WorldWideScience

Sample records for rapid aerosol formation

  1. A new oxidation flow reactor for measuring secondary aerosol formation of rapidly changing emission sources

    Science.gov (United States)

    Simonen, Pauli; Saukko, Erkka; Karjalainen, Panu; Timonen, Hilkka; Bloss, Matthew; Aakko-Saksa, Päivi; Rönkkö, Topi; Keskinen, Jorma; Dal Maso, Miikka

    2017-04-01

    Oxidation flow reactors (OFRs) or environmental chambers can be used to estimate secondary aerosol formation potential of different emission sources. Emissions from anthropogenic sources, such as vehicles, often vary on short timescales. For example, to identify the vehicle driving conditions that lead to high potential secondary aerosol emissions, rapid oxidation of exhaust is needed. However, the residence times in environmental chambers and in most oxidation flow reactors are too long to study these transient effects ( ˜ 100 s in flow reactors and several hours in environmental chambers). Here, we present a new oxidation flow reactor, TSAR (TUT Secondary Aerosol Reactor), which has a short residence time ( ˜ 40 s) and near-laminar flow conditions. These improvements are achieved by reducing the reactor radius and volume. This allows studying, for example, the effect of vehicle driving conditions on the secondary aerosol formation potential of the exhaust. We show that the flow pattern in TSAR is nearly laminar and particle losses are negligible. The secondary organic aerosol (SOA) produced in TSAR has a similar mass spectrum to the SOA produced in the state-of-the-art reactor, PAM (potential aerosol mass). Both reactors produce the same amount of mass, but TSAR has a higher time resolution. We also show that TSAR is capable of measuring the secondary aerosol formation potential of a vehicle during a transient driving cycle and that the fast response of TSAR reveals how different driving conditions affect the amount of formed secondary aerosol. Thus, TSAR can be used to study rapidly changing emission sources, especially the vehicular emissions during transient driving.

  2. Rapid Formation of Molecular Bromine from Deliquesced NaBr Aerosol in the Presence of Ozone and UV Light

    Science.gov (United States)

    The formation of gas-phase bromine from aqueous sodium bromide aerosols is investigated through a combination of chamber experiments and chemical kinetics modeling. Experiments show that Br2(g) is produced rapidly from deliquesced NaBr aerosols in the presence of OH radicals prod...

  3. Organic aerosol formation in citronella candle plumes.

    Science.gov (United States)

    Bothe, Melanie; Donahue, Neil McPherson

    2010-09-01

    Citronella candles are widely used as insect repellants, especially outdoors in the evening. Because these essential oils are unsaturated, they have a unique potential to form secondary organic aerosol (SOA) via reaction with ozone, which is also commonly elevated on summer evenings when the candles are often in use. We investigated this process, along with primary aerosol emissions, by briefly placing a citronella tealight candle in a smog chamber and then adding ozone to the chamber. In repeated experiments, we observed rapid and substantial SOA formation after ozone addition; this process must therefore be considered when assessing the risks and benefits of using citronella candle to repel insects.

  4. Photochemical organonitrate formation in wet aerosols

    Science.gov (United States)

    Lim, Yong Bin; Kim, Hwajin; Kim, Jin Young; Turpin, Barbara J.

    2016-10-01

    Water is the most abundant component of atmospheric fine aerosol. However, despite rapid progress, multiphase chemistry involving wet aerosols is still poorly understood. In this work, we report results from smog chamber photooxidation of glyoxal- and OH-containing ammonium sulfate or sulfuric acid particles in the presence of NOx and O3 at high and low relative humidity. Particles were analyzed using ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). During the 3 h irradiation, OH oxidation products of glyoxal that are also produced in dilute aqueous solutions (e.g., oxalic acids and tartaric acids) were formed in both ammonium sulfate (AS) aerosols and sulfuric acid (SA) aerosols. However, the major products were organonitrogens (CHNO), organosulfates (CHOS), and organonitrogen sulfates (CHNOS). These were also the dominant products formed in the dark chamber, indicating non-radical formation. In the humid chamber (> 70 % relative humidity, RH), two main products for both AS and SA aerosols were organonitrates, which appeared at m / z- 147 and 226. They were formed in the aqueous phase via non-radical reactions of glyoxal and nitric acid, and their formation was enhanced by photochemistry because of the photochemical formation of nitric acid via reactions of peroxy radicals, NOx and OH during the irradiation.

  5. Formation of the natural sulfate aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V.M.; Hillamo, R.; Maekinen, M.; Virkkula, A.; Maekelae, T.; Pakkanen, T. [Helsinki Univ. (Finland). Dept. of Physics

    1996-12-31

    Anthropogenic sulfate aerosol, together with particles from biomass burning, may significantly reduce the climatic warming due to man-made greenhouse gases. The radiative forcing of aerosol particles is based on their ability to scatter and absorb solar radiation (direct effect), and on their influences on cloud albedos and lifetimes (indirect effect). The direct aerosol effect depends strongly on the size, number and chemical composition of particles, being greatest for particles of 0.1-1 {mu}m in diameter. The indirect aerosol effect is dictated by the number of particles being able to act as cloud condensation nuclei (CCN). For sulfate particles, the minimum CCN size in tropospheric clouds is of the order of 0.05-0.2 {mu}m. To improve aerosol parameterizations in future climate models, it is required that (1) both primary and secondary sources of various particle types will be characterized at a greater accuracy, and (2) the influences of various atmospheric processes on the spatial and temporal distribution of these particles and their physico-chemical properties are known much better than at the present. In estimating the climatic forcing due to the sulfate particles, one of the major problems is to distinguish between sulfur from anthropogenic sources and that of natural origin. Global emissions of biogenic and anthropogenic sulfate pre-cursors are comparable in magnitude, but over regional scales either of these two source types may dominate. The current presentation is devoted to discussing the natural sulfate aerosol, including the formation of sulfur-derived particles in the marine environment, and the use of particulate methanesulfonic acid (MSA) as a tracer for the natural sulfate

  6. Formation of the natural sulfate aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V M; Hillamo, R; Maekinen, M; Virkkula, A; Maekelae, T; Pakkanen, T [Helsinki Univ. (Finland). Dept. of Physics

    1997-12-31

    Anthropogenic sulfate aerosol, together with particles from biomass burning, may significantly reduce the climatic warming due to man-made greenhouse gases. The radiative forcing of aerosol particles is based on their ability to scatter and absorb solar radiation (direct effect), and on their influences on cloud albedos and lifetimes (indirect effect). The direct aerosol effect depends strongly on the size, number and chemical composition of particles, being greatest for particles of 0.1-1 {mu}m in diameter. The indirect aerosol effect is dictated by the number of particles being able to act as cloud condensation nuclei (CCN). For sulfate particles, the minimum CCN size in tropospheric clouds is of the order of 0.05-0.2 {mu}m. To improve aerosol parameterizations in future climate models, it is required that (1) both primary and secondary sources of various particle types will be characterized at a greater accuracy, and (2) the influences of various atmospheric processes on the spatial and temporal distribution of these particles and their physico-chemical properties are known much better than at the present. In estimating the climatic forcing due to the sulfate particles, one of the major problems is to distinguish between sulfur from anthropogenic sources and that of natural origin. Global emissions of biogenic and anthropogenic sulfate pre-cursors are comparable in magnitude, but over regional scales either of these two source types may dominate. The current presentation is devoted to discussing the natural sulfate aerosol, including the formation of sulfur-derived particles in the marine environment, and the use of particulate methanesulfonic acid (MSA) as a tracer for the natural sulfate

  7. Secondary organic aerosols: Formation potential and ambient data

    DEFF Research Database (Denmark)

    Barthelmie, R.J.; Pryor, S.C.

    1997-01-01

    Organic aerosols comprise a significant fraction of the total atmospheric particle loading and are associated with radiative forcing and health impacts. Ambient organic aerosol concentrations contain both a primary and secondary component. Herein, fractional aerosol coefficients (FAC) are used...... in conjunction with measurements of volatile organic compounds (VOC) to predict the formation potential of secondary organic aerosols (SOA) in the Lower Fraser Valley (LEV) of British Columbia. The predicted concentrations of SOA show reasonable accord with ambient aerosol measurements and indicate considerable...

  8. Formation and dynamic change of aerosol particles

    International Nuclear Information System (INIS)

    Kasahara, Mikio

    1986-01-01

    Processes of aerosol particle nucleation are roughly grouped into two types. In one, aerosol is produced as a result of dispersion of solid or liquid by mechanical force while in the other it is formed through phase transition from gas to solid or liquid due to cohesion caused by cooling, expansion or chemical reaction. This article reviews various aspects of aerosol particle nucleation through the latter type of processes and behaviors of the particles formed. Gas-to-particle conversion processes are divided into those of homogeneous and heterogeneous nucleation, and the former include homogeneous homomolecular and homogeneous heteromolecular nucleation processes. Here, homoneneous homomolecular nucleation is described centering on the theories proposed by Backer and Doring-Zeldovich-Volmer-Frenkel while homogeneous heteromolecular systems are outlined citing the theory developed by Kiang and Stauffer. Heterogeneous nucleation (or heterogeneous condensation) is discussed on the basis of the relationship between the mean free path of air molecules and the particle size. Various theories for particle formation and growth are listed and briefly outlined. Some of them are compared with experimental results. Models are cited to explain behaviors of aerosol particles after being formed. Also described is simulation of particle nucleation and growth in relation to atmospheric pollution and possible accidents of liquid-metal fast breeder reactors. (Nogami, K.)

  9. Organic aerosol formation during the atmospheric degradation of toluene.

    Science.gov (United States)

    Hurley, M D; Sokolov, O; Wallington, T J; Takekawa, H; Karasawa, M; Klotz, B; Barnes, I; Becker, K H

    2001-04-01

    Organic aerosol formation during the atmospheric oxidation of toluene was investigated using smog chamber systems. Toluene oxidation was initiated by the UV irradiation of either toluene/air/NOx or toluene/air/CH3ONO/NO mixtures. Aerosol formation was monitored using scanning mobility particle sizers and toluene loss was monitored by in-situ FTIR spectroscopy or GC-FID techniques. The experimental results show that the reaction of OH radicals, NO3 radicals and/or ozone with the first generation products of toluene oxidation are sources of organic aerosol during the atmospheric oxidation of toluene. The aerosol results fall into two groups, aerosol formed in the absence and presence of ozone. An analytical expression for aerosol formation is developed and values are obtained for the yield of the aerosol species. In the absence of ozone the aerosol yield, defined as aerosol formed per unit toluene consumed once a threshold for aerosol formation has been exceeded, is 0.075 +/- 0.004. In the presence of ozone the aerosol yield is 0.108 +/- 0.004. This work provides experimental evidence and a simple theory confirming the formation of aerosol from secondary reactions.

  10. Laser filament-induced aerosol formation

    Directory of Open Access Journals (Sweden)

    H. Saathoff

    2013-05-01

    Full Text Available Using the aerosol and cloud simulation chamber AIDA, we investigated the laser filament induced particle formation in ambient air, humid synthetic air, humid nitrogen, argon–oxygen mixture, and pure argon in order to simulate the particle formation under realistic atmospheric conditions as well as to investigate the influence of typical gas-phase atmospheric constituents on the particle formation. Terawatt laser plasma filaments generated new particles in the size range 3 to 130 nm with particle production rates ranging from 1 × 107 to 5 × 109 cm−3 plasma s−1 for the given experimental conditions. In all cases the particle formation rates increased exponentially with the water content of the gas mixture. Furthermore, the presence of a few ppb of trace gases like SO2 and α-pinene clearly enhanced the particle yield by number, the latter also by mass. Our findings suggest that new particle formation is efficiently supported by oxidized species like acids generated by the photoionization of both major and minor components of the air, including N2, NH3, SO2 and organics.

  11. Aircraft exhaust aerosol formation and growth

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R C; Miake-Lye, R C; Anderson, M R; Kolb, C E [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

    1998-12-31

    Aerosol formation and growth in the exhaust plume of the ATTAS aircraft at an altitude of approximately 9 km, burning fuels with 2 ppmm sulfur (`low`) and 266 ppmm (`high`) sulfur has been modeled using an aerosol dynamics model for nucleation, vapor condensation and coagulation, coupled to a 2-dimensional, axisymmetric flow code to treat plume dilution and turbulent mixing. For both the `low` and `high` sulfur fuels, approximately 60% of the available water had condensed within the first 200 m downstream of the exhaust exit. The contrail particle diameters ranged between 0.4 to 1.6 {mu}m. However, the size distributions as a function of radial position for the `low` sulfur plume were broader than the corresponding distributions for the `high` sulfur plume. The model results indicate for a fuel sulfur mass loading of 2 ppmm, sulfuric acid remains a viable activating agent and that the differences in the contrail particle size distributions for sulfur mass loadings between 2 ppmm and 260 ppmm would be difficult to detect. (author) 12 refs.

  12. Aircraft exhaust aerosol formation and growth

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Miake-Lye, R.C.; Anderson, M.R.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

    1997-12-31

    Aerosol formation and growth in the exhaust plume of the ATTAS aircraft at an altitude of approximately 9 km, burning fuels with 2 ppmm sulfur (`low`) and 266 ppmm (`high`) sulfur has been modeled using an aerosol dynamics model for nucleation, vapor condensation and coagulation, coupled to a 2-dimensional, axisymmetric flow code to treat plume dilution and turbulent mixing. For both the `low` and `high` sulfur fuels, approximately 60% of the available water had condensed within the first 200 m downstream of the exhaust exit. The contrail particle diameters ranged between 0.4 to 1.6 {mu}m. However, the size distributions as a function of radial position for the `low` sulfur plume were broader than the corresponding distributions for the `high` sulfur plume. The model results indicate for a fuel sulfur mass loading of 2 ppmm, sulfuric acid remains a viable activating agent and that the differences in the contrail particle size distributions for sulfur mass loadings between 2 ppmm and 260 ppmm would be difficult to detect. (author) 12 refs.

  13. Organic aerosol formation in citronella candle plumes

    OpenAIRE

    Bothe, Melanie; Donahue, Neil McPherson

    2010-01-01

    Citronella candles are widely used as insect repellants, especially outdoors in the evening. Because these essential oils are unsaturated, they have a unique potential to form secondary organic aerosol (SOA) via reaction with ozone, which is also commonly elevated on summer evenings when the candles are often in use. We investigated this process, along with primary aerosol emissions, by briefly placing a citronella tealight candle in a smog chamber and then adding ozone to the chamber. In rep...

  14. Laboratory Investigation of Aerosol Formation in Combustion of Biomass

    International Nuclear Information System (INIS)

    Zeuthen, Jacob; Livbjerg, Hans

    2005-01-01

    In this project the formation of aerosol particles and deposits in power plants during combustion of CO 2 -neutral fuels are investigated. For the experimental work a 173 cm long tubular furnace (diam=25 mm) with laminar flow is used. It is possible to control the temperature up to ∼ 1200 deg C in nine separate axial sections along the flue gas flow direction. In the first part of the reactor an inner tube is placed. In this inner tube a flow of inert nitrogen passes pellets of inert alumina impregnated with the salt to be volatilized (e.g. NaCl or KCl). The nitrogen gets saturated and by changing the temperature of the pellets it is possible to adjust the salt concentration in the gas. Other reactive gases (SO2, H2O, NO and O2/air) enter the reactor on the outside of the salt-containing alumina pipe. The temperature is kept constant in the first part of the reactor and is then decreased in the flow direction after a given length. The results obtained so far have shown that the homogeneous nucleation rate of pure salts depends on cooling rate, salt concentration and on the vapor pressure of the salt. Examples of results are shown at figure 1a. Here, two identical experiments are performed with two different salts. Since the vapor pressure of KCl is higher than for NaCl at the same temperature, a higher mass concentration of particles is obtained for this salt. Due to a lower salt concentration the number concentration of NaCl particles is higher, but the particles are smaller. The particles are analyzed with a number of instruments, including scanning mobility particle sizer, low pressure cascade impactor and transition electron microscopy. Experiments with introduction of nucleation seeds in the inlet gas have been performed, and it has been found that a suppression of homogeneous nucleation can be observed at rather low number concentrations of seeds. Homogeneous nucleation is favored by rapid cooling and the critical seed concentration for suppression of

  15. Potential of secondary aerosol formation from Chinese gasoline engine exhaust.

    Science.gov (United States)

    Du, Zhuofei; Hu, Min; Peng, Jianfei; Guo, Song; Zheng, Rong; Zheng, Jing; Shang, Dongjie; Qin, Yanhong; Niu, He; Li, Mengren; Yang, Yudong; Lu, Sihua; Wu, Yusheng; Shao, Min; Shuai, Shijin

    2018-04-01

    Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds (VOCs). However, little information on secondary aerosol formation from exhaust for Chinese vehicles and fuel conditions is available. In this study, chamber experiments were conducted to quantify the potential of secondary aerosol formation from the exhaust of a port fuel injection gasoline engine. The engine and fuel used are common in the Chinese market, and the fuel satisfies the China V gasoline fuel standard. Substantial secondary aerosol formation was observed during a 4-5hr simulation, which was estimated to represent more than 10days of equivalent atmospheric photo-oxidation in Beijing. As a consequence, the extreme case secondary organic aerosol (SOA) production was 426±85mg/kg-fuel, with high levels of precursors and OH exposure. The low hygroscopicity of the aerosols formed inside the chamber suggests that SOA was the dominant chemical composition. Fourteen percent of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatile organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reductions of emissions of aerosol precursor gases from vehicles are essential to mediate pollution in China. Copyright © 2017. Published by Elsevier B.V.

  16. The effect of radioactive aerosols on fog formation

    International Nuclear Information System (INIS)

    Ali, G.; Khan, E.U.; Ali, N.; Khan, H.A.; Waheed, A.

    2011-01-01

    This research study has been carried out to explore the dependence of fog formation on radioactive aerosols. The aerosols containing radioactive nuclides are called radioactive aerosols. A large number of radioactive nuclides are present in the atmosphere among which the two most important nuclides, 7Be and 210Pb are considered here in this study. Results for Activity Concentrations of these radio-nuclides in air samples in clear and foggy conditions were comparatively analyzed. About 19% increase in Activity concentration for 210Pb and about 23% increase in Activity Concentration for 7Be was recorded during fog as compared to clear conditions. This increase in Activity Concentration during fog indicates that the presence of aerosols laden with these radio-nuclides is also one of the so many factors responsible for fog formation

  17. Sulfate Formation on Mars by Volcanic Aerosols: A New Look

    Science.gov (United States)

    Blaney, D. L.

    1996-03-01

    Sulfur was measured at both Viking Lander sites in abundances of 5-9 wt % SO3. Because the sulfur was more concentrated in clumps which disintegrated and the general oxidized nature of the Martian soil, these measurements led to the assumption that a sulfate duricrust existed. Two types of models for sulfate formation have been proposed. One is a formation by upwardly migrating ground water. The other is the formation of sulfates by the precipitation of volcanic aerosols. Most investigators have tended to favor the ground water origin of sulfates on Mars. However, evidence assemble since Viking may point to a volcanic aerosol origin.

  18. Heterogeneous formation of HONO on carbonaceous aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Ammann, M.; Kalberer, M.; Tabor, K. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)] [and others

    1997-09-01

    Based on an on-line and in situ experimental approach, for the first time heterogeneous production of nitrous acid (HONO) on carbon aerosol at ambient pressure and low NO{sub 2} concentration has been quantified by use of a {sup 13}N tracer technique. (author) 1 fig., 4 refs.

  19. Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols

    Directory of Open Access Journals (Sweden)

    L. D. Yee

    2013-08-01

    Full Text Available The formation of secondary organic aerosol from oxidation of phenol, guaiacol (2-methoxyphenol, and syringol (2,6-dimethoxyphenol, major components of biomass burning, is described. Photooxidation experiments were conducted in the Caltech laboratory chambers under low-NOx (2O2 as the OH source. Secondary organic aerosol (SOA yields (ratio of mass of SOA formed to mass of primary organic reacted greater than 25% are observed. Aerosol growth is rapid and linear with the primary organic conversion, consistent with the formation of essentially non-volatile products. Gas- and aerosol-phase oxidation products from the guaiacol system provide insight into the chemical mechanisms responsible for SOA formation. Syringol SOA yields are lower than those of phenol and guaiacol, likely due to novel methoxy group chemistry that leads to early fragmentation in the gas-phase photooxidation. Atomic oxygen to carbon (O : C ratios calculated from high-resolution-time-of-flight Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS measurements of the SOA in all three systems are ~ 0.9, which represent among the highest such ratios achieved in laboratory chamber experiments and are similar to that of aged atmospheric organic aerosol. The global contribution of SOA from intermediate volatility and semivolatile organic compounds has been shown to be substantial (Pye and Seinfeld, 2010. An approach to representing SOA formation from biomass burning emissions in atmospheric models could involve one or more surrogate species for which aerosol formation under well-controlled conditions has been quantified. The present work provides data for such an approach.

  20. Technical committee meeting on aerosol formation, vapour deposits and sodium vapour trapping. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-01-01

    The papers presented at the LMFBR meeting on aerosol formation covered the following four main topics: theoretical studies on aerosol behaviour and comparison with experimental results; techniques for measurement of aerosols; techniques for trapping sodium vapour and aerosols in gas circuits; design of components having to cope with aerosol deposits. The resulting summaries, conclusions and recommendations which were were agreed upon are presented.

  1. Technical committee meeting on aerosol formation, vapour deposits and sodium vapour trapping. Summary report

    International Nuclear Information System (INIS)

    1977-01-01

    The papers presented at the LMFBR meeting on aerosol formation covered the following four main topics: theoretical studies on aerosol behaviour and comparison with experimental results; techniques for measurement of aerosols; techniques for trapping sodium vapour and aerosols in gas circuits; design of components having to cope with aerosol deposits. The resulting summaries, conclusions and recommendations which were were agreed upon are presented

  2. An interfacial mechanism for cloud droplet formation on organic aerosols.

    Science.gov (United States)

    Ruehl, Christopher R; Davies, James F; Wilson, Kevin R

    2016-03-25

    Accurate predictions of aerosol/cloud interactions require simple, physically accurate parameterizations of the cloud condensation nuclei (CCN) activity of aerosols. Current models assume that organic aerosol species contribute to CCN activity by lowering water activity. We measured droplet diameters at the point of CCN activation for particles composed of dicarboxylic acids or secondary organic aerosol and ammonium sulfate. Droplet activation diameters were 40 to 60% larger than predicted if the organic was assumed to be dissolved within the bulk droplet, suggesting that a new mechanism is needed to explain cloud droplet formation. A compressed film model explains how surface tension depression by interfacial organic molecules can alter the relationship between water vapor supersaturation and droplet size (i.e., the Köhler curve), leading to the larger diameters observed at activation. Copyright © 2016, American Association for the Advancement of Science.

  3. SECONDARY ORGANIC AEROSOL FORMATION FROM THE OXIDATION OF AROMATIC HYDROCARBONS IN THE PRESENCE OF DRY SUBMICRON AMMONIUM SULFATE AEROSOL

    Science.gov (United States)

    A laboratory study was conducted to examine formation of secondary organic aerosols. A smog chamber system was developed for studying gas-aerosol interactions in a dynamic flow reactor. These experiments were conducted to investigate the fate of gas and aerosol phase compounds ...

  4. Silver-indium-cadmium control rod behavior and aerosol formation in severe reactor accidents

    International Nuclear Information System (INIS)

    Petti, D.A.

    1987-04-01

    Silver-indium-cadmium (Ag-In-Cd) control rod behavior and aerosol formation in severe reactor accidents are examined in an attempt to improve the methodology used to estimate reactor accident source terms. Control rod behavior in both in-pile and out-of-pile experiments is reviewed. A mechanistic model named VAPOR is developed that calculates the downward relocation and simultaneous vaporization behavior of the Ag-In-Cd alloy expected after control rod failure in a severe reactor accident. VAPOR is used to predict the release of silver, indium, and cadmium vapors expected in the Power Burst Facility (PBF) Severe Fuel Damage (SFD) 1-4 experiment. In addition, a sensitivity study is performed. Although cadmium is found to be the most volatile constituent of the alloy, all of the calculations predict that the rapid relocation of the alloy down to cooler portions of the core results in a small release for all three control rod alloy vapors. Potential aerosol formation mechanisms in a severe reactor accident are reviewed. Specifically, models for homogeneous, ion-induced, and heterogeneous nucleation are investigated. These models are applied to silver, cadmium, and CsI to examine the nucleation behavior of these three potential aerosol sources in a severe reactor accident and to illustrate the competition among these mechanisms for vapor depletion. The results indicate that aerosol formation in a severe reactor accident occurs in three stages. In the first stage, ion-induced nucleation causes aerosol generation. During the second stage, ion-induced and heterogeneous nucleation operates as competing pathways for gas-to-particle conversion until sufficient aerosol surface area is generated. In the third stage, ion-induced nucleation ceases; and heterogeneous nucleation becomes the dominant mechanism of gas-to-particle conversion until equilibrium is reached

  5. A look at aerosol formation using data mining techniques

    Directory of Open Access Journals (Sweden)

    S. Hyvönen

    2005-01-01

    Full Text Available Atmospheric aerosol particle formation is frequently observed throughout the atmosphere, but despite various attempts of explanation, the processes behind it remain unclear. In this study data mining techniques were used to find the key parameters needed for atmospheric aerosol particle formation to occur. A dataset of 8 years of 80 variables collected at the boreal forest station (SMEAR II in Southern Finland was used, incorporating variables such as radiation, humidity, SO2, ozone and present aerosol surface area. This data was analyzed using clustering and classification methods. The aim of this approach was to gain new parameters independent of any subjective interpretation. This resulted in two key parameters, relative humidity and preexisting aerosol particle surface (condensation sink, capable in explaining 88% of the nucleation events. The inclusion of any further parameters did not improve the results notably. Using these two variables it was possible to derive a nucleation probability function. Interestingly, the two most important variables are related to mechanisms that prevent the nucleation from starting and particles from growing, while parameters related to initiation of particle formation seemed to be less important. Nucleation occurs only with low relative humidity and condensation sink values. One possible explanation for the effect of high water content is that it prevents biogenic hydrocarbon ozonolysis reactions from producing sufficient amounts of low volatility compounds, which might be able to nucleate. Unfortunately the most important biogenic hydrocarbon compound emissions were not available for this study. Another effect of water vapour may be due to its linkage to cloudiness which may prevent the formation of nucleating and/or condensing vapours. A high number of preexisting particles will act as a sink for condensable vapours that otherwise would have been able to form sufficient supersaturation and initiate the

  6. Modeling Secondary Organic Aerosol Formation From Emissions of Combustion Sources

    Science.gov (United States)

    Jathar, Shantanu Hemant

    Atmospheric aerosols exert a large influence on the Earth's climate and cause adverse public health effects, reduced visibility and material degradation. Secondary organic aerosol (SOA), defined as the aerosol mass arising from the oxidation products of gas-phase organic species, accounts for a significant fraction of the submicron atmospheric aerosol mass. Yet, there are large uncertainties surrounding the sources, atmospheric evolution and properties of SOA. This thesis combines laboratory experiments, extensive data analysis and global modeling to investigate the contribution of semi-volatile and intermediate volatility organic compounds (SVOC and IVOC) from combustion sources to SOA formation. The goals are to quantify the contribution of these emissions to ambient PM and to evaluate and improve models to simulate its formation. To create a database for model development and evaluation, a series of smog chamber experiments were conducted on evaporated fuel, which served as surrogates for real-world combustion emissions. Diesel formed the most SOA followed by conventional jet fuel / jet fuel derived from natural gas, gasoline and jet fuel derived from coal. The variability in SOA formation from actual combustion emissions can be partially explained by the composition of the fuel. Several models were developed and tested along with existing models using SOA data from smog chamber experiments conducted using evaporated fuel (this work, gasoline, fischertropschs, jet fuel, diesels) and published data on dilute combustion emissions (aircraft, on- and off-road gasoline, on- and off-road diesel, wood burning, biomass burning). For all of the SOA data, existing models under-predicted SOA formation if SVOC/IVOC were not included. For the evaporated fuel experiments, when SVOC/IVOC were included predictions using the existing SOA model were brought to within a factor of two of measurements with minor adjustments to model parameterizations. Further, a volatility

  7. Substantial secondary organic aerosol formation in a coniferous forest: observations of both day- and nighttime chemistry

    OpenAIRE

    A. K. Y. Lee; J. P. D. Abbatt; W. R. Leaitch; S.-M. Li; S. J. Sjostedt; S. J. Sjostedt; J. J. B. Wentzell; J. Liggio; A. M. Macdonald

    2016-01-01

    Substantial biogenic secondary organic aerosol (BSOA) formation was investigated in a coniferous forest mountain region at Whistler, British Columbia. A largely biogenic aerosol growth episode was observed, providing a unique opportunity to investigate BSOA formation chemistry in a forested environment with limited influence from anthropogenic emissions. Positive matrix factorization of aerosol mass spectrometry (AMS) measurement identifie...

  8. Secondary organic aerosol formation and composition from the photo-oxidation of methyl chavicol (estragole)

    Science.gov (United States)

    Pereira, K. L.; Hamilton, J. F.; Rickard, A. R.; Bloss, W. J.; Alam, M. S.; Camredon, M.; Muñoz, A.; Vázquez, M.; Borrás, E.; Ródenas, M.

    2014-06-01

    The increasing demand for palm oil for uses in biofuel and food products is leading to rapid expansion of oil palm agriculture. Methyl chavicol (also known as estragole and 1-allyl-4-methoxybenzene) is an oxygenated biogenic volatile organic compound (VOC) that was recently identified as the main floral emission from an oil palm plantation in Malaysian Borneo. The emissions of methyl chavicol observed may impact regional atmospheric chemistry, but little is known of its ability to form secondary organic aerosol (SOA). The photo-oxidation of methyl chavicol was investigated at the European Photoreactor chamber as a part of the atmospheric chemistry of methyl chavicol (ATMECH) project. Aerosol samples were collected using a particle into liquid sampler (PILS) and analysed offline using an extensive range of instruments including; high-performance liquid chromatography mass spectrometry (HPLC-ITMS), high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-QTOFMS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The SOA yield was determined as 18 and 29% for an initial VOC mixing ratio of 212 and 460 ppbv (parts per billion by volume) respectively; using a VOC:NOx ratio of ~5:1. In total, 59 SOA compounds were observed and the structures of 10 compounds have been identified using high-resolution tandem mass spectrometry. The addition of hydroxyl and/or nitro-functional groups to the aromatic ring appears to be an important mechanistic pathway for aerosol formation. This results in the formation of compounds with both low volatility and high O:C ratios, where functionalisation rather than fragmentation is mainly observed as a result of the stability of the ring. The SOA species observed can be characterised as semi-volatile to low-volatility oxygenated organic aerosol (SVOOA and LVOOA) components and therefore may be important in aerosol formation and growth.

  9. Formation of secondary organic aerosol from isoprene oxidation over Europe

    Directory of Open Access Journals (Sweden)

    M. Karl

    2009-09-01

    Full Text Available The role of isoprene as a precursor to secondary organic aerosol (SOA over Europe is studied with the two-way nested global chemistry transport model TM5. The inclusion of the formation of SOA from isoprene oxidation in our model almost doubles the atmospheric burden of SOA over Europe compared to SOA formation from terpenes and aromatics. The reference simulation, which considers SOA formation from isoprene, terpenes and aromatics, predicts a yearly European production rate of 1.0 Tg SOA yr−1 and an annual averaged atmospheric burden of about 50 Gg SOA over Europe. A fraction of 35% of the SOA produced in the boundary layer over Europe is transported to higher altitudes or to other world regions. Summertime measurements of organic matter (OM during the extensive EMEP OC/EC campaign 2002/2003 are better reproduced when SOA formation from isoprene is taken into account, reflecting also the strong seasonality of isoprene and other biogenic volatile organic compounds (BVOC emissions from vegetation. However, during winter, our model strongly underestimates OM, likely caused by missing wood burning in the emission inventories. Uncertainties in the parameterisation of isoprene SOA formation have been investigated. Maximum SOA production is found for irreversible sticking (non-equilibrium partitioning of condensable vapours on particles, with tropospheric SOA production over Europe increased by a factor of 4 in summer compared to the reference case. Completely neglecting SOA formation from isoprene results in the lowest estimate (0.51 Tg SOA yr−1. The amount and the nature of the absorbing matter are shown to be another key uncertainty when predicting SOA levels. Consequently, smog chamber experiments on SOA formation should be performed with different types of seed aerosols and without seed aerosols in order to derive an improved treatment of the absorption of SOA in the models. Consideration of a number of recent insights

  10. Identifying precursors and aqueous organic aerosol formation pathways during the SOAS campaign

    Directory of Open Access Journals (Sweden)

    N. Sareen

    2016-11-01

    Full Text Available Aqueous multiphase chemistry in the atmosphere can lead to rapid transformation of organic compounds, forming highly oxidized, low-volatility organic aerosol and, in some cases, light-absorbing (brown carbon. Because liquid water is globally abundant, this chemistry could substantially impact climate, air quality, and health. Gas-phase precursors released from biogenic and anthropogenic sources are oxidized and fragmented, forming water-soluble gases that can undergo reactions in the aqueous phase (in clouds, fogs, and wet aerosols, leading to the formation of secondary organic aerosol (SOAAQ. Recent studies have highlighted the role of certain precursors like glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone, and epoxides in the formation of SOAAQ. The goal of this work is to identify additional precursors and products that may be atmospherically important. In this study, ambient mixtures of water-soluble gases were scrubbed from the atmosphere into water at Brent, Alabama, during the 2013 Southern Oxidant and Aerosol Study (SOAS. Hydroxyl (OH⚫ radical oxidation experiments were conducted with the aqueous mixtures collected from SOAS to better understand the formation of SOA through gas-phase followed by aqueous-phase chemistry. Total aqueous-phase organic carbon concentrations for these mixtures ranged from 92 to 179 µM-C, relevant for cloud and fog waters. Aqueous OH-reactive compounds were primarily observed as odd ions in the positive ion mode by electrospray ionization mass spectrometry (ESI-MS. Ultra high-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS spectra and tandem MS (MS–MS fragmentation of these ions were consistent with the presence of carbonyls and tetrols. Products were observed in the negative ion mode and included pyruvate and oxalate, which were confirmed by ion chromatography. Pyruvate and oxalate have been found in the particle phase in many locations (as salts and

  11. Secondary organic aerosol formation through cloud processing of aromatic VOCs

    Science.gov (United States)

    Herckes, P.; Hutchings, J. W.; Ervens, B.

    2010-12-01

    Field observations have shown substantial concentrations (20-5,500 ng L-1) of aromatic volatile organic compounds (VOC) in cloud droplets. The potential generation of secondary organic aerosol mass through the processing of these anthropogenic VOCs was investigated through laboratory and modeling studies. Under simulated atmospheric laboratory conditions, in idealized solutions, benzene, toluene, ethylbenzene, and xylene (BTEX) degraded quickly in the aqueous phase. The degradation process yielded less volatile products which would contribute to new aerosol mass upon cloud evaporation. However, when realistic cloud solutions containing natural organic matter were used in the experiments, the reaction rates decreased with increasing organic carbon content. Kinetic data derived from these experiments were used as input to a multiphase box model in order to evaluate the secondary organic aerosol (SOA) mass formation potential of cloud processing of BTEX. Model results will be presented that quantify the SOA amounts from these aqueous phase pathways. The efficiency of this multiphase SOA source will be compared to SOA yields from the same aromatics as treated in traditional SOA models that are restricted to gas phase oxidation and subsequent condensation on particles.

  12. Molecular structure impacts on secondary organic aerosol formation from glycol ethers

    Science.gov (United States)

    Li, Lijie; Cocker, David R.

    2018-05-01

    Glycol ethers, a class of widely used solvents in consumer products, are often considered exempt as volatile organic compounds based on their vapor pressure or boiling points by regulatory agencies. However, recent studies found that glycol ethers volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents indicating the potential of glycol ethers to form secondary organic aerosol (SOA). This is the first work on SOA formation from glycol ethers. The impact of molecular structure, specifically -OH, on SOA formation from glycol ethers and related ethers are investigated in the work. Ethers with and without -OH, with methyl group hindrance on -OH and with -OH at different location are studied in the presence of NOX and under "NOX free" conditions. Photooxidation experiments under different oxidation conditions confirm that the processing of ethers is a combination of carbonyl formation, cyclization and fragmentation. Bulk SOA chemical composition analysis and oxidation products identified in both gas and particle phase suggests that the presence and location of -OH in the carbon bond of ethers determine the occurrence of cyclization mechanism during ether oxidation. The cyclization is proposed as a critical SOA formation mechanism to prevent the formation of volatile compounds from fragmentation during the oxidation of ethers. Glycol ethers with -CH2-O-CH2CH2OH structure is found to readily form cyclization products, especially with the presence of NOx, which is more relevant to urban atmospheric conditions than without NOx. Glycol ethers are evaluated as dominating SOA precursors among all ethers studied. It is estimated that the contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources. The contribution of glycol ethers to anthropogenic SOA is roughly 1% of the current organic aerosol from mobile sources and will play a more important role in future anthropogenic SOA

  13. A technique for rapid source apportionment applied to ambient organic aerosol measurements from a thermal desorption aerosol gas chromatograph (TAG

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2016-11-01

    Full Text Available We present a rapid method for apportioning the sources of atmospheric organic aerosol composition measured by gas chromatography–mass spectrometry methods. Here, we specifically apply this new analysis method to data acquired on a thermal desorption aerosol gas chromatograph (TAG system. Gas chromatograms are divided by retention time into evenly spaced bins, within which the mass spectra are summed. A previous chromatogram binning method was introduced for the purpose of chromatogram structure deconvolution (e.g., major compound classes (Zhang et al., 2014. Here we extend the method development for the specific purpose of determining aerosol samples' sources. Chromatogram bins are arranged into an input data matrix for positive matrix factorization (PMF, where the sample number is the row dimension and the mass-spectra-resolved eluting time intervals (bins are the column dimension. Then two-dimensional PMF can effectively do three-dimensional factorization on the three-dimensional TAG mass spectra data. The retention time shift of the chromatogram is corrected by applying the median values of the different peaks' shifts. Bin width affects chemical resolution but does not affect PMF retrieval of the sources' time variations for low-factor solutions. A bin width smaller than the maximum retention shift among all samples requires retention time shift correction. A six-factor PMF comparison among aerosol mass spectrometry (AMS, TAG binning, and conventional TAG compound integration methods shows that the TAG binning method performs similarly to the integration method. However, the new binning method incorporates the entirety of the data set and requires significantly less pre-processing of the data than conventional single compound identification and integration. In addition, while a fraction of the most oxygenated aerosol does not elute through an underivatized TAG analysis, the TAG binning method does have the ability to achieve molecular level

  14. Ion-induced aerosol formation in a H20-H2S04 system

    International Nuclear Information System (INIS)

    Raes, F.; Janssens, A.

    1986-01-01

    The results of an experiment that was set up to demonstrate the occurrence of ion-induced aerosol formation (see Part I of this paper, Raes and Janssens, 1985) are analysed quantitatively by modelling the dynamics of aerosol formation and growth under different irradiation conditions. The model calculations indicate that ion-induced aerosol formation may contribute significantly to the total particle formation in a gas mixture that is simultaneously being irradiated with u.v. and γ irradiation. However, the measurements do not appear to be accurate enough to support these calculations. A qualitative comparison of the experiments with the calculations suggests that ion-induced nucleation is actually occurring in the experiments and that the classical theory of ion-induced aerosol formation may underestimate the actual rate of aerosol formation around ions. (author)

  15. New aerosol particles formation in the Sao Paulo Metropolitan Area

    Science.gov (United States)

    Vela, Angel; Andrade, Maria de Fatima; Ynoue, Rita

    2016-04-01

    performance. For secondary aerosols, a simulation scenario (Case_1) with only emission of primary gases (biogenic and anthropogenic) is performed to evaluate its formation potential. The study period from 7th August to 6th September 2012 has been selected due to the avaliability of experimental data from the Narrowing the Uncertainties on Aerosol and Climate Changes in Sao Paulo State (NUANCE) project. Aerosol measurements consist basically on PM2.5 and PM10 concentration. OC, EC, ion, and aerosol mass size distribution measurements were also carried out in one of the measurement sites (IAG-USP). Results show that overall the emissions of primary gases coming mainly from vehicles have a potential to form new particles between 20 and 30% in relation to the baseline PM2.5 mass concentration found in the downtown SPMA. In addition, both the observed and predicted OC and EC at the IAG-USP measurement site make up the largest fraction of PM2.5 mass with contributions around 55 and 40%, respectively.

  16. A rapid method for determining the relative solubility of plutonium aerosols

    International Nuclear Information System (INIS)

    Miglio, J.J.; Muggenburg, B.A.; Brooks, A.L.

    1977-01-01

    An in vitro system for rapidly determining the relative solubilities of plutonium-containing aerosols produced at various temperatures has been developed. Aerosols were prepared by nebulizing a solution of Pu IV in 1 M HCl and by subsequent heating at 50, 325, 600, 900, 1150 and 1300 degrees C. These aerosols were then evaluated as to relative solubility and the results compared with in vivo data from beagle dogs and Chinese hamsters. Aerosol samples from animal inhalation exposures were collected on filters and a section was sandwiched between 100 nm membranes held in a two-piece, cylindrical polyethylene holder. The holder and filter were placed in a container of solvent and stirred gently, after which the filter and solvent were separately analyzed for Pu. The effects of solvent composition, volume and temperature as well as immersion time were investigated. The results showed that using a solvent of 0.1 N HCl at 23 degrees C and an immersion time of 2 hr dissolved a sufficient amount of plutonium as to be easily assayed with a liquid scintillation counter and will provide a rapid estimate of the solubility rate of the aerosol. The in vivo and in vitro results were in relative agreement; as the production temperature of the aerosol increased, the solubility decreased. (author)

  17. Secondary organic aerosol formation from in-use motor vehicle emissions using a potential aerosol mass reactor.

    Science.gov (United States)

    Tkacik, Daniel S; Lambe, Andrew T; Jathar, Shantanu; Li, Xiang; Presto, Albert A; Zhao, Yunliang; Blake, Donald; Meinardi, Simone; Jayne, John T; Croteau, Philip L; Robinson, Allen L

    2014-10-07

    Secondary organic aerosol (SOA) formation from in-use vehicle emissions was investigated using a potential aerosol mass (PAM) flow reactor deployed in a highway tunnel in Pittsburgh, Pennsylvania. Experiments consisted of passing exhaust-dominated tunnel air through a PAM reactor over integrated hydroxyl radical (OH) exposures ranging from ∼ 0.3 to 9.3 days of equivalent atmospheric oxidation. Experiments were performed during heavy traffic periods when the fleet was at least 80% light-duty gasoline vehicles on a fuel-consumption basis. The peak SOA production occurred after 2-3 days of equivalent atmospheric oxidation. Additional OH exposure decreased the SOA production presumably due to a shift from functionalization to fragmentation dominated reaction mechanisms. Photo-oxidation also produced substantial ammonium nitrate, often exceeding the mass of SOA. Analysis with an SOA model highlight that unspeciated organics (i.e., unresolved complex mixture) are a very important class of precursors and that multigenerational processing of both gases and particles is important at longer time scales. The chemical evolution of the organic aerosol inside the PAM reactor appears to be similar to that observed in the atmosphere. The mass spectrum of the unoxidized primary organic aerosol closely resembles ambient hydrocarbon-like organic aerosol (HOA). After aging the exhaust equivalent to a few hours of atmospheric oxidation, the organic aerosol most closely resembles semivolatile oxygenated organic aerosol (SV-OOA) and then low-volatility organic aerosol (LV-OOA) at higher OH exposures. Scaling the data suggests that mobile sources contribute ∼ 2.9 ± 1.6 Tg SOA yr(-1) in the United States, which is a factor of 6 greater than all mobile source particulate matter emissions reported by the National Emissions Inventory. This highlights the important contribution of SOA formation from vehicle exhaust to ambient particulate matter concentrations in urban areas.

  18. The role of ion-induced aerosol formation in the lower atmosphere

    International Nuclear Information System (INIS)

    Raes, Frank; Janssens, Augustin; Dingenen, Rita van

    1986-01-01

    The rate of ion-induced aerosol formation in a H 2 0-H 2 S0 4 mixture depends on the relative humidity, the relative acidity and the number of ions (clusters) available for nucleation. Figure 1 shows the rates of homogeneous and ion-induced aerosol formation as a function of the H 2 S0 4 sup((gas)) concentration, for conditions prevailing in the lower atmosphere. The rate of ion-induced aerosol formation is plotted for different concentrations of pre-existing aerosol. It can be seen that ion-induced aerosol formation will only play a role in the formation of new particles when (1) the H 2 S0 4 sup((gas)) concentration is confined within the critical values for ion-induced and homogeneous aerosol formation (about 5 x 10 7 and 4 x 10 8 cm -3 respectively), and (2) the concentration of pre-existing aerosol is lower than about 5 x 10 3 cm -3 (Dp = 0.1 μm). It will be shown by numerical calculations that such conditions may be expected above the oceans. (author)

  19. Secondary organic aerosol formation from road vehicle emissions

    Science.gov (United States)

    Pieber, Simone M.; Platt, Stephen M.; El Haddad, Imad; Zardini, Alessandro A.; Suarez-Bertoa, Ricardo; Slowik, Jay G.; Huang, Ru-Jin; Hellebust, Stig; Temime-Roussel, Brice; Marchand, Nicolas; Drinovec, Luca; Mocnik, Grisa; Baltensperger, Urs; Astorga, Covadogna; Prévôt, André S. H.

    2014-05-01

    Organic aerosol particles (OA) are a major fraction of the submicron particulate matter. OA consists of directly emitted primary (POA) and secondary OA (SOA). SOA is formed in-situ in the atmosphere via the reaction of volatile organic precursors. The partitioning of SOA species depends not only on the exposure to oxidants, but for instance also on temperature, relative humidity (RH), and the absorptive mass chemical composition (presence of inorganics) and concentration. Vehicle exhaust is a known source of POA and likely contributes to SOA formation in urban areas [1;2]. This has recently been estimated by (i) analyzing ambient data from urban areas combined with fuel consumption data [3], (ii) by examining the chemical composition of raw fuels [4], or (iii) smog chamber studies [5, 6]. Contradictory and thus somewhat controversial results in the relative quantity of SOA from diesel vs. gasoline vehicle exhaust were observed. In order to elucidate the impact of variable ambient conditions on the potential SOA formation of vehicle exhaust, and its relation to the emitted gas phase species, we studied SOA formed from the exhaust of passenger cars and trucks as a function of fuel and engine type (gasoline, diesel) at different temperatures (T 22 vs. -7oC) and RH (40 vs. 90%), as well as with different levels of inorganic salt concentrations. The exhaust was sampled at the tailpipe during regulatory driving cycles on chassis dynamometers, diluted (200 - 400x) and introduced into the PSI mobile smog chamber [6], where the emissions were subjected to simulated atmospheric ageing. Particle phase instruments (HR-ToF-AMS, aethalometers, CPC, SMPS) and gas phase instruments (PTR-TOF-MS, CO, CO2, CH4, THC, NH3 and other gases) were used online during the experiments. We found that gasoline emissions, because of cold starts, were generally larger than diesel, especially during cold temperatures driving cycles. Gasoline vehicles also showed the highest SOA formation

  20. Laboratory studies of monoterpene secondary organic aerosol formation and evolution

    Science.gov (United States)

    Thornton, J. A.; D'Ambro, E.; Zhao, Y.; Lee, B. H.; Pye, H. O. T.; Schobesberger, S.; Shilling, J.; Liu, J.

    2017-12-01

    We have conducted a series of chamber experiments to study the molecular composition and properties of secondary organic aerosol (SOA) formed from monoterpenes under a range of photochemical and dark conditions. We connect variations in the SOA mass yield to molecular composition and volatility, and use a detailed Master Chemical Mechanism (MCM) based chemical box model with dynamic gas-particle partitioning to examine the importance of various peroxy radical reaction mechanisms in setting the SOA yield and properties. We compare the volatility distribution predicted by the model to that inferred from isothermal room-temperature evaporation experiments using the FIGAERO-CIMS where SOA particles collected on a filter are allowed to evaporate under humidified pure nitrogen flow stream for up to 24 hours. We show that the combination of results requires prompt formation of low volatility SOA from predominantly gas-phase mechanisms, with important differences between monoterpenes (alpha-Pinene and delta-3-Carene) followed by slower non-radical particle phase chemistry that modulates both the chemical and physical properties of the SOA. Implications for the regional evolution of atmospheric monoterpene SOA are also discussed.

  1. Rapid Measurements of Aerosol Size Distribution and Hygroscopic Growth via Image Processing with a Fast Integrated Mobility Spectrometer (FIMS)

    Science.gov (United States)

    Wang, Y.; Pinterich, T.; Spielman, S. R.; Hering, S. V.; Wang, J.

    2017-12-01

    Aerosol size distribution and hygroscopicity are among key parameters in determining the impact of atmospheric aerosols on global radiation and climate change. In situ submicron aerosol size distribution measurements commonly involve a scanning mobility particle sizer (SMPS). The SMPS scanning time is in the scale of minutes, which is often too slow to capture the variation of aerosol size distribution, such as for aerosols formed via nucleation processes or measurements onboard research aircraft. To solve this problem, a Fast Integrated Mobility Spectrometer (FIMS) based on image processing was developed for rapid measurements of aerosol size distributions from 10 to 500 nm. The FIMS consists of a parallel plate classifier, a condenser, and a CCD detector array. Inside the classifier an electric field separates charged aerosols based on electrical mobilities. Upon exiting the classifier, the aerosols pass through a three stage growth channel (Pinterich et al. 2017; Spielman et al. 2017), where aerosols as small as 7 nm are enlarged to above 1 μm through water or heptanol condensation. Finally, the grown aerosols are illuminated by a laser sheet and imaged onto a CCD array. The images provide both aerosol concentration and position, which directly relate to the aerosol size distribution. By this simultaneous measurement of aerosols with different sizes, the FIMS provides aerosol size spectra nearly 100 times faster than the SMPS. Recent deployment onboard research aircraft demonstrated that the FIMS is capable of measuring aerosol size distributions in 1s (Figure), thereby offering a great advantage in applications requiring high time resolution (Wang et al. 2016). In addition, the coupling of the FIMS with other conventional aerosol instruments provides orders of magnitude more rapid characterization of aerosol optical and microphysical properties. For example, the combination of a differential mobility analyzer, a relative humidity control unit, and a FIMS was

  2. Rapid and gradual modes of aerosol trace metal dissolution in seawater

    Directory of Open Access Journals (Sweden)

    Katherine Rose Marie Mackey

    2015-01-01

    Full Text Available Atmospheric deposition is a major source of trace metals in marine surface waters and supplies vital micronutrients to phytoplankton, yet measured aerosol trace metal solubility values are operationally defined and there are relatively few multi-element studies on aerosol-metal solubility in seawater. Here we measure the solubility of aluminum (Al, cadmium (Cd, cobalt (Co, copper (Cu, iron (Fe, manganese (Mn, nickel (Ni, lead (Pb, and zinc (Zn from natural aerosol samples in seawater over a 7 day period to (1 evaluate the role of extraction time in trace metal dissolution behavior and (2 explore how the individual dissolution patterns could influence biota. Dissolution behavior occurs over a continuum ranging from rapid dissolution, in which the majority of soluble metal dissolved immediately upon seawater exposure (Cd and Co in our samples, to gradual dissolution, where metals dissolved slowly over time (Zn, Mn, Cu, and Al in our samples. Additionally, dissolution affected by interactions with particles was observed in which a decline in soluble metal concentration over time occurred (Fe and Pb in our samples. Natural variability in aerosol chemistry between samples can cause metals to display different dissolution kinetics in different samples, and this was particularly evident for Ni, for which samples showed a broad range of dissolution rates. The elemental molar ratio of metals in the bulk aerosols was 23,189Fe: 22,651Al: 445Mn: 348Zn: 71Cu: 48Ni: 23Pb: 9Co: 1Cd, whereas the seawater soluble molar ratio after 7 days of leaching was 11Fe: 620Al: 205Mn: 240Zn: 20Cu: 14Ni: 9Pb: 2Co: 1Cd. The different kinetics and ratios of aerosol metal dissolution have implications for phytoplankton nutrition, and highlight the need for unified extraction protocols that simulate aerosol metal dissolution in the surface ocean.

  3. Ice nucleation in sulfuric acid/organic aerosols: implications for cirrus cloud formation

    Directory of Open Access Journals (Sweden)

    M. R. Beaver

    2006-01-01

    Full Text Available Using an aerosol flow tube apparatus, we have studied the effects of aliphatic aldehydes (C3 to C10 and ketones (C3 and C9 on ice nucleation in sulfuric acid aerosols. Mixed aerosols were prepared by combining an organic vapor flow with a flow of sulfuric acid aerosols over a small mixing time (~60 s at room temperature. No acid-catalyzed reactions were observed under these conditions, and physical uptake was responsible for the organic content of the sulfuric acid aerosols. In these experiments, aerosol organic content, determined by a Mie scattering analysis, was found to vary with the partial pressure of organic, the flow tube temperature, and the identity of the organic compound. The physical properties of the organic compounds (primarily the solubility and melting point were found to play a dominant role in determining the inferred mode of nucleation (homogenous or heterogeneous and the specific freezing temperatures observed. Overall, very soluble, low-melting organics, such as acetone and propanal, caused a decrease in aerosol ice nucleation temperatures when compared with aqueous sulfuric acid aerosol. In contrast, sulfuric acid particles exposed to organic compounds of eight carbons and greater, of much lower solubility and higher melting temperatures, nucleate ice at temperatures above aqueous sulfuric acid aerosols. Organic compounds of intermediate carbon chain length, C4-C7, (of intermediate solubility and melting temperatures nucleated ice at the same temperature as aqueous sulfuric acid aerosols. Interpretations and implications of these results for cirrus cloud formation are discussed.

  4. Mechanisms of Formation of Secondary Organic Aerosols and Implications for Global Radiative Forcing

    Energy Technology Data Exchange (ETDEWEB)

    Seinfeld, John H. [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2011-12-02

    Organic material constitutes about 50% of global atmospheric aerosol mass, and the dominant source of organic aerosol is the oxidation of volatile hydrocarbons, to produce secondary organic aerosol (SOA). Understanding the formation of SOA is crucial to predicting present and future climate effects of atmospheric aerosols. The goal of this program is to significantly increase our understanding of secondary organic aerosol (SOA) formation in the atmosphere. Ambient measurements indicate that the amount of SOA in the atmosphere exceeds that predicted in current models based on existing laboratory chamber data. This would suggest that either the SOA yields measured in laboratory chambers are understated or that all major organic precursors have not been identified. In this research program we are systematically exploring these possibilities.

  5. Mechanism and Kinetics of the Formation and Transport of Aerosol Particles in the Lower Stratosphere

    Science.gov (United States)

    Aloyan, A. E.; Ermakov, A. N.; Arutyunyan, V. O.

    2018-03-01

    Field and laboratory observation data on aerosol particles in the lower stratosphere are considered. The microphysics of their formation, mechanisms of heterogeneous chemical reactions involving reservoir gases (e.g., HCl, ClONO2, etc.) and their kinetic characteristics are analyzed. A new model of global transport of gaseous and aerosol admixtures in the lower stratosphere is described. The preliminary results from a numerical simulation of the formation of sulfate particles of the Junge layer and particles of polar stratospheric clouds (PSCs, types Ia, Ib, and II) are presented, and their effect on the gas and aerosol composition is analyzed.

  6. Irradiation induced aerosol formation in flue gas: experiments on low doses

    International Nuclear Information System (INIS)

    Maekelae, J.M.

    1992-01-01

    Laboratory experiments on irradiation induced aerosol formation from gaseous sulphur dioxide in humid air are presented. This work is connected to the aerosol particle formation process in the electron beam technique for cleaning flue gas. As a partial process of this method primary products of the radiolysis of water vapour convert sulphur dioxide into gaseous sulphuric acid which then nucleates with water vapour forming small acid droplets. This experimental work has been performed on relatively low absorbed doses. Aerosol particle formation is strongly dependent on dose. In the experiments, the first aerosol particles were detected already on absorbed doses of 0.1-10 mGy. The particle size in these cases is in the so-called ultrafine size range (1-20 nm). In this article three experimental set-ups with some characteristic results are presented. (Author)

  7. Insight into winter haze formation mechanisms based on aerosol hygroscopicity and effective density measurements

    Science.gov (United States)

    Xie, Yuanyuan; Ye, Xingnan; Ma, Zhen; Tao, Ye; Wang, Ruyu; Zhang, Ci; Yang, Xin; Chen, Jianmin; Chen, Hong

    2017-06-01

    We characterize a representative particulate matter (PM) episode that occurred in Shanghai during winter 2014. Particle size distribution, hygroscopicity, effective density, and single particle mass spectrometry were determined online, along with offline analysis of water-soluble inorganic ions. The mass ratio of SNA / PM1. 0 (sulfate, nitrate, and ammonium) fluctuated slightly around 0.28, suggesting that both secondary inorganic compounds and carbonaceous aerosols contributed substantially to the haze formation, regardless of pollution level. Nitrate was the most abundant ionic species during hazy periods, indicating that NOx contributed more to haze formation in Shanghai than did SO2. During the representative PM episode, the calculated PM was always consistent with the measured PM1. 0, indicating that the enhanced pollution level was attributable to the elevated number of larger particles. The number fraction of the near-hydrophobic group increased as the PM episode developed, indicating the accumulation of local emissions. Three banana-shaped particle evolutions were consistent with the rapid increase of PM1. 0 mass loading, indicating that the rapid size growth by the condensation of condensable materials was responsible for the severe haze formation. Both hygroscopicity and effective density of the particles increased considerably with growing particle size during the banana-shaped evolutions, indicating that the secondary transformation of NOx and SO2 was one of the most important contributors to the particle growth. Our results suggest that the accumulation of gas-phase and particulate pollutants under stagnant meteorological conditions and subsequent rapid particle growth by secondary processes were primarily responsible for the haze pollution in Shanghai during wintertime.

  8. Laboratory experiments on the formation and recoil jet transport of aerosol by laser ablation

    Science.gov (United States)

    Hirooka, Yoshi; Tanaka, Kazuo A.; Imamura, Keisuke; Okazaki, Katsuya

    2016-05-01

    In a high-repetition rate inertial fusion reactor, the first wall will be subjected to repeated ablation along with pellet implosions, which then leads to the formation of aerosol to scatter and/or deflect laser beams for the subsequent implosion, affecting the overall reactor performance. Proposed in the present work is a method of in-situ directed transport of aerosol particles by the use of laser ablation-induced jet recoil momenta. Lithium and carbon are used as the primary ablation targets, the former of which is known to form aerosol in the form of droplet, and the latter of which tends to form carbon nanotubes. Laboratory-scale experiments have been conducted to irradiate airborne aerosol particles with high-intensity laser to produce ablation-induced jet. Data have indicated a change in aerosol flow direction, but only in the case of lithium.

  9. Satellite remote sensing of dust aerosol indirect effects on ice cloud formation.

    Science.gov (United States)

    Ou, Steve Szu-Cheng; Liou, Kuo-Nan; Wang, Xingjuan; Hansell, Richard; Lefevre, Randy; Cocks, Stephen

    2009-01-20

    We undertook a new approach to investigate the aerosol indirect effect of the first kind on ice cloud formation by using available data products from the Moderate-Resolution Imaging Spectrometer (MODIS) and obtained physical understanding about the interaction between aerosols and ice clouds. Our analysis focused on the examination of the variability in the correlation between ice cloud parameters (optical depth, effective particle size, cloud water path, and cloud particle number concentration) and aerosol optical depth and number concentration that were inferred from available satellite cloud and aerosol data products. Correlation results for a number of selected scenes containing dust and ice clouds are presented, and dust aerosol indirect effects on ice clouds are directly demonstrated from satellite observations.

  10. Sodium aerosol formation in an argon flow over hot sodium

    International Nuclear Information System (INIS)

    Clement, C.F.; Dolias, M.J.; UKAEA Atomic Energy Research Establishment, Harwell. Thermal Hydraulics Div.)

    1987-01-01

    Vapour evaporation, which partly forms aerosol, occurs when a cold gas flows over a hot liquid. A previous well-mixed model is extended to predict the final vapour plus aerosol content of such a flow in terms of its initial and final temperatures. The predictions are compared to results of the Copacabana II experiment in which argon passed over a sodium pool. Agreement is obtained for the final sodium density at moderate flow rates, and physical reasons are given as to why deviations occur at low and high flow rates. (author)

  11. Secondary Aerosol Formation over the ESCOMPTE Area: Results from airborne Aerosol and Trace Gas Measurements

    Science.gov (United States)

    van Dingenen, R.; Martins-Dos Santos, S.; Putaud, J. P.; Allet, C.; Bretton, E.; Perros, P.

    2003-04-01

    From June 10th to July 14th 2001, the ESCOMPTE campaign took place in the Marseille-Berre area in Southern France. The goal of the campaign was to produce a high quality 3-D data base from emissions, transport and air composition measurements during urban photochemical pollution episodes at the meso-scale. The CAATER AEROPLUM project was embedded within this international field campaign. AEROPLUM aimed at mapping size distributions of aerosols and photo-oxidants in the mixed layer over the ESCOMPTE domain, using the ARAT Fokker 27 as measurement platform. Aircraft sub-micrometer aerosol measurements are validated during overpasses against ground-based measurements, carried out with similar instrumentation. We will present and discuss data during periods of seabreeze, transporting coastal industrial and urban pollution land-inwards. This leads to intense photochemical activity, evidenced by elevated O_3 concentrations and aerosol levels.

  12. Secondary organic aerosol formation from primary aliphatic amines with NO3 radical

    Science.gov (United States)

    Malloy, Q. G. J.; Qi, Li; Warren, B.; Cocker, D. R., III; Erupe, M. E.; Silva, P. J.

    2009-03-01

    Primary aliphatic amines are an important class of nitrogen containing compounds emitted from automobiles, waste treatment facilities and agricultural animal operations. A series of experiments conducted at the UC-Riverside/CE-CERT Environmental Chamber is presented in which oxidation of methylamine, ethylamine, propylamine, and butylamine with O3 and NO3 have been investigated. Very little aerosol formation is observed in the presence of O3 only. However, after addition of NO, and by extension NO3, large aerosol mass yields (~44% for butylamine) are seen. Aerosol generated was determined to be organic in nature due to the small fraction of NO and NO2 in the total signal (tested) as detected by an aerosol mass spectrometer (AMS). We propose a reaction mechanism between carbonyl containing species and the parent amine leading to formation of particulate imine products. These findings can have significant impacts on rural communities with elevated nighttime PM loadings, when significant levels of NO3 exist.

  13. High formation of secondary organic aerosol from the photo-oxidation of toluene

    OpenAIRE

    L. Hildebrandt; N. M. Donahue; S. N. Pandis

    2009-01-01

    Toluene and other aromatics have long been viewed as the dominant anthropogenic secondary organic aerosol (SOA) precursors, but the SOA mass yields from toluene reported in previous studies vary widely. Experiments conducted in the Carnegie Mellon University environmental chamber to study SOA formation from the photo-oxidation of toluene show significantly larger SOA production than parameterizations employed in current air-quality models. Aerosol mass yields depend on experimental co...

  14. Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles

    Directory of Open Access Journals (Sweden)

    B. Ervens

    2010-09-01

    Full Text Available This study presents a modeling framework based on laboratory data to describe the kinetics of glyoxal reactions that form secondary organic aerosol (SOA in aqueous aerosol particles. Recent laboratory results on glyoxal reactions are reviewed and a consistent set of empirical reaction rate constants is derived that captures the kinetics of glyoxal hydration and subsequent reversible and irreversible reactions in aqueous inorganic and water-soluble organic aerosol seeds. Products of these processes include (a oligomers, (b nitrogen-containing products, (c photochemical oxidation products with high molecular weight. These additional aqueous phase processes enhance the SOA formation rate in particles and yield two to three orders of magnitude more SOA than predicted based on reaction schemes for dilute aqueous phase (cloud chemistry for the same conditions (liquid water content, particle size.

    The application of the new module including detailed chemical processes in a box model demonstrates that both the time scale to reach aqueous phase equilibria and the choice of rate constants of irreversible reactions have a pronounced effect on the predicted atmospheric relevance of SOA formation from glyoxal. During day time, a photochemical (most likely radical-initiated process is the major SOA formation pathway forming ∼5 μg m−3 SOA over 12 h (assuming a constant glyoxal mixing ratio of 300 ppt. During night time, reactions of nitrogen-containing compounds (ammonium, amines, amino acids contribute most to the predicted SOA mass; however, the absolute predicted SOA masses are reduced by an order of magnitude as compared to day time production. The contribution of the ammonium reaction significantly increases in moderately acidic or neutral particles (5 < pH < 7.

    Glyoxal uptake into ammonium sulfate seed under dark conditions can be represented with a single reaction parameter keffupt that does not depend

  15. The oxidation of SO2 by NO2(g) at the air-water interface of aquated aerosol: implications for the rapid onset of haze-aerosol events in China

    Science.gov (United States)

    Li, L.; Colussi, A. J.; Hoffmann, M. R.

    2017-12-01

    Aqueous phase chemistry plays a vital role in the global atmosphere. The importance of heterogeneous chemistry has been recently underscored by the severe haze-fog pollution episodes experienced in Chinese megacities. A key finding is that despite reduced photochemistry during the wintertime haze events, the oxidation of S(IV) into sulfate aerosol occurs rapidly in spite of the low levels of ozone and H2O2. Field observations suggest that NO2 could serve as a suitable oxidant of S(IV) during the events under neutral pH conditions. However, the haze aerosols are mostly acidic. Furthermore, the air-water interface is more acidic than bulk-phase aquated system according to our recent findings. This work investigates the chemistry taking place as NO2(g) collides with the surface of aqueous S(IV) microdroplets as a function of pH to closely simulate actual haze aerosol events under atmospheric conditions. The reaction between NO2(g) and HSO3- (aq) is studied in situ under ambient temperature and pressure via online electrospray ionization mass spectrometry. The aqueous aerosols containing HSO3- is generated using a microjet which is exposed to NO2(g) alternatively, while the composition of the 1 nm interfacial liquid layer of the aerosol is instantaneously measured. The ratio of HSO3- to HSO4- is observed to decrease with the concomitant appearance of a strong m/z 62 signal upon NO2(g) exposure. The appearance of m/z 62 indicates the formation of NO3- via the disproportionation of NO2 (2NO2(g) + H2O (l) ⇌ H++NO3-(aq) + HONO(aq)) and thus impacts the ion-ion interactions of NO3- on the ratio of HSO3- to HSO4- in the outermost interfacial layers. Parallel experiments with NO3-(aq) additions are conducted to quantify the impact of NO3- on the the ratio, in order to unravel the contribution of NO2 to the oxidation of S(IV). After accounting for the HNO3 effect, it is concluded: (1) most NO2(g) is converted into NO3- via anion-catalyzed hydrolytic disproportionation; (2

  16. Direct Observations of Isoprene Secondary Organic Aerosol Formation in Ambient Cloud Droplets

    Science.gov (United States)

    Zelenyuk, A.; Bell, D.; Thornton, J. A.; Fast, J. D.; Shrivastava, M. B.; Berg, L. K.; Imre, D. G.; Mei, F.; Shilling, J.; Suski, K. J.; Liu, J.; Tomlinson, J. M.; Wang, J.

    2017-12-01

    Multiphase chemistry of isoprene photooxidation products has been shown to be one of the major sources of secondary organic aerosol (SOA) in the atmosphere. A number of recent studies indicate that aqueous aerosol phase provides a medium for reactive uptake of isoprene photooxidation products, and in particular, isomeric isoprene epoxydiols (IEPOX), with reaction rates and yields being dependent on aerosol acidity, water content, sulfate concentration, and organic coatings. However, very few studies focused on chemistry occurring within actual cloud droplets. We will present data acquired during recent Holistic Interactions of Shallow Clouds, Aerosols, and Land Ecosystems (HI-SCALE) Campaign, which provide direct evidence for IEPOX-SOA formation in cloud droplets. Single particle mass spectrometer, miniSPLAT, and a high-resolution, time-of-flight aerosol mass spectrometer were used to characterize the composition of aerosol particles and cloud droplet residuals, while a high-resolution, time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) was used to characterize gas-phase compounds. We find that the composition of cloud droplet residuals was markedly different than that of aerosol particles sampled outside the cloud. Cloud droplet residuals were comprised of individual particles with high relative fractions of sulfate and nitrate and significant fraction of particles with mass spectra that are nearly identical to those of laboratory-generated IEPOX-SOA particles. The observed cloud-induced formation of IEPOX-SOA was accompanied by simultaneous decrease in measured concentrations of IEPOX and other gas-phase isoprene photooxidation products. Ultimately, the combined cloud, aerosol, and gas-phase measurements conducted during HI-SCALE will be used to develop and evaluate model treatments of aqueous-phase isoprene SOA formation.

  17. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation

    Science.gov (United States)

    Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K.; Wagner, Robert; Dunne, Eimear M.; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S.; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A.; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P.; Pringle, Kirsty J.; Richards, Nigel A. D.; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E.; Seinfeld, John H.; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C.; Wagner, Paul E.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M.; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim; Carslaw, Kenneth S.

    2016-10-01

    The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by 0.22 W m-2 (27%) to -0.60 W m-2. Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.

  18. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation.

    Science.gov (United States)

    Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K; Wagner, Robert; Dunne, Eimear M; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P; Pringle, Kirsty J; Richards, Nigel A D; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E; Seinfeld, John H; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C; Wagner, Paul E; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M; Worsnop, Douglas R; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim; Carslaw, Kenneth S

    2016-10-25

    The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by [Formula: see text] (27%) to [Formula: see text] Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.

  19. Properties of aerosols and formation mechanisms over southern China during the monsoon season

    Directory of Open Access Journals (Sweden)

    W. Chen

    2016-10-01

    Full Text Available Measurements of size-resolved aerosols from 0.25 to 18 µm were conducted at three sites (urban, suburban and background sites and used in tandem with an atmospheric transport model to study the size distribution and formation of atmospheric aerosols in southern China during the monsoon season (May–June in 2010. The mass distribution showed the majority of chemical components were found in the smaller size bins (< 2.5 µm. Sulfate was found to be strongly correlated with aerosol water and anticorrelated with atmospheric SO2, hinting at aqueous-phase reactions being the main formation pathway. Nitrate was the only major species that showed a bimodal distribution at the urban site and was dominated by the coarse mode in the other two sites, suggesting that an important component of nitrate formation is chloride depletion of sea salt transported from the South China Sea. In addition to these aqueous-phase reactions and interactions with sea salt aerosols, new particle formation, chemical aging, and long-range transport from upwind urban or biomass burning regions was also found to be important in at least some of the sites on some of the days. This work therefore summarizes the different mechanisms that significantly impact the aerosol chemical composition during the monsoon over southern China.

  20. Rapid generation of protein aerosols and nanoparticles via surface acoustic wave atomization

    International Nuclear Information System (INIS)

    Alvarez, Mar; Friend, James; Yeo, Leslie Y

    2008-01-01

    We describe the fabrication of a surface acoustic wave (SAW) atomizer and show its ability to generate monodisperse aerosols and particles for drug delivery applications. In particular, we demonstrate the generation of insulin liquid aerosols for pulmonary delivery and solid protein nanoparticles for transdermal and gastrointestinal delivery routes using 20 MHz SAW devices. Insulin droplets around 3 μm were obtained, matching the optimum range for maximizing absorption in the alveolar region. A new approach is provided to explain these atomized droplet diameters by returning to fundamental physical analysis and considering viscous-capillary and inertial-capillary force balance rather than employing modifications to the Kelvin equation under the assumption of parametric forcing that has been extended to these frequencies in past investigations. In addition, we consider possible mechanisms by which the droplet ejections take place with the aid of high-speed flow visualization. Finally, we show that nanoscale protein particles (50-100 nm in diameter) were obtained through an evaporative process of the initial aerosol, the final size of which could be controlled merely by modifying the initial protein concentration. These results illustrate the feasibility of using SAW as a novel method for rapidly producing particles and droplets with a controlled and narrow size distribution.

  1. Effect of NOx level on secondary organic aerosol (SOA formation from the photooxidation of terpenes

    Directory of Open Access Journals (Sweden)

    R. C. Flagan

    2007-10-01

    Full Text Available Secondary organic aerosol (SOA formation from the photooxidation of one monoterpene (α-pinene and two sesquiterpenes (longifolene and aromadendrene is investigated in the Caltech environmental chambers. The effect of NOx on SOA formation for these biogenic hydrocarbons is evaluated by performing photooxidation experiments under varying NOx conditions. The NOx dependence of α-pinene SOA formation follows the same trend as that observed previously for a number of SOA precursors, including isoprene, in which SOA yield (defined as the ratio of the mass of organic aerosol formed to the mass of parent hydrocarbon reacted decreases as NOx level increases. The NOx dependence of SOA yield for the sesquiterpenes, longifolene and aromadendrene, however, differs from that determined for isoprene and α-pinene; the aerosol yield under high-NOx conditions substantially exceeds that under low-NOx conditions. The reversal of the NOx dependence of SOA formation for the sesquiterpenes is consistent with formation of relatively low-volatility organic nitrates, and/or the isomerization of large alkoxy radicals leading to less volatile products. Analysis of the aerosol chemical composition for longifolene confirms the presence of organic nitrates under high-NOx conditions. Consequently the formation of SOA from certain biogenic hydrocarbons such as sesquiterpenes (and possibly large anthropogenic hydrocarbons as well may be more efficient in polluted air.

  2. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks

    Directory of Open Access Journals (Sweden)

    Th. F. Mentel

    2013-09-01

    Full Text Available Atmospheric aerosols impact climate by scattering and absorbing solar radiation and by acting as ice and cloud condensation nuclei. Biogenic secondary organic aerosols (BSOAs comprise an important component of atmospheric aerosols. Biogenic volatile organic compounds (BVOCs emitted by vegetation are the source of BSOAs. Pathogens and insect attacks, heat waves and droughts can induce stress to plants that may impact their BVOC emissions, and hence the yield and type of formed BSOAs, and possibly their climatic effects. This raises questions of whether stress-induced changes in BSOA formation may attenuate or amplify effects of climate change. In this study we assess the potential impact of stress-induced BVOC emissions on BSOA formation for tree species typical for mixed deciduous and Boreal Eurasian forests. We studied the photochemical BSOA formation for plants infested by aphids in a laboratory setup under well-controlled conditions and applied in addition heat and drought stress. The results indicate that stress conditions substantially modify BSOA formation and yield. Stress-induced emissions of sesquiterpenes, methyl salicylate, and C17-BVOCs increase BSOA yields. Mixtures including these compounds exhibit BSOA yields between 17 and 33%, significantly higher than mixtures containing mainly monoterpenes (4–6% yield. Green leaf volatiles suppress SOA formation, presumably by scavenging OH, similar to isoprene. By classifying emission types, stressors and BSOA formation potential, we discuss possible climatic feedbacks regarding aerosol effects. We conclude that stress situations for plants due to climate change should be considered in climate–vegetation feedback mechanisms.

  3. Research on aerosol formation, aerosol behaviour, aerosol filtration, aerosol measurement techniques and sodium fires at the Laboratory for Aerosol Physics and Filter Technology at the Nuclear Research Center Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, S; Schikarski, W; Schoeck, W [Gesellschaft fuer Kernforschung mbH, Karlsruhe (Germany)

    1977-01-01

    The behaviour of aerosols in LMFBR plant systems is of great importance for a number of problems, both normal operational and accident kind. This paper covers the following: aerosol modelling for LMFBR containment systems; aerosol size spectrometry by laser light scattering; experimental facilities and experimental results concerned with aerosol release under accident conditions; filtration of sodium oxide aerosols by multilayer sand bed filters.

  4. Research on aerosol formation, aerosol behaviour, aerosol filtration, aerosol measurement techniques and sodium fires at the Laboratory for Aerosol Physics and Filter Technology at the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Jordan, S.; Schikarski, W.; Schoeck, W.

    1977-01-01

    The behaviour of aerosols in LMFBR plant systems is of great importance for a number of problems, both normal operational and accident kind. This paper covers the following: aerosol modelling for LMFBR containment systems; aerosol size spectrometry by laser light scattering; experimental facilities and experimental results concerned with aerosol release under accident conditions; filtration of sodium oxide aerosols by multilayer sand bed filters

  5. The formation of aerosol particles during combustion of biomass and waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hjerrild Zeuthen, J

    2007-05-15

    This thesis describes the formation of aerosol particles during combustion of biomass and waste. The formation of aerosol particles is investigated by studying condensation of alkali salts from synthetic flue gasses in a laboratory tubular furnace. In this so-called laminar flow aerosol condenser-furnace gaseous alkali chlorides are mixed with sulphur dioxide, water vapour and oxygen. At high temperatures the alkali chloride reacts with sulphur dioxide to form alkali sulphate. During subsequent cooling of the synthetic flue gas the chlorides and sulphates condense either as deposits on walls or on other particles or directly from the gas phase by homogenous nucleation. A previously developed computer code for simulation of one-component nucleation of particles in a cylindrical laminar flow is extended to include a homogeneous gas phase reaction to produce gaseous alkali sulphate. The formation of aerosol particles during full-scale combustion of wheat straw is investigated in a 100 MW grate-fired boiler. Finally, aerosols from incineration of waste are investigated during full-scale combustion of municipal waste in a 22 MW grate-fired unit. (BA)

  6. Secondary organic aerosol formation through fog processing of VOCs

    Science.gov (United States)

    Herckes, P.; Hutchings, J. W.

    2010-07-01

    Volatile Organic Compounds (VOCs) including benzene, toluene, ethylbenzene and xylenes (BTEX) have been determined in highly concentrated amounts (>1 ug/L) in intercepted clouds in northern Arizona (USA). These VOCs are found in concentrations much higher than predicted by partitioning alone. The reactivity of BTEX in the fog/cloud aqueous phase was investigated through laboratory studies. BTEX species showed fast degradation in the aqueous phase in the presence of peroxides and light. Observed half-lives ranged from three and six hours, substantially shorter than the respective gas phase half-lives (several days). The observed reaction rates were on the order of 1 ppb/min but decreased substantially with increasing concentrations of organic matter (TOC). The products of BTEX oxidation reactions were analyzed using HPLC-UV and LCMS. The first generation of products identified included phenol and cresols which correspond to the hydroxyl-addition reaction to benzene and toluene. Upon investigating of multi-generational products, smaller, less volatile species are predominant although a large variety of products is found. Most reaction products have substantially lower vapor pressure and will remain in the particle phase upon droplet evaporation. The SOA generation potential of cloud and fog processing of BTEX was evaluated using simple calculations and showed that in ideal situations these reactions could add up to 9% of the ambient aerosol mass. In more conservative scenarios, the contribution of the processing of BTEX was around 1% of ambient aerosol concentrations. Overall, cloud processing of VOC has the potential to contribute to the atmospheric aerosol mass. However, the contribution will depend upon many factors such as the irradiation, organic matter content in the droplets and droplet lifetime.

  7. Formation of charged particles in condensation aerosol generators used for inhalation studies

    International Nuclear Information System (INIS)

    Ramu, M.C.R.; Vohra, K.G.

    1976-01-01

    Formation of charged particles in a condensation aerosol generator has been studied using a charge collector and a mobility analyzer. Measurements carried out using the charge collector show that the number of charged particles increases with an increase in the particle diameter. The number of charged particles measured also depends on the thickness of the sodium chloride coating on the platinum wire used in the aerosol generator for the production of condensation nuclei. It was found that the charged particle concentration increases with decreasing coating thickness. Mobility measurements have shown that the particles are singly and doubly charged. It has been estimated that about 10% of the particles produced in the generator are charged. The mechanism of formation of charged particles in the aerosol generator has been briefly discussed. (author)

  8. Missing ozone-induced potential aerosol formation in a suburban deciduous forest

    Science.gov (United States)

    Nakayama, T.; Kuruma, Y.; Matsumi, Y.; Morino, Y.; Sato, K.; Tsurumaru, H.; Ramasamy, S.; Sakamoto, Y.; Kato, S.; Miyazaki, Y.; Mochizuki, T.; Kawamura, K.; Sadanaga, Y.; Nakashima, Y.; Matsuda, K.; Kajii, Y.

    2017-12-01

    As a new approach to investigating formation processes of secondary organic aerosol (SOA) in the atmosphere, ozone-induced potential aerosol formation was measured in summer at a suburban forest site surrounded by deciduous trees, near Tokyo, Japan. After passage through a reactor containing high concentrations of ozone, increases in total particle volume (average of 1.4 × 109 nm3/cm3, which corresponds to 17% that of pre-existing particles) were observed, especially during daytime. The observed aerosol formations were compared with the results of box model simulations using simultaneously measured concentrations of gaseous and particulate species. According to the model, the relative contributions of isoprene, monoterpene, and aromatic hydrocarbon oxidation to SOA formation in the reactor were 24, 21, and 55%, respectively. However, the model could explain, on average, only ∼40% of the observed particle formation, and large discrepancies between the observations and model were found, especially around noon and in the afternoon when the concentrations of isoprene and oxygenated volatile organic compounds were high. The results suggest a significant contribution of missing (unaccounted-for) SOA formation processes from identified and/or unidentified volatile organic compounds, especially those emitted during daytime. Further efforts should be made to explore and parameterize this missing SOA formation to assist in the improvement of atmospheric chemistry and climate models.

  9. Coastal new particle formation: environmental conditions and aerosol physicochemical characteristics during nucleation bursts

    NARCIS (Netherlands)

    O'Dowd, C.D.; Haemeri, K.; Maekelae, J.M.; Vaekeva, M.; Aalto, P.; Leeuw, G. de; Kunz, G.J.; Becker, E.; Hansson, H-C.; Allen, A.G.; Harrison, R.M.; Berresheim, H.; Kleefeld, C.; Geever, M.; Jennings, S.G.; Kulmala, M.

    2002-01-01

    Nucleation mode aerosol was characterized during coastal nucleation events at Mace Head during intensive New Particle Formation and Fate in the Coastal Environment (PARFORCE) field campaigns in September 1998 and June 1999. Nucleation events were observed almost on a daily basis during the

  10. Properties of aerosols and formation mechanisms over southern China during the monsoon season

    Science.gov (United States)

    Chen, Weihua; Wang, Xuemei; Blake Cohen, Jason; Zhou, Shengzhen; Zhang, Zhisheng; Chang, Ming; Chan, Chuen-Yu

    2016-10-01

    Measurements of size-resolved aerosols from 0.25 to 18 µm were conducted at three sites (urban, suburban and background sites) and used in tandem with an atmospheric transport model to study the size distribution and formation of atmospheric aerosols in southern China during the monsoon season (May-June) in 2010. The mass distribution showed the majority of chemical components were found in the smaller size bins (water and anticorrelated with atmospheric SO2, hinting at aqueous-phase reactions being the main formation pathway. Nitrate was the only major species that showed a bimodal distribution at the urban site and was dominated by the coarse mode in the other two sites, suggesting that an important component of nitrate formation is chloride depletion of sea salt transported from the South China Sea. In addition to these aqueous-phase reactions and interactions with sea salt aerosols, new particle formation, chemical aging, and long-range transport from upwind urban or biomass burning regions was also found to be important in at least some of the sites on some of the days. This work therefore summarizes the different mechanisms that significantly impact the aerosol chemical composition during the monsoon over southern China.

  11. Modeling of aerosol formation during biomass combustion in grate furnaces and comparison with measurements

    NARCIS (Netherlands)

    Joeller, M.; Brunner, T.; Obernberger, I.

    2005-01-01

    Results from mathematical modeling of aerosol formation during combustion of woody biomass fuels were compared with results from particle size distribution (PSD) measurements at a pilot-scale biomass combustion unit with moving grate and flame tube boiler. The mathematical model is a plug flow model

  12. Evidence for the role of organics in aerosol particle formation under atmospheric conditions

    International Nuclear Information System (INIS)

    Metzger, A.; Dommen, J.; Duplissy, J.; Prevot, A.S.H.; Weingartner, E.; Baltensperger, U.; Verheggen, B.; Riipinen, I.; Kulmala, M.; Spracklen, D.V.; Carslaw, K.S.

    2010-01-01

    New particle formation in the atmosphere is an important parameter in governing the radiative forcing of atmospheric aerosols. However, detailed nucleation mechanisms remain ambiguous, as laboratory data have so far not been successful in explaining atmospheric nucleation. We investigated the formation of new particles in a smog chamber simulating the photochemical formation of H2SO4 and organic condensable species. Nucleation occurs at H2SO4 concentrations similar to those found in the ambient atmosphere during nucleation events. The measured particle formation rates are proportional to the product of the concentrations of H2SO4 and an organic molecule. This suggests that only one H2SO4 molecule and one organic molecule are involved in the rate-limiting step of the observed nucleation process. Parameterizing this process in a global aerosol model results in substantially better agreement with ambient observations compared to control runs.

  13. Formation of secondary organic aerosol coating on black carbon particles near vehicular emissions

    Science.gov (United States)

    Lee, Alex K. Y.; Chen, Chia-Li; Liu, Jun; Price, Derek J.; Betha, Raghu; Russell, Lynn M.; Zhang, Xiaolu; Cappa, Christopher D.

    2017-12-01

    Black carbon (BC) emitted from incomplete combustion can result in significant impacts on air quality and climate. Understanding the mixing state of ambient BC and the chemical characteristics of its associated coatings is particularly important to evaluate BC fate and environmental impacts. In this study, we investigate the formation of organic coatings on BC particles in an urban environment (Fontana, California) under hot and dry conditions using a soot-particle aerosol mass spectrometer (SP-AMS). The SP-AMS was operated in a configuration that can exclusively detect refractory BC (rBC) particles and their coatings. Using the -log(NOx / NOy) ratio as a proxy for photochemical age of air masses, substantial formation of secondary organic aerosol (SOA) coatings on rBC particles was observed due to active photochemistry in the afternoon, whereas primary organic aerosol (POA) components were strongly associated with rBC from fresh vehicular emissions in the morning rush hours. There is also evidence that cooking-related organic aerosols were externally mixed from rBC. Positive matrix factorization and elemental analysis illustrate that most of the observed SOA coatings were freshly formed, providing an opportunity to examine SOA coating formation on rBCs near vehicular emissions. Approximately 7-20 wt % of secondary organic and inorganic species were estimated to be internally mixed with rBC on average, implying that rBC is unlikely the major condensation sink of SOA in this study. Comparison of our results to a co-located standard high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) measurement suggests that at least a portion of SOA materials condensed on rBC surfaces were chemically different from oxygenated organic aerosol (OOA) particles that were externally mixed with rBC, although they could both be generated from local photochemistry.

  14. The Formation of Porous Membranes by Filtration of Aerosol Nanoparticles

    International Nuclear Information System (INIS)

    Andersen, Sune K.; Johannessen, Tue; Mosleh, Majid; Wedel, Stig; Tranto, Janne; Livbjerg, Hans

    2002-01-01

    Flame-generated aerosol particles of Al 2 O 3 were deposited by gas filtration on two types of porous and ceramic tubes of α-Al 2 O 3 with mean pore diameters of 450 and 2700 nm, respectively. The particles were aggregates with average mobility diameters in the range of 30-100 nm and primary particle diameters of 4-8 nm. The particles are characterized by differential mobility analysis, transmission electron microscopy, and by their specific surface area. The deposited membranes are characterized by gas permeability measurements, scanning electron microscopy, and by their pore size distribution from nitrogen capillary condensation. The particles form a distinct, homogeneous membrane layer with a porosity of ∼90% on top of the substrate surface and only penetrate slightly into the substrate structure. The mean pore sizes of the deposited membranes determined by nitrogen condensation agree approximately with those determined by gas permeation and the specific surface area. The mean pore diameter varies in the range of 30-70 nm. The gas permeability of the deposited membranes is related to the specific surface area but influenced by the high porosity. The mean pore size and the permeability of the membranes are almost independent of the substrate structure.The development of a membrane with uniform properties is preceded by a short initial period in which the deposited particles, with an equivalent membrane thickness of roughly 2 μm, have a significantly lower permeability than the ultimately developed uniform membrane layer. This effect is particularly significant for the aerosol particles with the lowest mean size, probably due to particles deposited in the pore mouths of the substrate.The particles and the deposited membranes are X-ray amorphous but retain their specific surface area on heating to even high temperatures. When the membranes are heated to 1473 K for 10 h, X-ray diffraction shows a mixture of θ- and α-alumina, accompanied by a partial

  15. Substantial secondary organic aerosol formation in a coniferous forest: observations of both day- and nighttime chemistry

    Directory of Open Access Journals (Sweden)

    A. K. Y. Lee

    2016-06-01

    Full Text Available Substantial biogenic secondary organic aerosol (BSOA formation was investigated in a coniferous forest mountain region in Whistler, British Columbia. A largely biogenic aerosol growth episode was observed, providing a unique opportunity to investigate BSOA formation chemistry in a forested environment with limited influence from anthropogenic emissions. Positive matrix factorization of aerosol mass spectrometry (AMS measurement identified two types of BSOA (BSOA-1 and BSOA-2, which were primarily generated by gas-phase oxidation of monoterpenes and perhaps sesquiterpenes. The temporal variations of BSOA-1 and BSOA-2 can be explained by gas–particle partitioning in response to ambient temperature and the relative importance of different oxidation mechanisms between day and night. While BSOA-1 arises from gas-phase ozonolysis and nitrate radical chemistry at night, BSOA-2 is likely less volatile than BSOA-1 and consists of products formed via gas-phase oxidation by OH radical and ozone during the day. Organic nitrates produced through nitrate radical chemistry can account for 22–33 % of BSOA-1 mass at night. The mass spectra of BSOA-1 and BSOA-2 have higher values of the mass fraction of m/z 91 (f91 compared to the background organic aerosol. Using f91 to evaluate BSOA formation pathways in this unpolluted, forested region, heterogeneous oxidation of BSOA-1 is a minor production pathway of BSOA-2.

  16. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation

    Science.gov (United States)

    Shiraiwa, Manabu; Yee, Lindsay D.; Schilling, Katherine A.; Loza, Christine L.; Craven, Jill S.; Zuend, Andreas; Ziemann, Paul J.; Seinfeld, John H.

    2013-01-01

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process. PMID:23818634

  17. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

    Science.gov (United States)

    Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H

    2013-07-16

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.

  18. Aerosolization, Chemical Characterization, Hygroscopicity and Ice Formation of Marine Biogenic Particles

    Science.gov (United States)

    Alpert, P. A.; Radway, J.; Kilthau, W.; Bothe, D.; Knopf, D. A.; Aller, J. Y.

    2013-12-01

    The oceans cover the majority of the earth's surface, host nearly half the total global primary productivity and are a major source of atmospheric aerosol particles. However, effects of biological activity on sea spray generation and composition, and subsequent cloud formation are not well understood. Our goal is to elucidate these effects which will be particularly important over nutrient rich seas, where microorganisms can reach concentrations of 10^9 per mL and along with transparent exopolymer particles (TEP) can become aerosolized. Here we report the results of mesocosm experiments in which bubbles were generated by two methods, either recirculating impinging water jets or glass frits, in natural or artificial seawater containing bacteria and unialgal cultures of three representative phytoplankton species, Thalassiosira pseudonana, Emiliania huxleyi, and Nannochloris atomus. Over time we followed the size distribution of aerosolized particles as well as their hygroscopicity, heterogeneous ice nucleation potential, and individual physical-chemical characteristics. Numbers of cells and the mass of dissolved and particulate organic carbon (DOC, POC), TEP (which includes polysaccharide-containing microgels and nanogels >0.4 μm in diameter) were determined in the bulk water, the surface microlayer, and aerosolized material. Aerosolized particles were also impacted onto substrates for ice nucleation and water uptake experiments, elemental analysis using computer controlled scanning electron microscopy and energy dispersive analysis of X-rays (CCSEM/EDX), and determination of carbon bonding with scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Regardless of bubble generation method, the overall concentration of aerosol particles, TEP, POC and DOC increased as concentrations of bacterial and phytoplankton cells increased, stabilized, and subsequently declined. Particles cloud formation and potential

  19. Aerosol Formation during the Combustion of Straw with Addition of Sorbents

    DEFF Research Database (Denmark)

    Zeuthen, Frederik Jacob; Jensen, Peter Arendt; Jensen, Jørgen P.

    2007-01-01

    , calcium phosphate, Bentonite, ICA5000, and clay. The addition of chalk increased the aerosol mass concentration by 24%. Experiments in a laminar flow aerosol condenser with the six sorbents were carried out in the laboratory using a synthetic flue gas to avoid fluctuations in the alkali feeding......The influence of six sorbents on aerosol formation during the combustion of straw in a 100 MW boiler on a Danish power plant has been studied in full-scale. The following sorbents were studied: ammonium sulfate, monocalcium phosphate, Bentonite, ICA5000, clay, and chalk. Bentonite and ICA5000...... are mixtures of clay minerals and consist mainly of the oxides from Fe, Al, and Si. The straw used was Danish wheat and seed grass. Measurements were also made with increased flow of primary air. The experiments showed between 46% and 70% reduction in particle mass concentrations when adding ammonium sulfate...

  20. An exploratory study of alkali sulfate aerosol formation during biomass combustion

    DEFF Research Database (Denmark)

    Løj, Lusi Hindiyarti; Frandsen, Flemming; Livbjerg, Hans

    2008-01-01

    mechanism. The modeling predictions are compared to data from laboratory experiments and entrained flow reactor experiments available in the literature. The analysis support that alkali sulfate aerosols are formed from homogeneous nucleation following a series of steps occurring in the gas phase. The rate......It is still in discussion to what extent alkali sulfate aerosols in biomass combustion are formed in the gas phase by a homogeneous mechanism or involve heterogeneous or catalyzed reactions. The present study investigates sulfate aerosol formation based on calculations with a detailed gas phase......-limiting step may be the oxidation of sulfite to sulfate, rather than the oxidation of SO2 to SO3 proposed previously. Even though the proposed model is consistent with experimental observations, experiments in a rigorously homogeneous system are called for to test its validity....

  1. Aerosol formation from heat and mass transfer in vapour-gas mixtures

    International Nuclear Information System (INIS)

    Clement, C.F.

    1985-01-01

    Heat and mass transfer equations and their coupling to the equation for the aerosol size distribution are examined for mixtures in which pressure changes are slow. Specific results in terms of Cn (the condensation number) and Le (the Lewis number - the ratio of the relative rates of evaporation and condensation) are obtained for the proportion of vapour condensing as a aerosol during the cooling and heating of a mixture in a well-mixed cavity. The assumption of allowing no supersaturations, the validity of which is examined, is shown to lead to maximum aerosol formation. For water vapour-air mixtures predictions are made as to temperature regions in which aerosols will evaporate or not form in cooling processes. The results are also qualitatively applied to some atmospheric effects as well as to water aerosols formed in the containment of a pressurized water reactor following a possible accident. In this context, the present conclusion that the whereabouts of vapour condensation is controlled by heat and mass transfer, contrasts with previous assumptions that the controlling factor is relative surface areas. (U.K.)

  2. Hail formation triggers rapid ash aggregation in volcanic plumes.

    Science.gov (United States)

    Van Eaton, Alexa R; Mastin, Larry G; Herzog, Michael; Schwaiger, Hans F; Schneider, David J; Wallace, Kristi L; Clarke, Amanda B

    2015-08-03

    During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized 'wet' eruption. The 2009 eruption of Redoubt Volcano, Alaska, incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits and numerical modelling demonstrate that hail-forming processes in the eruption plume triggered aggregation of ∼95% of the fine ash and stripped much of the erupted mass out of the atmosphere within 30 min. Based on these findings, we propose a mechanism of hail-like ash aggregation that contributes to the anomalously rapid fallout of fine ash and occurrence of concentrically layered aggregates in volcanic deposits.

  3. Rapid formation of a sea ice barrier east of Svalbard

    Science.gov (United States)

    Nghiem, S. V.; van Woert, M. L.; Neumann, G.

    2005-11-01

    Daily SeaWinds scatterometer images acquired by the QuikSCAT satellite show an elongated sea ice feature that formed very rapidly (˜1-2 days) in November 2001 east of Svalbard over the Barents Sea. This sea ice structure, called "the Svalbard sea ice barrier," spanning approximately 10° in longitude and 2° in latitude, restricts the sea route and poses a significant navigation hazard. The secret of its formation appears to lie in the bottom of the sea: A comparison between bathymetry from the International Bathymetric Chart of the Arctic Ocean data and the pattern of sea ice formation from scatterometer data reveals that the sea ice barrier conforms well with and stretches above a deep elongated channel connecting the Franz Josef-Victoria Trough to the Hinlopen Basin between Svalbard and Franz Josef Land. Historic hydrographic data from this area indicate that this sea channel contains cold Arctic water less than 50 m below the surface. Strong and persistent cold northerly winds force strong heat loss from this shallow surface layer, leading to the rapid formation of the sea ice barrier. Heat transfer rates estimated from European Centre for Medium-Range Weather Forecasts temperature and wind data over this region suggest that the surface water along the deep channel can be rapidly cooled to the freezing point. Scatterometer results in 1999-2003 show that sea ice forms in this area between October and December. Understanding the ice formation mechanisms helps to select appropriate locations for deployment of buoys measuring wind and air-sea temperature profile and to facilitate ice monitoring, modeling, and forecasting.

  4. High formation of secondary organic aerosol from the photo-oxidation of toluene

    Directory of Open Access Journals (Sweden)

    L. Hildebrandt

    2009-05-01

    Full Text Available Toluene and other aromatics have long been viewed as the dominant anthropogenic secondary organic aerosol (SOA precursors, but the SOA mass yields from toluene reported in previous studies vary widely. Experiments conducted in the Carnegie Mellon University environmental chamber to study SOA formation from the photo-oxidation of toluene show significantly larger SOA production than parameterizations employed in current air-quality models. Aerosol mass yields depend on experimental conditions: yields are higher under higher UV intensity, under low-NOx conditions and at lower temperatures. The extent of oxidation of the aerosol also varies with experimental conditions, consistent with ongoing, progressive photochemical aging of the toluene SOA. Measurements using a thermodenuder system suggest that the aerosol formed under high- and low-NOx conditions is semi-volatile. These results suggest that SOA formation from toluene depends strongly on ambient conditions. An approximate parameterization is proposed for use in air-quality models until a more thorough treatment accounting for the dynamic nature of this system becomes available.

  5. Numerical analysis of the formation process of aerosols in the alveoli

    Science.gov (United States)

    Haslbeck, Karsten; Seume, Jörg R.

    2008-11-01

    For a successful diagnosis of lung diseases through an analysis of non-volatile molecules in the exhaled breath, an exact understanding of the aerosol formation process is required. This process is modeled using Computational Fluid Dynamics (CFD). The model shows the interaction of the boundary surface between the streamed airway and the local epithelial liquid layer. A 2-D volume mesh of an alveolus is generated by taking into account the connection of the alveoli with the sacculi alveolares (SA). The Volume of Fluid (VOF) Method is used to model the interface between the gas and the liquid film. The non-Newtonian flow is modeled by the implementation of the Ostwald de Waele model. Surface tension is a function of the surfactant concentration. The VOF-Method allows the distribution of the concentration of the epithelial liquid layer at the surface to be traced in a transient manner. The simulations show the rupturing of the liquid film through the drop formation. Aerosol particles are ejected into the SA and do not collide with the walls. The quantity, the geometrical size as well as the velocity distributions of the generated aerosols are determined. The data presented in the paper provide the boundary conditions for future CFD analysis of the aerosol transport through the airways up to exhalation.

  6. Measurements of organic gases during aerosol formation events in the boreal forest atmosphere during QUEST

    Directory of Open Access Journals (Sweden)

    K. Sellegri

    2005-01-01

    Full Text Available Biogenic VOCs are important in the growth and possibly also in the early stages of formation of atmospheric aerosol particles. In this work, we present 10 min-time resolution measurements of organic trace gases at Hyytiälä, Finland during March 2002. The measurements were part of the project QUEST (Quantification of Aerosol Nucleation in the European Boundary Layer and took place during a two-week period when nucleation events occurred with various intensities nearly every day. Using a ground-based Chemical Ionization Mass Spectrometer (CIMS instrument, the following trace gases were detected: acetone, TMA, DMA, mass 68amu (candidate=isoprene, monoterpenes, methyl vinyl ketone (MVK and methacrolein (MaCR and monoterpene oxidation products (MTOP. For all of them except for the amines, we present daily variations during different classes of nucleation events, and non-event days. BVOC oxidation products (MVK, MaCR and MTOP show a higher ratio to the CS on event days compared to non-event days, indicating that their abundance relative to the surface of aerosol available is higher on nucleation days. Moreover, BVOC oxidation products are found to show significant correlations with the condensational sink (CS on nucleation event days, which indicates that they are representative of less volatile organic compounds that contribute to the growth of the nucleated particles and generally secondary organic aerosol formation. Behaviors of BVOC on event and non event days are compared to the behavior of CO.

  7. Secondary organic aerosol formation from primary aliphatic amines with NO3 radical

    Directory of Open Access Journals (Sweden)

    P. J. Silva

    2009-03-01

    Full Text Available Primary aliphatic amines are an important class of nitrogen containing compounds emitted from automobiles, waste treatment facilities and agricultural animal operations. A series of experiments conducted at the UC-Riverside/CE-CERT Environmental Chamber is presented in which oxidation of methylamine, ethylamine, propylamine, and butylamine with O3 and NO3 have been investigated. Very little aerosol formation is observed in the presence of O3 only. However, after addition of NO, and by extension NO3, large aerosol mass yields (~44% for butylamine are seen. Aerosol generated was determined to be organic in nature due to the small fraction of NO and NO2 in the total signal (<1% for all amines tested as detected by an aerosol mass spectrometer (AMS. We propose a reaction mechanism between carbonyl containing species and the parent amine leading to formation of particulate imine products. These findings can have significant impacts on rural communities with elevated nighttime PM loadings, when significant levels of NO3 exist.

  8. The formation, properties and impact of secondary organic aerosol: current and emerging issues

    Directory of Open Access Journals (Sweden)

    J. Wildt

    2009-07-01

    Full Text Available Secondary organic aerosol (SOA accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated with SOA formation are complex and varied, and, despite considerable progress in recent years, a quantitative and predictive understanding of SOA formation does not exist and therefore represents a major research challenge in atmospheric science. This review begins with an update on the current state of knowledge on the global SOA budget and is followed by an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and the analytical techniques used to determine the chemical composition of SOA. A survey of recent laboratory, field and modeling studies is also presented. The following topical and emerging issues are highlighted and discussed in detail: molecular characterization of biogenic SOA constituents, condensed phase reactions and oligomerization, the interaction of atmospheric organic components with sulfuric acid, the chemical and photochemical processing of organics in the atmospheric aqueous phase, aerosol formation from real plant emissions, interaction of atmospheric organic components with water, thermodynamics and mixtures in atmospheric models. Finally, the major challenges ahead in laboratory, field and modeling studies of SOA are discussed and recommendations for future research directions are proposed.

  9. Simulating SAL formation and aerosol size distribution during SAMUM-I

    KAUST Repository

    Khan, Basit Ali

    2015-04-01

    To understand the formation mechanisms of Saharan Air Layer (SAL), we combine model simulations and dust observations collected during the first stage of the Saharan Mineral Dust Experiment (SAMUM-I), which sampled dust events that extended from Morocco to Portugal, and investigated the spatial distribution and the microphysical, optical, chemical, and radiative properties of Saharan mineral dust. We employed the Weather Research Forecast model coupled with the Chemistry/Aerosol module (WRF-Chem) to reproduce the meteorological environment and spatial and size distributions of dust. The experimental domain covers northwest Africa including the southern Sahara, Morocco and part of the Atlantic Ocean with 5 km horizontal grid spacing and 51 vertical layers. The experiments were run from 20 May to 9 June 2006, covering the period of most intensive dust outbreaks. Comparisons of model results with available airborne and ground-based observations show that WRF-Chem reproduces observed meteorological fields as well as aerosol spatial distribution across the entire region and along the airplane\\'s tracks. We evaluated several aerosol uplift processes and found that orographic lifting, aerosol transport through the land/sea interface with steep gradients of meteorological characteristics, and interaction of sea breezes with the continental outflow are key mechanisms that form a surface-detached aerosol plume over the ocean. Comparisons of simulated dust size distributions with airplane and ground-based observations are generally good, but suggest that more detailed treatment of microphysics in the model is required to capture the full-scale effect of large aerosol particles.

  10. Formation of secondary organic aerosols from gas-phase emissions of heated cooking oils

    Directory of Open Access Journals (Sweden)

    T. Liu

    2017-06-01

    Full Text Available Cooking emissions can potentially contribute to secondary organic aerosol (SOA but remain poorly understood. In this study, formation of SOA from gas-phase emissions of five heated vegetable oils (i.e., corn, canola, sunflower, peanut and olive oils was investigated in a potential aerosol mass (PAM chamber. Experiments were conducted at 19–20 °C and 65–70 % relative humidity (RH. The characterization instruments included a scanning mobility particle sizer (SMPS and a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS. The efficiency of SOA production, in ascending order, was peanut oil, olive oil, canola oil, corn oil and sunflower oil. The major SOA precursors from heated cooking oils were related to the content of monounsaturated fat and omega-6 fatty acids in cooking oils. The average production rate of SOA, after aging at an OH exposure of 1. 7 × 1011 molecules cm−3 s, was 1. 35 ± 0. 30 µg min−1, 3 orders of magnitude lower compared with emission rates of fine particulate matter (PM2. 5 from heated cooking oils in previous studies. The mass spectra of cooking SOA highly resemble field-derived COA (cooking-related organic aerosol in ambient air, with R2 ranging from 0.74 to 0.88. The average carbon oxidation state (OSc of SOA was −1.51 to −0.81, falling in the range between ambient hydrocarbon-like organic aerosol (HOA and semi-volatile oxygenated organic aerosol (SV-OOA, indicating that SOA in these experiments was lightly oxidized.

  11. Secondary organic aerosol formation from ozone-initiated reactions with nicotine and secondhand tobacco smoke

    Science.gov (United States)

    Sleiman, Mohamad; Destaillats, Hugo; Smith, Jared D.; Liu, Chen-Lin; Ahmed, Musahid; Wilson, Kevin R.; Gundel, Lara A.

    2010-11-01

    We used controlled laboratory experiments to evaluate the aerosol-forming potential of ozone reactions with nicotine and secondhand smoke. Special attention was devoted to real-time monitoring of the particle size distribution and chemical composition of SOA as they are believed to be key factors determining the toxicity of SOA. The experimental approach was based on using a vacuum ultraviolet photon ionization time-of-flight aerosol mass spectrometer (VUV-AMS), a scanning mobility particle sizer (SMPS) and off-line thermal desorption coupled to mass spectrometry (TD-GC-MS) for gas-phase byproducts analysis. Results showed that exposure of SHS to ozone induced the formation of ultrafine particles (smoke that is associated with the formation of ultrafine particles (UFP) through oxidative aging of secondhand smoke. The significance of this chemistry for indoor exposure and health effects is highlighted.

  12. Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass

    Science.gov (United States)

    Bahreini, R.; Middlebrook, A. M.; de Gouw, J. A.; Warneke, C.; Trainer, M.; Brock, C. A.; Stark, H.; Brown, S. S.; Dube, W. P.; Gilman, J. B.; Hall, K.; Holloway, J. S.; Kuster, W. C.; Perring, A. E.; Prevot, A. S. H.; Schwarz, J. P.; Spackman, J. R.; Szidat, S.; Wagner, N. L.; Weber, R. J.; Zotter, P.; Parrish, D. D.

    2012-03-01

    Although laboratory experiments have shown that organic compounds in both gasoline fuel and diesel engine exhaust can form secondary organic aerosol (SOA), the fractional contribution from gasoline and diesel exhaust emissions to ambient SOA in urban environments is poorly known. Here we use airborne and ground-based measurements of organic aerosol (OA) in the Los Angeles (LA) Basin, California made during May and June 2010 to assess the amount of SOA formed from diesel emissions. Diesel emissions in the LA Basin vary between weekdays and weekends, with 54% lower diesel emissions on weekends. Despite this difference in source contributions, in air masses with similar degrees of photochemical processing, formation of OA is the same on weekends and weekdays, within the measurement uncertainties. This result indicates that the contribution from diesel emissions to SOA formation is zero within our uncertainties. Therefore, substantial reductions of SOA mass on local to global scales will be achieved by reducing gasoline vehicle emissions.

  13. Photochemical Formation of Aerosol in Planetary Atmospheres: Photon and Water Mediated Chemistry of SO_2

    Science.gov (United States)

    Kroll, Jay A.; Donaldson, D. J.; Vaida, Veronica

    2016-06-01

    Sulfur compounds have been observed in a number of planetary atmospheres throughout our solar system. Our current understanding of sulfur chemistry explains much of what we observe in Earth's atmosphere. However, several discrepancies between modeling and observations of the Venusian atmosphere show there are still problems in our fundamental understanding of sulfur chemistry. This is of particular concern due to the important role sulfur compounds play in the formation of aerosols, which have a direct impact on planetary climates, including Earth's. We investigate the role of water complexes in the hydration of sulfur oxides and dehydration of sulfur acids and will present spectroscopic studies to document such effects. I will present recent work investigating mixtures of SO_2 and water that generate large quantities of aerosol when irradiated with solar UV light, even in the absence of traditional OH chemistry. I will discuss a proposed mechanism for the formation of sulfurous acid (H_2SO_3) and present recent experimental work that supports this proposed mechanism. Additionally, the implications that photon-induced hydration of SO_2 has for aerosol formation in the atmosphere of earth as well as other planetary atmospheres will be discussed.

  14. [Estimate of the formation potential of secondary organic aerosol in Beijing summertime].

    Science.gov (United States)

    Lü, Zi-Feng; Hao, Ji-Ming; Duan, Jing-Chun; Li, Jun-Hua

    2009-04-15

    Fractional aerosol coefficients (FAC) are used in conjunction with measurements of volatile organic compounds (VOC) during ozone episodes to estimate the formation potential of secondary organic aerosols (SOA) in the summertime of Beijing. The estimation is based on the actual atmospheric conditions of Beijing, and benzene and isoprene are considered as the precursors of SOA. The results show that 31 out of 70 measured VOC species are SOA precursors, and the total potential SOA formation is predicted to be 8.48 microg/m3, which accounts for 30% of fine organic particle matter. Toluene, xylene, pinene, ethylbenzene and n-undecane are the 5 largest contributors to SOA production and account for 20%, 22%, 14%, 9% and 4% of total SOA production, respectively. The anthropogenic aromatic compounds, which yield 76% of the calculated SOA, are the major source of SOA. The biogenic alkenes, alkanes and carbonyls produce 16%, 7% and 1% of SOA formation, respectively. The major components of produced SOA are expected to be aromatic compounds, aliphatic acids, carbonyls and aliphatic nitrates, which contribute to 72%, 14%, 11% and 3% of SOA mass, respectively. The SOA precursors have relatively low atmospheric concentrations and low ozone formation potential. Hence, SOA formation potential of VOC species, in addition to their atmospheric concentrations and ozone formation potential, should be considered in policy making process of VOCs control.

  15. On the Role of Ammonia in Arctic Aerosol Nucleation and Cloud Formation

    Science.gov (United States)

    Browse, J.; Dall'Osto, M.; Geels, C.; Skov, H.; Massling, A.; Boertmann, D.; Beddows, D.; Gordon, H.; Pringle, K.

    2017-12-01

    This study investigates the importance of ammonia in Arctic aerosol nucleation and the formation of cloud condensation nuclei (CCN) at high-latitudes. The importance of atmospheric nucleation processes to summertime Arctic aerosol concentration has been frequently noted at ground-stations, during campaigns and within models (which typically predict that the majority of aerosol in the Arctic summertime boundary layer derives from nucleation). However, as nucleation mechanisms in global models have increased in complexity (improving model skill globally) our skill in the Arctic has generally decreased. This decrease in model skill is likely due to a lack of organic compounds (monterpenes etc.) in the modelled high Arctic which have been identified as a key component in atmospheric nucleation in the mid-latitudes and thus incorporated into many global nucleation parametrisations. Recently it has been suggested that ammonia (also identified as a potentially important component in atmospheric nucleation) may control nucleation processes in the Arctic. However, the source (or sources) of Arctic ammonia remain unclear. Here, we use modelling, long-term aerosol in-situ observations, high resolution sea-ice satellite observations and new emission inventories to investigate the link between ammonia sources (including bird colonies, sea-ice melt and open ocean in the marginal ice zones) and nucleation events in the mid-to-high Arctic, and thus quantify the importance of individual ammonia sources to Arctic-wide CCN and cloud droplet populations.

  16. Evaluation of the atmospheric significance of multiphase reactions in atmospheric secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    Gelencsér

    2005-01-01

    Full Text Available In a simple conceptual cloud-aerosol model the mass of secondary organic aerosol (SOA that may be formed in multiphase reaction in an idealized scenario involving two cloud cycles separated with a cloud-free period is evaluated. The conditions are set to those typical of continental clouds, and each parameter used in the model calculations is selected as a mean of available observational data of individual species for which the multiphase SOA formation route has been established. In the idealized setting gas and aqueous-phase reactions are both considered, but only the latter is expected to yield products of sufficiently low volatility to be retained by aerosol particles after the cloud dissipates. The key variable of the model is the Henry-constant which primarily determines how important multiphase reactions are relative to gas-phase photooxidation processes. The precursor considered in the model is assumed to already have some affinity to water, i.e. it is a compound having oxygen-containing functional group(s. As a principal model output an aerosol yield parameter is calculated for the multiphase SOA formation route as a function of the Henry-constant, and has been found to be significant already above H~103 M atm-1. Among the potential precursors that may be eligible for this mechanism based on their Henry constants, there are a suite of oxygenated compounds such as primary oxidation products of biogenic and anthropogenic hydrocarbons, including, for example, pinonaldehyde. Finally, the analogy of multiphase SOA formation to in-cloud sulfate production is exploited.

  17. Aerosol formation and effect in biomass combustion and gasification

    International Nuclear Information System (INIS)

    Strand, Michael; Lillieblad, Lena; Sanati, Mehri; Pagels, Joakim; Szpila, Aneta; Boghard, Mats; Rissler, Jenny; Swietlicki, Erik

    2005-09-01

    The fine particle composition as analysed with PIXE and IC, was dominated by potassium, sulphur and chlorine. In some cases there was also a substantial concentration of zinc in the fine mode particles. The proposed mechanism for formation of the fine mode is homogenous chemical reactions to form potassium sulphate, which nucleates to form a fine particle mode at high temperatures The concentration profile of zinc indicates that zinc-containing species may form particles by gas-to-particle conversion prior to the nucleation of potassium sulphate. As the flue gas temperature decrease below 650 deg C potassium chloride will condense on the surfaces of the previously formed particles. As the temperature descends further, other more volatile components such as Pb and heavy hydrocarbons will condense. The coarse particle number concentration varied between 100-10,000 particles/cm 3 , and the mass concentration varied between 4-87 mg/cm 3 , with the highest concentrations for the high load cases. The coarse mode particles were mainly composed of calcium and manganese in addition to potassium, sulphur and chlorine. The proposed mechanism for inception of the coarse particle mode was fragmentation/dispersion of refractory material from the burning char or from the residual ash in the bed. The ratios of the potentially volatile elements potassium, sulphur and chlorine, were similar in the fine and the coarse mode, indicating the material had the same origin in both modes. The presence of the volatile components may be explained by non-complete vaporisation, chemical surface reactions, and re-entrainment of deposited particles or by coagulation of fine particles. However, neither of the proposed mechanisms can give a conclusive explanation to the composition of the coarse mode, i.e. the high concentration potentially volatile elements

  18. Aerosol formation and effect in biomass combustion and gasification

    Energy Technology Data Exchange (ETDEWEB)

    Strand, Michael; Lillieblad, Lena; Sanati, Mehri [Vaexjoe Univ. (Sweden). Bioenergy Technology; Pagels, Joakim; Szpila, Aneta; Boghard, Mats [Lund Univ. (Sweden). Div. of Ergonomics and Aerosol Technology; Rissler, Jenny; Swietlicki, Erik [Lund Univ. (Sweden). Div. of Nuclear Physics

    2005-09-01

    The fine particle composition as analysed with PIXE and IC, was dominated by potassium, sulphur and chlorine. In some cases there was also a substantial concentration of zinc in the fine mode particles. The proposed mechanism for formation of the fine mode is homogenous chemical reactions to form potassium sulphate, which nucleates to form a fine particle mode at high temperatures The concentration profile of zinc indicates that zinc-containing species may form particles by gas-to-particle conversion prior to the nucleation of potassium sulphate. As the flue gas temperature decrease below 650 deg C potassium chloride will condense on the surfaces of the previously formed particles. As the temperature descends further, other more volatile components such as Pb and heavy hydrocarbons will condense. The coarse particle number concentration varied between 100-10,000 particles/cm{sup 3}, and the mass concentration varied between 4-87 mg/cm{sup 3}, with the highest concentrations for the high load cases. The coarse mode particles were mainly composed of calcium and manganese in addition to potassium, sulphur and chlorine. The proposed mechanism for inception of the coarse particle mode was fragmentation/dispersion of refractory material from the burning char or from the residual ash in the bed. The ratios of the potentially volatile elements potassium, sulphur and chlorine, were similar in the fine and the coarse mode, indicating the material had the same origin in both modes. The presence of the volatile components may be explained by non-complete vaporisation, chemical surface reactions, and re-entrainment of deposited particles or by coagulation of fine particles. However, neither of the proposed mechanisms can give a conclusive explanation to the composition of the coarse mode, i.e. the high concentration potentially volatile elements.

  19. Heterogeneous photochemistry of imidazole-2-carboxaldehyde: HO2 radical formation and aerosol growth

    Directory of Open Access Journals (Sweden)

    L. González Palacios

    2016-09-01

    Full Text Available The multiphase chemistry of glyoxal is a source of secondary organic aerosol (SOA, including its light-absorbing product imidazole-2-carboxaldehyde (IC. IC is a photosensitizer that can contribute to additional aerosol ageing and growth when its excited triplet state oxidizes hydrocarbons (reactive uptake via H-transfer chemistry. We have conducted a series of photochemical coated-wall flow tube (CWFT experiments using films of IC and citric acid (CA, an organic proxy and H donor in the condensed phase. The formation rate of gas-phase HO2 radicals (PHO2 was measured indirectly by converting gas-phase NO into NO2. We report on experiments that relied on measurements of NO2 formation, NO loss and HONO formation. PHO2 was found to be a linear function of (1 the [IC]  ×  [CA] concentration product and (2 the photon actinic flux. Additionally, (3 a more complex function of relative humidity (25 %  <  RH  <  63 % and of (4 the O2 ∕ N2 ratio (15 %  <  O2 ∕ N2  <  56 % was observed, most likely indicating competing effects of dilution, HO2 mobility and losses in the film. The maximum PHO2 was observed at 25–55 % RH and at ambient O2 ∕ N2. The HO2 radicals form in the condensed phase when excited IC triplet states are reduced by H transfer from a donor, CA in our system, and subsequently react with O2 to regenerate IC, leading to a catalytic cycle. OH does not appear to be formed as a primary product but is produced from the reaction of NO with HO2 in the gas phase. Further, seed aerosols containing IC and ammonium sulfate were exposed to gas-phase limonene and NOx in aerosol flow tube experiments, confirming significant PHO2 from aerosol surfaces. Our results indicate a potentially relevant contribution of triplet state photochemistry for gas-phase HO2 production, aerosol growth and ageing in the atmosphere.

  20. Formation of secondary aerosols from gasoline vehicle exhaust when mixing with SO2

    Directory of Open Access Journals (Sweden)

    T. Liu

    2016-01-01

    Full Text Available Sulfur dioxide (SO2 can enhance the formation of secondary aerosols from biogenic volatile organic compounds (VOCs, but its influence on secondary aerosol formation from anthropogenic VOCs, particularly complex mixtures like vehicle exhaust, remains uncertain. Gasoline vehicle exhaust (GVE and SO2, a typical pollutant from coal burning, are directly co-introduced into a smog chamber, in this study, to investigate the formation of secondary organic aerosols (SOA and sulfate aerosols through photooxidation. New particle formation was enhanced, while substantial sulfate was formed through the oxidation of SO2 in the presence of high concentration of SO2. Homogenous oxidation by OH radicals contributed a negligible fraction to the conversion of SO2 to sulfate, and instead the oxidation by stabilized Criegee intermediates (sCIs, formed from alkenes in the exhaust reacting with ozone, dominated the conversion of SO2. After 5 h of photochemical aging, GVE's SOA production factor revealed an increase by 60–200 % in the presence of high concentration of SO2. The increase could principally be attributed to acid-catalyzed SOA formation as evidenced by the strong positive linear correlation (R2 = 0.97 between the SOA production factor and in situ particle acidity calculated by the AIM-II model. A high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS resolved OA's relatively lower oxygen-to-carbon (O : C (0.44 ± 0.02 and higher hydrogen-to-carbon (H : C (1.40 ± 0.03 molar ratios for the GVE / SO2 mixture, with a significantly lower estimated average carbon oxidation state (OSc of −0.51 ± 0.06 than −0.19 ± 0.08 for GVE alone. The relative higher mass loading of OA in the experiments with SO2 might be a significant explanation for the lower SOA oxidation degree.

  1. Uptake of Alkylamines on Dicarboxylic Acids Relevant to Secondary Organic Aerosol Formation

    Science.gov (United States)

    Marrero-Ortiz, W.; Secrest, J.; Zhang, R.

    2017-12-01

    Aerosols play a critical role in climate directly by scattering and absorbing solar radiation, and indirectly by functioning as cloud condensation nuclei (CCN); both represent the largest uncertainties in climate predictions. New particle formation contributes significantly to CCN production; however, the mechanisms related to particle nucleation and growth processes are not well understood. Organic acids are atmospherically abundant, and their neutralization by low molecular weight amines may result in the formation of stable low volatility aminium salt products contributing to the growth of secondary organic aerosols and even the alteration of the aerosol properties. The acid-base neutralization of particle phase succinic acid and tartaric acid by low molecular weight aliphatic amines, i.e. methylamine, dimethylamine, and trimethylamine, has been investigated by employing a low-pressure fast flow reactor at 298K with an ion drift - chemical ionization mass spectrometer (ID-CIMS). The heterogeneous uptake is time dependent and influenced by organic acids functionality, alkylamines basicity, and steric effect. The implications of our results to atmospheric nanoparticle growth will be discussed.

  2. Evidence of aqueous secondary organic aerosol formation from biogenic emissions in the North American Sonoran Desert.

    Science.gov (United States)

    Youn, Jong-Sang; Wang, Zhen; Wonaschütz, Anna; Arellano, Avelino; Betterton, Eric A; Sorooshian, Armin

    2013-07-16

    This study examines the role of aqueous secondary organic aerosol formation in the North American Sonoran Desert as a result of intense solar radiation, enhanced moisture, and biogenic volatile organic compounds (BVOCs). The ratio of water-soluble organic carbon (WSOC) to organic carbon (OC) nearly doubles during the monsoon season relative to other seasons of the year. When normalized by mixing height, the WSOC enhancement during monsoon months relative to preceding dry months (May-June) exceeds that of sulfate by nearly a factor of 10. WSOC:OC and WSOC are most strongly correlated with moisture parameters, temperature, and concentrations of O 3 and BVOCs. No positive relationship was identified between WSOC or WSOC:OC and anthropogenic tracers such as CO over a full year. This study points at the need for further work to understand the effect of BVOCs and moisture in altering aerosol properties in understudied desert regions.

  3. Characterization of new particle and secondary aerosol formation during summertime in Beijing, China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y. M. (Key Laboratory for Atmospheric Chemistry, Centre for Atmosphere Watch and Services, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing (China); Graduate Univ. of Chinese Academy of Sciences, Beijing (China)); Zhang, X. Y.; Sun, J. Y.; Lin, W. L.; Shen, X. J. (Key Laboratory for Atmospheric Chemistry, Centre for Atmosphere Watch and Services, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing (China)), e-mail: xiaoye@cams.cma.gov.cn; Gong, S. L. (Air Quality Research Div., Science and Technology Branch, Environment Canada, Toronto (Canada)); Yang, S. (State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Inst. of Atmospheric Physics, CAS, Beijing (China))

    2011-07-15

    Size-resolved aerosol number and mass concentrations and the mixing ratios of O{sub 3} and various trace gases were continuously measured at an urban station before and during the Beijing Olympic and Paralympic Games (5 June to 22 September, 2008). 23 new particle formation (NPF) events were identified; these usually were associated with changes in wind direction and/or rising concentrations of gas-phase precursors or after precipitation events. Most of the NPF events started in the morning and continued to noon as particles in the nucleation mode grew into the Aitken mode. From noon to midnight, the aerosols grew into the accumulation mode through condensation and coagulation. Ozone showed a gradual rise starting around 10:00 local time, reached its peak around 15:00 and then declined as the organics increased. The dominant new particle species were organics (40-75% of PM{sub 1}) and sulphate; nitrate and ammonium were more minor contributors

  4. Characterization of new particle and secondary aerosol formation during summertime in Beijing, China

    Science.gov (United States)

    Zhang, Y. M.; Zhang, X. Y.; Sun, J. Y.; Lin, W. L.; Gong, S. L.; Shen, X. J.; Yang, S.

    2011-07-01

    Size-resolved aerosol number and mass concentrations and the mixing ratios of O3 and various trace gases were continuously measured at an urban station before and during the Beijing Olympic and Paralympic Games (5 June to 22 September, 2008). 23 new particle formation (NPF) events were identified; these usually were associated with changes in wind direction and/or rising concentrations of gas-phase precursors or after precipitation events. Most of the NPF events started in the morning and continued to noon as particles in the nucleation mode grew into the Aitken mode. From noon to midnight, the aerosols grew into the accumulation mode through condensation and coagulation. Ozone showed a gradual rise starting around 10:00 local time, reached its peak around 15:00 and then declined as the organics increased. The dominant new particle species were organics (40-75% of PM1) and sulphate; nitrate and ammonium were more minor contributors.

  5. Effect of flavoring chemicals on free radical formation in electronic cigarette aerosols.

    Science.gov (United States)

    Bitzer, Zachary T; Goel, Reema; Reilly, Samantha M; Elias, Ryan J; Silakov, Alexey; Foulds, Jonathan; Muscat, Joshua; Richie, John P

    2018-05-20

    Flavoring chemicals, or flavorants, have been used in electronic cigarettes (e-cigarettes) since their inception; however, little is known about their toxicological effects. Free radicals present in e-cigarette aerosols have been shown to induce oxidative stress resulting in damage to proliferation, survival, and inflammation pathways in the cell. Aerosols generated from e-liquid solvents alone contain high levels of free radicals but few studies have looked at how these toxins are modulated by flavorants. We investigated the effects of different flavorants on free radical production in e-cigarette aerosols. Free radicals generated from 49 commercially available e-liquid flavors were captured and analyzed using electron paramagnetic resonance (EPR). The flavorant composition of each e-liquid was analyzed by gas chromatography mass spectroscopy (GCMS). Radical production was correlated with flavorant abundance. Ten compounds were identified and analyzed for their impact on free radical generation. Nearly half of the flavors modulated free radical generation. Flavorants with strong correlations included β-damascone, δ-tetradecalactone, γ-decalactone, citral, dipentene, ethyl maltol, ethyl vanillin, ethyl vanillin PG acetal, linalool, and piperonal. Dipentene, ethyl maltol, citral, linalool, and piperonal promoted radical formation in a concentration-dependent manner. Ethyl vanillin inhibited the radical formation in a concentration dependent manner. Free radical production was closely linked with the capacity to oxidize biologically-relevant lipids. Our results suggest that flavoring agents play an important role in either enhancing or inhibiting the production of free radicals in flavored e-cigarette aerosols. This information is important for developing regulatory strategies aimed at reducing potential harm from e-cigarettes. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Exchanges in boundary layer and low troposphere and consequences on pollution of Fos-Berre-Marseille area (ESCOMPTE experiment); Les aerosols: emissions, formation d'aerosols organiques secondaires, transport longue distance. Zoom sur les aerosols carbones en Europe

    Energy Technology Data Exchange (ETDEWEB)

    Guillaume, B

    2006-01-15

    There are two types of 'carbonaceous aerosols': 'black carbon' (BC) and 'organic carbon'(OC). BC is directly emitted in the atmosphere while OC is either directly emitted (primary OC, OCp) or secondarily formed through oxidation processes in the atmosphere (secondary organic aerosols, SOA). Complexity of carbonaceous aerosols is still poorly represented in existing aerosol models and uncertainties appear mainly both in their emission inventories and in their complex atmospheric evolution (transport, gas-particle interactions, dry/wet deposition), making difficult the estimation of their radiative impact. In this framework, I developed during my PhD at Laboratoire d'Aerologie, a new approach to deal with this complexity, with implementation of both a new carbonaceous aerosol emission inventory and a new aerosol modelling tool at global scale. My work is divided in 5 different tasks: - better characterisation of BC and OCp emissions, achieved through the development of a new emission inventory from fossil fuel and biofuel combustion sources (industrial, domestic and mobile sources). This inventory provides BC and OCp emissions for Europe at 25 km * 25 km resolution for the years 1990, 1995, 2000, 2005 and 2010, with two additional regional zooms: on France, at 10 km * 10 km resolution for the years 2000 and 2010 with improved road traffic, and in Marseille region (Escompte campaign, 1999,-2001) at 1 km * 1 km resolution for the year 1999; - better modelling of carbonaceous aerosol complex atmospheric evolution, through coupling of a global scale gas transport/chemistry model (TM4) with an aerosol module (ORISAM) featuring size-distributed aerosols (on 8 diameter sections from 40 nm to 10 {mu}m) organic/inorganic chemical composition and explicit treatment of SOA formation; - simulations with this new aerosol model ORISAM-TM4 and model/measurements comparisons to study BC and OC long-range transport; - sensitivity tests on SOA

  7. Aerosol formation of Sea-Urchin-like nanostructures of carbon nanotubes on bimetallic nanocomposite particles

    International Nuclear Information System (INIS)

    Kim, S. H.; Wang, C.; Zachariah, M. R.

    2011-01-01

    With the advantage of continuous production of pure carbon nanotubes (CNTs), a new simple aerosol process for the formation of CNTs was developed. A combination of conventional spray pyrolysis and thermal chemical vapor deposition enabled the formation unusual sea-urchin-like carbon nanostructures composed of multi-walled CNTs and metal composite nanoparticles. The CNTs formed were relatively untangled and uniform with a diameter of less than∼10 nm. The key to the formation of CNTs in this way was to create a substrate particle containing both a catalytic and non-catalytic component, which prevented coking. The density of the CNTs grown on the spherical metal nanoparticles could be controlled by perturbing the density of the metal catalysts (Fe) in the host non-catalytic metal particle matrix (Al). Mobility size measurement was identified as a useful technique to real-time characterization of either the catalytic formation of thin carbon layer or CNTs on the surface of the metal aerosol. These materials have shown unique properties in enhancing the thermal conductivity of fluids. Other potential advantages are that the as-produced material can be manipulated easily without the concern of high mobility of conventional nanowires, and then subsequently released at the desired time in an unagglomerated state.

  8. Secondary organic aerosol formation from a large number of reactive man-made organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Derwent, Richard G., E-mail: r.derwent@btopenworld.com [rdscientific, Newbury, Berkshire (United Kingdom); Jenkin, Michael E. [Atmospheric Chemistry Services, Okehampton, Devon (United Kingdom); Utembe, Steven R.; Shallcross, Dudley E. [School of Chemistry, University of Bristol, Bristol (United Kingdom); Murrells, Tim P.; Passant, Neil R. [AEA Environment and Energy, Harwell International Business Centre, Oxon (United Kingdom)

    2010-07-15

    A photochemical trajectory model has been used to examine the relative propensities of a wide variety of volatile organic compounds (VOCs) emitted by human activities to form secondary organic aerosol (SOA) under one set of highly idealised conditions representing northwest Europe. This study applied a detailed speciated VOC emission inventory and the Master Chemical Mechanism version 3.1 (MCM v3.1) gas phase chemistry, coupled with an optimised representation of gas-aerosol absorptive partitioning of 365 oxygenated chemical reaction product species. In all, SOA formation was estimated from the atmospheric oxidation of 113 emitted VOCs. A number of aromatic compounds, together with some alkanes and terpenes, showed significant propensities to form SOA. When these propensities were folded into a detailed speciated emission inventory, 15 organic compounds together accounted for 97% of the SOA formation potential of UK man made VOC emissions and 30 emission source categories accounted for 87% of this potential. After road transport and the chemical industry, SOA formation was dominated by the solvents sector which accounted for 28% of the SOA formation potential.

  9. Chemical composition, source, and process of urban aerosols during winter haze formation in Northeast China.

    Science.gov (United States)

    Zhang, Jian; Liu, Lei; Wang, Yuanyuan; Ren, Yong; Wang, Xin; Shi, Zongbo; Zhang, Daizhou; Che, Huizheng; Zhao, Hujia; Liu, Yanfei; Niu, Hongya; Chen, Jianmin; Zhang, Xiaoye; Lingaswamy, A P; Wang, Zifa; Li, Weijun

    2017-12-01

    The characteristics of aerosol particles have been poorly evaluated even though haze episodes frequently occur in winter in Northeast China. OC/EC analysis, ion chromatography, and transmission electron microscopy (TEM) were used to investigate the organic carbon (OC) and elemental carbon (EC), and soluble ions in PM 2.5 and the mixing state of individual particles during a severe wintertime haze episode in Northeast China. The organic matter (OM), NH 4 + , SO 4 2- , and NO 3 - concentrations in PM 2.5 were 89.5 μg/m 3 , 24.2 μg/m 3 , 28.1 μg/m 3 , and 32.8 μg/m 3 on the haze days, respectively. TEM observations further showed that over 80% of the haze particles contained primary organic aerosols (POAs). Based on a comparison of the data obtained during the haze formation, we generate the following synthetic model of the process: (1) Stable synoptic meteorological conditions drove the haze formation. (2) The early stage of haze formation (light or moderate haze) was mainly caused by the enrichment of POAs from coal burning for household heating and cooking. (3) High levels of secondary organic aerosols (SOAs), sulfates, and nitrates formation via heterogeneous reactions together with POAs accumulation promoted to the evolution from light or moderate to severe haze. Compared to the severe haze episodes over the North China Plain, the PM 2.5 in Northeast China analyzed in the present study contained similar sulfate, higher SOA, and lower nitrate contents. Our results suggest that most of the POAs and secondary particles were likely related to emissions from coal-burning residential stoves in rural outskirts and small boilers in urban areas. The inefficient burning of coal for household heating and cooking should be monitored during wintertime in Northeast China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Reactive oxidation products promote secondary organic aerosol formation from green leaf volatiles

    Directory of Open Access Journals (Sweden)

    J. F. Hamilton

    2009-06-01

    Full Text Available Green leaf volatiles (GLVs are an important group of chemicals released by vegetation which have emission fluxes that can be significantly increased when plants are damaged or stressed. A series of simulation chamber experiments has been conducted at the European Photoreactor in Valencia, Spain, to investigate secondary organic aerosol (SOA formation from the atmospheric oxidation of the major GLVs cis-3-hexenylacetate and cis-3-hexen-1-ol. Liquid chromatography-ion trap mass spectrometry was used to identify chemical species present in the SOA. Cis-3-hexen-1-ol proved to be a more efficient SOA precursor due to the high reactivity of its first generation oxidation product, 3-hydroxypropanal, which can hydrate and undergo further reactions with other aldehydes resulting in SOA dominated by higher molecular weight oligomers. The lower SOA yields produced from cis-3-hexenylacetate are attributed to the acetate functionality, which inhibits oligomer formation in the particle phase. Based on observed SOA yields and best estimates of global emissions, these compounds may be calculated to be a substantial unidentified global source of SOA, contributing 1–5 TgC yr−1, equivalent to around a third of that predicted from isoprene. Molecular characterization of the SOA, combined with organic mechanistic information, has provided evidence that the formation of organic aerosols from GLVs is closely related to the reactivity of their first generation atmospheric oxidation products, and indicates that this may be a simple parameter that could be used in assessing the aerosol formation potential for other unstudied organic compounds in the atmosphere.

  11. Diclofenac in Arabidopsis cells: Rapid formation of conjugates.

    Science.gov (United States)

    Fu, Qiuguo; Ye, Qingfu; Zhang, Jianbo; Richards, Jaben; Borchardt, Dan; Gan, Jay

    2017-03-01

    Pharmaceutical and personal care products (PPCPs) are continuously introduced into the soil-plant system, through practices such as agronomic use of reclaimed water and biosolids containing these trace contaminants. Plants may accumulate PPCPs from soil, serving as a conduit for human exposure. Metabolism likely controls the final accumulation of PPCPs in plants, but is in general poorly understood for emerging contaminants. In this study, we used diclofenac as a model compound, and employed 14 C tracing, and time-of-flight (TOF) and triple quadruple (QqQ) mass spectrometers to unravel its metabolism pathways in Arabidopsis thaliana cells. We further validated the primary metabolites in Arabidopsis seedlings. Diclofenac was quickly taken up into A. thaliana cells. Phase I metabolism involved hydroxylation and successive oxidation and cyclization reactions. However, Phase I metabolites did not accumulate appreciably; they were instead rapidly conjugated with sulfate, glucose, and glutamic acid through Phase II metabolism. In particular, diclofenac parent was directly conjugated with glutamic acid, with acyl-glutamatyl-diclofenac accounting for >70% of the extractable metabolites after 120-h incubation. In addition, at the end of incubation, >40% of the spiked diclofenac was in the non-extractable form, suggesting extensive sequestration into cell matter. The rapid formation of non-extractable residue and dominance of diclofenac-glutamate conjugate uncover previously unknown metabolism pathways for diclofenac. In particular, the rapid conjugation of parent highlights the need to consider conjugates of emerging contaminants in higher plants, and their biological activity and human health implications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Study of particle size distribution and formation mechanism of radioactive aerosols generated in high-energy neutron fields

    CERN Document Server

    Endo, A; Noguchi, H; Tanaka, S; Iida, T; Furuichi, S; Kanda, Y; Oki, Y

    2003-01-01

    The size distributions of sup 3 sup 8 Cl, sup 3 sup 9 Cl, sup 8 sup 2 Br and sup 8 sup 4 Br aerosols generated by irradiations of argon and krypton gases containing di-octyl phthalate (DOP) aerosols with 45 MeV and 65 MeV quasi-monoenergetic neutrons were measured in order to study the formation mechanism of radioactive particles in high energy radiation fields. The effects of the size distribution of the radioactive aerosols on the size of the added DOP aerosols, the energy of the neutrons and the kinds of nuclides were studied. The observed size distributions of the radioactive particles were explained by attachment of the radioactive atoms generated by the neutron-induced reactions to the DOP aerosols. (author)

  13. Aerosol formation on the flash photolysis of SO2/gas mixtures

    International Nuclear Information System (INIS)

    Fogel, L.D.; Sutherland, J.W.

    1979-01-01

    A long-lived transient absorption observed on the flash photolysis of SO 2 /gas mixtures at lambda> or =190 nm has been identified as resulting from light scattering by H 2 SO 4 aerosols. No detectable signals were monitored on photolysis at lambda> or =270 nm, indicating that the aerosol precursors originated from the promotion of SO 2 into its second singlet level and into its dissociation continuum. The SO 3 that was formed was hydrated immediately to yield H 2 SO 4 vapor in a highly supersaturated state and heteromolecular homogeneous nucleation to produce H 2 SO 4 aerosols ensued. This nucleation was quenched rapidly as the acid vapor was consumed by further nucleation, by condensation, and by vapor diffusion to the cell walls. A model was formulated in which the condensations of the H 2 SO 4 and the H 2 O vapors on the growing droplets were considered kinetically negligible and the particles grew by coagulation; simultaneously, they were lost by tranquil gravitational settling and by diffusion to the cell walls. Computer simulations demonstrated that the observed time dependence of the absorbance data (measured at a fixed wavelength) could be accounted for by this scheme. The effects of temperature, pressure, and wavelength (of the analyzing light) were also described satisfactorily by this model

  14. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    P. O. Wennberg

    2010-08-01

    Full Text Available Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene, the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA via methacrolein (a C4-unsaturated aldehyde under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN as the important intermediate to isoprene and methacrolein SOA in this NOx regime. Here we show that as a result of this chemistry, NO2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NOx effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232 is insignificant, even under high-NO2 conditions, as PAN (peroxy acyl nitrate, RC(OOONO2 formation is structurally unfavorable. At atmospherically relevant NO2/NO ratios (3–8, the SOA yields from isoprene high-NOx photooxidation are 3 times greater than previously measured at lower NO2/NO ratios. At sufficiently high NO2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO2 can exceed that from RO2+HO2 reactions under the same inorganic seed conditions, making RO2+NO2 an important channel for SOA formation.

  15. Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation

    Science.gov (United States)

    Chan, A. W. H.; Chan, M. N.; Surratt, J. D.; Chhabra, P. S.; Loza, C. L.; Crounse, J. D.; Yee, L. D.; Flagan, R. C.; Wennberg, P. O.; Seinfeld, J. H.

    2010-08-01

    Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene), the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA) via methacrolein (a C4-unsaturated aldehyde) under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN) as the important intermediate to isoprene and methacrolein SOA in this NOx regime. Here we show that as a result of this chemistry, NO2 enhances SOA formation from methacrolein and two other α, β-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NOx effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, β-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232) is insignificant, even under high-NO2 conditions, as PAN (peroxy acyl nitrate, RC(O)OONO2) formation is structurally unfavorable. At atmospherically relevant NO2/NO ratios (3-8), the SOA yields from isoprene high-NOx photooxidation are 3 times greater than previously measured at lower NO2/NO ratios. At sufficiently high NO2 concentrations, in systems of α, β-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO2 can exceed that from RO2+HO2 reactions under the same inorganic seed conditions, making RO2+NO2 an important channel for SOA formation.

  16. Effect of Pellet Boiler Exhaust on Secondary Organic Aerosol Formation from α-Pinene.

    Science.gov (United States)

    Kari, Eetu; Hao, Liqing; Yli-Pirilä, Pasi; Leskinen, Ari; Kortelainen, Miika; Grigonyte, Julija; Worsnop, Douglas R; Jokiniemi, Jorma; Sippula, Olli; Faiola, Celia L; Virtanen, Annele

    2017-02-07

    Interactions between anthropogenic and biogenic emissions, and implications for aerosol production, have raised particular scientific interest. Despite active research in this area, real anthropogenic emission sources have not been exploited for anthropogenic-biogenic interaction studies until now. This work examines these interactions using α-pinene and pellet boiler emissions as a model test system. The impact of pellet boiler emissions on secondary organic aerosol (SOA) formation from α-pinene photo-oxidation was studied under atmospherically relevant conditions in an environmental chamber. The aim of this study was to identify which of the major pellet exhaust components (including high nitrogen oxide (NO x ), primary particles, or a combination of the two) affected SOA formation from α-pinene. Results demonstrated that high NO x concentrations emitted by the pellet boiler reduced SOA yields from α-pinene, whereas the chemical properties of the primary particles emitted by the pellet boiler had no effect on observed SOA yields. The maximum SOA yield of α-pinene in the presence of pellet boiler exhaust (under high-NO x conditions) was 18.7% and in the absence of pellet boiler exhaust (under low-NO x conditions) was 34.1%. The reduced SOA yield under high-NO x conditions was caused by changes in gas-phase chemistry that led to the formation of organonitrate compounds.

  17. Heterogeneous reactions and aerosol formation in flue gas cleaning by electron beam

    International Nuclear Information System (INIS)

    Baumann, W.; Jordan, S.; Leichsenring, C.H.; Maetzing, H.; Paur, H.R.; Schikarski, W.

    1990-08-01

    The electron beam dry scrubbing process is a simultaneous method for the removal of SO 2 and NO x from flue gas. By electron irradiation radicals (OH, O 2 H, O) are formed from the main flue gas components which oxidize NO x and SO 2 into the acids HNO 3 and H 2 SO 4 . These are then neutralized by the injection of NH 3 . A submicron aerosol consisting of ammonium salts is formed which is filtered from the offgas. The main pathways of the gas phase chemistry and product formation have been elucidated by experimental and theoretical studies. Back reactions which occur in the gas and the particle phase limit the energy efficiency of the process. By recirculation of irradiated gas into the reaction vessel (multiple irradiation) a significant improvement of removal yields was obtained. This enhancement of the energy efficiency requires the removal of products between the irradiation steps. Studies show that the material balance is complete. Deficits in the N and S balance of the process are due to the additional formation of molecular nitrogen and the deposition of ammonium sulfate in the ducts. Aerosol formation participates only with 30% in the material balance. The remaining 70% of the product are formed by surface reactions in the filter cake (40%) and in the ducts (30%). (orig.) With 38 figs., 29 tabs [de

  18. submitter On the composition of ammonia–sulfuric-acid ion clusters during aerosol particle formation

    CERN Document Server

    Schobesberger, S; Bianchi, F; Rondo, L; Duplissy, J; Kürten, A; Ortega, I K; Metzger, A; Schnitzhofer, R; Almeida, J; Amorim, A; Dommen, J; Dunne, E M; Ehn, M; Gagné, S; Ickes, L; Junninen, H; Hansel, A; Kerminen, V -M; Kirkby, J; Kupc, A; Laaksonen, A; Lehtipalo, K; Mathot, S; Onnela, A; Petäjä, T; Riccobono, F; Santos, F D; Sipilä, M; Tomé, A; Tsagkogeorgas, G; Viisanen, Y; Wagner, P E; Wimmer, D; Curtius, J; Donahue, N M; Baltensperger, U; Kulmala, M; Worsnop, D R

    2015-01-01

    The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new-particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia $(NH_3)$ and sulfuric acid $(H-2SO_4)$. Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small $NH_3–H_2SO_4$ clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from 10. Positively charged clusters grew on average by Δm/Δn = 1.05 and were only observed at sufficiently high $[NH_3]$ / $[H_2SO_4]$. The $H_2SO_4$ molecules of these clusters are partially neutralized by $NH_3$, in close resemblance...

  19. Cloud processing of organic compounds: Secondary organic aerosol and nitrosamine formation

    Science.gov (United States)

    Hutchings, James W., III

    Cloud processing of atmospheric organic compounds has been investigated through field studies, laboratory experiments, and numerical modeling. Observational cloud chemistry studies were performed in northern Arizona and fog studies in central Pennsylvania. At both locations, the cloud and fogs showed low acidity due to neutralization by soil dust components (Arizona) and ammonia (Pennsylvania). The field observations showed substantial concentrations (20-5500 ng•L -1) of volatile organic compounds (VOC) in the cloud droplets. The potential generation of secondary organic aerosol mass through the processing of these anthropogenic VOCs was investigated through laboratory and modeling studies. Under simulated atmospheric conditions, in idealized solutions, benzene, toluene, ethylbenzene, and xylene (BTEX) degraded quickly in the aqueous phase with half lives of approximately three hours. The degradation process yielded less volatile products which would contribute to new aerosol mass upon cloud evaporation. However, when realistic cloud solutions containing natural organic matter were used in the experiments, the reaction kinetics decreased with increasing organic carbon content, resulting in half lives of approximately 7 hours. The secondary organic aerosol (SUA) mass formation potential of cloud processing of BTEX was evaluated. SOA mass formation by cloud processing of BTEX, while strongly dependent on the atmospheric conditions, could contribute up to 9% of the ambient atmospheric aerosol mass, although typically ˜1% appears realistic. Field observations also showed the occurrence of N-nitrosodimethylamine (NDMA), a potent carcinogen, in fogs and clouds (100-340 ng•L -1). Laboratory studies were conducted to investigate the formation of NDMA from nitrous acid and dimethylamine in the homogeneous aqueous phase within cloud droplets. While NDMA was produced in the cloud droplets, the low yields (NDMA with partitioning to droplet must be the source of aqueous

  20. Seasonality of New Particle Formation in Vienna, Austria - Influence of Air Mass Origin and Aerosol Chemical Composition

    Czech Academy of Sciences Publication Activity Database

    Wonaschütz, A.; Demattio, A.; Wagner, R.; Burkart, J.; Zíková, Naděžda; Vodička, Petr; Ludwig, W.; Steiner, G.; Schwarz, Jaroslav; Hitzenberger, R.

    2015-01-01

    Roč. 118, OCT 2015 (2015), s. 118-126 ISSN 1352-2310 R&D Projects: GA MŠk 7AMB12AT021; GA ČR(CZ) GBP503/12/G147 Grant - others:FWF(AT) P19515-N20 Institutional support: RVO:67985858 Keywords : urban aerosol * aerosol chemical composition * new particle formation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.459, year: 2015

  1. Rapid Formation of Metal-Organic Frameworks (MOFs) Based Nanocomposites in Microdroplets and Their Applications for CO2 Photoreduction.

    Science.gov (United States)

    He, Xiang; Gan, Zhuoran; Fisenko, Sergey; Wang, Dawei; El-Kaderi, Hani M; Wang, Wei-Ning

    2017-03-22

    A copper-based metal-organic framework (MOF), [Cu 3 (TMA) 2 (H 2 O) 3 ] n (also known as HKUST-1, where TMA stands for trimesic acid), and its TiO 2 nanocomposites were directly synthesized in micrometer-sized droplets via a rapid aerosol route for the first time. The effects of synthesis temperature and precursor component ratio on the physicochemical properties of the materials were systematically investigated. Theoretical calculations on the mass and heat transfer within the microdroplets revealed that the fast solvent evaporation and high heat transfer rates are the major driving forces. The fast droplet shrinkage because of evaporation induces the drastic increase in the supersaturation ratio of the precursor, and subsequently promotes the rapid nucleation and crystal growth of the materials. The HKUST-1-based nanomaterials synthesized via the aerosol route demonstrated good crystallinity, large surface area, and great photostability, comparable with those fabricated by wet-chemistry methods. With TiO 2 embedded in the HKUST-1 matrix, the surface area of the composite is largely maintained, which enables significant improvement in the CO 2 photoreduction efficiency, as compared with pristine TiO 2 . In situ diffuse reflectance infrared Fourier transform spectroscopy analysis suggests that the performance enhancement was due to the stable and high-capacity reactant adsorption by HKUST-1. The current work shows great promise in the aerosol route's capability to address the mass and heat transfer issues of MOFs formation at the microscale level, and ability to synthesize a series of MOFs-based nanomaterials in a rapid and scalable manner for energy and environmental applications.

  2. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia

    Science.gov (United States)

    Palm, Brett B.; de Sá, Suzane S.; Day, Douglas A.; Campuzano-Jost, Pedro; Hu, Weiwei; Seco, Roger; Sjostedt, Steven J.; Park, Jeong-Hoo; Guenther, Alex B.; Kim, Saewung; Brito, Joel; Wurm, Florian; Artaxo, Paulo; Thalman, Ryan; Wang, Jian; Yee, Lindsay D.; Wernis, Rebecca; Isaacman-VanWertz, Gabriel; Goldstein, Allen H.; Liu, Yingjun; Springston, Stephen R.; Souza, Rodrigo; Newburn, Matt K.; Lizabeth Alexander, M.; Martin, Scot T.; Jimenez, Jose L.

    2018-01-01

    Secondary organic aerosol (SOA) formation from ambient air was studied using an oxidation flow reactor (OFR) coupled to an aerosol mass spectrometer (AMS) during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O3, over ranges from hours to days (O3) or weeks (OH) of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to as much as 10 µg m-3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air and were confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA) after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ˜ 1.0, and then decreased as O : C increased further. Possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. While measured ambient precursors were sufficient to explain the amount of SOA formed from O3, they could only explain 10-50 % of the SOA formed from OH. This is consistent with previous OFR studies, which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds) are present in ambient air and can explain such additional SOA formation. To investigate the sources of the unmeasured SOA-forming gases during this campaign

  3. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia

    Directory of Open Access Journals (Sweden)

    B. B. Palm

    2018-01-01

    Full Text Available Secondary organic aerosol (SOA formation from ambient air was studied using an oxidation flow reactor (OFR coupled to an aerosol mass spectrometer (AMS during both the wet and dry seasons at the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5 field campaign. Measurements were made at two sites downwind of the city of Manaus, Brazil. Ambient air was oxidized in the OFR using variable concentrations of either OH or O3, over ranges from hours to days (O3 or weeks (OH of equivalent atmospheric aging. The amount of SOA formed in the OFR ranged from 0 to as much as 10 µg m−3, depending on the amount of SOA precursor gases in ambient air. Typically, more SOA was formed during nighttime than daytime, and more from OH than from O3 oxidation. SOA yields of individual organic precursors under OFR conditions were measured by standard addition into ambient air and were confirmed to be consistent with published environmental chamber-derived SOA yields. Positive matrix factorization of organic aerosol (OA after OH oxidation showed formation of typical oxidized OA factors and a loss of primary OA factors as OH aging increased. After OH oxidation in the OFR, the hygroscopicity of the OA increased with increasing elemental O : C up to O : C ∼ 1.0, and then decreased as O : C increased further. Possible reasons for this decrease are discussed. The measured SOA formation was compared to the amount predicted from the concentrations of measured ambient SOA precursors and their SOA yields. While measured ambient precursors were sufficient to explain the amount of SOA formed from O3, they could only explain 10–50 % of the SOA formed from OH. This is consistent with previous OFR studies, which showed that typically unmeasured semivolatile and intermediate volatility gases (that tend to lack C = C bonds are present in ambient air and can explain such additional SOA formation. To investigate the sources of the

  4. Rapid Formation and Disappearance of a Filament Barb

    Science.gov (United States)

    Joshi, Anand D.; Srivastava, Nandita; Mathew, Shibu K.; Martin, Sara F.

    2013-11-01

    We present observations of an activated quiescent filament obtained in Hα from the high-resolution Dutch Open Telescope (DOT) on 20 August 2010. The filament developed a barb in 10 min, which disappeared within the next 35 min. A data set from the DOT spanning 2 h was used to analyse this event. Line-of-sight velocity maps were constructed from the Doppler images, which reveal flows in filament spine during this period. Photospheric magnetograms were used from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) to determine the changes in magnetic flux in the region surrounding the barb location. The analysis shows flows in the filament spine towards the barb location preceding its formation, and flows in the barb towards the spine during its disappearance. Magnetograms reveal patches of minority polarity flux close to the end of the barb at its greatest elongation. The flows in the spine and barbs are along numerous threads that compose these typical filament structures. The flows are consistent with field-aligned threads and demonstrate that the replacement time of the mass in barbs, and by inference, in the spine is very rapid.

  5. Hydration of the sulfuric acid-methylamine complex and implications for aerosol formation.

    Science.gov (United States)

    Bustos, Danielle J; Temelso, Berhane; Shields, George C

    2014-09-04

    The binary H2SO4-H2O nucleation is one of the most important pathways by which aerosols form in the atmosphere, and the presence of ternary species like amines increases aerosol formation rates. In this study, we focus on the hydration of a ternary system of sulfuric acid (H2SO4), methylamine (NH2CH3), and up to six waters to evaluate its implications for aerosol formation. By combining molecular dynamics (MD) sampling with high-level ab initio calculations, we determine the thermodynamics of forming H2SO4(NH2CH3)(H2O)n, where n = 0-6. Because it is a strong acid-base system, H2SO4-NH2CH3 quickly forms a tightly bound HSO4(-)-NH3CH3(+) complex that condenses water more readily than H2SO4 alone. The electronic binding energy of H2SO4-NH2CH3 is -21.8 kcal mol(-1) compared with -16.8 kcal mol(-1) for H2SO4-NH3 and -12.8 kcal mol(-1) for H2SO4-H2O. Adding one to two water molecules to the H2SO4-NH2CH3 complex is more favorable than adding to H2SO4 alone, yet there is no systematic difference for n ≥ 3. However, the average number of water molecules around H2SO4-NH2CH3 is consistently higher than that of H2SO4, and it is fairly independent of temperature and relative humidity.

  6. Anthropogenic Influence on Secondary Aerosol Formation and Total Water-Soluble Carbon on Atmospheric Particles

    Science.gov (United States)

    Gioda, Adriana; Mateus, Vinicius; Monteiro, Isabela; Taira, Fabio; Esteves, Veronica; Saint'Pierre, Tatiana

    2013-04-01

    On a global scale, the atmosphere is an important source of nutrients, as well as pollutants, because of its interfaces with soil and water. Important compounds in the gaseous phase are in both organic and inorganic forms, such as organic acids, nitrogen, sulfur and chloride. In spite of the species in gas form, a huge number of process, anthropogenic and natural, are able to form aerosols, which may be transported over long distances. Sulfates e nitrates are responsible for rain acidity; they may also increase the solubility of organic compounds and metals making them more bioavailable, and also can act as cloud condensation nuclei (CCN). Aerosol samples (PM2.5) were collected in a rural and industrial area in Rio de Janeiro, Brazil, in order to quantify chemical species and evaluate anthropogenic influences in secondary aerosol formation and organic compounds. Samples were collected during 24 h every six days using a high-volume sampler from August 2010 to July 2011. The aerosol mass was determined by Gravimetry. The water-soluble ionic composition (WSIC) was obtained by Ion Chromatography in order to determine the major anions (NO3-, SO4= and Cl-); total water-soluble carbon (TWSC) was determined by a TOC analyzer. The average aerosol (PM2.5) concentrations ranged from 1 to 43 ug/m3 in the industrial site and from 4 to 35 ug/m3 in the rural area. Regarding anions, the highest concentrations were measured for SO42- (10.6 μg/m3-12.6 μg/m3); where the lowest value was found in the rural site and the highest in the industrial. The concentrations for NO3- and Cl- ranged from 4.2 μg/m3 to 9.3 μg/m3 and 3.1 μg/m3 to 6.4 μg /m3, respectively. Sulfate was the major species and, like nitrate, it is related to photooxidation in the atmosphere. Interestingly sulfate concentrations were higher during the dry period and could be related to photochemistry activity. The correlations between nitrate and non-sea-salt sulfate were weak, suggesting different sources for these

  7. The SOA/VOC/NOx system: an explicit model of secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    S. Madronich

    2007-11-01

    Full Text Available Our current understanding of secondary organic aerosol (SOA formation is limited by our knowledge of gaseous secondary organics involved in gas/particle partitioning. The objective of this study is to explore (i the potential for products of multiple oxidation steps contributing to SOA, and (ii the evolution of the SOA/VOC/NOx system. We developed an explicit model based on the coupling of detailed gas-phase oxidation schemes with a thermodynamic condensation module. Such a model allows prediction of SOA mass and speciation on the basis of first principles. The SOA/VOC/NOx system is studied for the oxidation of 1-octene under atmospherically relevant concentrations. In this study, gaseous oxidation of octene is simulated to lead to SOA formation. Contributors to SOA formation are shown to be formed via multiple oxidation steps of the parent hydrocarbon. The behaviour of the SOA/VOC/NOx system simulated using the explicit model agrees with general tendencies observed during laboratory chamber experiments. This explicit modelling of SOA formation appears as a useful exploratory tool to (i support interpretations of SOA formation observed in laboratory chamber experiments, (ii give some insights on SOA formation under atmospherically relevant conditions and (iii investigate implications for the regional/global lifetimes of the SOA.

  8. Diurnal Cycles of Aerosol Optical Properties at Pico Tres Padres, Mexico City: Evidences for Changes in Particle Morphology and Secondary Aerosol Formation

    Science.gov (United States)

    Mazzoleni, C.; Dubey, M.; Chakrabarty, R.; Moosmuller, H.; Onasch, T.; Zavala, M.; Herndon, S.; Kolb, C.

    2007-12-01

    Aerosol optical properties affect planetary radiative balance and depend on chemical composition, size distribution, and morphology. During the MILAGRO field campaign, we measured aerosol absorption and scattering in Mexico City using the Los Alamos aerosol photoacoustic (LAPA) instrument operating at 781 nm. The LAPA was mounted on-board the Aerodyne Research Inc. mobile laboratory, which hosted a variety of gaseous and aerosol instruments. During the campaign, the laboratory was moved to different sites, capturing spatial and temporal variability. Additionally, we collected ambient aerosols on Nuclepore filters for scanning electron microscopy (SEM) analysis. SEM images of selected filters were taken to study particle morphology. Between March 7th and 19th air was sampled at the top of Pico Tres Padres, a mountain on the north side of Mexico City. Aerosol absorption and scattering followed diurnal patterns related to boundary layer height and solar insulation. We report an analysis of aerosol absorption, scattering, and morphology for three days (9th, 11th and 12th of March 2006). The single scattering albedo (SSA, ratio of scattering to total extinction) showed a drop in the tens-of-minutes-to-hour time frame after the boundary layer grew above the sampling site. Later in the day the SSA rose steadily reaching a maximum in the afternoon. The SEM images showed a variety of aerosol shapes including fractal-like aggregates, spherical particles, and other shapes. The absorption correlated with the CO2 signal and qualitatively with the fraction of fractal-like particles to the total particle count. In the afternoon the SSA qualitatively correlated with a relative increase in spherical particles and total particle count. These observed changes in optical properties and morphology can be explained by the dominant contribution of freshly emitted particles in the morning and by secondary particle formation in the afternoon. SSA hourly averaged values ranged from ~0.63 in

  9. Rapid Gorge Formation in an Artificially Created Waterfall

    Science.gov (United States)

    Anton, L.; Mather, A. E.; Stokes, M.; Munoz Martin, A.

    2014-12-01

    A number of studies have examined rates of gorge formation, nick point retreat, and the controls on those rates via bedrock erodibility, the effectiveness of bedrock erosion mechanisms and the role of hillslope processes. Most findings are based on conceptual / empirical models or long term landscape analysis; but studies of recent quantifiable events are scarce yet highly valuable. Here we present expert eye witness account and quantitative survey of large and rapid fluvial erosion events that occurred over an artificially created waterfall at a spillway mouth. In 6 years a ~270 m long, ~100 m deep and ~100 to 160 m wide canyon was carved, and ~1.58 x106 m3 of granite bedrock was removed from the spillway site. Available flow data indicates that the erosion took place under unremarkable flood discharge conditions. The analysis of historic topographic maps enables the reconstruction of the former topography and successive erosion events, enabling the quantification of bedrock erosion amounts, and rates. Analysis of bedrock erodibility and discontinuity patterns demonstrates that the bedrock is mechanically strong, and that similar rock strength and fracture patterns are found throughout the region. It is apparent that structural pre-conditioning through fracture density and orientation in relation to flow and slope direction is of paramount importance in the gorge development. The presented example provides an exceptional opportunity for studying the evolution process of a bedrock canyon and to precisely measure the rate of bedrock channel erosion over a six year period. Results illustrate the highly episodic nature of the erosion and highlight several key observations for the adjustability of bedrock rivers. The observations have implications for the efficiency of bedrock erosion and raise important questions about incision rates, driving mechanisms and timescale assumptions' in models of landscape change.

  10. Secondary Organic Aerosol Formation from Acetylene (C2H2: seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase

    Directory of Open Access Journals (Sweden)

    P. J. Ziemann

    2009-03-01

    Full Text Available The lightest Non Methane HydroCarbon (NMHC, i.e., acetylene (C2H2 is found to form secondary organic aerosol (SOA. Contrary to current belief, the number of carbon atoms, n, for a NMHC to act as SOA precursor is lowered to n=2 here. The OH-radical initiated oxidation of C2H2 forms glyoxal (CHOCHO as the highest yield product, and >99% of the SOA from C2H2 is attributed to CHOCHO. SOA formation from C2H2 and CHOCHO was studied in a photochemical and a dark simulation chamber. Further, the experimental conditions were varied with respect to the chemical composition of the seed aerosols, mild acidification with sulphuric acid (SA, 3aerosols is found responsible for this seed effect. WSOC photochemistry enhances the SOA source from CHOCHO, while seeds containing amino acids (AA and/or SA showed among the lowest of all YSOA values, and largely suppress the photochemical enhancement on the rate of CHOCHO uptake. Our results give first evidence for the importance of heterogeneous photochemistry of CHOCHO in SOA formation, and identify a potential bias in the currently available YSOA data for other SOA precursor NMHCs. We demonstrate that SOA formation via the aqueous phase is not limited to cloud droplets, but proceeds also in the absence of clouds, i.e., does not stop once a cloud droplet evaporates. Atmospheric models need to be expanded to include SOA formation from WSOC photochemistry of CHOCHO, and possibly other α-dicarbonyls, in aqueous aerosols.

  11. Experimental and modelling studies of iodine oxide formation and aerosol behaviour relevant to nuclear reactor accidents

    International Nuclear Information System (INIS)

    Dickinson, S.; Auvinen, A.; Ammar, Y.; Bosland, L.; Clément, B.; Funke, F.; Glowa, G.; Kärkelä, T.; Powers, D.A.; Tietze, S.; Weber, G.; Zhang, S.

    2014-01-01

    Highlights: • Radiolytic reactions can influence iodine volatility following a nuclear accident. • Kinetic models have been developed based on atmospheric chemistry studies. • Properties of iodine oxide aerosols produced by radiation have been measured. • Decomposition of iodine oxides by the action of heat or radiation has been observed. - Abstract: Plant assessments have shown that iodine contributes significantly to the source term for a range of accident scenarios. Iodine has a complex chemistry that determines its chemical form and, consequently, its volatility in the containment. If volatile iodine species are formed by reactions in the containment, they will be subject to radiolytic reactions in the atmosphere, resulting in the conversion of the gaseous species into involatile iodine oxides, which may deposit on surfaces or re-dissolve in water pools. The concentration of airborne iodine in the containment will, therefore, be determined by the balance between the reactions contributing to the formation and destruction of volatile species, as well as by the physico-chemical properties of the iodine oxide aerosols which will influence their longevity in the atmosphere. This paper summarises the work that has been done in the framework of the EC SARNET (Severe Accident Research Network) to develop a greater understanding of the reactions of gaseous iodine species in irradiated air/steam atmospheres, and the nature and behaviour of the reaction products. This work has mainly been focussed on investigating the nature and behaviour of iodine oxide aerosols, but earlier work by members of the SARNET group on gaseous reaction rates is also discussed to place the more recent work into context

  12. Modeled aerosol nitrate formation pathways during wintertime in the Great Lakes region of North America

    Science.gov (United States)

    Kim, Yoo Jung; Spak, Scott N.; Carmichael, Gregory R.; Riemer, Nicole; Stanier, Charles O.

    2014-11-01

    Episodic wintertime particle pollution by ammonium nitrate is an important air quality concern across the Midwest U.S. Understanding and accurately forecasting PM2.5 episodes are complicated by multiple pathways for aerosol nitrate formation, each with uncertain rate parameters. Here, the Community Multiscale Air Quality model (CMAQ) simulated regional atmospheric nitrate budgets during the 2009 LADCO Winter Nitrate Study, using integrated process rate (IPR) and integrated reaction rate (IRR) tools to quantify relevant processes. Total nitrate production contributing to PM2.5 episodes is a regional phenomenon, with peak production over the Ohio River Valley and southern Great Lakes. Total nitrate production in the lower troposphere is attributed to three pathways, with 57% from heterogeneous conversion of N2O5, 28% from the reaction of OH and NO2, and 15% from homogeneous conversion of N2O5. TNO3 formation rates varied day-to-day and on synoptic timescales. Rate-limited production does not follow urban-rural gradients and NOx emissions due, to counterbalancing of urban enhancement in daytime HNO3 production with nocturnal reductions. Concentrations of HNO3 and N2O5 and nighttime TNO3 formation rates have maxima aloft (100-500 m), leading to net total nitrate vertical flux during episodes, with substantial vertical gradients in nitrate partitioning. Uncertainties in all three pathways are relevant to wintertime aerosol modeling and highlight the importance of interacting transport and chemistry processes during ammonium nitrate episodes, as well as the need for additional constraint on the system through field and laboratory experiments.

  13. Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation

    Directory of Open Access Journals (Sweden)

    P. Q. Fu

    2013-02-01

    Full Text Available Organic molecular composition of marine aerosol samples collected during the MALINA cruise in the Arctic Ocean was investigated by gas chromatography/mass spectrometry. More than 110 individual organic compounds were determined in the samples and were grouped into different compound classes based on the functionality and sources. The concentrations of total quantified organics ranged from 7.3 to 185 ng m−3 (mean 47.6 ng m−3, accounting for 1.8–11.0% (4.8% of organic carbon in the marine aerosols. Primary saccharides were found to be dominant organic compound class, followed by secondary organic aerosol (SOA tracers formed from the oxidation of biogenic volatile organic compounds (VOCs such as isoprene, α-pinene and β-caryophyllene. Mannitol, the specific tracer for airborne fungal spores, was detected as the most abundant organic species in the samples with a concentration range of 0.052–53.3 ng m−3 (9.2 ng m−3, followed by glucose, arabitol, and the isoprene oxidation products of 2-methyltetrols. Biomass burning tracers such as levoglucosan are evident in all samples with trace levels. On the basis of the tracer-based method for the estimation of fungal-spore OC and biogenic secondary organic carbon (SOC, we estimate that an average of 10.7% (up to 26.2% of the OC in the marine aerosols was due to the contribution of fungal spores, followed by the contribution of isoprene SOC (mean 3.8% and α-pinene SOC (2.9%. In contrast, only 0.19% of the OC was due to the photooxidation of β-caryophyllene. This study indicates that primary organic aerosols from biogenic emissions, both from long-range transport of mid-latitude aerosols and from sea-to-air emission of marine organics, as well as secondary organic aerosols formed from the photooxidation of biogenic VOCs are important factors controlling the organic chemical composition of marine aerosols in the Arctic Ocean.

  14. Formation of secondary inorganic aerosols by power plant emissions exhausted through cooling towers in Saxony.

    Science.gov (United States)

    Hinneburg, Detlef; Renner, Eberhard; Wolke, Ralf

    2009-01-01

    The fraction of ambient PM10 that is due to the formation of secondary inorganic particulate sulfate and nitrate from the emissions of two large, brown-coal-fired power stations in Saxony (East Germany) is examined. The power stations are equipped with natural-draft cooling towers. The flue gases are directly piped into the cooling towers, thereby receiving an additionally intensified uplift. The exhausted gas-steam mixture contains the gases CO, CO2, NO, NO2, and SO2, the directly emitted primary particles, and additionally, an excess of 'free' sulfate ions in water solution, which, after the desulfurization steps, remain non-neutralized by cations. The precursor gases NO2 and SO2 are capable of forming nitric and sulfuric acid by several pathways. The acids can be neutralized by ammonia and generate secondary particulate matter by heterogeneous condensation on preexisting particles. The simulations are performed by a nested and multi-scale application of the online-coupled model system LM-MUSCAT. The Local Model (LM; recently renamed as COSMO) of the German Weather Service performs the meteorological processes, while the Multi-scale Atmospheric Transport Model (MUSCAT) includes the transport, the gas phase chemistry, as well as the aerosol chemistry (thermodynamic ammonium-sulfate-nitrate-water system). The highest horizontal resolution in the inner region of Saxony is 0.7 km. One summer and one winter episode, each realizing 5 weeks of the year 2002, are simulated twice, with the cooling tower emissions switched on and off, respectively. This procedure serves to identify the direct and indirect influences of the single plumes on the formation and distribution of the secondary inorganic aerosols. Surface traces of the individual tower plumes can be located and distinguished, especially in the well-mixed boundary layer in daytime. At night, the plumes are decoupled from the surface. In no case does the resulting contribution of the cooling tower emissions to PM10

  15. Removal of sulfur dioxide and formation of sulfate aerosol in Tokyo

    Science.gov (United States)

    Miyakawa, T.; Takegawa, N.; Kondo, Y.

    2007-07-01

    Ground-based in situ measurements of sulfur dioxide (SO2) and submicron sulfate aerosol (SO42-) together with carbon monoxide (CO) were conducted at an urban site in Tokyo, Japan from spring 2003 to winter 2004. The observed concentrations of SO2 were affected dominantly by anthropogenic emissions (for example, manufacturing industries) in source areas, while small fraction of the data (sulfur compounds (SOx = SO2 + SO42-) and the remaining fraction of SOx, which is derived as the ratio of the linear regression slope of the SOx-CO correlation, is used as measures for the formation of SO42- and removal of SOx, respectively. Using these parameters, the average formation efficiency of SO42- (i.e., amount of SO42- produced per SO2 emitted from emission sources) are estimated to be 0.18 and 0.03 in the summer and winter periods, respectively. A simple box model was developed to estimate the lifetime of SOx. The lifetime of SOx for the summer period (26 h) is estimated to be about two times longer than that for the winter period (14 h). The seasonal variations of the remaining fraction of SOx, estimated formation efficiency of SO42-, and lifetime of SOx are likely due to those of the boundary layer height and photochemical activity (i.e., hydroxyl radical). These results provide useful insights into the formation and removal processes of sulfur compounds exported from an urban area.

  16. Impacts of dust aerosol and adjacency effects on the accuracy of Landsat 8 and RapidEye surface reflectances

    KAUST Repository

    Houborg, Rasmus; McCabe, Matthew

    2017-01-01

    The atmospheric correction of satellite data is challenging over desert agricultural systems, due to the relatively high aerosol optical thicknesses (τ550), bright soils, and a heterogeneous surface reflectance field. Indeed, the contribution of reflected radiation from adjacent pixels scattered into the field of view of a target pixel is considerable and can significantly affect the fidelity of retrieved reflectances. In this study, uncertainties and quantitative errors associated with the atmospheric correction of multi-spectral Landsat 8 and RapidEye data were characterized over a desert agricultural landscape in Saudi Arabia. Surface reflectances were retrieved using an implementation of the 6SV atmospheric correction code, and validated against field collected spectroradiometer measurements over desert, cultivated soil, and vegetated surface targets. A combination of satellite and Aerosol Robotic Network (AERONET) data were used to parameterize aerosol properties and atmospheric state parameters. With optimal specification of τ550 and aerosol optical properties and correction for adjacency effects, the relative Mean Absolute Deviation (MAD) for all bands combined was 5.4% for RapidEye and 6.8% for Landsat 8. However uncertainties associated with satellite-based τ550 retrievals were shown to introduce significant error into the reflectance estimates. With respect to deriving common vegetation indices from corrected reflectance data, the Normalized Difference Vegetation Index (NDVI) was associated with the smallest errors (3–8% MAD). Surface reflectance errors were highest for bands in the visible part of the spectrum, particularly the blue band (5–16%), while there was more consistency within the red-edge (~ 5%) and near-infrared (5–7%). Results were generally better constrained when a τ550-dependent aerosol model for desert dust particles, parameterized on the basis of nearby AERONET site data, was used in place of a generic rural or background

  17. Impacts of dust aerosol and adjacency effects on the accuracy of Landsat 8 and RapidEye surface reflectances

    KAUST Repository

    Houborg, Rasmus

    2017-03-29

    The atmospheric correction of satellite data is challenging over desert agricultural systems, due to the relatively high aerosol optical thicknesses (τ550), bright soils, and a heterogeneous surface reflectance field. Indeed, the contribution of reflected radiation from adjacent pixels scattered into the field of view of a target pixel is considerable and can significantly affect the fidelity of retrieved reflectances. In this study, uncertainties and quantitative errors associated with the atmospheric correction of multi-spectral Landsat 8 and RapidEye data were characterized over a desert agricultural landscape in Saudi Arabia. Surface reflectances were retrieved using an implementation of the 6SV atmospheric correction code, and validated against field collected spectroradiometer measurements over desert, cultivated soil, and vegetated surface targets. A combination of satellite and Aerosol Robotic Network (AERONET) data were used to parameterize aerosol properties and atmospheric state parameters. With optimal specification of τ550 and aerosol optical properties and correction for adjacency effects, the relative Mean Absolute Deviation (MAD) for all bands combined was 5.4% for RapidEye and 6.8% for Landsat 8. However uncertainties associated with satellite-based τ550 retrievals were shown to introduce significant error into the reflectance estimates. With respect to deriving common vegetation indices from corrected reflectance data, the Normalized Difference Vegetation Index (NDVI) was associated with the smallest errors (3–8% MAD). Surface reflectance errors were highest for bands in the visible part of the spectrum, particularly the blue band (5–16%), while there was more consistency within the red-edge (~ 5%) and near-infrared (5–7%). Results were generally better constrained when a τ550-dependent aerosol model for desert dust particles, parameterized on the basis of nearby AERONET site data, was used in place of a generic rural or background

  18. The critical assessment of vapour pressure estimation methods for use in modelling the formation of atmospheric organic aerosol

    Directory of Open Access Journals (Sweden)

    M. H. Barley

    2010-01-01

    Full Text Available A selection of models for estimating vapour pressures have been tested against experimental data for a set of compounds selected for their particular relevance to the formation of atmospheric aerosol by gas-liquid partitioning. The experimental vapour pressure data (all <100 Pa of 45 multifunctional compounds provide a stringent test of the estimation techniques, with a recent complex group contribution method providing the best overall results. The effect of errors in vapour pressures upon the formation of organic aerosol by gas-liquid partitioning in an atmospherically relevant example is also investigated. The mass of organic aerosol formed under typical atmospheric conditions was found to be very sensitive to the variation in vapour pressure values typically present when comparing estimation methods.

  19. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    Science.gov (United States)

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; Kroll, Jesse H.; Peng, Zhe; Brune, William H.; Jimenez, Jose L.

    2016-03-01

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen-Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed for semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m-3 when LVOC fate corrected) compared to daytime (average 0.9 µg m-3 when LVOC fate corrected), with maximum formation observed at 0.4-1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic

  20. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    Directory of Open Access Journals (Sweden)

    B. B. Palm

    2016-03-01

    Full Text Available An oxidation flow reactor (OFR is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen–Rocky Mountain Biogenic Aerosol Study field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed for semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq. atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m−3 when LVOC fate corrected compared to daytime (average 0.9 µg m−3 when LVOC fate corrected, with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70, similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production

  1. Investigation of a Particle into Liquid Sampler to Study the Formation & Ageing of Secondary Organic Aerosol

    Science.gov (United States)

    Pereira, K. L.; Hamilton, J. F.; Rickard, A. R.; Bloss, W. J.; Alam, M. S.; Camredon, M.; Munoz, A.; Vazquez, M.; Rodenas, M.; Vera, T.; Borrás, E.

    2012-12-01

    The atmospheric oxidation of Volatile Organic Compounds (VOCs) in the presence of NOx results in the formation of tropospheric ozone and Secondary Organic Aerosol (SOA) [Hallquist et al., 2009]. Whilst SOA is known to affect both climate and human health, the VOC oxidation pathways leading to SOA formation are poorly understood [Solomon et al., 2007]. This is in part due to the vast number and the low concentration of SOA species present in the ambient atmosphere. It has been estimated as many as 10,000 to 100,000 VOCs have been detected in the atmosphere, all of which can undergo photo-chemical oxidation and contribute to SOA formation [Goldstein and Galbally, 2007]. Atmospheric simulation chambers such as the EUropean PHOtoREactor (EUPHORE) in Valencia, Spain, are often used to study SOA formation from a single VOC precursor under controlled conditions. SOA composition and formation can be studied using online techniques such as Aerosol Mass Spectrometry (AMS), which provide high time resolution but limited structural information [Zhang et al., 2007]. Offline techniques, such as collection onto filters, extraction and subsequent analysis, provide detailed SOA composition but only usually one or two samples per experiment. In this work we report time resolved SOA composition analysis using a Particle into Liquid Sampler (PILS) followed by Liquid Chromatography Ion-Trap Mass Spectrometry (LC-IT-MS/MS) and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS/MS). Experiments were performed at EUPHORE investigating the formation and composition of Methyl Chavicol SOA. Methyl Chavicol (also known as Estragole) was identified as the highest floral emission from an oil palm plantation in Malaysian Borneo and has also been observed in US pine forests [Bouvier-Brown et al., 2009; Misztal et al., 2010]. Previous studies indicate a high SOA yield from Methyl Chavicol at around 40 % [Lee et al., 2006], however currently there have been very few literature

  2. Formation and characterization of fission-product aerosols under postulated HTGR accident conditions

    International Nuclear Information System (INIS)

    Tang, I.N.; Munkelwitz, H.R.

    1982-07-01

    The paper presents the results of an experimental investigation on the formation mechanism and physical characterization of simulated nuclear aerosols that could likely be released during an HTGR core heat-up accident. Experiments were carried out in a high-temperature flow system consisting essentially of an inductively heated release source, a vapor deposition tube, and a filter assembly for collecting particulate matter. Simulated fission products Sr and Ba as oxides are separately impregnated in H451 graphite wafers and released at elevated temperatures into a dry helium flow. In the presence of graphite, the oxides are quantitatively reduced to metals, which subsequently vaporize at temperatures much lower than required for the oxides alone to vaporize in the absence of graphite. A substantial fraction of the released material is associated with particulate matter, which is collected on filters located downstream at ambient temperature. The release and transport of simulated fission product Ag as metal are also investigated

  3. Formation of secondary organic aerosol in the Paris pollution plume and its impact on surrounding regions

    Science.gov (United States)

    Zhang, Q. J.; Beekmann, M.; Freney, E.; Sellegri, K.; Pichon, J. M.; Schwarzenboeck, A.; Colomb, A.; Bourrianne, T.; Michoud, V.; Borbon, A.

    2015-12-01

    Secondary pollutants such as ozone, secondary inorganic aerosol, and secondary organic aerosol formed in the plumes of megacities can affect regional air quality. In the framework of the FP7/EU MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) project, an intensive campaign was launched in the greater Paris region in July 2009. The major objective was to quantify different sources of organic aerosol (OA) within a megacity and in its plume. In this study, we use airborne measurements aboard the French ATR-42 aircraft to evaluate the regional chemistry-transport model CHIMERE within and downwind of the Paris region. Two mechanisms of secondary OA (SOA) formation are used, both including SOA formation from oxidation and chemical aging of primary semivolatile and intermediate volatility organic compounds (SI-SOA) in the volatility basis set (VBS) framework. As for SOA formed from traditional VOC (volatile organic compound) precursors (traditional SOA), one applies chemical aging in the VBS framework adopting different SOA yields for high- and low-NOx environments, while another applies a single-step oxidation scheme without chemical aging. Two emission inventories are used for discussion of emission uncertainties. The slopes of the airborne OA levels versus Ox (i.e., O3 + NO2) show SOA formation normalized with respect to photochemical activity and are used for specific evaluation of the OA scheme in the model. The simulated slopes were overestimated slightly by factors of 1.1, 1.7 and 1.3 with respect to those observed for the three airborne measurements, when the most realistic "high-NOx" yields for traditional SOA formation in the VBS scheme are used in the model. In addition, these slopes are relatively stable from one day to another, which suggests that they are characteristic for the given megacity plume environment. The configuration with increased primary

  4. Secondary organic aerosol (trans)formation through aqueous phase guaiacol photonitration: a kinetic study

    Science.gov (United States)

    Kroflič, Ana; Grgić, Irena

    2014-05-01

    It is well known that atmospheric aerosols play a crucial role in the Earth's climate and public health (Pöschl 2005). Despite a great effort invested in the studies of secondary organic aerosol (SOA) budget, composition, and its formation mechanisms, there is still a gap between field observations and atmospheric model predictions (Heald et al. 2005, Hallquist et al. 2009, and Lim et al. 2010). The insisting uncertainties surrounding SOA formation and aging thus gained an increasing interest in atmospheric aqueous phase chemistry; they call for more complex and time consuming studies at the environmentally relevant conditions allowing confident extrapolation to desired ambient conditions. In addition to the adverse health effects of atmospheric particulate matter (PM) as such, toxicity is also attributed to nitro-aromatic and other organic compounds which have already been detected in real aerosol samples (Traversi et al. 2009). Moreover, low-volatility aromatic derivatives are believed to form at least partly in the aerosol aqueous phase and not only in the gas phase from where they partition into water droplets (Ervens et al. 2011). Two nitro derivatives of biomass burning tracer guaiacol have recently been found in winter PM10 samples from the city of Ljubljana, Slovenia, and aqueous photonitration reaction was proposed as their possible production pathway (Kitanovski et al. 2012). In this study the kinetics of guaiacol nitration in aqueous solution was investigated in the presence of H2O2 and NO2¯ upon simulated solar irradiation (Xenon lamp, 300 W). During the experiment the DURAN® flask with the reaction mixture was held in the thermostated bath and thoroughly mixed. The reaction was monitored for 44 hours at different temperatures. Guaiacol and its main nitro-products (4-nitroguaiacol, 4-NG; 6-nitroguaiacol, 6-NG; and 4,6-dinitroguaiacol, 4,6-DNG) were quantified in every aliquot, taken from the reaction mixture, by use of high pressure liquid

  5. Gas-phase products and secondary organic aerosol formation from the ozonolysis and photooxidation of myrcene

    Science.gov (United States)

    Böge, Olaf; Mutzel, Anke; Iinuma, Yoshiteru; Yli-Pirilä, Pasi; Kahnt, Ariane; Joutsensaari, Jorma; Herrmann, Hartmut

    2013-11-01

    In this study, the ozone and OH-radical reactions of myrcene were investigated in an aerosol chamber (at 292-295 K and 50% relative humidity) to examine the gas-phase oxidation products and secondary organic aerosol (SOA) formation. The ozone reaction studies were performed in the presence and absence of CO, which serves as an OH radical scavenger. In the photooxidation experiments OH radicals were generated by photolysis of methyl nitrite. The ozonolysis of myrcene in the presence of CO resulted in a substantial yield of 4-vinyl-4-pentenal (55.3%), measured as m/z 111 plus m/z 93 using proton transfer reaction-mass spectrometry (PTR-MS) and confirmed unambiguously as C7H10O by denuder measurements and HPLC/ESI-TOFMS analysis of its 2,4-dinitrophenylhydrazine (DNPH) derivative. Additionally, the formation of two different organic dicarbonyls with m/z 113 and a molecular formula of C6H8O2 were observed (2.1%). The yields of these dicarbonyls were higher in the ozonolysis experiments without an OH scavenger (5.4%) and even higher (13.8%) in the myrcene OH radical reaction. The formation of hydroxyacetone as a direct product of the myrcene reaction with ozone with a molar yield of 17.6% was also observed. The particle size distribution and volume concentrations were monitored and facilitated the calculation of SOA yields, which ranged from 0 to 0.01 (ozonolysis in the presence of CO) to 0.39 (myrcene OH radical reaction). Terpenylic acid was found in the SOA samples collected from the ozonolysis of myrcene in the absence of an OH scavenger and the OH radical-initiated reaction of myrcene but not in samples collected from the ozonolysis in the presence of CO as an OH radical scavenger, suggesting that terpenylic acid formation involves the reaction of myrcene with an OH radical. A reaction mechanism describing the formation of terpenylic acid is proposed.

  6. Primary Emission and the Potential of Secondary Aerosol Formation from Chinese Gasoline Engine Exhaust

    Science.gov (United States)

    Hu, Min; Peng, Jianfei; Qin, Yanhong; Du, Zhuofei; Li, Mengjin; Zheng, Rong; Zheng, Jing; Shang, Dongjie; Lu, Sihua; Wu, Yusheng; Zeng, Limin; Guo, Song; Shao, Min; Wang, Yinhui; Shuai, Shijin

    2017-04-01

    Along with the urbanization and economic growth, vehicle population in China reached 269 million, ranked the second in the world in 2015. Gasoline vehicle is identified to be the main source for urban PM2.5 in China, accounting for 15%-31%. In this study the impact of fuel components on PM2.5 and volatile organic compounds (VOCs) emissions from a gasoline port fuel injection (PFI) engine and a gasoline direct injection (GDI) engine are discussed. Results show that, higher proportion of aromatics, alkenes or sulfur in gasoline fuel will lead to higher PM emissions. The PM from the PFI engine mainly consists of OC and a small amount of EC and inorganic ions, while the PM discharge from the GDI engine mainly consists of EC, OM and a small amount of inorganic ions. Since the GDI engines can reduce fuel consumption and CO2 emissions, and it would become more and more popular in the near future. The characteristics of POM component, emission factors and source profile were investigated from GDI engine, particularly focused on the effect of engine speed, load and the catalyst, which will be very much helpful for source identification as source indicators. Chamber experiments were conducted to quantify the potential of secondary aerosol formation from exhaust of a PFI gasoline engine and China V gasoline fuel. During 4-5 h simulation, equivalent to10 days of atmospheric photo-oxidation in Beijing, the extreme SOA production was 426 ± 85 mg/kg fuel, with high precursors and OH exposure. 14% of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatility organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reduction of emissions of aerosol precursor gases from vehicles is essential to mediate pollution in China.

  7. Simulating the formation of carbonaceous aerosol in a European Megacity (Paris) during the Megapoli summer and winter campaigns

    NARCIS (Netherlands)

    Fountoukis, C.; Megaritis, A.G.; Skyllakou, K.; Charalampidis, P.E.; Denier van der Gon, H.A.C.; Crippa, M.; Prevot, A.S.H.; Fachinger, F.; Wiedensohler, A.; Pilinis, C.; Pandis, S.N.

    2016-01-01

    We use a three-dimensional regional chemical transport model (PMCAMx) with high grid resolution and high-resolution emissions (4 x 4 km2) over the Paris greater area to simulate the formation of carbonaceous aerosol dur-ing a summer (July 2009) and a winter (January/February 2010) period as part of

  8. Different roles of water in secondary organic aerosol formation from toluene and isoprene

    Science.gov (United States)

    Jia, Long; Xu, YongFu

    2018-06-01

    Roles of water in the formation of secondary organic aerosol (SOA) from the irradiations of toluene-NO2 and isoprene-NO2 were investigated in a smog chamber. Experimental results show that the yield of SOA from toluene almost doubled as relative humidity increased from 5 to 85 %, whereas the yield of SOA from isoprene under humid conditions decreased by 2.6 times as compared to that under dry conditions. The distinct difference of RH effects on SOA formation from toluene and isoprene is well explained with our experiments and model simulations. The increased SOA from humid toluene-NO2 irradiations is mainly contributed by O-H-containing products such as polyalcohols formed from aqueous reactions. The major chemical components of SOA in isoprene-NO2 irradiations are oligomers formed from the gas phase. SOA formation from isoprene-NO2 irradiations is controlled by stable Criegee intermediates (SCIs) that are greatly influenced by water. As a result, high RH can obstruct the oligomerization reaction of SCIs to form SOA.

  9. Organic condensation: A vital link connecting aerosol formation to climate forcing (Invited)

    Science.gov (United States)

    Riipinen, I.; Pierce, J. R.; Yli-Juuti, T.; Nieminen, T.; Häkkinen, S.; Ehn, M.; Junninen, H.; Lehtipalo, K.; Petdjd, T. T.; Slowik, J. G.; Chang, R. Y.; Shantz, N. C.; Abbatt, J.; Leaitch, W. R.; Kerminen, V.; Worsnop, D. R.; Pandis, S. N.; Donahue, N. M.; Kulmala, M. T.

    2010-12-01

    Aerosol-cloud interactions represent the largest uncertainty in calculations of Earth’s radiative forcing. Number concentrations of atmospheric aerosol particles are in the core of this uncertainty, as they govern the numbers of cloud condensation nuclei (CCN) and influence the albedo and lifetime of clouds. Aerosols also impair air quality through their adverse effects on atmospheric visibility and human health. The ultrafine fraction ( 100 nm) and enhance the loss of ultrafine particles. Primary organic aerosol (POA) contributes to the large end of the aerosol size distribution, enhancing the scavenging of the ultrafine particles.

  10. Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation

    OpenAIRE

    P. Q. Fu; K. Kawamura; J. Chen; B. Charrière; R. Sempéré

    2013-01-01

    Organic molecular composition of marine aerosol samples collected during the MALINA cruise in the Arctic Ocean was investigated by gas chromatography/mass spectrometry. More than 110 individual organic compounds were determined in the samples and were grouped into different compound classes based on the functionality and sources. The concentrations of total quantified organics ranged from 7.3 to 185 ng m−3 (mean 47.6 ng m−3), accounting ...

  11. Accessing the Impact of Sea-Salt Emissions on Aerosol Chemical Formation and Deposition Over Pearl River Delta, China

    Science.gov (United States)

    Fan, Q.; Wang, X.; Liu, Y.; Wu, D.; Chan, P. W.; Fan, S.; Feng, Y.

    2015-12-01

    Sea-salt aerosol (SSA) emissions have a significant impact on aerosol pollution and haze formation in the coastal areas. In this study, Models-3/CMAQ modeling system was utilized to access the impact of SSA emissions on aerosol chemical formation and deposition over Pearl River Delta (PRD), China in July 2006. More SSAs were transported inland from the open-ocean under the southeast wind in summertime. Two experiments (with and without SSA emissions in the CMAQ model) were set up to compare the modeling results with each other. The results showed that the increase of sulfate concentrations were more attributable to the primary emissions of coarse SO42- particles in SSA, while the increase of nitrate concentrations were more attributable to secondary chemical formations, known as the mechanisms of chloride depletion in SSA. In the coastal areas, 17.62 % of SO42-, 26.6% of NO3- and 38.2% of PM10 were attributed to SSA emissions, while those portions were less than 1% in the inland areas. The increases of PM10 and its components due to SSA emissions resulted in higher deposition fluxes over PRD, particularly in the coastal areas, except for the wet deposition of nitrate. Nitrate was more sensitive to SSA emissions in chemical formations than sulfate and dry deposition of aerosol was also more sensitive than that for wet deposition. Process analysis of sulfate and nitrate was applied to find out the difference of physical and chemical mechanisms between Guangzhou (the inland areas) and Zhuhai (the coastal areas). The negative contributions of dry deposition process to both sulfate and nitrate concentrations increased if SSA emissions were taken into account in the model, especially for Zhuhai. The negative contributions of cloud process also increased due to cloud scavenging and wet deposition process. In the coastal area, the gas-to-particle conversions became more active with high contributions of aerosol process to nitrate concentrations.

  12. Formation and evolution of aerosols in filtered air and in natural air. Effect of radioactivity; Formation et evolution des aerosols dans l'air filtre et dans l'air naturel action de la radioactivite

    Energy Technology Data Exchange (ETDEWEB)

    Madelaine, G J [Commissariat a l' Energie Atomique, 92 - Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-06-01

    Results are presented concerning the formation, the evolution, the coagulation and the electrical charge of aerosols which form in natural filtered air containing only gaseous impurities, under the influence of solar light (photolysis) and of radioactive disintegrations (radiolysis). The modifications brought about in the aerosol by an increase in the sulphur dioxide content and in the natural radioactive gas content are studied. The work is then repeated with non-filtered natural atmospheric air. A comparison is also made of the behaviour of non-radioactive and radioactive particles (active thoron deposit). In conclusion, the possible consequences of these phenomena on the origin and the size distribution of particles occurring in the atmosphere is considered. (author) [French] On expose les resultats obtenus sur la formation, l'evolution, la coagulation et la charge electrique des aerosols qui se forment dans l'air naturel filtre, ne contenant que des impuretes gazeuses, sous l'influence de la lumiere solaire (photolyse) et des desintegrations radioactives (radiolyse). On examine les modifications apportees a l'aerosol forme par l'augmentation de la teneur de l'air en anhydride sulfureux et en gaz radioactif naturel. Cette etude est ensuite reprise mais avec de l'air naturel atmospherique non filtre. On compare egalement le comportement des particules non radioactives et radioactives (depot actif du thoron). En conclusion, on examine les consequences que peuvent avoir ces phenomenes sur l'origine et la granulometrie des particules contenues dans l'atmosphere. (auteur)

  13. Characterization of aerosol photooxidation flow reactors: heterogeneous oxidation, secondary organic aerosol formation and cloud condensation nuclei activity measurements

    Directory of Open Access Journals (Sweden)

    A. T. Lambe

    2011-03-01

    Full Text Available Motivated by the need to develop instrumental techniques for characterizing organic aerosol aging, we report on the performance of the Toronto Photo-Oxidation Tube (TPOT and Potential Aerosol Mass (PAM flow tube reactors under a variety of experimental conditions. The PAM system was designed with lower surface-area-to-volume (SA/V ratio to minimize wall effects; the TPOT reactor was designed to study heterogeneous aerosol chemistry where wall loss can be independently measured. The following studies were performed: (1 transmission efficiency measurements for CO2, SO2, and bis(2-ethylhexyl sebacate (BES particles, (2 H2SO4 yield measurements from the oxidation of SO2, (3 residence time distribution (RTD measurements for CO2, SO2, and BES particles, (4 aerosol mass spectra, O/C and H/C ratios, and cloud condensation nuclei (CCN activity measurements of BES particles exposed to OH radicals, and (5 aerosol mass spectra, O/C and H/C ratios, CCN activity, and yield measurements of secondary organic aerosol (SOA generated from gas-phase OH oxidation of m-xylene and α-pinene. OH exposures ranged from (2.0 ± 1.0 × 1010 to (1.8 ± 0.3 × 1012 molec cm−3 s. Where applicable, data from the flow tube reactors are compared with published results from the Caltech smog chamber. The TPOT yielded narrower RTDs. However, its transmission efficiency for SO2 was lower than that for the PAM. Transmission efficiency for BES and H2SO4 particles was size-dependent and was similar for the two flow tube designs. Oxidized BES particles had similar O/C and H/C ratios and CCN activity at OH exposures greater than 1011 molec cm−3 s, but different CCN activity at lower OH exposures. The O/C ratio, H/C ratio, and yield of m-xylene and α-pinene SOA was strongly affected by reactor design and

  14. Model analysis of secondary organic aerosol formation by glyoxal in laboratory studies: the case for photoenhanced chemistry.

    Science.gov (United States)

    Sumner, Andrew J; Woo, Joseph L; McNeill, V Faye

    2014-10-21

    The reactive uptake of glyoxal by atmospheric aerosols is believed to be a significant source of secondary organic aerosol (SOA). Several recent laboratory studies have been performed with the goal of characterizing this process, but questions remain regarding the effects of photochemistry on SOA growth. We applied GAMMA (McNeill et al. Environ. Sci. Technol. 2012, 46, 8075-8081), a photochemical box model with coupled gas-phase and detailed aqueous aerosol-phase chemistry, to simulate aerosol chamber studies of SOA formation by the uptake of glyoxal by wet aerosol under dark and irradiated conditions (Kroll et al. J. Geophys. Res. 2005, 110 (D23), 1-10; Volkamer et al. Atmos. Chem. Phys. 2009, 9, 1907-1928; Galloway et al. Atmos. Chem. Phys. 2009, 9, 3331- 306 3345 and Geophys. Res. Lett. 2011, 38, L17811). We find close agreement between simulated SOA growth and the results of experiments conducted under dark conditions using values of the effective Henry's Law constant of 1.3-5.5 × 10(7) M atm(-1). While irradiated conditions led to the production of some organic acids, organosulfates, and other oxidation products via well-established photochemical mechanisms, these additional product species contribute negligible aerosol mass compared to the dark uptake of glyoxal. Simulated results for irradiated experiments therefore fell short of the reported SOA mass yield by up to 92%. This suggests a significant light-dependent SOA formation mechanism that is not currently accounted for by known bulk photochemistry, consistent with recent laboratory observations of SOA production via photosensitizer chemistry.

  15. Trace elements in the sea surface microlayer: rapid responses to changes in aerosol deposition

    Directory of Open Access Journals (Sweden)

    Alina M. Ebling

    2017-08-01

    Full Text Available Natural and anthropogenic aerosols are a significant source of trace elements to oligotrophic ocean surface waters, where they provide episodic pulses of limiting micronutrients for the microbial community. However, little is known about the fate of trace elements at the air-sea interface, i.e. the sea surface microlayer. In this study, samples of aerosols, sea surface microlayer, and underlying water column were collected in the Florida Keys during a dusty season (July 2014 and non-dusty season (May 2015 and analyzed for the dissolved and particulate elements Al, Fe, Ni, Cu, Zn, and Pb. Microlayer samples were collected using a cylinder of ultra-pure SiO2 (quartz glass, a novel adaptation of the glass plate technique. A significant dust deposition event occurred during the 2014 sampling period which resulted in elevated concentrations of trace elements in the microlayer. Residence times in the microlayer from this event ranged from 12 to 94 minutes for dissolved trace elements and from 1.3 to 3.4 minutes for particulate trace elements. These residence times are potentially long enough for the atmospherically derived trace elements to undergo chemical and biological alterations within the microlayer. Characterizing the trace element distributions within the three regimes is an important step towards our overall goals of understanding the rates and mechanisms of the solubilization of trace elements following aeolian dust deposition and how this might affect microorganisms in surface waters.

  16. Rapid Formation of Cerebral Microbleeds after Carotid Artery Stenting

    Directory of Open Access Journals (Sweden)

    Kousuke Kakumoto

    2012-03-01

    Full Text Available Background: Recent studies reported that cerebral microbleeds (CMBs, i.e. small areas of signal loss on T2*-weighted gradient-echo (GE imaging, could develop rapidly after acute ischemic stroke. We hypothesized that CMBs rapidly emerge after carotid artery stenting (CAS. Objective: We investigated the frequency of and predisposing factors for CMBs after CAS. Methods: We retrospectively examined MRI before and after CAS in 88 consecutive patients (average age: 71.7 ± 7.2 years, average rates of carotid stenosis: 72.6 ± 12.8% who underwent CAS for carotid artery stenosis between March 1, 2009, and September 30, 2010. We defined new CMBs as signal losses that newly appeared on the follow-up GE. We examined the association of new CMBs with demographics, risk factors, and baseline MBs. Results: Among 88 patients, 18 (20.5% had CMBs initially, and 7 (8.0% developed new CMBs right after CAS. New CMBs appeared on the same side of CAS in all of the 7 patients. New CMBs appeared significantly more frequently in the CMB-positive group than in the CMB-negative one (22% vs. 4%, p = 0.03 on the pre-CAS MRI. Multivariate analysis also revealed that the presence of CMBs before CAS was an independent predictor of new development of CMBs after CAS (odds ratio: 8.09, 95% confidence interval: 1.39–47.1. Conclusion: CMBs can develop rapidly after CAS, especially in patients with pre-existing CMBs. Since the existence of CMBs prior to CAS suggests a latent vascular damage which is vulnerable to hemodynamic stress following CAS, particular attention should be paid to the prevention of intracerebral hemorrhage due to hyperperfusion after CAS.

  17. Formation of primordial supermassive stars by rapid mass accretion

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Takashi; Yoshida, Naoki [Department of Physics and Research Center for the Early Universe, The University of Tokyo, Tokyo 113-0033 (Japan); Yorke, Harold W. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Inayoshi, Kohei; Omukai, Kazuyuki, E-mail: takashi.hosokawa@phys.s.u-tokyo.ac.jp, E-mail: hosokwtk@gmail.com [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2013-12-01

    Supermassive stars (SMSs) forming via very rapid mass accretion ( M-dot {sub ∗}≳0.1 M{sub ⊙} yr{sup −1}) could be precursors of supermassive black holes observed beyond a redshift of about six. Extending our previous work, here we study the evolution of primordial stars growing under such rapid mass accretion until the stellar mass reaches 10{sup 4–5} M {sub ☉}. Our stellar evolution calculations show that a star becomes supermassive while passing through the 'supergiant protostar' stage, whereby the star has a very bloated envelope and a contracting inner core. The stellar radius increases monotonically with the stellar mass until ≅ 100 AU for M {sub *} ≳ 10{sup 4} M {sub ☉}, after which the star begins to slowly contract. Because of the large radius, the effective temperature is always less than 10{sup 4} K during rapid accretion. The accreting material is thus almost completely transparent to the stellar radiation. Only for M {sub *} ≳ 10{sup 5} M {sub ☉} can stellar UV feedback operate and disturb the mass accretion flow. We also examine the pulsation stability of accreting SMSs, showing that the pulsation-driven mass loss does not prevent stellar mass growth. Observational signatures of bloated SMSs should be detectable with future observational facilities such as the James Webb Space Telescope. Our results predict that an inner core of the accreting SMS should suffer from the general relativistic instability soon after the stellar mass exceeds 10{sup 5} M {sub ☉}. An extremely massive black hole should form after the collapse of the inner core.

  18. Aerosol vertical distribution, new particle formation, and jet aircraft particle emissions in the free troposhere and tropopause region; Vertikalverteilung und Neubildungsprozesse des Aerosols und partikelfoermige Flugzeugemissionen in der freien Troposphaere und Tropopausenregion

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, F P

    2000-07-01

    A contribution to the understanding of natural and anthropogenously induced particle formation as well as aerosol physical transformation processes within the free troposphere (FT) is introduced. Documentation and interpretation of empirical data relevant with respect to possible climatologic impact of anthropogenous aerosol emissions into the atmosphere is presented. The first section describes new technique for high spatial resolution measurements of ultrafine aerosol particles by condensation nucleus counters (CNCs), a necessary prerequisite for the observation of natural particle formation and jet aircraft emissions. The second section illustrates vertical distribution and variability ranges of the aerosol in the FT and the tropopause region (TP). Typical microphysical states of the atmospheric aerosol within the Northern Hemisphere are documented by means of systematic measurements during more than 60 flight missions. Simple mathematical parameterizations of the aerosol vertical distribution and aerosol size distributions are developed. Important aerosol sources within the FT are localized and possible aerosol formation processes are discussed. The third section is focussed on jet-engine particle emissions within the FT and TP. A unique inflight experiment for detection of extremely high concentrations (>10{sup 6} cm{sup -3}) of extremely small (donw to <3 nm) aerosols inside the exhaust plumes of several jet aircraft is described. Particle emission indices and emission-controlling parameters are deduced. Most important topic is the impact of fuel sulfur content of kerosine on number, size and chemical composition of jet particle emissions. Generalized results are parameterized in form of lognormal aerosol particle size distributions. (orig.) [German] Ein Beitrag zum Verstaendnis natuerlicher und anthropogen induzierter Aerosolneubildung sowie physikalischer Aerosolumwandlung in der freien Troposphaere wird vorgestellt. Empirisch gewonnenes Datenmaterial wird

  19. Aerosol surface area concentration: a governing factor in new particle formation in Beijing

    Directory of Open Access Journals (Sweden)

    R. Cai

    2017-10-01

    Full Text Available The predominating role of aerosol Fuchs surface area, AFuchs, in determining the occurrence of new particle formation (NPF events in Beijing was elucidated in this study. The analysis was based on a field campaign from 12 March to 6 April 2016 in Beijing, during which aerosol size distributions down to  ∼  1 nm and sulfuric acid concentrations were simultaneously monitored. The 26 days were classified into 11 typical NPF days, 2 undefined days, and 13 non-event days. A dimensionless factor, LΓ, characterized by the relative ratio of the coagulation scavenging rate over the condensational growth rate (Kuang et al., 2010, was applied in this work to reveal the governing factors for NPF events in Beijing. The three parameters determining LΓ are sulfuric acid concentration, the growth enhancement factor characterized by contribution of other gaseous precursors to particle growth, Γ, and AFuchs. Different from other atmospheric environments, such as in Boulder and Hyytiälä, the daily-maximum sulfuric acid concentration and Γ in Beijing varied in a narrow range with geometric standard deviations of 1.40 and 1.31, respectively. A positive correlation between the estimated new particle formation rate, J1.5, and sulfuric acid concentration was found with a mean fitted exponent of 2.4. However, the maximum sulfuric acid concentrations on NPF days were not significantly higher (even lower, sometimes than those on non-event days, indicating that the abundance of sulfuric acid in Beijing was high enough to initiate nucleation, but may not necessarily lead to NPF events. Instead, AFuchs in Beijing varied greatly among days with a geometric standard deviation of 2.56, whereas the variabilities of AFuchs in Tecamac, Atlanta, and Boulder were reported to be much smaller. In addition, there was a good correlation between AFuchs and LΓ in Beijing (R2 = 0.88. Therefore, it was AFuchs that fundamentally determined the occurrence of NPF events

  20. A Nanometer Aerosol Size Analyzer (nASA) for Rapid Measurement of High-concentration Size Distributions

    International Nuclear Information System (INIS)

    Han, H.-S.; Chen, D.-R.; Pui, David Y.H.; Anderson, Bruce E.

    2000-01-01

    We have developed a fast-response nanometer aerosol size analyzer (nASA) that is capable of scanning 30 size channels between 3 and 100 nm in a total time of 3 s. The analyzer includes a bipolar charger (Po 210 ), an extended-length nanometer differential mobility analyzer (Nano-DMA), and an electrometer (TSI 3068). This combination of components provides particle size spectra at a scan rate of 0.1 s per channel free of uncertainties caused by response-time-induced smearing. The nASA thus offers a fast response for aerosol size distribution measurements in high-concentration conditions and also eliminates the need for applying a de-smearing algorithm to resulting data. In addition, because of its thermodynamically stable means of particle detection, the nASA is useful for applications requiring measurements over a broad range of sample pressures and temperatures. Indeed, experimental transfer functions determined for the extended-length Nano-DMA using the tandem differential mobility analyzer (TDMA) technique indicate the nASA provides good size resolution at pressures as low as 200 Torr. Also, as was demonstrated in tests to characterize the soot emissions from the J85-GE engine of a T-38 aircraft, the broad dynamic concentration range of the nASA makes it particularly suitable for studies of combustion or particle formation processes. Further details of the nASA performance as well as results from calibrations, laboratory tests and field applications are presented below

  1. Formation of high-molecular-weight compounds via the heterogeneous reactions of gaseous C8-C10 n-aldehydes in the presence of atmospheric aerosol components

    Science.gov (United States)

    Han, Yuemei; Kawamura, Kimitaka; Chen, Qingcai; Mochida, Michihiro

    2016-02-01

    A laboratory study on the heterogeneous reactions of straight-chain aldehydes was performed by exposing n-octanal, nonanal, and decanal vapors to ambient aerosol particles. The aerosol and blank filters were extracted using methanol. The extracts were nebulized and the resulting compositions were examined using a high-resolution time-of-flight aerosol mass spectrometer. The mass spectral analysis showed that the exposures of the aldehydes to aerosol samples increased the peak intensities in the high mass range. The peaks in the mass spectra of the aerosol samples after exposure to different aldehydes were characterized by a homologous series of peak shifts due to the addition of multiple CH2 units. This result is explained by the formation of high-molecular-weight (HMW) compounds that contain single or multiple aldehyde moieties. The HMW fragment peaks for the blank filters exposed to n-aldehydes were relatively weak, indicating an important contribution from the ambient aerosol components to the formation of the HMW compounds. Among the factors affecting the overall interaction of aldehydes with atmospheric aerosol components, gas phase diffusion possibly limited the reactions under the studied conditions; therefore, their occurrence to a similar degree in the atmosphere is not ruled out, at least for the reactions involving n-nonanal and decanal. The major formation pathways for the observed HMW products may be the self-reactions of n-aldehydes mediated by atmospheric aerosol components and the reactions of n-aldehydes with organic aerosol components. The observed formation of HMW compounds encourages further investigations into their effects on the aerosol properties as well as the organic aerosol mass in the atmosphere.

  2. Simulating Marine New Particle Formation and Growth Using the M7 Modal Aerosol Dynamics Modal

    Directory of Open Access Journals (Sweden)

    Ciaran Monahan

    2010-01-01

    Full Text Available A modal atmospheric aerosol model (M7 is evaluated in terms of predicting marine new particle formation and growth. Simulations were carried out for three different nucleation schemes involving (1 kinetic self-nucleation of OIO (2 nucleation via OIO activation by H2SO4 and (3 nucleation via OIO activation by H2SO4 plus condensation of a low-volatility organic vapour. Peak OIO and H2SO4 vapour concentrations were both limited to 6×106 molecules cm-3 at noontime while the peak organic vapour concentration was limited to 12×106 molecules cm-3. All simulations produced significant concentrations of new particles in the Aitken mode. From a base case particle concentration of 222 cm-3 at radii >15 nm, increases in concentrations to 366 cm-3 were predicted from the OIO-OIO case, 722 cm-3 for the OIO-H2SO4 case, and 1584 cm-3 for the OIO-H2SO4 case with additional condensing organic vapours. The results indicate that open ocean new particle production is feasible for clean conditions; however, new particle production becomes most significant when an additional condensable organic vapour is available to grow the newly formed particles to larger sizes. Comparison to sectional model for a typical case study demonstrated good agreement and the validity of using the modal model.

  3. Impact of Biomass Burning Aerosols on Cloud Formation in Coastal Regions

    Science.gov (United States)

    Nair, U. S.; Wu, Y.; Reid, J. S.

    2017-12-01

    In the tropics, shallow and deep convective cloud structures organize in hierarchy of spatial scales ranging from meso-gamma (2-20 km) to planetary scales (40,000km). At the lower end of the spectrum is shallow convection over the open ocean, whose upscale growth is dependent upon mesoscale convergence triggers. In this context, cloud systems associated with land breezes that propagate long distances into open ocean areas are important. We utilized numerical model simulations to examine the impact of biomass burning on such cloud systems in the maritime continent, specifically along the coastal regions of Sarawak. Numerical model simulations conducted using the Weather Research and Forecasting Chemistry (WRF-Chem) model show spatial patterns of smoke that show good agreement to satellite observations. Analysis of model simulations show that, during daytime the horizontal convective rolls (HCRs) that form over land play an important role in organizing transport of smoke in the coastal regions. Alternating patterns of low and high smoke concentrations that are well correlated to the wavelengths of HCRs are found in both the simulations and satellite observations. During night time, smoke transport is modulated by the land breeze circulation and a band of enhanced smoke concentration is found along the land breeze front. Biomass burning aerosols are ingested by the convective clouds that form along the land breeze and leads to changes in total water path, cloud structure and precipitation formation.

  4. Quantifying dust plume formation and aerosol size distribution during the Saharan Mineral Dust Experiment in North Africa

    KAUST Repository

    Khan, Basit Ali

    2015-01-01

    Dust particles mixed in the free troposphere have longer lifetimes than airborne particles near the surface. Their cumulative radiative impact on earth’s meteorological processes and climate might be significant despite their relatively small contribution to total dust abundance. One example is the elevated dust--laden Saharan Air Layer (SAL) over the equatorial North Atlantic, which cools the sea surface and likely suppresses hurricane activity. To understand the formation mechanisms of SAL, we combine model simulations and dust observations collected during the first stage of the Saharan Mineral Dust Experiment (SAMUM--I), which sampled dust events that extended from Morocco to Portugal, and investigated the spatial distribution and the microphysical, optical, chemical, and radiative properties of Saharan mineral dust. We employed the Weather Research Forecast model coupled with the Chemistry/Aerosol module (WRF--Chem) to reproduce the meteorological environment and spatial and size distributions of dust. The experimental domain covers northwest Africa including the southern Sahara, Morocco and part of the Atlantic Ocean with 5 km horizontal grid spacing and 51 vertical layers. The experiments were run from 20 May to 9 June 2006, covering the period of most intensive dust outbreaks. Comparisons of model results with available airborne and ground--based observations show that WRF--Chem reproduces observed meteorological fields as well as aerosol distribution across the entire region and along the airplane’s tracks. We evaluated several aerosol uplift processes and found that orographic lifting, aerosol transport through the land/sea interface with steep gradients of meteorological characteristics, and interaction of sea breezes with the continental outflow are key mechanisms that form a surface--detached aerosol plume over the ocean. Comparisons of simulated dust size distributions with airplane and ground--based observations are generally good, but suggest

  5. An aerosol boomerang: Rapid around-the-world transport of smoke from the December 2006 Australian forest fires observed from space

    NARCIS (Netherlands)

    Dirksen, R.J.; Folkert Boersma, K.; Laat, de J.; Stammes, P.; van der Werf, G.R.; Val Martin, M.; Kelder, H.M.

    2009-01-01

    We investigate rapid around-the-world transport of a smoke aerosol plume released by intense forest fires in southeastern Australia in December 2006. During the first half of December 2006, southeastern Australia suffered from severe drought and exceptionally high temperatures. On 14 December 2006,

  6. An aerosol boomerang : rapid around-the-world transport of smoke from the December 2006 Australian forest fires observed from space

    NARCIS (Netherlands)

    Dirksen, R.J.; Boersma, K.F.; Laat, de J.; Stammes, P.; Werf, van der G.R.; Martin, M.V.; Kelder, H.

    2009-01-01

    We investigate rapid around-the-world transport of a smoke aerosol plume released by intense forest fires in southeastern Australia in December 2006. During the first half of December 2006, southeastern Australia suffered from severe drought and exceptionally high temperatures. On 14 December 2006,

  7. Secondary aerosol formation from photochemical aging of aircraft exhaust in a smog chamber

    Directory of Open Access Journals (Sweden)

    M. A. Miracolo

    2011-05-01

    Full Text Available Field experiments were performed to investigate the effects of photo-oxidation on fine particle emissions from an in-use CFM56-2B gas turbine engine mounted on a KC-135 Stratotanker airframe. Emissions were sampled into a portable smog chamber from a rake inlet installed one-meter downstream of the engine exit plane of a parked and chocked aircraft. The chamber was then exposed to sunlight and/or UV lights to initiate photo-oxidation. Separate tests were performed at different engine loads (4, 7, 30, 85 %. Photo-oxidation created substantial secondary particulate matter (PM, greatly exceeding the direct PM emissions at each engine load after an hour or less of aging at typical summertime conditions. After several hours of photo-oxidation, the ratio of secondary-to-primary PM mass was on average 35 ± 4.1, 17 ± 2.5, 60 ± 2.2, and 2.7 ± 1.1 for the 4, 7, 30, and 85 % load experiments, respectively. The composition of secondary PM formed strongly depended on load. At 4 % load, secondary PM was dominated by secondary organic aerosol (SOA. At higher loads, the secondary PM was mainly secondary sulfate. A traditional SOA model that accounts for SOA formation from single-ring aromatics and other volatile organic compounds underpredicts the measured SOA formation by ~60 % at 4 % load and ~40 % at 85 % load. Large amounts of lower-volatiliy organic vapors were measured in the exhaust; they represent a significant pool of SOA precursors that are not included in traditional SOA models. These results underscore the importance of accounting for atmospheric processing when assessing the influence of aircraft emissions on ambient PM levels. Models that do not account for this processing will likely underpredict the contribution of aircraft emissions to local and regional air pollution.

  8. Impact of NOx and OH on secondary organic aerosol formation from β-pinene photooxidation

    Directory of Open Access Journals (Sweden)

    M. Sarrafzadeh

    2016-09-01

    Full Text Available In this study, the NOx dependence of secondary organic aerosol (SOA formation from photooxidation of the biogenic volatile organic compound (BVOC β-pinene was comprehensively investigated in the Jülich Plant Atmosphere Chamber. Consistent with the results of previous NOx studies we found increases of SOA yields with increasing [NOx] at low-NOx conditions ([NOx]0  <  30 ppb, [BVOC]0 ∕ [NOx]0  >  10 ppbC ppb−1. Furthermore, increasing [NOx] at high-NOx conditions ([NOx]0  >  30 ppb, [BVOC]0 ∕ [NOx]0  ∼  10 to  ∼  2.6 ppbC ppb−1 suppressed the SOA yield. The increase of SOA yield at low-NOx conditions was attributed to an increase of OH concentration, most probably by OH recycling in NO + HO2  →  NO2 + OH reaction. Separate measurements without NOx addition but with different OH primary production rates confirmed the OH dependence of SOA yields. After removing the effect of OH concentration on SOA mass growth by keeping the OH concentration constant, SOA yields only decreased with increasing [NOx]. Measuring the NOx dependence of SOA yields at lower [NO] ∕ [NO2] ratio showed less pronounced increase in both OH concentration and SOA yield. This result was consistent with our assumption of OH recycling by NO and to SOA yields being dependent on OH concentrations. Our results furthermore indicated that NOx dependencies vary for different NOx compositions. A substantial fraction of the NOx-induced decrease of SOA yields at high-NOx conditions was caused by NOx-induced suppression of new particle formation (NPF, which subsequently limits the particle surface where low volatiles condense. This was shown by probing the NOx dependence of SOA formation in the presence of seed particles. After eliminating the effect of NOx-induced suppression of NPF and NOx-induced changes of OH concentrations, the remaining effect of NOx on the SOA yield from

  9. Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation

    Directory of Open Access Journals (Sweden)

    E. Asmi

    2010-05-01

    Full Text Available The Antarctic near-coastal sub-micrometre aerosol particle features in summer were characterised based on measured data on aerosol hygroscopicity, size distributions, volatility and chemical ion and organic carbon mass concentrations. Hysplit model was used to calculate the history of the air masses to predict the particle origin. Additional measurements of meteorological parameters were utilised. The hygroscopic properties of particles mostly resembled those of marine aerosols. The measurements took place at 130 km from the Southern Ocean, which was the most significant factor affecting the particle properties. This is explained by the lack of additional sources on the continent of Antarctica. The Southern Ocean was thus a likely source of the particles and nucleating and condensing vapours. The particles were very hygroscopic (HGF 1.75 at 90 nm and very volatile. Most of the sub-100 nm particle volume volatilised below 100 °C. Based on chemical data, particle hygroscopic and volatile properties were explained by a large fraction of non-neutralised sulphuric acid together with organic material. The hygroscopic growth factors assessed from chemical data were similar to measured. Hygroscopicity was higher in dry continental air masses compared with the moist marine air masses. This was explained by the aging of the marine organic species and lower methanesulphonic acid volume fraction together with the changes in the inorganic aerosol chemistry as the aerosol had travelled long time over the continental Antarctica. Special focus was directed in detailed examination of the observed new particle formation events. Indications of the preference of negative over positive ions in nucleation could be detected. However, in a detailed case study, the neutral particles dominated the particle formation process. Freshly nucleated particles had the smallest hygroscopic growth factors, which increased subsequent to particle aging.

  10. Formation of secondary aerosols from the ozonolysis of styrene: Effect of SO2 and H2O

    Science.gov (United States)

    Díaz-de-Mera, Yolanda; Aranda, Alfonso; Martínez, Ernesto; Rodríguez, Ana Angustias; Rodríguez, Diana; Rodríguez, Ana

    2017-12-01

    In this work we report the study of the ozonolysis of styrene and the reaction conditions leading to the formation of secondary aerosols. The reactions have been carried out in a Teflon chamber filled with synthetic air mixtures at atmospheric pressure and room temperature. We have found that the ozonolysis of styrene in the presence of low concentrations of SO2 readily produces new particles under concentrations of reactants lower than those required in experiments in the absence of SO2. Thus, nucleation events occur at concentrations around (5.6 ± 1.7) × 108molecule cm-3 (errors are 2σ±20%) and SO2 is consumed during the experiments. The reaction of the Criegee intermediates with SO2 to produce SO3 and then H2SO4 may explain (together with OH reactions' contribution) the high capacity of styrene to produce particulate matter in polluted atmospheres. The formation of secondary aerosols in the smog chamber is inhibited under high H2O concentrations. So, the potential formation of secondary aerosols under atmospheric conditions depends on the concentration of SO2 and relative humidity, with a water to SO2 rate constants ratio kH2O/kSO2 = (2.8 ± 0.7) × 10-5 (errors are 2σ±20%).

  11. Rapid solar-thermal dissociation of natural gas in an aerosol flow reactor

    International Nuclear Information System (INIS)

    Dahl, Jaimee K.; Buechler, Karen J.; Finley, Ryan; Stanislaus, Timothy; Weimer, Alan W.; Lewandowski, Allan; Bingham, Carl; Smeets, Alexander; Schneider, Adrian

    2004-01-01

    A solar-thermal aerosol flow reactor process is being developed to dissociate natural gas (NG) to hy drogen (H 2 ) and carbon black at high rates. Concentrated sunlight approaching 10 kW heats a 9.4 cm long x2.4 cm diameter graphite reaction tube to temperatures ∼2000 K using a 74% theoretically efficient secondary concentrator. Pure methane feed has been dissociated to 70% for residence times less than 0.1 s. The resulting carbon black is 20-40 nm in size, amorphous, and pure. A 5 million (M) kg/yr carbon black/1.67 M kg/yr H 2 plant is considered for process scale-up. The total permanent investment (TPI) of this plant is $12.7 M. A 15% IRR after tax is achieved when the carbon black is sold for $0.66/kg and the H 2 for $13.80/GJ. This plant could supply 0.06% of the world carbon black market. For this scenario, the solar-thermal process avoids 277 MJ fossil fuel and 13.9 kg-equivalent CO 2 /kg H 2 produced as compared to conventional steam-methane reforming and furnace black processing

  12. Real-Time Observations of Secondary Aerosol Formation and Aging from Different Emission Sources and Environments

    Science.gov (United States)

    Ortega, A. M.; Palm, B. B.; Hayes, P. L.; Day, D. A.; Cubison, M.; Brune, W. H.; Hu, W.; Flynn, J. H.; Grossberg, N.; Lefer, B. L.; Rappenglueck, B.; Bon, D.; Graus, M.; Warneke, C.; Gilman, J.; Kuster, W.; De Gouw, J. A.; Jimenez, J. L.

    2013-12-01

    To investigate atmospheric processing of direct urban and wildfire emissions, we deployed a photochemical flow reactor (Potential Aerosol Mass, PAM) with submicron aerosol size and chemical composition measurements during FLAME-3, a biomass-burning study at USDA Fire Sciences Laboratory in Missoula, MT, and CalNex, a field study investigating the nexus of air quality and climate change at a receptor site in the LA-Basin at Pasadena, CA. The reactor produces OH concentrations up to 4 orders of magnitude higher than in ambient air, achieving equivalent aging of ~2 weeks in 5 minutes of processing. The OH exposure (OHexp) was stepped every 20 min in both field studies. Results show the value of this approach as a tool for in-situ evaluation of changes in OA concentration and composition due to photochemical processing. In FLAME-3, the average OA enhancement factor was 1.42 × 0.36 of the initial POA. Reactive VOCs, such as toluene, monoterpenes, and acetaldehyde, decreased with increased OHexp; however, formic acid, acetone, and some unidentified OVOCs increased after significant exposure. Net SOA formation in the photochemical reactor increased with OHexp, typically peaking around 3 days of equivalent atmospheric photochemical age (OHexp ~3.9e11 molecules cm-3 s), then leveling off at higher exposures. Unlike other studies, no decrease in OA is observed at high exposure, likely due to lower max OHexp in this study due to very high OH reactivity. The amount of additional OA mass added from aging is positively correlated with initial POA concentration, but not with the total VOC concentration or the concentration of known SOA precursors. The mass of SOA formed often exceeded the mass of the known VOC precursors, indicating the likely importance of primary semivolatile/intermediate volatility species, and possibly of unidentified VOCs as SOA precursors in biomass burning smoke. Results from CalNex show enhancement of OA and inorganic aerosol from gas-phase precursors

  13. Volcanic Plume Impact on the Atmosphere and Climate: O- and S-Isotope Insight into Sulfate Aerosol Formation

    Directory of Open Access Journals (Sweden)

    Erwan Martin

    2018-05-01

    Full Text Available The impact of volcanic eruptions on the climate has been studied over the last decades and the role played by sulfate aerosols appears to be major. S-bearing volcanic gases are oxidized in the atmosphere into sulfate aerosols that disturb the radiative balance on earth at regional to global scales. This paper discusses the use of the oxygen and sulfur multi-isotope systematics on volcanic sulfates to understand their formation and fate in more or less diluted volcanic plumes. The study of volcanic aerosols collected from air sampling and ash deposits at different distances from the volcanic systems (from volcanic vents to the Earth poles is discussed. It appears possible to distinguish between the different S-bearing oxidation pathways to generate volcanic sulfate aerosols whether the oxidation occurs in magmatic, tropospheric, or stratospheric conditions. This multi-isotopic approach represents an additional constraint on atmospheric and climatic models and it shows how sulfates from volcanic deposits could represent a large and under-exploited archive that, over time, have recorded atmospheric conditions on human to geological timescales.

  14. Modelling the formation and composition of secondary organic aerosol from α- and β-pinene ozonolysis using MCM v3

    Directory of Open Access Journals (Sweden)

    M. E. Jenkin

    2004-01-01

    Full Text Available The formation and detailed composition of secondary organic aerosol (SOA from the gas phase ozonolysis of α- and β-pinene has been simulated using the Master Chemical Mechanism version 3 (MCM v3, coupled with a representation of gas-to-aerosol transfer of semivolatile and involatile oxygenated products. A kinetics representation, based on equilibrium absorptive partitioning of ca. 200 semivolatile products, was found to provide an acceptable description of the final mass concentrations observed in a number of reported laboratory and chamber experiments, provided partitioning coefficients were increased by about two orders of magnitude over those defined on the basis of estimated vapour pressures. This adjustment is believed to be due, at least partially, to the effect of condensed phase association reactions of the partitioning products. Even with this adjustment, the simulated initial formation of SOA was delayed relative to that observed, implying the requirement for the formation of species of much lower volatility to initiate SOA formation. The inclusion of a simplified representation of the formation and gas-to-aerosol transfer of involatile dimers of 22 bi- and multifunctional carboxylic acids (in addition to the absorptive partitioning mechanism allowed a much improved description of SOA formation for a wide range of conditions. The simulated SOA composition recreates certain features of the product distributions observed in a number of experimental studies, but implies an important role for multifunctional products containing hydroperoxy groups (i.e. hydroperoxides. This is particularly the case for experiments in which 2-butanol is used to scavenge OH radicals, because [HO2]/[RO2] ratios are elevated in such systems. The optimized mechanism is used to calculate SOA yields from α- and β-pinene ozonolysis in the presence and absence of OH scavengers, and as a function of temperature.

  15. Rapid characterization of agglomerate aerosols by in situ mass-mobility measurements.

    Science.gov (United States)

    Scheckman, Jacob H; McMurry, Peter H; Pratsinis, Sotiris E

    2009-07-21

    Transport and physical/chemical properties of nanoparticle agglomerates depend on primary particle size and agglomerate structure (size, fractal dimension, and dynamic shape factor). This research reports on in situ techniques for measuring such properties. Nanoparticle agglomerates of silica were generated by oxidizing hexamethyldisiloxane in a methane/oxygen diffusion flame. Upon leaving the flame, agglomerates of known electrical mobility size were selected with a differential mobility analyzer (DMA), and their mass was measured with an aerosol particle mass analyzer (APM), resulting in their mass fractal dimension, D(f), and dynamic shape factor, chi. Scanning and transmission electron microscopy (SEM/TEM) images were used to determine primary particle diameter and to qualitatively investigate agglomerate morphology. The DMA-APM measurements were reproducible within 5%, as determined by multiple measurements on different days under the same flame conditions. The effects of flame process variables (oxygen flow rate and mass production rate) on particle characteristics (D(f), and chi) were determined. All generated particles were fractal-like agglomerates with average primary particle diameters of 12-93 nm and D(f) = 1.7-2.4. Increasing the oxygen flow rate decreased primary particle size and D(f), while it increased chi. Increasing the production rate increased the agglomerate and primary particle sizes, and decreased chi without affecting D(f). The effects of oxygen flow rate and particle production rate on primary particle size reported here are in agreement with ex situ measurements in the literature, while the effect of process variables on agglomerate shape (chi) is demonstrated for the first time to our knowledge.

  16. Aqueous-Phase Reactions of Isoprene with Sulfoxy Radical Anions as a way of Wet Aerosol Formation in the Atmosphere

    Science.gov (United States)

    Kuznietsova, I.; Rudzinski, K. J.; Szmigielski, R.; Laboratory of the Environmental Chemistry

    2011-12-01

    Atmospheric aerosols exhibit an important role in the environment. They have implications on human health and life, and - in the larger scale - on climate, the Earth's radiative balance and the cloud's formation. Organic matter makes up a significant fraction of atmospheric aerosols (~35% to ~90%) and may originate from direct emissions (primary organic aerosol, POA) or result from complex physico-chemical processes of volatile organic compounds (secondary organic aerosol, SOA). Isoprene (2-methyl-buta-1,3-diene) is one of the relevant volatile precursor of ambient SOA in the atmosphere. It is the most abundant non-methane hydrocarbon emitted to the atmosphere as a result of living vegetation. According to the recent data, the isoprene emission rate is estimated to be at the level of 500 TgC per year. While heterogeneous transformations of isoprene have been well documented, aqueous-phase reactions of this hydrocarbon with radical species that lead to the production of new class of wet SOA components such as polyols and their sulfate esters (organosulfates), are still poorly recognized. The chain reactions of isoprene with sulfoxy radical-anions (SRA) are one of the recently researched route leading to the formation of organosulfates in the aqueous phase. The letter radical species originate from the auto-oxidation of sulfur dioxide in the aqueous phase and are behind the phenomenon of atmospheric acid rain formation. This is a complicated chain reaction that is catalyzed by transition metal ions, such as manganese(II), iron(III) and propagated by sulfoxy radical anions . The presented work addresses the chemical interaction of isoprene with sulfoxy radical-anions in the water solution in the presence of nitrite ions and nitrous acid, which are important trace components of the atmosphere. We showed that nitrite ions and nitrous acid significantly altered the kinetics of the auto-oxidation of SO2 in the presence of isoprene at different solution acidity from 2 to 8

  17. Aerosols from biomass combustion. Particle formation, relevance on air quality, and measures for particle reduction

    International Nuclear Information System (INIS)

    Nussbaumer, Thomas

    2005-01-01

    Biomass combustion is a relevant source of particle emissions. In Switzerland, wood combustion contributes with 2% to the energy supply but with more than 4% to Particulate Matter smaller 10 microns (PM 10) in the ambient air. In areas with high density of residential wood heating (e.g. in the south of Chile), wood particles are the dominant source of PM 10 resulting in heavy local smog situations. Since combustion particles are regarded as health relevant and since immission limit values on PM 10 are widely exceeded, measures for particle reduction from biomass combustion are of high priority. With respect to aerosols from biomass combustion, two sources of particles are distinguished: 1. an incomplete combustion can lead to soot and organic matter contained in the particles, 2. ash constituents in the fuel lead to the formation of inorganic fly ash particles mainly consisting of salts such as chlorides and oxides. The theory of aerosol formation from fuel constituents is described and two hypotheses to reduce inorganic particles from biomass combustion are proposed: 1. a reduced oxygen content in the solid fuel conversion zone (glow bed in a fixed bed combustion) is assumed to reduce the particle mass concentration due to three mechanisms: a) reduced oxidation of fuel constituents to compounds with higher volatility, b) reduced local temperature for solid fuel conversion, c) a reduced entrainmed of fuel constituents 2. a reduced total excess air can reduce the particle number due to enhanced coagulation. The proposed low-particle concept has been implemented for an automatic furnace for wood pellets in the size range from 100 kW to 500 kW. Furthermore, the furnace design was optimised to enable a part load operation without increased emissions of carbon monoxide (CO) and particles. In a 100 kW prototype furnace the low-particle conditions resulted in particle emissions between 6 mg/m n 3 to 11 mg/m n 3 at 13 vol.-% O2 and CO emissions below 70 mg/m n 3 in the

  18. Influence of cosmic radiation on aerosol and cloud formation over short time periods

    DEFF Research Database (Denmark)

    Bondo, Torsten

    in the atmosphere affect aerosol and cloud creation and whether it is realistic to observe Forbush decrease events in climate data. The thesis involves a theoretical examination of the ionization caused by Forbush decreases based on studies of hourly neutron monitor data and muon telescope data as proxies...... distribution of stable nucleated clusters, the model takes condensation and coagulation into account and includes various loss mechanisms. This model is used to investigate the growth of aerosols into cloud condensation nuclei size particles and to study the influence of nucleation rates and background vapour...... resolution satellite data and aerosol ground based measurements are presented. Here it is observed that significant decreases in the angstrom exponent from AERONET aerosols and cloud liquid water from satellites take place after the largest Forbush decreases. The timescales of this indicate...

  19. Secondary organic aerosol formation from fossil fuel sources contribute majority of summertime organic mass at Bakersfield

    Science.gov (United States)

    Secondary organic aerosols (SOA), known to form in the atmosphere from oxidation of volatile organic compounds (VOCs) emitted by anthropogenic and biogenic sources, are a poorly understood but substantial component of atmospheric particles. In this study, we examined the chemic...

  20. Laboratory Experiments and Modeling for Interpreting Field Studies of Secondary Organic Aerosol Formation Using an Oxidation Flow Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Jose-Luis [Univ. of Colorado, Boulder, CO (United States)

    2016-02-01

    This grant was originally funded for deployment of a suite of aerosol instrumentation by our group in collaboration with other research groups and DOE/ARM to the Ganges Valley in India (GVAX) to study aerosols sources and processing. Much of the first year of this grant was focused on preparations for GVAX. That campaign was cancelled due to political reasons and with the consultation with our program manager, the research of this grant was refocused to study the applications of oxidation flow reactors (OFRs) for investigating secondary organic aerosol (SOA) formation and organic aerosol (OA) processing in the field and laboratory through a series of laboratory and modeling studies. We developed a gas-phase photochemical model of an OFR which was used to 1) explore the sensitivities of key output variables (e.g., OH exposure, O3, HO2/OH) to controlling factors (e.g., water vapor, external reactivity, UV irradiation), 2) develop simplified OH exposure estimation equations, 3) investigate under what conditions non-OH chemistry may be important, and 4) help guide design of future experiments to avoid conditions with undesired chemistry for a wide range of conditions applicable to the ambient, laboratory, and source studies. Uncertainties in the model were quantified and modeled OH exposure was compared to tracer decay measurements of OH exposure in the lab and field. Laboratory studies using OFRs were conducted to explore aerosol yields and composition from anthropogenic and biogenic VOC as well as crude oil evaporates. Various aspects of the modeling and laboratory results and tools were applied to interpretation of ambient and source measurements using OFR. Additionally, novel measurement methods were used to study gas/particle partitioning. The research conducted was highly successful and details of the key results are summarized in this report through narrative text, figures, and a complete list of publications acknowledging this grant.

  1. Time-resolved analysis of primary volatile emissions and secondary aerosol formation potential from a small-scale pellet boiler

    Science.gov (United States)

    Czech, Hendryk; Pieber, Simone M.; Tiitta, Petri; Sippula, Olli; Kortelainen, Miika; Lamberg, Heikki; Grigonyte, Julija; Streibel, Thorsten; Prévôt, André S. H.; Jokiniemi, Jorma; Zimmermann, Ralf

    2017-06-01

    Small-scale pellet boilers and stoves became popular as a wood combustion appliance for domestic heating in Europe, North America and Asia due to economic and environmental aspects. Therefore, an increasing contribution of pellet boilers to air pollution is expected despite their general high combustion efficiency. As emissions of primary organic aerosol (POA) and permanent gases of pellet boilers are well investigated, the scope of this study was to investigate the volatile organic emissions and the formation potential of secondary aerosols for this type of appliance. Fresh and aged emissions were analysed by a soot-particle aerosol time-of-flight mass spectrometry (SP-AMS) and the molecular composition of the volatile precursors with single-photon ionisation time-of-flight mass spectrometry (SPI-TOFMS) at different pellet boiler operation conditions. Organic emissions in the gas phase were dominated by unsaturated hydrocarbons while wood-specific VOCs, e.g. phenolic species or substituted furans, were only detected during the starting phase. Furthermore, organic emissions in the gas phase were found to correlate with fuel grade and combustion technology in terms of secondary air supply. Secondary organic aerosols of optimised pellet boiler conditions (OPT, state-of-the-art combustion appliance) and reduced secondary air supply (RSA, used as a proxy for pellet boilers of older type) were studied by simulating atmospheric ageing in a Potential Aerosol Mass (PAM) flow reactor. Different increases in OA mass (55% for OPT, 102% for RSA), associated with higher average carbon oxidation state and O:C, could be observed in a PAM chamber experiment. Finally, it was found that derived SOA yields and emission factors were distinctly lower than reported for log wood stoves.

  2. Diurnally resolved particulate and VOC measurements at a rural site: indication of significant biogenic secondary organic aerosol formation

    Science.gov (United States)

    Sjostedt, S. J.; Slowik, J. G.; Brook, J. R.; Chang, R. Y.-W.; Mihele, C.; Stroud, C. A.; Vlasenko, A.; Abbatt, J. P. D.

    2011-06-01

    We report simultaneous measurements of volatile organic compound (VOC) mixing ratios including C6 to C8 aromatics, isoprene, monoterpenes, acetone and organic aerosol mass loadings at a rural location in southwestern Ontario, Canada by Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) and Aerosol Mass Spectrometry (AMS), respectively. During the three-week-long Border Air Quality and Meteorology Study in June-July 2007, air was sampled from a range of sources, including aged air from the polluted US Midwest, direct outflow from Detroit 50 km away, and clean air with higher biogenic input. After normalization to the diurnal profile of CO, a long-lived tracer, diurnal analyses show clear photochemical loss of reactive aromatics and production of oxygenated VOCs and secondary organic aerosol (SOA) during the daytime. Biogenic VOC mixing ratios increase during the daytime in accord with their light- and temperature-dependent sources. Long-lived species, such as hydrocarbon-like organic aerosol and benzene show little to no photochemical reactivity on this timescale. From the normalized diurnal profiles of VOCs, an estimate of OH concentrations during the daytime, measured O3 concentrations, and laboratory SOA yields, we calculate integrated local organic aerosol production amounts associated with each measured SOA precursor. Under the assumption that biogenic precursors are uniformly distributed across the southwestern Ontario location, we conclude that such precursors contribute significantly to the total amount of SOA formation, even during the period of Detroit outflow. The importance of aromatic precursors is more difficult to assess given that their sources are likely to be localized and thus of variable impact at the sampling location.

  3. Quantification of Release of Critical Elements, Formation of Fly Ash and Aerosols: Status on Current Understanding and Research Needs

    DEFF Research Database (Denmark)

    Jappe Frandsen, Flemming

    2017-01-01

    Deposit formation in utility boilers occurs via a number of consecutive steps; 1) release of critical elements like K, Na, Pb, Zn, S and Cl, 2) formation of gaseous species, fly ash and aerosols, 3) transport and adhesion of ash species, 4) deposit build-up and consolidation, and, finally, 5...... formation (slagging and fouling) on superheater tubes, leading to a potential reduction in heat transfer efficiency to the water/steam cycle, or, to chemical attack (corrosion) or physical wear (erosion) of superheater tubes. These problems may give rise to irregular operation, or even costly shutdowns...... of combustion units.Through several years, high quality research has been conducted on characterization of fuels, ashes and deposit formation in utility boilers fired with coal, biomass and waste fractions. Huge amounts of experimental data have been reported, from such work, but the fact...

  4. Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation

    Directory of Open Access Journals (Sweden)

    D. V. Spracklen

    2010-05-01

    Full Text Available We synthesised observations of total particle number (CN concentration from 36 sites around the world. We found that annual mean CN concentrations are typically 300–2000 cm−3 in the marine boundary layer and free troposphere (FT and 1000–10 000 cm−3 in the continental boundary layer (BL. Many sites exhibit pronounced seasonality with summer time concentrations a factor of 2–10 greater than wintertime concentrations. We used these CN observations to evaluate primary and secondary sources of particle number in a global aerosol microphysics model. We found that emissions of primary particles can reasonably reproduce the spatial pattern of observed CN concentration (R2=0.46 but fail to explain the observed seasonal cycle (R2=0.1. The modeled CN concentration in the FT was biased low (normalised mean bias, NMB=−88% unless a secondary source of particles was included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=−25%. Simulated CN concentrations in the continental BL were also biased low (NMB=−74% unless the number emission of anthropogenic primary particles was increased or a mechanism that results in particle formation in the BL was included. We ran a number of simulations where we included an empirical BL nucleation mechanism either using the activation-type mechanism (nucleation rate, J, proportional to gas-phase sulfuric acid concentration to the power one or kinetic-type mechanism (J proportional to sulfuric acid to the power two with a range of nucleation coefficients. We found that the seasonal CN cycle observed at continental BL sites was better simulated by BL particle formation (R2=0.3 than by increasing the number emission from primary anthropogenic sources (R2=0.18. The nucleation constants that resulted in best overall match between model and observed CN concentrations were

  5. Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation

    Science.gov (United States)

    Spracklen, D. V.; Carslaw, K. S.; Merikanto, J.; Mann, G. W.; Reddington, C. L.; Pickering, S.; Ogren, J. A.; Andrews, E.; Baltensperger, U.; Weingartner, E.; Boy, M.; Kulmala, M.; Laakso, L.; Lihavainen, H.; Kivekäs, N.; Komppula, M.; Mihalopoulos, N.; Kouvarakis, G.; Jennings, S. G.; O'Dowd, C.; Birmili, W.; Wiedensohler, A.; Weller, R.; Gras, J.; Laj, P.; Sellegri, K.; Bonn, B.; Krejci, R.; Laaksonen, A.; Hamed, A.; Minikin, A.; Harrison, R. M.; Talbot, R.; Sun, J.

    2010-05-01

    We synthesised observations of total particle number (CN) concentration from 36 sites around the world. We found that annual mean CN concentrations are typically 300-2000 cm-3 in the marine boundary layer and free troposphere (FT) and 1000-10 000 cm-3 in the continental boundary layer (BL). Many sites exhibit pronounced seasonality with summer time concentrations a factor of 2-10 greater than wintertime concentrations. We used these CN observations to evaluate primary and secondary sources of particle number in a global aerosol microphysics model. We found that emissions of primary particles can reasonably reproduce the spatial pattern of observed CN concentration (R2=0.46) but fail to explain the observed seasonal cycle (R2=0.1). The modeled CN concentration in the FT was biased low (normalised mean bias, NMB=-88%) unless a secondary source of particles was included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=-25%). Simulated CN concentrations in the continental BL were also biased low (NMB=-74%) unless the number emission of anthropogenic primary particles was increased or a mechanism that results in particle formation in the BL was included. We ran a number of simulations where we included an empirical BL nucleation mechanism either using the activation-type mechanism (nucleation rate, J, proportional to gas-phase sulfuric acid concentration to the power one) or kinetic-type mechanism (J proportional to sulfuric acid to the power two) with a range of nucleation coefficients. We found that the seasonal CN cycle observed at continental BL sites was better simulated by BL particle formation (R2=0.3) than by increasing the number emission from primary anthropogenic sources (R2=0.18). The nucleation constants that resulted in best overall match between model and observed CN concentrations were consistent with values derived in previous studies from detailed case studies at individual sites. In our model, kinetic and activation

  6. Simulating the formation of carbonaceous aerosol in a European Megacity (Paris during the MEGAPOLI summer and winter campaigns

    Directory of Open Access Journals (Sweden)

    C. Fountoukis

    2016-03-01

    Full Text Available We use a three-dimensional regional chemical transport model (PMCAMx with high grid resolution and high-resolution emissions (4 × 4 km2 over the Paris greater area to simulate the formation of carbonaceous aerosol during a summer (July 2009 and a winter (January/February 2010 period as part of the MEGAPOLI (megacities: emissions, urban, regional, and global atmospheric pollution and climate effects, and Integrated tools for assessment and mitigation campaigns. Model predictions of carbonaceous aerosol are compared against Aerodyne aerosol mass spectrometer and black carbon (BC high time resolution measurements from three ground sites. PMCAMx predicts BC concentrations reasonably well reproducing the majority (70 % of the hourly data within a factor of two during both periods. The agreement for the summertime secondary organic aerosol (OA concentrations is also encouraging (mean bias = 0.1 µg m−3 during a photochemically intense period. The model tends to underpredict the summertime primary OA concentrations in the Paris greater area (by approximately 0.8 µg m−3 mainly due to missing primary OA emissions from cooking activities. The total cooking emissions are estimated to be approximately 80 mg d−1 per capita and have a distinct diurnal profile in which 50 % of the daily cooking OA is emitted during lunch time (12:00–14:00 LT and 20 % during dinner time (20:00–22:00 LT. Results also show a large underestimation of secondary OA in the Paris greater area during wintertime (mean bias =  −2.3 µg m−3 pointing towards a secondary OA formation process during low photochemical activity periods that is not simulated in the model.

  7. Simulating the formation of carbonaceous aerosol in a European Megacity (Paris) during the MEGAPOLI summer and winter campaigns

    Science.gov (United States)

    Fountoukis, Christos; Megaritis, Athanasios G.; Skyllakou, Ksakousti; Charalampidis, Panagiotis E.; Denier van der Gon, Hugo A. C.; Crippa, Monica; Prévôt, André S. H.; Fachinger, Friederike; Wiedensohler, Alfred; Pilinis, Christodoulos; Pandis, Spyros N.

    2016-03-01

    We use a three-dimensional regional chemical transport model (PMCAMx) with high grid resolution and high-resolution emissions (4 × 4 km2) over the Paris greater area to simulate the formation of carbonaceous aerosol during a summer (July 2009) and a winter (January/February 2010) period as part of the MEGAPOLI (megacities: emissions, urban, regional, and global atmospheric pollution and climate effects, and Integrated tools for assessment and mitigation) campaigns. Model predictions of carbonaceous aerosol are compared against Aerodyne aerosol mass spectrometer and black carbon (BC) high time resolution measurements from three ground sites. PMCAMx predicts BC concentrations reasonably well reproducing the majority (70 %) of the hourly data within a factor of two during both periods. The agreement for the summertime secondary organic aerosol (OA) concentrations is also encouraging (mean bias = 0.1 µg m-3) during a photochemically intense period. The model tends to underpredict the summertime primary OA concentrations in the Paris greater area (by approximately 0.8 µg m-3) mainly due to missing primary OA emissions from cooking activities. The total cooking emissions are estimated to be approximately 80 mg d-1 per capita and have a distinct diurnal profile in which 50 % of the daily cooking OA is emitted during lunch time (12:00-14:00 LT) and 20 % during dinner time (20:00-22:00 LT). Results also show a large underestimation of secondary OA in the Paris greater area during wintertime (mean bias = -2.3 µg m-3) pointing towards a secondary OA formation process during low photochemical activity periods that is not simulated in the model.

  8. Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations

    Science.gov (United States)

    Riipinen, I.; Pierce, J. R.; Yli-Juuti, T.; Nieminen, T.; Häkkinen, S.; Ehn, M.; Junninen, H.; Lehtipalo, K.; Petäjä, T.; Slowik, J.; Chang, R.; Shantz, N. C.; Abbatt, J.; Leaitch, W. R.; Kerminen, V.-M.; Worsnop, D. R.; Pandis, S. N.; Donahue, N. M.; Kulmala, M.

    2011-04-01

    Atmospheric aerosol particles influence global climate as well as impair air quality through their effects on atmospheric visibility and human health. Ultrafine (<100 nm) particles often dominate aerosol numbers, and nucleation of atmospheric vapors is an important source of these particles. To have climatic relevance, however, the freshly nucleated particles need to grow in size. We combine observations from two continental sites (Egbert, Canada and Hyytiälä, Finland) to show that condensation of organic vapors is a crucial factor governing the lifetimes and climatic importance of the smallest atmospheric particles. We model the observed ultrafine aerosol growth with a simplified scheme approximating the condensing species as a mixture of effectively non-volatile and semi-volatile species, demonstrate that state-of-the-art organic gas-particle partitioning models fail to reproduce the observations, and propose a modeling approach that is consistent with the measurements. We find that roughly half of the mass of the condensing mass needs to be distributed proportional to the aerosol surface area (thus implying that the condensation is governed by gas-phase concentration rather than the equilibrium vapour pressure) to explain the observed aerosol growth. We demonstrate the large sensitivity of predicted number concentrations of cloud condensation nuclei (CCN) to these interactions between organic vapors and the smallest atmospheric nanoparticles - highlighting the need for representing this process in global climate models.

  9. Secondary organic aerosol formation from semi- and intermediate-volatility organic compounds and glyoxal: Relevance of O/C as a tracer for aqueous multiphase chemistry

    Science.gov (United States)

    Waxman, Eleanor M.; Dzepina, Katja; Ervens, Barbara; Lee-Taylor, Julia; Aumont, Bernard; Jimenez, Jose L.; Madronich, Sasha; Volkamer, Rainer

    2013-03-01

    The role of aqueous multiphase chemistry in the formation of secondary organic aerosol (SOA) remains difficult to quantify. We investigate it here by testing the rapid formation of moderate oxygen-to-carbon (O/C) SOA during a case study in Mexico City. A novel laboratory-based glyoxal-SOA mechanism is applied to the field data, and explains why less gas-phase glyoxal mass is observed than predicted. Furthermore, we compare an explicit gas-phase chemical mechanism for SOA formation from semi- and intermediate-volatility organic compounds (S/IVOCs) with empirical parameterizations of S/IVOC aging. The mechanism representing our current understanding of chemical kinetics of S/IVOC oxidation combined with traditional SOA sources and mixing of background SOA underestimates the observed O/C by a factor of two at noon. Inclusion of glyoxal-SOA with O/C of 1.5 brings O/C predictions within measurement uncertainty, suggesting that field observations can be reconciled on reasonable time scales using laboratory-based empirical relationships for aqueous chemistry.

  10. Organic condensation - a vital link connecting aerosol formation to climate forcing

    Science.gov (United States)

    Riipinen, I.; Pierce, J. R.; Yli-Juuti, T.; Nieminen, T.; Häkkinen, S.; Ehn, M.; Junninen, H.; Lehtipalo, K.; Petäjä, T.; Slowik, J.; Chang, R.; Shantz, N. C.; Abbatt, J.; Leaitch, W. R.; Kerminen, V.-M.; Worsnop, D. R.; Pandis, S. N.; Donahue, N. M.; Kulmala, M.

    2011-01-01

    Atmospheric aerosol particles influence global climate as well as impair air quality through their effects on atmospheric visibility and human health. Ultrafine (<100 nm) particles often dominate aerosol numbers, and nucleation of atmospheric vapors is an important source of these particles. To have climatic relevance, however, the freshly-nucleated particles need to grow in size. We combine observations from two continental sites (Egbert, Canada and Hyytiälä, Finland) to show that condensation of organic vapors is a crucial factor governing the lifetimes and climatic importance of the smallest atmospheric particles. We demonstrate that state-of-the-science organic gas-particle partitioning models fail to reproduce the observations, and propose a modeling approach that is consistent with the measurements. We demonstrate the large sensitivity of climatic forcing of atmospheric aerosols to these interactions between organic vapors and the smallest atmospheric nanoparticles - highlighting the need for representing this process in global climate models.

  11. Effects of Solvent and Temperature on Free Radical Formation in Electronic Cigarette Aerosols.

    Science.gov (United States)

    Bitzer, Zachary T; Goel, Reema; Reilly, Samantha M; Foulds, Jonathan; Muscat, Joshua; Elias, Ryan J; Richie, John P

    2018-01-16

    The ever-evolving market of electronic cigarettes (e-cigarettes) presents a challenge for analyzing and characterizing the harmful products they can produce. Earlier we reported that e-cigarette aerosols can deliver high levels of reactive free radicals; however, there are few data characterizing the production of these potentially harmful oxidants. Thus, we have performed a detailed analysis of the different parameters affecting the production of free radical by e-cigarettes. Using a temperature-controlled e-cigarette device and a novel mechanism for reliably simulating e-cigarette usage conditions, including coil activation and puff flow, we analyzed the effects of temperature, wattage, and e-liquid solvent composition of propylene glycol (PG) and glycerol (GLY) on radical production. Free radicals in e-cigarette aerosols were spin-trapped and analyzed using electron paramagnetic resonance. Free radical production increased in a temperature-dependent manner, showing a nearly 2-fold increase between 100 and 300 °C under constant-temperature conditions. Free radical production under constant wattage showed an even greater increase when going from 10 to 50 W due, in part, to higher coil temperatures compared to constant-temperature conditions. The e-liquid PG content also heavily influenced free radical production, showing a nearly 3-fold increase upon comparison of ratios of 0:100 (PG:GLY) and 100:0 (PG:GLY). Increases in PG content were also associated with increases in aerosol-induced oxidation of biologically relevant lipids. These results demonstrate that the production of reactive free radicals in e-cigarette aerosols is highly solvent dependent and increases with an increase in temperature. Radical production was somewhat dependent on aerosol production at higher temperatures; however, disproportionately high levels of free radicals were observed at ≥100 °C despite limited aerosol production. Overall, these findings suggest that e-cigarettes can be

  12. Influence of Intense secondary aerosol formation and long range transport on aerosol chemistry and properties in the Seoul Metropolitan Area during spring time: Results from KORUS-AQ

    Science.gov (United States)

    Kim, H.; Zhang, Q.

    2017-12-01

    Non-refractory submicrometer particulate matter (NR-PM1) was measured in the Seoul Metropolitan Area (SMA), Korea, using an HR-ToF-AMS from April 14 to June 15, 2016, as a part of the KORUS-AQ campaign. The average concentration of PM1 was 22.1 µg m-3, which was composed of 44% organics, 20% SO4, 17% NO3, and 12 % NH4. Organics had an average O/C ratio of 0.49 and an average OM/OC ratio of 1.82. Four distinct sources of OA were identified via PMF analysis of the HR-ToF-AMS data: hydrocarbon like OA (HOA), cooking OA (COA),semi-volatile oxygenated OA (SV-OOA) and a low volatility oxygenated OA (LV-OOA). Our results indicate that air quality in SMA during KORUS-AQ was influenced strongly by secondary aerosol formation with SO4, NO3, NH4, SV-OOA, and LV-OOA together accounting for 76% of the PM1 mass. Due to high temperature and elevated ozone concentrations, photochemical reactions during daytime promoted the formation of SV-OOA, LV-OOA and SO4. In addition, aqueous-phase or heterogeneous reactions likely promoted efficient formation of NO3 whereas gas-to-particle partitioning processes appeared to have enhanced nighttime SV-OOA and NO3 formation. From May 20 to May 23, LV-OOA was significantly enhanced and accounted for up to 41% of the PM1 mass. Since this intense LV-OOA formation event was associated with large enhancement of VOCs, high concentration of Ox , strong solar radiation, and stagnant conditions, it appeared to be related to local photochemical formation. We also have investigated the formation and evolution mechanisms of severe haze episodes. Unlike the cases observed in winter when haze episodes were mainly caused by intense local emissions coupled with stagnant meteorological conditions, the spring haze events observed in this study appeared to be attributed by both regional and local factors. For example, episodes of long range transport of plumes were followed by calm meteorology conditions, which promoted the formation and accumulation of local

  13. Dust plume formation in the free troposphere and aerosol size distribution during the Saharan Mineral Dust Experiment in North Africa

    KAUST Repository

    Khan, Basit Ali

    2015-11-27

    Dust particles mixed in the free troposphere have longer lifetimes than airborne particles near the surface. Their cumulative radiative impact on earth’s meteorological processes and climate might be significant despite their relatively small contribution to total dust abundance. One example is the elevated dust-laden Saharan Air Layer (SAL) over the tropical and subtropical North Atlantic, which cools the sea surface. To understand the formation mechanisms of a dust layer in the free troposphere, this study combines model simulations and dust observations collected during the first stage of the Saharan Mineral Dust Experiment (SAMUM-I), which sampled dust events that extended from Morocco to Portugal, and investigated the spatial distribution and the microphysical, optical, chemical, and radiative properties of Saharan mineral dust. The Weather Research Forecast model coupled with the Chemistry/Aerosol module (WRF-Chem) is employed to reproduce the meteorological environment and spatial and size distributions of dust. The model domain covers northwest Africa and adjacent water with 5 km horizontal grid spacing and 51 vertical layers. The experiments were run from 20 May to 9 June 2006, covering the period of the most intensive dust outbreaks. Comparisons of model results with available airborne and ground-based observations show that WRF-Chem reproduces observed meteorological fields as well as aerosol distribution across the entire region and along the airplane’s tracks. Several mechanisms that cause aerosol entrainment into the free troposphere are evaluated and it is found that orographic lifting, and interaction of sea breeze with the continental outflow are key mechanisms that form a surface-detached aerosol plume over the ocean. The model dust emission scheme is tuned to simultaneously fit the observed total optical depth and the ratio of aerosol optical depths generated by fine and coarse dust modes. Comparisons of simulated dust size distributions with

  14. Dust plume formation in the free troposphere and aerosol size distribution during the Saharan Mineral Dust Experiment in North Africa

    Directory of Open Access Journals (Sweden)

    Basit Khan

    2015-11-01

    Full Text Available Dust particles mixed in the free troposphere have longer lifetimes than airborne particles near the surface. Their cumulative radiative impact on earth's meteorological processes and climate might be significant despite their relatively small contribution to total dust abundance. One example is the elevated dust-laden Saharan Air Layer (SAL over the tropical and subtropical North Atlantic, which cools the sea surface. To understand the formation mechanisms of a dust layer in the free troposphere, this study combines model simulations and dust observations collected during the first stage of the Saharan Mineral Dust Experiment (SAMUM-I, which sampled dust events that extended from Morocco to Portugal, and investigated the spatial distribution and the microphysical, optical, chemical, and radiative properties of Saharan mineral dust. The Weather Research Forecast model coupled with the Chemistry/Aerosol module (WRF-Chem is employed to reproduce the meteorological environment and spatial and size distributions of dust. The model domain covers northwest Africa and adjacent water with 5 km horizontal grid spacing and 51 vertical layers. The experiments were run from 20 May to 9 June 2006, covering the period of the most intensive dust outbreaks. Comparisons of model results with available airborne and ground-based observations show that WRF-Chem reproduces observed meteorological fields as well as aerosol distribution across the entire region and along the airplane's tracks. Several mechanisms that cause aerosol entrainment into the free troposphere are evaluated and it is found that orographic lifting, and interaction of sea breeze with the continental outflow are key mechanisms that form a surface-detached aerosol plume over the ocean. The model dust emission scheme is tuned to simultaneously fit the observed total optical depth and the ratio of aerosol optical depths generated by fine and coarse dust modes. Comparisons of simulated dust size

  15. Hydrolysis of glyoxal in water-restricted environments: formation of organic aerosol precursors through formic acid catalysis.

    Science.gov (United States)

    Hazra, Montu K; Francisco, Joseph S; Sinha, Amitabha

    2014-06-12

    The hydrolysis of glyoxal involving one to three water molecules and also in the presence of a water molecule and formic acid has been investigated. Our results show that glyoxal-diol is the major product of the hydrolysis and that formic acid, through its ability to facilitate intermolecular hydrogen atom transfer, is considerably more efficient than water as a catalyst in the hydrolysis process. Additionally, once the glyoxal-diol is formed, the barrier for further hydrolysis to form the glyoxal-tetrol is effectively reduced to zero in the presence of a single water and formic acid molecule. There are two important implications arising from these findings. First, the results suggest that under the catalytic influence of formic acid, glyoxal hydrolysis can impact the growth of atmospheric aerosols. As a result of enhanced hydrogen bonding, mediated through their polar OH functional groups, the diol and tetrol products are expected to have significantly lower vapor pressure than the parent glyoxal molecule; hence they can more readily partition into the particle phase and contribute to the growth of secondary organic aerosols. In addition, our findings provide insight into how glyoxal-diol and glyoxal-tetrol might be formed under atmospheric conditions associated with water-restricted environments and strongly suggest that the formation of these precursors for secondary organic aerosol growth is not likely restricted solely to the bulk aqueous phase as is currently assumed.

  16. Formation and toxicological effect of secondary organic aerosols%二次有机气溶胶的形成及其毒理效应

    Institute of Scientific and Technical Information of China (English)

    曹军骥; 李建军

    2016-01-01

    Background, aim, and scope Along with the rapid development of Chinese economy, pollutants derived from increasing usage of fossil fuels and biofuels, as well as emissions from waste incineration and dust have been causing serious air pollution problems in many areas of China. Particular matter (PM), especially anthropogenic aerosols, emitted from various sources may alter regional atmospheric stability, and are of significant impact on climate change and human health. Comparing with PM10 (aerodynamic diameter≤10 μm), ifne particle (PM2.5, aerodynamic diameter≤2.5 μm) do more damage to human health. Organic matter (OM), an important chemical composition of ifne particle, takes 20%—90% of the ifne particles, has a signiifcant impact on air pollution and haze event which is happening in China, and has become a frontier of atmospheric chemistry research area. Consisting with many toxic compounds, such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organic amines and so on, organic aerosol is harmful for human health. Many in-vitro and in-vito studies of biological toxicity were focused on the primary particulate matters emitted directly from the pollution sources, however, attention for the formation and toxicity of secondary organic aerosols (SOA) are really scarce and therefore urgent.Materials and methods Taking PAHs, amines, and biogenic terpenes as examples, in order to improve the understanding on health damage of SOA pollution, this article brielfy reviewed the formation and bio-toxicity effects of speciifc group of SOA, and focused on the rising toxicity of the products comparing with their parent compounds.Results (1) Polycyclic aromatic hydrocarbons (PAHs). Because of the mutagenic, teratogenic and carcinogenic properties, PAHs has focused a great deal of attention from scientiifc researchers and is considered as one of the most important organic pollutants in the atmosphere. Parent PAHs in the aerosols can undergo a

  17. Effects of NOx and SO2 on the secondary organic aerosol formation from photooxidation of α-pinene and limonene

    Science.gov (United States)

    Zhao, Defeng; Schmitt, Sebastian H.; Wang, Mingjin; Acir, Ismail-Hakki; Tillmann, Ralf; Tan, Zhaofeng; Novelli, Anna; Fuchs, Hendrik; Pullinen, Iida; Wegener, Robert; Rohrer, Franz; Wildt, Jürgen; Kiendler-Scharr, Astrid; Wahner, Andreas; Mentel, Thomas F.

    2018-02-01

    Anthropogenic emissions such as NOx and SO2 influence the biogenic secondary organic aerosol (SOA) formation, but detailed mechanisms and effects are still elusive. We studied the effects of NOx and SO2 on the SOA formation from the photooxidation of α-pinene and limonene at ambient relevant NOx and SO2 concentrations (NOx: leading to a lack of particle surface for the organics to condense on and thus a significant influence of vapor wall loss on SOA mass yield. By compensating for the suppressing effect on nucleation of NOx, SO2 also compensated for the suppressing effect on SOA yield. Aerosol mass spectrometer data show that increasing NOx enhanced nitrate formation. The majority of the nitrate was organic nitrate (57-77 %), even in low-NOx conditions (nitrate contributed 7-26 % of total organics assuming a molecular weight of 200 g mol-1. SOA from α-pinene photooxidation at high NOx had a generally lower hydrogen to carbon ratio (H / C), compared to low NOx. The NOx dependence of the chemical composition can be attributed to the NOx dependence of the branching ratio of the RO2 loss reactions, leading to a lower fraction of organic hydroperoxides and higher fractions of organic nitrates at high NOx. While NOx suppressed new particle formation and SOA mass formation, SO2 can compensate for such effects, and the combining effect of SO2 and NOx may have an important influence on SOA formation affected by interactions of biogenic volatile organic compounds (VOCs) with anthropogenic emissions.

  18. Films of Agarose Enable Rapid Formation of Giant Liposomes in Solutions of Physiologic Ionic Strength

    OpenAIRE

    Horger, Kim S.; Estes, Daniel J.; Capone, Ricardo; Mayer, Michael

    2009-01-01

    This paper describes a method to form giant liposomes in solutions of physiologic ionic strength, such as phosphate buffered saline (PBS) or 150 mM KCl. Formation of these cell-sized liposomes proceeded from hybrid films of partially dried agarose and lipids. Hydrating the films of agarose and lipids in aqueous salt solutions resulted in swelling and partial dissolution of the hybrid films and in concomitant rapid formation of giant liposomes in high yield. This method did not require the pre...

  19. Application of the characteristics-based sectional method to spatially varying aerosol formation and transport

    NARCIS (Netherlands)

    Frederix, E.M.A.; Kuczaj, A.K.; Nordlund, M.; Veldman, A.E.P.; Geurts, B.J.

    The characteristics-based ssolution. It is easy to verify thatectional method (CBSM) offers an Eulerian description of an internally mixed aerosol. It was shown to be robust and capable of exact preservation of lower order moments, allowing for highly skewed sectional droplet size distributions. In

  20. Characterization of Halyomorpha halys (brown marmorated stink bug) biogenic volatile organic compound emissions and their role in secondary organic aerosol formation.

    Science.gov (United States)

    Solomon, Danielle; Dutcher, Dabrina; Raymond, Timothy

    2013-11-01

    The formation of aerosols is a key component in understanding cloud formation in the context of radiative forcings and global climate modeling. Biogenic volatile organic compounds (BVOCs) are a significant source of aerosols, yet there is still much to be learned about their structures, sources, and interactions. The aims of this project were to identify the BVOCs found in the defense chemicals of the brown marmorated stink bug Halymorpha halys and quantify them using gas chromatography-mass spectrometry (GC/MS) and test whether oxidation of these compounds by ozone-promoted aerosol and cloud seed formation. The bugs were tested under two conditions: agitation by asphyxiation and direct glandular exposure. Tridecane, 2(5H)-furanone 5-ethyl, and (E)-2-decenal were identified as the three most abundant compounds. H. halys were also tested in the agitated condition in a smog chamber. It was found that in the presence of 100-180 ppm ozone, secondary aerosols do form. A scanning mobility particle sizer (SMPS) and a cloud condensation nuclei counter (CCNC) were used to characterize the secondary aerosols that formed. This reaction resulted in 0.23 microg/ bug of particulate mass. It was also found that these secondary organic aerosol particles could act as cloud condensation nuclei. At a supersaturation of 1%, we found a kappa value of 0.09. Once regional populations of these stink bugs stablilize and the populations estimates can be made, the additional impacts of their contribution to regional air quality can be calculated.

  1. Class Size Reduction or Rapid Formative Assessment?: A Comparison of Cost-Effectiveness

    Science.gov (United States)

    Yeh, Stuart S.

    2009-01-01

    The cost-effectiveness of class size reduction (CSR) was compared with the cost-effectiveness of rapid formative assessment, a promising alternative for raising student achievement. Drawing upon existing meta-analyses of the effects of student-teacher ratio, evaluations of CSR in Tennessee, California, and Wisconsin, and RAND cost estimates, CSR…

  2. Rapid and sensitive detection of Pseudomonas aeruginosa in chlorinated water and aerosols targeting gyrB gene using real-time PCR.

    Science.gov (United States)

    Lee, C S; Wetzel, K; Buckley, T; Wozniak, D; Lee, J

    2011-10-01

    For the rapid detection of Pseudomonas aeruginosa from chlorinated water and aerosols, gyrB gene-based real-time PCR assay was developed and investigated. Two novel primer sets (pa722F/746MGB/899R and pa722F/746MGB/788R) were designed using the most updated 611 Pseudomonas and 748 other bacterial gyrB genes for achieving high specificity. Their specificity showed 100% accuracy when tested with various strains including clinical isolates from cystic fibrosis patients. The assay was tested with Ps. aeruginosa-containing chlorinated water and aerosols to simulate the waterborne and airborne transmission routes (detection limit 3·3 × 10² CFU per PCR-2·3 × 10³ CFU per PCR). No chlorine interference in real-time PCR was observed at drinking water level (c. 1 mg l⁻¹), but high level of chorine (12 mg l⁻¹) interfered the assay, and thus neutralization was needed. Pseudomonas aeruginosa in aerosol was successfully detected after capturing with gelatin filters with minimum 2 min of sampling time when the initial concentration of 10⁴ CFU ml⁻¹ bacteria existed in the nebulizer. A highly specific and rapid assay (2-3 h) was developed by targeting gyrB gene for the detection of Ps. aeruginosa in chlorinated water and aerosols, combined with optimized sample collection methods and sample processing, so the direct DNA extraction from either water or aerosol was possible while achieving the desired sensitivity of the method.   The new assay can provide timely and accurate risk assessment to prevent Ps. aeruginosa exposure from water and aerosol, resulting in reduced disease burden, especially among immune-compromised and susceptible individuals. This approach can be easily utilized as a platform technology for the detection of other types of micro-organisms, especially for those that are transmitted via water and aerosol routes, such as Legionella pneumophila. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  3. Key Role of Nitrate in Phase Transitions of Urban Particles: Implications of Important Reactive Surfaces for Secondary Aerosol Formation

    Science.gov (United States)

    Sun, Jiaxing; Liu, Lei; Xu, Liang; Wang, Yuanyuan; Wu, Zhijun; Hu, Min; Shi, Zongbo; Li, Yongjie; Zhang, Xiaoye; Chen, Jianmin; Li, Weijun

    2018-01-01

    Ammonium sulfate (AS) and ammonium nitrate (AN) are key components of urban fine particles. Both field and model studies showed that heterogeneous reactions of SO2, NO2, and NH3 on wet aerosols accelerated the haze formation in northern China. However, little is known on phase transitions of AS-AN containing haze particles. Here hygroscopic properties of laboratory-generated AS-AN particles and individual particles collected during haze events in an urban site were investigated using an individual particle hygroscopicity system. AS-AN particles showed a two-stage deliquescence at mutual deliquescence relative humidity (MDRH) and full deliquescence relative humidity (DRH) and three physical states: solid before MDRH, solid-aqueous between MDRH and DRH, and aqueous after DRH. During hydration, urban haze particles displayed a solid core and aqueous shell at RH = 60-80% and aqueous phase at RH > 80%. Most particles were in aqueous phase at RH > 50% during dehydration. Our results show that AS content in individual particles determines their DRH and AN content determines their MDRH. AN content increase can reduce MDRH, which indicates occurrence of aqueous shell at lower RH. The humidity-dependent phase transitions of nitrate-abundant urban particles are important to provide reactive surfaces of secondary aerosol formation in the polluted air.

  4. Comparison of secondary organic aerosol formation from toluene on initially wet and dry ammonium sulfate particles at moderate relative humidity

    Directory of Open Access Journals (Sweden)

    T. Liu

    2018-04-01

    Full Text Available The formation of secondary organic aerosol (SOA has been widely studied in the presence of dry seed particles at low relative humidity (RH. At higher RH, initially dry seed particles can exist as wet particles due to water uptake by the seeds as well as the SOA. Here, we investigated the formation of SOA from the photooxidation of toluene using an oxidation flow reactor in the absence of NOx under a range of OH exposures on initially wet or dry ammonium sulfate (AS seed particles at an RH of 68 %. The ratio of the SOA yield on wet AS seeds to that on dry AS seeds, the relative SOA yield, decreased from 1.31 ± 0.02 at an OH exposure of 4.66 × 1010 molecules cm−3 s to 1.01 ± 0.01 at an OH exposure of 5.28 × 1011 molecules cm−3 s. This decrease may be due to the early deliquescence of initially dry AS seeds after being coated by highly oxidized toluene-derived SOA. SOA formation lowered the deliquescence RH of AS and resulted in the uptake of water by both AS and SOA. Hence the initially dry AS seeds contained aerosol liquid water (ALW soon after SOA formed, and the SOA yield and ALW approached those of the initially wet AS seeds as OH exposure and ALW increased, especially at high OH exposure. However, a higher oxidation state of the SOA on initially wet AS seeds than that on dry AS seeds was observed at all levels of OH exposure. The difference in mass fractions of m ∕ z 29, 43 and 44 of SOA mass spectra, obtained using an aerosol mass spectrometer (AMS, indicated that SOA formed on initially wet seeds may be enriched in earlier-generation products containing carbonyl functional groups at low OH exposures and later-generation products containing acidic functional groups at high exposures. Our results suggest that inorganic dry seeds become at least partially deliquesced particles during SOA formation and hence that ALW is inevitably involved in the SOA formation at moderate RH. More laboratory

  5. Comparison of secondary organic aerosol formation from toluene on initially wet and dry ammonium sulfate particles at moderate relative humidity

    Science.gov (United States)

    Liu, Tengyu; Huang, Dan Dan; Li, Zijun; Liu, Qianyun; Chan, ManNin; Chan, Chak K.

    2018-04-01

    The formation of secondary organic aerosol (SOA) has been widely studied in the presence of dry seed particles at low relative humidity (RH). At higher RH, initially dry seed particles can exist as wet particles due to water uptake by the seeds as well as the SOA. Here, we investigated the formation of SOA from the photooxidation of toluene using an oxidation flow reactor in the absence of NOx under a range of OH exposures on initially wet or dry ammonium sulfate (AS) seed particles at an RH of 68 %. The ratio of the SOA yield on wet AS seeds to that on dry AS seeds, the relative SOA yield, decreased from 1.31 ± 0.02 at an OH exposure of 4.66 × 1010 molecules cm-3 s to 1.01 ± 0.01 at an OH exposure of 5.28 × 1011 molecules cm-3 s. This decrease may be due to the early deliquescence of initially dry AS seeds after being coated by highly oxidized toluene-derived SOA. SOA formation lowered the deliquescence RH of AS and resulted in the uptake of water by both AS and SOA. Hence the initially dry AS seeds contained aerosol liquid water (ALW) soon after SOA formed, and the SOA yield and ALW approached those of the initially wet AS seeds as OH exposure and ALW increased, especially at high OH exposure. However, a higher oxidation state of the SOA on initially wet AS seeds than that on dry AS seeds was observed at all levels of OH exposure. The difference in mass fractions of m / z 29, 43 and 44 of SOA mass spectra, obtained using an aerosol mass spectrometer (AMS), indicated that SOA formed on initially wet seeds may be enriched in earlier-generation products containing carbonyl functional groups at low OH exposures and later-generation products containing acidic functional groups at high exposures. Our results suggest that inorganic dry seeds become at least partially deliquesced particles during SOA formation and hence that ALW is inevitably involved in the SOA formation at moderate RH. More laboratory experiments conducted with a wide variety of SOA precursors

  6. Effects of NOx and SO2 on the secondary organic aerosol formation from photooxidation of α-pinene and limonene

    Directory of Open Access Journals (Sweden)

    D. Zhao

    2018-02-01

    Full Text Available Anthropogenic emissions such as NOx and SO2 influence the biogenic secondary organic aerosol (SOA formation, but detailed mechanisms and effects are still elusive. We studied the effects of NOx and SO2 on the SOA formation from the photooxidation of α-pinene and limonene at ambient relevant NOx and SO2 concentrations (NOx: < 1to 20 ppb, SO2: < 0.05 to 15 ppb. In these experiments, monoterpene oxidation was dominated by OH oxidation. We found that SO2 induced nucleation and enhanced SOA mass formation. NOx strongly suppressed not only new particle formation but also SOA mass yield. However, in the presence of SO2 which induced a high number concentration of particles after oxidation to H2SO4, the suppression of the mass yield of SOA by NOx was completely or partly compensated for. This indicates that the suppression of SOA yield by NOx was largely due to the suppressed new particle formation, leading to a lack of particle surface for the organics to condense on and thus a significant influence of vapor wall loss on SOA mass yield. By compensating for the suppressing effect on nucleation of NOx, SO2 also compensated for the suppressing effect on SOA yield. Aerosol mass spectrometer data show that increasing NOx enhanced nitrate formation. The majority of the nitrate was organic nitrate (57–77 %, even in low-NOx conditions (<  ∼  1 ppb. Organic nitrate contributed 7–26 % of total organics assuming a molecular weight of 200 g mol−1. SOA from α-pinene photooxidation at high NOx had a generally lower hydrogen to carbon ratio (H ∕ C, compared to low NOx. The NOx dependence of the chemical composition can be attributed to the NOx dependence of the branching ratio of the RO2 loss reactions, leading to a lower fraction of organic hydroperoxides and higher fractions of organic nitrates at high NOx. While NOx suppressed new particle formation and SOA mass formation, SO2 can compensate for such effects, and the

  7. Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    A. Hodzic

    2010-06-01

    Full Text Available It has been established that observed local and regional levels of secondary organic aerosols (SOA in polluted areas cannot be explained by the oxidation and partitioning of anthropogenic and biogenic VOC precursors, at least using current mechanisms and parameterizations. In this study, the 3-D regional air quality model CHIMERE is applied to estimate the potential contribution to SOA formation of recently identified semi-volatile and intermediate volatility organic precursors (S/IVOC in and around Mexico City for the MILAGRO field experiment during March 2006. The model has been updated to include explicitly the volatility distribution of primary organic aerosols (POA, their gas-particle partitioning and the gas-phase oxidation of the vapors. Two recently proposed parameterizations, those of Robinson et al. (2007 ("ROB" and Grieshop et al. (2009 ("GRI" are compared and evaluated against surface and aircraft measurements. The 3-D model results are assessed by comparing with the concentrations of OA components from Positive Matrix Factorization of Aerosol Mass Spectrometer (AMS data, and for the first time also with oxygen-to-carbon ratios derived from high-resolution AMS measurements. The results show a substantial enhancement in predicted SOA concentrations (2–4 times with respect to the previously published base case without S/IVOCs (Hodzic et al., 2009, both within and downwind of the city leading to much reduced discrepancies with the total OA measurements. Model improvements in OA predictions are associated with the better-captured SOA magnitude and diurnal variability. The predicted production from anthropogenic and biomass burning S/IVOC represents 40–60% of the total measured SOA at the surface during the day and is somewhat larger than that from commonly measured aromatic VOCs, especially at the T1 site at the edge of the city. The SOA production from the continued multi-generation S/IVOC oxidation products continues actively

  8. The Formation of Aerosol Particles during Combustion of Biomass and Waste

    DEFF Research Database (Denmark)

    Zeuthen, Frederik Jacob

    2007-01-01

    Aerosoler dannet under afbrænding af biomasse og affald består af saltpartikler med diametre under en mikrometer. Disse partikler udgør en sundhedsrisiko, da de kan trænge ned i lungevævet og videre ud i blodbanen. Partiklerne har desuden en negativ virkning i kraftværkerne, da de forårsager korr...

  9. Aerosol formation from high-velocity uranium drops: Comparison of number and mass distributions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rader, D.J.; Benson, D.A.

    1995-05-01

    This report presents the results of an experimental study of the aerosol produced by the combustion of high-velocity molten-uranium droplets produced by the simultaneous heating and electromagnetic launch of uranium wires. These tests are intended to simulate the reduction of high-velocity fragments into aerosol in high-explosive detonations or reactor accidents involving nuclear materials. As reported earlier, the resulting aerosol consists mainly of web-like chain agglomerates. A condensation nucleus counter was used to investigate the decay of the total particle concentration due to coagulation and losses. Number size distributions based on mobility equivalent diameter obtained soon after launch with a Differential Mobility Particle Sizer showed lognormal distributions with an initial count median diameter (CMD) of 0.3 {mu}m and a geometric standard deviation, {sigma}{sub g} of about 2; the CMD was found to increase and {sigma}{sub g} decrease with time due to coagulation. Mass size distributions based on aerodynamic diameter were obtained for the first time with a Microorifice Uniform Deposit Impactor, which showed lognormal distributions with mass median aerodynamic diameters of about 0.5 {mu}m and an aerodynamic geometric standard deviation of about 2. Approximate methods for converting between number and mass distributions and between mobility and aerodynamic equivalent diameters are presented.

  10. Aerosol formation from high-velocity uranium drops: Comparison of number and mass distributions. Final report

    International Nuclear Information System (INIS)

    Rader, D.J.; Benson, D.A.

    1995-05-01

    This report presents the results of an experimental study of the aerosol produced by the combustion of high-velocity molten-uranium droplets produced by the simultaneous heating and electromagnetic launch of uranium wires. These tests are intended to simulate the reduction of high-velocity fragments into aerosol in high-explosive detonations or reactor accidents involving nuclear materials. As reported earlier, the resulting aerosol consists mainly of web-like chain agglomerates. A condensation nucleus counter was used to investigate the decay of the total particle concentration due to coagulation and losses. Number size distributions based on mobility equivalent diameter obtained soon after launch with a Differential Mobility Particle Sizer showed lognormal distributions with an initial count median diameter (CMD) of 0.3 μm and a geometric standard deviation, σ g of about 2; the CMD was found to increase and σ g decrease with time due to coagulation. Mass size distributions based on aerodynamic diameter were obtained for the first time with a Microorifice Uniform Deposit Impactor, which showed lognormal distributions with mass median aerodynamic diameters of about 0.5 μm and an aerodynamic geometric standard deviation of about 2. Approximate methods for converting between number and mass distributions and between mobility and aerodynamic equivalent diameters are presented

  11. Global-scale combustion sources of organic aerosols: sensitivity to formation and removal mechanisms

    Science.gov (United States)

    Tsimpidi, Alexandra P.; Karydis, Vlassis A.; Pandis, Spyros N.; Lelieveld, Jos

    2017-06-01

    Organic compounds from combustion sources such as biomass burning and fossil fuel use are major contributors to the global atmospheric load of aerosols. We analyzed the sensitivity of model-predicted global-scale organic aerosols (OA) to parameters that control primary emissions, photochemical aging, and the scavenging efficiency of organic vapors. We used a computationally efficient module for the description of OA composition and evolution in the atmosphere (ORACLE) of the global chemistry-climate model EMAC (ECHAM/MESSy Atmospheric Chemistry). A global dataset of aerosol mass spectrometer (AMS) measurements was used to evaluate simulated primary (POA) and secondary (SOA) OA concentrations. Model results are sensitive to the emission rates of intermediate-volatility organic compounds (IVOCs) and POA. Assuming enhanced reactivity of semi-volatile organic compounds (SVOCs) and IVOCs with OH substantially improved the model performance for SOA. The use of a hybrid approach for the parameterization of the aging of IVOCs had a small effect on predicted SOA levels. The model performance improved by assuming that freshly emitted organic compounds are relatively hydrophobic and become increasingly hygroscopic due to oxidation.

  12. Herbivory by an Outbreaking Moth Increases Emissions of Biogenic Volatiles and Leads to Enhanced Secondary Organic Aerosol Formation Capacity.

    Science.gov (United States)

    Yli-Pirilä, Pasi; Copolovici, Lucian; Kännaste, Astrid; Noe, Steffen; Blande, James D; Mikkonen, Santtu; Klemola, Tero; Pulkkinen, Juha; Virtanen, Annele; Laaksonen, Ari; Joutsensaari, Jorma; Niinemets, Ülo; Holopainen, Jarmo K

    2016-11-01

    In addition to climate warming, greater herbivore pressure is anticipated to enhance the emissions of climate-relevant biogenic volatile organic compounds (VOCs) from boreal and subarctic forests and promote the formation of secondary aerosols (SOA) in the atmosphere. We evaluated the effects of Epirrita autumnata, an outbreaking geometrid moth, feeding and larval density on herbivore-induced VOC emissions from mountain birch in laboratory experiments and assessed the impact of these emissions on SOA formation via ozonolysis in chamber experiments. The results show that herbivore-induced VOC emissions were strongly dependent on larval density. Compared to controls without larval feeding, clear new particle formation by nucleation in the reaction chamber was observed, and the SOA mass loadings in the insect-infested samples were significantly higher (up to 150-fold). To our knowledge, this study provides the first controlled documentation of SOA formation from direct VOC emission of deciduous trees damaged by known defoliating herbivores and suggests that chewing damage on mountain birch foliage could significantly increase reactive VOC emissions that can importantly contribute to SOA formation in subarctic forests. Additional feeding experiments on related silver birch confirmed the SOA results. Thus, herbivory-driven volatiles are likely to play a major role in future biosphere-vegetation feedbacks such as sun-screening under daily 24 h sunshine in the subarctic.

  13. Primary emissions and secondary organic aerosol formation from the exhaust of a flex-fuel (ethanol) vehicle

    Science.gov (United States)

    Suarez-Bertoa, R.; Zardini, A. A.; Platt, S. M.; Hellebust, S.; Pieber, S. M.; El Haddad, I.; Temime-Roussel, B.; Baltensperger, U.; Marchand, N.; Prévôt, A. S. H.; Astorga, C.

    2015-09-01

    Incentives to use biofuels may result in increasing vehicular emissions of compounds detrimental to air quality. Therefore, regulated and unregulated emissions from a Euro 5a flex-fuel vehicle, tested using E85 and E75 blends (gasoline containing 85% and 75% of ethanol (vol/vol), respectively), were investigated at 22 and -7 °C over the New European Driving Cycle, at the Vehicle Emission Laboratory at the European Commission Joint Research Centre Ispra, Italy. Vehicle exhaust was comprehensively analyzed at the tailpipe and in a dilution tunnel. A fraction of the exhaust was injected into a mobile smog chamber to study the photochemical aging of the mixture. We found that emissions from a flex-fuel vehicle, fueled by E85 and E75, led to secondary organic aerosol (SOA) formation, despite the low aromatic content of these fuel blends. Emissions of regulated and unregulated compounds, as well as emissions of black carbon (BC) and primary organic aerosol (POA) and SOA formation were higher at -7 °C. The flex-fuel unregulated emissions, mainly composed of ethanol and acetaldehyde, resulted in very high ozone formation potential and SOA, especially at low temperature (860 mg O3 km-1 and up to 38 mg C kg-1). After an OH exposure of 10 × 106 cm-3 h, SOA mass was, on average, 3 times larger than total primary particle mass emissions (BC + POA) with a high O:C ratio (up to 0.7 and 0.5 at 22 and -7 °C, respectively) typical of highly oxidized mixtures. Furthermore, high resolution organic mass spectra showed high 44/43 ratios (ratio of the ions m/z 44 and m/z 43) characteristic of low-volatility oxygenated organic aerosol. We also hypothesize that SOA formation from vehicular emissions could be due to oxidation products of ethanol and acetaldehyde, both short-chain oxygenated VOCs, e.g. methylglyoxal and acetic acid, and not only from aromatic compounds.

  14. Open burning of rice, corn and wheat straws: primary emissions, photochemical aging, and secondary organic aerosol formation

    Science.gov (United States)

    Fang, Zheng; Deng, Wei; Zhang, Yanli; Ding, Xiang; Tang, Mingjin; Liu, Tengyu; Hu, Qihou; Zhu, Ming; Wang, Zhaoyi; Yang, Weiqiang; Huang, Zhonghui; Song, Wei; Bi, Xinhui; Chen, Jianmin; Sun, Yele; George, Christian; Wang, Xinming

    2017-12-01

    Agricultural residues are among the most abundant biomass burned globally, especially in China. However, there is little information on primary emissions and photochemical evolution of agricultural residue burning. In this study, indoor chamber experiments were conducted to investigate primary emissions from open burning of rice, corn and wheat straws and their photochemical aging as well. Emission factors of NOx, NH3, SO2, 67 non-methane hydrocarbons (NMHCs), particulate matter (PM), organic aerosol (OA) and black carbon (BC) under ambient dilution conditions were determined. Olefins accounted for > 50 % of the total speciated NMHCs emission (2.47 to 5.04 g kg-1), indicating high ozone formation potential of straw burning emissions. Emission factors of PM (3.73 to 6.36 g kg-1) and primary organic carbon (POC, 2.05 to 4.11 gC kg-1), measured at dilution ratios of 1300 to 4000, were lower than those reported in previous studies at low dilution ratios, probably due to the evaporation of semi-volatile organic compounds under high dilution conditions. After photochemical aging with an OH exposure range of (1.97-4.97) × 1010 molecule cm-3 s in the chamber, large amounts of secondary organic aerosol (SOA) were produced with OA mass enhancement ratios (the mass ratio of total OA to primary OA) of 2.4-7.6. The 20 known precursors could only explain 5.0-27.3 % of the observed SOA mass, suggesting that the major precursors of SOA formed from open straw burning remain unidentified. Aerosol mass spectrometry (AMS) signaled that the aged OA contained less hydrocarbons but more oxygen- and nitrogen-containing compounds than primary OA, and carbon oxidation state (OSc) calculated with AMS resolved O / C and H / C ratios increased linearly (p < 0.001) with OH exposure with quite similar slopes.

  15. Formation of thermal fatigue cracks in periodic rapid quenching of metal

    Energy Technology Data Exchange (ETDEWEB)

    Ots, A. [Tallinn Technical University, Thermal Engineering Department, Tallinn (Estonia)

    1998-12-31

    Water lancing is an effective technique for cleaning boiler heating surfaces from ash deposits by burning low-grade fuels with complicated composition of mineral matter. In water cleaning cycles of boiler`s heat transfer surfaces due to rapid quenching destruction of corrosion protective oxide film and formation of thermal fatigue cracks on the outer surface of the tube`s metal occur. The criterion of the thermal fatigue cracks` formation and their growth intensity depend on the character of temperature field in the tube`s metal outer layer. The solution of non-stationary heat conductivity equation for metal rapid quenching conditions is given. The convective heat transfer coefficients from hot metal surface to water jet were established experimentally. Thermal fatigue crack growth intensity was investigated in real boilers` heat transfer surfaces` tubes as well as in laboratory conditions. The formula for predicting thermal fatigue cracks` depth depending on the number of cleaning cycles. (orig.) 5 refs.

  16. Formation of thermal fatigue cracks in periodic rapid quenching of metal

    Energy Technology Data Exchange (ETDEWEB)

    Ots, A [Tallinn Technical University, Thermal Engineering Department, Tallinn (Estonia)

    1999-12-31

    Water lancing is an effective technique for cleaning boiler heating surfaces from ash deposits by burning low-grade fuels with complicated composition of mineral matter. In water cleaning cycles of boiler`s heat transfer surfaces due to rapid quenching destruction of corrosion protective oxide film and formation of thermal fatigue cracks on the outer surface of the tube`s metal occur. The criterion of the thermal fatigue cracks` formation and their growth intensity depend on the character of temperature field in the tube`s metal outer layer. The solution of non-stationary heat conductivity equation for metal rapid quenching conditions is given. The convective heat transfer coefficients from hot metal surface to water jet were established experimentally. Thermal fatigue crack growth intensity was investigated in real boilers` heat transfer surfaces` tubes as well as in laboratory conditions. The formula for predicting thermal fatigue cracks` depth depending on the number of cleaning cycles. (orig.) 5 refs.

  17. Physical parameters effect on ozone-initiated formation of indoor secondary organic aerosols with emissions from cleaning products.

    Science.gov (United States)

    Huang, Yu; Ho, Kin Fai; Ho, Steven Sai Hang; Lee, Shun Cheng; Yau, P S; Cheng, Yan

    2011-09-15

    The effect of air exchange rate (ACH), temperature (T), and relative humidity (RH) on the formation of indoor secondary organic aerosols (SOAs) through ozonolysis of biogenic organic compounds (BVOCs) emitted from floor cleaner was investigated in this study. The total particle count (with D(p) of 6-225 nm) was up to 1.2 × 10(3)#cm(-3) with ACH of 1.08 h(-1), and it became much more significant with ACH of 0.36 h(-1) (1.1 × 10(4)#cm(-3)). This suggests that a higher ventilation rate can effectively dilute indoor BVOCs, resulting in a less ultrafine particle formation. The total particle count increased when temperature changed from 15 to 23 °C but it decreased when the temperature further increased to 30 °C. It could be explained that high temperature restrained the condensation of formed semi-volatile compounds resulting in low yields of SOAs. When the RH was at 50% and 80%, SOA formation (1.1-1.2 × 10(4)#cm(-3)) was the more efficient compared with that at RH of 30% (5.9 × 10(3)#cm(-3)), suggesting higher RH facilitating the initial nucleation processes. Oxidation generated secondary carbonyl compounds were also quantified. Acetone was the most abundant carbonyl compound. The formation mechanisms of formaldehyde and acetone were proposed. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Rapid formation and flexible expression of memories of subliminal word pairs.

    Science.gov (United States)

    Reber, Thomas P; Henke, Katharina

    2011-01-01

    Our daily experiences are incidentally and rapidly encoded as episodic memories. Episodic memories consist of numerous associations (e.g., who gave what to whom where and when) that can be expressed flexibly in new situations. Key features of episodic memory are speed of encoding, its associative nature, and its representational flexibility. Another defining feature of human episodic memory has been consciousness of encoding/retrieval. Here, we show that humans can rapidly form associations between subliminal words and minutes later retrieve these associations even if retrieval words were conceptually related to, but different from encoding words. Because encoding words were presented subliminally, associative encoding, and retrieval were unconscious. Unconscious association formation and retrieval were dependent on a preceding understanding of task principles. We conclude that key computations underlying episodic memory - rapid encoding and flexible expression of associations - can operate outside consciousness.

  19. Mechanochemical formation of heterogeneous diamond structures during rapid uniaxial compression in graphite

    Science.gov (United States)

    Kroonblawd, Matthew P.; Goldman, Nir

    2018-05-01

    We predict mechanochemical formation of heterogeneous diamond structures from rapid uniaxial compression in graphite using quantum molecular dynamics simulations. Ensembles of simulations reveal the formation of different diamondlike products starting from thermal graphite crystal configurations. We identify distinct classes of final products with characteristic probabilities of formation, stress states, and electrical properties and show through simulations of rapid quenching that these products are nominally stable and can be recovered at room temperature and pressure. Some of the diamond products exhibit significant disorder and partial closure of the energy gap between the highest-occupied and lowest-unoccupied molecular orbitals (i.e., the HOMO-LUMO gap). Seeding atomic vacancies in graphite significantly biases toward forming products with small HOMO-LUMO gap. We show that a strong correlation between the HOMO-LUMO gap and disorder in tetrahedral bonding configurations informs which kinds of structural defects are associated with gap closure. The rapid diffusionless transformation of graphite is found to lock vacancy defects into the final diamond structure, resulting in configurations that prevent s p3 bonding and lead to localized HOMO and LUMO states with a small gap.

  20. Development and Application of an Oxidation Flow Reactor to Study Secondary Organic Aerosol Formation from Ambient Air

    Science.gov (United States)

    Palm, Brett Brian

    Secondary organic aerosols (SOA) in the atmosphere play an important role in air quality, human health, and climate. However, the sources, formation pathways, and fate of SOA are poorly constrained. In this dissertation, I present development and application of the oxidation flow reactor (OFR) technique for studying SOA formation from OH, O3, and NO3 oxidation of ambient air. With a several-minute residence time and a portable design with no inlet, OFRs are particularly well-suited for this purpose. I first introduce the OFR concept, and discuss several advances I have made in performing and interpreting OFR experiments. This includes estimating oxidant exposures, modeling the fate of low-volatility gases in the OFR (wall loss, condensation, and oxidation), and comparing SOA yields of single precursors in the OFR with yields measured in environmental chambers. When these experimental details are carefully considered, SOA formation in an OFR can be more reliably compared with ambient SOA formation processes. I then present an overview of what OFR measurements have taught us about SOA formation in the atmosphere. I provide a comparison of SOA formation from OH, O3, and NO3 oxidation of ambient air in a wide variety of environments, from rural forests to urban air. In a rural forest, the SOA formation correlated with biogenic precursors (e.g., monoterpenes). In urban air, it correlated instead with reactive anthropogenic tracers (e.g., trimethylbenzene). In mixed-source regions, the SOA formation did not correlate well with any single precursor, but could be predicted by multilinear regression from several precursors. Despite these correlations, the concentrations of speciated ambient VOCs could only explain approximately 10-50% of the total SOA formed from OH oxidation. In contrast, ambient VOCs could explain all of the SOA formation observed from O3 and NO3 oxidation. Evidence suggests that lower-volatility gases (semivolatile and intermediate-volatility organic

  1. Characterization of Organic Nitrate Formation in Limonene Secondary Organic Aerosol using High-Resolution Chemical Ionization Mass Spectrometry

    Science.gov (United States)

    Faxon, Cameron; Hammes, Julia; Peng, Jianfei; Hallquist, Mattias; Pathak, Ravi

    2016-04-01

    Previous work has shown that organic nitrates (RONO2) are prevalent in the boundary layer, and can contribute significantly to secondary organic aerosol formation. Monoterpenes, including limonene, have been shown to be precursors for the formation of these organic nitrates. Limonene has two double bonds, either of which may be oxidized by NO3 or O3. This leads to the generation of products that can subsequently condense or partition into the particle phase, producing secondary organic aerosol. In order to further elucidate the particle and gas phase product distribution of organic nitrates forming from the reactions of limonene and the nitrate radical (NO3), a series of experiments were performed in the Gothenburg Flow Reactor for Oxidation Studies at Low Temperatures (G-FROST), described by previous work. N2O5 was used as the source for NO3 and NO2, and a characterized diffusion source was used to introduce limonene into the flow reactor. All experiments were conducted in the absence of light, and the concentration of limonene was increased step-wise throughout each experiment to modify the ratio of N2O5to limonene. The experiments were conducted such that both limonene- and N2O5-limited regimes were present. Gas and particle phase products were measured using an iodide High-Resolution Time-of-Flight Mass Spectrometer (HR-ToF-CIMS) coupled to a Filter Inlet for Gases and AEROsols (FIGAERO, and particle size and SOA mass concentrations were derived using a Scanning Mobility Particle Sizer (SMPS). CIMS measurement techniques have previously been employed for the measurement of organic nitrate products of such compounds using multiple reagent ions. The use of this instrumentation allowed for the identification of chemical formulas for gas and particle phase species. The findings from the experiments will be presented in terms of the relative gas-particle partitioning of major products and the effects of N2O5/limonene ratios on product distributions. Additionally, a

  2. Communication: Quantitative Fourier-transform infrared data for competitive loading of small cages during all-vapor instantaneous formation of gas-hydrate aerosols

    Science.gov (United States)

    Uras-Aytemiz, Nevin; Abrrey Monreal, I.; Devlin, J. Paul

    2011-10-01

    A simple method has been developed for the measurement of high quality FTIR spectra of aerosols of gas-hydrate nanoparticles. The application of this method enables quantitative observation of gas hydrates that form on subsecond timescales using our all-vapor approach that includes an ether catalyst rather than high pressures to promote hydrate formation. The sampling method is versatile allowing routine studies at temperatures ranging from 120 to 210 K of either a single gas or the competitive uptake of different gas molecules in small cages of the hydrates. The present study emphasizes hydrate aerosols formed by pulsing vapor mixtures into a cold chamber held at 160 or 180 K. We emphasize aerosol spectra from 6 scans recorded an average of 8 s after "instantaneous" hydrate formation as well as of the gas hydrates as they evolve with time. Quantitative aerosol data are reported and analyzed for single small-cage guests and for mixed hydrates of CO2, CH4, C2H2, N2O, N2, and air. The approach, combined with the instant formation of gas hydrates from vapors only, offers promise with respect to optimization of methods for the formation and control of gas hydrates.

  3. Synergistic reaction between SO2 and NO2 on mineral oxides: a potential formation pathway of sulfate aerosol.

    Science.gov (United States)

    Liu, Chang; Ma, Qingxin; Liu, Yongchun; Ma, Jinzhu; He, Hong

    2012-02-07

    Sulfate is one of the most important aerosols in the atmosphere. A new sulfate formation pathway via synergistic reactions between SO(2) and NO(2) on mineral oxides was proposed. The heterogeneous reactions of SO(2) and NO(2) on CaO, α-Fe(2)O(3), ZnO, MgO, α-Al(2)O(3), TiO(2), and SiO(2) were investigated by in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (in situ DRIFTS) at ambient temperature. Formation of sulfate from adsorbed SO(2) was promoted by the coexisting NO(2), while surface N(2)O(4) was observed as the crucial oxidant for the oxidation of surface sulfite. This process was significantly promoted by the presence of O(2). The synergistic effect between SO(2) and NO(2) was not observed on other mineral particles (such as CaCO(3) and CaSO(4)) probably due to the lack of the surface reactive oxygen sites. The synergistic reaction between SO(2) and NO(2) on mineral oxides resulted in the formation of internal mixtures of sulfate, nitrate, and mineral oxides. The change of mixture state will affect the physicochemical properties of atmospheric particles and therefore further influence their environmental and climate effects.

  4. Alloy composition dependence of formation of porous Ni prepared by rapid solidification and chemical dealloying

    Energy Technology Data Exchange (ETDEWEB)

    Qi Zhen [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China); Zhang Zhonghua [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China)], E-mail: zh_zhang@sdu.edu.cn; Jia Haoling [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China); Qu Yingjie [Shandong Labor Occupational Technology College, Jingshi Road 388, Jinan 250022 (China); Liu Guodong; Bian Xiufang [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China)

    2009-03-20

    In this paper, the effect of alloy composition on the formation of porous Ni catalysts prepared by chemical dealloying of rapidly solidified Al-Ni alloys has been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and N{sub 2} adsorption experiments. The experimental results show that rapid solidification and alloy composition have a significant effect on the phase constituent and microstructure of Al-Ni alloys. The melt spun Al-20 at.% Ni alloy consists of {alpha}-Al, NiAl{sub 3} and Ni{sub 2}Al{sub 3}, while the melt spun Al-25 and 31.5 at.% Ni alloys comprise NiAl{sub 3} and Ni{sub 2}Al{sub 3}. Moreover, the formation and microstructure of the porous Ni catalysts are dependent upon the composition of the melt spun Al-Ni alloys. The morphology and size of Ni particles in the Ni catalysts inherit from those of grains in the melt spun Al-Ni alloys. Rapid solidification can extend the alloy composition of Al-Ni alloys suitable for preparation of the Ni catalysts, and obviously accelerate the dealloying process of the Al-Ni alloys.

  5. A comprehensive aerosol spray method for the rapid photocatalytic grid area analysis of semiconductor photocatalyst thin films

    International Nuclear Information System (INIS)

    Kafizas, Andreas; Mills, Andrew; Parkin, Ivan P.

    2010-01-01

    Indicator inks, previously shown to be capable of rapidly assessing photocatalytic activity via a novel photo-reductive mechanism, were simply applied via an aerosol spray onto commercially available pieces of Activ TM self-cleaning glass. Ink layers could be applied with high evenness of spread, with as little deviation as 5% upon UV-visible spectroscopic assessment of 25 equally distributed positions over a 10 cm x 10 cm glass cut. The inks were comprised of either a resazurin (Rz) or dichloroindophenol (DCIP) redox dye with a glycerol sacrificial electron donor in an aqueous hydroxyethyl cellulose (HEC) polymer media. The photo-reduction reaction under UVA light of a single spot was monitored by UV-vis spectroscopy and digital images attained from a flat-bed scanner in tandem for both inks. The photo-reduction of Rz ink underwent a two-step kinetic process, whereby the blue redox dye was initially reduced to a pink intermediate resorufin (Rf) and subsequently reduced to a bleached form of the dye. In contrast, a simple one-step kinetic process was observed for the reduction of the light blue redox dye DCIP to its bleached intermediates. Changes in red-green-blue colour extracted from digital images of the inks were inversely proportional to the changes seen at corresponding wavelengths via UV-visible absorption spectroscopy and wholly indicative of the reaction kinetics. The photocatalytic activity areas of cuts of Activ TM glass, 10 cm x 10 cm in size, were assessed using both Rz and DCIP indicator inks evenly sprayed over the films; firstly using UVA lamp light to activate the underlying Activ TM film (1.75 mW cm -2 ) and secondly under solar conditions (2.06 ± 0.14 mW cm -2 ). The photo-reduction reactions were monitored solely by flat-bed digital scanning. Red-green-blue values of a generated 14 x 14 grid (196 positions) that covered the entire area of each film image were extracted using a custom-built program entitled RGB Extractor(C). A homogenous

  6. Effect of variable power levels on the yield of total aerosol mass and formation of aldehydes in e-cigarette aerosols.

    Science.gov (United States)

    Gillman, I G; Kistler, K A; Stewart, E W; Paolantonio, A R

    2016-03-01

    The study objective was to determine the effect of variable power applied to the atomizer of refillable tank based e-cigarette (EC) devices. Five different devices were evaluated, each at four power levels. Aerosol yield results are reported for each set of 25 EC puffs, as mass/puff, and normalized for the power applied to the coil, in mass/watt. The range of aerosol produced on a per puff basis ranged from 1.5 to 28 mg, and, normalized for power applied to the coil, ranged from 0.27 to 1.1 mg/watt. Aerosol samples were also analyzed for the production of formaldehyde, acetaldehyde, and acrolein, as DNPH derivatives, at each power level. When reported on mass basis, three of the devices showed an increase in total aldehyde yield with increasing power applied to the coil, while two of the devices showed the opposite trend. The mass of formaldehyde, acetaldehyde, and acrolein produced per gram of total aerosol produced ranged from 0.01 to 7.3 mg/g, 0.006 to 5.8 mg/g, and acrolein from EC aerosols from specific devices, and were compared to estimated exposure from consumption of cigarettes, to occupational and workplace limits, and to previously reported results from other researchers. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Regulation of extracellular matrix vesicles via rapid responses to steroid hormones during endochondral bone formation.

    Science.gov (United States)

    Asmussen, Niels; Lin, Zhao; McClure, Michael J; Schwartz, Zvi; Boyan, Barbara D

    2017-12-09

    Endochondral bone formation is a precise and highly ordered process whose exact regulatory framework is still being elucidated. Multiple regulatory pathways are known to be involved. In some cases, regulation impacts gene expression, resulting in changes in chondrocyte phenotypic expression and extracellular matrix synthesis. Rapid regulatory mechanisms are also involved, resulting in release of enzymes, factors and micro RNAs stored in extracellular matrisomes called matrix vesicles. Vitamin D metabolites modulate endochondral development via both genomic and rapid membrane-associated signaling pathways. 1α,25-dihydroxyvitamin D3 [1α,25(OH) 2 D 3 ] acts through the vitamin D receptor (VDR) and a membrane associated receptor, protein disulfide isomerase A3 (PDIA3). 24R,25-dihydroxyvitamin D3 [24R,25(OH) 2 D 3 ] affects primarily chondrocytes in the resting zone (RC) of the growth plate, whereas 1α,25(OH) 2 D 3 affects cells in the prehypertrophic and upper hypertrophic cell zones (GC). This includes genomically directing the cells to produce matrix vesicles with zone specific characteristics. In addition, vitamin D metabolites produced by the cells interact directly with the matrix vesicle membrane via rapid signal transduction pathways, modulating their activity in the matrix. The matrix vesicle payload is able to rapidly impact the extracellular matrix via matrix processing enzymes as well as providing a feedback mechanism to the cells themselves via the contained micro RNAs. Copyright © 2017. Published by Elsevier Inc.

  8. Sulfite-induced protein radical formation in LPS aerosol-challenged mice: Implications for sulfite sensitivity in human lung disease

    Directory of Open Access Journals (Sweden)

    Ashutosh Kumar

    2018-05-01

    Full Text Available Exposure to (bisulfite (HSO3– and sulfite (SO32– has been shown to induce a wide range of adverse reactions in sensitive individuals. Studies have shown that peroxidase-catalyzed oxidation of (bisulfite leads to formation of several reactive free radicals, such as sulfur trioxide anion (.SO3–, peroxymonosulfate (–O3SOO., and especially the sulfate (SO4. – anion radicals. One such peroxidase in neutrophils is myeloperoxidase (MPO, which has been shown to form protein radicals. Although formation of (bisulfite-derived protein radicals is documented in isolated neutrophils, its involvement and role in in vivo inflammatory processes, has not been demonstrated. Therefore, we aimed to investigate (bisulfite-derived protein radical formation and its mechanism in LPS aerosol-challenged mice, a model of non-atopic asthma. Using immuno-spin trapping to detect protein radical formation, we show that, in the presence of (bisulfite, neutrophils present in bronchoalveolar lavage and in the lung parenchyma exhibit, MPO-catalyzed oxidation of MPO to a protein radical. The absence of radical formation in LPS-challenged MPO- or NADPH oxidase-knockout mice indicates that sulfite-derived radical formation is dependent on both MPO and NADPH oxidase activity. In addition to its oxidation by the MPO-catalyzed pathway, (bisulfite is efficiently detoxified to sulfate by the sulfite oxidase (SOX pathway, which forms sulfate in a two-electron oxidation reaction. Since SOX activity in rodents is much higher than in humans, to better model sulfite toxicity in humans, we induced SOX deficiency in mice by feeding them a low molybdenum diet with tungstate. We found that mice treated with the SOX deficiency diet prior to exposure to (bisulfite had much higher protein radical formation than mice with normal SOX activity. Altogether, these results demonstrate the role of MPO and NADPH oxidase in (bisulfite-derived protein radical formation and show the involvement of

  9. The effect of gas-phase polycyclic aromatic hydrocarbons on the formation and properties of biogenic secondary organic aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Zelenyuk, Alla [Pacific Northwest National Laboratory; USA; Imre, Dan G. [Imre Consulting; USA; Wilson, Jacqueline [Pacific Northwest National Laboratory; USA; Bell, David M. [Pacific Northwest National Laboratory; USA; Suski, Kaitlyn J. [Pacific Northwest National Laboratory; USA; Shrivastava, Manish [Pacific Northwest National Laboratory; USA; Beránek, Josef [Pacific Northwest National Laboratory; USA; Alexander, M. Lizabeth [Pacific Northwest National Laboratory; USA; Kramer, Amber L. [Department of Chemistry; Oregon State University; USA; Massey Simonich, Staci L. [Department of Chemistry; Oregon State University; USA; Environmental and Molecular Toxicology; Oregon State University

    2017-01-01

    When secondary organic aerosol (SOA) particles are formed by ozonolysis in the presence of gas-phase polycyclic aromatic hydrocarbons (PAHs), their formation and properties are significantly different from SOA particles formed without PAHs. For all SOA precursors and all PAHs, discussed in this study, the presence of the gas-phase PAHs during SOA formation significantly affects particle mass loadings, composition, growth, evaporation kinetics, and viscosity. SOA particles formed in the presence of PAHs have, as part of their compositions, trapped unreacted PAHs and products of heterogeneous reactions between PAHs and ozone. Compared to ‘pure’ SOA particles, these particles exhibit slower evaporation kinetics, have higher fractions of non-volatile components, like oligomers, and higher viscosities, assuring their longer atmospheric lifetimes. In turn, the increased viscosity and decreased volatility provide a shield that protects PAHs from chemical degradation and evaporation, allowing for the long-range transport of these toxic pollutants. The magnitude of the effect of PAHs on SOA formation is surprisingly large. The presence of PAHs during SOA formation increases mass loadings by factors of two to five, and particle number concentrations, in some cases, by more than a factor of 100. Increases in SOA mass, particle number concentrations, and lifetime have important implications to many atmospheric processes related to climate, weather, visibility, and human health, all of which relate to the interactions between biogenic SOA and anthropogenic PAHs. The synergistic relationship between SOA and PAHs presented here are clearly complex and call for future research to elucidate further the underlying processes and their exact atmospheric implications.

  10. The impact of bark beetle infestations on monoterpene emissions and secondary organic aerosol formation in western North America

    Directory of Open Access Journals (Sweden)

    A. R. Berg

    2013-03-01

    Full Text Available Over the last decade, extensive beetle outbreaks in western North America have destroyed over 100 000 km2 of forest throughout British Columbia and the western United States. Beetle infestations impact monoterpene emissions through both decreased emissions as trees are killed (mortality effect and increased emissions in trees under attack (attack effect. We use 14 yr of beetle-induced tree mortality data together with beetle-induced monoterpene emission data in the National Center for Atmospheric Research (NCAR Community Earth System Model (CESM to investigate the impact of beetle-induced tree mortality and attack on monoterpene emissions and secondary organic aerosol (SOA formation in western North America. Regionally, beetle infestations may have a significant impact on monoterpene emissions and SOA concentrations, with up to a 4-fold increase in monoterpene emissions and up to a 40% increase in SOA concentrations in some years (in a scenario where the attack effect is based on observed lodgepole pine response. Responses to beetle attack depend on the extent of previous mortality and the number of trees under attack in a given year, which can vary greatly over space and time. Simulated enhancements peak in 2004 (British Columbia and 2008 (US. Responses to beetle attack are shown to be substantially larger (up to a 3-fold localized increase in summertime SOA concentrations in a scenario based on bark-beetle attack in spruce trees. Placed in the context of observations from the IMPROVE network, the changes in SOA concentrations due to beetle attack are in most cases small compared to the large annual and interannual variability in total organic aerosol which is driven by wildfire activity in western North America. This indicates that most beetle-induced SOA changes are not likely detectable in current observation networks; however, these changes may impede efforts to achieve natural visibility conditions in the national parks and wilderness

  11. Effects of Relative Humidity on Ozone and Secondary Organic Aerosol Formation from the Photooxidation of Benzene and Ethylbenzene

    Science.gov (United States)

    Jia, L.; Xu, Y.

    2012-12-01

    The formation of ozone and secondary organic aerosol from benzene-NOx and ethylbenzene-NOx irradiations was investigated under different levels of relative humidity (RH) in a smog chamber. The results show that the increase in RH can greatly reduce the maximum O3 by the transformation of -NO2 and -ONO2-containing products into the particle phase. In benzene irradiations, the SOA number concentration increases over 26 times as RH rises from ethylbenzene irradiations, ethylglyoxal favors the formation of monohydrate, which limits the RH effects. During evaporating processes, the lost substances have similar structures for both benzene and ethylbenzene. This demonstrates that ethyl-containing substances are very stable and difficult to evaporate. For benzene some of glyoxal hydrates are left to form C-O-C and C=O-containing species like hemiacetal and acetal after evaporation, whereas for ethylbenzene, glyoxal favors cross reactions with ethylglyoxal during the evaporating process. It is concluded that the increase in RH can irreversibly enhance the yields of SOA from both benzene and ethylbenzene.

  12. Formation and occurrence of dimer esters of pinene oxidation products in atmospheric aerosols

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Enggrob, Kirsten L.; King, S. M.

    2013-01-01

    products cis-pinic and terpenylic acids, but similar to the second-generation oxidation products 3-methyl-1,2,3-butane tricarboxylic acid (MBTCA) and diaterpenylic acid acetate (DTAA). Dimer esters were observed within the first 30 min, indicating rapid production simultaneous to their structural...

  13. Filaments in curved streamlines: rapid formation of Staphylococcus aureus biofilm streamers

    International Nuclear Information System (INIS)

    Kevin Kim, Minyoung; Drescher, Knut; Shun Pak, On; Stone, Howard A; Bassler, Bonnie L

    2014-01-01

    Biofilms are surface-associated conglomerates of bacteria that are highly resistant to antibiotics. These bacterial communities can cause chronic infections in humans by colonizing, for example, medical implants, heart valves, or lungs. Staphylococcus aureus, a notorious human pathogen, causes some of the most common biofilm-related infections. Despite the clinical importance of S. aureus biofilms, it remains mostly unknown how physical effects, in particular flow, and surface structure influence biofilm dynamics. Here we use model microfluidic systems to investigate how environmental factors, such as surface geometry, surface chemistry, and fluid flow affect biofilm development of S. aureus. We discovered that S. aureus rapidly forms flow-induced, filamentous biofilm streamers, and furthermore if surfaces are coated with human blood plasma, streamers appear within minutes and clog the channels more rapidly than if the channels are uncoated. To understand how biofilm streamer filaments reorient in flows with curved streamlines to bridge the distances between corners, we developed a mathematical model based on resistive force theory of slender filaments. Understanding physical aspects of biofilm formation of S. aureus may lead to new approaches for interrupting biofilm formation of this pathogen. (paper)

  14. The rapid formation of a large rotating disk galaxy three billion years after the Big Bang.

    Science.gov (United States)

    Genzel, R; Tacconi, L J; Eisenhauer, F; Schreiber, N M Förster; Cimatti, A; Daddi, E; Bouché, N; Davies, R; Lehnert, M D; Lutz, D; Nesvadba, N; Verma, A; Abuter, R; Shapiro, K; Sternberg, A; Renzini, A; Kong, X; Arimoto, N; Mignoli, M

    2006-08-17

    Observations and theoretical simulations have established a framework for galaxy formation and evolution in the young Universe. Galaxies formed as baryonic gas cooled at the centres of collapsing dark-matter haloes; mergers of haloes and galaxies then led to the hierarchical build-up of galaxy mass. It remains unclear, however, over what timescales galaxies were assembled and when and how bulges and disks--the primary components of present-day galaxies--were formed. It is also puzzling that the most massive galaxies were more abundant and were forming stars more rapidly at early epochs than expected from models. Here we report high-angular-resolution observations of a representative luminous star-forming galaxy when the Universe was only 20% of its current age. A large and massive rotating protodisk is channelling gas towards a growing central stellar bulge hosting an accreting massive black hole. The high surface densities of gas, the high rate of star formation and the moderately young stellar ages suggest rapid assembly, fragmentation and conversion to stars of an initially very gas-rich protodisk, with no obvious evidence for a major merger.

  15. Rapid formation of a modern bedrock canyon by a single flood event

    Science.gov (United States)

    Lamb, Michael P.; Fonstad, Mark A.

    2010-07-01

    Deep river canyons are thought to form slowly over geological time (see, for example, ref. 1), cut by moderate flows that reoccur every few years. In contrast, some of the most spectacular canyons on Earth and Mars were probably carved rapidly during ancient megaflood events. Quantification of the flood discharge, duration and erosion mechanics that operated during such events is hampered because we lack modern analogues. Canyon Lake Gorge, Texas, was carved in 2002 during a single catastrophic flood. The event offers a rare opportunity to analyse canyon formation and test palaeo-hydraulic-reconstruction techniques under known topographic and hydraulic conditions. Here we use digital topographic models and visible/near-infrared aerial images from before and after the flood, discharge measured during the event, field measurements and sediment-transport modelling to show that the flood moved metre-sized boulders, excavated ~7m of limestone and transformed a soil-mantled valley into a bedrock canyon in just ~3days. We find that canyon morphology is strongly dependent on rock type: plucking of limestone blocks produced waterfalls, inner channels and bedrock strath terraces, whereas abrasion of cemented alluvium sculpted walls, plunge pools and streamlined islands. Canyon formation was so rapid that erosion might have been limited by the ability of the flow to transport sediment. We suggest that our results might improve hydraulic reconstructions of similar megafloods on Earth and Mars.

  16. Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area

    Directory of Open Access Journals (Sweden)

    A. P. Tsimpidi

    2010-01-01

    Full Text Available New primary and secondary organic aerosol modules have been added to PMCAMx, a three dimensional chemical transport model (CTM, for use with the SAPRC99 chemistry mechanism based on recent smog chamber studies. The new modelling framework is based on the volatility basis-set approach: both primary and secondary organic components are assumed to be semivolatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. This new framework with the use of the new volatility basis parameters for low-NOx and high-NOx conditions tends to predict 4–6 times higher anthropogenic SOA concentrations than those predicted with the older generation of models. The resulting PMCAMx-2008 was applied in Mexico City Metropolitan Area (MCMA for approximately a week during April 2003 during a period of very low regional biomass burning impact. The emission inventory, which uses as a starting point the MCMA 2004 official inventory, is modified and the primary organic aerosol (POA emissions are distributed by volatility based on dilution experiments. The predicted organic aerosol (OA concentrations peak in the center of Mexico City, reaching values above 40 μg m−3. The model predictions are compared with the results of the Positive Matrix Factorization (PMF analysis of the Aerosol Mass Spectrometry (AMS observations. The model reproduces both Hydrocarbon-like Organic Aerosol (HOA and Oxygenated Organic Aerosol (OOA concentrations and diurnal profiles. The small OA underprediction during the rush-hour periods and overprediction in the afternoon suggest potential improvements to the description of fresh primary organic emissions and the formation of the oxygenated organic aerosols, respectively, although they may also be due to errors in the simulation of dispersion and vertical mixing. However, the AMS OOA data are not specific enough to prove that the model reproduces the organic aerosol

  17. Secondary organic aerosol formation from phenolic compounds in the absence of NOx

    Directory of Open Access Journals (Sweden)

    D. Cocker III

    2011-10-01

    Full Text Available SOA formation from benzene, toluene, m-xylene, and their corresponding phenolic compounds were investigated using the UCR/CE-CERT Environmental Chamber to evaluate the importance of phenolic compounds as intermediate species in aromatic SOA formation. SOA formation yield measurements coupled to gas-phase yield measurements indicate that approximately 20% of the SOA of benzene, toluene, and m-xylene could be ascribed to the phenolic route under low NOx conditions. The SOA densities tend to be initially as high as approximately 1.8 g cm−3 and eventually reach the range of 1.3–1.4 g cm−3. The final SOA density was found to be independent of elemental ratio (O/C indicating that applying constant density (e.g., 1.4 g cm−3 to SOA formed from different aromatic compounds tested in this study is a reasonable approximation. Results from a novel on-line PILS-TOFMS (Particle-into-Liquid Sampler coupled with Agilent Time-of-Flight Mass Spectrometer are reported. Major signals observed by the on-line/off-line Agilent TOFMS indicated that products had the same number of carbon atoms as their parent aromatics, suggesting importance of ring-retaining products or ring-opening products following ring-cleavage.

  18. New positive feedback mechanism between boundary layer meteorology and secondary aerosol formation during severe haze events.

    Science.gov (United States)

    Liu, Quan; Jia, Xingcan; Quan, Jiannong; Li, Jiayun; Li, Xia; Wu, Yongxue; Chen, Dan; Wang, Zifa; Liu, Yangang

    2018-04-17

    Severe haze events during which particulate matter (PM) increases quickly from tens to hundreds of microgram per cubic meter in 1-2 days frequently occur in China. Although it has been known that PM is influenced by complex interplays among emissions, meteorology, and physical and chemical processes, specific mechanisms remain elusive. Here, a new positive feedback mechanism between planetary boundary layer (PBL), relative humidity (RH), and secondary PM (SPM) formation is proposed based on a comprehensive field experiment and model simulation. The decreased PBL associated with increased PM increases RH by weakening the vertical transport of water vapor; the increased RH in turn enhances the SPM formation through heterogeneous aqueous reactions, which further enhances PM, weakens solar radiation, and decreases PBL height. This positive feedback, together with the PM-Radiation-PBL feedback, constitutes a key mechanism that links PM, radiation, PBL properties (e.g. PBL height and RH), and SPM formation, This mechanism is self-amplifying, leading to faster PM production, accumulation, and more severe haze pollution.

  19. Rapid formation of large dust grains in the luminous supernova 2010jl.

    Science.gov (United States)

    Gall, Christa; Hjorth, Jens; Watson, Darach; Dwek, Eli; Maund, Justyn R; Fox, Ori; Leloudas, Giorgos; Malesani, Daniele; Day-Jones, Avril C

    2014-07-17

    The origin of dust in galaxies is still a mystery. The majority of the refractory elements are produced in supernova explosions, but it is unclear how and where dust grains condense and grow, and how they avoid destruction in the harsh environments of star-forming galaxies. The recent detection of 0.1 to 0.5 solar masses of dust in nearby supernova remnants suggests in situ dust formation, while other observations reveal very little dust in supernovae in the first few years after explosion. Observations of the spectral evolution of the bright SN 2010jl have been interpreted as pre-existing dust, dust formation or no dust at all. Here we report the rapid (40 to 240 days) formation of dust in its dense circumstellar medium. The wavelength-dependent extinction of this dust reveals the presence of very large (exceeding one micrometre) grains, which resist destruction. At later times (500 to 900 days), the near-infrared thermal emission shows an accelerated growth in dust mass, marking the transition of the dust source from the circumstellar medium to the ejecta. This provides the link between the early and late dust mass evolution in supernovae with dense circumstellar media.

  20. Assessing the impact of anthropogenic pollution on isoprene-derived secondary organic aerosol formation in PM2.5 collected from the Birmingham, Alabama, ground site during the 2013 Southern Oxidant and Aerosol Study

    Directory of Open Access Journals (Sweden)

    W. Rattanavaraha

    2016-04-01

    Full Text Available In the southeastern US, substantial emissions of isoprene from deciduous trees undergo atmospheric oxidation to form secondary organic aerosol (SOA that contributes to fine particulate matter (PM2.5. Laboratory studies have revealed that anthropogenic pollutants, such as sulfur dioxide (SO2, oxides of nitrogen (NOx, and aerosol acidity, can enhance SOA formation from the hydroxyl radical (OH-initiated oxidation of isoprene; however, the mechanisms by which specific pollutants enhance isoprene SOA in ambient PM2.5 remain unclear. As one aspect of an investigation to examine how anthropogenic pollutants influence isoprene-derived SOA formation, high-volume PM2.5 filter samples were collected at the Birmingham, Alabama (BHM, ground site during the 2013 Southern Oxidant and Aerosol Study (SOAS. Sample extracts were analyzed by gas chromatography–electron ionization-mass spectrometry (GC/EI-MS with prior trimethylsilylation and ultra performance liquid chromatography coupled to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS to identify known isoprene SOA tracers. Tracers quantified using both surrogate and authentic standards were compared with collocated gas- and particle-phase data as well as meteorological data provided by the Southeastern Aerosol Research and Characterization (SEARCH network to assess the impact of anthropogenic pollution on isoprene-derived SOA formation. Results of this study reveal that isoprene-derived SOA tracers contribute a substantial mass fraction of organic matter (OM ( ∼  7 to  ∼  20 %. Isoprene-derived SOA tracers correlated with sulfate (SO42− (r2 = 0.34, n = 117 but not with NOx. Moderate correlations between methacrylic acid epoxide and hydroxymethyl-methyl-α-lactone (together abbreviated MAE/HMML-derived SOA tracers with nitrate radical production (P[NO3] (r2 = 0.57, n = 40 were observed during nighttime, suggesting a

  1. Isomerization of Second-Generation Isoprene Peroxy Radicals: Epoxide Formation and Implications for Secondary Organic Aerosol Yields

    Energy Technology Data Exchange (ETDEWEB)

    D’Ambro, Emma L.; Møller, Kristian H.; Lopez-Hilfiker, Felipe D.; Schobesberger, Siegfried; Liu, Jiumeng; Shilling, John E.; Lee, Ben Hwan; Kjaergaard, Henrik G.; Thornton, Joel A.

    2017-04-11

    We report chamber measurements of secondary organic aerosol (SOA) formation from isoprene photochemical oxidation, where radical concentrations were systematically varied and the molecular composition of semi to low volatility gases and SOA were measured online. Using a detailed chemical mechanism, we find that to explain the behavior of low volatility products and SOA mass yields relative to input H2O2 concentrations, the second generation dihydroxy hydroperoxy peroxy radical (C5H11O6•) must undergo an intra-molecular H-shift with a net forward rate constant of order 0.1 s-1 or higher, consistent with quantum chemical calculations which suggest a net forward rate constant of 0.3-0.9 s-1. Furthermore, these calculations suggest the dominant product of this isomerization is a dihydroxy hydroperoxy epoxide (C5H10O5) which is expected to have a saturation vapor pressure ~2 orders of magnitude higher than the dihydroxy dihydroperoxide, ISOP(OOH)2 (C5H12O6), a major product of the peroxy radical reacting with HO2. These results provide strong constraints on the likely volatility distribution of isoprene oxidation products under atmospheric conditions and thus on the importance of non-reactive gas-particle partitioning of isoprene oxidation products as an SOA source.

  2. The significance of secondary organic aerosol formation and growth in buildings: experimental and computational evidence

    DEFF Research Database (Denmark)

    Sarwar, G.; Corsi, R.; Allen, D.

    2003-01-01

    -pinene, and subsequent gas-to-particle partitioning of the products. A new indoor air quality model was used to predict dynamic particle mass concentrations based on detailed homogeneous chemical mechanisms and partitioning of semi-volatile products to particles. Chamber particle mass concentrations were estimated from......Experiments were conducted in an 11 m3 environmental chamber to investigate secondaryparticles resulting from homogeneous reactions between ozone and alpha-pinene. Experimental results indicate that rapid fine particle growth occurs due to homogeneous reactions between ozone and alpha...... measured particle size distributions and were in reasonable agreement with results predicted from the model. Both experimental and model results indicate that secondary particle mass concentrations incfrease substantially with lower air exchange rates. This is an interesting results, given a continuing...

  3. Program and Poster Abstracts from the Workshop on the Formation and Growth of Atmospheric Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    McMurry, Peter H. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Mechanical Engineering; Kulmala, Markku [Univ. of Helsinki (Finland). Dept. of Physics. Division of Atmospheric Sciences

    2006-09-09

    DOE provided $11,000 to sponsor the Workshop on New Particle Formation in the Atmosphere, which was held at The Riverwood Inn and Conference Center near Minneapolis, MN from September 7 to 9, 2006. Recent work has shown that new particle formation is an important atmospheric process that must be better understood due to its impact on cloud cover and the Earth's radiation balance. The conference was an informal gathering of atmospheric and basic scientists with expertise pertinent to this topic. The workshop included discussions of: • atmospheric modeling; • computational chemistry pertinent to clustering; • ions and ion induced nucleation; • basic laboratory and theoretical studies of nucleation; • studies on neutral molecular clusters; • interactions of organic compounds and sulfuric acid; • composition of freshly nucleated particles. Fifty six scientists attended the conference. They included 27 senior scientists, 9 younger independent scientists (assistant professor or young associate professor level), 7 postdocs, 13 graduate students, 10 women, 35 North Americans (34 from the U.S.), 1 Asian, and 20 Europeans. This was an excellent informal workshop on an important topic. An effort was made to include individuals from communities that do not regularly interact. A number of participants have provided informal feedback indicating that the workshop led to research ideas and possible future collaborations. This document includes abstracts from this workshop.

  4. Direct deposition of gas phase generated aerosol gold nanoparticles into biological fluids--corona formation and particle size shifts.

    Directory of Open Access Journals (Sweden)

    Christian R Svensson

    Full Text Available An ongoing discussion whether traditional toxicological methods are sufficient to evaluate the risks associated with nanoparticle inhalation has led to the emergence of Air-Liquid interface toxicology. As a step in this process, this study explores the evolution of particle characteristics as they move from the airborne state into physiological solution. Airborne gold nanoparticles (AuNP are generated using an evaporation-condensation technique. Spherical and agglomerate AuNPs are deposited into physiological solutions of increasing biological complexity. The AuNP size is characterized in air as mobility diameter and in liquid as hydrodynamic diameter. AuNP:Protein aggregation in physiological solutions is determined using dynamic light scattering, particle tracking analysis, and UV absorption spectroscopy. AuNPs deposited into homocysteine buffer form large gold-aggregates. Spherical AuNPs deposited in solutions of albumin were trapped at the Air-Liquid interface but was readily suspended in the solutions with a size close to that of the airborne particles, indicating that AuNP:Protein complex formation is promoted. Deposition into serum and lung fluid resulted in larger complexes, reflecting the formation of a more complex protein corona. UV absorption spectroscopy indicated no further aggregation of the AuNPs after deposition in solution. The corona of the deposited AuNPs shows differences compared to AuNPs generated in suspension. Deposition of AuNPs from the aerosol phase into biological fluids offers a method to study the protein corona formed, upon inhalation and deposition in the lungs in a more realistic way compared to particle liquid suspensions. This is important since the protein corona together with key particle properties (e.g. size, shape and surface reactivity to a large extent may determine the nanoparticle effects and possible translocation to other organs.

  5. Direct Deposition of Gas Phase Generated Aerosol Gold Nanoparticles into Biological Fluids - Corona Formation and Particle Size Shifts

    Science.gov (United States)

    Svensson, Christian R.; Messing, Maria E.; Lundqvist, Martin; Schollin, Alexander; Deppert, Knut; Pagels, Joakim H.; Rissler, Jenny; Cedervall, Tommy

    2013-01-01

    An ongoing discussion whether traditional toxicological methods are sufficient to evaluate the risks associated with nanoparticle inhalation has led to the emergence of Air-Liquid interface toxicology. As a step in this process, this study explores the evolution of particle characteristics as they move from the airborne state into physiological solution. Airborne gold nanoparticles (AuNP) are generated using an evaporation-condensation technique. Spherical and agglomerate AuNPs are deposited into physiological solutions of increasing biological complexity. The AuNP size is characterized in air as mobility diameter and in liquid as hydrodynamic diameter. AuNP:Protein aggregation in physiological solutions is determined using dynamic light scattering, particle tracking analysis, and UV absorption spectroscopy. AuNPs deposited into homocysteine buffer form large gold-aggregates. Spherical AuNPs deposited in solutions of albumin were trapped at the Air-Liquid interface but was readily suspended in the solutions with a size close to that of the airborne particles, indicating that AuNP:Protein complex formation is promoted. Deposition into serum and lung fluid resulted in larger complexes, reflecting the formation of a more complex protein corona. UV absorption spectroscopy indicated no further aggregation of the AuNPs after deposition in solution. The corona of the deposited AuNPs shows differences compared to AuNPs generated in suspension. Deposition of AuNPs from the aerosol phase into biological fluids offers a method to study the protein corona formed, upon inhalation and deposition in the lungs in a more realistic way compared to particle liquid suspensions. This is important since the protein corona together with key particle properties (e.g. size, shape and surface reactivity) to a large extent may determine the nanoparticle effects and possible translocation to other organs. PMID:24086363

  6. Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs. low-yield pathways

    Directory of Open Access Journals (Sweden)

    D. K. Henze

    2008-05-01

    Full Text Available Formation of SOA from the aromatic species toluene, xylene, and, for the first time, benzene, is added to a global chemical transport model. A simple mechanism is presented that accounts for competition between low and high-yield pathways of SOA formation, wherein secondary gas-phase products react further with either nitric oxide (NO or hydroperoxy radical (HO2 to yield semi- or non-volatile products, respectively. Aromatic species yield more SOA when they react with OH in regions where the [NO]/[HO2] ratios are lower. The SOA yield thus depends upon the distribution of aromatic emissions, with biomass burning emissions being in areas with lower [NO]/[HO2] ratios, and the reactivity of the aromatic with respect to OH, as a lower initial reactivity allows transport away from industrial source regions, where [NO]/[HO2] ratios are higher, to more remote regions, where this ratio is lower and, hence, the ultimate yield of SOA is higher. As a result, benzene is estimated to be the most important aromatic species with regards to global formation of SOA, with a total production nearly equal that of toluene and xylene combined. Global production of SOA from aromatic sources via the mechanisms identified here is estimated at 3.5 Tg/yr, resulting in a global burden of 0.08 Tg, twice as large as previous estimates. The contribution of these largely anthropogenic sources to global SOA is still small relative to biogenic sources, which are estimated to comprise 90% of the global SOA burden, about half of which comes from isoprene. Uncertainty in these estimates owing to factors ranging from the atmospheric relevance of chamber conditions to model deficiencies result in an estimated range of SOA production from aromatics of 2–12 Tg/yr. Though this uncertainty range affords a significant anthropogenic contribution to global SOA, it is evident from comparisons to recent observations that additional pathways for

  7. American Association for Aerosol Research (AAAR) `95

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Fourteenth annual meeting of the American Association for Aerosol Research was held October 9-13, 1995 at Westin William Penn Hotel in Pittsburgh, PA. This volume contains the abstracts of the papers and poster sessions presented at this meeting, grouped by the session in which they were presented as follows: Radiation Effects; Aerosol Deposition; Collision Simulations and Microphysical Behavior; Filtration Theory and Measurements; Materials Synthesis; Radioactive and Nuclear Aerosols; Aerosol Formation, Thermodynamic Properties, and Behavior; Particle Contamination Issues in the Computer Industry; Pharmaceutical Aerosol Technology; Modeling Global/Regional Aerosols; Visibility; Respiratory Deposition; Biomass and Biogenic Aerosols; Aerosol Dynamics; Atmospheric Aerosols.

  8. Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO2 emission controls

    Directory of Open Access Journals (Sweden)

    E. A. Marais

    2016-02-01

    Full Text Available Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA, but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for isoprene SOA formation coupled to a detailed gas-phase isoprene oxidation scheme. The mechanism is based on aerosol reactive uptake coefficients (γ for water-soluble isoprene oxidation products, including sensitivity to aerosol acidity and nucleophile concentrations. We apply this mechanism to simulation of aircraft (SEAC4RS and ground-based (SOAS observations over the southeast US in summer 2013 using the GEOS-Chem chemical transport model. Emissions of nitrogen oxides (NOx  ≡  NO + NO2 over the southeast US are such that the peroxy radicals produced from isoprene oxidation (ISOPO2 react significantly with both NO (high-NOx pathway and HO2 (low-NOx pathway, leading to different suites of isoprene SOA precursors. We find a mean SOA mass yield of 3.3 % from isoprene oxidation, consistent with the observed relationship of total fine organic aerosol (OA and formaldehyde (a product of isoprene oxidation. Isoprene SOA production is mainly contributed by two immediate gas-phase precursors, isoprene epoxydiols (IEPOX, 58 % of isoprene SOA from the low-NOx pathway and glyoxal (28 % from both low- and high-NOx pathways. This speciation is consistent with observations of IEPOX SOA from SOAS and SEAC4RS. Observations show a strong relationship between IEPOX SOA and sulfate aerosol that we explain as due to the effect of sulfate on aerosol acidity and volume. Isoprene SOA concentrations increase as NOx emissions decrease (favoring the low-NOx pathway for isoprene oxidation, but decrease more strongly as SO2 emissions decrease (due to the effect of sulfate on aerosol acidity and volume. The US Environmental Protection Agency (EPA projects 2013–2025 decreases in

  9. Modeling biogenic secondary organic aerosol (BSOA) formation from monoterpene reactions with NO3: A case study of the SOAS campaign using CMAQ

    Science.gov (United States)

    Qin, Momei; Hu, Yongtao; Wang, Xuesong; Vasilakos, Petros; Boyd, Christopher M.; Xu, Lu; Song, Yu; Ng, Nga Lee; Nenes, Athanasios; Russell, Armistead G.

    2018-07-01

    Monoterpenes react with nitrate radicals (NO3), contributing substantially to nighttime organic aerosol (OA) production. In this study, the role of reactions of monoterpenes + NO3 in forming biogenic secondary organic aerosol (BSOA) was examined using the Community Multiscale Air Quality (CMAQ) model, with extended emission profiles of biogenic volatile organic compounds (BVOCs), species-specific representations of BSOA production from individual monoterpenes and updated aerosol yields for monoterpene + NO3. The model results were compared to detailed measurements from the Southern Oxidants and Aerosol Study (SOAS) at Centreville, Alabama. With the more detailed model, monoterpene-derived BSOA increased by ∼1 μg m-3 at night, accounting for one-third of observed less-oxidized oxygenated OA (LO-OOA), more closely agreeing with observations (lower error, stronger correlation). Implementation of a multigenerational oxidation approach resulted in the model capturing elevated OA episodes. With the aging model, aged semi-volatile organic compounds (ASVOCs) contributed over 60% of the monoterpene-derived BSOA, followed by SOA formation via nitrate radical chemistry, making up to 34% of that formed at night. Among individual monoterpenes, β-pinene and limonene contributed most to the monoterpene-derived BSOA from nighttime reactions.

  10. NGC 1266 As a local candidate for rapid cessation of star formation

    Energy Technology Data Exchange (ETDEWEB)

    Alatalo, Katherine; Graves, Genevieve; Blitz, Leo [Department of Astronomy, Hearst Field Annex, University of California, Berkeley, CA 94720 (United States); Nyland, Kristina; Young, Lisa M. [Physics Department, New Mexico Technology, Socorro, NM 87801 (United States); Deustua, Susana [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Griffin, Kristen Shapiro [Space Sciences Research Group, Northrop Grumman Aerospace Systems, Redondo Beach, CA 90278 (United States); Duc, Pierre-Alain; Bournaud, Frédéric [Laboratoire AIM Paris-Saclay, CEA/IRFU/SAp—CNRS—Université Paris Diderot, F-91191 Gif-sur-Yvette, Cedex (France); Cappellari, Michele; Bayet, Estelle; Bureau, Martin; Davies, Roger L. [Sub-Department of Astrophysics, Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); McDermid, Richard M. [Australian Astronomical Observatory, P.O. Box 296, Epping, NSW 1710 (Australia); Davis, Timothy A. [European Southern Observatory, Karl-Schwarzschild-Street 2, D-85748 Garching (Germany); Crocker, Alison F. [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); Chang, Philip [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201 (United States); Scott, Nicholas [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn VIC 3122 (Australia); Cales, Sabrina L. [Department of Astronomy, Faculty of Physical and Mathematical Sciences, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Bois, Maxime [Observatoire de Paris, LERMA and CNRS, 61 Avenue de l' Observatoire, F-75014 Paris (France); and others

    2014-01-10

    We present new Spectrographic Areal Unit for Research on Optical Nebulae (SAURON) integral-field spectroscopy and Swift Ultraviolet Optical Telescope (UVOT) observations of molecular outflow host galaxy NGC 1266 that indicate NGC 1266 has experienced a rapid cessation of star formation. Both the SAURON maps of stellar population age and the Swift UVOT observations demonstrate the presence of young (<1 Gyr) stellar populations within the central 1 kpc, while existing Combined Array for Research in Millimeter-Wave Astronomy CO(1-0) maps indicate that the sites of current star formation are constrained to only the inner few hundred parsecs of the galaxy. The optical spectrum of NGC 1266 from Moustakas and Kennicutt reveal a characteristic poststarburst (K+A) stellar population, and Davis et al. confirm that ionized gas emission in the system originate from a shock. Galaxies with K+A spectra and shock-like ionized gas line ratios may comprise an important, overlooked segment of the poststarburst population, containing exactly those objects in which the active galactic nucleus (AGN) is actively expelling the star-forming material. While AGN activity is not the likely driver of the poststarburst event that occurred 500 Myr ago, the faint spiral structure seen in the Hubble Space Telescope Wide-field Camera 3 Y-, J- and H-band imaging seems to point to the possibility of gravitational torques being the culprit. If the molecular gas were driven into the center at the same time as the larger scale galaxy disk underwent quenching, the AGN might be able to sustain the presence of molecular gas for ≳ 1 Gyr by cyclically injecting turbulent energy into the dense molecular gas via a radio jet, inhibiting star formation.

  11. Influence of intense secondary aerosol formation and long-range transport on aerosol chemistry and properties in the Seoul Metropolitan Area during spring time: results from KORUS-AQ

    Science.gov (United States)

    Kim, Hwajin; Zhang, Qi; Heo, Jongbae

    2018-05-01

    Non-refractory submicrometer particulate matter (NR-PM1) was measured in the Seoul Metropolitan Area (SMA), Korea, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) from 14 April to 15 June 2016, as a part of the Korea-US Air Quality Study (KORUS-AQ) campaign. This was the first highly time-resolved, real-time measurement study of springtime aerosol in SMA and the results reveal valuable insights into the sources and atmospheric processes that contribute to PM pollution in this region. The average concentration of submicrometer aerosol (PM1 = NR-PM1 + black carbon (BC)) was 22.1 µg m-3, which was composed of 44 % organics, 20 % sulfate, 17 % nitrate, 12 % ammonium, and 7 % BC. Organics had an average atomic oxygen-to-carbon (O / C) ratio of 0.49 and an average organic mass-to-carbon (OM/OC) ratio of 1.82. Four distinct sources of OA were identified via positive matrix factorization (PMF) analysis of the HR-ToF-AMS data: vehicle emissions represented by a hydrocarbon-like OA factor (HOA; O / C = 0.15; 17 % of OA mass), food cooking activities represented by a cooking-influenced OA factor (COA; O / C = 0.19; 22 % of OA mass), and secondary organic aerosol (SOA) represented by a semi-volatile oxygenated OA factor (SV-OOA; O / C = 0.44; 27 % of OA mass) and a low-volatility oxygenated OA factor (LV-OOA; O / C = 0.91; 34 % of OA mass). Our results indicate that air quality in SMA during KORUS-AQ was influenced strongly by secondary aerosol formation, with sulfate, nitrate, ammonium, SV-OOA, and LV-OOA together accounting for 76 % of the PM1 mass. In particular, the formation of LV-OOA and sulfate was mainly promoted by elevated ozone concentrations and photochemical reactions during daytime, whereas SV-OOA and nitrate formation was contributed by both nocturnal processing of VOC and nitrogen oxides, respectively, and daytime photochemical reactions. In addition, lower nighttime temperature promoted gas-to-particle partitioning of

  12. Quantifying dust plume formation and aerosol size distribution during the Saharan Mineral Dust Experiment in North Africa

    KAUST Repository

    Khan, Basit Ali; Stenchikov, Georgiy L.; Weinzierl, Bernadett; Kalenderski, Stoitchko; Osipov, Sergey

    2015-01-01

    outflow are key mechanisms that form a surface--detached aerosol plume over the ocean. Comparisons of simulated dust size distributions with airplane and ground--based observations are generally good, but suggest that more detailed treatment

  13. Compact Layers of Hybrid Halide Perovskites Fabricated via the Aerosol Deposition Process-Uncoupling Material Synthesis and Layer Formation.

    Science.gov (United States)

    Panzer, Fabian; Hanft, Dominik; Gujar, Tanaji P; Kahle, Frank-Julian; Thelakkat, Mukundan; Köhler, Anna; Moos, Ralf

    2016-04-08

    We present the successful fabrication of CH₃NH₃PbI₃ perovskite layers by the aerosol deposition method (ADM). The layers show high structural purity and compactness, thus making them suitable for application in perovskite-based optoelectronic devices. By using the aerosol deposition method we are able to decouple material synthesis from layer processing. Our results therefore allow for enhanced and easy control over the fabrication of perovskite-based devices, further paving the way for their commercialization.

  14. Rapid formation of electric field profiles in repetitively pulsed high-voltage high-pressure nanosecond discharges

    International Nuclear Information System (INIS)

    Ito, Tsuyohito; Kobayashi, Kazunobu; Hamaguchi, Satoshi; Czarnetzki, Uwe

    2010-01-01

    Rapid formation of electric field profiles has been observed directly for the first time in nanosecond narrow-gap parallel-plate discharges at near-atmospheric pressure. The plasmas examined here are of hydrogen, and the field measurement is based on coherent Raman scattering (CRS) by hydrogen molecules. Combined with the observation of spatio-temporal light emission profiles by a high speed camera, it has been found that the rapid formation of a high-voltage thin cathode sheath is accompanied by fast propagation of an ionization front from a region near the anode. Unlike well-known parallel-plate discharges at low pressure, the discharge formation process at high pressure is almost entirely driven by electron dynamics as ions and neutral species are nearly immobile during the rapid process. (fast track communication)

  15. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  16. Mechanism of texture formation by hot deformation in rapidly quenched FeNdB

    International Nuclear Information System (INIS)

    Li, L.; Graham, C.D. Jr.

    1990-01-01

    The development of crystallographic texture in rapidly quenched Fe 14 Nd 2 B has been investigated by hot deformation. The method was to catch the process in a state of partial completion, and then use transmission electron microscopy to examine the structure. The degree of texture formation was determined by x-ray diffraction and by magnetic measurements, and the hardness and the anisotropy in hardness were measured up to 600 degree C. It was concluded, in agreement with others but with additional evidence, that preferential growth of favorably oriented grains during plastic deformation produces the texture. The nature of the plastic deformation remains unclear, since no dislocations are observed in Fe 14 Nd 2 B. It was found that when samples are compressed at temperatures near 600 degree C under low stresses for long times, they become Nd rich at the bottom, presumably because of flow of the Nd-rich liquid phase under the influence of gravity. In such samples, plastic deformation and crystallographic orientation occurs preferentially at the Nd-rich end

  17. Individual language experience modulates rapid formation of cortical memory circuits for novel words

    Science.gov (United States)

    Kimppa, Lilli; Kujala, Teija; Shtyrov, Yury

    2016-01-01

    Mastering multiple languages is an increasingly important ability in the modern world; furthermore, multilingualism may affect human learning abilities. Here, we test how the brain’s capacity to rapidly form new representations for spoken words is affected by prior individual experience in non-native language acquisition. Formation of new word memory traces is reflected in a neurophysiological response increase during a short exposure to novel lexicon. Therefore, we recorded changes in electrophysiological responses to phonologically native and non-native novel word-forms during a perceptual learning session, in which novel stimuli were repetitively presented to healthy adults in either ignore or attend conditions. We found that larger number of previously acquired languages and earlier average age of acquisition (AoA) predicted greater response increase to novel non-native word-forms. This suggests that early and extensive language experience is associated with greater neural flexibility for acquiring novel words with unfamiliar phonology. Conversely, later AoA was associated with a stronger response increase for phonologically native novel word-forms, indicating better tuning of neural linguistic circuits to native phonology. The results suggest that individual language experience has a strong effect on the neural mechanisms of word learning, and that it interacts with the phonological familiarity of the novel lexicon. PMID:27444206

  18. Aerosol number size distribution and new particle formation at a rural/coastal site in Pearl River Delta (PRD) of China

    Science.gov (United States)

    Liu, Shang; Hu, Min; Wu, Zhijun; Wehner, Birgit; Wiedensohler, Alfred; Cheng, Yafang

    Continuous measurements of aerosol number size distribution in the range of 3 nm-10 μm were performed in Pearl River Delta (PRD), China. These measurements were made during the period of 3 October to 5 November in 2004 at rural/coastal site, Xinken (22°37'N, 113°35'E, 6 m above sea level), in the south suburb of Guangzhou City (22°37'N, 113°35'E, 6 m above sea level), using a Twin Differential Mobility Particle Sizer (TDMPS) combined with an Aerodynamic Particle Sizer (APS). The aerosol particles at Xinken were divided into four groups according to the observation results: nucleation mode particles (3-30 nm), Aitken mode particles (30-130 nm), accumulation mode particles (130-1000 nm) and coarse mode particles (1-10 μm). Concentrations of nucleation mode, Aitken mode and accumulation mode particles were observed in the same order of magnitude (about 10,000 cm -3), among which the concentration of Aitken mode particle was the highest. The Aitken mode particles usually had two peaks: the morning peak may be caused by the land-sea circulation, which is proven to be important for transporting aged aerosols back to the sampling site, while the noon peak was ascribed to the condensational growth of new particles. New particle formation events were found on 7 days of 27 days, the new particle growth rates ranged from 2.2 to 19.8 nm h -1 and the formation rates ranged from 0.5 to 5.2 cm -3 s -1, both of them were in the range of typical observed formation rates (0.01-10 cm -3 s -1) and typical particle growth rates (1-20 nm h -1). The sustained growth of the new particles for several hours under steady northeast wind indicated that the new particle formation events may occur in a large homogeneous air mass.

  19. Estimate of biogenic VOC emissions in Japan and their effects on photochemical formation of ambient ozone and secondary organic aerosol

    Science.gov (United States)

    Chatani, Satoru; Matsunaga, Sou N.; Nakatsuka, Seiji

    2015-11-01

    A new gridded database has been developed to estimate the amount of isoprene, monoterpene, and sesquiterpene emitted from all the broadleaf and coniferous trees in Japan with the Model of Emissions of Gases and Aerosols from Nature (MEGAN). This database reflects the vegetation specific to Japan more accurately than existing ones. It estimates much lower isoprene emitted from other vegetation than trees, and higher sesquiterpene emissions mainly emitted from Cryptomeria japonica, which is the most abundant plant type in Japan. Changes in biogenic emissions result in the decrease in ambient ozone and increase in organic aerosol simulated by the air quality simulation over the Tokyo Metropolitan Area in Japan. Although newly estimated biogenic emissions contribute to a better model performance on overestimated ozone and underestimated organic aerosol, they are not a single solution to solve problems associated with the air quality simulation.

  20. Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010

    Science.gov (United States)

    Hayes, P. L.; Carlton, A. G.; Baker, K. R.; Ahmadov, R.; Washenfelder, R. A.; Alvarez, S.; Rappengluck, B.; Gilman, J. B.; Kuster, W. C.; de Gouw, J. A.; Zotter, P.; Prevot, A. S. H.; Szidat, S.; Kleindienst, T. E.; Offenberg, J. H.; Ma, P. K.; Jimenez, J. L.

    2015-05-01

    Four different literature parameterizations for the formation and evolution of urban secondary organic aerosol (SOA) frequently used in 3-D models are evaluated using a 0-D box model representing the Los Angeles metropolitan region during the California Research at the Nexus of Air Quality and Climate Change (CalNex) 2010 campaign. We constrain the model predictions with measurements from several platforms and compare predictions with particle- and gas-phase observations from the CalNex Pasadena ground site. That site provides a unique opportunity to study aerosol formation close to anthropogenic emission sources with limited recirculation. The model SOA that formed only from the oxidation of VOCs (V-SOA) is insufficient to explain the observed SOA concentrations, even when using SOA parameterizations with multi-generation oxidation that produce much higher yields than have been observed in chamber experiments, or when increasing yields to their upper limit estimates accounting for recently reported losses of vapors to chamber walls. The Community Multiscale Air Quality (WRF-CMAQ) model (version 5.0.1) provides excellent predictions of secondary inorganic particle species but underestimates the observed SOA mass by a factor of 25 when an older VOC-only parameterization is used, which is consistent with many previous model-measurement comparisons for pre-2007 anthropogenic SOA modules in urban areas. Including SOA from primary semi-volatile and intermediate-volatility organic compounds (P-S/IVOCs) following the parameterizations of Robinson et al. (2007), Grieshop et al. (2009), or Pye and Seinfeld (2010) improves model-measurement agreement for mass concentration. The results from the three parameterizations show large differences (e.g., a factor of 3 in SOA mass) and are not well constrained, underscoring the current uncertainties in this area. Our results strongly suggest that other precursors besides VOCs, such as P-S/IVOCs, are needed to explain the observed

  1. Compact Layers of Hybrid Halide Perovskites Fabricated via the Aerosol Deposition Process—Uncoupling Material Synthesis and Layer Formation

    Directory of Open Access Journals (Sweden)

    Fabian Panzer

    2016-04-01

    Full Text Available We present the successful fabrication of CH3NH3PbI3 perovskite layers by the aerosol deposition method (ADM. The layers show high structural purity and compactness, thus making them suitable for application in perovskite-based optoelectronic devices. By using the aerosol deposition method we are able to decouple material synthesis from layer processing. Our results therefore allow for enhanced and easy control over the fabrication of perovskite-based devices, further paving the way for their commercialization.

  2. Lithium vapor/aerosol studies. Interim summary report

    International Nuclear Information System (INIS)

    Whitlow, G.A.; Bauerle, J.E.; Down, M.G.; Wilson, W.L.

    1979-04-01

    The temperature/cover gas pressure regime, in which detectable lithium aerosol is formed in a static system has been mapped for argon and helium cover gases using a portable He--Ne laser device. At 538 0 C (1000 0 F), lithium aerosol particles were observed over the range 0.5 to 20 torr and 2 to 10 torr for argon and helium respectively. The experimental conditions in this study were more conducive to aerosol formation than in a fusion reactor. In the real reactor system, very high intensity mechanical and thermal disturbances will be made to the liquid lithium. These disturbances, particularly transient increases in lithium vapor pressure appear to be capable of producing high concentrations of optically-dense aerosol. A more detailed study is, therefore, proposed using the basic information generated in these preliminary experiments, as a starting point. Areas recommended include the kinetics of aerosol formation and the occurrence of supersaturated vapor during rapid vapor pressure transients, and also the effect of lithium agitation (falls, jets, splashing, etc.) on aerosol formation

  3. Size Distributions and Formation Pathways of Organic and Inorganic Constituents in Spring Aerosols from Okinawa Island in the Western North Pacific Rim: An Outflow Region of Asian Dusts

    Science.gov (United States)

    Deshmukh, D. K.; Lazaar, M.; Kawamura, K.; Kunwar, B.; Tachibana, E.; Boreddy, S. K. R.

    2015-12-01

    Size-segregated aerosols (9-stages) were collected at Okinawa Island in the western North Pacific Rim in spring 2008. The samples were analyzed for diacids (C2-C12), ω-oxoacids (ωC2-ωC9), a-dicarbonyls (C2-C3), organic carbon (OC), water-soluble OC (WSOC) and major ions to understand the sources and atmospheric processes in the outflow region of Asian pollutants. The molecular distribution of diacids showed the predominance of oxalic acid (C2) followed by malonic and succinic acids in all the size-segregated aerosols. ω-Oxoacids showed the predominance of glyoxylic acid (ωC2) whereas glyoxal (Gly) was more abundant than methylglyoxal in all the sizes. The abundant presence of sulfate as well as phthalic and adipic acids in Okinawa aerosols suggested a significant contribution of anthropogenic sources in East Asia via long-range atmospheric transport. Diacids (C2-C5), ωC2 and Gly as well as WSOC and OC peaked at 0.65-1.1 µm in fine mode whereas azelaic (C9) and 9-oxononanoic (ωC9) acids peaked at 3.3-4.7 µm in coarse mode. Sulfate and ammonium are enriched in fine mode whereas sodium and chloride are in coarse mode. An important mechanism for the formation of these organic species in Okinawa aerosols is probably gas phase oxidation of VOCs and subsequent in-cloud processing during long-range transport. Their characteristics size distribution implies that fine particles enriched with these organic and inorganic species could act as CCN to develop the cloud cover over the western North Pacific. The major peak of C9 and ωC9 on coarse mode suggest that they are produced by photooxidation of unsaturated fatty acids mainly derived from phytoplankton via heterogeneous reactions on sea spray particles. This study demonstrates that anthropogenic aerosols emitted from East Asia have significant influence on the compositions of organic and inorganic aerosols in the western North Pacific Rim.

  4. Modeling ozone and aerosol formation and transport in the pacific northwest with the community Multi-Scale Air Quality (CMAQ) modeling system.

    Science.gov (United States)

    O'Neill, Susan M; Lamb, Brian K; Chen, Jack; Claiborn, Candis; Finn, Dennis; Otterson, Sally; Figueroa, Cristiana; Bowman, Clint; Boyer, Mike; Wilson, Rob; Arnold, Jeff; Aalbers, Steven; Stocum, Jeffrey; Swab, Christopher; Stoll, Matt; Dubois, Mike; Anderson, Mary

    2006-02-15

    The Community Multi-Scale Air Quality (CMAQ) modeling system was used to investigate ozone and aerosol concentrations in the Pacific Northwest (PNW) during hot summertime conditions during July 1-15, 1996. Two emission inventories (El) were developed: emissions for the first El were based upon the National Emission Trend 1996 (NET96) database and the BEIS2 biogenic emission model, and emissions for the second El were developed through a "bottom up" approach that included biogenic emissions obtained from the GLOBEIS model. The two simulations showed that elevated PM2.5 concentrations occurred near and downwind of the Interstate-5 corridor along the foothills of the Cascade Mountains and in forested areas of central Idaho. The relative contributions of organic and inorganic aerosols varied by region, but generally organic aerosols constituted the largest fraction of PM2.5. In wilderness areas near the 1-5 corridor, organic carbon from anthropogenic sources contributed approximately 50% of the total organic carbon with the remainder from biogenic precursors, while in wilderness areas in Idaho, biogenic organic carbon accounted for 80% of the total organic aerosol. Regional analysis of the secondary organic aerosol formation in the Columbia River Gorge, Central Idaho, and the Olympics/Puget Sound showed that the production rate of secondary organic carbon depends on local terpene concentrations and the local oxidizing capacity of the atmosphere, which was strongly influenced by anthropogenic emissions. Comparison with observations from 12 IMPROVE sites and 21 ozone monitoring sites showed that results from the two El simulations generally bracketed the average observed PM parameters and that errors calculated for the model results were within acceptable bounds. Analysis across all statistical parameters indicated that the NW-AIRQUEST El solution performed better at predicting PM2.5, PM1, and beta(ext) even though organic carbon PM was over-predicted, and the NET96 El

  5. The 2005 catastrophic acid crater lake drainage, lahar, and acidic aerosol formation at Mount Chiginagak volcano, Alaska, USA: Field observations and preliminary water and vegetation chemistry results

    Science.gov (United States)

    Schaefer, J.R.; Scott, W.E.; Evans, William C.; Jorgenson, J.; McGimsey, R.G.; Wang, B.

    2008-01-01

    A mass of snow and ice 400-m-wide and 105-m-thick began melting in the summit crater of Mount Chiginagak volcano sometime between November 2004 and early May 2005, presumably owing to increased heat flux from the hydrothermal system, or possibly from magma intrusion and degassing. In early May 2005, an estimated 3.8??106 m3 of sulfurous, clay-rich debris and acidic water, with an accompanying acidic aerosol component, exited the crater through a tunnel at the base of a glacier that breaches the south crater rim. Over 27 km downstream, the acidic waters of the flood inundated an important salmon spawning drainage, acidifying Mother Goose Lake from surface to depth (approximately 0.5 km3 in volume at a pH of 2.9 to 3.1), killing all aquatic life, and preventing the annual salmon run. Over 2 months later, crater lake water sampled 8 km downstream of the outlet after considerable dilution from glacial meltwater was a weak sulfuric acid solution (pH = 3.2, SO4 = 504 mg/L, Cl = 53.6 mg/L, and F = 7.92 mg/L). The acid flood waters caused severe vegetation damage, including plant death and leaf kill along the flood path. The crater lake drainage was accompanied by an ambioructic flow of acidic aerosols that followed the flood path, contributing to defoliation and necrotic leaf damage to vegetation in a 29 km2 area along and above affected streams, in areas to heights of over 150 m above stream level. Moss species killed in the event contained high levels of sulfur, indicating extremely elevated atmospheric sulfurcontent. The most abundant airborne phytotoxic constituent was likely sulfuric acid aerosols that were generated during the catastrophic partial crater lake drainage event. Two mechanisms of acidic aerosol formation are proposed: (1) generation of aerosol mist through turbulent flow of acidic water and (2) catastrophic gas exsolution. This previously undocumented phenomenon of simultaneous vegetationdamaging acidic aerosols accompanying drainage of an acidic crater

  6. High pollution events in the Great Salt Lake Basin and its adjacent valleys. Insights on mechanisms and spatial distribution of the formation of secondary aerosol.

    Science.gov (United States)

    Franchin, A.; Middlebrook, A. M.; Baasandorj, M.; Brown, S. S.; Fibiger, D. L.; Goldberger, L.; McDuffie, E. E.; Moravek, A.; Murphy, J. G.; Thornton, J. A.; Womack, C.

    2017-12-01

    High pollution events are common in many locations in the U.S.A. and around the world. They can last several days or up to weeks and they negatively affect human health, deteriorate visibility, and increase premature mortality. The main causes for high pollution events are related to meteorology and sources. They often happen in the winter, when high emissions, stagnation and reduced mixing, due to a shallow boundary layer, cause high concentrations of pollutants to accumulate. In the last decades, the air quality in the U.S. has seen an overall improvement, due to the reductions in particulate and gaseous pollutants. However, some areas remain critical. The Great Salt Lake Basin and its adjacent valleys are currently areas where high pollution events are a serious environmental problem involving more than 2.4 million people. We will present the results of the Utah Wintertime Fine Particulate Study (UWFPS) that took place in winter 2017. During UWFPS, we carried out airborne measurements of aerosol chemical composition and precursor vapor concentrations over the Great Salt Lake Basin and its adjacent valleys. We will give insights into how and under which conditions conversion of precursor vapors into aerosol particles takes place in the area. We will also present a comparison of our measurements with models that will provide an insight of the mechanisms that lead to the formation of secondary aerosol particles. With the results of our work, we aim to inform strategies for pollution control in the future.

  7. Rapid Myoglobin Aggregation through Glucosamine-Induced α-Dicarbonyl Formation.

    Science.gov (United States)

    Hrynets, Yuliya; Ndagijimana, Maurice; Betti, Mirko

    2015-01-01

    The extent of glycation and conformational changes of horse myoglobin (Mb) upon glycation with N-acetyl-glucosamine (GlcNAc), glucose (Glc) and glucosamine (GlcN) were investigated. Among tested sugars, the rate of glycation with GlcN was the most rapid as shown by MALDI and ESI mass spectrometries. Protein oxidation, as evaluated by the amount of carbonyl groups present on Mb, was found to increase exponentially in Mb-Glc conjugates over time, whereas in Mb-GlcN mixtures the carbonyl groups decreased significantly after maximum at 3 days of the reaction. The reaction between GlcN and Mb resulted in a significantly higher amount of α-dicarbonyl compounds, mostly glucosone and 3-deoxyglucosone, ranging from and 27 to 332 mg/L and from 14 to 304 mg/L, respectively. Already at 0.5 days, tertiary structural changes of Mb-GlcN conjugate were observed by altered tryptophan fluorescence. A reduction of metmyoglobin to deoxy-and oxymyoglobin forms was observed on the first day of reaction, coinciding with the greatest amount of glucosone produced. In contrast to native α-helical myoglobin, 41% of the glycated protein sequence was transformed into a β-sheet conformation, as determined by circular dichroism spectropolarimetry. Transmission electron microscopy demonstrated that Mb glycation with GlcN causes the formation of amorphous or fibrous aggregates, started already at 3 reaction days. These aggregates bind to an amyloid-specific dye thioflavin T. With the aid of α-dicarbonyl compounds and advanced products of reaction, this study suggests that the Mb glycation with GlcN induces the unfolding of an initially globular protein structure into amyloid fibrils comprised of a β-sheet structure.

  8. Rapid formation of cholesterol crystals in gallbladder bile is associated with stone recurrence after laparoscopic cholecystotomy.

    Science.gov (United States)

    Jüngst, D; del Pozo, R; Dolu, M H; Schneeweiss, S G; Frimberger, E

    1997-03-01

    Laparoscopic cholecystotomy (LCT) with subsequent extraction of gallstones and primary closure of the gallbladder has been introduced as an alternative therapy for patients with cholecystolithiasis and preserved gallbladder function. However, stone recurrence has to be considered as a major drawback that might be related to lithogenic factors of gallbladder bile or the composition of gallbladder stones. Therefore, these were studied in relation to stone recurrence within an observation period of 1 to 5 years (median, 3.6 years) in 50 patients after LCT. The concentrations of total and individual bile acids, phospholipids, cholesterol, total lipids, mucin, protein, and the cholesterol saturation indices in gallbladder bile were not significantly different between 10 patients with and 40 patients without stone recurrence. However, the crystal observation time was significantly (P < .02) shorter (range, 1-2 days; median, 1.5) in the bile of patients with stone recurrence compared to those without (range, 1-21 days, median 3.5). Moreover, all 10 stone recurrences were observed in the 28 patients with a crystal observation time in the bile of less than or equal to 2 days (approximate annual risk: 12%-15%), and no recurrences were observed in the 22 patients with a crystal observation time greater than 2 days (P < .0001) or in patients with pigment stones. The rapid formation of cholesterol monohydrate crystals in bile seems to be the major risk factor for recurrent stones after LCT. These are most likely cholesterol stones and, therefore, are amenable to oral bile-acid prevention or treatment.

  9. Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers.

    Science.gov (United States)

    Chen, Kejie; Wu, Mengxi; Guo, Feng; Li, Peng; Chan, Chung Yu; Mao, Zhangming; Li, Sixing; Ren, Liqiang; Zhang, Rui; Huang, Tony Jun

    2016-07-05

    The multicellular spheroid is an important 3D cell culture model for drug screening, tissue engineering, and fundamental biological research. Although several spheroid formation methods have been reported, the field still lacks high-throughput and simple fabrication methods to accelerate its adoption in drug development industry. Surface acoustic wave (SAW) based cell manipulation methods, which are known to be non-invasive, flexible, and high-throughput, have not been successfully developed for fabricating 3D cell assemblies or spheroids, due to the limited understanding on SAW-based vertical levitation. In this work, we demonstrated the capability of fabricating multicellular spheroids in the 3D acoustic tweezers platform. Our method used drag force from microstreaming to levitate cells in the vertical direction, and used radiation force from Gor'kov potential to aggregate cells in the horizontal plane. After optimizing the device geometry and input power, we demonstrated the rapid and high-throughput nature of our method by continuously fabricating more than 150 size-controllable spheroids and transferring them to Petri dishes every 30 minutes. The spheroids fabricated by our 3D acoustic tweezers can be cultured for a week with good cell viability. We further demonstrated that spheroids fabricated by this method could be used for drug testing. Unlike the 2D monolayer model, HepG2 spheroids fabricated by the 3D acoustic tweezers manifested distinct drug resistance, which matched existing reports. The 3D acoustic tweezers based method can serve as a novel bio-manufacturing tool to fabricate complex 3D cell assembles for biological research, tissue engineering, and drug development.

  10. Effects of cloudy/clear air mixing and droplet pH on sulfate aerosol formation in a coupled chemistry/climate global model

    Energy Technology Data Exchange (ETDEWEB)

    Molenkamp, C.R.; Atherton, C.A. [Lawrence Livermore National Lab., CA (United States); Penner, J.E.; Walton, J.J. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Atmospheric, Oceanic and Space Sciences

    1996-10-01

    In this paper we will briefly describe our coupled ECHAM/GRANTOUR model, provide a detailed description of our atmospheric chemistry parameterizations, and discuss a couple of numerical experiments in which we explore the influence of assumed pH and rate of mixing between cloudy and clear air on aqueous sulfate formation and concentration. We have used our tropospheric chemistry and transport model, GRANTOUR, to estimate the life cycle and global distributions of many trace species. Recently, we have coupled GRANTOUR with the ECHAM global climate model, which provides several enhanced capabilities in the representation of aerosol interactions.

  11. Mixing state of oxalic acid containing particles in the rural area of Pearl River Delta, China: implication for seasonal formation mechanism of Secondary Organic Aerosol (SOA)

    OpenAIRE

    Cheng, Chunlei; Li, Mei; Chan, Chak K.; Tong, Haijie; Chen, Changhong; Chen, Duohong; Wu, Dui; Li, Lei; Cheng, Peng; Gao, Wei; Huang, Zhengxu; Li, Xue; Fu, Zhong; Bi, Yanru; Zhou, Zhen

    2016-01-01

    The formation of oxalic acid and its mixing state in atmospheric particulate matter (PM) were studied using a single particle aerosol mass spectrometer (SPAMS) in the summer and winter of 2014 in Heshan, a supersite in the rural area of the Pearl River Delta (PRD) region in China. Oxalic acid-containing particles accounted for 2.5 % and 2.7 % in total detected ambient particles in summer and winter, respectively. Oxalic acid was measured in particles classified as elemental carb...

  12. Secondary Inorganic Aerosols over an Urban Location in North-Western Himalayan Region: Seasonal Variation in Composition and Formation Process(es)

    Science.gov (United States)

    Kaushal, D.; Tandon, A.

    2017-12-01

    Oxidative photo-chemical transformation of precursor gases, mainly of anthropogenic origin, produces secondary aerosols. Secondary inorganic aerosols constitute a significant fraction of total aerosol load over urban locations especially high altitude in wet-temperate climatic set-up. Towns situated in North-Western Himalayan region (NWHR) with sizable population and attractive tourist destinations have been facing ever increasing problem of gaseous and particulate air pollution from exponential increase in vehicular traffic and other anthropogenic emissions. The present study has been planned to investigate the seasonal variations in atmospheric processes responsible for the formation of Secondary Inorganic Aerosols (SIA) and to estimate contribution of SIA to PM­10 load over an Urban location, Dharamshala, in Dhauladhar region of NWHR. Twenty four hourly PM10 aerosol samples were collected, on quartz micro fibre filters in Dharamshala (1350 amsl) on weekly basis for complete one year time-period (February 2015 - January 2016). These samples were analyzed for Water Soluble Inorganic Ions (WSII) using Ion-Chromatographic System. On annual basis, SO42- ions contributed maximum (52%) followed by NO3- (13%) and NH4+ (12%) to WSII. Based upon Principal Component Analysis (PCA), dominant sources contributing to PM10 associated WSII were identified as: Fossil-Fuel and Bio-mass burning, Vehicular (mainly diesel) emissions and gaseous emissions from the microbial degradation of dead bio-mass. Throughout the year, significantly high proportion of SO42- and considerable thermodynamic stability of (NH4)2SO2 at ambient temperatures, made it the major contributor to SIA over NH4NO3 and NH4Cl. On seasonal basis, maximum contribution of SIA to PM10 was observed in monsoon followed by the winter season. Low ambient temperature in winter season favoured formation of NH4NO3 with significant contribution to SIA. It could be concluded that observed variability in the composition and

  13. Formation of organic aerosol in the Paris region during the MEGAPOLI summer campaign: evaluation of the volatility-basis-set approach within the CHIMERE model

    Directory of Open Access Journals (Sweden)

    Q. J. Zhang

    2013-06-01

    Full Text Available Simulations with the chemistry transport model CHIMERE are compared to measurements performed during the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation summer campaign in the Greater Paris region in July 2009. The volatility-basis-set approach (VBS is implemented into this model, taking into account the volatility of primary organic aerosol (POA and the chemical aging of semi-volatile organic species. Organic aerosol is the main focus and is simulated with three different configurations with a modified treatment of POA volatility and modified secondary organic aerosol (SOA formation schemes. In addition, two types of emission inventories are used as model input in order to test the uncertainty related to the emissions. Predictions of basic meteorological parameters and primary and secondary pollutant concentrations are evaluated, and four pollution regimes are defined according to the air mass origin. Primary pollutants are generally overestimated, while ozone is consistent with observations. Sulfate is generally overestimated, while ammonium and nitrate levels are well simulated with the refined emission data set. As expected, the simulation with non-volatile POA and a single-step SOA formation mechanism largely overestimates POA and underestimates SOA. Simulation of organic aerosol with the VBS approach taking into account the aging of semi-volatile organic compounds (SVOC shows the best correlation with measurements. High-concentration events observed mostly after long-range transport are well reproduced by the model. Depending on the emission inventory used, simulated POA levels are either reasonable or underestimated, while SOA levels tend to be overestimated. Several uncertainties related to the VBS scheme (POA volatility, SOA yields, the aging parameterization, to emission input data, and to simulated OH levels can be responsible for

  14. The effect of mixing rates on the formation and growth of condensation aerosols in a model stagnation flow

    KAUST Repository

    Alshaarawi, Amjad; Bisetti, Fabrizio

    2015-01-01

    A steady, laminar stagnation flow configuration is adopted to investigate numerically the interaction between condensing aerosol particles and gas-phase transport across a canonical mixing layer. The mixing rates are varied by adjusting the velocity and length scales of the stagnation flow parametrically. The effect of mixing rates on particle concentration, polydispersity, and mean droplet diameter is explored and discussed. This numerical study reveals a complex response of the aerosol to varying flow times. Depending on the flow time, the variation of the particle concentration in response to varying mixing rates falls into one of the two regimes. For fast mixing rates, the number density and volume fraction of the condensing particles increase with residence time (nucleation regime). On the contrary, for low mixing rates, number density decreases with residence time and volume fraction reaches a plateau (condensation regime). It is shown that vapor scavenging by the aerosol phase is key to explaining the transition between these two regimes. The results reported here are general and illustrate genuine features of the evolution of aerosols forming by condensation of supersaturated vapor from heat and mass transport across mixing layers.

  15. Formation of molecular bromine from the reaction of ozone with deliquesced NaBr aerosol: Evidence for interface chemistry

    Czech Academy of Sciences Publication Activity Database

    Hunt, S. W.; Roeselová, Martina; Wang, W.; Wingen, L. M.; Knipping, E. M.; Tobias, D. J.; Dabdub, D.; Finlayson-Pitts, B. J.

    2004-01-01

    Roč. 108, - (2004), s. 11559-11572 ISSN 1089-5639 Grant - others:NSF(US) 0209719; NSF(US) 0431512 Institutional research plan: CEZ:AV0Z4055905 Keywords : ozone * sea-salt aerosol * molecular dynamics simulation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.639, year: 2004

  16. The effect of mixing rates on the formation and growth of condensation aerosols in a model stagnation flow

    KAUST Repository

    Alshaarawi, Amjad

    2015-03-01

    A steady, laminar stagnation flow configuration is adopted to investigate numerically the interaction between condensing aerosol particles and gas-phase transport across a canonical mixing layer. The mixing rates are varied by adjusting the velocity and length scales of the stagnation flow parametrically. The effect of mixing rates on particle concentration, polydispersity, and mean droplet diameter is explored and discussed. This numerical study reveals a complex response of the aerosol to varying flow times. Depending on the flow time, the variation of the particle concentration in response to varying mixing rates falls into one of the two regimes. For fast mixing rates, the number density and volume fraction of the condensing particles increase with residence time (nucleation regime). On the contrary, for low mixing rates, number density decreases with residence time and volume fraction reaches a plateau (condensation regime). It is shown that vapor scavenging by the aerosol phase is key to explaining the transition between these two regimes. The results reported here are general and illustrate genuine features of the evolution of aerosols forming by condensation of supersaturated vapor from heat and mass transport across mixing layers.

  17. New particle formation in the sulfuric acid–dimethylamine–water system: reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model

    Directory of Open Access Journals (Sweden)

    A. Kürten

    2018-01-01

    Full Text Available A recent CLOUD (Cosmics Leaving OUtdoor Droplets chamber study showed that sulfuric acid and dimethylamine produce new aerosols very efficiently and yield particle formation rates that are compatible with boundary layer observations. These previously published new particle formation (NPF rates are reanalyzed in the present study with an advanced method. The results show that the NPF rates at 1.7 nm are more than a factor of 10 faster than previously published due to earlier approximations in correcting particle measurements made at a larger detection threshold. The revised NPF rates agree almost perfectly with calculated rates from a kinetic aerosol model at different sizes (1.7 and 4.3 nm mobility diameter. In addition, modeled and measured size distributions show good agreement over a wide range of sizes (up to ca. 30 nm. Furthermore, the aerosol model is modified such that evaporation rates for some clusters can be taken into account; these evaporation rates were previously published from a flow tube study. Using this model, the findings from the present study and the flow tube experiment can be brought into good agreement for the high base-to-acid ratios (∼ 100 relevant for this study. This confirms that nucleation proceeds at rates that are compatible with collision-controlled (a.k.a. kinetically controlled NPF for the conditions during the CLOUD7 experiment (278 K, 38 % relative humidity, sulfuric acid concentration between 1  ×  106 and 3  ×  107 cm−3, and dimethylamine mixing ratio of ∼  40 pptv, i.e., 1  ×  109 cm−3.

  18. New particle formation in the sulfuric acid-dimethylamine-water system: reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model

    Science.gov (United States)

    Kürten, Andreas; Li, Chenxi; Bianchi, Federico; Curtius, Joachim; Dias, António; Donahue, Neil M.; Duplissy, Jonathan; Flagan, Richard C.; Hakala, Jani; Jokinen, Tuija; Kirkby, Jasper; Kulmala, Markku; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Onnela, Antti; Rissanen, Matti P.; Simon, Mario; Sipilä, Mikko; Stozhkov, Yuri; Tröstl, Jasmin; Ye, Penglin; McMurry, Peter H.

    2018-01-01

    A recent CLOUD (Cosmics Leaving OUtdoor Droplets) chamber study showed that sulfuric acid and dimethylamine produce new aerosols very efficiently and yield particle formation rates that are compatible with boundary layer observations. These previously published new particle formation (NPF) rates are reanalyzed in the present study with an advanced method. The results show that the NPF rates at 1.7 nm are more than a factor of 10 faster than previously published due to earlier approximations in correcting particle measurements made at a larger detection threshold. The revised NPF rates agree almost perfectly with calculated rates from a kinetic aerosol model at different sizes (1.7 and 4.3 nm mobility diameter). In addition, modeled and measured size distributions show good agreement over a wide range of sizes (up to ca. 30 nm). Furthermore, the aerosol model is modified such that evaporation rates for some clusters can be taken into account; these evaporation rates were previously published from a flow tube study. Using this model, the findings from the present study and the flow tube experiment can be brought into good agreement for the high base-to-acid ratios (˜ 100) relevant for this study. This confirms that nucleation proceeds at rates that are compatible with collision-controlled (a.k.a. kinetically controlled) NPF for the conditions during the CLOUD7 experiment (278 K, 38 % relative humidity, sulfuric acid concentration between 1 × 106 and 3 × 107 cm-3, and dimethylamine mixing ratio of ˜ 40 pptv, i.e., 1 × 109 cm-3).

  19. The relative importance of competing pathways for the formation of high-molecular-weight peroxides in the ozonolysis of organic aerosol particles

    Directory of Open Access Journals (Sweden)

    M. Mochida

    2006-01-01

    Full Text Available High-molecular-weight (HMW organic compounds are an important component of atmospheric particles, although their origins, possibly including in situ formation pathways, remain incompletely understood. This study investigates the formation of HMW organic peroxides through reactions involving stabilized Criegee intermediates (SCI's. The model system is methyl oleate (MO mixed with dioctyl adipate (DOA and myristic acid (MA in submicron aerosol particles, and Criegee intermediates are formed by the ozonolysis of the double bond in methyl oleate. An aerosol flow tube coupled to a quadrupole aerosol mass spectrometer (AMS is employed to determine the relative importance of different HMW organic peroxides following the ozonolysis of different mixing mole fractions of MO in DOA and MA. Possible peroxide products include secondary ozonides (SOZ's, α-acyloxyalkyl hydroperoxides and α-acyloxyalkyl alkyl peroxides (αAAHP-type compounds, diperoxides, and monoperoxide oligomers. Of these, the AMS data identify two SOZ's as major HMW products in the ozonolysis of pure methyl oleate as well as in an inert matrix of DOA to as low as 0.04 mole fraction MO. In comparison, in mixed particles of MO and MA, αAAHP-type compounds form in high yields for MO mole fractions of 0.5 or less, suggesting that SCI's efficiently attack the carboxylic acid group of myristic acid. The reactions of SCI's with carboxylic acid groups to form αAAHP-type compounds therefore compete with those of SCI's with aldehydes to form SOZ's, provided that both types of functionalities are present at significant concentrations. The results therefore suggest that SCI's in atmospheric particles contribute to the transformation of carboxylic acids and other protic groups into HMW organic peroxides.

  20. Secondary organic aerosol formation by limonene ozonolysis: Parameterizing multi-generational chemistry in ozone- and residence time-limited indoor environments

    Science.gov (United States)

    Waring, Michael S.

    2016-11-01

    Terpene ozonolysis reactions can be a strong source of secondary organic aerosol (SOA) indoors. SOA formation can be parameterized and predicted using the aerosol mass fraction (AMF), also known as the SOA yield, which quantifies the mass ratio of generated SOA to oxidized terpene. Limonene is a monoterpene that is at sufficient concentrations such that it reacts meaningfully with ozone indoors. It has two unsaturated bonds, and the magnitude of the limonene ozonolysis AMF varies by a factor of ∼4 depending on whether one or both of its unsaturated bonds are ozonated, which depends on whether ozone is in excess compared to limonene as well as the available time for reactions indoors. Hence, this study developed a framework to predict the limonene AMF as a function of the ozone [O3] and limonene [lim] concentrations and the air exchange rate (AER, h-1), which is the inverse of the residence time. Empirical AMF data were used to calculate a mixing coefficient, β, that would yield a 'resultant AMF' as the combination of the AMFs due to ozonolysis of one or both of limonene's unsaturated bonds, within the volatility basis set (VBS) organic aerosol framework. Then, β was regressed against predictors of log10([O3]/[lim]) and AER (R2 = 0.74). The β increased as the log10([O3]/[lim]) increased and as AER decreased, having the physical meaning of driving the resultant AMF to the upper AMF condition when both unsaturated bonds of limonene are ozonated. Modeling demonstrates that using the correct resultant AMF to simulate SOA formation owing to limonene ozonolysis is crucial for accurate indoor prediction.

  1. Potential of select intermediate-volatility organic compounds and consumer products for secondary organic aerosol and ozone formation under relevant urban conditions

    Science.gov (United States)

    Li, Weihua; Li, Lijie; Chen, Chia-li; Kacarab, Mary; Peng, Weihan; Price, Derek; Xu, Jin; Cocker, David R.

    2018-04-01

    Emissions of certain low vapor pressure-volatile organic compounds (LVP-VOCs) are considered exempt to volatile organic compounds (VOC) regulations due to their low evaporation rates. However, these compounds may still play a role in ambient secondary organic aerosol (SOA) and ozone formation. The LVP-VOCs selected for this work are categorized as intermediate-volatility organic compounds (IVOCs) according to their vapor pressures and molecular formulas. In this study, the evaporation rates of 14 select IVOCs are investigated with half of them losing more than 95% of their mass in less than one month. Further, SOA and ozone formation are presented from 11 select IVOCs and 5 IVOC-containing generic consumer products under atmospherically relevant conditions using varying radical sources (NOx and/or H2O2) and a surrogate reactive organic gas (ROG) mixture. Benzyl alcohol (0.41), n-heptadecane (0.38), and diethylene glycol monobutyl ether (0.16) are determined to have SOA yields greater than 0.1 in the presence of NOx and a surrogate urban hydrocarbon mixture. IVOCs also influence ozone formation from the surrogate urban mixture by impacting radical levels and NOx availability. The addition of lab created generic consumer products has a weak influence on ozone formation from the surrogate mixture but strongly affects SOA formation. The overall SOA and ozone formation of the generic consumer products could not be explained solely by the results of the pure IVOC experiments.

  2. Aerosol nucleation and growth and their coupling to thermal hydraulics

    International Nuclear Information System (INIS)

    Clement, C.F.

    1985-01-01

    We examine the physical processes leading to vapour condensation as an aerosol in the formation and cooling of vapour-gas mixtures. Requirements for mathematical, computer and experimental modelling are discussed in relation to nuclear aerosols. In the absence of sudden pressure drops we give a complete schematic set of equations which govern the motion of aerosol, vapour, gas and heat including radiation. The coupling to the aerosol equation is mainly through the droplet growth rate, R, and a nucleation term whose possible forms are described. Rapid equilibration between vapour and aerosol means that the likely heterogeneous nucleation term must be treated separately. General forms are given for the coupling terms in the equations for vapour concentration and temperature in terms of the local mass transfer rate to the aerosol. The properties of this quantity are shown clearly by an expression for it obtained in terms of Lewis and condensation numbers and the quantify, zeta, whose derivative gives the local total heat transfer rate. Sizes of these numbers are given for some relevant vapour-gas mixtures. Throughout the paper we give the physical requirements necessary to make the transitions to the more calculable cases of uniform or well-mixed aerosols, and finally we discuss the case of initially unsaturated vapour-gas mixtures. (orig.)

  3. The continuous field measurements of soluble aerosol compositions at the Taipei Aerosol Supersite, Taiwan

    Science.gov (United States)

    Chang, Shih-Yu; Lee, Chung-Te; Chou, Charles C.-K.; Liu, Shaw-Chen; Wen, Tian-Xue

    The characteristics of ambient aerosols, affected by solar radiation, relative humidity, wind speed, wind direction, and gas-aerosol interaction, changed rapidly at different spatial and temporal scales. In Taipei Basin, dense traffic emissions and sufficient solar radiation for typical summer days favored the formation of secondary aerosols. In winter, the air quality in Taipei Basin was usually affected by the Asian continental outflows due to the long-range transport of pollutants carried by the winter monsoon. The conventional filter-based method needs a long time for collecting aerosols and analyzing compositions, which cannot provide high time-resolution data to investigate aerosol sources, atmospheric transformation processes, and health effects. In this work, the in situ ion chromatograph (IC) system was developed to provide 15-min time-resolution data of nine soluble inorganic species (Cl -, NO 2-, NO 3-, SO 42-, Na +, NH 4+, K +, Mg 2+ and Ca 2+). Over 89% of all particles larger than approximately 0.056 μm were collected by the in situ IC system. The in situ IC system is estimated to have a limit of detection lower than 0.3 μg m -3 for the various ambient ionic components. Depending on the hourly measurements, the pollutant events with high aerosol concentrations in Taipei Basin were associated with the local traffic emission in rush hour, the accumulation of pollutants in the stagnant atmosphere, the emission of industrial pollutants from the nearby factories, the photochemical secondary aerosol formation, and the long-range transport of pollutants from Asian outflows.

  4. On the role of ice-nucleating aerosol in the formation of ice particles in tropical mesoscale convective systems

    Science.gov (United States)

    Ladino, Luis A.; Korolev, Alexei; Heckman, Ivan; Wolde, Mengistu; Fridlind, Ann M.; Ackerman, Andrew S.

    2018-01-01

    Over decades, the cloud physics community has debated the nature and role of aerosol particles in ice initiation. The present study shows that the measured concentration of ice crystals in tropical mesoscale convective systems exceeds the concentration of ice nucleating particles (INPs) by several orders of magnitude. The concentration of INPs was assessed from the measured aerosol particles concentration in the size range of 0.5 to 1 µm. The observations from this study suggest that primary ice crystals formed on INPs make only a minor contribution to the total concentration of ice crystals in tropical mesoscale convective systems. This is found by comparing the predicted INP number concentrations with in-situ ice particle number concentrations. The obtained measurements suggest that ice multiplication is the likely explanation for the observed high concentrations of ice crystals in this type of convective system. PMID:29551842

  5. Influences of aerosol physiochemical properties and new particle formation on CCN activity from observation at a suburban site of China

    Science.gov (United States)

    Li, Yanan; Zhang, Fang; Li, Zhanqing; Sun, Li; Wang, Zhenzhu; Li, Ping; Sun, Yele; Ren, Jingye; Wang, Yuying; Cribb, Maureen; Yuan, Cheng

    2017-05-01

    With the aim of understanding the impact of aerosol particle size and chemical composition on CCN activity, the size-resolved cloud condensation nuclei (CCN) number concentration (NCCN), particle number size distribution (PSD) (10-600 nm), and bulk chemical composition of particles with a diameter China, from 22 July to 26 August 2014. The NCCN was measured at five different supersaturations (SS) ranging from 0.075%-0.76%. Diurnal variations in the aerosol number concentration (NCN), NCCN, the bulk aerosol activation ratio (AR), the hygroscopicity parameter (κchem), and the ratio of 44 mass to charge ration (m/z 44) to total organic signal in the component spectrum (f44), and the PSD were examined integrally to study the influence of particle size and chemical composition on CCN activation. We found that particle size was more related to the CCN activation ratios in the morning, whereas in the afternoon ( 1400 LST), κchem and f44 were more closely associated with the bulk AR. Assuming the internal mixing of aerosol particles, NCCN was estimated using the bulk chemical composition and real-time PSD. We found that the predicted CCN number concentrations were underestimated by 20-30% at SS case during non-NPF event. It has been found that CCN activation was restrained at the ;growth; stage during which larger particle diameters were needed to reach an activation diameter(Da), and the bulk AR decreased as well. However, during the ;leveling-off; stage, a lower Da was observed and CCN activation was greatly enhanced.

  6. Analyzing the Formation, Physicochemical, and Optical Properties of Aging Biomass Burning Aerosol Using an Indoor Smog Chamber

    Science.gov (United States)

    Smith, D. M.; Fiddler, M. N.; Bililign, S.; Spann, M.

    2017-12-01

    Biomass burning (BB) is recognized as one of the largest sources of absorbing aerosols in the atmosphere and significantly influences the radiative properties of the atmosphere. The chemical composition and physical properties of particles evolve during their atmospheric lifetime due to condensation, oxidation reactions, etc., which alters their optical properties. To this end, an indoor smog chamber was constructed to study aging BB aerosol in a laboratory setting. Injections to the chamber, including NOx, O3, and various biogenic and anthropogenic VOCs, can simulate a variety of atmospheric conditions. These components and some of their oxidation products are monitored during the aging process. A tube furnace is used for combustion of biomass to be introduced to the chamber, while size distributions are taken as the aerosol ages. Online measurements of optical properties are determined using a Cavity Ring-down Spectrometry and Integrating Nephelometry system. Chemical properties are measured from samples captured on filters and analyzed using Ultra-Performance Liquid Chromatography coupled in-line to both a Diode Array Detector and High-Resolution Time-of-Flight Mass Spectrometer equipped with electrospray ionization. The measured changes in the optical properties as a function of particle size, aging, and chemical properties are presented for fuel sources used in Africa.

  7. Secondary organic aerosol formation from in situ OH, O3, and NO3 oxidation of ambient forest air in an oxidation flow reactor

    Science.gov (United States)

    Palm, Brett B.; Campuzano-Jost, Pedro; Day, Douglas A.; Ortega, Amber M.; Fry, Juliane L.; Brown, Steven S.; Zarzana, Kyle J.; Dube, William; Wagner, Nicholas L.; Draper, Danielle C.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Gutiérrez-Montes, Cándido; Jimenez, Jose L.

    2017-04-01

    Ambient pine forest air was oxidized by OH, O3, or NO3 radicals using an oxidation flow reactor (OFR) during the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen - Rocky Mountain Biogenic Aerosol Study) campaign to study biogenic secondary organic aerosol (SOA) formation and organic aerosol (OA) aging. A wide range of equivalent atmospheric photochemical ages was sampled, from hours up to days (for O3 and NO3) or weeks (for OH). Ambient air processed by the OFR was typically sampled every 20-30 min, in order to determine how the availability of SOA precursor gases in ambient air changed with diurnal and synoptic conditions, for each of the three oxidants. More SOA was formed during nighttime than daytime for all three oxidants, indicating that SOA precursor concentrations were higher at night. At all times of day, OH oxidation led to approximately 4 times more SOA formation than either O3 or NO3 oxidation. This is likely because O3 and NO3 will only react with gases containing C = C bonds (e.g., terpenes) to form SOA but will not react appreciably with many of their oxidation products or any species in the gas phase that lacks a C = C bond (e.g., pinonic acid, alkanes). In contrast, OH can continue to react with compounds that lack C = C bonds to produce SOA. Closure was achieved between the amount of SOA formed from O3 and NO3 oxidation in the OFR and the SOA predicted to form from measured concentrations of ambient monoterpenes and sesquiterpenes using published chamber yields. This is in contrast to previous work at this site (Palm et al., 2016), which has shown that a source of SOA from semi- and intermediate-volatility organic compounds (S/IVOCs) 3.4 times larger than the source from measured VOCs is needed to explain the measured SOA formation from OH oxidation. This work suggests that those S/IVOCs typically do not contain C = C bonds. O3 and NO3 oxidation produced SOA with elemental O : C and H : C

  8. Heavy Ion Formation in Titan's Ionosphere: Magnetospheric Introduction of Free Oxygen and a Source of Titan's Aerosols?

    Science.gov (United States)

    Sittler, E. C., Jr.; Ali, A.; Cooper, J. F.; Hartle, R. E.; Johnson, R. E.; Coates, A. J.; Young, D. T.

    2009-01-01

    Discovery by Cassini's plasma instrument of heavy positive and negative ions within Titan's upper atmosphere and ionosphere has advanced our understanding of ion neutral chemistry within Titan's upper atmosphere, primarily composed of molecular nitrogen, with approx.2.5% methane. The external energy flux transforms Titan's upper atmosphere and ionosphere into a medium rich in complex hydrocarbons, nitriles and haze particles extending from the surface to 1200 km altitudes. The energy sources are solar UV, solar X-rays, Saturn's magnetospheric ions and electrons, solar wind and shocked magnetosheath ions and electrons, galactic cosmic rays (CCR) and the ablation of incident meteoritic dust from Enceladus' E-ring and interplanetary medium. Here it is proposed that the heavy atmospheric ions detected in situ by Cassini for heights >950 km, are the likely seed particles for aerosols detected by the Huygens probe for altitudes <100km. These seed particles may be in the form of polycyclic aromatic hydrocarbons (PAH) containing both carbon and hydrogen atoms CnHx. There could also be hollow shells of carbon atoms, such as C60, called fullerenes which contain no hydrogen. The fullerenes may compose a significant fraction of the seed particles with PAHs contributing the rest. As shown by Cassini, the upper atmosphere is bombarded by magnetospheric plasma composed of protons, H(2+) and water group ions. The latter provide keV oxygen, hydroxyl and water ions to Titan's upper atmosphere and can become trapped within the fullerene molecules and ions. Pickup keV N(2+), N(+) and CH(4+) can also be implanted inside of fullerenes. Attachment of oxygen ions to PAH molecules is uncertain, but following thermalization O(+) can interact with abundant CH4 contributing to the CO and CO2 observed in Titan's atmosphere. If an exogenic keV O(+) ion is implanted into the haze particles, it could become free oxygen within those aerosols that eventually fall onto Titan's surface. The process

  9. Aerosol chemistry over a high altitude station at northeastern Himalayas, India.

    Directory of Open Access Journals (Sweden)

    Abhijit Chatterjee

    Full Text Available BACKGROUND: There is an urgent need for an improved understanding of the sources, distributions and properties of atmospheric aerosol in order to control the atmospheric pollution over northeastern Himalayas where rising anthropogenic interferences from rapid urbanization and development is becoming an increasing concern. METHODOLOGY/PRINCIPAL FINDINGS: An extensive aerosol sampling program was conducted in Darjeeling (altitude approximately 2200 meter above sea level (masl, latitude 27 degrees 01'N and longitude 88 degrees 15'E, a high altitude station in northeastern Himalayas, during January-December 2005. Samples were collected using a respirable dust sampler and a fine dust sampler simultaneously. Ion chromatograph was used to analyze the water soluble ionic species of aerosol. The average concentrations of fine and coarse mode aerosol were found to be 29.5+/-20.8 microg m(-3 and 19.6+/-11.1 microg m(-3 respectively. Fine mode aerosol dominated during dry seasons and coarse mode aerosol dominated during monsoon. Nitrate existed as NH(4NO(3 in fine mode aerosol during winter and as NaNO(3 in coarse mode aerosol during monsoon. Gas phase photochemical oxidation of SO(2 during premonsoon and aqueous phase oxidation during winter and postmonsoon were the major pathways for the formation of SO(4(2- in the atmosphere. Long range transport of dust aerosol from arid regions of western India was observed during premonsoon. The acidity of fine mode aerosol was higher in dry seasons compared to monsoon whereas the coarse mode acidity was higher in monsoon compared to dry seasons. Biomass burning, vehicular emissions and dust particles were the major types of aerosol from local and continental regions whereas sea salt particles were the major types of aerosol from marine source regions. CONCLUSIONS/SIGNIFICANCE: The year-long data presented in this paper provide substantial improvements to the heretofore poor knowledge regarding aerosol chemistry over

  10. Aerosol chemistry over a high altitude station at northeastern Himalayas, India.

    Science.gov (United States)

    Chatterjee, Abhijit; Adak, Anandamay; Singh, Ajay K; Srivastava, Manoj K; Ghosh, Sanjay K; Tiwari, Suresh; Devara, Panuganti C S; Raha, Sibaji

    2010-06-16

    There is an urgent need for an improved understanding of the sources, distributions and properties of atmospheric aerosol in order to control the atmospheric pollution over northeastern Himalayas where rising anthropogenic interferences from rapid urbanization and development is becoming an increasing concern. An extensive aerosol sampling program was conducted in Darjeeling (altitude approximately 2200 meter above sea level (masl), latitude 27 degrees 01'N and longitude 88 degrees 15'E), a high altitude station in northeastern Himalayas, during January-December 2005. Samples were collected using a respirable dust sampler and a fine dust sampler simultaneously. Ion chromatograph was used to analyze the water soluble ionic species of aerosol. The average concentrations of fine and coarse mode aerosol were found to be 29.5+/-20.8 microg m(-3) and 19.6+/-11.1 microg m(-3) respectively. Fine mode aerosol dominated during dry seasons and coarse mode aerosol dominated during monsoon. Nitrate existed as NH(4)NO(3) in fine mode aerosol during winter and as NaNO(3) in coarse mode aerosol during monsoon. Gas phase photochemical oxidation of SO(2) during premonsoon and aqueous phase oxidation during winter and postmonsoon were the major pathways for the formation of SO(4)(2-) in the atmosphere. Long range transport of dust aerosol from arid regions of western India was observed during premonsoon. The acidity of fine mode aerosol was higher in dry seasons compared to monsoon whereas the coarse mode acidity was higher in monsoon compared to dry seasons. Biomass burning, vehicular emissions and dust particles were the major types of aerosol from local and continental regions whereas sea salt particles were the major types of aerosol from marine source regions. The year-long data presented in this paper provide substantial improvements to the heretofore poor knowledge regarding aerosol chemistry over northeastern Himalayas, and should be useful to policy makers in making control

  11. Secondary Inorganic Soluble Aerosol in Hong Kong: Continuous Measurements, Formation Mechanism Discussion and Improvement of an Observation-Based Model to Study Control Strategies

    Science.gov (United States)

    Xue, Jian

    Work in this thesis focuses on half-hourly or hourly measurements of PM2.5 secondary inorganic aerosols (SIA) in two locations in Hong Kong (HK) using a continuous system, PILS (Particle-into-Liquid System) coupled to two ion chromatographs. The high-resolution data sets allow the examination of SIA temporal dynamics in the scale of hours that the filter-based approach is incapable of providing. (1) Impacts of local emissions, regional transports and their interactions on chemical composition and concentrations of PM2.5 SIA and other ionic species were investigated at the Hong Kong University of Science and Technology (HKUST), a receptor site, under three synoptic conditions. (2) Chemical compositions and size characteristics of ionic species were investigated at Tung Chung, a new town area located in the Southwest part of HK. The sampling period was from 17 to 26 December 2009, covering both normal conditions and an aerosol episode. The three major secondary inorganic ions, SO42, NH4+ and NO 3-, accounted for 47 +/- 6% of PM2.5 mass. Further examination of size characteristics of NO3 - shows that fine mode NO3- is more likely to occur in environments when the fine particles are less acidic and the sea-salt aerosol contributions are low. (3) The ionic chemical composition of PM2.5 and meteorological parameters (e.g., temperature, RH) obtained at the HKUST site under all three different synoptic conditions are input into Aerosol Inorganic Model (AIM-III) for estimation of in situ pH through calculation of H+ amount and aerosol liquid water content (LWC). The second part of this thesis work is to improve an observation-based model (OBAMAP) for SIA, which was first developed by Dr. Zibing Yuan (2006) to evaluate the sensitivity of formation of nitrate ad sulfate to changes in the emissions of their precursors (i.e., NOx, SO2, and VOCs). The improvement work includes incorporating updated chemical mechanisms, thermodynamic equilibrium for gas-aerosol phase

  12. Rapid pannus formation after few months of obstructing aortic mechanical prosthesis.

    Science.gov (United States)

    Al-Alao, Bassel; Simoniuk, Urszula; Heron, Brian; Parissis, Haralabos

    2015-11-01

    We report a rare case of a prosthetic aortic valve obstruction due to pannus formation only 3 months following aortic and mitral valve replacement. Fragments of asymmetrical pannus formation affected one of the leaflets of the bi-leaflet mechanical valve; the leaflet appeared immobile due to pannus ingrowth into the mechanical skeleton resulting in encroachment of the leaflet, which in turn became immobile. The patient successfully underwent emergency redo-aortic valve replacement.

  13. Review of the investigation of mixture formation and combustion process using rapid compression machine and direct visualization system

    Science.gov (United States)

    Jaat, M.; Khalid, Amir; Manshoor, B.; Ramsy, Him

    2013-12-01

    This paper reviews of some applications of optical visualization systems to compute the fuel-air mixing process during early stage of mixture formation in Diesel Combustion Engines. A number of studies have contributed to the understanding of fuel air mixing in DI diesel engine. This review has shown that the mixture formation process affects initial flame development. The review also found that injection pressure has a great effect on the mixture formation then the flame development and combustion characteristics. The method of the simulation of real phenomenon of diesel combustion with optical access rapid compression machine is also reviewed and experimental results are presented. The application of these methods to the investigation of diesel sprays highlights mechanisms which govern propagation and distribution of the formation of a combustible fuel-air mixture. A summary of the implementation of constant volume chamber and optical visualization system are shown in the accompanying tables and figures. The visualization of the formation process of diesel spray and its combustion in the diesel combustion chamber of diesel engine has been recognized as one of the best ways to understand the characteristics of the mixture formation.

  14. Structural analysis of biofilm formation by rapidly and slowly growing nontuberculous mycobacteria

    Science.gov (United States)

    Mycobacterium avium complex (MAC) and rapidly growing mycobacteria (RGM) such as M. abscessus, M. mucogenicum, M. chelonae and M. fortuitum, implicated in healthcare-associated infections, are often isolated from potable water supplies as part of the microbial flora. To understa...

  15. Research on Rapid Identification and Evaluation Technology for Gas Formation during Underbalanced Drilling

    Directory of Open Access Journals (Sweden)

    Hao Wu

    2017-01-01

    Full Text Available The underbalanced drilling (UBD technology has been widely implemented due to its advantages in drilling efficiency improvement and cost reduction. However, this advanced technology requires very special equipment and operational mechanism, which raises multiple challenges to traditional well logging techniques. In this study, a real-time logging system (MWD/LWD and mud logging was developed and utilized during underbalanced drilling, to quickly identify and evaluate gas formation. This advanced system enables fast detection of gas formation and determining the formation type while drilling, by monitoring the changes in gas production. This real-time logging system provides a powerful technical support to the gas reservoir drilling and development. A case study has clearly shown that the interpretation and evaluation results based on the real-time logging data agree well with the results of conventional well logging. Therefore, this advanced real-time logging technique can be utilized as an effective guidance for field operation.

  16. Formation of luminous contact binaries by rapid accretion onto white dwarfs

    International Nuclear Information System (INIS)

    Nomoto, K.; Nariai, K.; Sugimoto, D.

    1980-01-01

    During the evolution of a close binary system, there is a phase of mass exchange between its component stars. The authors investigate what happens in the case of extremely rapid accretion onto a white dwarf. They have computed the whole processes of mass accretion starting from its onset through the shell flash and further mass accumulation. Throughout the computation the effect of gravitational energy release has been correctly taken into account. (Auth.)

  17. Rapid formation of gas giants, ice giants and super-Earths

    Energy Technology Data Exchange (ETDEWEB)

    Boss, A P [DTM, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States)], E-mail: boss@dtm.ciw.edu

    2008-08-15

    Giant planets might have been formed by either of the two basic mechanisms, top-down (disk instability) or bottom-up (core accretion). The latter mechanism is the most generally accepted mechanism and it begins with the collisional accumulation of solid cores that may then accrete sufficient gas to become gas giants. The former mechanism is more heretical and begins with the gravitational instability of the protoplanetary disk gas, leading to the formation of self-gravitating protoplanets, within which the dust settles to form a solid core. The disk instability mechanism has been thought of primarily as a mechanism for the formation of gas giants, but if it occurs in a disk that is being photoevaporated by the ultraviolet radiation from nearby massive stars, then the outer gaseous protoplanets can be photoevaporated as well and stripped of their gaseous envelopes. The result would then be ice giants (cold super-Earths), such as the objects discovered recently by microlensing orbiting two presumed M dwarf stars. M dwarfs that form in regions of future high-mass star formation would be expected to produce cold super-Earths orbiting at distances of several astronomical units (AU) and beyond, while M dwarfs that form in regions of low-mass star formation would be expected to have gas giants at those distances. Given that most stars are born in the former rather than in the latter regions, M dwarfs should have significantly more super-Earths than gas giants on orbits of several AU or more.

  18. Rapid formation of gas giants, ice giants and super-Earths

    International Nuclear Information System (INIS)

    Boss, A P

    2008-01-01

    Giant planets might have been formed by either of the two basic mechanisms, top-down (disk instability) or bottom-up (core accretion). The latter mechanism is the most generally accepted mechanism and it begins with the collisional accumulation of solid cores that may then accrete sufficient gas to become gas giants. The former mechanism is more heretical and begins with the gravitational instability of the protoplanetary disk gas, leading to the formation of self-gravitating protoplanets, within which the dust settles to form a solid core. The disk instability mechanism has been thought of primarily as a mechanism for the formation of gas giants, but if it occurs in a disk that is being photoevaporated by the ultraviolet radiation from nearby massive stars, then the outer gaseous protoplanets can be photoevaporated as well and stripped of their gaseous envelopes. The result would then be ice giants (cold super-Earths), such as the objects discovered recently by microlensing orbiting two presumed M dwarf stars. M dwarfs that form in regions of future high-mass star formation would be expected to produce cold super-Earths orbiting at distances of several astronomical units (AU) and beyond, while M dwarfs that form in regions of low-mass star formation would be expected to have gas giants at those distances. Given that most stars are born in the former rather than in the latter regions, M dwarfs should have significantly more super-Earths than gas giants on orbits of several AU or more

  19. Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area

    Directory of Open Access Journals (Sweden)

    A. M. Ortega

    2016-06-01

    Full Text Available Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An oxidation flow reactor (OFR was deployed to study SOA formation in real-time during the California Research at the Nexus of Air Quality and Climate Change (CalNex campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS and a scanning mobility particle sizer (SMPS alternated sampling ambient and reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air. OH radical concentration was continuously stepped, achieving equivalent atmospheric aging of 0.8 days–6.4 weeks in 3 min of processing every 2 h. Enhancement of organic aerosol (OA from aging showed a maximum net SOA production between 0.8–6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and Ox, which along with the short-lived volatile organic compound correlation, indicates the importance of very reactive (τOH  ∼  0.3 day SOA precursors (most likely semivolatile and intermediate volatility species, S/IVOCs in the Greater Los Angeles Area. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope  ∼  −0.65. Oxidation state of carbon (OSc in reactor SOA increased steeply with age and remained elevated (OSC  ∼  2 at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background vs. photochemical age is similar to

  20. Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area

    Science.gov (United States)

    Ortega, Amber M.; Hayes, Patrick L.; Peng, Zhe; Palm, Brett B.; Hu, Weiwei; Day, Douglas A.; Li, Rui; Cubison, Michael J.; Brune, William H.; Graus, Martin; Warneke, Carsten; Gilman, Jessica B.; Kuster, William C.; de Gouw, Joost; Gutiérrez-Montes, Cándido; Jimenez, Jose L.

    2016-06-01

    Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA) that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An oxidation flow reactor (OFR) was deployed to study SOA formation in real-time during the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS) alternated sampling ambient and reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air. OH radical concentration was continuously stepped, achieving equivalent atmospheric aging of 0.8 days-6.4 weeks in 3 min of processing every 2 h. Enhancement of organic aerosol (OA) from aging showed a maximum net SOA production between 0.8-6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and Ox, which along with the short-lived volatile organic compound correlation, indicates the importance of very reactive (τOH ˜ 0.3 day) SOA precursors (most likely semivolatile and intermediate volatility species, S/IVOCs) in the Greater Los Angeles Area. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope ˜ -0.65). Oxidation state of carbon (OSc) in reactor SOA increased steeply with age and remained elevated (OSC ˜ 2) at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background) vs. photochemical age is similar to previous studies at low to moderate ages and also extends to

  1. Characterization of key aerosol, trace gas and meteorological properties and particle formation and growth processes dependent on air mass origins in coastal Southern Spain

    Science.gov (United States)

    Diesch, J.; Drewnick, F.; Sinha, V.; Williams, J.; Borrmann, S.

    2011-12-01

    The chemical composition and concentration of aerosols at a certain site can vary depending on season, the air mass source region and distance from sources. Regardless of the environment, new particle formation (NPF) events are one of the major sources for ultrafine particles which are potentially hazardous to human health. Grown particles are optically active and efficient CCN resulting in important implications for visibility and climate (Zhang et al., 2004). The study presented here is intended to provide information about various aspects of continental, urban and marine air masses reflected by wind patterns of the air arriving at the measurement site. Additionally we will be focusing on NPF events associated with different types of air masses affecting their emergence and temporal evolution. Measurements of the ambient aerosol, various trace gases and meteorological parameters were performed within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from mid-November to mid-December 2008 at the atmospheric research station "El Arenosillo" located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean. Number and mass as well as PAH and black carbon concentrations were measured in PM1 and size distribution instruments covered the size range 6 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (AMS). In order to evaluate the characteristics of different air masses linking local and regional sources as well as NPF processes, characteristic air mass types were classified dependent on backwards trajectory pathways and local meteorology. Large nuclei mode concentrations in the number size distribution were found within continental and urban influenced air mass types due to frequently occurring NPF events. Exploring individual production and sink variables, sulfuric

  2. Seasonal variations of ultra-fine and submicron aerosols in Taipei, Taiwan: implications for particle formation processes in a subtropical urban area

    Directory of Open Access Journals (Sweden)

    H. C. Cheung

    2016-02-01

    , which was characterized by average particle growth and formation rates of 4.0 ± 1.1 nm h−1 and 1.4 ± 0.8 cm−3 s−1, respectively. The prevalence of new particle formation (NPF in summer was suggested as a result of seasonally enhanced photochemical oxidation of SO2 that contributed to the production of H2SO4, and a low level of PM10 (d ≤ 10 µm that served as the condensation sink. Regarding the sources of aerosol particles, correlation analysis of the PNCs against NOx revealed that the local vehicular exhaust was the dominant contributor of the UFPs throughout the year. Conversely, the Asian pollution outbreaks had significant influence in the PNC of accumulation-mode particles during the seasons of winter monsoons. The results of this study implied the significance of secondary organic aerosols in the seasonal variations of UFPs and the influences of continental pollution outbreaks in the downwind areas of Asian outflows.

  3. Coupling an aerosol box model with one-dimensional flow: a tool for understanding observations of new particle formation events

    OpenAIRE

    Kivekäs, N.; Carpman, J.; Roldin, P.; Leppä, J.; O'Connor, E. J.; Kristensson, A.; Asmi, E.

    2016-01-01

    Field observations of new particle formation and the subsequent particle growth are typically only possible at a fixed measurement location, and hence do not follow the temporal evolution of an air parcel in a Lagrangian sense. Standard analysis for determining formation and growth rates requires that the time-dependent formation rate and growth rate of the particles are spatially invariant; air parcel advection means that the observed temporal evolution of the particle size distribution at a...

  4. Organic aerosols

    International Nuclear Information System (INIS)

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN

  5. Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers

    OpenAIRE

    Chen, Kejie; Wu, Mengxi; Guo, Feng; Li, Peng; Chan, Chung-Yu; Mao, Zhangming; Li, Sixing; Ren, Liqiang; Zhang, Rui; Huang, Tony Jun

    2016-01-01

    The multicellular spheroid is an important 3D cell culture model for drug screening, tissue engineering, and fundamental biological research. Although several spheroid formation methods have been reported, the field still lacks high-throughput and simple fabrication methods to accelerate its adoption in drug development industry. Surface acoustic wave (SAW) based cell manipulation methods, which are known to be non-invasive, flexible, and high-throughput, have not been successfully developed ...

  6. Radioactive aerosols

    International Nuclear Information System (INIS)

    Chamberlain, A.C.

    1991-01-01

    Radon. Fission product aerosols. Radioiodine. Tritium. Plutonium. Mass transfer of radioactive vapours and aerosols. Studies with radioactive particles and human subjects. Index. This paper explores the environmental and health aspects of radioactive aerosols. Covers radioactive nuclides of potential concern to public health and applications to the study of boundary layer transport. Contains bibliographic references. Suitable for environmental chemistry collections in academic and research libraries

  7. Feasibility of electrospray deposition for rapid screening of the cocrystal formation and single step, continuous production of pharmaceutical nanococrystals.

    Science.gov (United States)

    Emami, Shahram; Siahi-Shadbad, Mohammadreza; Barzegar-Jalali, Mohammad; Adibkia, Khosro

    2018-06-01

    This study employed electrospray deposition (ESD) for simultaneous synthesis and particle engineering of cocrystals. Exploring new methods for the efficient production of cocrystals with desired particle properties is an essential demand. The possibility of cocrystal formation by ESD was examined for indomethacin-saccharin, indomethacin-nicotinamide, naproxen-nicotinamide, and naproxen-iso-nicotinamide cocrystals. Solutions of the drug and coformer at stoichiometric ratios were sprayed to a high electric field which caused rapid evaporation of the solvent and the formation of fine particles. The phase purity, size, and morphology of products were compared with reference cocrystals. Experiments were performed to evaluate the effects of stoichiometric ratio, concentration and solvent type on the cocrystal formation. Physical stability and dissolution properties of the electrosprayed cocrystals were also compared with reference cocrystals. ESD was found to be an efficient and rapid method to produce cocrystals for all studied systems other than indomethacin-nicotinamide. Pure cocrystals only formed at a specific drug:coformer ratio. The solvent type has a weak effect on the cocrystal formation and morphology. Electrosprayed cocrystals exhibited nano to micrometer sizes with distinct morphologies with comparable physical stability with reference cocrystals. Nanococrystals of indomethacin-saccharin with a mean size of 219 nm displayed a threefold higher dissolution rate than solvent evaporated cocrystal. ESD successfully was utilized to produce pure cocrystals of poorly soluble drugs with different morphologies and sizes ranging from nano to micrometer sizes in one step. This study highlighted the usefulness of ESD for simultaneous preparation and particle engineering of pharmaceutical cocrystals.

  8. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  9. Dynamics of neutral and charged aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Leppae, J.

    2012-07-01

    Atmospheric aerosol particles have various climate effects and adverse health effects, which both depend on the size and number concentration of the particles. Freshly-formed particles are not large enough to impact neither health nor climate and they are most susceptible to removal by collisions with larger pre-existing particles. Consequently, the knowledge of both the formation and the growth rate of particles are crucially important when assessing the health and climate effects of atmospheric new particle formation. The purpose of this thesis is to increase our knowledge of the dynamics of neutral and charged aerosol particles with a specific interest towards the particle growth rate and processes affecting the aerosol charging state. A new model, Ion-UHMA, which simulates the dynamics of neutral and charged particles, was developed for this purpose. Simple analytical formulae that can be used to estimate the growth rate due to various processes were derived and used to study the effects of charged particles on the growth rate. It was found that the growth rate of a freshly-formed particle population due to condensation and coagulation could be significantly increased when a considerable fraction of the particles are charged. Finally, recent data-analysis methods that have been applied to the aerosol charging states obtained from the measurements were modified for a charge asymmetric framework. The methods were then tested on data obtained from aerosol dynamics simulations. The methods were found to be able to provide reasonable estimates on the growth rate and proportion of particles formed via ion-induced nucleation, provided that the growth rate is high enough and that the charged particles do not grow much more rapidly than the neutral ones. A simple procedure for estimating whether the methods are suitable for analysing data obtained in specific conditions was provided. In this thesis, the dynamics of neutral and charged aerosol particles were studied in

  10. Formation of metastable phases and nanocomposite structures in rapidly solidified Al-Fe alloys

    International Nuclear Information System (INIS)

    Nayak, S.S.; Chang, H.J.; Kim, D.H.; Pabi, S.K.; Murty, B.S.

    2011-01-01

    Highlights: → Structures of nanocomposites in rapidly solidified Al-Fe alloys were investigated. → Nanoquasicrystalline, amorphous and intermetallics phases coexist with α-Al. → Nanoquasicrystalline phase was observed for the first time in the dilute Al alloys. → Thermodynamic driving force plays dominant role in precipitation of Fe-rich phases. → High hardness (3.57 GPa) was observed for nanocomposite of Al-10Fe alloy. - Abstract: In the present work the structure and morphology of the phases of nanocomposites formed in rapidly solidified Al-Fe alloys were investigated in details using analytical transmission electron microscopy and X-ray diffraction. Nanoquasicrystalline phases, amorphous phase and intermetallics like Al 5 Fe 2 , Al 13 F 4 coexisted with α-Al in nanocomposites of the melt spun alloys. It was seen that the Fe supersaturation in α-Al diminished with the increase in Fe content and wheel speed indicating the dominant role of the thermodynamic driving force in the precipitation of Fe-rich phases. Nanoquasicrystalline phases were observed for the first time in the dilute Al alloys like Al-2.5Fe and Al-5Fe as confirmed by high resolution TEM. High hardness (3.57 GPa) was measured in nanocomposite of Al-10Fe alloy, which was attributed to synergistic effect of solid solution strengthening due to high solute content (9.17 at.% Fe), dispersion strengthening by high volume fraction of nanoquasicrystalline phase; and Hall-Petch strengthening from finer cell size (20-30 nm) of α-Al matrix.

  11. Rapid changes in water hardness and alkalinity: Calcite formation is lethal to Daphnia magna.

    Science.gov (United States)

    Bogart, Sarah J; Woodman, Samuel; Steinkey, Dylan; Meays, Cindy; Pyle, Greg G

    2016-07-15

    There is growing concern that freshwater ecosystems may be negatively affected by ever-increasing anthropogenic inputs of extremely hard, highly alkaline effluent containing large quantities of Ca(2+), Mg(2+), CO3(2-), and HCO3(-) ions. In this study, the toxicity of rapid and extreme shifts in water hardness (38-600mg/L as CaCO3) and alkalinity (30-420mg/L as CaCO3) to Daphnia magna was tested, both independently and in combination. Within these ranges, where no precipitation event occurred, shifts in water hardness and/or alkalinity were not toxic to D. magna. In contrast, 98-100% of D. magna died within 96h after exposure to 600mg/L as CaCO3 water hardness and 420mg/L as CaCO3 alkalinity (LT50 of 60h with a 95% CI of 54.2-66.0h). In this treatment, a CaCO3 (calcite) precipitate formed in the water column which was ingested by and thoroughly coated the D. magna. Calcite collected from a mining impacted stream contained embedded organisms, suggesting field streams may also experience similar conditions and possibly increased mortality as observed in the lab tests. Although further investigation is required to determine the exact fate of aquatic organisms exposed to rapid calcite precipitation in the field, we caution that negative effects may occur more quickly or at lower concentrations of water hardness and alkalinity in which we observed effects in D. magna, because some species, such as aquatic insects, are more sensitive than cladocerans to changes in ionic strength. Our results provide evidence that both calcite precipitation and the major ion balance of waters should be managed in industrially affected ecosystems and we support the development of a hardness+alkalinity guideline for the protection of aquatic life. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  12. Rapid Formation of 1D Titanate Nanotubes Using Alkaline Hydrothermal Treatment and Its Photocatalytic Performance

    Directory of Open Access Journals (Sweden)

    Chin Wei Lai

    2015-01-01

    Full Text Available One-dimensional (1D titanate nanotubes (TNT were successfully synthesized using alkaline hydrothermal treatment of commercial TiO2 nanopowders in a Teflon lined stainless steel autoclave at 150°C. The minimum time required for the formation of the titanate nanotubes was 9 h significantly. After the hydrothermal processing, the layered titanate was washed with acid and water in order to control the amount of Na+ ions remaining in the sample solutions. In this study, the effect of different reaction durations in a range of 3 h to 24 h on the formation of nanotubes was carried out. As the reaction duration is extended, the changes in structure from particle to tubular shapes of alkaline treated TiO2 were obtained via scanning electron microscope (SEM. Also, the significant impact on the phase transformation and crystal structure of TNT was characterized through XRD and Raman analysis. Indeed, the photocatalytic activity of TNT was investigated through the degradation of methyl orange aqueous solution under the ultraviolet light irradiation. As a result, TNT with reaction duration at 6 h has a better photocatalytic performance than other samples which was correlated to the higher crystallinity of the samples as shown in XRD patterns.

  13. A novel Rapid Additive Manufacturing concept for architectural composite shell construction inspired by the shell formation in land snails.

    Science.gov (United States)

    Felbrich, Benjamin; Wulle, Frederik; Allgaier, Christoph; Menges, Achim; Verl, Alexander; Wurst, Karl-Heinz; Nebelsick, James

    2018-01-04

    State of the art rapid additive manufacturing (RAM), specifically Fused Filament Fabrication (FFF) has gained popularity among architects, engineers and designers for quick prototyping of technical devices, rapid production of small series and even construction scale fabrication of architectural elements. The spectrum of producible shapes and the resolution of detail, however, are determined and constrained by the layer-based nature of the fabrication process. These aspects significantly limit FFF-based approaches for the prefabrication and in-situ fabrication of freeform shells at the architectural scale. Snails exhibit a shell building process that suggests ways to overcome these limits. They produce a soft, pliable proteinaceous film - the periostracum - which later hardens and serves, among other functions, as a form-giving surface for an inner calcium carbonate layer. Snail shell formation behavior is interpreted from a technical point of view to extract potentially useful aspects for a biomimetic transfer. A RAM concept for continuous extrusion of thin free form composite shells inspired by the snail shell formation is presented. © 2018 IOP Publishing Ltd.

  14. Topics in current aerosol research

    CERN Document Server

    Hidy, G M

    1971-01-01

    Topics in Current Aerosol Research deals with the fundamental aspects of aerosol science, with emphasis on experiment and theory describing highly dispersed aerosols (HDAs) as well as the dynamics of charged suspensions. Topics covered range from the basic properties of HDAs to their formation and methods of generation; sources of electric charges; interactions between fluid and aerosol particles; and one-dimensional motion of charged cloud of particles. This volume is comprised of 13 chapters and begins with an introduction to the basic properties of HDAs, followed by a discussion on the form

  15. Efficient transport of tropospheric aerosol into the stratosphere via the Asian summer monsoon anticyclone

    Science.gov (United States)

    Yu, Pengfei; Rosenlof, Karen H.; Liu, Shang; Telg, Hagen; Thornberry, Troy D.; Rollins, Andrew W.; Portmann, Robert W.; Bai, Zhixuan; Ray, Eric A.; Duan, Yunjun; Pan, Laura L.; Toon, Owen B.; Bian, Jianchun; Gao, Ru-Shan

    2017-07-01

    An enhanced aerosol layer near the tropopause over Asia during the June-September period of the Asian summer monsoon (ASM) was recently identified using satellite observations. Its sources and climate impact are presently not well-characterized. To improve understanding of this phenomenon, we made in situ aerosol measurements during summer 2015 from Kunming, China, then followed with a modeling study to assess the global significance. The in situ measurements revealed a robust enhancement in aerosol concentration that extended up to 2 km above the tropopause. A climate model simulation demonstrates that the abundant anthropogenic aerosol precursor emissions from Asia coupled with rapid vertical transport associated with monsoon convection leads to significant particle formation in the upper troposphere within the ASM anticyclone. These particles subsequently spread throughout the entire Northern Hemispheric (NH) lower stratosphere and contribute significantly (˜15%) to the NH stratospheric column aerosol surface area on an annual basis. This contribution is comparable to that from the sum of small volcanic eruptions in the period between 2000 and 2015. Although the ASM contribution is smaller than that from tropical upwelling (˜35%), we find that this region is about three times as efficient per unit area and time in populating the NH stratosphere with aerosol. With a substantial amount of organic and sulfur emissions in Asia, the ASM anticyclone serves as an efficient smokestack venting aerosols to the upper troposphere and lower stratosphere. As economic growth continues in Asia, the relative importance of Asian emissions to stratospheric aerosol is likely to increase.

  16. Hydrothermal Synthesis of Hydroxyapatite Nanorods for Rapid Formation of Bone-Like Mineralization

    Science.gov (United States)

    Hoai, Tran Thanh; Nga, Nguyen Kim; Giang, Luu Truong; Huy, Tran Quang; Tuan, Phan Nguyen Minh; Binh, Bui Thi Thanh

    2017-08-01

    Hydroxyapatite (HAp) is an excellent biomaterial for bone repair and regeneration. The biological functions of HAp particles, such as biomineralization, cell adhesion, and cell proliferation, can be enhanced when their size is reduced to the nanoscale. In this work, HAp nanoparticles were synthesized by the hydrothermal technique with addition of cetyltrimethylammonium bromide (CTAB). These particles were also characterized, and their size controlled by modifying the CTAB concentration and hydrothermal duration. The results show that most HAp nanoparticles were rod-like in shape, exhibiting the most uniform and smallest size (mean diameter and length of 39 nm and 125 nm, respectively) at optimal conditions of 0.64 g CTAB and hydrothermal duration of 12 h. Moreover, good biomineralization capability of the HAp nanorods was confirmed through in vitro tests in simulated body fluid. A bone-like mineral layer of synthesized HAp nanorods formed rapidly after 7 days. This study shows that highly bioactive HAp nanorods can be easily prepared by the hydrothermal method, being a potential nanomaterial for bone regeneration.

  17. Indoor secondary organic aerosols formation from ozonolysis of monoterpene: An example of d-limonene with ammonia and potential impacts on pulmonary inflammations.

    Science.gov (United States)

    Niu, Xinyi; Ho, Steven Sai Hang; Ho, Kin Fai; Huang, Yu; Cao, Junji; Shen, Zhenxing; Sun, Jian; Wang, Xiumei; Wang, Yu; Lee, Shuncheng; Huang, Rujin

    2017-02-01

    Monoterpene is one class of biogenic volatile organic compounds (BVOCs) which widely presents in household cleaning products and air fresheners. It plays reactive role in secondary organic aerosols (SOAs) formation with ozone (O 3 ) in indoor environments. Such ozonolysis can be influenced by the presence of gaseous pollutants such as ammonia (NH 3 ). This study focuses on investigations of ozone-initiated formation of indoor SOAs with d-limonene, one of the most abundant indoor monoterpenes, in a large environmental chamber. The maximum total particle number concentration from the ozonolysis in the presence of NH 3 was 60% higher than that in the absence of NH 3 . Both of the nuclei coagulation and condensation involve in the SOAs growth. The potential risks of pulmonary injury for the exposure to the secondary particles formed were presented with the indexes of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-10 (IL-10) expression levels in bronchoalveolar lavage fluid (BALF) upon intratracheal instillation in mice lung for 6 and 12h. The results indicated that there was 22-39% stronger pulmonary inflammatory effect on the particles generated with NH 3 . This is a pilot study which demonstrates the toxicities of the indoor SOAs formed from the ozonolysis of a monoterpene. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Aerosol Observing System (AOS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  19. First long-term study of particle number size distributions and new particle formation events of regional aerosol in the North China Plain

    Directory of Open Access Journals (Sweden)

    X. J. Shen

    2011-02-01

    Full Text Available Atmospheric particle number size distributions (size range 0.003–10 μm were measured between March 2008 and August 2009 at Shangdianzi (SDZ, a rural research station in the North China Plain. These measurements were made in an attempt to better characterize the tropospheric background aerosol in Northern China. The mean particle number concentrations of the total particle, as well as the nucleation, Aitken, accumulation and coarse mode were determined to be 1.2 ± 0.9 × 104, 3.6 ± 7.9 × 103, 4.4 ± 3.4 × 103, 3.5 ± 2.8 × 103 and 2 ± 3 cm−3, respectively. A general finding was that the particle number concentration was higher during spring compared to the other seasons. The air mass origin had an important effect on the particle number concentration and new particle formation events. Air masses from northwest (i.e. inner Asia favored the new particle formation events, while air masses from southeast showed the highest particle mass concentration. Significant diurnal variations in particle number were observed, which could be linked to new particle formation events, i.e. gas-to-particle conversion. During particle formation events, the number concentration of the nucleation mode rose up to maximum value of 104 cm−3. New particle formation events were observed on 36% of the effective measurement days. The formation rate ranged from 0.7 to 72.7 cm−3 s−1, with a mean value of 8.0 cm−3 s−1. The value of the nucleation mode growth rate was in the range of 0.3–14.5 nm h−1, with a mean value of 4.3 nm h−1. It was an essential observation that on many occasions the nucleation mode was able to grow into the size of cloud condensation nuclei (CCN within a matter of several hours. Furthermore, the new particle formation was regularly followed by a measurable increase in particle mass

  20. Microstructures and phase formation in rapidly solidified Sm-Fe alloys

    International Nuclear Information System (INIS)

    Shield, J.E.; Kappes, B.B.; Meacham, B.E.; Dennis, K.W.; Kramer, M.J.

    2003-01-01

    Sm-Fe-based alloys were produced by melt spinning with various melt spinning parameters and alloying additions. The structural and microstructural evolution varied and strongly depended on processing and alloy composition. The microstructural scale was found to vary from micron to nanometer scale depending on the solidification rate and alloying additions. Additions of Si, Ti, V, Zr and Nb with C were all found to refine the scale, and the degree of refinement was dependent on the atomic size of the alloying agent. The alloying was also found to affect the dynamical aspects of the melt spinning process, although in general the material is characterized by a poor melt stream and pool, which in part contributes to the microstructural variabilities. The alloying additions also suppressed the long-range ordering, leading to formation of the TbCu 7 -type structure. The ordering was recoverable upon heat treatment, although the presence of alloying agents suppressed the recovery process relative to the binary alloy. This was attributed to the presence of Ti (V, Nb, Zr) in solid solution, which limited the diffusion kinetics necessary for ordering. In the binary alloy, the ordering led to the development of antiphase domain structures, with the antiphase boundaries effectively pinning Bloch walls

  1. Labeled EF-Tus for rapid kinetic studies of pretranslocation complex formation

    DEFF Research Database (Denmark)

    Liu, Wei; Kavaliauskas, Darius; Schrader, Jared

    2014-01-01

    The universally conserved translation elongation factor EF-Tu delivers aminoacyl(aa)-tRNA in the form of an aa-tRNA·EF-Tu·GTP ternary complex (TC) to the ribosome where it binds to the cognate mRNA codon within the ribosomal A-site, leading to formation of a pretranslocation (PRE) complex. Here we...... describe preparation of QSY9 and Cy5 derivatives of the variant E348C-EF-Tu that are functional in translation elongation. Together with fluorophore derivatives of aa-tRNA and of ribosomal protein L11, located within the GTPase associated center (GAC), these labeled EF-Tus allow development of two new FRET...... assays that permit the dynamics of distance changes between EF-Tu and both L11 (Tu-L11 assay) and aa-tRNA (Tu-tRNA assay) to be determined during the decoding process. We use these assays to examine: (i) the relative rates of EF-Tu movement away from the GAC and from aa-tRNA during decoding, (ii...

  2. Characterization of iodine species in the marine aerosol:to understand their roles in particle formation processes

    Institute of Scientific and Technical Information of China (English)

    Hongwei Chen; Rolf Brandt; Rolf Bandur; Thorsten Hoffmann

    2006-01-01

    In this contribution,iodine chemistry in the Marine Boundary Layer(MBL)is introduced.A series of methodologies for the measurements of iodine species in the gas and particle phases of the coastal atmosphere has been developed.Iodine species in the gas phase in real air samples has been determined in two field campaigns at the west coast of Ireland,indicating that gaseous iodo-hydrocarbons and elemental iodine are the precursors of new particle formation.Particulate iodine speciation from the same measurement campaigns show that the non-water-soluble iodine compounds are the main iodine species during the marine particle formation.A seaweed-chamber experiment was performed,indicating that gaseous I2 is one of the important precursors that lead to new particle formation in the presence of solar light in the ambient air at the coastal tidal area.

  3. Aerosol studies during the ESCOMPTE experiment: an overview

    Science.gov (United States)

    Cachier, Hélène; Aulagnier, Fabien; Sarda, Roland; Gautier, François; Masclet, Pierre; Besombes, Jean-Luc; Marchand, Nicolas; Despiau, Serge; Croci, Delphine; Mallet, Marc; Laj, Paolo; Marinoni, Angela; Deveau, Pierre-Alexandre; Roger, Jean-Claude; Putaud, Jean-Philippe; Van Dingenen, Rita; Dell'Acqua, Alessandro; Viidanoja, Jyrkki; Martins-Dos Santos, Sebastiao; Liousse, Cathy; Cousin, Frédéric; Rosset, Robert; Gardrat, Eric; Galy-Lacaux, Corinne

    2005-03-01

    The "Expérience sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emissions" (ESCOMPTE) experiment took place in the Southern part of France in the Marseilles/Fos-Berre region during 6 weeks in June and July 2001. One task was to document the regional sources of atmospheric particles and to gain some insight into the aerosol transformations in the atmosphere. For this purpose, seven sites were chosen and equipped with the same basic instrumentation to obtain the chemical closure of the bulk aerosol phase and size-segregated samples. Some specific additional experiments were conducted for the speciation of the organic matter and the aerosol size distribution in number. Finally, four multiwavelength sun-photometers were also deployed during the experiment. Interestingly, in this region, three intense aerosol sources (urban, industrial and biogenic) are very active, and data show consistent results, enlightening an important background of particles over the whole ESCOMPTE domain. Notable is the overwhelming importance of the carbonaceous fraction (comprising primary and secondary particles), which is always more abundant than sulphates. Particle size studies show that, on average, more than 90% of the mean regional aerosol number is found on a size range smaller than 300 nm in diameter. The most original result is the evidence of the rapid formation of secondary aerosols occurring in the whole ESCOMPTE domain. This formation is much more important than that usually observed at these latitudes since two thirds of the particulate mass collected off source zones is estimated to be generated during atmospheric transport. On the other hand, the marine source has poor influence in the region, especially during the overlapping pollution events of Intensive Observation Periods (IOP). Preliminary results from the 0D and 3D versions of the MesoNH-aerosol model show that, with optimised gas and particle sources, the model accounts

  4. Atmospheric hydrogen peroxide and organic hydroperoxides during PRIDE-PRD'06, China: their concentration, formation mechanism and contribution to secondary aerosols

    Directory of Open Access Journals (Sweden)

    W. Hua

    2008-11-01

    detected in this region can account for the production of hydroperoxides, while the moderate level of NOx suppressed the formation of hydroperoxides. High concentrations of hydroperoxides were detected in samples of rainwater collected in a heavy shower on 25 July when a typhoon passed through, indicating that a considerable mixing ratio of hydroperoxides, particularly MHP, resided above the boundary layer, which might be transported on a regional scale and further influence the redistribution of HOx and ROx radicals. It was found that hydroperoxides, in particular H2O2, play an important role in the formation of secondary sulfate in the aerosol phase, where the heterogeneous reaction might contribute substantially. A negative correlation between hydroperoxides and water-soluble organic compounds (WSOC, a considerable fraction of the secondary organic aerosol (SOA, was observed, possibly providing field evidence for the importance of hydroperoxides in the formation of SOA found in previous laboratory studies. We suggest that hydroperoxides act as an important link between sulfate and organic aerosols, which needs further study and should be considered in current atmospheric models.

  5. Atmospheric hydrogen peroxide and organic hydroperoxides during PRIDE-PRD'06, China: their concentration, formation mechanism and contribution to secondary aerosols

    Science.gov (United States)

    Hua, W.; Chen, Z. M.; Jie, C. Y.; Kondo, Y.; Hofzumahaus, A.; Takegawa, N.; Chang, C. C.; Lu, K. D.; Miyazaki, Y.; Kita, K.; Wang, H. L.; Zhang, Y. H.; Hu, M.

    2008-11-01

    in samples of rainwater collected in a heavy shower on 25 July when a typhoon passed through, indicating that a considerable mixing ratio of hydroperoxides, particularly MHP, resided above the boundary layer, which might be transported on a regional scale and further influence the redistribution of HOx and ROx radicals. It was found that hydroperoxides, in particular H2O2, play an important role in the formation of secondary sulfate in the aerosol phase, where the heterogeneous reaction might contribute substantially. A negative correlation between hydroperoxides and water-soluble organic compounds (WSOC), a considerable fraction of the secondary organic aerosol (SOA), was observed, possibly providing field evidence for the importance of hydroperoxides in the formation of SOA found in previous laboratory studies. We suggest that hydroperoxides act as an important link between sulfate and organic aerosols, which needs further study and should be considered in current atmospheric models.

  6. Inhibition of trihalomethane formation in city water by radiation-ozone treatment and rapid composting of radiation disinfected sewage sludge

    International Nuclear Information System (INIS)

    Takehisa, M.; Arai, H.; Arai, M.

    1985-01-01

    Humic acid and Fulvic acid in natural water are precursors of carcinogenic THM which is formed during chlorine disinfection in city water processing. The radiation-oxidation process in the presence of ozone is effective to remove the precursors. The THM formation was reduced more than the decrease in TOC by the combination treatment. This is mainly due to a change in the chemical structure of the oxidation products. A composting of radiation disinfected sludge cake for agricultural reuse could be achieved within 3 days primary fermentation in a sewage plant. The rapid fermentation with use of radiation is effective to scale down of a fermentor of composting plant and the process reduces a health risk from the workers as well as final users. (author)

  7. Inhibition of trihalomethane formation in city water by radiation-ozone treatment and rapid composting of radiation disinfected sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Takehisa, M; Arai, H; Arai, M

    1985-01-01

    Humic acid and Fulvic acid in natural water are precursors of carcinogenic THM which is formed during chlorine disinfection in city water processing. The radiation-oxidation process in the presence of ozone is effective to remove the precursors. The THM formation was reduced more than the decrease in TOC by the combination treatment. This is mainly due to a change in the chemical structure of the oxidation products. A composting of radiation disinfected sludge cake for agricultural reuse could be achieved within 3 days primary fermentation in a sewage plant. The rapid fermentation with use of radiation is effective to scale down a fermentor of a composting plant and the process reduces health risk for the workers as well as final users.

  8. Vasoactive intestinal polypeptide excites medial pontine reticular formation neurons in the brainstem rapid eye movement sleep-induction zone

    DEFF Research Database (Denmark)

    Kohlmeier, Kristi Anne; Reiner, P B

    1999-01-01

    Although it has long been known that microinjection of the cholinergic agonist carbachol into the medial pontine reticular formation (mPRF) induces a state that resembles rapid eye movement (REM) sleep, it is likely that other transmitters contribute to mPRF regulation of behavioral states. A key...... candidate is the peptide vasoactive intestinal polypeptide (VIP), which innervates the mPRF and induces REM sleep when injected into this region of the brainstem. To begin understanding the cellular mechanisms underlying this phenomenon, we examined the effects of VIP on mPRF cells using whole-cell patch...... conclude that VIP excites mPRF neurons by activation of a sodium current. This effect is mediated at least in part by G-protein stimulation of adenylyl cyclase, cAMP, and protein kinase A. These data suggest that VIP may play a physiological role in REM induction by its actions on mPRF neurons....

  9. Formation of plasmonic silver nanoparticles using rapid thermal annealing at low temperature and study in reflectance reduction of Si surface

    Science.gov (United States)

    Barman, Bidyut; Dhasmana, Hrishikesh; Verma, Abhishek; Kumar, Amit; Pratap Chaudhary, Shiv; Jain, V. K.

    2017-09-01

    This work presents studies of plasmonic silver nanoparticles (AgNPs) formation at low temperatures (200 °C-300 °C) onto Si surface by sputtering followed with rapid thermal processing (RTP) for different time durations(5-30 min). The study reveals that 20 min RTP at all temperatures show minimum average size of AgNPs (60.42 nm) with corresponding reduction in reflectance of Si surface from 40.12% to mere 1.15% only in wavelength region 300-800 nm for RTP at 200 °C. A detailed supporting growth mechanism is also discussed. This low temperature technique can be helpful in achieving efficiency improvement in solar cells via reflectance reduction with additional features such as reproducibility, minimal time and very good adhesion without damaging underlying layers device parameters.

  10. Synaptic inputs compete during rapid formation of the calyx of Held: a new model system for neural development.

    Science.gov (United States)

    Holcomb, Paul S; Hoffpauir, Brian K; Hoyson, Mitchell C; Jackson, Dakota R; Deerinck, Thomas J; Marrs, Glenn S; Dehoff, Marlin; Wu, Jonathan; Ellisman, Mark H; Spirou, George A

    2013-08-07

    Hallmark features of neural circuit development include early exuberant innervation followed by competition and pruning to mature innervation topography. Several neural systems, including the neuromuscular junction and climbing fiber innervation of Purkinje cells, are models to study neural development in part because they establish a recognizable endpoint of monoinnervation of their targets and because the presynaptic terminals are large and easily monitored. We demonstrate here that calyx of Held (CH) innervation of its target, which forms a key element of auditory brainstem binaural circuitry, exhibits all of these characteristics. To investigate CH development, we made the first application of serial block-face scanning electron microscopy to neural development with fine temporal resolution and thereby accomplished the first time series for 3D ultrastructural analysis of neural circuit formation. This approach revealed a growth spurt of added apposed surface area (ASA)>200 μm2/d centered on a single age at postnatal day 3 in mice and an initial rapid phase of growth and competition that resolved to monoinnervation in two-thirds of cells within 3 d. This rapid growth occurred in parallel with an increase in action potential threshold, which may mediate selection of the strongest input as the winning competitor. ASAs of competing inputs were segregated on the cell body surface. These data suggest mechanisms to select "winning" inputs by regional reinforcement of postsynaptic membrane to mediate size and strength of competing synaptic inputs.

  11. Observation of aerosol size distribution and new particle formation at a mountain site in subtropical Hong Kong

    Directory of Open Access Journals (Sweden)

    H. Guo

    2012-10-01

    Full Text Available In order to investigate the formation and growth processes of nucleation mode particles, and to quantify the particle number (PN concentration and size distributions in Hong Kong, an intensive field measurement was conducted from 25 October to 29 November in 2010 near the mountain summit of Tai Mo Shan, a suburban site approximately the geographical centre of the New Territories in Hong Kong. Based on observations of the particle size distribution, new particle formation (NPF events were found on 12 out of 35 days with the estimated formation rate J5.5 from 0.97 to 10.2 cm−3 s−1, and the average growth rates from 1.5 to 8.4 nm h−1. The events usually began at 10:00–11:00 LT characterized by the occurrence of a nucleation mode with a peak diameter of 6–10 nm. Solar radiation, wind speed, sulfur dioxide (SO2 and ozone (O3 concentrations were on average higher, whereas temperature, relative humidity and daytime nitrogen dioxide (NO2 concentration were lower on NPF days than on non-NPF days. Back trajectory analysis suggested that in majority of the NPF event days, the air masses originated from the northwest to northeast directions. The concentrations of gaseous sulfuric acid (SA showed good power-law relationship with formation rates, with exponents ranging from 1 to 2. The result suggests that the cluster activation theory and kinetic nucleation could potentially explain the observed NPF events in this mountainous atmosphere of Hong Kong. Meanwhile, in these NPF events, the contribution of sulfuric acid vapor to particle growth rate (GR5.5–25 ranged from 9.2 to 52.5% with an average of 26%. Measurement-based calculated oxidation rates of monoterpenes (i.e. α-pinene, β-pinene, myrcene and limonene by O3 positively correlated with the GR5.5–25 (R = 0.80, p < 0.05. The observed associations of the

  12. An atypical cause of rapidly progressing breast lump with abscess formation: Pure squamous cell carcinoma of the breast.

    Science.gov (United States)

    Cilekar, Murat; Erkasap, Serdar; Oner, Ulku; Akici, Murat; Ciftci, Evrim; Dizen, Hayrettin; Turel, Serkan; Kavak, Ozgu I; Yilmaz, Sezgin

    2015-01-01

    Squamous cell carcinoma (SCC) is a rare type of breast malignancy and little is known about long-term outcome. In the present report, the clinical features, histopathologic findings and postoperative course of a patient with squamous cell carcinoma are described. We have treated a 47-years-old woman who admitted for right breast mass without any discharge, bleeding and pain. The tumor was, 3 × 2 × 1.5 cm in size with central abscess formation. The result of surgical biopsy revealed large cell keratinizing type of SCC. The metastatic work-up studies ruled out any other probable sources of primary tumor. The patient was performed modified radical mastectomy and axillary dissection and received two cycles of chemotherapy. Squamous cell carcinoma of the breast (SCCB) is a rare entity and should be considered in patients with rapidly progressing breast mass. It should also be considered in breast lesions with abscess formation. The initial therapeutic approach should be surgical excision after histopathological diagnosis.

  13. Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO2 emission controls

    Science.gov (United States)

    Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for...

  14. Effects of strontium ranelate on bone formation in the mid-palatal suture after rapid maxillary expansion

    Directory of Open Access Journals (Sweden)

    Zhao SY

    2015-05-01

    Full Text Available Shuya Zhao,1,* Xuxia Wang,2,* Na Li,3 Yun Chen,1 Yuran Su,1 Jun Zhang1 1Department of Orthodontics, 2Department of Oral and Maxillofacial Surgery, Faculty of Stomatology, Shandong University; 3Department of Orthodontics, Shandong Provincial Qianfoshan Hospital, Jinan, People’s Republic of China *These authors contributed equally to this work Background: The aim of this experimental study was to investigate the effects of strontium ranelate on bone regeneration in the mid-palatal suture in response to rapid maxillary expansion (RME.Methods: Thirty-six male 6-week-old Wistar rats were randomly divided into three groups, ie, an expansion only (EO group, an expansion plus strontium ranelate (SE group, and a control group. An orthodontic appliance was set between the right and left upper molars of rats with an initial expansive force of 0.98 N. Rats in the SE group were administered strontium ranelate (600 mg/kg body weight and then euthanized in batches on days 4, 7, and 10. Morphological changes in the mid-palatal suture were investigated using micro-computed tomography and hematoxylin and eosin staining after RME. Bone morphogenetic protein-2 expression in the suture was also examined to evaluate bone formation in the mid-palatal suture. Image-Pro Plus software was then used to determine the mean optical density of the immunohistochemical images. Analysis of variance was used for statistical evaluation at the P<0.05 level.Results: With expansive force, the mid-palatal suture was expanded, but there was no statistically significant difference (P>0.05 between the SE and EO groups. The bone volume of the suture decreased after RME, but was higher in the SE group than in the EO group on days 7 and 10. Further, expression of bone morphogenetic protein-2 in the SE group was higher than in the other two groups (P<0.05.Conclusion: Strontium ranelate may hasten new bone formation in the expanded mid-palatal suture, which may be therapeutically

  15. Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior

    Energy Technology Data Exchange (ETDEWEB)

    UC Davis; Cappa, Christopher D.; Wilson, Kevin R.

    2010-10-28

    Vacuum Ultraviolet (VUV) photoionization mass spectrometry has been used to measure the evolution of chemical composition for two distinct organic aerosol types as they are passed through a thermodenuder at different temperatures. The two organic aerosol types considered are primary lubricating oil (LO) aerosol and secondary aerosol from the alpha-pinene + O3 reaction (alphaP). The evolution of the VUV mass spectra for the two aerosol types with temperature are observed to differ dramatically. For LO particles, the spectra exhibit distinct changes with temperature in which the lower m/z peaks, corresponding to compounds with higher vapor pressures, disappear more rapidly than the high m/z peaks. In contrast, the alphaP aerosol spectrum is essentially unchanged by temperature even though the particles experience significant mass loss due to evaporation. The variations in the LO spectra are found to be quantitatively in agreement with expectations from absorptive partitioning theory whereas the alphaP spectra suggest that the evaporation of alphaP derived aerosol appears to not be governed by partitioning theory. We postulate that this difference arises from the alphaP particles existing as in a glassy state instead of having the expected liquid-like behavior. To reconcile these observations with decades of aerosol growth measurements, which indicate that OA formation is described by equilibrium partitioning, we present a conceptual model wherein the secondary OA is formed and then rapidly converted from an absorbing form to a non-absorbing form. The results suggest that although OA growth may be describable by equilibrium partitioning theory, the properties of organic aerosol once formed may differ significantly from the properties determined in the equilibrium framework.

  16. A soluble, one-dimensional problem for coupled heat conduction and mass diffusion with aerosol formation in a vapour-gas mixture

    International Nuclear Information System (INIS)

    Barrett, J.C.; Clement, C.F.

    1986-01-01

    The coupled equations for heat and mass transfer are reduced to ordinary differential equations applying to semi-infinite region bounded by a wall. Solutions are obtained in the limits of no aerosol and of negligible supersaturations, in which case the aerosol growth rate is calculated. In agreement with earlier general predictions, results for water vapour-air mixtures show very different behaviour between heating and cooling the mixtures, and that aerosol growth rates do not increase with temperature, but rather become a much smaller fraction of evaporation or condensation rates at the wall. A new feature is that, in the cooling case, an aerosol growth region is predicted to exist immediately adjacent to the wall, whereas further away any aerosol is predicted to evaporate. (author)

  17. Development of a simple unified volatility-based scheme (SUVS for secondary organic aerosol formation using genetic algorithms

    Directory of Open Access Journals (Sweden)

    A. G. Xia

    2011-07-01

    Full Text Available A new method is proposed to simplify complex atmospheric chemistry reaction schemes, while preserving SOA formation properties, using genetic algorithms. The method is first applied in this study to the gas-phase α-pinene oxidation scheme. The simple unified volatility-based scheme (SUVS reflects the multi-generation evolution of chemical species from a near-explicit master chemical mechanism (MCM and, at the same time, uses the volatility-basis set speciation for condensable products. The SUVS also unifies reactions between SOA precursors with different oxidants under different atmospheric conditions. A total of 412 unknown parameters (product yields of parameterized products, reaction rates, etc. from the SUVS are estimated by using genetic algorithms operating on the detailed mechanism. The number of organic species was reduced from 310 in the detailed mechanism to 31 in the SUVS. Output species profiles, obtained from the original subset of the MCM reaction scheme for α-pinene oxidation, are reproduced with maximum fractional error at 0.10 for scenarios under a wide range of ambient HC/NOx conditions. Ultimately, the same SUVS with updated parameters could be used to describe the SOA formation from different precursors.

  18. Aerosol studies

    International Nuclear Information System (INIS)

    Cristy, G.A.; Fish, M.E.

    1978-01-01

    As part of the continuing studies of the effects of very severe reactor accidents, an effort was made to develop, test, and improve simple, effective, and inexpensive methods by which the average citizen, using only materials readily available, could protect his residence, himself, and his family from injury by toxic aerosols. The methods for protection against radioactive aerosols should be equally effective against a clandestine biological attack by terrorists. The results of the tests to date are limited to showing that spores of the harmless bacterium, bacillus globegii (BG), can be used as a simulant for the radioactive aerosols. An aerosol generator of Lauterbach type was developed which will produce an essentially monodisperse aerosol at the rate of 10 9 spores/min. Analytical techniques have been established which give reproducible results. Preliminary field tests have been conducted to check out the components of the system. Preliminary tests of protective devices, such as ordinary vacuum sweepers, have given protection factors of over 1000

  19. MAPPIX: A software package for off-line micro-pixe single particle aerosol analysis

    International Nuclear Information System (INIS)

    Ceccato, D.

    2009-01-01

    In the framework of a multiannual experiment performed at Baia Terra Nova, Antarctica, size-segregated aerosol samples were collected by using a 12-stage SDI impactor (Hillamo design). Approximately 2800 particles, belonging to the first four supermicrometric SDI stages - 8.39, 4.08, 2.68, 1.66 μm dynamic aerosol diameter cuts - were analyzed at the INFN-LNL micro-PIXE facility, a three lens Oxford Microprobe (OM) product, installed in the early nineties. Four regions on each of the 12 sub-samples were measured; 60 aerosol particles were detected on average in each of the analyzed regions. The off-line single aerosol particle (SAP) analysis of such big amount of data required software that is able to rapidly handle the acquired data, with a simple and fast area selection procedure; the subsequent automated PIXE spectra analysis with a specialized code was also needed. The MAPPIX 2.0 software was designed to make easier and faster the user jobs during the SAP analysis. The package is composed of two separate routines: the first one is devoted to data format conversion (OM-LMF file format to MAPPIX format), while the second one is devoted to micro-PIXE maps graphical presentation and aerosol particle selection procedure. The MAPPIX data format and software features will be discussed; a short report of the speed performances will be presented.

  20. Influence of organic films on the evaporation and condensation of water in aerosol.

    Science.gov (United States)

    Davies, James F; Miles, Rachael E H; Haddrell, Allen E; Reid, Jonathan P

    2013-05-28

    Uncertainties in quantifying the kinetics of evaporation and condensation of water from atmospheric aerosol are a significant contributor to the uncertainty in predicting cloud droplet number and the indirect effect of aerosols on climate. The influence of aerosol particle surface composition, particularly the impact of surface active organic films, on the condensation and evaporation coefficients remains ambiguous. Here, we report measurements of the influence of organic films on the evaporation and condensation of water from aerosol particles. Significant reductions in the evaporation coefficient are shown to result when condensed films are formed by monolayers of long-chain alcohols [C(n)H(2n+1)OH], with the value decreasing from 2.4 × 10(-3) to 1.7 × 10(-5) as n increases from 12 to 17. Temperature-dependent measurements confirm that a condensed film of long-range order must be formed to suppress the evaporation coefficient below 0.05. The condensation of water on a droplet coated in a condensed film is shown to be fast, with strong coherence of the long-chain alcohol molecules leading to islanding as the water droplet grows, opening up broad areas of uncoated surface on which water can condense rapidly. We conclude that multicomponent composition of organic films on the surface of atmospheric aerosol particles is likely to preclude the formation of condensed films and that the kinetics of water condensation during the activation of aerosol to form cloud droplets is likely to remain rapid.

  1. Influence of organic films on the evaporation and condensation of water in aerosol

    Science.gov (United States)

    Davies, James F.; Miles, Rachael E. H.; Haddrell, Allen E.; Reid, Jonathan P.

    2013-01-01

    Uncertainties in quantifying the kinetics of evaporation and condensation of water from atmospheric aerosol are a significant contributor to the uncertainty in predicting cloud droplet number and the indirect effect of aerosols on climate. The influence of aerosol particle surface composition, particularly the impact of surface active organic films, on the condensation and evaporation coefficients remains ambiguous. Here, we report measurements of the influence of organic films on the evaporation and condensation of water from aerosol particles. Significant reductions in the evaporation coefficient are shown to result when condensed films are formed by monolayers of long-chain alcohols [CnH(2n+1)OH], with the value decreasing from 2.4 × 10−3 to 1.7 × 10−5 as n increases from 12 to 17. Temperature-dependent measurements confirm that a condensed film of long-range order must be formed to suppress the evaporation coefficient below 0.05. The condensation of water on a droplet coated in a condensed film is shown to be fast, with strong coherence of the long-chain alcohol molecules leading to islanding as the water droplet grows, opening up broad areas of uncoated surface on which water can condense rapidly. We conclude that multicomponent composition of organic films on the surface of atmospheric aerosol particles is likely to preclude the formation of condensed films and that the kinetics of water condensation during the activation of aerosol to form cloud droplets is likely to remain rapid. PMID:23674675

  2. On the diurnal cycle of urban aerosols, black carbon and the occurrence of new particle formation events in springtime São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    J. Backman

    2012-12-01

    Full Text Available Large conurbations are a significant source of the anthropogenic pollution and demographic differences between cities that result in a different pollution burden. The metropolitan area of São Paulo (MASP, population 20 million accounts for one fifth of the Brazilian vehicular fleet. A feature of MASP is the amount of ethanol used by the vehicular fleet, known to exacerbate air quality. The study describes the diurnal behaviour of the submicron aerosol and relies on total particle number concentration, particle number size distribution, light scattering and light absorption measurements. Modelled planetary boundary layer (PBL depth and air mass movement data were used to aid the interpretation. During morning rush-hour, stagnant air and a shallow PBL height favour the accumulation of aerosol pollution. During clear-sky conditions, there was a wind shift towards the edge of the city indicating a heat island effect with implications on particulate pollution levels at the site. The median total particle number concentration for the submicron aerosol typically varied in the range 1.6 × 104–3.2 × 104 cm−3 frequently exceeding 4 × 104 cm−3 during the day. During weekdays, nucleation-mode particles are responsible for most of the particles by numbers. The highest concentrations of total particle number concentrations and black carbon (BC were observed on Fridays. Median diurnal values for light absorption and light scattering (at 637 nm wavelength varied in the range 12–33 Mm−1 and 21–64 Mm−1, respectively. The former one is equal to 1.8–5.0 μg m−3 of BC. The growth of the PBL, from the morning rush-hour until noon, is consistent with the diurnal cycle of BC mass concentrations. Weekday hourly median single-scattering albedo (ω0 varied in the range 0.59–0.76. Overall, this suggests a top of atmosphere (TOA warming effect. However

  3. Stratospheric aerosols

    International Nuclear Information System (INIS)

    Rosen, J.; Ivanov, V.A.

    1993-01-01

    Stratospheric aerosol measurements can provide both spatial and temporal data of sufficient resolution to be of use in climate models. Relatively recent results from a wide range of instrument techniques for measuring stratospheric aerosol parameters are described. Such techniques include impactor sampling, lidar system sensing, filter sampling, photoelectric particle counting, satellite extinction-sensing using the sun as a source, and optical depth probing, at sites mainly removed from tropospheric aerosol sources. Some of these techniques have also had correlative and intercomparison studies. The main methods for determining the vertical profiles of stratospheric aerosols are outlined: lidar extinction measurements from satellites; impactor measurements from balloons and aircraft; and photoelectric particle counter measurements from balloons, aircraft, and rockets. The conversion of the lidar backscatter to stratospheric aerosol mass loading is referred to. Absolute measurements of total solar extinction from satellite orbits can be used to extract the aerosol extinction, and several examples of vertical profiles of extinction obtained with the SAGE satellite are given. Stratospheric mass loading can be inferred from extinction using approximate linear relationships but under restrictive conditions. Impactor sampling is essentially the only method in which the physical nature of the stratospheric aerosol is observed visually. Vertical profiles of stratospheric aerosol number concentration using impactor data are presented. Typical profiles using a dual-size-range photoelectric dustsonde particle counter are given for volcanically disturbed and inactive periods. Some measurements of the global distribution of stratospheric aerosols are also presented. Volatility measurements are described, indicating that stratospheric aerosols are composed primarily of about 75% sulfuric acid and 25% water

  4. Ambient Aerosol in Southeast Asia: High Resolution Aerosol Mass Spectrometer Measurements Over Oil Palm (Elaeis guineensis)

    Science.gov (United States)

    Phillips, G.; Dimarco, C.; Misztal, P.; Nemitz, E.; Farmer, D.; Kimmel, J.; Jimenez, J.

    2008-12-01

    The emission of organic compounds in the troposphere is important factor in the formation of secondary organic aerosol (SOA). A very large proportion of organic material emitted globally is estimated to arise from biogenic sources, with almost half coming from tropical and sub-tropical forests. Preliminary analyses of leave cuvette emission studies suggest that oil palm (Elaeis guineensis) is a significantly larger source of isoprene than tropical forest. Much larger sources of isoprene over oil palm allied with a larger anthropogenic component of local emissions contrast greatly with the remote tropical forest environment and therefore the character of SOA formed may differ significantly. These issues, allied with the high price of palm oil on international markets leading to increased use of land for oil palm production, could give rise to rapidly changing chemical and aerosol regimes in the tropics. It is therefore important to understand the current emissions and composition of organic aerosol over all important land-uses in the tropical environment. This in turn will lead to a greater understanding of the present, and to an improvement in predictive capacity for the future system. To help address these issues, a high resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) was deployed in the Sabahmas (PPB OIL) oil palm plantation near Lahad Datu, in Eastern Sabah, as part of the field component of the Aerosol Coupling in the Earth System (ACES) project, part of the UK NERC APPRAISE program. This project was allied closely with measurements made of similar chemical species and aerosol components at a forest site in the Danum Valley as part of the UK Oxidant and Particle Photochemical Processes above a Southeast Asian tropical rainforest (OP3) project. Measurements of submicron non- refractory aerosol composition are presented along with some preliminary analysis of chemically resolved aerosol fluxes made with a new eddy covariance system, based on the

  5. A numerical study of aerosol influence on mixed-phase stratiform clouds through modulation of the liquid phase

    Directory of Open Access Journals (Sweden)

    G. de Boer

    2013-02-01

    Full Text Available Numerical simulations were carried out in a high-resolution two-dimensional framework to increase our understanding of aerosol indirect effects in mixed-phase stratiform clouds. Aerosol characteristics explored include insoluble particle type, soluble mass fraction, influence of aerosol-induced freezing point depression and influence of aerosol number concentration. Simulations were analyzed with a focus on the processes related to liquid phase microphysics, and ice formation was limited to droplet freezing. Of the aerosol properties investigated, aerosol insoluble mass type and its associated freezing efficiency was found to be most relevant to cloud lifetime. Secondary effects from aerosol soluble mass fraction and number concentration also alter cloud characteristics and lifetime. These alterations occur via various mechanisms, including changes to the amount of nucleated ice, influence on liquid phase precipitation and ice riming rates, and changes to liquid droplet nucleation and growth rates. Alteration of the aerosol properties in simulations with identical initial and boundary conditions results in large variability in simulated cloud thickness and lifetime, ranging from rapid and complete glaciation of liquid to the production of long-lived, thick stratiform mixed-phase cloud.

  6. Three air quality studies: Great Lakes ozone formation and nitrogen dry deposition; and Tucson aerosol chemical characterization

    Science.gov (United States)

    Foley, Theresa

    The Clean Air Act of 1970 was promulgated after thousands of lives were lost in four catastrophic air pollution events. It authorized the establishment of National Ambient Air Quality Standards or (NAAQS) for six pollutants that are harmful to human health and welfare: carbon monoxide, lead, nitrogen dioxide, particulate matter, ozone and sulfur dioxide. The Clean Air Act also led to the establishment of the United Stated Environmental Protection Agency (US EPA) to set and enforce regulations. The first paper in this dissertation studies ozone in the Lake Michigan region (Foley, T., Betterton, E.A., Jacko, R., Hillery, J., 2011. Lake Michigan air quality: The 1994-2003 LADCO Aircraft Project (LAP). Atmospheric Environment 45, 3192-3202.) The Chicago-Milwaukee-Gary metropolitan area has been unable to meet the ozone NAAQS since the Clean Air Act was implemented. The Lake Michigan Air Directors' Consortium (LADCO) hypothesized that land breezes transport ozone precursor compounds over the lake, where a large air/water temperature difference creates a shallow conduction layer, which is an efficient reaction chamber for ozone formation. In the afternoon, lake breezes and prevailing synoptic winds then transport ozone back over the land. To further evaluate this hypothesis, LADCO sponsored the 1994-2003 LADCO Aircraft Project (LAP) to measure the air quality over Lake Michigan and the surrounding areas. This study has found that the LAP data supports this hypothesis of ozone formation, which has strong implications for ozone control strategies in the Lake Michigan region. The second paper is this dissertation (Foley, T., Betterton, E.A., Wolf, A.M.A., 2012. Ambient PM10 and metal concentrations measured in the Sunnyside Unified School District, Tucson, Arizona. Journal of the Arizona-Nevada Academy of Science, 43, 67-76) evaluated the airborne concentrations of PM10 (particulate matter with an aerodynamic diameter of 10 microns or less) and eight metalloids and metals

  7. Formation of inorganic nanocomposites by filling TiO{sub 2} nanopores with indium and antimony sulfide precursor aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Juma, Albert, E-mail: jumalberto@yahoo.com [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Azarpira, Anahita [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Fischer, Ch.-H. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Free University Berlin, Institute of Chemistry and Biochemistry, Fabeckstr. 34-36, 14195 Berlin (Germany); Wendler, Elke [Friedrich-Schiller-Universität Jena, Institut für Festkörperphysik, Max-Wien-Platz 1, 07743 Jena (Germany); Dittrich, Thomas [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)

    2014-09-01

    Nanocomposites of nanoporous-TiO{sub 2}/In{sub 2}S{sub 3} and np-TiO{sub 2}/Sb{sub 2}S{sub 3} were formed by deposition of In{sub 2}S{sub 3} or Sb{sub 2}S{sub 3} using spray ion layer gas reaction technique from their precursor solutions onto nanoporous TiO{sub 2} substrates at temperatures of 150, 175 and 200 °C. The least penetration of the precursor into np-TiO{sub 2} was achieved for np-TiO{sub 2}/In{sub 2}S{sub 3} nanocomposites from indium acetylacetonate salt. The deepest penetration was obtained for both np-TiO{sub 2}/In{sub 2}S{sub 3}(Cl) and np-TiO{sub 2}/Sb{sub 2}S{sub 3} nanocomposites with effective diffusion coefficients of 3.3 × 10{sup −3} cm{sup 2}/s and 3.2 × 10{sup −3} cm{sup 2}/s, respectively. The transport of the precursors in np-TiO{sub 2} and the formation of different nanocomposites were described the regime of the Knudsen diffusion model. - Highlights: • Deposition of metal sulfides by ion layer gas reaction technique • Penetration and diffusion depend on precursor characteristics. • Pore transport described by Knudsen diffusion model • InCl{sub 3} precursor penetrates more than In(acac){sub 3}.

  8. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    Science.gov (United States)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  9. Rapid analytical assessment of the mechanical perturbations induced by non-isothermal injection into a subsurface formation.

    Science.gov (United States)

    De Simone, Silvia; Carrera, Jesús; María Gómez Castro, Berta

    2016-04-01

    Fluid injection into geological formations is required for several engineering operations, e.g. geothermal energy production, hydrocarbon production and storage, CO2 storage, wastewater disposal, etc. Non-isothermal fluid injection causes alterations of the pressure and temperature fields, which affect the mechanical stability of the reservoir. This coupled thermo-hydro-mechanical behavior has become a matter of special interest because of public concern about induced seismicity. The response is complex and its evaluation often requires numerical modeling. Nevertheless, analytical solutions are useful in improving our understanding of interactions, identifying the controlling parameters, testing codes and in providing a rapid assessment of the system response to an alteration. We present an easy-to-use solution to the transient advection-conduction heat transfer problem for parallel and radial flow. The solution is then applied to derive analytical expressions for hydraulic and thermal driven displacements and stresses. The validity is verified by comparison with numerical simulations and yields fairly accurate results. The solution is then used to illustrate some features of the poroelastic and thermoelastic response and, in particular, the sensitivity to the external mechanical constraints and to the reservoir dimension.

  10. Online differentiation of mineral phase in aerosol particles by ion formation mechanism using a LAAP-TOF single-particle mass spectrometer

    Science.gov (United States)

    Marsden, Nicholas A.; Flynn, Michael J.; Allan, James D.; Coe, Hugh

    2018-01-01

    Mineralogy of silicate mineral dust has a strong influence on climate and ecosystems due to variation in physiochemical properties that result from differences in composition and crystal structure (mineral phase). Traditional offline methods of analysing mineral phase are labour intensive and the temporal resolution of the data is much longer than many atmospheric processes. Single-particle mass spectrometry (SPMS) is an established technique for the online size-resolved measurement of particle composition by laser desorption ionisation (LDI) followed by time-of-flight mass spectrometry (TOF-MS). Although non-quantitative, the technique is able to identify the presence of silicate minerals in airborne dust particles from markers of alkali metals and silicate molecular ions in the mass spectra. However, the differentiation of mineral phase in silicate particles by traditional mass spectral peak area measurements is not possible. This is because instrument function and matrix effects in the ionisation process result in variations in instrument response that are greater than the differences in composition between common mineral phases.In this study, we introduce a novel technique that enables the differentiation of mineral phase in silicate mineral particles by ion formation mechanism measured from subtle changes in ion arrival times at the TOF-MS detector. Using a combination of peak area and peak centroid measurements, we show that the arrangement of the interstitial alkali metals in the crystal structure, an important property in silicate mineralogy, influences the ion arrival times of elemental and molecular ion species in the negative ion mass spectra. A classification scheme is presented that allowed for the differentiation of illite-smectite, kaolinite and feldspar minerals on a single-particle basis. Online analysis of mineral dust aerosol generated from clay mineral standards produced mineral fractions that are in agreement with bulk measurements reported by

  11. Online differentiation of mineral phase in aerosol particles by ion formation mechanism using a LAAP-TOF single-particle mass spectrometer

    Directory of Open Access Journals (Sweden)

    N. A. Marsden

    2018-01-01

    Full Text Available Mineralogy of silicate mineral dust has a strong influence on climate and ecosystems due to variation in physiochemical properties that result from differences in composition and crystal structure (mineral phase. Traditional offline methods of analysing mineral phase are labour intensive and the temporal resolution of the data is much longer than many atmospheric processes. Single-particle mass spectrometry (SPMS is an established technique for the online size-resolved measurement of particle composition by laser desorption ionisation (LDI followed by time-of-flight mass spectrometry (TOF-MS. Although non-quantitative, the technique is able to identify the presence of silicate minerals in airborne dust particles from markers of alkali metals and silicate molecular ions in the mass spectra. However, the differentiation of mineral phase in silicate particles by traditional mass spectral peak area measurements is not possible. This is because instrument function and matrix effects in the ionisation process result in variations in instrument response that are greater than the differences in composition between common mineral phases.In this study, we introduce a novel technique that enables the differentiation of mineral phase in silicate mineral particles by ion formation mechanism measured from subtle changes in ion arrival times at the TOF-MS detector. Using a combination of peak area and peak centroid measurements, we show that the arrangement of the interstitial alkali metals in the crystal structure, an important property in silicate mineralogy, influences the ion arrival times of elemental and molecular ion species in the negative ion mass spectra. A classification scheme is presented that allowed for the differentiation of illite–smectite, kaolinite and feldspar minerals on a single-particle basis. Online analysis of mineral dust aerosol generated from clay mineral standards produced mineral fractions that are in agreement with bulk

  12. AEROSOL VARIABILITY OBSERVED WITH RPAS

    Directory of Open Access Journals (Sweden)

    B. Altstädter

    2013-08-01

    Full Text Available To observe the origin, vertical and horizontal distribution and variability of aerosol particles, and especially ultrafine particles recently formed, we plan to employ the remotely piloted aircraft system (RPAS Carolo-P360 "ALADINA" of TU Braunschweig. The goal of the presented project is to investigate the vertical and horizontal distribution, transport and small-scale variability of aerosol particles in the atmospheric boundary layer using RPAS. Two additional RPAS of type MASC of Tübingen University equipped with turbulence instrumentation add the opportunity to study the interaction of the aerosol concentration with turbulent transport and exchange processes of the surface and the atmosphere. The combination of different flight patterns of the three RPAS allows new insights in atmospheric boundary layer processes. Currently, the different aerosol sensors are miniaturized at the Leibniz Institute for Tropospheric Research, Leipzig and together with the TU Braunschweig adapted to fit into the RPAS. Moreover, an additional meteorological payload for measuring temperature, humidity and turbulence properties is constructed by Tübingen University. Two condensation particle counters determine the total aerosol number with a different lower detection threshold in order to investigate the horizontal and vertical aerosol variability and new particle formation (aerosol particles of some nm diameter. Further the aerosol size distribution in the range from about 0.300 to ~5 μm is given by an optical particle counter.

  13. Mapping gas-phase organic reactivity and concomitant secondary organic aerosol formation: chemometric dimension reduction techniques for the deconvolution of complex atmospheric data sets

    Science.gov (United States)

    Wyche, K. P.; Monks, P. S.; Smallbone, K. L.; Hamilton, J. F.; Alfarra, M. R.; Rickard, A. R.; McFiggans, G. B.; Jenkin, M. E.; Bloss, W. J.; Ryan, A. C.; Hewitt, C. N.; MacKenzie, A. R.

    2015-07-01

    Highly non-linear dynamical systems, such as those found in atmospheric chemistry, necessitate hierarchical approaches to both experiment and modelling in order to ultimately identify and achieve fundamental process-understanding in the full open system. Atmospheric simulation chambers comprise an intermediate in complexity, between a classical laboratory experiment and the full, ambient system. As such, they can generate large volumes of difficult-to-interpret data. Here we describe and implement a chemometric dimension reduction methodology for the deconvolution and interpretation of complex gas- and particle-phase composition spectra. The methodology comprises principal component analysis (PCA), hierarchical cluster analysis (HCA) and positive least-squares discriminant analysis (PLS-DA). These methods are, for the first time, applied to simultaneous gas- and particle-phase composition data obtained from a comprehensive series of environmental simulation chamber experiments focused on biogenic volatile organic compound (BVOC) photooxidation and associated secondary organic aerosol (SOA) formation. We primarily investigated the biogenic SOA precursors isoprene, α-pinene, limonene, myrcene, linalool and β-caryophyllene. The chemometric analysis is used to classify the oxidation systems and resultant SOA according to the controlling chemistry and the products formed. Results show that "model" biogenic oxidative systems can be successfully separated and classified according to their oxidation products. Furthermore, a holistic view of results obtained across both the gas- and particle-phases shows the different SOA formation chemistry, initiating in the gas-phase, proceeding to govern the differences between the various BVOC SOA compositions. The results obtained are used to describe the particle composition in the context of the oxidised gas-phase matrix. An extension of the technique, which incorporates into the statistical models data from anthropogenic (i

  14. Modeling the formation and aging of secondary organic aerosols in the Los Angeles metropolitan region during the CalNex 2010 field campaign

    Science.gov (United States)

    Hayes, P. L.; Ma, P. K.; Jimenez, J. L.; Zhao, Y.; Robinson, A. L.; Carlton, A. M. G.; Baker, K. R.; Ahmadov, R.; Washenfelder, R. A.; Alvarez, S. L.; Rappenglück, B.; Gilman, J.; Kuster, W.; De Gouw, J. A.; Prevot, A. S.; Zotter, P.; Szidat, S.; Kleindienst, T. E.; Offenberg, J. H.

    2015-12-01

    Several different literature parameterizations for the formation and evolution of urban secondary organic aerosol (SOA) are evaluated using a box model representing the Los Angeles Region during CalNex. The model SOA formed only from the oxidation of VOCs (V-SOA) is insufficient to explain the observed SOA concentrations, even when using SOA parameterizations with multi-generation oxidation that produce much higher yields than have been observed in chamber experiments, or when increasing yields to their upper limit estimates accounting for recently reported losses of vapors to chamber walls. Including SOA from primary semi-volatile and intermediate volatility organic compounds (P-S/IVOCs) following the parameterizations of Robinson et al. (2007), Grieshop et al. (2009), or Pye and Seinfeld (2010) improves model/measurement agreement for mass concentration at shorter photochemical ages (0.5 days). Our results strongly suggest that other precursors besides VOCs are needed to explain the observed SOA concentrations. In contrast, all of the literature P-S/IVOC parameterizations over-predict urban SOA formation at long photochemical ages (3 days) compared to observations from multiple sites, which can lead to problems in regional and global modeling. Sensitivity studies that reduce the IVOC emissions by one-half in the model improve SOA predictions at these long ages. In addition, when IVOC emissions in the Robinson et al. parameterization are constrained using recently reported measurements of these species model/measurement agreement is achieved. The amounts of SOA mass from diesel vehicles, gasoline vehicles, and cooking emissions are estimated to be 16 - 27%, 35 - 61%, and 19 - 35%, respectively, depending on the parameterization used, which is consistent with the observed fossil fraction of urban SOA, 71(±3)%. The percentage of SOA from diesel vehicle emissions is the same, within the estimated uncertainty, as reported in previous work that analyzed the weekly

  15. The Rapid Formation of Localized Compaction Bands Under Hydrostatic Load Leading to Pore-pressure Transients in Compacting Rocks

    Science.gov (United States)

    Faulkner, D.; Leclere, H.; Bedford, J. D.; Behnsen, J.; Wheeler, J.

    2017-12-01

    Compaction of porous rocks can occur uniformly or within localized deformation bands. The formation of compaction bands and their effects on deformation behaviour are poorly understood. Porosity may be primary and compaction can occur with burial, or it can be produced by metamorphic reactions with a solid volume reduction, that can then undergo collapse. We report results from hydrostatic compaction experiments on porous bassanite (CaSO4.0.5H2O) aggregates. Gypsum (CaSO4.2H2O) is first dehydrated under low effective pressure, 4 MPa, to produce a bassanite aggregate with a porosity of 27%. Compaction is induced by increasing confining pressure at rates from 0.001 MPa/s to 0.02 MPa/s while the sample is maintained at a temperature of 115°C. At slow compaction rates, porosity collapse proceeds smoothly. At higher compaction rates, sudden increases in the pore-fluid pressure occur with a magnitude of 5 MPa. Microstructural investigations using X-ray microtomography and SEM observations show that randomly oriented localized compaction features occur in all samples, where the bulk porosity of 18% outside the band is reduced to 5% inside the band. Previous work on deformation bands has suggested that localized compactive features only form under an elevated differential stress and not under a hydrostatic stress state. The magnitude of the pore-pressure pulses can be explained by the formation of compaction bands. The results indicate that the compaction bands can form by rapid (unstable) propagation across the sample above a critical strain rate, or quasi-statically at low compaction rates without pore-fluid pressure bursts. The absence of pore-fluid pressure bursts at slow compaction rates can be explained by viscous deformation of the bassanite aggregate around the tip of a propagating compaction band, relaxing stress, and promoting stable propagation. Conversely, at higher compaction rates, viscous deformation cannot relax the stress sufficiently and unstable

  16. Ganges Valley Aerosol Experiment: Science and Operations Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kotamarthi, VR

    2010-06-21

    The Ganges Valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoons. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers can be immense. Recent satellite-based measurements have indicated that the upper Ganges Valley has some of the highest persistently observed aerosol optical depth values. The aerosol layer covers a vast region, extending across the Indo-Gangetic Plain to the Bay of Bengal during the winter and early spring of each year. The persistent winter fog in the region is already a cause of much concern, and several studies have been proposed to understand the economic, scientific, and societal dimensions of this problem. During the INDian Ocean EXperiment (INDOEX) field studies, aerosols from this region were shown to affect cloud formation and monsoon activity over the Indian Ocean. This is one of the few regions showing a trend toward increasing surface dimming and enhanced mid-tropospheric warming. Increasing air pollution over this region could modify the radiative balance through direct, indirect, and semi-indirect effects associated with aerosols. The consequences of aerosols and associated pollution for surface insolation over the Ganges Valley and monsoons, in particular, are not well understood. The proposed field study is designed for use of (1) the ARM Mobile Facility (AMF) to measure relevant radiative, cloud, convection, and aerosol optical characteristics over mainland India during an extended period of 9–12 months and (2) the G-1 aircraft and surface sites to measure relevant aerosol chemical, physical, and optical characteristics in the Ganges Valley during a period of 6–12 weeks. The aerosols in this region have complex sources, including burning of coal, biomass, and biofuels; automobile

  17. THE FORMATION OF SECONDARY STELLAR GENERATIONS IN MASSIVE YOUNG STAR CLUSTERS FROM RAPIDLY COOLING SHOCKED STELLAR WINDS

    Energy Technology Data Exchange (ETDEWEB)

    Wünsch, R.; Palouš, J.; Ehlerová, S. [Astronomical Institute, Academy of Sciences of the Czech Republic, Boční II 1401, 141 31 Prague (Czech Republic); Tenorio-Tagle, G. [Instituto Nacional de Astrofísica Optica y Electrónica, AP 51, 72000 Puebla, México (Mexico)

    2017-01-20

    We study a model of rapidly cooling shocked stellar winds in young massive clusters and estimate the circumstances under which secondary star formation, out of the reinserted winds from a first stellar generation (1G), is possible. We have used two implementations of the model: a highly idealized, computationally inexpensive, spherically symmetric semi-analytic model, and a complex, three-dimensional radiation-hydrodynamic, simulation; they are in a good mutual agreement. The results confirm our previous findings that, in a cluster with 1G mass 10{sup 7} M {sub ⊙} and half-mass–radius 2.38 pc, the shocked stellar winds become thermally unstable, collapse into dense gaseous structures that partially accumulate inside the cluster, self-shield against ionizing stellar radiation, and form the second generation (2G) of stars. We have used the semi-analytic model to explore a subset of the parameter space covering a wide range of the observationally poorly constrained parameters: the heating efficiency, η {sub he}, and the mass loading, η {sub ml}. The results show that the fraction of the 1G stellar winds accumulating inside the cluster can be larger than 50% if η {sub he} ≲ 10%, which is suggested by the observations. Furthermore, for low η {sub he}, the model provides a self-consistent mechanism predicting 2G stars forming only in the central zones of the cluster. Finally, we have calculated the accumulated warm gas emission in the H30 α recombination line, analyzed its velocity profile, and estimated its intensity for super star clusters in interacting galaxies NGC4038/9 (Antennae) showing that the warm gas should be detectable with ALMA.

  18. Tropospheric Aerosols

    Science.gov (United States)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  19. Application of FIGAERO (Filter Inlet for Gases and AEROsol) coupled to a high resolution time of flight chemical ionization mass spectrometer to field and chamber organic aerosol: Implications for carboxylic acid formation and gas-particle partitioning from monoterpene oxidation

    Science.gov (United States)

    Lopez-Hilfiker, F.; Mohr, C.; Ehn, M.; Rubach, F.; Mentel, T. F.; Kleist, E.; Wildt, J.; Thornton, J. A.

    2013-12-01

    We present measurements of a large suite of gas and particle phase carboxylic acid containing compounds made with a Filter Inlet for Gas and AEROsol (FIGAERO) coupled to a high resolution time of flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. A prototype operated with acetate negative ion proton transfer chemistry was deployed on the Julich Plant Atmosphere Chamber to study a-pinene oxidation, and a modified version was deployed at the SMEAR II forest station in Hyytiälä, Finland and SOAS, in Brent Alabama. We focus here on results from JPAC and Hyytiälä, where we utilized the same ionization method most selective towards carboxylic acids. In all locations, 100's of organic acid compounds were observed in the gas and particles and many of the same composition acids detected in the gas-phase were detected in the particles upon temperature programmed thermal desorption. Particulate organics detected by FIGAERO are highly correlated with organic aerosol mass measured by an AMS, providing additional volatility and molecular level information about collected aerosol. The fraction of a given compound measured in the particle phase follows expected trends with elemental composition, but many compounds would not be well described by an absorptive partitioning model assuming unity activity coefficients. Moreover the detailed structure in the thermal desorption signals reveals a contribution from thermal decomposition of large molecular weight organics and or oligomers with implications for partitioning measurements and model validation

  20. A soluble one-dimensional problem for coupled heat conduction and mass diffusion with aerosol formation in a vapour-gas mixture

    International Nuclear Information System (INIS)

    Barrett, J.C.; Clement, C.F.

    1986-01-01

    The coupled equations for heat and mass transfer are reduced to ordinary differential equations applying to a semi-infinite region bounded by a wall. Solutions are obtained in the limits of no aerosol and of negligible supersaturations in which case the aerosol growth rate is calculated. In agreement with earlier general predictions, results for water vapour-air mixtures show very different behaviour between heating and cooling the mixtures, and that aerosol growth rates do not increase with temperature, but rather become a much smaller fraction of evaporation or condensation rates at the wall. A new feature is that, in the cooling case, an aerosol growth region is predicted to exist immediately adjacent to the wall, whereas further away any aerosol is predicted to evaporate. The general features of the results are expected to apply to many situations of steady or quasi-steady flow. For example, similar results to ours would be obtained for the laminar flow of a saturated water vapour-air mixture past a wall through which it is being cooled. General characteristics of such flows should include a widening mist-filled layer next to the wall and separation by a sharp spatial division from an unsaturated layer. (author)

  1. Generation and characterization of biological aerosols for laser measurements

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yung-Sung; Barr, E.B.

    1995-12-01

    Concerns for proliferation of biological weapons including bacteria, fungi, and viruses have prompted research and development on methods for the rapid detection of biological aerosols in the field. Real-time instruments that can distinguish biological aerosols from background dust would be especially useful. Sandia National Laboratories (SNL) is developing a laser-based, real-time instrument for rapid detection of biological aerosols, and ITRI is working with SNL scientists and engineers to evaluate this technology for a wide range of biological aerosols. This paper describes methods being used to generate the characterize the biological aerosols for these tests. In summary, a biosafe system has been developed for generating and characterizing biological aerosols and using those aerosols to test the SNL laser-based real-time instrument. Such tests are essential in studying methods for rapid detection of airborne biological materials.

  2. Changes in aerosol properties during spring-summer period in the Arctic troposphere

    Directory of Open Access Journals (Sweden)

    A.-C. Engvall

    2008-02-01

    Full Text Available The change in aerosol properties during the transition from the more polluted spring to the clean summer in the Arctic troposphere was studied. A six-year data set of observations from Ny-Ålesund on Svalbard, covering the months April through June, serve as the basis for the characterisation of this time period. In addition four-day-back trajectories were used to describe air mass histories. The observed transition in aerosol properties from an accumulation-mode dominated distribution to an Aitken-mode dominated distribution is discussed with respect to long-range transport and influences from natural and anthropogenic sources of aerosols and pertinent trace gases. Our study shows that the air-mass transport is an important factor modulating the physical and chemical properties observed. However, the air-mass transport cannot alone explain the annually repeated systematic and rather rapid change in aerosol properties, occurring within a limited time window of approximately 10 days. With a simplified phenomenological model, which delivers the nucleation potential for new-particle formation, we suggest that the rapid shift in aerosol microphysical properties between the Arctic spring and summer is mainly driven by the incoming solar radiation in concert with transport of precursor gases and changes in condensational sink.

  3. Implementation of warm-cloud processes in a source-oriented WRF/Chem model to study the effect of aerosol mixing state on fog formation in the Central Valley of California

    Directory of Open Access Journals (Sweden)

    H.-H. Lee

    2016-07-01

    Full Text Available The source-oriented Weather Research and Forecasting chemistry model (SOWC was modified to include warm cloud processes and was applied to investigate how aerosol mixing states influence fog formation and optical properties in the atmosphere. SOWC tracks a 6-D chemical variable (X, Z, Y, size bins, source types, species through an explicit simulation of atmospheric chemistry and physics. A source-oriented cloud condensation nuclei module was implemented into the SOWC model to simulate warm clouds using the modified two-moment Purdue Lin microphysics scheme. The Goddard shortwave and long-wave radiation schemes were modified to interact with source-oriented aerosols and cloud droplets so that aerosol direct and indirect effects could be studied. The enhanced SOWC model was applied to study a fog event that occurred on 17 January 2011, in the Central Valley of California. Tule fog occurred because an atmospheric river effectively advected high moisture into the Central Valley and nighttime drainage flow brought cold air from mountains into the valley. The SOWC model produced reasonable liquid water path, spatial distribution and duration of fog events. The inclusion of aerosol–radiation interaction only slightly modified simulation results since cloud optical thickness dominated the radiation budget in fog events. The source-oriented mixture representation of particles reduced cloud droplet number relative to the internal mixture approach that artificially coats hydrophobic particles with hygroscopic components. The fraction of aerosols activating into cloud condensation nuclei (CCN at a supersaturation of 0.5 % in the Central Valley decreased from 94 % in the internal mixture model to 80 % in the source-oriented model. This increased surface energy flux by 3–5 W m−2 and surface temperature by as much as 0.25 K in the daytime.

  4. Sources and formation mechanisms of carbonaceous aerosol at a regional background site in the Netherlands : insights from a year-long radiocarbon study

    NARCIS (Netherlands)

    Dusek, Ulrike; Hitzenberger, Regina; Kasper-Giebl, Anne; Kistler, Magdalena; Meijer, Harro A. J.; Szidat, Sonke; Wacker, Lukas; Holzinger, Rupert; Rockmann, Thomas

    2017-01-01

    We measured the radioactive carbon isotope C-14 (radiocarbon) in various fractions of the carbonaceous aerosol sampled between February 2011 and March 2012 at the Cesar Observatory in the Netherlands. Based on the radiocarbon content in total carbon (TC), organic carbon (OC), water-insoluble organic

  5. New pathway of stratocumulus to cumulus transition via aerosol-cloud-precipitation interaction

    Science.gov (United States)

    Yamaguchi, T.; Feingold, G.; Kazil, J.

    2017-12-01

    The stratocumulus to cumulus transition (SCT) is typically considered to be a slow, multi-day process, caused primarily by dry air entrainment associated with overshooting cumulus rising under stratocumulus, with minor influence of precipitation. In this presentation, we show rapid SCT induced by a strong precipitation-induced modulation with Lagrangian SCT large eddy simulations. A large eddy model is coupled with a two-moment bulk microphysics scheme that predicts aerosol and droplet number concentrations. Moderate aerosol concentrations (100-250 cm-3) produce little to no drizzle from the stratocumulus deck. Large amounts of rain eventually form and wash out stratocumulus and much of the aerosol, and a cumulus state appears for approximately 10 hours. Initiation of strong rain formation is identified in penetrative cumulus clouds which are much deeper than stratocumulus, and they are able to condense large amounts of water. We show that prediction of cloud droplet number is necessary for this fast SCT since it is a result of a positive feedback of collision-coalescence induced aerosol depletion enhancing drizzle formation. Simulations with fixed droplet concentrations that bracket the time varying aerosol/drop concentrations are therefore not representative of the role of drizzle in the SCT.

  6. Aerosol Liquid Water Driven by Anthropogenic inorganic salts: Playing a key role in the winter haze formation over North China Plain

    Science.gov (United States)

    Wu, Z.; Liu, Y.; Tan, T.; Wang, Y.; Shang, D.; Xiao, Y.; Li, M.; Zeng, L.; Hu, M.

    2017-12-01

    Aerosol liquid water influences ambient particulate matter mass concentrations and aerosol optical properties, and can serve as a reactor for multiphase reactions that perturb local photochemistry1. Our observations revealed that ambient relative humidity, inorganic fraction (sulfate, ammonium, nitrate), and PM2.5 mass concentration generally simultaneously elevated during haze episodes, resulting in the abundant anthropogenic aerosol water in the atmosphere of Beijing. The enrichment of aerosol liquid water may significantly affect the particle phase, which plays a key role in determining the reactive uptake, gas-particle partitioning, and heterogeneous chemical reactivity2. A newly-built three-arm impactor was used to detect the particle rebound fraction. The observations showed the increased RH and inorganic-rich particulate matter led to an increased aerosol liquid water content, and thus a liquid phase state during haze episode during wintertime. Here, we proposed that the transition to a liquid phase state marked the beginning of the haze episode and kicked off a positive feedback loop, wherein the liquid particles readily uptake pollutants that could react to form inorganics which could then uptake more water. The strict controlling strategy of sulfur emissions in China might lead to a decreased sulfate fraction and increased nitrate fraction in PM1. As a result, due to the lower deliquescence RH of nitrate, the feedback loop proposed could start at an even lower RH in the future. Reference1 Herrmann, H., T. Schaefer, A. Tilgner, S. A. Styler, C. Weller, M. Teich, and T. Otto (2015), Tropospheric Aqueous-Phase Chemistry: Kinetics, Mechanisms, and Its Coupling to a Changing Gas Phase, Chemical Reviews, 115(10), 4259-4334.2 M. Kuwata, S. T. Martin (2012), Phase of atmospheric secondary organic material affects its reactivity, Proceedings of the National Academy of Sciences of the United States of America, 109(43):17354-17359

  7. RAPID COMMUNICATION: Formation of MgB2 at ambient temperature with an electrochemical process: a plausible mechanism

    Science.gov (United States)

    Jadhav, A. B.; Subhedar, K. M.; Hyam, R. S.; Talaptra, A.; Sen, Pintu; Bandyopadhyay, S. K.; Pawar, S. H.

    2005-06-01

    The binary intermetallic MgB2 superconductor has been synthesized by many research groups. However, the mechanism of its formation is not clearly understood. In this communication, a comprehensive mechanism of the formation of MgB2 from Le Chatelier's principle of equilibrium reaction has been explained both for solid-state reaction and electrodeposition methods.

  8. Atmospheric oxidation of isoprene and 1,3-Butadiene: influence of aerosol acidity and Relative humidity on secondary organic aerosol

    Science.gov (United States)

    The effects of acidic seed aerosols on the formation of secondary organic aerosol (SOA)have been examined in a number of previous studies, several of which have observed strong linear correlations between the aerosol acidity (measured as nmol H+ per m3 air s...

  9. Modelling aerosol behavior in reactor cooling systems

    International Nuclear Information System (INIS)

    McDonald, B.H.

    1990-01-01

    This paper presents an overview of some of the areas of concern in using computer codes to model fission-product aerosol behavior in the reactor cooling system (RCS) of a water-cooled nuclear reactor during a loss-of-coolant accident. The basic physical processes that require modelling include: fission product release and aerosol formation in the reactor core, aerosol transport and deposition in the reactor core and throughout the rest of the RCS, and the interaction between aerosol transport processes and the thermalhydraulics. In addition to these basic physical processes, chemical reactions can have a large influence on the nature of the aerosol and its behavior in the RCS. The focus is on the physics and the implications of numerical methods used in the computer codes to model aerosol behavior in the RCS

  10. Formation of an 18R long-period stacking ordered structure in rapidly solidified Mg88Y8Zn4 alloy

    International Nuclear Information System (INIS)

    Garcés, Gerardo; Requena, Guillermo; Tolnai, Domonkos; Pérez, Pablo; Medina, Judit; Stark, Andreas; Schell, Norbert; Adeva, Paloma

    2016-01-01

    The formation of the long-period stacking ordered structure (LPSO) in a Mg 88 Y 8 Zn 4 (at%) ribbon produced by melt spinning was studied using high energy X-ray synchrotron radiation diffraction during in-situ isochronal heating and transmission electron microscopy. The microstructure of the rapidly solidified ribbons is characterised by fine magnesium grains with yttrium and zinc in solid solution and primary 18R LPSO-phase segregated at grain boundaries. Using differential scanning calorimetry, a strong exothermal peak was observed around 300 °C which was associated with the development of the 18R-type LPSO-phase in the magnesium grains. The apparent activation energy calculated using the Kissinger model was 125 KJmol −1 and it is related to simultaneous diffusion of Y and Zn through magnesium basal plane. - Highlights: •The formation of the LPSO phase in rapidly solidified ribbons was studied. •The formation of the 18R LPSO starts at around 300 °C. •LPSO formation have to steps: Stacking faults along basal plane and then growth of 18R structure along the c direction.

  11. Aerosol filtration

    International Nuclear Information System (INIS)

    Klein, M.; Goossens, W.R.A.; De Smet, M.; Trine, J.; Hertschap, M.

    1984-01-01

    This report summarizes the work on the development of fibre metallic prefilters to be placed upstream of HEPA filters for the exhaust gases of nuclear process plants. Investigations at ambient and high temperature were carried out. Measurements of the filtration performance of Bekipor porous webs and sintered mats were performed in the AFLT (aerosol filtration at low temperature) unit with a throughput of 15 m 3 /h. A parametric study on the influence of particle size, fibre diameter, number of layers and superficial velocity led to the optimum choice of the working parameters. Three selected filter types were then tested with polydisperse aerosols using a candle-type filter configuration or a flat-type filter configuration. The small-diameter candle type is not well suited for a spraying nozzles regeneration system so that only the flat-type filter was retained for high-temperature tests. A high-temperature test unit (AFHT) with a throughput of 8 to 10 m 3 /h at 400 0 C was used to test the three filter types with an aerosol generated by high-temperature calcination of a simulated nitric acid waste solution traced with 134 Cs. The regeneration of the filter by spray washing and the effect of the regeneration on the filter performance was studied for the three filter types. The porous mats have a higher dust loading capacity than the sintered web which means that their regeneration frequency can be kept lower

  12. TOMS Absorbing Aerosol Index

    Data.gov (United States)

    Washington University St Louis — TOMS_AI_G is an aerosol related dataset derived from the Total Ozone Monitoring Satellite (TOMS) Sensor. The TOMS aerosol index arises from absorbing aerosols such...

  13. Rapid formation of nanocrystalline HfO2 powders from amorphous hafnium hydroxide under ultrasonically assisted hydrothermal treatment

    International Nuclear Information System (INIS)

    Meskin, Pavel E.; Sharikov, Felix Yu.; Ivanov, Vladimir K.; Churagulov, Bulat R.; Tretyakov, Yury D.

    2007-01-01

    Peculiarities of hafnium hydroxide hydrothermal decomposition were studied by in situ heat flux calorimetry for the first time. It was shown that this process occurs in one exothermal stage (ΔH = -17.95 kJ mol -1 ) at 180-250 deg. C resulting in complete crystallization of amorphous phase with formation of pure monoclinic HfO 2 . It was found that the rate of m-HfO 2 formation can be significantly increased by combining hydrothermal treatment with simultaneous ultrasonic activation

  14. Redundancy and molecular evolution: the rapid Induction of bone formation by the mammalian transforming growth factor-β3 isoform

    Directory of Open Access Journals (Sweden)

    Ugo Ripamonti

    2016-09-01

    Full Text Available The soluble osteogenic molecular signals of the transforming growth factor-β (TGF-β supergene family are the molecular bases of the induction of bone formation and postnatal bone tissue morphogenesis with translation into clinical contexts. The mammalian TGF-β3 isoform, a pleiotropic member of the family, controls a vast array of biological processes including the induction of bone formation. Recombinant hTGF-β3 induces substantial bone formation when implanted with either collagenous bone matrices or coral-derived macroporous bioreactors in the rectus abdominis muscle of the non-human primate Papio ursinus. In marked contrast, the three mammalian TGF-βs do not initiate the induction of bone formation in rodents and lagomorphs. The induction of bone by hTGF-β3/preloaded bioreactors is orchestrated by inducing fibrin-fibronectin rings that structurally organize tissue patterning and morphogenesis within the macroporous spaces. Induced advancing extracellular matrix rings provide the structural anchorage for hyper chromatic cells, interpreted as differentiating osteoblasts re-programmed by hTGF-β3 from invading myoblastic and/or pericytic differentiated cells. Runx2 and Osteocalcin expression are significantly up-regulated correlating to multiple invading cells differentiating into the osteoblastic phenotype. Bioreactors pre-loaded with recombinant human Noggin (hNoggin, a BMPs antagonist, show down-regulation of BMP-2 and other profiled osteogenic proteins’ genes resulting in minimal bone formation. Coral-derived macroporous constructs preloaded with binary applications of hTGF-β3 and hNoggin also show down-regulation of BMP-2 with the induction of limited bone formation. The induction of bone formation by hTGF-β3 is via the BMPs pathway and it is thus blocked by hNoggin. Our systematic studies in Papio ursinus with translational hTGF-β3 in large cranio-mandibulo-facial defects in humans are now requesting the re-evaluation of Bone

  15. Comparison of patient comprehension of rapid HIV pre-test fundamentals by information delivery format in an emergency department setting

    Directory of Open Access Journals (Sweden)

    Clark Melissa A

    2007-09-01

    Full Text Available Abstract Background Two trials were conducted to compare emergency department patient comprehension of rapid HIV pre-test information using different methods to deliver this information. Methods Patients were enrolled for these two trials at a US emergency department between February 2005 and January 2006. In Trial One, patients were randomized to a no pre-test information or an in-person discussion arm. In Trial Two, a separate group of patients were randomized to an in-person discussion arm or a Tablet PC-based video arm. The video, "Do you know about rapid HIV testing?", and the in-person discussion contained identical Centers for Disease Control and Prevention-suggested pre-test information components as well as information on rapid HIV testing with OraQuick®. Participants were compared by information arm on their comprehension of the pre-test information by their score on a 26-item questionnaire using the Wilcoxon rank-sum test. Results In Trial One, 38 patients completed the no-information arm and 31 completed the in-person discussion arm. Of these 69 patients, 63.8% had twelve years or fewer of formal education and 66.7% had previously been tested for HIV. The mean score on the questionnaire for the in-person discussion arm was higher than for the no information arm (18.7 vs. 13.3, p ≤ 0.0001. In Trial Two, 59 patients completed the in-person discussion and 55 completed the video arms. Of these 114 patients, 50.9% had twelve years or fewer of formal education and 68.4% had previously been tested for HIV. The mean score on the questionnaire for the video arm was similar to the in-person discussion arm (20.0 vs. 19.2; p ≤ 0.33. Conclusion The video "Do you know about rapid HIV testing?" appears to be an acceptable substitute for an in-person pre-test discussion on rapid HIV testing with OraQuick®. In terms of adequately informing ED patients about rapid HIV testing, either form of pre-test information is preferable than for patients

  16. OH-initiated Aging of Biomass Burning Aerosol during FIREX

    Science.gov (United States)

    Lim, C. Y.; Hagan, D. H.; Cappa, C. D.; Kroll, J. H.; Coggon, M.; Koss, A.; Sekimoto, K.; De Gouw, J. A.; Warneke, C.

    2017-12-01

    Biomass burning emissions represent a major source of fine particulate matter to the atmosphere, and this source will likely become increasingly important in the future due to changes in the Earth's climate. Understanding the effects that increased fire emissions have on both air quality and climate requires understanding the composition of the particles emitted, since chemical and physical composition directly impact important particle properties such as absorptivity, toxicity, and cloud condensation nuclei activity. However, the composition of biomass burning particles in the atmosphere is dynamic, as the particles are subject to the condensation of low-volatility vapors and reaction with oxidants such as the hydroxyl radical (OH) during transport. Here we present a series of laboratory chamber experiments on the OH-initiated aging of biomass burning aerosol performed at the Fire Sciences Laboratory in Missoula, MT as part of the Fire Influences on Regional and Global Environments Experiment (FIREX) campaign. We describe the evolution of biomass burning aerosol produced from a variety of fuels operating the chamber in both particle-only and gas + particle mode, focusing on changes to the organic composition. In particle-only mode, gas-phase biomass burning emissions are removed before oxidation to focus on heterogeneous oxidation, while gas + particle mode includes both heterogeneous oxidation and condensation of oxidized volatile organic compounds onto the particles (secondary organic aerosol formation). Variability in fuels and burning conditions lead to differences in aerosol loading and secondary aerosol production, but in all cases aging results in a significant and rapid increases in the carbon oxidation state of the particles.

  17. Formation of two-way shape memory effect in rapid-quenched TiNiCu alloys

    International Nuclear Information System (INIS)

    Shelyakov, A.V.; Bykovsky, Yu.A.; Matveeva, N.M.; Kovneristy, Yu.K.

    1995-01-01

    Recently we have developed a number of devices for an optical radiation control based on the shape memory effect. A blind of rapid-quenched TiNiCu alloy having a two-way shape memory in bending was used as a basic element. So far as the rapid quenched alloy used is amorphous in initial state, it needs thermal annealing to form shape memory. This paper describes procedure of thermo-mechanical treatment, that allows to form desired two-way shape memory immediately during thermal annealing of amorphous alloy without training. It was shown that degree of two-way shape recovery depends critically on initial strain, temperature and duration of the annealing. It was experimentally determined optimum parameters of thermo-mechanical treatment to achieve maximum two-way shape memory. (orig.)

  18. Aerosol Chemical Composition and its Effects on Cloud-Aerosol Interactions during the 2007 CHAPS Experiment

    Science.gov (United States)

    Lee, Y.; Alexander, L.; Newburn, M.; Jayne, J.; Hubbe, J.; Springston, S.; Senum, G.; Andrews, B.; Ogren, J.; Kleinman, L.; Daum, P.; Berg, L.; Berkowitz, C.

    2007-12-01

    Chemical composition of submicron aerosol particles was determined using an Aerodyne Time-of-Flight Aerosol Mass Spectrometer (AMS) outfitted on the DOE G-1 aircraft during the Cumulus Humilis Aerosol Processing Study (CHAPS) conducted in Oklahoma City area in June 2007. The primary objective of CHAPS was to investigate the effects of urban emissions on cloud aerosol interactions as a function of processing of the emissions. Aerosol composition was typically determined at three different altitudes: below, in, and above cloud, in both upwind and downwind regions of the urban area. Aerosols were sampled from an isokinetic inlet with an upper size cut-off of ~1.5 micrometer. During cloud passages, the AMS also sampled particles that were dried from cloud droplets collected using a counter-flow virtual impactor (CVI) sampler. The aerosol mass concentrations were typically below 10 microgram per cubic meter, and were dominated by organics and sulfate. Ammonium was often less than required for complete neutralization of sulfate. Aerosol nitrate levels were very low. We noted that nitrate levels were significantly enhanced in cloud droplets compared to aerosols, most likely resulting from dissolution of gaseous nitric acid. Organic to sulfate ratios appeared to be lower in cloud droplets than in aerosols, suggesting cloud condensation nuclei properties of aerosol particles might be affected by loading and nature of the organic components in aerosols. In-cloud formation of sulfate was considered unimportant because of the very low SO2 concentration in the region. A detailed examination of the sources of the aerosol organic components (based on hydrocarbons determined using a proton transfer reaction mass spectrometer) and their effects on cloud formation as a function of atmospheric processing (based on the degree of oxidation of the organic components) will be presented.

  19. Altering the cooling rate dependence of phase formation during rapid solidification in the Nd{sub 2}Fe{sub 14}B system

    Energy Technology Data Exchange (ETDEWEB)

    Branagan, D.J. [USDOE, Ames, IA (United States). Ames Lab.]|[Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Materials Science and Engineering; McCallum, R.W. [USDOE, Ames, IA (United States). Ames Lab.]|[Iowa State Univ. of Science and Technology, Ames, IA (United States). Dept. of Materials Science and Engineering

    1995-04-26

    In order to evaluate the effects of additions on the solidification behavior of Nd{sub 2}Fe{sub 14}B, a stoichiometric alloy was modified with elemental additions of Ti or C and a compound addition of Ti with C. For each alloy, a series of wheel speed runs was undertaken, from which the optimum wheel speeds and optimum energy products were determined. On the BH{sub max} versus wheel speed plots, regions were identified in order to analyze the changes with cooling rates leading to phase formation brought about by the alloy modifications. The compilation of the regional data of the modified alloys showed their effects on altering the cooling rate dependence of phase formation. It was found that the regions of properitectic iron formation, glass formation, and the optimum cooling rate can be changed by more than a factor of two through appropriate alloying additions. The effects of the alloy modifications can be visualized in a convenient fashion through the use of a model continuous cooling transformation (CCT) diagram which represents phase formation during the solidification process under continuous cooling conditions for a wide range of cooling rates from rapid solidification to equilibrium cooling. ((orig.)).

  20. Social Memory Formation Rapidly and Differentially Affects the Motivation and Performance of Vocal Communication Signals in the Bengalese Finch (Lonchura striata var. domestica)

    Science.gov (United States)

    Toccalino, Danielle C.; Sun, Herie; Sakata, Jon T.

    2016-01-01

    Cognitive processes like the formation of social memories can shape the nature of social interactions between conspecifics. Male songbirds use vocal signals during courtship interactions with females, but the degree to which social memory and familiarity influences the likelihood and structure of male courtship song remains largely unknown. Using a habituation-dishabituation paradigm, we found that a single, brief (female led to the formation of a short-term memory for that female: adult male Bengalese finches were significantly less likely to produce courtship song to an individual female when re-exposed to her 5 min later (i.e., habituation). Familiarity also rapidly decreased the duration of courtship songs but did not affect other measures of song performance (e.g., song tempo and the stereotypy of syllable structure and sequencing). Consistent with a contribution of social memory to the decrease in courtship song with repeated exposures to the same female, the likelihood that male Bengalese finches produced courtship song increased when they were exposed to a different female (i.e., dishabituation). Three consecutive exposures to individual females also led to the formation of a longer-term memory that persisted over days. Specifically, when courtship song production was assessed 2 days after initial exposures to females, males produced fewer and shorter courtship songs to familiar females than to unfamiliar females. Measures of song performance, however, were not different between courtship songs produced to familiar and unfamiliar females. The formation of a longer-term memory for individual females seemed to require at least three exposures because males did not differentially produce courtship song to unfamiliar females and females that they had been exposed to only once or twice. Taken together, these data indicate that brief exposures to individual females led to the rapid formation and persistence of social memories and support the existence of distinct

  1. Alkaliphilic Bacillus species show potential application in concrete crack repair by virtue of rapid spore production and germination then extracellular calcite formation.

    Science.gov (United States)

    Sharma, T K; Alazhari, M; Heath, A; Paine, K; Cooper, R M

    2017-05-01

    Characterization of alkaliphilic Bacillus species for spore production and germination and calcite formation as a prelude to investigate their potential in microcrack remediation in concrete. Conditions, extent and timing of endospore production was determined by dark-field light microscopy; germination induction and kinetics were assessed by combining reduction in optical density with formation of refractile bodies by phase-contrast microscopy. Bacillus pseudofirmus was selected from several species as the most suitable isolate. Levels and timing of calcium carbonate precipitated in vitro by B. pseudofirmus were evaluated by atomic absorption spectroscopy and structural identity confirmed as calcite and aragonite by Raman spectroscopy and FTIR. The isolate produced copious spores that germinated rapidly in the presence of germinants l-alanine, inosine and NaCl. Bacterial cells produced CaCO 3 crystals in microcracks and the resulting occlusion markedly restricted water ingress. By virtue of rapid spore production and germination, calcium carbonate formation in vitro and in situ, leading to sealing of microcracks, B. pseudofirmus shows clear potential for remediation of concrete on a commercial scale. Microbial sealing of microcracks should become a practicable and sustainable means of increasing concrete durability. © 2017 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of The Society for Applied Microbiology.

  2. More surprises in the global greenhouse: Human health impacts from recent toxic marine aerosol formations, due to centennial alterations of world-wide coastal food webs.

    Science.gov (United States)

    Walsh, J J; Lenes, J M; Weisberg, R H; Zheng, L; Hu, C; Fanning, K A; Snyder, R; Smith, J

    2017-03-15

    Reductions of zooplankton biomasses and grazing pressures were observed during overfishing-induced trophic cascades and concurrent oil spills at global scales. Recent phytoplankton increments followed, once Fe-, P-, and N-nutrient limitations of commensal diazotrophs and dinoflagellates were also eliminated by respective human desertification, deforestation, and eutrophication during climate changes. Si-limitation of diatoms instead ensued during these last anthropogenic perturbations of agricultural effluents and sewage loadings. Consequently, ~15% of total world-wide annual asthma trigger responses, i.e. amounting to ~45 million adjacent humans during 2004, resulted from brevetoxin and palytoxin poisons in aerosol forms of western boundary current origins. They were denoted by greater global harmful algal bloom [HAB] abundances and breathing attacks among sea-side children during prior decadal surveys of asthma prevalence, compiled here in ten paired shelf ecosystems of western and eutrophied boundary currents. Since 1965, such inferred onshore fluxes of aerosolized DOC poisons of HABs may have served as additional wind-borne organic carriers of toxic marine MeHg, phthalate, and DDT/DDE vectors, traced by radio-iodine isotopes to potentially elicit carcinomas. During these exchanges, as much as 40% of mercury poisonings may instead have been effected by inhalation of collateral HAB-carried marine neurotoxic aerosols of MeHg, not just from eating marine fish. Health impacts in some areas were additional asthma and pneumonia episodes, as well as endocrine disruptions among the same adjacent humans, with known large local rates of thyroid cancers, physician-diagnosed pulmonary problems, and ubiquitous high indices of mercury in hair, pesticides in breast milk, and phthalates in urine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Impact of aerosols on ice crystal size

    Science.gov (United States)

    Zhao, Bin; Liou, Kuo-Nan; Gu, Yu; Jiang, Jonathan H.; Li, Qinbin; Fu, Rong; Huang, Lei; Liu, Xiaohong; Shi, Xiangjun; Su, Hui; He, Cenlin

    2018-01-01

    The interactions between aerosols and ice clouds represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. In particular, the impact of aerosols on ice crystal effective radius (Rei), which is a key parameter determining ice clouds' net radiative effect, is highly uncertain due to limited and conflicting observational evidence. Here we investigate the effects of aerosols on Rei under different meteorological conditions using 9-year satellite observations. We find that the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters. While there is a significant negative correlation between Rei and aerosol loading in moist conditions, consistent with the "Twomey effect" for liquid clouds, a strong positive correlation between the two occurs in dry conditions. Simulations based on a cloud parcel model suggest that water vapor modulates the relative importance of different ice nucleation modes, leading to the opposite aerosol impacts between moist and dry conditions. When ice clouds are decomposed into those generated from deep convection and formed in situ, the water vapor modulation remains in effect for both ice cloud types, although the sensitivities of Rei to aerosols differ noticeably between them due to distinct formation mechanisms. The water vapor modulation can largely explain the difference in the responses of Rei to aerosol loadings in various seasons. A proper representation of the water vapor modulation is essential for an accurate estimate of aerosol-cloud radiative forcing produced by ice clouds.

  4. More surprises in the global greenhouse: Human health impacts from recent toxic marine aerosol formations, due to centennial alterations of world-wide coastal food webs

    International Nuclear Information System (INIS)

    Walsh, J.J.; Lenes, J.M.; Weisberg, R.H.; Zheng, L.; Hu, C.; Fanning, K.A.; Snyder, R.; Smith, J.

    2017-01-01

    Reductions of zooplankton biomasses and grazing pressures were observed during overfishing-induced trophic cascades and concurrent oil spills at global scales. Recent phytoplankton increments followed, once Fe-, P-, and N-nutrient limitations of commensal diazotrophs and dinoflagellates were also eliminated by respective human desertification, deforestation, and eutrophication during climate changes. Si-limitation of diatoms instead ensued during these last anthropogenic perturbations of agricultural effluents and sewage loadings. Consequently, ~ 15% of total world-wide annual asthma trigger responses, i.e. amounting to ~ 45 million adjacent humans during 2004, resulted from brevetoxin and palytoxin poisons in aerosol forms of western boundary current origins. They were denoted by greater global harmful algal bloom [HAB] abundances and breathing attacks among sea-side children during prior decadal surveys of asthma prevalence, compiled here in ten paired shelf ecosystems of western and eutrophied boundary currents. Since 1965, such inferred onshore fluxes of aerosolized DOC poisons of HABs may have served as additional wind-borne organic carriers of toxic marine MeHg, phthalate, and DDT/DDE vectors, traced by radio-iodine isotopes to potentially elicit carcinomas. During these exchanges, as much as 40% of mercury poisonings may instead have been effected by inhalation of collateral HAB-carried marine neurotoxic aerosols of MeHg, not just from eating marine fish. Health impacts in some areas were additional asthma and pneumonia episodes, as well as endocrine disruptions among the same adjacent humans, with known large local rates of thyroid cancers, physician-diagnosed pulmonary problems, and ubiquitous high indices of mercury in hair, pesticides in breast milk, and phthalates in urine. - Highlights: • Oil spills, heavy metals, and overfishing decimated zooplankton grazers • Desert expansions and eutrophication concurrently fueled diazotrophs to set free

  5. Influence of physical properties and chemical composition of sample on formation of aerosol particles generated by nanosecond laser ablation at 213 nm

    Energy Technology Data Exchange (ETDEWEB)

    Hola, Marketa, E-mail: mhola@sci.muni.c [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Konecna, Veronika [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Mikuska, Pavel [Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic v.v.i., Veveri 97, 602 00 Brno (Czech Republic); Kaiser, Jozef [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic); Kanicky, Viktor [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic)

    2010-01-15

    The influence of sample properties and composition on the size and concentration of aerosol particles generated by nanosecond Nd:YAG laser ablation at 213 nm was investigated for three sets of different materials, each containing five specimens with a similar matrix (Co-cemented carbides with a variable content of W and Co, steel samples with minor differences in elemental content and silica glasses with various colors). The concentration of ablated particles (particle number concentration, PNC) was measured in two size ranges (10-250 nm and 0.25-17 mum) using an optical aerosol spectrometer. The shapes and volumes of the ablation craters were obtained by Scanning Electron Microscopy (SEM) and by an optical profilometer, respectively. Additionally, the structure of the laser-generated particles was studied after their collection on a filter using SEM. The results of particle concentration measurements showed a significant dominance of particles smaller than 250 nm in comparison with larger particles, irrespective of the kind of material. Even if the number of particles larger than 0.25 mum is negligible (up to 0.1%), the volume of large particles that left the ablation cell can reach 50% of the whole particle volume depending on the material. Study of the ablation craters and the laser-generated particles showed a various number of particles produced by different ablation mechanisms (particle splashing or condensation), but the similar character of released particles for all materials was observed by SEM after particle collection on the membrane filter. The created aerosol always consisted of two main structures - spherical particles with diameters from tenths to units of micrometers originally ejected from the molten surface layer and mum-sized 'fibres' composed of primary agglomerates with diameters in the range between tens and hundreds of nanometers. The shape and structure of ablation craters were in good agreement with particle concentration

  6. Rapid Synthesis and Formation Mechanism of Core-Shell-Structured La-Doped SrTiO3 with a Nb-Doped Shell

    Directory of Open Access Journals (Sweden)

    Nam-Hee Park

    2015-07-01

    Full Text Available To provide a convenient and practical synthesis process for metal ion doping on the surface of nanoparticles in an assembled nanostructure, core-shell-structured La-doped SrTiO3 nanocubes with a Nb-doped surface layer were synthesized via a rapid synthesis combining a rapid sol-precipitation and hydrothermal process. The La-doped SrTiO3 nanocubes were formed at room temperature by a rapid dissolution of NaOH pellets during the rapid sol-precipitation process, and the Nb-doped surface (shell along with Nb-rich edges formed on the core nanocubes via the hydrothermal process. The formation mechanism of the core-shell-structured nanocubes and their shape evolution as a function of the Nb doping level were investigated. The synthesized core-shell-structured nanocubes could be arranged face-to-face on a SiO2/Si substrate by a slow evaporation process, and this nanostructured 10 μm thick thin film showed a smooth surface.

  7. Aerosols, cloud physics and radiation

    International Nuclear Information System (INIS)

    Twomey, S.

    1990-01-01

    Some aspects of climate physics are discussed with special attention given to cases where cloud physics is relevant for the phase and microstructure of clouds and, therefore, in the optical properties of the planet. It is argued that aerosol particles, through their strong effect on cloud microphysics, influence the shortwave energy input to earth, and that cloud microphysics strongly influence rain formation. Therefore, through their influence on microphysics, the aerosols play a central role in the atmospheric water cycle and, thus, on the planet's outgoing radiation. 20 refs

  8. Future aerosols of the southwest - Implications for fundamental aerosol research

    International Nuclear Information System (INIS)

    Friedlander, S.K.

    1980-01-01

    It is shown that substantial increases in the use of coal in the U.S. will lead to substantial increases in emissions of particulate matter, SO/sub x/, and NO/sub x/ in the part of the U.S. west of the Mississippi. A shift in the primary particulate emissions from coarse to submicron particles is predicted. Attention is given to the nature of the submicron aerosol in the southwest, the distribution of sulfur with respect to particle size, the formation of new particles in the atmosphere, and the ammonium nitrate equilibrium. It is concluded that increased coal use will result in a 50% increase in SO/sub x/ emissions and a doubling of NO/sub x/ emissions in the western U.S. by the year 2000, that ambient levels of aerosol sulfates and nitrates will increase, and that a large increase in submicron aerosol mass is likely

  9. How important is organic aerosol hygroscopicity to aerosol indirect forcing?

    International Nuclear Information System (INIS)

    Liu Xiaohong; Wang Jian

    2010-01-01

    Organics are among the most abundant aerosol components in the atmosphere. However, there are still large uncertainties with emissions of primary organic aerosol (POA) and volatile organic compounds (VOCs) (precursor gases of secondary organic aerosol, SOA), formation of SOA, and chemical and physical properties (e.g., hygroscopicity) of POA and SOA. All these may have significant impacts on aerosol direct and indirect forcing estimated from global models. In this study a modal aerosol module (MAM) in the NCAR community atmospheric model (CAM) is used to examine sensitivities of aerosol indirect forcing to hygroscopicity (represented by a single parameter 'κ' ) of POA and SOA. Our model simulation indicates that in the present-day (PD) condition changing the 'κ' value of POA from 0 to 0.1 increases the number concentration of cloud condensational nuclei (CCN) at supersaturation S = 0.1% by 40-80% over the POA source regions, while changing the 'κ' value of SOA by ± 50% (from 0.14 to 0.07 and 0.21) changes the CCN concentration within 40%. There are disproportionally larger changes in CCN concentration in the pre-industrial (PI) condition. Due to the stronger impact of organics hygroscopicity on CCN and cloud droplet number concentration at PI condition, global annual mean anthropogenic aerosol indirect forcing (AIF) between PD and PI conditions reduces with the increase of the hygroscopicity of organics. Global annual mean AIF varies by 0.4 W m -2 in the sensitivity runs with the control run of - 1.3 W m -2 , highlighting the need for improved understanding of organics hygroscopicity and its representation in global models.

  10. Rapid formation of complexity in the total synthesis of natural products enabled by oxabicyclo[2.2.1]heptene building blocks.

    Science.gov (United States)

    Schindler, Corinna S; Carreira, Erick M

    2009-11-01

    This critical review showcases examples of rapid formation of complexity in total syntheses starting from 7-oxabicyclo[2.2.1]hept-5-ene derivatives. An overview of methods allowing synthetic access to these building blocks is provided and their application in recently developed synthetic transformations to structurally complex systems is illustrated. In addition, the facile access to a novel oxabicyclo[2.2.1]heptene derived building block is presented which significantly enlarges the possibilities of previously known chemical transformations and is highlighted in the enantioselective route to the core of the banyaside and suomilide natural products (107 references).

  11. Aerosol scrubbers

    International Nuclear Information System (INIS)

    Sheely, W.F.

    1986-01-01

    The Submerged Gravel Scrubber is an air cleaning system developed by the Department of Energy's Liquid Metal Reactor Program. The Scrubber System has been patented by the Department of Energy. This technology is being transferred to industry by the DOE. Its basic principles can be adapted for individual applications and the commercialized version can be used to perform a variety of tasks. The gas to be cleaned is percolated through a continuously washed gravel bed. The passage of the gas through the gravel breaks the stream into many small bubbles rising in a turbulent body of water. These conditions allow very highly efficient removal of aerosols from the gas

  12. Aerosol Formation from High-Pressure Sprays for Supporting the Safety Analysis for the Hanford Waste Treatment and Immobilization Plant - 13183

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, P.A.; Mahoney, L.A.; Schonewill, P.P.; Bontha, J.R.; Blanchard, J.; Kurath, D.E.; Daniel, R.C.; Song, C. [Pacific Northwest National Laboratory, PO Box 999, Richland WA 99352 (United States)

    2013-07-01

    The Waste Treatment and Immobilization Plant (WTP) at Hanford is being designed and built to pretreat and vitrify waste currently stored in underground tanks at Hanford. One of the postulated events in the hazard analysis for the WTP is a breach in process piping that produces a pressurized spray with small droplets that can be transported into ventilation systems. Literature correlations are currently used for estimating the generation rate and size distribution of aerosol droplets in postulated releases. These correlations, however, are based on results obtained from small engineered nozzles using Newtonian liquids that do not contain slurry particles and thus do not represent the fluids and breaches in the WTP. A test program was developed to measure the generation rate, and the release fraction which is the ratio of generation rate to spray flow rate, of droplets suspended in a test chamber and droplet size distribution from prototypic sprays. A novel test method was developed to allow measurement of sprays from small to large breaches and also includes the effect of aerosol generation from splatter when the spray impacts on walls. Results show that the release fraction decreases with increasing orifice area, though with a weaker dependence on orifice area than the currently-used correlation. A comparison of water sprays to slurry sprays with 8 to 20 wt% gibbsite or boehmite particles shows that the presence of slurry particles depresses the release fraction compared to water for droplets above 10 μm and increases the release fraction below this droplet size. (authors)

  13. Formation of bands of ultrafine beryllium particles during rapid solidification of Al-Be alloys: Modeling and direct observations

    International Nuclear Information System (INIS)

    Elmer, J.W.; Tanner, L.E.; Smith, P.M.; Wall, M.A.; Aziz, M.J.

    1994-01-01

    Rapid solidification of dilute hyper-eutectic and monotectic alloys sometimes produces a dispersion of ultrafine randomly-oriented particles that lie in arrays parallel to the advancing solidification front. The authors characterize this effect in Al-Be where Be-rich particles with diameters on the order of 10 nm form in arrays spaced approximately 25 nm apart, and they present a model of macroscopically steady state but microscopically oscillatory motion of the solidification front to explain this unusual microstructure. The proposed mechanism involves; (i) the build-up of rejected solute in a diffusional boundary layer which slows down the growing crystal matrix, (2) the boundary layer composition entering a metastable liquid miscibility gap, (3) homogeneous nucleation of solute rich liquid droplets in the boundary layer, and crystallization of these droplets, and (4) growth of the matrix past the droplets and its reformation into a planar interface. The size of the Be-rich particles is limited by the beryllium supersaturation in the diffusional boundary layer. A numerical model was developed to investigate this solidification mechanism, and the results of the model are in good agreement with experimental observations of rapidly solidified Al-5 at.% Be

  14. Kinetics of rapid covalent bond formation of aniline with humic acid: ESR investigations with nitroxide spin labels

    Science.gov (United States)

    Glinka, Kevin; Matthies, Michael; Theiling, Marius; Hideg, Kalman; Steinhoff, Heinz-Jürgen

    2016-04-01

    Sulfonamide antibiotics used in livestock farming are distributed to farmland by application of slurry as fertilizer. Previous work suggests rapid covalent binding of the aniline moiety to humic acids found in soil. In the current work, kinetics of this binding were measured in X-band EPR spectroscopy by incubating Leonardite humic acid (LHA) with a paramagnetic aniline spin label (anilino-NO (2,5,5-Trimethyl-2-(3-aminophenyl)pyrrolidin-1-oxyl)). Binding was detected by a pronounced broadening of the spectral lines after incubation of LHA with anilino-NO. The time evolution of the amplitude of this feature was used for determining the reaction kinetics. Single- and double-exponential models were fitted to the data obtained for modelling one or two first-order reactions. Reaction rates of 0.16 min-1 and 0.012 min-1, were found respectively. Addition of laccase peroxidase did not change the kinetics but significantly enhanced the reacting fraction of anilino-NO. This EPR-based method provides a technically simple and effective method for following rapid binding processes of a xenobiotic substance to humic acids.

  15. Calibration of aerosol radiometers. Special aerosol sources

    International Nuclear Information System (INIS)

    Belkina, S.K.; Zalmanzon, Yu.E.; Kuznetsov, Yu.V.; Fertman, D.E.

    1988-01-01

    Problems of calibration of artificial aerosol radiometry and information-measurement systems of radiometer radiation control, in particular, are considered. Special aerosol source is suggested, which permits to perform certification and testing of aerosol channels of the systems in situ without the dismantling

  16. Social Memory Formation Rapidly and Differentially Affects the Motivation and Performance of Vocal Communication Signals in the Bengalese Finch (Lonchura striata var. domestica).

    Science.gov (United States)

    Toccalino, Danielle C; Sun, Herie; Sakata, Jon T

    2016-01-01

    Cognitive processes like the formation of social memories can shape the nature of social interactions between conspecifics. Male songbirds use vocal signals during courtship interactions with females, but the degree to which social memory and familiarity influences the likelihood and structure of male courtship song remains largely unknown. Using a habituation-dishabituation paradigm, we found that a single, brief (memory for that female: adult male Bengalese finches were significantly less likely to produce courtship song to an individual female when re-exposed to her 5 min later (i.e., habituation). Familiarity also rapidly decreased the duration of courtship songs but did not affect other measures of song performance (e.g., song tempo and the stereotypy of syllable structure and sequencing). Consistent with a contribution of social memory to the decrease in courtship song with repeated exposures to the same female, the likelihood that male Bengalese finches produced courtship song increased when they were exposed to a different female (i.e., dishabituation). Three consecutive exposures to individual females also led to the formation of a longer-term memory that persisted over days. Specifically, when courtship song production was assessed 2 days after initial exposures to females, males produced fewer and shorter courtship songs to familiar females than to unfamiliar females. Measures of song performance, however, were not different between courtship songs produced to familiar and unfamiliar females. The formation of a longer-term memory for individual females seemed to require at least three exposures because males did not differentially produce courtship song to unfamiliar females and females that they had been exposed to only once or twice. Taken together, these data indicate that brief exposures to individual females led to the rapid formation and persistence of social memories and support the existence of distinct mechanisms underlying the motivation to

  17. Aerosols and fission product transport

    International Nuclear Information System (INIS)

    Megaw, W.J.

    1987-12-01

    A survey is presented of current knowledge of the possible role of aerosols in the consequences of in- and out-of-core LOCAs and of end fitting failures in CANDU reactors. An extensive literature search has been made of research on the behaviour of aerosols in possible accidents in water moderated and cooled reactors and the results of various studies compared. It is recommended that further work should be undertaken on the formation of aerosols during these possible accidents and to study their subsequent behaviour. It is also recommended that the fission products behaviour computer code FISSCON II should be re-examined to determine whether it reflects the advances incorporated in other codes developed for light water reactors which have been extensively compared. 47 refs

  18. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    Science.gov (United States)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-09-01

    observed in urban plumes compared to regional aerosol (0.85 versus 0.9-0.95). We attribute these differences to the presence of relatively rapidly formed secondary aerosol, primarily OOA and ammonium nitrate, which must be taken into account in radiative forcing calculations.

  19. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the UK

    Science.gov (United States)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-05-01

    urban plumes compared to regional aerosol (0.85 versus 0.9-0.95). We attribute these differences to the presence of relatively rapidly formed secondary aerosol, primarily OOA and ammonium nitrate, which must be taken into account in radiative forcing calculations.

  20. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    Directory of Open Access Journals (Sweden)

    G. R. McMeeking

    2011-09-01

    different air masses, with lower SSA observed in urban plumes compared to regional aerosol (0.85 versus 0.9–0.95. We attribute these differences to the presence of relatively rapidly formed secondary aerosol, primarily OOA and ammonium nitrate, which must be taken into account in radiative forcing calculations.

  1. Gas phase precursors to anthropogenic secondary organic aerosol: detailed observations of 1,3,5-trimethylbenzene photooxidation

    Directory of Open Access Journals (Sweden)

    K. P. Wyche

    2009-01-01

    Full Text Available A series of photooxidation experiments were conducted in an atmospheric simulation chamber in order to investigate the oxidation mechanism and secondary organic aerosol (SOA formation potential of the model anthropogenic gas phase precursor, 1,3,5-trimethylbenzene. Alongside specific aerosol measurements, comprehensive gas phase measurements, primarily by Chemical Ionisation Reaction Time-of-Flight Mass Spectrometry (CIR-TOF-MS, were carried out to provide detailed insight into the composition and behaviour of the organic components of the gas phase matrix during SOA formation. An array of gas phase organic compounds was measured during the oxidation process, including several previously unmeasured primary bicyclic compounds possessing various functional groups. Analysis of results obtained during this study implies that these peroxide bicyclic species along with a series of ring opening products and organic acids contribute to SOA growth. The effect of varying the VOC/NOx ratio on SOA formation was explored, as was the effect of acid seeding. It was found that low NOx conditions favour more rapid aerosol formation and a higher aerosol yield, a result that implies a role for organic peroxides in the nucleation process and SOA growth.

  2. Formation of VO{sub 2} by rapid thermal annealing and cooling of sputtered vanadium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ba, Cheikhou O. F., E-mail: cheikhou.ba.1@ulaval.ca; Fortin, Vincent; Bah, Souleymane T.; Vallée, Réal [Centre d' optique, photonique et laser (COPL), Université Laval, Québec G1V 0A6 (Canada); Pandurang, Ashrit [Thin Films and Photonics Research Group (GCMP), Department of Physics and Astronomy, Université de Moncton, Moncton, New Brunswick E1A 3E9 (Canada)

    2016-05-15

    Sputtered vanadium-rich films were subjected to rapid thermal annealing-cooling (RTAC) in air to produce vanadium dioxide (VO{sub 2}) thin films with thermochromic switching behavior. High heating and cooling rates in the thermal oxidation process provided an increased ability to control the film's microstructure. X-ray diffraction patterns of the films revealed less intense VO{sub 2} peaks compared to traditional polycrystalline samples fabricated with a standard (slower) cooling time. Such films also exhibit a high optical switching reflectance contrast, unlike the traditional polycrystalline VO{sub 2} thin films, which show a more pronounced transmittance switching. The authors find that the RTAC process stabilizes the VO{sub 2} (M2) metastable phase, enabling a rutile-semiconductor phase transition (R-M2), followed by a semiconductor–semiconductor phase transition (M2-M1).

  3. Environmentally benign formation of polymeric microspheres by rapid expansion of supercritical carbon dioxide solution with a nonsolvent.

    Science.gov (United States)

    Matsuyama, K; Mishima, K; Umemoto, H; Yamaguchi, S

    2001-10-15

    A novel method is reported for forming polymer microparticles, which reduce atmospheric emissions of environmentally harmful volatile organic compounds such as toluene and xylene used as paint solvent in paint industry. The polymer microparticles have formed through rapid expansion from supercritical solution with a nonsolvent (RESS-N). Solubilization of poly(styrene)-b-(poly(methyl methacrylate)-co-poly (glycidyl methacrylate)) copolymer(PS-b-(PMMA-co-PGMA), MW = 5000, PS/PMMA/PGMA = 2/5/3), poly(ethylene glycol) (PEG, M. W = 4000), bisphenol A type epoxy resin (EP, MW = 3000), poly(methyl methacrylate) (PMMA; MW = 15000, 75000, 120000), and poly(oxyalkylene) alkylphenyl ether (MW = 4000) in carbon dioxide (CO2) was achieved with the use of small alcohols as cosolvents. The solubility of the PS-b-(PMMA-co-PGMA) is extremely low in either CO2 or ethanol but becomes 20 wt % in a mixture of the two. Because ethanol is a nonsolvent for the polymer, it can be used as a cosolvent in rapid expansion from supercritical solution to produce 1-3 microm particles that do not agglomerate. Obtained polymer particles by RESS-N were applied as powder coatings. The resulting coatings have a smooth and coherent film. The particle size distribution of microspheres was controlled by changing the polymer concentration, preexpansion pressure, temperature, and injection distance. The feed compositions were more effective than the other factors in controlling the particle size. The polymeric microparticles formed by RESS-N method can be utilized to make the thin coating film without anytoxic organic solvents and/or surfactants.

  4. Review of thermal recovery technologies for the Clearwater and lower Grand Rapids formations in the Cold Lake area in Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Q.; Thornton, B.; Houston, J.R.; Spence, S. [OSUM Oil Sands Corp., Calgary, AB (Canada)

    2009-07-01

    This paper described a performance review conducted to assess steam assisted gravity drainage (SAGD) and cyclic steam stimulation (CSS) projects in the Cold Lake region. Commercial and pilot plant projects in the region were discussed. The aim of the study was to design a development plan for achieving bitumen production rates of 35,000 barrels per day in the Taiga region. While relatively high pressure drawdowns are created between the wellbore and formation during CSS production phases, the CSS process has limited applications in fine grain sands reservoirs, or in reservoirs with thick bottom water. SAGD processes require a minimum pressure drawdown to drive reservoir fluids to the wellbore, making them ideal for reservoirs with top gas, or in formations with fine grain sands and bottom water. Selection criteria for CSS and SAGD technologies were reviewed. Simulations were conducted to assess the impacts of well placement, reservoir heterogeneity, and operating parameters on SAGD and CSS performance. Well configurations for optimal SAGD performance were also presented. 19 refs., 3 tabs., 20 figs.

  5. Aerosols and the lungs

    International Nuclear Information System (INIS)

    1987-01-01

    The lectures of the colloquium are discussed in summary form. There were 5 lectures on aerosol deposition, 5 on aerosol elimination, 7 on toxicology, and 7 on the uses of aerosols in medical therapy. In some cases aerosols with radioactive labels were used. Several lectures reviewed the kinetics and toxicology of airborne environmental pollutants. (MG) [de

  6. Phase formation kinetics, hardness and magnetocaloric effect of sub-rapidly solidified LaFe11.6Si1.4 plates during isothermal annealing

    Science.gov (United States)

    Dai, Yuting; Xu, Zhishuai; Luo, Zhiping; Han, Ke; Zhai, Qijie; Zheng, Hongxing

    2018-05-01

    High-temperature phase transition behavior and intrinsic brittleness of NaZn13-type τ1 phase in La-Fe-Si magnetocaloric materials are two key problems from the viewpoint of materials production and practical applications. In the present work, the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation was introduced to quantitatively characterize the formation kinetics of τ1 phase in sub-rapidly solidified LaFe11.6Si1.4 plates during the isothermal annealing process. Avrami index was estimated to be 0.43 (∼0.5), which suggests that the formation of τ1 phase is in a diffusion-controlled one-dimensional growth mode. Meanwhile, it is found that the Vickers hardness as a function of annealing time for sub-rapidly solidified plates also agrees well with the JMAK equation. The Vickers hardness of τ1 phase was estimated to be about 754. Under a magnetic field change of 30 kOe, the maximum magnetic entropy change was about 22.31 J/(kg·K) for plates annealed at 1323 K for 48 h, and the effective magnetic refrigeration capacity reached 191 J/kg.

  7. Laboratory and field measurements of organic aerosols with the photoionization aerosol mass spectrometer

    Science.gov (United States)

    Dreyfus, Matthew A.

    Analytical methods developed to sample and characterize ambient organic aerosols often face the trade-off between long sampling times and the loss of detailed information regarding specific chemical species present. The soft, universal ionization scheme of the Photoionization Aerosol Mass Spectrometer (PIAMS) allows for identification of various chemical compounds by a signature ion, often the molecular ion. The goal of this thesis work is to apply PIAMS to both laboratory and field experiments to answer questions regarding the formation, composition, and behavior of organic aerosols. To achieve this goal, a variety of hardware and software upgrades were administered to PIAMS to optimize the instrument. Data collection and processing software were either refined or built from the ground up to simplify difficult or monotonous tasks. Additional components were added to PIAMS with the intent to automate the instrument, enhance the results, and make the instrument more rugged and user-friendly. These changes, combined with the application of an external particle concentration system (mini-Versatile Aerosol Concentration Enrichment System, m-VACES), allowed PIAMS to be suitable for field measurements of organic aerosols. Two such field campaigns were completed, both at the State of Delaware Air Quality Monitoring Site in Wilmington, Delaware: a one week period in June, 2006, and an 18 day period in October and November of 2007. A sampling method developed was capable of collecting sufficient ambient organic aerosol and analyzing it with a time resolution of 3.5 minutes. Because of this method, short term concentration changes of individual species can be tracked. Combined with meteorological data, the behavior of these species can be analyzed as a function of time or wind direction. Many compounds are found at enhanced levels during the evening/night-time hours; potentially due to the combined effects of temperature inversion, and fresh emissions in a cooler environment

  8. Eulerian-Lagranigan simulation of aerosol evolution in turbulent mixing layer

    KAUST Repository

    Zhou, Kun; Jiang, Xiao; Sun, Ke; He, Zhu

    2016-01-01

    The formation and evolution of aerosol in turbulent flows are ubiquitous in both industrial processes and nature. The intricate interaction of turbulent mixing and aerosol evolution in a canonical turbulent mixing layer was investigated by a direct

  9. Factors Affecting Aerosol Radiative Forcing

    Science.gov (United States)

    Wang, J.; Lin, J.; Ni, R.

    2016-12-01

    Rapid industrial and economic growth has meant large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RFof aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissionsper unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size.South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions,its aerosol RF is alleviated by its lowest chemical efficiency.The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is loweredbyasmall per capita GDP.Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The resulting

  10. Aerosol indirect effects on the nighttime Arctic Ocean surface from thin, predominantly liquid clouds

    Directory of Open Access Journals (Sweden)

    L. M. Zamora

    2017-06-01

    Full Text Available Aerosol indirect effects have potentially large impacts on the Arctic Ocean surface energy budget, but model estimates of regional-scale aerosol indirect effects are highly uncertain and poorly validated by observations. Here we demonstrate a new way to quantitatively estimate aerosol indirect effects on a regional scale from remote sensing observations. In this study, we focus on nighttime, optically thin, predominantly liquid clouds. The method is based on differences in cloud physical and microphysical characteristics in carefully selected clean, average, and aerosol-impacted conditions. The cloud subset of focus covers just ∼ 5 % of cloudy Arctic Ocean regions, warming the Arctic Ocean surface by ∼ 1–1.4 W m−2 regionally during polar night. However, within this cloud subset, aerosol and cloud conditions can be determined with high confidence using CALIPSO and CloudSat data and model output. This cloud subset is generally susceptible to aerosols, with a polar nighttime estimated maximum regionally integrated indirect cooling effect of ∼ −0.11 W m−2 at the Arctic sea ice surface (∼ 8 % of the clean background cloud effect, excluding cloud fraction changes. Aerosol presence is related to reduced precipitation, cloud thickness, and radar reflectivity, and in some cases, an increased likelihood of cloud presence in the liquid phase. These observations are inconsistent with a glaciation indirect effect and are consistent with either a deactivation effect or less-efficient secondary ice formation related to smaller liquid cloud droplets. However, this cloud subset shows large differences in surface and meteorological forcing in shallow and higher-altitude clouds and between sea ice and open-ocean regions. For example, optically thin, predominantly liquid clouds are much more likely to overlay another cloud over the open ocean, which may reduce aerosol indirect effects on the surface. Also, shallow clouds over

  11. Impact of aerosols on ice crystal size

    Directory of Open Access Journals (Sweden)

    B. Zhao

    2018-01-01

    Full Text Available The interactions between aerosols and ice clouds represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. In particular, the impact of aerosols on ice crystal effective radius (Rei, which is a key parameter determining ice clouds' net radiative effect, is highly uncertain due to limited and conflicting observational evidence. Here we investigate the effects of aerosols on Rei under different meteorological conditions using 9-year satellite observations. We find that the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters. While there is a significant negative correlation between Rei and aerosol loading in moist conditions, consistent with the "Twomey effect" for liquid clouds, a strong positive correlation between the two occurs in dry conditions. Simulations based on a cloud parcel model suggest that water vapor modulates the relative importance of different ice nucleation modes, leading to the opposite aerosol impacts between moist and dry conditions. When ice clouds are decomposed into those generated from deep convection and formed in situ, the water vapor modulation remains in effect for both ice cloud types, although the sensitivities of Rei to aerosols differ noticeably between them due to distinct formation mechanisms. The water vapor modulation can largely explain the difference in the responses of Rei to aerosol loadings in various seasons. A proper representation of the water vapor modulation is essential for an accurate estimate of aerosol–cloud radiative forcing produced by ice clouds.

  12. Step-height standards based on the rapid formation of monolayer steps on the surface of layered crystals

    Energy Technology Data Exchange (ETDEWEB)

    Komonov, A.I. [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences (ISP SBRAS), pr. Lavrentieva 13, Novosibirsk 630090 (Russian Federation); Prinz, V.Ya., E-mail: prinz@isp.nsc.ru [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences (ISP SBRAS), pr. Lavrentieva 13, Novosibirsk 630090 (Russian Federation); Seleznev, V.A. [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences (ISP SBRAS), pr. Lavrentieva 13, Novosibirsk 630090 (Russian Federation); Kokh, K.A. [Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences (IGM SB RAS), pr. Koptyuga 3, Novosibirsk 630090 (Russian Federation); Shlegel, V.N. [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences (NIIC SB RAS), pr. Lavrentieva 3, Novosibirsk 630090 (Russian Federation)

    2017-07-15

    Highlights: • Easily reproducible step-height standard for SPM calibrations was proposed. • Step-height standard is monolayer steps on the surface of layered single crystal. • Long-term change in surface morphology of Bi{sub 2}Se{sub 3} and ZnWO{sub 4} was investigated. • Conducting surface of Bi{sub 2}Se{sub 3} crystals appropriate for calibrating STM. • Ability of robust SPM calibrations under ambient conditions were demonstrated. - Abstract: Metrology is essential for nanotechnology, especially for structures and devices with feature sizes going down to nm. Scanning probe microscopes (SPMs) permits measurement of nanometer- and subnanometer-scale objects. Accuracy of size measurements performed using SPMs is largely defined by the accuracy of used calibration measures. In the present publication, we demonstrate that height standards of monolayer step (∼1 and ∼0.6 nm) can be easily prepared by cleaving Bi{sub 2}Se{sub 3} and ZnWO{sub 4} layered single crystals. It was shown that the conducting surface of Bi{sub 2}Se{sub 3} crystals offers height standard appropriate for calibrating STMs and for testing conductive SPM probes. Our AFM study of the morphology of freshly cleaved (0001) Bi{sub 2}Se{sub 3} surfaces proved that such surfaces remained atomically smooth during a period of at least half a year. The (010) surfaces of ZnWO{sub 4} crystals remained atomically smooth during one day, but already two days later an additional nanorelief of amplitude ∼0.3 nm appeared on those surfaces. This relief, however, did not further grow in height, and it did not hamper the calibration. Simplicity and the possibility of rapid fabrication of the step-height standards, as well as their high stability, make these standards available for a great, permanently growing number of users involved in 3D printing activities.

  13. Electrically Driven Technologies for Radioactive Aerosol Abatement

    Energy Technology Data Exchange (ETDEWEB)

    David W. DePaoli; Ofodike A. Ezekoye; Costas Tsouris; Valmor F. de Almeida

    2003-01-28

    The purpose of this research project was to develop an improved understanding of how electriexecy driven processes, including electrocoalescence, acoustic agglomeration, and electric filtration, may be employed to efficiently treat problems caused by the formation of aerosols during DOE waste treatment operations. The production of aerosols during treatment and retrieval operations in radioactive waste tanks and during thermal treatment operations such as calcination presents a significant problem of cost, worker exposure, potential for release, and increased waste volume.

  14. Fiscal 1997 report on the results of the international standardization R and D. Data format for rapid prototyping systems; 1997 nendo seika hokokusho kokusai hyojun soseigata kenkyu kaihatsu. Sekiso zokei system yo data format

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Concerning the rapid prototyping (RP) system use new RP format and the related software, the paper promoted the international standardization in consideration of relationships with an international standard, STEP. RP, which is a technology to rapidly prototype a solid body based on the three-dimensional CAD data, is used in various fields of product manufacture, medical field, etc., and is expected to further expand its field of application. In this R and D, an international version of the RP software system developed for domestic use was developed, and at the same time a software was trially manufactured so that the data on STEP/AP203/CC5 and CC6 can be delivered to the system. Moreover, a plan on new AIC51X as the STEP/AIC suitable for PR was studied. Relating to these results, the paper conducted the publicity work to the persons concerned in RP in the U.S. and Europe, and also explained those at ISO/TC184/SC4 (STEP Conference). The PR use interface enabling highly rapid and accurate data processing reached to a stage of the international commercialization, and at the same time the study items were materialized for proposal of the new STEP standards suitable for RP. 18 refs., 80 figs., 12 tabs.

  15. Aerosol typing - key information from aerosol studies

    Science.gov (United States)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  16. Dicarboxylic acids, oxoacids, benzoic acid, α-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes

    Science.gov (United States)

    Deshmukh, Dhananjay K.; Kawamura, Kimitaka; Lazaar, Manuel; Kunwar, Bhagawati; Boreddy, Suresh K. R.

    2016-04-01

    Size-segregated aerosols (nine stages from 11.3 µm in diameter) were collected at Cape Hedo, Okinawa, in spring 2008 and analyzed for water-soluble diacids (C2-C12), ω-oxoacids (ωC2-ωC9), pyruvic acid, benzoic acid, and α-dicarbonyls (C2-C3) as well as water-soluble organic carbon (WSOC), organic carbon (OC), and major ions (Na+, NH4+, K+, Mg2+, Ca2+, Cl-, NO3-, SO42-, and MSA-). In all the size-segregated aerosols, oxalic acid (C2) was found to be the most abundant species, followed by malonic and succinic acids, whereas glyoxylic acid (ωC2) was the dominant oxoacid and glyoxal (Gly) was more abundant than methylglyoxal. Diacids (C2-C5), ωC2, and Gly as well as WSOC and OC peaked at fine mode (0.65-1.1 µm) whereas azelaic (C9) and 9-oxononanoic (ωC9) acids peaked at coarse mode (3.3-4.7 µm). Sulfate and ammonium were enriched in fine mode, whereas sodium and chloride were in coarse mode. Strong correlations of C2-C5 diacids, ωC2 and Gly with sulfate were observed in fine mode (r = 0.86-0.99), indicating a commonality in their secondary formation. Their significant correlations with liquid water content in fine mode (r = 0.82-0.95) further suggest an importance of the aqueous-phase production in Okinawa aerosols. They may also have been directly emitted from biomass burning in fine mode as supported by strong correlations with potassium (r = 0.85-0.96), which is a tracer of biomass burning. Bimodal size distributions of longer-chain diacid (C9) and oxoacid (ωC9) with a major peak in the coarse mode suggest that they were emitted from the sea surface microlayers and/or produced by heterogeneous oxidation of biogenic unsaturated fatty acids on sea salt particles.

  17. Dicarboxylic acids, oxoacids, benzoic acid, α-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes

    Directory of Open Access Journals (Sweden)

    D. K. Deshmukh

    2016-04-01

    Full Text Available Size-segregated aerosols (nine stages from < 0.43 to > 11.3 µm in diameter were collected at Cape Hedo, Okinawa, in spring 2008 and analyzed for water-soluble diacids (C2–C12, ω-oxoacids (ωC2–ωC9, pyruvic acid, benzoic acid, and α-dicarbonyls (C2–C3 as well as water-soluble organic carbon (WSOC, organic carbon (OC, and major ions (Na+, NH4+, K+, Mg2+, Ca2+, Cl−, NO3−, SO42−, and MSA−. In all the size-segregated aerosols, oxalic acid (C2 was found to be the most abundant species, followed by malonic and succinic acids, whereas glyoxylic acid (ωC2 was the dominant oxoacid and glyoxal (Gly was more abundant than methylglyoxal. Diacids (C2–C5, ωC2, and Gly as well as WSOC and OC peaked at fine mode (0.65–1.1 µm whereas azelaic (C9 and 9-oxononanoic (ωC9 acids peaked at coarse mode (3.3–4.7 µm. Sulfate and ammonium were enriched in fine mode, whereas sodium and chloride were in coarse mode. Strong correlations of C2–C5 diacids, ωC2 and Gly with sulfate were observed in fine mode (r =  0.86–0.99, indicating a commonality in their secondary formation. Their significant correlations with liquid water content in fine mode (r =  0.82–0.95 further suggest an importance of the aqueous-phase production in Okinawa aerosols. They may also have been directly emitted from biomass burning in fine mode as supported by strong correlations with potassium (r =  0.85–0.96, which is a tracer of biomass burning. Bimodal size distributions of longer-chain diacid (C9 and oxoacid (ωC9 with a major peak in the coarse mode suggest that they were emitted from the sea surface microlayers and/or produced by heterogeneous oxidation of biogenic unsaturated fatty acids on sea salt particles.

  18. Study of photolytic aerosols at stratospheric pressures

    International Nuclear Information System (INIS)

    Delattre, Patrick.

    1975-07-01

    An experimental study of photolytic aerosol formation at stratospheric pressure (60 Torr) and laboratory temperature, was carried out previous to the exact simulation of photolytic aerosol formation in real stratospheric conditions. An experimental simulation device, techniques of generation of known mixtures of inert gases with SO 2 and NOsub(x) traces at low concentration (below 1 ppm volume) and H 2 O traces (a few ppm), and techniques for the determination and counting of aerosol particles at low pressures were perfected. The following results were achieved: the rate of vapor condensation on nuclei was reduced when total pressure decreased. At low pressure the working of condensation nuclei counters and the formation of photolytic aerosols is influenced by this phenomenon. An explanation is proposed, as well as means to avoid this unpleasant effect on the working of nuclei counters at low pressure. No photolytic aerosol production was ascertained at 60 Torr when water concentration was below 100 ppm whatever the concentration of SO 2 or NOsub(x) traces. With water concentration below 1200ppm and SO 2 trace concentration below 1ppm, the aerosol particles produced could not consist of sulfuric acid drops but probably of nitrosyl sulfate acide crystals [fr

  19. Modeling comprehensive chemical composition of weathered oil following a marine spill to predict ozone and potential secondary aerosol formation and constrain transport pathways

    Science.gov (United States)

    Drozd, Greg T.; Worton, David R.; Aeppli, Christoph; Reddy, Christopher M.; Zhang, Haofei; Variano, Evan; Goldstein, Allen H.

    2015-11-01

    Releases of hydrocarbons from oil spills have large environmental impacts in both the ocean and atmosphere. Oil evaporation is not simply a mechanism of mass loss from the ocean, as it also causes production of atmospheric pollutants. Monitoring atmospheric emissions from oil spills must include a broad range of volatile organic compounds (VOC), including intermediate-volatile and semivolatile compounds (IVOC, SVOC), which cause secondary organic aerosol (SOA) and ozone production. The Deepwater Horizon (DWH) disaster in the northern Gulf of Mexico during Spring/Summer of 2010 presented a unique opportunity to observe SOA production due to an oil spill. To better understand these observations, we conducted measurements and modeled oil evaporation utilizing unprecedented comprehensive composition measurements, achieved by gas chromatography with vacuum ultraviolet time of flight mass spectrometry (GC-VUV-HR-ToFMS). All hydrocarbons with 10-30 carbons were classified by degree of branching, number of cyclic rings, aromaticity, and molecular weight; these hydrocarbons comprise ˜70% of total oil mass. Such detailed and comprehensive characterization of DWH oil allowed bottom-up estimates of oil evaporation kinetics. We developed an evaporative model, using solely our composition measurements and thermodynamic data, that is in excellent agreement with published mass evaporation rates and our wind-tunnel measurements. Using this model, we determine surface slick samples are composed of oil with a distribution of evaporative ages and identify and characterize probable subsurface transport of oil.

  20. Stratospheric aerosol geoengineering

    Energy Technology Data Exchange (ETDEWEB)

    Robock, Alan [Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901 (United States)

    2015-03-30

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5–10 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming.

  1. Stratospheric aerosol geoengineering

    International Nuclear Information System (INIS)

    Robock, Alan

    2015-01-01

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5–10 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming

  2. Aerosols produced by evaporation of a uranium wire; Aerosols produits par evaporation d'un fil d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Morel, C [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-03-01

    This work is devoted to the study of the aerosols formed when an uranium wire is evaporated in a normal or rarefied atmosphere, either with or without a drying agent. The heating of the wire can be either fast or slow. The first part is a study of aerosol production apparatus and of methods of measuring the aerosol. The second part presents the results obtained with various aerosols: the particles produced by the wire are less than one micron; during rapid heating, the granulometric distribution of the aerosol obeys a log-normal law; during slow heating, the distribution has two modes: one near 0.05 micron, the other close to 0.01 micron. (author) [French] Ce travail est consacre a l'etude des aerosols formes lors de l'evaporation d un fil d'uranium en atmosphere normale ou rarefiee en presence ou non de dessechant. Le chauffage du fil peut etre rapide ou lent. La premiere partie est une etude des appareils de production et des methodes de mesures de l'aerosol. La seconde partie consigne les resultats obtenus sur les differents aerosols: les particules emises par le fil sont inferieures au micron; lors d'un chauffage rapide, la repartition granulometrique de l'aerosol suit une loi log-normale; lors d un chauffage lent, la repartition presente deux modes: l'un voisin de 0.05 micron, l'autre voisin de 0.01 micron. (auteur)

  3. Microphysical processing of aerosol particles in orographic clouds

    Science.gov (United States)

    Pousse-Nottelmann, S.; Zubler, E. M.; Lohmann, U.

    2015-08-01

    An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented into COSMO-Model, the regional weather forecast and climate model of the Consortium for Small-scale Modeling (COSMO). The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed us to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener-Bergeron-Findeisen (WBF) process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snowflakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snowflakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. Thereby, the processes impact the total aerosol number and mass and additionally alter the shape of the aerosol size distributions by enhancing the internally mixed/soluble Aitken and accumulation mode and generating coarse-mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases

  4. Microphysical processing of aerosol particles in orographic clouds

    Directory of Open Access Journals (Sweden)

    S. Pousse-Nottelmann

    2015-08-01

    aerosol cycling in clouds has been implemented into COSMO-Model, the regional weather forecast and climate model of the Consortium for Small-scale Modeling (COSMO. The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed us to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener–Bergeron–Findeisen (WBF process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snowflakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snowflakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. Thereby, the processes impact the total aerosol number and mass and additionally alter the shape of the aerosol size distributions by enhancing the internally mixed/soluble Aitken and accumulation mode and generating coarse-mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases the cloud droplet number concentration with possible implications for the ice crystal number

  5. Rapid colorimetric assay for detection of Listeria monocytogenes in food samples using LAMP formation of DNA concatemers and gold nanoparticle-DNA probe complex

    Science.gov (United States)

    Wachiralurpan, Sirirat; Sriyapai, Thayat; Areekit, Supatra; Sriyapai, Pichapak; Augkarawaritsawong, Suphitcha; Santiwatanakul, Somchai; Chansiri, Kosum

    2018-04-01

    ABSTRACT Listeria monocytogenes is a major foodborne pathogen of global health concern. Herein, the rapid diagnosis of L. monocytogenes has been achieved using loop-mediated isothermal amplification (LAMP) based on the phosphatidylcholine-phospholipase C gene (plcB). Colorimetric detection was then performed through the formation of DNA concatemers and a gold nanoparticle/DNA probe complex (GNP/DNA probe). The overall detection process was accomplished within approximately 1 h with no need for complicated equipment. The limits of detection for L. monocytogenes in the forms of purified genomic DNA and pure culture were 800 fg and 2.82 CFU mL-1, respectively. No cross reactions were observed from closely related bacteria species. The LAMP-GNP/DNA probe assay was applied to the detection of 200 raw chicken meat samples and compared to routine standard methods. The data revealed that the specificity, sensitivity and accuracy were 100%, 90.20% and 97.50%, respectively. The present assay was 100% in conformity with LAMP-agarose gel electrophoresis assay. Five samples that were negative by both assays appeared to have the pathogen at below the level of detection. The assay can be applied as a rapid direct screening method for L. monocytogenes.

  6. Preparation of denatured sup(99m)Tc labeled HSA aerosols of different median diameters for various imaging studies

    Energy Technology Data Exchange (ETDEWEB)

    Raghunath, B.; Kotrappa, P.; Soni, P.S.; Ganatra, R.D. (Bhabha Atomic Research Centre, Bombay (India))

    1982-02-01

    The preparation of denatured sup(99m)Tc-labelled human serum albumin (HSA) aerosols of different median diameters is described using the BARC (Bhabha Atomic Research Centre) dry aerosol generation and delivery system. The applications of these radioactive aerosols are demonstrated in aerosol scintigraphy of lungs, mucociliary movement studies and lymphoscintigraphy in rabbits. It is concluded that the BARC system gives a simplified, rapid and versatile procedure for generation of denatured volume tagged HSA aerosols for a variety of clinical applications.

  7. Detailed Visualization of Phase Evolution during Rapid Formation of Cu(InGa)Se2 Photovoltaic Absorber from Mo/CuGa/In/Se Precursors.

    Science.gov (United States)

    Koo, Jaseok; Kim, Sammi; Cheon, Taehoon; Kim, Soo-Hyun; Kim, Woo Kyoung

    2018-03-02

    Amongst several processes which have been developed for the production of reliable chalcopyrite Cu(InGa)Se 2 photovoltaic absorbers, the 2-step metallization-selenization process is widely accepted as being suitable for industrial-scale application. Here we visualize the detailed thermal behavior and reaction pathways of constituent elements during commercially attractive rapid thermal processing of glass/Mo/CuGa/In/Se precursors on the basis of the results of systematic characterization of samples obtained from a series of quenching experiments with set-temperatures between 25 and 550 °C. It was confirmed that the Se layer crystallized and then melted between 250 and 350 °C, completely disappearing at 500 °C. The formation of CuInSe 2 and Cu(InGa)Se 2 was initiated at around 450 °C and 550 °C, respectively. It is suggested that pre-heat treatment to control crystallization of Se layer should be designed at 250-350 °C and Cu(InGa)Se 2 formation from CuGa/In/Se precursors can be completed within a timeframe of 6 min.

  8. Rapid Formation of Microbe-Oil Aggregates and Changes in Community Composition in Coastal Surface Water Following Exposure to Oil and the Dispersant Corexit

    Directory of Open Access Journals (Sweden)

    Shawn M. Doyle

    2018-04-01

    Full Text Available During the Deepwater Horizon (DWH oil spill, massive quantities of oil were deposited on the seafloor via a large-scale marine oil-snow sedimentation and flocculent accumulation (MOSSFA event. The role of chemical dispersants (e.g., Corexit applied during the DWH oil spill clean-up in helping or hindering the formation of this MOSSFA event are not well-understood. Here, we present the first experiment related to the DWH oil spill to specifically investigate the relationship between microbial community structure, oil and Corexit®, and marine oil-snow in coastal surface waters. We observed the formation of micron-scale aggregates of microbial cells around droplets of oil and dispersant and found that their rate of formation was directly related to the concentration of oil within the water column. These micro-aggregates are potentially important precursors to the formation of larger marine oil-snow particles. Therefore, our observation that Corexit® significantly enhanced their formation suggests dispersant application may play a role in the development of MOSSFA events. We also observed that microbial communities in marine surface waters respond to oil and oil plus Corexit® differently and much more rapidly than previously measured, with major shifts in community composition occurring within only a few hours of experiment initiation. In the oil-amended treatments without Corexit®, this manifested as an increase in community diversity due to the outgrowth of several putative aliphatic- and aromatic-hydrocarbon degrading genera, including phytoplankton-associated taxa. In contrast, microbial community diversity was reduced in mesocosms containing chemically dispersed oil. Importantly, different consortia of hydrocarbon degrading bacteria responded to oil and chemically dispersed oil, indicating that functional redundancy in the pre-spill community likely results in hydrocarbon consumption in both undispersed and dispersed oils, but by different

  9. Rapid Formation of Microbe-Oil Aggregates and Changes in Community Composition in Coastal Surface Water Following Exposure to Oil and the Dispersant Corexit.

    Science.gov (United States)

    Doyle, Shawn M; Whitaker, Emily A; De Pascuale, Veronica; Wade, Terry L; Knap, Anthony H; Santschi, Peter H; Quigg, Antonietta; Sylvan, Jason B

    2018-01-01

    During the Deepwater Horizon (DWH) oil spill, massive quantities of oil were deposited on the seafloor via a large-scale marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event. The role of chemical dispersants (e.g., Corexit) applied during the DWH oil spill clean-up in helping or hindering the formation of this MOSSFA event are not well-understood. Here, we present the first experiment related to the DWH oil spill to specifically investigate the relationship between microbial community structure, oil and Corexit®, and marine oil-snow in coastal surface waters. We observed the formation of micron-scale aggregates of microbial cells around droplets of oil and dispersant and found that their rate of formation was directly related to the concentration of oil within the water column. These micro-aggregates are potentially important precursors to the formation of larger marine oil-snow particles. Therefore, our observation that Corexit® significantly enhanced their formation suggests dispersant application may play a role in the development of MOSSFA events. We also observed that microbial communities in marine surface waters respond to oil and oil plus Corexit® differently and much more rapidly than previously measured, with major shifts in community composition occurring within only a few hours of experiment initiation. In the oil-amended treatments without Corexit®, this manifested as an increase in community diversity due to the outgrowth of several putative aliphatic- and aromatic-hydrocarbon degrading genera, including phytoplankton-associated taxa. In contrast, microbial community diversity was reduced in mesocosms containing chemically dispersed oil. Importantly, different consortia of hydrocarbon degrading bacteria responded to oil and chemically dispersed oil, indicating that functional redundancy in the pre-spill community likely results in hydrocarbon consumption in both undispersed and dispersed oils, but by different bacterial taxa

  10. AEROSOL AND GAS MEASUREMENT

    Science.gov (United States)

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  11. Implications of ammonia emissions for fine aerosol formation and visibility impairment. A case study from the Lower Fraser Valley, British Columbia

    DEFF Research Database (Denmark)

    Barthelmie, R.J.; Pryor, S.C.

    1998-01-01

    of nitrogen and sulphur oxides over agricultural areas in the eastern and central valley with higher ammonia emissions favours subsequent ammonium nitrate and sulphate formation. This leads to higher fine mass concentrations and lowest visibility in the predominantly agricultural regions of the valley. (C...

  12. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    Science.gov (United States)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    Measurements of aerosol absorption were obtained as part of the MAX-Mex component of the MILAGRO field campaign at site T0 (Instituto Mexicano de Petroleo in Mexico City) by using a 7-channel aethalometer (Thermo- Anderson) during the month of March, 2006. The absorption measurements obtained in the field at 370, 470, 520, 590, 660, 880, and 950 nm were used to determine the aerosol Angstrom absorption exponents by linear regression. Since, unlike other absorbing aerosol species (e.g. humic like substances, nitrated PAHs), black carbon absorption is relatively constant from the ultraviolet to the infrared with an Angstrom absorption exponent of -1 (1), a comparison of the Angstrom exponents can indicate the presence of aerosol components with an enhanced UV absorption over that expected from BC content alone. The Angstrom exponents determined from the aerosol absorption measurements obtained in the field varied from - 0.7 to - 1.3 during the study and was generally lower in the afternoon than the morning hours, indicating an increase in secondary aerosol formation and photochemically generated UV absorbing species in the afternoon. Twelve-hour integrated samples of fine atmospheric aerosols (Petroleo (IMP) and CENICA.

  13. Facility of aerosol filtration

    Energy Technology Data Exchange (ETDEWEB)

    Duverger de Cuy, G; Regnier, J

    1975-04-18

    Said invention relates to a facility of aerosol filtration, particularly of sodium aerosols. Said facility is of special interest for fast reactors where sodium fires involve the possibility of high concentrations of sodium aerosols which soon clog up conventional filters. The facility intended for continuous operation, includes at the pre-filtering stage, means for increasing the size of the aerosol particles and separating clustered particles (cyclone separator).

  14. Aerosols and Climate

    Indian Academy of Sciences (India)

    Large warming by elevated aerosols · AERONET – Global network (NASA) · Slide 25 · Slide 26 · Slide 27 · Slide 28 · Slide 29 · Slide 30 · Slide 31 · Long-term trends - Trivandrum · Enhanced warming over Himalayan-Gangetic region · Aerosol Radiative Forcing Over India _ Regional Aerosol Warming Experiment ...

  15. Characterization and cytotoxic assessment of ballistic aerosol particulates for tungsten alloy penetrators into steel target plates.

    Science.gov (United States)

    Machado, Brenda I; Murr, Lawrence E; Suro, Raquel M; Gaytan, Sara M; Ramirez, Diana A; Garza, Kristine M; Schuster, Brian E

    2010-09-01

    The nature and constituents of ballistic aerosol created by kinetic energy penetrator rods of tungsten heavy alloys (W-Fe-Ni and W-Fe-Co) perforating steel target plates was characterized by scanning and transmission electron microscopy. These aerosol regimes, which can occur in closed, armored military vehicle penetration, are of concern for potential health effects, especially as a consequence of being inhaled. In a controlled volume containing 10 equispaced steel target plates, particulates were systematically collected onto special filters. Filter collections were examined by scanning and transmission electron microscopy (SEM and TEM) which included energy-dispersive (X-ray) spectrometry (EDS). Dark-field TEM identified a significant nanoparticle concentration while EDS in the SEM identified the propensity of mass fraction particulates to consist of Fe and FeO, representing target erosion and formation of an accumulating debris field. Direct exposure of human epithelial cells (A549), a model for lung tissue, to particulates (especially nanoparticulates) collected on individual filters demonstrated induction of rapid and global cell death to the extent that production of inflammatory cytokines was entirely inhibited. These observations along with comparisons of a wide range of other nanoparticulate species exhibiting cell death in A549 culture may suggest severe human toxicity potential for inhaled ballistic aerosol, but the complexity of the aerosol (particulate) mix has not yet allowed any particular chemical composition to be identified.

  16. Characterization and Cytotoxic Assessment of Ballistic Aerosol Particulates for Tungsten Alloy Penetrators into Steel Target Plates

    Directory of Open Access Journals (Sweden)

    Brian E. Schuster

    2010-08-01

    Full Text Available The nature and constituents of ballistic aerosol created by kinetic energy penetrator rods of tungsten heavy alloys (W-Fe-Ni and W-Fe-Co perforating steel target plates was characterized by scanning and transmission electron microscopy. These aerosol regimes, which can occur in closed, armored military vehicle penetration, are of concern for potential health effects, especially as a consequence of being inhaled. In a controlled volume containing 10 equispaced steel target plates, particulates were systematically collected onto special filters. Filter collections were examined by scanning and transmission electron microscopy (SEM and TEM which included energy-dispersive (X-ray spectrometry (EDS. Dark-field TEM identified a significant nanoparticle concentration while EDS in the SEM identified the propensity of mass fraction particulates to consist of Fe and FeO, representing target erosion and formation of an accumulating debris field. Direct exposure of human epithelial cells (A549, a model for lung tissue, to particulates (especially nanoparticulates collected on individual filters demonstrated induction of rapid and global cell death to the extent that production of inflammatory cytokines was entirely inhibited. These observations along with comparisons of a wide range of other nanoparticulate species exhibiting cell death in A549 culture may suggest severe human toxicity potential for inhaled ballistic aerosol, but the complexity of the aerosol (particulate mix has not yet allowed any particular chemical composition to be identified.

  17. Metal and Silicate Particles Including Nanoparticles Are Present in Electronic Cigarette Cartomizer Fluid and Aerosol

    OpenAIRE

    Williams, Monique; Villarreal, Amanda; Bozhilov, Krassimir; Lin, Sabrina; Talbot, Prue

    2013-01-01

    Background Electronic cigarettes (EC) deliver aerosol by heating fluid containing nicotine. Cartomizer EC combine the fluid chamber and heating element in a single unit. Because EC do not burn tobacco, they may be safer than conventional cigarettes. Their use is rapidly increasing worldwide with little prior testing of their aerosol. Objectives We tested the hypothesis that EC aerosol contains metals derived from various components in EC. Methods Cartomizer contents and aerosols were analyzed...

  18. Impact of Aerosol Processing on Orographic Clouds

    Science.gov (United States)

    Pousse-Nottelmann, Sara; Zubler, Elias M.; Lohmann, Ulrike

    2010-05-01

    Aerosol particles undergo significant modifications during their residence time in the atmosphere. Physical processes like coagulation, coating and water uptake, and aqueous surface chemistry alter the aerosol size distribution and composition. At this, clouds play a primary role as physical and chemical processing inside cloud droplets contributes considerably to the changes in aerosol particles. A previous study estimates that on global average atmospheric particles are cycled three times through a cloud before being removed from the atmosphere [1]. An explicit and detailed treatment of cloud-borne particles has been implemented in the regional weather forecast and climate model COSMO-CLM. The employed model version includes a two-moment cloud microphysical scheme [2] that has been coupled to the aerosol microphysical scheme M7 [3] as described by Muhlbauer and Lohmann, 2008 [4]. So far, the formation, transfer and removal of cloud-borne aerosol number and mass were not considered in the model. Following the parameterization for cloud-borne particles developed by Hoose et al., 2008 [5], distinction between in-droplet and in-crystal particles is