal variation of bioavailable contaminants. The vertical transmission phenomenon of bivalve aneuploidy levels may then be perpetuating those levels on clams from the most contaminated area. The present results shed light about the effect of metal toxicity at the chromosome-level in species inhabiting chronic contaminated areas and highlight the use of aneuploidy as an effective tool to identify persistent contamination in worldwide transitional waters.

  18. Monoclonal antibody technologies and rapid detection assays

    Science.gov (United States)

    Novel methodologies and screening strategies will be outlined on the use of hybridoma technology for the selection of antigen specific monoclonal antibodies. The development of immunoassays used for diagnostic detection of prions and bacterial toxins will be discussed and examples provided demonstr...

  19. ETV Tech Brief: Rapid Fungi and Bacteria Detection Technologies

    Science.gov (United States)

    Technical brief that summarizes the results for Mycometer, Inc. Mycometer®-test and Bactiquant®-test, which are rapid detection technologies for fungi and bacteria. The brief summarizes the results of the verification report and statement.

  20. Rapid In-Place Composite Rotor Damage Detection, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations is proposing to further develop the Rapid In-Place Composite Rotor Damage Detection (RIPCoRDD) System for determining and tracking the structural...

  1. Rapid In-Place Composite Rotor Damage Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations is proposing to develop the Rapid In-Place Composite Rotor Damage Detection (RIPCoRDD) for determining and tracking the structural health of...

  2. A simple screening method for detection of Klinefelter syndrome and other X-chromosome aneuploidies based on copy number of the androgen receptor gene

    DEFF Research Database (Denmark)

    Ottesen, A M; Garn, I D; Aksglaede, L

    2007-01-01

    Due to the high prevalence and variable phenotype of patients with Klinefelter syndrome, there is a need for a robust and rapid screening method allowing early diagnosis. Here, we report on the development and detailed clinical validation of a quantitative real-time PCR (qPCR)-based method...... of the copy number assessment of the androgen receptor (AR) gene, located to Xq11.2-q12. We analysed samples from 50 individuals, including a healthy male and female controls and patients with Klinefelter syndrome (47,XXY; 48,XXXY) (n = 28), mosaicisms (46,XX/47,XXY/48XXYY; 45,X/46,XY) (n = 3), other sex......-gene expression. The XIST-expression based assay was correct in only 29/36 samples (81%). Our findings demonstrated that the AR-qPCR technique is a simple and reliable screening method for diagnosis of patients with Klinefelter syndrome or other chromosomal disorders involving an aberrant number of X-chromosomes....

  3. Research advance in rapid detection of foodborne Staphylococcus aureus

    OpenAIRE

    Xihong Zhao; Caijiao Wei; Junliang Zhong; Shiwei Jin

    2016-01-01

    Staphylococcus aureus is a gram-positive, coccus-shaped facultative anaerobe and a member of the Staphylococcaceae family. In recent years, alimentary toxicosis caused by S. aureus is a very serious problem worldwide, which constitutes a great threat to public health. In this review, we tried to summarize the conventional methods and newly developed rapid detection techniques of S. aureus (traditional detection method, biochemical detection, immunology method, molecular biology, and biosensor...

  4. Rapid detection of small oscillation faults via deterministic learning.

    Science.gov (United States)

    Wang, Cong; Chen, Tianrui

    2011-08-01

    Detection of small faults is one of the most important and challenging tasks in the area of fault diagnosis. In this paper, we present an approach for the rapid detection of small oscillation faults based on a recently proposed deterministic learning (DL) theory. The approach consists of two phases: the training phase and the test phase. In the training phase, the system dynamics underlying normal and fault oscillations are locally accurately approximated through DL. The obtained knowledge of system dynamics is stored in constant radial basis function (RBF) networks. In the diagnosis phase, rapid detection is implemented. Specially, a bank of estimators are constructed using the constant RBF neural networks to represent the training normal and fault modes. By comparing the set of estimators with the test monitored system, a set of residuals are generated, and the average L(1) norms of the residuals are taken as the measure of the differences between the dynamics of the monitored system and the dynamics of the training normal mode and oscillation faults. The occurrence of a test oscillation fault can be rapidly detected according to the smallest residual principle. A rigorous analysis of the performance of the detection scheme is also given. The novelty of the paper lies in that the modeling uncertainty and nonlinear fault functions are accurately approximated and then the knowledge is utilized to achieve rapid detection of small oscillation faults. Simulation studies are included to demonstrate the effectiveness of the approach.

  5. Genomic and Functional Approaches to Understanding Cancer Aneuploidy

    NARCIS (Netherlands)

    Taylor, Alison M.; Shih, Juliann; Ha, Gavin; Gao, Galen F.; Zhang, Xiaoyang; Berger, Ashton C.; Schumacher, Steven E.; Wang, Chen; Hu, Hai; Liu, Jianfang; Lazar, Alexander J.; Caesar-Johnson, Samantha J.; Demchok, John A.; Felau, Ina; Kasapi, Melpomeni; Ferguson, Martin L.; Hutter, Carolyn M.; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Cho, Juok; DeFreitas, Timothy; Frazer, Scott; Gehlenborg, Nils; Getz, Gad; Heiman, David I.; Kim, Jaegil; Lawrence, Michael S.; Lin, Pei; Meier, Sam; Noble, Michael S.; Saksena, Gordon; Voet, Doug; Zhang, Hailei; Bernard, Brady; Chambwe, Nyasha; Dhankani, Varsha; Knijnenburg, Theo; Kramer, Roger; Leinonen, Kalle; Liu, Yuexin; Miller, Michael; Reynolds, Sheila; Shmulevich, Ilya; Thorsson, Vesteinn; Zhang, Wei; Akbani, Rehan; Broom, Bradley M.; Hegde, Apurva M.; Ju, Zhenlin; Kanchi, Rupa S.; Korkut, Anil; Li, Jun; Liang, Han; Ling, Shiyun; Liu, Wenbin; Lu, Yiling; Mills, Gordon B.; Ng, Kwok Shing; Rao, Arvind; Ryan, Michael; Wang, Jing; Weinstein, John N.; Zhang, Jiexin; Abeshouse, Adam; Armenia, Joshua; Chakravarty, Debyani; Chatila, Walid K.; de Bruijn, Ino; Gao, Jianjiong; Gross, Benjamin E.; Heins, Zachary J.; Kundra, Ritika; La, Konnor; Ladanyi, Marc; Luna, Augustin; Nissan, Moriah G.; Ochoa, Angelica; Phillips, Sarah M.; Reznik, Ed; Sanchez-Vega, Francisco; Sander, Chris; Schultz, Nikolaus; Sheridan, Robert; Sumer, S. Onur; Sun, Yichao; Taylor, Barry S.; Wang, Jioajiao; Zhang, Hongxin; Anur, Pavana; Peto, Myron; Spellman, Paul; Benz, Christopher; Stuart, Joshua M.; Wong, Christopher K.; Yau, Christina; Hayes, D. Neil; Parker, Joel S.; Wilkerson, Matthew D.; Ally, Adrian; Balasundaram, Miruna; Bowlby, Reanne; Brooks, Denise; Carlsen, Rebecca; Chuah, Eric; Dhalla, Noreen; Holt, Robert; Jones, Steven J.M.; Kasaian, Katayoon; Lee, Darlene; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen; Robertson, A. Gordon; Sadeghi, Sara; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Tse, Kane; Wong, Tina; Berger, Ashton C.; Beroukhim, Rameen; Cherniack, Andrew D.; Cibulskis, Carrie; Gabriel, Stacey B.; Gao, Galen F.; Ha, Gavin; Meyerson, Matthew; Schumacher, Steven E.; Shih, Juliann; Kucherlapati, Melanie H.; Kucherlapati, Raju S.; Baylin, Stephen; Cope, Leslie; Danilova, Ludmila; Bootwalla, Moiz S.; Lai, Phillip H.; Maglinte, Dennis T.; Van Den Berg, David J.; Weisenberger, Daniel J.; Auman, J. Todd; Balu, Saianand; Bodenheimer, Tom; Fan, Cheng; Hoadley, Katherine A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Corbin D.; Meng, Shaowu; Mieczkowski, Piotr A.; Mose, Lisle E.; Perou, Amy H.; Perou, Charles M.; Roach, Jeffrey; Shi, Yan; Simons, Janae V.; Skelly, Tara; Soloway, Matthew G.; Tan, Donghui; Veluvolu, Umadevi; Fan, Huihui; Hinoue, Toshinori; Laird, Peter W.; Shen, Hui; Zhou, Wanding; Bellair, Michelle; Chang, Kyle; Covington, Kyle; Creighton, Chad J.; Dinh, Huyen; Doddapaneni, Harsha Vardhan; Donehower, Lawrence A.; Drummond, Jennifer; Gibbs, Richard A.; Glenn, Robert; Hale, Walker; Han, Yi; Hu, Jianhong; Korchina, Viktoriya; Lee, Sandra; Lewis, Lora; Li, Wei; Liu, Xiuping; Morgan, Margaret; Morton, Donna; Muzny, Donna; Santibanez, Jireh; Sheth, Margi; Shinbrot, Eve; Wang, Linghua; Wang, Min; Wheeler, David A.; Xi, Liu; Zhao, Fengmei; Hess, Julian; Appelbaum, Elizabeth L.; Bailey, Matthew; Cordes, Matthew G.; Ding, Li; Fronick, Catrina C.; Fulton, Lucinda A.; Fulton, Robert S.; Kandoth, Cyriac; Mardis, Elaine R.; McLellan, Michael D.; Miller, Christopher A.; Schmidt, Heather K.; Wilson, Richard K.; Crain, Daniel; Curley, Erin; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Candace; Shelton, Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Wise, Lisa; Zmuda, Erik; Corcoran, Niall; Costello, Tony; Hovens, Christopher; Carvalho, Andre L.; de Carvalho, Ana C.; Fregnani, José H.; Longatto-Filho, Adhemar; Reis, Rui M.; Scapulatempo-Neto, Cristovam; Silveira, Henrique C.S.; Vidal, Daniel O.; Burnette, Andrew; Eschbacher, Jennifer; Hermes, Beth; Noss, Ardene; Singh, Rosy; Anderson, Matthew L.; Castro, Patricia D.; Ittmann, Michael; Huntsman, David; Kohl, Bernard; Le, Xuan; Thorp, Richard; Andry, Chris; Duffy, Elizabeth R.; Lyadov, Vladimir; Paklina, Oxana; Setdikova, Galiya; Shabunin, Alexey; Tavobilov, Mikhail; McPherson, Christopher; Warnick, Ronald; Berkowitz, Ross; Cramer, Daniel; Feltmate, Colleen; Horowitz, Neil; Kibel, Adam; Muto, Michael; Raut, Chandrajit P.; Malykh, Andrei; Barnholtz-Sloan, Jill S.; Barrett, Wendi; Devine, Karen; Fulop, Jordonna; Ostrom, Quinn T.; Shimmel, Kristen; Wolinsky, Yingli; Sloan, Andrew E.; De Rose, Agostino; Giuliante, Felice; Goodman, Marc; Karlan, Beth Y.; Hagedorn, Curt H.; Eckman, John; Harr, Jodi; Myers, Jerome; Tucker, Kelinda; Zach, Leigh Anne; Deyarmin, Brenda; Hu, Hai; Kvecher, Leonid; Larson, Caroline; Mural, Richard J.; Somiari, Stella; Vicha, Ales; Zelinka, Tomas; Bennett, Joseph; Iacocca, Mary; Rabeno, Brenda; Swanson, Patricia; Latour, Mathieu; Lacombe, Louis; Têtu, Bernard; Bergeron, Alain; McGraw, Mary; Staugaitis, Susan M.; Chabot, John; Hibshoosh, Hanina; Sepulveda, Antonia; Su, Tao; Wang, Timothy; Potapova, Olga; Voronina, Olga; Desjardins, Laurence; Mariani, Odette; Roman-Roman, Sergio; Sastre, Xavier; Stern, Marc Henri; Cheng, Feixiong; Signoretti, Sabina; Berchuck, Andrew; Bigner, Darell; Lipp, Eric; Marks, Jeffrey; McCall, Shannon; McLendon, Roger; Secord, Angeles; Sharp, Alexis; Behera, Madhusmita; Brat, Daniel J.; Chen, Amy; Delman, Keith; Force, Seth; Khuri, Fadlo; Magliocca, Kelly; Maithel, Shishir; Olson, Jeffrey J.; Owonikoko, Taofeek; Pickens, Alan; Ramalingam, Suresh; Shin, Dong M.; Sica, Gabriel; Van Meir, Erwin G.; Zhang, Hongzheng; Eijckenboom, Wil; Gillis, Ad; Korpershoek, Esther; Looijenga, Leendert; Oosterhuis, Wolter; Stoop, Hans; van Kessel, Kim E.; Zwarthoff, Ellen C.; Calatozzolo, Chiara; Cuppini, Lucia; Cuzzubbo, Stefania; DiMeco, Francesco; Finocchiaro, Gaetano; Mattei, Luca; Perin, Alessandro; Pollo, Bianca; Chen, Chu; Houck, John; Lohavanichbutr, Pawadee; Hartmann, Arndt; Stoehr, Christine; Stoehr, Robert; Taubert, Helge; Wach, Sven; Wullich, Bernd; Kycler, Witold; Murawa, Dawid; Wiznerowicz, Maciej; Chung, Ki; Edenfield, W. Jeffrey; Martin, Julie; Baudin, Eric; Bubley, Glenn; Bueno, Raphael; De Rienzo, Assunta; Richards, William G.; Kalkanis, Steven; Mikkelsen, Tom; Noushmehr, Houtan; Scarpace, Lisa; Girard, Nicolas; Aymerich, Marta; Campo, Elias; Giné, Eva; Guillermo, Armando López; Van Bang, Nguyen; Hanh, Phan Thi; Phu, Bui Duc; Tang, Yufang; Colman, Howard; Evason, Kimberley; Dottino, Peter R.; Martignetti, John A.; Gabra, Hani; Juhl, Hartmut; Akeredolu, Teniola; Stepa, Serghei; Hoon, Dave; Ahn, Keunsoo; Kang, Koo Jeong; Beuschlein, Felix; Breggia, Anne; Birrer, Michael; Bell, Debra; Borad, Mitesh; Bryce, Alan H.; Castle, Erik; Chandan, Vishal; Cheville, John; Copland, John A.; Farnell, Michael; Flotte, Thomas; Giama, Nasra; Ho, Thai; Kendrick, Michael; Kocher, Jean Pierre; Kopp, Karla; Moser, Catherine; Nagorney, David; O'Brien, Daniel; O'Neill, Brian Patrick; Patel, Tushar; Petersen, Gloria; Que, Florencia; Rivera, Michael; Roberts, Lewis; Smallridge, Robert; Smyrk, Thomas; Stanton, Melissa; Thompson, R. Houston; Torbenson, Michael; Yang, Ju Dong; Zhang, Lizhi; Brimo, Fadi; Ajani, Jaffer A.; Angulo Gonzalez, Ana Maria; Behrens, Carmen; Bondaruk, Jolanta; Broaddus, Russell; Czerniak, Bogdan; Esmaeli, Bita; Fujimoto, Junya; Gershenwald, Jeffrey; Guo, Charles; Lazar, Alexander J.; Logothetis, Christopher; Meric-Bernstam, Funda; Moran, Cesar; Ramondetta, Lois; Rice, David; Sood, Anil; Tamboli, Pheroze; Thompson, Timothy; Troncoso, Patricia; Tsao, Anne; Wistuba, Ignacio; Carter, Candace; Haydu, Lauren; Hersey, Peter; Jakrot, Valerie; Kakavand, Hojabr; Kefford, Richard; Lee, Kenneth; Long, Georgina; Mann, Graham; Quinn, Michael; Saw, Robyn; Scolyer, Richard; Shannon, Kerwin; Spillane, Andrew; Stretch, Jonathan; Synott, Maria; Thompson, John; Wilmott, James; Al-Ahmadie, Hikmat; Chan, Timothy A.; Ghossein, Ronald; Gopalan, Anuradha; Levine, Douglas A.; Reuter, Victor; Singer, Samuel; Singh, Bhuvanesh; Tien, Nguyen Viet; Broudy, Thomas; Mirsaidi, Cyrus; Nair, Praveen; Drwiega, Paul; Miller, Judy; Smith, Jennifer; Zaren, Howard; Park, Joong Won; Hung, Nguyen Phi; Kebebew, Electron; Linehan, W. Marston; Metwalli, Adam R.; Pacak, Karel; Pinto, Peter A.; Schiffman, Mark; Schmidt, Laura S.; Vocke, Cathy D.; Wentzensen, Nicolas; Worrell, Robert; Yang, Hannah; Moncrieff, Marc; Goparaju, Chandra; Melamed, Jonathan; Pass, Harvey; Botnariuc, Natalia; Caraman, Irina; Cernat, Mircea; Chemencedji, Inga; Clipca, Adrian; Doruc, Serghei; Gorincioi, Ghenadie; Mura, Sergiu; Pirtac, Maria; Stancul, Irina; Tcaciuc, Diana; Albert, Monique; Alexopoulou, Iakovina; Arnaout, Angel; Bartlett, John; Engel, Jay; Gilbert, Sebastien; Parfitt, Jeremy; Sekhon, Harman; Thomas, George; Rassl, Doris M.; Rintoul, Robert C.; Bifulco, Carlo; Tamakawa, Raina; Urba, Walter; Hayward, Nicholas; Timmers, Henri; Antenucci, Anna; Facciolo, Francesco; Grazi, Gianluca; Marino, Mirella; Merola, Roberta; de Krijger, Ronald; Gimenez-Roqueplo, Anne Paule; Piché, Alain; Chevalier, Simone; McKercher, Ginette; Birsoy, Kivanc; Barnett, Gene; Brewer, Cathy; Farver, Carol; Naska, Theresa; Pennell, Nathan A.; Raymond, Daniel; Schilero, Cathy; Smolenski, Kathy; Williams, Felicia; Morrison, Carl; Borgia, Jeffrey A.; Liptay, Michael J.; Pool, Mark; Seder, Christopher W.; Junker, Kerstin; Omberg, Larsson; Dinkin, Mikhail; Manikhas, George; Alvaro, Domenico; Bragazzi, Maria Consiglia; Cardinale, Vincenzo; Carpino, Guido; Gaudio, Eugenio; Chesla, David; Cottingham, Sandra; Dubina, Michael; Moiseenko, Fedor; Dhanasekaran, Renumathy; Becker, Karl Friedrich; Janssen, Klaus Peter; Slotta-Huspenina, Julia; Abdel-Rahman, Mohamed H.; Aziz, Dina; Bell, Sue; Cebulla, Colleen M.; Davis, Amy; Duell, Rebecca; Elder, J. Bradley; Hilty, Joe; Kumar, Bahavna; Lang, James; Lehman, Norman L.; Mandt, Randy; Nguyen, Phuong; Pilarski, Robert; Rai, Karan; Schoenfield, Lynn; Senecal, Kelly; Wakely, Paul; Hansen, Paul; Lechan, Ronald; Powers, James; Tischler, Arthur; Grizzle, William E.; Sexton, Katherine C.; Kastl, Alison; Henderson, Joel; Porten, Sima; Waldmann, Jens; Fassnacht, Martin; Asa, Sylvia L.; Schadendorf, Dirk; Couce, Marta; Graefen, Markus; Huland, Hartwig; Sauter, Guido; Schlomm, Thorsten; Simon, Ronald; Tennstedt, Pierre; Olabode, Oluwole; Nelson, Mark; Bathe, Oliver; Carroll, Peter R.; Chan, June M.; Disaia, Philip; Glenn, Pat; Kelley, Robin K.; Landen, Charles N.; Phillips, Joanna; Prados, Michael; Simko, Jeffry; Smith-McCune, Karen; VandenBerg, Scott; Roggin, Kevin; Fehrenbach, Ashley; Kendler, Ady; Sifri, Suzanne; Steele, Ruth; Jimeno, Antonio; Carey, Francis; Forgie, Ian; Mannelli, Massimo; Carney, Michael; Hernandez, Brenda; Campos, Benito; Herold-Mende, Christel; Jungk, Christin; Unterberg, Andreas; von Deimling, Andreas; Bossler, Aaron; Galbraith, Joseph; Jacobus, Laura; Knudson, Michael; Knutson, Tina; Ma, Deqin; Milhem, Mohammed; Sigmund, Rita; Godwin, Andrew K.; Madan, Rashna; Rosenthal, Howard G.; Adebamowo, Clement; Adebamowo, Sally N.; Boussioutas, Alex; Beer, David; Giordano, Thomas; Mes-Masson, Anne Marie; Saad, Fred; Bocklage, Therese; Landrum, Lisa; Mannel, Robert; Moore, Kathleen; Moxley, Katherine; Postier, Russel; Walker, Joan; Zuna, Rosemary; Feldman, Michael; Valdivieso, Federico; Dhir, Rajiv; Luketich, James; Mora Pinero, Edna M.; Quintero-Aguilo, Mario; Carlotti, Carlos Gilberto; Dos Santos, Jose Sebastião; Kemp, Rafael; Sankarankuty, Ajith; Tirapelli, Daniela; Catto, James; Agnew, Kathy; Swisher, Elizabeth; Creaney, Jenette; Robinson, Bruce; Shelley, Carl Simon; Godwin, Eryn M.; Kendall, Sara; Shipman, Cassaundra; Bradford, Carol; Carey, Thomas; Haddad, Andrea; Moyer, Jeffey; Peterson, Lisa; Prince, Mark; Rozek, Laura; Wolf, Gregory; Bowman, Rayleen; Fong, Kwun M.; Yang, Ian; Korst, Robert; Rathmell, W. Kimryn; Fantacone-Campbell, J. Leigh; Hooke, Jeffrey A.; Kovatich, Albert J.; Shriver, Craig D.; DiPersio, John; Drake, Bettina; Govindan, Ramaswamy; Heath, Sharon; Ley, Timothy; Van Tine, Brian; Westervelt, Peter; Rubin, Mark A.; Lee, Jung Il; Aredes, Natália D.; Mariamidze, Armaz; Cherniack, Andrew D.; Beroukhim, Rameen; Meyerson, Matthew

    2018-01-01

    Aneuploidy, whole chromosome or chromosome arm imbalance, is a near-universal characteristic of human cancers. In 10,522 cancer genomes from The Cancer Genome Atlas, aneuploidy was correlated with TP53 mutation, somatic mutation rate, and expression of proliferation genes. Aneuploidy was

  6. Rapid detection of EBOLA VP40 in microchip immunofiltration assay

    Science.gov (United States)

    Miethe, Peter; Gary, Dominik; Hlawatsch, Nadine; Gad, Anne-Marie

    2015-05-01

    In the spring of 2014, the Ebola virus (EBOV) strain Zaire caused a dramatic outbreak in several regions of West Africa. The RT-PCR and antigen capture diagnostic proved to be effective for detecting EBOV in blood and serum. In this paper, we present data of a rapid antigen capture test for the detection of VP40. The test was performed in a microfluidic chip for immunofiltration analysis. The chip integrates all necessary assay components. The analytical sensitivity of the rapid test was 8 ng/ml for recombinant VP40. In serum and whole blood samples spiked with virus culture material, the detection limit was 2.2 x 102 PFU/ml. The performance data of the rapid test (15 min) are comparable to that of the VP40 laboratory ELISA.

  7. Nanomaterial-enabled Rapid Detection of Water Contaminants.

    Science.gov (United States)

    Mao, Shun; Chang, Jingbo; Zhou, Guihua; Chen, Junhong

    2015-10-28

    Water contaminants, e.g., inorganic chemicals and microorganisms, are critical metrics for water quality monitoring and have significant impacts on human health and plants/organisms living in water. The scope and focus of this review is nanomaterial-based optical, electronic, and electrochemical sensors for rapid detection of water contaminants, e.g., heavy metals, anions, and bacteria. These contaminants are commonly found in different water systems. The importance of water quality monitoring and control demands significant advancement in the detection of contaminants in water because current sensing technologies for water contaminants have limitations. The advantages of nanomaterial-based sensing technologies are highlighted and recent progress on nanomaterial-based sensors for rapid water contaminant detection is discussed. An outlook for future research into this rapidly growing field is also provided. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Rapid Magnetic Nanobiosensor for the detection of Serratia marcescen

    Science.gov (United States)

    Aljabali, Alaa A. A.; Hussein, Emad; Aljumaili, Omar; Zoubi, Mazhar Al; Altrad, Bahaa; Albatayneh, Khaled; Al-razaq, Mutaz A. Abd

    2018-02-01

    The development of rapid, sensitive, accurate and reliable bacterial detection methods are of keen interest to ensure food safety and hospital security. Therefore, the development of a fast, specific, low-cost and trusted methods is in high demand. Magnetic nanoparticles with their unique material properties have been utilized as a tool for pathogen detection. Here, we present a novel iron oxide nanoparticles labeled with specific targeting antibodies to improve specificity and extend the use of nanoparticles as nanosensors. The results indicated that antibody labeled iron oxide platform that binds specifically to Serriata marcescenst in a straightforward method is very specific and sensitive. The system is capable of rapid and specific detection of various clinically relevant bacterial species, with sensitivity down to single bacteria. The generic platform could be used to identify pathogens for a variety of applications rapidly.

  9. Research advance in rapid detection of foodborne Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Xihong Zhao

    2016-09-01

    Full Text Available Staphylococcus aureus is a gram-positive, coccus-shaped facultative anaerobe and a member of the Staphylococcaceae family. In recent years, alimentary toxicosis caused by S. aureus is a very serious problem worldwide, which constitutes a great threat to public health. In this review, we tried to summarize the conventional methods and newly developed rapid detection techniques of S. aureus (traditional detection method, biochemical detection, immunology method, molecular biology, and biosensor method for their principles, advantages, disadvantages, and applications. Furthermore, the future perspectives of S. aureus detection methods were forecasted at last.

  10. Using molecular techniques for rapid detection of Salmonella ...

    African Journals Online (AJOL)

    PRECIOUS

    2010-02-01

    Feb 1, 2010 ... A total of 152 samples of chicken and chicken products ... detection of Salmonella species in the collected field samples ... that 16 million new cases of typhoid fever occur each ... vative methods for the rapid identification of Salmonella ... saved for the PCR-Non Selective test (PCR-NS) and 1 ml of the.

  11. Rapid detection, characterization, and enumeration of foodborne pathogens

    DEFF Research Database (Denmark)

    Hoorfar, Jeffrey

    2011-01-01

    . The present review discusses the reasons for the increasing interest in rapid methods; current developments in the field, the research needs, and the future trends. The advent of biotechnology has introduced new technologies that led to the emergence of rapid diagnostic methods and altered food testing...... of rapid methods is for fast screening of large number of samples, where most of them are expected to be test-negative, leading to faster product release for sale. This has been the main strength of rapid methods such as real-time Polymerase Chain Reaction (PCR). Enrichment PCR, where a primary culture...... of pathogen in a contaminated product. Another key issue is automation, where the key drivers are miniaturization and multiple testing, which mean that not only one instrument is flexible enough to test for many pathogens but also many pathogens can be detected with one test. The review is mainly based...

  12. Rapid Aminoglycoside NP Test for Rapid Detection of Multiple Aminoglycoside Resistance in Enterobacteriaceae.

    Science.gov (United States)

    Nordmann, Patrice; Jayol, Aurélie; Dobias, Jan; Poirel, Laurent

    2017-04-01

    The rapid aminoglycoside NP (Nordmann/Poirel) test was developed to rapidly identify multiple aminoglycoside (AG) resistance in Enterobacteriaceae It is based on the detection of the glucose metabolism related to enterobacterial growth in the presence of a defined concentration of amikacin plus gentamicin. Formation of acid metabolites was evidenced by a color change (orange to yellow) of the red phenol pH indicator. The rapid aminoglycoside NP test was evaluated by using bacterial colonies of 18 AG-resistant isolates producing 16S rRNA methylases, 20 AG-resistant isolates expressing AG-modifying enzymes (acetyl-, adenyl-, and phosphotransferases), and 10 isolates susceptible to AG. Its sensitivity and specificity were 100% and 97%, respectively, compared to the broth dilution method, which was taken as the gold standard for determining aminoglycoside resistance. The test is inexpensive, rapid (<2 h), and implementable worldwide. Copyright © 2017 American Society for Microbiology.

  13. Radiometric method for the rapid detection of Leptospira organisms

    International Nuclear Information System (INIS)

    Manca, N.; Verardi, R.; Colombrita, D.; Ravizzola, G.; Savoldi, E.; Turano, A.

    1986-01-01

    A rapid and sensitive radiometric method for detection of Leptospira interrogans serovar pomona and Leptospira interrogans serovar copenhageni is described. Stuart's medium and Middlebrook TB (12A) medium supplemented with bovine serum albumin, catalase, and casein hydrolysate and labeled with 14 C-fatty acids were used. The radioactivity was measured in a BACTEC 460. With this system, Leptospira organisms were detected in human blood in 2 to 5 days, a notably shorter time period than that required for the majority of detection techniques

  14. Radiometric method for the rapid detection of Leptospira organisms

    Energy Technology Data Exchange (ETDEWEB)

    Manca, N.; Verardi, R.; Colombrita, D.; Ravizzola, G.; Savoldi, E.; Turano, A.

    1986-02-01

    A rapid and sensitive radiometric method for detection of Leptospira interrogans serovar pomona and Leptospira interrogans serovar copenhageni is described. Stuart's medium and Middlebrook TB (12A) medium supplemented with bovine serum albumin, catalase, and casein hydrolysate and labeled with /sup 14/C-fatty acids were used. The radioactivity was measured in a BACTEC 460. With this system, Leptospira organisms were detected in human blood in 2 to 5 days, a notably shorter time period than that required for the majority of detection techniques.

  15. Genetics Home Reference: mosaic variegated aneuploidy syndrome

    Science.gov (United States)

    ... In MVA syndrome, growth before birth is slow (intrauterine growth restriction). After birth, affected individuals continue to grow at ... InfoSearch: Warburton Anyane Yeboa syndrome KidsHealth from Nemours: Intrauterine Growth Restriction ... mosaic variegated aneuploidy syndrome 1 MalaCards: ...

  16. Modeling the Aneuploidy Control of Cancer

    Directory of Open Access Journals (Sweden)

    Wang Zhong

    2010-07-01

    Full Text Available Abstract Background Aneuploidy has long been recognized to be associated with cancer. A growing body of evidence suggests that tumorigenesis, the formation of new tumors, can be attributed to some extent to errors occurring at the mitotic checkpoint, a major cell cycle control mechanism that acts to prevent chromosome missegregation. However, so far no statistical model has been available quantify the role aneuploidy plays in determining cancer. Methods We develop a statistical model for testing the association between aneuploidy loci and cancer risk in a genome-wide association study. The model incorporates quantitative genetic principles into a mixture-model framework in which various genetic effects, including additive, dominant, imprinting, and their interactions, are estimated by implementing the EM algorithm. Results Under the new model, a series of hypotheses tests are formulated to explain the pattern of the genetic control of cancer through aneuploid loci. Simulation studies were performed to investigate the statistical behavior of the model. Conclusions The model will provide a tool for estimating the effects of genetic loci on aneuploidy abnormality in genome-wide studies of cancer cells.

  17. Individual differences in detecting rapidly presented fearful faces.

    Directory of Open Access Journals (Sweden)

    Dandan Zhang

    Full Text Available Rapid detection of evolutionarily relevant threats (e.g., fearful faces is important for human survival. The ability to rapidly detect fearful faces exhibits high variability across individuals. The present study aimed to investigate the relationship between behavioral detection ability and brain activity, using both event-related potential (ERP and event-related oscillation (ERO measurements. Faces with fearful or neutral facial expressions were presented for 17 ms or 200 ms in a backward masking paradigm. Forty-two participants were required to discriminate facial expressions of the masked faces. The behavioral sensitivity index d' showed that the detection ability to rapidly presented and masked fearful faces varied across participants. The ANOVA analyses showed that the facial expression, hemisphere, and presentation duration affected the grand-mean ERP (N1, P1, and N170 and ERO (below 20 Hz and lasted from 100 ms to 250 ms post-stimulus, mainly in theta band brain activity. More importantly, the overall detection ability of 42 subjects was significantly correlated with the emotion effect (i.e., fearful vs. neutral on ERP (r = 0.403 and ERO (r = 0.552 measurements. A higher d' value was corresponding to a larger size of the emotional effect (i.e., fearful--neutral of N170 amplitude and a larger size of the emotional effect of the specific ERO spectral power at the right hemisphere. The present results suggested a close link between behavioral detection ability and the N170 amplitude as well as the ERO spectral power below 20 Hz in individuals. The emotional effect size between fearful and neutral faces in brain activity may reflect the level of conscious awareness of fearful faces.

  18. Rapid and Sensitive Detection of BLAD in Cattle Population

    Directory of Open Access Journals (Sweden)

    Daniela Elena Ilie

    2014-05-01

    Full Text Available Bovine leukocyte adhesion deficiency (BLAD is an autosomal recessive disorder with negative impact on dairy cattle breeding. The molecular basis of BLAD is a single point mutation (A→G, resulting in a single amino acid substitution (aspartic acid → glycine at amino acid 128 in the adhesion molecule CD18. The object of this study was to establish a fast and sensitive molecular genotyping assay to detect BLAD carriers using high-resolution melting (HRM curve analysis. We tested animals with known genotypes for BLAD that were previously confirmed by PCR-RFLP method, and then examined the sensitivity of mutation detection using PCR followed by HRM curve analysis. BLAD carriers were readily detectable using HRM assay. Thus, the PCR-HRM genotyping method is a rapid, easily interpretable, reliable and cost-effective assay for BLAD mutant allele detection. This assay can be useful in cattle genotyping and genetic selection.

  19. Amperometric immunosensor for rapid detection of Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Hiraiwa, Morgan; Lee, Hyun-Boo; Inoue, Shinnosuke; Chung, Jae-Hyun; Kim, Jong-Hoon; Becker, Annie L; Weigel, Kris M; Cangelosi, Gerard A; Lee, Kyong-Hoon

    2015-01-01

    Tuberculosis (TB) has been a major public health problem, which can be better controlled by using accurate and rapid diagnosis in low-resource settings. A simple, portable, and sensitive detection method is required for point-of-care (POC) settings. This paper studies an amperometric biosensor using a microtip immunoassay for a rapid and low-cost detection of Mycobacterium tuberculosis (MTB) in sputum. MTB in sputum is specifically captured on the functionalized microtip surface and detected by electric current. According to the numerical study, the current signal on the microtip surface is linearly changed with increasing immersion depth. Using a reference microtip, the immersion depth is compensated for a sensing microtip. On the microtip surface, target bacteria are concentrated and organized by a coffee-ring effect, which amplifies the electric current. To enhance the signal-to-noise ratio, both the sample processing and rinsing steps are presented with the use of deionized water as a medium for the amperometric measurement. When applied to cultured MTB cells spiked into human sputum, the detection limit was 100 CFU mL −1 , comparable to a more labor-intensive fluorescence detection method reported previously. (paper)

  20. Amperometric immunosensor for rapid detection of Mycobacterium tuberculosis

    Science.gov (United States)

    Hiraiwa, Morgan; Kim, Jong-Hoon; Lee, Hyun-Boo; Inoue, Shinnosuke; Becker, Annie L.; Weigel, Kris M.; Cangelosi, Gerard A.; Lee, Kyong-Hoon; Chung, Jae-Hyun

    2015-05-01

    Tuberculosis (TB) has been a major public health problem, which can be better controlled by using accurate and rapid diagnosis in low-resource settings. A simple, portable, and sensitive detection method is required for point-of-care (POC) settings. This paper studies an amperometric biosensor using a microtip immunoassay for a rapid and low-cost detection of Mycobacterium tuberculosis (MTB) in sputum. MTB in sputum is specifically captured on the functionalized microtip surface and detected by electric current. According to the numerical study, the current signal on the microtip surface is linearly changed with increasing immersion depth. Using a reference microtip, the immersion depth is compensated for a sensing microtip. On the microtip surface, target bacteria are concentrated and organized by a coffee-ring effect, which amplifies the electric current. To enhance the signal-to-noise ratio, both the sample processing and rinsing steps are presented with the use of deionized water as a medium for the amperometric measurement. When applied to cultured MTB cells spiked into human sputum, the detection limit was 100 CFU mL-1, comparable to a more labor-intensive fluorescence detection method reported previously.

  1. The application of automatic chemiluminescence machine in rapid immune detection

    International Nuclear Information System (INIS)

    Lin Aizhen; Li Xuanwei; Chen Binhong; Li Zhenqian; Chen Zhaoxuan

    2004-01-01

    Objective: To provide high-quality, rapid and dependable result for clinical practice, and give satisfactory service to patients of different economical status by supplementation with other labeling immune examination. With an innovative attitude, we carried out efficient technical reform on ACS180 automatic chemiluminescence machine, making it possible for patients to complete the whole process including examination, check-out, diagnosis and getting drugs. The reported will be issued within an hour, thus a rapid immune detection service was established in out-patients department. Methods: 1. ACS-180 automatic chemiluminescence machine is used based on the principle of chemiluminescence immune methods. 2. The reagents are provided by Ciba-Comig Company of USA, composed of anti acridinium ester antibody of liquid phase and particulate antigen of solid phase wrapped in magnetic powder. 3. Calibration and quality control: high and low concentration are set for each calibration fluid with attached standard curve. Product for quality controlling includes three concentration of low, moderate and high. Results: 1. rapid machine detection for sample: serum is replaced with plasma coagulated by heparin, and comparison among series of methods using serum or plasma suggest no significant difference exists. 2. The problem about fasting detection: chemiluminescence machine measure optical density directly, with the results hardly being influenced by turbidity. But attention should be paid to the treatment of lipid turbid samples. 3. Other innovations: (1) direct placement of sample tube on machine: a cushion is placed on sample plate to transfer sample to machine directly after centrifugation, saving time and reducing the accident in sample transference. (2) for HCG quantification in blood and urine, 'gold criteria' is used firstly in screening to determine approximately the dilution range, with an advantage of saving time and reagent as well as accuracy. (3) we design a

  2. Genomic and Functional Approaches to Understanding Cancer Aneuploidy.

    Science.gov (United States)

    Taylor, Alison M; Shih, Juliann; Ha, Gavin; Gao, Galen F; Zhang, Xiaoyang; Berger, Ashton C; Schumacher, Steven E; Wang, Chen; Hu, Hai; Liu, Jianfang; Lazar, Alexander J; Cherniack, Andrew D; Beroukhim, Rameen; Meyerson, Matthew

    2018-04-09

    Aneuploidy, whole chromosome or chromosome arm imbalance, is a near-universal characteristic of human cancers. In 10,522 cancer genomes from The Cancer Genome Atlas, aneuploidy was correlated with TP53 mutation, somatic mutation rate, and expression of proliferation genes. Aneuploidy was anti-correlated with expression of immune signaling genes, due to decreased leukocyte infiltrates in high-aneuploidy samples. Chromosome arm-level alterations show cancer-specific patterns, including loss of chromosome arm 3p in squamous cancers. We applied genome engineering to delete 3p in lung cells, causing decreased proliferation rescued in part by chromosome 3 duplication. This study defines genomic and phenotypic correlates of cancer aneuploidy and provides an experimental approach to study chromosome arm aneuploidy. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Rapid detection, characterization, and enumeration of foodborne pathogens.

    Science.gov (United States)

    Hoorfar, J

    2011-11-01

    As food safety management further develops, microbiological testing will continue to play an important role in assessing whether Food Safety Objectives are achieved. However, traditional microbiological culture-based methods are limited, particularly in their ability to provide timely data. The present review discusses the reasons for the increasing interest in rapid methods, current developments in the field, the research needs, and the future trends. The advent of biotechnology has introduced new technologies that led to the emergence of rapid diagnostic methods and altered food testing practices. Rapid methods are comprised of many different detection technologies, including specialized enzyme substrates, antibodies and DNA, ranging from simple differential plating media to the use of sophisticated instruments. The use of non-invasive sampling techniques for live animals especially came into focus with the 1990s outbreak of bovine spongiform encephalopathy that was linked to the human outbreak of Creutzfeldt Jakob's Disease. Serology is still an important tool in preventing foodborne pathogens to enter the human food supply through meat and milk from animals. One of the primary uses of rapid methods is for fast screening of large number of samples, where most of them are expected to be test-negative, leading to faster product release for sale. This has been the main strength of rapid methods such as real-time Polymerase Chain Reaction (PCR). Enrichment PCR, where a primary culture broth is tested in PCR, is the most common approach in rapid testing. Recent reports show that it is possible both to enrich a sample and enumerate by pathogen-specific real-time PCR, if the enrichment time is short. This can be especially useful in situations where food producers ask for the level of pathogen in a contaminated product. Another key issue is automation, where the key drivers are miniaturization and multiple testing, which mean that not only one instrument is flexible

  4. Immunomagnetic nanoparticle based quantitative PCR for rapid detection of Salmonella

    International Nuclear Information System (INIS)

    Bakthavathsalam, Padmavathy; Rajendran, Vinoth Kumar; Saran, Uttara; Chatterjee, Suvro; Ali, Baquir Mohammed Jaffar

    2013-01-01

    We have developed a rapid and sensitive method for immunomagnetic separation (IMS) of Salmonella along with their real time detection via PCR. Silica-coated magnetic nanoparticles were functionalized with carboxy groups to which anti-Salmonella antibody raised against heat-inactivated whole cells of Salmonella were covalently attached. The immuno-captured target cells were detected in beverages like milk and lemon juice by multiplex PCR and real time PCR with a detection limit of 10 4 cfu.mL −1 and 10 3 cfu.mL −1 , respectively. We demonstrate that IMS can be used for selective concentration of target bacteria from beverages for subsequent use in PCR detection. PCR also enables differentiation of Salmonella typhi and Salmonella paratyphi A using a set of four specific primers. In addition, IMS—PCR can be used as a screening tool in the food and beverage industry for the detection of Salmonella within 3–4 h which compares favorably to the time of several days that is needed in case of conventional detection based on culture and biochemical methods. (author)

  5. Frequency of chromosomal aneuploidy in high quality embryos from young couples using preimplantation genetic screening

    Directory of Open Access Journals (Sweden)

    Farzaneh Fesahat

    2017-09-01

    Full Text Available Background: Selection of the best embryo for transfer is very important in assisted reproductive technology (ART. Using morphological assessment for this selection demonstrated that the correlation between embryo morphology and implantation potential is relatively weak. On the other hand, aneuploidy is a key genetic factor that can influence human reproductive success in ART. Objective: The aim of this lab trial study was to evaluate the incidence of aneuploidies in five chromosomes in the morphologically high-quality embryos from young patients undergoing ART for sex selection. Materials and Methods: A total of 97 high quality embryos from 23 women at the age of 37or younger years that had previously undergone preimplantation genetic screening for sex selection were included in this study. After washing, the slides of blastomeres from embryos of patients were reanalyzed by fluorescence in-situ hybridization for chromosomes 13, 18 and 21. Results: There was a significant rate of aneuploidy determination in the embryos using preimplantation genetic screening for both sex and three evaluated autosomal chromosomes compared to preimplantation genetic screening for only sex chromosomes (62.9% vs. 24.7%, p=0.000. The most frequent detected chromosomal aneuploidy was trisomy or monosomy of chromosome 13. Conclusion: There is considerable numbers of chromosomal abnormalities in embryos generated in vitro which cause in vitro fertilization failure and it seems that morphological characterization of embryos is not a suitable method for choosing the embryos without these abnormalities

  6. Chromokinesins: Possible Generators of Cancer-Associated Aneuploidy

    National Research Council Canada - National Science Library

    Sharp, David J; Buster, Daniel W

    2005-01-01

    .... Chromokinesins, a family of chromosome-associated microtubule motors, are potential generators of aneuploidy since they are believed to participate in spindle morphogenesis and chromosome movements during mitosis...

  7. Prenatal screening for fetal aneuploidy in singleton pregnancies.

    Science.gov (United States)

    Chitayat, David; Langlois, Sylvie; Douglas Wilson, R

    2011-07-01

    studies. There were no language restrictions. Searches were updated on a regular basis and incorporated in the guideline to August 2010. Grey (unpublished) literature was identified through searching the websites of health technology assessment and health technology assessment-related agencies, clinical practice guideline collections, clinical trial registries, and national and international medical specialty societies. The previous Society of Obstetricians and Gynaecologists of Canada guidelines regarding prenatal screening were also reviewed in developing this clinical practice guideline. The quality of evidence was rated using the criteria described in the Report of the Canadian Task Force on Preventive Health Care. This guideline is intended to reduce the number of prenatal invasive procedures done when maternal age is the only indication. This will have the benefit of reducing the numbers of normal pregnancies lost because of complications of invasive procedures. Any screening test has an inherent false-positive rate, which may result in undue anxiety. It is not possible at this time to undertake a detailed cost-benefit analysis of the implementation of this guideline, since this would require health surveillance and research and health resources not presently available; however, these factors need to be evaluated in a prospective approach by provincial and territorial initiatives. RECOMMENDATIONS 1. All pregnant women in Canada, regardless of age, should be offered, through an informed counselling process, the option of a prenatal screening test for the most common clinically significant fetal aneuploidies in addition to a second trimester ultrasound for dating, assessment of fetal anatomy, and detection of multiples. (I-A) 2. Counselling must be non-directive and must respect a woman's right to accept or decline any or all of the testing or options offered at any point in the process. (III-A) 3. Maternal age alone is a poor minimum standard for prenatal screening

  8. Rapid antemortem detection of CWD prions in deer saliva.

    Directory of Open Access Journals (Sweden)

    Davin M Henderson

    Full Text Available Chronic wasting disease (CWD is an efficiently transmitted prion disease of cervids, now identified in 22 United States, 2 Canadian provinces and Korea. One hallmark of CWD is the shedding of infectious prions in saliva, as demonstrated by bioassay in deer. It is also clear that the concentration of prions in saliva, blood, urine and feces is much lower than in the nervous system or lymphoid tissues. Rapid in vitro detection of CWD (and other prions in body fluids and excreta has been problematic due to the sensitivity limits of direct assays (western blotting, ELISA and the presence of inhibitors in these complex biological materials that hamper detection. Here we use real-time quaking induced conversion (RT-QuIC to demonstrate CWD prions in both diluted and prion-enriched saliva samples from asymptomatic and symptomatic white-tailed deer. CWD prions were detected in 14 of 24 (58.3% diluted saliva samples from CWD-exposed white-tailed deer, including 9 of 14 asymptomatic animals (64.2%. In addition, a phosphotungstic acid enrichment enhanced the RT-QuIC assay sensitivity, enabling detection in 19 of 24 (79.1% of the above saliva samples. Bioassay in Tg[CerPrP] mice confirmed the presence of infectious prions in 2 of 2 RT-QuIC-positive saliva samples so examined. The modified RT-QuIC analysis described represents a non-invasive, rapid ante-mortem detection of prions in complex biologic fluids, excreta, or environmental samples as well as a tool for exploring prion trafficking, peripheralization, and dissemination.

  9. Rapid Detection of Herpes Viruses for Clinical Applications

    Science.gov (United States)

    Pierson, Duane; Mehta, Satish

    2013-01-01

    There are eight herpes viruses that infect humans, causing a wide range of diseases resulting in considerable morbidity and associated costs. Varicella zoster virus (VZV) is a human herpes virus that causes chickenpox in children and shingles in adults. Approximately 1,000,000 new cases of shingles occur each year; post-herpetic neuralgia (PHN) follows shingles in 100,000 to 200,000 people annually. PHN is characterized by debilitating, nearly unbearable pain for weeks, months, and even years. The onset of shingles is characterized by pain, followed by the zoster rash, leading to blisters and severe pain. The problem is that in the early stages, shingles can be difficult to diagnose; chickenpox in adults can be equally difficult to diagnose. As a result, both diseases can be misdiagnosed (false positive/negative). A molecular assay has been adapted for use in diagnosing VZV diseases. The polymerase chain reaction (PCR) assay is a non-invasive, rapid, sensitive, and highly specific method for VZV DNA detection. It provides unequivocal results and can effectively end misdiagnoses. This is an approximately two-hour assay that allows unequivocal diagnosis and rapid antiviral drug intervention. It has been demonstrated that rapid intervention can prevent full development of the disease, resulting in reduced likelihood of PHN. The technology was extended to shingles patients and demonstrated that VZV is shed in saliva and blood of all shingles patients. The amount of VZV in saliva parallels the medical outcome.

  10. Rapid surface enhanced Raman scattering detection method for chloramphenicol residues

    Science.gov (United States)

    Ji, Wei; Yao, Weirong

    2015-06-01

    Chloramphenicol (CAP) is a widely used amide alcohol antibiotics, which has been banned from using in food producing animals in many countries. In this study, surface enhanced Raman scattering (SERS) coupled with gold colloidal nanoparticles was used for the rapid analysis of CAP. Density functional theory (DFT) calculations were conducted with Gaussian 03 at the B3LYP level using the 3-21G(d) and 6-31G(d) basis sets to analyze the assignment of vibrations. Affirmatively, the theoretical Raman spectrum of CAP was in complete agreement with the experimental spectrum. They both exhibited three strong peaks characteristic of CAP at 1104 cm-1, 1344 cm-1, 1596 cm-1, which were used for rapid qualitative analysis of CAP residues in food samples. The use of SERS as a method for the measurements of CAP was explored by comparing use of different solvents, gold colloidal nanoparticles concentration and absorption time. The method of the detection limit was determined as 0.1 μg/mL using optimum conditions. The Raman peak at 1344 cm-1 was used as the index for quantitative analysis of CAP in food samples, with a linear correlation of R2 = 0.9802. Quantitative analysis of CAP residues in foods revealed that the SERS technique with gold colloidal nanoparticles was sensitive and of a good stability and linear correlation, and suited for rapid analysis of CAP residue in a variety of food samples.

  11. Rapid visual and spectrophotometric nitrite detection by cyclometalated ruthenium complex.

    Science.gov (United States)

    Lo, Hoi-Shing; Lo, Ka-Wai; Yeung, Chi-Fung; Wong, Chun-Yuen

    2017-10-16

    Quantitative determination of nitrite ion (NO 2 - ) is of great importance in environmental and clinical investigations. A rapid visual and spectrophotometric assay for NO 2 - detection was developed based on a newly designed ruthenium complex, [Ru(npy)([9]aneS3)(CO)](ClO 4 ) (denoted as RuNPY; npy = 2-(1-naphthyl)pyridine, [9]aneS3 = 1,4,7-trithiacyclononane). This complex traps NO + produced in acidified NO 2 - solution, and yields observable color change within 1 min at room temperature. The assay features excellent dynamic range (1-840 μmol L -1 ) and high selectivity, and its limit of detection (0.39 μmol L -1 ) is also well below the guideline values for drinking water recommended by WHO and U.S. EPA. Practical use of this assay in tap water and human urine was successfully demonstrated. Overall, the rapidity and selectivity of this assay overcome the problems suffered by the commonly used modified Griess assays for nitrite determination. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. [Rapid test for detection of susceptibility to cefotaxime in Enterobacteriaceae].

    Science.gov (United States)

    Jiménez-Guerra, Gemma; Hoyos-Mallecot, Yannik; Rodríguez-Granger, Javier; Navarro-Marí, José María; Gutiérrez-Fernández, José

    In this work an "in house" rapid test based on the change in pH that is due to hydrolysis for detecting Enterobacteriaceae susceptible to cefotaxime is evaluated. The strains of Enterobacteriaceae from 1947 urine cultures were assessed using MicroScan panels and the "in house" test. This rapid test includes red phenol solution and cefotaxime. Using MicroScan panels, 499 Enterobacteriaceae isolates were evaluated, which included 27 isolates of Escherichia coli producing extended-spectrum beta-lactamases (ESBL), 16 isolates of Klebsiella pneumoniae ESBL and 1 isolate of Klebsiella oxytoca ESBL. The "in house" test offers the following values: sensitivity 98% and specificity 97%, with negative predictive value 100% and positive predictive value 78%. The "in house" test based on the change of pH is useful in our area for detecting presumptively cefotaxime-resistant Enterobacteriaceae strains. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Laboratory Exercises to Examine Recombination & Aneuploidy in "Drosophila"

    Science.gov (United States)

    Venema, Dennis R.

    2009-01-01

    Chromosomal aneuploidy, a deviation from an exact multiple of an organism's haploid chromosome number, is a difficult concept for students to master. Aneuploidy arising from chromosomal non-disjunction (NDJ) is particularly problematic for students, since it arises in the context of meiosis, itself a challenging subject. Students learning NDJ are…

  14. Rapid Isolation and Molecular Detection of Streptomycin-Producing Streptomycetes

    Directory of Open Access Journals (Sweden)

    M Motovali-bashi

    2006-07-01

    Full Text Available Introduction: Streptomyces species are mycelial, aerobic gram-positive bacteria that are isolated from soil and produce a diverse range of antibiotics. Streptomyces griseus produces the antibiotic, streptomycin and forms spores even in a liquid culture. The gene cluster for the production of Streptomycin antibiotic contains strR gene that encodes StrR, a pathway-specific regulator. Then, this pathway-specific regulator induces transcription of other streptomycin production genes in the gene cluster. The overall aim of this work was rapid isolation and molecular detection of streptomycin-producing Streptomycetes, especially S. griseus, from Iranian soils in order to manipulate them for increased production of streptomycin. Methods: This research used new initiative half-specific medium for isolation of Streptomycetes from natural environments, called FZmsn. The fifty colonies of Streptomyces strains grown on the surface of FZmsn medium isolated from environmental samples were defined on the basis of their morphological characteristics and light microscope studies. A set of primers was designed to detect strR by OLIGO software. Results: In colony-PCR reactions followed by gel electrophoresis, 6 colonies from Streptomyces strains colonies were detected as S. griseus colonies. Conclusion: These native Streptomyces strains will be used for genetic manipulation of S. griseus in order to increase production levels of streptomycin.

  15. Comet assay for rapid detection of base damage in foods

    International Nuclear Information System (INIS)

    Al-Zubaidi, I. A.; Abdullah, T. S.; Qasim, S. R.

    2012-12-01

    Single cell gel electrophoresis (SCGE) or comet assay technique a sensitive, reliable and rapid method for DNA double and single strand break, alkali- labile site and delayed repair site detection in individual cells. In recent years, this method has been widely used for studies of DNA repair, genetic toxicology, and environmental biomontoring, however, this technique serves as an important tool for detection of DNA damage in living organism and is increasing being used in genetic testing of industrial chemicals, environmental agent's contaminations. This research paper helps to evaluate the oxidant agent's effects of exposure to organic pollutants by using comet assay techniques. This study used five samples of each food sample (Meat, Chicken, Rice, Fruits, Vegetables and Tea) to evaluate the genotoxic effects of exposure, to environmental agent's pollutants. The experimental data suggest that the DNA damage parameters ( Tail length, Tail width 1 ) were found higher value in exposed population when compared with the ratio of the length to width that cells exhibiting no migration having a ratio of 1. The percentage and distribution of cells in exposed population of cells also increases with the increase in values. This study demonstrates that, using sensitive techniques, it is possible to detect environmental agent's risks at an early stage. (Author)

  16. Rapid and robust detection methods for poison and microbial contamination.

    Science.gov (United States)

    Hoehl, Melanie M; Lu, Peter J; Sims, Peter A; Slocum, Alexander H

    2012-06-27

    Real-time on-site monitoring of analytes is currently in high demand for food contamination, water, medicines, and ingestible household products that were never tested appropriately. Here we introduce chemical methods for the rapid quantification of a wide range of chemical and microbial contaminations using a simple instrument. Within the testing procedure, we used a multichannel, multisample, UV-vis spectrophotometer/fluorometer that employs two frequencies of light simultaneously to interrogate the sample. We present new enzyme- and dye-based methods to detect (di)ethylene glycol in consumables above 0.1 wt % without interference and alcohols above 1 ppb. Using DNA intercalating dyes, we can detect a range of pathogens ( E. coli , Salmonella , V. Cholera, and a model for Malaria) in water, foods, and blood without background signal. We achieved universal scaling independent of pathogen size above 10(4) CFU/mL by taking advantage of the simultaneous measurement at multiple wavelengths. We can detect contaminants directly, without separation, purification, concentration, or incubation. Our chemistry is stable to ± 1% for >3 weeks without refrigeration, and measurements require <5 min.

  17. Rapid detection of Mycobacterium tuberculosis by recombinase polymerase amplification.

    Directory of Open Access Journals (Sweden)

    David S Boyle

    Full Text Available Improved access to effective tests for diagnosing tuberculosis (TB has been designated a public health priority by the World Health Organisation. In high burden TB countries nucleic acid based TB tests have been restricted to centralised laboratories and specialised research settings. Requirements such as a constant electrical supply, air conditioning and skilled, computer literate operators prevent implementation of such tests in many settings. Isothermal DNA amplification technologies permit the use of simpler, less energy intensive detection platforms more suited to low resource settings that allow the accurate diagnosis of a disease within a short timeframe. Recombinase Polymerase Amplification (RPA is a rapid, low temperature isothermal DNA amplification reaction. We report here RPA-based detection of Mycobacterium tuberculosis complex (MTC DNA in <20 minutes at 39 °C. Assays for two MTC specific targets were investigated, IS6110 and IS1081. When testing purified MTC genomic DNA, limits of detection of 6.25 fg (IS6110 and 20 fg (IS1081were consistently achieved. When testing a convenience sample of pulmonary specimens from suspected TB patients, RPA demonstrated superior accuracy to indirect fluorescence microscopy. Compared to culture, sensitivities for the IS1081 RPA and microscopy were 91.4% (95%CI: 85, 97.9 and 86.1% (95%CI: 78.1, 94.1 respectively (n = 71. Specificities were 100% and 88.6% (95% CI: 80.8, 96.1 respectively. For the IS6110 RPA and microscopy sensitivities of 87.5% (95%CI: 81.7, 93.2 and 70.8% (95%CI: 62.9, 78.7 were obtained (n = 90. Specificities were 95.4 (95% CI: 92.3,98.1 and 88% (95% CI: 83.6, 92.4 respectively. The superior specificity of RPA for detecting tuberculosis was due to the reduced ability of fluorescence microscopy to distinguish Mtb complex from other acid fast bacteria. The rapid nature of the RPA assay and its low energy requirement compared to other amplification technologies suggest RPA-based TB

  18. Plasmonic Nanobubbles Rapidly Detect and Destroy Drug-Resistant Tumors

    Science.gov (United States)

    Lukianova-Hleb, Ekaterina Y.; Ren, Xiaoyang; Townley, Debra; Wu, Xiangwei; Kupferman, Michael E.; Lapotko, Dmitri O.

    2012-01-01

    The resistance of residual cancer cells after oncological resection to adjuvant chemoradiotherapies results in both high recurrence rates and high non-specific tissue toxicity, thus preventing the successful treatment of such cancers as head and neck squamous cell carcinoma (HNSCC). The patients' survival rate and quality of life therefore depend upon the efficacy, selectivity and low non-specific toxicity of the adjuvant treatment. We report a novel, theranostic in vivo technology that unites both the acoustic diagnostics and guided intracellular delivery of anti-tumor drug (liposome-encapsulated doxorubicin, Doxil) in one rapid process, namely a pulsed laser-activated plasmonic nanobubble (PNB). HNSCC-bearing mice were treated with gold nanoparticle conjugates, Doxil, and single near-infrared laser pulses of low energy. Tumor-specific clusters of gold nanoparticles (solid gold spheres) converted the optical pulses into localized PNBs. The acoustic signals of the PNB detected the tumor with high specificity and sensitivity. The mechanical impact of the PNB, co-localized with Doxil liposomes, selectively ejected the drug into the cytoplasm of cancer cells. Cancer cell-specific generation of PNBs and their intracellular co-localization with Doxil improved the in vivo therapeutic efficacy from 5-7% for administration of only Doxil or PNBs alone to 90% thus demonstrating the synergistic therapeutic effect of the PNB-based intracellular drug release. This mechanism also reduced the non-specific toxicity of Doxil below a detectable level and the treatment time to less than one minute. Thus PNBs combine highly sensitive diagnosis, overcome drug resistance and minimize non-specific toxicity in a single rapid theranostic procedure for intra-operative treatment. PMID:23139725

  19. Rapid method for Detection of Irradiation Mango Fruits

    International Nuclear Information System (INIS)

    El Salhy, F.T.

    2011-01-01

    To detect mango fruits which have been exposed to low doses of gamma rays (0.5-3.0 kGy), three recommended methods by European Committee for Standardization (EN 1784:1996, EN 1785:1996 and EN 1787:2000) were used to study the possibility for identification of irradiated mango fruits (Ewais variety). Fresh mangoes were irradiated to different doses (0.5, 0.75, 1.0 and 3.0 kGy). The first method for determining the volatile hydrocarbons (VHC) was carried out by using florisil column then identified by gas chromatography and mass spectrometry (GC-MS). The major VHCs were C14:1, C15:0 and C17:1 at different doses which increased linearly with increasing doses either at low or high doses. The second one for determining the 2-alkyl cyclobutanone (2-DCB) was carried out using florisil chromatography method activated with 20% for separation and identified by GC-MS. 2-DCB bio marker specific for irradiated food proved its presence at the applied doses from 0.75-3.0 kGy but not at 0.5 kGy. All the mentioned compounds could not detected in non-irradiated samples, which mean that these radiolytic products (VHC and 2-DCB) can be used as a detection markers for irradiated mangoes even at low doses. The third one (EN 1787:2000) was conducted by electron spin resonance (ESR) on dried petioles of mangoes. The results proved that ESR was more sensitive for all applied doses.It could be concluded that using the three methods can be succeeded for detection of irradiated mangoes but the rapid one even at low doses with high accuracy was ESR.

  20. Technique for rapid detection of phthalates in water and beverages

    KAUST Repository

    Zia, Asif I.

    2013-05-01

    ), USA. Results showed that the new sensor was able to detect different concentrations of phthalates in energy drinks. The experimental outcomes provided sufficient indication to favour the development of a low cost detection system for rapid quantification of phthalates in beverages for industrial use. © 2012 Elsevier Ltd. All rights reserved.

  1. A field-practical assay for rapid detection of chlorophenols

    Energy Technology Data Exchange (ETDEWEB)

    Washburn, K.S.; Phillips, T.D. [Texas A and M Univ., College Station, TX (United States). Dept. of Veterinary Anatomy and Public Health

    1994-12-31

    Water-solvated chlorophenols (CPs) are environmental toxins associated with wood preservation and pesticide synthesis and usage. Their toxicity and association with dioxin-contaminated wastes are well-documented, as is their stability in most environmental settings. Several analytical procedures, mainly HPLC and GC/MS, are currently used to detect and quantify CPs, but these procedures are based on expensive equipment and technical expertise in a laboratory setting. The authors have developed an inexpensive, field-practical method for CPs, utilizing a small, packed glass minicolumn and derivatization of target CP molecules with dansyl chloride (5-dimethylaminonaphthalene-1sulfonyl chloride), or DsCl. A nonfluorescent borosilicate glass tube was used to house an array of inorganic sorbent materials, including preparative layers and a reactive neutral alumina interface separated by sand. DsCl is a substituted naphthalene with a conjugated X system that is responsible for its fluorescent complexation. Amines that reacted with DsCl were removed with a small amount of phyllosilicate clay to avoid interference. A neutral alumina/sand interface was used to strongly bind and immobilize the dansylated CPs. Activities greater than 3.0 for the alumina were avoided to prevent loss of selectivity, intensity and color of the fluorescence at the reactive interface. The results indicated that this assay was capable of rapidly screening potable water samples and detecting CP contamination at very low concentrations (i.e., 1.0 ppb of pentachlorophenol in drinking water).

  2. Early Detection of Rapidly Developing Cumulus Area using HIMAWARI-8

    Science.gov (United States)

    Yamada, Y.; Kadosaki, G.

    2017-12-01

    In recent years, many disasters have been occured by influence of meteorological change in Japan. So, it becomes more important to inform rapid weather change caused by cumulus which brings concentrated heavy rain/hail, wind gust, lightning in a short period. These severe events should inclease in the future by global warming. Therefore we are developping the alert system for Rapidly Developing Cumulus Area (RDCA) detection using Japanese new satellite. At July 2015, Japan Meteorological Agency started operation of new geostationary meteorological satellite "Himawari-8". This satellite has optical imager named Advanced Himawari Imager (AHI). It can observe Japan area every 2.5 minutes. The frequently infrared image with high resolution (2km) is the key of our alert system. We took some special functions in the algorithm of this system. One of the points is cloud location which shifts to north from true location around Japan by viewing angle from the satellite above the equator. We moved clouds to the correct position using geometric correction method according to its height and latitude. This algorithm also follows a movement of cloud every 2.5 minutes during several observations. It derives the information about degree of the development of cumulus. The prototype system gives the alert before 30 to 60 minutes in advance to the first lightning in typical cumulus case. However, we understand that there are some difficult cases to alert. For example, winter low cloud over the Japan Sea which brings a winter lightning, and tornado (although it is not cumulus). Now, we are adjusting some parameters of the algorithm. In the near future, our algorithm will be used in weather information delivery service to the customer.

  3. Rapid Detection of the Varicella Zoster Virus in Saliva

    Science.gov (United States)

    Pierson, Duane L.; Mehta, Satish K.; Cohrs, Randall J.; Gilden, Don H.; Harding, Robert E.

    2011-01-01

    Varicella zoster virus (VZV) causes chicken pox on first exposure (usually in children), and reactivates from latency causing shingles (usually in adults). Shingles can be extremely painful, causing nerve damage, organ damage, and blindness in some cases. The virus can be life-threatening in immune-compromised individuals. The virus is very difficult to culture for diagnosis, requiring a week or longer. This invention is a rapid test for VZV from a saliva sample and can be performed in a doctor s office. The kit is small, compact, and lightweight. Detec tion is sensitive, specific, and noninvasive (no needles); only a saliva sample is required. The test provides results in minutes. The entire test is performed in a closed system, with no exposure to infectious materials. The components are made mostly of inexpensive plastic injection molded parts, many of which can be purchased off the shelf and merely assembled. All biological waste is contained for fast, efficient disposal. This innovation was made possible because of discovery of a NASA scientists flight experiment showing the presence of VZV in saliva during high stress periods and disease. This finding enables clinicians to quickly screen patients for VZV and treat the ones that show positive results with antiviral medicines. This promotes a rapid recovery, easing of pain and symptoms, and reduces chances of complications from zoster. Screening of high-risk patients could be incorporated as part of a regular physical exam. These patients include the elderly, pregnant women, and immune-compromised individuals. In these patients, VZV can be a life-threatening disease. In both high- and low-risk patients, early detection and treatment with antiviral drugs can dramatically decrease or even eliminate the clinical manifestation of disease.

  4. Rapid Detection of Biological and Chemical Threat Agents Using Physical Chemistry, Active Detection, and Computational Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Myung; Dong, Li; Fu, Rong; Liotta, Lance; Narayanan, Aarthi; Petricoin, Emanuel; Ross, Mark; Russo, Paul; Zhou, Weidong; Luchini, Alessandra; Manes, Nathan; Chertow, Jessica; Han, Suhua; Kidd, Jessica; Senina, Svetlana; Groves, Stephanie

    2007-01-01

    Basic technologies have been successfully developed within this project: rapid collection of aerosols and a rapid ultra-sensitive immunoassay technique. Water-soluble, humidity-resistant polyacrylamide nano-filters were shown to (1) capture aerosol particles as small as 20 nm, (2) work in humid air and (3) completely liberate their captured particles in an aqueous solution compatible with the immunoassay technique. The immunoassay technology developed within this project combines electrophoretic capture with magnetic bead detection. It allows detection of as few as 150-600 analyte molecules or viruses in only three minutes, something no other known method can duplicate. The technology can be used in a variety of applications where speed of analysis and/or extremely low detection limits are of great importance: in rapid analysis of donor blood for hepatitis, HIV and other blood-borne infections in emergency blood transfusions, in trace analysis of pollutants, or in search of biomarkers in biological fluids. Combined in a single device, the water-soluble filter and ultra-sensitive immunoassay technique may solve the problem of early warning type detection of aerosolized pathogens. These two technologies are protected with five patent applications and are ready for commercialization.

  5. Rapid detection of Corynebacterium pseudotuberculosis in clinical samples from sheep.

    Science.gov (United States)

    Kumar, Jyoti; Tripathi, Bhupendra Nath; Kumar, Rajiv; Sonawane, Ganesh Gangaram; Dixit, Shivendra Kumar

    2013-08-01

    Corynebacterium pseudotuberculosis, a Gram-positive bacterium is the causative agent of caseous lymphadenitis (CLA), a chronic disease of sheep, goats and other warm blooded animals. In the present study, a total of 1,080 sheep reared under semi-intensive system on organized farms situated in the semi arid tropical region of Rajasthan, India, was clinically examined. Pus samples from superficial lymph nodes of 25 (2.31%) adult sheep showing clinical lesions similar to CLA were collected for laboratory analyses. On the basis of morphological, cultural and biochemical characteristics 12 (48%) bacterial isolates from pus identified it as C. pseudotuberculosis. A polymerase chain reaction (PCR) assay targeting Putative oligopeptide/dipeptide ABC transporter, nicotinamide adenine dinucleotide phosphate (NADP) oxidoreductase coenzyme F420-dependent and proline iminopeptidase (PIP) genes of C. pseudotuberculosis was developed that showed 14 pus samples as positive. All C. pseudotuberculosis isolates were also found positive for these genes in the PCR. The specificity of the PCR products was confirmed by sequencing of the amplified products that showed 98-100% homology with published sequences available in the NCBI database. The present study shows the incidence of CLA as 2.31%, 1.1% and 1.29% based on clinical, bacterial culture and direct pus PCR assay, respectively. The PCR assay was rapid, specific and as significant as bacterial culture in detecting bacteria directly in the clinical pus samples. The PCR assay developed in the study can be applied for the diagnosis and control of CLA. Furthermore, the assay can also be applied to detect C. pseudotuberculosis in various clinical samples.

  6. Scientists Detect Radio Emission from Rapidly Rotating Cosmic Dust Grains

    Science.gov (United States)

    2001-11-01

    Astronomers have made the first tentative observations of a long-speculated, but never before detected, source of natural radio waves in interstellar space. Data from the National Science Foundation's 140 Foot Radio Telescope at the National Radio Astronomy Observatory in Green Bank, W.Va., show the faint, tell-tale signals of what appear to be dust grains spinning billions of times each second. This discovery eventually could yield a powerful new tool for understanding the interstellar medium - the immense clouds of gas and dust that populate interstellar space. The NRAO 140 Foot Radio Telescope The NRAO 140-Foot Radio Telescope "What we believe we have found," said Douglas P. Finkbeiner of Princeton University's Department of Astrophysics, "is the first hard evidence for electric dipole emission from rapidly rotating dust grains. If our studies are confirmed, it will be the first new source of continuum emission to be conclusively identified in the interstellar medium in nearly the past 20 years." Finkbeiner believes that these emissions have the potential in the future of revealing new and exciting information about the interstellar medium; they also may help to refine future studies of the Cosmic Microwave Background Radiation. The results from this study, which took place in spring 1999, were accepted for publication in Astrophysical Journal. Other contributors to this paper include David J. Schlegel, department of astrophysics, Princeton University; Curtis Frank, department of astronomy, University of Maryland; and Carl Heiles, department of astronomy, University of California at Berkeley. "The idea of dust grains emitting radiation by rotating is not new," comments Finkbeiner, "but to date it has been somewhat speculative." Scientists first proposed in 1957 that dust grains could emit radio signals, if they were caused to rotate rapidly enough. It was believed, however, that these radio emissions would be negligibly small - too weak to be of any impact to

  7. Embryonic aneuploidy does not differ among genetic ancestry according to continental origin as determined by ancestry informative markers.

    Science.gov (United States)

    Franasiak, Jason M; Olcha, Meir; Shastri, Shefali; Molinaro, Thomas A; Congdon, Haley; Treff, Nathan R; Scott, Richard T

    2016-10-01

    Is embryonic aneuploidy, as determined by comprehensive chromosome screening (CCS), related to genetic ancestry, as determined by ancestry informative markers (AIMs)? In this study, when determining continental ancestry utilizing AIMs, genetic ancestry does not have an impact on embryonic aneuploidy. Aneuploidy is one of the best-characterized barriers to ART success and little information exists regarding ethnicity and whole chromosome aneuploidy in IVF. Classifying continental ancestry utilizing genetic profiles from a selected group of single nucleotide polymorphisms, termed AIMs, can determine ancestral origin with more accuracy than self-reported data. This is a retrospective cohort study of patients undergoing their first cycle of IVF with CCS at a single center from 2008 to 2014. There were 2328 patients identified whom had undergone IVF/CCS and AIM genotyping. All patients underwent IVF/ICSI and CCS after trophectoderm biopsy. Patients' serum was genotyped using 32 custom AIMs to identify continental origin. Admixture proportions were determined using Bayesian clustering algorithms. Patients were assigned to the population (European, African, East Asian or Central/South Asian) corresponding to their greatest admixture proportion. The mean number of embryos tested was 5.3 (range = 1-40) and the mode was 1. Patients' ethnic classifications revealed European (n = 1698), African (n = 103), East Asian (n = 206) or Central/South Asian (n = 321). When controlling for age and BMI, aneuploidy rate did not differ by genetic ancestry (P = 0.28). The study type (retrospective) and the ability to classify patients by continental rather than sub-continental origin as well as the predominantly European patient mix may impact generalizability. Post hoc power calculation revealed power to detect a 16.8% difference in embryonic aneuploidy between the two smallest sample size groups. These data do not support differences in embryonic aneuploidy among various genetic

  8. Klinefelter syndrome and other sex chromosomal aneuploidies

    Directory of Open Access Journals (Sweden)

    Graham John M

    2006-10-01

    Full Text Available Abstract The term Klinefelter syndrome (KS describes a group of chromosomal disorder in which there is at least one extra X chromosome to a normal male karyotype, 46,XY. XXY aneuploidy is the most common disorder of sex chromosomes in humans, with prevalence of one in 500 males. Other sex chromosomal aneuploidies have also been described, although they are much less frequent, with 48,XXYY and 48,XXXY being present in 1 per 17,000 to 1 per 50,000 male births. The incidence of 49,XXXXY is 1 per 85,000 to 100,000 male births. In addition, 46,XX males also exist and it is caused by translocation of Y material including sex determining region (SRY to the X chromosome during paternal meiosis. Formal cytogenetic analysis is necessary to make a definite diagnosis, and more obvious differences in physical features tend to be associated with increasing numbers of sex chromosomes. If the diagnosis is not made prenatally, 47,XXY males may present with a variety of subtle clinical signs that are age-related. In infancy, males with 47,XXY may have chromosomal evaluations done for hypospadias, small phallus or cryptorchidism, developmental delay. The school-aged child may present with language delay, learning disabilities, or behavioral problems. The older child or adolescent may be discovered during an endocrine evaluation for delayed or incomplete pubertal development with eunuchoid body habitus, gynecomastia, and small testes. Adults are often evaluated for infertility or breast malignancy. Androgen replacement therapy should begin at puberty, around age 12 years, in increasing dosage sufficient to maintain age appropriate serum concentrations of testosterone, estradiol, follicle stimulating hormone (FSH, and luteinizing hormone (LH. The effects on physical and cognitive development increase with the number of extra Xs, and each extra X is associated with an intelligence quotient (IQ decrease of approximately 15–16 points, with language most affected

  9. Chromosomal aneuploidies and copy number variations in posterior fossa abnormalities diagnosed by prenatal ultrasonography.

    Science.gov (United States)

    Lei, Ting; Feng, Jie-Ling; Xie, Ying-Jun; Xie, Hong-Ning; Zheng, Ju; Lin, Mei-Fang

    2017-11-01

    To explore the genetic aetiology of fetal posterior fossa abnormalities (PFAs). This study involved cases of PFAs that were identified by prenatal ultrasonographic screening and confirmed postnatally between January 2012 and January 2016. Conventional cytogenetic analyses and chromosomal microarray analysis were performed, and chromosomal aneuploidies and copy number variations (CNVs) were identified. Among 74 cases included in this study, 8 were of Blake's pouch cyst; 7, Dandy-Walker malformation; 11, vermian hypoplasia; 32, enlarged cisterna magna; and 16, cerebellar hypoplasia. The rates of nonbenign chromosomal aberrations (including chromosomal aneuploidies, pathogenic CNVs, and variants of unknown significance) were 2/8 (25.0%), 2/7 (28.5%), 8/11 (72.7%), 7/32 (21.9%), and 6/16 (37.5%), respectively. Cases were also classified as isolated PFAs (30/74), PFAs with other central nervous system (CNS) abnormalities (13/74), or PFAs with extra-CNS structural abnormalities (31/74). No fetuses with isolated PFAs or PFAs accompanied by other CNS abnormalities exhibited chromosomal aneuploidies or pathogenic CNVs. The rate of pathogenic chromosomal aberrations in the remaining fetuses was 17/31 (22.9%). The combined use of chromosomal microarray analysis and karyotype analysis might assist the prenatal diagnosis and management of PFAs, with extra-CNS structural abnormalities being detected by ultrasonography. © 2017 John Wiley & Sons, Ltd.

  10. Aneuploidy in Early Miscarriage and its Related Factors

    Institute of Scientific and Technical Information of China (English)

    Chan-Wei Jia; Li Wang; Yong-Lian Lan; Rui Song; Li-Yin Zhou; Lan Yu; Yang Yang

    2015-01-01

    Background:Genetic factors are the main cause of early miscarriage.This study aimed to investigate aneuploidy in spontaneous abortion by fluorescence in situ hybridization (FISH) using probes for 13,16,18,21,22,X and Y chromosomes.Methods:A total of 840 chorionic samples from spontaneous abortion were collected and examined by FISH.We analyzed the incidence and type of abnormal cases and sex ratio in the samples.We also analyzed the relationship between the rate of aneuploidy and parental age,the rate of aneuploidy between recurrent abortion and sporadic abortion,the difference in incidence of aneuploidy between samples from previous artificial abortion and those from no previous induced abortion.Results:A total of 832 samples were finally analyzed.368 (44.23%) were abnormal,in which 84.24% (310/368) were aneuploidies and 15.76% (58/368) were polyploidies.The first was trisomy16 (121/310),followed by trisomy 22,and X monosomy.There was no significant difference in the rate ofaneuploidy in the advanced maternal age group (≥35 years old) and young maternal age group (<35 years old).However,the rate oftrisomy 22 and the total rate oftrisomies 21,13,and 18 (the number oftrisomy 21 plus trisomy 13 and trisomy 18 together) showed significantly different in two groups.We found no skewed sex ratio.There was no significant difference in the rate of aneuploidy between recurrent miscarriage and sporadic abortion or between the samples from previous artificial abortion and those from no previous artificial abortion.Conclusions:Aneuploidy is a principal factor of miscarriage and total parental age is a risk factor.There is no skewed sex ratio in spontaneous abortion.There is also no difference in the rate of aneuploidy between recurrent abortion and sporadic abortion or between previous artificial abortion and no previous induced abortion.

  11. Coenzyme Q10 Supplementation and Oocyte Aneuploidy in Women Undergoing IVF-ICSI Treatment

    Directory of Open Access Journals (Sweden)

    Yaakov Bentov

    2014-01-01

    Full Text Available Background The age-related reduction in live-birth rate is attributed to a high rate of aneuploidy and follicle depletion. We showed in an animal model that treatment with Coenzyme Q10 (CoQ10 markedly improved reproductive outcome. The aim of this study was to compare the post-meiotic oocyte aneuploidy rate in in vitro fertilization (IVF and intra cytoplasmic sperm injection (ICSI patients treated with CoQ10 or placebo. Methods We conducted a double blind placebo controlled randomized trial that included IVF-ICSI patients 35-43 years of age. The patients were treated with either 600 mg of CoQ10 or an equivalent number of placebo caps. We compared the post-meiotic aneuploidy rate using polar body biopsy (PBBX and comparative genomic hybridization (CGH. According to the power calculation, 27 patients were needed for each arm. Results Owing to safety concerns regarding the effects of polar body biopsy on embryo quality and implantation, the study was terminated before reaching the target number of participants. A total of 39 patients were evaluated and randomized (17 CoQ10, 22 placebo, 27 were given the study medication (12 CoQ10, 15 placebo, and 24 completed an IVF-ICSI cycle including PBBX and embryo transfer (10 CoQ10, 14 placebo. Average age, base line follicle stimulating hormone (FSH, peak estradiol and progesterone serum level, as well as the total number of human menopausal gonadotropin (hMG units–-did not differ between the groups. The rate of aneuploidy was 46.5% in the CoQ10 group compared to 62.8% in the control. Clinical pregnancy rate was 33% for the CoQ10 group and 26.7% for the control group. Conclusion No significant differences in outcome were detected between the CoQ10 and placebo groups. However, the final study was underpowered to detect a difference in the rate of aneuploidy.

  12. Tripolar chromosome segregation drives the association between maternal genotype at variants spanning PLK4 and aneuploidy in human preimplantation embryos.

    Science.gov (United States)

    McCoy, Rajiv C; Newnham, Louise J; Ottolini, Christian S; Hoffmann, Eva R; Chatzimeletiou, Katerina; Cornejo, Omar E; Zhan, Qiansheng; Zaninovic, Nikica; Rosenwaks, Zev; Petrov, Dmitri A; Demko, Zachary P; Sigurjonsson, Styrmir; Handyside, Alan H

    2018-04-24

    Aneuploidy is prevalent in human embryos and is the leading cause of pregnancy loss. Many aneuploidies arise during oogenesis, increasing with maternal age. Superimposed on these meiotic aneuploidies are frequent errors occurring during early mitotic divisions, contributing to widespread chromosomal mosaicism. Here we reanalyzed a published dataset comprising preimplantation genetic testing for aneuploidy in 24,653 blastomere biopsies from day-3 cleavage-stage embryos, as well as 17,051 trophectoderm biopsies from day-5 blastocysts. We focused on complex abnormalities that affected multiple chromosomes simultaneously, seeking insights into their formation. In addition to well-described patterns such as triploidy and haploidy, we identified 4.7% of blastomeres possessing characteristic hypodiploid karyotypes. We inferred this signature to have arisen from tripolar chromosome segregation in normally-fertilized diploid zygotes or their descendant diploid cells. This could occur via segregation on a tripolar mitotic spindle or by rapid sequential bipolar mitoses without an intervening S-phase. Both models are consistent with time-lapse data from an intersecting set of 77 cleavage-stage embryos, which were enriched for the tripolar signature among embryos exhibiting abnormal cleavage. The tripolar signature was strongly associated with common maternal genetic variants spanning the centrosomal regulator PLK4, driving the association we previously reported with overall mitotic errors. Our findings are consistent with the known capacity of PLK4 to induce tripolar mitosis or precocious M-phase upon dysregulation. Together, our data support tripolar chromosome segregation as a key mechanism generating complex aneuploidy in cleavage-stage embryos and implicate maternal genotype at a quantitative trait locus spanning PLK4 as a factor influencing its occurrence.

  13. An integrated micro-chip for rapid detection of magnetic particles

    KAUST Repository

    Gooneratne, Chinthaka P.; Liang, Cai; Giouroudi, Ioanna; Kosel, Jü rgen

    2012-01-01

    This paper proposes an integrated micro-chip for the manipulation and detection of magnetic particles (MPs). A conducting ring structure is used to manipulate MPs toward giant magnetoresistance(GMR) sensing elements for rapid detection

  14. Rapid detection of genetic modification for GMO monitoring in agriculture

    Directory of Open Access Journals (Sweden)

    Petrović Sofija

    2015-01-01

    Full Text Available Transgenic technology has expanded the ways of new genetic variability creation. Genetically modified organisms (GMOs are organisms which total genome is altered in a way that could not happen in nature. GM crops recorded a steady increase in its share in agricultural production. However, for the most part, GMO in agriculture has been limited to two cultivars - soy and corn, and the two genetic modifications, the total herbicide resistance and pest of the Lepidoptera genus. In order to monitor cultivation and trade of GMOs, tests of different precision are used, qualitatively and/or quantitatively determining the presence of genetic modification. Tests for the rapid determination of the presence of GM are suitable, since they can be implemented quickly and accurately, in terms of declared sensitivity, outside or in the laboratory. The example of the use of rapid tests demonstrates their value in use for rapid and efficient monitoring.

  15. Detection of malaria parasites by microscopy and rapid diagnostic ...

    African Journals Online (AJOL)

    The effectiveness of Rapid Diagnostic Test Kit (RDT) was compared with microscopy for the evaluation of malaria infection in children and pregnant women attending two selected health facilities in Lagos State, south-western, Nigeria. A total of 482 patients comprising 252 pregnant women (mean age: 26.86±4.46 years) ...

  16. Rapid identification and detection of pathogenic Fungi by padlock probes

    NARCIS (Netherlands)

    Tsui, C.K.M.; Wang, B.; Schoen, C.D.; Hamelin, R.C.

    2013-01-01

    Fungi are important pathogens of human diseases, as well as to agricultural crop and trees. Molecular diagnostics can detect diseases early, and improve identification accuracy and follow-up disease management. The use of padlock probe is effective to facilitate these detections and pathogen

  17. Rapid detection of Ganoderma lucidum and assessment of inhibition ...

    African Journals Online (AJOL)

    Molecular and immunological methods have been applied for detecting the Ganoderma disease of coconut. Polyclonal antibodies (PAbs) raised against basidiocarp protein of Ganoderma were used for detection. For polymerase chain reaction (PCR) test, the primer generated from the internal transcribed spacer region one ...

  18. Lab-on-a-chip for rapid electrochemical detection of nerve agent Sarin

    DEFF Research Database (Denmark)

    Tan, Hsih-Yin; Loke, Weng Keong; Nguyen, Nam-Trung

    2014-01-01

    This paper reports a lab-on-a-chip for the detection of Sarin nerve agent based on rapid electrochemical detection. The chemical warfare agent Sarin (C4H10FO2P, O-isopropyl methylphosphonofluoridate) is a highly toxic organophosphate that induces rapid respiratory depression, seizures and death...

  19. Rapid Optical Detection and Classification of Microbes in Suspicious Powders

    Science.gov (United States)

    2018-06-01

    Asher, “A New 224nm Hollow Cathode UV Laser Raman Spectrometer”, J. App. Spectroscopy, Vol. 55, No. 1, Jan 2001. [5] Storrie-Lombardi, M. C., W. F...Bhartia,R., E.C. Salas, W.F. Hug, R.D. Reid, A.L. Lane, K.J. Edwards, and K.J. Nealson, “Label-free bacterial imaging with deep UV laser induced...on natural surfaces using solar-blind deep UV excitation and detection. Detection is typically accomplished in less one second. The detection method

  20. Frequency of aneuploidy related to age in porcine oocytes.

    Directory of Open Access Journals (Sweden)

    Miroslav Hornak

    Full Text Available It is generally accepted that mammalian oocytes are frequently suffering from chromosome segregation errors during meiosis I, which have severe consequences, including pregnancy loss, developmental disorders and mental retardation. In a search for physiologically more relevant model than rodent oocytes to study this phenomenon, we have employed comparative genomic hybridization (CGH, combined with whole genome amplification (WGA, to study the frequency of aneuploidy in porcine oocytes, including rare cells obtained from aged animals. Using this method, we were able to analyze segregation pattern of each individual chromosome during meiosis I. In contrast to the previous reports where conventional methods, such as chromosome spreads or FISH, were used to estimate frequency of aneuploidy, our results presented here show, that the frequency of this phenomenon was overestimated in porcine oocytes. Surprisingly, despite the results from human and mouse showing an increase in the frequency of aneuploidy with advanced maternal age, our results obtained by the most accurate method currently available for scoring the aneuploidy in oocytes indicated no increase in the frequency of aneuploidy even in oocytes from animals, whose age was close to the life expectancy of the breed.

  1. Rapid instrumental detection and quantification of counterfeit pharmaceutical tablet formulations

    OpenAIRE

    Ogwu, John; Lawson, Graham; Tanna, Sangeeta

    2015-01-01

    From therapeutic to lifestyle medicines, the counterfeiting of medicines has been on the rise in recent times. Estimates indicate that about 10% of medicines worldwide are counterfeits with much higher figures in developing countries. Currently, identifying counterfeit medicines at the point of care is a challenge leaving many patients at risk. This study considered the potential use of Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) in rapid quantitative analy...

  2. Rapid detection of Ganoderma lucidum and assessment of inhibition ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... detection. For polymerase chain reaction (PCR) test, the primer generated from the internal .... randomized block design (RBD) with three replications (Table 1.) ..... Chitin as a foliar amendment to modify microbial ecology and.

  3. Rapid radiometric method for detection of Salmonella in foods

    International Nuclear Information System (INIS)

    Stewart, B.J.; Eyles, M.J.; Murrell, W.G.

    1980-01-01

    A radiometric method for the detection of Salmonella in foods has been developed which is based on Salmonella poly H agglutinating serum preventing Salmonella from producing 14CO2 from [14C] dulcitol. The method will detect the presence or absence of Salmonella in a product within 30 h compared to 4 to 5 days by routine culture methods. The method has been evaluated against a routine culture method using 58 samples of food. The overall agreement was 91%. Five samples negative for Salmonella by the routine method were positive by the radiometric method. These may have been false positives. However, the routine method may have failed to detect Salmonella due to the presence of large numbers of lactose-fermenting bacteria which hindered isolation of Salmonella colonies on the selective agar plates

  4. Rapid Detection and Characterization of Emerging Foreign Animal Disease Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Jaing, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-11-18

    To best safeguard human and animal health requires early detection and characterization of disease events. This must include effective surveillance for emerging infectious diseases. Both deliberate and natural outbreaks have enormous economic and public health impacts, and can present serious threats to national security. In this project, we developed novel next generation detection technologies to protect the agricultural economy and biosecurity. The first technology is a multiplexed assay to simultaneously detection 10 swine viral and bacterial pathogens. The second one is the Lawrence Livermore Microbial Detection Array (LLMDA) which can detect more than 10,000 microbial species including 4219 viruses, 5367 bacteria, 265 fungi, 117 protozoa and 293 archaea. We analyzed a series of swine clinical samples from past disease events to demonstrate the utility of the assays for faster and cheaper detection of emerging and foreign animal disease pathogens, and their utility as s routine diagnosis and surveillance tool. A second goal of the study is to better understand mechanisms of African swine fever virus (ASFV) infection in pigs to aid the development of countermeasures and diagnostics. There is no vaccine available for ASF. ASF outbreak is on the rise on several European countries. Though ASF is not currently in the U.S., a potential outbreak in the U.S. would be detrimental to the swine industry and the US agricultural economy. We pursued a genome-wide approach to characterize the pig immune responses after ASFV infection. We used RNA sequencing and bioinformatics methods to identify genes and pathways that are affected during ASF infection. We have identified a list of most differentially expressed genes that are in the immune response pathways.

  5. Application of ion mobility spectrometer for rapid drug detection

    Energy Technology Data Exchange (ETDEWEB)

    Xuemei, Zhu; Jian, Zheng [The Third Research Inst. of Ministry of Public Security, Shanghai (China); Yongjie, Lv; Yangqin, Chen [Department of Physics, Key Laboratory of Optical and Magnetic Resonance Spectroscopy, East China Normal Univ., Shanghai (China)

    2007-10-15

    A {sup 63}Ni source-based high resolution ion mobility spectrometer (IMS) was developed and applied to drug detection. The drugs included opium, morphine, heroin, methamphetamine, MDMA, MDEA, ketamine and cannabis. Their ion mobility spectra were acquired, ion types were derived and reduced mobilities were calculated, which are in good agreement with the data reported in literatures. The results indicate that the IMS can detect effectively a variety of drugs, especially for the amphetamine derivatives. And the reduced mobility standard database of drugs was established. (authors)

  6. Application of ion mobility spectrometer for rapid drug detection

    International Nuclear Information System (INIS)

    Zhu Xuemei; Zheng Jian; Lv Yongjie; Chen Yangqin

    2007-01-01

    A 63 Ni source-based high resolution ion mobility spectrometer (IMS) was developed and applied to drug detection. The drugs included opium, morphine, heroin, methamphetamine, MDMA, MDEA, ketamine and cannabis. Their ion mobility spectra were acquired, ion types were derived and reduced mobilities were calculated, which are in good agreement with the data reported in literatures. The results indicate that the IMS can detect effectively a variety of drugs, especially for the amphetamine derivatives. And the reduced mobility standard database of drugs was established. (authors)

  7. Rapid detection of drug metabolites in latent fingermarks.

    Science.gov (United States)

    Hazarika, Pompi; Jickells, Sue M; Russell, David A

    2009-01-01

    Magnetic particles functionalised with anti-cotinine antibody have been used to image latent fingermarks through the detection of the cotinine antigen in the sweat deposited within the fingerprints of smokers. The antibody-magnetic particle conjugates are readily applied to latent fingerprints while excess reagents are removed through the use of a magnetic wand. The results have shown that drug metabolites, such as cotinine, can be detected and used to image the fingermark to establish the identity of an individual within 15 minutes.

  8. Rapid response flood detection using the MSG geostationary satellite

    DEFF Research Database (Denmark)

    Proud, Simon Richard; Fensholt, Rasmus; Rasmussen, Laura Vang

    2011-01-01

    A novel technique for the detection of flooded land using satellite data is presented. This new method takes advantage of the high temporal resolution of the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard the Meteosat Second Generation (MSG) series of satellites to derive several p...... of data gathered during the 2009 flooding events in West Africa shows that the presented method can detect floods of comparable size to the SEVIRI pixel resolution on a short timescale, making it a valuable tool for large scale flood mapping....

  9. Host-induced aneuploidy and phenotypic diversification in the Sudden Oak Death pathogen Phytophthora ramorum

    Science.gov (United States)

    Aneuploidy can result in significant phenotypic changes, which can sometimes be selectively advantageous. For example, aneuploidy confers resistance to antifungal drugs in human pathogenic fungi. Aneuploidy has also been observed in invasive fungal and oomycete plant pathogens in the field. Environm...

  10. Aplastic Anemia in Two Patients with Sex Chromosome Aneuploidies.

    Science.gov (United States)

    Rush, Eric T; Schaefer, G Bradley; Sanger, Warren G; Coccia, Peter F

    2015-01-01

    Sex chromosome aneuploidies range in incidence from rather common to exceedingly rare and have a variable phenotype. We report 2 patients with sex chromosome aneuploidies who developed severe aplastic anemia requiring treatment. The first patient had tetrasomy X (48,XXXX) and presented at 9 years of age, and the second patient had trisomy X (47,XXX) and presented at 5 years of age. Although aplastic anemia has been associated with other chromosomal abnormalities, sex chromosome abnormalities have not been traditionally considered a risk factor for this condition. A review of the literature reveals that at least one other patient with a sex chromosome aneuploidy (45,X) has suffered from aplastic anemia and that other autosomal chromosomal anomalies have been described. Despite the uncommon nature of each condition, it is possible that the apparent association is coincidental. A better understanding of the genetic causes of aplastic anemia remains important. © 2015 S. Karger AG, Basel.

  11. Rapid determination of oxygen saturation and vascularity for cancer detection.

    Directory of Open Access Journals (Sweden)

    Fangyao Hu

    Full Text Available A rapid heuristic ratiometric analysis for estimating tissue hemoglobin concentration and oxygen saturation from measured tissue diffuse reflectance spectra is presented. The analysis was validated in tissue-mimicking phantoms and applied to clinical measurements in head and neck, cervical and breast tissues. The analysis works in two steps. First, a linear equation that translates the ratio of the diffuse reflectance at 584 nm and 545 nm to estimate the tissue hemoglobin concentration using a Monte Carlo-based lookup table was developed. This equation is independent of tissue scattering and oxygen saturation. Second, the oxygen saturation was estimated using non-linear logistic equations that translate the ratio of the diffuse reflectance spectra at 539 nm to 545 nm into the tissue oxygen saturation. Correlations coefficients of 0.89 (0.86, 0.77 (0.71 and 0.69 (0.43 were obtained for the tissue hemoglobin concentration (oxygen saturation values extracted using the full spectral Monte Carlo and the ratiometric analysis, for clinical measurements in head and neck, breast and cervical tissues, respectively. The ratiometric analysis was more than 4000 times faster than the inverse Monte Carlo analysis for estimating tissue hemoglobin concentration and oxygen saturation in simulated phantom experiments. In addition, the discriminatory power of the two analyses was similar. These results show the potential of such empirical tools to rapidly estimate tissue hemoglobin in real-time spectral imaging applications.

  12. System for rapid detection of antibiotic resistance of airborne pathogens

    Science.gov (United States)

    Fortin, M.; Noiseux, I.; Mouslinkina, L.; Vernon, M. L.; Laflamme, C.; Filion, G.; Duchaine, C.; Ho, J.

    2009-05-01

    This project uses function-based detection via a fundamental understanding of the genetic markers of AR to distinguish harmful organisms from innocuous ones. This approach circumvents complex analyses to unravel the taxonomic details of 1399 pathogen species, enormously simplifying detection requirements. Laval Hospital's fast permeabilization strategy enables AR revelation in <1hr. Packaging the AR protocols in liquid-processing cartridges and coupling these to our in-house miniature fiber optic flow cell (FOFC) provides first responders with timely information on-site. INO's FOFC platform consists of a specialty optical fiber through which a hole is transversally bored by laser micromachining. The analyte solution is injected into the hole of the fiber and the particles are detected and counted. The advantage with respect to classic free space FC is that alignment occurs in the fabrication process only and complex excitation and collection optics are replaced by optical fibers. Moreover, we use a sheathless configuration which has the advantage of increase the portability of the system, to reduce excess biohazard material and the need for weekly maintenance. In this paper we present the principle of our FOFC along with a, demonstration of the basic capability of the platform for detection of bacillus cereus spores using permeabilized staining.

  13. Rapid detection of exotic Lymantriids and Scolytids pilot study

    Science.gov (United States)

    Mary Ellen Dix

    2003-01-01

    Exotic invasive species, inadvertently introduced into North America through importation and travel, are threatening the integrity of North American forest ecosystems. The National Invasive Species Council in their 2001 Strategic Plan identified a collaborative program for early detection, diagnosis and response to high-risk, exotic, invasive insects, pathogens and...

  14. Chromosomal Aneuploidy Improves the Brewing Characteristics of Sake Yeast.

    Science.gov (United States)

    Kadowaki, Masafumi; Fujimaru, Yuki; Taguchi, Seiga; Ferdouse, Jannatul; Sawada, Kazutaka; Kimura, Yuta; Terasawa, Yohei; Agrimi, Gennaro; Anai, Toyoaki; Noguchi, Hideki; Toyoda, Atsushi; Fujiyama, Asao; Akao, Takeshi; Kitagaki, Hiroshi

    2017-12-15

    The effect of chromosomal aneuploidy on the brewing characteristics of brewery yeasts has not been studied. Here we report that chromosomal aneuploidy in sake brewery yeast ( Saccharomyces cerevisiae ) leads to the development of favorable brewing characteristics. We found that pyruvate-underproducing sake yeast, which produces less off-flavor diacetyl, is aneuploid and trisomic for chromosomes XI and XIV. To confirm that this phenotype is due to aneuploidy, we obtained 45 haploids with various chromosomal additions and investigated their brewing profiles. A greater number of chromosomes correlated with a decrease in pyruvate production. Especially, sake yeast haploids with extra chromosomes in addition to chromosome XI produced less pyruvate than euploids. Mitochondrion-related metabolites and intracellular oxygen species in chromosome XI aneuploids were higher than those in euploids, and this effect was canceled in their "petite" strains, suggesting that an increase in chromosomes upregulated mitochondrial activity and decreased pyruvate levels. These findings suggested that an increase in chromosome number, including chromosome XI, in sake yeast haploids leads to pyruvate underproduction through the augmentation of mitochondrial activity. This is the first report proposing that aneuploidy in brewery yeasts improves their brewing profile. IMPORTANCE Chromosomal aneuploidy has not been evaluated in development of sake brewing yeast strains. This study shows the relationship between chromosomal aneuploidy and brewing characteristics of brewery yeast strains. High concentrations of pyruvate during sake storage give rise to α-acetolactate and, in turn, to high concentrations of diacetyl, which is considered an off-flavor. It was demonstrated that pyruvate-underproducing sake yeast is trisomic for chromosome XI and XIV. Furthermore, sake yeast haploids with extra chromosomes produced reduced levels of pyruvate and showed metabolic processes characteristic of

  15. A Rapid and Simple Bioassay Method for Herbicide Detection

    Directory of Open Access Journals (Sweden)

    Xiu-Qing Li

    2008-01-01

    Full Text Available Chlamydomonas reinhardtii, a unicellular green alga, has been used in bioassay detection of a variety of toxic compounds such as pesticides and toxic metals, but mainly using liquid culture systems. In this study, an algal lawn--agar system for semi-quantitative bioassay of herbicidal activities has been developed. Sixteen different herbicides belonging to 11 different categories were applied to paper disks and placed on green alga lawns in Petri dishes. Presence of herbicide activities was indicated by clearing zones around the paper disks on the lawn 2-3 days after application. The different groups of herbicides induced clearing zones of variable size that depended on the amount, mode of action, and chemical properties of the herbicides applied to the paper disks. This simple, paper-disk-algal system may be used to detect the presence of herbicides in water samples and act as a quick and inexpensive semi-quantitative screening for assessing herbicide contamination.

  16. Rapid Isolation and Detection for RNA Biomarkers for TBI Diagnostics

    Science.gov (United States)

    2016-10-01

    isolation of glioblastoma exosomes from 50 µL of un-diluted plasma in fifteen to twenty minutes. We also showed tri- color fluorescent detection of the...serious short-term implications, but also may progress to chronic and debilitating long-term physiological and psychological problems for soldiers and...major impact on the patient’s long-term psychological health. This has significant negative effects on family members and is costly to society in

  17. gmos: Rapid Detection of Genome Mosaicism over Short Evolutionary Distances.

    Science.gov (United States)

    Domazet-Lošo, Mirjana; Domazet-Lošo, Tomislav

    2016-01-01

    Prokaryotic and viral genomes are often altered by recombination and horizontal gene transfer. The existing methods for detecting recombination are primarily aimed at viral genomes or sets of loci, since the expensive computation of underlying statistical models often hinders the comparison of complete prokaryotic genomes. As an alternative, alignment-free solutions are more efficient, but cannot map (align) a query to subject genomes. To address this problem, we have developed gmos (Genome MOsaic Structure), a new program that determines the mosaic structure of query genomes when compared to a set of closely related subject genomes. The program first computes local alignments between query and subject genomes and then reconstructs the query mosaic structure by choosing the best local alignment for each query region. To accomplish the analysis quickly, the program mostly relies on pairwise alignments and constructs multiple sequence alignments over short overlapping subject regions only when necessary. This fine-tuned implementation achieves an efficiency comparable to an alignment-free tool. The program performs well for simulated and real data sets of closely related genomes and can be used for fast recombination detection; for instance, when a new prokaryotic pathogen is discovered. As an example, gmos was used to detect genome mosaicism in a pathogenic Enterococcus faecium strain compared to seven closely related genomes. The analysis took less than two minutes on a single 2.1 GHz processor. The output is available in fasta format and can be visualized using an accessory program, gmosDraw (freely available with gmos).

  18. Single-gene testing combined with single nucleotide polymorphism microarray preimplantation genetic diagnosis for aneuploidy: a novel approach in optimizing pregnancy outcome.

    Science.gov (United States)

    Brezina, Paul R; Benner, Andrew; Rechitsky, Svetlana; Kuliev, Anver; Pomerantseva, Ekaterina; Pauling, Dana; Kearns, William G

    2011-04-01

    To describe a method of amplifying DNA from blastocyst trophectoderm cells (two or three cells) and simultaneously performing 23-chromosome single nucleotide polymorphism microarrays and single-gene preimplantation genetic diagnosis. Case report. IVF clinic and preimplantation genetic diagnostic centers. A 36-year-old woman, gravida 2, para 1011, and her husband who both were carriers of GM(1) gangliosidosis. The couple wished to proceed with microarray analysis for aneuploidy detection coupled with DNA sequencing for GM(1) gangliosidosis. An IVF cycle was performed. Ten blastocyst-stage embryos underwent trophectoderm biopsy. Twenty-three-chromosome microarray analysis for aneuploidy and specific DNA sequencing for GM(1) gangliosidosis mutations were performed. Viable pregnancy. After testing, elective single embryo transfer was performed followed by an intrauterine pregnancy with documented fetal cardiac activity by ultrasound. Twenty-three-chromosome microarray analysis for aneuploidy detection and single-gene evaluation via specific DNA sequencing and linkage analysis are used for preimplantation diagnosis for single-gene disorders and aneuploidy. Because of the minimal amount of genetic material obtained from the day 3 to 5 embryos (up to 6 pg), these modalities have been used in isolation of each other. The use of preimplantation genetic diagnosis for aneuploidy coupled with testing for single-gene disorders via trophectoderm biopsy is a novel approach to maximize pregnancy outcomes. Although further investigation is warranted, preimplantation genetic diagnosis for aneuploidy and single-gene testing seem destined to be used increasingly to optimize ultimate pregnancy success. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  19. gmos: Rapid Detection of Genome Mosaicism over Short Evolutionary Distances.

    Directory of Open Access Journals (Sweden)

    Mirjana Domazet-Lošo

    Full Text Available Prokaryotic and viral genomes are often altered by recombination and horizontal gene transfer. The existing methods for detecting recombination are primarily aimed at viral genomes or sets of loci, since the expensive computation of underlying statistical models often hinders the comparison of complete prokaryotic genomes. As an alternative, alignment-free solutions are more efficient, but cannot map (align a query to subject genomes. To address this problem, we have developed gmos (Genome MOsaic Structure, a new program that determines the mosaic structure of query genomes when compared to a set of closely related subject genomes. The program first computes local alignments between query and subject genomes and then reconstructs the query mosaic structure by choosing the best local alignment for each query region. To accomplish the analysis quickly, the program mostly relies on pairwise alignments and constructs multiple sequence alignments over short overlapping subject regions only when necessary. This fine-tuned implementation achieves an efficiency comparable to an alignment-free tool. The program performs well for simulated and real data sets of closely related genomes and can be used for fast recombination detection; for instance, when a new prokaryotic pathogen is discovered. As an example, gmos was used to detect genome mosaicism in a pathogenic Enterococcus faecium strain compared to seven closely related genomes. The analysis took less than two minutes on a single 2.1 GHz processor. The output is available in fasta format and can be visualized using an accessory program, gmosDraw (freely available with gmos.

  20. Detecting rapid mass movements using electrical self-potential measurements

    Science.gov (United States)

    Heinze, Thomas; Limbrock, Jonas; Pudasaini, Shiva P.; Kemna, Andreas

    2017-04-01

    Rapid mass movements are a latent danger for lives and infrastructure in almost any part of the world. Often such mass movements are caused by increasing pore pressure, for example, landslides after heavy rainfall or dam breaking after intrusion of water in the dam. Among several other geophysical methods used to observe water movement, the electrical self-potential method has been applied to a broad range of monitoring studies, especially focusing on volcanism and dam leakage but also during hydraulic fracturing and for earthquake prediction. Electrical self-potential signals may be caused by various mechanisms. Though, the most relevant source of the self-potential field in the given context is the streaming potential, caused by a flowing electrolyte through porous media with electrically charged internal surfaces. So far, existing models focus on monitoring water flow in non-deformable porous media. However, as the self-potential is sensitive to hydraulic parameters of the soil, any change in these parameters will cause an alteration of the electric signal. Mass movement will significantly influence the hydraulic parameters of the solid as well as the pressure field, assuming that fluid movement is faster than the pressure diffusion. We will present results of laboratory experiments under drained and undrained conditions with fluid triggered as well as manually triggered mass movements, monitored with self-potential measurements. For the undrained scenarios, we observe a clear correlation between the mass movements and signals in the electric potential, which clearly differ from the underlying potential variations due to increased saturation and fluid flow. In the drained experiments, we do not observe any measurable change in the electric potential. We therefore assume that change in fluid properties and release of the load causes disturbances in flow and streaming potential. We will discuss results of numerical simulations reproducing the observed effect. Our

  1. Mobile Techniques for Rapid Detection of Concealed Nuclear Material

    International Nuclear Information System (INIS)

    Rosenstock, W.; Koeble, T.; Risse, M.; Berky, W.

    2015-01-01

    To prevent the diversion of nuclear material as well as illicit production, transport and use of nuclear material we investigated in mobile techniques to detect and identify such material in the field as early as possible. For that purpose we use a highly sensitive gamma measurement system installed in a car. It consists of two large volume plastic scintillators, one on each side of the car, each scintillator with 12 l active volume, and two extreme sensitive high purity Germanium detectors with 57 cm 2 crystal diameter, cooled electrically. The measured data are processed immediately with integrated, appropriate analysis software for direct assessment including material identification and classification within seconds. The software for the plastic scintillators can differentiate between natural and artificial radioactivity, thus giving a clear hint for the existence of unexpected material. In addition, the system is equipped with highly sensitive neutron detectors. We have performed numerous measurements by passing different radioactive and nuclear sources in relatively large distances with this measurement car. Even shielded as well as masked material was detected and identified in most of the cases. We will report on the measurements performed in the field (on an exercise area) and in the lab and discuss the capabilities of the system, especially with respect to timeliness and identification. This system will improve the nuclear verification capabilities also. (author)

  2. Original Article. Evaluation of Rapid Detection of Nasopharyngeal Colonization with MRSA by Real-Time PCR

    Directory of Open Access Journals (Sweden)

    Kang Feng-feng

    2012-03-01

    Full Text Available Objective To investigate the clinical application of Real-Time PCR for rapid detection of methicillin-resistant Staphylococcus aureus (MRSA directly from nasopharyngeal swab specimens.

  3. Rapid detection of fungal alpha-amylase in the work environment with a lateral flow immunoassay

    NARCIS (Netherlands)

    Bogdanovic, J.; Koets, M.; Sander, I.; Wouters, I.; Meijster, T.; Heederik, D.J.J.; Amerongen, van A.; Doekes, G.

    2006-01-01

    Background Occupational allergen exposure assessment usually requires airborne dust sampling at the worksite followed by dust extraction and enzyme immunoassay (EIA) analysis at the laboratory. Use of semiquantitative lateral flow immunoassays (LFIAs) may allow a more rapid detection procedure with

  4. Rapid detection and quantification of haptophyte alkenones by Fourier transform infrared spectroscopy (FTIR)

    Czech Academy of Sciences Publication Activity Database

    Pelusi, A.; Hanawa, Y.; Araie, H.; Suzuki, I.; Giordano, Mario; Shiraiwa, I.

    2016-01-01

    Roč. 19, NOVEMBER 2016 (2016), s. 48-56 ISSN 2211-9264 Institutional support: RVO:61388971 Keywords : Rapid detection * haptophyte alkenones * Fourier spectroscopy Subject RIV: EE - Microbiology, Virology Impact factor: 3.994, year: 2016

  5. Rapid Methods for the Detection of Foodborne Bacterial Pathogens: Principles, Applications, Advantages and Limitations

    Directory of Open Access Journals (Sweden)

    Law eJodi Woan-Fei

    2015-01-01

    Full Text Available The incidence of foodborne diseases has increased over the years and resulted in major public health problem globally. Foodborne pathogens can be found in various foods and it is important to detect foodborne pathogens to provide safe food supply and to prevent foodborne diseases. The conventional methods used to detect foodborne pathogen are time consuming and laborious. Hence, a variety of methods have been developed for rapid detection of foodborne pathogens as it is required in many food analyses. Rapid detection methods can be categorized into nucleic acid-based, biosensor-based and immunological-based methods. This review emphasizes on the principles and application of recent rapid methods for the detection of foodborne bacterial pathogens. Detection methods included are simple polymerase chain reaction (PCR, multiplex PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA, loop-mediated isothermal amplification (LAMP and oligonucleotide DNA microarray which classified as nucleic acid-based methods; optical, electrochemical and mass-based biosensors which classified as biosensor-based methods; enzyme-linked immunosorbent assay (ELISA and lateral flow immunoassay which classified as immunological-based methods. In general, rapid detection methods are generally time-efficient, sensitive, specific and labor-saving. The developments of rapid detection methods are vital in prevention and treatment of foodborne diseases.

  6. Heterozygosity for a Bub1 mutation causes female-specific germ cell aneuploidy in mice

    Energy Technology Data Exchange (ETDEWEB)

    Leland, Shawn; Nagarajan, Prabakaran; Polyzos, Aris; Thomas, Sharon; Samaan, George; Donnell, Robert; Marchetti, Francesco; Venkatachalam, Sundaresan

    2009-06-24

    Aneuploidy, the most common chromosomal abnormality at birth and the main ascertained cause of pregnancy loss in humans, originates primarily from chromosome segregation errors during oogenesis. Here we report that heterozygosity for a mutation in the mitotic checkpoint kinase gene, Bub1, induces aneuploidy in female germ cells of mice, and that the effect increases with advancing maternal age. Analysis of Bub1 heterozygous oocytes showed that aneuploidy occurred primarily during the first meiotic division and involved premature sister chromatid separation. Furthermore, aneuploidy was inherited in zygotes and resulted in the loss of embryos after implantation. The incidence of aneuploidy in zygotes was sufficient to explain the reduced litter size in matings with Bub1 heterozygous females. No effects were seen in germ cells from heterozygous males. These findings show that Bub1 dysfunction is linked to inherited aneuploidy in female germ cells and may contribute to the maternal age-related increase in aneuploidy and pregnancy loss.

  7. ORIGINAL ARTICLE Prenatal diagnosis of aneuploidy among a ...

    African Journals Online (AJOL)

    salah

    terphase cells. Patients and Methods: Prenatal diagnosis was performed on 40 high risk ... Prenatal diagnosis of aneuploidy among a sample of Egyptian high risk pregnancies ..... of medical genetics. 9th ed.: Churchill. Livingstone; 1995. p. 23-45. Edwards and Beard: FISH studies of. 2. pre-implantation embryos and PGD.

  8. Detection of Rapid Atrial Arrhythmias in SQUID Magnetocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Woong; Kwon, Hyuk Chan; Kim, Ki Dam; Lee, Yong Ho; Kim, Jin Mok; Kim, In Seon; Lim, Hyun Kyoon; Park, Yong Ki [Biomagnetism Research, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Kim, Doo Sang [Seoul Veterans Hospital, Seoul (Korea, Republic of); Lim, Seung Pyung [Chungnam National University Hospital, Daejeon (Korea, Republic of)

    2005-10-15

    We propose a method to measure atrial arrhythmias (AA) such as atrial fibrillation (Afb) and atrial flutter (Afl) with a SQUID magnetocardiograph (MCG) system. To detect AA is one of challenging topics in MCG. As the AA generally have irregular rhythm and atrio-ventricular conduction, the MCG signal cannot be improved by QRS averaging; therefore a SQUID MCG system having a high SNR is required to measure informative atrial excitation with a single scan. In the case of Afb, diminished f waves are much smaller than normal P waves because the sources are usually located on the posterior wall of the heart. In this study, we utilize an MCG system measuring tangential field components, which is known to be more sensitive to a deeper current source. The average noise spectral density of the whole system in a magnetic shielded room was 10 fT/Hz(a) 1 Hz and 5 fT/Hz(a) 100 Hz. We measured the MCG signals of patients with chronic Afb and Afl. Before the AA measurement, the comparison between the measurements in supine and prone positions for P waves has been conducted and the experiment gave a result that the supine position is more suitable to measure the atrial excitation. Therefore, the AA was measured in subject's supine position. Clinical potential of AA measurement in MCG is to find an aspect of a reentry circuit and to localize the abnormal stimulation noninvasively. To give useful information about the abnormal excitation, we have developed a method, separative synthetic aperture magnetometry (sSAM). The basic idea of sSAM is to visualize current source distribution corresponding to the atrial excitation, which are separated from the ventricular excitation and the Gaussian sensor noises. By using sSAM, we localized the source of an Afl successfully.

  9. Luciferase-Zinc-Finger System for the Rapid Detection of Pathogenic Bacteria.

    Science.gov (United States)

    Shi, Chu; Xu, Qing; Ge, Yue; Jiang, Ling; Huang, He

    2017-08-09

    Rapid and reliable detection of pathogenic bacteria is crucial for food safety control. Here, we present a novel luciferase-zinc finger system for the detection of pathogens that offers rapid and specific profiling. The system, which uses a zinc-finger protein domain to probe zinc finger recognition sites, was designed to bind the amplified conserved regions of 16S rDNA, and the obtained products were detected using a modified luciferase. The luciferase-zinc finger system not only maintained luciferase activity but also allowed the specific detection of different bacterial species, with a sensitivity as low as 10 copies and a linear range from 10 to 10 4 copies per microliter of the specific PCR product. Moreover, the system is robust and rapid, enabling the simultaneous detection of 6 species of bacteria in artificially contaminated samples with excellent accuracy. Thus, we envision that our luciferase-zinc finger system will have far-reaching applications.

  10. RAPID DETECTION OF PNEUMOCOCCAL ANTIGEN IN PLEURAL FLUID OF PATIENTS WITH COMMUNITY ACQUIRED PNEUMONIA

    NARCIS (Netherlands)

    BOERSMA, WG; LOWENBERG, A; HOLLOWAY, Y; KUTTSCHRUTTER, H; SNIJDER, JAM; KOETER, GH

    Background Detection of pneumococcal antigen may help to increase the rate of diagnosis of pneumococcal pneumonia. This study was designed to determine the value of rapid detection of pneumococcal antigen in pleural fluid from patients with community acquired pneumonia. Methods Thoracentesis was

  11. Rapid detection of Avian Influenza Virus - Towards point of care diagnosis

    DEFF Research Database (Denmark)

    Dhumpa, Raghuram

    barcode and fluorescent beads were also developed for rapid detection and identification of the AIV. In both methods, the detection involved sandwiching of the target AIV between monoclonal antibodies for nucleoproteins and for matrix proteins. In the fluorescent DNA barcode-based immunoassay, fluorophore...

  12. A parylene-based dual channel microelectrophoresis system for rapid mutation detection via heteroduplex analysis

    NARCIS (Netherlands)

    Sukas, S.; Erson, Ayse Elif; Sert, Cuneyt; Kulah, Haluk

    2008-01-01

    A new dual channel micro-electrophoresis system for rapid mutation detection based on heteroduplex analysis was designed and implemented. Mutation detection was successfully achieved in a total separation length of 250 μm in less than 3 min for a 590 bp DNA sample harboring a 3 bp mutation causing

  13. Early Detection Rapid Response Program Targets New Noxious Weed Species in Washington State

    Science.gov (United States)

    Andreas, Jennifer E.; Halpern, Alison D.; DesCamp, Wendy C.; Miller, Timothy W.

    2015-01-01

    Early detection, rapid response is a critical component of invasive plant management. It can be challenging, however, to detect new invaders before they become established if landowners cannot identify species of concern. In order to increase awareness, eye-catching postcards were developed in Washington State as part of a noxious weed educational…

  14. Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Common Strains of Escherichia coli▿

    Science.gov (United States)

    Hill, Joshua; Beriwal, Shilpa; Chandra, Ishwad; Paul, Vinod K.; Kapil, Aarti; Singh, Tripti; Wadowsky, Robert M.; Singh, Vinita; Goyal, Ankur; Jahnukainen, Timo; Johnson, James R.; Tarr, Phillip I.; Vats, Abhay

    2008-01-01

    We developed a highly sensitive and specific LAMP assay for Escherichia coli. It does not require DNA extraction and can detect as few as 10 copies. It detected all 36 of 36 E. coli isolates and all 22 urine samples (out of 89 samples tested) that had E. coli. This assay is rapid, low in cost, and simple to perform. PMID:18550738

  15. Loop-mediated isothermal amplification assay for rapid detection of common strains of Escherichia coli.

    Science.gov (United States)

    Hill, Joshua; Beriwal, Shilpa; Chandra, Ishwad; Paul, Vinod K; Kapil, Aarti; Singh, Tripti; Wadowsky, Robert M; Singh, Vinita; Goyal, Ankur; Jahnukainen, Timo; Johnson, James R; Tarr, Phillip I; Vats, Abhay

    2008-08-01

    We developed a highly sensitive and specific LAMP assay for Escherichia coli. It does not require DNA extraction and can detect as few as 10 copies. It detected all 36 of 36 E. coli isolates and all 22 urine samples (out of 89 samples tested) that had E. coli. This assay is rapid, low in cost, and simple to perform.

  16. A duplex endpoint PCR assay for rapid detection and differentiation of Leptospira strains.

    Science.gov (United States)

    Benacer, Douadi; Zain, Siti Nursheena Mohd; Lewis, John W; Khalid, Mohd Khairul Nizam Mohd; Thong, Kwai Lin

    2017-01-01

    This study aimed to develop a duplex endpoint PCR assay for rapid detection and differentiation of Leptospira strains. Primers were designed to target the rrs (LG1/LG2) and ligB (LP1/LP2) genes to confirm the presence of the Leptospira genus and the pathogenic species, respectively. The assay showed 100% specificity against 17 Leptospira strains with a limit of detection of 23.1pg/µl of leptospiral DNA and sensitivity of 103 leptospires/ml in both spiked urine and water. Our duplex endpoint PCR assay is suitable for rapid early detection of Leptospira with high sensitivity and specificity.

  17. A rapid Salmonella detection method involving thermophilic helicase-dependent amplification and a lateral flow assay.

    Science.gov (United States)

    Du, Xin-Jun; Zhou, Tian-Jiao; Li, Ping; Wang, Shuo

    2017-08-01

    Salmonella is a major foodborne pathogen that is widespread in the environment and can cause serious human and animal disease. Since conventional culture methods to detect Salmonella are time-consuming and laborious, rapid and accurate techniques to detect this pathogen are critically important for food safety and diagnosing foodborne illness. In this study, we developed a rapid, simple and portable Salmonella detection strategy that combines thermophilic helicase-dependent amplification (tHDA) with a lateral flow assay to provide a detection result based on visual signals within 90 min. Performance analyses indicated that the method had detection limits for DNA and pure cultured bacteria of 73.4-80.7 fg and 35-40 CFU, respectively. Specificity analyses showed no cross reactions with Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, Enterobacter aerogenes, Shigella and Campylobacter jejuni. The results for detection in real food samples showed that 1.3-1.9 CFU/g or 1.3-1.9 CFU/mL of Salmonella in contaminated chicken products and infant nutritional cereal could be detected after 2 h of enrichment. The same amount of Salmonella in contaminated milk could be detected after 4 h of enrichment. This tHDA-strip can be used for the rapid detection of Salmonella in food samples and is particularly suitable for use in areas with limited equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Rapid Detection of Salmonella enterica in Food Using a Compact Disc-Shaped Device

    Directory of Open Access Journals (Sweden)

    Shunsuke Furutani

    2016-01-01

    Full Text Available Rapid detection of food-borne pathogens is essential to public health and the food industry. Although the conventional culture method is highly sensitive, it takes at least a few days to detect food-borne pathogens. Even though polymerase chain reaction (PCR can detect food-borne pathogens in a few hours, it is more expensive and unsatisfactorily sensitive relative to the culture method. We have developed a method to rapidly detect Salmonella enterica by using a compact disc (CD-shaped device that can reduce reagent consumption in conventional PCR. The detection method, which combines culture and PCR, is more rapid than the conventional culture method and is more sensitive and cheaper than PCR. In this study, we also examined a sample preparation method that involved collecting bacterial cells from food. The bacteria collected from chicken meat spiked with S. enterica were mixed with PCR reagents, and PCR was performed on the device. At a low concentration of S. enterica, the collected S. enterica was cultured before PCR for sensitive detection. After cultivation for 4 h, S. enterica at 1.7 × 104 colony-forming units (CFUs·g−1 was detected within 8 h, which included the time needed for sample preparation and detection. Furthermore, the detection of 30 CFUs·g−1 of S. enterica was possible within 12 h including 8 h for cultivation.

  19. Screening for aneuploidies by maternal age, fetal nuchal translucency and maternal serum biochemistry at 11-13+6 gestational weeks

    Directory of Open Access Journals (Sweden)

    Karadžov-Orlić Nataša

    2012-01-01

    Full Text Available Introduction. Aneuploidies are the major cause of perinatal death and early psychophysical disorders. Objective. In this study, we analyzed detection and false-positive rates of screening for aneuploidies in the first trimester by the combination of maternal age, fetal nuchal translucency (NT thickness and maternal serum free beta-human chorionic gonadotrophin (β-hCG, and pregnancy-associated plasma protein-A (PAPP-A at 11-13+6 weeks of gestation, using the appropriate software developed by the Fetal Medicine Foundation. Methods. Our screening study for aneuploidies analyzed 4172 singleton pregnancies from January 2006 to December 2010. The sensitivities and false-positive rates using the combined aneuploidies determination for the risk cut-off of 1:275 were evaluated. Results. In the trisomy 21 pregnancies, the fetal NT was higher than 95th centile, in 72.8%, serum free b-hCG concentration it was above the 95th centile in 55% and serum PAPP-A was below the 5th centile in 47% of the cases. In the trisomy 18 and 13, the fetal NT was above 95th centile in 66.6% and 44.4% of the cases, respectively. The serum free b-hCG concentration was above the 95th centile in 0 and 10%, but serum PAPP-A was below 5th centile in 80.9% and 88.8% of pregnancies. In the trisomy 21 pregnancies the median free beta-hCG was 2.3 MoM and the median PAPP-A was 0.45 MoM. Chromosomal abnormalities were detected in 169 fetuses: trisomy 21 (97, Turner syndrome (19, trisomy 18 (28, trisomy 13 (11 and others (14. Detection rate of combined screening for aneuploides were 86.0% with false positive rate of 5.3% (mean age 33±4.9 years, >35 years in 35% of pregnancies. Conclusion. Our study suggests that the strategy of first-trimester combined screening of biochemical values and ultrasonographic parameters at 12 gestational weeks identifies higher percentage of aneuploidies with a lower false-positive rate than a single parameter strategy.

  20. Use of rapid-scan EPR to improve detection sensitivity for spin-trapped radicals.

    Science.gov (United States)

    Mitchell, Deborah G; Rosen, Gerald M; Tseitlin, Mark; Symmes, Breanna; Eaton, Sandra S; Eaton, Gareth R

    2013-07-16

    The short lifetime of superoxide and the low rates of formation expected in vivo make detection by standard continuous wave (CW) electron paramagnetic resonance (EPR) challenging. The new rapid-scan EPR method offers improved sensitivity for these types of samples. In rapid-scan EPR, the magnetic field is scanned through resonance in a time that is short relative to electron spin relaxation times, and data are processed to obtain the absorption spectrum. To validate the application of rapid-scan EPR to spin trapping, superoxide was generated by the reaction of xanthine oxidase and hypoxanthine with rates of 0.1-6.0 μM/min and trapped with 5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide (BMPO). Spin trapping with BMPO to form the BMPO-OOH adduct converts the very short-lived superoxide radical into a more stable spin adduct. There is good agreement between the hyperfine splitting parameters obtained for BMPO-OOH by CW and rapid-scan EPR. For the same signal acquisition time, the signal/noise ratio is >40 times higher for rapid-scan than for CW EPR. Rapid-scan EPR can detect superoxide produced by Enterococcus faecalis at rates that are too low for detection by CW EPR. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Rapid detection of the positive side reactions in vanadium flow batteries

    International Nuclear Information System (INIS)

    Liu, Le; Li, Zhaohua; Xi, Jingyu; Zhou, Haipeng; Wu, Zenghua; Qiu, Xinping

    2017-01-01

    Highlights: • A method for rapid measurement of the positive side reactions in VFB is presented. • The SOC of positive electrolytes can be detected with resolution of 0.002%. • Side reaction ratios at different charge currents, flow rates are obtained. - Abstract: We present an optical detection method for rapid measurement of the positive side reactions in vanadium flow batteries (VFB). By measuring the transmittance of the positive electrolytes in VFB, the states of charge (SOC) of the positive electrolytes can be detected at very high resolution (better than 0.002% in the SOC range from 98% to 100%), due to the nonlinear transmittance spectra caused by the interactions between V(IV) and V(V) ions. The intensity of the positive side reactions of a VFB can be rapidly measured by a few steps, attributing to the fact that the positive side reactions occur only during the high voltage charging process. The ratios of the positive side reactions at different charge currents and different flow rates are obtained while causing no damage to the battery. This optical detection method can rapidly determine the optimal parameters of the VFB system, providing new means for studying the electrochemical reactions in the VFB system and rapid test in industrial production of VFBs.

  2. The epigenetic landscape of aneuploidy: constitutional mosaicism leading the way?

    Science.gov (United States)

    Davidsson, Josef

    2014-02-01

    The role of structural genetic changes in human disease has received substantial attention in recent decades, but surprisingly little is known about numerical chromosomal abnormalities, even though they have been recognized since the days of Boveri as partaking in different cellular pathophysiological processes such as cancer and genomic disorders. The current knowledge of the genetic and epigenetic consequences of aneuploidy is reviewed herein, with a special focus on using mosaic genetic syndromes to study the DNA methylation footprints and expressional effects associated with whole-chromosomal gains. Recent progress in understanding the debated role of aneuploidy as a driver or passenger in malignant transformation, as well as how the cell responds to and regulates excess genetic material in experimental settings, is also discussed in detail.

  3. Computer aided detection of suspicious regions on digital mammograms : rapid segmentation and feature extraction

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, C; Giacomini, M; Sacile, R [DIST - Department of Communication Computer and System Sciences, University of Genova, Via Opera Pia 13, 16145 Genova (Italy); Rosselli Del Turco, M [Centro per lo studio e la prevenzione oncologica, Firenze (Italy)

    1999-12-31

    A method is presented for rapid detection of suspicious regions which consists of two steps. The first step is segmentation based on texture analysis consisting of : histogram equalization, Laws filtering for texture analysis, Gaussian blur and median filtering to enhance differences between tissues in different respects, histogram thresholding to obtain a binary image, logical masking in order to detect regions to be discarded from the analysis, edge detection. This method has been tested on 60 images, obtaining 93% successful detection of suspicious regions. (authors) 4 refs, 9 figs, 1 tabs.

  4. Advances in developing rapid, reliable and portable detection systems for alcohol.

    Science.gov (United States)

    Thungon, Phurpa Dema; Kakoti, Ankana; Ngashangva, Lightson; Goswami, Pranab

    2017-11-15

    Development of portable, reliable, sensitive, simple, and inexpensive detection system for alcohol has been an instinctive demand not only in traditional brewing, pharmaceutical, food and clinical industries but also in rapidly growing alcohol based fuel industries. Highly sensitive, selective, and reliable alcohol detections are currently amenable typically through the sophisticated instrument based analyses confined mostly to the state-of-art analytical laboratory facilities. With the growing demand of rapid and reliable alcohol detection systems, an all-round attempt has been made over the past decade encompassing various disciplines from basic and engineering sciences. Of late, the research for developing small-scale portable alcohol detection system has been accelerated with the advent of emerging miniaturization techniques, advanced materials and sensing platforms such as lab-on-chip, lab-on-CD, lab-on-paper etc. With these new inter-disciplinary approaches along with the support from the parallel knowledge growth on rapid detection systems being pursued for various targets, the progress on translating the proof-of-concepts to commercially viable and environment friendly portable alcohol detection systems is gaining pace. Here, we summarize the progress made over the years on the alcohol detection systems, with a focus on recent advancement towards developing portable, simple and efficient alcohol sensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Frequency of aneuploidy related to age in porcine oocytes

    Czech Academy of Sciences Publication Activity Database

    Horňák, M.; Jeseta, M.; Musilová, P.; Pavlok, Antonín; Kubelka, Michal; Motlík, Jan; Rubeš, J.; Anger, Martin

    2011-01-01

    Roč. 6, č. 4 (2011), s. 1-5 E-ISSN 1932-6203 R&D Projects: GA ČR GA523/09/0743; GA AV ČR IAA501620801 Institutional research plan: CEZ:AV0Z50450515 Keywords : porcine * oocytes * aneuploidy Subject RIV: EE - Microbiology, Virology Impact factor: 4.092, year: 2011 http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0018892

  6. Rapid and specific detection of Asian- and African-lineage Zika viruses

    Science.gov (United States)

    Chotiwan, Nunya; Brewster, Connie D.; Magalhaes, Tereza; Weger-Lucarelli, James; Duggal, Nisha K.; Rückert, Claudia; Nguyen, Chilinh; Garcia Luna, Selene M.; Fauver, Joseph R.; Andre, Barb; Gray, Meg; Black, William C.; Kading, Rebekah C.; Ebel, Gregory D.; Kuan, Guillermina; Balmaseda, Angel; Jaenisch, Thomas; Marques, Ernesto T. A.; Brault, Aaron C.; Harris, Eva; Foy, Brian D.; Quackenbush, Sandra L.; Perera, Rushika; Rovnak, Joel

    2017-01-01

    Understanding the dynamics of Zika virus transmission and formulating rational strategies for its control require precise diagnostic tools that are also appropriate for resource-poor environments. We have developed a rapid and sensitive loop-mediated isothermal amplification (LAMP) assay that distinguishes Zika viruses of Asian and African lineages. The assay does not detect chikungunya virus or flaviviruses such as dengue, yellow fever, or West Nile viruses. The assay conditions allowed direct detection of Zika virus RNA in cultured infected cells; in mosquitoes; in virus-spiked samples of human blood, plasma, saliva, urine, and semen; and in infected patient serum, plasma, and semen samples without the need for RNA isolation or reverse transcription. The assay offers rapid, specific, sensitive, and inexpensive detection of the Asian-lineage Zika virus strain that is currently circulating in the Western hemisphere, and can also detect the African-lineage Zika virus strain using separate, specific primers. PMID:28469032

  7. A novel kit for rapid detection of Vibrio cholerae O1.

    OpenAIRE

    Hasan, J A; Huq, A; Tamplin, M L; Siebeling, R J; Colwell, R R

    1994-01-01

    We report on the development and testing of a novel, rapid, colorimetric immunodiagnostic kit, Cholera SMART, for direct detection of the presence of Vibrio cholerae O1 in clinical specimens. Unlike conventional culture methods requiring several days to complete, the Cholera SMART kit can be used directly in the field by untrained or minimally skilled personnel to detect V. cholerae O1 in less than 15 min, without cumbersome laboratory equipment. A total of 120 clinical and environmental bact...

  8. A nationwide web-based automated system for early outbreak detection and rapid response in China

    Directory of Open Access Journals (Sweden)

    Yilan Liao

    2011-03-01

    Full Text Available Timely reporting, effective analyses and rapid distribution of surveillance data can assist in detecting the aberration of disease occurrence and further facilitate a timely response. In China, a new nationwide web-based automated system for outbreak detection and rapid response was developed in 2008. The China Infectious Disease Automated-alert and Response System (CIDARS was developed by the Chinese Center for Disease Control and Prevention based on the surveillance data from the existing electronic National Notifiable Infectious Diseases Reporting Information System (NIDRIS started in 2004. NIDRIS greatly improved the timeliness and completeness of data reporting with real time reporting information via the Internet. CIDARS further facilitates the data analysis, aberration detection, signal dissemination, signal response and information communication needed by public health departments across the country. In CIDARS, three aberration detection methods are used to detect the unusual occurrence of 28 notifiable infectious diseases at the county level and to transmit that information either in real-time or on a daily basis. The Internet, computers and mobile phones are used to accomplish rapid signal generation and dissemination, timely reporting and reviewing of the signal response results. CIDARS has been used nationwide since 2008; all Centers for Disease Control and Prevention (CDC in China at the county, prefecture, provincial and national levels are involved in the system. It assists with early outbreak detection at the local level and prompts reporting of unusual disease occurrences or potential outbreaks to CDCs throughout the country.

  9. Application of a rapid screening method to detect irradiated meat in Brazil

    International Nuclear Information System (INIS)

    Villavicencio, A.L.C.H.; Delincee, H.

    1998-01-01

    Complete text of publication follows. Based on the enormous potential for food irradiation in Brazil, and to ensure free consumer choice, there is a need to find a convenient and rapid method for detection of irradiated food. Since treatment with ionizing radiation causes DNA fragmentation, the analysis of DNA damage might be promising. In fact, DNA fragmentation measured in single cells by agarose gel electrophoresis - DNA Comet Assay - has shown to offer great potential as a rapid tool to detect whether a wide variety of foodstuffs has been radiation processed. However, more work is needed to exploit the full potential of this promising technique. In this paper, the DNA Comet Assay was used to identify exotic meat (boar, jacare and capybara), irradiated with 60 Co gamma-rays. The applied radiation doses were 0, 1.5, 3.0 and 4.5 kGy. Analysis of the DNA migration enable a rapid identification of the radiation treatment

  10. Rapid and early detection of salmonella serotypes with hyperspectral microscope and multivariate data analysis

    Science.gov (United States)

    This study was designed to evaluate hyperspectral microscope images for early and rapid detection of Salmonella serotypes: S. Enteritidis, S. Heidelberg, S. Infantis, S. Kentucky, and S. Typhimurium at incubation times of 6, 8, 10, 12, and 24 hours. Images were collected by an acousto-optical tunab...

  11. A new methodology for rapid detection of Lactobacillus delbrueckii subsp. bulgaricus based on multiplex PCR.

    Science.gov (United States)

    Nikolaou, Anastasios; Saxami, Georgia; Kourkoutas, Yiannis; Galanis, Alex

    2011-02-01

    In this study we present a novel multiplex PCR assay for rapid and efficient detection of Lactobacillus delbrueckii subsp. bulgaricus. The accuracy of our method was confirmed by the successful identification of L. delbrueckii subsp. bulgaricus in commercial yoghurts and food supplements and it may be readily applied to the food industry. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Detecting and Remembering Simultaneous Pictures in a Rapid Serial Visual Presentation

    Science.gov (United States)

    Potter, Mary C.; Fox, Laura F.

    2009-01-01

    Viewers can easily spot a target picture in a rapid serial visual presentation (RSVP), but can they do so if more than 1 picture is presented simultaneously? Up to 4 pictures were presented on each RSVP frame, for 240 to 720 ms/frame. In a detection task, the target was verbally specified before each trial (e.g., "man with violin"); in a…

  13. Rapid and real-time detection technologies for emerging viruses of ...

    Indian Academy of Sciences (India)

    2008-10-17

    Oct 17, 2008 ... The development of technologies with rapid and sensitive detection capabilities and increased throughput have become crucial for responding to greater number threats posed by emerging and re-emerging viruses in the recent past. The conventional identification methods require time-consuming culturing ...

  14. Rapid detection of human fecal Eubacterium species and related genera by nested PCR method.

    Science.gov (United States)

    Kageyama, A; Benno, Y

    2001-01-01

    PCR procedures based on 16S rDNA gene sequence specific for seven Eubacterium spp. and Eggerthella lenta that predominate in the human intestinal tract were developed, and used for direct detection of these species in seven human feces samples. Three species of Eggerthella lenta, Eubacterium rectale, and Eubacterium eligens were detected from seven fecal samples. Eubacterium biforme was detected from six samples. It was reported that E. rectale, E. eligens, and E. biforme were difficult to detect by traditional culture method, but the nested PCR method is available for the detection of these species. This result shows that the nested PCR method utilizing a universal primer pair, followed by amplification with species-specific primers, would allow rapid detection of Eubacterium species in human feces.

  15. Prenatal detection of aneuploidies using fluorescence in situ ...

    Indian Academy of Sciences (India)

    Unknown

    hybridization; MSAFP, maternal serum alpha-feto protein. J. Biosci. ... The results of FISH were in conformity with the results of cytogenetic analysis ... tional burden on the patient and/or health-care provider. ... there has also been pressure towards its utilization in low ..... (chorionic villus and amniotic fluid) and FISH on meta-.

  16. Rapid, portable detection of endocrine disrupting chemicals through ligand-nuclear hormone receptor interactions.

    Science.gov (United States)

    Hunt, J Porter; Schinn, Song-Min; Jones, Matthew D; Bundy, Bradley C

    2017-12-04

    Endocrine disrupting chemicals (EDC) are structurally diverse compounds that can interact with nuclear hormone receptors, posing significant risk to human and ecological health. Unfortunately, many conventional biosensors have been too structure-specific, labor-intensive or laboratory-oriented to detect broad ranges of EDC effectively. Recently, several technological advances are providing more rapid, portable, and affordable detection of endocrine-disrupting activity through ligand-nuclear hormone receptor interactions. Here, we overview these recent advances applied to EDC biosensors - including cell lyophilization, cell immobilization, cell-free systems, smartphone-based signal detection, and improved competitive binding assays.

  17. Screen-printed fluorescent sensors for rapid and sensitive anthrax biomarker detection

    International Nuclear Information System (INIS)

    Lee, Inkyu; Oh, Wan-Kyu; Jang, Jyongsik

    2013-01-01

    Highlights: •We fabricated flexible anthrax sensors with a simple screen-printing method. •The sensors selectively detected B. anthracis biomarker. •The sensors provide the visible alarm against anthrax attack. -- Abstract: Since the 2001 anthrax attacks, efforts have focused on the development of an anthrax detector with rapid response and high selectivity and sensitivity. Here, we demonstrate a fluorescence sensor for detecting anthrax biomarker with high sensitivity and selectivity using a screen-printing method. A lanthanide–ethylenediamine tetraacetic acid complex was printed on a flexible polyethersulfone film. Screen-printing deposition of fluorescent detecting moieties produced fluorescent patterns that acted as a visual alarm against anthrax

  18. Rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with heterodyne detection.

    Science.gov (United States)

    Hiramatsu, Kotaro; Luo, Yizhi; Ideguchi, Takuro; Goda, Keisuke

    2017-11-01

    High-speed Raman spectroscopy has become increasingly important for analyzing chemical dynamics in real time. To address the need, rapid-scan Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy has been developed to realize broadband CARS measurements at a scan rate of more than 20,000 scans/s. However, the detection sensitivity of FT-CARS spectroscopy is inherently low due to the limited number of photons detected during each scan. In this Letter, we show our experimental demonstration of enhanced sensitivity in rapid-scan FT-CARS spectroscopy by heterodyne detection. Specifically, we implemented heterodyne detection by superposing the CARS electric field with an external local oscillator (LO) for their interference. The CARS signal was amplified by simply increasing the power of the LO without the need for increasing the incident power onto the sample. Consequently, we achieved enhancement in signal intensity and the signal-to-noise ratio by factors of 39 and 5, respectively, compared to FT-CARS spectroscopy with homodyne detection. The sensitivity-improved rapid-scan FT-CARS spectroscopy is expected to enable the sensitive real-time observation of chemical dynamics in a broad range of settings, such as combustion engines and live biological cells.

  19. Quantum Dot-Fullerene Based Molecular Beacon Nanosensors for Rapid, Highly Sensitive Nucleic Acid Detection.

    Science.gov (United States)

    Liu, Ye; Kannegulla, Akash; Wu, Bo; Cheng, Li-Jing

    2018-05-15

    Spherical fullerene (C 60 ) can quench the fluorescence of a quantum dot (QD) through energy transfer and charge transfer processes, with the quenching efficiency regulated by the number of proximate C 60 on each QD. With the quenching property and its small size compared with other nanoparticle-based quenchers, it is advantageous to group a QD reporter and multiple C 60 -labeled oligonucleotide probes to construct a molecular beacon (MB) probe for sensitive, robust nucleic acid detection. We demonstrated a rapid, high-sensitivity DNA detection method using the nanosensors composed of QD-C 60 based MBs carried by magnetic nanoparticles (MNPs). The assay was accelerated by first dispersing the nanosensors in analytes for highly efficient DNA capture resulting from short-distance 3-dimensional diffusion of targets to the sensor surface and then concentrating the nanosensors to a substrate by magnetic force to amplify the fluorescence signal for target quantification. The enhanced mass transport enabled a rapid detection (< 10 min) with a small sample volume (1-10 µl). The high signal-to-noise ratio produced by the QD-C 60 pairs and magnetic concentration yielded a detection limit of 100 fM (~106 target DNA copies for a 10 µl analyte). The rapid, sensitive, label-free detection method will benefit the applications in point-of-care molecular diagnostic technologies.

  20. Multifunctional Nanotechnology-Enabled Sensors for Rapid Capture and Detection of Pathogens.

    Science.gov (United States)

    Mustafa, Fatima; Hassan, Rabeay Y A; Andreescu, Silvana

    2017-09-15

    Nanomaterial-based sensing approaches that incorporate different types of nanoparticles (NPs) and nanostructures in conjunction with natural or synthetic receptors as molecular recognition elements provide opportunities for the design of sensitive and selective assays for rapid detection of contaminants. This review summarizes recent advancements over the past ten years in the development of nanotechnology-enabled sensors and systems for capture and detection of pathogens. The most common types of nanostructures and NPs, their modification with receptor molecules and integration to produce viable sensing systems with biorecognition, amplification and signal readout are discussed. Examples of all-in-one systems that combine multifunctional properties for capture, separation, inactivation and detection are also provided. Current trends in the development of low-cost instrumentation for rapid assessment of food contamination are discussed as well as challenges for practical implementation and directions for future research.

  1. Portable microfluidic raman system for rapid, label-free early disease signature detection

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meiye [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Davis, Ryan Wesley [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Hatch, Anson [Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2015-09-01

    In the early stages of infection, patients develop non-specific or no symptoms at all. While waiting for identification of the infectious agent, precious window of opportunity for early intervention is lost. The standard diagnostics require affinity reagents and sufficient pathogen titers to reach the limit of detection. In the event of a disease outbreak, triaging the at-risk population rapidly and reliably for quarantine and countermeasure is more important than the identification of the pathogen by name. To expand Sandia's portfolio of Biological threat management capabilities, we will utilize Raman spectrometry to analyze immune subsets in whole blood to rapidly distinguish infected from non-infected, and bacterial from viral infection, for the purpose of triage during an emergency outbreak. The goal of this one year LDRD is to determine whether Raman spectroscopy can provide label-free detection of early disease signatures, and define a miniaturized Raman detection system meeting requirements for low- resource settings.

  2. Rapid Detection of Enterobacter Sakazakii in milk Powder using amino modified chitosan immunomagnetic beads.

    Science.gov (United States)

    Zhu, Yinglian; Wang, Dongfeng

    2016-12-01

    Chitosan immunomagnetic beads (CIBs) were first prepared through converting hydroxyl groups of natural polymer material-chitosan into amino groups using epichlorohydrin and ethylenediamine as modification agent and then coupling with polyclonal antibodies of Enterobacter sakazakii using glutaraldehyde as cross-linking agent. The beads before coupling with antibodies were characterized by magnetic property measurement, FTIR, SEM and XRD technologies. In the assay a natural polysaccharide-chitosan, which has good biological and chemical properties such as non-toxicity, biocompatibility and high chemical reactivity was first used for synthesis of immunomagnetic beads. The detection method first established in this paper that combined the beads with chromogenic medium together to rapid detect E. sakazakii in milk powder could greatly improve the detection specificity and working efficiency. The beads exhibited a maximum capturing capacity of 1×10 6 cfu/g with the detection sensitivity of 4cfu/g. The results demonstrate that the assay is a straightforward, specific and sensitive alternative for rapid detection of E.sakazakii in food matrix. The total analysis time was as little as about 25h, which greatly shorten the detection time. The method can provides new ideas not only to preparation technique of immunomagnetic beads but to imunne detection technique in food safety. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Biocontrol and Rapid Detection of Food-borne Pathogens Using Bacteriophages and Endolysins

    Directory of Open Access Journals (Sweden)

    Jaewoo eBai

    2016-04-01

    Full Text Available Bacteriophages have been suggested as natural food preservatives as well as rapid detection materials for food-borne pathogens in various foods. Since Listeria monocytogenes-targeting phage cocktail (ListShield was approved for applications in foods, numerous phages have been screened and experimentally characterized for phage applications in foods. A single phage and phage cocktail treatments to various foods contaminated with food-borne pathogens including E. coli O157:H7, Salmonella enterica, Campylobacter jejuni, Listeria monocytogenes, Staphylococcus aureus, Cronobacter sakazakii, and Vibrio spp. revealed that they have great potential to control various food-borne pathogens and may be alternative for conventional food preservatives. In addition, phage-derived endolysins with high host specificity and host lysis activities may be preferred to food applications rather than phages. For rapid detection of food-borne pathogens, cell-wall binding domains (CBDs from endolysins have been suggested due to their high host-specific binding. Fluorescence-tagged CBDs have been successfully evaluated and suggested to be alternative materials of expensive antibodies for various detection applications. Most recently, reporter phage systems have been developed and tested to confirm their usability and accuracy for specific detection. These systems revealed some advantages like rapid detection of only viable pathogenic cells without interference by food components in a very short reaction time, suggesting that these systems may be suitable for monitoring of pathogens in foods. Consequently, phage is the next-generation biocontrol agent as well as rapid detection tool to confirm and even identify the food-borne pathogens present in various foods.

  4. Highly sensitive multianalyte immunochromatographic test strip for rapid chemiluminescent detection of ractopamine and salbutamol

    International Nuclear Information System (INIS)

    Gao, Hongfei; Han, Jing; Yang, Shijia; Wang, Zhenxing; Wang, Lin; Fu, Zhifeng

    2014-01-01

    Graphical abstract: A multianalyte immunochromatographic test strip was developed for the rapid detection of two β 2 -agonists. Due to the application of chemiluminescent detection, this quantitative method shows much higher sensitivity. - Highlights: • An immunochromatographic test strip was developed for detection of multiple β 2 -agonists. • The whole assay process can be completed within 20 min. • The proposed method shows much higher sensitivity due to the application of CL detection. • It is a portable analytical tool suitable for field analysis and rapid screening. - Abstract: A novel immunochromatographic assay (ICA) was proposed for rapid and multiple assay of β 2 -agonists, by utilizing ractopamine (RAC) and salbutamol (SAL) as the models. Owing to the introduction of chemiluminescent (CL) approach, the proposed protocol shows much higher sensitivity. In this work, the described ICA was based on a competitive format, and horseradish peroxidase-tagged antibodies were used as highly sensitive CL probes. Quantitative analysis of β 2 -agonists was achieved by recording the CL signals of the probes captured on the two test zones of the nitrocellulose membrane. Under the optimum conditions, RAC and SAL could be detected within the linear ranges of 0.50–40 and 0.10–50 ng mL −1 , with the detection limits of 0.20 and 0.040 ng mL −1 (S/N = 3), respectively. The whole process for multianalyte immunoassay of RAC and SAL can be completed within 20 min. Furthermore, the test strip was validated with spiked swine urine samples and the results showed that this method was reliable in measuring β 2 -agonists in swine urine. This CL-based multianalyte test strip shows a series of advantages such as high sensitivity, ideal selectivity, simple manipulation, high assay efficiency and low cost. Thus, it opens up new pathway for rapid screening and field analysis, and shows a promising prospect in food safety

  5. A portable cell-based optical detection device for rapid detection of Listeria and Bacillus toxins

    Science.gov (United States)

    Banerjee, Pratik; Banada, Padmapriya P.; Rickus, Jenna L.; Morgan, Mark T.; Bhunia, Arun K.

    2005-11-01

    A mammalian cell-based optical biosensor was built to detect pathogenic Listeria and Bacillus species. This sensor measures the ability of the pathogens to infect and induce cytotoxicity on hybrid lymphocyte cell line (Ped-2E9) resulting in the release of alkaline phosphatase (ALP) that can be detected optically using a portable spectrophotometer. The Ped-2E9 cells were encapsulated in collagen gel matrices and grown in 48-well plates or in specially designed filtration tube units. Toxin preparations or bacterial cells were introduced and ALP release was assayed after 3-5 h. Pathogenic L. monocytogenes strains or the listeriolysin toxins preparation showed cytotoxicity ranging from 55% - 92%. Toxin preparations (~20 μg/ml) from B. cereus strains showed 24 - 98% cytotoxicity. In contrast, a non-pathogenic L. innocua (F4247) and a B. substilis induced only 2% and 8% cytotoxicity, respectively. This cell-based detection device demonstrates its ability to detect the presence of pathogenic Listeria and Bacillus species and can potentially be used onsite for food safety or in biosecurity application.

  6. Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation.

    Science.gov (United States)

    Tarte, Karin; Gaillard, Julien; Lataillade, Jean-Jacques; Fouillard, Loic; Becker, Martine; Mossafa, Hossein; Tchirkov, Andrei; Rouard, Hélène; Henry, Catherine; Splingard, Marie; Dulong, Joelle; Monnier, Delphine; Gourmelon, Patrick; Gorin, Norbert-Claude; Sensebé, Luc

    2010-02-25

    Clinical-grade human mesenchymal stromal cells (MSCs) have been expanded in vitro for tissue engineering or immunoregulatory purposes without standardized culture conditions or release criteria. Although human MSCs show poor susceptibility for oncogenic transformation, 2 recent studies described their capacity to accumulate chromosomal instability and to give rise to carcinoma in immunocompromised mice after long-term culture. We thus investigated the immunologic and genetic features of MSCs expanded with fetal calf serum and fibroblast growth factor or with platelet lysate in 4 cell-therapy facilities during 2 multicenter clinical trials. Cultured MSCs showed a moderate expression of human leukocyte antigen-DR without alteration of their low immunogenicity or their immunomodulatory capacity. Moreover, some transient and donor-dependent recurring aneuploidy was detected in vitro, independently of the culture process. However, MSCs with or without chromosomal alterations showed progressive growth arrest and entered senescence without evidence of transformation either in vitro or in vivo.

  7. Evaluation of a rapid immunodiagnostic test kit for detection of African lyssaviruses from brain material

    Directory of Open Access Journals (Sweden)

    W. Markotter

    2009-09-01

    Full Text Available Rapid immunodiagnostic test kit was evaluated against a selection of isolates of lyssavirus genotypes occurring in Africa. The test was carried out in parallel comparison with the fluorescent antibody test (FAT and isolates representing previously established phylogenetic groups from each genotype were included. The specificity of the rapid immunodiagnostic test compared favourably with the FAT and was found to detect all representatives of genotypes 1, 2, 3 and 4 in brain samples of either field cases or suckling mouse brain inoculates.

  8. Application of a rapid screening method to detect irradiated meat in Brazil

    International Nuclear Information System (INIS)

    Villavicencio, A.L.C.H.; Mancini-Filho, J.; Delincee, H.

    2000-01-01

    Based on the enormous potential for food irradiation in Brazil, and to ensure free consumer choice, there is a need to find a convenient and rapid method for detection of irradiated food. Since treatment with ionising radiation causes DNA fragmentation, the analysis of DNA damage might be promising. In this paper, the DNA Comet Assay was used to identify exotic meat (boar, jacare and capybara), irradiated with 60 Co gamma rays. The applied radiation doses were 0, 1.5, 3.0 and 4.5 kGy. Analysis of the DNA migration enabled a rapid identification of the radiation treatment

  9. A recombinase polymerase amplification assay for rapid detection of Crimean-Congo Haemorrhagic fever Virus infection.

    Directory of Open Access Journals (Sweden)

    Laura C Bonney

    2017-10-01

    Full Text Available Crimean-Congo Haemorrhagic fever Virus (CCHFV is a rapidly emerging vector-borne pathogen and the cause of a virulent haemorrhagic fever affecting large parts of Europe, Africa, the Middle East and Asia.An isothermal recombinase polymerase amplification (RPA assay was successfully developed for molecular detection of CCHFV. The assay showed rapid (under 10 minutes detection of viral extracts/synthetic virus RNA of all 7 S-segment clades of CCHFV, with high target specificity. The assay was shown to tolerate the presence of inhibitors in crude preparations of mock field samples, indicating that this assay may be suitable for use in the field with minimal sample preparation. The CCHFV RPA was successfully used to screen and detect CCHFV positives from a panel of clinical samples from Tajikistan.The assay is a rapid, isothermal, simple-to-perform molecular diagnostic, which can be performed on a light, portable real-time detection device. It is ideally placed therefore for use as a field-diagnostic or in-low resource laboratories, for monitoring of CCHF outbreaks at the point-of-need, such as in remote rural regions in affected countries.

  10. Rapid detection of urinary polyomavirus BK by heterodyne-based surface plasmon resonance biosensor

    Science.gov (United States)

    Su, Li-Chen; Tian, Ya-Chung; Chang, Ying-Feng; Chou, Chien; Lai, Chao-Sung

    2014-01-01

    In renal transplant patients, immunosuppressive therapy may result in the reactivation of polyomavirus BK (BKV), leading to polyomavirus-associated nephropathy (PVAN), which inevitably causes allograft failure. Since the treatment outcomes of PVAN remain unsatisfactory, early identification and continuous monitoring of BKV reactivation and reduction of immunosuppressants are essential to prevent PVAN development. The present study demonstrated that the developed dual-channel heterodyne-based surface plasmon resonance (SPR) biosensor is applicable for the rapid detection of urinary BKV. The use of a symmetrical reference channel integrated with the poly(ethylene glycol)-based low-fouling self-assembled monolayer to reduce the environmental variations and the nonspecific noise was proven to enhance the sensitivity in urinary BKV detection. Experimentally, the detection limit of the biosensor for BKV detection was estimated to be around 8500 copies/mL. In addition, urine samples from five renal transplant patients were tested to rapidly distinguish PVAN-positive and PVAN-negative renal transplant patients. By virtue of its simplicity, rapidity, and applicability, the SPR biosensor is a remarkable potential to be used for continuous clinical monitoring of BKV reactivation.

  11. Amperometric biosensor based on a single antibody of dual function for rapid detection of Streptococcus agalactiae.

    Science.gov (United States)

    Vásquez, Gersson; Rey, Alba; Rivera, Camilo; Iregui, Carlos; Orozco, Jahir

    2017-01-15

    Pathogenic bacteria are responsible for several diseases in humans and in a variety of hosts. Detection of pathogenic bacteria is imperative to avoid and/or fight their potential harmful effects. This work reports on the first amperometric biosensor for the rapid detection of Streptococcus agalactiae (S. agalactiae). The biosensor relies on a single biotinylated antibody that immobilizes the bacteria on a screen-printed carbon electrode while is further linked to a streptavidin-conjugated HRP reporter. The biotinylated antibody provides selectivity to the biosensor whereas serves as an anchoring point to the reporter for further amplification of the electrochemical signal. The resultant immunosensor is simple, responds rapidly, and allows for the selective and highly sensitive quantification of S. agalactiae cells in a concentration range of 10 1 -10 7 CFUml -1 , with a detection limit of 10CFUml -1 . The approach not only enables a rapid detection and quantification of S. agalactiae in environmental samples but also opens up new opportunities for the simple fabrication of electrochemical immunosensors for different target pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Rapid antigen detection test for respiratory syncytial virus diagnosis as a diagnostic tool.

    Science.gov (United States)

    Mesquita, Flávio da Silva; Oliveira, Danielle Bruna Leal de; Crema, Daniela; Pinez, Célia Miranda Nunes; Colmanetti, Thaís Cristina; Thomazelli, Luciano Matsumia; Gilio, Alfredo Elias; Vieira, Sandra Elisabeth; Martinez, Marina Baquerizo; Botosso, Viviane Fongaro; Durigon, Edison Luiz

    The aim of this study was to evaluate the QuickVue ® RSV Test Kit (QUIDEL Corp, CA, USA) as a screening tool for respiratory syncytial virus in children with acute respiratory disease in comparison with the indirect immunofluorescence assay as gold standard. In Brazil, rapid antigen detection tests for respiratory syncytial virus are not routinely utilized as a diagnostic tool, except for the diagnosis of dengue and influenza. The authors retrospectively analyzed 486 nasopharyngeal aspirate samples from children under age 5 with acute respiratory infection, between December 2013 and August 2014, the samples were analyzed by indirect immunofluorescence assay and QuickVue ® RSV Test kit. Samples with discordant results were analyzed by real time PCR and nucleotide sequencing. From 313 positive samples by immunofluorescence assays, 282 (90%) were also positive by the rapid antigen detection test, two were positive only by rapid antigen detection test, 33 were positive only by immunofluorescence assays, and 171 were positive by both methods. The 35 samples with discordant results were analyzed by real time PCR; the two samples positive only by rapid antigen detection test and the five positive only by immunofluorescence assays were also positive by real time PCR. There was no relation between the negativity by QuickVue ® RSV Test and viral load or specific strain. The QuickVue ® RSV Test showed sensitivity of 90%, specificity of 98.8%, predictive positive value of 99.3%, and negative predictive value of 94.6%, with accuracy of 93.2% and agreement κ index of 0.85 in comparison to immunofluorescence assay. This study demonstrated that the QuickVue ® RSV Test Kit can be effective in early detection of Respiratory syncytial virus in nasopharyngeal aspirate and is reliable for use as a diagnostic tool in pediatrics. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  13. Rapid antigen detection test for respiratory syncytial virus diagnosis as a diagnostic tool,

    Directory of Open Access Journals (Sweden)

    Flávio da Silva Mesquita

    Full Text Available Abstract Objective: The aim of this study was to evaluate the QuickVue® RSV Test Kit (QUIDEL Corp, CA, USA as a screening tool for respiratory syncytial virus in children with acute respiratory disease in comparison with the indirect immunofluorescence assay as gold standard. In Brazil, rapid antigen detection tests for respiratory syncytial virus are not routinely utilized as a diagnostic tool, except for the diagnosis of dengue and influenza. Methods: The authors retrospectively analyzed 486 nasopharyngeal aspirate samples from children under age 5 with acute respiratory infection, between December 2013 and August 2014, the samples were analyzed by indirect immunofluorescence assay and QuickVue® RSV Test kit. Samples with discordant results were analyzed by real time PCR and nucleotide sequencing. Results: From 313 positive samples by immunofluorescence assays, 282 (90% were also positive by the rapid antigen detection test, two were positive only by rapid antigen detection test, 33 were positive only by immunofluorescence assays, and 171 were positive by both methods. The 35 samples with discordant results were analyzed by real time PCR; the two samples positive only by rapid antigen detection test and the five positive only by immunofluorescence assays were also positive by real time PCR. There was no relation between the negativity by QuickVue® RSV Test and viral load or specific strain. The QuickVue® RSV Test showed sensitivity of 90%, specificity of 98.8%, predictive positive value of 99.3%, and negative predictive value of 94.6%, with accuracy of 93.2% and agreement κ index of 0.85 in comparison to immunofluorescence assay. Conclusions: This study demonstrated that the QuickVue® RSV Test Kit can be effective in early detection of Respiratory syncytial virus in nasopharyngeal aspirate and is reliable for use as a diagnostic tool in pediatrics.

  14. Use of Tethered Enzymes as a Platform Technology for Rapid Analyte Detection

    Science.gov (United States)

    Cohen, Roy; Lata, James P.; Lee, Yurim; Hernández, Jean C. Cruz; Nishimura, Nozomi; Schaffer, Chris B.; Mukai, Chinatsu; Nelson, Jacquelyn L.; Brangman, Sharon A.; Agrawal, Yash; Travis, Alexander J.

    2015-01-01

    Background Rapid diagnosis for time-sensitive illnesses such as stroke, cardiac arrest, and septic shock is essential for successful treatment. Much attention has therefore focused on new strategies for rapid and objective diagnosis, such as Point-of-Care Tests (PoCT) for blood biomarkers. Here we use a biomimicry-based approach to demonstrate a new diagnostic platform, based on enzymes tethered to nanoparticles (NPs). As proof of principle, we use oriented immobilization of pyruvate kinase (PK) and luciferase (Luc) on silica NPs to achieve rapid and sensitive detection of neuron-specific enolase (NSE), a clinically relevant biomarker for multiple diseases ranging from acute brain injuries to lung cancer. We hypothesize that an approach capitalizing on the speed and catalytic nature of enzymatic reactions would enable fast and sensitive biomarker detection, suitable for PoCT devices. Methods and findings We performed in-vitro, animal model, and human subject studies. First, the efficiency of coupled enzyme activities when tethered to NPs versus when in solution was tested, demonstrating a highly sensitive and rapid detection of physiological and pathological concentrations of NSE. Next, in rat stroke models the enzyme-based assay was able in minutes to show a statistically significant increase in NSE levels in samples taken 1 hour before and 0, 1, 3 and 6 hours after occlusion of the distal middle cerebral artery. Finally, using the tethered enzyme assay for detection of NSE in samples from 20 geriatric human patients, we show that our data match well (r = 0.815) with the current gold standard for biomarker detection, ELISA—with a major difference being that we achieve detection in 10 minutes as opposed to the several hours required for traditional ELISA. Conclusions Oriented enzyme immobilization conferred more efficient coupled activity, and thus higher assay sensitivity, than non-tethered enzymes. Together, our findings provide proof of concept for using

  15. Use of Tethered Enzymes as a Platform Technology for Rapid Analyte Detection.

    Directory of Open Access Journals (Sweden)

    Roy Cohen

    Full Text Available Rapid diagnosis for time-sensitive illnesses such as stroke, cardiac arrest, and septic shock is essential for successful treatment. Much attention has therefore focused on new strategies for rapid and objective diagnosis, such as Point-of-Care Tests (PoCT for blood biomarkers. Here we use a biomimicry-based approach to demonstrate a new diagnostic platform, based on enzymes tethered to nanoparticles (NPs. As proof of principle, we use oriented immobilization of pyruvate kinase (PK and luciferase (Luc on silica NPs to achieve rapid and sensitive detection of neuron-specific enolase (NSE, a clinically relevant biomarker for multiple diseases ranging from acute brain injuries to lung cancer. We hypothesize that an approach capitalizing on the speed and catalytic nature of enzymatic reactions would enable fast and sensitive biomarker detection, suitable for PoCT devices.We performed in-vitro, animal model, and human subject studies. First, the efficiency of coupled enzyme activities when tethered to NPs versus when in solution was tested, demonstrating a highly sensitive and rapid detection of physiological and pathological concentrations of NSE. Next, in rat stroke models the enzyme-based assay was able in minutes to show a statistically significant increase in NSE levels in samples taken 1 hour before and 0, 1, 3 and 6 hours after occlusion of the distal middle cerebral artery. Finally, using the tethered enzyme assay for detection of NSE in samples from 20 geriatric human patients, we show that our data match well (r = 0.815 with the current gold standard for biomarker detection, ELISA-with a major difference being that we achieve detection in 10 minutes as opposed to the several hours required for traditional ELISA.Oriented enzyme immobilization conferred more efficient coupled activity, and thus higher assay sensitivity, than non-tethered enzymes. Together, our findings provide proof of concept for using oriented immobilization of active

  16. Aneuploidy in benign tumors and nonneoplastic lesions of musculoskeletal tissues.

    Science.gov (United States)

    Alho, A; Skjeldal, S; Pettersen, E O; Melvik, J E; Larsen, T E

    1994-02-15

    Aneuploidy in DNA flow cytometry (FCM) of musculoskeletal tumors is generally considered to be a sign of malignancy. Previously, giant cell tumor of the bone has been reported to contain aneuploid (near-diploid) DNA stemlines. Otherwise, only spordic cases have been reported. The authors wanted to study the relationships among DNA FCM, histology, and clinical course of nonmalignant musculoskeletal lesions. Twenty-eight histologically benign tumors and seven nonneoplastic lesions were subjected to DNA FCM: After tissue preparation mechanically and with ribonuclease and trypsin, the isolated nuclei were stained with propidium iodine using chicken and rainbow trout erythrocytes as controls. In the DNA FCM histograms, ploidy and cell cycle fractions were determined using a computerized mathematical model. The histologic diagnoses were made without knowledge of the DNA FCM results. Aneuploidy was found in eight lesions. A shoulder in the diploid peak, suggesting a diploid and a near-diploid population, was found in DNA histograms of a condensing osteitis of the clavicle (a benign inflammatory process) and of a giant cell tumor of bone. The latter lesion also had a tetraploid population. Six benign tumors--two enchondromas, one osteochondroma, one subcutaneous and one intramuscular lipoma, and a calcifying aponeurotic fibroma--showed clear aneuploidy with separate peaks. The S-phase fraction was less than 10% in all cases. The highest aneuploid population, DNA index = 1.70, in a subcutaneous lipoma, was small, with an undetectable S phase. Despite nonradical operations in seven lesions, no recurrences were observed during a median follow-up of 49 months (range, 28-73 months). Small aneuploid populations with low DNA synthetic activity may be compatible with a benign histologic picture and uneventful clinical course of the musculoskeletal lesion.

  17. Rapid Newcastle Disease Virus Detection Based on Loop-Mediated Isothermal Amplification and Optomagnetic Readout

    DEFF Research Database (Denmark)

    Tian, Bo; Ma, Jing; Zardán Gómez de la Torre, Teresa

    2016-01-01

    Rapid and sensitive diagnostic methods based on isothermal amplification are ideal substitutes for PCR in out-of-lab settings. However, there are bottlenecks in terms of establishing low-cost and user-friendly readout methods for isothermal amplification schemes. Combining the high amplification...... efficiency of loop-mediated isothermal amplification (LAMP) with an optomagnetic nanoparticle-based readout system, we demonstrate ultrasensitive and rapid detection of Newcastle disease virus RNA. Biotinylated amplicons of LAMP and reverse transcription LAMP (RT-LAMP) bind to streptavidin-coated magnetic...... nanoparticles (MNPs) resulting in a dramatical increase in the hydrodynamic size of the MNPs. This increase was measured by an optomagnetic readout system and provided quantitative information on the amount of LAMP target sequence. Our assay resulted in a limit of detection of 10 aM of target sequence...

  18. Rapid determination of ampicillin in bovine milk by liquid chromatography with fluorescence detection

    Energy Technology Data Exchange (ETDEWEB)

    Ang, C.Y.W.; Luo, Wenhong [National Center for Toxicological Research, Jefferson, AR (United States)

    1997-01-01

    A rapid and sensitive liquid chromatographic (LC) method was developed for the determination of ampicillin residues in raw bovine milk, processed skim milk, and pasteurized, homogenized whole milk with vitamin D. Milk samples were deproteinized with trichloroacetic acid (TCA) and acetonictrile. After centrifugation, the clear supernatant was reacted with formaldehyde and TCA under heat. The major fluorescent derivative of ampicillin was then determined by reversed-phase LC with fluorescence detection. Average recoveries of ampicillin fortified at 5, 10, and 20 ppb (ng/mL) were all >85% with coefficients of variation <10%. Limits of detection ranged from 0.31 to 0.51 ppb and limits of quantitation, from 0.66 to 1.2 ppb. After appropriate validation, this method should be suitable for rapid analysis of milk for ampicillin residues at the tolerance level of 10 ppb. 16 refs., 4 figs., 3 tabs.

  19. Development of an immunochromatographic assay for the rapid detection of bromoxynil in water

    International Nuclear Information System (INIS)

    Zhu Jiang; Chen Wenchao; Lu Yitong; Cheng Guohua

    2008-01-01

    A rapid immunochromatographic one-step strip test was developed to specifically determine bromoxynil in surface and drinking water by competitive inhibition with the nano colloidal gold-conjugated monoclonal antibody (mAb). Bromoxynil standard samples of 0.01-10 mg L -1 in water were tested by this method and the visual limit was 0.06 mg L -1 . The assay only required 5 min and one-step by dispensing a drop of sample solution onto a strip. Parallel analysis of water samples with bromoxynil showed comparable results from one-step strip test and ELISA. Therefore, the one-step strip test is very useful as a screening method for qualitative detection of bromoxynil in water. - One-step strip test is a rapid method for qualitative detection of bromoxynil residues in water

  20. Rapid antibiotic efficacy screening with aluminum oxide nanoporous membrane filter-chip and optical detection system.

    Science.gov (United States)

    Tsou, Pei-Hsiang; Sreenivasappa, Harini; Hong, Sungmin; Yasuike, Masayuki; Miyamoto, Hiroshi; Nakano, Keiyo; Misawa, Takeyuki; Kameoka, Jun

    2010-09-15

    We have developed a filter-chip and optical detection system for rapid antibiotic efficacy screening. The filter-chip consisted of a 1-mL reservoir and an anodic aluminum oxide (AAO) nanoporous membrane. Sample solution with liquid growth media, bacteria, and antibiotics was incubated in the reservoir for a specific period of time. The number of live bacteria on the surface of membrane was counted after the incubation with antibiotics and filtration. Using this biosensing system, we have demonstrated a 1-h antibiotic screening for patients' clinical samples, significantly faster than the conventional antibiotic susceptibility tests that typically take more than 24h. This rapid screening nature makes the filter-chip and detection system ideal for tailoring antibiotic treatment to individual patients by reducing the microbial antibiotic resistance, and improving the survival rate for patients suffering from postoperative infections. Published by Elsevier B.V.

  1. Rapid Detection of Ricin in Serum Based on Cu-Chelated Magnetic Beads Using Mass Spectrometry

    Science.gov (United States)

    Zhao, Yong-Qiang; Song, Jian; Wang, Hong-Li; Xu, Bin; Liu, Feng; He, Kun; Wang, Na

    2016-04-01

    The protein toxin ricin obtained from castor bean plant (Ricinus communis) seeds is a potent biological warfare agent due to its ease of availability and acute toxicity. In this study, we demonstrated a rapid and simple method to detect ricin in serum in vitro. The ricin was mixed with serum and digested by trypsin, then all the peptides were efficiently extracted using Cu-chelated magnetic beads and were detected with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The specific ricin peptides were identified by Nanoscale Ultra Performance liquid chromatography coupled to tandem mass spectrometry according to their sequences. The assay required 2.5 hours, and a characteristic peptide could be detected down to 4 ng/μl and used as a biomarker to detect ricin in serum. The high sensitivity and simplicity of the procedure makes it valuable in clinical practice.

  2. An integrated micro-chip for rapid detection of magnetic particles

    KAUST Repository

    Gooneratne, Chinthaka P.

    2012-03-09

    This paper proposes an integrated micro-chip for the manipulation and detection of magnetic particles (MPs). A conducting ring structure is used to manipulate MPs toward giant magnetoresistance(GMR) sensing elements for rapid detection. The GMRsensor is fabricated in a horseshoe shape in order to detect the majority of MPs that are trapped around the conducting structure. The GMR sensing elements are connected in a Wheatstone bridge circuit topology for optimum noise suppression. Full fabrication details of the micro-chip, characterization of the GMRsensors, and experimental results with MPs are presented in this paper. Experimental results showed that the micro-chip can detect MPs from low concentration samples after they were guided toward the GMRsensors by applying current to the conducting ring structure.

  3. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens

    DEFF Research Database (Denmark)

    Kant, Krishna; Shahbazi, Mohammad-Ali; Dave, Vivek Priy

    2018-01-01

    and improve the limit of detections. Integration of pathogen capturing bio-receptors on microfluidic devices is a crucial step, which can facilitate recognition abilities in harsh chemical and physical conditions, offering a great commercial benefit to the food-manufacturing sector. This article reviews...... diagnosis competences. This has prompted researchers to call the current status of detection approaches into question and leverage new technologies for superior pathogen sensing outcomes. Novel strategies mainly rely on incorporating all the steps from sample preparation to detection in miniaturized devices...... recent advances in current state-of-the-art of sample preparation and concentration from food matrices with focus on bacterial capturing methods and sensing technologies, along with their advantages and limitations when integrated into microfluidic devices for online rapid detection of pathogens in foods...

  4. Rapid Detection of Salmonella in Food and Beverage Samples by Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Radji, M.

    2010-01-01

    Full Text Available Polymerase chain reaction (PCR assay had been used to detect Salmonella in food and beverage samples using suitable primers which are based on specific invA gene of Salmonella. Twenty nine samples were collected from street food counters and some canteens in Margonda Street, Depok, West Java, Indonesia. It was found that five of twenty nine samples were detected to contain Salmonella and showed the presence of the amplified product of the size 244 bp. The method of PCR demonstrated the specificity of invA primers for detection of Salmonella as confirmed by biochemical and serological assay. The results of this study revealed that PCR was a rapid and useful tool for detection of Salmonella in food and beverage samples.

  5. Lab on a chip sensor for rapid detection and antibiotic resistance determination of Staphylococcus aureus.

    Science.gov (United States)

    Abeyrathne, Chathurika D; Huynh, Duc H; Mcintire, Thomas W; Nguyen, Thanh C; Nasr, Babak; Zantomio, Daniela; Chana, Gursharan; Abbott, Iain; Choong, Peter; Catton, Mike; Skafidas, Efstratios

    2016-03-21

    The Gram-positive bacterium, Staphylococcus aureus (S. aureus), is a major pathogen responsible for a variety of infectious diseases ranging from cellulitis to more serious conditions such as septic arthritis and septicaemia. Timely treatment with appropriate antibiotic therapy is essential to ensure clinical defervescence and to prevent further complications such as infective endocarditis or organ impairment due to septic shock. To date, initial antibiotic choice is empirical, using a "best guess" of likely organism and sensitivity- an approach adopted due to the lack of rapid identification methods for bacteria. Current culture based methods take up to 5 days to identify the causative bacterial pathogen and its antibiotic sensitivity. This paper provides proof of concept for a biosensor, based on interdigitated electrodes, to detect the presence of S. aureus and ascertain its sensitivity to flucloxacillin rapidly (within 2 hours) in a cost effective manner. The proposed method is label-free and uses non-faradic measurements. This is the first study to successfully employ interdigitated electrodes for the rapid detection of antibiotic resistance. The method described has important potential outcomes of faster definitive antibiotic treatment and more rapid clinical response to treatment.

  6. A biosensor platform for rapid detection of E. coli in drinking water.

    Science.gov (United States)

    Hesari, Nikou; Alum, Absar; Elzein, Mohamad; Abbaszadegan, Morteza

    2016-02-01

    There remains a need for rapid, specific and sensitive assays for the detection of bacterial indicators for water quality monitoring. In this study, a strategy for rapid detection of Escherichia coli in drinking water has been developed. This strategy is based on the use of the substrate 4-methylumbelliferyl-β-d-glucuronide (MUG), which is hydrolyzed rapidly by the action of E. coli β-d-glucuronidase (GUD) enzyme to yield a fluorogenic 4-methylumbelliferone (4-MU) product that can be quantified and related to the number of E. coli cells present in water samples. In this study, the detection time required for the biosensor response ranged between 20 and 120 min, depending on the number of bacteria in the sample. This approach does not need extensive sample processing with a rapid detection capability. The specificity of the MUG substrate was examined in both, pure cultures of non-target bacterial genera such as Klebsiella, Salmonella, Enterobacter and Bacillus. Non-target substrates that included 4-methylumbelliferyl-β-d-galactopyranoside (MUGal) and l-leucine β-naphthylamide aminopeptidase (LLβ-N) were also investigated to identify nonspecific patterns of enzymatic activities in E. coli. GUD activity was found to be specific for E. coli and no further enzymatic activity was detected by other species. In addition, fluorescence assays were performed for the detection of E. coli to generate standard curves; and the sensitivity of the GUD enzymatic response was measured and repeatedly determined to be less than 10 E. coli cells in a reaction vial. The applicability of the method was tested by performing multiple fluorescence assays under pure and mixed bacterial flora in environmental samples. The results of this study showed that the fluorescence signals generated in samples using specific substrate molecules can be utilized to develop a bio-sensing platform for the detection of E. coli in drinking water. Furthermore, this system can be applied independently or

  7. Detection and monitoring of human bocavirus 1 infection by a new rapid antigen test

    Directory of Open Access Journals (Sweden)

    A.H.L. Bruning

    2016-05-01

    Full Text Available Clinically relevant diagnosis of human bocavirus 1 (HBoV1 is challenging, as the virus is frequently detected in asymptomatic patients, and cofindings with other respiratory viruses are common. The clinical value of current diagnostic methods, such as PCR, is therefore low, and alternative diagnostic strategies are needed. We describe for the first time the use of an antigen detection assay for the rapid identification of HBoV1 in a paediatric patient with respiratory tract infection symptoms. We estimate the duration of active HBoV1 infection to be 6 days.

  8. Rapid detection of acetamiprid in foods using surface-enhanced Raman spectroscopy (SERS).

    Science.gov (United States)

    Wijaya, Wisiani; Pang, Shintaro; Labuza, Theodore P; He, Lili

    2014-04-01

    Acetamiprid is a neonicotinoid pesticide that is commonly used in modern farming. Acetamiprid residue in food commodities can be a potential harm to human and has been implicated in the honey bee hive die off crisis. In this study, we developed rapid, simple, and sensitive methods to detect acetamiprid in apple juice and on apple surfaces using surface-enhanced Raman spectroscopy (SERS). No pretreatment of apple juice sample was performed. A simple surface swab method was used to recover acetamiprid from the apple surface. Samples were incubated with silver dendrites for several minutes and SERS spectra were taken directly from the silver surface. Detection of a set of 5 apple juice samples can be done within 10 min. The swab-SERS method took 15 min for a set of 5 samples. Resulting spectral data were analyzed using principal component analysis. The highest acetamiprid peak at 634 cm(-1) was used to detect and quantify the amount of acetamiprid spiked in 1:1 water-methanol solvent, apple juice, and on apple surface. The SERS method was able to successfully detect acetamiprid at 0.5 μg/mL (0.5 ppm) in solvent, 3 μg/mL (3 ppm) in apple juice, and 0.125 μg/cm(2) on apple surfaces. The SERS methods provide simple, rapid, and sensitive ways to detect acetamiprid in beverages and on the surfaces of thick skinned fruits and vegetables. © 2014 Institute of Food Technologists®

  9. Rapid Detection Technology for Pesticides Residues Based on Microelectrodes Impedance Immunosensor

    Directory of Open Access Journals (Sweden)

    Wen Ping Zhao

    2014-09-01

    Full Text Available Compared with conventional methods, electrochemical immunosensors have many advantages, such as low cost, high sensitivity, and rapid detection, and has certain prospects for realizing real-time-monitoring. In this paper, a design of portable pesticide residues detection instrument was presented based on an electrochemical impedance immunosensor. Firstly, we studied on an impedance immunosensor based on interdigitated array microelectrode (IDAM coupled with magnetic nanobeads-antibody conjugates (MNAC for the pesticide detection. Magnetic nanobeads (diameter 150 nm coated with anti-carbofuran antibodies were used for further amplification of the binding reaction between antibody and hapten (carbofuran. Secondly, in order to develop a portable pesticide residue apparatus, we designed the impedance detection electric circuit. Main work included designing and constructing of the system circuit, designing and debugging of the system software and so on. Thirdly, the apparatus was used for the standard pesticides solutions testing combined with immunosensor to test the reliability and stability. The pesticide added standard recovery was more than 70 % and the impedance test error was less than 5 %. The results showed that the proposed instrument had a good consistence compared with the traditional analytical methods. Thus, it would be a promising rapid detection instrument for pesticide residues in agricultural products.

  10. Rapid detection of cancer related DNA nanoparticulate biomarkers and nanoparticles in whole blood

    Science.gov (United States)

    Heller, Michael J.; Krishnan, Raj; Sonnenberg, Avery

    2010-08-01

    The ability to rapidly detect cell free circulating (cfc) DNA, cfc-RNA, exosomes and other nanoparticulate disease biomarkers as well as drug delivery nanoparticles directly in blood is a major challenge for nanomedicine. We now show that microarray and new high voltage dielectrophoretic (DEP) devices can be used to rapidly isolate and detect cfc-DNA nanoparticulates and nanoparticles directly from whole blood and other high conductance samples (plasma, serum, urine, etc.). At DEP frequencies of 5kHz-10kHz both fluorescent-stained high molecular weight (hmw) DNA, cfc-DNA and fluorescent nanoparticles separate from the blood and become highly concentrated at specific DEP highfield regions over the microelectrodes, while blood cells move to the DEP low field-regions. The blood cells can then be removed by a simple fluidic wash while the DNA and nanoparticles remain highly concentrated. The hmw-DNA could be detected at a level of <260ng/ml and the nanoparticles at <9.5 x 109 particles/ml, detection levels that are well within the range for viable clinical diagnostics and drug nanoparticle monitoring. Disease specific cfc-DNA materials could also be detected directly in blood from patients with Chronic Lymphocytic Leukemia (CLL) and confirmed by PCR genotyping analysis.

  11. Rapid detection of fumonisin B1 using a colloidal gold immunoassay strip test in corn samples.

    Science.gov (United States)

    Ling, Sumei; Wang, Rongzhi; Gu, Xiaosong; Wen, Can; Chen, Lingling; Chen, Zhibin; Chen, Qing-Ai; Xiao, Shiwei; Yang, Yanling; Zhuang, Zhenhong; Wang, Shihua

    2015-12-15

    Fumonisin B1 (FB1) is the most common and highest toxic of fumonisins species, exists frequently in corn and corn-based foods, leading to several animal and human diseases. Furthermore, FB1 was reported that it was associated with the human esophageal cancer. In view of the harmful of FB1, it is urgent to develop a feasible and accuracy method for rapid detection of FB1. In this study, a competitive immunoassay for FB1 detection was developed based on colloidal gold-antibody conjugate. The FB1-keyhole limpet hemoeyanin (FB1-KLH) conjugate was embedded in the test line, and goat anti-mouse IgG antibody embedded in the control line. The color density of the test line correlated with the concentration of FB1 in the range from 2.5 to 10 ng/mL, and the visual limit detection of test for FB1 was 2.5 ng/mL. The results indicated that the test strip is specific for FB1, and no cross-reactivity to other toxins. The quantitative detection for FB1 was simple, only needing one step without complicated assay performance and expensive equipment, and the total time of visual evaluation was less than 5 min. Hence, the developed colloidal gold-antibody assay can be used as a feasible method for FB1 rapid and quantitative detection in corn samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Aptasensors for rapid detection of Escherichia coli O157:H7 and Salmonella typhimurium

    Science.gov (United States)

    Wu, Wen-he; Li, Min; Wang, Yue; Ouyang, Hou-xian; Wang, Lin; Li, Ci-xiu; Cao, Yu-chen; Meng, Qing-he; Lu, Jian-xin

    2012-11-01

    Herein we reported the development of aptamer-based biosensors (aptasensors) based on label-free aptamers and gold nanoparticles (AuNPs) for detection of Escherichia coli ( E. coli) O157:H7 and Salmonella typhimurium. Target bacteria binding aptamers are adsorbed on the surface of unmodified AuNPs to capture target bacteria, and the detection was accomplished by target bacteria-induced aggregation of the aptasensor which is associated as red-to-purple color change upon high-salt conditions. By employing anti- E. coli O157:H7 aptamer and anti- S. typhimurium aptamer, we developed a convenient and rapid approach that could selectively detect bacteria without specialized instrumentation and pretreatment steps such as cell lysis. The aptasensor could detect as low as 105colony-forming units (CFU)/ml target bacteria within 20 min or less and its specificity was 100%. This novel method has a great potential application in rapid detection of bacteria in the near future.

  13. Rapid DNA haplotyping using a multiplex heteroduplex approach: Application to Duchenne muscula dystrophy carrier detection

    Energy Technology Data Exchange (ETDEWEB)

    Prior, T.W.; Wenger, G.D.; Moore, J. [Ohio State Univ., Columbus, OH (United States)] [and others

    1994-09-01

    A new strategy has been developed for rapid haplotype analysis. It is based on an initial multiplex amplification of several polymorphic sites, followed by heteroduplex detection. Heteroduplexes formed between two different alleles are detected because they migrate differently than the corresponding homoduplexes in Hydrolink-MDE gel. The method is simple, rapid, does not depend on specific sequences such as restriction enzyme sites or CA boxes and does not require the use of isotope. This approach has been tested using 12 commonly occurring polymorphisms spanning the dystrophin gene as a model. We describe the use of the method to assign the carrier status of females in Duchenne muscular dystrophy (DMD) pedigrees. As a result of expanding the number of detectable polymorphisms throughout the dystrophin gene, we show how the method can easily be combined with dinucleotide analysis to improve the accuracy of carrier detection in the nondeletion cases. The technique is also shown to be used as an effective screen for improving carrier detection in several families with deletions. The finding of heterozygosity within the deletion identifies the at-risk female as a noncarrier. Using this method, we have identified and incorporated 3 new dystrophin polymorphisms (one of which in exon 16 is unique to African Americans). The method may be used other genetic diseases when mutations are unknown, or there are few dinucleotide markers in the gene proximity, or for the identification of haplotype backgrounds of mutant alleles.

  14. Rapid and label-free bioanalytical method of alpha fetoprotein detection using LSPR chip

    Science.gov (United States)

    Kim, Dongjoo; Kim, Jinwoon; Kwak, Cheol Hwan; Heo, Nam Su; Oh, Seo Yeong; Lee, Hoomin; Lee, Go-Woon; Vilian, A. T. Ezhil; Han, Young-Kyu; Kim, Woo-Sik; Kim, Gi-bum; Kwon, Soonjo; Huh, Yun Suk

    2017-07-01

    Alpha fetoprotein (AFP) is a cancer marker, particularly for hepatocellular carcinoma. Normal levels of AFP are less than 20 ng/mL; however, its levels can reach more than 400 ng/mL in patients with HCC. Enzyme linked immunosorbent assay (ELISA) and radioimmunoassay (RIA) have been employed for clinical diagnosis of AFP; however, these methods are time consuming and labor intensive. In this study, we developed a localized surface plasmon resonance (LSPR) based biosensor for simple and rapid detection of AFP. This biosensor consists of a UV-Vis spectrometer, a cuvette cell, and a biosensor chip nanopatterned with gold nanoparticles (AuNPs). In our LSPR biosensor, binding of AFP to the surface of the sensor chip led to an increasing magnitude of the LSPR signals, which was measured by an ultraviolet-visible (UV-Vis) spectrometer. Our LSPR biosensor showed sufficient detectability of AFP at concentrations of 1 ng/mL to 1 μg/mL. Moreover, the overall procedure for detection of AFP was completed within 20 min. This biosensor could also be utilized for a point of care test (POCT) by employing a portable UV-Vis spectrometer. Owing to the simplicity and rapidity of the detection process, our LSPR biosensor is expected to replace traditional diagnostic methods for the early detection of diseases.

  15. Apparatus and method for rapid separation and detection of hydrocarbon fractions in a fluid stream

    Science.gov (United States)

    Sluder, Charles S.; Storey, John M.; Lewis, Sr., Samuel A.

    2013-01-22

    An apparatus and method for rapid fractionation of hydrocarbon phases in a sample fluid stream are disclosed. Examples of the disclosed apparatus and method include an assembly of elements in fluid communication with one another including one or more valves and at least one sorbent chamber for removing certain classifications of hydrocarbons and detecting the remaining fractions using a detector. The respective ratios of hydrocarbons are determined by comparison with a non separated fluid stream.

  16. Development of Rapid Detection and Genetic Characterization of Salmonella in Poultry Breeder Feeds

    Science.gov (United States)

    Jarquin, Robin; Hanning, Irene; Ahn, Soohyoun; Ricke, Steven C.

    2009-01-01

    Salmonella is a leading cause of foodborne illness in the United States, with poultry and poultry products being a primary source of infection to humans. Poultry may carry some Salmonella serovars without any signs or symptoms of disease and without causing any adverse effects to the health of the bird. Salmonella may be introduced to a flock by multiple environmental sources, but poultry feed is suspected to be a leading source. Detecting Salmonella in feed can be challenging because low levels of the bacteria may not be recovered using traditional culturing techniques. Numerous detection methodologies have been examined over the years for quantifying Salmonella in feeds and many have proven to be effective for Salmonella isolation and detection in a variety of feeds. However, given the potential need for increased detection sensitivity, molecular detection technologies may the best candidate for developing rapid sensitive methods for identifying small numbers of Salmonella in the background of large volumes of feed. Several studies have been done using polymerase chain reaction (PCR) assays and commercial kits to detect Salmonella spp. in a wide variety of feed sources. In addition, DNA array technology has recently been utilized to track the dissemination of a specific Salmonella serotype in feed mills. This review will discuss the processing of feeds and potential points in the process that may introduce Salmonella contamination to the feed. Detection methods currently used and the need for advances in these methods also will be discussed. Finally, implementation of rapid detection for optimizing control methods to prevent and remove any Salmonella contamination of feeds will be considered. PMID:22346699

  17. Development of Rapid Detection and Genetic Characterization of Salmonella in Poultry Breeder Feeds

    Directory of Open Access Journals (Sweden)

    Steven C. Ricke

    2009-07-01

    Full Text Available Salmonella is a leading cause of foodborne illness in the United States, with poultry and poultry products being a primary source of infection to humans. Poultry may carry some Salmonella serovars without any signs or symptoms of disease and without causing any adverse effects to the health of the bird. Salmonella may be introduced to a flock by multiple environmental sources, but poultry feed is suspected to be a leading source. Detecting Salmonella in feed can be challenging because low levels of the bacteria may not be recovered using traditional culturing techniques. Numerous detection methodologies have been examined over the years for quantifying Salmonella in feeds and many have proven to be effective for Salmonella isolation and detection in a variety of feeds. However, given the potential need for increased detection sensitivity, molecular detection technologies may the best candidate for developing rapid sensitive methods for identifying small numbers of Salmonella in the background of large volumes of feed. Several studies have been done using polymerase chain reaction (PCR assays and commercial kits to detect Salmonella spp. in a wide variety of feed sources. In addition, DNA array technology has recently been utilized to track the dissemination of a specific Salmonella serotype in feed mills. This review will discuss the processing of feeds and potential points in the process that may introduce Salmonella contamination to the feed. Detection methods currently used and the need for advances in these methods also will be discussed. Finally, implementation of rapid detection for optimizing control methods to prevent and remove any Salmonella contamination of feeds will be considered.

  18. Comparison of rapid diagnostic tests to detect Mycobacterium avium subsp. paratuberculosis disseminated infection in bovine liver.

    Science.gov (United States)

    Zarei, Mehdi; Ghorbanpour, Masoud; Tajbakhsh, Samaneh; Mosavari, Nader

    2017-08-01

    Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's disease, a chronic enteritis in cattle and other domestic and wild ruminants. The presence of MAP in tissues other than intestines and associated lymph nodes, such as meat and liver, is a potential public health concern. In the present study, the relationship between the results of rapid diagnostic tests of the Johne's disease, such as serum ELISA, rectal scraping PCR, and acid-fast staining, and the presence of MAP in liver was evaluated. Blood, liver, and rectal scraping samples were collected from 200 slaughtered cattle with unknown Johne's disease status. ELISA was performed to determine the MAP antibody activity in the serum. Acid-fast staining was performed on rectal scraping samples, and PCR was performed on rectal scraping and liver samples. PCR-positive liver samples were used for mycobacterial culture. Overall, the results of this study demonstrated that MAP can be detected and cultured from liver of slaughtered cattle and rapid diagnostic tests of Johne's disease have limited value in detecting cattle with MAP infection in liver. These findings show that the presence of MAP in liver tissue may occur in cows with negative results for rapid diagnostic tests and vice versa. Hence, liver might represent another possible risk of human exposure to MAP. Given concerns about a potential zoonotic role for MAP, these results show the necessity to find new methods for detecting cattle with MAP disseminated infection.

  19. Rapid molecular assays for the detection of yellow fever virus in low-resource settings.

    Science.gov (United States)

    Escadafal, Camille; Faye, Oumar; Sall, Amadou Alpha; Faye, Ousmane; Weidmann, Manfred; Strohmeier, Oliver; von Stetten, Felix; Drexler, Josef; Eberhard, Michael; Niedrig, Matthias; Patel, Pranav

    2014-03-01

    Yellow fever (YF) is an acute viral hemorrhagic disease transmitted by Aedes mosquitoes. The causative agent, the yellow fever virus (YFV), is found in tropical and subtropical areas of South America and Africa. Although a vaccine is available since the 1930s, YF still causes thousands of deaths and several outbreaks have recently occurred in Africa. Therefore, rapid and reliable diagnostic methods easy to perform in low-resources settings could have a major impact on early detection of outbreaks and implementation of appropriate response strategies such as vaccination and/or vector control. The aim of this study was to develop a YFV nucleic acid detection method applicable in outbreak investigations and surveillance studies in low-resource and field settings. The method should be simple, robust, rapid and reliable. Therefore, we adopted an isothermal approach and developed a recombinase polymerase amplification (RPA) assay which can be performed with a small portable instrument and easy-to-use lyophilized reagents. The assay was developed in three different formats (real-time with or without microfluidic semi-automated system and lateral-flow assay) to evaluate their application for different purposes. Analytical specificity and sensitivity were evaluated with a wide panel of viruses and serial dilutions of YFV RNA. Mosquito pools and spiked human plasma samples were also tested for assay validation. Finally, real-time RPA in portable format was tested under field conditions in Senegal. The assay was able to detect 20 different YFV strains and demonstrated no cross-reactions with closely related viruses. The RPA assay proved to be a robust, portable method with a low detection limit (<21 genome equivalent copies per reaction) and rapid processing time (<20 min). Results from real-time RPA field testing were comparable to results obtained in the laboratory, thus confirming our method is suitable for YFV detection in low-resource settings.

  20. Rapid molecular assays for the detection of yellow fever virus in low-resource settings.

    Directory of Open Access Journals (Sweden)

    Camille Escadafal

    2014-03-01

    Full Text Available BACKGROUND: Yellow fever (YF is an acute viral hemorrhagic disease transmitted by Aedes mosquitoes. The causative agent, the yellow fever virus (YFV, is found in tropical and subtropical areas of South America and Africa. Although a vaccine is available since the 1930s, YF still causes thousands of deaths and several outbreaks have recently occurred in Africa. Therefore, rapid and reliable diagnostic methods easy to perform in low-resources settings could have a major impact on early detection of outbreaks and implementation of appropriate response strategies such as vaccination and/or vector control. METHODOLOGY: The aim of this study was to develop a YFV nucleic acid detection method applicable in outbreak investigations and surveillance studies in low-resource and field settings. The method should be simple, robust, rapid and reliable. Therefore, we adopted an isothermal approach and developed a recombinase polymerase amplification (RPA assay which can be performed with a small portable instrument and easy-to-use lyophilized reagents. The assay was developed in three different formats (real-time with or without microfluidic semi-automated system and lateral-flow assay to evaluate their application for different purposes. Analytical specificity and sensitivity were evaluated with a wide panel of viruses and serial dilutions of YFV RNA. Mosquito pools and spiked human plasma samples were also tested for assay validation. Finally, real-time RPA in portable format was tested under field conditions in Senegal. CONCLUSION/SIGNIFICANCE: The assay was able to detect 20 different YFV strains and demonstrated no cross-reactions with closely related viruses. The RPA assay proved to be a robust, portable method with a low detection limit (<21 genome equivalent copies per reaction and rapid processing time (<20 min. Results from real-time RPA field testing were comparable to results obtained in the laboratory, thus confirming our method is suitable for

  1. Rapid detection of Salmonella in pet food: design and evaluation of integrated methods based on real-time PCR detection.

    Science.gov (United States)

    Balachandran, Priya; Friberg, Maria; Vanlandingham, V; Kozak, K; Manolis, Amanda; Brevnov, Maxim; Crowley, Erin; Bird, Patrick; Goins, David; Furtado, Manohar R; Petrauskene, Olga V; Tebbs, Robert S; Charbonneau, Duane

    2012-02-01

    Reducing the risk of Salmonella contamination in pet food is critical for both companion animals and humans, and its importance is reflected by the substantial increase in the demand for pathogen testing. Accurate and rapid detection of foodborne pathogens improves food safety, protects the public health, and benefits food producers by assuring product quality while facilitating product release in a timely manner. Traditional culture-based methods for Salmonella screening are laborious and can take 5 to 7 days to obtain definitive results. In this study, we developed two methods for the detection of low levels of Salmonella in pet food using real-time PCR: (i) detection of Salmonella in 25 g of dried pet food in less than 14 h with an automated magnetic bead-based nucleic acid extraction method and (ii) detection of Salmonella in 375 g of composite dry pet food matrix in less than 24 h with a manual centrifugation-based nucleic acid preparation method. Both methods included a preclarification step using a novel protocol that removes food matrix-associated debris and PCR inhibitors and improves the sensitivity of detection. Validation studies revealed no significant differences between the two real-time PCR methods and the standard U.S. Food and Drug Administration Bacteriological Analytical Manual (chapter 5) culture confirmation method.

  2. Rapid and sensitive detection of ketamine in blood using novel fluorescence genosensor.

    Science.gov (United States)

    Ding, Yanjun; Li, Xingmei; Guo, Yadong; Yan, Jie; Ling, Jiang; Li, Weichen; Lan, Lingmei; Chang, Yunfeng; Cai, Jifeng; Zha, Lagabaiyla

    2017-12-01

    In recent years, drug abuse has been considered as a most challenging social problem that aroused public attention. Ketamine has increased in unregulated use as a 'recreational drug' in teenagers. However, there is no suitable and maneuverable detection method for ketamine in situ at the moment. Fluorescence sensor technique, with predominant recognition and simple operation, is a good potential application in drug detection. Here, we first reported a highly sensitive and selective fluorescence genosensor for rapid detection of ketamine based on DNA-templated silver nanoclusters (DNA-AgNCs) probes, in which the DNA sequence could specially recognize ketamine with high affinity. Parameters affecting detection efficiency were investigated and optimized. Under optimum conditions, the as-prepared genosensor can allow for the determination of ketamine in the concentration range of 0.0001-20 μg/mL with two linear equations: one is y = 2.84x-7.139 (R 2 = 0.987) for 0.0001-0.1 μg/mL, and the other is y = 1.87x-0.091 (R 2 = 0.962) for 0.1-20 μg/mL, and the estimated detection limit of ketamine is 0.06 ng/mL. Moreover, the feasibility of this proposed method was also demonstrated by analyzing forensic blood samples. Compared with official gas chromatography/mass spectrometry (GC/MS), this fluorescence genosensor is simple, rapid, and accurate for quantitative determination of ketamine in blood for pharmaceutical and forensic analysis. Overall, it is the first report on a fluorescence genosensor for detecting ketamine directly in blood. This research may provide a new insight for the analyst to band fluorescence genosensor technology together with drug monitoring in the battle against drug abuse and forensic examination. Graphical abstract High selectively detection of ketamine using a novel fluorescence genosensor based on DNA-AgNCs probe.

  3. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens.

    Science.gov (United States)

    Kant, Krishna; Shahbazi, Mohammad-Ali; Dave, Vivek Priy; Ngo, Tien Anh; Chidambara, Vinayaka Aaydha; Than, Linh Quyen; Bang, Dang Duong; Wolff, Anders

    2018-03-10

    Rapid detection of foodborne pathogens at an early stage is imperative for preventing the outbreak of foodborne diseases, known as serious threats to human health. Conventional bacterial culturing methods for foodborne pathogen detection are time consuming, laborious, and with poor pathogen diagnosis competences. This has prompted researchers to call the current status of detection approaches into question and leverage new technologies for superior pathogen sensing outcomes. Novel strategies mainly rely on incorporating all the steps from sample preparation to detection in miniaturized devices for online monitoring of pathogens with high accuracy and sensitivity in a time-saving and cost effective manner. Lab on chip is a blooming area in diagnosis, which exploits different mechanical and biological techniques to detect very low concentrations of pathogens in food samples. This is achieved through streamlining the sample handling and concentrating procedures, which will subsequently reduce human errors and enhance the accuracy of the sensing methods. Integration of sample preparation techniques into these devices can effectively minimize the impact of complex food matrix on pathogen diagnosis and improve the limit of detections. Integration of pathogen capturing bio-receptors on microfluidic devices is a crucial step, which can facilitate recognition abilities in harsh chemical and physical conditions, offering a great commercial benefit to the food-manufacturing sector. This article reviews recent advances in current state-of-the-art of sample preparation and concentration from food matrices with focus on bacterial capturing methods and sensing technologies, along with their advantages and limitations when integrated into microfluidic devices for online rapid detection of pathogens in foods and food production line. Copyright © 2018. Published by Elsevier Inc.

  4. Rapid detection of Brucella spp. using loop-mediated isothermal amplification (LAMP).

    Science.gov (United States)

    Chen, Shouyi; Li, Xunde; Li, Juntao; Atwill, Edward R

    2013-01-01

    Brucella spp. are facultative intracellular bacteria that cause zoonotic disease of brucellosis worldwide. Livestock that are most vulnerable to brucellosis include cattle, goats, and pigs. Brucella spp. cause serious health problems to humans and animals and economic losses to the livestock industry. Traditional methods for detection of Brucella spp. take 48-72 h (Kumar et al., J Commun Dis 29:131-137, 1997; Barrouin-Melo et al., Res Vet Sci 83:340-346, 2007) that do not meet the food industry's need of rapid detection. Therefore, there is an urgent need of fast, specific, sensitive, and inexpensive method for diagnosing of Brucella spp. Loop-mediated isothermal amplification (LAMP) is a method to amplify nucleic acid at constant temperatures. Amplification can be detected by visual detection, fluorescent stain, turbidity, and electrophoresis. We targeted at the Brucella-specific gene omp25 and designed LAMP primers for detection of Brucella spp. Amplification of DNA with Bst DNA polymerase can be completed at 65 °C in 60 min. Amplified products can be detected by SYBR Green I stain and 2.0% agarose gel electrophoresis. The LAMP method is feasible for detection of Brucella spp. from blood and milk samples.

  5. Detection of Bar Transgenic Sugarcane with a Rapid and Visual Loop-Mediated Isothermal Amplification Assay.

    Science.gov (United States)

    Zhou, Dinggang; Wang, Chunfeng; Li, Zhu; Chen, Yun; Gao, Shiwu; Guo, Jinlong; Lu, Wenying; Su, Yachun; Xu, Liping; Que, Youxiong

    2016-01-01

    Genetic engineering offers an attractive alternative in sugarcane breeding for increasing cane and sugar yields as well as disease and insect resistance. Bar transgenic sugarcane employing the herbicide tolerance is a useful agronomical trait in weed control. In this study, a loop-mediated isothermal amplification (LAMP) assay for rapid detection of the bar gene in transgenic sugarcane has been developed and evaluated. A set of six primers was designed for LAMP-based amplification of the bar gene. The LAMP reaction conditions were optimized as follows: 5.25 mM of Mg(2+), 6:1 ratio of inner vs. outer primer, and 6.0 U of Bst DNA polymerase in a reaction volume of 25.0 μL. The detection limit of the recombinant plasmid 1Ac0229 was as low as 10 copies in the developed LAMP, which was 10-fold higher sensitive than that of conventional PCR. In 100 putative transgenic lines, the bar gene was detected in 100/100 cases (100%) by LAMP and 97/100 cases (97%) by conventional PCR, respectively. In conclusion, the developed LAMP assay is visual, rapid, sensitive, reliable, and cost-effective for detection of the bar specific transgenic sugarcane.

  6. Modified DNA extraction for rapid PCR detection of methicillin-resistant staphylococci

    International Nuclear Information System (INIS)

    Japoni, A.; Alborzi, A.; Rasouli, M.; Pourabbas, B.

    2004-01-01

    Nosocomial infection caused by methicillin-resistant staphylococci poses a serious problem in many countries. The aim of this study was to rapidly and reliably detect methicillin-resistant-staphylococci in order to suggest appropriate therapy. The presence or absence of the methicillin-resistance gene in 115 clinical isolates of staphylococcus aureus and 50 isolates of coagulase negative staphylococci was examined by normal PCR. DNA extraction for PCR performance was then modified by omission of achromopeptadiase and proteinase K digestion, phenol/chloroform extraction and ethanol precipitation. All isolates with Mic>8 μ g/ml showed positive PCR. No differences in PCR detection have been observed when normal and modified DNA extractions have been performed. Our modified DNA extraction can quickly detect methicillin-resistant staphylococci by PCR. The advantage of rapid DNA extraction extends to both reduction of time and cost of PCR performance. This modified DNA extraction is suitable for different PCR detection, when staphylococci are the subject of DNA analysis

  7. Rapid and specific detection of Asian- and African-lineage Zika viruses.

    Science.gov (United States)

    Chotiwan, Nunya; Brewster, Connie D; Magalhaes, Tereza; Weger-Lucarelli, James; Duggal, Nisha K; Rückert, Claudia; Nguyen, Chilinh; Garcia Luna, Selene M; Fauver, Joseph R; Andre, Barb; Gray, Meg; Black, William C; Kading, Rebekah C; Ebel, Gregory D; Kuan, Guillermina; Balmaseda, Angel; Jaenisch, Thomas; Marques, Ernesto T A; Brault, Aaron C; Harris, Eva; Foy, Brian D; Quackenbush, Sandra L; Perera, Rushika; Rovnak, Joel

    2017-05-03

    Understanding the dynamics of Zika virus transmission and formulating rational strategies for its control require precise diagnostic tools that are also appropriate for resource-poor environments. We have developed a rapid and sensitive loop-mediated isothermal amplification (LAMP) assay that distinguishes Zika viruses of Asian and African lineages. The assay does not detect chikungunya virus or flaviviruses such as dengue, yellow fever, or West Nile viruses. The assay conditions allowed direct detection of Zika virus RNA in cultured infected cells; in mosquitoes; in virus-spiked samples of human blood, plasma, saliva, urine, and semen; and in infected patient serum, plasma, and semen samples without the need for RNA isolation or reverse transcription. The assay offers rapid, specific, sensitive, and inexpensive detection of the Asian-lineage Zika virus strain that is currently circulating in the Western hemisphere, and can also detect the African-lineage Zika virus strain using separate, specific primers. Copyright © 2017, American Association for the Advancement of Science.

  8. Rapid detection and identification of four major Schistosoma species by high-resolution melt (HRM) analysis.

    Science.gov (United States)

    Li, Juan; Zhao, Guang-Hui; Lin, RuiQing; Blair, David; Sugiyama, Hiromu; Zhu, Xing-Quan

    2015-11-01

    Schistosomiasis, caused by blood flukes belonging to several species of the genus Schistosoma, is a serious and widespread parasitic disease. Accurate and rapid differentiation of these etiological agents of animal and human schistosomiasis to species level can be difficult. We report a real-time PCR assay coupled with a high-resolution melt (HRM) assay targeting a portion of the nuclear 18S rDNA to detect, identify, and distinguish between four major blood fluke species (Schistosoma japonicum, Schistosoma mansoni, Schistosoma haematobium, and Schistosoma mekongi). Using this system, the Schistosoma spp. was accurately identified and could also be distinguished from all other trematode species with which they were compared. As little as 10(-5) ng genomic DNA from a Schistosoma sp. could be detected. This process is inexpensive, easy, and can be completed within 3 h. Examination of 21 representative Schistosoma samples from 15 geographical localities in seven endemic countries validated the value of the HRM detection assay and proved its reliability. The melting curves were characterized by peaks of 83.65 °C for S. japonicum and S. mekongi, 85.65 °C for S. mansoni, and 85.85 °C for S. haematobium. The present study developed a real-time PCR coupled with HRM analysis assay for detection and differential identification of S. mansoni, S. haematobium, S. japonicum, and S. mekongi. This method is rapid, sensitive, and inexpensive. It has important implications for epidemiological studies of Schistosoma.

  9. [Development and evaluation of a rapid PCR detection kit for Ophiocordyceps sinensis].

    Science.gov (United States)

    Hou, Fei-Xia; Cao, Jing; Wang, Sha-Sha; Wang, Xi; Yuan, Yuan; Peng, Cheng; Wan, De-Guang; Guo, Jin-Lin

    2017-03-01

    Ophiocordyceps sinensis is a valuable traditional Chinese medicine. Due to resource shortage, expensive price and huge market demand, there are many adulterants of O. sinensis in markets. Therefore, it is necessary to establish a rapid and effective method for distinguishing O. sinensis. Based on the species-specific PCR of O. sinensis, this study developed a detection kit by optimizing the components and evaluated the specificity, detection limit, repeatability and shelf life of the kit. The results showed that when the quality of O. sinensis accounted for more than 1/200 of that mixture, it could be detected successfully. Moreover, only O. sinensis could be amplified and glowed bright green fluorescence under ultraviolet light. The kit was still in effect when it was placed at 37 ℃ for three days, which indicated that it was stable and effective for one year stored in 4 ℃. The kit in the same batch under different operation conditions, and in different batch under the same operation conditions gave the same result and accuracy, which showed good repeatability of the kit. It is simple, rapid and accurate to distinguish O. sinensis from its adulterants using the kit, and lays the foundation for commercialization of traditional Chinese medicine fast detection kit. Copyright© by the Chinese Pharmaceutical Association.

  10. Detection of bar transgenic sugarcane with a rapid and visual loop-mediated isothermal amplification assay

    Directory of Open Access Journals (Sweden)

    Dinggang eZhou

    2016-03-01

    Full Text Available Genetic engineering offers an attractive alternative in sugarcane breeding for increasing cane and sugar yields as well as disease and insect resistance. Bar transgenic sugarcane employing the herbicide tolerance is a useful agronomical trait in weed control. In this study, a loop-mediated isothermal amplification (LAMP assay for rapid detection of the bar gene in transgenic sugarcane has been developed and evaluated. A set of six primers was designed for LAMP-based amplification of the bar gene. The LAMP reaction conditions were optimized as follows: 5.25 mM of Mg2+, 6:1 ratio of inner vs outer primer, and 6.0 U of Bst DNA polymerase in a reaction volume of 25.0 μL. The detection limit of the recombinant plasmid 1Ac0229 was as low as 10 copies in the developed LAMP, which was ten-fold higher sensitive than that of conventional PCR. In 100 putative transgenic lines, the bar gene was detected in 100/100 cases (100% by LAMP and 97/100 cases (97% by conventional PCR, respectively. In conclusion, the developed LAMP assay is visual, rapid, sensitive, reliable and cost-effective for detection of the bar specific transgenic sugarcane.

  11. Development of Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid Detection of Cannabis sativa.

    Science.gov (United States)

    Kitamura, Masashi; Aragane, Masako; Nakamura, Kou; Watanabe, Kazuhito; Sasaki, Yohei

    2016-07-01

    In many parts of the world, the possession and cultivation of Cannabis sativa L. are restricted by law. As chemical or morphological analyses cannot identify the plant in some cases, a simple yet accurate DNA-based method for identifying C. sativa is desired. We have developed a loop-mediated isothermal amplification (LAMP) assay for the rapid identification of C. sativa. By optimizing the conditions for the LAMP reaction that targets a highly conserved region of tetrahydrocannabinolic acid (THCA) synthase gene, C. sativa was identified within 50 min at 60-66°C. The detection limit was the same as or higher than that of conventional PCR. The LAMP assay detected all 21 specimens of C. sativa, showing high specificity. Using a simple protocol, the identification of C. sativa could be accomplished within 90 min from sample treatment to detection without use of special equipment. A rapid, sensitive, highly specific, and convenient method for detecting and identifying C. sativa has been developed and is applicable to forensic investigations and industrial quality control.

  12. Rapid detection of Listeria monocytogenes in foods, by a combination of PCR and DNA probe.

    Science.gov (United States)

    Ingianni, A; Floris, M; Palomba, P; Madeddu, M A; Quartuccio, M; Pompei, R

    2001-10-01

    Listeria monocytogenes is a frequent contaminant of water and foods. Its rapid detection is needed before some foods can be prepared for marketing. In this work L. monocytogenes has been searched for in foods, by a combination of polymerase chain reaction (PCR) and a DNA probe. Both PCR and the probe were prepared for recognizing a specific region of the internalin gene, which is responsible for the production of one of the most important pathogenic factors of Listeria. The combined use of PCR and the DNA probe was used for the detection of L. monocytogenes in over 180 environmental and food samples. Several detection methods were compared in this study, namely conventional culture methods; direct PCR; PCR after an enrichment step; a DNA probe alone; a DNA probe after enrichment and another commercially available gene-probe. Finally PCR and the DNA probe were used in series on all the samples collected. When the DNA probe was associated with the PCR, specific and accurate detection of listeria in the samples could be obtained in about a working-day. The present molecular method showed some advantages in terms of rapidity and specificity in comparison to the other aforementioned tests. In addition, it resulted as being easy to handle, even for non-specialized personnel in small diagnostic microbiology laboratories. Copyright 2001 Academic Press.

  13. RNA aptasensor for rapid detection of natively folded type A botulinum neurotoxin.

    Science.gov (United States)

    Janardhanan, Pavithra; Mello, Charlene M; Singh, Bal Ram; Lou, Jianlong; Marks, James D; Cai, Shuowei

    2013-12-15

    A surface plasmon resonance based RNA aptasensor for rapid detection of natively folded type A botulinum neurotoxin is reported. Using detoxified recombinant type A botulinum neurotoxin as the surrogate, the aptasensor detects active toxin within 90 min. The detection limit of the aptasensor in phosphate buffered saline, carrot juice, and fat free milk is 5.8 ng/ml, 20.3 ng/ml and 23.4 ng/ml, respectively, while that in 5-fold diluted human serum is 22.5 ng/ml. Recovery of toxin from disparate sample matrices are within 91-116%. Most significant is the ability of this aptasensor to effectively differentiate the natively folded toxin from denatured, inactive toxin, which is important for homeland security surveillance and threat assessment. The aptasensor is stable for more than 30 days and over 400 injections/regeneration cycles. Such an aptasensor holds great promise for rapid detection of active botulinum neurotoxin for field surveillance due to its robustness, stability and reusability. © 2013 Elsevier B.V. All rights reserved.

  14. Highly sensitive multianalyte immunochromatographic test strip for rapid chemiluminescent detection of ractopamine and salbutamol

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hongfei; Han, Jing; Yang, Shijia; Wang, Zhenxing; Wang, Lin; Fu, Zhifeng, E-mail: fuzf@swu.edu.cn

    2014-08-11

    Graphical abstract: A multianalyte immunochromatographic test strip was developed for the rapid detection of two β{sub 2}-agonists. Due to the application of chemiluminescent detection, this quantitative method shows much higher sensitivity. - Highlights: • An immunochromatographic test strip was developed for detection of multiple β{sub 2}-agonists. • The whole assay process can be completed within 20 min. • The proposed method shows much higher sensitivity due to the application of CL detection. • It is a portable analytical tool suitable for field analysis and rapid screening. - Abstract: A novel immunochromatographic assay (ICA) was proposed for rapid and multiple assay of β{sub 2}-agonists, by utilizing ractopamine (RAC) and salbutamol (SAL) as the models. Owing to the introduction of chemiluminescent (CL) approach, the proposed protocol shows much higher sensitivity. In this work, the described ICA was based on a competitive format, and horseradish peroxidase-tagged antibodies were used as highly sensitive CL probes. Quantitative analysis of β{sub 2}-agonists was achieved by recording the CL signals of the probes captured on the two test zones of the nitrocellulose membrane. Under the optimum conditions, RAC and SAL could be detected within the linear ranges of 0.50–40 and 0.10–50 ng mL{sup −1}, with the detection limits of 0.20 and 0.040 ng mL{sup −1} (S/N = 3), respectively. The whole process for multianalyte immunoassay of RAC and SAL can be completed within 20 min. Furthermore, the test strip was validated with spiked swine urine samples and the results showed that this method was reliable in measuring β{sub 2}-agonists in swine urine. This CL-based multianalyte test strip shows a series of advantages such as high sensitivity, ideal selectivity, simple manipulation, high assay efficiency and low cost. Thus, it opens up new pathway for rapid screening and field analysis, and shows a promising prospect in food safety.

  15. Highly sensitive and rapid bacteria detection using molecular beacon-Au nanoparticles hybrid nanoprobes.

    Science.gov (United States)

    Cao, Jing; Feng, Chao; Liu, Yan; Wang, Shouyu; Liu, Fei

    2014-07-15

    Since many diseases are caused by pathogenic bacterial infections, accurate and rapid detection of pathogenic bacteria is in urgent need to timely apply appropriate treatments and to reduce economic costs. To end this, we designed molecular beacon-Au nanoparticle hybrid nanoprobes to improve the bacterial detection efficiency and sensitivity. Here, we show that the designed molecular beacon modified Au nanoparticles could specifically recognize synthetic DNAs targets and can readily detect targets in clinical samples. Moreover, the hybrid nanoprobes can recognize Escherichia coli within an hour at a concentration of 10(2) cfu/ml, which is 1000-folds sensitive than using molecular beacon directly. Our results show that the molecular beacon-Au nanoparticle hybrid nanoprobes have great potential in medical and biological applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Fluorescent QDs-polystyrene composite nanospheres for highly efficient and rapid protein antigen detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Changhua; Mao, Mao [Henan University, Key Laboratory for Special Functional Materials of the Ministry of Education (China); Yuan, Hang [Tsinghua University, Life Science Division, Graduate School at Shenzhen (China); Shen, Huaibin [Henan University, Key Laboratory for Special Functional Materials of the Ministry of Education (China); Wu, Feng; Ma, Lan, E-mail: malan@sz.tsinghua.edu.cn [Tsinghua University, Life Science Division, Graduate School at Shenzhen (China); Li, Lin Song, E-mail: lsli@henu.edu.cn [Henan University, Key Laboratory for Special Functional Materials of the Ministry of Education (China)

    2013-09-15

    In this paper, high-quality carboxyl-functionalized fluorescent (red, green, and blue emitting) nanospheres (46-103 nm) consisting of hydrophobic quantum dots (QDs) and polystyrene were prepared by a miniemulsion polymerization approach. This miniemulsion polymerization approach induced a homogeneous distribution and high aqueous-phase transport efficiency of fluorescent QDs in composite nanospheres, which proved the success of our encoding QDs strategy. The obtained fluorescent nanospheres exhibited high stability in aqueous solution under a wide range of pH, different salt concentrations, PBS buffer, and thermal treatment at 80 Degree-Sign C. Based on the red emitting composite nanosphere, we performed fluorescent lateral flow immunoassay (LFIA) strips for high-sensitivity and rapid alpha-fetal protein detection. The detection limit reached 0.1 ng/mL, which was 200 times higher than commercial colloidal gold-labeled LFIA strips, and it reached similar detection level in enzyme-linked immunosorbent assay kit.

  17. Rapid, highly sensitive detection of Gram-negative bacteria with lipopolysaccharide based disposable aptasensor.

    Science.gov (United States)

    Zhang, Jian; Oueslati, Rania; Cheng, Cheng; Zhao, Ling; Chen, Jiangang; Almeida, Raul; Wu, Jayne

    2018-07-30

    Gram-negative bacteria are one of the most common microorganisms in the environment. Their differential detection and recognition from Gram-positive bacteria has been attracting much attention over the years. Using Escherichia coli (E. coli) as a model, we demonstrated on-site detection of Gram-negative bacteria by an AC electrokinetics-based capacitive sensing method using commercial microelectrodes functionalized with an aptamer specific to lipopolysaccharides. Dielectrophoresis effect was utilized to enrich viable bacteria to the microelectrodes rapidly, achieving a detection limit of 10 2 cells/mL within a 30 s' response time. The sensor showed a negligible response to Staphylococcus aureus (S. aureus), a Gram-positive species. The developed sensor showed significant advantages in sensitivity, selectivity, cost, operation simplicity, and response time. Therefore, this sensing method has shown great application potential for environmental monitoring, food safety, and real-time diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Detection of gonococcal infection : pros and cons of a rapid test.

    Science.gov (United States)

    Vickerman, Peter; Peeling, Rosanna W; Watts, Charlotte; Mabey, David

    2005-01-01

    WHO estimates that 62 million cases of gonorrhea occur annually worldwide. Untreated infection can cause serious long-term complications, especially in women. In addition, Neisseria gonorrheae infection can facilitate HIV transmission, and babies born to infected mothers are at risk of ocular infection, which can lead to blindness. Where diagnostic facilities are lacking, gonorrhea can be treated syndromically. However, this inevitably leads to over-treatment, especially in women in whom the syndrome of vaginal discharge may be due not to N. gonorrheae infection but to several other more prevalent conditions. Over-treatment is a major concern because of widespread N. gonorrheae antibiotic resistance. Moreover, a high proportion of gonorrhea cases are asymptomatic and so do not present for syndromic management. Such cases will only be detected by screening tests. The gold standard test for the detection of N. gonorrheae is culture, which has high sensitivity and specificity. However, it requires well trained staff and its performance is affected by specimen transport conditions. Other options include microscopy and tests that detect gonococcal antigen or nucleic acid. Nucleic acid amplification tests (NAATs) have higher sensitivity and can be used on non-invasive samples (urine). However, they can cross-react with other Neisseria species and are expensive, requiring highly trained staff and sophisticated equipment. In settings where patients are asked to return for laboratory results, some infected patients never receive treatment as they fail to return for their test results. This reduction in treatment, and the possible onward transmission of N. gonorrheae during any delay in treatment, means that a rapid test of lower sensitivity may be more effective if it results in patients being treated at the initial visit. Indeed, even with the low sensitivity of currently available rapid tests (50-70%), modeling shows that they can outperform gold standard tests in

  19. Rapid detection of Ganoderma-infected oil palms by microwave ergosterol extraction with HPLC and TLC.

    Science.gov (United States)

    Muniroh, M S; Sariah, M; Zainal Abidin, M A; Lima, N; Paterson, R R M

    2014-05-01

    Detection of basal stem rot (BSR) by Ganoderma of oil palms was based on foliar symptoms and production of basidiomata. Enzyme-Linked Immunosorbent Assays-Polyclonal Antibody (ELISA-PAB) and PCR have been proposed as early detection methods for the disease. These techniques are complex, time consuming and have accuracy limitations. An ergosterol method was developed which correlated well with the degree of infection in oil palms, including samples growing in plantations. However, the method was capable of being optimised. This current study was designed to develop a simpler, more rapid and efficient ergosterol method with utility in the field that involved the use of microwave extraction. The optimised procedure involved extracting a small amount of Ganoderma, or Ganoderma-infected oil palm suspended in low volumes of solvent followed by irradiation in a conventional microwave oven at 70°C and medium high power for 30s, resulting in simultaneous extraction and saponification. Ergosterol was detected by thin layer chromatography (TLC) and quantified using high performance liquid chromatography with diode array detection. The TLC method was novel and provided a simple, inexpensive method with utility in the field. The new method was particularly effective at extracting high yields of ergosterol from infected oil palm and enables rapid analysis of field samples on site, allowing infected oil palms to be treated or culled very rapidly. Some limitations of the method are discussed herein. The procedures lend themselves to controlling the disease more effectively and allowing more effective use of land currently employed to grow oil palms, thereby reducing pressure to develop new plantations. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Flow cytometry for rapid detection of Salmonella spp. in seed sprouts

    Directory of Open Access Journals (Sweden)

    Bledar Bisha

    2014-12-01

    Full Text Available Seed sprouts (alfalfa, mung bean, radish, etc. have been implicated in several recent national and international outbreaks of salmonellosis. Conditions used for sprouting are also conducive to the growth of Salmonella. As a result, this pathogen can quickly grow to very high cell densities during sprouting without any detectable organoleptic impact. Seed sprouts typically also support heavy growth (~108 CFU g−1 of a heterogeneous microbiota consisting of various bacterial, yeast, and mold species, often dominated by non-pathogenic members of the family Enterobacteriaceae. This heavy background may present challenges to the detection of Salmonella, especially if this pathogen is present in relatively low numbers. We combined DNA-based fluorescence in situ hybridization (FISH with flow cytometry (FCM for the rapid molecular detection of Salmonella enterica ser. Typhimurium in artificially contaminated alfalfa and other seed sprouts. Components of the assay included a set of cooperatively binding probes, a chemical blocking treatment intended to reduce non-specific background, and sample concentration via tangential flow filtration (TFF. We were able to detect S. Typhimurium in sprout wash at levels as low as 103 CFU ml−1 sprout wash (104 CFU g−1 sprouts against high microbial backgrounds (~108 CFU g−1 sprouts. Hybridization times were typically 30 min, with additional washing, but we ultimately found that S. Typhimurium could be readily detected using hybridization times as short as 2 min, without a wash step. These results clearly demonstrate the potential of combined DNA-FISH and FCM for rapid detection of Salmonella in this challenging food matrix and provide industry with a useful tool for compliance with sprout production standards proposed in the Food Safety Modernization Act (FSMA.

  1. Rapid detection and subtyping of human influenza A viruses and reassortants by pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Yi-Mo Deng

    Full Text Available BACKGROUND: Given the continuing co-circulation of the 2009 H1N1 pandemic influenza A viruses with seasonal H3N2 viruses, rapid and reliable detection of newly emerging influenza reassortant viruses is important to enhance our influenza surveillance. METHODOLOGY/PRINCIPAL FINDINGS: A novel pyrosequencing assay was developed for the rapid identification and subtyping of potential human influenza A virus reassortants based on all eight gene segments of the virus. Except for HA and NA genes, one universal set of primers was used to amplify and subtype each of the six internal genes. With this method, all eight gene segments of 57 laboratory isolates and 17 original specimens of seasonal H1N1, H3N2 and 2009 H1N1 pandemic viruses were correctly matched with their corresponding subtypes. In addition, this method was shown to be capable of detecting reassortant viruses by correctly identifying the source of all 8 gene segments from three vaccine production reassortant viruses and three H1N2 viruses. CONCLUSIONS/SIGNIFICANCE: In summary, this pyrosequencing assay is a sensitive and specific procedure for screening large numbers of viruses for reassortment events amongst the commonly circulating human influenza A viruses, which is more rapid and cheaper than using conventional sequencing approaches.

  2. Rapid detection and subtyping of human influenza A viruses and reassortants by pyrosequencing.

    Science.gov (United States)

    Deng, Yi-Mo; Caldwell, Natalie; Barr, Ian G

    2011-01-01

    Given the continuing co-circulation of the 2009 H1N1 pandemic influenza A viruses with seasonal H3N2 viruses, rapid and reliable detection of newly emerging influenza reassortant viruses is important to enhance our influenza surveillance. A novel pyrosequencing assay was developed for the rapid identification and subtyping of potential human influenza A virus reassortants based on all eight gene segments of the virus. Except for HA and NA genes, one universal set of primers was used to amplify and subtype each of the six internal genes. With this method, all eight gene segments of 57 laboratory isolates and 17 original specimens of seasonal H1N1, H3N2 and 2009 H1N1 pandemic viruses were correctly matched with their corresponding subtypes. In addition, this method was shown to be capable of detecting reassortant viruses by correctly identifying the source of all 8 gene segments from three vaccine production reassortant viruses and three H1N2 viruses. In summary, this pyrosequencing assay is a sensitive and specific procedure for screening large numbers of viruses for reassortment events amongst the commonly circulating human influenza A viruses, which is more rapid and cheaper than using conventional sequencing approaches.

  3. Rapid Detection of Food Allergens by Microfluidics ELISA-Based Optical Sensor

    Directory of Open Access Journals (Sweden)

    Xuan Weng

    2016-06-01

    Full Text Available The risks associated with the presence of hidden allergens in food have increased the need for rapid, sensitive, and reliable methods for tracing food allergens in commodities. Conventional enzyme immunosorbent assay (ELISA has usually been performed in a centralized lab, requiring considerable time and sample/reagent consumption and expensive detection instruments. In this study, a microfluidic ELISA platform combined with a custom-designed optical sensor was developed for the quantitative analysis of the proteins wheat gluten and Ara h 1. The developed microfluidic ELISA biosensor reduced the total assay time from hours (up to 3.5 h to 15–20 min and decreased sample/reagent consumption to 5–10 μL, compared to a few hundred microliters in commercial ELISA kits, with superior sensitivity. The quantitative capability of the presented biosensor is a distinctive advantage over the commercially available rapid methods such as lateral flow devices (LFD and dipstick tests. The developed microfluidic biosensor demonstrates the potential for sensitive and less-expensive on-site determination for rapidly detecting food allergens in a complex sample system.

  4. Rapid Molecular detection of citrus brown spot disease using ACT gene in Alternaria alternata

    Directory of Open Access Journals (Sweden)

    Hamid Moghimi

    2017-06-01

    Full Text Available Introduction:Using rapid detection methods is important for detection of plant pathogens and also prevention through spreading pests in agriculture. Citrus brown spot disease caused by pathogenic isolates of Alternaria alternata is a common disease in Iran. Materials and methods: In this study, for the first time a PCR based molecular method was used for rapid diagnosis of brown spot disease. Nine isolates of A. Alternata were isolated in PDA medium from different citrus gardens. The plant pathogenic activity was examined in tangerine leaves for isolates. Results showed that these isolates are the agents of brown spot disease. PCR amplification of specific ACT-toxin gene was performed for DNA extracted from A. alternata isolates, with 11 different fungal isolates as negative controls and 5 DNA samples extracted from soil. Results: Results showed that A. alternata, the causal agent of brown spot disease, can be carefully distinguished from other pathogenic agents by performing PCR amplification with specific primers for ACT toxin gene. Also, the results from Nested-PCR method confirmed the primary reaction and the specificity of A. alternata for brown spot disease. PCR results to control samples of the other standard fungal isolates, showed no amplification band. In addition, PCR with the DNA extracted from contaminated soils confirmed the presence of ACT toxin gene. Discussion and conclusion: Molecular procedure presented here can be used in rapid identification and prevention of brown spot infection in citrus gardens all over the country.

  5. Rapid and highly sensitive detection of Enterovirus 71 by using nanogold-enhanced electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Li, Hsing-Yuan; Tseng, Shing-Hua; Cheng, Tsai-Mu; Chu, Hsueh-Liang; Lu, Yu-Ning; Wang, Fang-Yu; Tu, Lung-Chen; Chang, Chia-Ching; Tsai, Li-Yun; Shieh, Juo-Yu; Yang, Jyh-Yuan; Juan, Chien-Chang

    2013-01-01

    Enterovirus 71 (EV71) infection is an emerging infectious disease causing neurological complications and/or death within two to three days after the development of fever and rash. A low viral titre in clinical specimens makes the detection of EV71 difficult. Conventional approaches for detecting EV71 are time consuming, poorly sensitive, or complicated, and cannot be used effectively for clinical diagnosis. Furthermore, EV71 and Coxsackie virus A16 (CA16) may cross react in conventional assays. Therefore, a rapid, highly sensitive, specific, and user-friendly test is needed. We developed an EV71-specific nanogold-modified working electrode for electrochemical impedance spectroscopy in the detection of EV71. Our results show that EV71 can be distinguished from CA16, Herpes simplex virus, and lysozyme, with the modified nanogold electrode being able to detect EV71 in concentrations as low as 1 copy number/50 μl reaction volume, and the duration between sample preparation and detection being 11 min. This detection platform may have the potential for use in point-of-care diagnostics. (paper)

  6. Rapid and highly sensitive detection of Enterovirus 71 by using nanogold-enhanced electrochemical impedance spectroscopy

    Science.gov (United States)

    Li, Hsing-Yuan; Tseng, Shing-Hua; Cheng, Tsai-Mu; Chu, Hsueh-Liang; Lu, Yu-Ning; Wang, Fang-Yu; Tsai, Li-Yun; Shieh, Juo-Yu; Yang, Jyh-Yuan; Juan, Chien-Chang; Tu, Lung-Chen; Chang, Chia-Ching

    2013-07-01

    Enterovirus 71 (EV71) infection is an emerging infectious disease causing neurological complications and/or death within two to three days after the development of fever and rash. A low viral titre in clinical specimens makes the detection of EV71 difficult. Conventional approaches for detecting EV71 are time consuming, poorly sensitive, or complicated, and cannot be used effectively for clinical diagnosis. Furthermore, EV71 and Coxsackie virus A16 (CA16) may cross react in conventional assays. Therefore, a rapid, highly sensitive, specific, and user-friendly test is needed. We developed an EV71-specific nanogold-modified working electrode for electrochemical impedance spectroscopy in the detection of EV71. Our results show that EV71 can be distinguished from CA16, Herpes simplex virus, and lysozyme, with the modified nanogold electrode being able to detect EV71 in concentrations as low as 1 copy number/50 μl reaction volume, and the duration between sample preparation and detection being 11 min. This detection platform may have the potential for use in point-of-care diagnostics.

  7. Rapid Detection Strategies for the Global Threat of Zika Virus: Current State, New Hypotheses and Limitations

    Directory of Open Access Journals (Sweden)

    Shruti Shukla

    2016-10-01

    Full Text Available The current scenario regarding the widespread Zika virus (ZIKV has resulted in numerous diagnostic studies, specifically in South America and in locations where there is frequent entry of travelers returning from ZIKV-affected areas, including pregnant women with or without clinical symptoms of ZIKV infection. The World Health Organization, WHO, announced that millions of cases of ZIKV are likely to occur in the United States of America in the near future. This situation has created an alarming public health emergency of international concern requiring the detection of this life-threatening viral candidate due to increased cases of newborn microcephaly associated with ZIKV infection. Hence, this review reports possible methods and strategies for the fast and reliable detection of ZIKV with particular emphasis on current updates, knowledge and new hypotheses that might be helpful for medical professionals in poor and developing countries that urgently need to address this problem. In particular, we emphasize liposome-based biosensors. Although these biosensors are currently among the less popular tools for human disease detection, they have become useful tools for the screening and detection of pathogenic bacteria, fungi and viruses because of their versatile advantageous features compared to other sensing devices. This review summarizes the currently available methods employed for the rapid detection of ZIKV and suggests an innovative approach involving the application of a liposome-based hypothesis for the development of new strategies for ZIKV detection and their use as effective biomedicinal tools.

  8. Development of a rapid immunochromatographic assay to detect contamination of raw oysters with enteropathogenic Vibrio parahaemolyticus.

    Science.gov (United States)

    Sakata, Junko; Yonekita, Taro; Kawatsu, Kentaro

    2018-01-02

    Thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) are major virulence factors of enteropathogenic Vibrio parahaemolyticus. TDH and TRH are bacterial exotoxins, and their presence in culture medium serves as a specific marker for detecting this significant pathogen. Here, we developed and evaluated an immunochromatographic assay (TDH/TRH-ICA) to simultaneously or individually detect TDH and TRH. The TDH/TRH-ICA detected TDH in all broth cultures of 47 V. parahaemolyticus strains carrying tdh. The genes encoding TRH are classified as variants trh1 and trh2, and TRH was detected in all broth cultures of 25 V. parahaemolyticus strains carrying trh1 and certain proportion (5/31) of broth cultures of V. parahaemolyticus strains carrying trh2. In contrast, TDH and TRH were not detected in broth cultures of 12 non-enteropathogenic V. parahaemolyticus strains without tdh and trh. It was difficult to detect TRH2 using the TDH/TRH-ICA. However, TRH2 may not serve as a suitable marker for detecting enteropathogenic V. parahaemolyticus, and evidence indicates that TRH2 may not contribute to enteropathogenesis. Further, a screening method using a combination of TDH/TRH-ICA and SPP medium supplemented with 1.5% NaCl (modified-SPP medium) detected oyster samples artificially spiked with 1.1-22 colony-forming units of enteropathogenic V. parahaemolyticus per 25g of oysters within approximately 8.5h, including the enrichment culture. The assay may serve as a method that facilitates the rapid and easy detection of raw oysters contaminated with enteropathogenic V. parahaemolyticus. Copyright © 2017. Published by Elsevier B.V.

  9. Heritable alteration of DNA methylation induced by whole-chromosome aneuploidy in wheat.

    Science.gov (United States)

    Gao, Lihong; Diarso, Moussa; Zhang, Ai; Zhang, Huakun; Dong, Yuzhu; Liu, Lixia; Lv, Zhenling; Liu, Bao

    2016-01-01

    Aneuploidy causes changes in gene expression and phenotypes in all organisms studied. A previous study in the model plant Arabidopsis thaliana showed that aneuploidy-generated phenotypic changes can be inherited to euploid progenies and implicated an epigenetic underpinning of the heritable variations. Based on an analysis by amplified fragment length polymorphism and methylation-sensitive amplified fragment length polymorphism markers, we found that although genetic changes at the nucleotide sequence level were negligible, extensive changes in cytosine DNA methylation patterns occurred in all studied homeologous group 1 whole-chromosome aneuploid lines of common wheat (Triticum aestivum), with monosomic 1A showing the greatest amount of methylation changes. The changed methylation patterns were inherited by euploid progenies derived from the aneuploid parents. The aneuploidy-induced DNA methylation alterations and their heritability were verified at selected loci by bisulfite sequencing. Our data have provided empirical evidence supporting earlier suggestions that heritability of aneuploidy-generated, but aneuploidy-independent, phenotypic variations may have an epigenetic basis. That at least one type of aneuploidy - monosomic 1A - was able to cause significant epigenetic divergence of the aneuploid plants and their euploid progenies also lends support to recent suggestions that aneuploidy may have played an important and protracted role in polyploid genome evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. Bioconjugated fluorescent silica nanoparticles for the rapid detection of Entamoeba histolytica.

    Science.gov (United States)

    Hemadi, Ahmad; Ekrami, Alireza; Oormazdi, Hormozd; Meamar, Ahmad Reza; Akhlaghi, Lame; Samarbaf-Zadeh, Ali Reza; Razmjou, Elham

    2015-05-01

    Rapid detection of Entamoeba histolytica based on fluorescent silica nanoparticle (FSNP) indirect immunofluorescence microscopy was evaluated. Silica nanoparticles were synthesized using Stöber's method, with their surface activated to covalently bind to, and immobilize, protein A. For biolabeling, FSNP was added to conjugated E. histolytica trophozoites with monoclonal anti-E. histolytica IgG1 for microscopic observation of fluorescence. Fluorescent silica nanoparticle sensitivity was determined with axenically cultured E. histolytica serially diluted to seven concentrations. Specificity was evaluated using other intestinal protozoa. Fluorescent silica nanoparticles detected E. histolytica at the lowest tested concentration with no cross-reaction with Entamoeba dispar, Entamoeba moshkovskii, Blastocystis sp., or Giardia lamblia. Visualization of E. histolytica trophozoites with anti-E. histolytica antibody labeled with fluorescein isothiocyanate (FITC) was compared with that using anti-E. histolytica antibody bioconjugated FSNP. Although FITC and FSNP produced similar results, the amount of specific antibody required for FITC to induce fluorescence of similar intensity was fivefold that for FSNP. Fluorescent silica nanoparticles delivered a rapid, simple, cost-effective, and highly sensitive and specific method of detecting E. histolytica. Further study is needed before introducing FSNP for laboratory diagnosis of amoebiasis. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Rapid and reliable detection and identification of GM events using multiplex PCR coupled with oligonucleotide microarray.

    Science.gov (United States)

    Xu, Xiaodan; Li, Yingcong; Zhao, Heng; Wen, Si-yuan; Wang, Sheng-qi; Huang, Jian; Huang, Kun-lun; Luo, Yun-bo

    2005-05-18

    To devise a rapid and reliable method for the detection and identification of genetically modified (GM) events, we developed a multiplex polymerase chain reaction (PCR) coupled with a DNA microarray system simultaneously aiming at many targets in a single reaction. The system included probes for screening gene, species reference gene, specific gene, construct-specific gene, event-specific gene, and internal and negative control genes. 18S rRNA was combined with species reference genes as internal controls to assess the efficiency of all reactions and to eliminate false negatives. Two sets of the multiplex PCR system were used to amplify four and five targets, respectively. Eight different structure genes could be detected and identified simultaneously for Roundup Ready soybean in a single microarray. The microarray specificity was validated by its ability to discriminate two GM maizes Bt176 and Bt11. The advantages of this method are its high specificity and greatly reduced false-positives and -negatives. The multiplex PCR coupled with microarray technology presented here is a rapid and reliable tool for the simultaneous detection of GM organism ingredients.

  12. High resolution melting analysis: a rapid and accurate method to detect CALR mutations.

    Directory of Open Access Journals (Sweden)

    Cristina Bilbao-Sieyro

    Full Text Available The recent discovery of CALR mutations in essential thrombocythemia (ET and primary myelofibrosis (PMF patients without JAK2/MPL mutations has emerged as a relevant finding for the molecular diagnosis of these myeloproliferative neoplasms (MPN. We tested the feasibility of high-resolution melting (HRM as a screening method for rapid detection of CALR mutations.CALR was studied in wild-type JAK2/MPL patients including 34 ET, 21 persistent thrombocytosis suggestive of MPN and 98 suspected secondary thrombocytosis. CALR mutation analysis was performed through HRM and Sanger sequencing. We compared clinical features of CALR-mutated versus 45 JAK2/MPL-mutated subjects in ET.Nineteen samples showed distinct HRM patterns from wild-type. Of them, 18 were mutations and one a polymorphism as confirmed by direct sequencing. CALR mutations were present in 44% of ET (15/34, 14% of persistent thrombocytosis suggestive of MPN (3/21 and none of the secondary thrombocytosis (0/98. Of the 18 mutants, 9 were 52 bp deletions, 8 were 5 bp insertions and other was a complex mutation with insertion/deletion. No mutations were found after sequencing analysis of 45 samples displaying wild-type HRM curves. HRM technique was reproducible, no false positive or negative were detected and the limit of detection was of 3%.This study establishes a sensitive, reliable and rapid HRM method to screen for the presence of CALR mutations.

  13. Development of Colloidal Gold-Based Immunochromatographic Assay for Rapid Detection of Goose Parvovirus

    Directory of Open Access Journals (Sweden)

    Xianglong Yu

    2018-05-01

    Full Text Available Goose parvovirus (GPV remains as a worldwide problem in goose industry. For this reason, it is necessary to develop a new diagnostic approach that is easier and faster than conventional tests. A rapid immunochromatographic assay based on antibody colloidal gold nanoparticles specific to GPV was developed for the detection of GPV in goose allantoic fluid and supernatant of tissue homogenate. The monoclonal antibodies (Mab was produced by immunizing the BALB/c mice with purified GPV suspension, and the polyclonal antibody (pAb was produced by immunizing the rabbits with recombinant VP3 protein. The colloidal gold was prepared by the reduction of gold salt with sodium citrate coupled with Mab against GPV. The optimal concentrations of the coating antibody and capture antibody were determined to be 1.6 mg/ml and 9 μg/ml. With visual observation, the lower limit was found to be around 1.2 μg/ml. Common diseases of goose were tested to evaluate the specificity of the immune colloidal gold (ICG strip, and no cross-reaction was observed. The clinical detection was examined by carrying out the ICG strip test with 92 samples and comparing the results of these tests with those obtained via agar diffusion test and polymerase chain reaction (PCR test. Therefore, the ICG strip test was a sufficiently sensitive and accurate detection method for a rapid screening of GPV.

  14. Rapid islanding detection using multi-level inverter for grid-interactive PV system

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2014-01-01

    Graphical abstract: - Highlights: • Novel reference signal is used to form an islanding detection scheme for PV system. • Supply fixed magnitude sinusoidal signal even if utility grid is disconnected. • Seamless transfer between grid-connected and stand-alone modes is possible. - Abstract: A novel reference signal generator is combined with a multi-level inverter to form a rapid islanding detection scheme for grid-interactive PV system. The reference signal generator can easily be synchronized with the utility grid signal and produced a fixed magnitude and very low total harmonic distortion (THD) sinusoidal signal which is in phase with the utility grid signal. Unlike conventional phase-locked loop (PLL) circuitry, the reference signal generator can also provide a fixed magnitude sinusoidal signal even if the utility grid is disconnected and automatically re-synchronous with the grid rapidly. Consequently, seamless transfer between grid-connected and stand-alone modes could easily be achieved if anti-islanding protection is not required. If a saturation element is applied to the raw reference signal followed by the synthesis of the truncated signal using a multi-level inverter, the distinct flat-top feature of the synthesized signal can quickly and easily be identified if the network is in islanding mode at the point of common coupling. Experimental results are included to demonstrate the effectiveness of the proposed detection scheme

  15. A C. elegans-based foam for rapid on-site detection of residual live virus.

    Energy Technology Data Exchange (ETDEWEB)

    Negrete, Oscar A.; Branda, Catherine; Hardesty, Jasper O. E. (Sandia National Laboratories, Albuquerque, NM); Tucker, Mark David (Sandia National Laboratories, Albuquerque, NM); Kaiser, Julia N. (Global Product Management, Hilden, Germany); Kozina, Carol L.; Chirica, Gabriela S.

    2012-02-01

    In the response to and recovery from a critical homeland security event involving deliberate or accidental release of biological agents, initial decontamination efforts are necessarily followed by tests for the presence of residual live virus or bacteria. Such 'clearance sampling' should be rapid and accurate, to inform decision makers as they take appropriate action to ensure the safety of the public and of operational personnel. However, the current protocol for clearance sampling is extremely time-intensive and costly, and requires significant amounts of laboratory space and capacity. Detection of residual live virus is particularly problematic and time-consuming, as it requires evaluation of replication potential within a eukaryotic host such as chicken embryos. The intention of this project was to develop a new method for clearance sampling, by leveraging Sandia's expertise in the biological and material sciences in order to create a C. elegans-based foam that could be applied directly to the entire contaminated area for quick and accurate detection of any and all residual live virus by means of a fluorescent signal. Such a novel technology for rapid, on-site detection of live virus would greatly interest the DHS, DoD, and EPA, and hold broad commercial potential, especially with regard to the transportation industry.

  16. A real-time loop-mediated isothermal amplification assay for rapid detection of Shigella species.

    Science.gov (United States)

    Liew, P S; Teh, C S J; Lau, Y L; Thong, K L

    2014-12-01

    Shigellosis is a foodborne illness caused by the genus Shigella and is an important global health issue. The development of effective techniques for rapid detection of this pathogen is essential for breaking the chain of transmission. Therefore, we have developed a novel loop-mediated isothermal amplification (LAMP) assay targeting the invasion plasmid antigen H (ipaH) gene to rapidly detect Shigella species. This assay could be performed in 90 min at an optimal temperature of 64ºC, with endpoint results visualized directly. Notably, the method was found to be more sensitive than conventional PCR. Indeed, the detection limit for the LAMP assay on pure bacterial cultures was 5.9 x 10(5) CFU/ml, while PCR displayed a limit of 5.9 x 10(7) CFU/ml. In spiked lettuce samples, the sensitivity of the LAMP assay was 3.6 x 10(4) CFU/g, whereas PCR was 3.6 x 10(5) CFU/g. Overall, the assay accurately identified 32 Shigella spp. with one enteroinvasive Escherichia coli displaying positive reaction while the remaining 32 non-Shigella strains tested were negative.

  17. Rapid and label-free detection of protein a by aptamer-tethered porous silicon nanostructures.

    Science.gov (United States)

    Urmann, Katharina; Reich, Peggy; Walter, Johanna-Gabriela; Beckmann, Dieter; Segal, Ester; Scheper, Thomas

    2017-09-10

    Protein A, which is secreted by and displayed on the cell membrane of Staphylococcus aureus is an important biomarker for S. aureus. Thus, its rapid and specific detection may facilitate the pathogen identification and initiation of proper treatment. Herein, we present a simple, label-free and rapid optical biosensor enabling specific detection of protein A. Protein A-binding aptamer serves as the capture probe and is immobilized onto a nanostructured porous silicon thin film, which serves as the optical transducer element. We demonstrate high sensitivity of the biosensor with a linear detection range between 8 and 23μM. The apparent dissociation constant was determined as 13.98μM and the LoD is 3.17μM. Harnessing the affinity between protein A and antibodies, a sandwich assay format was developed to amplify the optical signal associated with protein A capture by the aptamer. Using this approach, we increase the sensitivity of the biosensor, resulting in a three times lower LoD. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles.

    Science.gov (United States)

    Chang, Yi-Chung; Yang, Chia-Ying; Sun, Ruei-Lin; Cheng, Yi-Feng; Kao, Wei-Chen; Yang, Pan-Chyr

    2013-01-01

    Staphylococcus aureus is one of the most important human pathogens, causing more than 500,000 infections in the United States each year. Traditional methods for bacterial culture and identification take several days, wasting precious time for patients who are suffering severe bacterial infections. Numerous nucleic acid-based detection methods have been introduced to address this deficiency; however, the costs and requirement for expensive equipment may limit the widespread use of such technologies. Thus, there is an unmet demand of new platform technology to improve the bacterial detection and identification in clinical practice. In this study, we developed a rapid, ultra-sensitive, low cost, and non-polymerase chain reaction (PCR)-based method for bacterial identification. Using this method, which measures the resonance light-scattering signal of aptamer-conjugated gold nanoparticles, we successfully detected single S. aureus cell within 1.5 hours. This new platform technology may have potential to develop a rapid and sensitive bacterial testing at point-of-care.

  19. Rapid-viability PCR method for detection of live, virulent Bacillus anthracis in environmental samples.

    Science.gov (United States)

    Létant, Sonia E; Murphy, Gloria A; Alfaro, Teneile M; Avila, Julie R; Kane, Staci R; Raber, Ellen; Bunt, Thomas M; Shah, Sanjiv R

    2011-09-01

    In the event of a biothreat agent release, hundreds of samples would need to be rapidly processed to characterize the extent of contamination and determine the efficacy of remediation activities. Current biological agent identification and viability determination methods are both labor- and time-intensive such that turnaround time for confirmed results is typically several days. In order to alleviate this issue, automated, high-throughput sample processing methods were developed in which real-time PCR analysis is conducted on samples before and after incubation. The method, referred to as rapid-viability (RV)-PCR, uses the change in cycle threshold after incubation to detect the presence of live organisms. In this article, we report a novel RV-PCR method for detection of live, virulent Bacillus anthracis, in which the incubation time was reduced from 14 h to 9 h, bringing the total turnaround time for results below 15 h. The method incorporates a magnetic bead-based DNA extraction and purification step prior to PCR analysis, as well as specific real-time PCR assays for the B. anthracis chromosome and pXO1 and pXO2 plasmids. A single laboratory verification of the optimized method applied to the detection of virulent B. anthracis in environmental samples was conducted and showed a detection level of 10 to 99 CFU/sample with both manual and automated RV-PCR methods in the presence of various challenges. Experiments exploring the relationship between the incubation time and the limit of detection suggest that the method could be further shortened by an additional 2 to 3 h for relatively clean samples.

  20. Rapid Electrochemical Detection and Identification of Microbiological and Chemical Contaminants for Manned Spaceflight Project

    Science.gov (United States)

    Pierson, Duane; Botkin, Douglas; Gazda, Daniel

    2014-01-01

    Microbial control in the spacecraft environment is a daunting task, especially in the presence of human crew members. Currently, assessing the potential crew health risk associated with a microbial contamination event requires return of representative environmental samples that are analyzed in a ground-based laboratory. It is therefore not currently possible to quickly identify microbes during spaceflight. This project addresses the unmet need for spaceflight-compatible microbial identification technology. The electrochemical detection and identification platform is expected to provide a sensitive, specific, and rapid sample-to-answer capability for in-flight microbial monitoring that can distinguish between related microorganisms (pathogens and non-pathogens) as well as chemical contaminants. This will dramatically enhance our ability to monitor the spacecraft environment and the health risk to the crew. Further, the project is expected to eliminate the need for sample return while significantly reducing crew time required for detection of multiple targets. Initial work will focus on the optimization of bacterial detection and identification. The platform is designed to release nucleic acids (DNA and RNA) from microorganisms without the use of harmful chemicals. Bacterial DNA or RNA is captured by bacteria-specific probe molecules that are bound to a microelectrode, and that capture event can generate a small change in the electrical current (Lam, et al. 2012. Anal. Chem. 84(1): 21-5.). This current is measured, and a determination is made whether a given microbe is present in the sample analyzed. Chemical detection can be accomplished by directly applying a sample to the microelectrode and measuring the resulting current change. This rapid microbial and chemical detection device is designed to be a low-cost, low-power platform anticipated to be operated independently of an external power source, characteristics optimal for manned spaceflight and areas where power

  1. Direct, Specific and Rapid Detection of Staphylococcal Proteins and Exotoxins Using a Multiplex Antibody Microarray.

    Directory of Open Access Journals (Sweden)

    Bettina Stieber

    Full Text Available S. aureus is a pathogen in humans and animals that harbors a wide variety of virulence factors and resistance genes. This bacterium can cause a wide range of mild to life-threatening diseases. In the latter case, fast diagnostic procedures are important. In routine diagnostic laboratories, several genotypic and phenotypic methods are available to identify S. aureus strains and determine their resistances. However, there is a demand for multiplex routine diagnostic tests to directly detect staphylococcal toxins and proteins.In this study, an antibody microarray based assay was established and validated for the rapid detection of staphylococcal markers and exotoxins. The following targets were included: staphylococcal protein A, penicillin binding protein 2a, alpha- and beta-hemolysins, Panton Valentine leukocidin, toxic shock syndrome toxin, enterotoxins A and B as well as staphylokinase. All were detected simultaneously within a single experiment, starting from a clonal culture on standard media. The detection of bound proteins was performed using a new fluorescence reading device for microarrays.110 reference strains and clinical isolates were analyzed using this assay, with a DNA microarray for genotypic characterization performed in parallel. The results showed a general high concordance of genotypic and phenotypic data. However, genotypic analysis found the hla gene present in all S. aureus isolates but its expression under given conditions depended on the clonal complex affiliation of the actual isolate.The multiplex antibody assay described herein allowed a rapid and reliable detection of clinically relevant staphylococcal toxins as well as resistance- and species-specific markers.

  2. Rapid and sensitive detection of Didymella bryoniae by visual loop-mediated isothermal amplification assay

    Directory of Open Access Journals (Sweden)

    Xiefeng Yao

    2016-08-01

    Full Text Available Didymella bryoniae is a pathogenic fungus that causes gummy stem blight (GSB in Cucurbitaceae crops (e.g. cantaloupe, muskmelon, cucumber, and watermelon. GSB produces lesions on the stems and leaves, and can also be spread by seeds. Here, we developed a rapid, visual, and sensitive loop-mediated amplification (LAMP assay for D. bryoniae detection based on sequence-characterized amplified regions (GenBank accession nos GQ872461 and GQ872462 common to the two random amplification of polymorphic DNA group genotypes (RGI and RGII of D. bryoniae; ideal conditions for detection were optimized for completion in 45 min at 63°C. The sensitivity and specificity of the LAMP assay were further analyzed in comparison with those of a conventional polymerase chain reaction (PCR. The sensitivity of the LAMP assay was 1000-fold higher than that of conventional PCR with a detection limit of 0.1 fg μL−1 of targeted DNA. The LAMP assay could be accomplished in about 45 min, with the results visible to the naked eye. The assay showed high specificity in discriminating all D. bryoniae isolates from seven other fungal pathogens that occur in Cucurbitaceae crops. The LAMP assay also detected D. bryoniae infection in young muskmelon leaves with suspected early symptoms of GSB disease. Hence, the technique has great potential for developing rapid and sensitive visual detection methods for the D. bryoniae pathogen in crops and seeds. This method has potential application in early prediction of disease and reducing the risk of epidemics.

  3. Rapid detection and identification of Bacillus anthracis in food using pyrosequencing technology.

    Science.gov (United States)

    Amoako, Kingsley K; Janzen, Timothy W; Shields, Michael J; Hahn, Kristen R; Thomas, Matthew C; Goji, Noriko

    2013-08-01

    The development of advanced methodologies for the detection of Bacillus anthracis has been evolving rapidly since the release of the anthrax spores in the mail in 2001. Recent advances in detection and identification techniques could prove to be an essential component in the defense against biological attacks. Sequence based such as pyrosequencing, which has the capability to determine short DNA stretches in real-time using biotinylated PCR amplicons, has potential biodefense applications. Using markers from the virulence plasmids (pXO1 and pXO2) and chromosomal regions, we have demonstrated the power of this technology in the rapid, specific and sensitive detection of B. anthracis spores in food matrices including milk, juice, bottled water, and processed meat. The combined use of immunomagnetic separation and pyrosequencing showed positive detection when liquid foods (bottled water, milk, juice), and processed meat were experimentally inoculated with 6CFU/mL and 6CFU/g, respectively, without an enrichment step. Pyrosequencing is completed in about 60min (following PCR amplification) and yields accurate and reliable results with an added layer of confidence. The entire assay (from sample preparation to sequencing information) can be completed in about 7.5h. A typical run on food samples yielded 67-80bp reads with 94-100% identity to the expected sequence. This sequence based approach is a novel application for the detection of anthrax spores in food with potential application in foodborne bioterrorism response and biodefense involving the use of anthrax spores. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  4. Development of Rapid Isothermal Amplification Assays for Detection of Phytophthora spp. in Plant Tissue.

    Science.gov (United States)

    Miles, Timothy D; Martin, Frank N; Coffey, Michael D

    2015-02-01

    Several isothermal amplification techniques recently have been developed that are tolerant of inhibitors present in many plant extracts, which can reduce the need for obtaining purified DNA for running diagnostic assays. One such commercially available technique that has similarities with real-time polymerase chain reaction (PCR) for designing primers and a labeled probe is recombinase polymerase amplification (RPA). This technology was used to develop two simple and rapid approaches for detection of Phytophthora spp.: one genus-specific assay multiplexed with a plant internal control and the other species-specific assays for Phytophthora ramorum and P. kernoviae. All assays were tested for sensitivity (ranging from 3 ng to 1 fg of DNA) and specificity using DNA extracted from more than 136 Phytophthora taxa, 21 Pythium spp., 1 Phytopythium sp., and a wide range of plant species. The lower limit of linear detection using purified DNA was 200 to 300 fg of DNA in all pathogen RPA assays. Six different extraction buffers were tested for use during plant tissue maceration and the assays were validated in the field by collecting 222 symptomatic plant samples from over 50 different hosts. Only 56 samples were culture positive for Phytophthora spp. whereas 91 were positive using the Phytophthora genus-specific RPA test and a TaqMan real-time PCR assay. A technique for the generation of sequencing templates from positive RPA amplifications to confirm species identification was also developed. These RPA assays have added benefits over traditional technologies because they are rapid (results can be obtained in as little as 15 min), do not require DNA extraction or extensive training to complete, use less expensive portable equipment than PCR-based assays, and are significantly more specific than current immunologically based methods. This should provide a rapid, field-deployable capability for pathogen detection that will facilitate point-of-sample collection processing

  5. Development and Validation of a Lateral Flow Immunoassay for Rapid Detection of NDM-Producing Enterobacteriaceae

    Science.gov (United States)

    Boutal, Hervé; Naas, Thierry; Devilliers, Karine; Oueslati, Saoussen; Bernabeu, Sandrine; Simon, Stéphanie

    2017-01-01

    ABSTRACT The global spread of carbapenemase-producing Enterobacteriaceae (CPE) that are often resistant to most, if not all, classes of antibiotics is a major public health concern. The NDM-1 carbapenemase is among the most worrisome carbapenemases given its rapid worldwide spread. We have developed and evaluated a lateral flow immunoassay (LFIA) (called the NDM LFIA) for the rapid and reliable detection of NDM-like carbapenemase-producing Enterobacteriaceae from culture colonies. We evaluated the NDM LFIA using 175 reference enterobacterial isolates with characterized β-lactamase gene content and 74 nonduplicate consecutive carbapenem-resistant clinical isolates referred for expertise to the French National Reference Center (NRC) for Antibiotic Resistance during a 1-week period (in June 2016). The reference collection included 55 non-carbapenemase producers and 120 carbapenemase producers, including 27 NDM producers. All 27 NDM-like carbapenemase producers of the reference collection were correctly detected in less than 15 min by the NDM LFIA, including 22 strains producing NDM-1, 2 producing NDM-4, 1 producing NDM-5, 1 producing NDM-7, and 1 producing NDM-9. All non-NDM-1 producers gave a negative result with the NDM LFIA. No cross-reaction was observed with carbapenemases (VIM, IMP, NDM, KPC, and OXA-48-like), extended-spectrum β-lactamases (ESBLs) (TEM, SHV, and CTX-M), AmpCs (CMY-2, DHA-2, and ACC-1), and oxacillinases (OXA-1, -2, -9, and -10). Similarly, among the 74 referred nonduplicate consecutive clinical isolates, all 7 NDM-like producers were identified. Overall, the sensitivity and specificity of the assay were 100% for NDM-like carbapenemase detection with strains cultured on agar. The NDM LFIA was efficient, rapid, and easy to implement in the routine workflow of a clinical microbiology laboratory for the confirmation of NDM-like carbapenemase-producing Enterobacteriaceae. PMID:28404680

  6. Rapid detection of TiO2 (E171) in table sugar using Raman spectroscopy.

    Science.gov (United States)

    Tan, Chen; Zhao, Bin; Zhang, Zhiyun; He, Lili

    2017-02-01

    The potential toxic effects of titanium dioxide (TiO 2 ) to humans remain debatable despite its broad application as a food additive. Thus, confirmation of the existence of TiO 2 particles in food matrices and subsequently quantifying them are becoming increasingly critical. This study developed a facile, rapid (E171) from food products (e.g., table sugar) by Raman spectroscopy. To detect TiO 2 particles from sugar solution, sequential centrifugation and washing procedures were effectively applied to separate and recover 97% of TiO 2 particles from the sugar solution. The peak intensity of TiO 2 sensitively responded to the concentration of TiO 2 with a limit of detection (LOD) of 0.073 mg kg -1 . In the case of sugar granules, a mapping technique was applied to directly estimate the level of TiO 2 , which can be potentially used for rapid online monitoring. The plot of averaged intensity to TiO 2 concentration in the sugar granules exhibited a good linear relationship in the wide range of 5-2000 mg kg -1 , with an LOD of 8.46 mg kg -1 . Additionally, we applied Raman spectroscopy to prove the presence of TiO 2 in sugar-coated doughnuts. This study begins to fill in the analytical gaps that exist regarding the rapid detection and quantification of TiO 2 in food, which facilitate the risk assessment of TiO 2 through food exposure.

  7. Highly reproducible and sensitive silver nanorod array for the rapid detection of Allura Red in candy

    Science.gov (United States)

    Yao, Yue; Wang, Wen; Tian, Kangzhen; Ingram, Whitney Marvella; Cheng, Jie; Qu, Lulu; Li, Haitao; Han, Caiqin

    2018-04-01

    Allura Red (AR) is a highly stable synthetic red azo dye, which is widely used in the food industry to dye food and increase its attraction to consumers. However, the excessive consumption of AR can result in adverse health effects to humans. Therefore, a highly reproducible silver nanorod (AgNR) array was developed for surface enhanced Raman scattering (SERS) detection of AR in candy. The relative standard deviation (RSD) of AgNR substrate obtained from the same batch and different batches were 5.7% and 11.0%, respectively, demonstrating the high reproducibility. Using these highly reproducible AgNR arrays as the SERS substrates, AR was detected successfully, and its characteristic peaks were assigned by the density function theory (DFT) calculation. The limit of detection (LOD) of AR was determined to be 0.05 mg/L with a wide linear range of 0.8-100 mg/L. Furthermore, the AgNR SERS arrays can detect AR directly in different candy samples within 3 min without any complicated pretreatment. These results suggest the AgNR array can be used for rapid and qualitative SERS detection of AR, holding a great promise for expanding SERS application in food safety control field.

  8. Development of rapid detection system on BEPC Ⅱ magnet power supply

    International Nuclear Information System (INIS)

    Chen Suying; Zhan Mingchuan; Long Fengli; Ye Weidong

    2014-01-01

    To quickly find the causes of the accelerator unstable or lost beam caused by magnet power supply in Beijing Electron Positron Collider (BEPC Ⅱ) running, the rapid detection system for magnet power supply was developed. The stability of the system in 8 h is about 0.005%, and it can acquire over nearly 500 sets of magnet power supply current values most quickly in 0.33 ms. All data were written to the MySQL database in real time, so as to be able to quickly troubleshoot magnet power supply problem through historical data analysis and comparison. (authors)

  9. A Portable Impedance Immunosensing System for Rapid Detection of Salmonella Typhimurium.

    Science.gov (United States)

    Wen, Tao; Wang, Ronghui; Sotero, America; Li, Yanbin

    2017-08-28

    Salmonella Typhimurium is one of the most dangerous foodborne pathogens and poses a significant threat to human health. The objective of this study was to develop a portable impedance immunosensing system for rapid and sensitive detection of S . Typhimurium in poultry. The developed portable impedance immunosensing system consisted of a gold interdigitated array microelectrode (IDAM), a signal acquisitive interface and a laptop computer with LabVIEW software. The IDAM was first functionalized with 16-Mercaptohexadecanoic acid, and streptavidin was immobilized onto the electrode surface through covalent bonding. Then, biotin-labelled S . Typhimurium -antibody was immobilized onto the IDAM surface. Samples were dropped on the surface of the IDAM and the S . Typhimurium cells in the samples were captured by the antibody on the IDAM. This resulted in impedance changes that were measured and displayed with the LabVIEW software. An equivalent circuit of the immunosensor demonstrated that the largest change in impedance was due to the electron-transfer resistance. The equivalent circuit showed an increase of 35% for the electron-transfer resistance value compared to the negative control. The calibration result indicated that the portable impedance immunosensing system could be used to measure the standard impedance elements, and it had a maximum error of measurement of approximately 13%. For pure culture detection, the system had a linear relationship between the impedance change and the logarithmic value of S . Typhimurium cells ranging from 76 to 7.6 × 10⁶ CFU (colony-forming unit) (50 μL) -1 . The immunosensor also had a correlation coefficient of 0.98, and a high specificity for detection of S . Typhimurium cells with a limit of detection (LOD) of 10² CFU (50 μL) -1 . The detection time from the moment a sample was introduced to the display of the results was 1 h. To conclude, the portable impedance immunosensing system for detection of S . Typhimurium achieved

  10. A Portable Impedance Immunosensing System for Rapid Detection of Salmonella Typhimurium

    Directory of Open Access Journals (Sweden)

    Tao Wen

    2017-08-01

    Full Text Available Salmonella Typhimurium is one of the most dangerous foodborne pathogens and poses a significant threat to human health. The objective of this study was to develop a portable impedance immunosensing system for rapid and sensitive detection of S. Typhimurium in poultry. The developed portable impedance immunosensing system consisted of a gold interdigitated array microelectrode (IDAM, a signal acquisitive interface and a laptop computer with LabVIEW software. The IDAM was first functionalized with 16-Mercaptohexadecanoic acid, and streptavidin was immobilized onto the electrode surface through covalent bonding. Then, biotin-labelled S. Typhimurium-antibody was immobilized onto the IDAM surface. Samples were dropped on the surface of the IDAM and the S. Typhimurium cells in the samples were captured by the antibody on the IDAM. This resulted in impedance changes that were measured and displayed with the LabVIEW software. An equivalent circuit of the immunosensor demonstrated that the largest change in impedance was due to the electron-transfer resistance. The equivalent circuit showed an increase of 35% for the electron-transfer resistance value compared to the negative control. The calibration result indicated that the portable impedance immunosensing system could be used to measure the standard impedance elements, and it had a maximum error of measurement of approximately 13%. For pure culture detection, the system had a linear relationship between the impedance change and the logarithmic value of S. Typhimurium cells ranging from 76 to 7.6 × 106 CFU (colony-forming unit (50 μL−1. The immunosensor also had a correlation coefficient of 0.98, and a high specificity for detection of S. Typhimurium cells with a limit of detection (LOD of 102 CFU (50 μL−1. The detection time from the moment a sample was introduced to the display of the results was 1 h. To conclude, the portable impedance immunosensing system for detection of S. Typhimurium

  11. Automated Detection of Buildings from Heterogeneous VHR Satellite Images for Rapid Response to Natural Disasters

    Directory of Open Access Journals (Sweden)

    Shaodan Li

    2017-11-01

    Full Text Available In this paper, we present a novel approach for automatically detecting buildings from multiple heterogeneous and uncalibrated very high-resolution (VHR satellite images for a rapid response to natural disasters. In the proposed method, a simple and efficient visual attention method is first used to extract built-up area candidates (BACs from each multispectral (MS satellite image. After this, morphological building indices (MBIs are extracted from all the masked panchromatic (PAN and MS images with BACs to characterize the structural features of buildings. Finally, buildings are automatically detected in a hierarchical probabilistic model by fusing the MBI and masked PAN images. The experimental results show that the proposed method is comparable to supervised classification methods in terms of recall, precision and F-value.

  12. Bienzymatic Biosensor for Rapid Detection of Aspartame by Flow Injection Analysis

    Directory of Open Access Journals (Sweden)

    Maria-Cristina Radulescu

    2014-01-01

    Full Text Available A rapid, simple and stable biosensor for aspartame detection was developed. Alcohol oxidase (AOX, carboxyl esterase (CaE and bovine serum albumin (BSA were immobilised with glutaraldehyde (GA onto screen-printed electrodes modified with cobalt-phthalocyanine (CoPC. The biosensor response was fast. The sample throughput using a flow injection analysis (FIA system was 40 h−1 with an RSD of 2.7%. The detection limits for both batch and FIA measurements were 0.1 µM for methanol and 0.2 µM for aspartame, respectively. The enzymatic biosensor was successfully applied for aspartame determination in different sample matrices/commercial products (liquid and solid samples without any pre-treatment step prior to measurement.

  13. A PCR detection method for rapid identification of Melissococcus pluton in honeybee larvae.

    Science.gov (United States)

    Govan, V A; Brözel, V; Allsopp, M H; Davison, S

    1998-05-01

    Melissococcus pluton is the causative agent of European foulbrood, a disease of honeybee larvae. This bacterium is particularly difficult to isolate because of its stringent growth requirements and competition from other bacteria. PCR was used selectively to amplify specific rRNA gene sequences of M. pluton from pure culture, from crude cell lysates, and directly from infected bee larvae. The PCR primers were designed from M. pluton 16S rRNA sequence data. The PCR products were visualized by agarose gel electrophoresis and confirmed as originating from M. pluton by sequencing in both directions. Detection was highly specific, and the probes did not hybridize with DNA from other bacterial species tested. This method enabled the rapid and specific detection and identification of M. pluton from pure cultures and infected bee larvae.

  14. Rapid detection of polyethylene glycol sonolysis upon functionalization of carbon nanomaterials.

    Science.gov (United States)

    Murali, Vasanth S; Wang, Ruhung; Mikoryak, Carole A; Pantano, Paul; Draper, Rockford

    2015-09-01

    Polyethylene glycol (PEG) and related polymers are often used in the functionalization of carbon nanomaterials in procedures that involve sonication. However, PEG is very sensitive to sonolytic degradation and PEG degradation products can be toxic to mammalian cells. Thus, it is imperative to assess potential PEG degradation to ensure that the final material does not contain undocumented contaminants that can introduce artifacts into experimental results. Described here is a simple and inexpensive polyacrylamide gel electrophoresis method to detect the sonolytic degradation of PEG. The method was used to monitor the integrity of PEG phospholipid constructs and branched chain PEGs after different sonication times. This approach not only helps detect degraded PEG, but should also facilitate rapid screening of sonication parameters to find optimal conditions that minimize PEG damage. © 2015 by the Society for Experimental Biology and Medicine.

  15. A novel kit for rapid detection of Vibrio cholerae O1.

    Science.gov (United States)

    Hasan, J A; Huq, A; Tamplin, M L; Siebeling, R J; Colwell, R R

    1994-01-01

    We report on the development and testing of a novel, rapid, colorimetric immunodiagnostic kit, Cholera SMART, for direct detection of the presence of Vibrio cholerae O1 in clinical specimens. Unlike conventional culture methods requiring several days to complete, the Cholera SMART kit can be used directly in the field by untrained or minimally skilled personnel to detect V. cholerae O1 in less than 15 min, without cumbersome laboratory equipment. A total of 120 clinical and environmental bacterial strains, including both O1 and non-O1 serotypes of V. cholerae isolated from samples collected from a variety of geographical regions, were tested, and positive reactions were observed only with V. cholerae O1. Also, results of a field trial in Bangladesh, employing Cholera SMART, showed 100% specificity and 96% sensitivity compared with conventional culture methods. Another field trial, in Mexico, showed that Cholera SMART was 100% in agreement with a recently described coagglutination test when 108 stool specimens were tested.

  16. Rapid, quantitative and sensitive immunochromatographic assay based on stripping voltammetric detection of a metal ion label

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Fang; Wang, Kaihua; Lin, Yuehe

    2005-10-10

    A novel, sensitive immunochromatographic electrochemical biosensor (IEB) which combines an immunochromatographic strip technique with an electrochemical detection technique is demonstrated. The IEB takes advantages of the speed and low-cost of the conventional immunochromatographic test kits and high-sensitivity of stripping voltammetry. Bismuth ions (Bi3+) have been coupled with the antibody through the bifunctional chelating agent diethylenetriamine pentaacetic acid (DTPA). After immunoreactions, Bi3+ was released and quantified by anodic stripping voltammetry at a built-in single-use screen-printed electrode. As an example for the applications of such novel device, the detection of human chorionic gonadotronphin (HCG) in a specimen was performed. This biosensor provides a more user-friendly, rapid, clinically accurate, and less expensive immunoassay for such analysis in specimens than currently available test kits.

  17. Rapid eye movement sleep behavior disorder as an outlier detection problem

    DEFF Research Database (Denmark)

    Kempfner, Jacob; Sørensen, Gertrud Laura; Nikolic, M.

    2014-01-01

    OBJECTIVE: Idiopathic rapid eye movement (REM) sleep behavior disorder is a strong early marker of Parkinson's disease and is characterized by REM sleep without atonia and/or dream enactment. Because these measures are subject to individual interpretation, there is consequently need...... for quantitative methods to establish objective criteria. This study proposes a semiautomatic algorithm for the early detection of Parkinson's disease. This is achieved by distinguishing between normal REM sleep and REM sleep without atonia by considering muscle activity as an outlier detection problem. METHODS......: Sixteen healthy control subjects, 16 subjects with idiopathic REM sleep behavior disorder, and 16 subjects with periodic limb movement disorder were enrolled. Different combinations of five surface electromyographic channels, including the EOG, were tested. A muscle activity score was automatically...

  18. Bienzymatic biosensor for rapid detection of aspartame by flow injection analysis.

    Science.gov (United States)

    Radulescu, Maria-Cristina; Bucur, Bogdan; Bucur, Madalina-Petruta; Radu, Gabriel Lucian

    2014-01-09

    A rapid, simple and stable biosensor for aspartame detection was developed. Alcohol oxidase (AOX), carboxyl esterase (CaE) and bovine serum albumin (BSA) were immobilised with glutaraldehyde (GA) onto screen-printed electrodes modified with cobalt-phthalocyanine (CoPC). The biosensor response was fast. The sample throughput using a flow injection analysis (FIA) system was 40 h⁻¹ with an RSD of 2.7%. The detection limits for both batch and FIA measurements were 0.1 µM for methanol and 0.2 µM for aspartame, respectively. The enzymatic biosensor was successfully applied for aspartame determination in different sample matrices/commercial products (liquid and solid samples) without any pre-treatment step prior to measurement.

  19. Rapid detection of pandemic influenza in the presence of seasonal influenza

    Directory of Open Access Journals (Sweden)

    Robertson Chris

    2010-11-01

    Full Text Available Abstract Background Key to the control of pandemic influenza are surveillance systems that raise alarms rapidly and sensitively. In addition, they must minimise false alarms during a normal influenza season. We develop a method that uses historical syndromic influenza data from the existing surveillance system 'SERVIS' (Scottish Enhanced Respiratory Virus Infection Surveillance for influenza-like illness (ILI in Scotland. Methods We develop an algorithm based on the weekly case ratio (WCR of reported ILI cases to generate an alarm for pandemic influenza. From the seasonal influenza data from 13 Scottish health boards, we estimate the joint probability distribution of the country-level WCR and the number of health boards showing synchronous increases in reported influenza cases over the previous week. Pandemic cases are sampled with various case reporting rates from simulated pandemic influenza infections and overlaid with seasonal SERVIS data from 2001 to 2007. Using this combined time series we test our method for speed of detection, sensitivity and specificity. Also, the 2008-09 SERVIS ILI cases are used for testing detection performances of the three methods with a real pandemic data. Results We compare our method, based on our simulation study, to the moving-average Cumulative Sums (Mov-Avg Cusum and ILI rate threshold methods and find it to be more sensitive and rapid. For 1% case reporting and detection specificity of 95%, our method is 100% sensitive and has median detection time (MDT of 4 weeks while the Mov-Avg Cusum and ILI rate threshold methods are, respectively, 97% and 100% sensitive with MDT of 5 weeks. At 99% specificity, our method remains 100% sensitive with MDT of 5 weeks. Although the threshold method maintains its sensitivity of 100% with MDT of 5 weeks, sensitivity of Mov-Avg Cusum declines to 92% with increased MDT of 6 weeks. For a two-fold decrease in the case reporting rate (0.5% and 99% specificity, the WCR and

  20. Rapid detection of pandemic influenza in the presence of seasonal influenza

    Science.gov (United States)

    2010-01-01

    Background Key to the control of pandemic influenza are surveillance systems that raise alarms rapidly and sensitively. In addition, they must minimise false alarms during a normal influenza season. We develop a method that uses historical syndromic influenza data from the existing surveillance system 'SERVIS' (Scottish Enhanced Respiratory Virus Infection Surveillance) for influenza-like illness (ILI) in Scotland. Methods We develop an algorithm based on the weekly case ratio (WCR) of reported ILI cases to generate an alarm for pandemic influenza. From the seasonal influenza data from 13 Scottish health boards, we estimate the joint probability distribution of the country-level WCR and the number of health boards showing synchronous increases in reported influenza cases over the previous week. Pandemic cases are sampled with various case reporting rates from simulated pandemic influenza infections and overlaid with seasonal SERVIS data from 2001 to 2007. Using this combined time series we test our method for speed of detection, sensitivity and specificity. Also, the 2008-09 SERVIS ILI cases are used for testing detection performances of the three methods with a real pandemic data. Results We compare our method, based on our simulation study, to the moving-average Cumulative Sums (Mov-Avg Cusum) and ILI rate threshold methods and find it to be more sensitive and rapid. For 1% case reporting and detection specificity of 95%, our method is 100% sensitive and has median detection time (MDT) of 4 weeks while the Mov-Avg Cusum and ILI rate threshold methods are, respectively, 97% and 100% sensitive with MDT of 5 weeks. At 99% specificity, our method remains 100% sensitive with MDT of 5 weeks. Although the threshold method maintains its sensitivity of 100% with MDT of 5 weeks, sensitivity of Mov-Avg Cusum declines to 92% with increased MDT of 6 weeks. For a two-fold decrease in the case reporting rate (0.5%) and 99% specificity, the WCR and threshold methods

  1. Rapid fluorescence detection of pathogenic bacteria using magnetic enrichment technique combined with magnetophoretic chromatography.

    Science.gov (United States)

    Che, Yulan; Xu, Yi; Wang, Renjie; Chen, Li

    2017-08-01

    A rapid and sensitive analytical method was developed to detect pathogenic bacteria which combined magnetic enrichment, fluorescence labeling with polyethylene glycol (PEG) magnetophoretic chromatography. As pathogenic bacteria usually exist in complex matrixes at low concentration, an efficient enrichment is essential for diagnosis. In order to capture series types of pathogenic bacteria in samples, amino-modified magnetic nanoparticles (Fe 3 O 4 @SiO 2 -NH 2 ) were prepared for efficient enrichment by the electrostatic interaction with pathogenic bacteria. It was shown that the capture efficiency reached up to 95.4% for Escherichia coli (E. coli). Furthermore, quantitative analysis of the bacteria was achieved by using acridine orange (AO) as a fluorescence probe for the captured E. coli due to its ability of staining series types of bacteria and rapid labeling. In order to remove the free magnetic nanoparticles and redundant fluorescent reagent, the labeled suspension was poured into a PEG separation column and was separated by applying an external magnetic field. The presence of 100 cfu mL -1 E. coli could be detected for semi-quantitative analysis by observing the separation column with the naked eye, and the concentration could be further evaluated by fluorescence detection. All the above processes were finished within 80 min. It was demonstrated that a good linear relationship existed between the fluorescence intensity and the concentration of E. coli ranging from 10 2 to 10 6  cfu mL -1 , with a detection limit of 100 cfu mL -1 when E. coli acted as target bacteria. The recovery rate of E. coli was 93.6∼102.0% in tap water and cooked meat samples, and the RSD was lower than 7% (n = 6); the result coincided with the conventional plate count method. Graphical abstract ᅟ.

  2. Rapid colorimetric sensing platform for the detection of Listeria monocytogenes foodborne pathogen.

    Science.gov (United States)

    Alhogail, Sahar; Suaifan, Ghadeer A R Y; Zourob, Mohammed

    2016-12-15

    Listeria monocytogenes is a serious cause of human foodborne infections worldwide, which needs spending billions of dollars for inspection of bacterial contamination in food every year. Therefore, there is an urgent need for rapid, in-field and cost effective detection techniques. In this study, rapid, low-cost and simple colorimetric assay was developed using magnetic nanoparticles for the detection of listeria bacteria. The protease from the listeria bacteria was detected using D-amino acid substrate. D-amino acid substrate was linked to the carboxylic acid on the magnetic nanoparticles using EDC/NHS chemistry. The cysteine residue at the C-terminal of the substrate was used for the self-assembled monolayer formation on the gold sensor surface, which in turn the black magnetic nanobeads will mask the golden color. The color will change from black to golden color upon the cleavage of the specific peptide sequence by the Listeria protease. The sensor was tested with serial dilutions of Listeria bacteria. It was found that the appearance of the gold surface area is proportional to the bacterial concentrations in CFU/ml. The lowest detection limit of the developed sensor for Listeria was found to be 2.17×10(2) colony forming unit/ml (CFU/ml). The specificity of the biosensor was tested against four different foodborne associated bacteria (Escherichia coli, Salmonella, Shigella flexnerii and Staphylococcus aureus). Finally, the sensor was tested with artificially spiked whole milk and ground meat spiked with listeria. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Rapid detection of fungal keratitis with DNA-stabilizing FTA filter paper.

    Science.gov (United States)

    Menassa, Nardine; Bosshard, Philipp P; Kaufmann, Claude; Grimm, Christian; Auffarth, Gerd U; Thiel, Michael A

    2010-04-01

    Purpose. Polymerase chain reaction (PCR) is increasingly important for the rapid detection of fungal keratitis. However, techniques of specimen collection and DNA extraction before PCR may interfere with test sensitivity. The purpose of this study was to investigate the use of DNA-stabilizing FTA filter paper (Indicating FTA filter paper; Whatman International, Ltd., Maidstone, UK) for specimen collection without DNA extraction in a single-step, nonnested PCR for fungal keratitis. Methods. Specimens were collected from ocular surfaces with FTA filter discs, which automatically lyse collected cells and stabilize nucleic acids. Filter discs were directly used in single-step PCR reactions to detect fungal DNA. Test sensitivity was evaluated with serial dilutions of Candida albicans, Fusarium oxysporum, and Aspergillus fumigatus cultures. Test specificity was analyzed by comparing 196 and 155 healthy individuals from Switzerland and Egypt, respectively, with 15 patients with a diagnosis of microbial keratitis. Results. PCR with filter discs detected 3 C. albicans, 25 F. oxysporum, and 125 A. fumigatus organisms. In healthy volunteers, fungal PCR was positive in 1.0% and 8.4% of eyes from Switzerland and Egypt, respectively. Fungal PCR remained negative in 10 cases of culture-proven bacterial keratitis, became positive in 4 cases of fungal keratitis, but missed 1 case of culture-proven A. fumigatus keratitis. Conclusions. FTA filter paper for specimen collection together with direct PCR is a promising method of detecting fungal keratitis. The analytical sensitivity is high without the need for a semi-nested or nested second PCR, the clinical specificity is 91.7% to 99.0%, and the method is rapid and inexpensive.

  4. Development of a colloidal gold immunochromatographic strip for rapid detection of Streptococcus agalactiae in tilapia.

    Science.gov (United States)

    Wen-de, Wu; Min, Li; Ming, Chen; Li-Ping, Li; Rui, Wang; Hai-Lan, Chen; Fu-Yan, Chen; Qiang, Mi; Wan-Wen, Liang; Han-Zhong, Chen

    2017-05-15

    A colloidal gold immunochromatographic strip was developed for rapid detection of Streptococcus agalactiae (S. agalactiae) infection in tilapia. The monoclonal antibodies (mAb) 4C12 and 3A9 were used to target S. agalactiae as colloidal gold-mAb conjugate and captured antibody, respectively. The colloidal gold immunochromatographic strip was assembled via routine procedures. Optimal pH and minimum antibody levels in the reaction system for gold colloidal-mAb 4C12 conjugation were pH 7.4 and 18μg/mL, respectively. Optimal concentrations of the captured antibody 3A9 and goat anti-mouse antibody were 0.6mg/mL and 2mg/mL, respectively. The sensitivity of the strip for detecting S. agalactiae was 1.5×10 5 colony forming units (CFU). No cross-reaction was observed with other commonly encountered bacteria, including Pseudomonas fluorescens, Aeromonas hydrophila, Vibrio anguillarum and Streptococcus iniae. The assay time for S. agalactiae was less than 15min. Tilapia samples artificially infected with S. agalactiae were tested using the newly developed strip. The results indicated that blood, brain, kidney, spleen, metanephros and intestine specimens of infected fish can be used for S. agalactiae detection. The validity of the strip was maintained for 6 months at 4°C. These findings suggested that the immunochromatographic strip was effective for spot and rapid detection of S. agalactiae infected tilapia. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A rapid qualitative assay for detection of Clostridium perfringens in canned food products.

    Science.gov (United States)

    Dave, Gayatri Ashwinkumar

    2017-01-01

    Clostridium perfringens (MTCC 1349) is a Gram-positive, anaerobic, endospore forming, and rod-shaped bacterium. This bacterium produces a variety of toxins under strict anaerobic environment. C. perfringens can grow at temperatures ranging between 20°C and 50°C. It is the major causetive agent for gas gangrene, cellulitis, septicemia, necrotic enteritis and food poisoning, which are common toxin induced conditions noted in human and animals. C. perfringens can produce produce four major types of toxins that are used for the classification of strains, classified under type A-E. Across the globe many countries, including the United States, are affected by C. perfringens food poisonings where it is ranked as one of the most common causes of food borne infections. To date, no direct one step assay for the detection of C. perfringens has been developed and only few methods are known for accurate detection of C. perfringens. Long detection and incubation time is the major consideration of these reporter assays. The prensent study proposes a rapid and reliable colorimetric assay for the detection of C. perfringens. In principale, this assay detects the para nitrophenyl (yellow colour end product) liberated due to the hydrolysis of paranitrophenyl phosphetidyl choline (PNPC) through phospholipase C (lecithinase). Constitutive secretion of phospholipase C is a charactristic feature of C. perfringens. This assay detects the presence of the extracellular lecithinse through the PNPC impragnated impregnated probe. The probe is impregnated with peranitrophenyl phosphotidyl choline ester, which is colourless substrate used by lecithinase. The designed assay is specific towards PNPC and detectes very small quantites of lecithinase under conditions used. The reaction is substrate specific, no cross reaction was observed upon incubation with other substrates. In addition, this assay gave negative results with other clostridium strains, no cross reactions were observed with other

  6. Detection of cut-off point for rapid automized naming test in good readers and dyslexics

    Directory of Open Access Journals (Sweden)

    Zahra Soleymani

    2014-01-01

    Full Text Available Background and Aim: Rapid automized naming test is an appropriate tool to diagnose learning disability even before teaching reading. This study aimed to detect the cut-off point of this test for good readers and dyslexics.Methods: The test has 4 parts including: objects, colors, numbers and letters. 5 items are repeated on cards randomly for 10 times. Children were asked to name items rapidly. We studied 18 dyslexic students and 18 age-matched good readers between 7 and 8 years of age at second and third grades of elementary school; they were recruited by non-randomize sampling into 2 groups: children with developmental dyslexia from learning disabilities centers with mean age of 100 months, and normal children with mean age of 107 months from general schools in Tehran. Good readers selected from the same class of dyslexics.Results: The area under the receiver operating characteristic curve was 0.849 for letter naming, 0.892 for color naming, 0.971 for number naming, 0.887 for picture naming, and 0.965 totally. The overall sensitivity and specificity was 1 and was 0.79, respectively. The highest sensitivity and specificity were related to number naming (1 and 0.90, respectively.Conclusion: Findings showed that the rapid automized naming test could diagnose good readers from dyslexics appropriately.

  7. Easy and Rapid Detection of Mumps Virus by Live Fluorescent Visualization of Virus-Infected Cells.

    Directory of Open Access Journals (Sweden)

    Tadanobu Takahashi

    Full Text Available Mumps viruses show diverse cytopathic effects (CPEs of infected cells and viral plaque formation (no CPE or no plaque formation in some cases depending on the viral strain, highlighting the difficulty in mumps laboratory studies. In our previous study, a new sialidase substrate, 2-(benzothiazol-2-yl-4-bromophenyl 5-acetamido-3,5-dideoxy-α-D-glycero-D-galacto-2-nonulopyranosidonic acid (BTP3-Neu5Ac, was developed for visualization of sialidase activity. BTP3-Neu5Ac can easily and rapidly perform histochemical fluorescent visualization of influenza viruses and virus-infected cells without an antiviral antibody and cell fixation. In the present study, the potential utility of BTP3-Neu5Ac for rapid detection of mumps virus was demonstrated. BTP3-Neu5Ac could visualize dot-blotted mumps virus, virus-infected cells, and plaques (plaques should be called focuses due to staining of infected cells in this study, even if a CPE was not observed. Furthermore, virus cultivation was possible by direct pick-up from a fluorescent focus. In conventional methods, visible appearance of the CPE and focuses often requires more than 6 days after infection, but the new method with BTP3-Neu5Ac clearly visualized infected cells after 2 days and focuses after 4 days. The BTP3-Neu5Ac assay is a precise, easy, and rapid assay for confirmation and titration of mumps virus.

  8. Chromosomal Abnormalities Associated with Neural Tube Defects (I: Full Aneuploidy

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2007-12-01

    Full Text Available Fetuses with neural tube defects (NTDs carry a risk of chromosomal abnormalities. The risk varies with maternal age, gestational age at diagnosis, association with other structural abnormalities, and family history of chromosome aberrations. This article provides an overview of chromosomal abnormalities associated with NTDs in embryos, fetuses, and newborn patients, and a comprehensive review of numerical chromosomal abnormalities associated with NTDs, such as trisomy 18, trisomy 13, triploidy, trisomy 9, trisomy 2, trisomy 21, trisomy 7, trisomy 8, trisomy 14, trisomy 15, trisomy 16, trisomy 5 mosaicism, trisomy 11 mosaicism, trisomy 20 mosaicism, monosomy X, and tetraploidy. NTDs may be associated with aneuploidy. Perinatal identification of NTDs should alert one to the possibility of chromosomal abnormalities and prompt a thorough cytogenetic investigation and genetic counseling.

  9. Rapid Reagentless Detection of M. tuberculosis H37Ra in Respiratory Effluents

    International Nuclear Information System (INIS)

    Adams, K.L.; Steele, P.T.; Bogan, M.J.; Sadler, N.M.; Martin, S.; Martin, A.N.; Frank, M.

    2008-01-01

    Two similar mycobacteria, Mycobacteria tuberculosis H37Ra and Mycobacteria smegmatis are rapidly detected and identified within samples containing a complex background of respiratory effluents using Single Particle Aerosol Mass Spectrometry (SPAMS). M. tuberculosis H37Ra (TBa), an avirulent strain, is used as a surrogate for virulent tuberculosis (TBv); M. smegmatis (MSm) is utilized as a near neighbor confounder for TBa. Bovine lung surfactant and human exhaled breath condensate are used as first-order surrogates for infected human lung expirations from patients with pulmonary tuberculosis. This simulated background sputum is mixed with TBa or MSm and nebulized to produce conglomerate aerosol particles, single particles that contain a bacterium embedded within a background respiratory matrix. Mass spectra of single conglomerate particles exhibit ions associated with both respiratory effluents and mycobacteria. Spectral features distinguishing TBa from MSm in pure and conglomerate particles are shown. SPAMS pattern matching alarm algorithms are able to distinguish TBa containing particles from background matrix and MSm for >50% of the test particles, which is sufficient to enable a high probability of detection and a low false alarm rate if an adequate number of such particles are present. These results indicate the potential usefulness of SPAMS for rapid, reagentless tuberculosis screening

  10. Rapid Reagentless Detection of M. tuberculosis H37Ra in Respiratory Effluents

    Energy Technology Data Exchange (ETDEWEB)

    Adams, K L; Steele, P T; Bogan, M J; Sadler, N M; Martin, S; Martin, A N; Frank, M

    2008-01-29

    Two similar mycobacteria, Mycobacteria tuberculosis H37Ra and Mycobacteria smegmatis are rapidly detected and identified within samples containing a complex background of respiratory effluents using Single Particle Aerosol Mass Spectrometry (SPAMS). M. tuberculosis H37Ra (TBa), an avirulent strain, is used as a surrogate for virulent tuberculosis (TBv); M. smegmatis (MSm) is utilized as a near neighbor confounder for TBa. Bovine lung surfactant and human exhaled breath condensate are used as first-order surrogates for infected human lung expirations from patients with pulmonary tuberculosis. This simulated background sputum is mixed with TBa or MSm and nebulized to produce conglomerate aerosol particles, single particles that contain a bacterium embedded within a background respiratory matrix. Mass spectra of single conglomerate particles exhibit ions associated with both respiratory effluents and mycobacteria. Spectral features distinguishing TBa from MSm in pure and conglomerate particles are shown. SPAMS pattern matching alarm algorithms are able to distinguish TBa containing particles from background matrix and MSm for >50% of the test particles, which is sufficient to enable a high probability of detection and a low false alarm rate if an adequate number of such particles are present. These results indicate the potential usefulness of SPAMS for rapid, reagentless tuberculosis screening.

  11. Rapid Detection of Glycogen Synthase Kinase-3 Activity in Mouse Sperm Using Fluorescent Gel Shift Electrophoresis

    Directory of Open Access Journals (Sweden)

    Hoseok Choi

    2016-04-01

    Full Text Available Assaying the glycogen synthase kinase-3 (GSK3 activity in sperm is of great importance because it is closely implicated in sperm motility and male infertility. While a number of studies on GSK3 activity have relied on labor-intensive immunoblotting to identify phosphorylated GSK3, here we report the simple and rapid detection of GSK3 activity in mouse sperm using conventional agarose gel electrophoresis and a fluorescent peptide substrate. When a dye-tethered and prephosphorylated (primed peptide substrate for GSK3 was employed, a distinct mobility shift in the fluorescent bands on the agarose was observed by GSK3-induced phosphorylation of the primed peptides. The GSK3 activity in mouse testes and sperm were quantifiable by gel shift assay with low sample consumption and were significantly correlated with the expression levels of GSK3 and p-GSK3. We suggest that our assay can be used for reliable and rapid detection of GSK3 activity in cells and tissue extracts.

  12. A magnetic particles-based chemiluminescence enzyme immunoassay for rapid detection of ovalbumin.

    Science.gov (United States)

    Feng, Xiao-Li; Ren, Hong-Lin; Li, Yan-Song; Hu, Pan; Zhou, Yu; Liu, Zeng-Shan; Yan, Dong-Ming; Hui, Qi; Liu, Dong; Lin, Chao; Liu, Nan-Nan; Liu, Yan-Yan; Lu, Shi-Ying

    2014-08-15

    Egg allergy is an important public health and safety concern, so quantification and administration of food or vaccines containing ovalbumin (OVA) are urgently needed. This study aimed to establish a rapid and sensitive magnetic particles-chemiluminescence enzyme immunoassay (MPs-CLEIA) for the determination of OVA. The proposed method was developed on the basis of a double antibodies sandwich immunoreaction and luminol-H2O2 chemiluminescence system. The MPs served as both the solid phase and separator, the anti-OVA MPs-coated polyclonal antibodies (pAbs) were used as capturing antibody, and the horseradish peroxidase (HRP)-labeled monoclonal antibody (mAb) was taken as detecting antibody. The parameters of the method were evaluated and optimized. The established MPs-CLEIA method had a linear range from 0.31 to 100ng/ml with a detection limit of 0.24ng/ml. The assays showed low reactivities and less than 5% of intraassay and interassay coefficients of variation (CVs), and the average recoveries were between 92 and 97%. Furthermore, the developed method was applied in real samples analysis successfully, and the correlation coefficient with the commercially available OVA kit was 0.9976. Moreover, it was more rapid and sensitive compared with the other methods for testing OVA. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Rapid Detection of Glycogen Synthase Kinase-3 Activity in Mouse Sperm Using Fluorescent Gel Shift Electrophoresis

    Science.gov (United States)

    Choi, Hoseok; Choi, Bomi; Seo, Ju Tae; Lee, Kyung Jin; Gye, Myung Chan; Kim, Young-Pil

    2016-01-01

    Assaying the glycogen synthase kinase-3 (GSK3) activity in sperm is of great importance because it is closely implicated in sperm motility and male infertility. While a number of studies on GSK3 activity have relied on labor-intensive immunoblotting to identify phosphorylated GSK3, here we report the simple and rapid detection of GSK3 activity in mouse sperm using conventional agarose gel electrophoresis and a fluorescent peptide substrate. When a dye-tethered and prephosphorylated (primed) peptide substrate for GSK3 was employed, a distinct mobility shift in the fluorescent bands on the agarose was observed by GSK3-induced phosphorylation of the primed peptides. The GSK3 activity in mouse testes and sperm were quantifiable by gel shift assay with low sample consumption and were significantly correlated with the expression levels of GSK3 and p-GSK3. We suggest that our assay can be used for reliable and rapid detection of GSK3 activity in cells and tissue extracts. PMID:27092510

  14. Rapid detection of technological disasters by using a RST-based processing chain

    Science.gov (United States)

    Filizzola, Carolina; Corrado, Rosita; Mazzeo, Giuseppe; Marchese, Francesco; Paciello, Rossana; Pergola, Nicola; Tramutoli, Valerio

    2010-05-01

    Natural disasters may be responsible for technological disasters which may cause injuries to citizens and damages to relevant infrastructures. When it is not possible to prevent or foresee such disasters it is hoped at least to rapidly detect the accident in order to intervene as soon as possible to minimize damages. In this context, the combination of a Robust Satellite Technique (RST), able to identify for sure actual (i.e. no false alarm) accidents, and satellite sensors with high temporal resolution seems to assure both a reliable and a timely detection of abrupt Thermal Infrared (TIR) transients related to dangerous explosions. A processing chain, based on the RST approach, has been developed in the framework of the G-MOSAIC project by DIFA-UNIBAS team, suitable for automatically identify on MSG-SEVIRI images harmful events. Maps of thermal anomalies are generated every 15 minutes (i.e. SEVIRI temporal repetition rate) over a selected area together with kml files (containing information on latitude and longitude of "thermally" anomalous SEVIRI pixel centre, time of image acquisition, relative intensity of anomalies, etc.) for a rapid visualization of the accident position even on google earth. Results achieved in the case of the event occurred in Russia on 10th May 2009 will be presented: a gas pipeline exploded, causing injures to citizens and a huge damage to a Physicochemical Scientific Research Institute which is, according to official data, an organisation, running especially dangerous production and facilities.

  15. Assessment of variable fluorescence fluorometry as an approach for rapidly detecting living photoautotrophs in ballast water

    Science.gov (United States)

    First, Matthew R.; Robbins-Wamsley, Stephanie H.; Riley, Scott C.; Drake, Lisa A.

    2018-03-01

    Variable fluorescence fluorometry, an analytical approach that estimates the fluorescence yield of chlorophyll a (F0, a proximal measure of algal concentration) and photochemical yield (FV/FM, an indicator of the physiological status of algae) was evaluated as a means to rapidly assess photoautotrophs. Specifically, it was used to gauge the efficacy of ballast water treatment designed to reduce the transport and delivery of potentially invasive organisms. A phytoflagellate, Tetraselmis spp. (10-12 μm) and mixed communities of ambient protists were examined in both laboratory experiments and large-scale field trials simulating 5-d hold times in mock ballast tanks. In laboratory incubations, ambient organisms held in the dark exhibited declining F0 and FV/FM measurements relative to organisms held under lighted conditions. In field experiments, increases and decreases in F0 and FV/FM over the tank hold time corresponded to those of microscope counts of organisms in two of three trials. In the third trial, concentrations of organisms ≥ 10 and protists) increased while F0 and FV/FM decreased. Rapid and sensitive, variable fluorescence fluorometry is appropriate for detecting changes in organism concentrations and physiological status in samples dominated by microalgae. Changes in the heterotrophic community, which may become more prevalent in light-limited ballast tanks, would not be detected via variable fluorescence fluorometry, however.

  16. Automatic RST-based system for a rapid detection of man-made disasters

    Science.gov (United States)

    Tramutoli, Valerio; Corrado, Rosita; Filizzola, Carolina; Livia Grimaldi, Caterina Sara; Mazzeo, Giuseppe; Marchese, Francesco; Pergola, Nicola

    2010-05-01

    Man-made disasters may cause injuries to citizens and damages to critical infrastructures. When it is not possible to prevent or foresee such disasters it is hoped at least to rapidly detect the accident in order to intervene as soon as possible to minimize damages. In this context, the combination of a Robust Satellite Technique (RST), able to identify for sure actual (i.e. no false alarm) accidents, and satellite sensors with high temporal resolution seems to assure both a reliable and a timely detection of abrupt Thermal Infrared (TIR) transients related to dangerous explosions. A processing chain, based on the RST approach, has been developed in the framework of the GMOSS and G-MOSAIC projects by DIFA-UNIBAS team, suitable for automatically identify on MSG-SEVIRI images harmful events. Maps of thermal anomalies are generated every 15 minutes (i.e. SEVIRI temporal repetition rate) over a selected area together with kml files (containing information on latitude and longitude of "thermally" anomalous SEVIRI pixel centre, time of image acquisition, relative intensity of anomalies, etc.) for a rapid visualization of the accident position even on Google Earth. Results achieved in the cases of gas pipelines recently exploded or attacked in Russia and in Iraq will be presented in this work.

  17. Colorimetry and SERS dual-mode detection of telomerase activity: combining rapid screening with high sensitivity.

    Science.gov (United States)

    Zong, Shenfei; Wang, Zhuyuan; Chen, Hui; Hu, Guohua; Liu, Min; Chen, Peng; Cui, Yiping

    2014-01-01

    As an important biomarker and therapeutic target, telomerase has attracted considerable attention concerning its detection and monitoring. Here, we present a colorimetry and surface enhanced Raman scattering (SERS) dual-mode telomerase activity detection method, which has several distinctive advantages. First, colorimetric functionality allows rapid preliminary discrimination of telomerase activity by the naked eye. Second, the employment of SERS technique results in greatly improved detection sensitivity. Third, the combination of colorimetry and SERS into one detection system can ensure highly efficacious and sensitive screening of numerous samples. Besides, the avoidance of polymerase chain reaction (PCR) procedures further guarantees fine reliability and simplicity. Generally, the presented method is realized by an "elongate and capture" procedure. To be specific, gold nanoparticles modified with Raman molecules and telomeric repeat complementary oligonucleotide are employed as the colorimetric-SERS bifunctional reporting nanotag, while magnetic nanoparticles functionalized with telomerase substrate oligonucleotide are used as the capturing substrate. Telomerase can synthesize and elongate telomeric repeats onto the capturing substrate. The elongated telomeric repeats subsequently facilitate capturing of the reporting nanotag via hybridization between telomeric repeat and its complementary strand. The captured nanotags can cause a significant difference in the color and SERS intensity of the magnetically separated sediments. Thus both the color and SERS can be used as indicators of the telomerase activity. With fast screening ability and outstanding sensitivity, we anticipate that this method would greatly promote practical application of telomerase-based early-stage cancer diagnosis.

  18. Rapid Detection of Bacillus anthracis Spores Using Immunomagnetic Separation and Amperometry

    Directory of Open Access Journals (Sweden)

    David F. Waller

    2016-12-01

    Full Text Available Portable detection and quantitation methods for Bacillus anthracis (anthrax spores in pure culture or in environmental samples are lacking. Here, an amperometric immunoassay has been developed utilizing immunomagnetic separation to capture the spores and remove potential interferents from test samples followed by amperometric measurement on a field-portable instrument. Antibody-conjugated magnetic beads and antibody-conjugated glucose oxidase were used in a sandwich format for the capture and detection of target spores. Glucose oxidase activity of spore pellets was measured indirectly via amperometry by applying a bias voltage after incubation with glucose, horseradish peroxidase, and the electron mediator 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid. Target capture was mediated by polyclonal antisera, whereas monoclonal antibodies were used for signal generation. This strategy maximized sensitivity (500 target spores, 5000 cfu/mL, while also providing a good specificity for Bacillus anthracis spores. Minimal signal deviation occurs in the presence of environmental interferents including soil and modified pH conditions, demonstrating the strengths of immunomagnetic separation. The simultaneous incubation of capture and detection antibodies and rapid substrate development (5 min result in short sample-to-signal times (less than an hour. With attributes comparable or exceeding that of ELISA and LFDs, amperometry is a low-cost, low-weight, and practical method for detecting anthrax spores in the field.

  19. Genomics-enabled sensor platform for rapid detection of viruses related to disease outbreak.

    Energy Technology Data Exchange (ETDEWEB)

    Brozik, Susan M; Manginell, Ronald P; Moorman, Matthew W; Xiao, Xiaoyin; Edwards, Thayne L.; Anderson, John Moses; Pfeifer, Kent Bryant; Branch, Darren W.; Wheeler, David Roger; Polsky, Ronen; Lopez, DeAnna M.; Ebel, Gregory D.; Prasad, Abhishek N.; Brozik, James A.; Rudolph, Angela R.; Wong, Lillian P.

    2013-09-01

    Bioweapons and emerging infectious diseases pose growing threats to our national security. Both natural disease outbreak and outbreaks due to a bioterrorist attack are a challenge to detect, taking days after the outbreak to identify since most outbreaks are only recognized through reportable diseases by health departments and reports of unusual diseases by clinicians. In recent decades, arthropod-borne viruses (arboviruses) have emerged as some of the most significant threats to human health. They emerge, often unexpectedly, from cryptic transmission foci causing localized outbreaks that can rapidly spread to multiple continents due to increased human travel and trade. Currently, diagnosis of acute infections requires amplification of viral nucleic acids, which can be costly, highly specific, technically challenging and time consuming. No diagnostic devices suitable for use at the bedside or in an outbreak setting currently exist. The original goals of this project were to 1) develop two highly sensitive and specific diagnostic assays for detecting RNA from a wide range of arboviruses; one based on an electrochemical approach and the other a fluorescent based assay and 2) develop prototype microfluidic diagnostic platforms for preclinical and field testing that utilize the assays developed in goal 1. We generated and characterized suitable primers for West Nile Virus RNA detection. Both optical and electrochemical transduction technologies were developed for DNA-RNA hybridization detection and were implemented in microfluidic diagnostic sensing platforms that were developed in this project.

  20. CUSUM-Logistic Regression analysis for the rapid detection of errors in clinical laboratory test results.

    Science.gov (United States)

    Sampson, Maureen L; Gounden, Verena; van Deventer, Hendrik E; Remaley, Alan T

    2016-02-01

    The main drawback of the periodic analysis of quality control (QC) material is that test performance is not monitored in time periods between QC analyses, potentially leading to the reporting of faulty test results. The objective of this study was to develop a patient based QC procedure for the more timely detection of test errors. Results from a Chem-14 panel measured on the Beckman LX20 analyzer were used to develop the model. Each test result was predicted from the other 13 members of the panel by multiple regression, which resulted in correlation coefficients between the predicted and measured result of >0.7 for 8 of the 14 tests. A logistic regression model, which utilized the measured test result, the predicted test result, the day of the week and time of day, was then developed for predicting test errors. The output of the logistic regression was tallied by a daily CUSUM approach and used to predict test errors, with a fixed specificity of 90%. The mean average run length (ARL) before error detection by CUSUM-Logistic Regression (CSLR) was 20 with a mean sensitivity of 97%, which was considerably shorter than the mean ARL of 53 (sensitivity 87.5%) for a simple prediction model that only used the measured result for error detection. A CUSUM-Logistic Regression analysis of patient laboratory data can be an effective approach for the rapid and sensitive detection of clinical laboratory errors. Published by Elsevier Inc.

  1. Detecting Malaria Hotspots: A Comparison of Rapid Diagnostic Test, Microscopy, and Polymerase Chain Reaction.

    Science.gov (United States)

    Mogeni, Polycarp; Williams, Thomas N; Omedo, Irene; Kimani, Domtila; Ngoi, Joyce M; Mwacharo, Jedida; Morter, Richard; Nyundo, Christopher; Wambua, Juliana; Nyangweso, George; Kapulu, Melissa; Fegan, Gregory; Bejon, Philip

    2017-11-27

    Malaria control strategies need to respond to geographical hotspots of transmission. Detection of hotspots depends on the sensitivity of the diagnostic tool used. We conducted cross-sectional surveys in 3 sites within Kilifi County, Kenya, that had variable transmission intensities. Rapid diagnostic test (RDT), microscopy, and polymerase chain reaction (PCR) were used to detect asymptomatic parasitemia, and hotspots were detected using the spatial scan statistic. Eight thousand five hundred eighty-one study participants were surveyed in 3 sites. There were statistically significant malaria hotspots by RDT, microscopy, and PCR for all sites except by microscopy in 1 low transmission site. Pooled data analysis of hotspots by PCR overlapped with hotspots by microscopy at a moderate setting but not at 2 lower transmission settings. However, variations in degree of overlap were noted when data were analyzed by year. Hotspots by RDT were predictive of PCR/microscopy at the moderate setting, but not at the 2 low transmission settings. We observed long-term stability of hotspots by PCR and microscopy but not RDT. Malaria control programs may consider PCR testing to guide asymptomatic malaria hotspot detection once the prevalence of infection falls. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  2. Rapid Object Detection Systems, Utilising Deep Learning and Unmanned Aerial Systems (uas) for Civil Engineering Applications

    Science.gov (United States)

    Griffiths, D.; Boehm, J.

    2018-05-01

    With deep learning approaches now out-performing traditional image processing techniques for image understanding, this paper accesses the potential of rapid generation of Convolutional Neural Networks (CNNs) for applied engineering purposes. Three CNNs are trained on 275 UAS-derived and freely available online images for object detection of 3m2 segments of railway track. These includes two models based on the Faster RCNN object detection algorithm (Resnet and Incpetion-Resnet) as well as the novel onestage Focal Loss network architecture (Retinanet). Model performance was assessed with respect to three accuracy metrics. The first two consisted of Intersection over Union (IoU) with thresholds 0.5 and 0.1. The last assesses accuracy based on the proportion of track covered by object detection proposals against total track length. In under six hours of training (and two hours of manual labelling) the models detected 91.3 %, 83.1 % and 75.6 % of track in the 500 test images acquired from the UAS survey Retinanet, Resnet and Inception-Resnet respectively. We then discuss the potential for such applications of such systems within the engineering field for a range of scenarios.

  3. Rapid and ultrasensitive colorimetric detection of mercury(II) by chemically initiated aggregation of gold nanoparticles

    International Nuclear Information System (INIS)

    Chen, Yinji; Chen, Wei; Yao, Li; Deng, Yi; Pan, Daodong; Cao, Jinxuan; Ogabiela, Edward; Adeloju, Samuel B.

    2015-01-01

    The article describes a method for rapid and visual determination of Hg(II) ion using unmodified gold nanoparticles (Au-NPs). It involves the addition of Au-NPs to a solution containing Hg(II) ions which, however, does not induce a color change. Next, a solution of lysine is added which induces the aggregation of the Au-NPs and causes the color of the solution to change from wine-red to purple. The whole on-site detection process can be executed in less than 15 min. Other amines (ethylenediamine, arginine, and melamine) were also investigated with respect to their capability to induce aggregation. Notably, only amines containing more than one amino group were found to be effective, but a 0.4 μM and pH 8 solution of lysine was found to give the best results. The detection limits for Hg (II) are 8.4 pM (for instrumental read-out) and 10 pM (for visual read-out). To the best of our knowledge, this LOD is better than those reported for any other existing rapid screening methods. The assay is not interfered by the presence of other common metal ions even if present in 1000-fold excess over Hg(II) concentration. It was successfully applied to the determination of Hg(II) in spiked tap water samples. We perceive that this method provides an excellent tool for rapid and ultrasensitive on-site determination of Hg(II) ions at low cost, with relative ease and minimal operation. (author)

  4. Rapid Detection and Identification of Human Hookworm Infections through High Resolution Melting (HRM) Analysis

    Science.gov (United States)

    Ngui, Romano; Lim, Yvonne A. L.; Chua, Kek Heng

    2012-01-01

    Background Hookworm infections are still endemic in low and middle income tropical countries with greater impact on the socioeconomic and public health of the bottom billion of the world's poorest people. In this study, a real-time polymerase chain reaction (PCR) coupled with high resolution melting-curve (HRM) analysis was evaluated for an accurate, rapid and sensitive tool for species identification focusing on the five human hookworm species. Methods Real-time PCR coupled with HRM analysis targeting the second internal transcribed spacer (ITS-2) of nuclear ribosomal DNA as the genetic marker was used to identify and distinguish hookworm species in human samples. Unique and distinct characteristics of HRM patterns were produced for each of the five hookworm species. The melting curves were characterized by peaks of 79.24±0.05°C and 83.00±0.04°C for Necator americanus, 79.12±0.10°C for Ancylostoma duodenale, 79.40±0.10°C for Ancylostoma ceylanicum, 79.63±0.05°C for Ancylostoma caninum and 79.70±0.14°C for Ancylostoma braziliense. An evaluation of the method's sensitivity and specificity revealed that this assay was able to detect as low as 0.01 ng/µl hookworm DNA and amplification was only recorded for hookworm positive samples. Conclusion The HRM assay developed in this study is a rapid and straightforward method for the diagnosis, identification and discrimination of five human hookworms. This assay is simple compared to other probe-based genotyping methods as it does not require multiplexing, DNA sequencing or post-PCR processing. Therefore, this method offers a new alternative for rapid detection of human hookworm species. PMID:22844538

  5. Rapid detection and identification of human hookworm infections through high resolution melting (HRM analysis.

    Directory of Open Access Journals (Sweden)

    Romano Ngui

    Full Text Available BACKGROUND: Hookworm infections are still endemic in low and middle income tropical countries with greater impact on the socioeconomic and public health of the bottom billion of the world's poorest people. In this study, a real-time polymerase chain reaction (PCR coupled with high resolution melting-curve (HRM analysis was evaluated for an accurate, rapid and sensitive tool for species identification focusing on the five human hookworm species. METHODS: Real-time PCR coupled with HRM analysis targeting the second internal transcribed spacer (ITS-2 of nuclear ribosomal DNA as the genetic marker was used to identify and distinguish hookworm species in human samples. Unique and distinct characteristics of HRM patterns were produced for each of the five hookworm species. The melting curves were characterized by peaks of 79.24±0.05°C and 83.00±0.04°C for Necator americanus, 79.12±0.10°C for Ancylostoma duodenale, 79.40±0.10°C for Ancylostoma ceylanicum, 79.63±0.05°C for Ancylostoma caninum and 79.70±0.14°C for Ancylostoma braziliense. An evaluation of the method's sensitivity and specificity revealed that this assay was able to detect as low as 0.01 ng/µl hookworm DNA and amplification was only recorded for hookworm positive samples. CONCLUSION: The HRM assay developed in this study is a rapid and straightforward method for the diagnosis, identification and discrimination of five human hookworms. This assay is simple compared to other probe-based genotyping methods as it does not require multiplexing, DNA sequencing or post-PCR processing. Therefore, this method offers a new alternative for rapid detection of human hookworm species.

  6. [Research on rapid and quantitative detection method for organophosphorus pesticide residue].

    Science.gov (United States)

    Sun, Yuan-Xin; Chen, Bing-Tai; Yi, Sen; Sun, Ming

    2014-05-01

    The methods of physical-chemical inspection is adopted in the traditional pesticide residue detection, which require a lot of pretreatment processes, are time-consuming and complicated. In the present study, the authors take chlorpyrifos applied widely in the present agricultural field as the research object and propose a rapid and quantitative detection method for organophosphorus pesticide residues. At first, according to the chemical characteristics of chlorpyrifos and comprehensive chromogenic effect of several colorimetric reagents and secondary pollution, the pretreatment of the scheme of chromogenic reaction of chlorpyrifos with resorcin in a weak alkaline environment was determined. Secondly, by analyzing Uv-Vis spectrum data of chlorpyrifos samples whose content were between 0. 5 and 400 mg kg-1, it was confirmed that the characteristic information after the color reaction mainly was concentrated among 360 approximately 400 nm. Thirdly, the full spectrum forecasting model was established based on the partial least squares, whose correlation coefficient of calibration was 0. 999 6, correlation coefficient of prediction reached 0. 995 6, standard deviation of calibration (RMSEC) was 2. 814 7 mg kg-1, and standard deviation of verification (RMSEP) was 8. 012 4 mg kg-1. Fourthly, the wavelengths whose center wavelength is 400 nm was extracted as characteristic region to build a forecasting model, whose correlation coefficient of calibration was 0. 999 6, correlation coefficient of prediction reached 0. 999 3, standard deviation of calibration (RMSEC) was 2. 566 7 mg kg-1 , standard deviation of verification (RMSEP) was 4. 886 6 mg kg-1, respectively. At last, by analyzing the near infrared spectrum data of chlorpyrifos samples with contents between 0. 5 and 16 mg kg-1, the authors found that although the characteristics of the chromogenic functional group are not obvious, the change of absorption peaks of resorcin itself in the neighborhood of 5 200 cm

  7. Transmission and selection of macrolide resistant Mycoplasma genitalium infections detected by rapid high resolution melt analysis.

    Directory of Open Access Journals (Sweden)

    Jimmy Twin

    Full Text Available BACKGROUND: Mycoplasma genitalium (MG causes urethritis, cervicitis and pelvic inflammatory disease. The MG treatment failure rate using 1 g azithromycin at an Australian Sexual Health clinic in 2007-9 was 31% (95%CI 23-40%. We developed a rapid high resolution melt analysis (HRMA assay targeting resistance mutations in the MG 23S rRNA gene, and validated it against DNA sequencing by examining pre- and post-treatment archived samples from MG-infected patients. METHODOLOGY/PRINCIPAL FINDINGS: Available MG-positive pre-treatment (n = 82 and post-treatment samples from individuals with clinical treatment failure (n = 20 were screened for 23S rRNA gene mutations. Sixteen (20% pre-treatment samples possessed resistance mutations (A2058G, A2059G, A2059C, which were significantly more common in patients with symptomatic azithromycin-treatment failure (12/26; 44% than in those clinically cured (4/56; 7%, p<0.001. All 20 patients experiencing azithromycin-failure had detectable mutations in their post-treatment samples. In 9 of these cases, the same mutational types were present in both pre- and post-treatment samples indicating transmitted resistance, whilst in 11 of these cases (55%, mutations were absent in pre-treatment samples indicating likely selection of resistant isolates have occurred. HRMA was able to detect all mutational changes determined in this study by DNA sequencing. An additional HRMA assay incorporating an unlabelled probe was also developed to detect type 4 single-nucleotide polymorphisms found in other populations, with a slightly lower sensitivity of 90%. CONCLUSIONS/SIGNIFICANCE: Treatment failure is associated with the detection of macrolide resistance mutations, which appear to be almost equally due to selection of resistant isolates following exposure to 1 g azithromycin and pre-existing transmitted resistance. The application of a rapid molecular assay to detect resistance at the time of initial detection of infection allows

  8. Microbiological evaluation of a new growth-based approach for rapid detection of methicillin-resistant Staphylococcus aureus

    NARCIS (Netherlands)

    von Eiff, Christof; Maas, Dominik; Sander, Gunnar; Friedrich, Alexander W; Peters, Georg; Becker, Karsten

    OBJECTIVES: Recently, a rapid screening tool for methicillin-resistant Staphylococcus aureus (MRSA) has been introduced that applies a novel detection technology allowing the rapid presence or absence of MRSA to be determined from an enrichment broth after only a few hours of incubation. To evaluate

  9. Aneuploidy in immortalized human mesenchymal stem cells with non-random loss of chromosome 13 in culture.

    Science.gov (United States)

    Takeuchi, Masao; Takeuchi, Kikuko; Ozawa, Yutaka; Kohara, Akihiro; Mizusawa, Hiroshi

    2009-01-01

    Aneuploidy (an abnormal number of chromosomes) is commonly observed in most human cancer cells, highlighting the need to examine chromosomal instability in tumorigenesis. Previously, the immortalized human mesenchymal stem cell line UE6E7T-3 was shown to undergo a preferential loss of one copy of chromosome 13 after prolonged culture. Here, the loss of chromosome 13 was found to be caused by chromosome missegregation during mitosis, which involved unequal segregation, exclusion of the misaligned chromosome 13 on the metaphase plate, and trapping of chromosome 13 in the midbody region, as observed by fluorescence in situ hybridization. Near-diploid aneuploidy, not tetraploidy, was the direct result. The loss of chromosome 13 was non-random, and was detected by analysis of microsatellites and single nucleotide polymorphism-based loss of heterozygosity (LOH). Of the five microsatellite loci on chromosome 13, four loci showed microsatellite instability at an early stage in culture, and LOH was apparent at a late stage in culture. These results suggest that the microsatellite mutations cause changes in centromere integrity provoking loss of this chromosome in the UE6E7T-3 cell line. Thus, these results support the use of this cell line as a useful model for understanding the mechanism of aneuploid formation in cell cultures.

  10. Rapid detection of chlorpyrifos pesticide residue concentration in agro-product using Raman spectroscopy

    Science.gov (United States)

    Dhakal, Sagar; Peng, Yankun; Li, Yongyu; Chao, Kuanglin; Qin, Jianwei; Zhang, Leilei; Xu, Tianfeng

    2014-05-01

    Different chemicals are sprayed in fruits and vegetables before and after harvest for better yield and longer shelf-life of crops. Cases of pesticide poisoning to human health are regularly reported due to excessive application of such chemicals for greater economic benefit. Different analytical technologies exist to detect trace amount of pesticides in fruits and vegetables, but are expensive, sample destructive, and require longer processing time. This study explores the application of Raman spectroscopy for rapid and non-destructive detection of pesticide residue in agricultural products. Raman spectroscopy with laser module of 785 nm was used to collect Raman spectral information from the surface of Gala apples contaminated with different concentrations of commercially available organophosphorous (48% chlorpyrifos) pesticide. Apples within 15 days of harvest from same orchard were used in this study. The Raman spectral signal was processed by Savitzky-Golay (SG) filter for noise removal, Multiplicative Scatter Correction (MSC) for drift removal and finally polynomial fitting was used to eliminate the fluorescence background. The Raman spectral peak at 677 cm-1 was recognized as Raman fingerprint of chlorpyrifos. Presence of Raman peak at 677 cm-1 after fluorescence background removal was used to develop classification model (presence and absence of pesticide). The peak intensity was correlated with actual pesticide concentration obtained using Gas Chromatography and MLR prediction model was developed with correlation coefficient of calibration and validation of 0.86 and 0.81 respectively. Result shows that Raman spectroscopy is a promising tool for rapid, real-time and non-destructive detection of pesticide residue in agro-products.

  11. A recombinant estrogen receptor fragment-based homogeneous fluorescent assay for rapid detection of estrogens.

    Science.gov (United States)

    Wang, Dan; Xie, Jiangbi; Zhu, Xiaocui; Li, Jinqiu; Zhao, Dongqin; Zhao, Meiping

    2014-05-15

    In this work, we demonstrate a novel estrogenic receptor fragment-based homogeneous fluorescent assay which enables rapid and sensitive detection of 17β-estradiol (E2) and other highly potent estrogens. A modified human estrogenic receptor fragment (N-His × 6-hER270-595-C-Strep tag II) has been constructed that contains amino acids 270-595 of wild-type human estrogenic receptor α (hER270-595) and two specific tags (6 × His and Strep tag II) fused to the N and C terminus, respectively. The designed receptor protein fragment could be easily produced by prokaryotic expression with high yield and high purity. The obtained protein exhibits high binding affinity to E2 and the two tags greatly facilitate the application of the recombinant protein. Taking advantage of the unique spectroscopic properties of coumestrol (CS), a fluorescent phytoestrogen, a CS/hER270-595-based fluorescent assay has been developed which can sensitively respond to E2 within 1.0 min with a linear working range from 0.1 to 20 ng/mL and a limit of detection of 0.1 ng/mL. The assay was successfully applied for rapid detection of E2 in the culture medium of rat hippocampal neurons. The method also holds great potential for high-throughput monitoring the variation of estrogen levels in complex biological fluids, which is crucial for investigation of the molecular basis of various estrogen-involved processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Rapid detection and strain typing of Chlamydia trachomatis using a highly multiplexed microfluidic PCR assay.

    Directory of Open Access Journals (Sweden)

    Rosemary S Turingan

    Full Text Available Nucleic acid amplification tests (NAATs are recommended by the CDC for detection of Chlamydia trachomatis (Ct urogenital infections. Current commercial NAATs require technical expertise and sophisticated laboratory infrastructure, are time-consuming and expensive, and do not differentiate the lymphogranuloma venereum (LGV strains that require a longer duration of treatment than non-LGV strains. The multiplexed microfluidic PCR-based assay presented in this work simultaneously interrogates 13 loci to detect Ct and identify LGV and non-LGV strain-types. Based on amplified fragment length polymorphisms, the assay differentiates LGV, ocular, urogenital, and proctocolitis clades, and also serovars L1, L2, and L3 within the LGV group. The assay was evaluated in a blinded fashion using 95 clinical swabs, with 76 previously reported as urogenital Ct-positive samples and typed by ompA genotyping and/or Multi-Locus Sequence Typing. Results of the 13-plex assay showed that 51 samples fell within urogenital clade 2 or 4, 24 samples showed both clade 2 and 4 signatures, indicating possible mixed infection, gene rearrangement, or inter-clade recombination, and one sample was a noninvasive trachoma biovar (either a clade 3 or 4. The remaining 19 blinded samples were correctly identified as LGV clade 1 (3, ocular clade 3 (4, or as negatives (12. To date, no NAAT assay can provide a point-of-care applicable turnaround time for Ct detection while identifying clinically significant Ct strain types to inform appropriate treatment. Coupled with rapid DNA processing of clinical swabs (approximately 60 minutes from swab-in to result-out, the assay has significant potential as a rapid POC diagnostic for Ct infections.

  13. Rapid detection of SMARCB1 sequence variation using high resolution melting

    Directory of Open Access Journals (Sweden)

    Ashley David M

    2009-12-01

    Full Text Available Abstract Background Rhabdoid tumors are rare cancers of early childhood arising in the kidney, central nervous system and other organs. The majority are caused by somatic inactivating mutations or deletions affecting the tumor suppressor locus SMARCB1 [OMIM 601607]. Germ-line SMARCB1 inactivation has been reported in association with rhabdoid tumor, epitheloid sarcoma and familial schwannomatosis, underscoring the importance of accurate mutation screening to ascertain recurrence and transmission risks. We describe a rapid and sensitive diagnostic screening method, using high resolution melting (HRM, for detecting sequence variations in SMARCB1. Methods Amplicons, encompassing the nine coding exons of SMARCB1, flanking splice site sequences and the 5' and 3' UTR, were screened by both HRM and direct DNA sequencing to establish the reliability of HRM as a primary mutation screening tool. Reaction conditions were optimized with commercially available HRM mixes. Results The false negative rate for detecting sequence variants by HRM in our sample series was zero. Nine amplicons out of a total of 140 (6.4% showed variant melt profiles that were subsequently shown to be false positive. Overall nine distinct pathogenic SMARCB1 mutations were identified in a total of 19 possible rhabdoid tumors. Two tumors had two distinct mutations and two harbored SMARCB1 deletion. Other mutations were nonsense or frame-shifts. The detection sensitivity of the HRM screening method was influenced by both sequence context and specific nucleotide change and varied from 1: 4 to 1:1000 (variant to wild-type DNA. A novel method involving digital HRM, followed by re-sequencing, was used to confirm mutations in tumor specimens containing associated normal tissue. Conclusions This is the first report describing SMARCB1 mutation screening using HRM. HRM is a rapid, sensitive and inexpensive screening technology that is likely to be widely adopted in diagnostic laboratories to

  14. Rapid detection of SMARCB1 sequence variation using high resolution melting

    International Nuclear Information System (INIS)

    Dagar, Vinod; Chow, Chung-Wo; Ashley, David M; Algar, Elizabeth M

    2009-01-01

    Rhabdoid tumors are rare cancers of early childhood arising in the kidney, central nervous system and other organs. The majority are caused by somatic inactivating mutations or deletions affecting the tumor suppressor locus SMARCB1 [OMIM 601607]. Germ-line SMARCB1 inactivation has been reported in association with rhabdoid tumor, epitheloid sarcoma and familial schwannomatosis, underscoring the importance of accurate mutation screening to ascertain recurrence and transmission risks. We describe a rapid and sensitive diagnostic screening method, using high resolution melting (HRM), for detecting sequence variations in SMARCB1. Amplicons, encompassing the nine coding exons of SMARCB1, flanking splice site sequences and the 5' and 3' UTR, were screened by both HRM and direct DNA sequencing to establish the reliability of HRM as a primary mutation screening tool. Reaction conditions were optimized with commercially available HRM mixes. The false negative rate for detecting sequence variants by HRM in our sample series was zero. Nine amplicons out of a total of 140 (6.4%) showed variant melt profiles that were subsequently shown to be false positive. Overall nine distinct pathogenic SMARCB1 mutations were identified in a total of 19 possible rhabdoid tumors. Two tumors had two distinct mutations and two harbored SMARCB1 deletion. Other mutations were nonsense or frame-shifts. The detection sensitivity of the HRM screening method was influenced by both sequence context and specific nucleotide change and varied from 1: 4 to 1:1000 (variant to wild-type DNA). A novel method involving digital HRM, followed by re-sequencing, was used to confirm mutations in tumor specimens containing associated normal tissue. This is the first report describing SMARCB1 mutation screening using HRM. HRM is a rapid, sensitive and inexpensive screening technology that is likely to be widely adopted in diagnostic laboratories to facilitate whole gene mutation screening

  15. Early Flood Detection for Rapid Humanitarian Response: Harnessing Near Real-Time Satellite and Twitter Signals

    Directory of Open Access Journals (Sweden)

    Brenden Jongman

    2015-10-01

    Full Text Available Humanitarian organizations have a crucial role in response and relief efforts after floods. The effectiveness of disaster response is contingent on accurate and timely information regarding the location, timing and impacts of the event. Here we show how two near-real-time data sources, satellite observations of water coverage and flood-related social media activity from Twitter, can be used to support rapid disaster response, using case-studies in the Philippines and Pakistan. For these countries we analyze information from disaster response organizations, the Global Flood Detection System (GFDS satellite flood signal, and flood-related Twitter activity analysis. The results demonstrate that these sources of near-real-time information can be used to gain a quicker understanding of the location, the timing, as well as the causes and impacts of floods. In terms of location, we produce daily impact maps based on both satellite information and social media, which can dynamically and rapidly outline the affected area during a disaster. In terms of timing, the results show that GFDS and/or Twitter signals flagging ongoing or upcoming flooding are regularly available one to several days before the event was reported to humanitarian organizations. In terms of event understanding, we show that both GFDS and social media can be used to detect and understand unexpected or controversial flood events, for example due to the sudden opening of hydropower dams or the breaching of flood protection. The performance of the GFDS and Twitter data for early detection and location mapping is mixed, depending on specific hydrological circumstances (GFDS and social media penetration (Twitter. Further research is needed to improve the interpretation of the GFDS signal in different situations, and to improve the pre-processing of social media data for operational use.

  16. Parental exposure to environmental concentrations of diuron leads to aneuploidy in embryos of the Pacific oyster, as evidenced by fluorescent in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Barranger, Audrey, E-mail: audrey.barranger@ifremer.fr [Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, 17390 La Tremblade (France); Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l’Ile d’Yeu, BP 21105, 44311 Nantes Cedex 03 (France); Benabdelmouna, Abdellah, E-mail: abdellah.benabdelmouna@ifremer.fr [Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, 17390 La Tremblade (France); Dégremont, Lionel [Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, 17390 La Tremblade (France); Burgeot, Thierry; Akcha, Farida [Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l’Ile d’Yeu, BP 21105, 44311 Nantes Cedex 03 (France)

    2015-02-15

    Highlights: • FISH was realized on oyster embryos from diuron-exposed genitors. • rDNA genes were used as probes on the interphase nuclei of embryo preparations. • Higher aneuploidy level was observed in embryos from diuron-exposed genitors. • Hypo- and hyperdiploid (triploid) nuclei were detected. - Abstract: Changes in normal chromosome numbers (i.e. aneuploidy) due to abnormal chromosome segregation may arise either spontaneously or as a result of chemical/radiation exposure, particularly during cell division. Coastal ecosystems are continuously subjected to various contaminants originating from urban, industrial and agricultural activities. Genotoxicity is common to several families of major environmental pollutants, including pesticides, which therefore represent a potential important environmental hazard for marine organisms. A previous study demonstrated the vertical transmission of DNA damage by subjecting oyster genitors to short-term exposure to the herbicide diuron at environmental concentrations during gametogenesis. In this paper, Fluorescent in situ hybridization (FISH) was used to further characterize diuron-induced DNA damage at the chromosomal level. rDNA genes (5S and 18-5.8-28S), previously mapped onto Crassostrea gigas chromosomes 4, 5 and 10, were used as probes on the interphase nuclei of embryo preparations. Our results conclusively show higher aneuploidy (hypo- or hyperdiploidy) level in embryos from diuron-exposed genitors, with damage to the three studied chromosomal regions. This study suggests that sexually developing oysters are vulnerable to diuron exposure, incurring a negative impact on reproductive success and oyster recruitment.

  17. Parental exposure to environmental concentrations of diuron leads to aneuploidy in embryos of the Pacific oyster, as evidenced by fluorescent in situ hybridization

    International Nuclear Information System (INIS)

    Barranger, Audrey; Benabdelmouna, Abdellah; Dégremont, Lionel; Burgeot, Thierry; Akcha, Farida

    2015-01-01

    Highlights: • FISH was realized on oyster embryos from diuron-exposed genitors. • rDNA genes were used as probes on the interphase nuclei of embryo preparations. • Higher aneuploidy level was observed in embryos from diuron-exposed genitors. • Hypo- and hyperdiploid (triploid) nuclei were detected. - Abstract: Changes in normal chromosome numbers (i.e. aneuploidy) due to abnormal chromosome segregation may arise either spontaneously or as a result of chemical/radiation exposure, particularly during cell division. Coastal ecosystems are continuously subjected to various contaminants originating from urban, industrial and agricultural activities. Genotoxicity is common to several families of major environmental pollutants, including pesticides, which therefore represent a potential important environmental hazard for marine organisms. A previous study demonstrated the vertical transmission of DNA damage by subjecting oyster genitors to short-term exposure to the herbicide diuron at environmental concentrations during gametogenesis. In this paper, Fluorescent in situ hybridization (FISH) was used to further characterize diuron-induced DNA damage at the chromosomal level. rDNA genes (5S and 18-5.8-28S), previously mapped onto Crassostrea gigas chromosomes 4, 5 and 10, were used as probes on the interphase nuclei of embryo preparations. Our results conclusively show higher aneuploidy (hypo- or hyperdiploidy) level in embryos from diuron-exposed genitors, with damage to the three studied chromosomal regions. This study suggests that sexually developing oysters are vulnerable to diuron exposure, incurring a negative impact on reproductive success and oyster recruitment

  18. Fat Content Modulates Rapid Detection of Food: A Visual Search Study Using Fast Food and Japanese Diet

    OpenAIRE

    Sawada, Reiko; Sato, Wataru; Toichi, Motomi; Fushiki, Tohru

    2017-01-01

    Rapid detection of food is crucial for the survival of organisms. However, previous visual search studies have reported discrepant results regarding the detection speeds for food vs. non-food items; some experiments showed faster detection of food than non-food, whereas others reported null findings concerning any speed advantage for the detection of food vs. non-food. Moreover, although some previous studies showed that fat content can affect visual attention for food, the effect of fat cont...

  19. Ploidy plasticity: a rapid and reversible strategy for adaptation to stress.

    Science.gov (United States)

    Berman, Judith

    2016-05-01

    Organisms must be able to grow in a broad range of conditions found in their normal growth environment and for a species to survive, at least some cells in a population must adapt rapidly to extreme stress conditions that kill the majority of cells.Candida albicans, the most prevalent fungal pathogen of humans resides as a commensal in a broad range of niches within the human host. Growth conditions in these niches are highly variable and stresses such exposure to antifungal drugs can inhibit population growth abruptly. One of the mechanisms C. albicans uses to adapt rapidly to severe stresses is aneuploidy-a change in the total number of chromosomes such that one or more chromosomes are present in excess or are missing. Aneuploidy is quite common in wild isolates of fungi and other eukaryotic microbes. Aneuploidy can be achieved by chromosome nondisjunction during a simple mitosis, and in stress conditions it begins to appear after two mitotic divisions via a tetraploid intermediate. Aneuploidy usually resolves to euploidy (a balanced number of chromosomes), but not necessarily to diploidy. Aneuploidy of a specific chromosome can confer new phenotypes by virtue of the copy number of specific genes on that chromosome relative to the copies of other genes. Thus, it is not aneuploidy per se, but the relative copy number of specific genes that confers many tested aneuploidy-associated phenotypes. Aneuploidy almost always carries a fitness cost, as cells express most proteins encoded by genes on the aneuploid chromosome in proportion to the number of DNA copies of the gene. This is thought to be due to imbalances in the stoichiometry of different components of large complexes. Despite this, fitness is a relative function-and if stress is severe and population growth has slowed considerably, then even small growth advantages of some aneuploidies can provide a selective advantage. Thus, aneuploidy appears to provide a transient solution to severe and sudden stress

  20. Rapid and label-free electrochemical DNA biosensor for detecting hepatitis A virus.

    Science.gov (United States)

    Manzano, Marisa; Viezzi, Sara; Mazerat, Sandra; Marks, Robert S; Vidic, Jasmina

    2018-02-15

    Diagnostic systems that can deliver highly specific and sensitive detection of hepatitis A virus (HAV) in food and water are of particular interest in many fields including food safety, biosecurity and control of outbreaks. Our aim was the development of an electrochemical method based on DNA hybridization to detect HAV. A ssDNA probe specific for HAV (capture probe) was designed and tested on DNAs from various viral and bacterial samples using Nested-Reverse Transcription Polymerase Chain Reaction (nRT-PCR). To develop the electrochemical device, a disposable gold electrode was functionalized with the specific capture probe and tested on complementary ssDNA and on HAV cDNA. The DNA hybridization on the electrode was measured through the monitoring of the oxidative peak potential of the indicator tripropylamine by cyclic voltammetry. To prevent non-specific binding the gold surface was treated with 3% BSA before detection. High resolution atomic force microscopy (AFM) confirmed the efficiency of electrode functionalization and on-electrode hybridization. The proposed device showed a limit of detection of 0.65pM for the complementary ssDNA and 6.94fg/µL for viral cDNA. For a comparison, nRT-PCR quantified the target HAV cDNA with a limit of detection of 6.4fg/µL. The DNA-sensor developed can be adapted to a portable format to be adopted as an easy-to- use and low cost method for screening HAV in contaminated food and water. In addition, it can be useful for rapid control of HAV infections as it takes only a few minutes to provide the results. Copyright © 2017. Published by Elsevier B.V.

  1. Temporal characteristics of radiologists’ and novices’ lesion detection in viewing medical images presented rapidly and sequentially

    Directory of Open Access Journals (Sweden)

    Ryoichi Nakashima

    2016-10-01

    Full Text Available Although viewing multiple stacks of medical images presented on a display is a relatively new but useful medical task, little is known about this task. Particularly, it is unclear how radiologists search for lesions in this type of image reading. When viewing cluttered and dynamic displays, continuous motion itself does not capture attention. Thus, it is effective for the target detection that observers’ attention is captured by the onset signal of a suddenly appearing target among the continuously moving distractors (i.e., a passive viewing strategy. This can be applied to stack viewing tasks, because lesions often show up as transient signals in medical images which are sequentially presented simulating a dynamic and smoothly transforming image progression of organs. However, it is unclear whether observers can detect a target when the target appears at the beginning of a sequential presentation where the global apparent motion onset signal (i.e., signal of the initiation of the apparent motion by sequential presentation occurs. We investigated the ability of radiologists to detect lesions during such tasks by comparing the performances of radiologists and novices. Results show that overall performance of radiologists is better than novices. Furthermore, the temporal locations of lesions in CT image sequences, i.e., when a lesion appears in an image sequence, does not affect the performance of radiologists, whereas it does affect the performance of novices. Results indicate that novices have greater difficulty in detecting a lesion appearing early than late in the image sequence. We suggest that radiologists have other mechanisms to detect lesions in medical images with little attention which novices do not have. This ability is critically important when viewing rapid sequential presentations of multiple CT images, such as stack viewing tasks.

  2. Rapid and quantitative detection of C-reactive protein using quantum dots and immunochromatographic test strips

    Directory of Open Access Journals (Sweden)

    Cheng X

    2014-12-01

    Full Text Available Xianglin Cheng,1,* Xu Pu,2,* Pen Jun,3 XiaoBo Zhu,3 Di Zhu,4 Ming Chen1 1Department of Laboratory Medicine, First Affiliated Hospital of Yangtze University, Jingzhou, 2Department of Laboratory Medicine, RenMin Hospital of Wuhan University, Wuhan, 3Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, People’s Republic of China; 4Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA *These authors contributed equally to this study and share first authorship Background: Rapid immunochromatographic tests can detect disease markers in 10–15 minutes, which facilitates clinical diagnosis and treatment programs. However, most immunochromatographic tests employ gold nanoparticles as reporters, and these have only moderate sensitivity and act as qualitative methods for analyzing high biomarker concentrations. Methods: In this study, we introduce quantum dots (QDs as fluorescent probes and immunochromatographic strips to develop quantitative fluorescence point-of-care tests (QF-POCT to analyze C-reactive protein (CRP levels. Goat anti-rabbit IgG and rabbit IgG were used as control antibodies, and mouse monoclonal CRP antibody pairs were used for disease marker detection. One monoclonal CRP antibody was conjugated with QDs and served as a signal antibody, and the other monoclonal CRP antibody was dispensed onto the nitrocellulose membrane and served as a capturing antibody. In the presence of CRP, the fluorescence intensity of the monoclonal antibody-CRP-monoclonal antibody sandwich complex captured on the nitrocellulose membrane was determined using the fluorescence strip reader. Results: QF-POCT assays could quantitatively analyze the concentration of CRP in 15 minutes had a detection limit of 0.25 mg/L, and had a wide detection linearity range (0.5–300 mg/L. The intra-assay and interassay

  3. Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring

    Science.gov (United States)

    Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner

    2015-04-01

    On-site detection of enzymatic activities has been suggested as a rapid surrogate for microbiological pollution monitoring of water resources (e.g. using glucuronidases, galactosidases, esterases). Due to the possible short measuring intervals enzymatic methods have high potential as near-real time water quality monitoring tools. This presentation describes results from a long termed field test. For twelve months, two ColiMinder devices (Vienna Water Monitoring, Austria) for on-site determination of enzymatic activity were tested for stream water monitoring at the experimental catchment HOAL (Hydrological Open Air Laboratory, Center for Water Resource Systems, Vienna University of Technology). The devices were overall able to follow and reflect the diverse hydrological and microbiological conditions of the monitored stream during the test period. Continuous data in high temporal resolution captured the course of enzymatic activity in stream water during diverse rainfall events. The method also proofed sensitive enough to determine diurnal fluctuations of enzymatic activity in stream water during dry periods. The method was able to capture a seasonal trend of enzymatic activity in stream water that matches the results gained from Colilert18 analysis for E. coli and coliform bacteria of monthly grab samples. Furthermore the comparison of ColiMinder data with measurements gained at the same test site with devices using the same method but having different construction design (BACTcontrol, microLAN) showed consistent measuring results. Comparative analysis showed significant differences between measured enzymatic activity (modified fishman units and pmol/min/100ml) and cultivation based analyses (most probable number, colony forming unit). Methods of enzymatic activity measures are capable to detect ideally the enzymatic activity caused by all active target bacteria members, including VBNC (viable but nonculturable) while cultivation based methods cannot detect VBNC

  4. Rapid detection of fifteen known soybean viruses by dot-immunobinding assay.

    Science.gov (United States)

    Ali, Akhtar

    2017-11-01

    A dot-immunobinding assay (DIBA) was optimized and used successfully for the rapid detection of 15 known viruses [Alfalfa mosaic virus (AMV), Bean pod mottle virus (BPMV), Bean yellow mosaic virus (BYMV), Cowpea mild mottle virus (CPMMV), Cowpea severe mosaic virus (CPSMV), Cucumber mosaic virus (CMV), Peanut mottle virus (PeMoV), Peanut stunt virus (PSV), Southern bean mosaic virus (SBMV), Soybean dwarf virus (SbDV), Soybean mosaic virus (SMV), Soybean vein necrosis virus (SVNV), Tobacco ringspot virus (TRSV), Tomato ringspot virus (ToRSV), and Tobacco streak virus (TSV)] infecting soybean plants in Oklahoma. More than 1000 leaf samples were collected in approximately 100 commercial soybean fields in 24 counties of Oklahoma, during the 2012-2013 growing seasons. All samples were tested by DIBA using polyclonal antibodies of the above 15 plant viruses. Thirteen viruses were detected, and 8 of them were reported for the first time in soybean crops of Oklahoma. The highest average incidence was recorded for PeMoV (13.5%) followed by SVNV (6.9%), TSV (6.4%), BYMV, (4.5%), and TRSV (3.9%), while the remaining seven viruses were detected in less than 2% of the samples tested. The DIBA was quick, and economical to screen more than 1000 samples against 15 known plant viruses in a very short time. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Facile preparation of a DNA sensor for rapid herpes virus detection

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Phuong Dinh, E-mail: tampd-hast@mail.hut.edu.vn [Hanoi Advanced School of Science and Technology, Hanoi University of Technology (Viet Nam); Tuan, Mai Anh, E-mail: tuanma-itims@mail.hut.edu.vn [International Training Institute for Materials Science, Hanoi University of Technology (Viet Nam); Huy, Tran Quang [National Institute of Hygiene and Epidemiology (NIHE), 01 Yersin, Hai Ba Trung District, Hanoi (Viet Nam); Le, Anh-Tuan [Hanoi Advanced School of Science and Technology, Hanoi University of Technology (Viet Nam); Hieu, Nguyen Van, E-mail: hieu@itims.edu.vn [International Training Institute for Materials Science, Hanoi University of Technology (Viet Nam)

    2010-10-12

    In this paper, a simple DNA sensor platform was developed for rapid herpes virus detection in real samples. The deoxyribonucleic acid (DNA) sequences of the herpes simplex virus (DNA probe) were directly immobilized on the surface of interdigitated electrodes by electrochemical polymerization along with pyrrole monomers. The potential was scanned from - 0.7 to + 0.6 V, and the scanning rate was 100 mV/s. Fourier transform infrared spectroscopy was employed to verify specific DNA sequence binding and the conducting polymer. The morphology of the conducting polymer doped with DNA strands was characterized using a field emission scanning electron microscope. As-obtained DNA sensor was used to detect the herpes virus DNA in the real samples. The results show that the current DNA sensors detected the lowest DNA concentration of 2 nM. This sensitivity appears to be better than that of the DNA sensors prepared by immobilization of the DNA probe on the 3-aminopropyl-triethoxy-silance (APTS) membrane.

  6. Micropower Impulse Radar: A Novel Technology for Rapid, Real-Time Detection of Pneumothorax

    Directory of Open Access Journals (Sweden)

    Phillip D. Levy

    2011-01-01

    Full Text Available Pneumothorax detection in emergency situations must be rapid and at the point of care. Current standards for detection of a pneumothorax are supine chest X-rays, ultrasound, and CT scans. Unfortunately these tools and the personnel necessary for their facile utilization may not be readily available in acute circumstances, particularly those which occur in the pre-hospital setting. The decision to treat therefore, is often made without adequate information. In this report, we describe a novel hand-held device that utilizes Micropower Impulse Radar to reliably detect the presence of a pneumothorax. The technology employs ultra wide band pulses over a frequency range of 500 MHz to 6 GHz and a proprietary algorithm analyzes return echoes to determine if a pneumothorax is present with no user interpretation required. The device has been evaluated in both trauma and surgical environments with sensitivity of 93% and specificity of 85%. It is has the CE Mark and is available for sale in Europe. Post market studies are planned starting in May of 2011. Clinical studies to support the FDA submission will be completed in the first quarter of 2012.

  7. Rapid Detection of Microorganisms Based on Active and Passive Modes of QCM

    Directory of Open Access Journals (Sweden)

    Zdeněk Farka

    2014-12-01

    Full Text Available Label-free immunosensors are well suited for detection of microorganisms because of their fast response and reasonable sensitivity comparable to infection doses of common pathogens. Active (lever oscillator and frequency counter and passive (impedance analyzer modes of quartz crystal microbalance (QCM were used and compared for rapid detection of three strains of E. coli. Different approaches for antibody immobilization were compared, the immobilization of reduced antibody using Sulfo‑SMCC was most effective achieving the limit of detection (LOD 8 × 104 CFU·mL−1 in 10 min. For the passive mode, software evaluating impedance characteristics in real-time was developed and used. Almost the same results were achieved using both active and passive modes confirming that the sensor properties are not limited by the frequency evaluation method but mainly by affinity of the antibody. Furthermore, reference measurements were done using surface plasmon resonance. Effect of condition of cells on signal was observed showing that cells ruptured by ultrasonication provided slightly higher signal changes than intact microbes.

  8. Sanshool on The Fingertip Interferes with Vibration Detection in a Rapidly-Adapting (RA Tactile Channel.

    Directory of Open Access Journals (Sweden)

    Scinob Kuroki

    Full Text Available An Asian spice, Szechuan pepper (sanshool, is well known for the tingling sensation it induces on the mouth and on the lips. Electrophysiological studies have revealed that its active ingredient can induce firing of mechanoreceptor fibres that typically respond to mechanical vibration. Moreover, a human behavioral study has reported that the perceived frequency of sanshool-induced tingling matches with the preferred frequency range of the tactile rapidly adapting (RA channel, suggesting the contribution of sanshool-induced RA channel firing to its unique perceptual experience. However, since the RA channel may not be the only channel activated by sanshool, there could be a possibility that the sanshool tingling percept may be caused in whole or in part by other sensory channels. Here, by using a perceptual interference paradigm, we show that the sanshool-induced RA input indeed contributes to the human tactile processing. The absolute detection thresholds for vibrotactile input were measured with and without sanshool application on the fingertip. Sanshool significantly impaired detection of vibrations at 30 Hz (RA channel dominant frequency, but did not impair detection of higher frequency vibrations at 240 Hz (Pacinian-corpuscle (PC channel dominant frequency or lower frequency vibrations at 1 Hz (slowly adapting 1 (SA1 channel dominant frequency. These results show that the sanshool induces a peripheral RA channel activation that is relevant for tactile perception. This anomalous activation of RA channels may contribute to the unique tingling experience of sanshool.

  9. A miniaturized optoelectronic system for rapid quantitative label-free detection of harmful species in food

    Science.gov (United States)

    Raptis, Ioannis; Misiakos, Konstantinos; Makarona, Eleni; Salapatas, Alexandros; Petrou, Panagiota; Kakabakos, Sotirios; Botsialas, Athanasios; Jobst, Gerhard; Haasnoot, Willem; Fernandez-Alba, Amadeo; Lees, Michelle; Valamontes, Evangelos

    2016-03-01

    Optical biosensors have emerged in the past decade as the most promising candidates for portable, highly-sensitive bioanalytical systems that can be employed for in-situ measurements. In this work, a miniaturized optoelectronic system for rapid, quantitative, label-free detection of harmful species in food is presented. The proposed system has four distinctive features that can render to a powerful tool for the next generation of Point-of-Need applications, namely it accommodates the light sources and ten interferometric biosensors on a single silicon chip of a less-than-40mm2 footprint, each sensor can be individually functionalized for a specific target analyte, the encapsulation can be performed at the wafer-scale, and finally it exploits a new operation principle, Broad-band Mach-Zehnder Interferometry to ameliorate its analytical capabilities. Multi-analyte evaluation schemes for the simultaneous detection of harmful contaminants, such as mycotoxins, allergens and pesticides, proved that the proposed system is capable of detecting within short time these substances at concentrations below the limits imposed by regulatory authorities, rendering it to a novel tool for the near-future food safety applications.

  10. Method for rapid detection and identification of chaetomium and evaluation of resistance to peracetic acid.

    Science.gov (United States)

    Nakayama, Motokazu; Hosoya, Kouichi; Tomiyama, Daisuke; Tsugukuni, Takashi; Matsuzawa, Tetsuhiro; Imanishi, Yumi; Yaguchi, Takashi

    2013-06-01

    In the beverage industry, peracetic acid has been increasingly used as a disinfectant for the filling machinery and environment due to merits of leaving no residue, it is safe for humans, and its antiseptic effect against fungi and endospores of bacteria. Recently, Chaetomium globosum and Chaetomium funicola were reported resistant to peracetic acid; however, little is known concerning the detail of peracetic acid resistance. Therefore, we assessed the peracetic acid resistance of the species of Chaetomium and related genera under identical conditions and made a thorough observation of the microstructure of their ascospores by transmission electron microscopy. The results of analyses revealed that C. globosum and C. funicola showed the high resistance to peracetic acid (a 1-D antiseptic effect after 900 s and 3-D antiseptic effect after 900 s) and had thick cell walls of ascospores that can impede the action mechanism of peracetic acid. We also developed specific primers to detect the C. globosum clade and identify C. funicola by using PCR to amplify the β-tubulin gene. PCR with the primer sets designed for C. globosum (Chae 4F/4R) and C. funicola (Cfu 2F/2R) amplified PCR products specific for the C. globosum clade and C. funicola, respectively. PCR with these two primer sets did not detect other fungi involved in food spoilage and environmental contamination. This detection and identification method is rapid and simple, with extremely high specificity.

  11. Rapid detection of multidrug-resistant Mycobacterium tuberculosis using the malachite green decolourisation assay

    Science.gov (United States)

    Coban, Ahmet Yilmaz; Uzun, Meltem

    2013-01-01

    Early detection of drug resistance in Mycobacterium tuberculosis isolates allows for earlier and more effective treatment of patients. The aim of this study was to investigate the performance of the malachite green decolourisation assay (MGDA) in detecting isoniazid (INH) and rifampicin (RIF) resistance in M. tuberculosis clinical isolates. Fifty M. tuberculosis isolates, including 19 multidrug-resistant, eight INH-resistant and 23 INH and RIF-susceptible samples, were tested. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and agreement of the assay for INH were 92.5%, 91.3%, 92.5%, 91.3% and 92%, respectively. Similarly, the sensitivity, specificity, PPV, NPV and agreement of the assay for RIF were 94.7%, 100%, 100%, 96.8% and 98%, respectively. There was a major discrepancy in the tests of two isolates, as they were sensitive to INH by the MGDA test, but resistant by the reference method. There was a minor discrepancy in the tests of two additional isolates, as they were sensitive to INH by the reference method, but resistant by the MGDA test. The drug susceptibility test results were obtained within eight-nine days. In conclusion, the MGDA test is a reliable and accurate method for the rapid detection of INH and RIF resistance compared with the reference method and the MGDA test additionally requires less time to obtain results. PMID:24402143

  12. Rapid detection of multidrug-resistant Mycobacterium tuberculosis using the malachite green decolourisation assay

    Directory of Open Access Journals (Sweden)

    Ahmet Yilmaz Coban

    2013-12-01

    Full Text Available Early detection of drug resistance in Mycobacterium tuberculosis isolates allows for earlier and more effective treatment of patients. The aim of this study was to investigate the performance of the malachite green decolourisation assay (MGDA in detecting isoniazid (INH and rifampicin (RIF resistance in M. tuberculosis clinical isolates. Fifty M. tuberculosis isolates, including 19 multidrug-resistant, eight INH-resistant and 23 INH and RIF-susceptible samples, were tested. The sensitivity, specificity, positive predictive value (PPV, negative predictive value (NPV and agreement of the assay for INH were 92.5%, 91.3%, 92.5%, 91.3% and 92%, respectively. Similarly, the sensitivity, specificity, PPV, NPV and agreement of the assay for RIF were 94.7%, 100%, 100%, 96.8% and 98%, respectively. There was a major discrepancy in the tests of two isolates, as they were sensitive to INH by the MGDA test, but resistant by the reference method. There was a minor discrepancy in the tests of two additional isolates, as they were sensitive to INH by the reference method, but resistant by the MGDA test. The drug susceptibility test results were obtained within eight-nine days. In conclusion, the MGDA test is a reliable and accurate method for the rapid detection of INH and RIF resistance compared with the reference method and the MGDA test additionally requires less time to obtain results.

  13. Mini-column assay for rapid detection of malachite green in fish.

    Science.gov (United States)

    Shalaby, Ali R; Emam, Wafaa H; Anwar, Mervat M

    2017-07-01

    A simple, rapid and economical mini-column method for detecting malachite green (MG) residue in fish was developed. The method used a column with 2mm ID that was tightly packed with silica gel followed by alumina. Detection of MG was performed by viewing the developed mini-column at visible light by naked eye; where MG was seen as compact green band at the confluence of the silica gel layer with alumina layer. The limit of detection of the assay was 2ng which conform the minimum required performance limit (MRPL). Evaluation utility of the method indicated that all blank and spiked samples at levels below MRPL were assessed as accepted. The intensity of the green band increased whenever MG level in the extract increased; indicated that suggested mini-column technique could be used for semi-quantitative determination of MG in fish samples. The method can be used to select the questionable samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A portable device for rapid nondestructive detection of fresh meat quality

    Science.gov (United States)

    Lin, Wan; Peng, Yankun

    2014-05-01

    Quality attributes of fresh meat influence nutritional value and consumers' purchasing power. In order to meet the demand of inspection department for portable device, a rapid and nondestructive detection device for fresh meat quality based on ARM (Advanced RISC Machines) processor and VIS/NIR technology was designed. Working principal, hardware composition, software system and functional test were introduced. Hardware system consisted of ARM processing unit, light source unit, detection probe unit, spectral data acquisition unit, LCD (Liquid Crystal Display) touch screen display unit, power unit and the cooling unit. Linux operating system and quality parameters acquisition processing application were designed. This system has realized collecting spectral signal, storing, displaying and processing as integration with the weight of 3.5 kg. 40 pieces of beef were used in experiment to validate the stability and reliability. The results indicated that prediction model developed using PLSR method using SNV as pre-processing method had good performance, with the correlation coefficient of 0.90 and root mean square error of 1.56 for validation set for L*, 0.95 and 1.74 for a*,0.94 and 0.59 for b*, 0.88 and 0.13 for pH, 0.79 and 12.46 for tenderness, 0.89 and 0.91 for water content, respectively. The experimental result shows that this device can be a useful tool for detecting quality of meat.

  15. Rapid Detection of the Chlamydiaceae and Other Families in the Order Chlamydiales: Three PCR Tests

    Science.gov (United States)

    Everett, Karin D. E.; Hornung, Linda J.; Andersen, Arthur A.

    1999-01-01

    Few identification methods will rapidly or specifically detect all bacteria in the order Chlamydiales, family Chlamydiaceae. In this study, three PCR tests based on sequence data from over 48 chlamydial strains were developed for identification of these bacteria. Two tests exclusively recognized the Chlamydiaceae: a multiplex test targeting the ompA gene and the rRNA intergenic spacer and a TaqMan test targeting the 23S ribosomal DNA. The multiplex test was able to detect as few as 200 inclusion-forming units (IFU), while the TaqMan test could detect 2 IFU. The amplicons produced in these tests ranged from 132 to 320 bp in length. The third test, targeting the 23S rRNA gene, produced a 600-bp amplicon from strains belonging to several families in the order Chlamydiales. Direct sequence analysis of this amplicon has facilitated the identification of new chlamydial strains. These three tests permit ready identification of chlamydiae for diagnostic and epidemiologic study. The specificity of these tests indicates that they might also be used to identify chlamydiae without culture or isolation. PMID:9986815

  16. A replaceable liposomal aptamer for the ultrasensitive and rapid detection of biotin

    Science.gov (United States)

    Sung, Tzu-Cheng; Chen, Wen-Yih; Shah, Pramod; Chen, Chien-Sheng

    2016-02-01

    Biotin is an essential vitamin which plays an important role for maintaining normal physiological function. A rapid, sensitive, and simple method is necessary to monitor the biotin level. Here, we reported a replacement assay for the detection of biotin using a replaceable liposomal aptamer. Replacement assay is a competitive assay where a sample analyte replaces the labeled competitor of analyte out of its biorecognition element on a surface. It is user friendly and time-saving because of washing free. We used aptamer as a competitor, not a biorecognition element as tradition. To label aptamers, we used cholesterol-conjugated aptamers to tag signal-amplifying-liposomes. Without the need of conjugation procedure, aptamers can be easily incorporated into the surface of dye-encapsulating liposomes. Two aptamers as competitors of biotin, ST-21 and ST-21M with different affinities to streptavidin, were studied in parallel for the detection of biotin using replacement assays. ST-21 and ST-21M aptamers reached to limits of detection of 1.32 pg/80 μl and 0.47 pg/80 μl, respectively. The dynamic ranges of our assays using ST-21 and ST-21M aptamers were seven and four orders of magnitude, respectively. This assay can be completed in 20 minutes without washing steps. These results were overall better than previous reported assays.

  17. Rapid detection of Listeria monocytogenes in milk using confocal micro-Raman spectroscopy and chemometric analysis.

    Science.gov (United States)

    Wang, Junping; Xie, Xinfang; Feng, Jinsong; Chen, Jessica C; Du, Xin-jun; Luo, Jiangzhao; Lu, Xiaonan; Wang, Shuo

    2015-07-02

    Listeria monocytogenes is a facultatively anaerobic, Gram-positive, rod-shape foodborne bacterium causing invasive infection, listeriosis, in susceptible populations. Rapid and high-throughput detection of this pathogen in dairy products is critical as milk and other dairy products have been implicated as food vehicles in several outbreaks. Here we evaluated confocal micro-Raman spectroscopy (785 nm laser) coupled with chemometric analysis to distinguish six closely related Listeria species, including L. monocytogenes, in both liquid media and milk. Raman spectra of different Listeria species and other bacteria (i.e., Staphylococcus aureus, Salmonella enterica and Escherichia coli) were collected to create two independent databases for detection in media and milk, respectively. Unsupervised chemometric models including principal component analysis and hierarchical cluster analysis were applied to differentiate L. monocytogenes from Listeria and other bacteria. To further evaluate the performance and reliability of unsupervised chemometric analyses, supervised chemometrics were performed, including two discriminant analyses (DA) and soft independent modeling of class analogies (SIMCA). By analyzing Raman spectra via two DA-based chemometric models, average identification accuracies of 97.78% and 98.33% for L. monocytogenes in media, and 95.28% and 96.11% in milk were obtained, respectively. SIMCA analysis also resulted in satisfied average classification accuracies (over 93% in both media and milk). This Raman spectroscopic-based detection of L. monocytogenes in media and milk can be finished within a few hours and requires no extensive sample preparation. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Facile preparation of a DNA sensor for rapid herpes virus detection

    International Nuclear Information System (INIS)

    Tam, Phuong Dinh; Tuan, Mai Anh; Huy, Tran Quang; Le, Anh-Tuan; Hieu, Nguyen Van

    2010-01-01

    In this paper, a simple DNA sensor platform was developed for rapid herpes virus detection in real samples. The deoxyribonucleic acid (DNA) sequences of the herpes simplex virus (DNA probe) were directly immobilized on the surface of interdigitated electrodes by electrochemical polymerization along with pyrrole monomers. The potential was scanned from - 0.7 to + 0.6 V, and the scanning rate was 100 mV/s. Fourier transform infrared spectroscopy was employed to verify specific DNA sequence binding and the conducting polymer. The morphology of the conducting polymer doped with DNA strands was characterized using a field emission scanning electron microscope. As-obtained DNA sensor was used to detect the herpes virus DNA in the real samples. The results show that the current DNA sensors detected the lowest DNA concentration of 2 nM. This sensitivity appears to be better than that of the DNA sensors prepared by immobilization of the DNA probe on the 3-aminopropyl-triethoxy-silance (APTS) membrane.

  19. Genome-size Variation in Switchgrass (Panicum virgatum: Flow Cytometry and Cytology Reveal Rampant Aneuploidy

    Directory of Open Access Journals (Sweden)

    Denise E. Costich

    2010-11-01

    Full Text Available Switchgrass ( L., a native perennial dominant of the prairies of North America, has been targeted as a model herbaceous species for biofeedstock development. A flow-cytometric survey of a core set of 11 primarily upland polyploid switchgrass accessions indicated that there was considerable variation in genome size within each accession, particularly at the octoploid (2 = 8 = 72 chromosome ploidy level. Highly variable chromosome counts in mitotic cell preparations indicated that aneuploidy was more common in octoploids (86.3% than tetraploids (23.2%. Furthermore, the incidence of hyper- versus hypoaneuploidy is equivalent in tetraploids. This is clearly not the case in octoploids, where close to 90% of the aneuploid counts are lower than the euploid number. Cytogenetic investigation using fluorescent in situ hybridization (FISH revealed an unexpected degree of variation in chromosome structure underlying the apparent genomic instability of this species. These results indicate that rapid advances in the breeding of polyploid biofuel feedstocks, based on the molecular-genetic dissection of biomass characteristics and yield, will be predicated on the continual improvement of our understanding of the cytogenetics of these species.

  20. Clinical, social and ethical issues associated with non-invasive prenatal testing for aneuploidy.

    Science.gov (United States)

    Griffin, Blanche; Edwards, Samantha; Chitty, Lyn S; Lewis, Celine

    2018-03-01

    Non-invasive prenatal testing (NIPT), based on analysis of cell-free foetal DNA, is rapidly becoming a preferred method to screen for chromosomal aneuploidy with the technology now available in over 90 countries. This review provides an up-to-date discussion of the key clinical, social and ethical implications associated with this revolutionary technology. Stakeholders are positive about a test that is highly accurate, safe, can be perfomed early in pregnancy, identifies affected pregnancies that might otherwise have been missed and reduces the need for invasive testing. Nevertheless, professional societies currently recommend it as an advanced screening test due to the low false positive rate (FPR). Despite the practical and psychological benefits, a number of concerns have been raised which warrant attention. These include the potential for routinisation of testing and subsequent impact on informed decision-making, an "easy" blood test inadvertently contributing to women feeling pressured to take the test, fears NIPT will lead to less tolerance and support for those living with Down syndrome and the heightened expectation of having "perfect babies". These issues can be addressed to some extent through clinician education, patient information and establishing national and international consensus in the development of comprehensive and regularly updated guidelines. As the number of conditions we are able to test for non-invasively expands it will be increasingly important to ensure pre-test counselling can be delivered effectively supported by knowledgeable healthcare professionals.

  1. Antigen detection of rabies virus in brain smear using direct Rapid Immunohistochemistry Test

    Directory of Open Access Journals (Sweden)

    Damayanti R

    2014-03-01

    Full Text Available Rabies is zoonotic disease caused by a fatal, neurotropic virus. Rabies virus is classified into the Genus of Lyssavirus under the yang family of Rhabdoviridae. Rabies affecting hot- blooded animals, as well as human. Dogs, cats, monkeys are the vectors or reservoirs for rabies and the virus was transmitted through the saliva after infected animal’s bites. The aim of this study was to conduct rapid diagnosis to detect rabies viral antigen in brain smear using immunohistochemical (IHC method namely direct Rapid Immunohistochemical Test (dRIT. A total number of 119 brain samples were achieved from Bukittinggi Veterinary Laboratory, West Sumatra. Standardisation and validation of the method were compared to Fluorescent Antibody Test (FAT as a golden standard for rabies diagnosis. Results show that dRIT was a very good method, it can be performed within two hours without the need of fluorescent microscope. The samples were tested using FAT and from 119 samples tested, 80 (67.23% samples were positive for rabies and 39 (32.77% samples were negative for rabies whereas using dRIT showed that 78 (65.54% samples were positive for rabies and 41 (34.45% samples were negative for rabies. The dRIT results were validated by comparing them with FAT results as a golden standard for rabies. The relative sensitivity of dRIT to FAT was 97.5% and the relative specificity to FAT was 100% (with Kappa value of 0.976, stated as excellent. The achievement showed that dRIT is very potential diagnostic tool and is highly recommended to be used widely as a rapid diagnosis tool for rabies.

  2. The characteristics of rapid detection of irradiated foods by photostimulated luminescence (PSL)

    International Nuclear Information System (INIS)

    Sekiguchi, Masayuki; Yamazaki, Masao; Mizuno, Hiroaki; Goto, Michiko; Hagiwara, Shoji; Todoriki, Setsuko; Honda, Katsunori

    2007-01-01

    The Photostimulated luminescence (PSL) method offered a rapid, convenient and sensitive way for detecting irradiated food. We developed a new PSL system with the tree classification modes for identifying irradiated foods. The present study reports the changes of the signal intensities and the typical decay curves of PSL for irradiated the powdered leaf products and several kinds of silicate minerals under dark storage. Any of powdered leaf products under dark storage at 4-50degC showed the typical decay curves of PSL even after 5 months, and irradiated paprika and yellow ocher could be still identify after heat-treatment at 120degC. PSL intensities of silicate minerals increased with the increase of radiation dose and show a linear relationship up to a about 1 kGy, but varied among silicate minerals. (author)

  3. Rapid and simple preparation of rhodamine 6G loaded HY zeolite for highly selective nitrite detection

    Science.gov (United States)

    Viboonratanasri, Duangkamon; Pabchanda, Suwat; Prompinit, Panida

    2018-05-01

    In this study, a simple, rapid and relatively less toxic method for rhodamine 6G dye adsorption on hydrogen-form Y-type zeolite for highly selective nitrite detection was demonstrated. The adsorption behavior was described by Langmuir isotherm and the adsorption process reached the equilibrium promptly within a minute. The developed test papers characterized by fluorescence technique display high sensing performance with wide working range (0.04-20.0 mg L-1) and high selectivity. The test papers show good reproducibility with relative standard deviation (RSD) of 7% for five replicated determinations of 3 mg L-1 of nitrite. The nitrite concentration determined by using the test paper was in the same range as using ion chromatography within a 95% confidence level. The test papers offer advantages in terms of low cost and practical usage enabling them to be a promising candidate for nitrite sensor in environmental samples, food, and fertilizers.

  4. Combining Electrochemical Sensors with Miniaturized Sample Preparation for Rapid Detection in Clinical Samples

    Science.gov (United States)

    Bunyakul, Natinan; Baeumner, Antje J.

    2015-01-01

    Clinical analyses benefit world-wide from rapid and reliable diagnostics tests. New tests are sought with greatest demand not only for new analytes, but also to reduce costs, complexity and lengthy analysis times of current techniques. Among the myriad of possibilities available today to develop new test systems, amperometric biosensors are prominent players—best represented by the ubiquitous amperometric-based glucose sensors. Electrochemical approaches in general require little and often enough only simple hardware components, are rugged and yet provide low limits of detection. They thus offer many of the desirable attributes for point-of-care/point-of-need tests. This review focuses on investigating the important integration of sample preparation with (primarily electrochemical) biosensors. Sample clean up requirements, miniaturized sample preparation strategies, and their potential integration with sensors will be discussed, focusing on clinical sample analyses. PMID:25558994

  5. Near instrument-free, simple molecular device for rapid detection of herpes simplex viruses.

    Science.gov (United States)

    Lemieux, Bertrand; Li, Ying; Kong, Huimin; Tang, Yi-Wei

    2012-06-01

    The first near instrument-free, inexpensive and simple molecular diagnostic device (IsoAmp HSV, BioHelix Corp., MA, USA) recently received US FDA clearance for use in the detection of herpes simplex viruses (HSV) in genital and oral lesion specimens. The IsoAmp HSV assay uses isothermal helicase-dependent amplification in combination with a disposable, hermetically-sealed, vertical-flow strip identification. The IsoAmp HSV assay has a total test-to-result time of less than 1.5 h by omitting the time-consuming nucleic acid extraction. The diagnostic sensitivity and specificity are comparable to PCR and are superior to culture-based methods. The near instrument-free, rapid and simple characteristics of the IsoAmp HSV assay make it potentially suitable for point-of-care testing.

  6. SnO2 quantum dots with rapid butane detection at lower ppm-level

    Science.gov (United States)

    Cai, Pan; Dong, Chengjun; Jiang, Ming; Shen, Yuanyuan; Tao, You; Wang, Yude

    2018-04-01

    SnO2 quantum dots (QDs) were successfully synthesized by a facile approach employing benzyl alcohol and ammonium hydroxide at lower temperature of 130 °C. It is revealed that the SnO2 QDs is about 3 nm in size to form clusters. The gas sensor based on SnO2 QDs shows a high potential for detecting low-ppm-level butane at 400 °C, exhibiting a high sensitivity, short response and rapid recovery time, and effective selectivity. The sensing mechanism is understood in terms of adsorbed oxygen species. Significantly, the excellent sensing performance is attributed to the smaller size of SnO2 and larger surface area (204.85 m2/g).

  7. Evaluation of three commercial rapid tests for detecting antibodies to human immunodeficiency virus.

    Science.gov (United States)

    Ng, K P; Saw, T L; Baki, A; Kamarudin, R

    2003-08-01

    Determine HIV-1/2, Chembio HIV-1/2 STAT-PAK and PenTest are simple/rapid tests for the detection of antibodies to HIV-1 and HIV-2 in human whole blood, serum and plasma samples. The assay is one step and the result is read visually within 15 minutes. Using 92 known HIV-1 reactive sera and 108 known HIV-1 negative sera, the 3 HIV tests correctly identified all the known HIV-1 reactive and negative samples. The results indicated that Determine HIV-1/2, Chembio HIV-1/2 STAT-PAK and PenTest HIV are as sensitive and specific (100% concordance) as Microparticle Enzyme Immunoassay. The data indicated that these 3 HIV tests are effective testing systems for diagnosis of HIV infection in a situation when the conventional Enzyme Immunoassay is not suitable.

  8. Evaluation of four colourimetric susceptibility tests for the rapid detection of multidrug-resistant Mycobacterium tuberculosisisolates

    Directory of Open Access Journals (Sweden)

    Ahmet Yilmaz Coban

    2015-08-01

    Full Text Available The purpose of this study is to evaluate four rapid colourimetric methods, including the resazurin microtitre assay (REMA, malachite green decolourisation assay (MGDA, microplate nitrate reductase assay (MNRA and crystal violet decolourisation assay (CVDA, for the rapid detection of multidrug-resistant (MDR tuberculosis. Fifty Mycobacterium tuberculosisisolates were used in this study. Eighteen isolates were MDR, two isolates were only resistant to isoniazid (INH and the remaining isolates were susceptible to both INH and rifampicin (RIF. INH and RIF were tested in 0.25 µg/mL and 0.5 µg/mL, respectively. The agar proportion method was used as a reference method. MNRA and REMA were performed with some modifications. MGDA and CVDA were performed as defined in the literature. The agreements of the MNRA for INH and RIF were 96% and 94%, respectively, while the agreement of the other assays for INH and RIF were 98%. In this study, while the specificities of the REMA, MGDA and CVDA were 100%, the specificity of the MNRA was lower than the others (93.3% for INH and 90.9% for RIF. In addition, while the sensitivity of the MNRA was 100%, the sensitivities of the others were lower than that of the MNRA (from 94.1-95%. The results were reported on the seventh-10th day of the incubation. All methods are reliable, easy to perform, inexpensive and easy to evaluate and do not require special equipment.

  9. Evaluation of a New and Rapid Serologic Test for Detecting Brucellosis: Brucella Coombs Gel Test.

    Science.gov (United States)

    Hanci, Hayrunisa; Igan, Hakan; Uyanik, Muhammet Hamidullah

    2017-01-01

    Many serological tests have been used for the diagnosis of human brucellosis. A new serological method is identified as Brucella Coombs gel test based on the principle of centrifugation gel system similar to the gel system used in blood group determination. In this system, if Brucella antibodies were present in the serum, antigen and antibody would remain as a pink complex on the gel. Otherwise, the pink Brucella antigens would precipitate at the bottom of the gel card system. In this study, we aimed to compare the Brucella Coombs gel test, a new, rapid screen and titration method for detection of non-agglutinating IgG with the Brucella Coombs test. For this study, a total of 88 serum samples were obtained from 45 healthy persons and 43 individuals who had clinical signs and symptoms of brucellosis. For each specimen, Rose Bengal test, standard agglutination test, Coombs test and Brucella Coombs gel test were carried out. Sensitivity and specificity of Brucella Coombs gel test were found as 100.0 and 82.2%, respectively. Brucella Coombs gel test can be used as a screening test with high sensitivity. By the help of pink Brucella antigen precipitation, the tests' evaluation is simple and objective. In addition, determination of Brucella antibody by rapid titration offers another important advantage.

  10. Rapid detection of Pseudomonas aeruginosa from positive blood cultures by quantitative PCR

    Directory of Open Access Journals (Sweden)

    Cattoir Vincent

    2010-08-01

    Full Text Available Abstract Background Pseudomonas aeruginosa is responsible for numerous bloodstream infections associated with severe adverse outcomes in case of inappropriate initial antimicrobial therapy. The present study was aimed to develop a novel quantitative PCR (qPCR assay, using ecfX as the specific target gene, for the rapid and accurate identification of P. aeruginosa from positive blood cultures (BCs. Methods Over the period August 2008 to June 2009, 100 BC bottles positive for gram-negative bacilli were tested in order to evaluate performances of the qPCR technique with conventional methods as gold standard (i.e. culture and phenotypic identification. Results Thirty-three strains of P. aeruginosa, 53 strains of Enterobactericaeae, nine strains of Stenotrophomonas maltophilia and two other gram-negative species were isolated while 3 BCs were polymicrobial including one mixture containing P. aeruginosa. All P. aeruginosa clinical isolates were detected by qPCR except a single strain in mixed culture. Performances of the qPCR technique were: specificity, 100%; positive predictive value, 100%; negative predictive value, 98.5%; and sensitivity, 97%. Conclusions This reliable technique may offer a rapid (

  11. Target-Specific Assay for Rapid and Quantitative Detection of Mycobacterium chimaera DNA.

    Science.gov (United States)

    Zozaya-Valdés, Enrique; Porter, Jessica L; Coventry, John; Fyfe, Janet A M; Carter, Glen P; Gonçalves da Silva, Anders; Schultz, Mark B; Seemann, Torsten; Johnson, Paul D R; Stewardson, Andrew J; Bastian, Ivan; Roberts, Sally A; Howden, Benjamin P; Williamson, Deborah A; Stinear, Timothy P

    2017-06-01

    Mycobacterium chimaera is an opportunistic environmental mycobacterium belonging to the Mycobacterium avium - M. intracellulare complex. Although most commonly associated with pulmonary disease, there has been growing awareness of invasive M. chimaera infections following cardiac surgery. Investigations suggest worldwide spread of a specific M. chimaera clone, associated with contaminated hospital heater-cooler units used during the surgery. Given the global dissemination of this clone, its potential to cause invasive disease, and the laboriousness of current culture-based diagnostic methods, there is a pressing need to develop rapid and accurate diagnostic assays specific for M. chimaera Here, we assessed 354 mycobacterial genome sequences and confirmed that M. chimaera is a phylogenetically coherent group. In silico comparisons indicated six DNA regions present only in M. chimaera We targeted one of these regions and developed a TaqMan quantitative PCR (qPCR) assay for M. chimaera with a detection limit of 100 CFU/ml in whole blood spiked with bacteria. In vitro screening against DNA extracted from 40 other mycobacterial species and 22 bacterial species from 21 diverse genera confirmed the in silico -predicted specificity for M. chimaera Screening 33 water samples from heater-cooler units with this assay highlighted the increased sensitivity of PCR compared to culture, with 15 of 23 culture-negative samples positive by M. chimaera qPCR. We have thus developed a robust molecular assay that can be readily and rapidly deployed to screen clinical and environmental specimens for M. chimaera . Copyright © 2017 American Society for Microbiology.

  12. Rapid detection of bacterial contamination in cell or tissue cultures based on Raman spectroscopy

    Science.gov (United States)

    Bolwien, Carsten; Sulz, Gerd; Becker, Sebastian; Thielecke, Hagen; Mertsching, Heike; Koch, Steffen

    2008-02-01

    Monitoring the sterility of cell or tissue cultures is an essential task, particularly in the fields of regenerative medicine and tissue engineering when implanting cells into the human body. We present a system based on a commercially available microscope equipped with a microfluidic cell that prepares the particles found in the solution for analysis, a Raman-spectrometer attachment optimized for non-destructive, rapid recording of Raman spectra, and a data acquisition and analysis tool for identification of the particles. In contrast to conventional sterility testing in which samples are incubated over weeks, our system is able to analyze milliliters of supernatant or cell suspension within hours by filtering relevant particles and placing them on a Raman-friendly substrate in the microfluidic cell. Identification of critical particles via microscopic imaging and subsequent image analysis is carried out before micro-Raman analysis of those particles is then carried out with an excitation wavelength of 785 nm. The potential of this setup is demonstrated by results of artificial contamination of samples with a pool of bacteria, fungi, and spores: single-channel spectra of the critical particles are automatically baseline-corrected without using background data and classified via hierarchical cluster analysis, showing great promise for accurate and rapid detection and identification of contaminants.

  13. Vibrational spectroscopy as a probe to rapidly detect, identify, and characterize micro-organisms

    Science.gov (United States)

    Sockalingum, Ganesh D.; Lamfarraj, Hasnae; Beljebbar, Abdelilah; Pina, Patrick; Delavenne, Marc; Witthuhn, Fabienne; Allouch, Pierre; Manfait, Michel

    1999-04-01

    Fast and exact identification of a great number of microorganisms is becoming a serious challenge. Differentiation and identification of microorganisms is today mainly achieved by the use of a variety of distinct techniques based on morphological, serological aspects and a set of biochemical test. Vibrational spectroscopic techniques can be complementary and useful methods in this field due to their rapidity, 'fingerprinting' capabilities, and the molecular information that they can provide. Using SERS at Ag colloids, we have conducted pilot studies to rapidly detect and identify bacterial clinical strains. Using a Raman microspectrometer equipped with a He/Ne laser, a first attempt to record SERS spectra was made on colloidal solutions. Spectra were of good quality but not very reproducible due to the movement of the microorganisms. Strains were then put in presence of Ag colloids and direct on-plate analysis was performed. Spectra were more reproducible, with diminished fluorescence, and reveal characteristic cellular-level information. Different growth conditions and colloid preparations have been tested. Pseudomonas aeruginosa and Escherichia coli clinical strains, responsible for nosocomial infections, have been our first test samples. An attempt has also been made to record SERS data from gold colloids in view of future measurement in the near-IR. Spectroscopic data are compared with ATR-FTIR results.

  14. Rapid detection of food pathogens using RNA aptamers-immobilized slide.

    Science.gov (United States)

    Maeng, Jin-Soo; Kim, Namsoo; Kim, Chong-Tai; Han, Seung Ryul; Lee, Young Ju; Lee, Seong-Wook; Lee, Myung-Hyun; Cho, Yong-Jin

    2012-07-01

    The purpose of this study was to develop a simple and rapid detection system for foodborne bacteria, which consisted of an optical microscope and its slide chip with artificial antibodies, or RNA aptamers. From an RNA pool, three each RNA aptamers were built by the method of SELEX (systematic evolution of ligands by exponential enrichment) for components of cell wall, LPS (lipopolysaccharide) from E. coli O157:H7, teichoic acid from Staphylococcus aureus and a cell membrane protein of OmpC from Salmonella typhimurium, respectively. These aptamers were hybridized with thiol-conjugated 16 dT-linker molecules in order to be immobilized on silver surface which was, in advance, fabricated on glass slide, using a spin-coating method. To confirm that each aptamers retained its specific binding activities to their antigenic live bacteria, microscopic view of bound cells immobilized on silver film were observed. Furthermore, we observed the fluorescence-emitting bacteria-aptamer complex immobilized on silver film after adding RNA aptamers hybridized with fluorophore, FAM-conjugated 16 dT-linker molecules. As a result, the RNA aptamers-immobilized slide system developed in this study was a useful new tool to rapidly monitor individual food pathogens.

  15. Rapid detection of Mannheimia haemolytica in lung tissues of sheep and from bacterial culture

    Directory of Open Access Journals (Sweden)

    Jyoti Kumar

    2015-09-01

    Full Text Available Aim: This study was aimed to detect Mannheimia haemolytica in lung tissues of sheep and from a bacterial culture. Introduction: M. haemolytica is one of the most important and well-established etiological agents of pneumonia in sheep and other ruminants throughout the world. Accurate diagnosis of M. haemolytica primarily relies on bacteriological examination, biochemical characteristics and, biotyping and serotyping of the isolates. In an effort to facilitate rapid M. haemolytica detection, polymerase chain reaction assay targeting Pasteurella haemolytica serotype-1 specific antigens (PHSSA, Rpt2 and 12S ribosomal RNA (rRNA genes were used to detect M. haemolytica directly from lung tissues and from bacterial culture. Materials and Methods: A total of 12 archived lung tissues from sheep that died of pneumonia on an organized farm were used. A multiplex polymerase chain reaction (mPCR based on two-amplicons targeted PHSSA and Rpt2 genes of M. haemolytica were used for identification of M. haemolytica isolates in culture from the lung samples. All the 12 lung tissue samples were tested for the presence M. haemolytica by PHSSA and Rpt2 genes based PCR and its confirmation by sequencing of the amplicons. Results: All the 12 lung tissue samples tested for the presence of PHSSA and Rpt2 genes of M. haemolytica by mPCR were found to be positive. Amplification of 12S rRNA gene fragment as internal amplification control was obtained with each mPCR reaction performed from DNA extracted directly from lung tissue samples. All the M. haemolytica were also positive for mPCR. No amplified DNA bands were observed for negative control reactions. All the three nucleotide sequences were deposited in NCBI GenBank (Accession No. KJ534629, KJ534630 and KJ534631. Sequencing of the amplified products revealed the identity of 99-100%, with published sequence of PHSSA and Rpt2 genes of M. haemolytica available in the NCBI database. Sheep specific mitochondrial 12S r

  16. Rapid detection of human infections with fluorine-18 fluorodeoxyglucose and positron emission tomography: preliminary results

    International Nuclear Information System (INIS)

    Sugawara, Yoshifumi; Kison, P.V.; Russo, J.E.; Zasadny, K.R.; Braun, D.K.; Wahl, R.L.

    1998-01-01

    The purpose of this study was to evaluate the feasibility of 2-[fluorine-18]fluoro-2-deoxy-d-glucose (FDG) and positron emission tomography (PET) for rapid detection of human infections. Eleven patients who were known or suspected to be harboring various infections were studied with FDG-PET. Dynamic scans over the putative infection sites were performed immediately after FDG (370 MBq) injection through 60 min, and static images including multiple projection images were then obtained. FDG uptake was assessed visually into four grades (0, normal; 1, probably normal; 2, probably abnormal; 3, definitely abnormal). For the semiquantitative index of FDG uptake in infections, the standardized uptake value of FDG normalized to the predicted lean body mass (SUV-lean, SUL) was determined from the images obtained at 50-60 min after FDG injection. PET results were compared with final clinical diagnoses. Eleven lesions in eight patients, which were interpreted as grade 2 or 3 by FDG-PET, were all concordant with active infectious foci. The SUL values of infections ranged from 0.97 to 6.69. In two patients, FDG-PET correctly showed no active infection. In one patient, it was difficult to detect infectious foci by FDG-PET due to substantial normal background uptake of FDG. In total, FDG-PET correctly diagnosed the presence or absence of active infection in 10 of 11 patients. Fusion images of PET with computed tomography showed the most intense FDG uptake to be within an abscess wall. In conclusion, FDG-PET appears to be a promising modality for rapid imaging of active human infections. More extensive clinical evaluation is warranted to determine the accuracy of this method. (orig.)

  17. A rapid and cost-effective fluorescence detection in tube (FDIT) method to analyze protein phosphorylation.

    Science.gov (United States)

    Jin, Xiao; Gou, Jin-Ying

    2016-01-01

    Protein phosphorylation is one of the most important post-translational modifications catalyzed by protein kinases in living organisms. The advance of genome sequencing provided the information of protein kinase families in many organisms, including both model and non-model plants. The development of proteomics technologies also enabled scientists to efficiently reveal a large number of protein phosphorylations of an organism. However, kinases and phosphorylation targets are still to be connected to illustrate the complicated network in life. Here we adapted Pro-Q ® Diamond (Pro-Q ® Diamond Phosphoprotein Gel Stain), a widely used phosphoprotein gel-staining fluorescence dye, to establish a rapid, economical and non-radioactive fluorescence detection in tube (FDIT) method to analyze phosphorylated proteins. Taking advantages of high sensitivity and specificity of Pro-Q ® diamond, the FDIT method is also demonstrated to be rapid and reliable, with a suitable linear range for in vitro protein phosphorylation. A significant and satisfactory protein kinase reaction was detected as fast as 15 min from Wheat Kinase START 1.1 (WKS1.1) on a thylakoid ascorbate peroxidase (tAPX), an established phosphorylation target in our earlier study. The FDIT method saves up to 95% of the dye consumed in a gel staining method. The FDIT method is remarkably quick, highly reproducible, unambiguous and capable to be scaled up to dozens of samples. The FDIT method could serve as a simple and sensitive alternative procedure to determine protein kinase reactions with zero radiation exposure, as a supplementation to other widely used radioactive and in-gel assays.

  18. A rapid and cost-effective fluorescence detection in tube (FDIT method to analyze protein phosphorylation

    Directory of Open Access Journals (Sweden)

    Xiao Jin

    2016-11-01

    Full Text Available Abstract Background Protein phosphorylation is one of the most important post-translational modifications catalyzed by protein kinases in living organisms. The advance of genome sequencing provided the information of protein kinase families in many organisms, including both model and non-model plants. The development of proteomics technologies also enabled scientists to efficiently reveal a large number of protein phosphorylations of an organism. However, kinases and phosphorylation targets are still to be connected to illustrate the complicated network in life. Results Here we adapted Pro-Q® Diamond (Pro-Q® Diamond Phosphoprotein Gel Stain, a widely used phosphoprotein gel-staining fluorescence dye, to establish a rapid, economical and non-radioactive fluorescence detection in tube (FDIT method to analyze phosphorylated proteins. Taking advantages of high sensitivity and specificity of Pro-Q® diamond, the FDIT method is also demonstrated to be rapid and reliable, with a suitable linear range for in vitro protein phosphorylation. A significant and satisfactory protein kinase reaction was detected as fast as 15 min from Wheat Kinase START 1.1 (WKS1.1 on a thylakoid ascorbate peroxidase (tAPX, an established phosphorylation target in our earlier study. Conclusion The FDIT method saves up to 95% of the dye consumed in a gel staining method. The FDIT method is remarkably quick, highly reproducible, unambiguous and capable to be scaled up to dozens of samples. The FDIT method could serve as a simple and sensitive alternative procedure to determine protein kinase reactions with zero radiation exposure, as a supplementation to other widely used radioactive and in-gel assays.

  19. Photoelectrochemical Sensors for the Rapid Detection of DNA Damage Induced by Some Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Jamaluddin Ahmed

    2010-06-01

    Full Text Available Photoelectrochemcal sensors were developed for the rapid detection of oxidative DNA damage induced by titanium dioxide and polystyrene nanoparticles. Each sensor is a multilayer film prepared on a tin oxide nanoparticle electrode using layer- by-layer self assembly and is composed of separate layer of a photoelectrochemical indicator, DNA. The organic compound and heavy metals represent genotoxic chemicals leading two major damaging mechanisms, DNA adduct formation and DNA oxidation. The DNA damage is detected by monitoring the change of photocurrent of the indicator. In one sensor configuration, a DNA intercalator, Ru(bpy2 (dppz2+ [bpy=2, 2′ -bipyridine, dppz=dipyrido( 3, 2-a: 2′ 3′-c phenazine], was employed as the photoelectrochemical indicator. The damaged DNA on the sensor bound lesser Ru(bpy2 (dppz2+ than the intact DNA, resulting in a drop in photocurrent. In another configuration, ruthenium tris(bipyridine was used as the indicator and was immobilized on the electrode underneath the DNA layer. After oxidative damage, the DNA bases became more accessible to photoelectrochemical oxidation than the intact DNA, producing a rise in photocurrent. Both sensors displayed substantial photocurrent change after incubation in titanium dioxide / polystyrene solution in a time – dependent manner. According to the data, damage of the DNA film was completed in 1h in titanium dioxide / polystyrene solution. In addition, the titanium dioxide induced much more sever damage than polysterene. The results were verified independently by gel electrophoresis and UV-Vis absorbance experiments. The photoelectrochemical reaction can be employed as a new and inexpensive screening tool for the rapid assessment of the genotoxicity of existing and new chemicals.

  20. Photoelectrochemical sensors for the rapid detection of DNA damage Induced by some nanoparticles

    International Nuclear Information System (INIS)

    Ahmed, M.J.; Zhang, B.T.; Guo, L.H.

    2010-01-01

    Photoelectrochemical sensors were developed for the rapid detection of oxidative DNA damage induced by titanium dioxide and polystyrene nanoparticles. Each sensor is a multilayer film prepared on a tin oxide nanoparticle electrode using layer- by-layer self assembly and is composed of separate layer of a photoelectrochemical indicator, DNA. The organic compound and heavy metals represent genotoxic chemicals leading two major damaging mechanisms, DNA adduct formation and DNA oxidation. The DNA damage is detected by monitoring the change of photocurrent of the indicator. In one sensor configuration, a DNA intercalator, Ru(bpy)2 (dppz)2+ [bpy=2, 2' -bipyridine, dppz=dipyrido (3, 2-a: 2' 3'-c) phenazine], was employed as the photoelectrochemical indicator. The damaged DNA on the sensor bound lesser Ru(bpy)2 (dppz)2+ than the intact DNA, resulting in a drop in photocurrent. In another configuration, ruthenium tris(bipyridine) was used as the indicator and was immobilized on the electrode underneath the DNA layer. After oxidative damage, the DNA bases became more accessible to photoelectrochemical oxidation than the intact DNA, producing a rise in photocurrent. Both sensors displayed substantial photocurrent change after incubation in titanium dioxide / polystyrene solution in a time . dependent manner. According to the data, damage of the DNA film was completed in 1h in titanium dioxide / polystyrene solution. In addition, the titanium dioxide induced much more sever damage than polystyrene. The results were verified independently by gel electrophoresis and UV-Vis absorbance experiments. The photoelectrochemical reaction can be employed as a new and inexpensive screening tool for the rapid assessment of the genotoxicity of existing and new chemicals. (author)

  1. Validation of an integrated software for the detection of rapid eye movement sleep behavior disorder.

    Science.gov (United States)

    Frauscher, Birgit; Gabelia, David; Biermayr, Marlene; Stefani, Ambra; Hackner, Heinz; Mitterling, Thomas; Poewe, Werner; Högl, Birgit

    2014-10-01

    Rapid eye movement sleep without atonia (RWA) is the polysomnographic hallmark of REM sleep behavior disorder (RBD). To partially overcome the disadvantages of manual RWA scoring, which is time consuming but essential for the accurate diagnosis of RBD, we aimed to validate software specifically developed and integrated with polysomnography for RWA detection against the gold standard of manual RWA quantification. Academic referral center sleep laboratory. Polysomnographic recordings of 20 patients with RBD and 60 healthy volunteers were analyzed. N/A. Motor activity during REM sleep was quantified manually and computer assisted (with and without artifact detection) according to Sleep Innsbruck Barcelona (SINBAR) criteria for the mentalis ("any," phasic, tonic electromyographic [EMG] activity) and the flexor digitorum superficialis (FDS) muscle (phasic EMG activity). Computer-derived indices (with and without artifact correction) for "any," phasic, tonic mentalis EMG activity, phasic FDS EMG activity, and the SINBAR index ("any" mentalis + phasic FDS) correlated well with the manually derived indices (all Spearman rhos 0.66-0.98). In contrast with computerized scoring alone, computerized scoring plus manual artifact correction (median duration 5.4 min) led to a significant reduction of false positives for "any" mentalis (40%), phasic mentalis (40.6%), and the SINBAR index (41.2%). Quantification of tonic mentalis and phasic FDS EMG activity was not influenced by artifact correction. The computer algorithm used here appears to be a promising tool for REM sleep behavior disorder detection in both research and clinical routine. A short check for plausibility of automatic detection should be a basic prerequisite for this and all other available computer algorithms. © 2014 Associated Professional Sleep Societies, LLC.

  2. Rapid and quantitative detection of C-reactive protein based on quantum dots and immunofiltration assay

    Directory of Open Access Journals (Sweden)

    Zhang PF

    2015-09-01

    Full Text Available Pengfei Zhang,1,* Yan Bao,1,* Mohamed Shehata Draz,2,3,* Huiqi Lu,1 Chang Liu,1 Huanxing Han11Center for Translational Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, People’s Republic of China; 2Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China; 3Faculty of Science, Tanta University, Tanta, Egypt*These authors contributed equally to this workAbstract: Convenient and rapid immunofiltration assays (IFAs enable on-site “yes” or “no” determination of disease markers. However, traditional IFAs are commonly qualitative or semi-quantitative and are very limited for the efficient testing of samples in field diagnostics. Here, we overcome these limitations by developing a quantum dots (QDs-based fluorescent IFA for the quantitative detection of C-reactive proteins (CRP. CRP, the well-known diagnostic marker for acute viral and bacterial infections, was used as a model analyte to demonstrate performance and sensitivity of our developed QDs-based IFA. QDs capped with both polyethylene glycol (PEG and glutathione were used as fluorescent labels for our IFAs. The presence of the surface PEG layer, which reduced the non-specific protein interactions, in conjunction with the inherent optical properties of QDs, resulted in lower background signal, increased sensitivity, and ability to detect CRP down to 0.79 mg/L with only 5 µL serum sample. In addition, the developed assay is simple, fast and can quantitatively detect CRP with a detection limit up to 200 mg/L. Clinical test results of our QD-based IFA are well correlated with the traditional latex enhance immune-agglutination aggregation. The proposed QD-based fluorescent IFA is very promising, and potentially will be adopted for multiplexed immunoassay and in field point-of-care test.Keywords: C-reactive proteins, point-of-care test, Glutathione capped QDs, PEGylation

  3. Novel Sample Preparation Method for Safe and Rapid Detection of Bacillus anthracis Spores in Environmental Powders and Nasal Swabs

    OpenAIRE

    Luna, Vicki A.; King, Debra; Davis, Carisa; Rycerz, Tony; Ewert, Matthew; Cannons, Andrew; Amuso, Philip; Cattani, Jacqueline

    2003-01-01

    Bacillus anthracis spores have been used as a biological weapon in the United States. We wanted to develop a safe, rapid method of sample preparation that provided safe DNA for the detection of spores in environmental and clinical specimens. Our method reproducibly detects B. anthracis in samples containing

  4. Using rapid-scan EPR to improve the detection limit of quantitative EPR by more than one order of magnitude.

    Science.gov (United States)

    Möser, J; Lips, K; Tseytlin, M; Eaton, G R; Eaton, S S; Schnegg, A

    2017-08-01

    X-band rapid-scan EPR was implemented on a commercially available Bruker ELEXSYS E580 spectrometer. Room temperature rapid-scan and continuous-wave EPR spectra were recorded for amorphous silicon powder samples. By comparing the resulting signal intensities the feasibility of performing quantitative rapid-scan EPR is demonstrated. For different hydrogenated amorphous silicon samples, rapid-scan EPR results in signal-to-noise improvements by factors between 10 and 50. Rapid-scan EPR is thus capable of improving the detection limit of quantitative EPR by at least one order of magnitude. In addition, we provide a recipe for setting up and calibrating a conventional pulsed and continuous-wave EPR spectrometer for rapid-scan EPR. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Meta-analysis of the predictive value of DNA aneuploidy in malignant transformation of oral potentially malignant disorders.

    Science.gov (United States)

    Alaizari, Nader A; Sperandio, Marcelo; Odell, Edward W; Peruzzo, Daiane; Al-Maweri, Sadeq A

    2018-02-01

    DNA aneuploidy is an imbalance of chromosomal DNA content that has been highlighted as a predictor of biological behavior and risk of malignant transformation. To date, DNA aneuploidy in oral potentially malignant diseases (OPMD) has been shown to correlate strongly with severe dysplasia and high-risk lesions that appeared non-dysplastic can be identified by ploidy analysis. Nevertheless, the prognostic value of DNA aneuploidy in predicting malignant transformation of OPMD remains to be validated. The aim of this meta-analysis was to assess the role of DNA aneuploidy in predicting malignant transformation in OPMD. The questions addressed were (i) Is DNA aneuploidy a useful marker to predict malignant transformation in OPMD? (ii) Is DNA diploidy a useful negative marker of malignant transformation in OPMD? These questions were addressed using the PECO method. Five studies assessing aneuploidy as a risk marker of malignant change were pooled into the meta-analysis. Aneuploidy was found to be associated with a 3.12-fold increased risk to progress into cancer (RR=3.12, 95% CI 1.86-5.24). Based on the five studies meta-analyzed, "no malignant progression" was more likely to occur in DNA diploid OPMD by 82% when compared to aneuploidy (RR=0.18, 95% CI 0.08-0.41). In conclusion, aneuploidy is a useful marker of malignant transformation in OPMD, although a diploid result should be interpreted with caution. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Frequencies of aneuploidy and dominant lethal mutations in young female mice induced by low dose γ-rays

    International Nuclear Information System (INIS)

    Yao Suyan; Zhang Chaoyang; Dai Lianlian; Gao Changwen

    1991-01-01

    Relationship between aneuploidy, dominant lethal mutations and doses in young feral mice induced by low dose γ-rays was examined. The results suggest that the frequencies of aneuploidy of embryos increased at 0.15 Gy, but increases at over 0.50 Gy after irradiation in groups. The frequencies of aneuploidy and dominant lethal mutations increased with increasing doses and fitted linear relationship. This dose-response relationship of trisomic was not significant. The frequency of dominant lethal mutations induced by 60 Co γ irradiation is 5.59%. The effect of dominant lethal mutation is higher than that of the aneuploidy

  7. Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food.

    Science.gov (United States)

    Yan, Chao; Zhang, Jing; Yao, Li; Xue, Feng; Lu, Jianfeng; Li, Baoguang; Chen, Wei

    2018-09-15

    We report an aptamer-mediated colorimetric method for sensitive detection of chloramphenicol (CAP). The aptamer of CAP is immobilized by the hybridization with pre-immobilized capture probe in the microtiter plate. The horseradish peroxidase (HRP) is covalently attached to the aptamer by the biotin-streptavidin system for signal production. CAP will preferably bind with aptamer due to the high binding affinity, which attributes to the release of aptamer and HRP and thus, affects the optical signal intensity. Quantitative determination of CAP is successfully achieved in the wide range from 0.001 to 1000 ng/mL with detection limit of 0.0031 ng/mL, which is more sensitive than traditional immunoassays. This method is further validated by measuring the recovery of CAP spiked in two different food matrices (honey and fish). The aptamer-mediated colorimetric method can be a useful protocol for rapid and sensitive screening of CAP, and may be used as an alternative means for traditional immunoassays. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Rapid pretreatment and detection of trace aflatoxin B1 in traditional soybean sauce.

    Science.gov (United States)

    Xie, Fang; Lai, WeiHua; Saini, Jasdeep; Shan, Shan; Cui, Xi; Liu, DaoFeng

    2014-05-01

    Soybean sauce, a traditional fermented food in China, has different levels of aflatoxin B1 pollution. Two kinds of direct and indirect immunomagnetic bead methods for the pretreatment of aflatoxin B1 were evaluated in this work. A method was established to detect aflatoxin B1 in soybean sauce using an immunomagnetic bead system for pretreatment and ELISA for quantification. The pretreatment method of immunomagnetic beads performed better compared with the conventional extraction and immunoaffinity column method. ELISA exhibited a good linear relationship at an aflatoxin B1 concentration of 0.05-0.3μg/kg (r(2)=0.9842). The average recoveries across spike levels varied from 0.5 to 7μg/kg were 83.6-104% with a relative standard deviation between 4.2% and 11.7%. With the advantages of rapid detection, easy operation, simple equipment, sensitivity, accuracy, and high recovery; this method can be well applied in the trace determination of aflatoxin B1 in soybean sauce samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Development of a rapid HRM genotyping method for detection of dog-derived Giardia lamblia.

    Science.gov (United States)

    Tan, Liping; Yu, Xingang; Abdullahi, Auwalu Yusuf; Wu, Sheng; Zheng, Guochao; Hu, Wei; Song, Meiran; Wang, Zhen; Jiang, Biao; Li, Guoqing

    2015-11-01

    Giardia lamblia is a zoonotic flagellate protozoan in the intestine of human and many mammals including dogs. To assess a threat of dog-derived G. lamblia to humans, the common dog-derived G. lamblia assemblages A, C, and D were genotyped by high-resolution melting (HRM) technology. According to β-giardin gene sequence, the qPCR-HRM primers BG5 and BG7 were designed. A series of experiments on the stability, sensitivity, and accuracy of the HRM method were also tested. Results showed that the primers BG5 and BG7 could distinguish among three assemblages A, C, and D, which Tm value differences were about 1 °C to each other. The melting curves of intra-assay reproducibility were almost coincided, and those of inter-assay reproducibility were much the same shape. The lowest detection concentration was about 5 × 10(-6)-ng/μL sample. The genotyping results from 21 G. lamblia samples by the HRM method were in complete accordance with sequencing results. It is concluded that the HRM genotyping method is rapid, stable, specific, highly sensitive, and suitable for clinical detection and molecular epidemiological survey of dog-derived G. lamblia.

  10. Microphotonic sensors for the rapid detection of the presence of explosive gas mixtures

    Science.gov (United States)

    McNesby, Kevin L.; Miziolek, Andrzej W.

    2002-02-01

    A first generation, microphotonic sensor for rapid (10 ms response time) measurement of vapors from the hydrocarbon-based fuels JP-8, DF-2, and gasoline has been developed at the U.S. Army Research Laboratory. This sensor is based upon a previously reported laser mixing technique that uses two tunable diode lasers emitting in the near-infrared spectral region to measure concentrations of gases having unstructured absorption spectra. The fiber-mixed laser beam consists of two wavelengths, one of which is absorbed by the fuel vapor, and one of which is not absorbed. By sinusoidally modulating the power of the two lasers at the same frequency but 180 degrees out of phase, a sinusoidal signal is generated at the detector (when the target gas is present in the line of sight). The signal amplitude, measured using standard phase sensitive detection techniques, is proportional to fuel vapor concentration. A second generation sensor, designed to measure the full envelope of the first overtone C-H vibrations in middle distillate fuels is currently being developed. Both sensors are described. Limits of detection using the first generation sensor are reported for vapors of the three fuels studied.

  11. Gas evolution as a rapid screening method for detection of irradiated foods

    International Nuclear Information System (INIS)

    Roberts, P.B.; Chambers, D.M.; Brailsford, G.W.

    1996-01-01

    A number of detection methods for irradiated foods are in advanced state of development. No single method is likely to be universally applicable but a battery of tests such as thermoluminescence, electron spin resonance and analysis of lipid radiolytic products may soon be available for most foods and technical uses of irradiation. Most of these proposed tests require relatively sophisticated equipment or technical skills and are often time consuming and costly. There would be value in relatively simple tests which could be used as a rapid screening system or confirmatory method. The literature on the use of radiolytic gases as a detection method is limited and this paper extends the above studies. In particular, it extends the work to frozen shellfish, for which irradiation has been used as a commercial decontaminant technique for many years, and considers the effect of storage temperature. Work on poultry is also reported as a cross-reference to earlier work and because irradiated poultry has recently been released into the US retail trade. (author)

  12. Pyrosequencing for Rapid Detection of Mycobacterium tuberculosis Resistance to Rifampin, Isoniazid, and Fluoroquinolones ▿

    Science.gov (United States)

    Bravo, Lulette Tricia C.; Tuohy, Marion J.; Ang, Concepcion; Destura, Raul V.; Mendoza, Myrna; Procop, Gary W.; Gordon, Steven M.; Hall, Geraldine S.; Shrestha, Nabin K.

    2009-01-01

    After isoniazid and rifampin (rifampicin), the next pivotal drug class in Mycobacterium tuberculosis treatment is the fluoroquinolone class. Mutations in resistance-determining regions (RDR) of the rpoB, katG, and gyrA genes occur with frequencies of 97%, 50%, and 85% among M. tuberculosis isolates resistant to rifampin, isoniazid, and fluoroquinolones, respectively. Sequences are highly conserved, and certain mutations correlate well with phenotypic resistance. We developed a pyrosequencing assay to determine M. tuberculosis genotypic resistance to rifampin, isoniazid, and fluoroquinolones. We characterized 102 M. tuberculosis clinical isolates from the Philippines for susceptibility to rifampin, isoniazid, and ofloxacin by using the conventional submerged-disk proportion method and validated our pyrosequencing assay using these isolates. DNA was extracted and amplified by using PCR primers directed toward the RDR of the rpoB, katG, and gyrA genes, and pyrosequencing was performed on the extracts. The M. tuberculosis H37Rv strain (ATCC 25618) was used as the reference strain. The sensitivities and specificities of pyrosequencing were 96.7% and 97.3%, 63.8% and 100%, and 70.0% and 100% for the detection of resistance to rifampin, isoniazid, and ofloxacin, respectively. Pyrosequencing is thus a rapid and accurate method for detecting M. tuberculosis resistance to these three drugs. PMID:19846642

  13. Semi-automated, occupationally safe immunofluorescence microtip sensor for rapid detection of Mycobacterium cells in sputum.

    Directory of Open Access Journals (Sweden)

    Shinnosuke Inoue

    Full Text Available An occupationally safe (biosafe sputum liquefaction protocol was developed for use with a semi-automated antibody-based microtip immunofluorescence sensor. The protocol effectively liquefied sputum and inactivated microorganisms including Mycobacterium tuberculosis, while preserving the antibody-binding activity of Mycobacterium cell surface antigens. Sputum was treated with a synergistic chemical-thermal protocol that included moderate concentrations of NaOH and detergent at 60°C for 5 to 10 min. Samples spiked with M. tuberculosis complex cells showed approximately 10(6-fold inactivation of the pathogen after treatment. Antibody binding was retained post-treatment, as determined by analysis with a microtip immunosensor. The sensor correctly distinguished between Mycobacterium species and other cell types naturally present in biosafe-treated sputum, with a detection limit of 100 CFU/mL for M. tuberculosis, in a 30-minute sample-to-result process. The microtip device was also semi-automated and shown to be compatible with low-cost, LED-powered fluorescence microscopy. The device and biosafe sputum liquefaction method opens the door to rapid detection of tuberculosis in settings with limited laboratory infrastructure.

  14. Rapid detection of bacteria in drinking water and water contamination case studies

    Science.gov (United States)

    Deininger, Rolf A.; Lee, Jiyoung; Clark, Robert M.

    2011-12-01

    Water systems are inherently vulnerable to physical, chemical and biologic threats that might compromise a systems' ability to reliably deliver safe water. The ability of a water supply to provide water to its customers can be compromised by destroying or disrupting key physical elements of the water system. However, contamination is generally viewed as the most serious potential terrorist threat to water systems. Chemical or biologic agents could spread throughout a distribution system and result in sickness or death among the consumers and for some agents the presence of the contaminant might not be known until emergency rooms report an increase in patients with a particular set of symptoms. Even without serious health impacts, just the knowledge that a water system had been breached could seriously undermine consumer confidence in public water supplies. Therefore, the ability to rapidly detect contamination, especially microbiological contamination, is highly desirable. The authors summarize water contamination case studies and discuss a technique for identifying microbiological contamination based on ATP bioluminescence. This assay allows an estimation of bacterial populations within minutes and can be applied using a local platform. Previous ATP-based methods requires one hour, one liter of water, and has a sensitivity of 100000 cells for detection. The improved method discussed here is 100 times more sensitive, requires one-hundredth of the sample volume, and is over 10 times faster than standard method. This technique has a great deal of potential for application in situations in which a water system has been compromised.

  15. Rapid quantitative detection of Lactobacillus sakei in meat and fermented sausages by real-time PCR.

    Science.gov (United States)

    Martín, Belén; Jofré, Anna; Garriga, Margarita; Pla, Maria; Aymerich, Teresa

    2006-09-01

    A quick and simple method for quantitative detection of Lactobacillus sakei in fermented sausages was successfully developed. It is based on Chelex-100-based DNA purification and real-time PCR enumeration using a TaqMan fluorescence probe. Primers and probes were designed in the L. sakei 16S-23S rRNA intergenic transcribed spacer region, and the assay was evaluated using L. sakei genomic DNA and an artificially inoculated sausage model. The detection limit of this technique was approximately 3 cells per reaction mixture using both purified DNA and the inoculated sausage model. The quantification limit was established at 30 cells per reaction mixture in both models. The assay was then applied to enumerate L. sakei in real samples, and the results were compared to the MRS agar count method followed by confirmation of the percentage of L. sakei colonies. The results obtained by real-time PCR were not statistically significantly different than those obtained by plate count on MRS agar (P > 0.05), showing a satisfactory agreement between both methods. Therefore, the real-time PCR assay developed can be considered a promising rapid alternative method for the quantification of L. sakei and evaluation of the implantation of starter strains of L. sakei in fermented sausages.

  16. Rapid detection of Salmonella typhimurium on fresh spinach leaves using phage-immobilized magnetoelastic biosensors

    Science.gov (United States)

    Horikawa, Shin; Li, Suiqiong; Chai, Yating; Park, Mi-Kyung; Shen, Wen; Barbaree, James M.; Vodyanoy, Vitaly J.; Chin, Bryan A.

    2011-06-01

    This paper presents an investigation into the use of magnetoelastic biosensors for the rapid detection of Salmonella typhimurium on fresh spinach leaves. The biosensors used in this investigation were comprised of a strip-shaped, goldcoated sensor platform (2 mm-long) diced from a ferromagnetic, amorphous alloy and a filamentous fd-tet phage which specifically binds with S. typhimurium. After surface blocking with bovine serum albumin, these biosensors were, without any preceding sample preparation, directly placed on wet spinach leaves inoculated with various concentrations of S. typhimurium. Upon contact with cells, the phage binds S. typhimurium to the sensor thereby increasing the total mass of the sensor. This change in mass causes a corresponding decrease in the sensor's resonant frequency. After 25 min, the sensors were collected from the leaf surface and measurements of the resonant frequency were performed immediately. The total assay time was less than 30 min. The frequency changes for measurement sensors (i.e., phageimmobilized) were found to be statistically different from those for control sensors (sensors without phage), down to 5 × 106 cells/ml. The detection limit may be improved by using smaller, micron-sized sensors that will have a higher probability of contacting Salmonella on the rough surfaces of spinach leaves.

  17. Rapid antigen detection test for respiratory syncytial virus diagnosis as a diagnostic tool

    Directory of Open Access Journals (Sweden)

    Flávio da Silva Mesquita

    2017-05-01

    Full Text Available Objective: The aim of this study was to evaluate the QuickVue® RSV Test Kit (QUIDEL Corp, CA, USA as a screening tool for respiratory syncytial virus in children with acute respiratory disease in comparison with the indirect immunofluorescence assay as gold standard. In Brazil, rapid antigen detection tests for respiratory syncytial virus are not routinely utilized as a diagnostic tool, except for the diagnosis of dengue and influenza. Methods: The authors retrospectively analyzed 486 nasopharyngeal aspirate samples from children under age 5 with acute respiratory infection, between December 2013 and August 2014, the samples were analyzed by indirect immunofluorescence assay and QuickVue® RSV Test kit. Samples with discordant results were analyzed by real time PCR and nucleotide sequencing. Results: From 313 positive samples by immunofluorescence assays, 282 (90% were also positive by the rapid antigen detection test, two were positive only by rapid antigen detection test, 33 were positive only by immunofluorescence assays, and 171 were positive by both methods. The 35 samples with discordant results were analyzed by real time PCR; the two samples positive only by rapid antigen detection test and the five positive only by immunofluorescence assays were also positive by real time PCR. There was no relation between the negativity by QuickVue® RSV Test and viral load or specific strain. The QuickVue® RSV Test showed sensitivity of 90%, specificity of 98.8%, predictive positive value of 99.3%, and negative predictive value of 94.6%, with accuracy of 93.2% and agreement κ index of 0.85 in comparison to immunofluorescence assay. Conclusions: This study demonstrated that the QuickVue® RSV Test Kit can be effective in early detection of Respiratory syncytial virus in nasopharyngeal aspirate and is reliable for use as a diagnostic tool in pediatrics. Resumo: Objetivo: Avaliar o teste QuickVue® RSV Test Kit (QUIDEL Corp, CA, EUA para o diagn

  18. Rapid detection of pathogenic bacteria by volatile organic compound (VOC) analysis

    Science.gov (United States)

    Senecal, Andre G.; Magnone, Joshua; Yeomans, Walter; Powers, Edmund M.

    2002-02-01

    Developments in rapid detection technologies have made countless improvements over the years. However, because of the limited sample that these technologies can process in a single run, the chance of capturing and identifying a small amount of pathogens is difficult. The problem is further magnified by the natural random distribution of pathogens in foods. Methods to simplify pathogenic detection through the identification of bacteria specific VOC were studied. E. coli O157:H7 and Salmonella typhimurium were grown on selected agar medium to model protein, and carbohydrate based foods. Pathogenic and common spoilage bacteria (Pseudomonas and Morexella) were screened for unique VOC production. Bacteria were grown on agar slants in closed vials. Headspace sampling was performed at intervals up to 24 hours using Solid Phase Micro-Extraction (SPME) techniques followed by GC/MS analysis. Development of unique volatiles was followed to establish sensitivity of detection. E. coli produced VOC not found in either Trypticase Soy Yeast (TSY) agar blanks or spoilage organism samples were - indole, 1-decanol, and 2-nonanone. Salmonella specific VOC grown on TSY were 3-methyl-1-butanol, dimethyl sulfide, 2-undecanol, 2-pentadecanol and 1-octanol. Trials on potato dextrose agar (PDA) slants indicated VOC specific for E. coli and Salmonella when compared to PDA blanks and Pseudomonas samples. However, these VOC peaks were similar for both pathogens. Morexella did not grow on PDA slants. Work will continue with model growth mediums at various temperatures, and mixed flora inoculums. As well as, VOC production based on the dynamics of bacterial growth.

  19. Miniaturized Sample Preparation and Rapid Detection of Arsenite in Contaminated Soil Using a Smartphone

    Directory of Open Access Journals (Sweden)

    Mohd Farhan Siddiqui

    2018-03-01

    Full Text Available Conventional methods for analyzing heavy metal contamination in soil and water generally require laboratory equipped instruments, complex procedures, skilled personnel and a significant amount of time. With the advancement in computing and multitasking performances, smartphone-based sensors potentially allow the transition of the laboratory-based analytical processes to field applicable, simple methods. In the present work, we demonstrate the novel miniaturized setup for simultaneous sample preparation and smartphone-based optical sensing of arsenic As(III in the contaminated soil. Colorimetric detection protocol utilizing aptamers, gold nanoparticles and NaCl have been optimized and tested on the PDMS-chip to obtain the high sensitivity with the limit of detection of 0.71 ppm (in the sample and a correlation coefficient of 0.98. The performance of the device is further demonstrated through the comparative analysis of arsenic-spiked soil samples with standard laboratory method, and a good agreement with a correlation coefficient of 0.9917 and the average difference of 0.37 ppm, are experimentally achieved. With the android application on the device to run the experiment, the whole process from sample preparation to detection is completed within 3 hours without the necessity of skilled personnel. The approximate cost of setup is estimated around 1 USD, weight 55 g. Therefore, the presented method offers the simple, rapid, portable and cost-effective means for onsite sensing of arsenic in soil. Combined with the geometric information inside the smartphones, the system will allow the monitoring of the contamination status of soils in a nation-wide manner.

  20. Exploration of Simple Analytical Approaches for Rapid Detection of Pathogenic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Salma [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    Many of the current methods for pathogenic bacterial detection require long sample-preparation and analysis time, as well as complex instrumentation. This dissertation explores simple analytical approaches (e.g., flow cytometry and diffuse reflectance spectroscopy) that may be applied towards ideal requirements of a microbial detection system, through method and instrumentation development, and by the creation and characterization of immunosensing platforms. This dissertation is organized into six sections. In the general Introduction section a literature review on several of the key aspects of this work is presented. First, different approaches for detection of pathogenic bacteria will be reviewed, with a comparison of the relative strengths and weaknesses of each approach, A general overview regarding diffuse reflectance spectroscopy is then presented. Next, the structure and function of self-assembled monolayers (SAMs) formed from organosulfur molecules at gold and micrometer and sub-micrometer patterning of biomolecules using SAMs will be discussed. This section is followed by four research chapters, presented as separate manuscripts. Chapter 1 describes the efforts and challenges towards the creation of imunosensing platforms that exploit the flexibility and structural stability of SAMs of thiols at gold. 1H, 1H, 2H, 2H-perfluorodecyl-1-thiol SAM (PFDT) and dithio-bis(succinimidyl propionate)-(DSP)-derived SAMs were used to construct the platform. Chapter 2 describes the characterization of the PFDT- and DSP-derived SAMs, and the architectures formed when it is coupled to antibodies as well as target bacteria. These studies used infrared reflection spectroscopy (IRS), X-ray photoelectron spectroscopy (XPS), and electrochemical quartz crystal microbalance (EQCM), Chapter 3 presents a new sensitive, and portable diffuse reflection based technique for the rapid identification and quantification of pathogenic bacteria. Chapter 4 reports research efforts in the

  1. Miniaturized Sample Preparation and Rapid Detection of Arsenite in Contaminated Soil Using a Smartphone.

    Science.gov (United States)

    Siddiqui, Mohd Farhan; Kim, Soocheol; Jeon, Hyoil; Kim, Taeho; Joo, Chulmin; Park, Seungkyung

    2018-03-04

    Conventional methods for analyzing heavy metal contamination in soil and water generally require laboratory equipped instruments, complex procedures, skilled personnel and a significant amount of time. With the advancement in computing and multitasking performances, smartphone-based sensors potentially allow the transition of the laboratory-based analytical processes to field applicable, simple methods. In the present work, we demonstrate the novel miniaturized setup for simultaneous sample preparation and smartphone-based optical sensing of arsenic As(III) in the contaminated soil. Colorimetric detection protocol utilizing aptamers, gold nanoparticles and NaCl have been optimized and tested on the PDMS-chip to obtain the high sensitivity with the limit of detection of 0.71 ppm (in the sample) and a correlation coefficient of 0.98. The performance of the device is further demonstrated through the comparative analysis of arsenic-spiked soil samples with standard laboratory method, and a good agreement with a correlation coefficient of 0.9917 and the average difference of 0.37 ppm, are experimentally achieved. With the android application on the device to run the experiment, the whole process from sample preparation to detection is completed within 3 hours without the necessity of skilled personnel. The approximate cost of setup is estimated around 1 USD, weight 55 g. Therefore, the presented method offers the simple, rapid, portable and cost-effective means for onsite sensing of arsenic in soil. Combined with the geometric information inside the smartphones, the system will allow the monitoring of the contamination status of soils in a nation-wide manner.

  2. Rapid detection of benzoyl peroxide in wheat flour by using Raman scattering spectroscopy

    Science.gov (United States)

    Zhao, Juan; Peng, Yankun; Chao, Kuanglin; Qin, Jianwei; Dhakal, Sagar; Xu, Tianfeng

    2015-05-01

    Benzoyl peroxide is a common flour additive that improves the whiteness of flour and the storage properties of flour products. However, benzoyl peroxide adversely affects the nutritional content of flour, and excess consumption causes nausea, dizziness, other poisoning, and serious liver damage. This study was focus on detection of the benzoyl peroxide added in wheat flour. A Raman scattering spectroscopy system was used to acquire spectral signal from sample data and identify benzoyl peroxide based on Raman spectral peak position. The optical devices consisted of Raman spectrometer and CCD camera, 785 nm laser module, optical fiber, prober, and a translation stage to develop a real-time, nondestructive detection system. Pure flour, pure benzoyl peroxide and different concentrations of benzoyl peroxide mixed with flour were prepared as three sets samples to measure the Raman spectrum. These samples were placed in the same type of petri dish to maintain a fixed distance between the Raman CCD and petri dish during spectral collection. The mixed samples were worked by pretreatment of homogenization and collected multiple sets of data of each mixture. The exposure time of this experiment was set at 0.5s. The Savitzky Golay (S-G) algorithm and polynomial curve-fitting method was applied to remove the fluorescence background from the Raman spectrum. The Raman spectral peaks at 619 cm-1, 848 cm-1, 890 cm-1, 1001 cm-1, 1234 cm-1, 1603cm-1, 1777cm-1 were identified as the Raman fingerprint of benzoyl peroxide. Based on the relationship between the Raman intensity of the most prominent peak at around 1001 cm-1 and log values of benzoyl peroxide concentrations, the chemical concentration prediction model was developed. This research demonstrated that Raman detection system could effectively and rapidly identify benzoyl peroxide adulteration in wheat flour. The experimental result is promising and the system with further modification can be applicable for more products in near

  3. Rapid Detection of Cell-Free Mycobacterium tuberculosis DNA in Tuberculous Pleural Effusion.

    Science.gov (United States)

    Che, Nanying; Yang, Xinting; Liu, Zichen; Li, Kun; Chen, Xiaoyou

    2017-05-01

    Tuberculous pleurisy is one of the most common types of extrapulmonary tuberculosis, but its diagnosis remains difficult. In this study, we report for the first time on the detection of cell-free Mycobacterium tuberculosis DNA in pleural effusion and an evaluation of a newly developed molecular assay for the detection of cell-free Mycobacterium tuberculosis DNA. A total of 78 patients with pleural effusion, 60 patients with tuberculous pleurisy, and 18 patients with alternative diseases were included in this study. Mycobacterial culture, the Xpert MTB/RIF assay, the adenosine deaminase assay, the T-SPOT.TB assay, and the cell-free Mycobacterium tuberculosis DNA assay were performed on all the pleural effusion samples. The cell-free Mycobacterium tuberculosis DNA assay and adenosine deaminase assay showed significantly higher sensitivities of 75.0% and 68.3%, respectively, than mycobacterial culture and the Xpert MTB/RIF assay, which had sensitivities of 26.7% and 20.0%, respectively ( P pleural effusion showed the highest sensitivity of 95.0% but the lowest specificity of 38.9%. The cell-free Mycobacterium tuberculosis DNA assay detected as few as 1.25 copies of IS 6110 per ml of pleural effusion and showed good accordance of the results between repeated tests ( r = 0.978, P = 2.84 × 10 -10 ). These data suggest that the cell-free Mycobacterium tuberculosis DNA assay is a rapid and accurate molecular test which provides direct evidence of Mycobacterium tuberculosis etiology. Copyright © 2017 American Society for Microbiology.

  4. Impact of the rapid antigen detection test in diagnosis and treatment of acute pharyngotonsillitis in a pediatric emergency room.

    Science.gov (United States)

    Cardoso, Débora Morais; Gilio, Alfredo Elias; Hsin, Shieh Huei; Machado, Beatriz Marcondes; de Paulis, Milena; Lotufo, João Paulo B; Martinez, Marina Baquerizo; Grisi, Sandra Josefina E

    2013-01-01

    To evaluate the impact of the routine use of rapid antigen detection test in the diagnosis and treatment of acute pharyngotonsillitis in children. This is a prospective and observational study, with a protocol compliance design established at the Emergency Unit of the University Hospital of Universidade de São Paulo for the care of children and adolescents diagnosed with acute pharyngitis. 650 children and adolescents were enrolled. Based on clinical findings, antibiotics would be prescribed for 389 patients (59.8%); using the rapid antigen detection test, they were prescribed for 286 patients (44.0%). Among the 261 children who would not have received antibiotics based on the clinical evaluation, 111 (42.5%) had positive rapid antigen detection test. The diagnosis based only on clinical evaluation showed 61.1% sensitivity, 47.7% specificity, 44.9% positive predictive value, and 57.5% negative predictive value. The clinical diagnosis of streptococcal pharyngotonsillitis had low sensitivity and specificity. The routine use of rapid antigen detection test led to the reduction of antibiotic use and the identification of a risk group for complications of streptococcal infection, since 42.5% positive rapid antigen detection test patients would not have received antibiotics based only on clinical diagnosis.

  5. Relationship between first trimester aneuploidy screening test serum analytes and placenta accreta.

    Science.gov (United States)

    Büke, Barış; Akkaya, Hatice; Demir, Sibel; Sağol, Sermet; Şimşek, Deniz; Başol, Güneş; Barutçuoğlu, Burcu

    2018-01-01

    The aim of this study is to determine whether there is a relationship between first trimester serum pregnancy-associated plasma protein A (PAPP-A) and free beta human chorionic gonadotropin (fβhCG) MoM values and placenta accreta in women who had placenta previa. A total of 88 patients with placenta previa who had first trimester aneuploidy screening test results were enrolled in the study. Nineteen of these patients were also diagnosed with placenta accreta. As probable markers of excessive placental invasion, serum PAPP-A and fβhCG MoM values were compared in two groups with and without placenta accreta. Patients with placenta accreta had higher statistically significant serum PAPP-A (1.20 versus 0.865, respectively, p = 0.045) and fβhCG MoM (1.42 versus 0.93, respectively, p = 0.042) values than patients without accreta. Higher first trimester serum PAPP-A and fβhCG MoM values seem to be associated with placenta accreta in women with placenta previa. Further studies are needed to use these promising additional tools for early detection of placenta accreta.

  6. A new diagnostic tool for rapid and accurate detection of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Ali Nour-Neamatollahi

    2018-03-01

    Full Text Available Mycobacterium tuberculosis, acid fast bacilli from the family of Mycobacteriaceae, is the causative agent of most cases of tuberculosis. Tuberculosis, as a communicable disease, remains a serious public health threat, killing more than one million people globally every year. Primary diagnosis of tuberculosis bacilli (TB relies mainly on microscopic detection of acid fast bacilli (AFB, but the method suffers from low sensitivity and the results largely depend on the technician’s skill. New diagnostic tools are necessary to be introduced for rapid and accurate detection of the bacilli in sputum samples. We, in collaboration with Anda Biologicals, have developed a new platform, named as “Patho-tb”, for rapid detection of AFB with high sensitivity and with low dependence on human skills. Evaluation of Patho-tb test performance was done in two settings: (1 primary field study conducted using 38 sputa from high TB prevalence area of Iran (Zabol city near to the Afghanistan border, and (2 main study conducted using 476 sputa from Tehran, capital of Iran. Patho-tb was applied for processed sputum samples in parallel with routine diagnostic methods (including AFB microscopy, culture and PCR. All test results were compared to final clinical diagnostic state of an individual and diagnostic sensitivity (DSe, specificity, positive predictive value, negative predictive value and accuracy of each test results were calculated using standard formulations. Analytical sensitivity and specificity of the Patho-tb test were also determined. Calculated values for five above mentioned parameters are as follows: for field study: AFB (DSe: 29.6, DSp: 81.8, PPV: 80, NPV: 23.1, AC: 44.7, Patho-tb (DSe: 63, DSp: 72.7, PPV: 85, NPV: 44.4, AC: 65.8, and for main study: AFB (DSe: 86.1, DSp: 99.4, PPV: 98.5, NPV: 93.9, AC: 95.2, Patho-tb (DSe: 97.4, DSp: 92.9, PPV: 86.5, NPV: 98.7, AC: 94.3. Reproducibility of Patho-tb test results were near to 100% (Cohen’s kappa value

  7. Validation of the Applied Biosystems RapidFinder Shiga Toxin-Producing E. coli (STEC) Detection Workflow.

    Science.gov (United States)

    Cloke, Jonathan; Matheny, Sharon; Swimley, Michelle; Tebbs, Robert; Burrell, Angelia; Flannery, Jonathan; Bastin, Benjamin; Bird, Patrick; Benzinger, M Joseph; Crowley, Erin; Agin, James; Goins, David; Salfinger, Yvonne; Brodsky, Michael; Fernandez, Maria Cristina

    2016-11-01

    The Applied Biosystems™ RapidFinder™ STEC Detection Workflow (Thermo Fisher Scientific) is a complete protocol for the rapid qualitative detection of Escherichia coli (E. coli) O157:H7 and the "Big 6" non-O157 Shiga-like toxin-producing E. coli (STEC) serotypes (defined as serogroups: O26, O45, O103, O111, O121, and O145). The RapidFinder STEC Detection Workflow makes use of either the automated preparation of PCR-ready DNA using the Applied Biosystems PrepSEQ™ Nucleic Acid Extraction Kit in conjunction with the Applied Biosystems MagMAX™ Express 96-well magnetic particle processor or the Applied Biosystems PrepSEQ Rapid Spin kit for manual preparation of PCR-ready DNA. Two separate assays comprise the RapidFinder STEC Detection Workflow, the Applied Biosystems RapidFinder STEC Screening Assay and the Applied Biosystems RapidFinder STEC Confirmation Assay. The RapidFinder STEC Screening Assay includes primers and probes to detect the presence of stx1 (Shiga toxin 1), stx2 (Shiga toxin 2), eae (intimin), and E. coli O157 gene targets. The RapidFinder STEC Confirmation Assay includes primers and probes for the "Big 6" non-O157 STEC and E. coli O157:H7. The use of these two assays in tandem allows a user to detect accurately the presence of the "Big 6" STECs and E. coli O157:H7. The performance of the RapidFinder STEC Detection Workflow was evaluated in a method comparison study, in inclusivity and exclusivity studies, and in a robustness evaluation. The assays were compared to the U.S. Department of Agriculture (USDA), Food Safety and Inspection Service (FSIS) Microbiology Laboratory Guidebook (MLG) 5.09: Detection, Isolation and Identification of Escherichia coli O157:H7 from Meat Products and Carcass and Environmental Sponges for raw ground beef (73% lean) and USDA/FSIS-MLG 5B.05: Detection, Isolation and Identification of Escherichia coli non-O157:H7 from Meat Products and Carcass and Environmental Sponges for raw beef trim. No statistically significant

  8. Rapid radiometric methods to detect and differentiate Mycobacterium tuberculosis/M. bovis from other mycobacterial species

    International Nuclear Information System (INIS)

    Siddiqi, S.H.; Hwangbo, C.C.; Silcox, V.; Good, R.C.; Snider, D.E. Jr.; Middlebrook, G.

    1984-01-01

    Rapid methods for the differentiation of Mycobacterium tuberculosis/M. bovis (TB complex) from other mycobacteria (MOTT bacilli) were developed and evaluated in a three-phase study. In the first phase, techniques for identification of Mycobacterium species were developed by using radiometric technology and BACTEC Middlebrook 7H12 liquid medium. Based on 14 CO 2 evolution, characteristic growth patterns were established for 13 commonly encountered mycobacterial species. Mycobacteria belonging to the TB complex were differentiated from other mycobacteria by cellular morphology and rate of 14 CO 2 evolution. For further differentiation, radiometric tests for niacin production and inhibition by Q-nitro-alpha-acetyl amino-beta-hydroxy-propiophenone (NAP) were developed. In the second phase, 100 coded specimens on Lowenstein-Jensen medium were identified as members of the TB complex, MOTT bacilli, bacteria other than mycobacteria, or ''no viable organisms'' within 3 to 12 (average 6.4) days of receipt from the Centers for Disease Control. Isolation and identification of mycobacteria from 20 simulated sputum specimens were carried out in phase III. Out of 20 sputum specimens, 16 contained culturable mycobacteria, and all of the positives were detected by the BACTEC method in an average of 7.3 days. The positive mycobacterial cultures were isolated and identified as TB complex or MOTT bacilli in an average of 12.8 days. The radiometric NAP test was found to be highly sensitive and specific for a rapid identification of TB complex, whereas the radiometric niacin test was found to have some inherent problems. Radiometric BACTEC and conventional methodologies were in complete agreement in Phase II as well as in Phase III

  9. Rapid detection of microbial contamination in grape juice by flow cytometry

    Directory of Open Access Journals (Sweden)

    Marielle Bouix

    1999-03-01

    Full Text Available This study presents an application of flow cytometry to evaluate rapidly the viable micro-organisms in grape juice. In this method, viable cells are firstly specitically labelled with a fluorescent reagent. The sample is then injected into the flow cytometer where the labelled micro-organisms are individually illuminated by a laser beam. The emission of fluorescence is measured. The system counts the number of fluorescent events and prints out a histogram of the fluorescence intensity which is characteristic of the micro-organism being analysed. In laboratory conditions, preliminary trials have been undertaken with an artificially inoculated grape juice with pure yeast and bacteria cultures. This method succeeded in counting simultaneously yeasts and bacteria within 15 minutes, with a high degree of sensitivity, 5.103 yeasts perml and 5.104 bacteria per ml. This technique can also be applied to the detection of mould contamination and the test has been done with Botrytis spores. The method makes direct cell counts possible and is capable of analysing 30 samples per hour. It can be automatised and easily used in industrial laboratory. During the last harvest, more than a thousand of must samples were controled using this technique. The results let to determine the yeast contamination level of a grape juice tank even before unloading. The results obtained by flow cytometry were compared to the plate count reference method. The correlation between cytometry and count by plate culture was 99 p. cent for the threshold of 5.1 04 yeasts/ml which seemed to point out a high contamination. By using this flow cytometry method during the harvest period, the results were supplied in real time. This allowed a rapid selection of the musts, depending upon the scale of their contamination and improved the quality of the wine by corrective actions.

  10. Direct sequencing for rapid detection of multidrug resistant Mycobacterium tuberculosis strains in Morocco.

    Science.gov (United States)

    Zakham, Fathiah; Chaoui, Imane; Echchaoui, Amina Hadbae; Chetioui, Fouad; Elmessaoudi, My Driss; Ennaji, My Mustapha; Abid, Mohammed; Mzibri, Mohammed El

    2013-01-01

    Tuberculosis (TB) is a major public health problem with high mortality and morbidity rates, especially in low-income countries. Disturbingly, the emergence of multidrug resistant (MDR) and extensively drug resistant (XDR) TB cases has worsened the situation, raising concerns of a future epidemic of virtually untreatable TB. Indeed, the rapid diagnosis of MDR TB is a critical issue for TB management. This study is an attempt to establish a rapid diagnosis of MDR TB by sequencing the target fragments of the rpoB gene which linked to resistance against rifampicin and the katG gene and inhA promoter region, which are associated with resistance to isoniazid. For this purpose, 133 sputum samples of TB patients from Morocco were enrolled in this study. One hundred samples were collected from new cases, and the remaining 33 were from previously treated patients (drug relapse or failure, chronic cases) and did not respond to anti-TB drugs after a sufficient duration of treatment. All samples were subjected to rpoB, katG and pinhA mutation analysis by polymerase chain reaction and DNA sequencing. Molecular analysis showed that seven strains were isoniazid-monoresistant and 17 were rifampicin-monoresistant. MDR TB strains were identified in nine cases (6.8%). Among them, eight were traditionally diagnosed as critical cases, comprising four chronic and four drug-relapse cases. The last strain was isolated from a new case. The most recorded mutation in the rpoB gene was the substitution TCG > TTG at codon 531 (Ser531 Leu), accounting for 46.15%. Significantly, the only mutation found in the katG gene was at codon 315 (AGC to ACC) with a Ser315Thr amino acid change. Only one sample harbored mutation in the inhA promoter region and was a point mutation at the -15p position (C > T). The polymerase chain reaction sequencing approach is an accurate and rapid method for detection of drug-resistant TB in clinical specimens, and could be of great interest in the management of TB in

  11. Rapid on-site detection of Acidovorax avenae subsp. citrulli by gold-labeled DNA strip sensor.

    Science.gov (United States)

    Zhao, Wenjun; Lu, Jie; Ma, Wenwei; Xu, Chuanlai; Kuang, Hua; Zhu, Shuifang

    2011-06-15

    Acidovorax avenae subsp. citrulli (AAC) is one of the most harmful diseases in cucurbit production. A rapid and sensitive DNA strip sensor was constructed based on gold nanoparticle-labeled oligonucleotide probes for the detection of AAC. Both the qualitative and semi-quantitative detections of target DNA were successfully achieved using the developed DNA strip sensor. The qualitative limit of detection (LOD) of the strip sensor was determined as 4 nM. The LOD for the semi-quantitative detection was calculated to be 0.48 nM in the range of 0-10 nM. The genomic DNA was detected directly using the DNA strip sensor without any further treatment. This DNA strip sensor is a potentially useful tool for rapid on-site DNA screening. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. A rapid and simple method of detection of Blepharisma japonicum using PCR and immobilisation on FTA paper

    Science.gov (United States)

    Hide, Geoff; Hughes, Jacqueline M; McNuff, Robert

    2003-01-01

    Background The rapid expansion in the availability of genome and DNA sequence information has opened up new possibilities for the development of methods for detecting free-living protozoa in environmental samples. The protozoan Blepharisma japonicum was used to investigate a rapid and simple detection system based on polymerase chain reaction amplification (PCR) from organisms immobilised on FTA paper. Results Using primers designed from the α-tubulin genes of Blepharisma, specific and sensitive detection to the equivalent of a single Blepharisma cell could be achieved. Similar detection levels were found using water samples, containing Blepharisma, which were dried onto Whatman FTA paper. Conclusion This system has potential as a sensitive convenient detection system for Blepharisma and could be applied to other protozoan organisms. PMID:14516472

  13. Fat Content Modulates Rapid Detection of Food: A Visual Search Study Using Fast Food and Japanese Diet.

    Science.gov (United States)

    Sawada, Reiko; Sato, Wataru; Toichi, Motomi; Fushiki, Tohru

    2017-01-01

    Rapid detection of food is crucial for the survival of organisms. However, previous visual search studies have reported discrepant results regarding the detection speeds for food vs. non-food items; some experiments showed faster detection of food than non-food, whereas others reported null findings concerning any speed advantage for the detection of food vs. non-food. Moreover, although some previous studies showed that fat content can affect visual attention for food, the effect of fat content on the detection of food remains unclear. To investigate these issues, we measured reaction times (RTs) during a visual search task in which participants with normal weight detected high-fat food (i.e., fast food), low-fat food (i.e., Japanese diet), and non-food (i.e., kitchen utensils) targets within crowds of non-food distractors (i.e., cars). Results showed that RTs for food targets were shorter than those for non-food targets. Moreover, the RTs for high-fat food were shorter than those for low-fat food. These results suggest that food is more rapidly detected than non-food within the environment and that a higher fat content in food facilitates rapid detection.

  14. Fat Content Modulates Rapid Detection of Food: A Visual Search Study Using Fast Food and Japanese Diet

    Directory of Open Access Journals (Sweden)

    Reiko Sawada

    2017-06-01

    Full Text Available Rapid detection of food is crucial for the survival of organisms. However, previous visual search studies have reported discrepant results regarding the detection speeds for food vs. non-food items; some experiments showed faster detection of food than non-food, whereas others reported null findings concerning any speed advantage for the detection of food vs. non-food. Moreover, although some previous studies showed that fat content can affect visual attention for food, the effect of fat content on the detection of food remains unclear. To investigate these issues, we measured reaction times (RTs during a visual search task in which participants with normal weight detected high-fat food (i.e., fast food, low-fat food (i.e., Japanese diet, and non-food (i.e., kitchen utensils targets within crowds of non-food distractors (i.e., cars. Results showed that RTs for food targets were shorter than those for non-food targets. Moreover, the RTs for high-fat food were shorter than those for low-fat food. These results suggest that food is more rapidly detected than non-food within the environment and that a higher fat content in food facilitates rapid detection.

  15. Fat Content Modulates Rapid Detection of Food: A Visual Search Study Using Fast Food and Japanese Diet

    Science.gov (United States)

    Sawada, Reiko; Sato, Wataru; Toichi, Motomi; Fushiki, Tohru

    2017-01-01

    Rapid detection of food is crucial for the survival of organisms. However, previous visual search studies have reported discrepant results regarding the detection speeds for food vs. non-food items; some experiments showed faster detection of food than non-food, whereas others reported null findings concerning any speed advantage for the detection of food vs. non-food. Moreover, although some previous studies showed that fat content can affect visual attention for food, the effect of fat content on the detection of food remains unclear. To investigate these issues, we measured reaction times (RTs) during a visual search task in which participants with normal weight detected high-fat food (i.e., fast food), low-fat food (i.e., Japanese diet), and non-food (i.e., kitchen utensils) targets within crowds of non-food distractors (i.e., cars). Results showed that RTs for food targets were shorter than those for non-food targets. Moreover, the RTs for high-fat food were shorter than those for low-fat food. These results suggest that food is more rapidly detected than non-food within the environment and that a higher fat content in food facilitates rapid detection. PMID:28690568

  16. Rapid and Highly Sensitive Non-Competitive Immunoassay for Specific Detection of Nodularin

    Directory of Open Access Journals (Sweden)

    Sultana Akter

    2017-09-01

    Full Text Available Nodularin (NOD is a cyclic penta-peptide hepatotoxin mainly produced by Nodularia spumigena, reported from the brackish water bodies of various parts of the world. It can accumulate in the food chain and, for safety reasons, levels of NOD not only in water bodies but also in food matrices are of interest. Here, we report on a non-competitive immunoassay for the specific detection of NOD. A phage display technique was utilized to interrogate a synthetic antibody phage library for binders recognizing NOD bound to an anti-ADDA (3-Amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4(E,6(E-dienoic acid monoclonal antibody (Mab. One of the obtained immunocomplex binders, designated SA32C11, showed very high specificity towards nodularin-R (NOD-R over to the tested 10 different microcystins (microcystin-LR, -dmLR, -RR, -dmRR, -YR, -LY, -LF, -LW, -LA, -WR. It was expressed in Escherichia coli as a single chain antibody fragment (scFv fusion protein and used to establish a time-resolved fluorometry-based assay in combination with the anti-ADDA Mab. The detection limit (blank + 3SD of the immunoassay, with a total assay time of 1 h 10 min, is 0.03 µg/L of NOD-R. This represents the most sensitive immunoassay method for the specific detection of NOD reported so far. The assay was tested for its performance to detect NOD using spiked (0.1 to 3 µg/L of NOD-R water samples including brackish sea and coastal water and the recovery ranged from 79 to 127%. Furthermore, a panel of environmental samples, including water from different sources, fish and other marine tissue specimens, were analyzed for NOD using the assay. The assay has potential as a rapid screening tool for the analysis of a large number of water samples for the presence of NOD. It can also find applications in the analysis of the bioaccumulation of NOD in marine organisms and in the food chain.

  17. Aneuploidy involving chromosome 1 may be an early predictive marker of intestinal type gastric cancer

    Energy Technology Data Exchange (ETDEWEB)

    Williams, L. [Royal Glamorgan Hospital, Ynysmaerdy, Llantrisant CF72 8XR (United Kingdom); Somasekar, A. [Institute of Life Science, Swansea School of Medicine, Swansea University, Swansea SA28PP (United Kingdom); Neath Port Talbot Hospital, Abertawe Bro Morgannwg University NHS Trust, Baglan Way, Port Talbot SA12 7BX (United Kingdom); Davies, D.J.; Cronin, J.; Doak, S.H. [Institute of Life Science, Swansea School of Medicine, Swansea University, Swansea SA28PP (United Kingdom); Alcolado, R. [Royal Glamorgan Hospital, Ynysmaerdy, Llantrisant CF72 8XR (United Kingdom); Williams, J.G. [Neath Port Talbot Hospital, Abertawe Bro Morgannwg University NHS Trust, Baglan Way, Port Talbot SA12 7BX (United Kingdom); Griffiths, A.P. [Department of Histopathology, Morriston Hospital, Abertawe Bro Morgannwg University NHS Trust, Morriston, SA66NL (United Kingdom); Baxter, J.N. [Department of Surgery, Morriston Hospital, Abertawe Bro Morgannwg University NHS Trust, Morriston, SA66NL (United Kingdom); Jenkins, G.J.S., E-mail: g.j.jenkins@swansea.ac.uk [Institute of Life Science, Swansea School of Medicine, Swansea University, Swansea SA28PP (United Kingdom)

    2009-10-02

    Intestinal type gastric cancer is a significant cause of mortality, therefore a better understanding of its molecular basis is required. We assessed if either aneuploidy or activity of the oncogenic transcription factor nuclear factor kappa B (NF-{kappa}B), increased incrementally during pre-malignant gastric histological progression and also if they correlated with each other in patient samples, as they are both induced by oxygen free radicals. In a prospective study of 54 (aneuploidy) and 59 (NF-{kappa}B) consecutive patients, aneuploidy was assessed by interphase fluorescent in situ hybridisation (FISH) for chromosome 1. NF-{kappa}B was assessed by expression of interleukin-8 (IL-8), and in a subset, by immunohistochemistry (IHC) for active p65. Aneuploidy levels increased incrementally across the histological series. 2.76% of cells with normal histology (95% CI, 2.14-3.38%) showed background levels of aneuploidy, this increased to averages of 3.78% (95% CI, 3.21-4.35%), 5.89% (95% CI, 3.72-8.06%) and 7.29% (95% CI, 4.73-9.85%) of cells from patients with gastritis, Helicobacter pylori positive gastritis and atrophy/intestinal metaplasia (IM) respectively. IL-8 expression was only increased in patients with current H. pylori infection. NF-{kappa}B analysis showed some increased p65 activity in inflamed tissues. IL-8 expression and aneuploidy level were not linked in individual patients. Aneuploidy levels increased incrementally during histological progression; were significantly elevated at very early stages of neoplastic progression and could well be linked to cancer development and used to assess cancer risk. Reactive oxygen species (ROS) induced in early gastric cancer are presumably responsible for the stepwise accumulation of this particular mutation, i.e. aneuploidy. Hence, aneuploidy measured by fluorescent in situ hybridisation (FISH) coupled to brush cytology, would be worthy of consideration as a predictive marker in gastric cancer and could be

  18. Aneuploidy involving chromosome 1 may be an early predictive marker of intestinal type gastric cancer

    International Nuclear Information System (INIS)

    Williams, L.; Somasekar, A.; Davies, D.J.; Cronin, J.; Doak, S.H.; Alcolado, R.; Williams, J.G.; Griffiths, A.P.; Baxter, J.N.; Jenkins, G.J.S.

    2009-01-01

    Intestinal type gastric cancer is a significant cause of mortality, therefore a better understanding of its molecular basis is required. We assessed if either aneuploidy or activity of the oncogenic transcription factor nuclear factor kappa B (NF-κB), increased incrementally during pre-malignant gastric histological progression and also if they correlated with each other in patient samples, as they are both induced by oxygen free radicals. In a prospective study of 54 (aneuploidy) and 59 (NF-κB) consecutive patients, aneuploidy was assessed by interphase fluorescent in situ hybridisation (FISH) for chromosome 1. NF-κB was assessed by expression of interleukin-8 (IL-8), and in a subset, by immunohistochemistry (IHC) for active p65. Aneuploidy levels increased incrementally across the histological series. 2.76% of cells with normal histology (95% CI, 2.14-3.38%) showed background levels of aneuploidy, this increased to averages of 3.78% (95% CI, 3.21-4.35%), 5.89% (95% CI, 3.72-8.06%) and 7.29% (95% CI, 4.73-9.85%) of cells from patients with gastritis, Helicobacter pylori positive gastritis and atrophy/intestinal metaplasia (IM) respectively. IL-8 expression was only increased in patients with current H. pylori infection. NF-κB analysis showed some increased p65 activity in inflamed tissues. IL-8 expression and aneuploidy level were not linked in individual patients. Aneuploidy levels increased incrementally during histological progression; were significantly elevated at very early stages of neoplastic progression and could well be linked to cancer development and used to assess cancer risk. Reactive oxygen species (ROS) induced in early gastric cancer are presumably responsible for the stepwise accumulation of this particular mutation, i.e. aneuploidy. Hence, aneuploidy measured by fluorescent in situ hybridisation (FISH) coupled to brush cytology, would be worthy of consideration as a predictive marker in gastric cancer and could be clinically useful in pre

  19. Rapid collection, detection, and assessment of environmental polycyclic aromatic hydrocarbons (PAHs)

    International Nuclear Information System (INIS)

    Johnson, T.; Huckins, J.; Petty, J.; Butorin, A.

    1995-01-01

    PAHs, an important class of environmental chemical contaminants found primarily in petroleum and coal products, frequently are the most numerous and ubiquitous organic pollutants recovered in sediment residues. PAHs are considered hazardous in water and soil because many are acutely toxic and have the potential for genotoxic activity. Selected EPA priority pollutants (2, 3, 4, and 5-ring PAHs) and complex PAH mixtures (crude oil, gasoline, and recycled motor oil) were collected and concentrated from water and sediment with semipermeable polymeric membrane devices (SPMDs) that contain a thin film of triolein. Analytes were extracted from the SPMDs by dialysis in hexane or directly by rinsing with acetone DMSO, concentrated in the carrier solvent DMSO, and detected with the luminescent bacterial assays Microtox reg-sign and Mutatox reg-sign. High SPMD-water concentration factors of PAHs appeared to correspond closely to the occurrence of PAHs in sediments previously reported in the literature; for example, pyrene had the highest SPMD concentration factor and was the most commonly found PAH in sediment residues. Mutatox reg-sign with rat hepatic S9 activation detected all PAHs tested. The PAH's molecular weight and number of rings appeared to directly influence acute toxicity (EC50, microg/mL); for example, two-ring naphthalene had an EC50 value of 0.78 whereas five-ring benzo(a)pyrene had an EC50 value of 15.0, about a twenty-fold difference, Microtox reg-sign and Mutatox reg-sign, in combination with SPMDs were able to rapidly (< 24h) assess the bioavailability, toxicity, and genotoxicity of these environmental PAHs

  20. Development of field-applicable tests for rapid and sensitive detection of Candidatus Phytoplasma oryzae.

    Science.gov (United States)

    Wambua, Lillian; Schneider, Bernd; Okwaro, Allan; Wanga, Joseph Odhiambo; Imali, Olive; Wambua, Peninah Nduku; Agutu, Lavender; Olds, Cassandra; Jones, Chris Stephen; Masiga, Daniel; Midega, Charles; Khan, Zeyaur; Jores, Joerg; Fischer, Anne

    2017-10-01

    Napier grass Stunt Disease (NSD) is a severe disease of Napier grass (Pennisetum purpureum) in Eastern Africa, caused by the leafhopper-transmitted bacterium Candidatus Phytoplasma oryzae. The pathogen severely impairs the growth of Napier grass, the major fodder for dairy cattle in Eastern Africa. NSD is associated with biomass losses of up to 70% of infected plants. Diagnosis of NSD is done by nested PCR targeting the phytoplasma DNA, which is difficult to perform in developing countries with little infrastructure. We report the development of an easy to use, rapid, sensitive and specific molecular assay for field diagnosis of NSD. The procedure is based on recombinase polymerase amplification and targets the imp gene encoding a pathogen-specific immunodominant membrane protein. Therefore we followed a two-step process. First we developed an isothermal DNA amplification method for real time fluorescence application and then transferred this assay to a lateral flow format. The limit of detection for both procedures was estimated to be 10 organisms. We simplified the template preparation procedure by using freshly squeezed phloem sap from Napier grass. Additionally, we developed a laboratory serological assay with the potential to be converted to a lateral flow assay. Two murine monoclonal antibodies with high affinity and specificity to the immunodominant membrane protein IMP of Candidatus Phytoplasma oryzae were generated. Both antibodies specifically reacted with the denatured or native 17 kDa IMP protein. In dot blot experiments of extracts from infected plant, phytoplasmas were detected in as little as 12,5 μg of fresh plant material. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Rapid Detection of Thrombin and Other Protease Activity Directly in Whole Blood

    Science.gov (United States)

    Yu, Johnson Chung Sing

    Thrombin is a serine protease that plays a key role in the clotting cascade to promote hemostasis following injury to the endothelium. From a clinical diagnostic perspective, in-vivo thrombin activity is linked to various blood clotting disorders, as well as cardiovascular disease (DVT, arteriosclerosis, etc). Thus, the ability to rapidly measure protease activity directly in whole blood will provide important new diagnostics, and clinical researchers with a powerful tool to further elucidate the relationship between circulating protease levels and disease. The ultimate goal is to design novel point of care (POC) diagnostic devices that are capable of monitoring protease activities directly in whole blood and biological sample. A charge-changing substrate specific to the thrombin enzyme was engineered and its functionality was confirmed by a series of experiments. This led to the preliminary design, construction, and testing of two device platforms deemed fully functional for the electrophoretic separation and focusing of charged peptide fragments. The concept of using the existing charge-changing substrate platform for bacterial protease detection was also investigated. Certain strains of E coli are associated with severe symptoms such as abdominal cramps, bloody diarrhea, and vomiting. The OmpT protease is expressed on the outer membrane of E coli and plays a role in the cleavage of antimicrobial peptides, the degradation of recombinant heterologous proteins, and the activation of plasminogen in the host. Thus, a synthetic peptide substrate specific to the OmpT protease was designed and modeled for the purpose of detecting E coli in biological sample.

  2. Comparing rapid methods for detecting Listeria in seafood and environmental samples using the most probably number (MPN) technique.

    Science.gov (United States)

    Cruz, Cristina D; Win, Jessicah K; Chantarachoti, Jiraporn; Mutukumira, Anthony N; Fletcher, Graham C

    2012-02-15

    The standard Bacteriological Analytical Manual (BAM) protocol for detecting Listeria in food and on environmental surfaces takes about 96 h. Some studies indicate that rapid methods, which produce results within 48 h, may be as sensitive and accurate as the culture protocol. As they only give presence/absence results, it can be difficult to compare the accuracy of results generated. We used the Most Probable Number (MPN) technique to evaluate the performance and detection limits of six rapid kits for detecting Listeria in seafood and on an environmental surface compared with the standard protocol. Three seafood products and an environmental surface were inoculated with similar known cell concentrations of Listeria and analyzed according to the manufacturers' instructions. The MPN was estimated using the MPN-BAM spreadsheet. For the seafood products no differences were observed among the rapid kits and efficiency was similar to the BAM method. On the environmental surface the BAM protocol had a higher recovery rate (sensitivity) than any of the rapid kits tested. Clearview™, Reveal®, TECRA® and VIDAS® LDUO detected the cells but only at high concentrations (>10(2) CFU/10 cm(2)). Two kits (VIP™ and Petrifilm™) failed to detect 10(4) CFU/10 cm(2). The MPN method was a useful tool for comparing the results generated by these presence/absence test kits. There remains a need to develop a rapid and sensitive method for detecting Listeria in environmental samples that performs as well as the BAM protocol, since none of the rapid tests used in this study achieved a satisfactory result. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Aneuploidy theory explains tumor formation, the absence of immune surveillance, and the failure of chemotherapy.

    Science.gov (United States)

    Rasnick, David

    2002-07-01

    The autocatalyzed progression of aneuploidy accounts for all cancer-specific phenotypes, the Hayflick limit of cultured cells, carcinogen-induced tumors in mice, the age distribution of human cancer, and multidrug-resistance. Here aneuploidy theory addresses tumor formation. The logistic equation, phi(n)(+1) = rphi(n) (1 - phi(n)), models the autocatalyzed progression of aneuploidy in vivo and in vitro. The variable phi(n)(+1) is the average aneuploid fraction of a population of cells at the n+1 cell division and is determined by the value at the nth cell division. The value r is the growth control parameter. The logistic equation was used to compute the probability distribution for values of phi after numerous divisions of aneuploid cells. The autocatalyzed progression of aneuploidy follows the laws of deterministic chaos, which means that certain values of phi are more probable than others. The probability map of the logistic equation shows that: 1) an aneuploid fraction of at least 0.30 is necessary to sustain a population of cancer cells; and 2) the most likely aneuploid fraction after many population doublings is 0.70, which is equivalent to a DNA(index)=1.7, the point of maximum disorder of the genome that still sustains life. Aneuploidy theory also explains the lack of immune surveillance and the failure of chemotherapy.

  4. Optimal pcr primers for rapid and accurate detection of Aspergillus flavus isolates.

    Science.gov (United States)

    Al-Shuhaib, Mohammed Baqur S; Albakri, Ali H; Alwan, Sabah H; Almandil, Noor B; AbdulAzeez, Sayed; Borgio, J Francis

    2018-03-01

    Aspergillus flavus is among the most devastating opportunistic pathogens of several food crops including rice, due to its high production of carcinogenic aflatoxins. The presence of these organisms in economically important rice strip farming is a serious food safety concern. Several polymerase chain reaction (PCR) primers have been designed to detect this species; however, a comparative assessment of their accuracy has not been conducted. This study aims to identify the optimal diagnostic PCR primers for the identification of A. flavus, among widely available primers. We isolated 122 A. flavus native isolates from randomly collected rice strips (N = 300). We identified 109 isolates to the genus level using universal fungal PCR primer pairs. Nine pairs of primers were examined for their PCR diagnostic specificity on the 109 isolates. FLA PCR was found to be the optimal PCR primer pair for specific identification of the native isolates, over aflP(1), aflM, aflA, aflD, aflP(3), aflP(2), and aflR. The PEP primer pair was found to be the most unsuitable for A. flavus identification. In conclusion, the present study indicates the powerful specificity of the FLA PCR primer over other commonly available diagnostic primers for accurate, rapid, and large-scale identification of A. flavus native isolates. This study provides the first simple, practical comparative guide to PCR-based screening of A. flavus infection in rice strips. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Application of Fourier Transform Infrared (FTIR) Spectroscopy for Rapid Detection of Fumonisin B2 in Raisins.

    Science.gov (United States)

    Heperkan, Dilek; Gökmen, Ece

    2016-07-01

    The aim of this study was to investigate the potential use of FTIR spectroscopy as a rapid screening method to detect fumonisin produced by Aspergillus niger. A. niger spore suspensions isolated from raisins were inoculated in Petri dishes prepared with sultana raisin or black raisin extracts containing agar and malt extract agar (MEA). After 9 days of incubation at 25°C, fumonisin B2 (FB2) production on each agar plate was determined by subjecting the agar plugs to IR spectroscopy. The presence of amino group (at 1636-1639 cm(-1)) was especially indicative of fumonisin production in MEA and the raisin extracts containing agar. The results were confirmed by HPLC analysis of the agar sample extracts after immunoaffinity column cleanup. It was determined that A. niger produced more FB2 in sultana raisins than in MEA, with no FB2 being produced in black raisin extract agar. This study demonstrated that proper sample preparation procedure followed by FTIR analysis is a useful technique for identifying toxigenic molds and their mycotoxin production in agricultural commodities.

  6. Development and validation of a rapid test system for detection of pork meat and collagen residues.

    Science.gov (United States)

    Masiri, J; Benoit, L; Barrios-Lopez, B; Thienes, C; Meshgi, M; Agapov, A; Dobritsa, A; Nadala, C; Samadpour, M

    2016-11-01

    Mislabeling, contamination, and economic adulteration of meat products with undeclared pork tissues are illegal under regulations promulgated by numerous regulatory agencies. Nonetheless, analysis of the European meat industry has revealed pervasive meat adulteration, necessitating more extensive application of meat authentication testing. As existing methods for meat speciation require specialized equipment and/or training, we developed a detection system based on a lateral flow device (LFD) assay format capable of rapidly (~35min) identifying porcine residues derived from raw meat, cooked meat, and gelatin down to 0.01%, 1.0%, and 2.5% contamination, respectively. Specificity analysis revealed no cross-reactivity with meat derived from chicken, turkey, horse, beef, lamb, or goat. Comparison with a commercial ELISA kit and PCR method revealed similar if not improved sensitivity, with the added feature that the LFD-based system required considerably less time to perform. Accordingly, this test system should aid the food industry and food control authorities in monitoring for adulteration with pork. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The design of rapid turbidity measurement system based on single photon detection techniques

    Science.gov (United States)

    Yang, Yixin; Wang, Huanqin; Cao, Yangyang; Gui, Huaqiao; Liu, Jianguo; Lu, Liang; Cao, Huibin; Yu, Tongzhu; You, Hui

    2015-10-01

    A new rapid turbidity measurement system has been developed to measure the turbidity of drinking water. To determinate the turbidity quantitatively, the total intensity of scattering light has been measured and quantified as number of photons by adopting the single photon detection techniques (SPDT) which has the advantage of high sensitivity. On the basis of SPDT, the measurement system has been built and series of experiments have been carried out. Combining then the 90° Mie scattering theory with the principle of SPDT, a turbidity measurement model has been proposed to explain the experimental results. The experimental results show that a turbidity, which is as low as 0.1 NTU (Nephelometric Turbidity Units), can be measured steadily within 100 ms. It also shows a good linearity and stability over the range of 0.1-400 NTU and the precision can be controlled within 5% full scale. In order to improve its precision and stability, some key parameters, including the sampling time and incident light intensity, have been discussed. It has been proved that, to guarantee an excellent system performance, a good compromise between the measurement speed and the low power consumption should be considered adequately depending on the practical applications.

  8. Novel Detection Strategy To Rapidly Evaluate the Efficacy of Antichlamydial Agents.

    Science.gov (United States)

    Zhang, Yan; Xian, Yuqi; Gao, Leiqiong; Elaasar, Hiba; Wang, Yao; Tauhid, Lamiya; Hua, Ziyu; Shen, Li

    2017-02-01

    Chlamydia trachomatis infections present a major heath burden worldwide. The conventional method used to detect C. trachomatis is laborious. In the present study, a novel strategy was utilized to evaluate the impact of antimicrobial agents on the growth of C. trachomatis and its expression of ompA promoter-driven green fluorescence protein (GFP). We demonstrate that this GFP reporter system gives a robust fluorescent display of C. trachomatis growth in human cervical epithelial cells and, further, that GFP production directly correlates to changes in ompA expression following sufficient exposure to antimicrobials. Validation with azithromycin, the first-line macrolide drug used for the treatment of C. trachomatis infection, highlights the advantages of this method over the traditional method because of its simplicity and versatility. The results indicate both that ompA is highly responsive to antimicrobials targeting the transcription and translation of C. trachomatis and that there is a correlation between changing GFP levels and C. trachomatis growth. This proof-of-concept study also reveals that the ompA-GFP system can be easily adapted to rapidly assess antimicrobial effectiveness in a high-throughput format. Copyright © 2017 American Society for Microbiology.

  9. Application of rapid microbiological screening methods for detection of irradiated frozen foods

    International Nuclear Information System (INIS)

    Hussain, A.A.; Rady, A.H.; ElBary, N.A.A.

    2003-01-01

    The exposure of food to ionizing radiation is being progressively used in many countries to, inactivate food pathogens, eradicate pests and extend shelf-life. To ensure free consumer choice, irradiated food. The direct epi fluorescent filter technique (DEFT) was applied as recent and rapid technique for determination of total bacterial count in irradiated minced chicken (2,4,6, and 8 kGy) as well as non-irradiated samples. Also aerobic plate count (APC) was used to determine the viable bacterial cells. A large significant differences between the profiteered DEFT and APC counts were obtained with the irradiated samples of each chicken and fish where the conventional plating gives a much lower values than the (DEFT) technique compared with non-irradiated samples. A highly correlation (r=0.99 and 1.00) were detected at 8 and 6 kGy with irradiated minced chicken and fish respectively. The Gram-negative bacteria belonging to (Enterobacteriaceae and fluorescence pseudomonas) showed very low count in the irradiated selected fish samples compared with control while the endotoxin selected fish samples compared with control while the endotoxin levels did not affect under the same conditions. Micro-gel electrophoresis indicated that gamma irradiation at 8 kGy can induce DNA damage in the cells of both minced chicken and fish where, some bands disappeared compared with the non-irradiated samples

  10. Integration of nanoparticle cell lysis and microchip PCR for one-step rapid detection of bacteria.

    Science.gov (United States)

    Wan, Weijie; Yeow, John T W

    2012-04-01

    This paper describes an integrated microchip system as an efficient and cost-effective solution involving Nanotechnology and Lab-on-a-Chip technology for the rapid detection of bacteria. The system is based on using surface-modified gold nanoparticles for efficient cell lysis followed by microchip PCR without having to remove the nanoparticles from the PCR solution. Poly(quaternary ammonium) modified gold nanoparticles are used to provide a novel and efficient cell lysis method without the need to go through time-consuming, expensive and complicated microfabrication processes as most of current cell lysis methods for Lab-on-a-Chip applications do. It also facilitates the integration of cell lysis and PCR by sharing the same reaction chamber as PCR uses. It is integrated with a prototype microchip PCR system consisting of a physical microchip PCR device and an automated temperature control mechanism. The research work explores solutions for the problem of PCR inhibition caused by gold nanoparticles as well as for the problem of non-specific PCR amplification in the integrated microchip system. It also explores the possibility of greatly reducing PCR cycling time to achieve the same result compared to the protocol for a regular PCR machine. The simplicity of the setup makes it easy to be integrated with other Lab-on-a-Chip functional modules to create customized solutions for target applications.

  11. Rapid and sensitive reporter gene assays for detection of antiandrogenic and estrogenic effects of environmental chemicals

    DEFF Research Database (Denmark)

    Vinggaard, Anne; Jørgensen, E.C.B.; Larsen, John Christian

    1999-01-01

    Reports on increasing incidences in developmental abnormalities of the human male reproductive tract and the recent identifications of environmental chemicals with antiandrogenic activity necessitate the screening of a larger number of compounds in order to get an overview of potential antiandrog......Reports on increasing incidences in developmental abnormalities of the human male reproductive tract and the recent identifications of environmental chemicals with antiandrogenic activity necessitate the screening of a larger number of compounds in order to get an overview of potential...... antiandrogenic chemicals present in our environment. Thus, there is a great need for an effective in vitro screening method for (anti)androgenic chemicals. We have developed a rapid, sensitive, and reproducible reporter gene assay for detection of antiandrogenic chemicals. Chinese Hamster Ovary cells were...... calcium phosphate transfection method, this method has the advantage of being more feasible, as the assay can be scaled down to the microtiter plate format. Furthermore, the transfection reagent is noncytotoxic, allowing its addition together with the test compounds thereby reducing the hands...

  12. Rapid detection of salmonella using SERS with silver nano-substrate

    Science.gov (United States)

    Sundaram, J.; Park, B.; Hinton, A., Jr.; Windham, W. R.; Yoon, S. C.; Lawrence, K. C.

    2011-06-01

    Surface Enhanced Raman Scattering (SERS) can detect the pathogen in rapid and accurate. In SERS weak Raman scattering signals are enhanced by many orders of magnitude. In this study silver metal with biopolymer was used. Silver encapsulated biopolymer polyvinyl alcohol nano-colloid was prepared and deposited on stainless steel plate. This was used as metal substrate for SERS. Salmonella typhimurium a common food pathogen was selected for this study. Salmonella typhimurium bacteria cells were prepared in different concentrations in cfu/mL. Small amount of these cells were loaded on the metal substrate individually, scanned and spectra were recorded using confocal Raman microscope. The cells were exposed to laser diode at 785 nm excitation and object 50x was used to focus the laser light on the sample. Raman shifts were obtained from 400 to 2400 cm-1. Multivariate data analysis was carried to predict the concentration of unknown sample using its spectra. Concentration prediction gave an R2 of 0.93 and standard error of prediction of 0.21. The results showed that it could be possible to find out the Salmonella cells present in a low concentration in food samples using SERS.

  13. A rapid detection method using flow cytometry to monitor the risk of Legionella in bath water.

    Science.gov (United States)

    Taguri, Toshitsugu; Oda, Yasunori; Sugiyama, Kanji; Nishikawa, Toru; Endo, Takuro; Izumiyama, Shinji; Yamazaki, Masayuki; Kura, Fumiaki

    2011-07-01

    Legionella species are the causative agents of human legionellosis, and bathing facilities have been identified as the sources of infection in several outbreaks in Japan. Researchers in Japan have recently reported evidence of significant associations between bacterial counts and the occurrence of Legionella in bathing facilities and in a hot tub model. A convenient and quantitative bacterial enumeration method is therefore required as an indicator of Legionella contamination or disinfection to replace existing methods such as time-consuming Legionella culture and expensive Legionella-DNA amplification. In this study, we developed a rapid detection method (RDM) to monitor the risk of Legionella using an automated microbial analyzing device based on flow cytometry techniques to measure the total number of bacteria in water samples within two minutes, by detecting typical patterns of scattered light and fluorescence. We first compared the results of our RDM with plate counting results for five filtered hot spring water samples spiked with three species of bacteria, including Legionella. Inactivation of these samples by chlorine was also assessed by the RDM, a live/dead bacterial fluorescence assay and plate counting. Using the RDM, the lower limit of quantitative bacterial counts in the spiked samples was determined as 3.0×10(3)(3.48log)counts mL(-1). We then used a laboratory model of a hot tub and found that the RDM could monitor the growth curve of naturally occurring heterotrophic bacteria with 1 and 2 days' delayed growth of amoeba and Legionella, respectively, and could also determine the killing curve of these bacteria by chlorination. Finally, samples with ≥3.48 or bacterial counts mL(-1) were tested using the RDM from 149 different hot tubs, and were found to be significantly associated with the positive or negative detection of Legionella with 95% sensitivity and 84% specificity. These findings indicated that the RDM can be used for Legionella control at

  14. Flash-sourcing or the rapid detection and characterisation of earthquake effects through clickstream data analysis

    Science.gov (United States)

    Bossu, R.; Mazet-Roux, G.; Roussel, F.; Frobert, L.

    2011-12-01

    Rapid characterisation of earthquake effects is essential for a timely and appropriate response in favour of victims and/or of eyewitnesses. In case of damaging earthquakes, any field observations that can fill the information gap characterising their immediate aftermath can contribute to more efficient rescue operations. This paper presents the last developments of a method called "flash-sourcing" addressing these issues. It relies on eyewitnesses, the first informed and the first concerned by an earthquake occurrence. More precisely, their use of the EMSC earthquake information website (www.emsc-csem.org) is analysed in real time to map the area where the earthquake was felt and identify, at least under certain circumstances zones of widespread damage. The approach is based on the natural and immediate convergence of eyewitnesses on the website who rush to the Internet to investigate cause of the shaking they just felt causing our traffic to increase The area where an earthquake was felt is mapped simply by locating Internet Protocol (IP) addresses during traffic surges. In addition, the presence of eyewitnesses browsing our website within minutes of an earthquake occurrence excludes the possibility of widespread damage in the localities they originate from: in case of severe damage, the networks would be down. The validity of the information derived from this clickstream analysis is confirmed by comparisons with EMS98 macroseismic map obtained from online questionnaires. The name of this approach, "flash-sourcing", is a combination of "flash-crowd" and "crowdsourcing" intending to reflect the rapidity of the data collation from the public. For computer scientists, a flash-crowd names a traffic surge on a website. Crowdsourcing means work being done by a "crowd" of people; It also characterises Internet and mobile applications collecting information from the public such as online macroseismic questionnaires. Like crowdsourcing techniques, flash-sourcing is a

  15. Digitally generated excitation and near-baseband quadrature detection of rapid scan EPR signals.

    Science.gov (United States)

    Tseitlin, Mark; Yu, Zhelin; Quine, Richard W; Rinard, George A; Eaton, Sandra S; Eaton, Gareth R

    2014-12-01

    The use of multiple synchronized outputs from an arbitrary waveform generator (AWG) provides the opportunity to perform EPR experiments differently than by conventional EPR. We report a method for reconstructing the quadrature EPR spectrum from periodic signals that are generated with sinusoidal magnetic field modulation such as continuous wave (CW), multiharmonic, or rapid scan experiments. The signal is down-converted to an intermediate frequency (IF) that is less than the field scan or field modulation frequency and then digitized in a single channel. This method permits use of a high-pass analog filter before digitization to remove the strong non-EPR signal at the IF, that might otherwise overwhelm the digitizer. The IF is the difference between two synchronized X-band outputs from a Tektronix AWG 70002A, one of which is for excitation and the other is the reference for down-conversion. To permit signal averaging, timing was selected to give an exact integer number of full cycles for each frequency. In the experiments reported here the IF was 5kHz and the scan frequency was 40kHz. To produce sinusoidal rapid scans with a scan frequency eight times IF, a third synchronized output generated a square wave that was converted to a sine wave. The timing of the data acquisition with a Bruker SpecJet II was synchronized by an external clock signal from the AWG. The baseband quadrature signal in the frequency domain was reconstructed. This approach has the advantages that (i) the non-EPR response at the carrier frequency is eliminated, (ii) both real and imaginary EPR signals are reconstructed from a single physical channel to produce an ideal quadrature signal, and (iii) signal bandwidth does not increase relative to baseband detection. Spectra were obtained by deconvolution of the reconstructed signals for solid BDPA (1,3-bisdiphenylene-2-phenylallyl) in air, 0.2mM trityl OX63 in water, 15 N perdeuterated tempone, and a nitroxide with a 0.5G partially-resolved proton

  16. Preliminary Results of a Multicentre Study of the UBC Rapid Test for Detection of Urinary Bladder Cancer.

    Science.gov (United States)

    Ecke, Thorsten H; Arndt, Christian; Stephan, Carsten; Hallmann, Steffen; Lux, Oliver; Otto, Thomas; Ruttloff, Jürgen; Gerullis, Holger

    2015-05-01

    UBC Rapid is a test detecting fragments of cytokeratins 8 and 18 in urine. These are cytokeratins frequently overexpressed in tumor cells. We present the first results of a multi-centre study using UBC Rapid in patients with bladder cancer and healthy controls. Clinical urine samples from 92 patients with tumors of the urinary bladder (45 low-grade and 47 high-grade tumors) and from 33 healthy controls were used. Urine samples were analyzed by the UBC Rapid point-of-care (POC) system and evaluated both visually and quantitatively using a concile Omega 100 POC reader. For visual evaluation, different thresholds of band intensity for considering a test as positive were applied. Sensitivities and specificities were calculated by contingency analyses. We found that pathological concentrations by UBC Rapid are detectable in urine of patients with bladder cancer. The calculated diagnostic sensitivity of UBC Rapid in urine was 68.1% for high-grade, but only 46.2% for low-grade tumors. The specificity was 90.9%. The area under the curve (AUC) after receiver-operated curve (ROC) analysis was 0.733. Pathological levels of UBC Rapid in urine are higher in patients with bladder cancer in comparison to the control group (pbladder cancer and controls. Further studies with a greater number of patients will show how valuable these results are. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. Direct sequencing for rapid detection of multidrug resistant Mycobacterium tuberculosis strains in Morocco

    Directory of Open Access Journals (Sweden)

    Zakham F

    2013-11-01

    new case. The most recorded mutation in the rpoB gene was the substitution TCG > TTG at codon 531 (Ser531 Leu, accounting for 46.15%. Significantly, the only mutation found in the katG gene was at codon 315 (AGC to ACC with a Ser315Thr amino acid change. Only one sample harbored mutation in the inhA promoter region and was a point mutation at the -15p position (C > T.Conclusion: The polymerase chain reaction sequencing approach is an accurate and rapid method for detection of drug-resistant TB in clinical specimens, and could be of great interest in the management of TB in critical cases to adjust the treatment regimen and limit the emergence of MDR and XDR strains.Keywords: Morocco, Mycobacterium tuberculosis, multidrug resistance, rpoB, katG, inhA promoter

  18. Retinoic acid-treated pluripotent stem cells undergoing neurogenesis present increased aneuploidy and micronuclei formation.

    Directory of Open Access Journals (Sweden)

    Rafaela C Sartore

    Full Text Available The existence of loss and gain of chromosomes, known as aneuploidy, has been previously described within the central nervous system. During development, at least one-third of neural progenitor cells (NPCs are aneuploid. Notably, aneuploid NPCs may survive and functionally integrate into the mature neural circuitry. Given the unanswered significance of this phenomenon, we tested the hypothesis that neural differentiation induced by all-trans retinoic acid (RA in pluripotent stem cells is accompanied by increased levels of aneuploidy, as previously described for cortical NPCs in vivo. In this work we used embryonal carcinoma (EC cells, embryonic stem (ES cells and induced pluripotent stem (iPS cells undergoing differentiation into NPCs. Ploidy analysis revealed a 2-fold increase in the rate of aneuploidy, with the prevalence of chromosome loss in RA primed stem cells when compared to naïve cells. In an attempt to understand the basis of neurogenic aneuploidy, micronuclei formation and survivin expression was assessed in pluripotent stem cells exposed to RA. RA increased micronuclei occurrence by almost 2-fold while decreased survivin expression by 50%, indicating possible mechanisms by which stem cells lose their chromosomes during neural differentiation. DNA fragmentation analysis demonstrated no increase in apoptosis on embryoid bodies treated with RA, indicating that cell death is not the mandatory fate of aneuploid NPCs derived from pluripotent cells. In order to exclude that the increase in aneuploidy was a spurious consequence of RA treatment, not related to neurogenesis, mouse embryonic fibroblasts were treated with RA under the same conditions and no alterations in chromosome gain or loss were observed. These findings indicate a correlation amongst neural differentiation, aneuploidy, micronuclei formation and survivin downregulation in pluripotent stem cells exposed to RA, providing evidence that somatically generated chromosomal

  19. Multidrug-resistant tuberculosis: Rapid molecular detection with MTBDRplus® assay in clinical samples

    Directory of Open Access Journals (Sweden)

    Rita Macedo

    2009-05-01

    Full Text Available Nowadays, the greatest concern of tuberculosis control programmes is the appearance of multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Rapid determination of drug resistance in clinical samples, with Mycobacterium tuberculosis complex (MTC, is the prerequisite for initiating effective chemotherapy, ensuring successful treatment of the patient and preventing further spread of drugresistant isolates.The aim of our study was to determine the sensitivity of the new MTBDRplus® assay in comparison to culture, identification and classic DST, directly from smear-positive clinical specimens.A total of 68 smear-positive sputum specimens were processed by both the classical mycobacteriological methods and the molecular assay, MTBDRplus®.MTBDRplus® assay allowed an accurate identification of MTC species by detection of the specific band in all samples, from which we also isolated and identified MTC strains by culture methods. In the samples from which we isolated susceptible strains (63.2%, wild type patterns were found using MTBDRplus® assay. The samples from which we isolated resistant strains (36.8% showed specific mutations associated with the correspondent resistant phenotype.Our study indicated that this assay allows rapid detection of resistance, always in agreement with classic methods. Resumo: Uma das principais problematicas no controlo da tuberculose e o aparecimento de casos de tuberculose multirresistente (TB-MR e tuberculose extensivamente resistente (TB-XDR. A deteccao precoce da resistencia a farmacos, directamente a partir de amostras respiratorias, e essencial para que se assegure o tratamento atempado, adequado e eficaz da tuberculose, bem como para prevenir a disseminacao destes casos de especial gravidade.O nosso objectivo foi avaliar a sensibilidade e comparar os resultados obtidos com um metodo de genetica molecular disponivel comercialmente – MTBDRplus® – e o isolamento

  20. Detection - NIR, Luminescence and Other Rapid Methods-Pit Falls and Opportunities

    International Nuclear Information System (INIS)

    Trudil, D.

    2007-01-01

    The proliferation of rapid, on-site biological detectors over the last 15 years has caused confusion within the user community and in some cases a diversion of resources. There remains no panacea; all systems have issues and no system provides the total answer. In 1995, with much enthusiasm, members of a US National Lab presented a mock-up of a hand held Biological Detector. This system, compared to a 'Tricorder' from science fiction, was envisioned to be available within 5 years. It would be able to scan a substance and within minutes provide an answer. Clearly that remains the goal of detector programs, but unfortunately science is the limiting factor. There are technologies, such as fluorescence and luminescence that provide minimally acceptable results when utilizing a defined bio-air sample. Many of these systems are also expensive, limiting their utility. But when these FLAPS, BARTS, BAWS, BioLerts and other are challenged with dirty or non-aerosol samples, they begin to have problems. With the relatively high cost of test kits, the significant number of potential hoax or negative samples; the issue of usefulness versus performance versus cost has further complicated the environment. Consequently, the utilization of cost effective, simple screening systems is needed for on site use. The current trend is to determine cost effective approaches to triage samples prior to in depth analysis. Therefore, a pH test, protein strip and Bioluminescence screen can indicate threat/non-threat prior to in-depth analysis. Experiences from 2001/2002 indicate over 90% of the first responder events are hoax related. Adapting the paradigm, screening out negatives become a priority. Near Infra Red (NIR) has been utilized in chemical agent detection and has been recently utilized to identify powders, salts, sugars and numerous potential hoax samples. The system is a non-destructive screening method that can be integrated with other technologies as a front end triage system

  1. Rapid detection of undesired cosmetic ingredients by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Ouyang, Jie; An, Dongli; Chen, Tengteng; Lin, Zhiwei

    2017-10-01

    In recent years, cosmetic industry profits soared due to the widespread use of cosmetics, which resulted in illicit manufacturers and products of poor quality. Therefore, the rapid and accurate detection of the composition of cosmetics has become crucial. At present, numerous methods, such as gas chromatography and liquid chromatography-mass spectrometry, were available for the analysis of cosmetic ingredients. However, these methods present several limitations, such as failure to perform comprehensive and rapid analysis of the samples. Compared with other techniques, matrix-assisted laser desorption ionization time-of-flight mass spectrometry offered the advantages of wide detection range, fast speed and high accuracy. In this article, we briefly summarized how to select a suitable matrix and adjust the appropriate laser energy. We also discussed the rapid identification of undesired ingredients, focusing on antibiotics and hormones in cosmetics.

  2. MATLAB Algorithms for Rapid Detection and Embedding of Palindrome and Emordnilap Electronic Watermarks in Simulated Chemical and Biological Image Data

    National Research Council Canada - National Science Library

    Robbins, Ronny C

    2004-01-01

    .... This is similar to words such as STOP which when flipped left right gives the new word POTS. Emordnilap is palindrome spelled backwards. This paper explores the use of MATLAB algorithms in the rapid detection and embedding of palindrome and emordnilap electronic watermarks in simulated chemical and biological Image Data.

  3. A novel gold nanoparticle-DNA aptamer-based plasmonic chip for rapid and sensitive detection of bacterial pathogens

    DEFF Research Database (Denmark)

    Sun, Yi; Phuoc Long, Truong; Wolff, Anders

    2016-01-01

    Gold nanoparticles (AuNPs)-based biosensors are emerging technologies for rapid detection of pathogens. However, it is very challenging to develop chip-based AuNP-biosensors for whole cells. This paper describes a novel AuNPs-DNA aptamer-based plasmonic assay which allows DNA aptamers...

  4. Evaluation of OXA-48 K-Se T: an immunochromatographic assay for rapid detection of OXA-48-producing Enterobacteriaceae.

    Science.gov (United States)

    Fernández, Javier; Fleites, Ana; Rodcio, María Rosario; Vazquez, Fernando

    2016-05-01

    The OXA-48 K-Se T, a new immunochromatographic assay for rapid detection of OXA-48-producing Enterobacteriaceae, has been evaluated in a Spanish Hospital during a 3-month period. A collection of 100 Enterobacteriaceae including 79 isolates producing OXA-48 has been tested. Sensitivity and specificity of 100% were obtained. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Direct PCR - A rapid method for multiplexed detection of different serotypes of Salmonella in enriched pork meat samples

    DEFF Research Database (Denmark)

    Chin, Wai Hoe; Sun, Yi; Høgberg, Jonas

    2017-01-01

    , in this study, we developed a multiplex Direct PCR method for rapid detection of different Salmonella serotypes directly from pork meat samples without any DNA purification steps. An inhibitor-resistant Phusion Pfu DNA polymerase was used to overcome PCR inhibition. Four pairs of primers including a pair...

  6. Affinity reagent technology development and application to rapid immunochromatographic pathogen detection

    Science.gov (United States)

    Sooter, Letha J.; Stratis-Cullum, Dimitra N.; Zhang, Yanting; Daugherty, Patrick S.; Soh, H. Tom; Pellegrino, Paul; Stagliano, Nancy

    2007-09-01

    Immunochromatography is a rapid, reliable, and cost effective method of detecting biowarfare agents. The format is similar to that of an over-the-counter pregnancy test. A sample is applied to one end of a cassette and then a control line, and possibly a sample line, are visualized at the other end of the cassette. The test is based upon a sandwich assay. For the control, a line of Protein A is immobilized on the membrane. Gold nanoparticle bound IgG flows through the membrane and binds the Protein A, creating a visible line on the membrane. For the sample, one epitope is immobilized on the membrane and another epitope is attached to gold nanoparticles. The sample binds gold bound epitope, travels through the membrane, and binds membrane bound epitope. The two epitopes are not cross-reactive, therefore a sample line is only visible if the sample is present. In order to efficiently screen for binders to a sample target, a novel, Continuous Magnetic Activated Cell Sorter (CMACS) has been developed on a disposable, microfluidic platform. The CMACS chip quickly sorts E. coli peptide libraries for target binders with high affinity. Peptide libraries, are composed of approximately ten million bacteria, each displaying a different peptide on their surface. The target of interest is conjugated to a micrometer sized magnetic particle. After the library and the target are incubated together to allow binding, the mixture is applied to the CMACS chip. In the presence of patterned nickel and an external magnet, separation occurs of the bead-bound bacteria from the bulk material. The bead fraction is added to bacterial growth media where any attached E. coli grow and divide. These cells are cloned, sequenced, and the peptides are assayed for target binding affinity. As a proof-of-principle, assays were developed for human C-reactive protein. More defense relevant targets are currently being pursued.

  7. Rapid Land Cover Map Updates Using Change Detection and Robust Random Forest Classifiers

    Directory of Open Access Journals (Sweden)

    Konrad J. Wessels

    2016-10-01

    Full Text Available The paper evaluated the Landsat Automated Land Cover Update Mapping (LALCUM system designed to rapidly update a land cover map to a desired nominal year using a pre-existing reference land cover map. The system uses the Iteratively Reweighted Multivariate Alteration Detection (IRMAD to identify areas of change and no change. The system then automatically generates large amounts of training samples (n > 1 million in the no-change areas as input to an optimized Random Forest classifier. Experiments were conducted in the KwaZulu-Natal Province of South Africa using a reference land cover map from 2008, a change mask between 2008 and 2011 and Landsat ETM+ data for 2011. The entire system took 9.5 h to process. We expected that the use of the change mask would improve classification accuracy by reducing the number of mislabeled training data caused by land cover change between 2008 and 2011. However, this was not the case due to exceptional robustness of Random Forest classifier to mislabeled training samples. The system achieved an overall accuracy of 65%–67% using 22 detailed classes and 72%–74% using 12 aggregated national classes. “Water”, “Plantations”, “Plantations—clearfelled”, “Orchards—trees”, “Sugarcane”, “Built-up/dense settlement”, “Cultivation—Irrigated” and “Forest (indigenous” had user’s accuracies above 70%. Other detailed classes (e.g., “Low density settlements”, “Mines and Quarries”, and “Cultivation, subsistence, drylands” which are required for operational, provincial-scale land use planning and are usually mapped using manual image interpretation, could not be mapped using Landsat spectral data alone. However, the system was able to map the 12 national classes, at a sufficiently high level of accuracy for national scale land cover monitoring. This update approach and the highly automated, scalable LALCUM system can improve the efficiency and update rate of regional land

  8. Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR.

    Directory of Open Access Journals (Sweden)

    Kirill V Sergueev

    Full Text Available BACKGROUND: Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics. METHODOLOGY/PRINCIPAL FINDINGS: The objective of this work was to develop an alternative to conventional phage lysis tests--a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages phiA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. phiA1122-specific qPCR enabled the detection of an initial bacterial concentration of 10(3 CFU/ml (equivalent to as few as one Y. pestis cell per 1-microl sample in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, phiA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR. CONCLUSIONS/SIGNIFICANCE: Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria.

  9. DNA comet assay as a rapid detection method of irradiated bovine meat by electron beam

    International Nuclear Information System (INIS)

    Marin-Huachaca, Nelida Simona; Villavicencio, Anna Lucia C.H.

    2001-01-01

    Full text: Introduction: The presence in food of pathogenic microorganisms, such as Salmonella species, Escherichia coli 0157:H7, Listeria Monocytogenes or Yersinia enterolitica, is a problem of growing concern to public health authorities all over the world. Thus, irradiation of certain prepackaged meat products such as ground beef, minced meat, and hamburgers may help in controlling meatborne pathogens and parasites. Pathogenic microorganisms and parasites in meat products, which are commonly consumed raw, are of particular importance, Up to now, only electron-beam accelerators and gamma-ray cells have been used for commercial applications. At the international conference on 'The Acceptance, Control of, and Trade in Irradiated Food', it was recommended that governments should encourage research into detection methods (Anon, 1989), Already five international standards are available to food control agencies. A number of physical, chemical, and biological techniques of detection of irradiated foods have been discussed in the literature. A rapid and inexpensive screening test employing DNA Comet Assay to identify radiation treatment of food has been described by Cerda et al. (1997). This method is restricted to foods that have not been subjected to heat or other treatments, which also induce DNA fragmentation. Advantages are its simplicity, low cost and speed of measurement. This method was proposed to the European Committee for Standardization (CEN) as a screening protocol (presumptive) and not as a proof (definitive). The DNA comet assay have been yielded good results with chicken, pork, fish meat, exotic meat, hamburgers, fruits and cereals. In this work we studied a DNA fragmentation of bovine meat irradiated by electron beam. Experimental: Bovine meat was purchased in local shops in Sao Paulo. Irradiation was performed with electron beam of accelerator facility of Radiation Dynamics Inc., USA (E=1,5 MeV, l=25 mA). The irradiation doses were 3,5; 4,5, 5,5, and 7

  10. Rapid capacitive detection of femtomolar levels of bisphenol A using an aptamer-modified disposable microelectrode array

    International Nuclear Information System (INIS)

    Cui, Haochen; Wu, Jayne; Eda, Shigetoshi; Chen, Jiangang; Chen, Wei; Zheng, Lei

    2015-01-01

    A label-free and single-step method is reported for rapid and highly sensitive detection of bisphenol A (BPA) in aqueous samples. It utilizes an aptamer acting as a probe molecule immobilized on a commercially available array of interdigitated aluminum microelectrodes. BPA was quantified by measuring the interfacial capacitance change rate caused by the specific binding between bisphenol A and the immobilized aptamer. The AC signal also induces an AC electrokinetic effect to generate microfluidic motion for enhanced binding. The capacitive aptasensor achieves a limit of detection as low as 10 fM(2.8 fg ⋅ mL −1 ) with a 20 s response time. The method is inexpensive, highly sensitive, rapid and therefore provides a promising technology for on-site detection of BPA in food and water samples. (author)

  11. Rapid and sensitive detection of malachite green in aquaculture water by electrochemical preconcentration and surface-enhanced Raman scattering.

    Science.gov (United States)

    Xu, Kai-Xuan; Guo, Mei-Hong; Huang, Yu-Ping; Li, Xiao-Dong; Sun, Jian-Jun

    2018-04-01

    A highly sensitive and rapid method of in-situ surface-enhanced Raman spectroscopy (SERS) combining with electrochemical preconcentration (EP) in detecting malachite green (MG) in aquaculture water was established. Ag nanoparticles (AgNPs) were synthesized and spread onto the surface of gold electrodes after centrifuging to produce SERS-active substrates. After optimizing the pH values, preconcentration potentials and times, in-situ EP-SERS detection was carried out. A sensitive and rapid analysis of the low-concentration MG was accomplished within 200s and the limit of detection was 2.4 × 10 -16 M. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Loop-Mediated Isothermal Amplification Assay Targeting the MOMP Gene for Rapid Detection of Chlamydia psittaci Abortus Strain

    Directory of Open Access Journals (Sweden)

    Guo-Zhen Lin, Fu-Ying Zheng, Ji-Zhang Zhou, Guang-Hua Wang, Xiao-An Cao, Xiao-Wei Gong and Chang-Qing Qiu*

    2012-05-01

    Full Text Available For rapid detection of the Chlamydia psittaci abortus strain, a loop-mediated isothermal amplification (LAMP assay was developed and evaluated in this study. The primers for the LAMP assay were designed on the basis of the main outer membrane protein (MOMP gene sequence of C. psittaci. Analysis showed that the assay could detect the abortus strain of C. psittaci with adequate specificity. The sensitivity of the test was the same as that of the nested-conventional PCR and higher than that of chick embryo isolation. Testing of 153 samples indicated that the LAMP assay could detect the genome of the C. psittaci abortus strain effectively in clinical samples. This assay is a useful tool for rapid diagnosis of C. psittaci infection in sheep, swine and cattle.

  13. A simple, rapid, cost-effective and sensitive method for detection of Salmonella in environmental and pecan samples.

    Science.gov (United States)

    Dobhal, S; Zhang, G; Rohla, C; Smith, M W; Ma, L M

    2014-10-01

    PCR is widely used in the routine detection of foodborne human pathogens; however, challenges remain in overcoming PCR inhibitors present in some sample matrices. The objective of this study was to develop a simple, sensitive, cost-effective and rapid method for processing large numbers of environmental and pecan samples for Salmonella detection. This study was also aimed at validation of a new protocol for the detection of Salmonella from in-shell pecans. Different DNA template preparation methods, including direct boiling, prespin, multiple washing and commercial DNA extraction kits, were evaluated with pure cultures of Salmonella Typhimurium and with enriched soil, cattle feces and in-shell pecan each spiked individually with Salmonella Typhimurium. PCR detection of Salmonella was conducted using invA and 16S rRNA gene (internal amplification control) specific primers. The effect of amplification facilitators, including bovine serum albumin (BSA), polyvinylpyrrolidone (PVP), polyethylene glycol (PEG) and gelatin on PCR sensitivity, was also evaluated. Conducting a prespin of sample matrices in combination with the addition of 0·4% (w/v) BSA and 1% (w/v) PVP in PCR mix was the simplest, most rapid, cost-effective and sensitive method for PCR detection of Salmonella, with up to 40 CFU Salmonella per reaction detectable in the presence of over 10(9 ) CFU ml(-1) of background micro-organisms from enriched feces soil or pecan samples. The developed method is rapid, cost-effective and sensitive for detection of Salmonella from different matrices. This study provides a method with broad applicability for PCR detection of Salmonella in complex sample matrices. This method has a potential for its application in different research arenas and diagnostic laboratories. © 2014 The Society for Applied Microbiology.

  14. [Rapid methods for the genus Salmonella bacteria detection in food and raw materials].

    Science.gov (United States)

    Sokolov, D M; Sokolov, M S

    2013-01-01

    The article considers sanitary and epidemiological aspects and the impact of Salmonella food poisoning in Russia and abroad. The main characteristics of the agent (Salmonella enterica subsp. Enteritidis) are summarized. The main sources of human Salmonella infection are products of poultry and livestock (poultry, eggs, dairy products, meat products, etc.). Standard methods of identifying the causative agent, rapid (alternative) methods of analysis of Salmonella using differential diagnostic medium (MSRV, Salmosyst, XLT4-agar, agar-Rambach et al.), rapid tests Singlepath-Salmonella and PCR (food proof Salmonella) in real time were stated. Rapid tests provide is a substantial (at 24-48 h) reducing the time to identify Salmonella.

  15. Rapid and sensitive detection of synthetic cannabinoids AMB-FUBINACA and α-PVP using surface enhanced Raman scattering (SERS)

    Science.gov (United States)

    Islam, Syed K.; Cheng, Yin Pak; Birke, Ronald L.; Green, Omar; Kubic, Thomas; Lombardi, John R.

    2018-04-01

    The application of surface enhanced Raman scattering (SERS) has been reported as a fast and sensitive analytical method in the trace detection of the two most commonly known synthetic cannabinoids AMB-FUBINACA and alpha-pyrrolidinovalerophenone (α-PVP). FUBINACA and α-PVP are two of the most dangerous synthetic cannabinoids which have been reported to cause numerous deaths in the United States. While instruments such as GC-MS, LC-MS have been traditionally recognized as analytical tools for the detection of these synthetic drugs, SERS has been recently gaining ground in the analysis of these synthetic drugs due to its sensitivity in trace analysis and its effectiveness as a rapid method of detection. This present study shows the limit of detection of a concentration as low as picomolar for AMB-FUBINACA while for α-PVP, the limit of detection is in nanomolar concentration using SERS.

  16. Electromechanical transducer for rapid detection, discrimination and quantification of lung cancer cells

    International Nuclear Information System (INIS)

    Ali, Waqas; Raza, Muhammad Usman; Iqbal, Samir M; Moghaddam, Fatemeh Jalvhei; Bui, Loan; Sayles, Bailey; Kim, Young-Tae

    2016-01-01

    Tumor cells are malignant derivatives of normal cells. There are characteristic differences in the mechanophysical properties of normal and tumor cells, and these differences stem from the changes that occur in the cell cytoskeleton during cancer progression. There is a need for viable whole blood processing techniques for rapid and reliable tumor cell detection that do not require tagging. Micropore biosensors have previously been used to differentiate tumor cells from normal cells and we have used a micropore-based electromechanical transducer to differentiate one type of tumor cells from the other types. This device generated electrical signals that were characteristic of the cell properties. Three non-small cell lung cancer (NSCLC) cell lines, NCl-H1155, A549 and NCI-H460, were successfully differentiated. NCI-H1155, due to their comparatively smaller size, were found to be the quickest in translocating through the micropore. Their translocation through a 15 μm micropore caused electrical pulses with an average translocation time of 101 ± 9.4 μs and an average peak amplitude of 3.71 ± 0.42 μA, whereas translocation of A549 and NCI-H460 caused pulses with average translocation times of 126 ± 17.9 μs and 148 ± 13.7 μs and average peak amplitudes of 4.58 ± 0.61 μA and 5.27 ± 0.66 μA, respectively. This transformation of the differences in cell properties into differences in the electrical profiles (i.e. the differences in peak amplitudes and translocation times) with this electromechanical transducer is a quantitative way to differentiate these lung cancer cells. The solid-state micropore device processed whole biological samples without any pre-processing requirements and is thus ideal for point-of-care applications. (paper)

  17. Rapid detection of methicillin-resistant Staphylococcus aureus directly from clinical samples: methods, effectiveness and cost considerations

    Directory of Open Access Journals (Sweden)

    Stürenburg, Enno

    2009-07-01

    Full Text Available Methicillin-resistant Staphylococcus aureus (MRSA isolates is a serious public health problem whose ever-increasing rate is commensurate with the pressure it is exerting on the healthcare system. At present, more than 20% of clinical S. aureus isolates in German hospitals are methicillin resistant. Strategies from low-prevalence countries show that this development is not necessarily inevitable. In the Scandinavian countries and the Netherlands, thanks to a rigorous prevention programme, MRSA prevalence has been kept at an acceptably low level (<1–3%. Central to these ‘search and destroy’ control strategies is an admission screening using several MRSA swabs taken from mucocutaneous colonisation sites of high-risk patients (‘MRSA surveillance’. It has also been reported that the speed with which MRSA carriage is detected has an important role to play, as it is a key component of any effective strategy to prevent the pathogen from spreading. Since MRSA culturing involves a 2–3 day delay before the final results are available, rapid detection techniques (commonly referred to as ‘MRSA rapid tests’ using PCR methods and, most recently, rapid culturing methods have been developed. The implementation of rapid tests reduces the time of detection of MRSA carriers from 48–72 to 2–5 h. Clinical evaluation data have shown that MRSA can thus be detected with very high sensitivity. Specificity however is sometimes impaired due to false-positive PCR signals occurring in mixed flora specimens. In order to rule out any false-positive PCR results, a culture screen must always be carried out simultaneously.The data provide preliminary evidence that a PCR assay can reduce nosocomial MRSA transmission in high-risk patients or high-risk areas, whereas an approach that screens all patients admitted to the hospital is probably not effective. Information concerning the cost-effectiveness of rapid MRSA tests is still sparse and thus the issue remains

  18. Rapid Electrochemical Detection and Identification of Microbiological and Chemical Contaminants for Manned Spaceflight Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A great deal of effort has gone into the development of point-of-use methods to meet the challenge of rapid bacterial identification for both environmental...

  19. The Most Probable Limit of Detection (MPL) for rapid microbiological methods

    NARCIS (Netherlands)

    Verdonk, G.P.H.T.; Willemse, M.J.; Hoefs, S.G.G.; Cremers, G.; Heuvel, E.R. van den

    Classical microbiological methods have nowadays unacceptably long cycle times. Rapid methods, available on the market for decades, are already applied within the clinical and food industry, but the implementation in pharmaceutical industry is hampered by for instance stringent regulations on

  20. The most probable limit of detection (MPL) for rapid microbiological methods

    NARCIS (Netherlands)

    Verdonk, G.P.H.T.; Willemse, M.J.; Hoefs, S.G.G.; Cremers, G.; Heuvel, van den E.R.

    2010-01-01

    Classical microbiological methods have nowadays unacceptably long cycle times. Rapid methods, available on the market for decades, are already applied within the clinical and food industry, but the implementation in pharmaceutical industry is hampered by for instance stringent regulations on

  1. Rapid field detection of moisture content for base and subgrade : technical report.

    Science.gov (United States)

    2015-03-01

    Mixing and compacting soil and flexible base pavement materials at the proper moisture content is critical : for obtaining adequate compaction and meeting construction specification requirements. This project sought : to evaluate rapid non-nuclear te...

  2. ATR-FTIR for rapid detection and quantification of counterfeit medicines

    OpenAIRE

    Ogwu, John; Lawson, Graham; Tanna, Sangeeta

    2015-01-01

    From therapeutic to lifestyle medicines, the counterfeiting of medicines has been on the rise in recent times [1]. Estimates indicate that about 10% of medicines worldwide are counterfeits with much higher figures in developing countries [2]. Currently, the rapid screening of medicines is a challenge leaving many patients at risk [1]. This study considered the potential use of Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) for rapid quantitative analysis of ta...

  3. Rapid detection of nicotine from breath using desorption ionisation on porous silicon.

    Science.gov (United States)

    Guinan, T M; Abdelmaksoud, H; Voelcker, N H

    2017-05-04

    Desorption ionisation on porous silicon (DIOS) was used for the detection of nicotine from exhaled breath. This result represents proof-of-principle of the ability of DIOS to detect small molecular analytes in breath including biomarkers and illicit drugs.

  4. Development of a loop-mediated Isothermal amplification assay for sensitive and rapid detection of Vibrio parahaemolyticus

    Directory of Open Access Journals (Sweden)

    Kawahara Ryuji

    2008-09-01

    Full Text Available Abstract Background Vibrio parahaemolyticus is a marine seafood-borne pathogen causing gastrointestinal disorders in humans. Thermostable direct hemolysin (TDH and TDH-related hemolysin (TRH are known as major virulence determinants of V. parahaemolyticus. Most V. parahaemolyticus isolates from the environment do not produce TDH or TRH. Total V. parahaemolyticus has been used as an indicator for control of seafood contamination toward prevention of infection. Detection of total V. parahaemolyticus using conventional culture- and biochemical-based assays is time-consuming and laborious, requiring more than three days. Thus, we developed a novel and highly specific loop-mediated isothermal amplification (LAMP assay for the sensitive and rapid detection of Vibrio parahaemolyticus. Results The assay provided markedly more sensitive and rapid detection of V. parahaemolyticus strains than conventional biochemical and PCR assays. The assay correctly identified 143 V. parahaemolyticus strains, but did not detect 33 non-parahaemolyticus Vibrio and 56 non-Vibrio strains. Sensitivity of the LAMP assay for direct detection of V. parahaemolyticus in pure cultures and in spiked shrimp samples was 5.3 × 102 CFU per ml/g (2.0 CFU per reaction. The sensitivity of the LAMP assay was 10-fold more sensitive than that of the conventional PCR assay. The LAMP assay was markedly faster, requiring for amplification 13–22 min in a single colony on TCBS agar from each of 143 V. parahaemolyticus strains and less than 35 min in spiked shrimp samples. The LAMP assay for detection of V. parahaemolyticus required less than 40 min in a single colony on thiosulfate citrate bile salt sucrose (TCBS agar and 60 min in spiked shrimp samples from the beginning of DNA extraction to final determination. Conclusion The LAMP assay is a sensitive, rapid and simple tool for the detection of V. parahaemolyticus and will facilitate the surveillance for control of contamination of V

  5. A Rapid Detection Method of Brucella with Quantum Dots and Magnetic Beads Conjugated with Different Polyclonal Antibodies

    Science.gov (United States)

    Song, Dandan; Qu, Xiaofeng; Liu, Yushen; Li, Li; Yin, Dehui; Li, Juan; Xu, Kun; Xie, Renguo; Zhai, Yue; Zhang, Huiwen; Bao, Hao; Zhao, Chao; Wang, Juan; Song, Xiuling; Song, Wenzhi

    2017-03-01

    Brucella spp. are facultative intracellular bacteria that cause zoonotic disease of brucellosis worldwide. Traditional methods for detection of Brucella spp. take 48-72 h that does not meet the need of rapid detection. Herein, a new rapid detection method of Brucella was developed based on polyclonal antibody-conjugating quantum dots and antibody-modified magnetic beads. First, polyclonal antibodies IgG and IgY were prepared and then the antibody conjugated with quantum dots (QDs) and immunomagnetic beads (IMB), respectively, which were activated by N-(3-dimethylaminopropyl)- N'-ethylcar-bodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) to form probes. We used the IMB probe to separate the Brucella and labeled by the QD probe, and then detected the fluorescence intensity with a fluorescence spectrometer. The detection method takes 105 min with a limit of detection of 103 CFU/mL and ranges from 10 to 105 CFU/mL ( R 2 = 0.9983), and it can be well used in real samples.

  6. Chemically induced aneuploidy in mammalian cells: mechanisms and biological significance in cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oshimura, M.; Barrett, J.C.

    1986-01-01

    A literature review with over 200 references examines the growing body of evidence from human and animal cancer cytogenetics that aneuploidy is an important chromosome change in carcinogenesis. Evidence from in vitro cell transformation studies supports the idea that aneuploidy has a direct effect on the conversion of a normal cell to a preneoplastic or malignant cell. Induction of an aneuploid state in a preneoplastic or neoplastic cell could have any of the following four biological effects: a change in gene dosage, a change in gene balance, expression of a recessive mutation, or a change in genetic instability (which could secondarily lead to neoplasia). There are a number of possible mechanisms by which chemicals might induce aneuploidy, including effects on microtubules, damage to essential elements for chromosome function reduction in chromosome condensation or pairing, induction of chromosome interchanges, unresolved recombination structures, increased chromosome stickiness, damage to centrioles, impairment of chromosome alignment ionic alterations during mitosis, damage to the nuclear membrane, and a physical disruption of chromosome segregation. Therefore, a number of different targets exist for chemically induced aneuploidy.

  7. Risk and uncertainty: shifting decision making for aneuploidy screening to the first trimester of pregnancy.

    Science.gov (United States)

    Farrell, Ruth M; Dolgin, Natasha; Flocke, Susan A; Winbush, Victoria; Mercer, Mary Beth; Simon, Christian

    2011-05-01

    The clinical introduction of first trimester aneuploidy screening uniquely challenges the informed consent process for both patients and providers. This study investigated key aspects of the decision-making process for this new form of prenatal genetic screening. Qualitative data were collected by nine focus groups that comprised women of different reproductive histories (N = 46 participants). Discussions explored themes regarding patient decision making for first trimester aneuploidy screening. Sessions were audio recorded, transcribed, coded, and analyzed to identify themes. Multiple levels of uncertainty characterize the decision-making process for first trimester aneuploidy screening. Baseline levels of uncertainty existed for participants in the context of an early pregnancy and the debate about the benefit of fetal genetic testing in general. Additional sources of uncertainty during the decision-making process were generated from weighing the advantages and disadvantages of initiating screening in the first trimester as opposed to waiting until the second. Questions of the quality and quantity of information and the perceived benefit of earlier access to fetal information were leading themes. Barriers to access prenatal care in early pregnancy presented participants with additional concerns about the ability to make informed decisions about prenatal genetic testing. The option of the first trimester aneuploidy screening test in early pregnancy generates decision-making uncertainty that can interfere with the informed consent process. Mechanisms must be developed to facilitate informed decision making for this new form of prenatal genetic screening.

  8. Causes and consequences of maternal age-related aneuploidy in oocytes: a review

    Czech Academy of Sciences Publication Activity Database

    Danylevska, Anna; Šebestová, Jaroslava

    2013-01-01

    Roč. 58, č. 2 (2013), s. 65-72 ISSN 0375-8427 R&D Projects: GA ČR GA523/09/0743; GA ČR GAP502/12/2201 Institutional support: RVO:67985904 Keywords : aneuploidy * oocyte * maternal age Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.756, year: 2013

  9. Rapid, highly sensitive and highly specific gene detection by combining enzymatic amplification and DNA chip detection simultaneously

    Directory of Open Access Journals (Sweden)

    Koji Hashimoto

    2016-05-01

    Full Text Available We have developed a novel gene detection method based on the loop-mediated isothermal amplification (LAMP reaction and the DNA dissociation reaction on the same DNA chip surface to achieve a lower detection limit, broader dynamic range and faster detection time than are attainable with a conventional DNA chip. Both FAM- and thiol-labeled DNA probe bound to the complementary sequence accompanying Dabcyl was immobilized on the gold surface via Au/thiol bond. The LAMP reaction was carried out on the DNA probe fixed gold surface. At first, Dabcyl molecules quenched the FAM fluorescence. According to the LAMP reaction, the complementary sequence with Dabcyl was competitively reacted with the amplified targeted sequence. As a result, the FAM fluorescence increased owing to dissociation of the complementary sequence from the DNA probe. The simultaneous reaction of LAMP and DNA chip detection was achieved, and 103 copies of the targeted gene were detected within an hour by measuring fluorescence intensity of the DNA probe. Keywords: Biosensor, DNA chip, Loop-mediated isothermal amplification (LAMP, Fluorescence detection, Gold substrate, Au/thiol bond

  10. Understanding aneuploidy in cancer through the lens of system inheritance, fuzzy inheritance and emergence of new genome systems.

    Science.gov (United States)

    Ye, Christine J; Regan, Sarah; Liu, Guo; Alemara, Sarah; Heng, Henry H

    2018-01-01

    In the past 15 years, impressive progress has been made to understand the molecular mechanism behind aneuploidy, largely due to the effort of using various -omics approaches to study model systems (e.g. yeast and mouse models) and patient samples, as well as the new realization that chromosome alteration-mediated genome instability plays the key role in cancer. As the molecular characterization of the causes and effects of aneuploidy progresses, the search for the general mechanism of how aneuploidy contributes to cancer becomes increasingly challenging: since aneuploidy can be linked to diverse molecular pathways (in regards to both cause and effect), the chances of it being cancerous is highly context-dependent, making it more difficult to study than individual molecular mechanisms. When so many genomic and environmental factors can be linked to aneuploidy, and most of them not commonly shared among patients, the practical value of characterizing additional genetic/epigenetic factors contributing to aneuploidy decreases. Based on the fact that cancer typically represents a complex adaptive system, where there is no linear relationship between lower-level agents (such as each individual gene mutation) and emergent properties (such as cancer phenotypes), we call for a new strategy based on the evolutionary mechanism of aneuploidy in cancer, rather than continuous analysis of various individual molecular mechanisms. To illustrate our viewpoint, we have briefly reviewed both the progress and challenges in this field, suggesting the incorporation of an evolutionary-based mechanism to unify diverse molecular mechanisms. To further clarify this rationale, we will discuss some key concepts of the genome theory of cancer evolution, including system inheritance, fuzzy inheritance, and cancer as a newly emergent cellular system. Illustrating how aneuploidy impacts system inheritance, fuzzy inheritance and the emergence of new systems is of great importance. Such synthesis

  11. Consumer participation in early detection of the deteriorating patient and call activation to rapid response systems: a literature review.

    Science.gov (United States)

    Vorwerk, Jane; King, Lindy

    2016-01-01

    This review investigated the impact of consumer participation in recognition of patient deterioration and response through call activation in rapid response systems. Nurses and doctors have taken the main role in recognition and response to patient deterioration through hospital rapid response systems. Yet patients and visitors (consumers) have appeared well placed to notice early signs of deterioration. In response, many hospitals have sought to partner health professionals with consumers in detection and response to early deterioration. However, to date, there have been no published research-based reviews to establish the impact of introducing consumer involvement into rapid response systems. A critical research-based review was undertaken. A comprehensive search of databases from 2006-2014 identified 11 studies. Critical appraisal of these studies was undertaken and thematic analysis of the findings revealed four major themes. Following implementation of the consumer activation programmes, the number of calls made by the consumers following detection of deterioration increased. Interestingly, the number of staff calls also increased. Importantly, mortality numbers were found to decrease in one major study following the introduction of consumer call activation. Consumer and staff knowledge and satisfaction with the new programmes indicated mixed results. Initial concerns of the staff over consumer involvement overwhelming the rapid response systems did not eventuate. Evaluation of successful consumer-activated programmes indicated the importance of: effective staff education and training; ongoing consumer education by nurses and clear educational materials. Findings indicated positive patient outcomes following introduction of consumer call activation programmes within rapid response systems. Effective consumer programmes included information that was readily accessible, easy-to-understand and available in a range of multimedia materials accompanied by the

  12. Rapid solid-phase radioimmunoassay for detection of equine infectious anemia viral antigen and antibodies: parameters involved in standardization

    International Nuclear Information System (INIS)

    Horenstein, A.L.; Feinstein, R.E.

    1985-01-01

    Solid-phase radioimmunoassays (SPRIA) are described for the detection of equine infectious anemia (EIA) viral antigen and antibodies. Protein-antigen P29 currently used in the agar-gel immunodiffusion (AGID) test was used as antigen in the SPRIA. The specificity of the reaction was assessed by inhibition with the antigen. The reaction of immune serum against EIA-virus antigen adsorbed to the wells, was completely inhibited by the antigen in solution. This property was applied in an indirect competitive SPRIA for the detection of viral protein P29. The detection threshold of the SPRIA for EIA virus protein was about 5 ng and about 1 ng of antibody can be detected. The assay is rapid, specific and sensitive and allows the testing of multiple serum samples with the advantage of employing a single secondary labelled antibody. (orig.)

  13. Rapid detection of food-borne Salmonella contamination using IMBs-qPCR method based on pagC gene

    Directory of Open Access Journals (Sweden)

    Jiashun Wang

    Full Text Available Abstract Detection of Salmonella is very important to minimize the food safety risk. In this study, the recombinant PagC protein and PagC antibody were prepared and coupled with immunomagnetic beads (IMBs to capture Salmonella cells from pork and milk samples. And then the SYBR Green qualitative PCR was developed to detect the pathogenic Salmonella. The results showed that the PagC polyclonal antiserum is of good specificity and the capture rate of 0.1 mg IMBs for Salmonella tended to be stable at the range of 70-74% corresponding to the concentrations between 101 and 104 CFU/mL. The method developed demonstrated high specificity for the positive Salmonella samples when compared to non-specific DNA samples, such as Escherichia coli, Staphylococcus aureus, Yersinia enterocolitica, and Yersinia pseudotuberculosis. The limit of detection of this assay was 18 CFU/mL. Detection and quantitative enumeration of Salmonella in samples of pork or milk shows good recoveries of 54.34% and 52.07%. In conclusion, the polyclonal antibody of recombinant PagC protein is effective to capture Salmonella from detected samples. The developed pagC antibody IMBs-qPCR method showed efficiency, sensitivity and specificity for 30 Salmonella detection, enabling detection within 10 h, which is a promising rapid method to detect Salmonella in emergency.

  14. Simple and rapid detection of the porcine reproductive and respiratory syndrome virus from pig whole blood using filter paper.

    Science.gov (United States)

    Inoue, Ryo; Tsukahara, Takamitsu; Sunaba, Chinatsu; Itoh, Mitsugi; Ushida, Kazunari

    2007-04-01

    The combination of Flinders Technology Associates filter papers (FTA cards) and real-time PCR was examined to establish a simple and rapid technique for the detection of porcine reproductive and respiratory syndrome virus (PRRSV) from whole pig blood. A modified live PRRS vaccine was diluted with either sterilised saline or pig whole blood, and the suspensions were applied onto the FTA cards. The real-time RT-PCR detection of PRRSV was performed directly with the samples applied to the FTA card without the RNA extraction step. Six whole blood samples from at random selected piglets in the PRRSV infected farm were also assayed in this study. The expected PCR product was successfully amplified from either saline diluted or pig whole blood diluted vaccine. The same PCR ampliocon was detected from all blood samples assayed in this study. This study suggested that the combination of an FTA card and real-time PCR is a rapid and easy technique for the detection of PRRSV. This technique can remarkably shorten the time required for PRRSV detection from whole blood and makes the procedure much easier.

  15. TaqMan MGB probe fluorescence real-time quantitative PCR for rapid detection of Chinese Sacbrood virus.

    Directory of Open Access Journals (Sweden)

    Ma Mingxiao

    Full Text Available Sacbrood virus (SBV is a picorna-like virus that affects honey bees (Apis mellifera and results in the death of the larvae. Several procedures are available to detect Chinese SBV (CSBV in clinical samples, but not to estimate the level of CSBV infection. The aim of this study was develop an assay for rapid detection and quantification of this virus. Primers and probes were designed that were specific for CSBV structural protein genes. A TaqMan minor groove binder (MGB probe-based, fluorescence real-time quantitative PCR was established. The specificity, sensitivity and stability of the assay were assessed; specificity was high and there were no cross-reactivity with healthy larvae or other bee viruses. The assay was applied to detect CSBV in 37 clinical samples and its efficiency was compared with clinical diagnosis, electron microscopy observation, and conventional RT-PCR. The TaqMan MGB-based probe fluorescence real-time quantitative PCR for CSBV was more sensitive than other methods tested. This assay was a reliable, fast, and sensitive method that was used successfully to detect CSBV in clinical samples. The technology can provide a useful tool for rapid detection of CSBV. This study has established a useful protocol for CSBV testing, epidemiological investigation, and development of animal models.

  16. Rationalizing and advancing the 3-MPBA SERS sandwich assay for rapid detection of bacteria in environmental and food matrices.

    Science.gov (United States)

    Pearson, Brooke; Mills, Alexander; Tucker, Madeline; Gao, Siyue; McLandsborough, Lynne; He, Lili

    2018-06-01

    Bacterial foodborne illness continues to be a pressing issue in our food supply. Rapid detection methods are needed for perishable foods due to their short shelf lives and significant contribution to foodborne illness. Previously, a sensitive and reliable surface-enhanced Raman spectroscopy (SERS) sandwich assay based on 3-mercaptophenylboronic acid (3-MBPA) as a capturer and indicator molecule was developed for rapid bacteria detection. In this study, we explored the advantages and constraints of this assay over the conventional aerobic plate count (APC) method and further developed methods for detection in real environmental and food matrices. The SERS sandwich assay was able to detect environmental bacteria in pond water and on spinach leaves at higher levels than the APC method. In addition, the SERS assay appeared to have higher sensitivity to quantify bacteria in the stationary phase. On the other hand, the APC method was more sensitive to cell viability. Finally, a method to detect bacteria in a challenging high-sugar juice matrix was developed to enhance bacteria capture. This study advanced the SERS technique for real applications in environment and food matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A Rapid, Onsite, Ultrasensitive Melamine Quantitation Method for Protein Beverages Using Time-Resolved Fluorescence Detection Paper.

    Science.gov (United States)

    Li, Guanghua; Wang, Du; Zhou, Aijun; Sun, Yimin; Zhang, Qi; Poapolathep, Amnart; Zhang, Li; Fan, Zhiyong; Zhang, Zhaowei; Li, Peiwu

    2018-05-02

    To ensure protein beverage safety and prevent illegal melamine use to artificially increase protein content, a rapid, onsite, ultrasensitive detection method for melamine must be developed because melamine is detrimental to human health and life. Herein, an ultrasensitive time-resolved fluorescence detection paper (TFDP) was developed to detect melamine in protein beverages within 15 min using a one-step sample preparation. The lower limits of detection were 0.89, 0.94, and 1.05 ng/mL, and the linear ranges were 2.67-150, 2.82-150, and 3.15-150 ng/mL (R2>0.982) for peanut, walnut, and coconut beverages, respectively. The recovery rates were 85.86-110.60% with a coefficient of variation beverage samples, the TFDP and ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS) results were consistent. This method is a promising alternative for rapid, onsite detection of melamine in beverages.

  18. A nanoparticle label/immunochromatographic electrochemical biosensor for rapid and sensitive detection of prostate-specific antigen

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ying-Ying; Wang, Jun; Liu, Guodong; Wu, Hong; Wai, Chien M.; Lin, Yuehe

    2008-06-15

    We present a nanoparticle (NP) label/immunochromatographic electrochemical biosensor (IEB) for rapid and sensitive detection of prostate-specific antigen (PSA) in human serum. This IEB integrates the immunochromatographic strip with the electrochemical detector for transducing quantitative signals. The NP label, made of CdSe@ZnS, serves as a signal-amplifier vehicle. A sandwich immunoreaction was performed on the immunochromatographic strip. The captured NP labels in the test zone were determined by highly sensitive stripping voltammetric measurement of the dissolved metallic component (cadmium) with a disposable-screen-printed electrode, which is embedded underneath the membrane of the test zone. Experimental parameters (e.g., immunoreaction time, the amount of anti-PSA-NP conjugations applied) and electrochemical detection conditions (e.g., preconcentration potential and time) were optimized using this biosensor for PSA detection. The analytical performance of this biosensor was evaluated with serum PSA samples according to the “figure-of-merits” (e.g., dynamic range, reproducibility, and detection limit). The results were validated with enzyme-linked immunosorbent assay (ELISA) and show high consistency. It is found that this biosensor is very sensitive with the detection limit of 0.02 ng/mL PSA and is quite reproducible. This method is rapid, clinically accurate, and less expensive than other diagnosis tools for PSA; therefore, this IEB coupled with a portable electrochemical analyzer shows great promise for simple, sensitive, quantitative point-of-care testing of disease-related protein biomarkers.

  19. Rapid molecular detection of invasive species in ballast and harbor water by integrating environmental DNA and light transmission spectroscopy.

    Science.gov (United States)

    Egan, Scott P; Grey, Erin; Olds, Brett; Feder, Jeffery L; Ruggiero, Steven T; Tanner, Carol E; Lodge, David M

    2015-04-07

    Invasive species introduced via the ballast water of commercial ships cause enormous environmental and economic damage worldwide. Accurate monitoring for these often microscopic and morphologically indistinguishable species is challenging but critical for mitigating damages. We apply eDNA sampling, which involves the filtering and subsequent DNA extraction of microscopic bits of tissue suspended in water, to ballast and harbor water sampled during a commercial ship's 1400 km voyage through the North American Great Lakes. Using a lab-based gel electrophoresis assay and a rapid, field-ready light transmission spectroscopy (LTS) assay, we test for the presence of two invasive species: quagga (Dreissena bugensis) and zebra (D. polymorpha) mussels. Furthermore, we spiked a set of uninfested ballast and harbor samples with zebra mussel tissue to further test each assay's detection capabilities. In unmanipulated samples, zebra mussel was not detected, while quagga mussel was detected in all samples at a rate of 85% for the gel assay and 100% for the LTS assay. In the spiked experimental samples, both assays detected zebra mussel in 94% of spiked samples and 0% of negative controls. Overall, these results demonstrate that eDNA sampling is effective for monitoring ballast-mediated invasions and that LTS has the potential for rapid, field-based detection.

  20. Rapid detection of sugar alcohol precursors and corresponding nitrate ester explosives using direct analysis in real time mass spectrometry.

    Science.gov (United States)

    Sisco, Edward; Forbes, Thomas P

    2015-04-21

    This work highlights the rapid detection of nitrate ester explosives and their sugar alcohol precursors by direct analysis in real time mass spectrometry (DART-MS) using an off-axis geometry. Demonstration of the effect of various parameters, such as ion polarity and in-source collision induced dissociation (CID) on the detection of these compounds is presented. Sensitivity of sugar alcohols and nitrate ester explosives was found to be greatest in negative ion mode with sensitivities ranging from hundreds of picograms to hundreds of nanograms, depending on the characteristics of the particular molecule. Altering the in-source CID potential allowed for acquisition of characteristic molecular ion spectra as well as fragmentation spectra. Additional studies were completed to identify the role of different experimental parameters on the sensitivity for these compounds. Variables that were examined included the DART gas stream temperature, the presence of a related compound (i.e., the effect of a precursor on the detection of a nitrate ester explosive), incorporation of dopant species and the role of the analysis surface. It was determined that each variable affected the response and detection of both sugar alcohols and the corresponding nitrate ester explosives. From this work, a rapid and sensitive method for the detection of individual sugar alcohols and corresponding nitrate ester explosives, or mixtures of the two, has been developed, providing a useful tool in the real-world identification of homemade explosives.

  1. Rapid Detection and Enumeration of Giardia lamblia Cysts in Water Samples by Immunomagnetic Separation and Flow Cytometric Analysis ▿ †

    Science.gov (United States)

    Keserue, Hans-Anton; Füchslin, Hans Peter; Egli, Thomas

    2011-01-01

    Giardia lamblia is an important waterborne pathogen and is among the most common intestinal parasites of humans worldwide. Its fecal-oral transmission leads to the presence of cysts of this pathogen in the environment, and so far, quantitative rapid screening methods are not available for various matrices, such as surface waters, wastewater, or food. Thus, it is necessary to establish methods that enable reliable rapid detection of a single cyst in 10 to 100 liters of drinking water. Conventional detection relies on cyst concentration, isolation, and confirmation by immunofluorescence microscopy (IFM), resulting in low recoveries and high detection limits. Many different immunomagnetic separation (IMS) procedures have been developed for separation and cyst purification, so far with variable but high losses of cysts. A method was developed that requires less than 100 min and consists of filtration, resuspension, IMS, and flow cytometric (FCM) detection. MACS MicroBeads were used for IMS, and a reliable flow cytometric detection approach was established employing 3 different parameters for discrimination from background signals, i.e., green and red fluorescence (resulting from the distinct pattern emitted by the fluorescein dye) and sideward scatter for size discrimination. With spiked samples, recoveries exceeding 90% were obtained, and false-positive results were never encountered for negative samples. Additionally, the method was applicable to naturally occurring cysts in wastewater and has the potential to be automated. PMID:21685159

  2. Rapid Detection and Differentiation of Clonorchis sinensis and Opisthorchis viverrini Using Real-Time PCR and High Resolution Melting Analysis

    OpenAIRE

    Cai, Xian-Quan; Yu, Hai-Qiong; Li, Rong; Yue, Qiao-Yun; Liu, Guo-Hua; Bai, Jian-Shan; Deng, Yan; Qiu, De-Yi; Zhu, Xing-Quan

    2014-01-01

    Clonorchis sinensis and Opisthorchis viverrini are both important fish-borne pathogens, causing serious public health problem in Asia. The present study developed an assay integrating real-time PCR and high resolution melting (HRM) analysis for the specific detection and rapid identification of C. sinensis and O. viverrini. Primers targeting COX1 gene were highly specific for these liver flukes, as evidenced by the negative amplification of closely related trematodes. Assays using genomic DNA...

  3. Direct nitrate reductase assay versus microscopic observation drug susceptibility test for rapid detection of MDR-TB in Uganda.

    Directory of Open Access Journals (Sweden)

    Freddie Bwanga

    Full Text Available The most common method for detection of drug resistant (DR TB in resource-limited settings (RLSs is indirect susceptibility testing on Lowenstein-Jensen medium (LJ which is very time consuming with results available only after 2-3 months. Effective therapy of DR TB is therefore markedly delayed and patients can transmit resistant strains. Rapid and accurate tests suitable for RLSs in the diagnosis of DR TB are thus highly needed. In this study we compared two direct techniques--Nitrate Reductase Assay (NRA and Microscopic Observation Drug Susceptibility (MODS for rapid detection of MDR-TB in a high burden RLS. The sensitivity, specificity, and proportion of interpretable results were studied. Smear positive sputum was collected from 245 consecutive re-treatment TB patients attending a TB clinic in Kampala, Uganda. Samples were processed at the national reference laboratory and tested for susceptibility to rifampicin and isoniazid with direct NRA, direct MODS and the indirect LJ proportion method as reference. A total of 229 specimens were confirmed as M. tuberculosis, of these interpretable results were obtained in 217 (95% with either the NRA or MODS. Sensitivity, specificity and kappa agreement for MDR-TB diagnosis was 97%, 98% and 0.93 with the NRA; and 87%, 95% and 0.78 with the MODS, respectively. The median time to results was 10, 7 and 64 days with NRA, MODS and the reference technique, respectively. The cost of laboratory supplies per sample was low, around 5 USD, for the rapid tests. The direct NRA and MODS offered rapid detection of resistance almost eight weeks earlier than with the reference method. In the study settings, the direct NRA was highly sensitive and specific. We consider it to have a strong potential for timely detection of MDR-TB in RLS.

  4. Development and evaluation of one step single tube multiplex RT-PCR for rapid detection and typing of dengue viruses

    OpenAIRE

    Parida Manmohan; Shrivastava Ambuj; Santhosh SR; Dash Paban; Saxena Parag; Rao PV

    2008-01-01

    Abstract Background Dengue is emerging as a major public health concern in many parts of the world. The development of a one-step, single tube, rapid, and multiplex reverse transcription polymerase chain reaction (M-RT-PCR) for simultaneous detection and typing of dengue virus using serotype specific primers during acute phase of illness is reported. Results An optimal assay condition with zero background was established having no cross-reaction with closely related members of flavivirus (Jap...

  5. Rapid on-site detection of Acidovorax citrulli by cross-priming amplification.

    Science.gov (United States)

    Zhang, Jing; Tian, Qian; Zhu, Shui-fang; Zhao, Wen-jun; Liu, Feng-quan

    2012-08-01

    Cross-priming amplification (CPA) for Acidovorax citrulli detection was evaluated in this study. The sensitivity of CPA assay for pure bacterial culture was 3.7 × 10(3) CFU/ml. Bacteria on naturally infected watermelon seeds were detected using CPA assay, suggesting this method is suitable for A. citrulli on-site detection from watermelon seeds. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. An efficient probe for rapid detection of cyanide in water at parts per billion levels and naked-eye detection of endogenous cyanide.

    Science.gov (United States)

    Kumari, Namita; Jha, Satadru; Bhattacharya, Santanu

    2014-03-01

    A new molecular probe based on an oxidized bis-indolyl skeleton has been developed for rapid and sensitive visual detection of cyanide ions in water and also for the detection of endogenously bound cyanide. The probe allows the "naked-eye" detection of cyanide ions in water with a visual color change from red to yellow (Δλmax =80 nm) with the immediate addition of the probe. It shows high selectivity towards the cyanide ion without any interference from other anions. The detection of cyanide by the probe is ratiometric, thus making the detection quantitative. A Michael-type addition reaction of the probe with the cyanide ion takes place during this chemodosimetric process. In water, the detection limit was found to be at the parts per million level, which improved drastically when a neutral micellar medium was employed, and it showed a parts-per-billion-level detection, which is even 25-fold lower than the permitted limits of cyanide in water. The probe could also efficiently detect the endogenously bound cyanide in cassava (a staple food) with a clear visual color change without requiring any sample pretreatment and/or any special reaction conditions such as pH or temperature. Thus the probe could serve as a practical naked-eye probe for "in-field" experiments without requiring any sophisticated instruments. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Development and Evaluation of a Rapid Antigen Detection and Serotyping Lateral Flow Antigen Detection System for Foot-and-Mouth Disease Virus.

    Directory of Open Access Journals (Sweden)

    Kazuki Morioka

    Full Text Available We developed a lateral flow strip using monoclonal antibodies (MAbs which allows for rapid antigen detection and serotyping of foot-and-mouth disease virus (FMDV. This FMDV serotyping strip was able to detect all 7 serotypes and distinguish serotypes O, A, C and Asia1. Its sensitivities ranged from 10(3 to 10(4 of a 50% tissue culture infectious dose of each FMDV stain; this is equal to those of the commercial product Svanodip (Boehringer Ingelheim Svanova, Uppsala, Sweden, which can detect all seven serotypes of FMDV, but does not distinguish them. Our evaluation of the FMDV serotyping strip using a total of 118 clinical samples (vesicular fluids, vesicular epithelial emulsions and oral and/or nasal swabs showed highly sensitive antigen detection and accuracy in serotyping in accordance with ELISA or RT-PCR. To the best of our knowledge, this is the first report on any FMDV serotyping strip that provides both rapid antigen detection and serotyping of FMDV at the same time on one strip without extra devices. This method will be useful in both FMD-free countries and FMD-infected countries, especially where laboratory diagnosis cannot be carried out.

  8. Combining magnetic nanoparticle with biotinylated nanobodies for rapid and sensitive detection of influenza H3N2

    Science.gov (United States)

    Zhu, Min; Hu, Yonghong; Li, Guirong; Ou, Weijun; Mao, Panyong; Xin, Shaojie; Wan, Yakun

    2014-09-01

    Our objective is to develop a rapid and sensitive assay based on magnetic beads to detect the concentration of influenza H3N2. The possibility of using variable domain heavy-chain antibodies (nanobody) as diagnostic tools for influenza H3N2 was investigated. A healthy camel was immunized with inactivated influenza H3N2. A nanobody library of 8 × 108 clones was constructed and phage displayed. After three successive biopanning steps, H3N2-specific nanobodies were successfully isolated, expressed in Escherichia coli, and purified. Sequence analysis of the nanobodies revealed that we possessed four classes of nanobodies against H3N2. Two nanobodies were further used to prepare our rapid diagnostic kit. Biotinylated nanobody was effectively immobilized onto the surface of streptavidin magnetic beads. The modified magnetic beads with nanobody capture specifically influenza H3N2 and can still be recognized by nanobodies conjugated to horseradish peroxidase (HRP) conjugates. Under optimized conditions, the present immunoassay exhibited a relatively high sensitive detection with a limit of 50 ng/mL. In conclusion, by combining magnetic beads with specific nanobodies, this assay provides a promising influenza detection assay to develop a potential rapid, sensitive, and low-cost diagnostic tool to screen for influenza infections.

  9. Rapid Detection of Human Immunodeficiency Virus Types 1 and 2 by Use of an Improved Piezoelectric Biosensor

    Science.gov (United States)

    Severns, Virginia; Branch, Darren W.; Edwards, Thayne L.; Larson, Richard S.

    2013-01-01

    Disasters can create situations in which blood donations can save lives. However, in emergency situations and when resources are depleted, on-site blood donations require the rapid and accurate detection of blood-borne pathogens, including human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2). Techniques such as PCR and antibody capture by an enzyme-linked immunosorbent assay (ELISA) for HIV-1 and HIV-2 are precise but time-consuming and require sophisticated equipment that is not compatible with emergency point-of-care requirements. We describe here a prototype biosensor based on piezoelectric materials functionalized with specific antibodies against HIV-1 and HIV-2. We show the rapid and accurate detection of HIV-1 and HIV-2 in both simple and complex solutions, including human serum, and in the presence of a cross-confounding virus. We report detection limits of 12 50% tissue culture infective doses (TCID50s) for HIV-1 and 87 TCID50s for HIV-2. The accuracy, precision of measurements, and operation of the prototype biosensor compared favorably to those for nucleic acid amplification. We conclude that the biosensor has significant promise as a successful point-of-care diagnostic device for use in emergency field applications requiring rapid and reliable testing for blood-borne pathogens. PMID:23515541

  10. Children with Autism Detect Targets at Very Rapid Presentation Rates with Similar Accuracy as Adults

    Science.gov (United States)

    Hagmann, Carl Erick; Wyble, Bradley; Shea, Nicole; LeBlanc, Megan; Kates, Wendy R.; Russo, Natalie

    2016-01-01

    Enhanced perception may allow for visual search superiority by individuals with Autism Spectrum Disorder (ASD), but does it occur over time? We tested high-functioning children with ASD, typically developing (TD) children, and TD adults in two tasks at three presentation rates (50, 83.3, and 116.7 ms/item) using rapid serial visual presentation.…

  11. Rapid detection of hepatitis A virus and murine norovirus in hemocytes of contaminated oysters

    Science.gov (United States)

    The human enteric pathogens, hepatitis A virus and human norovirus, have been shown to contaminate molluscan shellfish and cause foodborne disease in consumers. Rapid viral extraction methods are needed to replace current time consuming methods, which use whole oysters or dissected tissues. In our ...

  12. The Rapid Detection of Single Bacterial Cells by Deep UV Micro Raman Spectroscopy.

    Science.gov (United States)

    1992-04-01

    Saltzman and C.T. Gregg, Appl. Environ. Microbiol. 44, 1081 (1982). 14. D.’. Mc Greggor, W.K. Grace and G.C. Salzman, in "Rapid Methods and...was used by Dr. Marcus Peter of the Dana -Farber Cancer Institute. During that period he came to our laboratories weekly to study GTP- binding

  13. Rapid detection of human parechoviruses in clinical samples by real-time PCR

    NARCIS (Netherlands)

    Benschop, Kimberley; Molenkamp, Richard; van der Ham, Alwin; Wolthers, Katja; Beld, Marcel

    2008-01-01

    BACKGROUND: Human parechoviruses (HPeVs) have been associated with severe conditions such as neonatal sepsis and meningitis in young children. Rapid identification of an infectious agent in such serious conditions in these patients is essential for adequate decision making regarding treatment and

  14. Label-free biochips for rapid detection of soybean allergen GlymBd ...

    African Journals Online (AJOL)

    detection. Keywords: Soybean Allergen, Gly mBd 30K, Biochip, Detection, Foods ... methods of choice by food industries and food .... shrimp, fish, peanut, wheat, and graham bread served as negative controls. Manufactured foods such as cream cake, cereal bar, chocolate biscuits, and pineapple cake were screened for.

  15. Rapid Salmonella detection in experimentally inoculated equine faecal and veterinary hospital environmental samples using commercially available lateral flow immunoassays.

    Science.gov (United States)

    Burgess, B A; Noyes, N R; Bolte, D S; Hyatt, D R; van Metre, D C; Morley, P S

    2015-01-01

    Salmonella enterica is the most commonly reported cause of outbreaks of nosocomial infections in large animal veterinary teaching hospitals and the closure of equine hospitals. Rapid detection may facilitate effective control practices in equine populations. Shipping and laboratory testing typically require ≥48 h to obtain results. Lateral flow immunoassays developed for use in food-safety microbiology provide an alternative that has not been evaluated for use with faeces or environmental samples. We aimed to identify enrichment methods that would allow commercially available rapid Salmonella detection systems (lateral flow immunoassays) to be used in clinical practice with equine faecal and environmental samples, providing test results in 18-24 h. In vitro experiment. Equine faecal and environmental samples were inoculated with known quantities of S. enterica serotype Typhimurium and cultured using 2 different enrichment techniques for faeces and 4 enrichment techniques for environmental samples. Samples were tested blindly using 2 different lateral flow immunoassays and plated on agar media for confirmatory testing. In general, commercial lateral flow immunoassays resulted in fewer false-negative test results with enrichment of 1 g faecal samples in tetrathionate for 18 h, while all environmental sample enrichment techniques resulted in similar detection rates. The limit of detection from spiked samples, ∼4 colony-forming units/g, was similar for all methods evaluated. The lateral flow immunoassays evaluated could reliably detect S. enterica within 18 h, indicating that they may be useful for rapid point-of-care testing in equine practice applications. Additional evaluation is needed using samples from naturally infected cases and the environment to gain an accurate estimate of test sensitivity and specificity and to substantiate further the true value of these tests in clinical practice. © 2014 EVJ Ltd.

  16. [Rapid detection of four antipertensive chemicals adulterated in traditional Chinese medicine for hypertension using TLC-SERS].

    Science.gov (United States)

    Zhu, Qing-Xia; Cao, Yong-Bing; Cao, Ying-Ying; Lu, Feng

    2014-04-01

    A novel facile method for on-site detection of antipertensive chemicals (e. g. nicardipine hydrochloride, doxazosin mesylate, propranolol hydrochloride, and hydrochlorothiazide) adulterated in traditional Chinese medicine for hypertension using thin layer chromatography (TLC) combined with surface enhanced Raman spectroscopy (SERS) was reported in the present paper. Analytes and pharmaceutical matrices was separated by TLC, then SERS method was used to complete qualitative identification of trace substances on TLC plate. By optimizing colloidal silver concentration and developing solvent, as well as exploring the optimal limits of detection (LOD), the initially established TLC-SERS method was used to detect real hypertension Chinese pharmaceuticals. The results showed that this method had good specificity for the four chemicals and high sensitivity with a limit of detection as lower as to 0.005 microg. Finally, two of the ten antipertensive drugs were detected to be adulterated with chemicals. This simple and fast method can realize rapid detection of chemicals illegally for doping in antipertensive Chinese pharmaceuticals, and would have good prospects in on-site detection of chemicals for doping in Chinese pharmaceuticals.

  17. Rapid and sensitive detection of canine parvovirus type 2 by recombinase polymerase amplification.

    Science.gov (United States)

    Wang, Jianchang; Liu, Libing; Li, Ruiwen; Wang, Jinfeng; Fu, Qi; Yuan, Wanzhe

    2016-04-01

    A novel recombinase polymerase amplification (RPA)-based method for detection of canine parvovirus type 2 (CPV-2) was developed. Sensitivity analysis showed that the detection limit of RPA was 10 copies of CPV-2 genomic DNA. RPA amplified both CPV-2a and -2b DNA but did not amplify the template of other important dog viruses (CCoV, PRV or CDV), demonstrating high specificity. The method was further validated with 57 canine fecal samples. An outstanding advantage of RPA is that it is an isothermal reaction and can be performed in a water bath, making RPA a potential alternative method for CPV-2 detection in resource-limited settings.

  18. Highly sensitive rapid fluorescence detection of protein residues on surgical instruments

    International Nuclear Information System (INIS)

    Kovalev, Valeri I; Bartona, James S; Richardson, Patricia R; Jones, Anita C

    2006-01-01

    There is a risk of contamination of surgical instruments by infectious protein residues, in particular, prions which are the agents for Creutzfeldt-Jakob Disease in humans. They are exceptionally resistant to conventional sterilization, therefore it is important to detect their presence as contaminants so that alternative cleaning procedures can be applied. We describe the development of an optimized detection system for fluorescently labelled protein, suitable for in-hospital use. We show that under optimum conditions the technique can detect ∼10 attomole/cm 2 with a scan speed of ∼3-10 cm 2 /s of the test instrument's surface. A theoretical analysis and experimental measurements will be discussed

  19. Development of a Rapid Detection Method for Potato virus X by Reverse Transcription Loop-Mediated Isothermal Amplification

    Directory of Open Access Journals (Sweden)

    Joojin Jeong

    2015-09-01

    Full Text Available The primary step for efficient control of viral diseases is the development of simple, rapid, and sensitive virus detection. Reverse transcription loop-mediated isothermal amplification (RT-LAMP has been used to detect viral RNA molecules because of its simplicity and high sensitivity for a number of viruses. RT-LAMP for the detection of Potato virus X (PVX was developed and compared with conventional reverse transcription polymerase chain reaction (RT-PCR to demonstrate its advantages over RT-PCR. RT-LAMP reactions were conducted with or without a set of loop primers since one out of six primers showed PVX specificity. Based on real-time monitoring, RT-LAMP detected PVX around 30 min, compared to 120 min for RT-PCR. By adding a fluorescent reagent during the reaction, the extra step of visualization by gel electrophoresis was not necessary. RT-LAMP was conducted using simple inexpensive instruments and a regular incubator to evaluate whether RNA could be amplified at a constant temperature instead of using an expensive thermal cycler. This study shows the potential of RT-LAMP for the diagnosis of viral diseases and PVX epidemiology because of its simplicity and rapidness compared to RT-PCR.

  20. A Rapid and Simple Real-Time PCR Assay for Detecting Foodborne Pathogenic Bacteria in Human Feces.

    Science.gov (United States)

    Hanabara, Yutaro; Ueda, Yutaka

    2016-11-22

    A rapid, simple method for detecting foodborne pathogenic bacteria in human feces is greatly needed. Here, we examined the efficacy of a method that employs a combination of a commercial PCR master mix, which is insensitive to PCR inhibitors, and a DNA extraction method which used sodium dodecyl benzene sulfonate (SDBS), and Tween 20 to counteract the inhibitory effects of SDBS on the PCR assay. This method could detect the target genes (stx1 and stx2 of enterohemorrhagic Escherichia coli, invA of Salmonella Enteritidis, tdh of Vibrio parahaemolyticus, gyrA of Campylobacter jejuni, ceuE of Campylobacter coli, SEA of Staphylococcus aureus, ces of Bacillus cereus, and cpe of Clostridium perfringens) in a fecal suspension containing 1.0 × 10 1 to 1.0 × 10 3 CFU/ml. Furthermore, the assay was neither inhibited nor influenced by individual differences among the fecal samples of 10 subjects or fecal concentration (40-160 mg/ml in the fecal suspension). When we attempted to detect the genes of pathogenic bacteria in 4 actual clinical cases, we found that this method was more sensitive than standard culture method. These results showed that this assay is a rapid, simple detection method for foodborne pathogenic bacteria in human feces.

  1. Rapid and sensitive detection of Plesiomonas shigelloides by loop-mediated isothermal amplification of the hugA gene.

    Directory of Open Access Journals (Sweden)

    Shuang Meng

    Full Text Available Plesiomonas shigelloides is one of the causative agents of human gastroenteritis, with increasing number of reports describing such infections in recent years. In this study, the hugA gene was chosen as the target to design loop-mediated isothermal amplification (LAMP assays for the rapid, specific, and sensitive detection of P. shigelloides. The performance of the assay with reference plasmids and spiked human stools as samples was evaluated and compared with those of quantitative PCR (qPCR. No false-positive results were observed for the 32 non-P. shigelloides strains used to evaluate assay specificity. The limit of detection for P. shigelloides was approximately 20 copies per reaction in reference plasmids and 5×10(3 CFU per gram in spiked human stool, which were more sensitive than the results of qPCR. When applied in human stool samples spiked with 2 low levels of P. shigelloides, the LAMP assays achieved accurate detection after 6-h enrichment. In conclusion, the LAMP assay developed in this study is a valuable method for rapid, cost-effective, and simple detection of P. shigelloides in basic clinical and field laboratories in the rural areas of China.

  2. Development of a nested-PCR assay for the rapid detection of Pilidiella granati in pomegranate fruit

    Science.gov (United States)

    Yang, Xue; Hameed, Uzma; Zhang, Ai-Fang; Zang, Hao-Yu; Gu, Chun-Yan; Chen, Yu; Xu, Yi-Liu

    2017-01-01

    Pilidiella granati, a causal agent of twig blight and crown rot of pomegranate, is an emerging threat that may cause severe risk to the pomegranate industry in the future. Development of a rapid assay for the timely and accurate detection of P. granati will be helpful in the active surveillance and management of the disease caused by this pathogen. In this study, a nested PCR method was established for the detection of P. granati. Comparative analysis of genetic diversity within 5.8S rDNA internal transcribed spacer (ITS) sequences of P. granati and 21 other selected fungal species was performed to design species-specific primers (S1 and S2). This primer pair successfully amplified a 450 bp product exclusively from the genomic DNA of P. granati. The developed method can detect 10 pg genomic DNA of the pathogen in about 6 h. This technique was successfully applied to detect the natural infection of P. granati in the pomegranate fruit. The designed protocol is rapid and precise with a high degree of sensitivity. PMID:28106107

  3. A new aptamer/graphene interdigitated gold electrode piezoelectric sensor for rapid and specific detection of Staphylococcus aureus.

    Science.gov (United States)

    Lian, Yan; He, Fengjiao; Wang, Huan; Tong, Feifei

    2015-03-15

    A novel aptamer/graphene interdigitated gold electrode piezoelectric sensor was developed for the rapid and specific detection of Staphylococcus aureus (S. aureus) by employing S. aureus aptamer as a biological recognition element. 4-Mercaptobenzene-diazonium tetrafluoroborate (MBDT) salt was used as a molecular cross-linking agent to chemically bind graphene to interdigital gold electrodes (IDE) that are connected to a series electrode piezoelectric quartz crystal (SPQC). S. aureus aptamers were assembly immobilized onto graphene via the π-π stacking of DNA bases. Due to the specific binding between S. aureus and aptamer, when S. aureus is present, the DNA bases interacted with the aptamer, thereby dropping the aptamer from the surface of the graphene. The electric parameters of the electrode surface was changed and resulted in the change of oscillator frequency of the SPQC. This detection was completed within 60min. The constructed sensor demonstrated a linear relationship between resonance frequency shifts with bacterial concentrations ranging from 4.1×10(1)-4.1×10(5)cfu/mL with a detection limit of 41cfu/mL. The developed strategy can detect S. aureus rapidly and specifically for clinical diagnosis and food testing. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Rapid and sensitive electrochemiluminescence detection of rotavirus by magnetic primer based reverse transcription-polymerase chain reaction

    International Nuclear Information System (INIS)

    Zhan Fangfang; Zhou Xiaoming; Xing Da

    2013-01-01

    Graphical abstract: In this work, we have developed and demonstrated a magnetic primer based RT-PCR assay for ECL detection of rotavirus. In the presence of two functional primers (magnetic primer and TBR-primer) and PCR reagents, cDNA from RT was amplified directly onto MPs during PCR cycles of denaturation, annealing and extension. The resulting MPs–TBR complexes were easily loaded on the electrode surface and produced a concentrated ECL signal. The figure shows the schematic illustration of magnetic primer RT-PCR based ECL assay for rotavirus detection. Highlights: ► A novel method for detection of rotavirus has been developed. ► In the presence of magnetic primer, TBR-primer and PCR reagents, cDNA form RT was amplified directly onto MPs. ► To obtain the best sensing and efficient performance, important parameters associated with the efficiency were investigated carefully. ► The proposed method will find numerous applications in food safety field and clinical diagnosis. - Abstract: A novel method for detection of rotavirus has been developed by integrating magnetic primer based reverse transcription-polymerase chain reaction (RT-PCR) with electrochemiluminescence (ECL) detection. This is realized by accomplishing RT of rotavirus RNA in traditional way and performing PCR of the resulting cDNA fragment on the surface of magnetic particles (MPs). In order to implement PCR on MPs and achieve rapid ECL detection, forward and reverse primers are bounded to MPs and tris-(2,2′-bipyridyl) ruthenium (TBR), respectively. After RT-PCR amplification, the TBR labels are directly enriched onto the surface of MPs. Then the MPs–TBR complexes can be loaded on the electrode surface and analyzed by magnetic ECL platform without any post-modification or post-incubation process. So some laborious manual operations can be avoided to achieve rapid yet sensitive detection. In this study, rotavirus in fecal specimens was successfully detected within 1.5 h. Experimental

  5. Rapid and sensitive electrochemiluminescence detection of rotavirus by magnetic primer based reverse transcription-polymerase chain reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhan Fangfang; Zhou Xiaoming [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China); Xing Da, E-mail: xingda@scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China)

    2013-01-25

    Graphical abstract: In this work, we have developed and demonstrated a magnetic primer based RT-PCR assay for ECL detection of rotavirus. In the presence of two functional primers (magnetic primer and TBR-primer) and PCR reagents, cDNA from RT was amplified directly onto MPs during PCR cycles of denaturation, annealing and extension. The resulting MPs-TBR complexes were easily loaded on the electrode surface and produced a concentrated ECL signal. The figure shows the schematic illustration of magnetic primer RT-PCR based ECL assay for rotavirus detection. Highlights: Black-Right-Pointing-Pointer A novel method for detection of rotavirus has been developed. Black-Right-Pointing-Pointer In the presence of magnetic primer, TBR-primer and PCR reagents, cDNA form RT was amplified directly onto MPs. Black-Right-Pointing-Pointer To obtain the best sensing and efficient performance, important parameters associated with the efficiency were investigated carefully. Black-Right-Pointing-Pointer The proposed method will find numerous applications in food safety field and clinical diagnosis. - Abstract: A novel method for detection of rotavirus has been developed by integrating magnetic primer based reverse transcription-polymerase chain reaction (RT-PCR) with electrochemiluminescence (ECL) detection. This is realized by accomplishing RT of rotavirus RNA in traditional way and performing PCR of the resulting cDNA fragment on the surface of magnetic particles (MPs). In order to implement PCR on MPs and achieve rapid ECL detection, forward and reverse primers are bounded to MPs and tris-(2,2 Prime -bipyridyl) ruthenium (TBR), respectively. After RT-PCR amplification, the TBR labels are directly enriched onto the surface of MPs. Then the MPs-TBR complexes can be loaded on the electrode surface and analyzed by magnetic ECL platform without any post-modification or post-incubation process. So some laborious manual operations can be avoided to achieve rapid yet sensitive detection

  6. DETECTION OF RABIES VIRAL ANTIGEN IN CATTLE BY RAPID IMMUNOCHROMTOGRAPHIC DIAGNOSTIC TEST

    Directory of Open Access Journals (Sweden)

    Santanu Panda

    2016-06-01

    Full Text Available In recent years, improved quality, accuracy and speed for diagnosis of rabies has been adopted for rabies control strategies in developing countries. In field condition, rapid immunochromtographic diagnostic test (RIDT is a true requirement for rapid epidemiological surveillance of rabies. In the present study, a total of ten numbers of rabies suspected cattle brain sample form different parts of West Bengal, India were examined through RIDT. The results revealed that one sample was found to be positive. The test was established as powerful screening tool for rabies with high sensitivity and specificity. Thus, RIDT can be employed as a reliable and quick approach for diagnosis and control of rabies under field condition.

  7. Detection of Elevated Signaling Amino Acids in Human Diabetic Vitreous by Rapid Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Miao-Jen Lu

    2007-01-01

    Full Text Available Elevated glutamate is implicated in the pathology of PDR. The ability to rapidly assess the glutamate and amino acid content of vitreous provides a more complete picture of the chemical changes occurring at the diabetic retina and may lead to a better understanding of the pathology of PDR. Vitreous humor was collected following vitrectomies of patients with PDR and control conditions of macular hole or epiretinal membrane. A capillary electrophoresis method was developed to quantify glutamate and arginine. The analysis is relatively fast (<6 minutes and utilizes a poly(ethyleneoxide and sodium dodecylsulfate run buffer. Both amino acid levels show significant increases in PDR patients versus controls and are comparable to other reports. The levels of vitreal glutamate vary inversely with the degree of observed hemorrhage. The results demonstrate a rapid method for assessment of a number of amino acids to characterize the chemical changes at the diabetic retina to better understand tissue changes and potentially identify new treatments.

  8. The role of citzens in detecting and responding to a rapid marine invasion

    Science.gov (United States)

    Scyphers, Stephen B.; Powers, Sean P.; Akins, J. Lad; Drymon, J. Marcus; Martin, Charles M.; Schobernd, Zeb H.; Schofield, Pamela J.; Shipp, Robert L.; Switzer, Theodore S.

    2015-01-01

    Documenting and responding to species invasions requires innovative strategies that account for ecological and societal complexities. We used the recent expansion of Indo-Pacific lionfish (Pterois volitans/miles) throughout northern Gulf of Mexico coastal waters to evaluate the role of stakeholders in documenting and responding to a rapid marine invasion. We coupled an online survey of spearfishers and citizen science monitoring programs with traditional fishery-independent data sources and found that citizen observations documented lionfish 1–2 years earlier and more frequently than traditional reef fish monitoring programs. Citizen observations first documented lionfish in 2010 followed by rapid expansion and proliferation in 2011 (+367%). From the survey of spearfishers, we determined that diving experience and personal observations of lionfish strongly influenced perceived impacts, and these perceptions were powerful predictors of support for initiatives. Our study demonstrates the value of engaging citizens for assessing and responding to large-scale and time-sensitive conservation problems.

  9. Rapid-Viability PCR Method for Detection of Live, Virulent Bacillus anthracis in Environmental Samples ▿

    OpenAIRE

    Létant, Sonia E.; Murphy, Gloria A.; Alfaro, Teneile M.; Avila, Julie R.; Kane, Staci R.; Raber, Ellen; Bunt, Thomas M.; Shah, Sanjiv R.

    2011-01-01

    In the event of a biothreat agent release, hundreds of samples would need to be rapidly processed to characterize the extent of contamination and determine the efficacy of remediation activities. Current biological agent identification and viability determination methods are both labor- and time-intensive such that turnaround time for confirmed results is typically several days. In order to alleviate this issue, automated, high-throughput sample processing methods were developed in which real...

  10. Rapid antigen detection test for respiratory syncytial virus diagnosis as a diagnostic tool

    Directory of Open Access Journals (Sweden)

    Flávio da Silva Mesquita

    2017-05-01

    Conclusions: This study demonstrated that the QuickVue® RSV Test Kit can be effective in early detection of Respiratory syncytial virus in nasopharyngeal aspirate and is reliable for use as a diagnostic tool in pediatrics.

  11. Time-Frequency Analysis of Terahertz Radar Signals for Rapid Heart and Breath Rate Detection

    National Research Council Canada - National Science Library

    Massar, Melody L

    2008-01-01

    We develop new time-frequency analytic techniques which facilitate the detection of a person's heart and breath rates from the Doppler shift the movement of their body induces in a terahertz radar signal...

  12. Rapid and real-time detection technologies for emerging viruses of ...

    Indian Academy of Sciences (India)

    Prakash

    methods are available which make it possible to detect and analyze any virus, including .... qualitative, or 'yes/no' format. ... out of the pure research laboratory and into the diagnostic .... types A and B, respiratory syncytial virus (RSV) and para.

  13. Rapid Biolayer Interferometry Measurements of Urinary CXCL9 to Detect Cellular Infiltrates Noninvasively After Kidney Transplantation

    Directory of Open Access Journals (Sweden)

    Ilaria Gandolfini

    2017-11-01

    Discussion: Together, our proof-of-principle results demonstrate that BLI-based urinary CXCL9 detection has potential as a point-of-care noninvasive biomarker to diagnose and guide therapy for ACR in kidney transplantation recipients.

  14. Product ion filtering with rapid polarity switching for the detection of all fumonisins and AAL-toxins.

    Science.gov (United States)

    Renaud, Justin B; Kelman, Megan J; Qi, Tianyu F; Seifert, Keith A; Sumarah, Mark W

    2015-11-30

    Fumonisins and AAL-toxins are structurally similar mycotoxins that contaminate agricultural crops and foodstuffs. Traditional analytical screening methods are designed to target the known compounds for which standards are available but there is clear evidence that many other derivatives exist and could be toxic. A fast, semi-targeted method for the detection of all known fumonisins, AAL-toxins and related emerging toxins is required. Strains of Fusarium verticillioides, Alternaria arborescens and Aspergillus welwitschiae were grown on their associated crops (maize, tomatoes, and grapes, respectively). Extracts were first analyzed in negative mode using product ion filtering to detect the tricarballylic ester product ion that is common to fumonisins and AAL-toxins (m/z 157.0142). During the same liquid chromatography (LC) run, rapid polarity switching was then used to collect positive mode tandem mass spectrometric (MS(2) ) data for characterization of the detected compounds. Fumonisin B1 , B2 , B3 and B4 were detected on Fusarium contaminated maize, AAL-toxins TA, TB, TD, TE were detected on Alternaria inoculated tomatoes and fumonisin B2 , B4 and B6 on Aspergillus contaminated grapes. Additionally, over 100 structurally related compounds possessing a tricarballylic ester were detected from the mould inoculated plant material. These included a hydroxyl-FB1 from F. verticillioides inoculated maize, keto derivatives of AAL-toxins from A. arborescens inoculated tomatoes, and two previously unreported classes of non-aminated fumonisins from Asp. welwitschiae contaminated grapes. A semi-targeted method for the detection of all fumonisins and AAL-toxins in foodstuffs was developed. The use of the distinctive tricarballylic ester product anion for detection combined with rapid polarity switching and positive mode MS(2) is an effective strategy for differentiating between known isomers such as FB1 and FB6 . This analytical tool is also effective for the identification of

  15. Rapid Anomaly Detection and Tracking via Compressive Time-Spectra Measurement

    Science.gov (United States)

    2016-02-12

    characteristic and precision recall curves. New 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION...detection on data in the compressed domain. Detection performance was analyzed using receiver operating characteristic and precision recall curves. New...following categories: (b) Papers published in non-peer-reviewed journals (N/A for none) (c) Presentations Received Paper TOTAL : Received Paper TOTAL

  16. Rapid PCR Detection of Mycoplasma hominis, Ureaplasma urealyticum, and Ureaplasma parvum

    OpenAIRE

    Scott A. Cunningham; Jayawant N. Mandrekar; Jon E. Rosenblatt; Robin Patel

    2013-01-01

    Objective. We compared laboratory developed real-time PCR assays for detection of Mycoplasma hominis and for detection and differentiation of Ureaplasma urealyticum and parvum to culture using genitourinary specimens submitted for M. hominis and Ureaplasma culture. Methods. 283 genitourinary specimens received in the clinical bacteriology laboratory for M. hominis and Ureaplasma species culture were evaluated. Nucleic acids were extracted using the Total Nucleic Acid Kit on the MagNA Pure 2.0...

  17. Drug resistance in colorectal cancer cell lines is partially associated with aneuploidy status in light of profiling gene expression

    DEFF Research Database (Denmark)

    Guo, Jiao; Xu, Shaohang; Huang, Xuanlin

    2016-01-01

    A priority in solving the problem of drug resistance is to understand the molecular mechanism of how a drug induces the resistance response within cells. Because many cancer cells exhibit chromosome aneuploidy, we explored whether changes of aneuploidy status result in drug resistance. Two typical...... colorectal cancer cells, HCT116 and LoVo, were cultured with the chemotherapeutic drugs irinotecan (SN38) or oxaliplatin (QxPt), and the non- and drug-resistant cell lines were selected. Whole exome sequencing (WES) was employed to evaluate the aneuploidy status of these cells, and RNAseq and LC-MS/MS were...... the aneuploidy status in cancer cells, which was partially associated with the acquired drug resistance....

  18. Antibody modified gold nano-mushroom arrays for rapid detection of alpha-fetoprotein.

    Science.gov (United States)

    Li, Wanbo; Jiang, Xueqin; Xue, Jiancai; Zhou, Zhangkai; Zhou, Jianhua

    2015-06-15

    Localized surface plasmon resonance (LSPR) combined with immunoassay shows greatly potential in fast detection of tumor markers. In this paper, a highly sensitive LSPR substrate has been fabricated and modified for direct detection of alpha-fetoprotein (AFP). The biosensor was prepared by interference lithography, and modified by covalently immobilizing anti-AFP on the surface of gold nano-mushroom arrays (GNMA). The modification process was investigated by Vis-NIR reflectance spectra and cyclic voltammogram measurements. We revealed the optical properties of the modified GNMA by measuring the Vis-NIR reflectance spectra and simulating its electric intensity field distribution under light illumination. The GNMA substrate was highly sensitive, with a refractive index sensitivity of ~465 nm/RIU. The substrate can be applied to label-free detection of AFP, with the linear range and the limit of detection determined to be 20-200 ng/mL and 24 ng/mL (S/N=3), respectively. We also demonstrated its clinical application by directly detecting AFP in human serum samples. It is expected that our biosensor could be integrated on microfluidic chips for high-throughput detection in portable early diagnosis, post-operative and point-of-care (POC) in clinical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Rapid Target Detection in High Resolution Remote Sensing Images Using Yolo Model

    Science.gov (United States)

    Wu, Z.; Chen, X.; Gao, Y.; Li, Y.

    2018-04-01

    Object detection in high resolution remote sensing images is a fundamental and challenging problem in the field of remote sensing imagery analysis for civil and military application due to the complex neighboring environments, which can cause the recognition algorithms to mistake irrelevant ground objects for target objects. Deep Convolution Neural Network(DCNN) is the hotspot in object detection for its powerful ability of feature extraction and has achieved state-of-the-art results in Computer Vision. Common pipeline of object detection based on DCNN consists of region proposal, CNN feature extraction, region classification and post processing. YOLO model frames object detection as a regression problem, using a single CNN predicts bounding boxes and class probabilities in an end-to-end way and make the predict faster. In this paper, a YOLO based model is used for object detection in high resolution sensing images. The experiments on NWPU VHR-10 dataset and our airport/airplane dataset gain from GoogleEarth show that, compare with the common pipeline, the proposed model speeds up the detection process and have good accuracy.

  20. A rapid detection method for policy-sensitive amines real-time supervision.

    Science.gov (United States)

    Zhang, Haixu; Shu, Jinian; Yang, Bo; Zhang, Peng; Ma, Pengkun

    2018-02-01

    Many organic amines that comprise a benzene ring are policy-sensitive because of their toxicity and links to social harm. However, to date, detection of such compounds mainly relies on offline methods. This study proposes an online pptv (parts per trillion by volume) level of detection method for amines, using the recently-built vacuum ultraviolet photoionization mass spectrometer (VUV-PIMS) combined with a new doping technique. Thus, the dichloromethane doping-assisted photoionization mass spectra of aniline, benzylamine, phenethylamine, amphetamine, and their structural isomers were recorded. The dominant characteristic mass peaks for all amines are those afforded by protonated amines and the amino radical-loss. The signal intensities of the amines were enhanced by 60-130 times compared to those recorded without doping assistance. Under 10s detection time, the sensitivities of aniline and benzylamine in the gas phase were determined as 4.0 and 2.7 countspptv -1 , with limits of detection (LODs) of 36 and 22 pptv, respectively. Notably, the detection efficiency of this method can be tenfold better in future applications since the ion transmission efficiency of the mass spectrometer was intentionally reduced to ~ 10% in this study. Therefore, dichloromethane doping-assisted photoionization mass spectrometry has proven to be a highly promising on-line approach to amine detection in environmental and judicial supervision and shows great potential for application in the biological field. Copyright © 2017 Elsevier B.V. All rights reserved.