WorldWideScience

Sample records for rapid adaptive evolution

  1. Developmental evolution facilitates rapid adaptation.

    Science.gov (United States)

    Lin, Hui; Kazlauskas, Romas J; Travisano, Michael

    2017-11-21

    Developmental evolution has frequently been identified as a mode for rapid adaptation, but direct observations of the selective benefits and associated mechanisms of developmental evolution are necessarily challenging to obtain. Here we show rapid evolution of greatly increased rates of dispersal by developmental changes when populations experience stringent selection. Replicate populations of the filamentous fungus Trichoderma citrinoviride underwent 85 serial transfers, under conditions initially favoring growth but not dispersal. T. citrinoviride populations shifted away from multicellular growth toward increased dispersal by producing one thousand times more single-celled asexual conidial spores, three times sooner than the ancestral genotype. Conidia of selected lines also germinated fifty percent faster. Gene expression changed substantially between the ancestral and selected fungi, especially for spore production and growth, demonstrating rapid evolution of tight regulatory control for down-regulation of growth and up-regulation of conidia production between 18 and 24 hours of growth. These changes involved both developmentally fixed and plastic changes in gene expression, showing that complex developmental changes can serve as a mechanism for rapid adaptation.

  2. Rapid adaptive evolution in novel environments acts as an architect of population range expansion.

    Science.gov (United States)

    Szűcs, M; Vahsen, M L; Melbourne, B A; Hoover, C; Weiss-Lehman, C; Hufbauer, R A

    2017-12-19

    Colonization and expansion into novel landscapes determine the distribution and abundance of species in our rapidly changing ecosystems worldwide. Colonization events are crucibles for rapid evolution, but it is not known whether evolutionary changes arise mainly after successful colonization has occurred, or if evolution plays an immediate role, governing the growth and expansion speed of colonizing populations. There is evidence that spatial evolutionary processes can speed range expansion within a few generations because dispersal tendencies may evolve upwards at range edges. Additionally, rapid adaptation to a novel environment can increase population growth rates, which also promotes spread. However, the role of adaptive evolution and the relative contributions of spatial evolution and adaptation to expansion are unclear. Using a model system, red flour beetles (Tribolium castaneum), we either allowed or constrained evolution of populations colonizing a novel environment and measured population growth and spread. At the end of the experiment we assessed the fitness and dispersal tendency of individuals originating either from the core or edge of evolving populations or from nonevolving populations in a common garden. Within six generations, evolving populations grew three times larger and spread 46% faster than populations in which evolution was constrained. Increased size and expansion speed were strongly driven by adaptation, whereas spatial evolutionary processes acting on edge subpopulations contributed less. This experimental evidence demonstrates that rapid evolution drives both population growth and expansion speed and is thus crucial to consider for managing biological invasions and successfully introducing or reintroducing species for management and conservation.

  3. Rapid adaptive evolution of photoperiodic response during invasion and range expansion across a climatic gradient.

    Science.gov (United States)

    Urbanski, Jennifer; Mogi, Motoyoshi; O'Donnell, Deborah; DeCotiis, Mark; Toma, Takako; Armbruster, Peter

    2012-04-01

    Abstract Understanding the mechanisms of adaptation to spatiotemporal environmental variation is a fundamental goal of evolutionary biology. This issue also has important implications for anticipating biological responses to contemporary climate warming and determining the processes by which invasive species are able to spread rapidly across broad geographic ranges. Here, we compare data from a historical study of latitudinal variation in photoperiodic response among Japanese and U.S. populations of the invasive Asian tiger mosquito Aedes albopictus with contemporary data obtained using comparable methods. Our results demonstrated rapid adaptive evolution of the photoperiodic response during invasion and range expansion across ∼15° of latitude in the United States. In contrast to the photoperiodic response, size-based morphological traits implicated in climatic adaptation in a wide range of other insects did not show evidence of adaptive variation in Ae. albopictus across either the U.S. (invasive) or Japanese (native) range. These results show that photoperiodism has been an important adaptation to climatic variation across the U.S. range of Ae. albopictus and, in conjunction with previous studies, strongly implicate the photoperiodic control of seasonal development as a critical evolutionary response to ongoing contemporary climate change. These results also emphasize that photoperiodism warrants increased attention in studies of the evolution of invasive species.

  4. The red queen in the corn: agricultural weeds as models of rapid adaptive evolution.

    Science.gov (United States)

    Vigueira, C C; Olsen, K M; Caicedo, A L

    2013-04-01

    Weeds are among the greatest pests of agriculture, causing billions of dollars in crop losses each year. As crop field management practices have changed over the past 12 000 years, weeds have adapted in turn to evade human removal. This evolutionary change can be startlingly rapid, making weeds an appealing system to study evolutionary processes that occur over short periods of time. An understanding of how weeds originate and adapt is needed for successful management; however, relatively little emphasis has been placed on genetically characterizing these systems. Here, we review the current literature on agricultural weed origins and their mechanisms of adaptation. Where possible, we have included examples that have been genetically well characterized. Evidence for three possible, non-mutually exclusive weed origins (from wild species, crop-wild hybrids or directly from crops) is discussed with respect to what is known about the microevolutionary signatures that result from these processes. We also discuss what is known about the genetic basis of adaptive traits in weeds and the range of genetic mechanisms that are responsible. With a better understanding of genetic mechanisms underlying adaptation in weedy species, we can address the more general process of adaptive evolution and what can be expected as we continue to apply selective pressures in agroecosystems around the world.

  5. Genome scale evolution of myxoma virus reveals host-pathogen adaptation and rapid geographic spread.

    Science.gov (United States)

    Kerr, Peter J; Rogers, Matthew B; Fitch, Adam; Depasse, Jay V; Cattadori, Isabella M; Twaddle, Alan C; Hudson, Peter J; Tscharke, David C; Read, Andrew F; Holmes, Edward C; Ghedin, Elodie

    2013-12-01

    The evolutionary interplay between myxoma virus (MYXV) and the European rabbit (Oryctolagus cuniculus) following release of the virus in Australia in 1950 as a biological control is a classic example of host-pathogen coevolution. We present a detailed genomic and phylogeographic analysis of 30 strains of MYXV, including the Australian progenitor strain Standard Laboratory Strain (SLS), 24 Australian viruses isolated from 1951 to 1999, and three isolates from the early radiation in Britain from 1954 and 1955. We show that in Australia MYXV has spread rapidly on a spatial scale, with multiple lineages cocirculating within individual localities, and that both highly virulent and attenuated viruses were still present in the field through the 1990s. In addition, the detection of closely related virus lineages at sites 1,000 km apart suggests that MYXV moves freely in geographic space, with mosquitoes, fleas, and rabbit migration all providing means of transport. Strikingly, despite multiple introductions, all modern viruses appear to be ultimately derived from the original introductions of SLS. The rapidity of MYXV evolution was also apparent at the genomic scale, with gene duplications documented in a number of viruses. Duplication of potential virulence genes may be important in increasing the expression of virulence proteins and provides the basis for the evolution of novel functions. Mutations leading to loss of open reading frames were surprisingly frequent and in some cases may explain attenuation, but no common mutations that correlated with virulence or attenuation were identified.

  6. Rapid Evolution of piRNA Pathway in the Teleost Fish: Implication for an Adaptation to Transposon Diversity

    Science.gov (United States)

    Yi, Minhan; Chen, Feng; Luo, Majing; Cheng, Yibin; Zhao, Huabin; Cheng, Hanhua; Zhou, Rongjia

    2014-01-01

    The Piwi-interacting RNA (piRNA) pathway is responsible for germline specification, gametogenesis, transposon silencing, and genome integrity. Transposable elements can disrupt genome and its functions. However, piRNA pathway evolution and its adaptation to transposon diversity in the teleost fish remain unknown. This article unveils evolutionary scene of piRNA pathway and its association with diverse transposons by systematically comparative analysis on diverse teleost fish genomes. Selective pressure analysis on piRNA pathway and miRNA/siRNA (microRNA/small interfering RNA) pathway genes between teleosts and mammals showed an accelerated evolution of piRNA pathway genes in the teleost lineages, and positive selection on functional PAZ (Piwi/Ago/Zwille) and Tudor domains involved in the Piwi–piRNA/Tudor interaction, suggesting that the amino acid substitutions are adaptive to their functions in piRNA pathway in the teleost fish species. Notably five piRNA pathway genes evolved faster in the swamp eel, a kind of protogynous hermaphrodite fish, than the other teleosts, indicating a differential evolution of piRNA pathway between the swamp eel and other gonochoristic fishes. In addition, genome-wide analysis showed higher diversity of transposons in the teleost fish species compared with mammals. Our results suggest that rapidly evolved piRNA pathway in the teleost fish is likely to be involved in the adaption to transposon diversity. PMID:24846630

  7. Rapid evolution of piRNA pathway in the teleost fish: implication for an adaptation to transposon diversity.

    Science.gov (United States)

    Yi, Minhan; Chen, Feng; Luo, Majing; Cheng, Yibin; Zhao, Huabin; Cheng, Hanhua; Zhou, Rongjia

    2014-05-19

    The Piwi-interacting RNA (piRNA) pathway is responsible for germline specification, gametogenesis, transposon silencing, and genome integrity. Transposable elements can disrupt genome and its functions. However, piRNA pathway evolution and its adaptation to transposon diversity in the teleost fish remain unknown. This article unveils evolutionary scene of piRNA pathway and its association with diverse transposons by systematically comparative analysis on diverse teleost fish genomes. Selective pressure analysis on piRNA pathway and miRNA/siRNA (microRNA/small interfering RNA) pathway genes between teleosts and mammals showed an accelerated evolution of piRNA pathway genes in the teleost lineages, and positive selection on functional PAZ (Piwi/Ago/Zwille) and Tudor domains involved in the Piwi-piRNA/Tudor interaction, suggesting that the amino acid substitutions are adaptive to their functions in piRNA pathway in the teleost fish species. Notably five piRNA pathway genes evolved faster in the swamp eel, a kind of protogynous hermaphrodite fish, than the other teleosts, indicating a differential evolution of piRNA pathway between the swamp eel and other gonochoristic fishes. In addition, genome-wide analysis showed higher diversity of transposons in the teleost fish species compared with mammals. Our results suggest that rapidly evolved piRNA pathway in the teleost fish is likely to be involved in the adaption to transposon diversity. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Recurrent Rearrangement during Adaptive Evolution in an Interspecific Yeast Hybrid Suggests a Model for Rapid Introgression

    Science.gov (United States)

    Dunn, Barbara; Paulish, Terry; Stanbery, Alison; Piotrowski, Jeff; Koniges, Gregory; Kroll, Evgueny; Louis, Edward J.; Liti, Gianni; Sherlock, Gavin; Rosenzweig, Frank

    2013-01-01

    Genome rearrangements are associated with eukaryotic evolutionary processes ranging from tumorigenesis to speciation. Rearrangements are especially common following interspecific hybridization, and some of these could be expected to have strong selective value. To test this expectation we created de novo interspecific yeast hybrids between two diverged but largely syntenic Saccharomyces species, S. cerevisiae and S. uvarum, then experimentally evolved them under continuous ammonium limitation. We discovered that a characteristic interspecific genome rearrangement arose multiple times in independently evolved populations. We uncovered nine different breakpoints, all occurring in a narrow ∼1-kb region of chromosome 14, and all producing an “interspecific fusion junction” within the MEP2 gene coding sequence, such that the 5′ portion derives from S. cerevisiae and the 3′ portion derives from S. uvarum. In most cases the rearrangements altered both chromosomes, resulting in what can be considered to be an introgression of a several-kb region of S. uvarum into an otherwise intact S. cerevisiae chromosome 14, while the homeologous S. uvarum chromosome 14 experienced an interspecific reciprocal translocation at the same breakpoint within MEP2, yielding a chimaeric chromosome; these events result in the presence in the cell of two MEP2 fusion genes having identical breakpoints. Given that MEP2 encodes for a high-affinity ammonium permease, that MEP2 fusion genes arise repeatedly under ammonium-limitation, and that three independent evolved isolates carrying MEP2 fusion genes are each more fit than their common ancestor, the novel MEP2 fusion genes are very likely adaptive under ammonium limitation. Our results suggest that, when homoploid hybrids form, the admixture of two genomes enables swift and otherwise unavailable evolutionary innovations. Furthermore, the architecture of the MEP2 rearrangement suggests a model for rapid introgression, a phenomenon seen in

  9. Recurrent rearrangement during adaptive evolution in an interspecific yeast hybrid suggests a model for rapid introgression.

    Directory of Open Access Journals (Sweden)

    Barbara Dunn

    2013-03-01

    Full Text Available Genome rearrangements are associated with eukaryotic evolutionary processes ranging from tumorigenesis to speciation. Rearrangements are especially common following interspecific hybridization, and some of these could be expected to have strong selective value. To test this expectation we created de novo interspecific yeast hybrids between two diverged but largely syntenic Saccharomyces species, S. cerevisiae and S. uvarum, then experimentally evolved them under continuous ammonium limitation. We discovered that a characteristic interspecific genome rearrangement arose multiple times in independently evolved populations. We uncovered nine different breakpoints, all occurring in a narrow ~1-kb region of chromosome 14, and all producing an "interspecific fusion junction" within the MEP2 gene coding sequence, such that the 5' portion derives from S. cerevisiae and the 3' portion derives from S. uvarum. In most cases the rearrangements altered both chromosomes, resulting in what can be considered to be an introgression of a several-kb region of S. uvarum into an otherwise intact S. cerevisiae chromosome 14, while the homeologous S. uvarum chromosome 14 experienced an interspecific reciprocal translocation at the same breakpoint within MEP2, yielding a chimaeric chromosome; these events result in the presence in the cell of two MEP2 fusion genes having identical breakpoints. Given that MEP2 encodes for a high-affinity ammonium permease, that MEP2 fusion genes arise repeatedly under ammonium-limitation, and that three independent evolved isolates carrying MEP2 fusion genes are each more fit than their common ancestor, the novel MEP2 fusion genes are very likely adaptive under ammonium limitation. Our results suggest that, when homoploid hybrids form, the admixture of two genomes enables swift and otherwise unavailable evolutionary innovations. Furthermore, the architecture of the MEP2 rearrangement suggests a model for rapid introgression, a

  10. Evolution in an Afternoon: Rapid Natural Selection and Adaptation of Bacterial Populations

    Science.gov (United States)

    Delpech, Roger

    2009-01-01

    This paper describes a simple, rapid and low-cost technique for growing bacteria (or other microbes) in an environmental gradient, in order to determine the tolerance of the microbial population to varying concentrations of sodium chloride ions, and suggests how the evolutionary response of a microbial population to the selection pressure of the…

  11. When evolution is the solution to pollution: Key principles, and lessons from rapid repeated adaptation of killifish (Fundulus heteroclitus) populations

    OpenAIRE

    Whitehead, Andrew; Clark, Bryan W.; Reid, Noah M.; Hahn, Mark E.; Nacci, Diane

    2017-01-01

    Abstract For most species, evolutionary adaptation is not expected to be sufficiently rapid to buffer the effects of human‐mediated environmental changes, including environmental pollution. Here we review how key features of populations, the characteristics of environmental pollution, and the genetic architecture underlying adaptive traits, may interact to shape the likelihood of evolutionary rescue from pollution. Large populations of Atlantic killifish (Fundulus heteroclitus) persist in som...

  12. When evolution is the solution to pollution: Key principles, and lessons from rapid repeated adaptation of killifish (Fundulus heteroclitus) populations

    Science.gov (United States)

    For most species, evolutionary adaptation is not expected to be sufficiently rapid to buffer the effects of human-mediated environmental changes. Yet large persistent populations of small bodied fish residing in some of the most contaminated estuaries of the US have provided some...

  13. Adaptability and evolution.

    Science.gov (United States)

    Bateson, Patrick

    2017-10-06

    The capacity of organisms to respond in their own lifetimes to new challenges in their environments probably appeared early in biological evolution. At present few studies have shown how such adaptability could influence the inherited characteristics of an organism's descendants. In part, this has been because organisms have been treated as passive in evolution. Nevertheless, their effects on biological evolution are likely to have been important and, when they occurred, accelerated the pace of evolution. Ways in which this might have happened have been suggested many times since the 1870s. I review these proposals and discuss their relevance to modern thought.

  14. Rapid Adaptation in Digital Transformation

    DEFF Research Database (Denmark)

    Hansen, Anne Mette; Kræmmergaard, Pernille; Mathiassen, Lars

    2011-01-01

    the organization’s digitization approach. We demonstrate in detail how the leaders within these two organizations were engaged and offer recommendations for how other organizations can use the PPM to rapidly adapt their approaches to digital transformation through more effective IS leadership roles.......In today’s highly dynamic environments, organizational leaders need to quickly adapt existing approaches to digital transformation. However, without a shared mindset between IS and business leaders, it is difficult to adopt new approaches in response to changes in the competitive and technology...... landscape. In this article, we share insights gained from two public sector organizations in which IS and business leaders used the Participatory Process Model (PPM) designed by the authors to share their assumptions about IS leadership, challenge existing IT strategies and collaboration patterns and adapt...

  15. Adaptive evolution in ecological communities.

    Directory of Open Access Journals (Sweden)

    Martin M Turcotte

    Full Text Available Understanding how natural selection drives evolution is a key challenge in evolutionary biology. Most studies of adaptation focus on how a single environmental factor, such as increased temperature, affects evolution within a single species. The biological relevance of these experiments is limited because nature is infinitely more complex. Most species are embedded within communities containing many species that interact with one another and the physical environment. To understand the evolutionary significance of such ecological complexity, experiments must test the evolutionary impact of interactions among multiple species during adaptation. Here we highlight an experiment that manipulates species composition and tracks evolutionary responses within each species, while testing for the mechanisms by which species interact and adapt to their environment. We also discuss limitations of previous studies of adaptive evolution and emphasize how an experimental evolution approach can circumvent such shortcomings. Understanding how community composition acts as a selective force will improve our ability to predict how species adapt to natural and human-induced environmental change.

  16. Adaptive evolution in ecological communities.

    Science.gov (United States)

    Turcotte, Martin M; Corrin, Michael S C; Johnson, Marc T J

    2012-01-01

    Understanding how natural selection drives evolution is a key challenge in evolutionary biology. Most studies of adaptation focus on how a single environmental factor, such as increased temperature, affects evolution within a single species. The biological relevance of these experiments is limited because nature is infinitely more complex. Most species are embedded within communities containing many species that interact with one another and the physical environment. To understand the evolutionary significance of such ecological complexity, experiments must test the evolutionary impact of interactions among multiple species during adaptation. Here we highlight an experiment that manipulates species composition and tracks evolutionary responses within each species, while testing for the mechanisms by which species interact and adapt to their environment. We also discuss limitations of previous studies of adaptive evolution and emphasize how an experimental evolution approach can circumvent such shortcomings. Understanding how community composition acts as a selective force will improve our ability to predict how species adapt to natural and human-induced environmental change.

  17. Adapting Digital Libraries to Continual Evolution

    Science.gov (United States)

    Barkstrom, Bruce R.; Finch, Melinda; Ferebee, Michelle; Mackey, Calvin

    2002-01-01

    In this paper, we describe five investment streams (data storage infrastructure, knowledge management, data production control, data transport and security, and personnel skill mix) that need to be balanced against short-term operating demands in order to maximize the probability of long-term viability of a digital library. Because of the rapid pace of information technology change, a digital library cannot be a static institution. Rather, it has to become a flexible organization adapted to continuous evolution of its infrastructure.

  18. Adaptive evolution of Mediterranean pines.

    Science.gov (United States)

    Grivet, Delphine; Climent, José; Zabal-Aguirre, Mario; Neale, David B; Vendramin, Giovanni G; González-Martínez, Santiago C

    2013-09-01

    Mediterranean pines represent an extremely heterogeneous assembly. Although they have evolved under similar environmental conditions, they diversified long ago, ca. 10 Mya, and present distinct biogeographic and demographic histories. Therefore, it is of special interest to understand whether and to what extent they have developed specific strategies of adaptive evolution through time and space. To explore evolutionary patterns, the Mediterranean pines' phylogeny was first reconstructed analyzing a new set of 21 low-copy nuclear genes with multilocus Bayesian tree reconstruction methods. Secondly, a phylogenetic approach was used to search for footprints of natural selection and to examine the evolution of multiple phenotypic traits. We identified two genes (involved in pines' defense and stress responses) that have likely played a role in the adaptation of Mediterranean pines to their environment. Moreover, few life-history traits showed historical or evolutionary adaptive convergence in Mediterranean lineages, while patterns of character evolution revealed various evolutionary trade-offs linking growth-development, reproduction and fire-related traits. Assessing the evolutionary path of important life-history traits, as well as the genomic basis of adaptive variation is central to understanding the past evolutionary success of Mediterranean pines and their future response to environmental changes. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Rapid, generalized adaptation to asynchronous audiovisual speech.

    Science.gov (United States)

    Van der Burg, Erik; Goodbourn, Patrick T

    2015-04-07

    The brain is adaptive. The speed of propagation through air, and of low-level sensory processing, differs markedly between auditory and visual stimuli; yet the brain can adapt to compensate for the resulting cross-modal delays. Studies investigating temporal recalibration to audiovisual speech have used prolonged adaptation procedures, suggesting that adaptation is sluggish. Here, we show that adaptation to asynchronous audiovisual speech occurs rapidly. Participants viewed a brief clip of an actor pronouncing a single syllable. The voice was either advanced or delayed relative to the corresponding lip movements, and participants were asked to make a synchrony judgement. Although we did not use an explicit adaptation procedure, we demonstrate rapid recalibration based on a single audiovisual event. We find that the point of subjective simultaneity on each trial is highly contingent upon the modality order of the preceding trial. We find compelling evidence that rapid recalibration generalizes across different stimuli, and different actors. Finally, we demonstrate that rapid recalibration occurs even when auditory and visual events clearly belong to different actors. These results suggest that rapid temporal recalibration to audiovisual speech is primarily mediated by basic temporal factors, rather than higher-order factors such as perceived simultaneity and source identity. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. Dysfunction of Rapid Neural Adaptation in Dyslexia.

    Science.gov (United States)

    Perrachione, Tyler K; Del Tufo, Stephanie N; Winter, Rebecca; Murtagh, Jack; Cyr, Abigail; Chang, Patricia; Halverson, Kelly; Ghosh, Satrajit S; Christodoulou, Joanna A; Gabrieli, John D E

    2016-12-21

    Identification of specific neurophysiological dysfunctions resulting in selective reading difficulty (dyslexia) has remained elusive. In addition to impaired reading development, individuals with dyslexia frequently exhibit behavioral deficits in perceptual adaptation. Here, we assessed neurophysiological adaptation to stimulus repetition in adults and children with dyslexia for a wide variety of stimuli, spoken words, written words, visual objects, and faces. For every stimulus type, individuals with dyslexia exhibited significantly diminished neural adaptation compared to controls in stimulus-specific cortical areas. Better reading skills in adults and children with dyslexia were associated with greater repetition-induced neural adaptation. These results highlight a dysfunction of rapid neural adaptation as a core neurophysiological difference in dyslexia that may underlie impaired reading development. Reduced neurophysiological adaptation may relate to prior reports of reduced behavioral adaptation in dyslexia and may reveal a difference in brain functions that ultimately results in a specific reading impairment. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Fitness seascapes and adaptive evolution of the influenza virus

    Science.gov (United States)

    Lassig, Michael

    2014-03-01

    The seasonal human influenza A virus undergoes rapid genome evolution. This process is triggered by interactions with the host immune system and produces significant year-to-year sequence turnover in the population of circulating viral strains. We develop a dynamical fitness model that predicts the evolution of the viral population from one year to the next. Two factors are shown to determine the fitness of a viral strain: adaptive changes, which are under positive selection, and deleterious mutations, which affect conserved viral functions such as protein stability. Combined with the influenza strain tree, this fitness model maps the adaptive history of influenza A. We discuss the implications of our results for the statistical theory of adaptive evolution in asexual populations. Based on this and related systems, we touch upon the fundamental question of when evolution can be predicted. Joint work with Marta Luksza, Columbia University.

  2. Rapid parapatric speciation on holey adaptive landscapes

    CERN Document Server

    Gavrilets, S; Vose, M D; Gavrilets, Sergey; Li, Hai; Vose, Michael D.

    1998-01-01

    A classical view of speciation is that reproductive isolation arises as a by-product of genetic divergence. Here, individual-based simulations are used to evaluate whether the mechanisms implied by this view may result in rapid speciation if the only source of genetic divergence are mutation and random genetic drift. Distinctive features of the simulations are the consideration of the complete process of speciation (from initiation until completion), and of a large number of loci, which was only one order of magnitude smaller than that of bacteria. It is demonstrated that rapid speciation on the time scale of hundreds of generations is plausible without the need for extreme founder events, complete geographic isolation, the existence of distinct adaptive peaks or selection for local adaptation. The plausibility of speciation is enhanced by population subdivision. Simultaneous emergence of more than two new species from a subdivided population is highly probable. Numerical examples relevant to the theory of ce...

  3. The statistics of genetic diversity in rapidly adapting populations.

    Science.gov (United States)

    Desai, Michael

    2013-03-01

    Evolutionary adaptation is driven by the accumulation of beneficial mutations, but the sequence-level dynamics of this process are poorly understood. The traditional view is that adaptation is dominated by rare beneficial ``driver'' mutations that occur sporadically and then rapidly increase in frequency until they fix (a ``selective sweep''). Yet in microbial populations, multiple beneficial mutations are often present simultaneously. Selection cannot act on each mutation independently, but only on linked combinations. This means that the fate of any mutation depends on a complex interplay between its own fitness effect, the genomic background in which it arises, and the rest of the sequence variation in the population. The balance between these factors determines which mutations fix, the patterns of sequence diversity within populations, and the degree to which evolution in replicate populations will follow parallel (or divergent) trajectories at the sequence level. Earlier work has uncovered signatures of these effects, but the dynamics of genomic sequence evolution in adapting microbial populations have not yet been directly observed. In this talk, I will describe how full-genome whole-population sequencing can be used to provide a detailed view of these dynamics at high temporal resolution over 1000 generations in 40 adapting Saccharomyces cerevisiaepopulations. This data shows how patterns of sequence evolution are driven by a balance between chance interference and hitchhiking effects, which increase stochastic variation in evolutionary outcomes, and the deterministic action of selection on individual mutations, which favors parallel solutions in replicate populations.

  4. Adaptive Evolution of Gene Expression in Drosophila

    Directory of Open Access Journals (Sweden)

    Armita Nourmohammad

    2017-08-01

    Full Text Available Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis.

  5. Directed evolution of adaptive traits

    Science.gov (United States)

    As a species, switchgrass is adapted to an amazingly broad range of environments, spanning hardiness zones ranging from HZ3 to HZ9 (Canada to Mexico), from the mid-grass prairie to the Atlantic Seaboard, from sandy soils to heavy clay soils, from acid to alkaline soils, and from wetland to dryland h...

  6. Farming System Evolution and Adaptive Capacity: Insights for Adaptation Support

    OpenAIRE

    Dixon, JL; Stringer, LC; Challinor, AJ

    2014-01-01

    Studies of climate impacts on agriculture and adaptation often provide current or future assessments, ignoring the historical contexts farming systems are situated within. We investigate how historical trends have influenced farming system adaptive capacity in Uganda using data from household surveys, semi-structured interviews, focus-group discussions and observations. By comparing two farming systems, we note three major findings: (1) similar trends in farming system evolution have had diff...

  7. Adaptive genic evolution in the Drosophila genomes

    DEFF Research Database (Denmark)

    Shapiro, Joshua A; Huang, Wei; Zhang, Chenhui

    2007-01-01

    . melanogaster and its close relatives were adaptive. (iv) This signature of adaptive evolution is observable only in regions of normal recombination. Hence, the low level of polymorphism observed in regions of reduced recombination may not be driven primarily by positive selection. Finally, we discuss......Determining the extent of adaptive evolution at the genomic level is central to our understanding of molecular evolution. A suitable observation for this purpose would consist of polymorphic data on a large and unbiased collection of genes from two closely related species, each having a large...... sites than expected, hinting at the action of selective sweeps. (ii) The level of polymorphism is negatively correlated with the rate of nonsynonymous divergence across loci. Thus, even under strict neutrality, the ratio of amino acid to silent nucleotide changes (A:S) between Drosophila species...

  8. Adaptive Evolution of Phosphorus Metabolism in Prochlorococcus

    DEFF Research Database (Denmark)

    Casey, John R; Mardinoglu, Adil; Nielsen, Jens

    2016-01-01

    Inorganic phosphorus is scarce in the eastern Mediterranean Sea, where the high-light-adapted ecotype HLI of the marine picocyanobacterium Prochlorococcus marinus thrives. Physiological and regulatory control of phosphorus acquisition and partitioning has been observed in HLI both in culture and ...... and an extremely high proportion of essential metabolic genes (47%; defined as the percentage of lethal in silico gene knockouts). These strategies are examples of nutrient-controlled adaptive evolution and confer a dramatic growth rate advantage to MED4 in phosphorus-limited regions. ...

  9. Farming System Evolution and Adaptive Capacity: Insights for Adaptation Support

    Directory of Open Access Journals (Sweden)

    Jami L. Dixon

    2014-02-01

    Full Text Available Studies of climate impacts on agriculture and adaptation often provide current or future assessments, ignoring the historical contexts farming systems are situated within. We investigate how historical trends have influenced farming system adaptive capacity in Uganda using data from household surveys, semi-structured interviews, focus-group discussions and observations. By comparing two farming systems, we note three major findings: (1 similar trends in farming system evolution have had differential impacts on the diversity of farming systems; (2 trends have contributed to the erosion of informal social and cultural institutions and an increasing dependence on formal institutions; and (3 trade-offs between components of adaptive capacity are made at the farm-scale, thus influencing farming system adaptive capacity. To identify the actual impacts of future climate change and variability, it is important to recognize the dynamic nature of adaptation. In practice, areas identified for further adaptation support include: shift away from one-size-fits-all approach the identification and integration of appropriate modern farming method; a greater focus on building inclusive formal and informal institutions; and a more nuanced understanding regarding the roles and decision-making processes of influential, but external, actors. More research is needed to understand farm-scale trade-offs and the resulting impacts across spatial and temporal scales.

  10. Biomechanical consequences of rapid evolution in the polar bear lineage.

    Directory of Open Access Journals (Sweden)

    Graham J Slater

    Full Text Available The polar bear is the only living ursid with a fully carnivorous diet. Despite a number of well-documented craniodental adaptations for a diet of seal flesh and blubber, molecular and paleontological data indicate that this morphologically distinct species evolved less than a million years ago from the omnivorous brown bear. To better understand the evolution of this dietary specialization, we used phylogenetic tests to estimate the rate of morphological specialization in polar bears. We then used finite element analysis (FEA to compare the limits of feeding performance in the polar bear skull to that of the phylogenetically and geographically close brown bear. Results indicate that extremely rapid evolution of semi-aquatic adaptations and dietary specialization in the polar bear lineage produced a cranial morphology that is weaker than that of brown bears and less suited to processing tough omnivorous or herbivorous diets. Our results suggest that continuation of current climate trends could affect polar bears by not only eliminating their primary food source, but also through competition with northward advancing, generalized brown populations for resources that they are ill-equipped to utilize.

  11. Biomechanical consequences of rapid evolution in the polar bear lineage.

    Science.gov (United States)

    Slater, Graham J; Figueirido, Borja; Louis, Leeann; Yang, Paul; Van Valkenburgh, Blaire

    2010-11-05

    The polar bear is the only living ursid with a fully carnivorous diet. Despite a number of well-documented craniodental adaptations for a diet of seal flesh and blubber, molecular and paleontological data indicate that this morphologically distinct species evolved less than a million years ago from the omnivorous brown bear. To better understand the evolution of this dietary specialization, we used phylogenetic tests to estimate the rate of morphological specialization in polar bears. We then used finite element analysis (FEA) to compare the limits of feeding performance in the polar bear skull to that of the phylogenetically and geographically close brown bear. Results indicate that extremely rapid evolution of semi-aquatic adaptations and dietary specialization in the polar bear lineage produced a cranial morphology that is weaker than that of brown bears and less suited to processing tough omnivorous or herbivorous diets. Our results suggest that continuation of current climate trends could affect polar bears by not only eliminating their primary food source, but also through competition with northward advancing, generalized brown populations for resources that they are ill-equipped to utilize.

  12. Targeted metagenomics unveils the molecular basis for adaptive evolution of enzymes to their environment

    Directory of Open Access Journals (Sweden)

    Hikaru eSuenaga

    2015-09-01

    Full Text Available Microorganisms have a wonderful ability to adapt rapidly to new or altered environmental conditions. Enzymes are the basis of metabolism in all living organisms and therefore enzyme adaptation plays a crucial role in the adaptation of microorganisms. Comparisons of homology and parallel beneficial mutations in an enzyme family provide valuable hints of how an enzyme adapted to an ecological system; consequently, a series of enzyme collections is required to investigate enzyme evolution. Targeted metagenomics is a promising tool for the construction of enzyme pools and for studying the adaptive evolution of enzymes. This perspective article presents a summary of targeted metagenomic approaches useful for this purpose.

  13. Biodiversity, evolution and adaptation of cultivated crops.

    Science.gov (United States)

    Vigouroux, Yves; Barnaud, Adeline; Scarcelli, Nora; Thuillet, Anne-Céline

    2011-05-01

    The human diet depends on very few crops. Current diversity in these crops is the result of a long interaction between farmers and cultivated plants, and their environment. Man largely shaped crop biodiversity from the domestication period 12,000 B.P. to the development of improved varieties during the last century. We illustrate this process through a detailed analysis of the domestication and early diffusion of maize. In smallholder agricultural systems, farmers still have a major impact on crop diversity today. We review several examples of the major impact of man on current diversity. Finally, biodiversity is considered to be an asset for adaptation to current environmental changes. We describe the evolution of pearl millet in West Africa, where average rainfall has decreased over the last forty years. Diversity in cultivated varieties has certainly helped this crop to adapt to climate variation. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  14. Epistatic adaptive evolution of human color vision.

    Directory of Open Access Journals (Sweden)

    Shozo Yokoyama

    2014-12-01

    Full Text Available Establishing genotype-phenotype relationship is the key to understand the molecular mechanism of phenotypic adaptation. This initial step may be untangled by analyzing appropriate ancestral molecules, but it is a daunting task to recapitulate the evolution of non-additive (epistatic interactions of amino acids and function of a protein separately. To adapt to the ultraviolet (UV-free retinal environment, the short wavelength-sensitive (SWS1 visual pigment in human (human S1 switched from detecting UV to absorbing blue light during the last 90 million years. Mutagenesis experiments of the UV-sensitive pigment in the Boreoeutherian ancestor show that the blue-sensitivity was achieved by seven mutations. The experimental and quantum chemical analyses show that 4,008 of all 5,040 possible evolutionary trajectories are terminated prematurely by containing a dehydrated nonfunctional pigment. Phylogenetic analysis further suggests that human ancestors achieved the blue-sensitivity gradually and almost exclusively by epistasis. When the final stage of spectral tuning of human S1 was underway 45-30 million years ago, the middle and long wavelength-sensitive (MWS/LWS pigments appeared and so-called trichromatic color vision was established by interprotein epistasis. The adaptive evolution of human S1 differs dramatically from orthologous pigments with a major mutational effect used in achieving blue-sensitivity in a fish and several mammalian species and in regaining UV vision in birds. These observations imply that the mechanisms of epistatic interactions must be understood by studying various orthologues in different species that have adapted to various ecological and physiological environments.

  15. Rapid evolution of manifold CRISPR systems for plant genome editing

    Directory of Open Access Journals (Sweden)

    Yiping Qi

    2016-11-01

    Full Text Available Advanced CRISPR-Cas9 based technologies first validated in mammalian cell systems are quickly being adapted for use in plants. These new technologies increase CRISPR-Cas9’s utility and effectiveness by diversifying cellular capabilities through expression construct system evolution and enzyme orthogonality, as well as enhanced efficiency through delivery and expression mechanisms. Here, we review the current state of advanced CRISPR-Cas9 and Cpf1 capabilities in plants and cover the rapid evolution of these tools from first generation inducers of double strand breaks for basic genetic manipulations to second and third generation multiplexed systems with myriad functionalities, capabilities and specialized applications. We offer perspective on how to utilize these tools for currently untested research endeavors and analyze strengths and weaknesses of novel CRISPR systems in plants. Advanced CRISPR functionalities and delivery options demonstrated in plants are primarily reviewed but new technologies just coming to the forefront of CRISPR development, or those on the horizon, are briefly discussed. Topics covered are focused on the expansion of expression and delivery capabilities for CRISPR-Cas9 components and broadening targeting range through orthogonal Cas9 and Cpf1 proteins.

  16. A predator-2 prey fast-slow dynamical system for rapid predator evolution

    DEFF Research Database (Denmark)

    Piltz, Sofia Helena; Veerman, Frits; Maini, Philip K.

    2017-01-01

    We consider adaptive change of diet of a predator population that switches its feeding between two prey populations. We develop a novel 1 fast-3 slow dynamical system to describe the dynamics of the three populations amidst continuous but rapid evolution of the predator's diet choice. The two ext...

  17. Adaptive CGFs Based on Grammatical Evolution

    Directory of Open Access Journals (Sweden)

    Jian Yao

    2015-01-01

    Full Text Available Computer generated forces (CGFs play blue or red units in military simulations for personnel training and weapon systems evaluation. Traditionally, CGFs are controlled through rule-based scripts, despite the doctrine-driven behavior of CGFs being rigid and predictable. Furthermore, CGFs are often tricked by trainees or fail to adapt to new situations (e.g., changes in battle field or update in weapon systems, and, in most cases, the subject matter experts (SMEs review and redesign a large amount of CGF scripts for new scenarios or training tasks, which is both challenging and time-consuming. In an effort to overcome these limitations and move toward more true-to-life scenarios, a study using grammatical evolution (GE to generate adaptive CGFs for air combat simulations has been conducted. Expert knowledge is encoded with modular behavior trees (BTs for compatibility with the operators in genetic algorithm (GA. GE maps CGFs, represented with BTs to binary strings, and uses GA to evolve CGFs with performance feedback from the simulation. Beyond-visual-range air combat experiments between adaptive CGFs and nonadaptive baseline CGFs have been conducted to observe and study this evolutionary process. The experimental results show that the GE is an efficient framework to generate CGFs in BTs formalism and evolve CGFs via GA.

  18. WAKES: Wavelet Adaptive Kinetic Evolution Solvers

    Science.gov (United States)

    Mardirian, Marine; Afeyan, Bedros; Larson, David

    2016-10-01

    We are developing a general capability to adaptively solve phase space evolution equations mixing particle and continuum techniques in an adaptive manner. The multi-scale approach is achieved using wavelet decompositions which allow phase space density estimation to occur with scale dependent increased accuracy and variable time stepping. Possible improvements on the SFK method of Larson are discussed, including the use of multiresolution analysis based Richardson-Lucy Iteration, adaptive step size control in explicit vs implicit approaches. Examples will be shown with KEEN waves and KEEPN (Kinetic Electrostatic Electron Positron Nonlinear) waves, which are the pair plasma generalization of the former, and have a much richer span of dynamical behavior. WAKES techniques are well suited for the study of driven and released nonlinear, non-stationary, self-organized structures in phase space which have no fluid, limit nor a linear limit, and yet remain undamped and coherent well past the drive period. The work reported here is based on the Vlasov-Poisson model of plasma dynamics. Work supported by a Grant from the AFOSR.

  19. The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution.

    Science.gov (United States)

    Reznick, D N; Ghalambor, C K

    2001-01-01

    Under what conditions might organisms be capable of rapid adaptive evolution? We reviewed published studies documenting contemporary adaptations in natural populations and looked for general patterns in the population ecological causes. We found that studies of contemporary adaptation fall into two general settings: (1) colonization of new environments that established newly adapted populations, and (2) local adaptations within the context of a heterogeneous environments and metapopulation structure. Local ecological processes associated with colonizations and introductions included exposure to: (1) a novel host or food resource; (2) a new biophysical environment; (3) a new predator community; and (4) a new coexisting competitor. The new environments that were colonized often had depauperate communities, sometimes because of anthropogenic disturbance. Local adaptation in heterogeneous environments was also often associated with recent anthropogenic changes, such as insecticide and herbicide resistance, or industrial melanism. A common feature of many examples is the combination of directional selection with at least a short-term opportunity for population growth. We suggest that such opportunities for population growth may be a key factor that promotes rapid evolution, since directional selection might otherwise be expected to cause population decline and create the potential for local extinction, which is an ever-present alternative to local adaptation. We also address the large discrepancy between the rate of evolution observed in contemporary studies and the apparent rate of evolution seen in the fossil record.

  20. A Rapid Introduction to Adaptive Filtering

    CERN Document Server

    Vega, Leonardo Rey

    2013-01-01

    In this book, the authors provide insights into the basics of adaptive filtering, which are particularly useful for students taking their first steps into this field. They start by studying the problem of minimum mean-square-error filtering, i.e., Wiener filtering. Then, they analyze iterative methods for solving the optimization problem, e.g., the Method of Steepest Descent. By proposing stochastic approximations, several basic adaptive algorithms are derived, including Least Mean Squares (LMS), Normalized Least Mean Squares (NLMS) and Sign-error algorithms. The authors provide a general framework to study the stability and steady-state performance of these algorithms. The affine Projection Algorithm (APA) which provides faster convergence at the expense of computational complexity (although fast implementations can be used) is also presented. In addition, the Least Squares (LS) method and its recursive version (RLS), including fast implementations are discussed. The book closes with the discussion of severa...

  1. Evosystem Services: Rapid Evolution and the Provision of Ecosystem Services.

    Science.gov (United States)

    Rudman, Seth M; Kreitzman, Maayan; Chan, Kai M A; Schluter, Dolph

    2017-06-01

    Evolution is recognized as the source of all organisms, and hence many ecosystem services. However, the role that contemporary evolution might play in maintaining and enhancing specific ecosystem services has largely been overlooked. Recent advances at the interface of ecology and evolution have demonstrated how contemporary evolution can shape ecological communities and ecosystem functions. We propose a definition and quantitative criteria to study how rapid evolution affects ecosystem services (here termed contemporary evosystem services) and present plausible scenarios where such services might exist. We advocate for the direct measurement of contemporary evosystem services to improve understanding of how changing environments will alter resource availability and human well-being, and highlight the potential utility of managing rapid evolution for future ecosystem services. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Distributed representations accelerate evolution of adaptive behaviours.

    Directory of Open Access Journals (Sweden)

    James V Stone

    2007-08-01

    Full Text Available Animals with rudimentary innate abilities require substantial learning to transform those abilities into useful skills, where a skill can be considered as a set of sensory-motor associations. Using linear neural network models, it is proved that if skills are stored as distributed representations, then within-lifetime learning of part of a skill can induce automatic learning of the remaining parts of that skill. More importantly, it is shown that this "free-lunch" learning (FLL is responsible for accelerated evolution of skills, when compared with networks which either 1 cannot benefit from FLL or 2 cannot learn. Specifically, it is shown that FLL accelerates the appearance of adaptive behaviour, both in its innate form and as FLL-induced behaviour, and that FLL can accelerate the rate at which learned behaviours become innate.

  3. Cranial shape evolution in adaptive radiations of birds: comparative morphometrics of Darwin's finches and Hawaiian honeycreepers

    OpenAIRE

    Tokita, Masayoshi; Yano, Wataru; James, Helen F.; Abzhanov, Arhat

    2017-01-01

    Adaptive radiation is the rapid evolution of morphologically and ecologically diverse species from a single ancestor. The two classic examples of adaptive radiation are Darwin's finches and the Hawaiian honeycreepers, which evolved remarkable levels of adaptive cranial morphological variation. To gain new insights into the nature of their diversification, we performed comparative three-dimensional geometric morphometric analyses based on X-ray microcomputed tomography (µCT) scanning of dried ...

  4. Pervasive Adaptive Evolution in Primate Seminal Proteins.

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available Seminal fluid proteins show striking effects on reproduction, involving manipulation of female behavior and physiology, mechanisms of sperm competition, and pathogen defense. Strong adaptive pressures are expected for such manifestations of sexual selection and host defense, but the extent of positive selection in seminal fluid proteins from divergent taxa is unknown. We identified adaptive evolution in primate seminal proteins using genomic resources in a tissue-specific study. We found extensive signatures of positive selection when comparing 161 human seminal fluid proteins and 2,858 prostate-expressed genes to those in chimpanzee. Seven of eight outstanding genes yielded statistically significant evidence of positive selection when analyzed in divergent primates. Functional clues were gained through divergent analysis, including several cases of species-specific loss of function in copulatory plug genes, and statistically significant spatial clustering of positively selected sites near the active site of kallikrein 2. This study reveals previously unidentified positive selection in seven primate seminal proteins, and when considered with findings in Drosophila, indicates that extensive positive selection is found in seminal fluid across divergent taxonomic groups.

  5. When rapid adaptation paradigm is not too rapid: Evidence of face-sensitive N170 adaptation effects.

    Science.gov (United States)

    Tian, Tengxiang; Feng, Xue; Feng, Chunliang; Gu, Ruolei; Luo, Yue-Jia

    2015-07-01

    Recent findings have demonstrated that N170 adaptation effects evoked by face adaptors are general to face and non-face tests, implicating adaptor-locked interferences in the rapid adaptation paradigm. Here we examined the extent to which adaptor-locked interferences confound N170 adaptation effects in different experimental parameters by manipulating the stimulus onset asynchrony (SOA) duration and jitter between adaptors and tests. In the short SOA, those interferences were well visible for the grand-average ERP waveforms evoked by tests, and they are likely to render rapid adaptation paradigm with short SOA unreliable. The adaptor-locked interferences were attenuated by appropriately increasing SOA duration, such that face-sensitive adaptation effects were evident in the long SOA for both baseline-to-peak and peak-to-peak N170 measurements. These findings suggest that the rapid adaptation paradigm may work with a relative long SOA. Our findings provide useful information for future studies regarding the choosing of appropriate experimental parameters and measurements for the rapid adaptation paradigm. In addition, future studies are needed to investigate how to objectively subtract the overlaps of adaptors from tests and to validate the N170 adaptation effect with appropriate behavioral performance. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Is the rapid adaptation paradigm too rapid? Implications for face and object processing.

    Science.gov (United States)

    Nemrodov, Dan; Itier, Roxane J

    2012-07-16

    Rapid adaptation is an adaptation procedure in which adaptors and test stimuli are presented in rapid succession. The current study tested the validity of this method for early ERP components by investigating the specificity of the adaptation effect on the face-sensitive N170 ERP component across multiple test stimuli. Experiments 1 and 2 showed identical response patterns for house and upright face test stimuli using the same adaptor stimuli. The results were also identical to those reported in a previous study using inverted face test stimuli (Nemrodov and Itier, 2011). In Experiment 3 all possible adaptor-test combinations between upright face, house, chair and car stimuli were used and no interaction between adaptor and test category, expected in the case of test-specific adaptation, was found. These results demonstrate that the rapid adaptation paradigm does not produce category-specific adaptation effects around 170-200 ms following test stimulus onset, a necessary condition for the interpretation of adaptation results. These results suggest the rapid categorical adaptation paradigm does not work. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Uniparental Inheritance Promotes Adaptive Evolution in Cytoplasmic Genomes.

    Science.gov (United States)

    Christie, Joshua R; Beekman, Madeleine

    2017-03-01

    Eukaryotes carry numerous asexual cytoplasmic genomes (mitochondria and plastids). Lacking recombination, asexual genomes should theoretically suffer from impaired adaptive evolution. Yet, empirical evidence indicates that cytoplasmic genomes experience higher levels of adaptive evolution than predicted by theory. In this study, we use a computational model to show that the unique biology of cytoplasmic genomes-specifically their organization into host cells and their uniparental (maternal) inheritance-enable them to undergo effective adaptive evolution. Uniparental inheritance of cytoplasmic genomes decreases competition between different beneficial substitutions (clonal interference), promoting the accumulation of beneficial substitutions. Uniparental inheritance also facilitates selection against deleterious cytoplasmic substitutions, slowing Muller's ratchet. In addition, uniparental inheritance generally reduces genetic hitchhiking of deleterious substitutions during selective sweeps. Overall, uniparental inheritance promotes adaptive evolution by increasing the level of beneficial substitutions relative to deleterious substitutions. When we assume that cytoplasmic genome inheritance is biparental, decreasing the number of genomes transmitted during gametogenesis (bottleneck) aids adaptive evolution. Nevertheless, adaptive evolution is always more efficient when inheritance is uniparental. Our findings explain empirical observations that cytoplasmic genomes-despite their asexual mode of reproduction-can readily undergo adaptive evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Key issues review: evolution on rugged adaptive landscapes

    Science.gov (United States)

    Obolski, Uri; Ram, Yoav; Hadany, Lilach

    2018-01-01

    Adaptive landscapes represent a mapping between genotype and fitness. Rugged adaptive landscapes contain two or more adaptive peaks: allele combinations with higher fitness than any of their neighbors in the genetic space. How do populations evolve on such rugged landscapes? Evolutionary biologists have struggled with this question since it was first introduced in the 1930s by Sewall Wright. Discoveries in the fields of genetics and biochemistry inspired various mathematical models of adaptive landscapes. The development of landscape models led to numerous theoretical studies analyzing evolution on rugged landscapes under different biological conditions. The large body of theoretical work suggests that adaptive landscapes are major determinants of the progress and outcome of evolutionary processes. Recent technological advances in molecular biology and microbiology allow experimenters to measure adaptive values of large sets of allele combinations and construct empirical adaptive landscapes for the first time. Such empirical landscapes have already been generated in bacteria, yeast, viruses, and fungi, and are contributing to new insights about evolution on adaptive landscapes. In this Key Issues Review we will: (i) introduce the concept of adaptive landscapes; (ii) review the major theoretical studies of evolution on rugged landscapes; (iii) review some of the recently obtained empirical adaptive landscapes; (iv) discuss recent mathematical and statistical analyses motivated by empirical adaptive landscapes, as well as provide the reader with instructions and source code to implement simulations of evolution on adaptive landscapes; and (v) discuss possible future directions for this exciting field.

  9. Rapid evolutionary adaptation to elevated salt concentrations in pathogenic freshwater bacteria Serratia marcescens

    OpenAIRE

    Ketola, Tarmo; Hiltunen, Teppo

    2014-01-01

    Rapid evolutionary adaptions to new and previously detrimental environmental conditions can increase the risk of invasion by novel pathogens. We tested this hypothesis with a 133-day-long evolutionary experiment studying the evolution of the pathogenic Serratia marcescens bacterium at salinity niche boundary and in fluctuating conditions. We found that S. marcescens evolved at harsh (80 g/L) and extreme (100 g/L) salt conditions had clearly improved salt tolerance than those evolved in the ot...

  10. Ongoing adaptive evolution of ASPM, a brain size determinant in Homo sapiens.

    Science.gov (United States)

    Mekel-Bobrov, Nitzan; Gilbert, Sandra L; Evans, Patrick D; Vallender, Eric J; Anderson, Jeffrey R; Hudson, Richard R; Tishkoff, Sarah A; Lahn, Bruce T

    2005-09-09

    The gene ASPM (abnormal spindle-like microcephaly associated) is a specific regulator of brain size, and its evolution in the lineage leading to Homo sapiens was driven by strong positive selection. Here, we show that one genetic variant of ASPM in humans arose merely about 5800 years ago and has since swept to high frequency under strong positive selection. These findings, especially the remarkably young age of the positively selected variant, suggest that the human brain is still undergoing rapid adaptive evolution.

  11. Rapid evolution towards heavy metal resistance by mountain birch around two subarctic copper-nickel smelters.

    Science.gov (United States)

    Eränen, J K

    2008-03-01

    Adaptations to pollution among long-lived trees have rarely been documented, possibly because of their long reproductive cycles and the evolutionarily short timescales of anthropogenic pollution. Here, I present the results of a greenhouse experiment that suggest rapid evolutionary adaptation of mountain birch [Betula pubescens subsp. czerepanovii (Orlova) Hämet-Ahti] to heavy metal (HM) stress around two copper-nickel smelters in NW Russia. The adaptation incurs a cost with reduced performance of adapted seedlings in pristine conditions. The industrial barrens around the studied smelters are extremely high-stress sites with low seed germination and survival. It is likely that strong natural selection has eliminated all sensitive genotypes within one or two generations, with only the most tolerant individuals persisting and producing adapted seeds in the individual barrens. The results were similar from around both smelters, suggesting parallel evolution towards HM resistance.

  12. Inhibition of nitrification and carbon dioxide evolution as rapid tools ...

    African Journals Online (AJOL)

    Inhibition of nitrite formation and CO2 evolution displayed similar levels of sensitivities at 95% confidence levels. These results indicate that monitoring inhibition of metabolic processes rather than mortality was a more rapid and sensitive tool for ecotoxicological evaluation of chemicals employed in the petroleum industry in ...

  13. Collateral damage: rapid exposure-induced evolution of pesticide resistance leads to increased susceptibility to parasites.

    Science.gov (United States)

    Jansen, Mieke; Stoks, Robby; Coors, Anja; van Doorslaer, Wendy; de Meester, Luc

    2011-09-01

    Although natural populations may evolve resistance to anthropogenic stressors such as pollutants, this evolved resistance may carry costs. Using an experimental evolution approach, we exposed different Daphnia magna populations in outdoor containers to the carbamate pesticide carbaryl and control conditions, and assessed the resulting populations for both their resistance to carbaryl as well as their susceptibility to infection by the widespread bacterial microparasite Pasteuria ramosa. Our results show that carbaryl selection led to rapid evolution of carbaryl resistance with seemingly no cost when assessed in a benign environment. However, carbaryl-resistant populations were more susceptible to parasite infection than control populations. Exposure to both stressors reveals a synergistic effect on sterilization rate by P. ramosa, but this synergism did not evolve under pesticide selection. Assessing costs of rapid adaptive evolution to anthropogenic stress in a semi-natural context may be crucial to avoid too optimistic predictions for the fitness of the evolving populations. © 2011 The Author(s).

  14. Rapid evolution of tolerance to toxic Microcystis in two cladoceran grazers.

    Science.gov (United States)

    Jiang, Xiaodong; Gao, Han; Zhang, Lihua; Liang, Huishuang; Zhu, Xiao

    2016-04-28

    Evolutionary adaptation could assist organisms to cope with environmental changes, yet few experimental systems allow us to directly track evolutionary trajectory. Using experimental evolution, evolutionary tolerance to Microcystis aeruginosa was investigated in two cladocerans (Daphnia pulex and Simocephalus vetulus) to test the hypothesis that cladoceran grazers rapidly adapt to toxic cyanobacteria. After exposure for either three or six months, both grazers evolved a higher tolerance. The intrinsic rate of population increases in S. vetulus feeding on cyanobacteria was negatively correlated with that on green algae, which suggests that evolutionary adaptation in tolerance would carry a cost in the absence of cyanobacteria. However, the cyanobacterial selection resulted in a general increase in D. pulex when fed both cyanobacteria and green algae. Following a three-month relaxation of selection, S. vetulus in the selection line exhibited reverse evolution back to their original state when their diets were switched back to pure green algae. The present experimental evolution, both forwards and reverse, not only demonstrates the evolutionary responses of cladoceran grazers to toxic cyanobacterial cells in the laboratory, but also indicates that the grazer-cyanobacteria interaction would be an effective system to empirically study rapid evolution to environmental changes.

  15. Extensive X-linked adaptive evolution in central chimpanzees

    DEFF Research Database (Denmark)

    Hvilsom, Christina; Qian, Yu; Bataillon, Thomas

    2012-01-01

    on the dominance of beneficial (adaptive) and deleterious mutations. Here we capture and sequence the complete exomes of 12 chimpanzees and present the largest set of protein-coding polymorphism to date. We report extensive adaptive evolution specifically targeting the X chromosome of chimpanzees with as much...... as 30% of all amino acid replacements being adaptive. Adaptive evolution is barely detectable on the autosomes except for a few striking cases of recent selective sweeps associated with immunity gene clusters. We also find much stronger purifying selection than observed in humans, and in contrast...

  16. Farming System Evolution and Adaptive Capacity: Insights for Adaptation Support

    National Research Council Canada - National Science Library

    Jami L Dixon; Lindsay C Stringer; Andrew J Challinor

    2014-01-01

    .... We investigate how historical trends have influenced farming system adaptive capacity in Uganda using data from household surveys, semi-structured interviews, focus-group discussions and observations...

  17. Cryptic population dynamics: rapid evolution masks trophic interactions.

    Science.gov (United States)

    Yoshida, Takehito; Ellner, Stephen P; Jones, Laura E; Bohannan, Brendan J M; Lenski, Richard E; Hairston, Nelson G

    2007-09-01

    Trophic relationships, such as those between predator and prey or between pathogen and host, are key interactions linking species in ecological food webs. The structure of these links and their strengths have major consequences for the dynamics and stability of food webs. The existence and strength of particular trophic links has often been assessed using observational data on changes in species abundance through time. Here we show that very strong links can be completely missed by these kinds of analyses when changes in population abundance are accompanied by contemporaneous rapid evolution in the prey or host species. Experimental observations, in rotifer-alga and phage-bacteria chemostats, show that the predator or pathogen can exhibit large-amplitude cycles while the abundance of the prey or host remains essentially constant. We know that the species are tightly linked in these experimental microcosms, but without this knowledge, we would infer from observed patterns in abundance that the species are weakly or not at all linked. Mathematical modeling shows that this kind of cryptic dynamics occurs when there is rapid prey or host evolution for traits conferring defense against attack, and the cost of defense (in terms of tradeoffs with other fitness components) is low. Several predictions of the theory that we developed to explain the rotifer-alga experiments are confirmed in the phage-bacteria experiments, where bacterial evolution could be tracked. Modeling suggests that rapid evolution may also confound experimental approaches to measuring interaction strength, but it identifies certain experimental designs as being more robust against potential confounding by rapid evolution.

  18. Cryptic population dynamics: rapid evolution masks trophic interactions.

    Directory of Open Access Journals (Sweden)

    Takehito Yoshida

    2007-09-01

    Full Text Available Trophic relationships, such as those between predator and prey or between pathogen and host, are key interactions linking species in ecological food webs. The structure of these links and their strengths have major consequences for the dynamics and stability of food webs. The existence and strength of particular trophic links has often been assessed using observational data on changes in species abundance through time. Here we show that very strong links can be completely missed by these kinds of analyses when changes in population abundance are accompanied by contemporaneous rapid evolution in the prey or host species. Experimental observations, in rotifer-alga and phage-bacteria chemostats, show that the predator or pathogen can exhibit large-amplitude cycles while the abundance of the prey or host remains essentially constant. We know that the species are tightly linked in these experimental microcosms, but without this knowledge, we would infer from observed patterns in abundance that the species are weakly or not at all linked. Mathematical modeling shows that this kind of cryptic dynamics occurs when there is rapid prey or host evolution for traits conferring defense against attack, and the cost of defense (in terms of tradeoffs with other fitness components is low. Several predictions of the theory that we developed to explain the rotifer-alga experiments are confirmed in the phage-bacteria experiments, where bacterial evolution could be tracked. Modeling suggests that rapid evolution may also confound experimental approaches to measuring interaction strength, but it identifies certain experimental designs as being more robust against potential confounding by rapid evolution.

  19. Evolution of adaptive phenotypic traits without positive Darwinian selection.

    Science.gov (United States)

    Hughes, A L

    2012-04-01

    Recent evidence suggests the frequent occurrence of a simple non-Darwinian (but non-Lamarckian) model for the evolution of adaptive phenotypic traits, here entitled the plasticity-relaxation-mutation (PRM) mechanism. This mechanism involves ancestral phenotypic plasticity followed by specialization in one alternative environment and thus the permanent expression of one alternative phenotype. Once this specialization occurs, purifying selection on the molecular basis of other phenotypes is relaxed. Finally, mutations that permanently eliminate the pathways leading to alternative phenotypes can be fixed by genetic drift. Although the generality of the PRM mechanism is at present unknown, I discuss evidence for its widespread occurrence, including the prevalence of exaptations in evolution, evidence that phenotypic plasticity has preceded adaptation in a number of taxa and evidence that adaptive traits have resulted from loss of alternative developmental pathways. The PRM mechanism can easily explain cases of explosive adaptive radiation, as well as recently reported cases of apparent adaptive evolution over ecological time.

  20. Not different, Just Better: The Adaptive Evolution of an Enzyme

    Science.gov (United States)

    2015-12-20

    specialists and enzyme evolution . Beijing Normal University workshop on microbial ecology . Renwick Dobson (2014) Not different, just better: the... ecology . 15) Renwick Dobson (2014) Not different, just better: the adaptive evolution of a glycolytic enzyme. Canberra, Australia: COMBIO2014, 28...pyruvate kinase found in Richard Lenski’s E. coli long- term evolution experiment. We have demonstrated, for the first time, that all the pykF mutations

  1. Replicated evolution of integrated plastic responses during early adaptive divergence.

    Science.gov (United States)

    Parsons, Kevin J; Robinson, Beren W

    2006-04-01

    . Variation between ecomorphs and among lake populations in the covariance of plastic responses suggests the presence of genetic variation in plastic character responses. In three populations, open water ecomorphs also exhibited larger plastic responses to the environmental gradient than the local shallow water ecomorph. This could account for the greater integration of plastic responses in open water ecomorphs in two of the populations. This suggests that the plastic responses of local sunfish ecomorphs can diverge through changes in the magnitude and coordination of plastic responses. Although these results require further investigation, they suggest that early adaptive evolution in a novel environment can include changes to plastic character states. The genetic assimilation of coordinated plastic responses could result in the further, and possibly rapid, divergence of such populations and could also account for the evolution of genes of major effect that contribute to suites of phenotypic differences between divergent populations.

  2. The Rapid Evolution of an Ohnolog Contributes to the Ecological Specialization of Incipient Yeast Species.

    Science.gov (United States)

    Eberlein, Chris; Nielly-Thibault, Lou; Maaroufi, Halim; Dubé, Alexandre K; Leducq, Jean-Baptiste; Charron, Guillaume; Landry, Christian R

    2017-09-01

    Identifying the molecular changes that lead to ecological specialization during speciation is one of the major goals of molecular evolution. One question that remains to be thoroughly investigated is whether ecological specialization derives strictly from adaptive changes and their associated trade-offs, or from conditionally neutral mutations that accumulate under relaxed selection. We used whole-genome sequencing, genome annotation and computational analyses to identify genes that have rapidly diverged between two incipient species of Saccharomyces paradoxus that occupy different climatic regions along a south-west to north-east gradient. As candidate loci for ecological specialization, we identified genes that show signatures of adaptation and accelerated rates of amino acid substitutions, causing asymmetric evolution between lineages. This set of genes includes a glycyl-tRNA-synthetase, GRS2, which is known to be transcriptionally induced under heat stress in the model and sister species S. cerevisiae. Molecular modelling, expression analysis and fitness assays suggest that the accelerated evolution of this gene in the Northern lineage may be caused by relaxed selection. GRS2 arose during the whole-genome duplication (WGD) that occurred 100 million years ago in the yeast lineage. While its ohnolog GRS1 has been preserved in all post-WGD species, GRS2 has frequently been lost and is evolving rapidly, suggesting that the fate of this ohnolog is still to be resolved. Our results suggest that the asymmetric evolution of GRS2 between the two incipient S. paradoxus species contributes to their restricted climatic distributions and thus that ecological specialization derives at least partly from relaxed selection rather than a molecular trade-off resulting from adaptive evolution. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Adaptation and evolution of drug-resistant Mycobacterium tuberculosis

    NARCIS (Netherlands)

    Bergval, I.L.

    2013-01-01

    Many studies have been conducted on drug resistance and the evolution of Mycobacterium tuberculosis. Notwithstanding, many molecular mechanisms facilitating the emergence, adaptation and spread of drug-resistant tuberculosis have yet to be discovered. This thesis reports studies of the adaptive

  4. Differential Evolution for Many-Particle Adaptive Quantum Metrology

    NARCIS (Netherlands)

    Lovett, N.B.; Crosnier, C.; Perarnau- Llobet, M.; Sanders, B.

    2013-01-01

    We devise powerful algorithms based on differential evolution for adaptive many-particle quantum metrology. Our new approach delivers adaptive quantum metrology policies for feedback control that are orders-of-magnitude more efficient and surpass the few-dozen-particle limitation arising in methods

  5. Urban Evolution: The Role of Water and Adaptation

    Science.gov (United States)

    Kaushal, S.

    2015-12-01

    The structure, function, and services of urban ecosystems evolve over time scales from seconds to centuries as Earth's population grows, infrastructure ages, and management decisions alter them. The concept of "urban evolution" was proposed in order to study changes in urban ecosystems over time. Urban evolution has exerted a major influence on Earth's water and elemental cycles from local to global scales over human history. A current understanding of urban evolution allows urban planning, management, and restoration to move beyond reactive management to predictive management. We explore two key mechanisms of urban evolution, urban selective pressure and adaptation, and their relationship to the evolution of modern water and biogeochemical cycles. Urban selective pressure is an environmental or societal driver contributing to urban adaptation. Urban adaptation is the sequential process by which an urban structure, function, or services becomes more fitted to its changing environment or human choices. We show how hydrological and biogeochemical traits evolve across successive generations of urban ecosystems via shifts in selective pressures and adaptations. We also discuss how urban evolution can be divided into distinct stages and transition periods of growth and expansion and decay and repair during the Anthropocene epoch. We explore multiple examples and drivers of urban evolution and adaptations including the role of unintended consequences and societal drivers. We also present a conceptual model for the evolution of urban waters from the Industrial Revolution to the present day emphasizing the role of urban adaptations in response to selective pressures. Finally, we conclude by proposing new concepts and questions for future research related to the urban evolution of water, material, and energy cycles.

  6. Genetic correlations: transient truths of adaptive evolution

    Indian Academy of Sciences (India)

    Unknown

    remains as to whether, genetic correlations among traits are really consistent ... Keywords. genetic architecture; life history; experimental evolution; genetic correlations; genotype × environment interaction; stress resistance; Drosophila ... result from linkage disequilibrium, inbreeding depression, or selection. However, the ...

  7. A Model for Designing Adaptive Laboratory Evolution Experiments

    DEFF Research Database (Denmark)

    LaCroix, Ryan A.; Palsson, Bernhard O.; Feist, Adam M.

    2017-01-01

    The occurrence of mutations is a cornerstone of the evolutionary theory of adaptation, capitalizing on the rare chance that a mutation confers a fitness benefit. Natural selection is increasingly being leveraged in laboratory settings for industrial and basic science applications. Despite...... increasing deployment, there are no standardized procedures available for designing and performing adaptive laboratory evolution (ALE) experiments. Thus, there is a need to optimize the experimental design, specifically for determining when to consider an experiment complete and for balancing outcomes...... adaptive laboratory evolution can achieve....

  8. Evolution and adaptation of Pseudomonas aeruginosa in cystic fibrosis airways

    DEFF Research Database (Denmark)

    Madsen Sommer, Lea Mette

    adaptational patterns.However, the genetic overlap between CF and PCD isolates did not extend to a phenotypic overlap, which indicates that the mucus, which is different in CF patients compared to PCD patients, is a significant selective factor for the evolution and adaptation of P. aeruginosa...... of evolution to these observations, this thesis shows that collections of longitudinal P. aeruginosa isolates from CF patients provide a valuable basis for the study of adaptation and evolution in natural environments....... laboratory experiments, with a high degree of control and rigour. But to truly understand evolution and the complex mechanisms it deploys, it is necessary to combine the laboratory learnings with investigations of natural systems. –Though, this can be tricky. Because of the heterogeneity and constant change...

  9. Improving cellulase production by Aspergillus niger using adaptive evolution.

    Science.gov (United States)

    Patyshakuliyeva, Aleksandrina; Arentshorst, Mark; Allijn, Iris E; Ram, Arthur F J; de Vries, Ronald P; Gelber, Isabelle Benoit

    2016-06-01

    To evaluate the potential of adaptive evolution as a tool in generating strains with an improved production of plant biomass degrading enzymes. An Aspergillus niger cellulase mutant was obtained by adaptive evolution. Physiological properties of this mutant revealed a five times higher cellulose production than the parental strain. Transcriptomic analysis revealed that the expression of noxR, encoding the regulatory subunit of the NADPH oxidase complex, was reduced in the mutant compared to the parental strain. Subsequent analysis of a noxR knockout strain showed the same phenotypic effect as observed for the evolution mutant, confirming the role of NoxR in cellulose degradation. Adaptive evolution is an efficient approach to modify a strain and activate genes involved in polysaccharide degradation.

  10. Stochastic Evolution Equations with Adapted Drift

    NARCIS (Netherlands)

    Pronk, M.

    2013-01-01

    In this thesis we study stochastic evolution equations in Banach spaces. We restrict ourselves to the two following cases. First, we consider equations in which the drift is a closed linear operator that depends on time and is random. Such equations occur as mathematical models in for instance

  11. Adaptive laboratory evolution – principles and applications for biotechnology

    Science.gov (United States)

    2013-01-01

    Adaptive laboratory evolution is a frequent method in biological studies to gain insights into the basic mechanisms of molecular evolution and adaptive changes that accumulate in microbial populations during long term selection under specified growth conditions. Although regularly performed for more than 25 years, the advent of transcript and cheap next-generation sequencing technologies has resulted in many recent studies, which successfully applied this technique in order to engineer microbial cells for biotechnological applications. Adaptive laboratory evolution has some major benefits as compared with classical genetic engineering but also some inherent limitations. However, recent studies show how some of the limitations may be overcome in order to successfully incorporate adaptive laboratory evolution in microbial cell factory design. Over the last two decades important insights into nutrient and stress metabolism of relevant model species were acquired, whereas some other aspects such as niche-specific differences of non-conventional cell factories are not completely understood. Altogether the current status and its future perspectives highlight the importance and potential of adaptive laboratory evolution as approach in biotechnological engineering. PMID:23815749

  12. Simulation and Rapid Prototyping of Adaptive Control Systems using the Adaptive Blockset for Simulink

    DEFF Research Database (Denmark)

    Ravn, Ole

    1998-01-01

    The paper describes the design considerations and implementational aspects of the Adaptive Blockset for Simulink which has been developed in a prototype implementation. The concept behind the Adaptive Blockset for Simulink is to bridge the gap between simulation and prototype controller...... implementation. This is done using the code generation capabilities of Real Time Workshop in combination with C s-function blocks for adaptive control in Simulink. In the paper the design of each group of blocks normally found in adaptive controllers is outlined. The block types are, identification, controller...... design, controller and state variable filter.The use of the Adaptive Blockset is demonstrated using a simple laboratory setup. Both the use of the blockset for simulation and for rapid prototyping of a real-time controller are shown....

  13. Holokinetic centromeres and efficient telomere healing enable rapid karyotype evolution.

    Science.gov (United States)

    Jankowska, Maja; Fuchs, Jörg; Klocke, Evelyn; Fojtová, Miloslava; Polanská, Pavla; Fajkus, Jiří; Schubert, Veit; Houben, Andreas

    2015-12-01

    Species with holocentric chromosomes are often characterized by a rapid karyotype evolution. In contrast to species with monocentric chromosomes where acentric fragments are lost during cell division, breakage of holocentric chromosomes creates fragments with normal centromere activity. To decipher the mechanism that allows holocentric species an accelerated karyotype evolution via chromosome breakage, we analyzed the chromosome complements of irradiated Luzula elegans plants. The resulting chromosomal fragments and rearranged chromosomes revealed holocentromere-typical CENH3 and histone H2AThr120ph signals as well as the same mitotic mobility like unfragmented chromosomes. Newly synthesized telomeres at break points become detectable 3 weeks after irradiation. The presence of active telomerase suggests a telomerase-based mechanism of chromosome healing. A successful transmission of holocentric chromosome fragments across different generations was found for most offspring of irradiated plants. Hence, a combination of holokinetic centromere activity and the fast formation of new telomeres at break points enables holocentric species a rapid karyotype evolution involving chromosome fissions and rearrangements.

  14. Adaptive evolution and functional constraint at TLR4 during the secondary aquatic adaptation and diversification of cetaceans

    Directory of Open Access Journals (Sweden)

    Shen Tong

    2012-03-01

    Full Text Available Abstract Background Cetaceans (whales, dolphins and porpoises are a group of adapted marine mammals with an enigmatic history of transition from terrestrial to full aquatic habitat and rapid radiation in waters around the world. Throughout this evolution, the pathogen stress-response proteins must have faced challenges from the dramatic change of environmental pathogens in the completely different ecological niches cetaceans occupied. For this reason, cetaceans could be one of the most ideal candidate taxa for studying evolutionary process and associated driving mechanism of vertebrate innate immune systems such as Toll-like receptors (TLRs, which are located at the direct interface between the host and the microbial environment, act at the first line in recognizing specific conserved components of microorganisms, and translate them rapidly into a defense reaction. Results We used TLR4 as an example to test whether this traditionally regarded pattern recognition receptor molecule was driven by positive selection across cetacean evolutionary history. Overall, the lineage-specific selection test showed that the dN/dS (ω values along most (30 out of 33 examined cetartiodactylan lineages were less than 1, suggesting a common effect of functional constraint. However, some specific codons made radical changes, fell adjacent to the residues interacting with lipopolysaccharides (LPS, and showed parallel evolution between independent lineages, suggesting that TLR4 was under positive selection. Especially, strong signatures of adaptive evolution on TLR4 were identified in two periods, one corresponding to the early evolutionary transition of the terrestrial ancestors of cetaceans from land to semi-aquatic (represented by the branch leading to whale + hippo and from semi-aquatic to full aquatic (represented by the ancestral branch leading to cetaceans habitat, and the other to the rapid diversification and radiation of oceanic dolphins. Conclusions This

  15. Adaptive evolution and functional constraint at TLR4 during the secondary aquatic adaptation and diversification of cetaceans.

    Science.gov (United States)

    Shen, Tong; Xu, Shixia; Wang, Xiaohong; Yu, Wenhua; Zhou, Kaiya; Yang, Guang

    2012-03-24

    Cetaceans (whales, dolphins and porpoises) are a group of adapted marine mammals with an enigmatic history of transition from terrestrial to full aquatic habitat and rapid radiation in waters around the world. Throughout this evolution, the pathogen stress-response proteins must have faced challenges from the dramatic change of environmental pathogens in the completely different ecological niches cetaceans occupied. For this reason, cetaceans could be one of the most ideal candidate taxa for studying evolutionary process and associated driving mechanism of vertebrate innate immune systems such as Toll-like receptors (TLRs), which are located at the direct interface between the host and the microbial environment, act at the first line in recognizing specific conserved components of microorganisms, and translate them rapidly into a defense reaction. We used TLR4 as an example to test whether this traditionally regarded pattern recognition receptor molecule was driven by positive selection across cetacean evolutionary history. Overall, the lineage-specific selection test showed that the dN/dS (ω) values along most (30 out of 33) examined cetartiodactylan lineages were less than 1, suggesting a common effect of functional constraint. However, some specific codons made radical changes, fell adjacent to the residues interacting with lipopolysaccharides (LPS), and showed parallel evolution between independent lineages, suggesting that TLR4 was under positive selection. Especially, strong signatures of adaptive evolution on TLR4 were identified in two periods, one corresponding to the early evolutionary transition of the terrestrial ancestors of cetaceans from land to semi-aquatic (represented by the branch leading to whale + hippo) and from semi-aquatic to full aquatic (represented by the ancestral branch leading to cetaceans) habitat, and the other to the rapid diversification and radiation of oceanic dolphins. This is the first study thus far to characterize the TLR

  16. An Adaptive Unified Differential Evolution Algorithm for Global Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji; Mitchell, Chad

    2014-11-03

    In this paper, we propose a new adaptive unified differential evolution algorithm for single-objective global optimization. Instead of the multiple mutation strate- gies proposed in conventional differential evolution algorithms, this algorithm employs a single equation unifying multiple strategies into one expression. It has the virtue of mathematical simplicity and also provides users the flexibility for broader exploration of the space of mutation operators. By making all control parameters in the proposed algorithm self-adaptively evolve during the process of optimization, it frees the application users from the burden of choosing appro- priate control parameters and also improves the performance of the algorithm. In numerical tests using thirteen basic unimodal and multimodal functions, the proposed adaptive unified algorithm shows promising performance in compari- son to several conventional differential evolution algorithms.

  17. The stochastic edge in adaptive evolution

    OpenAIRE

    Brunet, Éric; Rouzine, Igor M.; Wilke, Claus O

    2007-01-01

    In a recent article, Desai and Fisher (2007) proposed that the speed of adaptation in an asexual population is determined by the dynamics of the stochastic edge of the population, that is, by the emergence and subsequent establishment of rare mutants that exceed the fitness of all sequences currently present in the population. Desai and Fisher perform an elaborate stochastic calculation of the mean time $\\tau$ until a new class of mutants has been established, and interpret $1/\\tau$ as the sp...

  18. Parallel evolution controlled by adaptation and covariation in ammonoid cephalopods

    OpenAIRE

    Klug Christian; De Baets Kenneth; Monnet Claude

    2011-01-01

    Abstract Background A major goal in evolutionary biology is to understand the processes that shape the evolutionary trajectory of clades. The repeated and similar large-scale morphological evolutionary trends of distinct lineages suggest that adaptation by means of natural selection (functional constraints) is the major cause of parallel evolution, a very common phenomenon in extinct and extant lineages. However, parallel evolution can result from other processes, which are usually ignored or...

  19. Evolution of morphological and climatic adaptations in Veronica L. (Plantaginaceae

    Directory of Open Access Journals (Sweden)

    Jian-Cheng Wang

    2016-08-01

    Full Text Available Perennials and annuals apply different strategies to adapt to the adverse environment, based on ‘tolerance’ and ‘avoidance’, respectively. To understand lifespan evolution and its impact on plant adaptability, we carried out a comparative study of perennials and annuals in the genus Veronica from a phylogenetic perspective. The results showed that ancestors of the genus Veronicawere likely to be perennial plants. Annual life history of Veronica has evolved multiple times and subtrees with more annual species have a higher substitution rate. Annuals can adapt to more xeric habitats than perennials. This indicates that annuals are more drought-resistant than their perennial relatives. Due to adaptation to similar selective pressures, parallel evolution occurs in morphological characters among annual species of Veronica.

  20. The ongoing adaptive evolution of ASPM and Microcephalin is not explained by increased intelligence.

    Science.gov (United States)

    Mekel-Bobrov, Nitzan; Posthuma, Danielle; Gilbert, Sandra L; Lind, Penelope; Gosso, M Florencia; Luciano, Michelle; Harris, Sarah E; Bates, Timothy C; Polderman, Tinca J C; Whalley, Lawrence J; Fox, Helen; Starr, John M; Evans, Patrick D; Montgomery, Grant W; Fernandes, Croydon; Heutink, Peter; Martin, Nicholas G; Boomsma, Dorret I; Deary, Ian J; Wright, Margaret J; de Geus, Eco J C; Lahn, Bruce T

    2007-03-15

    Recent studies have made great strides towards identifying putative genetic events underlying the evolution of the human brain and its emergent cognitive capacities. One of the most intriguing findings is the recurrent identification of adaptive evolution in genes associated with primary microcephaly, a developmental disorder characterized by severe reduction in brain size and intelligence, reminiscent of the early hominid condition. This has led to the hypothesis that the adaptive evolution of these genes has contributed to the emergence of modern human cognition. As with other candidate loci, however, this hypothesis remains speculative due to the current lack of methodologies for characterizing the evolutionary function of these genes in humans. Two primary microcephaly genes, ASPM and Microcephalin, have been implicated not only in the adaptive evolution of the lineage leading to humans, but in ongoing selective sweeps in modern humans as well. The presence of both the putatively adaptive and neutral alleles at these loci provides a unique opportunity for using normal trait variation within humans to test the hypothesis that the recent selective sweeps are driven by an advantage in cognitive abilities. Here, we report a large-scale association study between the adaptive alleles of these genes and normal variation in several measures of IQ. Five independent samples were used, totaling 2393 subjects, including both family-based and population-based datasets. Our overall findings do not support a detectable association between the recent adaptive evolution of either ASPM or Microcephalin and changes in IQ. As we enter the post-genomic era, with the number of candidate loci underlying human evolution growing rapidly, our findings highlight the importance of direct experimental validation in elucidating their evolutionary role in shaping the human phenotype.

  1. Rapid adaptation of harmful cyanobacteria to rising CO2.

    Science.gov (United States)

    Sandrini, Giovanni; Ji, Xing; Verspagen, Jolanda M H; Tann, Robert P; Slot, Pieter C; Luimstra, Veerle M; Schuurmans, J Merijn; Matthijs, Hans C P; Huisman, Jef

    2016-08-16

    Rising atmospheric CO2 concentrations are likely to affect many ecosystems worldwide. However, to what extent elevated CO2 will induce evolutionary changes in photosynthetic organisms is still a major open question. Here, we show rapid microevolutionary adaptation of a harmful cyanobacterium to changes in inorganic carbon (Ci) availability. We studied the cyanobacterium Microcystis, a notorious genus that can develop toxic cyanobacterial blooms in many eutrophic lakes and reservoirs worldwide. Microcystis displays genetic variation in the Ci uptake systems BicA and SbtA, where BicA has a low affinity for bicarbonate but high flux rate, and SbtA has a high affinity but low flux rate. Our laboratory competition experiments show that bicA + sbtA genotypes were favored by natural selection at low CO2 levels, but were partially replaced by the bicA genotype at elevated CO2 Similarly, in a eutrophic lake, bicA + sbtA strains were dominant when Ci concentrations were depleted during a dense cyanobacterial bloom, but were replaced by strains with only the high-flux bicA gene when Ci concentrations increased later in the season. Hence, our results provide both laboratory and field evidence that increasing carbon concentrations induce rapid adaptive changes in the genotype composition of harmful cyanobacterial blooms.

  2. Restrictions on biological adaptation in language evolution.

    Science.gov (United States)

    Chater, Nick; Reali, Florencia; Christiansen, Morten H

    2009-01-27

    Language acquisition and processing are governed by genetic constraints. A crucial unresolved question is how far these genetic constraints have coevolved with language, perhaps resulting in a highly specialized and species-specific language "module," and how much language acquisition and processing redeploy preexisting cognitive machinery. In the present work, we explored the circumstances under which genes encoding language-specific properties could have coevolved with language itself. We present a theoretical model, implemented in computer simulations, of key aspects of the interaction of genes and language. Our results show that genes for language could have coevolved only with highly stable aspects of the linguistic environment; a rapidly changing linguistic environment does not provide a stable target for natural selection. Thus, a biological endowment could not coevolve with properties of language that began as learned cultural conventions, because cultural conventions change much more rapidly than genes. We argue that this rules out the possibility that arbitrary properties of language, including abstract syntactic principles governing phrase structure, case marking, and agreement, have been built into a "language module" by natural selection. The genetic basis of human language acquisition and processing did not coevolve with language, but primarily predates the emergence of language. As suggested by Darwin, the fit between language and its underlying mechanisms arose because language has evolved to fit the human brain, rather than the reverse.

  3. Identification of genes that have undergone adaptive evolution in ...

    African Journals Online (AJOL)

    Cassava (Manihot esculenta) is a vital food security crop and staple in Africa, yet cassava brown streak disease (CBSD) and cassava mosaic disease result in substantial yield losses. The aim of this study was to identify genes that have undergone positive selection during adaptive evolution, from CBSD resistant, tolerant ...

  4. An Adaptive Laboratory Evolution Method to Accelerate Autotrophic Metabolism

    DEFF Research Database (Denmark)

    Zhang, Tian; Tremblay, Pier-Luc

    2018-01-01

    Adaptive laboratory evolution (ALE) is an approach enabling the development of novel characteristics in microbial strains via the application of a constant selection pressure. This method is also an efficient tool to acquire insights on molecular mechanisms responsible for specific phenotypes. ALE...

  5. The rule of declining adaptability in microbial evolution experiments

    Directory of Open Access Journals (Sweden)

    Alejandro eCouce

    2015-03-01

    Full Text Available One of the most recurrent observations after two decades of microbial evolution experiments regards the dynamics of fitness change. In a given environment, low-fitness genotypes are recurrently observed to adapt faster than their more fit counterparts. Since adaptation is the main macroscopic outcome of Darwinian evolution, studying its patterns of change could potentially provide insight into key issues of evolutionary theory, from fixation dynamics to the genetic architecture of organisms. Here, we re-analyze several published datasets from experimental evolution with microbes and show that, despite large differences in the origin of the data, a pattern of inverse dependence of adaptability with fitness clearly emerges. In quantitative terms, it is remarkable to observe little if any degree of idiosyncrasy across systems as diverse as virus, bacteria and yeast. The universality of this phenomenon suggests that its emergence might be understood from general principles, giving rise to the exciting prospect that evolution might be statistically predictable at the macroscopic level. We discuss this possibilities in the light of the various theories of adaptation that have been proposed and delineate future directions of research.

  6. The adaptive evolution of the mammalian mitochondrial genome

    Directory of Open Access Journals (Sweden)

    O'Brien Stephen J

    2008-03-01

    Full Text Available Abstract Background The mitochondria produce up to 95% of a eukaryotic cell's energy through oxidative phosphorylation. The proteins involved in this vital process are under high functional constraints. However, metabolic requirements vary across species, potentially modifying selective pressures. We evaluate the adaptive evolution of 12 protein-coding mitochondrial genes in 41 placental mammalian species by assessing amino acid sequence variation and exploring the functional implications of observed variation in secondary and tertiary protein structures. Results Wide variation in the properties of amino acids were observed at functionally important regions of cytochrome b in species with more-specialized metabolic requirements (such as adaptation to low energy diet or large body size, such as in elephant, dugong, sloth, and pangolin, and adaptation to unusual oxygen requirements, for example diving in cetaceans, flying in bats, and living at high altitudes in alpacas. Signatures of adaptive variation in the NADH dehydrogenase complex were restricted to the loop regions of the transmembrane units which likely function as protons pumps. Evidence of adaptive variation in the cytochrome c oxidase complex was observed mostly at the interface between the mitochondrial and nuclear-encoded subunits, perhaps evidence of co-evolution. The ATP8 subunit, which has an important role in the assembly of F0, exhibited the highest signal of adaptive variation. ATP6, which has an essential role in rotor performance, showed a high adaptive variation in predicted loop areas. Conclusion Our study provides insight into the adaptive evolution of the mtDNA genome in mammals and its implications for the molecular mechanism of oxidative phosphorylation. We present a framework for future experimental characterization of the impact of specific mutations in the function, physiology, and interactions of the mtDNA encoded proteins involved in oxidative phosphorylation.

  7. Quantifying adaptive evolution in the Drosophila immune system.

    Directory of Open Access Journals (Sweden)

    Darren J Obbard

    2009-10-01

    Full Text Available It is estimated that a large proportion of amino acid substitutions in Drosophila have been fixed by natural selection, and as organisms are faced with an ever-changing array of pathogens and parasites to which they must adapt, we have investigated the role of parasite-mediated selection as a likely cause. To quantify the effect, and to identify which genes and pathways are most likely to be involved in the host-parasite arms race, we have re-sequenced population samples of 136 immunity and 287 position-matched non-immunity genes in two species of Drosophila. Using these data, and a new extension of the McDonald-Kreitman approach, we estimate that natural selection fixes advantageous amino acid changes in immunity genes at nearly double the rate of other genes. We find the rate of adaptive evolution in immunity genes is also more variable than other genes, with a small subset of immune genes evolving under intense selection. These genes, which are likely to represent hotspots of host-parasite coevolution, tend to share similar functions or belong to the same pathways, such as the antiviral RNAi pathway and the IMD signalling pathway. These patterns appear to be general features of immune system evolution in both species, as rates of adaptive evolution are correlated between the D. melanogaster and D. simulans lineages. In summary, our data provide quantitative estimates of the elevated rate of adaptive evolution in immune system genes relative to the rest of the genome, and they suggest that adaptation to parasites is an important force driving molecular evolution.

  8. Adaptive evolution to novel predators facilitates the evolution of damselfly species range shifts.

    Science.gov (United States)

    Siepielski, Adam M; Beaulieu, Jeremy M

    2017-04-01

    Most species have evolved adaptations to reduce the chances of predation. In many cases, adaptations to coexist with one predator generate tradeoffs in the ability to live with other predators. Consequently, the ability to live with one predator may limit the geographic distributions of species, such that adaptive evolution to coexist with novel predators may facilitate range shifts. In a case study with Enallagma damselflies, we used a comparative phylogenetic approach to test the hypothesis that adaptive evolution to live with a novel predator facilitates range size shifts. Our results suggest that the evolution of Enallagma shifting from living in ancestral lakes with fish as top predators, to living in lakes with dragonflies as predators, may have facilitated an increase in their range sizes. This increased range size likely arose because lakes with dragonflies were widespread, but unavailable as a habitat throughout much of the evolutionary history of Enallagma because they were historically maladapted to coexist with dragonfly predators. Additionally, the traits that have evolved as defenses against dragonflies also likely enhanced damselfly dispersal abilities. While many factors underlie the evolutionary history of species ranges, these results suggest a role for the evolution of predator-prey interactions. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  9. Rapid Genetic Adaptation during the First Four Months of Survival under Resource Exhaustion.

    Science.gov (United States)

    Avrani, Sarit; Bolotin, Evgeni; Katz, Sophia; Hershberg, Ruth

    2017-07-01

    Many bacteria, including the model bacterium Escherichia coli can survive for years within spent media, following resource exhaustion. We carried out evolutionary experiments, followed by whole genome sequencing of hundreds of evolved clones to study the dynamics by which E. coli adapts during the first 4 months of survival under resource exhaustion. Our results reveal that bacteria evolving under resource exhaustion are subject to intense selection, manifesting in rapid mutation accumulation, enrichment in functional mutation categories and extremely convergent adaptation. In the most striking example of convergent adaptation, we found that across five independent populations adaptation to conditions of resource exhaustion occurs through mutations to the three same specific positions of the RNA polymerase core enzyme. Mutations to these three sites are strongly antagonistically pleiotropic, in that they sharply reduce exponential growth rates in fresh media. Such antagonistically pleiotropic mutations, combined with the accumulation of additional mutations, severely reduce the ability of bacteria surviving under resource exhaustion to grow exponentially in fresh media. We further demonstrate that the three positions at which these resource exhaustion mutations occur are conserved for the ancestral E. coli allele, across bacterial phyla, with the exception of nonculturable bacteria that carry the resource exhaustion allele at one of these positions, at very high frequencies. Finally, our results demonstrate that adaptation to resource exhaustion is not limited by mutational input and that bacteria are able to rapidly adapt under resource exhaustion in a temporally precise manner through allele frequency fluctuations. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. High rate of adaptive evolution in two widespread European pines.

    Science.gov (United States)

    Grivet, Delphine; Avia, Komlan; Vaattovaara, Aleksia; Eckert, Andrew J; Neale, David B; Savolainen, Outi; González-Martínez, Santiago C

    2017-11-07

    Comparing related organisms with differing ecological requirements and evolutionary histories can shed light on the mechanisms and drivers underlying genetic adaptation. Here, by examining a common set of hundreds of loci, we compare patterns of nucleotide diversity and molecular adaptation of two European conifers (Scots pine and maritime pine) living in contrasted environments and characterized by distinct population genetic structure (low and clinal in Scots pine, high and ecotypic in maritime pine) and demographic histories. We found higher nucleotide diversity in Scots pine than in maritime pine, whereas rates of new adaptive substitutions (ωa ), as estimated from the Distribution of Fitness Effects (DFE), were similar across species, and among the highest found in plants. Sample size and population genetic structure did not appear to have resulted in significant bias in estimates of ωa . Moreover, population contraction-expansion dynamics for each species did not differentially affect differentially the rate of adaptive substitution in these two pines. Several methodological and biological factors may underlie the unusually high rate of adaptive evolution of Scots pine and maritime pine. By providing two new case studies with contrasting evolutionary histories, we contribute to disentangling the multiple factors potentially affecting adaptive evolution in natural plant populations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Rapid recent human evolution and the accumulation of balanced genetic polymorphisms.

    Science.gov (United States)

    Wills, Christopher

    2011-01-01

    All evolutionary change can be traced to alterations in allele frequencies in populations over time. DNA sequencing on a massive scale now permits us to follow the genetic consequences as our species has diverged from our close relatives and as we have colonized different parts of the world and adapted to them. But it has been difficult to disentangle natural selection from many other factors that alter frequencies. These factors include mutation and intragenic reciprocal recombination, gene conversion, segregation distortion, random drift, and gene flow between populations (these last two are greatly influenced by splits and coalescences of populations over time). The first part of this review examines recent studies that have had some success in dissecting out the role of natural selection, especially in humans and Drosophila. Among many examples, these studies include those that have followed the rapid evolution of traits that may permit adaptation to high altitude in Tibetan and Andean populations. In some cases, directional selection has been so strong that it may have swept alleles close to fixation in the span of a few thousand years, a rapidity of change that is also sometimes encountered in other organisms. The second part of the review summarizes data showing that remarkably few alleles have been carried completely to fixation during our recent evolution. Some of the alleles that have not reached fixation may be approaching new internal equilibria, which would indicate polymorphisms that are maintained by balancing selection. Finally, the review briefly examines why genetic polymorphisms, particularly those that are maintained by negative frequency dependence, are likely to have played an important role in the evolution of our species. A method is suggested for measuring the contribution of these polymorphisms to our gene pool. Such polymorphisms may add to the ability of our species to adapt to our increasingly complex and challenging environment.

  12. Shifting Thresholds: Rapid Evolution of Migratory Life Histories in Steelhead/Rainbow Trout, Oncorhynchus mykiss.

    Science.gov (United States)

    Phillis, Corey C; Moore, Jonathan W; Buoro, Mathieu; Hayes, Sean A; Garza, John Carlos; Pearse, Devon E

    2016-01-01

    Expression of phenotypic plasticity depends on reaction norms adapted to historic selective regimes; anthropogenic changes in these selection regimes necessitate contemporary evolution or declines in productivity and possibly extinction. Adaptation of conditional strategies following a change in the selection regime requires evolution of either the environmentally influenced cue (e.g., size-at-age) or the state (e.g., size threshold) at which an individual switches between alternative tactics. Using a population of steelhead (Oncorhynchus mykiss) introduced above a barrier waterfall in 1910, we evaluate how the conditional strategy to migrate evolves in response to selection against migration. We created 9 families and 917 offspring from 14 parents collected from the above- and below-barrier populations. After 1 year of common garden-rearing above-barrier offspring were 11% smaller and 32% lighter than below-barrier offspring. Using a novel analytical approach, we estimate that the mean size at which above-barrier fish switch between the resident and migrant tactic is 43% larger than below-barrier fish. As a result, above-barrier fish were 26% less likely to express the migratory tactic. Our results demonstrate how rapid and opposing changes in size-at-age and threshold size contribute to the contemporary evolution of a conditional strategy and indicate that migratory barriers may elicit rapid evolution toward the resident life history on timescales relevant for conservation and management of conditionally migratory species. © The American Genetic Association. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Adaptive evolution of the venom-targeted vWF protein in opossums that eat pitvipers.

    Directory of Open Access Journals (Sweden)

    Sharon A Jansa

    Full Text Available The rapid evolution of venom toxin genes is often explained as the result of a biochemical arms race between venomous animals and their prey. However, it is not clear that an arms race analogy is appropriate in this context because there is no published evidence for rapid evolution in genes that might confer toxin resistance among routinely envenomed species. Here we report such evidence from an unusual predator-prey relationship between opossums (Marsupialia: Didelphidae and pitvipers (Serpentes: Crotalinae. In particular, we found high ratios of replacement to silent substitutions in the gene encoding von Willebrand Factor (vWF, a venom-targeted hemostatic blood protein, in a clade of opossums known to eat pitvipers and to be resistant to their hemorrhagic venom. Observed amino-acid substitutions in venom-resistant opossums include changes in net charge and hydrophobicity that are hypothesized to weaken the bond between vWF and one of its toxic snake-venom ligands, the C-type lectin-like protein botrocetin. Our results provide the first example of rapid adaptive evolution in any venom-targeted molecule, and they support the notion that an evolutionary arms race might be driving the rapid evolution of snake venoms. However, in the arms race implied by our results, venomous snakes are prey, and their venom has a correspondingly defensive function in addition to its usual trophic role.

  14. Escape from bacterial iron piracy through rapid evolution of transferrin

    Science.gov (United States)

    Barber, Matthew F.; Elde, Nels C.

    2015-01-01

    Iron sequestration provides an innate defense termed nutritional immunity, leading pathogens to scavenge iron from hosts. Although the molecular basis of this battle for iron is established, its potential as a force for evolution at host-pathogen interfaces is unknown. We show that the iron transport protein transferrin is engaged in ancient and ongoing evolutionary conflicts with TbpA, a transferrin surface receptor from bacteria. Single substitutions in transferrin at rapidly evolving sites reverse TbpA binding, providing a mechanism to counteract bacterial iron piracy among great apes. Furthermore, the C2 transferrin polymorphism in humans evades TbpA variants from Haemophilus influenzae, revealing a functional basis for standing genetic variation. These findings identify a central role for nutritional immunity in the persistent evolutionary conflicts between primates and bacterial pathogens. PMID:25504720

  15. Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation.

    Science.gov (United States)

    Colautti, Robert I; Lau, Jennifer A

    2015-05-01

    Biological invasions are 'natural' experiments that can improve our understanding of contemporary evolution. We evaluate evidence for population differentiation, natural selection and adaptive evolution of invading plants and animals at two nested spatial scales: (i) among introduced populations (ii) between native and introduced genotypes. Evolution during invasion is frequently inferred, but rarely confirmed as adaptive. In common garden studies, quantitative trait differentiation is only marginally lower (~3.5%) among introduced relative to native populations, despite genetic bottlenecks and shorter timescales (i.e. millennia vs. decades). However, differentiation between genotypes from the native vs. introduced range is less clear and confounded by nonrandom geographic sampling; simulations suggest this causes a high false-positive discovery rate (>50%) in geographically structured populations. Selection differentials (¦s¦) are stronger in introduced than in native species, although selection gradients (¦β¦) are not, consistent with introduced species experiencing weaker genetic constraints. This could facilitate rapid adaptation, but evidence is limited. For example, rapid phenotypic evolution often manifests as geographical clines, but simulations demonstrate that nonadaptive trait clines can evolve frequently during colonization (~two-thirds of simulations). Additionally, QST-FST studies may often misrepresent the strength and form of natural selection acting during invasion. Instead, classic approaches in evolutionary ecology (e.g. selection analysis, reciprocal transplant, artificial selection) are necessary to determine the frequency of adaptive evolution during invasion and its influence on establishment, spread and impact of invasive species. These studies are rare but crucial for managing biological invasions in the context of global change. © 2015 John Wiley & Sons Ltd.

  16. Adaptive Robotic Welding Using A Rapid Image Pre-Processor

    Science.gov (United States)

    Dufour, M.; Begin, G.

    1984-02-01

    The rapid pre-processor initially developed by NRCC and Leigh Instruments Inc. as part of the visual aid system of the space shuttle arm 1 has been adapted to perform real time seam tracking of multipass butt weld and other adaptive welding functions. The weld preparation profile is first enhanced by a projected laser target formed by a line and dots. A standard TV camera is used to observe the target image at an angle. Displacement and distorsion of the target image on a monitor are simple functions of the preparation surface distance and shape respectively. Using the video signal, the pre-processor computes in real time the area and first moments of the white level figure contained within four independent rectangular windows in the field of view of the camera. The shape, size, and position of each window can be changed dynamically for each successive image at the standard 30 images/sec rate, in order to track some target image singularities. Visual sensing and welding are done simultaneously. As an example, it is shown that thin sheet metal welding can be automated using a single window for seam tracking, gap width measurement and torch height estimation. Using a second window, measurement of sheet misalignment and their orientation in space were also achieved. The system can be used at welding speed of up to 1 m/min. Simplicity, speed and effectiveness are the main advantages of this system.

  17. Rapid evolution leads to differential population dynamics and top-down control in resurrectedDaphniapopulations.

    Science.gov (United States)

    Goitom, Eyerusalem; Kilsdonk, Laurens J; Brans, Kristien; Jansen, Mieke; Lemmens, Pieter; De Meester, Luc

    2018-01-01

    There is growing evidence of rapid genetic adaptation of natural populations to environmental change, opening the perspective that evolutionary trait change may subsequently impact ecological processes such as population dynamics, community composition, and ecosystem functioning. To study such eco-evolutionary feedbacks in natural populations, however, requires samples across time. Here, we capitalize on a resurrection ecology study that documented rapid and adaptive evolution in a natural population of the water flea Daphnia magna in response to strong changes in predation pressure by fish, and carry out a follow-up mesocosm experiment to test whether the observed genetic changes influence population dynamics and top-down control of phytoplankton. We inoculated populations of the water flea D. magna derived from three time periods of the same natural population known to have genetically adapted to changes in predation pressure in replicate mesocosms and monitored both Daphnia population densities and phytoplankton biomass in the presence and absence of fish. Our results revealed differences in population dynamics and top-down control of algae between mesocosms harboring populations from the time period before, during, and after a peak in fish predation pressure caused by human fish stocking. The differences, however, deviated from our a priori expectations. An S-map approach on time series revealed that the interactions between adults and juveniles strongly impacted the dynamics of populations and their top-down control on algae in the mesocosms, and that the strength of these interactions was modulated by rapid evolution as it occurred in nature. Our study provides an example of an evolutionary response that fundamentally alters the processes structuring population dynamics and impacts ecosystem features.

  18. Adaptive evolution of conserved noncoding elements in mammals.

    Directory of Open Access Journals (Sweden)

    Su Yeon Kim

    2007-09-01

    Full Text Available Conserved noncoding elements (CNCs are an abundant feature of vertebrate genomes. Some CNCs have been shown to act as cis-regulatory modules, but the function of most CNCs remains unclear. To study the evolution of CNCs, we have developed a statistical method called the "shared rates test" to identify CNCs that show significant variation in substitution rates across branches of a phylogenetic tree. We report an application of this method to alignments of 98,910 CNCs from the human, chimpanzee, dog, mouse, and rat genomes. We find that approximately 68% of CNCs evolve according to a null model where, for each CNC, a single parameter models the level of constraint acting throughout the phylogeny linking these five species. The remaining approximately 32% of CNCs show departures from the basic model including speed-ups and slow-downs on particular branches and occasionally multiple rate changes on different branches. We find that a subset of the significant CNCs have evolved significantly faster than the local neutral rate on a particular branch, providing strong evidence for adaptive evolution in these CNCs. The distribution of these signals on the phylogeny suggests that adaptive evolution of CNCs occurs in occasional short bursts of evolution. Our analyses suggest a large set of promising targets for future functional studies of adaptation.

  19. Structural evolution in the crystallization of rapid cooling silver melt

    Science.gov (United States)

    Tian, Z. A.; Dong, K. J.; Yu, A. B.

    2015-03-01

    The structural evolution in a rapid cooling process of silver melt has been investigated at different scales by adopting several analysis methods. The results testify Ostwald's rule of stages and Frank conjecture upon icosahedron with many specific details. In particular, the cluster-scale analysis by a recent developed method called LSCA (the Largest Standard Cluster Analysis) clarified the complex structural evolution occurred in crystallization: different kinds of local clusters (such as ico-like (ico is the abbreviation of icosahedron), ico-bcc like (bcc, body-centred cubic), bcc, bcc-like structures) in turn have their maximal numbers as temperature decreases. And in a rather wide temperature range the icosahedral short-range order (ISRO) demonstrates a saturated stage (where the amount of ico-like structures keeps stable) that breeds metastable bcc clusters. As the precursor of crystallization, after reaching the maximal number bcc clusters finally decrease, resulting in the final solid being a mixture mainly composed of fcc/hcp (face-centred cubic and hexagonal-closed packed) clusters and to a less degree, bcc clusters. This detailed geometric picture for crystallization of liquid metal is believed to be useful to improve the fundamental understanding of liquid-solid phase transition.

  20. The bill of evolution : trophic adaptations in anseriform birds

    NARCIS (Netherlands)

    Kurk, Carolina Deborah

    2008-01-01

    Adaptive radiation involves the rapid divergence of a single ancestral species into a group of species each occupying a different ecological niche. Differences between species are the result of trade-offs in the ability to exploit different environments to avoid competitive interactions. The many

  1. Phylogenomics Reveals Three Sources of Adaptive Variation during a Rapid Radiation.

    Directory of Open Access Journals (Sweden)

    James B Pease

    2016-02-01

    Full Text Available Speciation events often occur in rapid bursts of diversification, but the ecological and genetic factors that promote these radiations are still much debated. Using whole transcriptomes from all 13 species in the ecologically and reproductively diverse wild tomato clade (Solanum sect. Lycopersicon, we infer the species phylogeny and patterns of genetic diversity in this group. Despite widespread phylogenetic discordance due to the sorting of ancestral variation, we date the origin of this radiation to approximately 2.5 million years ago and find evidence for at least three sources of adaptive genetic variation that fuel diversification. First, we detect introgression both historically between early-branching lineages and recently between individual populations, at specific loci whose functions indicate likely adaptive benefits. Second, we find evidence of lineage-specific de novo evolution for many genes, including loci involved in the production of red fruit color. Finally, using a "PhyloGWAS" approach, we detect environment-specific sorting of ancestral variation among populations that come from different species but share common environmental conditions. Estimated across the whole clade, small but substantial and approximately equal fractions of the euchromatic portion of the genome are inferred to contribute to each of these three sources of adaptive genetic variation. These results indicate that multiple genetic sources can promote rapid diversification and speciation in response to new ecological opportunity, in agreement with our emerging phylogenomic understanding of the complexity of both ancient and recent species radiations.

  2. Rapid measurement of transient velocity evolution using GERVAIS.

    Science.gov (United States)

    Davies, Colin J; Sederman, Andrew J; Pipe, Chris J; McKinley, Gareth H; Gladden, Lynn F; Johns, Mike L

    2010-01-01

    Rapid velocity measurements using GERVAIS (Gradient Echo Rapid Velocity and Acceleration Imaging Sequence), an EPI (Echo Planar Imaging) based technique capable of measuring velocity over an observation time of several milliseconds, are performed on a wide-gap Couette Rheo-NMR cell for the first time. A variable delay time between a control signal to initiate a transition in flow and the start of the measurement sequence is incorporated to allow investigation of the transient evolution of the velocity field following a step change in rotation rate. Both the commencement and the cessation of imposed shear stress are investigated for (i) a shear banding micellar solution of CPyCl (cetylpyridiniumchloride)/NaSal (sodium salicylate) in brine and (ii) a low molecular weight PDMS (polydimethylsiloxane) oil. With respect to the micellar solution, an elastic shear wave is seen to propagate across the cell following the commencement of shear stress whilst an oscillatory 'recoil' is observed following the cessation of shear stress; neither of these phenomena were observed for the PDMS oil which exhibited a purely viscous response as expected for an incompressible Newtonian fluid. This technique has potential applications across a wide range of transient rheological investigations, particularly with respect to optically opaque materials. Copyright 2009 Elsevier Inc. All rights reserved.

  3. Adaptive Game Level Creation through Rank-based Interactive Evolution

    DEFF Research Database (Denmark)

    Liapis, Antonios; Martínez, Héctor Pérez; Togelius, Julian

    2013-01-01

    This paper introduces Rank-based Interactive Evolution (RIE) which is an alternative to interactive evolution driven by computational models of user preferences to generate personalized content. In RIE, the computational models are adapted to the preferences of users which, in turn, are used...... as fitness functions for the optimization of the generated content. The preference models are built via ranking-based preference learning, while the content is generated via evolutionary search. The proposed method is evaluated on the creation of strategy game maps, and its performance is tested using...

  4. Gene duplication and adaptive evolution of digestive proteases in Drosophila arizonae female reproductive tracts.

    Directory of Open Access Journals (Sweden)

    Erin S Kelleher

    2007-08-01

    Full Text Available It frequently has been postulated that intersexual coevolution between the male ejaculate and the female reproductive tract is a driving force in the rapid evolution of reproductive proteins. The dearth of research on female tracts, however, presents a major obstacle to empirical tests of this hypothesis. Here, we employ a comparative EST approach to identify 241 candidate female reproductive proteins in Drosophila arizonae, a repleta group species in which physiological ejaculate-female coevolution has been documented. Thirty-one of these proteins exhibit elevated amino acid substitution rates, making them candidates for molecular coevolution with the male ejaculate. Strikingly, we also discovered 12 unique digestive proteases whose expression is specific to the D. arizonae lower female reproductive tract. These enzymes belong to classes most commonly found in the gastrointestinal tracts of a diverse array of organisms. We show that these proteases are associated with recent, lineage-specific gene duplications in the Drosophila repleta species group, and exhibit strong signatures of positive selection. Observation of adaptive evolution in several female reproductive tract proteins indicates they are active players in the evolution of reproductive tract interactions. Additionally, pervasive gene duplication, adaptive evolution, and rapid acquisition of a novel digestive function by the female reproductive tract points to a novel coevolutionary mechanism of ejaculate-female interaction.

  5. Within-host co-evolution of chronic viruses and the adaptive immune system

    Science.gov (United States)

    Nourmohammad, Armita

    We normally think of evolution occurring in a population of organisms, in response to their external environment. Rapid evolution of cellular populations also occurs within our bodies, as the adaptive immune system works to eliminate infection. Some pathogens, such as HIV, are able to persist in a host for extended periods of time, during which they also evolve to evade the immune response. In this talk I will introduce an analytical framework for the rapid co-evolution of B-cell and viral populations, based on the molecular interactions between them. Since the co-evolution of antibodies and viruses is perpetually out of equilibrium, I will show how to quantify the amount of adaptation in each of the two populations by analysis of their co-evolutionary history. I will discuss the consequences of competition between lineages of antibodies, and characterize the fate of a given lineage dependent on the state of the antibody and viral populations. In particular, I will discuss the conditions for emergence of highly potent broadly neutralizing antibodies, which are now recognized as critical for designing an effective vaccine against HIV.

  6. The Effects of Rapid Assessments and Adaptive Restudy Prompts in Multimedia Learning

    Science.gov (United States)

    Renkl, Alexander; Skuballa, Irene T.; Schwonke, Rolf; Harr, Nora; Leber, Jasmin

    2015-01-01

    We investigated the effects of rapid assessment tasks and different adaptive restudy prompts in multimedia learning. The adaptivity was based on rapid assessment tasks that were interspersed throughout a multimedia learning environment. In Experiment 1 (N = 52 university students), we analyzed to which extent rapid assessment tasks were reactive…

  7. Structural evolution in the crystallization of rapid cooling silver melt

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Z.A., E-mail: ze.tian@gmail.com [School of Physics and Electronics, Hunan University, Changsha 410082 (China); Laboratory for Simulation and Modelling of Particulate Systems School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Dong, K.J.; Yu, A.B. [Laboratory for Simulation and Modelling of Particulate Systems School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2015-03-15

    The structural evolution in a rapid cooling process of silver melt has been investigated at different scales by adopting several analysis methods. The results testify Ostwald’s rule of stages and Frank conjecture upon icosahedron with many specific details. In particular, the cluster-scale analysis by a recent developed method called LSCA (the Largest Standard Cluster Analysis) clarified the complex structural evolution occurred in crystallization: different kinds of local clusters (such as ico-like (ico is the abbreviation of icosahedron), ico-bcc like (bcc, body-centred cubic), bcc, bcc-like structures) in turn have their maximal numbers as temperature decreases. And in a rather wide temperature range the icosahedral short-range order (ISRO) demonstrates a saturated stage (where the amount of ico-like structures keeps stable) that breeds metastable bcc clusters. As the precursor of crystallization, after reaching the maximal number bcc clusters finally decrease, resulting in the final solid being a mixture mainly composed of fcc/hcp (face-centred cubic and hexagonal-closed packed) clusters and to a less degree, bcc clusters. This detailed geometric picture for crystallization of liquid metal is believed to be useful to improve the fundamental understanding of liquid–solid phase transition. - Highlights: • A comprehensive structural analysis is conducted focusing on crystallization. • The involved atoms in our analysis are more than 90% for all samples concerned. • A series of distinct intermediate states are found in crystallization of silver melt. • A novelty icosahedron-saturated state breeds the metastable bcc state.

  8. Episodic evolution and adaptation of chloroplast genomes in ancestral grasses.

    Directory of Open Access Journals (Sweden)

    Bojian Zhong

    Full Text Available BACKGROUND: It has been suggested that the chloroplast genomes of the grass family, Poaceae, have undergone an elevated evolutionary rate compared to most other angiosperms, yet the details of this phenomenon have remained obscure. To know how the rate change occurred during evolution, estimation of the time-scale with reliable calibrations is needed. The recent finding of 65 Ma grass phytoliths in Cretaceous dinosaur coprolites places the diversification of the grasses to the Cretaceous period, and provides a reliable calibration in studying the tempo and mode of grass chloroplast evolution. METHODOLOGY/PRINCIPAL FINDINGS: By using chloroplast genome data from angiosperms and by taking account of new paleontological evidence, we now show that episodic rate acceleration both in terms of non-synonymous and synonymous substitutions occurred in the common ancestral branch of the core Poaceae (a group formed by rice, wheat, maize, and their allies accompanied by adaptive evolution in several chloroplast proteins, while the rate reverted to the slow rate typical of most monocot species in the terminal branches. CONCLUSIONS/SIGNIFICANCE: Our finding of episodic rate acceleration in the ancestral grasses accompanied by adaptive molecular evolution has a profound bearing on the evolution of grasses, which form a highly successful group of plants. The widely used model for estimating divergence times was based on the assumption of correlated rates between ancestral and descendant lineages. However, the assumption is proved to be inadequate in approximating the episodic rate acceleration in the ancestral grasses, and the assumption of independent rates is more appropriate. This finding has implications for studies of molecular evolutionary rates and time-scale of evolution in other groups of organisms.

  9. Horizontal gene acquisitions by eukaryotes as drivers of adaptive evolution.

    Science.gov (United States)

    Schönknecht, Gerald; Weber, Andreas P M; Lercher, Martin J

    2014-01-01

    In contrast to vertical gene transfer from parent to offspring, horizontal (or lateral) gene transfer moves genetic information between different species. Bacteria and archaea often adapt through horizontal gene transfer. Recent analyses indicate that eukaryotic genomes, too, have acquired numerous genes via horizontal transfer from prokaryotes and other lineages. Based on this we raise the hypothesis that horizontally acquired genes may have contributed more to adaptive evolution of eukaryotes than previously assumed. Current candidate sets of horizontally acquired eukaryotic genes may just be the tip of an iceberg. We have recently shown that adaptation of the thermoacidophilic red alga Galdieria sulphuraria to its hot, acid, toxic-metal laden, volcanic environment was facilitated by the acquisition of numerous genes from extremophile bacteria and archaea. Other recently published examples of horizontal acquisitions involved in adaptation include ice-binding proteins in marine algae, enzymes for carotenoid biosynthesis in aphids, and genes involved in fungal metabolism. Editor's suggested further reading in BioEssays Jumping the fine LINE between species: Horizontal transfer of transposable elements in animals catalyses genome evolution Abstract. © 2014 WILEY Periodicals, Inc.

  10. Dopaminergic modulation of rapid reality adaptation in thinking.

    Science.gov (United States)

    Schnider, A; Guggisberg, A; Nahum, L; Gabriel, D; Morand, S

    2010-05-19

    Dopamine has long held a prominent role in the interpretation of schizophrenia and other psychoses. Clinical studies on confabulation and disorientation, disorders marked by a confusion of reality in thinking, indicated that the ability to keep thinking in phase with reality depends on a process suppressing the interference of upcoming memories that do not refer to ongoing reality. A host of animal studies and a recent clinical study suggested that this suppression might correspond to the phasic inhibition of dopaminergic neurons in response to the absence of expected outcomes. In this study, we tested healthy subjects with a difficult version of a memory paradigm on which confabulating patients had failed. Subjects participated in three test sessions, in which they received in double-blind, randomized fashion L-dopa, risperidone, or placebo. We found that l-dopa, in comparison with risperidone, impaired performance in a highly specific way, which corresponded to the pattern of patients with reality confusion. Specifically, they had an increase of false positive responses, while overall memory performance and reaction times were unaffected. We conclude that dopaminergic transmission influences the ability to rapidly adapt thinking to ongoing reality. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Rapid adaptive divergence in new world achillea, an autopolyploid complex of ecological races.

    Science.gov (United States)

    Ramsey, Justin; Robertson, Alexander; Husband, Brian

    2008-03-01

    Adaptive evolution is often associated with speciation. In plants, however, ecotypic differentiation is common within widespread species, suggesting that climatic and edaphic specialization can outpace cladogenesis and the evolution of postzygotic reproductive isolation. We used cpDNA sequence (5 noncoding regions, 3.5 kb) and amplified fragment length polymorphisms (AFLPs: 4 primer pairs, 1,013 loci) to evaluate the history of ecological differentiation in the North American Achillea millefolium, an autopolyploid complex of "ecological races" exhibiting morphological, physiological, and life-history adaptations to diverse environments. Phylogenetic analyses reveal North American A. millefolium to be a monophyletic group distinct from its European and Asian relatives. Based on patterns of sequence divergence, as well as fossil and paleoecological data, colonization of North America appears to have occurred via the Bering Land Bridge during the Pleistocene (1.8 MYA to 11,500 years ago). Population genetic analyses indicate negligible structure within North American A. millefolium associated with varietal identity, geographic distribution, or ploidy level. North American populations, moreover, exhibit the signature of demographic expansion. These results affirm the "ecotype" concept of the North American Achillea advocated by classical research and demonstrate the rapid rate of ecological differentiation that sometimes occurs in plants.

  12. Parallel evolution controlled by adaptation and covariation in ammonoid cephalopods

    Directory of Open Access Journals (Sweden)

    Klug Christian

    2011-04-01

    Full Text Available Abstract Background A major goal in evolutionary biology is to understand the processes that shape the evolutionary trajectory of clades. The repeated and similar large-scale morphological evolutionary trends of distinct lineages suggest that adaptation by means of natural selection (functional constraints is the major cause of parallel evolution, a very common phenomenon in extinct and extant lineages. However, parallel evolution can result from other processes, which are usually ignored or difficult to identify, such as developmental constraints. Hence, understanding the underlying processes of parallel evolution still requires further research. Results Herein, we present a possible case of parallel evolution between two ammonoid lineages (Auguritidae and Pinacitidae of Early-Middle Devonian age (405-395 Ma, which are extinct cephalopods with an external, chambered shell. In time and through phylogenetic order of appearance, both lineages display a morphological shift toward more involute coiling (i.e. more tightly coiled whorls, larger adult body size, more complex suture line (the folded walls separating the gas-filled buoyancy-chambers, and the development of an umbilical lid (a very peculiar extension of the lateral shell wall covering the umbilicus in the most derived taxa. Increased involution toward shells with closed umbilicus has been demonstrated to reflect improved hydrodynamic properties of the shell and thus likely results from similar natural selection pressures. The peculiar umbilical lid might have also added to the improvement of the hydrodynamic properties of the shell. Finally, increasing complexity of suture lines likely results from covariation induced by trends of increasing adult size and whorl overlap given the morphogenetic properties of the suture. Conclusions The morphological evolution of these two Devonian ammonoid lineages follows a near parallel evolutionary path for some important shell characters during several

  13. Parallel evolution controlled by adaptation and covariation in ammonoid cephalopods.

    Science.gov (United States)

    Monnet, Claude; De Baets, Kenneth; Klug, Christian

    2011-04-29

    A major goal in evolutionary biology is to understand the processes that shape the evolutionary trajectory of clades. The repeated and similar large-scale morphological evolutionary trends of distinct lineages suggest that adaptation by means of natural selection (functional constraints) is the major cause of parallel evolution, a very common phenomenon in extinct and extant lineages. However, parallel evolution can result from other processes, which are usually ignored or difficult to identify, such as developmental constraints. Hence, understanding the underlying processes of parallel evolution still requires further research. Herein, we present a possible case of parallel evolution between two ammonoid lineages (Auguritidae and Pinacitidae) of Early-Middle Devonian age (405-395 Ma), which are extinct cephalopods with an external, chambered shell. In time and through phylogenetic order of appearance, both lineages display a morphological shift toward more involute coiling (i.e. more tightly coiled whorls), larger adult body size, more complex suture line (the folded walls separating the gas-filled buoyancy-chambers), and the development of an umbilical lid (a very peculiar extension of the lateral shell wall covering the umbilicus) in the most derived taxa. Increased involution toward shells with closed umbilicus has been demonstrated to reflect improved hydrodynamic properties of the shell and thus likely results from similar natural selection pressures. The peculiar umbilical lid might have also added to the improvement of the hydrodynamic properties of the shell. Finally, increasing complexity of suture lines likely results from covariation induced by trends of increasing adult size and whorl overlap given the morphogenetic properties of the suture. The morphological evolution of these two Devonian ammonoid lineages follows a near parallel evolutionary path for some important shell characters during several million years and through their phylogeny. Evolution

  14. Surprisingly Rapid Orbital Evolution: A Compendium of Solar Type Binaries

    Science.gov (United States)

    Samec, Ronald George

    2015-08-01

    Solar type binaries are believed to be undergoing steady but slow angular momentum losses due to magnetic braking (Réville et al. 2015, Jiang et al. 2014) as stellar winds leave radially away on semi-rigid (out to the Alfvén radius) bipolar field lines: There is an outward radial flow of ions along the rotating magnetic fields. This is happening simultaneously as the gravitationally locked binary rotates about its center of mass. The stream of ions spiral outward resulting in a resistant torque, causing a decay in the orbital radius along with a period decrease due to Kepler’s laws. My past studies have included more than 25 binaries that appear to be undergoing magnetic braking. I have extended the number of systems to 75+ in this group by perusing the literature of modern precision synthetic light curve studies. Several interesting facts arise including their surprisingly rapid orbital evolution, much faster than would be suggested by the theory. Further results are presented in this study.

  15. Rapid evolution of distinct Helicobacter pylori subpopulations in the Americas.

    Directory of Open Access Journals (Sweden)

    Kaisa Thorell

    2017-02-01

    Full Text Available For the last 500 years, the Americas have been a melting pot both for genetically diverse humans and for the pathogenic and commensal organisms associated with them. One such organism is the stomach-dwelling bacterium Helicobacter pylori, which is highly prevalent in Latin America where it is a major current public health challenge because of its strong association with gastric cancer. By analyzing the genome sequence of H. pylori isolated in North, Central and South America, we found evidence for admixture between H. pylori of European and African origin throughout the Americas, without substantial input from pre-Columbian (hspAmerind bacteria. In the US, strains of African and European origin have remained genetically distinct, while in Colombia and Nicaragua, bottlenecks and rampant genetic exchange amongst isolates have led to the formation of national gene pools. We found three outer membrane proteins with atypical levels of Asian ancestry in American strains, as well as alleles that were nearly fixed specifically in South American isolates, suggesting a role for the ethnic makeup of hosts in the colonization of incoming strains. Our results show that new H. pylori subpopulations can rapidly arise, spread and adapt during times of demographic flux, and suggest that differences in transmission ecology between high and low prevalence areas may substantially affect the composition of bacterial populations.

  16. Rapid Nonconjugate Adaptation of Vertical Voluntary Pursuit Eye Movements

    Science.gov (United States)

    1991-01-01

    applied to the post-adaptation data from the left eye magnification condition: YRpost(Transformed) = (2 * YRpre) - YRPost (6) For example, if the pie ...nonconjugate adaptation with spectacle- mounted plano -cylindrical lenses, Lemij (1990) demonstrated that nonconjugate pursuit adaptation was

  17. Adaptive Evolution Leads to Cross-Species Incompatibility in the piRNA Transposon Silencing Machinery.

    Science.gov (United States)

    Parhad, Swapnil S; Tu, Shikui; Weng, Zhiping; Theurkauf, William E

    2017-10-09

    Reproductive isolation defines species divergence and is linked to adaptive evolution of hybrid incompatibility genes. Hybrids between Drosophila melanogaster and Drosophila simulans are sterile, and phenocopy mutations in the PIWI interacting RNA (piRNA) pathway, which silences transposons and shows pervasive adaptive evolution, and Drosophila rhino and deadlock encode rapidly evolving components of a complex that binds to piRNA clusters. We show that Rhino and Deadlock interact and co-localize in simulans and melanogaster, but simulans Rhino does not bind melanogaster Deadlock, due to substitutions in the rapidly evolving Shadow domain. Significantly, a chimera expressing the simulans Shadow domain in a melanogaster Rhino backbone fails to support piRNA production, disrupts binding to piRNA clusters, and leads to ectopic localization to bulk heterochromatin. Fusing melanogaster Deadlock to simulans Rhino, by contrast, restores localization to clusters. Deadlock binding thus directs Rhino to piRNA clusters, and Rhino-Deadlock co-evolution has produced cross-species incompatibilities, which may contribute to reproductive isolation. Copyright © 2017. Published by Elsevier Inc.

  18. Local adaptation of plant viruses: lessons from experimental evolution.

    Science.gov (United States)

    Elena, Santiago F

    2017-04-01

    For multihost pathogens, adaptation to multiple hosts has important implications for both applied and basic research. At the applied level, it is one of the main factors determining the probability and severity of emerging disease outbreaks. At the basic level, it is thought to be a key mechanism for the maintenance of genetic diversity both in host and pathogen species. In recent years, a number of evolution experiments have assessed the fate of plant virus populations replicating within and adapting to one single or to multiple hosts species. A first group of these experiments tackled the existence of trade-offs in fitness and virulence for viruses evolving either within a single hosts species or alternating between two different host species. A second set of experiments explored the role of genetic variability in susceptibility and resistance to infection among individuals from the same host species in the extent of virus local adaptation and of virulence. In general, when a single host species or genotype is available, these experiments show that local adaptation takes place, often but not always associated with a fitness trade-off. However, alternating between different host species or infecting resistant host genotypes may select for generalist viruses that experience no fitness cost. Therefore, the expected cost of generalism, arising from antagonistic pleiotropy and other genetic mechanisms generating fitness trade-offs between hosts, could not be generalized and strongly depend on the characteristics of each particular pathosystem. At the genomic level, these studies show pervasive convergent molecular evolution, suggesting that the number of accessible molecular pathways leading to adaptation to novel hosts is limited. © 2016 John Wiley & Sons Ltd.

  19. Go forth, evolve and prosper: the genetic basis of adaptive evolution in an invasive species.

    Science.gov (United States)

    Franks, Steven J; Munshi-South, Jason

    2014-05-01

    Invasive species stand accused of a familiar litany of offences, including displacing native species, disrupting ecological processes and causing billions of dollars in ecological damage (Cox 1999). Despite these transgressions, invasive species have at least one redeeming virtue--they offer us an unparalleled opportunity to investigate colonization and responses of populations to novel conditions in the invaded habitat (Elton 1958; Sakai et al. 2001). Invasive species are by definition colonists that have arrived and thrived in a new location. How they are able to thrive is of great interest, especially considering a paradox of invasion (Sax & Brown 2000): if many populations are locally adapted (Leimu & Fischer 2008), how could species introduced into new locations become so successful? One possibility is that populations adjust to the new conditions through plasticity--increasing production of allelopathic compounds (novel weapons), or taking advantage of new prey, for example. Alternatively, evolution could play a role, with the populations adapting to the novel conditions of the new habitat. There is increasing evidence, based on phenotypic data, for rapid adaptive evolution in invasive species (Franks et al. 2012; Colautti & Barrett 2013; Sultan et al. 2013). Prior studies have also demonstrated genetic changes in introduced populations using neutral markers, which generally do not provide information on adaptation. Thus, the genetic basis of adaptive evolution in invasive species has largely remained unknown. In this issue of Molecular Ecology, Vandepitte et al. (2014) provide some of the first evidence in invasive populations for molecular genetic changes directly linked to adaptation. © 2014 John Wiley & Sons Ltd.

  20. Rapid diversification of five Oryza AA genomes associated with rice adaptation.

    Science.gov (United States)

    Zhang, Qun-Jie; Zhu, Ting; Xia, En-Hua; Shi, Chao; Liu, Yun-Long; Zhang, Yun; Liu, Yuan; Jiang, Wen-Kai; Zhao, You-Jie; Mao, Shu-Yan; Zhang, Li-Ping; Huang, Hui; Jiao, Jun-Ying; Xu, Ping-Zhen; Yao, Qiu-Yang; Zeng, Fan-Chun; Yang, Li-Li; Gao, Ju; Tao, Da-Yun; Wang, Yue-Ju; Bennetzen, Jeffrey L; Gao, Li-Zhi

    2014-11-18

    Comparative genomic analyses among closely related species can greatly enhance our understanding of plant gene and genome evolution. We report de novo-assembled AA-genome sequences for Oryza nivara, Oryza glaberrima, Oryza barthii, Oryza glumaepatula, and Oryza meridionalis. Our analyses reveal massive levels of genomic structural variation, including segmental duplication and rapid gene family turnover, with particularly high instability in defense-related genes. We show, on a genomic scale, how lineage-specific expansion or contraction of gene families has led to their morphological and reproductive diversification, thus enlightening the evolutionary process of speciation and adaptation. Despite strong purifying selective pressures on most Oryza genes, we documented a large number of positively selected genes, especially those genes involved in flower development, reproduction, and resistance-related processes. These diversifying genes are expected to have played key roles in adaptations to their ecological niches in Asia, South America, Africa and Australia. Extensive variation in noncoding RNA gene numbers, function enrichment, and rates of sequence divergence might also help account for the different genetic adaptations of these rice species. Collectively, these resources provide new opportunities for evolutionary genomics, numerous insights into recent speciation, a valuable database of functional variation for crop improvement, and tools for efficient conservation of wild rice germplasm.

  1. Functional constraints on adaptive evolution of protein ubiquitination sites.

    Science.gov (United States)

    Lu, Liang; Li, Yang; Liu, Zhongyang; Liang, Fengji; Guo, Feifei; Yang, Shuai; Wang, Dan; He, Yangzhige; Xiong, Jianghui; Li, Dong; He, Fuchu

    2017-01-05

    It is still unclear whether there exist functional constraints on the evolution of protein ubiquitination sites, because most previous studies regarded all protein ubiquitination sites as a whole or only focused on limited structural properties. We tried to clarify the relation between functional constraints and ubiquitination sites evolution. We investigated the evolutionary conservation of human ubiquitination sites in a broad evolutionary scale from G. gorilla to S. pombe, and we found that in organisms originated after the divergence of vertebrate, ubiquitination sites are more conserved than their flanking regions, while the opposite tendency is observed before this divergence time. By grouping the ubiquitination proteins into different functional categories, we confirm that many functional constraints like certain molecular functions, protein tissue expression specificity and protein connectivity in protein-protein interaction network enhance the evolutionary conservation of ubiquitination sites. Furthermore, by analyzing the gains of ubiquitination sites at different divergence time and their functional characters, we validate that the emergences of ubiquitination sites at different evolutionary time were also affected by the uncovered functional constraints. The above results suggest that functional constraints on the adaptive evolution of ubiquitination sites increase the opportunity for ubiquitination to synthetically regulate various cellular and developmental processes during evolution.

  2. Evolution of collective action in adaptive social structures.

    Science.gov (United States)

    Moreira, João A; Pacheco, Jorge M; Santos, Francisco C

    2013-01-01

    Many problems in nature can be conveniently framed as a problem of evolution of collective cooperative behaviour, often modelled resorting to the tools of evolutionary game theory in well-mixed populations, combined with an appropriate N-person dilemma. Yet, the well-mixed assumption fails to describe the population dynamics whenever individuals have a say in deciding which groups they will participate. Here we propose a simple model in which dynamical group formation is described as a result of a topological evolution of a social network of interactions. We show analytically how evolutionary dynamics under public goods games in finite adaptive networks can be effectively transformed into a N-Person dilemma involving both coordination and co-existence. Such dynamics would be impossible to foresee from more conventional 2-person interactions as well as from descriptions based on infinite, well-mixed populations. Finally, we show how stochastic effects help rendering cooperation viable, promoting polymorphic configurations in which cooperators prevail.

  3. Rapid evolution and range expansion of an invasive plant are driven by provenance-environment interactions.

    Science.gov (United States)

    Zenni, Rafael D; Bailey, Joseph K; Simberloff, Daniel

    2014-06-01

    To improve our ability to prevent and manage biological invasions, we must understand their ecological and evolutionary drivers. We are often able to explain invasions after they happen, but our predictive ability is limited. Here, we show that range expansions of introduced Pinus taeda result from an interaction between genetic provenance and climate and that temperature and precipitation clines predict the invasive performance of particular provenances. Furthermore, we show that genotypes can occupy climate niche spaces different from those observed in their native ranges and, at least in our case, that admixture is not a main driver of invasion. Genotypes respond to climate in distinct ways, and these interactions affect the ability of populations to expand their ranges. While rapid evolution in introduced ranges is a mechanism at later stages of the invasion process, the introduction of adapted genotypes is a key driver of naturalisation of populations of introduced species. © 2014 John Wiley & Sons Ltd/CNRS.

  4. Gene alterations at Drosophila inversion breakpoints provide prima facie evidence for natural selection as an explanation for rapid chromosomal evolution

    Directory of Open Access Journals (Sweden)

    Guillén Yolanda

    2012-02-01

    Full Text Available Abstract Background Chromosomal inversions have been pervasive during the evolution of the genus Drosophila, but there is significant variation between lineages in the rate of rearrangement fixation. D. mojavensis, an ecological specialist adapted to a cactophilic niche under extreme desert conditions, is a chromosomally derived species with ten fixed inversions, five of them not present in any other species. Results In order to explore the causes of the rapid chromosomal evolution in D. mojavensis, we identified and characterized all breakpoints of seven inversions fixed in chromosome 2, the most dynamic one. One of the inversions presents unequivocal evidence for its generation by ectopic recombination between transposon copies and another two harbor inverted duplications of non-repetitive DNA at the two breakpoints and were likely generated by staggered single-strand breaks and repair by non-homologous end joining. Four out of 14 breakpoints lay in the intergenic region between preexisting duplicated genes, suggesting an adaptive advantage of separating previously tightly linked duplicates. Four out of 14 breakpoints are associated with transposed genes, suggesting these breakpoints are fragile regions. Finally two inversions contain novel genes at their breakpoints and another three show alterations of genes at breakpoints with potential adaptive significance. Conclusions D. mojavensis chromosomal inversions were generated by multiple mechanisms, an observation that does not provide support for increased mutation rate as explanation for rapid chromosomal evolution. On the other hand, we have found a number of gene alterations at the breakpoints with putative adaptive consequences that directly point to natural selection as the cause of D. mojavensis rapid chromosomal evolution.

  5. Gene alterations at Drosophila inversion breakpoints provide prima facie evidence for natural selection as an explanation for rapid chromosomal evolution.

    Science.gov (United States)

    Guillén, Yolanda; Ruiz, Alfredo

    2012-02-01

    Chromosomal inversions have been pervasive during the evolution of the genus Drosophila, but there is significant variation between lineages in the rate of rearrangement fixation. D. mojavensis, an ecological specialist adapted to a cactophilic niche under extreme desert conditions, is a chromosomally derived species with ten fixed inversions, five of them not present in any other species. In order to explore the causes of the rapid chromosomal evolution in D. mojavensis, we identified and characterized all breakpoints of seven inversions fixed in chromosome 2, the most dynamic one. One of the inversions presents unequivocal evidence for its generation by ectopic recombination between transposon copies and another two harbor inverted duplications of non-repetitive DNA at the two breakpoints and were likely generated by staggered single-strand breaks and repair by non-homologous end joining. Four out of 14 breakpoints lay in the intergenic region between preexisting duplicated genes, suggesting an adaptive advantage of separating previously tightly linked duplicates. Four out of 14 breakpoints are associated with transposed genes, suggesting these breakpoints are fragile regions. Finally two inversions contain novel genes at their breakpoints and another three show alterations of genes at breakpoints with potential adaptive significance. D. mojavensis chromosomal inversions were generated by multiple mechanisms, an observation that does not provide support for increased mutation rate as explanation for rapid chromosomal evolution. On the other hand, we have found a number of gene alterations at the breakpoints with putative adaptive consequences that directly point to natural selection as the cause of D. mojavensis rapid chromosomal evolution.

  6. Gene alterations at Drosophila inversion breakpoints provide prima facie evidence for natural selection as an explanation for rapid chromosomal evolution

    Science.gov (United States)

    2012-01-01

    Background Chromosomal inversions have been pervasive during the evolution of the genus Drosophila, but there is significant variation between lineages in the rate of rearrangement fixation. D. mojavensis, an ecological specialist adapted to a cactophilic niche under extreme desert conditions, is a chromosomally derived species with ten fixed inversions, five of them not present in any other species. Results In order to explore the causes of the rapid chromosomal evolution in D. mojavensis, we identified and characterized all breakpoints of seven inversions fixed in chromosome 2, the most dynamic one. One of the inversions presents unequivocal evidence for its generation by ectopic recombination between transposon copies and another two harbor inverted duplications of non-repetitive DNA at the two breakpoints and were likely generated by staggered single-strand breaks and repair by non-homologous end joining. Four out of 14 breakpoints lay in the intergenic region between preexisting duplicated genes, suggesting an adaptive advantage of separating previously tightly linked duplicates. Four out of 14 breakpoints are associated with transposed genes, suggesting these breakpoints are fragile regions. Finally two inversions contain novel genes at their breakpoints and another three show alterations of genes at breakpoints with potential adaptive significance. Conclusions D. mojavensis chromosomal inversions were generated by multiple mechanisms, an observation that does not provide support for increased mutation rate as explanation for rapid chromosomal evolution. On the other hand, we have found a number of gene alterations at the breakpoints with putative adaptive consequences that directly point to natural selection as the cause of D. mojavensis rapid chromosomal evolution. PMID:22296923

  7. Increased tolerance towards serine obtained by adaptive laboratory evolution

    DEFF Research Database (Denmark)

    Mundhada, Hemanshu; Seoane, Jose Miguel; Koza, Anna

    2014-01-01

    by glyA), the conversion of serine to pyruvate (encoded by sdaA, sdaB and tdcG) was also deleted. As expected, the resulting strain turned out to be susceptible to even low concentrations of serine in the media. In order to improve the tolerance of the strain towards serine, adaptive laboratory evolution...... was implemented using a state of the art robotics platform. The strain was grown under inhibiting concentrations of serine in minimal media and was periodically transferred to new media during mid log phase. After achieving a desired increase in growth rate, the concentration was serine was gradually increased...

  8. Competition and adaptation in an Internet evolution model.

    Science.gov (United States)

    Serrano, M Angeles; Boguñá, Marián; Díaz-Guilera, Albert

    2005-01-28

    We model the evolution of the Internet at the autonomous system level as a process of competition for users and adaptation of bandwidth capability. From a weighted network formalism, where both nodes and links are weighted, we find the exponent of the degree distribution as a simple function of the growth rates of the number of autonomous systems and connections in the Internet, both empirically measurable quantities. Our approach also accounts for a high level of clustering as well as degree-degree correlations, both with the same hierarchical structure present in the real Internet. Further, it also highlights the interplay between bandwidth, connectivity, and traffic of the network.

  9. Rapid experimental evolution of pesticide resistance in C. elegans entails no costs and affects the mating system.

    Directory of Open Access Journals (Sweden)

    Patricia C Lopes

    Full Text Available Pesticide resistance is a major concern in natural populations and a model trait to study adaptation. Despite the importance of this trait, the dynamics of its evolution and of its ecological consequences remain largely unstudied. To fill this gap, we performed experimental evolution with replicated populations of Caenorhabditis elegans exposed to the pesticide Levamisole during 20 generations. Exposure to Levamisole resulted in decreased survival, fecundity and male frequency, which declined from 30% to zero. This was not due to differential susceptibility of males. Rather, the drug affected mobility, resulting in fewer encounters, probably leading to reduced outcrossing rates. Adaptation, i.e., increased survival and fecundity, occurred within 10 and 20 generations, respectively. Male frequency also increased by generation 20. Adaptation costs were undetected in the ancestral environment and in presence of Ivermectin, another widely-used pesticide with an opposite physiological effect. Our results demonstrate that pesticide resistance can evolve at an extremely rapid pace. Furthermore, we unravel the effects of behaviour on life-history traits and test the environmental dependence of adaptation costs. This study establishes experimental evolution as a powerful tool to tackle pesticide resistance, and paves the way to further investigations manipulating environmental and/or genetic factors underlying adaptation to pesticides.

  10. Localizing recent adaptive evolution in the human genome

    DEFF Research Database (Denmark)

    Williamson, Scott H; Hubisz, Melissa J; Clark, Andrew G

    2007-01-01

    Identifying genomic locations that have experienced selective sweeps is an important first step toward understanding the molecular basis of adaptive evolution. Using statistical methods that account for the confounding effects of population demography, recombination rate variation, and single......, clusters of olfactory receptors, genes involved in nervous system development and function, immune system genes, and heat shock genes. We also observe consistent evidence of selective sweeps in centromeric regions. In general, we find that recent adaptation is strikingly pervasive in the human genome......-nucleotide polymorphism ascertainment, while also providing fine-scale estimates of the position of the selected site, we analyzed a genomic dataset of 1.2 million human single-nucleotide polymorphisms genotyped in African-American, European-American, and Chinese samples. We identify 101 regions of the human genome...

  11. Adaptive Multiscale Modeling of Geochemical Impacts on Fracture Evolution

    Science.gov (United States)

    Molins, S.; Trebotich, D.; Steefel, C. I.; Deng, H.

    2016-12-01

    Understanding fracture evolution is essential for many subsurface energy applications, including subsurface storage, shale gas production, fracking, CO2 sequestration, and geothermal energy extraction. Geochemical processes in particular play a significant role in the evolution of fractures through dissolution-driven widening, fines migration, and/or fracture sealing due to precipitation. One obstacle to understanding and exploiting geochemical fracture evolution is that it is a multiscale process. However, current geochemical modeling of fractures cannot capture this multi-scale nature of geochemical and mechanical impacts on fracture evolution, and is limited to either a continuum or pore-scale representation. Conventional continuum-scale models treat fractures as preferential flow paths, with their permeability evolving as a function (often, a cubic law) of the fracture aperture. This approach has the limitation that it oversimplifies flow within the fracture in its omission of pore scale effects while also assuming well-mixed conditions. More recently, pore-scale models along with advanced characterization techniques have allowed for accurate simulations of flow and reactive transport within the pore space (Molins et al., 2014, 2015). However, these models, even with high performance computing, are currently limited in their ability to treat tractable domain sizes (Steefel et al., 2013). Thus, there is a critical need to develop an adaptive modeling capability that can account for separate properties and processes, emergent and otherwise, in the fracture and the rock matrix at different spatial scales. Here we present an adaptive modeling capability that treats geochemical impacts on fracture evolution within a single multiscale framework. Model development makes use of the high performance simulation capability, Chombo-Crunch, leveraged by high resolution characterization and experiments. The modeling framework is based on the adaptive capability in Chombo

  12. Genetic drift and rapid evolution of viviparity in insular fire salamanders (Salamandra salamandra).

    Science.gov (United States)

    Velo-Antón, G; Zamudio, K R; Cordero-Rivera, A

    2012-04-01

    Continental islands offer an excellent opportunity to investigate adaptive processes and to time microevolutionary changes that precede macroevolutionary events. We performed a population genetic study of the fire salamander (Salamandra salamandra), a species that displays unique intraspecific diversity of reproductive strategies, to address the microevolutionary processes leading to phenotypic and genetic differentiation of island, coastal and interior populations. We used eight microsatellite markers to estimate genetic diversity, population structure and demographic parameters in viviparous insular populations and ovoviviparous coastal and interior populations. Our results show considerable genetic differentiation (F(ST) range: 0.06-0.27), and no clear signs of gene flow among populations, except between the large and admixed interior populations. We find no support for island colonization by rafting or intentional/accidental anthropogenic introductions, indicating that rising sea levels were responsible for isolation of the island populations approximately 9000 years ago. Our study provides evidence of rapid genetic differentiation between island and coastal populations, and rapid evolution of viviparity driven by climatic selective pressures on island populations, geographic isolation with genetic drift, or a combination of these factors. Studies of these viviparous island populations in early stages of divergence help us better understand the microevolutionary processes involved in rapid phenotypic shifts.

  13. Coupling of diversification and pH adaptation during the evolution of terrestrial Thaumarchaeota.

    Science.gov (United States)

    Gubry-Rangin, Cécile; Kratsch, Christina; Williams, Tom A; McHardy, Alice C; Embley, T Martin; Prosser, James I; Macqueen, Daniel J

    2015-07-28

    The Thaumarchaeota is an abundant and ubiquitous phylum of archaea that plays a major role in the global nitrogen cycle. Previous analyses of the ammonia monooxygenase gene amoA suggest that pH is an important driver of niche specialization in these organisms. Although the ecological distribution and ecophysiology of extant Thaumarchaeota have been studied extensively, the evolutionary rise of these prokaryotes to ecological dominance in many habitats remains poorly understood. To characterize processes leading to their diversification, we investigated coevolutionary relationships between amoA, a conserved marker gene for Thaumarchaeota, and soil characteristics, by using deep sequencing and comprehensive environmental data in Bayesian comparative phylogenetics. These analyses reveal a large and rapid increase in diversification rates during early thaumarchaeotal evolution; this finding was verified by independent analyses of 16S rRNA. Our findings suggest that the entire Thaumarchaeota diversification regime was strikingly coupled to pH adaptation but less clearly correlated with several other tested environmental factors. Interestingly, the early radiation event coincided with a period of pH adaptation that enabled the terrestrial Thaumarchaeota ancestor to initially move from neutral to more acidic and alkaline conditions. In contrast to classic evolutionary models, whereby niches become rapidly filled after adaptive radiation, global diversification rates have remained stably high in Thaumarchaeota during the past 400-700 million years, suggesting an ongoing high rate of niche formation or switching for these microbes. Our study highlights the enduring importance of environmental adaptation during thaumarchaeotal evolution and, to our knowledge, is the first to link evolutionary diversification to environmental adaptation in a prokaryotic phylum.

  14. Adaptive evolution of rbcL in Conocephalum (Hepaticae, bryophytes).

    Science.gov (United States)

    Miwa, Hidetsugu; Odrzykoski, Ireneusz J; Matsui, Atsushi; Hasegawa, Masami; Akiyama, Hiroyuki; Jia, Yu; Sabirov, Renat; Takahashi, Hideki; Boufford, David E; Murakami, Noriaki

    2009-07-15

    An excess of nonsynonymous substitutions over synonymous ones has been regarded as an important indicator of adaptive evolution or positive selection at the molecular level. We now report such a case for rbcL sequences among cryptic species in Conocephalum (Hepaticae, Bryophytes). This finding can be regarded as evidence of adaptive evolution in several cryptic species (especially in F and JN types) within the genus. Bryophytes are small land plants with simple morphology. We can therefore expect the existence of several biologically distinct units or cryptic species within each morphological species. In our previous study, we found three rbcL types in Asian Conocephalum japonicum (Thunb.) Grolle and also found evidence strongly suggesting that the three types are reproductively isolated cryptic species. Additionally, we examined rbcL sequence variation in six cryptic species of C. conicum (L.) Dumort. previously recognized by allozyme analyses. As a result, we were able to discriminate the six cryptic species based only on their rbcL sequences. We were able to show that rbcL sequence variation is also useful in finding cryptic species of C. conicum.

  15. Adaptive evolution of the vertebrate skeletal muscle sodium channel

    Directory of Open Access Journals (Sweden)

    Jian Lu

    2011-01-01

    Full Text Available Tetrodotoxin (TTX is a highly potent neurotoxin that blocks the action potential by selectively binding to voltage-gated sodium channels (Na v. The skeletal muscle Na v (Na v1.4 channels in most pufferfish species and certain North American garter snakes are resistant to TTX, whereas in most mammals they are TTX-sensitive. It still remains unclear as to whether the difference in this sensitivity among the various vertebrate species can be associated with adaptive evolution. In this study, we investigated the adaptive evolution of the vertebrate Na v1.4 channels. By means of the CODEML program of the PAML 4.3 package, the lineages of both garter snakes and pufferfishes were denoted to be under positive selection. The positively selected sites identified in the p-loop regions indicated their involvement in Na v1.4 channel sensitivity to TTX. Most of these sites were located in the intracellular regions of the Na v1.4 channel, thereby implying the possible association of these regions with the regulation of voltage-sensor movement.

  16. Diversification and adaptive sequence evolution of Caenorhabditis lysozymes (Nematoda: Rhabditidae).

    Science.gov (United States)

    Schulenburg, Hinrich; Boehnisch, Claudia

    2008-04-19

    Lysozymes are important model enzymes in biomedical research with a ubiquitous taxonomic distribution ranging from phages up to plants and animals. Their main function appears to be defence against pathogens, although some of them have also been implicated in digestion. Whereas most organisms have only few lysozyme genes, nematodes of the genus Caenorhabditis possess a surprisingly large repertoire of up to 15 genes. We used phylogenetic inference and sequence analysis tools to assess the evolution of lysozymes from three congeneric nematode species, Caenorhabditis elegans, C. briggsae, and C. remanei. Their lysozymes fall into three distinct clades, one belonging to the invertebrate-type and the other two to the protist-type lysozymes. Their diversification is characterised by (i) ancestral gene duplications preceding species separation followed by maintenance of genes, (ii) ancestral duplications followed by gene loss in some of the species, and (iii) recent duplications after divergence of species. Both ancestral and recent gene duplications are associated in several cases with signatures of adaptive sequence evolution, indicating that diversifying selection contributed to lysozyme differentiation. Current data strongly suggests that genetic diversity translates into functional diversity. Gene duplications are a major source of evolutionary innovation. Our analysis provides an evolutionary framework for understanding the diversification of lysozymes through gene duplication and subsequent differentiation. This information is expected to be of major value in future analysis of lysozyme function and in studies of the dynamics of evolution by gene duplication.

  17. Diversification and adaptive sequence evolution of Caenorhabditis lysozymes (Nematoda: Rhabditidae

    Directory of Open Access Journals (Sweden)

    Boehnisch Claudia

    2008-04-01

    Full Text Available Abstract Background Lysozymes are important model enzymes in biomedical research with a ubiquitous taxonomic distribution ranging from phages up to plants and animals. Their main function appears to be defence against pathogens, although some of them have also been implicated in digestion. Whereas most organisms have only few lysozyme genes, nematodes of the genus Caenorhabditis possess a surprisingly large repertoire of up to 15 genes. Results We used phylogenetic inference and sequence analysis tools to assess the evolution of lysozymes from three congeneric nematode species, Caenorhabditis elegans, C. briggsae, and C. remanei. Their lysozymes fall into three distinct clades, one belonging to the invertebrate-type and the other two to the protist-type lysozymes. Their diversification is characterised by (i ancestral gene duplications preceding species separation followed by maintenance of genes, (ii ancestral duplications followed by gene loss in some of the species, and (iii recent duplications after divergence of species. Both ancestral and recent gene duplications are associated in several cases with signatures of adaptive sequence evolution, indicating that diversifying selection contributed to lysozyme differentiation. Current data strongly suggests that genetic diversity translates into functional diversity. Conclusion Gene duplications are a major source of evolutionary innovation. Our analysis provides an evolutionary framework for understanding the diversification of lysozymes through gene duplication and subsequent differentiation. This information is expected to be of major value in future analysis of lysozyme function and in studies of the dynamics of evolution by gene duplication.

  18. Adaptation Mechanisms in the Evolution of Moss Defenses to Microbes.

    Science.gov (United States)

    Ponce de León, Inés; Montesano, Marcos

    2017-01-01

    Bryophytes, including mosses, liverworts and hornworts are early land plants that have evolved key adaptation mechanisms to cope with abiotic stresses and microorganisms. Microbial symbioses facilitated plant colonization of land by enhancing nutrient uptake leading to improved plant growth and fitness. In addition, early land plants acquired novel defense mechanisms to protect plant tissues from pre-existing microbial pathogens. Due to its evolutionary stage linking unicellular green algae to vascular plants, the non-vascular moss Physcomitrella patens is an interesting organism to explore the adaptation mechanisms developed in the evolution of plant defenses to microbes. Cellular and biochemical approaches, gene expression profiles, and functional analysis of genes by targeted gene disruption have revealed that several defense mechanisms against microbial pathogens are conserved between mosses and flowering plants. P. patens perceives pathogen associated molecular patterns by plasma membrane receptor(s) and transduces the signal through a MAP kinase (MAPK) cascade leading to the activation of cell wall associated defenses and expression of genes that encode proteins with different roles in plant resistance. After pathogen assault, P. patens also activates the production of ROS, induces a HR-like reaction and increases levels of some hormones. Furthermore, alternative metabolic pathways are present in P. patens leading to the production of a distinct metabolic scenario than flowering plants that could contribute to defense. P. patens has acquired genes by horizontal transfer from prokaryotes and fungi, and some of them could represent adaptive benefits for resistance to biotic stress. In this review, the current knowledge related to the evolution of plant defense responses against pathogens will be discussed, focusing on the latest advances made in the model plant P. patens .

  19. Rapid adaptive responses to climate change in corals

    KAUST Repository

    Torda, Gergely

    2017-09-01

    Pivotal to projecting the fate of coral reefs is the capacity of reef-building corals to acclimatize and adapt to climate change. Transgenerational plasticity may enable some marine organisms to acclimatize over several generations and it has been hypothesized that epigenetic processes and microbial associations might facilitate adaptive responses. However, current evidence is equivocal and understanding of the underlying processes is limited. Here, we discuss prospects for observing transgenerational plasticity in corals and the mechanisms that could enable adaptive plasticity in the coral holobiont, including the potential role of epigenetics and coral-associated microbes. Well-designed and strictly controlled experiments are needed to distinguish transgenerational plasticity from other forms of plasticity, and to elucidate the underlying mechanisms and their relative importance compared with genetic adaptation.

  20. Rapid Pitch Angle Evolution of Suprathermal Electrons Behind Dipolarization Fronts

    Science.gov (United States)

    Liu, C. M.; Fu, H. S.; Cao, J. B.; Xu, Y.; Yu, Y. Q.; Kronberg, E. A.; Daly, P. W.

    2017-10-01

    The pitch angle distribution (PAD) of suprathermal electrons can have both spatial and temporal evolution in the magnetotail and theoretically can be an indication of electron energization/cooling processes there. So far, the spatial evolution of PAD has been well studied, leaving the temporal evolution as an open question. To reveal the temporal evolution of electron PAD, spacecraft should monitor the same flux tube for a relatively long period, which is not easy in the dynamic magnetotail. In this study, we present such an observation by Cluster spacecraft in the magnetotail behind a dipolarization front (DF). We find that the PAD of suprathermal electrons can evolve from pancake type to butterfly type during effect, which possibly exists behind the DF as well.

  1. Cranial shape evolution in adaptive radiations of birds: comparative morphometrics of Darwin's finches and Hawaiian honeycreepers.

    Science.gov (United States)

    Tokita, Masayoshi; Yano, Wataru; James, Helen F; Abzhanov, Arhat

    2017-02-05

    Adaptive radiation is the rapid evolution of morphologically and ecologically diverse species from a single ancestor. The two classic examples of adaptive radiation are Darwin's finches and the Hawaiian honeycreepers, which evolved remarkable levels of adaptive cranial morphological variation. To gain new insights into the nature of their diversification, we performed comparative three-dimensional geometric morphometric analyses based on X-ray microcomputed tomography (µCT) scanning of dried cranial skeletons. We show that cranial shapes in both Hawaiian honeycreepers and Coerebinae (Darwin's finches and their close relatives) are much more diverse than in their respective outgroups, but Hawaiian honeycreepers as a group display the highest diversity and disparity of all other bird groups studied. We also report a significant contribution of allometry to skull shape variation, and distinct patterns of evolutionary change in skull morphology in the two lineages of songbirds that underwent adaptive radiation on oceanic islands. These findings help to better understand the nature of adaptive radiations in general and provide a foundation for future investigations on the developmental and molecular mechanisms underlying diversification of these morphologically distinguished groups of birds.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'. © 2016 The Authors.

  2. The adaptive evolution of plasticity: phytochrome-mediated shade avoidance responses.

    Science.gov (United States)

    Schmitt, Johanna; Stinchcombe, John R; Heschel, M Shane; Huber, Heidrun

    2003-07-01

    Many plants display a characteristic suite of developmental "shade avoidance" responses, such as stem elongation and accelerated reproduction, to the low ratio of red to far-red wavelengths (R:FR) reflected or transmitted from green vegetation. This R:FR cue of crowding and vegetation shade is perceived by the phytochrome family of photoreceptors. Phytochrome-mediated responses provide an ideal system for investigating the adaptive evolution of phenotypic plasticity in natural environments. The molecular and developmental mechanisms underlying shade avoidance responses are well studied, and testable ecological hypotheses exist for their adaptive significance. Experimental manipulation of phenotypes demonstrates that shade avoidance responses may be adaptive, resulting in phenotypes with high relative fitness in the environments that induce those phenotypes. The adaptive value of shade avoidance depends upon the competitive environment, resource availability, and the reliability of the R:FR cue for predicting the selective environment experienced by an induced phenotype. Comparative studies and a reciprocal transplant experiment with Impatiens capensis provide evidence of adaptive divergence in shade avoidance responses between woodland and clearing habitats, which may result from population differences in the frequency of selection on shade avoidance traits, as well as differences in the reliability of the R:FR cue. Recent rapid progress in elucidating phytochrome signaling pathways in the genetic model Arabidopsis thaliana and other species now provides the opportunity for studying how selection on shade avoidance traits in natural environments acts upon the molecular mechanisms underlying natural phenotypic variation.

  3. Rates of phenotypic evolution of ecological characters and sexual traits during the Tanganyikan cichlid adaptive radiation.

    Science.gov (United States)

    Gonzalez-Voyer, A; Kolm, N

    2011-11-01

    Theory suggests that sexual traits evolve faster than ecological characters. However, characteristics of a species niche may also influence evolution of sexual traits. Hence, a pending question is whether ecological characters and sexual traits present similar tempo and mode of evolution during periods of rapid ecological divergence, such as adaptive radiation. Here, we use recently developed phylogenetic comparative methods to analyse the temporal dynamics of evolution for ecological and sexual traits in Tanganyikan cichlids. Our results indicate that whereas disparity in ecological characters was concentrated early in the radiation, disparity in sexual traits remained high throughout the radiation. Thus, closely related Tanganyikan cichlids presented higher disparity in sexual traits than ecological characters. Sexual traits were also under stronger selection than ecological characters. In sum, our results suggest that ecological characters and sexual traits present distinct evolutionary patterns, and that sexual traits can evolve faster than ecological characters, even during adaptive radiation. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  4. Rapid evolution of the intersexual genetic correlation for fitness in Drosophila melanogaster

    Science.gov (United States)

    Collet, Julie M.; Fuentes, Sara; Hesketh, Jack; Hill, Mark S.; Innocenti, Paolo; Morrow, Edward H.; Fowler, Kevin; Reuter, Max

    2016-01-01

    Sexual antagonism (SA) arises when male and female phenotypes are under opposing selection, yet genetically correlated. Until resolved, antagonism limits evolution toward optimal sex‐specific phenotypes. Despite its importance for sex‐specific adaptation and existing theory, the dynamics of SA resolution are not well understood empirically. Here, we present data from Drosophila melanogaster, compatible with a resolution of SA. We compared two independent replicates of the “LHM” population in which SA had previously been described. Both had been maintained under identical, controlled conditions, and separated for around 200 generations. Although heritabilities of male and female fitness were similar, the intersexual genetic correlation differed significantly, being negative in one replicate (indicating SA) but close to zero in the other. Using population sequencing, we show that phenotypic differences were associated with population divergence in allele frequencies at nonrandom loci across the genome. Large frequency changes were more prevalent in the population without SA and were enriched at loci mapping to genes previously shown to have sexually antagonistic relationships between expression and fitness. Our data suggest that rapid evolution toward SA resolution has occurred in one of the populations and open avenues toward studying the genetics of SA and its resolution. PMID:27077679

  5. The repeatability of adaptive radiation during long-term experimental evolution of Escherichia coli in a multiple nutrient environment.

    Directory of Open Access Journals (Sweden)

    Gerda Saxer

    Full Text Available Adaptive radiations occur when a species diversifies into different ecological specialists due to competition for resources and trade-offs associated with the specialization. The evolutionary outcome of an instance of adaptive radiation cannot generally be predicted because chance (stochastic events and necessity (deterministic events contribute to the evolution of diversity. With increasing contributions of chance, the degree of parallelism among different instances of adaptive radiations and the predictability of an outcome will decrease. To assess the relative contributions of chance and necessity during adaptive radiation, we performed a selection experiment by evolving twelve independent microcosms of Escherichia coli for 1000 generations in an environment that contained two distinct resources. Specialization to either of these resources involves strong trade-offs in the ability to use the other resource. After selection, we measured three phenotypic traits: 1 fitness, 2 mean colony size, and 3 colony size diversity. We used fitness relative to the ancestor as a measure of adaptation to the selective environment; changes in colony size as a measure of the evolution of new resource specialists because colony size has been shown to correlate with resource specialization; and colony size diversity as a measure of the evolved ecological diversity. Resource competition led to the rapid evolution of phenotypic diversity within microcosms. Measurements of fitness, colony size, and colony size diversity within and among microcosms showed that the repeatability of adaptive radiation was high, despite the evolution of genetic variation within microcosms. Consistent with the observation of parallel evolution, we show that the relative contributions of chance are far smaller and less important than effects due to adaptation for the traits investigated. The two-resource environment imposed similar selection pressures in independent populations and

  6. Comparative Genomic Analysis of the Streptococcus dysgalactiae Species Group: Gene Content, Molecular Adaptation, and Promoter Evolution

    Science.gov (United States)

    Suzuki, Haruo; Lefébure, Tristan; Hubisz, Melissa Jane; Pavinski Bitar, Paulina; Lang, Ping; Siepel, Adam; Stanhope, Michael J.

    2011-01-01

    Comparative genomics of closely related bacterial species with different pathogenesis and host preference can provide a means of identifying the specifics of adaptive differences. Streptococcus dysgalactiae (SD) is comprised of two subspecies: S. dysgalactiae subsp. equisimilis is both a human commensal organism and a human pathogen, and S. dysgalactiae subsp. dysgalactiae is strictly an animal pathogen. Here, we present complete genome sequences for both taxa, with analyses involving other species of Streptococcus but focusing on adaptation in the SD species group. We found little evidence for enrichment in biochemical categories of genes carried by each SD strain, however, differences in the virulence gene repertoire were apparent. Some of the differences could be ascribed to prophage and integrative conjugative elements. We identified approximately 9% of the nonrecombinant core genome to be under positive selection, some of which involved known virulence factors in other bacteria. Analyses of proteomes by pooling data across genes, by biochemical category, clade, or branch, provided evidence for increased rates of evolution in several gene categories, as well as external branches of the tree. Promoters were primarily evolving under purifying selection but with certain categories of genes evolving faster. Many of these fast-evolving categories were the same as those associated with rapid evolution in proteins. Overall, these results suggest that adaptation to changing environments and new hosts in the SD species group has involved the acquisition of key virulence genes along with selection of orthologous protein-coding loci and operon promoters. PMID:21282711

  7. Niche evolution and adaptive radiation: testing the order of trait divergence.

    Science.gov (United States)

    Ackerly, D D; Schwilk, D W; Webb, C O

    2006-07-01

    In the course of an adaptive radiation, the evolution of niche parameters is of particular interest for understanding modes of speciation and the consequences for coexistence of related species within communities. We pose a general question: In the course of an evolutionary radiation, do traits related to within-community niche differences (alpha niche) evolve before or after differentiation of macrohabitat affinity or climatic tolerances (beta niche)? Here we introduce a new test to address this question, based on a modification of the method of independent contrasts. The divergence order test (DOT) is based on the average age of the nodes on a tree, weighted by the absolute magnitude of the contrast at each node for a particular trait. The comparison of these weighted averages reveals whether large divergences for one trait have occurred earlier or later in the course of diversification, relative to a second trait; significance is determined by bootstrapping from maximum-likelihood ancestral state reconstructions. The method is applied to the evolution of Ceanothus, a woody plant group in California, in which co-occurring species exhibit significant differences in a key leaf trait (specific leaf area) associated with contrasting physiological and life history strategies. Co-occurring species differ more for this trait than expected under a null model of community assembly. This alpha niche difference evolved early in the divergence of two major subclades within Ceanothus, whereas climatic distributions (beta niche traits) diversified later within each of the subclades. However, rapid evolution of climate parameters makes inferences of early divergence events highly uncertain, and differentiation of the beta niche might have taken place throughout the evolution of the group, without leaving a clear phylogenetic signal. Similar patterns observed in several plant and animal groups suggest that early divergence of alpha niche traits might be a common feature of niche

  8. Adaptive microclimatic evolution of the dehydrin 6 gene in wild barley at "Evolution Canyon", Israel.

    Science.gov (United States)

    Yang, Zujun; Zhang, Tao; Li, Guangrong; Nevo, Eviatar

    2011-12-01

    Dehydrins are one of the major stress-induced gene families, and the expression of dehydrin 6 (Dhn6) is strictly related to drought in barley. In order to investigate how the evolution of the Dhn6 gene is associated with adaptation to environmental changes, we examined 48 genotypes of wild barley, Hordeum spontaneum, from "Evolution Canyon" at Mount Carmel, Israel. The Dhn6 sequences of the 48 genotypes were identified, and a recent insertion of 342 bp at 5'UTR was found in the sequences of 11 genotypes. Both nucleotide and haplotype diversity of single nucleotide polymorphism in Dhn6 coding regions were higher on the AS ("African" slope or dry slope) than on the ES ("European" slope or humid slope), and the applied Tajima D and Fu-Li test rejected neutrality of SNP diversity. Expression analysis indicated that the 342 bp insertion at 5'UTR was associated with the earlier up-regulation of Dhn6 after dehydration. The genetic divergence of amino acids sequences indicated significant positive selection of Dhn6 among the wild barley populations. The diversity of Dhn6 in microclimatic divergence slopes suggested that Dhn6 has been subjected to natural selection and adaptively associated with drought resistance of wild barley at "Evolution Canyon".

  9. Comparative genomics reveals insights into avian genome evolution and adaptation

    Science.gov (United States)

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M.; Lee, Chul; Storz, Jay F.; Antunes, Agostinho; Greenwold, Matthew J.; Meredith, Robert W.; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R.; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T.; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V.; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S.; Gatesy, John; Hoffmann, Federico G.; Opazo, Juan C.; Håstad, Olle; Sawyer, Roger H.; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W.; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F.; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A.; Green, Richard E.; O’Brien, Stephen J.; Griffin, Darren; Johnson, Warren E.; Haussler, David; Ryder, Oliver A.; Willerslev, Eske; Graves, Gary R.; Alström, Per; Fjeldså, Jon; Mindell, David P.; Edwards, Scott V.; Braun, Edward L.; Rahbek, Carsten; Burt, David W.; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D.; Gilbert, M. Thomas P.; Wang, Jun

    2015-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. PMID:25504712

  10. Evidence for determinism in species diversification and contingency in phenotypic evolution during adaptive radiation

    Science.gov (United States)

    Burbrink, Frank T.; Chen, Xin; Myers, Edward A.; Brandley, Matthew C.; Pyron, R. Alexander

    2012-01-01

    Adaptive radiation (AR) theory predicts that groups sharing the same source of ecological opportunity (EO) will experience deterministic species diversification and morphological evolution. Thus, deterministic ecological and morphological evolution should be correlated with deterministic patterns in the tempo and mode of speciation for groups in similar habitats and time periods. We test this hypothesis using well-sampled phylogenies of four squamate groups that colonized the New World (NW) in the Late Oligocene. We use both standard and coalescent models to assess species diversification, as well as likelihood models to examine morphological evolution. All squamate groups show similar early pulses of speciation, as well as diversity-dependent ecological limits on clade size at a continental scale. In contrast, processes of morphological evolution are not easily predictable and do not show similar pulses of early and rapid change. Patterns of morphological and species diversification thus appear uncoupled across these groups. This indicates that the processes that drive diversification and disparification are not mechanistically linked, even among similar groups of taxa experiencing the same sources of EO. It also suggests that processes of phenotypic diversification cannot be predicted solely from the existence of an AR or knowledge of the process of diversification. PMID:23034709

  11. The Coevolution of Phycobilisomes: Molecular Structure Adapting to Functional Evolution

    Directory of Open Access Journals (Sweden)

    Fei Shi

    2011-01-01

    Full Text Available Phycobilisome is the major light-harvesting complex in cyanobacteria and red alga. It consists of phycobiliproteins and their associated linker peptides which play key role in absorption and unidirectional transfer of light energy and the stability of the whole complex system, respectively. Former researches on the evolution among PBPs and linker peptides had mainly focused on the phylogenetic analysis and selective evolution. Coevolution is the change that the conformation of one residue is interrupted by mutation and a compensatory change selected for in its interacting partner. Here, coevolutionary analysis of allophycocyanin, phycocyanin, and phycoerythrin and covariation analysis of linker peptides were performed. Coevolution analyses reveal that these sites are significantly correlated, showing strong evidence of the functional and structural importance of interactions among these residues. According to interprotein coevolution analysis, less interaction was found between PBPs and linker peptides. Our results also revealed the correlations between the coevolution and adaptive selection in PBS were not directly related, but probably demonstrated by the sites coupled under physical-chemical interactions.

  12. A global analysis of adaptive evolution of operons in cyanobacteria.

    Science.gov (United States)

    Memon, Danish; Singh, Abhay K; Pakrasi, Himadri B; Wangikar, Pramod P

    2013-02-01

    Operons are an important feature of prokaryotic genomes. Evolution of operons is hypothesized to be adaptive and has contributed significantly towards coordinated optimization of functions. Two conflicting theories, based on (i) in situ formation to achieve co-regulation and (ii) horizontal gene transfer of functionally linked gene clusters, are generally considered to explain why and how operons have evolved. Furthermore, effects of operon evolution on genomic traits such as intergenic spacing, operon size and co-regulation are relatively less explored. Based on the conservation level in a set of diverse prokaryotes, we categorize the operonic gene pair associations and in turn the operons as ancient and recently formed. This allowed us to perform a detailed analysis of operonic structure in cyanobacteria, a morphologically and physiologically diverse group of photoautotrophs. Clustering based on operon conservation showed significant similarity with the 16S rRNA-based phylogeny, which groups the cyanobacterial strains into three clades. Clade C, dominated by strains that are believed to have undergone genome reduction, shows a larger fraction of operonic genes that are tightly packed in larger sized operons. Ancient operons are in general larger, more tightly packed, better optimized for co-regulation and part of key cellular processes. A sub-clade within Clade B, which includes Synechocystis sp. PCC 6803, shows a reverse trend in intergenic spacing. Our results suggest that while in situ formation and vertical descent may be a dominant mechanism of operon evolution in cyanobacteria, optimization of intergenic spacing and co-regulation are part of an ongoing process in the life-cycle of operons.

  13. Adaptive Evolution of CENP-A in Percid Fishes

    Directory of Open Access Journals (Sweden)

    Harriet N. A. Abbey

    2015-07-01

    Full Text Available Centromeric protein A (CENP-A is the epigenetic determinant of centromeres. This protein has been shown to be adaptively evolving in a number of animal and plant species. In a previous communication we were able to demonstrate that signs of adaptive evolution were detected in the comparison of CENP-A sequences from three percid fish species. In this study we isolated the CENP-A gene from eight additional species from the Percidae family. With these sequences and those previously obtained, we carried out a more robust statistical analysis of codon specific positive selection in CENP-A coding sequences of eleven percid species. We were able to demonstrate that at least two amino acid positions within the N-terminal tail are under strong positive selection and that one of these positions is potentially a substrate for phosphorylation. While nonsynonymous substitutions were detected in the histone fold domain, these were not statistically supported as resulting from positive selection.

  14. The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish

    Science.gov (United States)

    Atlantic killifish populations have rapidly adapted to normally lethal levels of pollution in four urban estuaries. Through analysis of 384 whole killifish genome sequences and comparative transcriptomics in four pairs of sensitive and tolerant populations, we identify the aryl h...

  15. Adaptive evolution of synthetic cooperating communities improves growth performance.

    Directory of Open Access Journals (Sweden)

    Xiaolin Zhang

    Full Text Available Symbiotic interactions between organisms are important for human health and biotechnological applications. Microbial mutualism is a widespread phenomenon and is important in maintaining natural microbial communities. Although cooperative interactions are prevalent in nature, little is known about the processes that allow their initial establishment, govern population dynamics and affect evolutionary processes. To investigate cooperative interactions between bacteria, we constructed, characterized, and adaptively evolved a synthetic community comprised of leucine and lysine Escherichia coli auxotrophs. The co-culture can grow in glucose minimal medium only if the two auxotrophs exchange essential metabolites - lysine and leucine (or its precursors. Our experiments showed that a viable co-culture using these two auxotrophs could be established and adaptively evolved to increase growth rates (by ∼3 fold and optical densities. While independently evolved co-cultures achieved similar improvements in growth, they took different evolutionary trajectories leading to different community compositions. Experiments with individual isolates from these evolved co-cultures showed that changes in both the leucine and lysine auxotrophs improved growth of the co-culture. Interestingly, while evolved isolates increased growth of co-cultures, they exhibited decreased growth in mono-culture (in the presence of leucine or lysine. A genome-scale metabolic model of the co-culture was also constructed and used to investigate the effects of amino acid (leucine or lysine release and uptake rates on growth and composition of the co-culture. When the metabolic model was constrained by the estimated leucine and lysine release rates, the model predictions agreed well with experimental growth rates and composition measurements. While this study and others have focused on cooperative interactions amongst community members, the adaptive evolution of communities with other

  16. Adaptive evolution of the matrix extracellular phosphoglycoprotein in mammals

    Directory of Open Access Journals (Sweden)

    Machado João

    2011-11-01

    Full Text Available Abstract Background Matrix extracellular phosphoglycoprotein (MEPE belongs to a family of small integrin-binding ligand N-linked glycoproteins (SIBLINGs that play a key role in skeleton development, particularly in mineralization, phosphate regulation and osteogenesis. MEPE associated disorders cause various physiological effects, such as loss of bone mass, tumors and disruption of renal function (hypophosphatemia. The study of this developmental gene from an evolutionary perspective could provide valuable insights on the adaptive diversification of morphological phenotypes in vertebrates. Results Here we studied the adaptive evolution of the MEPE gene in 26 Eutherian mammals and three birds. The comparative genomic analyses revealed a high degree of evolutionary conservation of some coding and non-coding regions of the MEPE gene across mammals indicating a possible regulatory or functional role likely related with mineralization and/or phosphate regulation. However, the majority of the coding region had a fast evolutionary rate, particularly within the largest exon (1467 bp. Rodentia and Scandentia had distinct substitution rates with an increased accumulation of both synonymous and non-synonymous mutations compared with other mammalian lineages. Characteristics of the gene (e.g. biochemical, evolutionary rate, and intronic conservation differed greatly among lineages of the eight mammalian orders. We identified 20 sites with significant positive selection signatures (codon and protein level outside the main regulatory motifs (dentonin and ASARM suggestive of an adaptive role. Conversely, we find three sites under selection in the signal peptide and one in the ASARM motif that were supported by at least one selection model. The MEPE protein tends to accumulate amino acids promoting disorder and potential phosphorylation targets. Conclusion MEPE shows a high number of selection signatures, revealing the crucial role of positive selection in the

  17. Probing the Boundaries of Orthology: The Unanticipated Rapid Evolution of Drosophila centrosomin

    Science.gov (United States)

    Eisman, Robert C.; Kaufman, Thomas C.

    2013-01-01

    The rapid evolution of essential developmental genes and their protein products is both intriguing and problematic. The rapid evolution of gene products with simple protein folds and a lack of well-characterized functional domains typically result in a low discovery rate of orthologous genes. Additionally, in the absence of orthologs it is difficult to study the processes and mechanisms underlying rapid evolution. In this study, we have investigated the rapid evolution of centrosomin (cnn), an essential gene encoding centrosomal protein isoforms required during syncytial development in Drosophila melanogaster. Until recently the rapid divergence of cnn made identification of orthologs difficult and questionable because Cnn violates many of the assumptions underlying models for protein evolution. To overcome these limitations, we have identified a group of insect orthologs and present conserved features likely to be required for the functions attributed to cnn in D. melanogaster. We also show that the rapid divergence of Cnn isoforms is apparently due to frequent coding sequence indels and an accelerated rate of intronic additions and eliminations. These changes appear to be buffered by multi-exon and multi-reading frame maximum potential ORFs, simple protein folds, and the splicing machinery. These buffering features also occur in other genes in Drosophila and may help prevent potentially deleterious mutations due to indels in genes with large coding exons and exon-dense regions separated by small introns. This work promises to be useful for future investigations of cnn and potentially other rapidly evolving genes and proteins. PMID:23749319

  18. Time evolution of the wave equation using rapid expansion method

    KAUST Repository

    Pestana, Reynam C.

    2010-07-01

    Forward modeling of seismic data and reverse time migration are based on the time evolution of wavefields. For the case of spatially varying velocity, we have worked on two approaches to evaluate the time evolution of seismic wavefields. An exact solution for the constant-velocity acoustic wave equation can be used to simulate the pressure response at any time. For a spatially varying velocity, a one-step method can be developed where no intermediate time responses are required. Using this approach, we have solved for the pressure response at intermediate times and have developed a recursive solution. The solution has a very high degree of accuracy and can be reduced to various finite-difference time-derivative methods, depending on the approximations used. Although the two approaches are closely related, each has advantages, depending on the problem being solved. © 2010 Society of Exploration Geophysicists.

  19. The evolution of predictive adaptive responses in human life history.

    Science.gov (United States)

    Nettle, Daniel; Frankenhuis, Willem E; Rickard, Ian J

    2013-09-07

    Many studies in humans have shown that adverse experience in early life is associated with accelerated reproductive timing, and there is comparative evidence for similar effects in other animals. There are two different classes of adaptive explanation for associations between early-life adversity and accelerated reproduction, both based on the idea of predictive adaptive responses (PARs). According to external PAR hypotheses, early-life adversity provides a 'weather forecast' of the environmental conditions into which the individual will mature, and it is adaptive for the individual to develop an appropriate phenotype for this anticipated environment. In internal PAR hypotheses, early-life adversity has a lasting negative impact on the individual's somatic state, such that her health is likely to fail more rapidly as she gets older, and there is an advantage to adjusting her reproductive schedule accordingly. We use a model of fluctuating environments to derive evolveability conditions for acceleration of reproductive timing in response to early-life adversity in a long-lived organism. For acceleration to evolve via the external PAR process, early-life cues must have a high degree of validity and the level of annual autocorrelation in the individual's environment must be almost perfect. For acceleration to evolve via the internal PAR process requires that early-life experience must determine a significant fraction of the variance in survival prospects in adulthood. The two processes are not mutually exclusive, and mechanisms for calibrating reproductive timing on the basis of early experience could evolve through a combination of the predictive value of early-life adversity for the later environment and its negative impact on somatic state.

  20. Helicobacter pylori evolution: lineage- specific adaptations in homologs of eukaryotic Sel1-like genes.

    Directory of Open Access Journals (Sweden)

    Masako Ogura

    2007-08-01

    Full Text Available Geographic partitioning is postulated to foster divergence of Helicobacter pylori populations as an adaptive response to local differences in predominant host physiology. H. pylori's ability to establish persistent infection despite host inflammatory responses likely involves active management of host defenses using bacterial proteins that may themselves be targets for adaptive evolution. Sequenced H. pylori genomes encode a family of eight or nine secreted proteins containing repeat motifs that are characteristic of the eukaryotic Sel1 regulatory protein, whereas the related Campylobacter and Wolinella genomes each contain only one or two such "Sel1-like repeat" (SLR genes ("slr genes". Signatures of positive selection (ratio of nonsynonymous to synonymous mutations, dN/dS = omega > 1 were evident in the evolutionary history of H. pylori slr gene family expansion. Sequence analysis of six of these slr genes (hp0160, hp0211, hp0235, hp0519, hp0628, and hp1117 from representative East Asian, European, and African H. pylori strains revealed that all but hp0628 had undergone positive selection, with different amino acids often selected in different regions. Most striking was a divergence of Japanese and Korean alleles of hp0519, with Japanese alleles having undergone particularly strong positive selection (omegaJ > 25, whereas alleles of other genes from these populations were intermingled. Homology-based structural modeling localized most residues under positive selection to SLR protein surfaces. Rapid evolution of certain slr genes in specific H. pylori lineages suggests a model of adaptive change driven by selection for fine-tuning of host responses, and facilitated by geographic isolation. Characterization of such local adaptations should help elucidate how H. pylori manages persistent infection, and potentially lead to interventions tailored to diverse human populations.

  1. Instability windows and evolution of rapidly rotating neutron stars.

    Science.gov (United States)

    Gusakov, Mikhail E; Chugunov, Andrey I; Kantor, Elena M

    2014-04-18

    We consider an instability of rapidly rotating neutron stars in low-mass x-ray binaries (LMXBs) with respect to excitation of r modes (which are analogous to Earth's Rossby waves controlled by the Coriolis force). We argue that finite temperature effects in the superfluid core of a neutron star lead to a resonance coupling and enhanced damping (and hence stability) of oscillation modes at certain stellar temperatures. Using a simple phenomenological model we demonstrate that neutron stars with high spin frequency may spend a substantial amount of time at these "resonance" temperatures. This finding allows us to explain puzzling observations of hot rapidly rotating neutron stars in LMXBs and to predict a new class of hot, nonaccreting, rapidly rotating neutron stars, some of which may have already been observed and tentatively identified as quiescent LMXB candidates. We also impose a new theoretical limit on the neutron star spin frequency, which can explain the cutoff spin frequency ∼730  Hz, following from the statistical analysis of accreting millisecond x-ray pulsars. In addition to explaining the observations, our model provides a new tool to constrain superdense matter properties by comparing measured and theoretically predicted resonance temperatures.

  2. Explaining the evolution of European Union foreign climate policy: A case of bounded adaptiveness

    Directory of Open Access Journals (Sweden)

    Simon Schunz

    2012-02-01

    Full Text Available Ever since the inception of the United Nations climate regime in the early 1990s, the European Union has aspired to play a leading part in the global combat against climate change. Based on an analysis of how the Union has developed its foreign climate policy to fulfil this role over the past two decades, the paper sets out to identify the driving factors behind this evolution. It demonstrates that the EU’s development in this area was co-determined by adaptations to shifting international dynamics strongly bounded by purely domestic concerns. Providing a concise understanding and explanation of how the Union designs its foreign policy with regard to one emblematic issue of its international activity, the contribution provides insights into the remarkably rapid, but not always effective maturation of this unique actor’s involvement in global politics.

  3. Adaptive evolution of the FADS gene cluster within Africa.

    Directory of Open Access Journals (Sweden)

    Rasika A Mathias

    Full Text Available Long chain polyunsaturated fatty acids (LC-PUFAs are essential for brain structure, development, and function, and adequate dietary quantities of LC-PUFAs are thought to have been necessary for both brain expansion and the increase in brain complexity observed during modern human evolution. Previous studies conducted in largely European populations suggest that humans have limited capacity to synthesize brain LC-PUFAs such as docosahexaenoic acid (DHA from plant-based medium chain (MC PUFAs due to limited desaturase activity. Population-based differences in LC-PUFA levels and their product-to-substrate ratios can, in part, be explained by polymorphisms in the fatty acid desaturase (FADS gene cluster, which have been associated with increased conversion of MC-PUFAs to LC-PUFAs. Here, we show evidence that these high efficiency converter alleles in the FADS gene cluster were likely driven to near fixation in African populations by positive selection ∼85 kya. We hypothesize that selection at FADS variants, which increase LC-PUFA synthesis from plant-based MC-PUFAs, played an important role in allowing African populations obligatorily tethered to marine sources for LC-PUFAs in isolated geographic regions, to rapidly expand throughout the African continent 60-80 kya.

  4. Adaptive evolution of the FADS gene cluster within Africa.

    Science.gov (United States)

    Mathias, Rasika A; Fu, Wenqing; Akey, Joshua M; Ainsworth, Hannah C; Torgerson, Dara G; Ruczinski, Ingo; Sergeant, Susan; Barnes, Kathleen C; Chilton, Floyd H

    2012-01-01

    Long chain polyunsaturated fatty acids (LC-PUFAs) are essential for brain structure, development, and function, and adequate dietary quantities of LC-PUFAs are thought to have been necessary for both brain expansion and the increase in brain complexity observed during modern human evolution. Previous studies conducted in largely European populations suggest that humans have limited capacity to synthesize brain LC-PUFAs such as docosahexaenoic acid (DHA) from plant-based medium chain (MC) PUFAs due to limited desaturase activity. Population-based differences in LC-PUFA levels and their product-to-substrate ratios can, in part, be explained by polymorphisms in the fatty acid desaturase (FADS) gene cluster, which have been associated with increased conversion of MC-PUFAs to LC-PUFAs. Here, we show evidence that these high efficiency converter alleles in the FADS gene cluster were likely driven to near fixation in African populations by positive selection ∼85 kya. We hypothesize that selection at FADS variants, which increase LC-PUFA synthesis from plant-based MC-PUFAs, played an important role in allowing African populations obligatorily tethered to marine sources for LC-PUFAs in isolated geographic regions, to rapidly expand throughout the African continent 60-80 kya.

  5. Rapid cytometric antibiotic susceptibility testing utilizing adaptive multidimensional statistical metrics.

    Science.gov (United States)

    Huang, Tzu-Hsueh; Ning, Xinghai; Wang, Xiaojian; Murthy, Niren; Tzeng, Yih-Ling; Dickson, Robert M

    2015-02-03

    Flow cytometry holds promise to accelerate antibiotic susceptibility determinations; however, without robust multidimensional statistical analysis, general discrimination criteria have remained elusive. In this study, a new statistical method, probability binning signature quadratic form (PB-sQF), was developed and applied to analyze flow cytometric data of bacterial responses to antibiotic exposure. Both sensitive lab strains (Escherichia coli and Pseudomonas aeruginosa) and a multidrug resistant, clinically isolated strain (E. coli) were incubated with the bacteria-targeted dye, maltohexaose-conjugated IR786, and each of many bactericidal or bacteriostatic antibiotics to identify changes induced around corresponding minimum inhibition concentrations (MIC). The antibiotic-induced damages were monitored by flow cytometry after 1-h incubation through forward scatter, side scatter, and fluorescence channels. The 3-dimensional differences between the flow cytometric data of the no-antibiotic treated bacteria and the antibiotic-treated bacteria were characterized by PB-sQF into a 1-dimensional linear distance. A 99% confidence level was established by statistical bootstrapping for each antibiotic-bacteria pair. For the susceptible E. coli strain, statistically significant increments from this 99% confidence level were observed from 1/16x MIC to 1x MIC for all the antibiotics. The same increments were recorded for P. aeruginosa, which has been reported to cause difficulty in flow-based viability tests. For the multidrug resistant E. coli, significant distances from control samples were observed only when an effective antibiotic treatment was utilized. Our results suggest that a rapid and robust antimicrobial susceptibility test (AST) can be constructed by statistically characterizing the differences between sample and control flow cytometric populations, even in a label-free scheme with scattered light alone. These distances vs paired controls coupled with rigorous

  6. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species.

    Science.gov (United States)

    Stapley, Jessica; Santure, Anna W; Dennis, Stuart R

    2015-05-01

    Rapid adaptation of invasive species to novel habitats has puzzled evolutionary biologists for decades, especially as this often occurs in the face of limited genetic variability. Although some ecological traits common to invasive species have been identified, little is known about the possible genomic/genetic mechanisms that may underlie their success. A common scenario in many introductions is that small founder population sizes will often lead to reduced genetic diversity, but that invading populations experience large environmental perturbations, such as changes in habitat and environmental stress. Although sudden and intense stress is usually considered in a negative context, these perturbations may actually facilitate rapid adaptation by affecting genome structure, organization and function via interactions with transposable elements (TEs), especially in populations with low genetic diversity. Stress-induced changes in TE activity can alter gene action and can promote structural variation that may facilitate the rapid adaptation observed in new environments. We focus here on the adaptive potential of TEs in relation to invasive species and highlight their role as powerful mutational forces that can rapidly create genetic diversity. We hypothesize that activity of transposable elements can explain rapid adaptation despite low genetic variation (the genetic paradox of invasive species), and provide a framework under which this hypothesis can be tested using recently developed and emerging genomic technologies. © 2015 John Wiley & Sons Ltd.

  7. Rapid evolution of mimicry following local model extinction.

    Science.gov (United States)

    Akcali, Christopher K; Pfennig, David W

    2014-06-01

    Batesian mimicry evolves when individuals of a palatable species gain the selective advantage of reduced predation because they resemble a toxic species that predators avoid. Here, we evaluated whether-and in which direction-Batesian mimicry has evolved in a natural population of mimics following extirpation of their model. We specifically asked whether the precision of coral snake mimicry has evolved among kingsnakes from a region where coral snakes recently (1960) went locally extinct. We found that these kingsnakes have evolved more precise mimicry; by contrast, no such change occurred in a sympatric non-mimetic species or in conspecifics from a region where coral snakes remain abundant. Presumably, more precise mimicry has continued to evolve after model extirpation, because relatively few predator generations have passed, and the fitness costs incurred by predators that mistook a deadly coral snake for a kingsnake were historically much greater than those incurred by predators that mistook a kingsnake for a coral snake. Indeed, these results are consistent with prior theoretical and empirical studies, which revealed that only the most precise mimics are favoured as their model becomes increasingly rare. Thus, highly noxious models can generate an 'evolutionary momentum' that drives the further evolution of more precise mimicry-even after models go extinct. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Rapid Evolution of Silver Nanoparticle Resistance in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Joseph L. Graves

    2015-02-01

    Full Text Available The recent exponential increase in the use of engineered nanoparticles (eNPs means both greater intentional and unintentional exposure of eNPs to microbes. Intentional use includes the use of eNPs as biocides. Unintentional exposure results from the fact that eNPs are included in a variety of commercial products (paints, sunscreens, cosmetics. Many of these eNPs are composed of heavy metals or metal oxides such as silver, gold, zinc, titanium dioxide, and zinc oxide. It is thought that since metallic/metallic oxide NPs impact so many aspects of bacterial physiology that it will difficult for bacteria to evolve resistance to them. This study utilized laboratory experimental evolution to evolve silver nanoparticle (AgNP resistance in the bacterium Escherichia coli (K12 MG1655, a bacterium that did not harbor any silver resistance elements. After 225 generations of exposure to the AgNP environment, the treatment populations demonstrated greater fitness versus control strains as measured by optical density (OD and colony forming units (CFU in the presence of varying concentrations of 10nm citrate-coated silver nanoparticles (AgNP or silver nitrate (AgNO3. Genomic analysis shows that changes associated with AgNP resistance were already accumulating within the treatment populations by generation 100, and by generation 200 three mutations had swept to high frequency in the AgNP resistance stocks. This study indicates that despite previous claims to the contrary bacteria can easily evolve resistance to AgNPs, and this occurs by relatively simple genomic changes. These results indicate that care should be taken with regards to the use of eNPs as biocides as well as with regards to unintentional exposure of microbial communities to eNPs in waste products.

  9. Rapid evolution of silver nanoparticle resistance in Escherichia coli.

    Science.gov (United States)

    Graves, Joseph L; Tajkarimi, Mehrdad; Cunningham, Quincy; Campbell, Adero; Nonga, Herve; Harrison, Scott H; Barrick, Jeffrey E

    2015-01-01

    The recent exponential increase in the use of engineered nanoparticles (eNPs) means both greater intentional and unintentional exposure of eNPs to microbes. Intentional use includes the use of eNPs as biocides. Unintentional exposure results from the fact that eNPs are included in a variety of commercial products (paints, sunscreens, cosmetics). Many of these eNPs are composed of heavy metals or metal oxides such as silver, gold, zinc, titanium dioxide, and zinc oxide. It is thought that since metallic/metallic oxide NPs impact so many aspects of bacterial physiology that it will difficult for bacteria to evolve resistance to them. This study utilized laboratory experimental evolution to evolve silver nanoparticle (AgNP) resistance in the bacterium Escherichia coli (K-12 MG1655), a bacterium that does not harbor any known silver resistance elements. After 225 generations of exposure to the AgNP environment, the treatment populations demonstrated greater fitness vs. control strains as measured by optical density (OD) and colony forming units (CFU) in the presence of varying concentrations of 10 nm citrate-coated silver nanoparticles (AgNP) or silver nitrate (AgNO3). Genomic analysis shows that changes associated with AgNP resistance were already accumulating within the treatment populations by generation 100, and by generation 200 three mutations had swept to high frequency in the AgNP resistance stocks. This study indicates that despite previous claims to the contrary bacteria can easily evolve resistance to AgNPs, and this occurs by relatively simple genomic changes. These results indicate that care should be taken with regards to the use of eNPs as biocides as well as with regards to unintentional exposure of microbial communities to eNPs in waste products.

  10. Nutrient-dependent/pheromone-controlled adaptive evolution: a model

    Directory of Open Access Journals (Sweden)

    James Vaughn Kohl

    2013-06-01

    Full Text Available Background: The prenatal migration of gonadotropin-releasing hormone (GnRH neurosecretory neurons allows nutrients and human pheromones to alter GnRH pulsatility, which modulates the concurrent maturation of the neuroendocrine, reproductive, and central nervous systems, thus influencing the development of ingestive behavior, reproductive sexual behavior, and other behaviors. Methods: This model details how chemical ecology drives adaptive evolution via: (1 ecological niche construction, (2 social niche construction, (3 neurogenic niche construction, and (4 socio-cognitive niche construction. This model exemplifies the epigenetic effects of olfactory/pheromonal conditioning, which alters genetically predisposed, nutrient-dependent, hormone-driven mammalian behavior and choices for pheromones that control reproduction via their effects on luteinizing hormone (LH and systems biology. Results: Nutrients are metabolized to pheromones that condition behavior in the same way that food odors condition behavior associated with food preferences. The epigenetic effects of olfactory/pheromonal input calibrate and standardize molecular mechanisms for genetically predisposed receptor-mediated changes in intracellular signaling and stochastic gene expression in GnRH neurosecretory neurons of brain tissue. For example, glucose and pheromones alter the hypothalamic secretion of GnRH and LH. A form of GnRH associated with sexual orientation in yeasts links control of the feedback loops and developmental processes required for nutrient acquisition, movement, reproduction, and the diversification of species from microbes to man. Conclusion: An environmental drive evolved from that of nutrient ingestion in unicellular organisms to that of pheromone-controlled socialization in insects. In mammals, food odors and pheromones cause changes in hormones such as LH, which has developmental affects on pheromone-controlled sexual behavior in nutrient-dependent reproductively

  11. Implications of prion adaptation and evolution paradigm for human neurodegenerative diseases.

    Science.gov (United States)

    Kabir, M Enamul; Safar, Jiri G

    2014-01-01

    There is a growing body of evidence indicating that number of human neurodegenerative diseases, including Alzheimer disease, Parkinson disease, fronto-temporal dementias, and amyotrophic lateral sclerosis, propagate in the brain via prion-like intercellular induction of protein misfolding. Prions cause lethal neurodegenerative diseases in humans, the most prevalent being sporadic Creutzfeldt-Jakob disease (sCJD); they self-replicate and spread by converting the cellular form of prion protein (PrP(C)) to a misfolded pathogenic conformer (PrP(Sc)). The extensive phenotypic heterogeneity of human prion diseases is determined by polymorphisms in the prion protein gene, and by prion strain-specific conformation of PrP(Sc). Remarkably, even though informative nucleic acid is absent, prions may undergo rapid adaptation and evolution in cloned cells and upon crossing the species barrier. In the course of our investigation of this process, we isolated distinct populations of PrP(Sc) particles that frequently co-exist in sCJD. The human prion particles replicate independently and undergo competitive selection of those with lower initial conformational stability. Exposed to mutant substrate, the winning PrP(Sc) conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to the lowest stability. Thus, the evolution and adaptation of human prions is enabled by a dynamic collection of distinct populations of particles, whose evolution is governed by the selection of progressively less stable, faster replicating PrP(Sc) conformers. This fundamental biological mechanism may explain the drug resistance that some prions gained after exposure to compounds targeting PrP(Sc). Whether the phenotypic heterogeneity of other neurodegenerative diseases caused by protein misfolding is determined by the spectrum of misfolded conformers (strains) remains to be established. However, the prospect that these conformers may evolve and

  12. Molecular investigation of genetic assimilation during the rapid adaptive radiations of East African cichlid fishes.

    Science.gov (United States)

    Gunter, Helen M; Schneider, Ralf F; Karner, Immanuel; Sturmbauer, Christian; Meyer, Axel

    2017-12-01

    Adaptive radiations are characterized by adaptive diversification intertwined with rapid speciation within a lineage resulting in many ecologically specialized, phenotypically diverse species. It has been proposed that adaptive radiations can originate from ancestral lineages with pronounced phenotypic plasticity in adaptive traits, facilitating ecologically driven phenotypic diversification that is ultimately fixed through genetic assimilation of gene regulatory regions. This study aimed to investigate how phenotypic plasticity is reflected in gene expression patterns in the trophic apparatus of several lineages of East African cichlid fishes, and whether the observed patterns support genetic assimilation. This investigation used a split brood experimental design to compare adaptive plasticity in species from within and outside of adaptive radiations. The plastic response was induced in the crushing pharyngeal jaws through feeding individuals either a hard or soft diet. We find that nonradiating, basal lineages show higher levels of adaptive morphological plasticity than the derived, radiated lineages, suggesting that these differences have become partially genetically fixed during the formation of the adaptive radiations. Two candidate genes that may have undergone genetic assimilation, gif and alas1, were identified, in addition to alterations in the wiring of LPJ patterning networks. Taken together, our results suggest that genetic assimilation may have dampened the inducibility of plasticity related genes during the adaptive radiations of East African cichlids, flattening the reaction norms and canalizing their feeding phenotypes, driving adaptation to progressively more narrow ecological niches. © 2017 John Wiley & Sons Ltd.

  13. On parton number fluctuations at various stages of the rapidity evolution

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, A.H. [Department of Physics, Columbia University, New York (United States); Munier, S., E-mail: Stephane.Munier@polytechnique.edu [Centre de physique théorique, École Polytechnique, CNRS, Palaiseau (France)

    2014-10-07

    Starting with the interpretation of parton evolution with rapidity as a branching–diffusion process, we describe the different kinds of fluctuations of the density of partons which affect the properties of QCD scattering amplitudes at moderately high energies. We then derive some of these properties as direct consequences of the stochastic picture. We get new results on the expression of the saturation scale of a large nucleus, and a modified geometric scaling valid at intermediate rapidities for dipole–dipole scattering.

  14. Adaptive multiparameter control: application to a Rapid Thermal Processing process; Commande Adaptative Multivariable: Application a un Procede de Traitement Thermique Rapide

    Energy Technology Data Exchange (ETDEWEB)

    Morales Mago, S.J.

    1995-12-20

    In this work the problem of temperature uniformity control in rapid thermal processing is addressed by means of multivariable adaptive control. Rapid Thermal Processing (RTP) is a set of techniques proposed for semiconductor fabrication processes such as annealing, oxidation, chemical vapour deposition and others. The product quality depends on two mains issues: precise trajectory following and spatial temperature uniformity. RTP is a fabrication technique that requires a sophisticated real-time multivariable control system to achieve acceptable results. Modelling of the thermal behaviour of the process leads to very complex mathematical models. These are the reasons why adaptive control techniques are chosen. A multivariable linear discrete time model of the highly non-linear process is identified on-line, using an identification scheme which includes supervisory actions. This identified model, combined with a multivariable predictive control law allows to prevent the controller from systems variations. The control laws are obtained by minimization of a quadratic cost function or by pole placement. In some of these control laws, a partial state reference model was included. This reference model allows to incorporate an appropriate tracking capability into the control law. Experimental results of the application of the involved multivariable adaptive control laws on a RTP system are presented. (author) refs

  15. Host imprints on bacterial genomes--rapid, divergent evolution in individual patients.

    Directory of Open Access Journals (Sweden)

    Jaroslaw Zdziarski

    Full Text Available Bacteria lose or gain genetic material and through selection, new variants become fixed in the population. Here we provide the first, genome-wide example of a single bacterial strain's evolution in different deliberately colonized patients and the surprising insight that hosts appear to personalize their microflora. By first obtaining the complete genome sequence of the prototype asymptomatic bacteriuria strain E. coli 83972 and then resequencing its descendants after therapeutic bladder colonization of different patients, we identified 34 mutations, which affected metabolic and virulence-related genes. Further transcriptome and proteome analysis proved that these genome changes altered bacterial gene expression resulting in unique adaptation patterns in each patient. Our results provide evidence that, in addition to stochastic events, adaptive bacterial evolution is driven by individual host environments. Ongoing loss of gene function supports the hypothesis that evolution towards commensalism rather than virulence is favored during asymptomatic bladder colonization.

  16. Transient MutS-Based Hypermutation System for Adaptive Evolution of Lactobacillus casei to Low pH.

    Science.gov (United States)

    Overbeck, Tom J; Welker, Dennis L; Hughes, Joanne E; Steele, James L; Broadbent, Jeff R

    2017-10-15

    This study explored transient inactivation of the gene encoding the DNA mismatch repair enzyme MutS as a tool for adaptive evolution of Lactobacillus casei MutS deletion derivatives of L. casei 12A and ATCC 334 were constructed and subjected to a 100-day adaptive evolution process to increase lactic acid resistance at low pH. Wild-type parental strains were also subjected to this treatment. At the end of the process, the ΔmutS lesion was repaired in representative L. casei 12A and ATCC 334 ΔmutS mutant isolates. Growth studies in broth at pH 4.0 (titrated with lactic acid) showed that all four adapted strains grew more rapidly, to higher cell densities, and produced significantly more lactic acid than untreated wild-type cells. However, the adapted ΔmutS derivative mutants showed the greatest increases in growth and lactic acid production. Further characterization of the L. casei 12A-adapted ΔmutS derivative revealed that it had a significantly smaller cell volume, a rougher cell surface, and significantly better survival at pH 2.5 than parental L. casei 12A. Genome sequence analysis confirmed that transient mutS inactivation decreased DNA replication fidelity in both L. casei strains, and it identified genetic changes that might contribute to the lactic acid-resistant phenotypes of adapted cells. Targeted inactivation of three genes that had acquired nonsense mutations in the adapted L. casei 12A ΔmutS mutant derivative showed that NADH dehydrogenase (ndh), phosphate transport ATP-binding protein PstB (pstB), and two-component signal transduction system (TCS) quorum-sensing histidine protein kinase (hpk) genes act in combination to increase lactic acid resistance in L. casei 12A.IMPORTANCE Adaptive evolution has been applied to microorganisms to increase industrially desirable phenotypes, including acid resistance. We developed a method to increase the adaptability of Lactobacillus casei 12A and ATCC 334 through transient inactivation of the DNA mismatch

  17. Evolution and Adaptation in Pseudomonas aeruginosa Biofilms Driven by Mismatch Repair System-Deficient Mutators

    DEFF Research Database (Denmark)

    Luján, Adela M.; Maciá, María D.; Yang, Liang

    2011-01-01

    diversification, evidenced by biofilm architecture features and by a wider range and proportion of morphotypic colony variants, respectively. Additionally, morphotypic variants generated in mutator biofilms showed increased competitiveness, providing further evidence for mutator-driven adaptive evolution...

  18. Comparative Genomic Analysis of Rapid Evolution of an Extreme-Drug-Resistant Acinetobacter baumannii Clone

    DEFF Research Database (Denmark)

    Tan, Sean Yang-Yi; Chua, Song Lin; Liu, Yang

    2013-01-01

    , comparative genomics has been employed to analyze the rapid evolution of an EDR Acinetobacter baumannii clone from the intensive care unit (ICU) of Rigshospitalet at Copenhagen. Two resistant A. baumannii strains, 48055 and 53264, were sequentially isolated from two individuals who had been admitted to ICU...

  19. Rapid adaptation to night work at an oil platform, but slow readaptation after returning home.

    Science.gov (United States)

    Bjorvatn, B; Kecklund, G; Akerstedt, T

    1998-07-01

    Previous research indicates that night workers' circadian rhythms do not adapt to night work and that disturbed sleep and wakefulness persist, even after weeks of working on night shift. We studied adjustment to 14 days of consecutive night work at an oil platform and the readjustment to day life at home, using the Karolinska sleep/wake diary. The platform workers adapted to night work within a few days, as indicated by the rapid reduction of night-work sleepiness, and by the gradual delay of bedtime to an hour commensurate with the behavior of day workers. Readaptation to day life was slower and more difficult, adding evidence of a complete adaptation to night work. We conclude that the lack of conflicting exposure to daylight in the morning may have facilitated the rapid adjustment to night work.

  20. The ongoing adaptive evolution of ASPM and Microcephalin is not explained by increased intelligence.

    NARCIS (Netherlands)

    Mekel-Bobrov, N.; Posthuma, D.; Gilbert, S.L.; Lind, P.; Gosso, M.F.; Luciano, M.; Harris, S.E.; Bates, T.C.; Polderman, T.J.C.; Whalley, L.J.; Fox, H.; Starr, J.M.; Evans, P.D.; Montgomery, GW; Fernandes, C.; Heutink, P.; Martin, N.G.; Boomsma, D.I.; Deary, I.J.; Wright, M.J.; de Geus, E.J.C.; Lahn, B.T.

    2007-01-01

    Recent studies have made great strides towards identifying putative genetic events underlying the evolution of the human brain and its emergent cognitive capacities. One of the most intriguing findings is the recurrent identification of adaptive evolution in genes associated with primary

  1. Solving QCD evolution equations in rapidity space with Markovian Monte Carlo

    CERN Document Server

    Golec-Biernat, K; Placzek, W; Skrzypek, M

    2009-01-01

    This work covers methodology of solving QCD evolution equation of the parton distribution using Markovian Monte Carlo (MMC) algorithms in a class of models ranging from DGLAP to CCFM. One of the purposes of the above MMCs is to test the other more sophisticated Monte Carlo programs, the so-called Constrained Monte Carlo (CMC) programs, which will be used as a building block in the parton shower MC. This is why the mapping of the evolution variables (eikonal variable and evolution time) into four-momenta is also defined and tested. The evolution time is identified with the rapidity variable of the emitted parton. The presented MMCs are tested independently, with ~0.1% precision, against the non-MC program APCheb especially devised for this purpose.

  2. Thermotolerant yeasts selected by adaptive evolution express heat stress response at 30ºC

    DEFF Research Database (Denmark)

    Caspeta, Luis; Chen, Yun; Nielsen, Jens

    2016-01-01

    Exposure to long-term environmental changes across >100s of generations results in adapted phenotypes, but little is known about how metabolic and transcriptional responses are optimized in these processes. Here, we show that thermotolerant yeast strains selected by adaptive laboratory evolution ...

  3. Rapid and Recent Evolution of LTR Retrotransposons Drives Rice Genome Evolution During the Speciation of AA-Genome Oryza Species.

    Science.gov (United States)

    Zhang, Qun-Jie; Gao, Li-Zhi

    2017-06-07

    The dynamics of long terminal repeat (LTR) retrotransposons and their contribution to genome evolution during plant speciation have remained largely unanswered. Here, we perform a genome-wide comparison of all eight Oryza AA-genome species, and identify 3911 intact LTR retrotransposons classified into 790 families. The top 44 most abundant LTR retrotransposon families show patterns of rapid and distinct diversification since the species split over the last ∼4.8 MY (million years). Phylogenetic and read depth analyses of 11 representative retrotransposon families further provide a comprehensive evolutionary landscape of these changes. Compared with Ty1-copia, independent bursts of Ty3-gypsy retrotransposon expansions have occurred with the three largest showing signatures of lineage-specific evolution. The estimated insertion times of 2213 complete retrotransposons from the top 23 most abundant families reveal divergent life histories marked by speedy accumulation, decline, and extinction that differed radically between species. We hypothesize that this rapid evolution of LTR retrotransposons not only divergently shaped the architecture of rice genomes but also contributed to the process of speciation and diversification of rice. Copyright © 2017 Zhang and Gao.

  4. Fisheries-induced neutral and adaptive evolution in exploited fish populations and consequences for their adaptive potential

    DEFF Research Database (Denmark)

    Marty, Lise; Dieckmann, Ulf; Ernande, Bruno

    2015-01-01

    . An individual-based eco-genetic model is devised that includes neutral and functional loci in a realistic ecological setting. In line with theoretical expectations, we find that fishing induces evolution towards slow growth, early maturation at small size and higher reproductive investment. We show, first......Fishing may induce neutral and adaptive evolution affecting life-history traits, and molecular evidence has shown that neutral genetic diversity has declined in some exploited populations. Here, we theoretically study the interplay between neutral and adaptive evolution caused by fishing......, that the choice of genetic model (based on either quantitative genetics or gametic inheritance) influences the evolutionary recovery of traits after fishing ceases. Second, we analyse the influence of three factors possibly involved in the lack of evolutionary recovery: the strength of selection, the effect...

  5. Adaptive evolution of simian immunodeficiency viruses isolated from two conventional progressor macaques with neuroaids

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Brian T [Los Alamos National Laboratory; Korber, Bette T [Los Alamos National Laboratory

    2008-01-01

    Simian immunodeficiency virus infection of macaques may result in neuroAIDS, a feature more commonly observed in macaques with rapid progressive disease than in those with conventional disease. This is the first report of two conventional progressors (H631 and H636) with encephalitis in rhesus macaques inoculated with a derivative of SIVsmES43-3. Phylogenetic analyses of viruses isolated from the cerebral spinal fluid (CSF) and plasma from both animals demonstrated tissue compartmentalization. Additionally, virus from the central nervous system (CNS) was able to infect primary macaque monocyte-derived macrophages more efficiently than virus from plasma. Conversely, virus isolated from plasma was able to replicate better in peripheral blood mononuclear cells than virus from CNS. We speculate that these viruses were under different selective pressures in their separate compartments. Furthermore, these viruses appear to have undergone adaptive evolution to preferentially replicate in their respective cell targets. Analysis of the number of potential N-linked glycosylation sites (PNGS) in gp160 showed that there was a statistically significant loss of PNGS in viruses isolated from CNS in both macaques compared to SIVsmE543-3. Moreover, virus isolated from the brain in H631, had statistically significant loss of PNGS compared to virus isolated from CSF and plasma of the same animal. It is possible that the brain isolate may have adapted to decrease the number of PNGS given that humoral immune selection pressure is less likely to be encountered in the brain. These viruses provide a relevant model to study the adaptations required for SIV to induce encephalitis.

  6. Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis

    DEFF Research Database (Denmark)

    Marvig, Rasmus Lykke; Madsen Sommer, Lea Mette; Molin, Søren

    2015-01-01

    fibrosis. Our analysis of 36 P. aeruginosa lineages identified convergent molecular evolution in 52 genes. This list of genes suggests a role in host adaptation for remodeling of regulatory networks and central metabolism, acquisition of antibiotic resistance and loss of extracellular virulence factors....... Furthermore, we find an ordered succession of mutations in key regulatory networks. Accordingly, mutations in downstream transcriptional regulators were contingent upon mutations in upstream regulators, suggesting that remodeling of regulatory networks might be important in adaptation. The characterization...... of genes involved in host adaptation may help in predicting bacterial evolution in patients with cystic fibrosis and in the design of future intervention strategies....

  7. Immune genes undergo more adaptive evolution than non-immune system genes in Daphnia pulex

    Directory of Open Access Journals (Sweden)

    McTaggart Seanna J

    2012-05-01

    Full Text Available Abstract Background Understanding which parts of the genome have been most influenced by adaptive evolution remains an unsolved puzzle. Some evidence suggests that selection has the greatest impact on regions of the genome that interact with other evolving genomes, including loci that are involved in host-parasite co-evolutionary processes. In this study, we used a population genetic approach to test this hypothesis by comparing DNA sequences of 30 putative immune system genes in the crustacean Daphnia pulex with 24 non-immune system genes. Results In support of the hypothesis, results from a multilocus extension of the McDonald-Kreitman (MK test indicate that immune system genes as a class have experienced more adaptive evolution than non-immune system genes. However, not all immune system genes show evidence of adaptive evolution. Additionally, we apply single locus MK tests and calculate population genetic parameters at all loci in order to characterize the mode of selection (directional versus balancing in the genes that show the greatest deviation from neutral evolution. Conclusions Our data are consistent with the hypothesis that immune system genes undergo more adaptive evolution than non-immune system genes, possibly as a result of host-parasite arms races. The results of these analyses highlight several candidate loci undergoing adaptive evolution that could be targeted in future studies.

  8. Laboratory Evolution to Alternating Substrate Environments Yields Distinct Phenotypic and Genetic Adaptive Strategies

    DEFF Research Database (Denmark)

    Sandberg, Troy E.; Lloyd, Colton J.; Palsson, Bernhard O.

    2017-01-01

    Adaptive laboratory evolution (ALE) experiments are often designed to maintain a static culturing environment to minimize confounding variables that could influence the adaptive process, but dynamic nutrient conditions occur frequently in natural and bioprocessing settings. To study the nature...... applications.IMPORTANCE Evolution and natural selection inexorably lead to an organism's improved fitness in a given environment, whether in a laboratory or natural setting. However, despite the frequent natural occurrence of complex and dynamic growth environments, laboratory evolution experiments typically...... maintain simple, static culturing environments so as to reduce selection pressure complexity. In this study, we investigated the adaptive strategies underlying evolution to fluctuating environments by evolving Escherichia coli to conditions of frequently switching growth substrate. Characterization...

  9. Adaptive Laboratory Evolution of Antibiotic Resistance Using Different Selection Regimes Lead to Similar Phenotypes and Genotypes

    DEFF Research Database (Denmark)

    Jahn, Leonie Johanna; Munck, Christian; Ellabaan, Mostafa M Hashim

    2017-01-01

    Antibiotic resistance is a global threat to human health, wherefore it is crucial to study the mechanisms of antibiotic resistance as well as its emergence and dissemination. One way to analyze the acquisition of de novo mutations conferring antibiotic resistance is adaptive laboratory evolution....... However, various evolution methods exist that utilize different population sizes, selection strengths, and bottlenecks. While evolution in increasing drug gradients guarantees high-level antibiotic resistance promising to identify the most potent resistance conferring mutations, other selection regimes...... are simpler to implement and therefore allow higher throughput. The specific regimen of adaptive evolution may have a profound impact on the adapted cell state. Indeed, substantial effects of the selection regime on the resulting geno- and phenotypes have been reported in the literature. In this study we...

  10. Experimental observations of rapid Maize streak virus evolution reveal a strand-specific nucleotide substitution bias

    Directory of Open Access Journals (Sweden)

    Varsani Arvind

    2008-09-01

    Full Text Available Abstract Background Recent reports have indicated that single-stranded DNA (ssDNA viruses in the taxonomic families Geminiviridae, Parvoviridae and Anellovirus may be evolving at rates of ~10-4 substitutions per site per year (subs/site/year. These evolution rates are similar to those of RNA viruses and are surprisingly high given that ssDNA virus replication involves host DNA polymerases with fidelities approximately 10 000 times greater than those of error-prone viral RNA polymerases. Although high ssDNA virus evolution rates were first suggested in evolution experiments involving the geminivirus maize streak virus (MSV, the evolution rate of this virus has never been accurately measured. Also, questions regarding both the mechanistic basis and adaptive value of high geminivirus mutation rates remain unanswered. Results We determined the short-term evolution rate of MSV using full genome analysis of virus populations initiated from cloned genomes. Three wild type viruses and three defective artificial chimaeric viruses were maintained in planta for up to five years and displayed evolution rates of between 7.4 × 10-4 and 7.9 × 10-4 subs/site/year. Conclusion These MSV evolution rates are within the ranges observed for other ssDNA viruses and RNA viruses. Although no obvious evidence of positive selection was detected, the uneven distribution of mutations within the defective virus genomes suggests that some of the changes may have been adaptive. We also observed inter-strand nucleotide substitution imbalances that are consistent with a recent proposal that high mutation rates in geminiviruses (and possibly ssDNA viruses in general may be due to mutagenic processes acting specifically on ssDNA molecules.

  11. Trichinella spiralis: the evolution of adaptation and parasitism

    Science.gov (United States)

    Parasitism among nematodes has occurred in multiple, independent events. Deciphering processes that drive species diversity and adaptation are keys to understanding parasitism and advancing control strategies. Studies have been put forth on morphological and physiological aspects of parasitism and a...

  12. Dynamic large-scale chromosomal rearrangements fuel rapid adaptation in yeast populations.

    Directory of Open Access Journals (Sweden)

    Shang-Lin Chang

    Full Text Available Large-scale genome rearrangements have been observed in cells adapting to various selective conditions during laboratory evolution experiments. However, it remains unclear whether these types of mutations can be stably maintained in populations and how they impact the evolutionary trajectories. Here we show that chromosomal rearrangements contribute to extremely high copper tolerance in a set of natural yeast strains isolated from Evolution Canyon (EC, Israel. The chromosomal rearrangements in EC strains result in segmental duplications in chromosomes 7 and 8, which increase the copy number of genes involved in copper regulation, including the crucial transcriptional activator CUP2 and the metallothionein CUP1. The copy number of CUP2 is correlated with the level of copper tolerance, indicating that increasing dosages of a single transcriptional activator by chromosomal rearrangements has a profound effect on a regulatory pathway. By gene expression analysis and functional assays, we identified three previously unknown downstream targets of CUP2: PHO84, SCM4, and CIN2, all of which contributed to copper tolerance in EC strains. Finally, we conducted an evolution experiment to examine how cells maintained these changes in a fluctuating environment. Interestingly, the rearranged chromosomes were reverted back to the wild-type configuration at a high frequency and the recovered chromosome became fixed in less selective conditions. Our results suggest that transposon-mediated chromosomal rearrangements can be highly dynamic and can serve as a reversible mechanism during early stages of adaptive evolution.

  13. A history into genetic and epigenetic evolution of food tolerance: how humanity rapidly evolved by drinking milk and eating wheat.

    Science.gov (United States)

    Blanchard, Carine

    2017-12-01

    Human exposure to wheat and milk is almost global worldwide. Yet the introduction of milk and wheat is very recent (5000-10 000 years) when compared to the human evolution. The last 4 decades have seen a rise in food allergy and food intolerance to milk and wheat. Often described as plurifactorial, the cause of allergic diseases is the result from an interplay between genetic predisposition and epigenetic in the context of environmental changes. Genetic and epigenetic understanding and their contribution to allergy or other antigen-driven diseases have considerably advanced in the last few years. Yet, environmental factors are also quite difficult to identify and associate with disease risk. Can we rethink our old findings and learn from human history and recent genetic studies? More than one million years separate Homo habilis to today's mankind, more than 1 million years to develop abilities to obtain food by foraging in diverse environments. One million year to adjust and fine-tune our genetic code and adapt; and only 1% of this time, 10 000 years, to face the three biggest revolutions of the human kind: the agricultural revolution, the industrial revolution and the postindustrial revolution. With big and rapid environmental changes come adaptation but with no time for fine-tuning. Today tolerance and adverse reactions to food may be a testimony of adaptation successes and mistakes.

  14. On parton number fluctuations at various stages of the rapidity evolution

    Directory of Open Access Journals (Sweden)

    A.H. Mueller

    2014-10-01

    Full Text Available Starting with the interpretation of parton evolution with rapidity as a branching–diffusion process, we describe the different kinds of fluctuations of the density of partons which affect the properties of QCD scattering amplitudes at moderately high energies. We then derive some of these properties as direct consequences of the stochastic picture. We get new results on the expression of the saturation scale of a large nucleus, and a modified geometric scaling valid at intermediate rapidities for dipole–dipole scattering.

  15. Evidence for adaptive evolution of low-temperature stress response genes in a Pooideae grass ancestor.

    Science.gov (United States)

    Vigeland, Magnus D; Spannagl, Manuel; Asp, Torben; Paina, Cristiana; Rudi, Heidi; Rognli, Odd-Arne; Fjellheim, Siri; Sandve, Simen R

    2013-09-01

    Adaptation to temperate environments is common in the grass subfamily Pooideae, suggesting an ancestral origin of cold climate adaptation. Here, we investigated substitution rates of genes involved in low-temperature-induced (LTI) stress responses to test the hypothesis that adaptive molecular evolution of LTI pathway genes was important for Pooideae evolution. Substitution rates and signatures of positive selection were analyzed using 4330 gene trees including three warm climate-adapted species (maize (Zea mays), sorghum (Sorghum bicolor), and rice (Oryza sativa)) and five temperate Pooideae species (Brachypodium distachyon, wheat (Triticum aestivum), barley (Hordeum vulgare), Lolium perenne and Festuca pratensis). Nonsynonymous substitution rate differences between Pooideae and warm habitat-adapted species were elevated in LTI trees compared with all trees. Furthermore, signatures of positive selection were significantly stronger in LTI trees after the rice and Pooideae split but before the Brachypodium divergence (P temperate crops. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  16. Rapid Evolution of the Gaseous Exoplanetary Debris around the White Dwarf Star HE 1349–2305

    Science.gov (United States)

    Dennihy, E.; Clemens, J. C.; Dunlap, B. H.; Fanale, S. M.; Fuchs, J. T.; Hermes, J. J.

    2018-02-01

    Observations of heavy metal pollution in white dwarf stars indicate that metal-rich planetesimals are frequently scattered into star-grazing orbits, tidally disrupted, and accreted onto the white dwarf surface, offering direct insight into the dynamical evolution of post-main-sequence exoplanetary systems. Emission lines from the gaseous debris in the accretion disks of some of these systems show variations on timescales of decades, and have been interpreted as the general relativistic precession of a recently formed, elliptical disk. Here we present a comprehensive spectroscopic monitoring campaign of the calcium infrared triplet emission in one system, HE 1349–2305, which shows morphological emission profile variations suggestive of a precessing, asymmetric intensity pattern. The emission profiles are shown to vary on a timescale of one to two years, which is an order of magnitude shorter than what has been observed in other similar systems. We demonstrate that this timescale is likely incompatible with general relativistic precession, and consider alternative explanations for the rapid evolution, including the propagation of density waves within the gaseous debris. We conclude with recommendations for follow-up observations, and discuss how the rapid evolution of the gaseous debris in HE 1349–2305 could be leveraged to test theories of exoplanetary debris disk evolution around white dwarf stars.

  17. The evolution of predictive adaptive responses in human life history

    NARCIS (Netherlands)

    Nettle, D.; Frankenhuis, W.E.; Rickard, I.J.

    2012-01-01

    Many studies in humans have shown that adverse experience in early life is associated with accelerated reproductive timing, and there is comparative evidence for similar effects in other animals. There are two different classes of adaptive explanation for associations between early-life adversity

  18. Adaptive evolution by spontaneous domain fusion and protein relocalization

    NARCIS (Netherlands)

    Farr, Andrew D.; Remigi, Philippe; Rainey, Paul B.

    2017-01-01

    Knowledge of adaptive processes encompasses understanding the emergence of new genes. Computational analyses of genomes suggest that new genes can arise by domain swapping; however, empirical evidence has been lacking. Here we describe a set of nine independent deletion mutations that arose during

  19. Multidimensional adaptive evolution of a feed-forward network and the illusion of compensation

    Science.gov (United States)

    Bullaughey, Kevin

    2016-01-01

    When multiple substitutions affect a trait in opposing ways, they are often assumed to be compensatory, not only with respect to the trait, but also with respect to fitness. This type of compensatory evolution has been suggested to underlie the evolution of protein structures and interactions, RNA secondary structures, and gene regulatory modules and networks. The possibility for compensatory evolution results from epistasis. Yet if epistasis is widespread, then it is also possible that the opposing substitutions are individually adaptive. I term this possibility an adaptive reversal. Although possible for arbitrary phenotype-fitness mappings, it has not yet been investigated whether such epistasis is prevalent in a biologically-realistic setting. I investigate a particular regulatory circuit, the type I coherent feed-forward loop, which is ubiquitous in natural systems and is accurately described by a simple mathematical model. I show that such reversals are common during adaptive evolution, can result solely from the topology of the fitness landscape, and can occur even when adaptation follows a modest environmental change and the network was well adapted to the original environment. The possibility of adaptive reversals warrants a systems perspective when interpreting substitution patterns in gene regulatory networks. PMID:23289561

  20. The population genomics of rapid adaptation: disentangling signatures of selection and demography in white sands lizards.

    Science.gov (United States)

    Laurent, Stefan; Pfeifer, Susanne P; Settles, Matthew L; Hunter, Samuel S; Hardwick, Kayla M; Ormond, Louise; Sousa, Vitor C; Jensen, Jeffrey D; Rosenblum, Erica Bree

    2016-01-01

    Understanding the process of adaptation during rapid environmental change remains one of the central focal points of evolutionary biology. The recently formed White Sands system of southern New Mexico offers an outstanding example of rapid adaptation, with a variety of species having rapidly evolved blanched forms on the dunes that contrast with their close relatives in the surrounding dark soil habitat. In this study, we focus on two of the White Sands lizard species, Sceloporus cowlesi and Aspidoscelis inornata, for which previous research has linked mutations in the melanocortin-1 receptor gene (Mc1r) to blanched coloration. We sampled populations both on and off the dunes and used a custom sequence capture assay based on probed fosmid libraries to obtain >50 kb of sequence around Mc1r and hundreds of other random genomic locations. We then used model-based statistical inference methods to describe the demographic and adaptive history characterizing the colonization of White Sands. We identified a number of similarities between the two focal species, including strong evidence of selection in the blanched populations in the Mc1r region. We also found important differences between the species, suggesting different colonization times, different genetic architecture underlying the blanched phenotype and different ages of the beneficial alleles. Finally, the beneficial allele is dominant in S. cowlesi and recessive in A. inornata, allowing for a rare empirical test of theoretically expected patterns of selective sweeps under these differing models. © 2015 John Wiley & Sons Ltd.

  1. Perceptual learning of time-compressed speech: more than rapid adaptation.

    Science.gov (United States)

    Banai, Karen; Lavner, Yizhar

    2012-01-01

    Time-compressed speech, a form of rapidly presented speech, is harder to comprehend than natural speech, especially for non-native speakers. Although it is possible to adapt to time-compressed speech after a brief exposure, it is not known whether additional perceptual learning occurs with further practice. Here, we ask whether multiday training on time-compressed speech yields more learning than that observed during the initial adaptation phase and whether the pattern of generalization following successful learning is different than that observed with initial adaptation only. Two groups of non-native Hebrew speakers were tested on five different conditions of time-compressed speech identification in two assessments conducted 10-14 days apart. Between those assessments, one group of listeners received five practice sessions on one of the time-compressed conditions. Between the two assessments, trained listeners improved significantly more than untrained listeners on the trained condition. Furthermore, the trained group generalized its learning to two untrained conditions in which different talkers presented the trained speech materials. In addition, when the performance of the non-native speakers was compared to that of a group of naïve native Hebrew speakers, performance of the trained group was equivalent to that of the native speakers on all conditions on which learning occurred, whereas performance of the untrained non-native listeners was substantially poorer. Multiday training on time-compressed speech results in significantly more perceptual learning than brief adaptation. Compared to previous studies of adaptation, the training induced learning is more stimulus specific. Taken together, the perceptual learning of time-compressed speech appears to progress from an initial, rapid adaptation phase to a subsequent prolonged and more stimulus specific phase. These findings are consistent with the predictions of the Reverse Hierarchy Theory of perceptual

  2. Elastic, not plastic species: frozen plasticity theory and the origin of adaptive evolution in sexually reproducing organisms.

    Science.gov (United States)

    Flegr, Jaroslav

    2010-01-13

    Darwin's evolutionary theory could easily explain the evolution of adaptive traits (organs and behavioral patterns) in asexual but not in sexual organisms. Two models, the selfish gene theory and frozen plasticity theory were suggested to explain evolution of adaptive traits in sexual organisms in past 30 years. The frozen plasticity theory suggests that sexual species can evolve new adaptations only when their members are genetically uniform, i.e. only after a portion of the population of the original species had split off, balanced on the edge of extinction for several generations, and then undergone rapid expansion. After a short period of time, estimated on the basis of paleontological data to correspond to 1-2% of the duration of the species, polymorphism accumulates in the gene pool due to frequency-dependent selection; and thus, in each generation, new mutations occur in the presence of different alleles and therefore change their selection coefficients from generation to generation. The species ceases to behave in an evolutionarily plastic manner and becomes evolutionarily elastic on a microevolutionary time-scale and evolutionarily frozen on a macroevolutionary time-scale. It then exists in this state until such changes accumulate in the environment that the species becomes extinct. Frozen plasticity theory, which includes the Darwinian model of evolution as a special case--the evolution of species in a plastic state, not only offers plenty of new predictions to be tested, but also provides explanations for a much broader spectrum of known biological phenomena than classic evolutionary theories. This article was reviewed by Rob Knight, Fyodor Kondrashov and Massimo Di Giulio (nominated by David H. Ardell).

  3. Elastic, not plastic species: Frozen plasticity theory and the origin of adaptive evolution in sexually reproducing organisms

    Directory of Open Access Journals (Sweden)

    Flegr Jaroslav

    2010-01-01

    Full Text Available Abstract Background Darwin's evolutionary theory could easily explain the evolution of adaptive traits (organs and behavioral patterns in asexual but not in sexual organisms. Two models, the selfish gene theory and frozen plasticity theory were suggested to explain evolution of adaptive traits in sexual organisms in past 30 years. Results The frozen plasticity theory suggests that sexual species can evolve new adaptations only when their members are genetically uniform, i.e. only after a portion of the population of the original species had split off, balanced on the edge of extinction for several generations, and then undergone rapid expansion. After a short period of time, estimated on the basis of paleontological data to correspond to 1-2% of the duration of the species, polymorphism accumulates in the gene pool due to frequency-dependent selection; and thus, in each generation, new mutations occur in the presence of different alleles and therefore change their selection coefficients from generation to generation. The species ceases to behave in an evolutionarily plastic manner and becomes evolutionarily elastic on a microevolutionary time-scale and evolutionarily frozen on a macroevolutionary time-scale. It then exists in this state until such changes accumulate in the environment that the species becomes extinct. Conclusion Frozen plasticity theory, which includes the Darwinian model of evolution as a special case - the evolution of species in a plastic state, not only offers plenty of new predictions to be tested, but also provides explanations for a much broader spectrum of known biological phenomena than classic evolutionary theories. Reviewers This article was reviewed by Rob Knight, Fyodor Kondrashov and Massimo Di Giulio (nominated by David H. Ardell.

  4. Recent Recombination Events in the Core Genome Are Associated with Adaptive Evolution in Enterococcus faecium

    Science.gov (United States)

    de Been, Mark; van Schaik, Willem; Cheng, Lu; Corander, Jukka; Willems, Rob J.

    2013-01-01

    Reasons for the rising clinical impact of the bacterium Enterococcus faecium include the species’ rapid acquisition of adaptive genetic elements. Here, we focused on the impact of recombination on the evolution of E. faecium. We used the recently developed BratNextGen algorithm to detect recombinant regions in the core genome of 34 E. faecium strains, including three newly sequenced clinical strains. Recombination was found to have a significant impact on the E. faecium genome: of the original 1.2 million positions in the core genome, 0.5 million were predicted to have been affected by recombination in at least one strain. Importantly, strains in one of the two major E. faecium clades (clade B), which contains most of the E. faecium human gut commensals, formed the most important reservoir for donating foreign DNA to the second major E. faecium clade (clade A), which contains most of the clinical isolates. Also, several genomic regions were found to mainly recombine in specific hospital-associated E. faecium strains. One of these regions (the epa-like locus) likely encodes the biosynthesis of cell wall polysaccharides. These findings suggest a crucial role for recombination in the emergence of E. faecium as a successful hospital-associated pathogen. PMID:23882129

  5. From lifetime to evolution: timescales of human gut microbiota adaptation

    Directory of Open Access Journals (Sweden)

    Sara eQuercia

    2014-11-01

    Full Text Available Human beings harbor gut microbial communities that are essential to preserve human health. Molded by the human genome, the gut microbiota is an adaptive component of the human superorganisms that allows host adaptation at different timescales, optimizing host physiology from daily life to lifespan scales and human evolutionary history. The gut microbiota continuously changes from birth up to the most extreme limits of human life, reconfiguring its metagenomic layout in response to daily variations in diet or specific host physiological and immunological needs at different ages. On the other hand, the microbiota plasticity was strategic to face changes in lifestyle and dietary habits along the course of the recent evolutionary history, that has driven the passage from Paleolithic hunter-gathering societies to Neolithic agricultural farmers to modern Westernized societies.

  6. Adaptive Evolution and Demographic History of Norway Spruce (Picea Abies)

    OpenAIRE

    Källman, Thomas

    2009-01-01

    One of the major challenges in evolutionary biology is to determine the genetic basis of adaptive variation. In Norway spruce (Picea abies) the timing of bud set shows a very strong latitudinal cline despite a very low genetic differentiation between populations. The timing of bud set in Norway spruce is under strong genetic control and triggered by changes in photoperiod, but no genes controlling this response have so far been described. In this thesis we used a combination of functional stu...

  7. Evolution of Adaptive Immune Recognition in Jawless Vertebrates

    OpenAIRE

    Saha, Nil Ratan; Smith, Jeramiah; Amemiya, Chris T.

    2010-01-01

    All extant vertebrates possess an adaptive immune system wherein diverse immune receptors are created and deployed in specialized blood cell lineages. Recent advances in DNA sequencing and developmental resources for basal vertebrates have facilitated numerous comparative analyses that have shed new light on the molecular and cellular bases of immune defense and the mechanisms of immune receptor diversification in the “jawless” vertebrates. With data from these key species in hand, it is beco...

  8. Adaptation Mechanisms in the Evolution of Moss Defenses to Microbes

    OpenAIRE

    Ponce de León, Inés; Montesano, Marcos

    2017-01-01

    Bryophytes, including mosses, liverworts and hornworts are early land plants that have evolved key adaptation mechanisms to cope with abiotic stresses and microorganisms. Microbial symbioses facilitated plant colonization of land by enhancing nutrient uptake leading to improved plant growth and fitness. In addition, early land plants acquired novel defense mechanisms to protect plant tissues from pre-existing microbial pathogens. Due to its evolutionary stage linking unicellular green algae t...

  9. Rapid evolution of the cerebellum in humans and other great apes.

    Science.gov (United States)

    Barton, Robert A; Venditti, Chris

    2014-10-20

    Humans' unique cognitive abilities are usually attributed to a greatly expanded neocortex, which has been described as "the crowning achievement of evolution and the biological substrate of human mental prowess". The human cerebellum, however, contains four times more neurons than the neocortex and is attracting increasing attention for its wide range of cognitive functions. Using a method for detecting evolutionary rate changes along the branches of phylogenetic trees, we show that the cerebellum underwent rapid size increase throughout the evolution of apes, including humans, expanding significantly faster than predicted by the change in neocortex size. As a result, humans and other apes deviated significantly from the general evolutionary trend for neocortex and cerebellum to change in tandem, having significantly larger cerebella relative to neocortex size than other anthropoid primates. These results suggest that cerebellar specialization was a far more important component of human brain evolution than hitherto recognized and that technical intelligence was likely to have been at least as important as social intelligence in human cognitive evolution. Given the role of the cerebellum in sensory-motor control and in learning complex action sequences, cerebellar specialization is likely to have underpinned the evolution of humans' advanced technological capacities, which in turn may have been a preadaptation for language. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The evolution of coexistence: Reciprocal adaptation promotes the assembly of a simple community.

    Science.gov (United States)

    Bassar, Ronald D; Simon, Troy; Roberts, William; Travis, Joseph; Reznick, David N

    2017-02-01

    Species coexistence may result by chance when co-occurring species do not strongly interact or it may be an evolutionary outcome of strongly interacting species adapting to each other. Although patterns like character displacement indicate that coexistence has often been an evolutionary outcome, it is unclear how often the evolution of coexistence represents adaptation in only one species or reciprocal adaptation among all interacting species. Here, we demonstrate a strong role for evolution in the coexistence of guppies and killifish in Trinidadian streams. We experimentally recreated the temporal stages in the invasion and establishment of guppies into communities that previously contained only killifish. We combined demographic responses of guppies and killifish with a size-based integral projection model to calculate the fitness of the phenotypes of each species in each of the stages of community assembly. We show that guppies from locally adapted populations that are sympatric with killifish have higher fitness when paired with killifish than guppies from allopatric populations. This elevated fitness involves effects traceable to both guppy and killifish evolution. We discuss the implications of our results to the study of species coexistence and how it may be mediated through eco-evolutionary feedbacks. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  11. Experiments on the role of deleterious mutations as stepping stones in adaptive evolution

    Science.gov (United States)

    Covert, Arthur W.; Lenski, Richard E.; Wilke, Claus O.; Ofria, Charles

    2013-01-01

    Many evolutionary studies assume that deleterious mutations necessarily impede adaptive evolution. However, a later mutation that is conditionally beneficial may interact with a deleterious predecessor before it is eliminated, thereby providing access to adaptations that might otherwise be inaccessible. It is unknown whether such sign-epistatic recoveries are inconsequential events or an important factor in evolution, owing to the difficulty of monitoring the effects and fates of all mutations during experiments with biological organisms. Here, we used digital organisms to compare the extent of adaptive evolution in populations when deleterious mutations were disallowed with control populations in which such mutations were allowed. Significantly higher fitness levels were achieved over the long term in the control populations because some of the deleterious mutations served as stepping stones across otherwise impassable fitness valleys. As a consequence, initially deleterious mutations facilitated the evolution of complex, beneficial functions. We also examined the effects of disallowing neutral mutations, of varying the mutation rate, and of sexual recombination. Populations evolving without neutral mutations were able to leverage deleterious and compensatory mutation pairs to overcome, at least partially, the absence of neutral mutations. Substantially raising or lowering the mutation rate reduced or eliminated the long-term benefit of deleterious mutations, but introducing recombination did not. Our work demonstrates that deleterious mutations can play an important role in adaptive evolution under at least some conditions. PMID:23918358

  12. Rapid evolution of coral proteins responsible for interaction with the environment.

    Science.gov (United States)

    Voolstra, Christian R; Sunagawa, Shinichi; Matz, Mikhail V; Bayer, Till; Aranda, Manuel; Buschiazzo, Emmanuel; Desalvo, Michael K; Lindquist, Erika; Szmant, Alina M; Coffroth, Mary Alice; Medina, Mónica

    2011-01-01

    Corals worldwide are in decline due to climate change effects (e.g., rising seawater temperatures), pollution, and exploitation. The ability of corals to cope with these stressors in the long run depends on the evolvability of the underlying genetic networks and proteins, which remain largely unknown. A genome-wide scan for positively selected genes between related coral species can help to narrow down the search space considerably. We screened a set of 2,604 putative orthologs from EST-based sequence datasets of the coral species Acropora millepora and Acropora palmata to determine the fraction and identity of proteins that may experience adaptive evolution. 7% of the orthologs show elevated rates of evolution. Taxonomically-restricted (i.e. lineage-specific) genes show a positive selection signature more frequently than genes that are found across many animal phyla. The class of proteins that displayed elevated evolutionary rates was significantly enriched for proteins involved in immunity and defense, reproduction, and sensory perception. We also found elevated rates of evolution in several other functional groups such as management of membrane vesicles, transmembrane transport of ions and organic molecules, cell adhesion, and oxidative stress response. Proteins in these processes might be related to the endosymbiotic relationship corals maintain with dinoflagellates in the genus Symbiodinium. This study provides a birds-eye view of the processes potentially underlying coral adaptation, which will serve as a foundation for future work to elucidate the rates, patterns, and mechanisms of corals' evolutionary response to global climate change.

  13. How Adaptive Learning Affects Evolution: Reviewing Theory on the Baldwin Effect.

    Science.gov (United States)

    Sznajder, B; Sabelis, M W; Egas, M

    2012-09-01

    We review models of the Baldwin effect, i.e., the hypothesis that adaptive learning (i.e., learning to improve fitness) accelerates genetic evolution of the phenotype. Numerous theoretical studies scrutinized the hypothesis that a non-evolving ability of adaptive learning accelerates evolution of genetically determined behavior. However, their results are conflicting in that some studies predict an accelerating effect of learning on evolution, whereas others show a decelerating effect. We begin by describing the arguments underlying the hypothesis on the Baldwin effect and identify the core argument: adaptive learning influences the rate of evolution because it changes relative fitness of phenotypes. Then we analyze the theoretical studies of the Baldwin effect with respect to their model of adaptive learning and discuss how their contrasting results can be explained from differences in (1) the ways in which the effect of adaptive learning on the phenotype is modeled, (2) the assumptions underlying the function used to quantify fitness and (3) the time scale at which the evolutionary rate is measured. We finish by reviewing the specific assumptions used by the theoretical studies of the Baldwin effect and discuss the evolutionary implications for cases where these assumptions do not hold.

  14. Brain evolution and development: adaptation, allometry and constraint.

    Science.gov (United States)

    Montgomery, Stephen H; Mundy, Nicholas I; Barton, Robert A

    2016-09-14

    Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns. © 2016 The Author(s).

  15. Evolution of opercle shape in cichlid fishes from Lake Tanganyika - adaptive trait interactions in extant and extinct species flocks.

    Science.gov (United States)

    Wilson, Laura A B; Colombo, Marco; Sánchez-Villagra, Marcelo R; Salzburger, Walter

    2015-11-20

    Phenotype-environment correlations and the evolution of trait interactions in adaptive radiations have been widely studied to gain insight into the dynamics underpinning rapid species diversification. In this study we explore the phenotype-environment correlation and evolution of operculum shape in cichlid fishes using an outline-based geometric morphometric approach combined with stable isotope indicators of macrohabitat and trophic niche. We then apply our method to a sample of extinct saurichthyid fishes, a highly diverse and near globally distributed group of actinopterygians occurring throughout the Triassic, to assess the utility of extant data to inform our understanding of ecomorphological evolution in extinct species flocks. A series of comparative methods were used to analyze shape data for 54 extant species of cichlids (N = 416), and 6 extinct species of saurichthyids (N = 44). Results provide evidence for a relationship between operculum shape and feeding ecology, a concentration in shape evolution towards present along with evidence for convergence in form, and significant correlation between the major axes of shape change and measures of gut length and body elongation. The operculum is one of few features that can be compared in extant and extinct groups, enabling reconstruction of phenotype-environment interactions and modes of evolutionary diversification in deep time.

  16. Rapid evolution meets invasive species control: The potential for pesticide resistance in sea lamprey

    Science.gov (United States)

    Dunlop, Erin S.; McLaughlin, Robert L.; Adams, Jean V.; Jones, Michael L.; Birceanu, Oana; Christie, Mark R.; Criger, Lori A.; Hinderer, Julia L.M.; Hollingworth, Robert M.; Johnson, Nicholas; Lantz, Stephen R.; Li, Weiming; Miller, James R.; Morrison, Bruce J.; Mota-Sanchez, David; Muir, Andrew M.; Sepulveda, Maria S.; Steeves, Todd B.; Walter, Lisa; Westman, Erin; Wirgin, Isaac; Wilkie, Michael P.

    2018-01-01

    Rapid evolution of pest, pathogen and wildlife populations can have undesirable effects; for example, when insects evolve resistance to pesticides or fishes evolve smaller body size in response to harvest. A destructive invasive species in the Laurentian Great Lakes, the sea lamprey (Petromyzon marinus) has been controlled with the pesticide 3-trifluoromethyl-4-nitrophenol (TFM) since the 1950s. We evaluated the likelihood of sea lamprey evolving resistance to TFM by (1) reviewing sea lamprey life history and control; (2) identifying physiological and behavioural resistance strategies; (3) estimating the strength of selection from TFM; (4) assessing the timeline for evolution; and (5) analyzing historical toxicity data for evidence of resistance. The number of sea lamprey generations exposed to TFM was within the range observed for fish populations where rapid evolution has occurred. Mortality from TFM was estimated as 82-90%, suggesting significant selective pressure. However, 57 years of toxicity data revealed no increase in lethal concentrations of TFM. Vigilance and the development of alternative controls are required to prevent this aquatic invasive species from evolving strategies to evade control.

  17. Can the experimental evolution programme help us elucidate the genetic basis of adaptation in nature?

    DEFF Research Database (Denmark)

    Bailey, Susan; Bataillon, Thomas

    2015-01-01

    and continue to play an important role in shaping adaptive evolution in the natural world. Further to this, experimental evolution studies allow for tests of theories that may be difficult or impossible to test in natural populations for logistical and methodological reasons and can even generate new insights......, suggesting further refinement of existing theories. However, as experimental evolution studies often take place in a very particular set of controlled conditions – that is simple environments, a small range of usually asexual species, relatively short timescales – the question remains as to how applicable...

  18. The genomic signatures of Shigella evolution, adaptation and geographical spread.

    Science.gov (United States)

    The, Hao Chung; Thanh, Duy Pham; Holt, Kathryn E; Thomson, Nicholas R; Baker, Stephen

    2016-04-01

    Shigella spp. are some of the key pathogens responsible for the global burden of diarrhoeal disease. These facultative intracellular bacteria belong to the family Enterobacteriaceae, together with other intestinal pathogens, such as Escherichia coli and Salmonella spp. The genus Shigella comprises four different species, each consisting of several serogroups, all of which show phenotypic similarity, including invasive pathogenicity. DNA sequencing suggests that this similarity results from the convergent evolution of different Shigella spp. founders. Here, we review the evolutionary relationships between Shigella spp. and E . coli, and we highlight how the genomic plasticity of these bacteria and their acquisition of a distinctive virulence plasmid have enabled the development of such highly specialized pathogens. Furthermore, we discuss the insights that genotyping and whole-genome sequencing have provided into the phylogenetics and intercontinental spread of Shigella spp.

  19. Transfer RNAs Mediate the Rapid Adaptation of Escherichia coli to Oxidative Stress

    Science.gov (United States)

    Du, Gaofei; Sun, Xuesong; He, Qing-Yu; Zhang, Gong

    2015-01-01

    Translational systems can respond promptly to sudden environmental changes to provide rapid adaptations to environmental stress. Unlike the well-studied translational responses to oxidative stress in eukaryotic systems, little is known regarding how prokaryotes respond rapidly to oxidative stress in terms of translation. In this study, we measured protein synthesis from the entire Escherichia coli proteome and found that protein synthesis was severely slowed down under oxidative stress. With unchanged translation initiation, this slowdown was caused by decreased translation elongation speed. We further confirmed by tRNA sequencing and qRT-PCR that this deceleration was caused by a global, enzymatic downregulation of almost all tRNA species shortly after exposure to oxidative agents. Elevation in tRNA levels accelerated translation and protected E. coli against oxidative stress caused by hydrogen peroxide and the antibiotic ciprofloxacin. Our results showed that the global regulation of tRNAs mediates the rapid adjustment of the E. coli translation system for prompt adaptation to oxidative stress. PMID:26090660

  20. Enhancement of Microbial Biodesulfurization via Genetic Engineering and Adaptive Evolution.

    Science.gov (United States)

    Wang, Jia; Butler, Robert R; Wu, Fan; Pombert, Jean-François; Kilbane, John J; Stark, Benjamin C

    2017-01-01

    In previous work from our laboratories a synthetic gene encoding a peptide ("Sulpeptide 1" or "S1") with a high proportion of methionine and cysteine residues had been designed to act as a sulfur sink and was inserted into the dsz (desulfurization) operon of Rhodococcus erythropolis IGTS8. In the work described here this construct (dszAS1BC) and the intact dsz operon (dszABC) cloned into vector pRESX under control of the (Rhodococcus) kstD promoter were transformed into the desulfurization-negative strain CW25 of Rhodococcus qingshengii. The resulting strains (CW25[pRESX-dszABC] and CW25[pRESX-dszAS1BC]) were subjected to adaptive selection by repeated passages at log phase (up to 100 times) in minimal medium with dibenzothiophene (DBT) as sole sulfur source. For both strains DBT metabolism peaked early in the selection process and then decreased, eventually averaging four times that of the initial transformed cells; the maximum specific activity achieved by CW25[pRESX-dszAS1BC] exceeded that of CW25[pRESX-dszABC]. Growth rates increased by 7-fold (CW25[pRESX-dszABC]) and 13-fold (CW25[pRESX-dszAS1BC]) and these increases were stable. The adaptations of CW25[pRESX-dszAS1BC] were correlated with a 3-5X increase in plasmid copy numbers from those of the initial transformed cells; whole genome sequencing indicated that during its selection processes no mutations occurred to any of the dsz, S1, or other genes and promoters involved in sulfur metabolism, stress response, or DNA methylation, and that the effect of the sulfur sink produced by S1 is likely very small compared to the cells' overall cysteine and methionine requirements. Nevertheless, a combination of genetic engineering using sulfur sinks and increasing Dsz capability with adaptive selection may be a viable strategy to increase biodesulfurization ability.

  1. Short-time evolution in the adaptive immune system.

    Science.gov (United States)

    Guttenberg, Nicholas; Tabei, S M Ali; Dinner, Aaron R

    2011-09-01

    We exploit a simple model to numerically and analytically investigate the effect of enforcing a time constraint for achieving a system-wide goal during an evolutionary dynamics. This situation is relevant to finding antibody specificities in the adaptive immune response as well as to artificial situations in which an evolutionary dynamics is used to generate a desired capability in a limited number of generations. When the likelihood of finding the target phenotype is low, we find that the optimal mutation rate can exceed the error threshold, in contrast to conventional evolutionary dynamics. We also show how a logarithmic correction to the usual inverse scaling of population size with mutation rate arises. Implications for natural and artificial evolutionary situations are discussed.

  2. Diversity and adaptive evolution of Saccharomyces wine yeast: a review.

    Science.gov (United States)

    Marsit, Souhir; Dequin, Sylvie

    2015-11-01

    Saccharomyces cerevisiae and related species, the main workhorses of wine fermentation, have been exposed to stressful conditions for millennia, potentially resulting in adaptive differentiation. As a result, wine yeasts have recently attracted considerable interest for studying the evolutionary effects of domestication. The widespread use of whole-genome sequencing during the last decade has provided new insights into the biodiversity, population structure, phylogeography and evolutionary history of wine yeasts. Comparisons between S. cerevisiae isolates from various origins have indicated that a variety of mechanisms, including heterozygosity, nucleotide and structural variations, introgressions, horizontal gene transfer and hybridization, contribute to the genetic and phenotypic diversity of S. cerevisiae. This review will summarize the current knowledge on the diversity and evolutionary history of wine yeasts, focusing on the domestication fingerprints identified in these strains. © FEMS 2015.

  3. Diversity and adaptive evolution of Saccharomyces wine yeast: a review

    Science.gov (United States)

    Marsit, Souhir; Dequin, Sylvie

    2015-01-01

    Saccharomyces cerevisiae and related species, the main workhorses of wine fermentation, have been exposed to stressful conditions for millennia, potentially resulting in adaptive differentiation. As a result, wine yeasts have recently attracted considerable interest for studying the evolutionary effects of domestication. The widespread use of whole-genome sequencing during the last decade has provided new insights into the biodiversity, population structure, phylogeography and evolutionary history of wine yeasts. Comparisons between S. cerevisiae isolates from various origins have indicated that a variety of mechanisms, including heterozygosity, nucleotide and structural variations, introgressions, horizontal gene transfer and hybridization, contribute to the genetic and phenotypic diversity of S. cerevisiae. This review will summarize the current knowledge on the diversity and evolutionary history of wine yeasts, focusing on the domestication fingerprints identified in these strains. PMID:26205244

  4. The evolution of female orgasm: adaptation or byproduct?

    Science.gov (United States)

    Puts, David Andrew; Dawood, Khytam

    2006-06-01

    Do women experience orgasm because this trait was shaped by natural selection to augment female fitness? Or are women merely the lucky recipients of developmental patterns favored by selection to produce orgasm in males? A recent and widely publicized book by Elisabeth Lloyd (2005a) contends that there is insufficient evidence to validate any of the adaptive explanations yet proposed for female orgasm. We agree. But our reading of the data differs from Lloyd's. In this essay, we outline why, unlike Caton (2006), whose review of Lloyd's book appeared previously in this journal, we are not persuaded by Lloyd's argument that female orgasm is a nonadaptive byproduct of orgasm in men. We hold this view because we disagree with the criteria Lloyd uses to evaluate evolutionary hypotheses, and because we believe Lloyd defines female orgasm too narrowly, ignoring critical information about its affective aspects.

  5. Breakage-fusion-bridge cycles and large insertions contribute to the rapid evolution of accessory chromosomes in a fungal pathogen.

    Science.gov (United States)

    Croll, Daniel; Zala, Marcello; McDonald, Bruce A

    2013-06-01

    Chromosomal rearrangements are a major driver of eukaryotic genome evolution, affecting speciation, pathogenicity and cancer progression. Changes in chromosome structure are often initiated by mis-repair of double-strand breaks in the DNA. Mis-repair is particularly likely when telomeres are lost or when dispersed repeats misalign during crossing-over. Fungi carry highly polymorphic chromosomal complements showing substantial variation in chromosome length and number. The mechanisms driving chromosome polymorphism in fungi are poorly understood. We aimed to identify mechanisms of chromosomal rearrangements in the fungal wheat pathogen Zymoseptoria tritici. We combined population genomic resequencing and chromosomal segment PCR assays with electrophoretic karyotyping and resequencing of parents and offspring from experimental crosses to show that this pathogen harbors a highly diverse complement of accessory chromosomes that exhibits strong global geographic differentiation in numbers and lengths of chromosomes. Homologous chromosomes carried highly differentiated gene contents due to numerous insertions and deletions. The largest accessory chromosome recently doubled in length through insertions totaling 380 kb. Based on comparative genomics, we identified the precise breakpoint locations of these insertions. Nondisjunction during meiosis led to chromosome losses in progeny of three different crosses. We showed that a new accessory chromosome emerged in two viable offspring through a fusion between sister chromatids. Such chromosome fusion is likely to initiate a breakage-fusion-bridge (BFB) cycle that can rapidly degenerate chromosomal structure. We suggest that the accessory chromosomes of Z. tritici originated mainly from ancient core chromosomes through a degeneration process that included BFB cycles, nondisjunction and mutational decay of duplicated sequences. The rapidly evolving accessory chromosome complement may serve as a cradle for adaptive evolution in

  6. Rapid adaptation to oil exposure in the cosmopolitan copepod Acartia tonsa

    DEFF Research Database (Denmark)

    Krause, K. E.; Dinh, Khuong Van; Nielsen, Torkel Gissel

    Oil spills are potential environmental hazards to marine ecosystems worldwide. Oil spills may persist in seawater longer than one generation of many zooplankton species. However, whether populations of short-lived and fast growing marine organisms adapt to oil exposure through natural selection...... in size at maturity of females was less pronounced in the second generation. Strikingly, both survival, egg production and hatching success were recovered in the second generation, indicating a rapid selection towards individuals with adaptations to deal with pyrene exposure. Our results show...... that populations of short-lived and fast-growing copepods have the potential of showing surprisingly strong resilience to the type of oil contamination they might face in their natural coastal habitats...

  7. Studying the Genetics of Behavior and Evolution by Adaptation and Natural Selection.

    Science.gov (United States)

    Silverman, Jules

    1998-01-01

    Provides an exercise designed to give students an appreciation for the genetic basis of behavior. Employs the phenomenon of glucose aversion as an example of evolution by mutation and accelerated natural selection, thereby revealing one of the ways in which organisms adapt to human interference. (DDR)

  8. Increased production of L-serine in Escherichia coli through Adaptive Laboratory Evolution

    DEFF Research Database (Denmark)

    Mundhada, Hemanshu; Seoane, Jose Miguel; Schneider, Konstantin

    2017-01-01

    L-serine concentration from 3 to 100 g/L using adaptive laboratory evolution (ALE). Genome sequencing of isolated clones revealed multiplication of genetic regions, as well as mutations in thrA, thereby showing a potential mechanism of serine inhibition. Other mutations were evaluated by MAGE...... thereby highlighting the potential of ALE for industrial biotechnology....

  9. Adaptation, niche conservatism, and convergence: comparative studies of leaf evolution in the California chaparral.

    Science.gov (United States)

    Ackerly, David D

    2004-05-01

    Small leaves and low specific leaf area (SLA) have long been viewed as adaptations to Mediterranean-type climates in many species of evergreen woody plants. However, paleobotanical and floristic evidence suggests that in many cases these traits originated prior to the advent of the summer-drought climate regime. In this study, molecular phylogenies and ancestral state reconstructions were used to test the hypothesis of adaptive leaf evolution in 12 lineages of evergreen shrubs in the California chaparral. Across all lineages there was a small but significant shift toward lower SLA, but there were no trends in leaf size evolution. For individual lineages, adaptive changes were detected in only three cases for SLA and in one case for leaf size. Three of these cases of evolutionary change were observed in taxa derived from cool temperate ancestors (e.g., Heteromeles). In contrast, most lineages originating from subtropical ancestors exhibited relative stasis in leaf trait evolution (e.g., Ceanothus). The absence of change suggests that ancestors of chaparral taxa had already acquired appropriate traits that contributed to their success under Mediterranean-type climates. These results illustrate how biogeographic history may influence patterns of trait evolution and adaptation and highlight the contribution of ecological sorting processes to the assembly and functional ecology of regional biotas.

  10. Gradually Adaptive Frameworks: Reasonable Disagreement and the Evolution of Evaluative Systems in Music Education

    Science.gov (United States)

    Haskins, Stanley

    2013-01-01

    The concept of "gradually adaptive frameworks" is introduced as a model with the potential to describe the evolution of belief evaluative systems through the consideration of reasonable arguments and evidence. This concept is demonstrated through an analysis of specific points of disagreement between David Elliott's praxial…

  11. Whole-Genome Scans Provide Evidence of Adaptive Evolution in Malawian Plasmodium falciparum Isolates

    DEFF Research Database (Denmark)

    Ocholla, Harold; Preston, Mark D; Mipando, Mwapatsa

    2014-01-01

    BACKGROUND:  Selection by host immunity and antimalarial drugs has driven extensive adaptive evolution in Plasmodium falciparum and continues to produce ever-changing landscapes of genetic variation. METHODS:  We performed whole-genome sequencing of 69 P. falciparum isolates from Malawi and used...

  12. Rapid Transfer Alignment of MEMS SINS Based on Adaptive Incremental Kalman Filter.

    Science.gov (United States)

    Chu, Hairong; Sun, Tingting; Zhang, Baiqiang; Zhang, Hongwei; Chen, Yang

    2017-01-14

    In airborne MEMS SINS transfer alignment, the error of MEMS IMU is highly environment-dependent and the parameters of the system model are also uncertain, which may lead to large error and bad convergence of the Kalman filter. In order to solve this problem, an improved adaptive incremental Kalman filter (AIKF) algorithm is proposed. First, the model of SINS transfer alignment is defined based on the "Velocity and Attitude" matching method. Then the detailed algorithm progress of AIKF and its recurrence formulas are presented. The performance and calculation amount of AKF and AIKF are also compared. Finally, a simulation test is designed to verify the accuracy and the rapidity of the AIKF algorithm by comparing it with KF and AKF. The results show that the AIKF algorithm has better estimation accuracy and shorter convergence time, especially for the bias of the gyroscope and the accelerometer, which can meet the accuracy and rapidity requirement of transfer alignment.

  13. Adaptive Neuron Model: An architecture for the rapid learning of nonlinear topological transformations

    Science.gov (United States)

    Tawel, Raoul (Inventor)

    1994-01-01

    A method for the rapid learning of nonlinear mappings and topological transformations using a dynamically reconfigurable artificial neural network is presented. This fully-recurrent Adaptive Neuron Model (ANM) network was applied to the highly degenerate inverse kinematics problem in robotics, and its performance evaluation is bench-marked. Once trained, the resulting neuromorphic architecture was implemented in custom analog neural network hardware and the parameters capturing the functional transformation downloaded onto the system. This neuroprocessor, capable of 10(exp 9) ops/sec, was interfaced directly to a three degree of freedom Heathkit robotic manipulator. Calculation of the hardware feed-forward pass for this mapping was benchmarked at approximately 10 microsec.

  14. Rapid adaptation of microalgae to bodies of water with extreme pollution from uranium mining: An explanation of how mesophilic organisms can rapidly colonise extremely toxic environments

    Energy Technology Data Exchange (ETDEWEB)

    García-Balboa, C.; Baselga-Cervera, B. [Genetica, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid (Spain); García-Sanchez, A.; Igual, J.M. [Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), PO Box 257, 37071 Salamanca (Spain); Lopez-Rodas, V. [Genetica, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid (Spain); Costas, E., E-mail: ecostas@vet.ucm.es [Genetica, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2013-11-15

    Highlights: •Some microalgae species survive to extreme environments in ponds of residual waters from uranium mining. •Adaptation of microalgae to U arose very fast. •Spontaneous mutations that confer large adaptive value were able to produce the adaptation to residual waters of U mining. •Adaptation to more extreme waters of U mining is only possible after the recombination subsequent to sexual mating. •Resistant microalgae bio-adsorbs uranium to the cell wall and internalises uranium inside the cytoplasm. -- Abstract: Extreme environments may support communities of microalgae living at the limits of their tolerance. It is usually assumed that these extreme environments are inhabited by extremophile species. However, global anthropogenic environmental changes are generating new extreme environments, such as mining-effluent pools of residual waters from uranium mining with high U levels, acidity and radioactivity in Salamanca (Spain). Certain microalgal species have rapidly adapted to these extreme waters (uranium mining in this area began in 1960). Experiments have demonstrated that physiological acclimatisation would be unable to achieve adaptation. In contrast, rapid genetic adaptation was observed in waters ostensibly lethal to microalgae by means of rare spontaneous mutations that occurred prior to the exposure to effluent waters from uranium mining. However, adaptation to the most extreme conditions was only possible after recombination through sexual mating because adaptation requires more than one mutation. Microalgae living in extreme environments could be the descendants of pre-selective mutants that confer significant adaptive value to extreme contamination. These “lucky mutants” could allow for the evolutionary rescue of populations faced with rapid environmental change.

  15. Adaptive bridge control strategy for opinion evolution on social networks.

    Science.gov (United States)

    Qian, Cheng; Cao, Jinde; Lu, Jianquan; Kurths, Jürgen

    2011-06-01

    In this paper, we present an efficient opinion control strategy for complex networks, in particular, for social networks. The proposed adaptive bridge control (ABC) strategy calls for controlling a special kind of nodes named bridge and requires no knowledge of the node degrees or any other global or local knowledge, which are necessary for some other immunization strategies including targeted immunization and acquaintance immunization. We study the efficiency of the proposed ABC strategy on random networks, small-world networks, scale-free networks, and the random networks adjusted by the edge exchanging method. Our results show that the proposed ABC strategy is efficient for all of these four kinds of networks. Through an adjusting clustering coefficient by the edge exchanging method, it is found out that the efficiency of our ABC strategy is closely related with the clustering coefficient. The main contributions of this paper can be listed as follows: (1) A new high-order social network is proposed to describe opinion dynamic. (2) An algorithm, which does not require the knowledge of the nodes' degree and other global∕local network structure information, is proposed to control the "bridges" more accurately and further control the opinion dynamics of the social networks. The efficiency of our ABC strategy is illustrated by numerical examples. (3) The numerical results indicate that our ABC strategy is more efficient for networks with higher clustering coefficient.

  16. Three-dimensional Adaptive Evolutions of Strong Gravitational Waves

    Science.gov (United States)

    Choi, Dae-Il; Centrella, Joan

    2001-04-01

    General relativistic research is entering a new era with the installation of several worldwide gravitational wave (GW) observatories based on laser interferometers. These include ground-based detectors such as LIGO, VIRGO, GEO, and TAMA and a space-based detector LISA. Theoretical challenges for numerical relativists include calculating accurate waveforms generated by the sources likely to be detected by these GW observatories. These waveforms will greatly enhance the successful detection and interpretation of the signals. The final goal of our research program is to calculate waveforms for one such candidate--inspiralling binary neutron star system. The full Einstein equations in 3-D must be solved to follow both the dynamics of the binaries from initial inspiral to final merger, and the generation and propagation of gravitational waves into the wave zone. One of the crucial requirements for this kind of simulation is AMR (Adaptive Mesh Refinement). My talk is based on work-in-progress that solves the vacuum Einstein equations with strong gravitational waves as initial data. This problem constitutes a first step towards full simulations and allows us to test our AMR code without involving the complexity of hydrodynamics. 2-level AMR runs show that the fine grid tracks the features of the gravitational waves well.

  17. Stress, adaptation, and speciation in the evolution of the blind mole rat, Spalax, in Israel.

    Science.gov (United States)

    Nevo, Eviatar

    2013-02-01

    Environmental stress played a major role in the evolution of the blind mole rat superspecies Spalax ehrenbergi, affecting its adaptive evolution and ecological speciation underground. Spalax is safeguarded all of its life underground from aboveground climatic fluctuations and predators. However, it encounters multiple stresses in its underground burrows including darkness, energetics, hypoxia, hypercapnia, food scarcity, and pathogenicity. Consequently, it evolved adaptive genomic, proteomic, and phenomic complexes to cope with those stresses. Here I describe some of these adaptive complexes, and their theoretical and applied perspectives. Spalax mosaic molecular and organismal evolution involves reductions or regressions coupled with expansions or progressions caused by evolutionary tinkering and natural genetic engineering. Speciation of Spalax in Israel occurred in the Pleistocene, during the last 2.00-2.35 Mya, generating four species associated intimately with four climatic regimes with increasing aridity stress southwards and eastwards representing an ecological speciational adaptive trend: (Spalax golani, 2n=54→S. galili, 2n=52→S. carmeli, 2n=58→S. judaei, 2n=60). Darwinian ecological speciation occurred gradually with relatively little genetic change by Robertsonian chromosomal and genic mutations. Spalax genome sequencing has just been completed. It involves multiple adaptive complexes to life underground and is an evolutionary model to a few hundred underground mammals. It involves great promise in the future for medicine, space flight, and deep-sea diving. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Adaptive evolution and functional redesign of core metabolic proteins in snakes.

    Science.gov (United States)

    Castoe, Todd A; Jiang, Zhi J; Gu, Wanjun; Wang, Zhengyuan O; Pollock, David D

    2008-05-21

    Adaptive evolutionary episodes in core metabolic proteins are uncommon, and are even more rarely linked to major macroevolutionary shifts. We conducted extensive molecular evolutionary analyses on snake mitochondrial proteins and discovered multiple lines of evidence suggesting that the proteins at the core of aerobic metabolism in snakes have undergone remarkably large episodic bursts of adaptive change. We show that snake mitochondrial proteins experienced unprecedented levels of positive selection, coevolution, convergence, and reversion at functionally critical residues. We examined Cytochrome C oxidase subunit I (COI) in detail, and show that it experienced extensive modification of normally conserved residues involved in proton transport and delivery of electrons and oxygen. Thus, adaptive changes likely altered the flow of protons and other aspects of function in CO, thereby influencing fundamental characteristics of aerobic metabolism. We refer to these processes as "evolutionary redesign" because of the magnitude of the episodic bursts and the degree to which they affected core functional residues. The evolutionary redesign of snake COI coincided with adaptive bursts in other mitochondrial proteins and substantial changes in mitochondrial genome structure. It also generally coincided with or preceded major shifts in ecological niche and the evolution of extensive physiological adaptations related to lung reduction, large prey consumption, and venom evolution. The parallel timing of these major evolutionary events suggests that evolutionary redesign of metabolic and mitochondrial function may be related to, or underlie, the extreme changes in physiological and metabolic efficiency, flexibility, and innovation observed in snake evolution.

  19. Adaptive evolution and functional redesign of core metabolic proteins in snakes.

    Directory of Open Access Journals (Sweden)

    Todd A Castoe

    Full Text Available BACKGROUND: Adaptive evolutionary episodes in core metabolic proteins are uncommon, and are even more rarely linked to major macroevolutionary shifts. METHODOLOGY/PRINCIPAL FINDINGS: We conducted extensive molecular evolutionary analyses on snake mitochondrial proteins and discovered multiple lines of evidence suggesting that the proteins at the core of aerobic metabolism in snakes have undergone remarkably large episodic bursts of adaptive change. We show that snake mitochondrial proteins experienced unprecedented levels of positive selection, coevolution, convergence, and reversion at functionally critical residues. We examined Cytochrome C oxidase subunit I (COI in detail, and show that it experienced extensive modification of normally conserved residues involved in proton transport and delivery of electrons and oxygen. Thus, adaptive changes likely altered the flow of protons and other aspects of function in CO, thereby influencing fundamental characteristics of aerobic metabolism. We refer to these processes as "evolutionary redesign" because of the magnitude of the episodic bursts and the degree to which they affected core functional residues. CONCLUSIONS/SIGNIFICANCE: The evolutionary redesign of snake COI coincided with adaptive bursts in other mitochondrial proteins and substantial changes in mitochondrial genome structure. It also generally coincided with or preceded major shifts in ecological niche and the evolution of extensive physiological adaptations related to lung reduction, large prey consumption, and venom evolution. The parallel timing of these major evolutionary events suggests that evolutionary redesign of metabolic and mitochondrial function may be related to, or underlie, the extreme changes in physiological and metabolic efficiency, flexibility, and innovation observed in snake evolution.

  20. Adaptive Evolution and Functional Redesign of Core Metabolic Proteins in Snakes

    Science.gov (United States)

    Gu, Wanjun; Wang, Zhengyuan O.; Pollock, David D.

    2008-01-01

    Background Adaptive evolutionary episodes in core metabolic proteins are uncommon, and are even more rarely linked to major macroevolutionary shifts. Methodology/Principal Findings We conducted extensive molecular evolutionary analyses on snake mitochondrial proteins and discovered multiple lines of evidence suggesting that the proteins at the core of aerobic metabolism in snakes have undergone remarkably large episodic bursts of adaptive change. We show that snake mitochondrial proteins experienced unprecedented levels of positive selection, coevolution, convergence, and reversion at functionally critical residues. We examined Cytochrome C oxidase subunit I (COI) in detail, and show that it experienced extensive modification of normally conserved residues involved in proton transport and delivery of electrons and oxygen. Thus, adaptive changes likely altered the flow of protons and other aspects of function in CO, thereby influencing fundamental characteristics of aerobic metabolism. We refer to these processes as “evolutionary redesign” because of the magnitude of the episodic bursts and the degree to which they affected core functional residues. Conclusions/Significance The evolutionary redesign of snake COI coincided with adaptive bursts in other mitochondrial proteins and substantial changes in mitochondrial genome structure. It also generally coincided with or preceded major shifts in ecological niche and the evolution of extensive physiological adaptations related to lung reduction, large prey consumption, and venom evolution. The parallel timing of these major evolutionary events suggests that evolutionary redesign of metabolic and mitochondrial function may be related to, or underlie, the extreme changes in physiological and metabolic efficiency, flexibility, and innovation observed in snake evolution. PMID:18493604

  1. Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns

    LENUS (Irish Health Repository)

    Sen, Lin

    2011-06-03

    Abstract Background The chloroplast-localized ribulose-1, 5-biphosphate carboxylase\\/oxygenase (Rubisco), the primary enzyme responsible for autotrophy, is instrumental in the continual adaptation of plants to variations in the concentrations of CO2. The large subunit (LSU) of Rubisco is encoded by the chloroplast rbcL gene. Although adaptive processes have been previously identified at this gene, characterizing the relationships between the mutational dynamics at the protein level may yield clues on the biological meaning of such adaptive processes. The role of such coevolutionary dynamics in the continual fine-tuning of RbcL remains obscure. Results We used the timescale and phylogenetic analyses to investigate and search for processes of adaptive evolution in rbcL gene in three gymnosperm families, namely Podocarpaceae, Taxaceae and Cephalotaxaceae. To understand the relationships between regions identified as having evolved under adaptive evolution, we performed coevolutionary analyses using the software CAPS. Importantly, adaptive processes were identified at amino acid sites located on the contact regions among the Rubisco subunits and on the interface between Rubisco and its activase. Adaptive amino acid replacements at these regions may have optimized the holoenzyme activity. This hypothesis was pinpointed by evidence originated from our analysis of coevolution that supported the correlated evolution between Rubisco and its activase. Interestingly, the correlated adaptive processes between both these proteins have paralleled the geological variation history of the concentration of atmospheric CO2. Conclusions The gene rbcL has experienced bursts of adaptations in response to the changing concentration of CO2 in the atmosphere. These adaptations have emerged as a result of a continuous dynamic of mutations, many of which may have involved innovation of functional Rubisco features. Analysis of the protein structure and the functional implications of such

  2. Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns.

    Science.gov (United States)

    Sen, Lin; Fares, Mario A; Liang, Bo; Gao, Lei; Wang, Bo; Wang, Ting; Su, Ying-Juan

    2011-06-03

    The chloroplast-localized ribulose-1, 5-biphosphate carboxylase/oxygenase (Rubisco), the primary enzyme responsible for autotrophy, is instrumental in the continual adaptation of plants to variations in the concentrations of CO2. The large subunit (LSU) of Rubisco is encoded by the chloroplast rbcL gene. Although adaptive processes have been previously identified at this gene, characterizing the relationships between the mutational dynamics at the protein level may yield clues on the biological meaning of such adaptive processes. The role of such coevolutionary dynamics in the continual fine-tuning of RbcL remains obscure. We used the timescale and phylogenetic analyses to investigate and search for processes of adaptive evolution in rbcL gene in three gymnosperm families, namely Podocarpaceae, Taxaceae and Cephalotaxaceae. To understand the relationships between regions identified as having evolved under adaptive evolution, we performed coevolutionary analyses using the software CAPS. Importantly, adaptive processes were identified at amino acid sites located on the contact regions among the Rubisco subunits and on the interface between Rubisco and its activase. Adaptive amino acid replacements at these regions may have optimized the holoenzyme activity. This hypothesis was pinpointed by evidence originated from our analysis of coevolution that supported the correlated evolution between Rubisco and its activase. Interestingly, the correlated adaptive processes between both these proteins have paralleled the geological variation history of the concentration of atmospheric CO2. The gene rbcL has experienced bursts of adaptations in response to the changing concentration of CO2 in the atmosphere. These adaptations have emerged as a result of a continuous dynamic of mutations, many of which may have involved innovation of functional Rubisco features. Analysis of the protein structure and the functional implications of such mutations put forward the conclusion that

  3. Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns

    Directory of Open Access Journals (Sweden)

    Gao Lei

    2011-06-01

    Full Text Available Abstract Background The chloroplast-localized ribulose-1, 5-biphosphate carboxylase/oxygenase (Rubisco, the primary enzyme responsible for autotrophy, is instrumental in the continual adaptation of plants to variations in the concentrations of CO2. The large subunit (LSU of Rubisco is encoded by the chloroplast rbcL gene. Although adaptive processes have been previously identified at this gene, characterizing the relationships between the mutational dynamics at the protein level may yield clues on the biological meaning of such adaptive processes. The role of such coevolutionary dynamics in the continual fine-tuning of RbcL remains obscure. Results We used the timescale and phylogenetic analyses to investigate and search for processes of adaptive evolution in rbcL gene in three gymnosperm families, namely Podocarpaceae, Taxaceae and Cephalotaxaceae. To understand the relationships between regions identified as having evolved under adaptive evolution, we performed coevolutionary analyses using the software CAPS. Importantly, adaptive processes were identified at amino acid sites located on the contact regions among the Rubisco subunits and on the interface between Rubisco and its activase. Adaptive amino acid replacements at these regions may have optimized the holoenzyme activity. This hypothesis was pinpointed by evidence originated from our analysis of coevolution that supported the correlated evolution between Rubisco and its activase. Interestingly, the correlated adaptive processes between both these proteins have paralleled the geological variation history of the concentration of atmospheric CO2. Conclusions The gene rbcL has experienced bursts of adaptations in response to the changing concentration of CO2 in the atmosphere. These adaptations have emerged as a result of a continuous dynamic of mutations, many of which may have involved innovation of functional Rubisco features. Analysis of the protein structure and the functional

  4. When do adaptive plasticity and genetic evolution prevent extinction of a density-regulated population?

    Science.gov (United States)

    Chevin, Luis-Miguel; Lande, Russell

    2010-04-01

    We study the dynamics of evolutionary recovery after an abrupt environmental shift in a density-regulated population with evolving plasticity. Maladaptation to the new environment initially causes the population to decline, until adaptive phenotypic plasticity and genetic evolution restore positive population growth rate. We assume that selection on a quantitative trait is density-independent and that the initial cost of plasticity is much lower than the benefit of the initial plastic response. The initial partially adaptive plasticity reduces the effective magnitude of the environmental shift, whereas evolution of plasticity increases the rate of adaptation. Both effects greatly facilitate population persistence. In contrast, density dependence of population growth always hinders persistence. With theta-logistic population regulation, a lower value of theta produces a faster initial population decline and a higher extinction risk.

  5. APPLICATION OF RESTART COVARIANCE MATRIX ADAPTATION EVOLUTION STRATEGY (RCMA-ES TO GENERATION EXPANSION PLANNING PROBLEM

    Directory of Open Access Journals (Sweden)

    K. Karthikeyan

    2012-10-01

    Full Text Available This paper describes the application of an evolutionary algorithm, Restart Covariance Matrix Adaptation Evolution Strategy (RCMA-ES to the Generation Expansion Planning (GEP problem. RCMA-ES is a class of continuous Evolutionary Algorithm (EA derived from the concept of self-adaptation in evolution strategies, which adapts the covariance matrix of a multivariate normal search distribution. The original GEP problem is modified by incorporating Virtual Mapping Procedure (VMP. The GEP problem of a synthetic test systems for 6-year, 14-year and 24-year planning horizons having five types of candidate units is considered. Two different constraint-handling methods are incorporated and impact of each method has been compared. In addition, comparison and validation has also made with dynamic programming method.

  6. Rampant adaptive evolution in regions of proteins with unknown function in Drosophila simulans.

    Directory of Open Access Journals (Sweden)

    Alisha K Holloway

    2007-10-01

    Full Text Available Adaptive protein evolution is pervasive in Drosophila. Genomic studies, thus far, have analyzed each protein as a single entity. However, the targets of adaptive events may be localized to particular parts of proteins, such as protein domains or regions involved in protein folding. We compared the population genetic mechanisms driving sequence polymorphism and divergence in defined protein domains and non-domain regions. Interestingly, we find that non-domain regions of proteins are more frequent targets of directional selection. Protein domains are also evolving under directional selection, but appear to be under stronger purifying selection than non-domain regions. Non-domain regions of proteins clearly play a major role in adaptive protein evolution on a genomic scale and merit future investigations of their functional properties.

  7. Gene loss, adaptive evolution and the co-evolution of plumage coloration genes with opsins in birds.

    Science.gov (United States)

    Borges, Rui; Khan, Imran; Johnson, Warren E; Gilbert, M Thomas P; Zhang, Guojie; Jarvis, Erich D; O'Brien, Stephen J; Antunes, Agostinho

    2015-10-06

    The wide range of complex photic systems observed in birds exemplifies one of their key evolutionary adaptions, a well-developed visual system. However, genomic approaches have yet to be used to disentangle the evolutionary mechanisms that govern evolution of avian visual systems. We performed comparative genomic analyses across 48 avian genomes that span extant bird phylogenetic diversity to assess evolutionary changes in the 17 representatives of the opsin gene family and five plumage coloration genes. Our analyses suggest modern birds have maintained a repertoire of up to 15 opsins. Synteny analyses indicate that PARA and PARIE pineal opsins were lost, probably in conjunction with the degeneration of the parietal organ. Eleven of the 15 avian opsins evolved in a non-neutral pattern, confirming the adaptive importance of vision in birds. Visual conopsins sw1, sw2 and lw evolved under negative selection, while the dim-light RH1 photopigment diversified. The evolutionary patterns of sw1 and of violet/ultraviolet sensitivity in birds suggest that avian ancestors had violet-sensitive vision. Additionally, we demonstrate an adaptive association between the RH2 opsin and the MC1R plumage color gene, suggesting that plumage coloration has been photic mediated. At the intra-avian level we observed some unique adaptive patterns. For example, barn owl showed early signs of pseudogenization in RH2, perhaps in response to nocturnal behavior, and penguins had amino acid deletions in RH2 sites responsible for the red shift and retinal binding. These patterns in the barn owl and penguins were convergent with adaptive strategies in nocturnal and aquatic mammals, respectively. We conclude that birds have evolved diverse opsin adaptations through gene loss, adaptive selection and coevolution with plumage coloration, and that differentiated selective patterns at the species level suggest novel photic pressures to influence evolutionary patterns of more-recent lineages.

  8. Adapting a rapid river assessment protocols to be used by elementary school children

    Directory of Open Access Journals (Sweden)

    Guilherme Malafaia

    2012-12-01

    Full Text Available The present study aimed to adapt a rapid river assessment protocols (RAP to be used by elementary school children. The study was conducted in Ipameri, GO and the RAP was adapted for the evaluation of streams in the Cerrado biome. Based on two protocol models, the developed RAP included: physical parameters that affect the functioning of streams, language adapted to the educational level of elementary school and the presence of drawings that could facilitate the field application of RAP by the students. For consolidation of the adapted instrument, it was offered a monitoring workshop to 95 students from two public education institutions, and developed an analysis and interpretation of the pattern of responses obtained during the practical step of the workshop. The Bartlett and Levene tests revealed no statistical differences between the response patterns of the students, allowing to infer that the developed RAP was understandable by the evaluators. The application of the RAP was fast (20 to 40 minutes and the students reported that the developed instrument helped them to familiarize with environmental issues. In addition, the monitoring workshop helped them to understand the instrument and the available illustrations facilitated the field evaluation. In addition, the students concluded that they have become aware of the issues related to the water resource preservation and also that participation in the environmental monitoring workshop allowed the appropriation of knowledge about the river system functioning. It was concluded that adapted RAP has been proved to be a useful and interesting tool for using in environmental education projects and programs.

  9. Rapid Evolution of Coral Proteins Responsible for Interaction with the Environment

    Science.gov (United States)

    Matz, Mikhail V.; Bayer, Till; Aranda, Manuel; Buschiazzo, Emmanuel; DeSalvo, Michael K.; Lindquist, Erika; Szmant, Alina M.; Coffroth, Mary Alice; Medina, Mónica

    2011-01-01

    Background Corals worldwide are in decline due to climate change effects (e.g., rising seawater temperatures), pollution, and exploitation. The ability of corals to cope with these stressors in the long run depends on the evolvability of the underlying genetic networks and proteins, which remain largely unknown. A genome-wide scan for positively selected genes between related coral species can help to narrow down the search space considerably. Methodology/Principal Findings We screened a set of 2,604 putative orthologs from EST-based sequence datasets of the coral species Acropora millepora and Acropora palmata to determine the fraction and identity of proteins that may experience adaptive evolution. 7% of the orthologs show elevated rates of evolution. Taxonomically-restricted (i.e. lineage-specific) genes show a positive selection signature more frequently than genes that are found across many animal phyla. The class of proteins that displayed elevated evolutionary rates was significantly enriched for proteins involved in immunity and defense, reproduction, and sensory perception. We also found elevated rates of evolution in several other functional groups such as management of membrane vesicles, transmembrane transport of ions and organic molecules, cell adhesion, and oxidative stress response. Proteins in these processes might be related to the endosymbiotic relationship corals maintain with dinoflagellates in the genus Symbiodinium. Conclusion/Relevance This study provides a birds-eye view of the processes potentially underlying coral adaptation, which will serve as a foundation for future work to elucidate the rates, patterns, and mechanisms of corals' evolutionary response to global climate change. PMID:21633702

  10. Rapid Evolution of Coral Proteins Responsible for Interaction with the Environment

    Energy Technology Data Exchange (ETDEWEB)

    Voolstra, Christian R.; Sunagawa, Shinichi; Matz, Mikhail V.; Bayer, Till; Aranda, Manuel; Buschiazzo, Emmanuel; DeSalvo, Michael K.; Lindquist, Erika; Szmant, Alina M.; Coffroth, Mary Alice; Medina, Monica

    2011-01-31

    Background: Corals worldwide are in decline due to climate change effects (e.g., rising seawater temperatures), pollution, and exploitation. The ability of corals to cope with these stressors in the long run depends on the evolvability of the underlying genetic networks and proteins, which remain largely unknown. A genome-wide scan for positively selected genes between related coral species can help to narrow down the search space considerably. Methodology/Principal Findings: We screened a set of 2,604 putative orthologs from EST-based sequence datasets of the coral species Acropora millepora and Acropora palmata to determine the fraction and identity of proteins that may experience adaptive evolution. 7percent of the orthologs show elevated rates of evolution. Taxonomically-restricted (i.e. lineagespecific) genes show a positive selection signature more frequently than genes that are found across many animal phyla. The class of proteins that displayed elevated evolutionary rates was significantly enriched for proteins involved in immunity and defense, reproduction, and sensory perception. We also found elevated rates of evolution in several other functional groups such as management of membrane vesicles, transmembrane transport of ions and organic molecules, cell adhesion, and oxidative stress response. Proteins in these processes might be related to the endosymbiotic relationship corals maintain with dinoflagellates in the genus Symbiodinium. Conclusion/Relevance: This study provides a birds-eye view of the processes potentially underlying coral adaptation, which will serve as a foundation for future work to elucidate the rates, patterns, and mechanisms of corals? evolutionary response to global climate change.

  11. Rapid evolution of coral proteins responsible for interaction with the environment.

    Directory of Open Access Journals (Sweden)

    Christian R Voolstra

    Full Text Available BACKGROUND: Corals worldwide are in decline due to climate change effects (e.g., rising seawater temperatures, pollution, and exploitation. The ability of corals to cope with these stressors in the long run depends on the evolvability of the underlying genetic networks and proteins, which remain largely unknown. A genome-wide scan for positively selected genes between related coral species can help to narrow down the search space considerably. METHODOLOGY/PRINCIPAL FINDINGS: We screened a set of 2,604 putative orthologs from EST-based sequence datasets of the coral species Acropora millepora and Acropora palmata to determine the fraction and identity of proteins that may experience adaptive evolution. 7% of the orthologs show elevated rates of evolution. Taxonomically-restricted (i.e. lineage-specific genes show a positive selection signature more frequently than genes that are found across many animal phyla. The class of proteins that displayed elevated evolutionary rates was significantly enriched for proteins involved in immunity and defense, reproduction, and sensory perception. We also found elevated rates of evolution in several other functional groups such as management of membrane vesicles, transmembrane transport of ions and organic molecules, cell adhesion, and oxidative stress response. Proteins in these processes might be related to the endosymbiotic relationship corals maintain with dinoflagellates in the genus Symbiodinium. CONCLUSION/RELEVANCE: This study provides a birds-eye view of the processes potentially underlying coral adaptation, which will serve as a foundation for future work to elucidate the rates, patterns, and mechanisms of corals' evolutionary response to global climate change.

  12. Organizational Adaptation to the Rapidly Changing External Environment: A Case Study of Strategic Marketing at Notre Dame College in Ohio

    Science.gov (United States)

    Brown, Shawn M.

    2012-01-01

    This thesis examined the role of strategic marketing in organizational adaptation to a rapidly changing and competitive external environment among institutions of higher education. Colleges and universities adapt to external pressures as open systems operating within a broader external environment (Bess & Dee, 2008; Keller, 1983). How does…

  13. Whole-Genome Sequencing of Native Sheep Provides Insights into Rapid Adaptations to Extreme Environments

    Science.gov (United States)

    Yang, Ji; Li, Wen-Rong; Lv, Feng-Hua; He, San-Gang; Tian, Shi-Lin; Peng, Wei-Feng; Sun, Ya-Wei; Zhao, Yong-Xin; Tu, Xiao-Long; Zhang, Min; Xie, Xing-Long; Wang, Yu-Tao; Li, Jin-Quan; Liu, Yong-Gang; Shen, Zhi-Qiang; Wang, Feng; Liu, Guang-Jian; Lu, Hong-Feng; Kantanen, Juha; Han, Jian-Lin; Li, Meng-Hua; Liu, Ming-Jun

    2016-01-01

    Global climate change has a significant effect on extreme environments and a profound influence on species survival. However, little is known of the genome-wide pattern of livestock adaptations to extreme environments over a short time frame following domestication. Sheep (Ovis aries) have become well adapted to a diverse range of agroecological zones, including certain extreme environments (e.g., plateaus and deserts), during their post-domestication (approximately 8–9 kya) migration and differentiation. Here, we generated whole-genome sequences from 77 native sheep, with an average effective sequencing depth of ∼5× for 75 samples and ∼42× for 2 samples. Comparative genomic analyses among sheep in contrasting environments, that is, plateau (>4,000 m above sea level) versus lowland (1500 m) versus low-altitude region (600 mm), and arid zone (400 mm), detected a novel set of candidate genes as well as pathways and GO categories that are putatively associated with hypoxia responses at high altitudes and water reabsorption in arid environments. In addition, candidate genes and GO terms functionally related to energy metabolism and body size variations were identified. This study offers novel insights into rapid genomic adaptations to extreme environments in sheep and other animals, and provides a valuable resource for future research on livestock breeding in response to climate change. PMID:27401233

  14. Hybrid Self-Adaptive Evolution Strategies Guided by Neighborhood Structures for Combinatorial Optimization Problems.

    Science.gov (United States)

    Coelho, V N; Coelho, I M; Souza, M J F; Oliveira, T A; Cota, L P; Haddad, M N; Mladenovic, N; Silva, R C P; Guimarães, F G

    2016-01-01

    This article presents an Evolution Strategy (ES)--based algorithm, designed to self-adapt its mutation operators, guiding the search into the solution space using a Self-Adaptive Reduced Variable Neighborhood Search procedure. In view of the specific local search operators for each individual, the proposed population-based approach also fits into the context of the Memetic Algorithms. The proposed variant uses the Greedy Randomized Adaptive Search Procedure with different greedy parameters for generating its initial population, providing an interesting exploration-exploitation balance. To validate the proposal, this framework is applied to solve three different [Formula: see text]-Hard combinatorial optimization problems: an Open-Pit-Mining Operational Planning Problem with dynamic allocation of trucks, an Unrelated Parallel Machine Scheduling Problem with Setup Times, and the calibration of a hybrid fuzzy model for Short-Term Load Forecasting. Computational results point out the convergence of the proposed model and highlight its ability in combining the application of move operations from distinct neighborhood structures along the optimization. The results gathered and reported in this article represent a collective evidence of the performance of the method in challenging combinatorial optimization problems from different application domains. The proposed evolution strategy demonstrates an ability of adapting the strength of the mutation disturbance during the generations of its evolution process. The effectiveness of the proposal motivates the application of this novel evolutionary framework for solving other combinatorial optimization problems.

  15. A Convergent Differential Evolution Algorithm with Hidden Adaptation Selection for Engineering Optimization

    Directory of Open Access Journals (Sweden)

    Zhongbo Hu

    2014-01-01

    Full Text Available Many improved differential Evolution (DE algorithms have emerged as a very competitive class of evolutionary computation more than a decade ago. However, few improved DE algorithms guarantee global convergence in theory. This paper developed a convergent DE algorithm in theory, which employs a self-adaptation scheme for the parameters and two operators, that is, uniform mutation and hidden adaptation selection (haS operators. The parameter self-adaptation and uniform mutation operator enhance the diversity of populations and guarantee ergodicity. The haS can automatically remove some inferior individuals in the process of the enhancing population diversity. The haS controls the proposed algorithm to break the loop of current generation with a small probability. The breaking probability is a hidden adaptation and proportional to the changes of the number of inferior individuals. The proposed algorithm is tested on ten engineering optimization problems taken from IEEE CEC2011.

  16. Speciation on oceanic islands: rapid adaptive divergence vs. cryptic speciation in a Guadalupe Island songbird (Aves: Junco.

    Directory of Open Access Journals (Sweden)

    Pau Aleixandre

    Full Text Available The evolutionary divergence of island populations, and in particular the tempo and relative importance of neutral and selective factors, is of central interest to the study of speciation. The rate of phenotypic evolution upon island colonization can vary greatly among taxa, and cases of convergent evolution can further confound the inference of correct evolutionary histories. Given the potential lability of phenotypic characters, molecular dating of insular lineages analyzed in a phylogenetic framework provides a critical tool to test hypotheses of phenotypic divergence since colonization. The Guadalupe junco is the only insular form of the polymorphic dark-eyed junco (Junco hyemalis, and shares eye and plumage color with continental morphs, yet presents an enlarged bill and reduced body size. Here we use variation in mtDNA sequence, morphological traits and song variables to test whether the Guadalupe junco evolved rapidly following a recent colonization by a mainland form of the dark-eyed junco, or instead represents a well-differentiated "cryptic" lineage adapted to the insular environment through long-term isolation, with plumage coloration a result of evolutionary convergence. We found high mtDNA divergence of the island lineage with respect to both continental J. hyemalis and J. phaeonotus, representing a history of isolation of about 600,000 years. The island lineage was also significantly differentiated in morphological and male song variables. Moreover, and contrary to predictions regarding diversity loss on small oceanic islands, we document relatively high levels of both haplotypic and song-unit diversity on Guadalupe Island despite long-term isolation in a very small geographic area. In contrast to prevailing taxonomy, the Guadalupe junco is an old, well-differentiated evolutionary lineage, whose similarity to mainland juncos in plumage and eye color is due to evolutionary convergence. Our findings confirm the role of remote islands

  17. Speciation on Oceanic Islands: Rapid Adaptive Divergence vs. Cryptic Speciation in a Guadalupe Island Songbird (Aves: Junco)

    Science.gov (United States)

    Aleixandre, Pau; Hernández Montoya, Julio; Milá, Borja

    2013-01-01

    The evolutionary divergence of island populations, and in particular the tempo and relative importance of neutral and selective factors, is of central interest to the study of speciation. The rate of phenotypic evolution upon island colonization can vary greatly among taxa, and cases of convergent evolution can further confound the inference of correct evolutionary histories. Given the potential lability of phenotypic characters, molecular dating of insular lineages analyzed in a phylogenetic framework provides a critical tool to test hypotheses of phenotypic divergence since colonization. The Guadalupe junco is the only insular form of the polymorphic dark-eyed junco (Junco hyemalis), and shares eye and plumage color with continental morphs, yet presents an enlarged bill and reduced body size. Here we use variation in mtDNA sequence, morphological traits and song variables to test whether the Guadalupe junco evolved rapidly following a recent colonization by a mainland form of the dark-eyed junco, or instead represents a well-differentiated “cryptic” lineage adapted to the insular environment through long-term isolation, with plumage coloration a result of evolutionary convergence. We found high mtDNA divergence of the island lineage with respect to both continental J. hyemalis and J. phaeonotus, representing a history of isolation of about 600,000 years. The island lineage was also significantly differentiated in morphological and male song variables. Moreover, and contrary to predictions regarding diversity loss on small oceanic islands, we document relatively high levels of both haplotypic and song-unit diversity on Guadalupe Island despite long-term isolation in a very small geographic area. In contrast to prevailing taxonomy, the Guadalupe junco is an old, well-differentiated evolutionary lineage, whose similarity to mainland juncos in plumage and eye color is due to evolutionary convergence. Our findings confirm the role of remote islands in driving

  18. Local adaptation and the evolution of phenotypic plasticity in Trinidadian guppies (Poecilia reticulata).

    Science.gov (United States)

    Torres-Dowdall, Julián; Handelsman, Corey A; Reznick, David N; Ghalambor, Cameron K

    2012-11-01

    Divergent selection pressures across environments can result in phenotypic differentiation that is due to local adaptation, phenotypic plasticity, or both. Trinidadian guppies exhibit local adaptation to the presence or absence of predators, but the degree to which predator-induced plasticity contributes to population differentiation is less clear. We conducted common garden experiments on guppies obtained from two drainages containing populations adapted to high- and low-predation environments. We reared full-siblings from all populations in treatments simulating the presumed ancestral (predator cues present) and derived (predator cues absent) conditions and measured water column use, head morphology, and size at maturity. When reared in presence of predator cues, all populations had phenotypes that were typical of a high-predation ecotype. However, when reared in the absence of predator cues, guppies from high- and low-predation regimes differed in head morphology and size at maturity; the qualitative nature of these differences corresponded to those that characterize adaptive phenotypes in high- versus low-predation environments. Thus, divergence in plasticity is due to phenotypic differences between high- and low-predation populations when reared in the absence of predator cues. These results suggest that plasticity might initially play an important role during colonization of novel environments, and then evolve as a by-product of adaptation to the derived environment. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  19. Evolution of plasticity and adaptive responses to climate change along climate gradients.

    Science.gov (United States)

    Kingsolver, Joel G; Buckley, Lauren B

    2017-08-16

    The relative contributions of phenotypic plasticity and adaptive evolution to the responses of species to recent and future climate change are poorly understood. We combine recent (1960-2010) climate and phenotypic data with microclimate, heat balance, demographic and evolutionary models to address this issue for a montane butterfly, Colias eriphyle , along an elevational gradient. Our focal phenotype, wing solar absorptivity, responds plastically to developmental (pupal) temperatures and plays a central role in thermoregulatory adaptation in adults. Here, we show that both the phenotypic and adaptive consequences of plasticity vary with elevation. Seasonal changes in weather generate seasonal variation in phenotypic selection on mean and plasticity of absorptivity, especially at lower elevations. In response to climate change in the past 60 years, our models predict evolutionary declines in mean absorptivity (but little change in plasticity) at high elevations, and evolutionary increases in plasticity (but little change in mean) at low elevation. The importance of plasticity depends on the magnitude of seasonal variation in climate relative to interannual variation. Our results suggest that selection and evolution of both trait means and plasticity can contribute to adaptive response to climate change in this system. They also illustrate how plasticity can facilitate rather than retard adaptive evolutionary responses to directional climate change in seasonal environments. © 2017 The Author(s).

  20. Evolution of taxis responses in virtual bacteria: non-adaptive dynamics.

    Directory of Open Access Journals (Sweden)

    Richard A Goldstein

    2008-05-01

    Full Text Available Bacteria are able to sense and respond to a variety of external stimuli, with responses that vary from stimuli to stimuli and from species to species. The best-understood is chemotaxis in the model organism Escherichia coli, where the dynamics and the structure of the underlying pathway are well characterised. It is not clear, however, how well this detailed knowledge applies to mechanisms mediating responses to other stimuli or to pathways in other species. Furthermore, there is increasing experimental evidence that bacteria integrate responses from different stimuli to generate a coherent taxis response. We currently lack a full understanding of the different pathway structures and dynamics and how this integration is achieved. In order to explore different pathway structures and dynamics that can underlie taxis responses in bacteria, we perform a computational simulation of the evolution of taxis. This approach starts with a population of virtual bacteria that move in a virtual environment based on the dynamics of the simple biochemical pathways they harbour. As mutations lead to changes in pathway structure and dynamics, bacteria better able to localise with favourable conditions gain a selective advantage. We find that a certain dynamics evolves consistently under different model assumptions and environments. These dynamics, which we call non-adaptive dynamics, directly couple tumbling probability of the cell to increasing stimuli. Dynamics that are adaptive under a wide range of conditions, as seen in the chemotaxis pathway of E. coli, do not evolve in these evolutionary simulations. However, we find that stimulus scarcity and fluctuations during evolution results in complex pathway dynamics that result both in adaptive and non-adaptive dynamics depending on basal stimuli levels. Further analyses of evolved pathway structures show that effective taxis dynamics can be mediated with as few as two components. The non-adaptive dynamics

  1. The evolution of an annual life cycle in killifish: adaptation to ephemeral aquatic environments through embryonic diapause.

    Science.gov (United States)

    Furness, Andrew I

    2016-08-01

    An annual life cycle is characterized by growth, maturity, and reproduction condensed into a single, short season favourable to development, with production of embryos (seeds, cysts, or eggs) capable of surviving harsh conditions which juveniles or adults cannot tolerate. More typically associated with plants in desert environments, or temperate-zone insects exposed to freezing winters, the evolution of an annual life cycle in vertebrates is fairly novel. Killifish, small sexually dimorphic fishes in the Order Cyprinodontiformes, have adapted to seasonally ephemeral water bodies across much of Africa and South America through the independent evolution of an annual life history. These annual killifish produce hardy desiccation-resistant eggs that undergo diapause (developmental arrest) and remain buried in the soil for long periods when fish have perished due to the drying of their habitat. Killifish are found in aquatic habitats that span a continuum from permanent and stable to seasonal and variable, thus providing a useful system in which to piece together the evolutionary history of this life cycle using natural comparative variation. I first review adaptations for life in ephemeral aquatic environments in killifish, with particular emphasis on the evolution of embryonic diapause. I then bring together available evidence from a variety of approaches and provide a scenario for how this annual life cycle evolved. There are a number of features within Aplocheiloidei killifish including their inhabitation of marginal or edge aquatic habitat, their small size and rapid attainment of maturity, and egg properties that make them particularly well suited to the colonization of ephemeral waters. © 2015 Cambridge Philosophical Society.

  2. The evolution of cultural adaptations: Fijian food taboos protect against dangerous marine toxins

    Science.gov (United States)

    Henrich, Joseph; Henrich, Natalie

    2010-01-01

    The application of evolutionary theory to understanding the origins of our species' capacities for social learning has generated key insights into cultural evolution. By focusing on how our psychology has evolved to adaptively extract beliefs and practices by observing others, theorists have hypothesized how social learning can, over generations, give rise to culturally evolved adaptations. While much field research documents the subtle ways in which culturally transmitted beliefs and practices adapt people to their local environments, and much experimental work reveals the predicted patterns of social learning, little research connects real-world adaptive cultural traits to the patterns of transmission predicted by these theories. Addressing this gap, we show how food taboos for pregnant and lactating women in Fiji selectively target the most toxic marine species, effectively reducing a woman's chances of fish poisoning by 30 per cent during pregnancy and 60 per cent during breastfeeding. We further analyse how these taboos are transmitted, showing support for cultural evolutionary models that combine familial transmission with selective learning from locally prestigious individuals. In addition, we explore how particular aspects of human cognitive processes increase the frequency of some non-adaptive taboos. This case demonstrates how evolutionary theory can be deployed to explain both adaptive and non-adaptive behavioural patterns. PMID:20667878

  3. Convergent Evolution of Unique Morphological Adaptations to a Subterranean Environment in Cave Millipedes (Diplopoda).

    Science.gov (United States)

    Liu, Weixin; Golovatch, Sergei; Wesener, Thomas; Tian, Mingyi

    2017-01-01

    Animal life in caves has fascinated researchers and the public alike because of the unusual and sometimes bizarre morphological adaptations observed in numerous troglobitic species. Despite their worldwide diversity, the adaptations of cave millipedes (Diplopoda) to a troglobitic lifestyle have rarely been examined. In this study, morphological characters were analyzed in species belonging to four different orders (Glomerida, Polydesmida, Chordeumatida, and Spirostreptida) and six different families (Glomeridae, Paradoxosomatidae, Polydesmidae, Haplodesmidae, Megalotylidae, and Cambalopsidae) that represent the taxonomic diversity of class Diplopoda. We focused on the recently discovered millipede fauna of caves in southern China. Thirty different characters were used to compare cave troglobites and epigean species within the same genera. A character matrix was created to analyze convergent evolution of cave adaptations. Males and females were analyzed independently to examine sex differences in cave adaptations. While 10 characters only occurred in a few phylogenetic groups, 20 characters were scored for in all families. Of these, four characters were discovered to have evolved convergently in all troglobitic millipedes. The characters that represented potential morphological cave adaptations in troglobitic species were: (1) a longer body; (2) a lighter body color; (3) elongation of the femora; and (4) elongation of the tarsi of walking legs. Surprisingly, female, but not male, antennae were more elongated in troglobites than in epigean species. Our study clearly shows that morphological adaptations have evolved convergently in different, unrelated millipede orders and families, most likely as a direct adaptation to cave life.

  4. Evidence that implicit assumptions of 'no evolution' of disease vectors in changing environments can be violated on a rapid timescale.

    Science.gov (United States)

    Egizi, Andrea; Fefferman, Nina H; Fonseca, Dina M

    2015-04-05

    Projected impacts of climate change on vector-borne disease dynamics must consider many variables relevant to hosts, vectors and pathogens, including how altered environmental characteristics might affect the spatial distributions of vector species. However, many predictive models for vector distributions consider their habitat requirements to be fixed over relevant time-scales, when they may actually be capable of rapid evolutionary change and even adaptation. We examine the genetic signature of a spatial expansion by an invasive vector into locations with novel temperature conditions compared to its native range as a proxy for how existing vector populations may respond to temporally changing habitat. Specifically, we compare invasions into different climate ranges and characterize the importance of selection from the invaded habitat. We demonstrate that vector species can exhibit evolutionary responses (altered allelic frequencies) to a temperature gradient in as little as 7-10 years even in the presence of high gene flow, and further, that this response varies depending on the strength of selection. We interpret these findings in the context of climate change predictions for vector populations and emphasize the importance of incorporating vector evolution into models of future vector-borne disease dynamics. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Non-equilibrium physics and evolution--adaptation, extinction, and ecology: a key issues review.

    Science.gov (United States)

    Kussell, E; Vucelja, M

    2014-10-01

    Evolutionary dynamics in nature constitute an immensely complex non-equilibrium process. We review the application of physical models of evolution, by focusing on adaptation, extinction, and ecology. In each case, we examine key concepts by working through examples. Adaptation is discussed in the context of bacterial evolution, with a view toward the relationship between growth rates, mutation rates, selection strength, and environmental changes. Extinction dynamics for an isolated population are reviewed, with emphasis on the relation between timescales of extinction, population size, and temporally correlated noise. Ecological models are discussed by focusing on the effect of spatial interspecies interactions on diversity. Connections between physical processes--such as diffusion, turbulence, and localization--and evolutionary phenomena are highlighted.

  6. Adaptive evolution of an artificial RNA genome to a reduced ribosome environment.

    Science.gov (United States)

    Mizuuchi, Ryo; Ichihashi, Norikazu; Usui, Kimihito; Kazuta, Yasuaki; Yomo, Tetsuya

    2015-03-20

    The reconstitution of an artificial system that has the same evolutionary ability as a living thing is a major challenge in the in vitro synthetic biology. In this study, we tested the adaptive evolutionary ability of an artificial RNA genome replication system, termed the translation-coupled RNA replication (TcRR) system. In a previous work, we performed a study of the long-term evolution of the genome with an excess amount of ribosome. In this study, we continued the evolution experiment in a reduced-ribosome environment and observed that the mutant genome compensated for the reduced ribosome concentration. This result demonstrated the ability of the TcRR system to adapt and may be a step toward generating living things with evolutionary ability.

  7. Nutritional immunity. Escape from bacterial iron piracy through rapid evolution of transferrin.

    Science.gov (United States)

    Barber, Matthew F; Elde, Nels C

    2014-12-12

    Iron sequestration provides an innate defense, termed nutritional immunity, leading pathogens to scavenge iron from hosts. Although the molecular basis of this battle for iron is established, its potential as a force for evolution at host-pathogen interfaces is unknown. We show that the iron transport protein transferrin is engaged in ancient and ongoing evolutionary conflicts with TbpA, a transferrin surface receptor from bacteria. Single substitutions in transferrin at rapidly evolving sites reverse TbpA binding, providing a mechanism to counteract bacterial iron piracy among great apes. Furthermore, the C2 transferrin polymorphism in humans evades TbpA variants from Haemophilus influenzae, revealing a functional basis for standing genetic variation. These findings identify a central role for nutritional immunity in the persistent evolutionary conflicts between primates and bacterial pathogens. Copyright © 2014, American Association for the Advancement of Science.

  8. The Rapid Evolution of the Exciting Star of the Stingray Nebula

    Science.gov (United States)

    Reindl, N.; Rauch, T.; Parthasarathy, M.; Werner, K.; Kruk, J.W.; Hamann, W. R.; Sander, A.; Todt, H.

    2014-01-01

    Context: SAO244567, the exciting star of the Stingray nebula, is rapidly evolving. Previous analyses suggested that it has heated up from an effective temperature of about 21 kK in 1971 to over 50 kK in the 1990s. Canonical post-asymptotic giant branch evolution suggests a relatively high mass while previous analyses indicate a low-mass star. Aims: A comprehensive model-atmosphere analysis of UV and optical spectra taken during 1988-2006 should reveal the detailed temporal evolution of its atmospheric parameters and provide explanations for the unusually fast evolution. Methods: Fitting line profiles from static and expanding non-LTE model atmospheres to the observed spectra allowed us to study the temporal change of effective temperature, surface gravity, mass-loss rate, and terminal wind velocity. In addition, we determined the chemical composition of the atmosphere. Results: We find that the central star has steadily increased its effective temperature from 38 kK in 1988 to a peak value of 60 kK in 2002. During the same time, the star was contracting, as concluded from an increase in surface gravity from log g = 4.8 to 6.0 and a drop in luminosity. Simultaneously, the mass-loss rate declined from log(M/M (solar mass) yr (exp -1)) = -9.0 to -11.6 and the terminal wind velocity increased from v (infinity) = 1800 km s (exp -1) to 2800 km s (exp -1). Since around 2002, the star stopped heating and has cooled down again to 55 kK by 2006. It has a largely solar surface composition with the exception of slightly subsolar carbon, phosphorus, and sulfur. The results are discussed by considering different evolutionary scenarios. Conclusions: The position of SAO244567 in the log T (sub eff) -log g plane places the star in the region of sdO stars. By comparison with stellar-evolution calculations, we confirm that SAO244567 must be a low-mass star (M nebula with a kinematical age of only about 1000 years. We speculate that the star could be a late He-shell flash object

  9. Comparison-based Adaptive Strategy Selection with Bandits in Differential Evolution

    OpenAIRE

    Fialho, Álvaro; Ros, Raymond; Schoenauer, Marc; Sebag, Michèle

    2010-01-01

    International audience; Differential Evolution is a popular powerful optimization algorithm for continuous problems. Part of its efficiency comes from the availability of several mutation strategies that can (and must) be chosen in a problem-dependent way. However, such flexibility also makes DE difficult to be automatically used in a new context. F-AUC-Bandit is a comparison-based Adaptive Operator Selection method that has been proposed in the GA framework. It is used here for the on-line c...

  10. Evolution of the Marginal Ice Zone: Adaptive Sampling with Autonomous Gliders

    Science.gov (United States)

    2015-09-30

    access marginal ice zone . When operating in ice-covered waters, gliders navigate by trilateration from acoustic sound sources (or dead reckoning should...release; distribution is unlimited. Evolution of the Marginal Ice Zone : Adaptive Sampling with Autonomous Gliders Craig M. Lee, Luc Rainville and Jason I...edge after one week. All for gliders did several sections from the open ocean, through the marginal ice zone , to the fully ice-covered ocean (Fig. 1

  11. Multimodal imaging documentation of rapid evolution of retinal changes in handheld laser-induced maculopathy.

    Science.gov (United States)

    Dhrami-Gavazi, Elona; Lee, Winston; Balaratnasingam, Chandrakumar; Kayserman, Larisa; Yannuzzi, Lawrence A; Freund, K Bailey

    2015-01-01

    To use multimodal imaging to document the relatively rapid clinical evolution of handheld laser-induced maculopathy (HLIM). To demonstrate that inadvertent ocular injury can result from devices mislabeled with respect to their power specifications. The clinical course of a 17-year-old male who sustained self-inflicted, central macular damage from a 20-25 s direct stare at a red-spectrum, handheld laser pointer ordered from an internet retailer is provided. Retrospective review of multimodal imaging that includes fundus photography, fluorescein angiography, MultiColor reflectance, eye-tracked spectral domain optical coherence tomography (SD-OCT), fundus autofluorescence, and microperimetry is used to describe the evolving clinical manifestations of HLIM in the first 3 months. Curvilinear bands of dense hyperreflectivity extending from the outer retina and following the Henle fibers were seen on SD-OCT immediately after injury. This characteristic appearance had largely resolved by 2 weeks. There was significant non-uniformity in the morphological characteristics of HLIM lesions between autofluorescence and reflectance images. The pattern of lesion evolution was also significantly different between imaging modalities. Analysis of the laser device showed its wavelength to be correctly listed, but the power was found to be 102.5-105 mW, as opposed to the laser -induced maculopathy, this finding can undergo rapid resolution in the span of several days. In the absence of this finding, other multimodal imaging clues and a careful history may aid in recognizing this diagnosis. A greater awareness regarding inaccurate labeling on some of these devices could help reduce the frequency of this preventable entity.

  12. Has Human Evolution Stopped?

    Directory of Open Access Journals (Sweden)

    Alan R. Templeton

    2010-07-01

    Full Text Available It has been argued that human evolution has stopped because humans now adapt to their environment via cultural evolution and not biological evolution. However, all organisms adapt to their environment, and humans are no exception. Culture defines much of the human environment, so cultural evolution has actually led to adaptive evolution in humans. Examples are given to illustrate the rapid pace of adaptive evolution in response to cultural innovations. These adaptive responses have important implications for infectious diseases, Mendelian genetic diseases, and systemic diseases in current human populations. Moreover, evolution proceeds by mechanisms other than natural selection. The recent growth in human population size has greatly increased the reservoir of mutational variants in the human gene pool, thereby enhancing the potential for human evolution. The increase in human population size coupled with our increased capacity to move across the globe has induced a rapid and ongoing evolutionary shift in how genetic variation is distributed within and among local human populations. In particular, genetic differences between human populations are rapidly diminishing and individual heterozygosity is increasing, with beneficial health effects. Finally, even when cultural evolution eliminates selection on a trait, the trait can still evolve due to natural selection on other traits. Our traits are not isolated, independent units, but rather are integrated into a functional whole, so selection on one trait can cause evolution to occur on another trait, sometimes with mildly maladaptive consequences.

  13. CHO-K1 host cells adapted to growth in glutamine-free medium by FACS-assisted evolution.

    Science.gov (United States)

    Bort, Juan A Hernández; Stern, Beate; Borth, Nicole

    2010-10-01

    During the process of recombinant cell line optimisation for production of biopharmaceuticals, multiple cellular properties like robustness against stress, the attainment of high cell concentrations and maintenance of high viability must be considered to maximize protein yield. To improve growth and viability, glutamine is supplemented as an alternative energy source for rapidly dividing cells that oxidize glucose inefficiently. However, the resulting by-product ammonia is toxic at high concentrations and has a negative impact on protein glycosylation, a major quality-determining parameter of biopharmaceuticals. In this work, the CHO-K1 cell line was adapted to a chemically defined medium and suspension growth within 3 weeks. Subsequently, the glutamine concentration was stepwise reduced from 8 to 4 and 2 mM. After each reduction, both the final cell concentration in the batch and the viability decreased. To force a rapid evolution of cells to achieve high final cell concentrations, cells were seeded at high densities (10(7) cells/mL) and surviving cells were sorted by FACS or MACS when viability declined to 10% (typically after 24 h). Sorted cells were grown in batch until viability declined to 10% and viable cells recovered again. The final sorted population was able to reach comparable or even better viable cell concentrations and showed a significantly improved viability compared to their ancestors. The 2 mM glutamine-adapted cell line was directly transferred into glutamine-free medium and was able to grow at comparable rates without requiring further adaptation. Cells compensated the lack of glutamine by increasing their consumption of glutamate and aspartate.

  14. Analysis of the Lactobacillus casei supragenome and its influence in species evolution and lifestyle adaptation

    Science.gov (United States)

    2012-01-01

    Background The broad ecological distribution of L. casei makes it an insightful subject for research on genome evolution and lifestyle adaptation. To explore evolutionary mechanisms that determine genomic diversity of L. casei, we performed comparative analysis of 17 L. casei genomes representing strains collected from dairy, plant, and human sources. Results Differences in L. casei genome inventory revealed an open pan-genome comprised of 1,715 core and 4,220 accessory genes. Extrapolation of pan-genome data indicates L. casei has a supragenome approximately 3.2 times larger than the average genome of individual strains. Evidence suggests horizontal gene transfer from other bacterial species, particularly lactobacilli, has been important in adaptation of L. casei to new habitats and lifestyles, but evolution of dairy niche specialists also appears to involve gene decay. Conclusions Genome diversity in L. casei has evolved through gene acquisition and decay. Acquisition of foreign genomic islands likely confers a fitness benefit in specific habitats, notably plant-associated niches. Loss of unnecessary ancestral traits in strains collected from bacterial-ripened cheeses supports the hypothesis that gene decay contributes to enhanced fitness in that niche. This study gives the first evidence for a L. casei supragenome and provides valuable insights into mechanisms for genome evolution and lifestyle adaptation of this ecologically flexible and industrially important lactic acid bacterium. Additionally, our data confirm the Distributed Genome Hypothesis extends to non-pathogenic, ecologically flexible species like L. casei. PMID:23035691

  15. Microbial community succession mechanism coupling with adaptive evolution of adsorption performance in chalcopyrite bioleaching.

    Science.gov (United States)

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2015-09-01

    The community succession mechanism of Acidithiobacillus sp. coupling with adaptive evolution of adsorption performance were systematically investigated. Specifically, the μmax of attached and free cells was increased and peak time was moved ahead, indicating both cell growth of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans was promoted. In the mixed strains system, the domination courses of A. thiooxidans was dramatically shortened from 22th day to 15th day, although community structure finally approached to the normal system. Compared to A. ferrooxidans, more positive effects of adaptive evolution on cell growth of A. thiooxidans were shown in either single or mixed strains system. Moreover, higher concentrations of sulfate and ferric ions indicated that both sulfur and iron metabolism was enhanced, especially of A. thiooxidans. Consistently, copper ion production was improved from 65.5 to 88.5 mg/L. This new adaptive evolution and community succession mechanism may be useful for guiding similar bioleaching processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Laboratory Evolution to Alternating Substrate Environments Yields Distinct Phenotypic and Genetic Adaptive Strategies.

    Science.gov (United States)

    Sandberg, Troy E; Lloyd, Colton J; Palsson, Bernhard O; Feist, Adam M

    2017-07-01

    Adaptive laboratory evolution (ALE) experiments are often designed to maintain a static culturing environment to minimize confounding variables that could influence the adaptive process, but dynamic nutrient conditions occur frequently in natural and bioprocessing settings. To study the nature of carbon substrate fitness tradeoffs, we evolved batch cultures of Escherichia coli via serial propagation into tubes alternating between glucose and either xylose, glycerol, or acetate. Genome sequencing of evolved cultures revealed several genetic changes preferentially selected for under dynamic conditions and different adaptation strategies depending on the substrates being switched between; in some environments, a persistent "generalist" strain developed, while in another, two "specialist" subpopulations arose that alternated dominance. Diauxic lag phenotype varied across the generalists and specialists, in one case being completely abolished, while gene expression data distinguished the transcriptional strategies implemented by strains in pursuit of growth optimality. Genome-scale metabolic modeling techniques were then used to help explain the inherent substrate differences giving rise to the observed distinct adaptive strategies. This study gives insight into the population dynamics of adaptation in an alternating environment and into the underlying metabolic and genetic mechanisms. Furthermore, ALE-generated optimized strains have phenotypes with potential industrial bioprocessing applications.IMPORTANCE Evolution and natural selection inexorably lead to an organism's improved fitness in a given environment, whether in a laboratory or natural setting. However, despite the frequent natural occurrence of complex and dynamic growth environments, laboratory evolution experiments typically maintain simple, static culturing environments so as to reduce selection pressure complexity. In this study, we investigated the adaptive strategies underlying evolution to fluctuating

  17. Sanshool on The Fingertip Interferes with Vibration Detection in a Rapidly-Adapting (RA Tactile Channel.

    Directory of Open Access Journals (Sweden)

    Scinob Kuroki

    Full Text Available An Asian spice, Szechuan pepper (sanshool, is well known for the tingling sensation it induces on the mouth and on the lips. Electrophysiological studies have revealed that its active ingredient can induce firing of mechanoreceptor fibres that typically respond to mechanical vibration. Moreover, a human behavioral study has reported that the perceived frequency of sanshool-induced tingling matches with the preferred frequency range of the tactile rapidly adapting (RA channel, suggesting the contribution of sanshool-induced RA channel firing to its unique perceptual experience. However, since the RA channel may not be the only channel activated by sanshool, there could be a possibility that the sanshool tingling percept may be caused in whole or in part by other sensory channels. Here, by using a perceptual interference paradigm, we show that the sanshool-induced RA input indeed contributes to the human tactile processing. The absolute detection thresholds for vibrotactile input were measured with and without sanshool application on the fingertip. Sanshool significantly impaired detection of vibrations at 30 Hz (RA channel dominant frequency, but did not impair detection of higher frequency vibrations at 240 Hz (Pacinian-corpuscle (PC channel dominant frequency or lower frequency vibrations at 1 Hz (slowly adapting 1 (SA1 channel dominant frequency. These results show that the sanshool induces a peripheral RA channel activation that is relevant for tactile perception. This anomalous activation of RA channels may contribute to the unique tingling experience of sanshool.

  18. Acute inhalation of ozone stimulates bronchial C-fibers and rapidly adapting receptors in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Coleridge, J.C.G.; Coleridge, H.M.; Schelegle, E.S.; Green, J.F. (Univ. of California, Davis (United States) Univ. of California, San Francisco (United States))

    1993-05-01

    To identify the afferents responsible for initiating the vagally mediated respiratory changes evoked by acute exposure to ozone, the authors recorded vagal impulses in anesthetized, open-chest, artificially ventilated dogs and examined the pulmonary afferent response to ozone (2--3 ppM in air) delivered to the lower trachea for 20--60 min. Bronchial C-fibers (BrCs) were the lung afferents most susceptible to ozone, the activity of 10 of 11 BrCs increasing from 0.2 [+-] 0.2 to 4.6 [+-] 1.3 impulses/s within 1--7 min of ozone exposure. Ten of 15 rapidly adapting receptors (RARs) were stimulated by ozone, their activity increasing from 1.5 [+-] 0.4 to 4.7 [+-] 0.7 impulses/s. Stimulation of RARs (but not of BrCs) appeared secondary to the ozone-induced reduction of lung compliance because it was abolished by hyperinflation of the lungs. Ozone had little effect on pulmonary C-fibers or slowly adapting pulmonary stretch receptors. The authors' results suggest that both BrCs and RARs contribute to the tachypnea and bronchoconstriction evoked by acute exposure to ozone when vagal conduction is intact and that BrCs alone are responsible for the vagally mediated tachypnea that survives vagal cooling to 7[degrees]C. 23 refs., 5 figs.

  19. Rapid Evolution of microRNA Loci in the Brown Algae.

    Science.gov (United States)

    Cock, J Mark; Liu, Fuli; Duan, Delin; Bourdareau, Simon; Lipinska, Agnieszka P; Coelho, Susana M; Tarver, James E

    2017-03-01

    Stringent searches for microRNAs (miRNAs) have so far only identified these molecules in animals, land plants, chlorophyte green algae, slime molds and brown algae. The identification of miRNAs in brown algae was based on the analysis of a single species, the filamentous brown alga Ectocarpus sp. Here, we have used deep sequencing of small RNAs and a recently published genome sequence to identify miRNAs in a second brown alga, the kelp Saccharina japonica. S. japonica possesses a large number of miRNAs (117) and these miRNAs are highly diverse, falling into 98 different families. Surprisingly, none of the S. japonica miRNAs share significant sequence similarity with the Ectocarpus sp. miRNAs. However, the miRNA repertoires of the two species share a number of structural and genomic features indicating that they were generated by similar evolutionary processes and therefore probably evolved within the context of a common, ancestral miRNA system. This lack of sequence similarity suggests that miRNAs evolve rapidly in the brown algae (the two species are separated by ∼95 Myr of evolution). The sets of predicted targets of miRNAs in the two species were also very different suggesting that the divergence of the miRNAs may have had significant consequences for miRNA function. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Pre-adapted to the maritime Antarctic?--rapid cold hardening of the midge, Eretmoptera murphyi.

    Science.gov (United States)

    Everatt, M J; Worland, M R; Bale, J S; Convey, P; Hayward, S A L

    2012-08-01

    During the 1960s, the midge, Eretmoptera murphyi, was transferred from sub-Antarctic South Georgia (55°S 37°W) where it is endemic to a single location on maritime Antarctic Signy Island (60°S 45°W). Its distribution has since expanded considerably, suggesting that it is pre-adapted to the more severe conditions further south. To test one aspect of the level of its pre-adaptation, the rapid cold hardening (RCH) response in this species was investigated. When juvenile (L1-L2) and mature (L3-L4) larvae of E. murphyi were directly exposed to progressively lower temperatures for 8h, they exhibited Discriminating Temperatures (DTemp, temperature at which there is 10-20% survival of exposed individuals) of -11.5 and -12.5°C, respectively. The mean SCP was above -7.5°C in both larval groups, confirming the finding of previous studies that this species is freeze-tolerant. Following gradual cooling (0.2°Cmin(-1)), survival was significantly greater at the DTemp in both larval groups. The response was strong, lowering the lower lethal temperature (LLT) by up to 6.5°C and maintaining survival above 80% for at least 22h at the DTemp. RCH was also exhibited during the cooling phase of an ecologically relevant thermoperiodic cycle (+4°C to -3°C). Mechanistically, the response did not affect freezing, with no alteration in the supercooling point (SCP) found following gradual cooling, and was not induced while the organism was in a frozen state. These results are discussed in light of E. murphyi's pre-adaptation to conditions on Signy Island and its potential to colonize regions further south in the maritime Antarctic. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Microevolutionary, macroevolutionary, ecological and taxonomical implications of punctuational theories of adaptive evolution.

    Science.gov (United States)

    Flegr, Jaroslav

    2013-01-16

    Punctuational theories of evolution suggest that adaptive evolution proceeds mostly, or even entirely, in the distinct periods of existence of a particular species. The mechanisms of this punctuated nature of evolution suggested by the various theories differ. Therefore the predictions of particular theories concerning various evolutionary phenomena also differ.Punctuational theories can be subdivided into five classes, which differ in their mechanism and their evolutionary and ecological implications. For example, the transilience model of Templeton (class III), genetic revolution model of Mayr (class IV) or the frozen plasticity theory of Flegr (class V), suggests that adaptive evolution in sexual species is operative shortly after the emergence of a species by peripatric speciation--while it is evolutionary plastic. To a major degree, i.e. throughout 98-99% of their existence, sexual species are evolutionarily frozen (class III) or elastic (class IV and V) on a microevolutionary time scale and evolutionarily frozen on a macroevolutionary time scale and can only wait for extinction, or the highly improbable return of a population segment to the plastic state due to peripatric speciation.The punctuational theories have many evolutionary and ecological implications. Most of these predictions could be tested empirically, and should be analyzed in greater depth theoretically. The punctuational theories offer many new predictions that need to be tested, but also provide explanations for a much broader spectrum of known biological phenomena than classical gradualistic evolutionary theories.

  2. Analysis of Adaptive Evolution in Lyssavirus Genomes Reveals Pervasive Diversifying Selection during Species Diversification

    Directory of Open Access Journals (Sweden)

    Carolina M. Voloch

    2014-11-01

    Full Text Available Lyssavirus is a diverse genus of viruses that infect a variety of mammalian hosts, typically causing encephalitis. The evolution of this lineage, particularly the rabies virus, has been a focus of research because of the extensive occurrence of cross-species transmission, and the distinctive geographical patterns present throughout the diversification of these viruses. Although numerous studies have examined pattern-related questions concerning Lyssavirus evolution, analyses of the evolutionary processes acting on Lyssavirus diversification are scarce. To clarify the relevance of positive natural selection in Lyssavirus diversification, we conducted a comprehensive scan for episodic diversifying selection across all lineages and codon sites of the five coding regions in lyssavirus genomes. Although the genomes of these viruses are generally conserved, the glycoprotein (G, RNA-dependent RNA polymerase (L and polymerase (P genes were frequently targets of adaptive evolution during the diversification of the genus. Adaptive evolution is particularly manifest in the glycoprotein gene, which was inferred to have experienced the highest density of positively selected codon sites along branches. Substitutions in the L gene were found to be associated with the early diversification of phylogroups. A comparison between the number of positively selected sites inferred along the branches of RABV population branches and Lyssavirus intespecies branches suggested that the occurrence of positive selection was similar on the five coding regions of the genome in both groups.

  3. Adaptive evolution of mitochondrial energy metabolism genes associated with increased energy demand in flying insects.

    Science.gov (United States)

    Yang, Yunxia; Xu, Shixia; Xu, Junxiao; Guo, Yan; Yang, Guang

    2014-01-01

    Insects are unique among invertebrates for their ability to fly, which raises intriguing questions about how energy metabolism in insects evolved and changed along with flight. Although physiological studies indicated that energy consumption differs between flying and non-flying insects, the evolution of molecular energy metabolism mechanisms in insects remains largely unexplored. Considering that about 95% of adenosine triphosphate (ATP) is supplied by mitochondria via oxidative phosphorylation, we examined 13 mitochondrial protein-encoding genes to test whether adaptive evolution of energy metabolism-related genes occurred in insects. The analyses demonstrated that mitochondrial DNA protein-encoding genes are subject to positive selection from the last common ancestor of Pterygota, which evolved primitive flight ability. Positive selection was also found in insects with flight ability, whereas no significant sign of selection was found in flightless insects where the wings had degenerated. In addition, significant positive selection was also identified in the last common ancestor of Neoptera, which changed its flight mode from direct to indirect. Interestingly, detection of more positively selected genes in indirect flight rather than direct flight insects suggested a stronger selective pressure in insects having higher energy consumption. In conclusion, mitochondrial protein-encoding genes involved in energy metabolism were targets of adaptive evolution in response to increased energy demands that arose during the evolution of flight ability in insects.

  4. Adapting and Evaluating a Rapid, Low-Cost Method to Enumerate Flies in the Household Setting.

    Science.gov (United States)

    Wolfe, Marlene K; Dentz, Holly N; Achando, Beryl; Mureithi, MaryAnne; Wolfe, Tim; Null, Clair; Pickering, Amy J

    2017-02-08

    Diarrhea is a leading cause of death among children under 5 years of age worldwide. Flies are important vectors of diarrheal pathogens in settings lacking networked sanitation services. There is no standardized method for measuring fly density in households; many methods are cumbersome and unvalidated. We adapted a rapid, low-cost fly enumeration technique previously developed for industrial settings, the Scudder fly grill, for field use in household settings. We evaluated its performance in comparison to a sticky tape fly trapping method at latrine and food preparation areas among households in rural Kenya. The grill method was more sensitive; it detected the presence of any flies at 80% (433/543) of sampling locations versus 64% (348/543) of locations by the sticky tape. We found poor concordance between the two methods, suggesting that standardizing protocols is important for comparison of fly densities between studies. Fly species identification was feasible with both methods; however, the sticky tape trap allowed for more nuanced identification. Both methods detected a greater presence of bottle flies near latrines compared with food preparation areas (P < 0.01). The grill method detected more flies at the food preparation area compared with near the latrine (P = 0.014) while the sticky tape method detected no difference. We recommend the Scudder grill as a sensitive fly enumeration tool that is rapid and low cost to implement. © The American Society of Tropical Medicine and Hygiene.

  5. The evolution of structural and chemical heterogeneity during rapid solidification at gas atomization

    Science.gov (United States)

    Golod, V. M.; Sufiiarov, V. Sh

    2017-04-01

    Gas atomization is a high-performance process for manufacturing superfine metal powders. Formation of the powder particles takes place primarily through the fragmentation of alloy melt flow with high-pressure inert gas, which leads to the formation of non-uniform sized micron-scale particles and subsequent their rapid solidification due to heat exchange with gas environment. The article presents results of computer modeling of crystallization process, simulation and experimental studies of the cellular-dendrite structure formation and microsegregation in different size particles. It presents results of adaptation of the approach for local nonequilibrium solidification to conditions of crystallization at gas atomization, detected border values of the particle size at which it is possible a manifestation of diffusionless crystallization.

  6. Broadening of the thermal component of the prompt GRB emission due to rapid temperature evolution

    Science.gov (United States)

    Bharali, Priya; Sahayanathan, Sunder; Misra, Ranjeev; Boruah, Kalyanee

    2017-08-01

    The observations of the prompt emission of gamma ray bursts (GRB) by GLAST Burst Monitor (GBM), on board Fermi Gamma-ray Space Telescope, suggest the presence of a significant thermal spectral component, whose origin is not well understood. Recently, it has been shown that for long duration GRBs, the spectral width as defined as the logarithm of the ratio of the energies at which the spectrum falls to half its peak value, lie in the range of 0.84-1.3 with a median value of 1.07. Thus, while most of the GRB spectra are found to be too narrow to be explained by synchrotron emission from an electron distribution, they are also significantly broader than a blackbody spectrum whose width should be 0.54. Here, we consider the possibility that an intrinsic thermal spectrum from a fire-ball like model, may be observed to be broadened if the system undergoes a rapid temperature evolution. We construct a toy-model to show that for bursts with durations in the range 5-70 s, the widths of their 1 second time-averaged spectra can be at the most ≲ 0.557. Thus, while rapid temperature variation can broaden the detected spectral shape, the observed median value of ˜ 1.07 requires that there must be significant sub-photospheric emission and/or an anisotropic explosion to explain the broadening for most GRB spectra.

  7. Evolution of adaptive diversity and genetic connectivity in Arctic charr (Salvelinus alpinus) in Iceland

    Science.gov (United States)

    Kapralova, K H; Morrissey, M B; Kristjánsson, B K; Ólafsdóttir, G Á; Snorrason, S S; Ferguson, M M

    2011-01-01

    The ecological theory of adaptive radiation predicts that the evolution of phenotypic diversity within species is generated by divergent natural selection arising from different environments and competition between species. Genetic connectivity among populations is likely also to have an important role in both the origin and maintenance of adaptive genetic diversity. Our goal was to evaluate the potential roles of genetic connectivity and natural selection in the maintenance of adaptive phenotypic differences among morphs of Arctic charr, Salvelinus alpinus, in Iceland. At a large spatial scale, we tested the predictive power of geographic structure and phenotypic variation for patterns of neutral genetic variation among populations throughout Iceland. At a smaller scale, we evaluated the genetic differentiation between two morphs in Lake Thingvallavatn relative to historically explicit, coalescent-based null models of the evolutionary history of these lineages. At the large spatial scale, populations are highly differentiated, but weakly structured, both geographically and with respect to patterns of phenotypic variation. At the intralacustrine scale, we observe modest genetic differentiation between two morphs, but this level of differentiation is nonetheless consistent with strong reproductive isolation throughout the Holocene. Rather than a result of the homogenizing effect of gene flow in a system at migration-drift equilibrium, the modest level of genetic differentiation could equally be a result of slow neutral divergence by drift in large populations. We conclude that contemporary and recent patterns of restricted gene flow have been highly conducive to the evolution and maintenance of adaptive genetic variation in Icelandic Arctic charr. PMID:21224880

  8. Adaptation and evolution in marine environments. Vol. 2. The impacts of global change on biodiversity

    Energy Technology Data Exchange (ETDEWEB)

    Verde, Cinzia; Di Prisco, Guido (eds.) [CNR, Napoli (Italy). Inst. of Protein Biochemistry

    2013-02-01

    Offers a regionally focussed approach. Describes research on adaptive evolution. State-of-the-art content. The second volume of ''Adaptation and Evolution in Marine Environments - The Impacts of Global Change on Biodiversity'' from the series ''From Pole to Pole'' integrates the marine biology contribution of the first tome to the IPY 2007-2009, presenting overviews of organisms (from bacteria and ciliates to higher vertebrates) thriving on polar continental shelves, slopes and deep sea. The speed and extent of warming in the Arctic and in regions of Antarctica (the Peninsula, at the present) are greater than elsewhere. Changes impact several parameters, in particular the extent of sea ice; organisms, ecosystems and communities that became finely adapted to increasing cold in the course of millions of years are now becoming vulnerable, and biodiversity is threatened. Investigating evolutionary adaptations helps to foresee the impact of changes in temperate areas, highlighting the invaluable contribution of polar marine research to present and future outcomes of the IPY in the Earth system scenario.

  9. Within-host evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin

    DEFF Research Database (Denmark)

    Marvig, Rasmus Lykke; Pedersen, Søren Damkiær; Khademi, Seyed Mohammad Hossein

    2014-01-01

    advantage in the presence of hemoglobin, thus suggesting that P. aeruginosa evolves toward iron acquisition from hemoglobin. To rule out that this adaptive trait is specific to the DK2 lineage, we inspected the genomes of additional P. aeruginosa lineages isolated from CF airways and found similar adaptive...... pressures act on the pathogens' ability to acquire iron. Here, we investigated the within-host evolution of P. aeruginosa, and we found evidence that P. aeruginosa during long-term infections evolves toward iron acquisition from hemoglobin. This adaptive strategy might be due to a selective loss of other...... iron-scavenging mechanisms and/or an increase in the availability of hemoglobin at the site of infection. This information is relevant to the design of novel CF therapeutics and the development of models of chronic CF infections....

  10. Functional evolution of leptin of Ochotona curzoniae in adaptive thermogenesis driven by cold environmental stress.

    Directory of Open Access Journals (Sweden)

    Jie Yang

    Full Text Available BACKGROUND: Environmental stress can accelerate the directional selection and evolutionary rate of specific stress-response proteins to bring about new or altered functions, enhancing an organism's fitness to challenging environments. Plateau pika (Ochotona curzoniae, an endemic and keystone species on Qinghai-Tibetan Plateau, is a high hypoxia and low temperature tolerant mammal with high resting metabolic rate and non-shivering thermogenesis to cope in this harsh plateau environment. Leptin is a key hormone related to how these animals regulate energy homeostasis. Previous molecular evolutionary analysis helped to generate the hypothesis that adaptive evolution of plateau pika leptin may be driven by cold stress. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis, recombinant pika leptin was first purified. The thermogenic characteristics of C57BL/6J mice injected with pika leptin under warm (23±1°C and cold (5±1°C acclimation is investigated. Expression levels of genes regulating adaptive thermogenesis in brown adipose tissue and the hypothalamus are compared between pika leptin and human leptin treatment, suggesting that pika leptin has adaptively and functionally evolved. Our results show that pika leptin regulates energy homeostasis via reduced food intake and increased energy expenditure under both warm and cold conditions. Compared with human leptin, pika leptin demonstrates a superior induced capacity for adaptive thermogenesis, which is reflected in a more enhanced β-oxidation, mitochondrial biogenesis and heat production. Moreover, leptin treatment combined with cold stimulation has a significant synergistic effect on adaptive thermogenesis, more so than is observed with a single cold exposure or single leptin treatment. CONCLUSIONS/SIGNIFICANCE: These findings support the hypothesis that cold stress has driven the functional evolution of plateau pika leptin as an ecological adaptation to the Qinghai-Tibetan Plateau.

  11. Form and function of damselfish skulls: rapid and repeated evolution into a limited number of trophic niches

    Science.gov (United States)

    Cooper, W James; Westneat, Mark W

    2009-01-01

    biomechanically defined link between structure and the functional ecology of fish skulls, and indicate that certain mechanisms for transmitting motion through their jaw linkages may require particular anatomical configurations, a conclusion that contravenes the concept of "many-to-one mapping" for fish jaw mechanics. Damselfish trophic evolution is characterized by rapid and repeated shifts between a small number of eco-morphological states, an evolutionary pattern that we describe as reticulate adaptive radiation. PMID:19183467

  12. Form and function of damselfish skulls: rapid and repeated evolution into a limited number of trophic niches

    Directory of Open Access Journals (Sweden)

    Cooper W James

    2009-01-01

    data support a tight and biomechanically defined link between structure and the functional ecology of fish skulls, and indicate that certain mechanisms for transmitting motion through their jaw linkages may require particular anatomical configurations, a conclusion that contravenes the concept of "many-to-one mapping" for fish jaw mechanics. Damselfish trophic evolution is characterized by rapid and repeated shifts between a small number of eco-morphological states, an evolutionary pattern that we describe as reticulate adaptive radiation.

  13. Phylogeny and adaptive evolution of the brain-development gene microcephalin (MCPH1 in cetaceans

    Directory of Open Access Journals (Sweden)

    Montgomery Stephen H

    2011-04-01

    Full Text Available Abstract Background Representatives of Cetacea have the greatest absolute brain size among animals, and the largest relative brain size aside from humans. Despite this, genes implicated in the evolution of large brain size in primates have yet to be surveyed in cetaceans. Results We sequenced ~1240 basepairs of the brain development gene microcephalin (MCPH1 in 38 cetacean species. Alignments of these data and a published complete sequence from Tursiops truncatus with primate MCPH1 were utilized in phylogenetic analyses and to estimate ω (rate of nonsynonymous substitution/rate of synonymous substitution using site and branch models of molecular evolution. We also tested the hypothesis that selection on MCPH1 was correlated with brain size in cetaceans using a continuous regression analysis that accounted for phylogenetic history. Our analyses revealed widespread signals of adaptive evolution in the MCPH1 of Cetacea and in other subclades of Mammalia, however, there was not a significant positive association between ω and brain size within Cetacea. Conclusion In conjunction with a recent study of Primates, we find no evidence to support an association between MCPH1 evolution and the evolution of brain size in highly encephalized mammalian species. Our finding of significant positive selection in MCPH1 may be linked to other functions of the gene.

  14. The evolution, maintenance and adaptive function of genetic colour polymorphism in birds.

    Science.gov (United States)

    Roulin, Alexandre

    2004-11-01

    The hypothesis that ornaments can honestly signal quality only if their expression is condition-dependent has dominated the study of the evolution and function of colour traits. Much less interest has been devoted to the adaptive function of colour traits for which the expression is not, or is to a low extent, sensitive to body condition and the environment in which individuals live. The aim of the present paper is to review the current theoretical and empirical knowledge of the evolution, maintenance and adaptive function of colour plumage traits for which the expression is mainly under genetic control. The finding that in many bird species the inheritance of colour morphs follows the laws of Mendel indicates that genetic colour polymorphism is frequent. Polymorphism may have evolved or be maintained because each colour morph facilitates the exploitation of alternative ecological niches as suggested by the observation that individuals are not randomly distributed among habitats with respect to coloration. Consistent with the hypothesis that different colour morphs are linked to alternative strategies is the finding that in a majority of species polymorphism is associated with reproductive parameters, and behavioural, life-history and physiological traits. Experimental studies showed that such covariations can have a genetic basis. These observations suggest that colour polymorphism has an adaptive function. Aviary and field experiments demonstrated that colour polymorphism is used as a criterion in mate-choice decisions and dominance interactions confirming the claim that conspecifics assess each other's colour morphs. The factors favouring the evolution and maintenance of genetic variation in coloration are reviewed, but empirical data are virtually lacking to assess their importance. Although current theory predicts that only condition-dependent traits can signal quality, the present review shows that genetically inherited morphs can reveal the same qualities

  15. An invasive species induces rapid adaptive change in a native predator: cane toads and black snakes in Australia.

    Science.gov (United States)

    Phillips, Ben L; Shine, Richard

    2006-06-22

    Rapid environmental change due to human activities has increased rates of extinction, but some species may be able to adapt rapidly enough to deal with such changes. Our studies of feeding behaviour and physiological resistance to toxins reveal surprisingly rapid adaptive responses in Australian black snakes (Pseudechis porphyriacus) following the invasion of a lethally toxic prey item, the cane toad (Bufo marinus). Snakes from toad-exposed localities showed increased resistance to toad toxin and a decreased preference for toads as prey. Separate laboratory experiments suggest that these changes are not attributable to learning (we were unable to teach naive snakes to avoid toxic prey) or to acquired resistance (repeated sub-lethal doses did not enhance resistance). These results strongly suggest that black snake behaviour and physiology have evolved in response to the presence of toads, and have done so rapidly. Toads were brought to Australia in 1935, so these evolved responses have occurred in fewer than 23 snake generations.

  16. Evolutionary genomics reveals lineage-specific gene loss and rapid evolution of a sperm-specific ion channel complex: CatSpers and CatSperbeta.

    Directory of Open Access Journals (Sweden)

    Xinjiang Cai

    Full Text Available The mammalian CatSper ion channel family consists of four sperm-specific voltage-gated Ca2+ channels that are crucial for sperm hyperactivation and male fertility. All four CatSper subunits are believed to assemble into a heteromultimeric channel complex, together with an auxiliary subunit, CatSperbeta. Here, we report a comprehensive comparative genomics study and evolutionary analysis of CatSpers and CatSperbeta, with important correlation to physiological significance of molecular evolution of the CatSper channel complex. The development of the CatSper channel complex with four CatSpers and CatSperbeta originated as early as primitive metazoans such as the Cnidarian Nematostella vectensis. Comparative genomics revealed extensive lineage-specific gene loss of all four CatSpers and CatSperbeta through metazoan evolution, especially in vertebrates. The CatSper channel complex underwent rapid evolution and functional divergence, while distinct evolutionary constraints appear to have acted on different domains and specific sites of the four CatSper genes. These results reveal unique evolutionary characteristics of sperm-specific Ca2+ channels and their adaptation to sperm biology through metazoan evolution.

  17. Fast growth phenotype of E. coli K-12 from adaptive laboratory evolution does not require intracellular flux rewiring

    DEFF Research Database (Denmark)

    Long, Christopher P.; Gonzalez, Jacqueline E.; Feist, Adam M.

    2017-01-01

    Adaptive laboratory evolution (ALE) is a widely-used method for improving the fitness of microorganisms in selected environmental conditions. It has been applied previously to Escherichia coli K-12 MG1655 during aerobic exponential growth on glucose minimal media, a frequently used model organism...... principal components. The distance between measured and flux balance analysis predicted fluxes was also investigated. It suggested a relatively wide range of similar stoichiometric optima, which opens new questions about the path-dependency of adaptive evolution....

  18. Hybridization of Adaptive Differential Evolution with an Expensive Local Search Method

    Directory of Open Access Journals (Sweden)

    Rashida Adeeb Khanum

    2016-01-01

    Full Text Available Differential evolution (DE is an effective and efficient heuristic for global optimization problems. However, it faces difficulty in exploiting the local region around the approximate solution. To handle this issue, local search (LS techniques could be hybridized with DE to improve its local search capability. In this work, we hybridize an updated version of DE, adaptive differential evolution with optional external archive (JADE with an expensive LS method, Broydon-Fletcher-Goldfarb-Shano (BFGS for solving continuous unconstrained global optimization problems. The new hybrid algorithm is denoted by DEELS. To validate the performance of DEELS, we carried out extensive experiments on well known test problems suits, CEC2005 and CEC2010. The experimental results, in terms of function error values, success rate, and some other statistics, are compared with some of the state-of-the-art algorithms, self-adaptive control parameters in differential evolution (jDE, sequential DE enhanced by neighborhood search for large-scale global optimization (SDENS, and differential ant-stigmergy algorithm (DASA. These comparisons reveal that DEELS outperforms jDE and SDENS except DASA on the majority of test instances.

  19. Identifying innovation in laboratory studies of cultural evolution: rates of retention and measures of adaptation.

    Science.gov (United States)

    Caldwell, Christine A; Cornish, Hannah; Kandler, Anne

    2016-03-19

    In recent years, laboratory studies of cultural evolution have become increasingly prevalent as a means of identifying and understanding the effects of cultural transmission on the form and functionality of transmitted material. The datasets generated by these studies may provide insights into the conditions encouraging, or inhibiting, high rates of innovation, as well as the effect that this has on measures of adaptive cultural change. Here we review recent experimental studies of cultural evolution with a view to elucidating the role of innovation in generating observed trends. We first consider how tasks are presented to participants, and how the corresponding conceptualization of task success is likely to influence the degree of intent underlying any deviations from perfect reproduction. We then consider the measures of interest used by the researchers to track the changes that occur as a result of transmission, and how these are likely to be affected by differing rates of retention. We conclude that considering studies of cultural evolution from the perspective of innovation provides us with valuable insights that help to clarify important differences in research designs, which have implications for the likely effects of variation in retention rates on measures of cultural adaptation. © 2016 The Author(s).

  20. Evidence for rapid topographic evolution and crater degradation on Mercury from simple crater morphometry

    Science.gov (United States)

    Fassett, Caleb I.; Crowley, Malinda C.; Leight, Clarissa; Dyar, M. Darby; Minton, David A.; Hirabayashi, Masatoshi; Thomson, Bradley J.; Watters, Wesley A.

    2017-06-01

    Examining the topography of impact craters and their evolution with time is useful for assessing how fast planetary surfaces evolve. Here, new measurements of depth/diameter (d/D) ratios for 204 craters of 2.5 to 5 km in diameter superposed on Mercury's smooth plains are reported. The median d/D is 0.13, much lower than expected for newly formed simple craters ( 0.21). In comparison, lunar craters that postdate the maria are much less modified, and the median crater in the same size range has a d/D ratio that is nearly indistinguishable from the fresh value. This difference in crater degradation is remarkable given that Mercury's smooth plains and the lunar maria likely have ages that are comparable, if not identical. Applying a topographic diffusion model, these results imply that crater degradation is faster by a factor of approximately two on Mercury than on the Moon, suggesting more rapid landform evolution on Mercury at all scales.Plain Language SummaryMercury and the Moon are both airless bodies that have experienced numerous impact events over billions of years. These impacts form craters in a geologic instant. The question examined in this manuscript is how fast these craters erode after their formation. To simplify the problem, we examined craters of a particular size (2.5 to 5 km in diameter) on a particular geologic terrain type (volcanic smooth plains) on both the Moon and Mercury. We then measured the topography of hundreds of craters on both bodies that met these criteria. Our results suggest that craters on Mercury become shallower much more quickly than craters on the Moon. We estimate that Mercury's topography erodes at a rate at least a factor of two faster than the Moon's.

  1. GPR50 is the mammalian ortholog of Mel1c: Evidence of rapid evolution in mammals

    Directory of Open Access Journals (Sweden)

    Malpaux Benoit

    2008-04-01

    Full Text Available Abstract Background The melatonin receptor subfamily contains three members Mel1a, Mel1b and Mel1c, found in all vertebrates except for Mel1c which is found only in fish, Xenopus species and the chicken. Another receptor, the melatonin related receptor known as GPR50, found exclusively in mammals and later identified as a member of the melatonin receptor subfamily because of its identity to the three melatonin receptors despite its absence of affinity for melatonin. The aim of this study was to describe the evolutionary relationships between GPR50 and the three other members of the melatonin receptor subfamily. Results Using an in silico approach, we demonstrated that GPR50 is the ortholog of the high affinity Mel1c receptor. It was necessary to also study the synteny of this gene to reach this conclusion because classical mathematical models that estimate orthology and build phylogenetic trees were not sufficient. The receptor has been deeply remodelled through evolution by the mutation of numerous amino acids and by the addition of a long C-terminal tail. These alterations have modified its affinity for melatonin and probably affected its interactions with the other two known melatonin receptors MT1 and MT2 that are encoded by Mel1a and Mel1b genes respectively. Evolutionary studies provided evidence that the GPR50 group evolved under different selective pressure as compared to the orthologous groups Me11 a, b, and c. Conclusion This study demonstrated that there are only three members in the melatonin receptor subfamily with one of them (Me11c undergoing rapid evolution from fishes and birds to mammals. Further studies are necessary to investigate the physiological roles of this receptor.

  2. The evolution of annelids reveals two adaptive routes to the interstitial realm.

    Science.gov (United States)

    Struck, Torsten Hugo; Golombek, Anja; Weigert, Anne; Franke, Franziska Anni; Westheide, Wilfried; Purschke, Günter; Bleidorn, Christoph; Halanych, Kenneth Michael

    2015-08-03

    Many animals permanently inhabit the marine interstitium, the space between sand grains [1, 2]. Different evolutionary scenarios may explain the existence of interstitial animals [3, 4]. These scenarios include (1) that the interstitial realm is the ancestral habitat of bilaterians [5, 6], (2) that interstitial taxa evolved from larger ancestors by miniaturization, or (3) progenesis [3]. The first view mirrors the former hypothesis that interstitial annelids, called archiannelids, were at the base of the annelid radiation [7]. Based on morphological data, however, progenesis is generally favored for interstitial annelids today [3, 4, 8]. Herein, our phylogenomic approach revealed that interstitial archiannelids are robustly placed into two groups nested within the annelid tree. Evolution of the first group comprising among others Dinophilidae is best explained by progenesis. In contrast, the second group comprising Protodrilida and Polygordiidae appears to have evolved by stepwise miniaturization adapting from coarser to finer sediments. Thus, in addition to progenesis [3, 4], miniaturization, thought to be too slow for an adaptation to the interstitium [3], is an important second route allowing adaptation to interstitial environments. Both progenesis and miniaturization should be considered when investigating evolution of interstitial taxa [1, 3]. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Functional specialization in regulation and quality control in thermal adaptive evolution.

    Science.gov (United States)

    Yama, Kazuma; Matsumoto, Yuki; Murakami, Yoshie; Seno, Shigeto; Matsuda, Hideo; Gotoh, Kazuyoshi; Motooka, Daisuke; Nakamura, Shota; Ying, Bei-Wen; Yomo, Tetsuya

    2015-11-01

    Distinctive survival strategies, specialized in regulation and in quality control, were observed in thermal adaptive evolution with a laboratory Escherichia coli strain. The two specialists carried a single mutation either within rpoH or upstream of groESL, which led to the activated global regulation by sigma factor 32 or an increased amount of GroEL/ES chaperonins, respectively. Although both specialists succeeded in thermal adaptation, the common winner of the evolution was the specialist in quality control, that is, the strategy of chaperonin-mediated protein folding. To understand this evolutionary consequence, multilevel analyses of cellular status, for example, transcriptome, protein and growth fitness, were carried out. The specialist in quality control showed less change in transcriptional reorganization responding to temperature increase, which was consistent with the finding of that the two specialists showed the biased expression of molecular chaperones. Such repressed changes in gene expression seemed to be advantageous for long-term sustainability because a specific increase in chaperonins not only facilitated the folding of essential gene products but also saved cost in gene expression compared with the overall transcriptional increase induced by rpoH regulation. Functional specialization offered two strategies for successful thermal adaptation, whereas the evolutionary advantageous was more at the points of cost-saving in gene expression and the essentiality in protein folding. © 2015 The Authors. Genes to Cells published by Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  4. Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling

    Energy Technology Data Exchange (ETDEWEB)

    Vrugt, Jasper A [Los Alamos National Laboratory; Hyman, James M [Los Alamos National Laboratory; Robinson, Bruce A [Los Alamos National Laboratory; Higdon, Dave [Los Alamos National Laboratory; Ter Braak, Cajo J F [NETHERLANDS; Diks, Cees G H [UNIV OF AMSTERDAM

    2008-01-01

    Markov chain Monte Carlo (MCMC) methods have found widespread use in many fields of study to estimate the average properties of complex systems, and for posterior inference in a Bayesian framework. Existing theory and experiments prove convergence of well constructed MCMC schemes to the appropriate limiting distribution under a variety of different conditions. In practice, however this convergence is often observed to be disturbingly slow. This is frequently caused by an inappropriate selection of the proposal distribution used to generate trial moves in the Markov Chain. Here we show that significant improvements to the efficiency of MCMC simulation can be made by using a self-adaptive Differential Evolution learning strategy within a population-based evolutionary framework. This scheme, entitled DiffeRential Evolution Adaptive Metropolis or DREAM, runs multiple different chains simultaneously for global exploration, and automatically tunes the scale and orientation of the proposal distribution in randomized subspaces during the search. Ergodicity of the algorithm is proved, and various examples involving nonlinearity, high-dimensionality, and multimodality show that DREAM is generally superior to other adaptive MCMC sampling approaches. The DREAM scheme significantly enhances the applicability of MCMC simulation to complex, multi-modal search problems.

  5. Adaptive evolution of Saccharomyces cerevisiae with enhanced ethanol tolerance for Chinese rice wine fermentation.

    Science.gov (United States)

    Chen, Shuang; Xu, Yan

    2014-08-01

    High tolerance towards ethanol is a desirable property for the Saccharomyces cerevisiae strains used in the alcoholic beverage industry. To improve the ethanol tolerance of an industrial Chinese rice wine yeast, a sequential batch fermentation strategy was used to adaptively evolve a chemically mutagenized Chinese rice wine G85 strain. The high level of ethanol produced under Chinese rice wine-like fermentation conditions was used as the selective pressure. After adaptive evolution of approximately 200 generations, mutant G85X-8 was isolated and shown to have markedly increased ethanol tolerance. The evolved strain also showed higher osmotic and temperature tolerances than the parental strain. Laboratory Chinese rice wine fermentation showed that the evolved G85X-8 strain was able to catabolize sugars more completely than the parental G85 strain. A higher level of yeast cell activity was found in the fermentation mash produced by the evolved strain, but the aroma profiles were similar between the evolved and parental strains. The improved ethanol tolerance in the evolved strain might be ascribed to the altered fatty acids composition of the cell membrane and higher intracellular trehalose concentrations. These results suggest that adaptive evolution is an efficient approach for the non-recombinant modification of industrial yeast strains.

  6. Inventing an arsenal: adaptive evolution and neofunctionalization of snake venom phospholipase A2 genes

    Directory of Open Access Journals (Sweden)

    Lynch Vincent J

    2007-01-01

    Full Text Available Abstract Background Gene duplication followed by functional divergence has long been hypothesized to be the main source of molecular novelty. Convincing examples of neofunctionalization, however, remain rare. Snake venom phospholipase A2 genes are members of large multigene families with many diverse functions, thus they are excellent models to study the emergence of novel functions after gene duplications. Results Here, I show that positive Darwinian selection and neofunctionalization is common in snake venom phospholipase A2 genes. The pattern of gene duplication and positive selection indicates that adaptive molecular evolution occurs immediately after duplication events as novel functions emerge and continues as gene families diversify and are refined. Surprisingly, adaptive evolution of group-I phospholipases in elapids is also associated with speciation events, suggesting adaptation of the phospholipase arsenal to novel prey species after niche shifts. Mapping the location of sites under positive selection onto the crystal structure of phospholipase A2 identified regions evolving under diversifying selection are located on the molecular surface and are likely protein-protein interactions sites essential for toxin functions. Conclusion These data show that increases in genomic complexity (through gene duplications can lead to phenotypic complexity (venom composition and that positive Darwinian selection is a common evolutionary force in snake venoms. Finally, regions identified under selection on the surface of phospholipase A2 enzymes are potential candidate sites for structure based antivenin design.

  7. Inventing an arsenal: adaptive evolution and neofunctionalization of snake venom phospholipase A2 genes.

    Science.gov (United States)

    Lynch, Vincent J

    2007-01-18

    Gene duplication followed by functional divergence has long been hypothesized to be the main source of molecular novelty. Convincing examples of neofunctionalization, however, remain rare. Snake venom phospholipase A2 genes are members of large multigene families with many diverse functions, thus they are excellent models to study the emergence of novel functions after gene duplications. Here, I show that positive Darwinian selection and neofunctionalization is common in snake venom phospholipase A2 genes. The pattern of gene duplication and positive selection indicates that adaptive molecular evolution occurs immediately after duplication events as novel functions emerge and continues as gene families diversify and are refined. Surprisingly, adaptive evolution of group-I phospholipases in elapids is also associated with speciation events, suggesting adaptation of the phospholipase arsenal to novel prey species after niche shifts. Mapping the location of sites under positive selection onto the crystal structure of phospholipase A2 identified regions evolving under diversifying selection are located on the molecular surface and are likely protein-protein interactions sites essential for toxin functions. These data show that increases in genomic complexity (through gene duplications) can lead to phenotypic complexity (venom composition) and that positive Darwinian selection is a common evolutionary force in snake venoms. Finally, regions identified under selection on the surface of phospholipase A2 enzymes are potential candidate sites for structure based antivenin design.

  8. Adaptive evolution of M3 lysin--a candidate gamete recognition protein in the Mytilus edulis species complex.

    Science.gov (United States)

    Lima, Thiago G; McCartney, Michael A

    2013-12-01

    Marine invertebrate gamete recognition proteins (GRPs) are classic examples of rapid adaptive evolution of reproductive proteins, and hybridizing Mytilus blue mussels allow us to study the evolution of GRPs during speciation following secondary contact. Even with frequent hybridization, positive selection drives divergence of M7 lysin, one of the three Mytilus egg vitelline envelope (VE) lysins. Mytilus trossulus and M. edulis form a broad hybrid zone in the Canadian Maritimes and eastern Maine, isolated by strong (but partial) gamete incompatibility. M7 lysin, however, is an unlikely GRP controlling this gametic incompativility, as earlier studies showed either weak or no positive selection and extensive introgression between the two species. We used reverse transcriptase-polymerase chain reaction and cloned several alleles of M3 lysin, a potent VE lysin encoded by a nonhomologous gene whose evolution has not been studied. McDonald-Kreitman and HKA tests reveal strong positive selection, which PAML branch-site models detect in 19.7% of the codons. Protein structure predictions show that replacements map exclusively to one face of the carbohydrate recognition domain (CRD) of this C-type lectin, with codons under positive selection localizing to CRD regions known to control ligand specificity. Polymorphism/divergence analyses show that selective sweep has purged M. edulis but not M. trossulus of polymorphism, and unique to M3 is an absence of fixed substitutions and broad haplotype sharing between M. edulis and Mediterranean M. galloprovincialis. Taken together, these results suggest that different lysins serve as GRPs in different Mytilus hybrid zones, with M3 likely co-opted to play this role in the western Atlantic.

  9. Adaptive evolution of ASPM, a major determinant of cerebral cortical size in humans.

    Science.gov (United States)

    Evans, Patrick D; Anderson, Jeffrey R; Vallender, Eric J; Gilbert, Sandra L; Malcom, Christine M; Dorus, Steve; Lahn, Bruce T

    2004-03-01

    A prominent trend in the evolution of humans is the progressive enlargement of the cerebral cortex. The ASPM (Abnormal spindle-like microcephaly associated) gene has the potential to play a role in this evolutionary process, because mutations in this gene cause severe reductions in the cerebral cortical size of affected humans. Here, we show that the evolution of ASPM is significantly accelerated in great apes, especially along the ape lineages leading to humans. Additionally, the lineage from the last human/chimpanzee ancestor to humans shows an excess of non-synonymous over synonymous substitutions, which is a signature of positive Darwinian selection. A comparison of polymorphism and divergence using the McDonald-Kreitman test confirms that ASPM has indeed experienced intense positive selection during recent human evolution. This test also reveals that, on average, ASPM fixed one advantageous amino acid change in every 300,000-400,000 years since the human lineage diverged from chimpanzees some 5-6 million years ago. We therefore conclude that ASPM underwent strong adaptive evolution in the descent of Homo sapiens, which is consistent with its putative role in the evolutionary enlargement of the human brain.

  10. Comparative genomics reveals adaptive evolution of Asian tapeworm in switching to a new intermediate host.

    Science.gov (United States)

    Wang, Shuai; Wang, Sen; Luo, Yingfeng; Xiao, Lihua; Luo, Xuenong; Gao, Shenghan; Dou, Yongxi; Zhang, Huangkai; Guo, Aijiang; Meng, Qingshu; Hou, Junling; Zhang, Bing; Zhang, Shaohua; Yang, Meng; Meng, Xuelian; Mei, Hailiang; Li, Hui; He, Zilong; Zhu, Xueliang; Tan, Xinyu; Zhu, Xing-Quan; Yu, Jun; Cai, Jianping; Zhu, Guan; Hu, Songnian; Cai, Xuepeng

    2016-09-22

    Taenia saginata, Taenia solium and Taenia asiatica (beef, pork and Asian tapeworms, respectively) are parasitic flatworms of major public health and food safety importance. Among them, T. asiatica is a newly recognized species that split from T. saginata via an intermediate host switch ∼1.14 Myr ago. Here we report the 169- and 168-Mb draft genomes of T. saginata and T. asiatica. Comparative analysis reveals that high rates of gene duplications and functional diversifications might have partially driven the divergence between T. asiatica and T. saginata. We observe accelerated evolutionary rates, adaptive evolutions in homeostasis regulation, tegument maintenance and lipid uptakes, and differential/specialized gene family expansions in T. asiatica that may favour its hepatotropism in the new intermediate host. We also identify potential targets for developing diagnostic or intervention tools against human tapeworms. These data provide new insights into the evolution of Taenia parasites, particularly the recent speciation of T. asiatica.

  11. Comparative genomics reveals adaptive evolution of Asian tapeworm in switching to a new intermediate host

    Science.gov (United States)

    Wang, Shuai; Wang, Sen; Luo, Yingfeng; Xiao, Lihua; Luo, Xuenong; Gao, Shenghan; Dou, Yongxi; Zhang, Huangkai; Guo, Aijiang; Meng, Qingshu; Hou, Junling; Zhang, Bing; Zhang, Shaohua; Yang, Meng; Meng, Xuelian; Mei, Hailiang; Li, Hui; He, Zilong; Zhu, Xueliang; Tan, Xinyu; Zhu, Xing-quan; Yu, Jun; Cai, Jianping; Zhu, Guan; Hu, Songnian; Cai, Xuepeng

    2016-01-01

    Taenia saginata, Taenia solium and Taenia asiatica (beef, pork and Asian tapeworms, respectively) are parasitic flatworms of major public health and food safety importance. Among them, T. asiatica is a newly recognized species that split from T. saginata via an intermediate host switch ∼1.14 Myr ago. Here we report the 169- and 168-Mb draft genomes of T. saginata and T. asiatica. Comparative analysis reveals that high rates of gene duplications and functional diversifications might have partially driven the divergence between T. asiatica and T. saginata. We observe accelerated evolutionary rates, adaptive evolutions in homeostasis regulation, tegument maintenance and lipid uptakes, and differential/specialized gene family expansions in T. asiatica that may favour its hepatotropism in the new intermediate host. We also identify potential targets for developing diagnostic or intervention tools against human tapeworms. These data provide new insights into the evolution of Taenia parasites, particularly the recent speciation of T. asiatica. PMID:27653464

  12. Adaptive Evolution of Extreme Acidophile Sulfobacillus thermosulfidooxidans Potentially Driven by Horizontal Gene Transfer and Gene Loss.

    Science.gov (United States)

    Zhang, Xian; Liu, Xueduan; Liang, Yili; Guo, Xue; Xiao, Yunhua; Ma, Liyuan; Miao, Bo; Liu, Hongwei; Peng, Deliang; Huang, Wenkun; Zhang, Yuguang; Yin, Huaqun

    2017-04-01

    Recent phylogenomic analysis has suggested that three strains isolated from different copper mine tailings around the world were taxonomically affiliated with Sulfobacillus thermosulfidooxidans Here, we present a detailed investigation of their genomic features, particularly with respect to metabolic potentials and stress tolerance mechanisms. Comprehensive analysis of the Sulfobacillus genomes identified a core set of essential genes with specialized biological functions in the survival of acidophiles in their habitats, despite differences in their metabolic pathways. The Sulfobacillus strains also showed evidence for stress management, thereby enabling them to efficiently respond to harsh environments. Further analysis of metabolic profiles provided novel insights into the presence of genomic streamlining, highlighting the importance of gene loss as a main mechanism that potentially contributes to cellular economization. Another important evolutionary force, especially in larger genomes, is gene acquisition via horizontal gene transfer (HGT), which might play a crucial role in the recruitment of novel functionalities. Also, a successful integration of genes acquired from archaeal donors appears to be an effective way of enhancing the adaptive capacity to cope with environmental changes. Taken together, the findings of this study significantly expand the spectrum of HGT and genome reduction in shaping the evolutionary history of Sulfobacillus strains. IMPORTANCE Horizontal gene transfer (HGT) and gene loss are recognized as major driving forces that contribute to the adaptive evolution of microbial genomes, although their relative importance remains elusive. The findings of this study suggest that highly frequent gene turnovers within microorganisms via HGT were necessary to incur additional novel functionalities to increase the capacity of acidophiles to adapt to changing environments. Evidence also reveals a fascinating phenomenon of potential cross-kingdom HGT

  13. Phylogenetic patterns and the adaptive evolution of osmoregulation in fiddler crabs (Brachyura, Uca)

    Science.gov (United States)

    Faria, Samuel Coelho; Provete, Diogo Borges; Thurman, Carl Leo

    2017-01-01

    Salinity is the primary driver of osmoregulatory evolution in decapods, and may have influenced their diversification into different osmotic niches. In semi-terrestrial crabs, hyper-osmoregulatory ability favors sojourns into burrows and dilute media, and provides a safeguard against hemolymph dilution; hypo-osmoregulatory ability underlies emersion capability and a life more removed from water sources. However, most comparative studies have neglected the roles of the phylogenetic and environmental components of inter-specific physiological variation, hindering evaluation of phylogenetic patterns and the adaptive nature of osmoregulatory evolution. Semi-terrestrial fiddler crabs (Uca) inhabit fresh to hyper-saline waters, with species from the Americas occupying higher intertidal habitats than Indo-west Pacific species mainly found in the low intertidal zone. Here, we characterize numerous osmoregulatory traits in all ten fiddler crabs found along the Atlantic coast of Brazil, and we employ phylogenetic comparative methods using 24 species to test for: (i) similarities of osmoregulatory ability among closely related species; (ii) salinity as a driver of osmoregulatory evolution; (iii) correlation between salt uptake and secretion; and (iv) adaptive peaks in osmoregulatory ability in the high intertidal American lineages. Our findings reveal that osmoregulation in Uca exhibits strong phylogenetic patterns in salt uptake traits. Salinity does not correlate with hyper/hypo-regulatory abilities, but drives hemolymph osmolality at ambient salinities. Osmoregulatory traits have evolved towards three adaptive peaks, revealing a significant contribution of hyper/hypo-regulatory ability in the American clades. Thus, during the evolutionary history of fiddler crabs, salinity has driven some of the osmoregulatory transformations that underpin habitat diversification, although others are apparently constrained phylogenetically. PMID:28182764

  14. Life history lability underlies rapid climate niche evolution in the angiosperm clade Montiaceae.

    Science.gov (United States)

    Matthew Ogburn, R; Edwards, Erika J

    2015-11-01

    Despite the recent focus on phylogenetic niche conservatism in macroevolutionary studies, many clades have diversified widely along multiple niche dimensions. The factors underlying lineage-specific niche lability are still not well understood. We examined morphological and climate niche evolution in Montiaceae (Caryophyllales), an ecologically variable plant lineage distributed primarily along the mountain chains of the western Americas. Montiaceae inhabit a broader range of temperatures than their relatives, with an increase in the evolutionary rate of temperature niche diversification at the node subtending this clade. Within Montiaceae, life history is highly labile and significantly correlated with temperature, with perennials consistently occurring in cooler environments. This elevated evolutionary lability facilitated repeated shifts between habitats as new environments were created by post-Eocene orogenic events and aridification in the western Americas. The shifts between annual and perennial forms are elaborations of an underlying rosette body plan in most cases, and may involve simple alterations in biomass allocation. Montiaceae stand as another clear counterexample to phylogenetic niche conservatism, and demonstrate a mechanism by which pronounced ecological shifts may occur frequently and rapidly among closely related species. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Digital Direct-to-Consumer Advertising: A Perfect Storm of Rapid Evolution and Stagnant Regulation

    Science.gov (United States)

    Mackey, Tim K.

    2016-01-01

    The adoption and use of digital forms of direct-to-consumer advertising (also known as "eDTCA") is on the rise. At the same time, the universe of eDTCA is expanding, as technology on Internet-based platforms continues to evolve, from static websites, to social media, and nearly ubiquitous use of mobile devices. However, little is known about how this unique form of pharmaceutical marketing impacts consumer behavior, public health, and overall healthcare utilization. The study by Kim analyzing US Food and Drug Administration (FDA) notices of violations (NOVs) and warning letters regarding online promotional activities takes us in the right direction, but study results raise as many questions as it does answers. Chief among these are unanswered concerns about the unique regulatory challenges posed by the "disruptive" qualities of eDTCA, and whether regulators have sufficient resources and oversight powers to proactively address potential violations. Further, the globalization of eDTCA via borderless Internet-based technologies raises larger concerns about the potential global impact of this form of health marketing unique to only the United States and New Zealand. Collectively, these challenges make it unlikely that regulatory science will be able to keep apace with the continued rapid evolution of eDTCA unless more creative policy solutions are explored. PMID:27239871

  16. Rapid Evolution of Assortative Fertilization between Recently Allopatric Species of Drosophila

    Directory of Open Access Journals (Sweden)

    Yasir H. Ahmed-Braimah

    2012-01-01

    Full Text Available The virilis group of Drosophila represents a relatively unexplored but potentially useful model to investigate the genetics of speciation. Good resolution of phylogenetic relationships and the ability to obtain fertile hybrid offspring make the group especially promising for analysis of genetic changes underlying reproductive isolation separate from hybrid sterility and inviability. Phylogenetic analyses reveal a close relationship between the sister species, Drosophila americana and D. novamexicana, yet excepting their contemporary allopatric distributions, factors that contribute to reproductive isolation between this species pair remain uncharacterized. A previous report has shown reduced progeny numbers in laboratory crosses between the two species, especially when female D. novamexicana are crossed with male D. americana. We show that the hatch rate of eggs produced from heterospecific matings is reduced relative to conspecific matings. Failure of eggs to hatch, and consequent reduction in hybrid progeny number, is caused by low fertilization success of heterospecific sperm, thus representing a postmating, prezygotic incompatibility. Following insemination, storage and motility of heterospecific sperm is visibly compromised in female D. novamexicana. Our results provide evidence for a mechanism of reproductive isolation that is seldom reported for Drosophila species, and indicate the rapid evolution of postmating, prezygotic reproductive barriers in allopatry.

  17. Microevolutionary, macroevolutionary, ecological and taxonomical implications of punctuational theories of adaptive evolution

    Directory of Open Access Journals (Sweden)

    Flegr Jaroslav

    2013-01-01

    Full Text Available Abstract Punctuational theories of evolution suggest that adaptive evolution proceeds mostly, or even entirely, in the distinct periods of existence of a particular species. The mechanisms of this punctuated nature of evolution suggested by the various theories differ. Therefore the predictions of particular theories concerning various evolutionary phenomena also differ. Punctuational theories can be subdivided into five classes, which differ in their mechanism and their evolutionary and ecological implications. For example, the transilience model of Templeton (class III, genetic revolution model of Mayr (class IV or the frozen plasticity theory of Flegr (class V, suggests that adaptive evolution in sexual species is operative shortly after the emergence of a species by peripatric speciation – while it is evolutionary plastic. To a major degree, i.e. throughout 98-99% of their existence, sexual species are evolutionarily frozen (class III or elastic (class IV and V on a microevolutionary time scale and evolutionarily frozen on a macroevolutionary time scale and can only wait for extinction, or the highly improbable return of a population segment to the plastic state due to peripatric speciation. The punctuational theories have many evolutionary and ecological implications. Most of these predictions could be tested empirically, and should be analyzed in greater depth theoretically. The punctuational theories offer many new predictions that need to be tested, but also provide explanations for a much broader spectrum of known biological phenomena than classical gradualistic evolutionary theories. Reviewers This article was reviewed by Claus Wilke, Pierre Pantarotti and David Penny (nominated by Anthony Poole.

  18. Evolutionary genomics and adaptive evolution of the hedgehog gene family (Shh, Ihh and Dhh) in vertebrates

    DEFF Research Database (Denmark)

    Pereira, Joana; Johnson, Warren E.; O'Brien, Stephen J.

    2014-01-01

    . In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD) events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive...... the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints...

  19. Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants.

    Science.gov (United States)

    Alix, Karine; Gérard, Pierre R; Schwarzacher, Trude; Heslop-Harrison, J S Pat

    2017-08-01

    Polyploidy or whole-genome duplication is now recognized as being present in almost all lineages of higher plants, with multiple rounds of polyploidy occurring in most extant species. The ancient evolutionary events have been identified through genome sequence analysis, while recent hybridization events are found in about half of the world's crops and wild species. Building from this new paradigm for understanding plant evolution, the papers in this Special Issue address questions about polyploidy in ecology, adaptation, reproduction and speciation of wild and cultivated plants from diverse ecosystems. Other papers, including this review, consider genomic aspects of polyploidy. Discovery of the evolutionary consequences of new, evolutionarily recent and ancient polyploidy requires a range of approaches. Large-scale studies of both single species and whole ecosystems, with hundreds to tens of thousands of individuals, sometimes involving 'garden' or transplant experiments, are important for studying adaptation. Molecular studies of genomes are needed to measure diversity in genotypes, showing ancestors, the nature and number of polyploidy and backcross events that have occurred, and allowing analysis of gene expression and transposable element activation. Speciation events and the impact of reticulate evolution require comprehensive phylogenetic analyses and can be assisted by resynthesis of hybrids. In this Special Issue, we include studies ranging in scope from experimental and genomic, through ecological to more theoretical. The success of polyploidy, displacing the diploid ancestors of almost all plants, is well illustrated by the huge angiosperm diversity that is assumed to originate from recurrent polyploidization events. Strikingly, polyploidization often occurred prior to or simultaneously with major evolutionary transitions and adaptive radiation of species, supporting the concept that polyploidy plays a predominant role in bursts of adaptive speciation

  20. The elusive nature of adaptive mitochondrial DNA evolution of an Arctic lineage prone to frequent introgression

    DEFF Research Database (Denmark)

    Melo-Ferreira, Jose; Vilela, Joana; Fonseca, Miguel M.

    2014-01-01

    understood. Hares (Lepus spp.) are privileged models to study the impact of natural selection on mitogenomic evolution because 1) species are adapted to contrasting environments, including arctic, with different metabolic pressures, and 2) mtDNA introgression from arctic into temperate species is widespread......Mitochondria play a fundamental role in cellular metabolism, being responsible for most of the energy production of the cell in the oxidative phosphorylation (OXPHOS) pathway. Mitochondrial DNA (mtDNA) encodes for key components of this process, but its direct role in adaptation remains far from...... selection in several codons in genes of the OXPHOS complexes, most notably affecting the arctic lineage. However, using theoretical models, no predictable effect of these differences was found on the structure and physicochemical properties of the encoded proteins, suggesting that the focus of selection may...

  1. Evolution of Escherichia coli to 42 °C and Subsequent Genetic Engineering Reveals Adaptive Mechanisms and Novel Mutations

    DEFF Research Database (Denmark)

    Sandberg, Troy E.; Pedersen, Margit; LaCroix, Ryan A.

    2014-01-01

    Adaptive laboratory evolution (ALE) has emerged as a valuable method by which to investigate microbial adaptation to a desired environment. Here, we performed ALE to 42 °C of ten parallel populations of Escherichia coli K-12 MG1655 grown in glucose minimal media. Tightly controlled experimental...... reaffirmed the impact of the key mutations on the growth rate at 42 °C. Interestingly, most of the identified key gene targets differed significantly from those found in similar temperature adaptation studies, highlighting the sensitivity of genetic evolution to experimental conditions and ancestral genotype...

  2. Post-translocational adaptation drives evolution through genetic selection and transcriptional shift in Saccharomyces cerevisiae.

    Science.gov (United States)

    Tosato, Valentina; Sims, Jason; West, Nicole; Colombin, Martina; Bruschi, Carlo V

    2017-05-01

    Adaptation by natural selection might improve the fitness of an organism and its probability to survive in unfavorable environmental conditions. Decoding the genetic basis of adaptive evolution is one of the great challenges to deal with. To this purpose, Saccharomyces cerevisiae has been largely investigated because of its short division time, excellent aneuploidy tolerance and the availability of the complete sequence of its genome with a thorough genome database. In the past, we developed a system, named bridge-induced translocation, to trigger specific, non-reciprocal translocations, exploiting the endogenous recombination system of budding yeast. This technique allows users to generate a heterogeneous population of cells with different aneuploidies and increased phenotypic variation. In this work, we demonstrate that ad hoc chromosomal translocations might induce adaptation, fostering selection of thermo-tolerant yeast strains with improved phenotypic fitness. This "yeast eugenomics" correlates with a shift to enhanced expression of genes involved in stress response, heat shock as well as carbohydrate metabolism. We propose that the bridge-induced translocation is a suitable approach to generate adapted, physiologically boosted strains for biotechnological applications.

  3. Adaptive potential of genomic structural variation in human and mammalian evolution.

    Science.gov (United States)

    Radke, David W; Lee, Charles

    2015-09-01

    Because phenotypic innovations must be genetically heritable for biological evolution to proceed, it is natural to consider new mutation events as well as standing genetic variation as sources for their birth. Previous research has identified a number of single-nucleotide polymorphisms that underlie a subset of adaptive traits in organisms. However, another well-known class of variation, genomic structural variation, could have even greater potential to produce adaptive phenotypes, due to the variety of possible types of alterations (deletions, insertions, duplications, among others) at different genomic positions and with variable lengths. It is from these dramatic genomic alterations, and selection on their phenotypic consequences, that adaptations leading to biological diversification could be derived. In this review, using studies in humans and other mammals, we highlight examples of how phenotypic variation from structural variants might become adaptive in populations and potentially enable biological diversification. Phenotypic change arising from structural variants will be described according to their immediate effect on organismal metabolic processes, immunological response and physical features. Study of population dynamics of segregating structural variation can therefore provide a window into understanding current and historical biological diversification. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Evolution and adaptation in Pseudomonas aeruginosa biofilms driven by mismatch repair system-deficient mutators.

    Directory of Open Access Journals (Sweden)

    Adela M Luján

    Full Text Available Pseudomonas aeruginosa is an important opportunistic pathogen causing chronic airway infections, especially in cystic fibrosis (CF patients. The majority of the CF patients acquire P. aeruginosa during early childhood, and most of them develop chronic infections resulting in severe lung disease, which are rarely eradicated despite intensive antibiotic therapy. Current knowledge indicates that three major adaptive strategies, biofilm development, phenotypic diversification, and mutator phenotypes [driven by a defective mismatch repair system (MRS], play important roles in P. aeruginosa chronic infections, but the relationship between these strategies is still poorly understood. We have used the flow-cell biofilm model system to investigate the impact of the mutS associated mutator phenotype on development, dynamics, diversification and adaptation of P. aeruginosa biofilms. Through competition experiments we demonstrate for the first time that P. aeruginosa MRS-deficient mutators had enhanced adaptability over wild-type strains when grown in structured biofilms but not as planktonic cells. This advantage was associated with enhanced micro-colony development and increased rates of phenotypic diversification, evidenced by biofilm architecture features and by a wider range and proportion of morphotypic colony variants, respectively. Additionally, morphotypic variants generated in mutator biofilms showed increased competitiveness, providing further evidence for mutator-driven adaptive evolution in the biofilm mode of growth. This work helps to understand the basis for the specific high proportion and role of mutators in chronic infections, where P. aeruginosa develops in biofilm communities.

  5. Genetic Adaptation to Salt Stress in Experimental Evolution of Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Aifen; Hillesland, Kristina; He, Zhili; Joachimiak, Marcin; Zane, Grant; Dehal, Paramvir; Arkin, Adam; Stahl, David; Wall, Judy; Hazen, Terry; Zhou, Jizhong; Baidoo, Edward; Benke, Peter; Mukhopadhyay, Aindrila

    2010-05-17

    High salinity is one of the most common environmental stressors. In order to understand how environmental organisms adapt to salty environment, an experiment evolution with sulfate reducing bacteria Desulfovibrio vugaris Hildenborough was conducted. Control lines and salt-stressed lines (6 lines each) grown in minimal medium LS4D or LS4D + 100 mM NaCl were transferred for 1200 generations. The salt tolerance was tested with LS4D supplemented with 250 mM NaCl. Statistical analysis of the growth data suggested that all lines adapted to their evolutionary environment. In addition, the control lines performed better than the ancestor with faster growth rate, higher biomass yield and shorter lag phase under salty environment they did not evolve in. However, the salt-adapted lines performed better than the control lines on measures of growth rate and yield under salty environment, suggesting that the salt?evolved lines acquired mutations specific to having extra salt in LS4D. Growth data and gene transcription data suggested that populations tended to improve till 1000 generations and active mutations tended to be fixed at the stage of 1000 generations. Point mutations and insertion/deletions were identified in isolated colonies from salt-adapted and control lines via whole genome sequencing. Glu, Gln and Ala appears to be the major osmoprotectant in evolved salt-stressed line. Ongoing studies are now characterizing the contribution of specific mutations identified in the salt-evolved D. vulgaris.

  6. Response to Puts and Dawood's 'the evolution of female orgasm: adaptation or byproduct?'--Been there.

    Science.gov (United States)

    Lloyd, Elisabeth A

    2006-08-01

    David Puts and Khytam Dawood's recent critique of my book, The Case of the Female Orgasm: Bias in the Science of Evolution, attempts to make plausible an adaptive account of female orgasm based on a hypothesized mechanism of uterine upsuck and sperm competition. Yet the authors fail to respond to the criticisms of such accounts that I detailed previously in my book. They raise a further concern about my definition of adaptation--a red herring--and manufacture a conceptual error regarding heritability that they then attribute to me. Most seriously, they fail to address the glaring failure of sperm competition accounts to accord with evidence from sexology. Specifically, the distribution curve of orgasm-with-intercourse--according to Dawood et al.'s own data, as well as others'--is relatively flat across the various classes. This curve needs to be tested against a well-formed multistrategy adaptive hypothesis; it cannot be explained by the adaptive account defended by Puts and Dawood in their critique.

  7. Gradual assembly of avian body plan culminated in rapid rates of evolution across the dinosaur-bird transition.

    Science.gov (United States)

    Brusatte, Stephen L; Lloyd, Graeme T; Wang, Steve C; Norell, Mark A

    2014-10-20

    The evolution of birds from theropod dinosaurs was one of the great evolutionary transitions in the history of life. The macroevolutionary tempo and mode of this transition is poorly studied, which is surprising because it may offer key insight into major questions in evolutionary biology, particularly whether the origins of evolutionary novelties or new ecological opportunities are associated with unusually elevated "bursts" of evolution. We present a comprehensive phylogeny placing birds within the context of theropod evolution and quantify rates of morphological evolution and changes in overall morphological disparity across the dinosaur-bird transition. Birds evolved significantly faster than other theropods, but they are indistinguishable from their closest relatives in morphospace. Our results demonstrate that the rise of birds was a complex process: birds are a continuum of millions of years of theropod evolution, and there was no great jump between nonbirds and birds in morphospace, but once the avian body plan was gradually assembled, birds experienced an early burst of rapid anatomical evolution. This suggests that high rates of morphological evolution after the development of a novel body plan may be a common feature of macroevolution, as first hypothesized by G.G. Simpson more than 60 years ago. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Validation and adaptation of rapid neurodevelopmental assessment instrument for infants in Guatemala.

    Science.gov (United States)

    Thompson, L; Peñaloza, R A; Stormfields, K; Kooistra, R; Valencia-Moscoso, G; Muslima, H; Khan, N Z

    2015-11-01

    Timely detection of neurodevelopmental impairments in children can prompt referral for critical services that may prevent permanent disability. However, screening of impairments is a significant challenge in low-resource countries. We adapted and validated the rapid neurodevelopmental assessment (RNDA) instrument developed in Bangladesh to assess impairment in nine domains: primitive reflexes, gross and fine motor development, vision, hearing, speech, cognition, behaviour and seizures. We conducted a cross-sectional study of 77 infants (0-12 months) in rural Guatemala in July 2012 and July 2013. We assessed inter-rater reliability and predictive validity between the 27-item RNDA and the 325-item Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III) and concurrent validity based on chronic malnutrition, a condition associated with neurodevelopmental impairments. For both RNDA and BSID-III, standardized scores below 80 were defined as borderline impairment. Children came from rural households (92%), were born to indigenous women of Mayan descent (73%) and had moderate or severe growth stunting (43%). Inter-rater reliability for eight RNDA domains was of moderate to high reliability (weighted κ coefficients, 0.49-0.99). Children screened positive for impairment in fine motor (17%) and gross motor (14%) domains using the RNDA. The RNDA had good concurrent ability; infants who were growth stunted had higher mean levels of impairment in gross motor, speech and cognition domains (all p < 0.001). The RNDA took 20-30 min to complete compared with 45-60 min for BSID-III. Wide-scale implementation of a simple, valid and reliable screening tool like the RNDA by community health workers would facilitate early screening and referral of infants at-risk for neurodevelopmental impairment. © 2015 John Wiley & Sons Ltd.

  9. An adaptive left-right eigenvector evolution algorithm for vibration isolation control

    Science.gov (United States)

    Wu, T. Y.

    2009-11-01

    The purpose of this research is to investigate the feasibility of utilizing an adaptive left and right eigenvector evolution (ALREE) algorithm for active vibration isolation. As depicted in the previous paper presented by Wu and Wang (2008 Smart Mater. Struct. 17 015048), the structural vibration behavior depends on both the disturbance rejection capability and mode shape distributions, which correspond to the left and right eigenvector distributions of the system, respectively. In this paper, a novel adaptive evolution algorithm is developed for finding the optimal combination of left-right eigenvectors of the vibration isolator, which is an improvement over the simultaneous left-right eigenvector assignment (SLREA) method proposed by Wu and Wang (2008 Smart Mater. Struct. 17 015048). The isolation performance index used in the proposed algorithm is defined by combining the orthogonality index of left eigenvectors and the modal energy ratio index of right eigenvectors. Through the proposed ALREE algorithm, both the left and right eigenvectors evolve such that the isolation performance index decreases, and therefore one can find the optimal combination of left-right eigenvectors of the closed-loop system for vibration isolation purposes. The optimal combination of left-right eigenvectors is then synthesized to determine the feedback gain matrix of the closed-loop system. The result of the active isolation control shows that the proposed method can be utilized to improve the vibration isolation performance compared with the previous approaches.

  10. Adaptive Evolution of Energy Metabolism-Related Genes in Hypoxia-Tolerant Mammals.

    Science.gov (United States)

    Tian, Ran; Yin, Daiqing; Liu, Yanzhi; Seim, Inge; Xu, Shixia; Yang, Guang

    2017-01-01

    Animals that are able to sustain life under hypoxic conditions have long captured the imagination of biologists and medical practitioners alike. Although the associated morphological modifications have been extensively described, the mechanisms underlying the evolution of hypoxia tolerance are not well understood. To provide such insights, we investigated genes in four major energy metabolism pathways, and provide evidence of distinct evolutionary paths to mammalian hypoxia-tolerance. Positive selection of genes in the oxidative phosphorylation pathway mainly occurred in terrestrial hypoxia-tolerant species; possible adaptations to chronically hypoxic environments. The strongest candidate for positive selection along cetacean lineages was the citrate cycle signaling pathway, suggestive of enhanced aerobic metabolism during and after a dive. Six genes with cetacean-specific amino acid changes are rate-limiting enzymes involved in the gluconeogenesis pathway, which would be expected to enhance the lactate removal after diving. Intriguingly, 38 parallel amino acid substitutions in 29 genes were observed between hypoxia-tolerant mammals. Of these, 76.3% were radical amino acid changes, suggesting that convergent molecular evolution drives the adaptation to hypoxic stress and similar phenotypic changes. This study provides further insights into life under low oxygen conditions and the evolutionary trajectories of hypoxia-tolerant species.

  11. Adaptive Evolution of Energy Metabolism-Related Genes in Hypoxia-Tolerant Mammals

    Directory of Open Access Journals (Sweden)

    Ran Tian

    2017-12-01

    Full Text Available Animals that are able to sustain life under hypoxic conditions have long captured the imagination of biologists and medical practitioners alike. Although the associated morphological modifications have been extensively described, the mechanisms underlying the evolution of hypoxia tolerance are not well understood. To provide such insights, we investigated genes in four major energy metabolism pathways, and provide evidence of distinct evolutionary paths to mammalian hypoxia-tolerance. Positive selection of genes in the oxidative phosphorylation pathway mainly occurred in terrestrial hypoxia-tolerant species; possible adaptations to chronically hypoxic environments. The strongest candidate for positive selection along cetacean lineages was the citrate cycle signaling pathway, suggestive of enhanced aerobic metabolism during and after a dive. Six genes with cetacean-specific amino acid changes are rate-limiting enzymes involved in the gluconeogenesis pathway, which would be expected to enhance the lactate removal after diving. Intriguingly, 38 parallel amino acid substitutions in 29 genes were observed between hypoxia-tolerant mammals. Of these, 76.3% were radical amino acid changes, suggesting that convergent molecular evolution drives the adaptation to hypoxic stress and similar phenotypic changes. This study provides further insights into life under low oxygen conditions and the evolutionary trajectories of hypoxia-tolerant species.

  12. GNBP domain of Anopheles darlingi: are polymorphic inversions and gene variation related to adaptive evolution?

    Science.gov (United States)

    Bridi, L C; Rafael, M S

    2016-02-01

    Anopheles darlingi is the main malaria vector in humans in South America. In the Amazon basin, it lives along the banks of rivers and lakes, which responds to the annual hydrological cycle (dry season and rainy season). In these breeding sites, the larvae of this mosquito feed on decomposing organic and microorganisms, which can be pathogenic and trigger the activation of innate immune system pathways, such as proteins Gram-negative binding protein (GNBP). Such environmental changes affect the occurrence of polymorphic inversions especially at the heterozygote frequency, which confer adaptative advantage compared to homozygous inversions. We mapped the GNBP probe to the An. darlingi 2Rd inversion by fluorescent in situ hybridization (FISH), which was a good indicator of the GNBP immune response related to the chromosomal polymorphic inversions and adaptative evolution. To better understand the evolutionary relations and time of divergence of the GNBP of An. darlingi, we compared it with nine other mosquito GNBPs. The results of the phylogenetic analysis of the GNBP sequence between the species of mosquitoes demonstrated three clades. Clade I and II included the GNBPB5 sequence, and clade III the sequence of GNBPB1. Most of these sequences of GNBP analyzed were homologous with that of subfamily B, including that of An. gambiae (87 %), therefore suggesting that GNBP of An. darling belongs to subfamily B. This work helps us understand the role of inversion polymorphism in evolution of An. darlingi.

  13. An adapted yield criterion for the evolution of subsequent yield surfaces

    Science.gov (United States)

    Küsters, N.; Brosius, A.

    2017-09-01

    In numerical analysis of sheet metal forming processes, the anisotropic material behaviour is often modelled with isotropic work hardening and an average Lankford coefficient. In contrast, experimental observations show an evolution of the Lankford coefficients, which can be associated with a yield surface change due to kinematic and distortional hardening. Commonly, extensive efforts are carried out to describe these phenomena. In this paper an isotropic material model based on the Yld2000-2d criterion is adapted with an evolving yield exponent in order to change the yield surface shape. The yield exponent is linked to the accumulative plastic strain. This change has the effect of a rotating yield surface normal. As the normal is directly related to the Lankford coefficient, the change can be used to model the evolution of the Lankford coefficient during yielding. The paper will focus on the numerical implementation of the adapted material model for the FE-code LS-Dyna, mpi-version R7.1.2-d. A recently introduced identification scheme [1] is used to obtain the parameters for the evolving yield surface and will be briefly described for the proposed model. The suitability for numerical analysis will be discussed for deep drawing processes in general. Efforts for material characterization and modelling will be compared to other common yield surface descriptions. Besides experimental efforts and achieved accuracy, the potential of flexibility in material models and the risk of ambiguity during identification are of major interest in this paper.

  14. Long-term adaptive evolution of Leuconostoc mesenteroides for enhancement of lactic acid tolerance and production.

    Science.gov (United States)

    Ju, Si Yeon; Kim, Jin Ho; Lee, Pyung Cheon

    2016-01-01

    Lactic acid has been approved by the United States Food and Drug Administration as Generally Regarded As Safe (GRAS) and is commonly used in the cosmetics, pharmaceutical, and food industries. Applications of lactic acid have also emerged in the plastics industry. Lactic acid bacteria (LAB), such as Leuconostoc and Lactobacillus, are widely used as lactic acid producers for food-related and biotechnological applications. Nonetheless, industrial mass production of lactic acid in LAB is a challenge mainly because of growth inhibition caused by the end product, lactic acid. Thus, it is important to improve acid tolerance of LAB to achieve balanced cell growth and a high titer of lactic acid. Recently, adaptive evolution has been employed as one of the strategies to improve the fitness and to induce adaptive changes in bacteria under specific growth conditions, such as acid stress. Wild-type Leuconostoc mesenteroides was challenged long term with exogenously supplied lactic acid, whose concentration was increased stepwise (for enhancement of lactic acid tolerance) during 1 year. In the course of the adaptive evolution at 70 g/L lactic acid, three mutants (LMS50, LMS60, and LMS70) showing high specific growth rates and lactic acid production were isolated and characterized. Mutant LMS70, isolated at 70 g/L lactic acid, increased d-lactic acid production up to 76.8 g/L, which was twice that in the wild type (37.8 g/L). Proteomic, genomic, and physiological analyses revealed that several possible factors affected acid tolerance, among which a mutation of ATPase ε subunit (involved in the regulation of intracellular pH) and upregulation of intracellular ammonia, as a buffering system, were confirmed to contribute to the observed enhancement of tolerance and production of d-lactic acid. During adaptive evolution under lethal stress conditions, the fitness of L. mesenteroides gradually increased to accumulate beneficial mutations according to the stress level. The

  15. Rapid Karyotype Evolution in Lasiopodomys Involved at Least Two Autosome – Sex Chromosome Translocations

    Science.gov (United States)

    Lemskaya, Natalya A.; Serdyukova, Natalya A.; O’Brien, Patricia C. M.; Kovalskaya, Julia M.; Smorkatcheva, Antonina V.; Golenishchev, Feodor N.; Perelman, Polina L.; Trifonov, Vladimir A.; Ferguson-Smith, Malcolm A.; Yang, Fengtang; Graphodatsky, Alexander S.

    2016-01-01

    The generic status of Lasiopodomys and its division into subgenera Lasiopodomys (L. mandarinus, L. brandtii) and Stenocranius (L. gregalis, L. raddei) are not generally accepted because of contradictions between the morphological and molecular data. To obtain cytogenetic evidence for the Lasiopodomys genus and its subgenera and to test the autosome to sex chromosome translocation hypothesis of sex chromosome complex origin in L. mandarinus proposed previously, we hybridized chromosome painting probes from the field vole (Microtus agrestis, MAG) and the Arctic lemming (Dicrostonyx torquatus, DTO) onto the metaphases of a female Mandarin vole (L. mandarinus, 2n = 47) and a male Brandt's vole (L. brandtii, 2n = 34). In addition, we hybridized Arctic lemming painting probes onto chromosomes of a female narrow-headed vole (L. gregalis, 2n = 36). Cross-species painting revealed three cytogenetic signatures (MAG12/18, 17a/19, and 22/24) that could validate the genus Lasiopodomys and indicate the evolutionary affinity of L. gregalis to the genus. Moreover, all three species retained the associations MAG1bc/17b and 2/8a detected previously in karyotypes of all arvicolins studied. The associations MAG2a/8a/19b, 8b/21, 9b/23, 11/13b, 12b/18, 17a/19a, and 5 fissions of ancestral segments appear to be characteristic for the subgenus Lasiopodomys. We also validated the autosome to sex chromosome translocation hypothesis on the origin of complex sex chromosomes in L. mandarinus. Two translocations of autosomes onto the ancestral X chromosome in L. mandarinus led to a complex of neo-X1, neo-X2, and neo-X3 elements. Our results demonstrate that genus Lasiopodomys represents a striking example of rapid chromosome evolution involving both autosomes and sex chromosomes. Multiple reshuffling events including Robertsonian fusions, chromosomal fissions, inversions and heterochromatin expansion have led to the formation of modern species karyotypes in a very short time, about 2.4 MY. PMID

  16. Comparative Genomic Analysis of Rapid Evolution of an Extreme-Drug-Resistant Acinetobacter baumannii Clone

    Science.gov (United States)

    Tan, Sean Yang-Yi; Chua, Song Lin; Liu, Yang; Høiby, Niels; Andersen, Leif Percival; Givskov, Michael; Song, Zhijun; Yang, Liang

    2013-01-01

    The emergence of extreme-drug-resistant (EDR) bacterial strains in hospital and nonhospital clinical settings is a big and growing public health threat. Understanding the antibiotic resistance mechanisms at the genomic levels can facilitate the development of next-generation agents. Here, comparative genomics has been employed to analyze the rapid evolution of an EDR Acinetobacter baumannii clone from the intensive care unit (ICU) of Rigshospitalet at Copenhagen. Two resistant A. baumannii strains, 48055 and 53264, were sequentially isolated from two individuals who had been admitted to ICU within a 1-month interval. Multilocus sequence typing indicates that these two isolates belonged to ST208. The A. baumannii 53264 strain gained colistin resistance compared with the 48055 strain and became an EDR strain. Genome sequencing indicates that A. baumannii 53264 and 48055 have almost identical genomes—61 single-nucleotide polymorphisms (SNPs) were found between them. The A. baumannii 53264 strain was assembled into 130 contigs, with a total length of 3,976,592 bp with 38.93% GC content. The A. baumannii 48055 strain was assembled into 135 contigs, with a total length of 4,049,562 bp with 39.00% GC content. Genome comparisons showed that this A. baumannii clone is classified as an International clone II strain and has 94% synteny with the A. baumannii ACICU strain. The ResFinder server identified a total of 14 antibiotic resistance genes in the A. baumannii clone. Proteomic analyses revealed that a putative porin protein was down-regulated when A. baumannii 53264 was exposed to antimicrobials, which may reduce the entry of antibiotics into the bacterial cell. PMID:23538992

  17. Precipitate Evolution and Strengthening in Supersaturated Rapidly Solidified Al-Sc-Zr Alloys

    Science.gov (United States)

    Deane, Kyle; Kampe, S. L.; Swenson, Douglas; Sanders, P. G.

    2017-04-01

    Because of the low diffusivities of scandium and zirconium in aluminum, trialuminide precipitates containing these elements have been reported to possess excellent thermal stability at temperatures of 573 K (300 °C) and higher. However, the relatively low equilibrium solubilities of these elements in aluminum limit the achievable phase fraction and, in turn, strengthening contributions from these precipitates. One method of circumventing this limitation involves the use of rapid solidification techniques to suppress the initial formation of precipitates in alloys containing higher solute compositions. This work specifically discusses the fabrication of supersaturated Al-Sc, Al-Zr, and Al-Sc-Zr alloys via melt spinning, in which supersaturations of at least 0.55 at. pct Zr and 0.8 at. pct Sc are shown to be attainable through XRD analysis. The resulting ribbons were subjected to a multistep aging heat treatment in order to encourage a core-shell precipitate morphology, the precipitate evolution behavior was monitored with XRD and TEM, and the aging behavior was observed. While aging in these alloys is shown to follow similar trends to conventionally processed materials reported in literature, with phase fraction increasing until higher aging temperatures causing a competing dissolution effect, the onset of precipitation begins at lower temperatures than previously observed and the peak hardnesses occurred at higher temperature steps due to an increased aging time associated with increased solute concentration. Peaking in strength at a higher temperature doesn't necessarily mean an increase in thermal stability, but rather emphasizes the need for intelligently designed heat treatments to take full advantage of the potential strengthening of supersaturated Al-Sc-Zr alloys.

  18. Rapid evolution of cancer/testis genes on the X chromosome

    Directory of Open Access Journals (Sweden)

    Simpson Andrew J

    2007-05-01

    Full Text Available Abstract Background Cancer/testis (CT genes are normally expressed only in germ cells, but can be activated in the cancer state. This unusual property, together with the finding that many CT proteins elicit an antigenic response in cancer patients, has established a role for this class of genes as targets in immunotherapy regimes. Many families of CT genes have been identified in the human genome, but their biological function for the most part remains unclear. While it has been shown that some CT genes are under diversifying selection, this question has not been addressed before for the class as a whole. Results To shed more light on this interesting group of genes, we exploited the generation of a draft chimpanzee (Pan troglodytes genomic sequence to examine CT genes in an organism that is closely related to human, and generated a high-quality, manually curated set of human:chimpanzee CT gene alignments. We find that the chimpanzee genome contains homologues to most of the human CT families, and that the genes are located on the same chromosome and at a similar copy number to those in human. Comparison of putative human:chimpanzee orthologues indicates that CT genes located on chromosome X are diverging faster and are undergoing stronger diversifying selection than those on the autosomes or than a set of control genes on either chromosome X or autosomes. Conclusion Given their high level of diversifying selection, we suggest that CT genes are primarily responsible for the observed rapid evolution of protein-coding genes on the X chromosome.

  19. Rapid evolution of female-biased genes among four species of Anopheles malaria mosquitoes.

    Science.gov (United States)

    Papa, Francesco; Windbichler, Nikolai; Waterhouse, Robert M; Cagnetti, Alessia; D'Amato, Rocco; Persampieri, Tania; Lawniczak, Mara K N; Nolan, Tony; Papathanos, Philippos Aris

    2017-09-01

    Understanding how phenotypic differences between males and females arise from the sex-biased expression of nearly identical genomes can reveal important insights into the biology and evolution of a species. Among Anopheles mosquito species, these phenotypic differences include vectorial capacity, as it is only females that blood feed and thus transmit human malaria. Here, we use RNA-seq data from multiple tissues of four vector species spanning the Anopheles phylogeny to explore the genomic and evolutionary properties of sex-biased genes. We find that, in these mosquitoes, in contrast to what has been found in many other organisms, female-biased genes are more rapidly evolving in sequence, expression, and genic turnover than male-biased genes. Our results suggest that this atypical pattern may be due to the combination of sex-specific life history challenges encountered by females, such as blood feeding. Furthermore, female propensity to mate only once in nature in male swarms likely diminishes sexual selection of post-reproductive traits related to sperm competition among males. We also develop a comparative framework to systematically explore tissue- and sex-specific splicing to document its conservation throughout the genus and identify a set of candidate genes for future functional analyses of sex-specific isoform usage. Finally, our data reveal that the deficit of male-biased genes on the X Chromosomes in Anopheles is a conserved feature in this genus and can be directly attributed to chromosome-wide transcriptional regulation that de-masculinizes the X in male reproductive tissues. © 2017 Papa et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Collembolan Transcriptomes Highlight Molecular Evolution of Hexapods and Provide Clues on the Adaptation to Terrestrial Life.

    Directory of Open Access Journals (Sweden)

    A Faddeeva

    Full Text Available Collembola (springtails represent a soil-living lineage of hexapods in between insects and crustaceans. Consequently, their genomes may hold key information on the early processes leading to evolution of Hexapoda from a crustacean ancestor.We assembled and annotated transcriptomes of the Collembola Folsomia candida and Orchesella cincta, and performed comparative analysis with protein-coding gene sequences of three crustaceans and three insects to identify adaptive signatures associated with the evolution of hexapods within the pancrustacean clade.Assembly of the springtail transcriptomes resulted in 37,730 transcripts with predicted open reading frames for F. candida and 32,154 for O. cincta, of which 34.2% were functionally annotated for F. candida and 38.4% for O. cincta. Subsequently, we predicted orthologous clusters among eight species and applied the branch-site test to detect episodic positive selection in the Hexapoda and Collembola lineages. A subset of 250 genes showed significant positive selection along the Hexapoda branch and 57 in the Collembola lineage. Gene Ontology categories enriched in these genes include metabolism, stress response (i.e. DNA repair, immune response, ion transport, ATP metabolism, regulation and development-related processes (i.e. eye development, neurological development.We suggest that the identified gene families represent processes that have played a key role in the divergence of hexapods within the pancrustacean clade that eventually evolved into the most species-rich group of all animals, the hexapods. Furthermore, some adaptive signatures in collembolans may provide valuable clues to understand evolution of hexapods on land.

  1. Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny

    Science.gov (United States)

    Martínez-Castilla, León Patricio; Alvarez-Buylla, Elena R.

    2003-01-01

    Gene duplication is a substrate of evolution. However, the relative importance of positive selection versus relaxation of constraints in the functional divergence of gene copies is still under debate. Plant MADS-box genes encode transcriptional regulators key in various aspects of development and have undergone extensive duplications to form a large family. We recovered 104 MADS sequences from the Arabidopsis genome. Bayesian phylogenetic trees recover type II lineage as a monophyletic group and resolve a branching sequence of monophyletic groups within this lineage. The type I lineage is comprised of several divergent groups. However, contrasting gene structure and patterns of chromosomal distribution between type I and II sequences suggest that they had different evolutionary histories and support the placement of the root of the gene family between these two groups. Site-specific and site-branch analyses of positive Darwinian selection (PDS) suggest that different selection regimes could have affected the evolution of these lineages. We found evidence for PDS along the branch leading to flowering time genes that have a direct impact on plant fitness. Sites with high probabilities of having been under PDS were found in the MADS and K domains, suggesting that these played important roles in the acquisition of novel functions during MADS-box diversification. Detected sites are targets for further experimental analyses. We argue that adaptive changes in MADS-domain protein sequences have been important for their functional divergence, suggesting that changes within coding regions of transcriptional regulators have influenced phenotypic evolution of plants. PMID:14597714

  2. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system.

    Science.gov (United States)

    Vonk, Freek J; Casewell, Nicholas R; Henkel, Christiaan V; Heimberg, Alysha M; Jansen, Hans J; McCleary, Ryan J R; Kerkkamp, Harald M E; Vos, Rutger A; Guerreiro, Isabel; Calvete, Juan J; Wüster, Wolfgang; Woods, Anthony E; Logan, Jessica M; Harrison, Robert A; Castoe, Todd A; de Koning, A P Jason; Pollock, David D; Yandell, Mark; Calderon, Diego; Renjifo, Camila; Currier, Rachel B; Salgado, David; Pla, Davinia; Sanz, Libia; Hyder, Asad S; Ribeiro, José M C; Arntzen, Jan W; van den Thillart, Guido E E J M; Boetzer, Marten; Pirovano, Walter; Dirks, Ron P; Spaink, Herman P; Duboule, Denis; McGlinn, Edwina; Kini, R Manjunatha; Richardson, Michael K

    2013-12-17

    Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection.

  3. Evolution of cooperation through adaptive interaction in a spatial prisoner's dilemma game

    Science.gov (United States)

    Pan, Qiuhui; Liu, Xuesong; Bao, Honglin; Su, Yu; He, Mingfeng

    2018-02-01

    In this paper, we study the effect of adaptive interaction on the evolution of cooperation in a spatial prisoner's dilemma game. The connections of players are co-evolutionary with cooperation; whether adjacent players can play the prisoner's dilemma game is associated with the strategies they took in the preceding round. If a player defected in the preceding round, his neighbors will refuse to play the prisoner's dilemma game with him in accordance with a certain probability distribution. We use the disconnecting strength to represent this probability. We discuss the evolution of cooperation with different values of temptation to defect, sucker's payoff and disconnecting strength. The simulation results show that cooperation can be significantly enhanced through increasing the value of the disconnecting strength. In addition, the increase in disconnecting strength can improve the cooperators' ability to resist the increase in temptation and the decrease in reward. We study the parameter ranges for three different evolutionary results: cooperators extinction, defectors extinction, cooperator and defector co-existence. Meanwhile, we recruited volunteers and designed a human behavioral experiment to verify the theoretical simulation results. The punishment of disconnection has a positive effect on cooperation. A higher disconnecting strength will enhance cooperation more significantly. Our research findings reveal some significant insights into efficient mechanisms of the evolution of cooperation.

  4. Molecular evolution of the Bovini tribe (Bovidae, Bovinae: Is there evidence of rapid evolution or reduced selective constraint in Domestic cattle?

    Directory of Open Access Journals (Sweden)

    McCulloch Alan

    2009-04-01

    Full Text Available Abstract Background If mutation within the coding region of the genome is largely not adaptive, the ratio of nonsynonymous (dN to synonymous substitutions (dS per site (dN/dS should be approximately equal among closely related species. Furthermore, dN/dS in divergence between species should be equivalent to dN/dS in polymorphisms. This hypothesis is of particular interest in closely related members of the Bovini tribe, because domestication has promoted rapid phenotypic divergence through strong artificial selection of some species while others remain undomesticated. We examined a number of genes that may be involved in milk production in Domestic cattle and a number of their wild relatives for evidence that domestication had affected molecular evolution. Elevated rates of dN/dS were further queried to determine if they were the result of positive selection, low effective population size (Ne or reduced selective constraint. Results We have found that the domestication process has contributed to higher dN/dS ratios in cattle, especially in the lineages leading to the Domestic cow (Bos taurus and Mithan (Bos frontalis and within some breeds of Domestic cow. However, the high rates of dN/dS polymorphism within B. taurus when compared to species divergence suggest that positive selection has not elevated evolutionary rates in these genes. Likewise, the low rate of dN/dS in Bison, which has undergone a recent population bottleneck, indicates a reduction in population size alone is not responsible for these observations. Conclusion The effect of selection depends on effective population size and the selection coefficient (Nes. Typically under domestication both selection pressure for traits important in fitness in the wild and Ne are reduced. Therefore, reduced selective constraint could be responsible for the observed elevated evolutionary ratios in domesticated species, especially in B. taurus and B. frontalis, which have the highest dN/dS in the

  5. Rapid evolution and copy number variation of primate RHOXF2, an X-linked homeobox gene involved in male reproduction and possibly brain function

    Directory of Open Access Journals (Sweden)

    Zhang Rui

    2011-10-01

    Full Text Available Abstract Background Homeobox genes are the key regulators during development, and they are in general highly conserved with only a few reported cases of rapid evolution. RHOXF2 is an X-linked homeobox gene in primates. It is highly expressed in the testicle and may play an important role in spermatogenesis. As male reproductive system is often the target of natural and/or sexual selection during evolution, in this study, we aim to dissect the pattern of molecular evolution of RHOXF2 in primates and its potential functional consequence. Results We studied sequences and copy number variation of RHOXF2 in humans and 16 nonhuman primate species as well as the expression patterns in human, chimpanzee, white-browed gibbon and rhesus macaque. The gene copy number analysis showed that there had been parallel gene duplications/losses in multiple primate lineages. Our evidence suggests that 11 nonhuman primate species have one RHOXF2 copy, and two copies are present in humans and four Old World monkey species, and at least 6 copies in chimpanzees. Further analysis indicated that the gene duplications in primates had likely been mediated by endogenous retrovirus (ERV sequences flanking the gene regions. In striking contrast to non-human primates, humans appear to have homogenized their two RHOXF2 copies by the ERV-mediated non-allelic recombination mechanism. Coding sequence and phylogenetic analysis suggested multi-lineage strong positive selection on RHOXF2 during primate evolution, especially during the origins of humans and chimpanzees. All the 8 coding region polymorphic sites in human populations are non-synonymous, implying on-going selection. Gene expression analysis demonstrated that besides the preferential expression in the reproductive system, RHOXF2 is also expressed in the brain. The quantitative data suggests expression pattern divergence among primate species. Conclusions RHOXF2 is a fast-evolving homeobox gene in primates. The rapid

  6. Rapid evolution and copy number variation of primate RHOXF2, an X-linked homeobox gene involved in male reproduction and possibly brain function.

    Science.gov (United States)

    Niu, Ao-lei; Wang, Yin-qiu; Zhang, Hui; Liao, Cheng-hong; Wang, Jin-kai; Zhang, Rui; Che, Jun; Su, Bing

    2011-10-12

    Homeobox genes are the key regulators during development, and they are in general highly conserved with only a few reported cases of rapid evolution. RHOXF2 is an X-linked homeobox gene in primates. It is highly expressed in the testicle and may play an important role in spermatogenesis. As male reproductive system is often the target of natural and/or sexual selection during evolution, in this study, we aim to dissect the pattern of molecular evolution of RHOXF2 in primates and its potential functional consequence. We studied sequences and copy number variation of RHOXF2 in humans and 16 nonhuman primate species as well as the expression patterns in human, chimpanzee, white-browed gibbon and rhesus macaque. The gene copy number analysis showed that there had been parallel gene duplications/losses in multiple primate lineages. Our evidence suggests that 11 nonhuman primate species have one RHOXF2 copy, and two copies are present in humans and four Old World monkey species, and at least 6 copies in chimpanzees. Further analysis indicated that the gene duplications in primates had likely been mediated by endogenous retrovirus (ERV) sequences flanking the gene regions. In striking contrast to non-human primates, humans appear to have homogenized their two RHOXF2 copies by the ERV-mediated non-allelic recombination mechanism. Coding sequence and phylogenetic analysis suggested multi-lineage strong positive selection on RHOXF2 during primate evolution, especially during the origins of humans and chimpanzees. All the 8 coding region polymorphic sites in human populations are non-synonymous, implying on-going selection. Gene expression analysis demonstrated that besides the preferential expression in the reproductive system, RHOXF2 is also expressed in the brain. The quantitative data suggests expression pattern divergence among primate species. RHOXF2 is a fast-evolving homeobox gene in primates. The rapid evolution and copy number changes of RHOXF2 had been driven by

  7. Mobile Technology in the Perioperative Arena: Rapid Evolution and Future Disruption.

    Science.gov (United States)

    Rothman, Brian S; Gupta, Rajnish K; McEvoy, Matthew D

    2017-03-01

    Throughout the history of medicine, physicians have relied upon disruptive innovations and technologies to improve the quality of care delivered, patient outcomes, and patient satisfaction. The implementation of mobile technology in health care is quickly becoming the next disruptive technology. We first review the history of mobile technology over the past 3 decades, discuss the impact of hardware and software, explore the rapid expansion of applications (apps), and evaluate the adoption of mobile technology in health care. Next, we discuss how technology serves as the vehicle that can transform traditional didactic learning into one that adapts to the learning behavior of the student by using concepts such as the flipped classroom, just-in-time learning, social media, and Web 2.0/3.0. The focus in this modern education paradigm is shifting from teacher-centric to learner-centric, including providers and patients, and is being delivered as context-sensitive, or semantic, learning. Finally, we present the methods by which connected health systems via mobile devices increase information collection and analysis from patients in both clinical care and research environments. This enhanced patient and provider connection has demonstrated benefits including reducing unnecessary hospital readmissions, improved perioperative health maintenance coordination, and improved care in remote and underserved areas. A significant portion of the future of health care, and specifically perioperative medicine, revolves around mobile technology, nimble learners, patient-specific information and decision-making, and continuous connectivity between patients and health care systems. As such, an understanding of developing or evaluating mobile technology likely will be important for anesthesiologists, particularly with an ever-expanding scope of practice in perioperative medicine.

  8. Genes in the terminal regions of orthopoxvirus genomes experience adaptive molecular evolution.

    Science.gov (United States)

    Esteban, David J; Hutchinson, Anne P

    2011-05-23

    Orthopoxviruses are dsDNA viruses with large genomes, some encoding over 200 genes. Genes essential for viral replication are located in the center of the linear genome and genes encoding host response modifiers and other host interacting proteins are located in the terminal regions. The central portion of the genome is highly conserved, both in gene content and sequence, while the terminal regions are more diverse. In this study, we investigated the role of adaptive molecular evolution in poxvirus genes and the selective pressures that act on the different regions of the genome. The relative fixation rates of synonymous and non-synonymous mutations (the d(N)/d(S) ratio) are an indicator of the mechanism of evolution of sequences, and can be used to identify purifying, neutral, or diversifying selection acting on a gene. Like highly conserved residues, amino acids under diversifying selection may be functionally important. Many genes experiencing diversifying selection are involved in host-pathogen interactions, such as antigen-antibody interactions, or the "host-pathogen arms race." We analyzed 175 gene families from orthopoxviruses for evidence of diversifying selection. 79 genes were identified as experiencing diversifying selection, 25 with high confidence. Many of these genes are located in the terminal regions of the genome and function to modify the host response to infection or are virion-associated, indicating a greater role for diversifying selection in host-interacting genes. Of the 79 genes, 20 are of unknown function, and implicating diversifying selection as an important mechanism in their evolution may help characterize their function or identify important functional residues. We conclude that diversifying selection is an important mechanism of orthopoxvirus evolution. Diversifying selection in poxviruses may be the result of interaction with host defense mechanisms.

  9. Adaptive tolerance to a pathogenic fungus drives major histocompatibility complex evolution in natural amphibian populations.

    Science.gov (United States)

    Savage, Anna E; Zamudio, Kelly R

    2016-03-30

    Amphibians have been affected globally by the disease chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), and we are just now beginning to understand how immunogenetic variability contributes to disease susceptibility. Lineages of an expressed major histocompatibility complex (MHC) class II locus involved in acquired immunity are associated with chytridiomycosis susceptibility in controlled laboratory challenge assays. Here, we extend these findings to natural populations that vary both in exposure and response to Bd We find that MHC alleles and supertypes associated with Bd survival in the field show a molecular signal of positive selection, while those associated with susceptibility do not, supporting the hypothesis that heritable Bd tolerance is rapidly evolving. We compare MHC supertypes to neutral loci to demonstrate where selection versus demography is shaping MHC variability. One population with Bd tolerance in nature shows a significant signal of directional selection for the same allele (allele Q) that was significantly associated with survival in an earlier laboratory study. Our findings indicate that selective pressure for Bd survival drives rapid immunogenetic adaptation in some natural populations, despite differences in environment and demography. Our field-based analysis of immunogenetic variation confirms that natural amphibian populations have the evolutionary potential to adapt to chytridiomycosis. © 2016 The Authors.

  10. Archaeogenomic insights into the adaptation of plants to the human environment: pushing plant-hominin co-evolution back to the Pliocene.

    Science.gov (United States)

    Allaby, Robin G; Kistler, Logan; Gutaker, Rafal M; Ware, Roselyn; Kitchen, James L; Smith, Oliver; Clarke, Andrew C

    2015-02-01

    The colonization of the human environment by plants, and the consequent evolution of domesticated forms is increasingly being viewed as a co-evolutionary plant-human process that occurred over a long time period, with evidence for the co-evolutionary relationship between plants and humans reaching ever deeper into the hominin past. This developing view is characterized by a change in emphasis on the drivers of evolution in the case of plants. Rather than individual species being passive recipients of artificial selection pressures and ultimately becoming domesticates, entire plant communities adapted to the human environment. This evolutionary scenario leads to systems level genetic expectations from models that can be explored through ancient DNA and Next Generation Sequencing approaches. Emerging evidence suggests that domesticated genomes fit well with these expectations, with periods of stable complex evolution characterized by large amounts of change associated with relatively small selective value, punctuated by periods in which changes in one-half of the plant-hominin relationship cause rapid, low-complexity adaptation in the other. A corollary of a single plant-hominin co-evolutionary process is that clues about the initiation of the domestication process may well lie deep within the hominin lineage. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Improving high carbon dioxide tolerance and carbon dioxide fixation capability of Chlorella sp. by adaptive laboratory evolution.

    Science.gov (United States)

    Li, Dengjin; Wang, Liang; Zhao, Quanyu; Wei, Wei; Sun, Yuhan

    2015-06-01

    CO2 capture by microalgae is a promising method to reduce greenhouse gas emissions. It is critical to construct a highly efficient way to obtain a microalgal strain tolerant to high CO2 concentrations with high CO2 fixation capability. In this study, two evolved Chlorella sp. strains, AE10 and AE20 were obtained after 31 cycles of adaptive laboratory evolution (ALE) under 10% and 20% CO2, respectively. Both of them grew rapidly in 30% CO2 and the maximal biomass concentration of AE10 was 3.68±0.08g/L, which was 1.22 and 2.94 times to those of AE20 and original strain, respectively. The chlorophyll contents of AE10 and AE20 were significantly higher than those of the original one under 1-30% CO2. The influences of ALE process on biochemical compositions of Chlorella cells were also investigated. This study proved that ALE was an effective approach to improve high CO2 tolerance of Chlorella sp. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Pilot-scale evaluation the enological traits of a novel, aromatic wine yeast strain obtained by adaptive evolution.

    Science.gov (United States)

    Cadière, Axelle; Aguera, Evelyne; Caillé, Soline; Ortiz-Julien, Anne; Dequin, Sylvie

    2012-12-01

    In the competitive context of the wine market, there is a growing interest for novel wine yeast strains that have an overall good fermentation capacity and that contribute favorably to the organoleptic quality of wine. Using an adaptive evolution strategy based on growth on gluconate as sole carbon source, we recently obtained wine yeasts with improved characteristics in laboratory-scale fermentations. The characteristics included enhanced fermentation rate, decreased formation of acetate and greater production of fermentative aroma. We report an evaluation of the potential value of the evolved strain ECA5™ for winemaking, by comparing its fermentation performance and metabolite production to those of the parental strain in pilot-scale fermentation trials, with various grape cultivars and winemaking conditions. We show that the evolved strain has outstanding attributes relative to the parental wine yeast strain, and in particular the production of less volatile acidity and greater production of desirable volatile esters, important for the fruity/flowery character of wines. This study highlights the potential of evolutionary engineering for the generation of strains with a broad range of novel properties, appropriate for rapid application in the wine industry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Metabolic modelling in a dynamic evolutionary framework predicts adaptive diversification of bacteria in a long-term evolution experiment.

    Science.gov (United States)

    Großkopf, Tobias; Consuegra, Jessika; Gaffé, Joël; Willison, John C; Lenski, Richard E; Soyer, Orkun S; Schneider, Dominique

    2016-08-20

    Predicting adaptive trajectories is a major goal of evolutionary biology and useful for practical applications. Systems biology has enabled the development of genome-scale metabolic models. However, analysing these models via flux balance analysis (FBA) cannot predict many evolutionary outcomes including adaptive diversification, whereby an ancestral lineage diverges to fill multiple niches. Here we combine in silico evolution with FBA and apply this modelling framework, evoFBA, to a long-term evolution experiment with Escherichia coli. Simulations predicted the adaptive diversification that occurred in one experimental population and generated hypotheses about the mechanisms that promoted coexistence of the diverged lineages. We experimentally tested and, on balance, verified these mechanisms, showing that diversification involved niche construction and character displacement through differential nutrient uptake and altered metabolic regulation. The evoFBA framework represents a promising new way to model biochemical evolution, one that can generate testable predictions about evolutionary and ecosystem-level outcomes.

  14. Multifunctional adaptive NS1 mutations are selected upon human influenza virus evolution in the mouse.

    Directory of Open Access Journals (Sweden)

    Nicole E Forbes

    Full Text Available The role of the NS1 protein in modulating influenza A virulence and host range was assessed by adapting A/Hong Kong/1/1968 (H3N2 (HK-wt to increased virulence in the mouse. Sequencing the NS genome segment of mouse-adapted variants revealed 11 mutations in the NS1 gene and 4 in the overlapping NEP gene. Using the HK-wt virus and reverse genetics to incorporate mutant NS gene segments, we demonstrated that all NS1 mutations were adaptive and enhanced virus replication (up to 100 fold in mouse cells and/or lungs. All but one NS1 mutant was associated with increased virulence measured by survival and weight loss in the mouse. Ten of twelve NS1 mutants significantly enhanced IFN-β antagonism to reduce the level of IFN β production relative to HK-wt in infected mouse lungs at 1 day post infection, where 9 mutants induced viral yields in the lung that were equivalent to or significantly greater than HK-wt (up to 16 fold increase. Eight of 12 NS1 mutants had reduced or lost the ability to bind the 30 kDa cleavage and polyadenylation specificity factor (CPSF30 thus demonstrating a lack of correlation with reduced IFN β production. Mutant NS1 genes resulted in increased viral mRNA transcription (10 of 12 mutants, and protein production (6 of 12 mutants in mouse cells. Increased transcription activity was demonstrated in the influenza mini-genome assay for 7 of 11 NS1 mutants. Although we have shown gain-of-function properties for all mutant NS genes, the contribution of the NEP mutations to phenotypic changes remains to be assessed. This study demonstrates that NS1 is a multifunctional virulence factor subject to adaptive evolution.

  15. ShakeMap implementation for Pyrenees in France-Spain border: regional adaptation and earthquake rapid response process.

    OpenAIRE

    Bertil, Didier; Roviró, Jordi; Antonio Jara, Jose; Susagna, Teresa; Nus, Eduard; Goula, Xavier; Colas, Bastien; Dumont, Guillaume; Cabañas, Luis; Anton, Resurección; Calvet, Marie

    2012-01-01

    International audience; The USGS-ShakeMap package is used with a regional adaptation to provide automatic shake maps in rapid response for Pyrenean earthquakes. The Near Real Time system relies on servers designed for data exchange between transborder organizations involved in the Sispyr project. First maps will be provide as soon as possible after the shock, and updated with observed macroseismic intensities on the following hours. Regional Predictive Equations Tapia (2006) and Goula et al. ...

  16. Osmoregulatory physiology and rapid evolution of salinity tolerance in threespine stickleback recently introduced to fresh water

    Science.gov (United States)

    Divino, Jeffrey N; Monette, Michelle Y.; McCormick, Stephen; Yancey, Paul H.; Flannery, Kyle G.; Bell, Michael A.; Rollins, Jennifer L.; von Hippel, Frank A.; Schultz, Eric T.

    2016-01-01

    Background: Post-Pleistocene diversification of threespine stickleback in fresh water offers a valuable opportunity to study how changes in environmental salinity shape physiological evolution in fish. In Alaska, the presence of both ancestral oceanic populations and derived landlocked populations, including recent lake introductions, allows us to examine rates and direction of evolution of osmoregulation following halohabitat transition.

  17. Rapid changes in corticospinal excitability during force field adaptation of human walking

    DEFF Research Database (Denmark)

    Barthélemy, Dorothy; Alain, S; Grey, Michael James

    2012-01-01

    Force field adaptation of locomotor muscle activity is one way of studying the ability of the motor control networks in the brain and spinal cord to adapt in a flexible way to changes in the environment. Here, we investigate whether the corticospinal tract is involved in this adaptation. We...... measured changes in motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) in the tibialis anterior (TA) muscle before, during, and after subjects adapted to a force field applied to the ankle joint during treadmill walking. When the force field assisted dorsiflexion during...... the swing phase of the step cycle, subjects adapted by decreasing TA EMG activity. In contrast, when the force field resisted dorsiflexion, they increased TA EMG activity. After the force field was removed, normal EMG activity gradually returned over the next 5 min of walking. TA MEPs elicited in the early...

  18. Rapid evolution of the spin state of comet 41P/Tuttle-Giacobini-Kresak

    Science.gov (United States)

    Bodewits, Dennis; Farnham, Tony; Kelley, Michael S. P.; Manning Knight, Matthew

    2018-01-01

    Cometary outgassing can produce torques that change the spin state of the nucleus, influencing the evolution and lifetimes of comets. If these torques spin up the rotation to the point that centripetal forces exceed the material strength of the nucleus, the comet may fragment. Comet 41P/Tuttle-Giacobini-Kresak passed Earth as close as 0.142 au in April 2017, allowing observations of the inner coma and an assessment of the rotational state of the nucleus. We acquired observations of comet 41P between March and May 2017 using the 4.3-m Discovery Channel Telescope and the UltraViolet-Optical Telescope (UVOT) on board the Earth-orbiting Swift Gamma Ray Burst Mission.We combined CN narrowband imaging and aperture photometry and found that the apparent rotation period of comet 41P more than doubled between March and May 2017, increasing from 20 hours to over 46 hours. Measurements of the periodicity in late-March by Knight et al. (CBET 4377, 2017) are consistent with this rate of increase. Comet 41P is the ninth comet for which a rotation period change has been observed (c.f. Samarasinha et al., in Comets II, 2004), but both the fractional change and the rate of change of the period far exceed those observed in the other comets. It is the combination of a slow rotation, high activity, and a small nucleus that contribute to the rapid changes of the rotation state of 41P. In addition, the active regions on the surface of 41P are likely oriented in a way such that its torques are highly optimized in comparison to many other comets.Extrapolating the comet’s rotation period using its current gas production rates and a simple activity model suggests that the nucleus will continue to spin down, possibly leading to an excited spin state in the next apparitions. Finally, 41P is known for its large outbursts, and our extrapolation suggest that the comet’s rotation period may have been close to the critical period for splitting in 2001, when it exhibited two significant

  19. Rapid Karyotype Evolution in Lasiopodomys Involved at Least Two Autosome - Sex Chromosome Translocations.

    Directory of Open Access Journals (Sweden)

    Olga L Gladkikh

    Full Text Available The generic status of Lasiopodomys and its division into subgenera Lasiopodomys (L. mandarinus, L. brandtii and Stenocranius (L. gregalis, L. raddei are not generally accepted because of contradictions between the morphological and molecular data. To obtain cytogenetic evidence for the Lasiopodomys genus and its subgenera and to test the autosome to sex chromosome translocation hypothesis of sex chromosome complex origin in L. mandarinus proposed previously, we hybridized chromosome painting probes from the field vole (Microtus agrestis, MAG and the Arctic lemming (Dicrostonyx torquatus, DTO onto the metaphases of a female Mandarin vole (L. mandarinus, 2n = 47 and a male Brandt's vole (L. brandtii, 2n = 34. In addition, we hybridized Arctic lemming painting probes onto chromosomes of a female narrow-headed vole (L. gregalis, 2n = 36. Cross-species painting revealed three cytogenetic signatures (MAG12/18, 17a/19, and 22/24 that could validate the genus Lasiopodomys and indicate the evolutionary affinity of L. gregalis to the genus. Moreover, all three species retained the associations MAG1bc/17b and 2/8a detected previously in karyotypes of all arvicolins studied. The associations MAG2a/8a/19b, 8b/21, 9b/23, 11/13b, 12b/18, 17a/19a, and 5 fissions of ancestral segments appear to be characteristic for the subgenus Lasiopodomys. We also validated the autosome to sex chromosome translocation hypothesis on the origin of complex sex chromosomes in L. mandarinus. Two translocations of autosomes onto the ancestral X chromosome in L. mandarinus led to a complex of neo-X1, neo-X2, and neo-X3 elements. Our results demonstrate that genus Lasiopodomys represents a striking example of rapid chromosome evolution involving both autosomes and sex chromosomes. Multiple reshuffling events including Robertsonian fusions, chromosomal fissions, inversions and heterochromatin expansion have led to the formation of modern species karyotypes in a very short time, about

  20. Evidence of correlated evolution and adaptive differentiation of stem and leaf functional traits in the herbaceous genus, Helianthus.

    Science.gov (United States)

    Pilote, Alex J; Donovan, Lisa A

    2016-12-01

    Patterns of plant stem traits are expected to align with a "fast-slow" plant economic spectrum across taxa. Although broad patterns support such tradeoffs in field studies, tests of hypothesized correlated trait evolution and adaptive differentiation are more robust when taxa relatedness and environment are taken into consideration. Here we test for correlated evolution of stem and leaf traits and their adaptive differentiation across environments in the herbaceous genus, Helianthus. Stem and leaf traits of 14 species of Helianthus (28 populations) were assessed in a common garden greenhouse study. Phylogenetically independent contrasts were used to test for evidence of correlated evolution of stem hydraulic and biomechanical properties, correlated evolution of stem and leaf traits, and adaptive differentiation associated with source habitat environments. Among stem traits, there was evidence for correlated evolution of some hydraulic and biomechanical properties, supporting an expected tradeoff between stem theoretical hydraulic efficiency and resistance to bending stress. Population differentiation for suites of stem and leaf traits was found to be consistent with a "fast-slow" resource-use axis for traits related to water transport and use. Associations of population traits with source habitat characteristics supported repeated evolution of a resource-acquisitive "drought-escape" strategy in arid environments. This study provides evidence of correlated evolution of stem and leaf traits consistent with the fast-slow spectrum of trait combinations related to water transport and use along the stem-to-leaf pathway. Correlations of traits with source habitat characteristics further indicate that the correlated evolution is associated, at least in part, with adaptive differentiation of Helianthus populations among native habitats differing in climate. © 2016 Botanical Society of America.

  1. Rapid evolutionary adaptation to elevated salt concentrations in pathogenic freshwater bacteria Serratia marcescens

    National Research Council Canada - National Science Library

    Ketola, Tarmo; Hiltunen, Teppo

    2014-01-01

    .... We tested this hypothesis with a 133‐day‐long evolutionary experiment studying the evolution of the pathogenic Serratia marcescens bacterium at salinity niche boundary and in fluctuating conditions. We found...

  2. Design Of Multivariable Fractional Order Pid Controller Using Covariance Matrix Adaptation Evolution Strategy

    Directory of Open Access Journals (Sweden)

    Sivananaithaperumal Sudalaiandi

    2014-06-01

    Full Text Available This paper presents an automatic tuning of multivariable Fractional-Order Proportional, Integral and Derivative controller (FO-PID parameters using Covariance Matrix Adaptation Evolution Strategy (CMAES algorithm. Decoupled multivariable FO-PI and FO-PID controller structures are considered. Oustaloup integer order approximation is used for the fractional integrals and derivatives. For validation, two Multi-Input Multi- Output (MIMO distillation columns described byWood and Berry and Ogunnaike and Ray are considered for the design of multivariable FO-PID controller. Optimal FO-PID controller is designed by minimizing Integral Absolute Error (IAE as objective function. The results of previously reported PI/PID controller are considered for comparison purposes. Simulation results reveal that the performance of FOPI and FO-PID controller is better than integer order PI/PID controller in terms of IAE. Also, CMAES algorithm is suitable for the design of FO-PI / FO-PID controller.

  3. Adaptive Differential Evolution Approach for Constrained Economic Power Dispatch with Prohibited Operating Zones

    Directory of Open Access Journals (Sweden)

    Abdellatif HAMOUDA

    2011-12-01

    Full Text Available Economic power dispatch (EPD is one of the main tools for optimal operation and planning of modern power systems. To solve effectively the EPD problem, most of the conventional calculus methods rely on the assumption that the fuel cost characteristic of a generating unit is a continuous and convex function, resulting in inaccurate dispatch. This paper presents the design and application of efficient adaptive differential evolution (ADE algorithm for the solution of the economic power dispatch problem, where the non-convex characteristics of the generators, such us prohibited operating zones and ramp rate limits of the practical generator operation are considered. The 26 bus benchmark test system with 6 units having prohibited operating zones and ramp rate limits was used for testing and validation purposes. The results obtained demonstrate the effectiveness of the proposed method for solving the non-convex economic dispatch problem.

  4. The evolution and adaptation of A-to-I RNA editing.

    Directory of Open Access Journals (Sweden)

    Arielle L Yablonovitch

    2017-11-01

    Full Text Available Adenosine-to-inosine (A-to-I RNA editing is an important post-transcriptional modification that affects the information encoded from DNA to RNA to protein. RNA editing can generate a multitude of transcript isoforms and can potentially be used to optimize protein function in response to varying conditions. In light of this and the fact that millions of editing sites have been identified in many different species, it is interesting to examine the extent to which these sites have evolved to be functionally important. In this review, we discuss results pertaining to the evolution of RNA editing, specifically in humans, cephalopods, and Drosophila. We focus on how comparative genomics approaches have aided in the identification of sites that are likely to be advantageous. The use of RNA editing as a mechanism to adapt to varying environmental conditions will also be reviewed.

  5. Development Of An Efficient Glycerol Utilizing Saccharomyces Cerevisiae Strain Via Adaptive Laboratory Evolution

    DEFF Research Database (Denmark)

    Strucko, Tomas; Zirngibl, Katharina; Tharwat Tolba Mohamed, Elsayed

    2015-01-01

    fermentation processes. The most commonly known microbial cell factory, the yeast Saccharomyces cerevisiae, has been extensively applied for the production of a wide range of scientifically and industrially relevant products using saccharides (mainly glucose) as carbon source. However, it was shown...... that popular wild-type laboratory yeast strains, commonly applied in metabolic engineering studies, did not grow or grew very slowly in glycerol medium.In this work, an adaptive laboratory evolution approach to obtain S. cerevisiae strains with an improved ability to grow on glycerol was applied. A broad array...... catabolism in yeast. The knowledge acquired in this study may be further applied for rational S. cerevisiae strain improvement for using glycerol as a carbon source in industrial biotechnology processes. This work is a part of the DeYeastLibrary consortium financed by ERA-IB DeYeastLibrary - Designer yeast...

  6. DiffeRential Evolution Adaptive Metropolis with Sampling From Past States

    Science.gov (United States)

    Vrugt, J. A.; Laloy, E.; Ter Braak, C.

    2010-12-01

    Markov chain Monte Carlo (MCMC) methods have found widespread use in many fields of study to estimate the average properties of complex systems, and for posterior inference in a Bayesian framework. Existing theory and experiments prove convergence of well constructed MCMC schemes to the appropriate limiting distribution under a variety of different conditions. In practice, however this convergence is often observed to be disturbingly slow. This is frequently caused by an inappropriate selection of the proposal distribution used to generate trial moves in the Markov Chain. In a previous paper te{vrugt_1} we have presented the {D}iffe{R}ential {E}volution {A}daptive {M}etropolis (DREAM) MCMC scheme that automatically tunes the scale and orientation of the proposal distribution during evolution to the posterior target distribution. In the same paper, detailed balance and ergodicity of DREAM have been proved, and various examples involving nonlinearity, high-dimensionality, and multimodality have shown that DREAM is generally superior to other adaptive MCMC sampling approaches. Standard DREAM requires at least N = d chains to be run in parallel, where d is the dimensionality of the posterior. Unfortunately, running many parallel chains is a potential source of inefficiency, as each individual chain must travel to high density region of the posterior. The lower the number of parallel chains required, the greater the practical applicability of DREAM for computationally demanding problems. This paper extends DREAM with a snooker updater and shows by simulation and real examples that DREAM can work for d up to 50-100 with far fewer parallel chains (e.g. N = 3) by generating jumps using differences of pairs of past states

  7. Adaptive reptile color variation and the evolution of the Mc1r gene.

    Science.gov (United States)

    Rosenblum, Erica Bree; Hoekstra, Hopi E; Nachman, Michael W

    2004-08-01

    The wealth of information on the genetics of pigmentation and the clear fitness consequences of many pigmentation phenotypes provide an opportunity to study the molecular basis of an ecologically important trait. The melanocortin-1 receptor (Mc1r) is responsible for intraspecific color variation in mammals and birds. Here, we study the molecular evolution of Mc1r and investigate its role in adaptive intraspecific color differences in reptiles. We sequenced the complete Mc1r locus in seven phylogenetically diverse squamate species with melanic or blanched forms associated with different colored substrates or thermal environments. We found that patterns of amino acid substitution across different regions of the receptor are similar to the patterns seen in mammals, suggesting comparable levels of constraint and probably a conserved function for Mc1r in mammals and reptiles. We also found high levels of silent-site heterozygosity in all species, consistent with a high mutation rate or large long-term effective population size. Mc1r polymorphisms were strongly associated with color differences in Holbrookia maculata and Aspidoscelis inornata. In A. inornata, several observations suggest that Mc1r mutations may contribute to differences in color: (1) a strong association is observed between one Mc1r amino acid substitution and dorsal color; (2) no significant population structure was detected among individuals from these populations at the mitochondrial ND4 gene; (3) the distribution of allele frequencies at Mc1r deviates from neutral expectations; and (4) patterns of linkage disequilibrium at Mc1r are consistent with recent selection. This study provides comparative data on a nuclear gene in reptiles and highlights the utility of a candidate-gene approach for understanding the evolution of genes involved in vertebrate adaptation.

  8. Pre-adaptations and the evolution of pollination by sexual deception: Cope's rule of specialization revisited.

    Science.gov (United States)

    Vereecken, Nicolas J; Wilson, Carol A; Hötling, Susann; Schulz, Stefan; Banketov, Sergey A; Mardulyn, Patrick

    2012-12-07

    Pollination by sexual deception is arguably one of the most unusual liaisons linking plants and insects, and perhaps the most illustrative example of extreme floral specialization in angiosperms. While considerable progress has been made in understanding the floral traits involved in sexual deception, less is known about how this remarkable mimicry system might have arisen, the role of pre-adaptations in promoting its evolution and its extent as a pollination mechanism outside the few groups of plants (primarily orchids) where it has been described to date. In the Euro-Mediterranean region, pollination by sexual deception is traditionally considered to be the hallmark of the orchid genus Ophrys. Here, we introduce two new cases outside of Ophrys, in plant groups dominated by generalized, shelter-mimicking species. On the basis of phylogenetic reconstructions of ancestral pollination strategies, we provide evidence for independent and bidirectional evolutionary transitions between generalized (shelter mimicry) and specialized (sexual deception) pollination strategies in three groups of flowering plants, and suggest that pseudocopulation has evolved from pre-adaptations (floral colours, shapes and odour bouquets) that selectively attract male pollinators through shelter mimicry. These findings, along with comparative analyses of floral traits (colours and scents), shed light on particular phenotypic changes that might have fuelled the parallel evolution of these extraordinary pollination strategies. Collectively, our results provide the first substantive insights into how pollination sexual deception might have evolved in the Euro-Mediterranean region, and demonstrate that even the most extreme cases of pollinator specialization can reverse to more generalized interactions, breaking 'Cope's rule of specialization'.

  9. Adaptive evolution of social traits: origin, trajectories, and correlations of altruism and mobility.

    Science.gov (United States)

    Le Galliard, Jean-François; Ferrière, Régis; Dieckmann, Ulf

    2005-02-01

    Social behavior involves "staying and helping," two individual attributes that vary considerably among organisms. Investigating the ultimate causes of such variation, this study integrates previously separate lines of research by analyzing the joint evolution of altruism and mobility. We unfold the network of selective pressures and derive how these depend on physiological costs, eco-evolutionary feedbacks, and a complex interaction between the evolving traits. Our analysis highlights habitat saturation, both around individuals (local aggregation) and around unoccupied space (local contention), as the key mediator of altruism and mobility evolution. Once altruism and mobility are allowed to evolve jointly, three general insights emerge. First, the cost of mobility affects the origin of altruism, determining whether and how quickly selfishness is overcome. Second, the cost of altruism determines which of two qualitatively different routes to sociality are taken: an evolutionary reduction of mobility, resulting in higher habitat saturation, is either preceded or followed by the adaptive rise of altruism. Third, contrary to conventional expectations, a positive correlation between evolutionarily stable levels of altruism and mobility can arise; this is expected when comparing populations that evolved under different constraints on mobility or that differ in other life-history traits.

  10. Optimization of reactor network design problem using Jumping Gene Adaptation of Differential Evolution

    Science.gov (United States)

    Gujarathi, Ashish M.; Purohit, S.; Srikanth, B.

    2015-06-01

    Detailed working principle of jumping gene adaptation of differential evolution (DE-JGa) is presented. The performance of the DE-JGa algorithm is compared with the performance of differential evolution (DE) and modified DE (MDE) by applying these algorithms on industrial problems. In this study Reactor network design (RND) problem is solved using DE, MDE, and DE-JGa algorithms: These industrial processes are highly nonlinear and complex with reference to optimal operating conditions with many equality and inequality constraints. Extensive computational comparisons have been made for all the chemical engineering problems considered. The results obtained in the present study show that DE-JGa algorithm outperforms the other algorithms (DE and MDE). Several comparisons are made among the algorithms with regard to the number of function evaluations (NFE)/CPU- time required to find the global optimum. The standard deviation and the variance values obtained using DE-JGa, DE and MDE algorithms also show that the DE-JGa algorithm gives consistent set of results for the majority of the test problems and the industrial real world problems.

  11. Adaptations to sexual selection and sexual conflict: insights from experimental evolution and artificial selection.

    Science.gov (United States)

    Edward, Dominic A; Fricke, Claudia; Chapman, Tracey

    2010-08-27

    Artificial selection and experimental evolution document natural selection under controlled conditions. Collectively, these techniques are continuing to provide fresh and important insights into the genetic basis of evolutionary change, and are now being employed to investigate mating behaviour. Here, we focus on how selection techniques can reveal the genetic basis of post-mating adaptations to sexual selection and sexual conflict. Alteration of the operational sex ratio of adult Drosophila over just a few tens of generations can lead to altered ejaculate allocation patterns and the evolution of resistance in females to the costly effects of elevated mating rates. We provide new data to show how male responses to the presence of rivals can evolve. For several traits, the way in which males responded to rivals was opposite in lines selected for male-biased, as opposed to female-biased, adult sex ratio. This shows that the manipulation of the relative intensity of intra- and inter-sexual selection can lead to replicable and repeatable effects on mating systems, and reveals the potential for significant contemporary evolutionary change. Such studies, with important safeguards, have potential utility for understanding sexual selection and sexual conflict across many taxa. We discuss how artificial selection studies combined with genomics will continue to deepen our knowledge of the evolutionary principles first laid down by Darwin 150 years ago.

  12. Differential Evolution with Novel Mutation and Adaptive Crossover Strategies for Solving Large Scale Global Optimization Problems

    Directory of Open Access Journals (Sweden)

    Ali Wagdy Mohamed

    2017-01-01

    Full Text Available This paper presents Differential Evolution algorithm for solving high-dimensional optimization problems over continuous space. The proposed algorithm, namely, ANDE, introduces a new triangular mutation rule based on the convex combination vector of the triplet defined by the three randomly chosen vectors and the difference vectors between the best, better, and the worst individuals among the three randomly selected vectors. The mutation rule is combined with the basic mutation strategy DE/rand/1/bin, where the new triangular mutation rule is applied with the probability of 2/3 since it has both exploration ability and exploitation tendency. Furthermore, we propose a novel self-adaptive scheme for gradual change of the values of the crossover rate that can excellently benefit from the past experience of the individuals in the search space during evolution process which in turn can considerably balance the common trade-off between the population diversity and convergence speed. The proposed algorithm has been evaluated on the 20 standard high-dimensional benchmark numerical optimization problems for the IEEE CEC-2010 Special Session and Competition on Large Scale Global Optimization. The comparison results between ANDE and its versions and the other seven state-of-the-art evolutionary algorithms that were all tested on this test suite indicate that the proposed algorithm and its two versions are highly competitive algorithms for solving large scale global optimization problems.

  13. Enhanced Differential Evolution Based on Adaptive Mutation and Wrapper Local Search Strategies for Global Optimization Problems

    Directory of Open Access Journals (Sweden)

    Chun-Liang Lu

    2014-12-01

    Full Text Available Differential evolution (DE is a simple, powerful optimization algorithm, which has been widely used in many areas. However, the choices of the best mutation and search strategies are difficult for the specific issues. To alleviate these drawbacks and enhance the performance of DE, in this paper, the hybrid framework based on the adaptive mutation and Wrapper Local Search (WLS schemes, is proposed to improve searching ability to efficiently guide the evolution of the population toward the global optimum. Furthermore, the effective particle encoding representation named Particle Segment Operation-Machine Assignment (PSOMA that we previously published is applied to always produce feasible candidate solutions for solving the Flexible Job-shop Scheduling Problem (FJSP. Experiments were conducted on comprehensive set of complex benchmarks including the unimodal, multimodal and hybrid composition function, to validate performance of the proposed method and to compare with other state-of-the art DE variants such as jDE, JADE, MDE_pBX etc. Meanwhile, the hybrid DE model incorporating PSOMA is used to solve different representative instances based on practical data for multi-objective FJSP verifications. Simulation results indicate that the proposed method performs better for the majority of the single-objective scalable benchmark functions in terms of the solution accuracy and convergence rate. In addition, the wide range of Pareto-optimal solutions and more Gantt chart decision-makings can be provided for the multi-objective FJSP combinatorial optimizations.

  14. Cumulative number of cell divisions as a meaningful timescale for adaptive laboratory evolution of Escherichia coli.

    Science.gov (United States)

    Lee, Dae-Hee; Feist, Adam M; Barrett, Christian L; Palsson, Bernhard Ø

    2011-01-01

    Adaptive laboratory evolution (ALE) under controlled conditions has become a valuable approach for the study of the genetic and biochemical basis for microbial adaptation under a given selection pressure. Conventionally, the timescale in ALE experiments has been set in terms of number of generations. As mutations are believed to occur primarily during cell division in growing cultures, the cumulative number of cell divisions (CCD) would be an alternative way to set the timescale for ALE. Here we show that in short-term ALE (up to 40-50 days), Escherichia coli, under growth rate selection pressure, was found to undergo approximately 10(11.2) total cumulative cell divisions in the population to produce a new stable growth phenotype that results from 2 to 8 mutations. Continuous exposure to a low level of the mutagen N-methyl-N'-nitro-N-nitrosoguanidine was found to accelerate this timescale and led to a superior growth rate phenotype with a much larger number of mutations as determined with whole-genome sequencing. These results would be useful for the fundamental kinetics of the ALE process in designing ALE experiments and provide a basis for its quantitative description.

  15. Cumulative number of cell divisions as a meaningful timescale for adaptive laboratory evolution of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Dae-Hee Lee

    Full Text Available Adaptive laboratory evolution (ALE under controlled conditions has become a valuable approach for the study of the genetic and biochemical basis for microbial adaptation under a given selection pressure. Conventionally, the timescale in ALE experiments has been set in terms of number of generations. As mutations are believed to occur primarily during cell division in growing cultures, the cumulative number of cell divisions (CCD would be an alternative way to set the timescale for ALE. Here we show that in short-term ALE (up to 40-50 days, Escherichia coli, under growth rate selection pressure, was found to undergo approximately 10(11.2 total cumulative cell divisions in the population to produce a new stable growth phenotype that results from 2 to 8 mutations. Continuous exposure to a low level of the mutagen N-methyl-N'-nitro-N-nitrosoguanidine was found to accelerate this timescale and led to a superior growth rate phenotype with a much larger number of mutations as determined with whole-genome sequencing. These results would be useful for the fundamental kinetics of the ALE process in designing ALE experiments and provide a basis for its quantitative description.

  16. Adaptive evolution of foraging-related traits in a predator-prey community.

    Science.gov (United States)

    Zu, Jian; Mimura, Masayasu; Takeuchi, Yasuhiro

    2011-01-07

    In this paper, with the method of adaptive dynamics and geometric technique, we investigate the adaptive evolution of foraging-related phenotypic traits in a predator-prey community with trade-off structure. Specialization on one prey type is assumed to go at the expense of specialization on another. First, we identify the ecological and evolutionary conditions that allow for evolutionary branching in predator phenotype. Generally, if there is a small switching cost near the singular strategy, then this singular strategy is an evolutionary branching point, in which predator population will change from monomorphism to dimorphism. Second, we find that if the trade-off curve is globally convex, predator population eventually branches into two extreme specialists, each completely specializing on a particular prey species. However, if the trade-off curve is concave-convex-concave, after branching in predator phenotype, the two predator species will evolve to an evolutionarily stable dimorphism at which they can continue to coexist. The analysis reveals that an attractive dimorphism will always be evolutionarily stable and that no further branching is possible under this model. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  17. Adaptive capacity based water quality resilience transformation and policy implications in rapidly urbanizing landscapes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi, E-mail: ly463526@gmail.com [Department of Cartography, GIS and Remote Sensing, Institute of Geography, Georg-August University of Goettingen, Goettingen 37077 (Germany); Key Laboratory of Coastal and Wetland Ecosystems (Ministry of Education), College of the Environment and Ecology, Xiamen University, Xiamen 361102 (China); Degener, Jan [Department of Cartography, GIS and Remote Sensing, Institute of Geography, Georg-August University of Goettingen, Goettingen 37077 (Germany); Gaudreau, Matthew [Balsillie School of International Affairs, Faculty of Environment, University of Waterloo, 67 Erb Street West, Waterloo, ON N2L 6C2 (Canada); Li, Yangfan, E-mail: yangf@xmu.edu.cn [Key Laboratory of Coastal and Wetland Ecosystems (Ministry of Education), College of the Environment and Ecology, Xiamen University, Xiamen 361102 (China); Kappas, Martin [Department of Cartography, GIS and Remote Sensing, Institute of Geography, Georg-August University of Goettingen, Goettingen 37077 (Germany)

    2016-11-01

    Resilience-based management focuses on specific attributes or drivers of complex social-ecological systems, in order to operationalize and promote guiding principles for water quality management in urban systems. We therefore propose a resilience lens drawing on the theory of adaptive capacity and adaptive cycle to evaluate the urban resilience between water quality and land use type. Our findings show that the resilience of water quality variables, which were calculated based on their adaptive capacities, showed adaptive and sustainable trends with dramatic fluctuation. NH{sub 3}-N, Cadmium and Total Phosphorus experienced the most vulnerable shifts in the built-up area, agricultural areas, and on bare land. Our framework provided a consistent and repeatable approach to address uncertainty inherent in the resilience of water quality in different landscapes, as well as an approach to monitor variables over time with respect to national water quality standards. Ultimately, we pointed to the political underpinnings for risk mitigation and managing resilient urban system in a particular coastal urban setting. - Highlights: • Integrated framework to analyze the resilience of urban land-water systems • Addressed the changes of adaptive capacity based resilience and transitions • Applied four transition phases of adaptive cycle to water quality management.

  18. Sexual selection and the adaptive evolution of PKDREJ protein in primates and rodents.

    Science.gov (United States)

    Vicens, Alberto; Gómez Montoto, Laura; Couso-Ferrer, Francisco; Sutton, Keith A; Roldan, Eduardo R S

    2015-02-01

    PKDREJ is a testis-specific protein thought to be located on the sperm surface. Functional studies in the mouse revealed that loss of PKDREJ has effects on sperm transport and the ability to undergo an induced acrosome reaction. Thus, PKDREJ has been considered a potential target of post-copulatory sexual selection in the form of sperm competition. Proteins involved in reproductive processes often show accelerated evolution. In many cases, this rapid divergence is promoted by positive selection which may be driven, at least in part, by post-copulatory sexual selection. We analysed the evolution of the PKDREJ protein in primates and rodents and assessed whether PKDREJ divergence is associated with testes mass relative to body mass, which is a reliable proxy of sperm competition levels. Evidence of an association between the evolutionary rate of the PKDREJ gene and testes mass relative to body mass was not found in primates. Among rodents, evidence of positive selection was detected in the Pkdrej gene in the family Cricetidae but not in Muridae. We then assessed whether Pkdrej divergence is associated with episodes of sperm competition in these families. We detected a positive significant correlation between the evolutionary rates of Pkdrej and testes mass relative to body mass in cricetids. These findings constitute the first evidence of post-copulatory sexual selection influencing the evolution of a protein that participates in the mechanisms regulating sperm transport and the acrosome reaction, strongly suggesting that positive selection may act on these fertilization steps, leading to advantages in situations of sperm competition. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod.

    Science.gov (United States)

    Hut, R A; Beersma, D G M

    2011-07-27

    Virtually all species have developed cellular oscillations and mechanisms that synchronize these cellular oscillations to environmental cycles. Such environmental cycles in biotic (e.g. food availability and predation risk) or abiotic (e.g. temperature and light) factors may occur on a daily, annual or tidal time scale. Internal timing mechanisms may facilitate behavioural or physiological adaptation to such changes in environmental conditions. These timing mechanisms commonly involve an internal molecular oscillator (a 'clock') that is synchronized ('entrained') to the environmental cycle by receptor mechanisms responding to relevant environmental signals ('Zeitgeber', i.e. German for time-giver). To understand the evolution of such timing mechanisms, we have to understand the mechanisms leading to selective advantage. Although major advances have been made in our understanding of the physiological and molecular mechanisms driving internal cycles (proximate questions), studies identifying mechanisms of natural selection on clock systems (ultimate questions) are rather limited. Here, we discuss the selective advantage of a circadian system and how its adaptation to day length variation may have a functional role in optimizing seasonal timing. We discuss various cases where selective advantages of circadian timing mechanisms have been shown and cases where temporarily loss of circadian timing may cause selective advantage. We suggest an explanation for why a circadian timing system has emerged in primitive life forms like cyanobacteria and we evaluate a possible molecular mechanism that enabled these bacteria to adapt to seasonal variation in day length. We further discuss how the role of the circadian system in photoperiodic time measurement may explain differential selection pressures on circadian period when species are exposed to changing climatic conditions (e.g. global warming) or when they expand their geographical range to different latitudes or altitudes.

  20. Mass Balance Evolution of Black Rapids Glacier, Alaska, 1980–2100, and Its Implications for Surge Recurrence

    Directory of Open Access Journals (Sweden)

    Christian Kienholz

    2017-07-01

    Full Text Available Surge-type Black Rapids Glacier, Alaska, has undergone strong retreat since it last surged in 1936–1937. To assess its evolution during the late Twentieth and Twenty-first centuries and determine potential implications for surge likelihood, we run a simplified glacier model over the periods 1980–2015 (hindcasting and 2015–2100 (forecasting. The model is forced by daily temperature and precipitation fields, with downscaled reanalysis data used for the hindcasting. A constant climate scenario and an RCP 8.5 scenario based on the GFDL-CM3 climate model are employed for the forecasting. Debris evolution is accounted for by a debris layer time series derived from satellite imagery (hindcasting and a parametrized debris evolution model (forecasting. A retreat model accounts for the evolution of the glacier geometry. Model calibration, validation and parametrization rely on an extensive set of in situ and remotely sensed observations. To explore uncertainties in our projections, we run the glacier model in a Monte Carlo fashion, varying key model parameters and input data within plausible ranges. Our results for the hindcasting period indicate a negative mass balance trend, caused by atmospheric warming in the summer, precipitation decrease in the winter and surface elevation lowering (climate-elevation feedback, which exceed the moderating effects from increasing debris cover and glacier retreat. Without the 2002 rockslide deposits on Black Rapids' lower reaches, the mass balances would be more negative, by ~20% between the 2003 and 2015 mass-balance years. Despite its retreat, Black Rapids Glacier is substantially out of balance with the current climate. By 2100, ~8% of Black Rapids' 1980 area are projected to vanish under the constant climate scenario and ~73% under the RCP 8.5 scenario. For both scenarios, the remaining glacier portions are out of balance, suggesting continued retreat after 2100. Due to mass starvation, a surge in the Twenty

  1. Mass balance evolution of Black Rapids Glacier, Alaska, 1980-2100, and its implications for surge recurrence

    Science.gov (United States)

    Kienholz, Christian; Hock, Regine; Truffer, Martin; Bieniek, Peter; Lader, Richard

    2017-07-01

    Surge-type Black Rapids Glacier, Alaska, has undergone strong retreat since it last surged in 1936-37. To assess its evolution during the late 20th and 21st centuries and determine potential implications for surge likelihood, we run a simplified glacier model over the periods 1980-2015 (hindcasting) and 2015-2100 (forecasting). The model is forced by daily temperature and precipitation fields, with downscaled reanalysis data used for the hindcasting. A constant climate scenario and an RCP 8.5 scenario based on the GFDL-CM3 climate model are employed for the forecasting. Debris evolution is accounted for by a debris layer time series derived from satellite imagery (hindcasting) and a parametrized debris evolution model (forecasting). A retreat model accounts for the evolution of the glacier geometry. Model calibration, validation and parametrization rely on an extensive set of in situ and remotely sensed observations. To explore uncertainties in our projections, we run the glacier model in a Monte Carlo fashion, varying key model parameters and input data within plausible ranges. Our results for the hindcasting period indicate a negative mass balance trend, caused by atmospheric warming in the summer, precipitation decrease in the winter and surface elevation lowering (climate-elevation feedback), which exceed the moderating effects from increasing debris cover and glacier retreat. Without the 2002 rockslide deposits on Black Rapids' lower reaches, the mass balances would be more negative, by 20% between the 2003 and 2015 mass-balance years. Despite its retreat, Black Rapids Glacier is substantially out of balance with the current climate. By 2100, 8% of Black Rapids' 1980 area are projected to vanish under the constant climate scenario and 73% under the RCP 8.5 scenario. For both scenarios, the remaining glacier portions are out of balance, suggesting continued retreat after 2100. Due to mass starvation, a surge in the 21st century is unlikely. The projected

  2. Global Rebalancing of Cellular Resources by Pleiotropic Point Mutations Illustrates a Multi-scale Mechanism of Adaptive Evolution

    DEFF Research Database (Denmark)

    Utrilla, José; O'Brien, Edward J.; Chen, Ke

    2016-01-01

    Pleiotropic regulatory mutations affect diverse cellular processes, posing a challenge to our understanding of genotype-phenotype relationships across multiple biological scales. Adaptive laboratory evolution (ALE) allows for such mutations to be found and characterized in the context of clear se...

  3. Reproduction - a factor of plant evolution

    Directory of Open Access Journals (Sweden)

    Ion I. Bǎra

    2014-01-01

    Full Text Available The process of reproduction (amphimixis and apomixis represents a major factor of evolution. The facultative apomictic species are the pioneers of evolution. They combine the adventages of amphimixis (high degree of variability and heterogenesis and apomixis (relative stability and low material expenditure assuring a rapid rate of adaptive evolution.

  4. Rapid evolution of stability and productivity at the origin of a microbial mutualism

    Energy Technology Data Exchange (ETDEWEB)

    Hillesland, Kristina L.; Stahl, David A.

    2009-12-01

    Mutualistic interactions are taxonomically and functionally diverse. Despite their ubiquity, the basic ecological and evolutionary processes underlying their origin and maintenance are poorly understood. A major reason for this has been the lack of an experimentally tractable model system. We examine the evolution of an experimentally imposed obligate mutualism between sulfate-reducing and methanogenic microorganisms that have no known history of prior interaction. Twenty-four independent pairings (cocultures) of the bacterium Desulfovibrio vulgaris and the archaeon Methanococcus maripaludis were established and followed for 300 community doublings in two environments, one allowing for the development of a heterogeneous distribution of resources and the other not. Evolved cocultures grew up to 80percent faster and were up to 30percent more productive (biomass yield per mole substrate) than the ancestors. The evolutionary process was marked by periods of significant instability leading to extinction of two of the cocultures, but resulted in more stable, efficient, and productive mutualisms for most replicated pairings. Comparisons of evolved cocultures with those assembled from one evolved and one ancestral mutualist showed that evolution of both species contributed to improved productivity. Surprisingly, however, overall improvements in growth rate and yield were less than the sum of individual contributions, suggesting antagonistic interactions between mutations from the coevolved populations. Physical constraints on the transfer of metabolites in the evolution environment affected the evolution of M. maripaludis but not D. vulgaris. Together, these results show that challenges can imperil nascent obligate mutualisms and demonstrate the evolutionary responses that enable their persistence and future evolution.

  5. Pervasive Adaptive Protein Evolution Apparent in Diversity Patterns around Amino Acid Substitutions in Drosophila simulans

    Science.gov (United States)

    Sattath, Shmuel; Elyashiv, Eyal; Kolodny, Oren; Rinott, Yosef; Sella, Guy

    2011-01-01

    In Drosophila, multiple lines of evidence converge in suggesting that beneficial substitutions to the genome may be common. All suffer from confounding factors, however, such that the interpretation of the evidence—in particular, conclusions about the rate and strength of beneficial substitutions—remains tentative. Here, we use genome-wide polymorphism data in D. simulans and sequenced genomes of its close relatives to construct a readily interpretable characterization of the effects of positive selection: the shape of average neutral diversity around amino acid substitutions. As expected under recurrent selective sweeps, we find a trough in diversity levels around amino acid but not around synonymous substitutions, a distinctive pattern that is not expected under alternative models. This characterization is richer than previous approaches, which relied on limited summaries of the data (e.g., the slope of a scatter plot), and relates to underlying selection parameters in a straightforward way, allowing us to make more reliable inferences about the prevalence and strength of adaptation. Specifically, we develop a coalescent-based model for the shape of the entire curve and use it to infer adaptive parameters by maximum likelihood. Our inference suggests that ∼13% of amino acid substitutions cause selective sweeps. Interestingly, it reveals two classes of beneficial fixations: a minority (approximately 3%) that appears to have had large selective effects and accounts for most of the reduction in diversity, and the remaining 10%, which seem to have had very weak selective effects. These estimates therefore help to reconcile the apparent conflict among previously published estimates of the strength of selection. More generally, our findings provide unequivocal evidence for strongly beneficial substitutions in Drosophila and illustrate how the rapidly accumulating genome-wide data can be leveraged to address enduring questions about the genetic basis of adaptation

  6. Pervasive adaptive protein evolution apparent in diversity patterns around amino acid substitutions in Drosophila simulans.

    Directory of Open Access Journals (Sweden)

    Shmuel Sattath

    2011-02-01

    Full Text Available In Drosophila, multiple lines of evidence converge in suggesting that beneficial substitutions to the genome may be common. All suffer from confounding factors, however, such that the interpretation of the evidence-in particular, conclusions about the rate and strength of beneficial substitutions-remains tentative. Here, we use genome-wide polymorphism data in D. simulans and sequenced genomes of its close relatives to construct a readily interpretable characterization of the effects of positive selection: the shape of average neutral diversity around amino acid substitutions. As expected under recurrent selective sweeps, we find a trough in diversity levels around amino acid but not around synonymous substitutions, a distinctive pattern that is not expected under alternative models. This characterization is richer than previous approaches, which relied on limited summaries of the data (e.g., the slope of a scatter plot, and relates to underlying selection parameters in a straightforward way, allowing us to make more reliable inferences about the prevalence and strength of adaptation. Specifically, we develop a coalescent-based model for the shape of the entire curve and use it to infer adaptive parameters by maximum likelihood. Our inference suggests that ∼13% of amino acid substitutions cause selective sweeps. Interestingly, it reveals two classes of beneficial fixations: a minority (approximately 3% that appears to have had large selective effects and accounts for most of the reduction in diversity, and the remaining 10%, which seem to have had very weak selective effects. These estimates therefore help to reconcile the apparent conflict among previously published estimates of the strength of selection. More generally, our findings provide unequivocal evidence for strongly beneficial substitutions in Drosophila and illustrate how the rapidly accumulating genome-wide data can be leveraged to address enduring questions about the genetic basis

  7. Edwardsiella comparative phylogenomics reveal the new intra/inter-species taxonomic relationships, virulence evolution and niche adaptation mechanisms.

    Directory of Open Access Journals (Sweden)

    Minjun Yang

    Full Text Available Edwardsiella bacteria are leading fish pathogens causing huge losses to aquaculture industries worldwide. E. tarda is a broad-host range pathogen that infects more than 20 species of fish and other animals including humans while E. ictaluri is host-adapted to channel catfish causing enteric septicemia of catfish (ESC. Thus, these two species consist of a useful comparative system for studying the intricacies of pathogen evolution. Here we present for the first time the phylogenomic comparisons of 8 genomes of E. tarda and E. ictaluri isolates. Genome-based phylogenetic analysis revealed that E. tarda could be separate into two kinds of genotypes (genotype I, EdwGI and genotype II, EdwGII based on the sequence similarity. E. tarda strains of EdwGI were clustered together with the E. ictaluri lineage and showed low sequence conservation to E. tarda strains of EdwGII. Multilocus sequence analysis (MLSA of 48 distinct Edwardsiella strains also supports the new taxonomic relationship of the lineages. We identified the type III and VI secretion systems (T3SS and T6SS as well as iron scavenging related genes that fulfilled the criteria of a key evolutionary factor likely facilitating the virulence evolution and adaptation to a broad range of hosts in EdwGI E. tarda. The surface structure-related genes may underlie the adaptive evolution of E. ictaluri in the host specification processes. Virulence and competition assays of the null mutants of the representative genes experimentally confirmed their contributive roles in the evolution/niche adaptive processes. We also reconstructed the hypothetical evolutionary pathway to highlight the virulence evolution and niche adaptation mechanisms of Edwardsiella. This study may facilitate the development of diagnostics, vaccines, and therapeutics for this under-studied pathogen.

  8. Rapid vascular adaptations to training and detraining in persons with spinal cord injury.

    NARCIS (Netherlands)

    Thijssen, D.H.J.; Ellenkamp, R.; Smits, P.; Hopman, M.T.E.

    2006-01-01

    OBJECTIVE: To assess the time course of arterial adaptations during 6 weeks of functional electric stimulation (FES) training and 6 weeks of detraining in subjects with spinal cord injury (SCI). DESIGN: Intervention study (before-after trial). SETTING: University medical center. PARTICIPANTS:

  9. Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears

    DEFF Research Database (Denmark)

    Liu, Shiping; Lorenzen, Eline D.; Fumagalli, Matteo

    2014-01-01

    Polar bears are uniquely adapted to life in the High Arctic and have undergone drastic physiological changes in response to Arctic climates and a hyperlipid diet of primarily marine mammal prey. We analyzed 89 complete genomes of polar bear and brown bear using population genomic modeling and show...

  10. Translation, cross-cultural adaptation to Brazilian- Portuguese and reliability analysis of the instrument Rapid Entire Body Assessment-REBA.

    Science.gov (United States)

    Lamarão, Andressa M; Costa, Lucíola C M; Comper, Maria L C; Padula, Rosimeire S

    2014-01-01

    Observational instruments, such as the Rapid Entire Body Assessment, quickly assess biomechanical risks present in the workplace. However, in order to use these instruments, it is necessary to conduct the translational/cross-cultural adaptation of the instrument and test its measurement properties. To perform the translation and the cross-cultural adaptation to Brazilian-Portuguese and test the reliability of the REBA instrument. The procedures of translation and cross-cultural adaptation to Brazilian-Portuguese were conducted following proposed guidelines that involved translation, synthesis of translations, back translation, committee review and testing of the pre-final version. In addition, reliability and the intra- and inter-rater percent agreement were obtained with the Linear Weighted Kappa Coefficient that was associated with the 95% Confidence Interval and the cross tabulation 2×2. Results : The procedures for translation and adaptation were adequate and the necessary adjustments were conducted on the instrument. The intra- and inter-rater reliability showed values of 0.104 to 0.504, respectively, ranging from very poor to moderate. The percentage agreement values ranged from 5.66% to 69.81%. The percentage agreement was closer to 100% at the item 'upper arm' (69.81%) for the Intra-rater 1 and at the items 'legs' and 'upper arm' for the Intra-rater 2 (62.26%). The processes of translation and cross-cultural adaptation were conducted on the REBA instrument and the Brazilian version of the instrument was obtained. However, despite the reliability of the tests used to correct the translated and adapted version, the reliability values are unacceptable according to the guidelines standard, indicating that the reliability must be re-evaluated. Therefore, caution in the interpretation of the biomechanical risks measured by this instrument should be taken.

  11. Translation, cross-cultural adaptation to Brazilian- Portuguese and reliability analysis of the instrument Rapid Entire Body Assessment-REBA

    Directory of Open Access Journals (Sweden)

    Andressa M. Lamarão

    2014-06-01

    Full Text Available Background: Observational instruments, such as the Rapid Entire Body Assessment, quickly assess biomechanical risks present in the workplace. However, in order to use these instruments, it is necessary to conduct the translational/cross-cultural adaptation of the instrument and test its measurement properties. Objectives: To perform the translation and the cross-cultural adaptation to Brazilian-Portuguese and test the reliability of the REBA instrument. Method: The procedures of translation and cross-cultural adaptation to Brazilian-Portuguese were conducted following proposed guidelines that involved translation, synthesis of translations, back translation, committee review and testing of the pre-final version. In addition, reliability and the intra- and inter-rater percent agreement were obtained with the Linear Weighted Kappa Coefficient that was associated with the 95% Confidence Interval and the cross tabulation 2×2. Results : The procedures for translation and adaptation were adequate and the necessary adjustments were conducted on the instrument. The intra- and inter-rater reliability showed values of 0.104 to 0.504, respectively, ranging from very poor to moderate. The percentage agreement values ranged from 5.66% to 69.81%. The percentage agreement was closer to 100% at the item 'upper arm' (69.81% for the Intra-rater 1 and at the items 'legs' and 'upper arm' for the Intra-rater 2 (62.26%. Conclusions: The processes of translation and cross-cultural adaptation were conducted on the REBA instrument and the Brazilian version of the instrument was obtained. However, despite the reliability of the tests used to correct the translated and adapted version, the reliability values are unacceptable according to the guidelines standard, indicating that the reliability must be re-evaluated. Therefore, caution in the interpretation of the biomechanical risks measured by this instrument should be taken.

  12. Evolution and adaptation of the pandemic A/H1N1 2009 influenza virus

    Directory of Open Access Journals (Sweden)

    Ducatez MF

    2011-07-01

    Full Text Available Mariette F Ducatez, Thomas P Fabrizio, Richard J WebbyDepartment of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USAAbstract: The emergence of the 2009 H1N1 pandemic influenza virus [A(H1N1pdm09] has provided the public health community with many challenges, but also the scientific community with an opportunity to monitor closely its evolution through the processes of drift and shift. To date, and despite having circulated in humans for nearly two years, little antigenic variation has been observed in the A(H1N1pdm09 viruses. However, as the A(H1N1pdm09 virus continues to circulate and the immunologic pressure within the human population increases, future antigenic change is almost a certainty. Several coinfections of A(H1N1pdm09 and seasonal A(H1N1 or A(H3N2 viruses have been observed, but no reassortant viruses have been described in humans, suggesting a lack of fitness of reassortant viruses or a lack of opportunities for interaction of different viral lineages. In contrast, multiple reassortment events have been detected in swine populations between A(H1N1 pdm09 and other endemic swine viruses. Somewhat surprisingly, many of the well characterized influenza virus virulence markers appear to have limited impact on the phenotype of the A(H1N1pdm09 viruses when they have been introduced into mutant viruses in laboratory settings. As such, it is unclear what the evolutionary path of the pandemic virus will be, but the monitoring of any changes in the circulating viruses will remain a global public and animal health priority.Keywords: influenza, pandemic, evolution, adaptation

  13. Stability-activity tradeoffs constrain the adaptive evolution of RubisCO.

    Science.gov (United States)

    Studer, Romain A; Christin, Pascal-Antoine; Williams, Mark A; Orengo, Christine A

    2014-02-11

    A well-known case of evolutionary adaptation is that of ribulose-1,5-bisphosphate carboxylase (RubisCO), the enzyme responsible for fixation of CO2 during photosynthesis. Although the majority of plants use the ancestral C3 photosynthetic pathway, many flowering plants have evolved a derived pathway named C4 photosynthesis. The latter concentrates CO2, and C4 RubisCOs consequently have lower specificity for, and faster turnover of, CO2. The C4 forms result from convergent evolution in multiple clades, with substitutions at a small number of sites under positive selection. To understand the physical constraints on these evolutionary changes, we reconstructed in silico ancestral sequences and 3D structures of RubisCO from a large group of related C3 and C4 species. We were able to precisely track their past evolutionary trajectories, identify mutations on each branch of the phylogeny, and evaluate their stability effect. We show that RubisCO evolution has been constrained by stability-activity tradeoffs similar in character to those previously identified in laboratory-based experiments. The C4 properties require a subset of several ancestral destabilizing mutations, which from their location in the structure are inferred to mainly be involved in enhancing conformational flexibility of the open-closed transition in the catalytic cycle. These mutations are near, but not in, the active site or at intersubunit interfaces. The C3 to C4 transition is preceded by a sustained period in which stability of the enzyme is increased, creating the capacity to accept the functionally necessary destabilizing mutations, and is immediately followed by compensatory mutations that restore global stability.

  14. Evolution of adaptive phenotypic variation patterns by direct selection for evolvability

    Science.gov (United States)

    Pavlicev, Mihaela; Cheverud, James M.; Wagner, Günter P.

    2011-01-01

    A basic assumption of the Darwinian theory of evolution is that heritable variation arises randomly. In this context, randomness means that mutations arise irrespective of the current adaptive needs imposed by the environment. It is broadly accepted, however, that phenotypic variation is not uniformly distributed among phenotypic traits, some traits tend to covary, while others vary independently, and again others barely vary at all. Furthermore, it is well established that patterns of trait variation differ among species. Specifically, traits that serve different functions tend to be less correlated, as for instance forelimbs and hind limbs in bats and humans, compared with the limbs of quadrupedal mammals. Recently, a novel class of genetic elements has been identified in mouse gene-mapping studies that modify correlations among quantitative traits. These loci are called relationship loci, or relationship Quantitative Trait Loci (rQTL), and affect trait correlations by changing the expression of the existing genetic variation through gene interaction. Here, we present a population genetic model of how natural selection acts on rQTL. Contrary to the usual neo-Darwinian theory, in this model, new heritable phenotypic variation is produced along the selected dimension in response to directional selection. The results predict that selection on rQTL leads to higher correlations among traits that are simultaneously under directional selection. On the other hand, traits that are not simultaneously under directional selection are predicted to evolve lower correlations. These results and the previously demonstrated existence of rQTL variation, show a mechanism by which natural selection can directly enhance the evolvability of complex organisms along lines of adaptive change. PMID:21106581

  15. The lineage-specific evolution of aquaporin gene clusters facilitated tetrapod terrestrial adaptation.

    Science.gov (United States)

    Finn, Roderick Nigel; Chauvigné, François; Hlidberg, Jón Baldur; Cutler, Christopher P; Cerdà, Joan

    2014-01-01

    A major physiological barrier for aquatic organisms adapting to terrestrial life is dessication in the aerial environment. This barrier was nevertheless overcome by the Devonian ancestors of extant Tetrapoda, but the origin of specific molecular mechanisms that solved this water problem remains largely unknown. Here we show that an ancient aquaporin gene cluster evolved specifically in the sarcopterygian lineage, and subsequently diverged into paralogous forms of AQP2, -5, or -6 to mediate water conservation in extant Tetrapoda. To determine the origin of these apomorphic genomic traits, we combined aquaporin sequencing from jawless and jawed vertebrates with broad taxon assembly of >2,000 transcripts amongst 131 deuterostome genomes and developed a model based upon Bayesian inference that traces their convergent roots to stem subfamilies in basal Metazoa and Prokaryota. This approach uncovered an unexpected diversity of aquaporins in every lineage investigated, and revealed that the vertebrate superfamily consists of 17 classes of aquaporins (Aqp0 - Aqp16). The oldest orthologs associated with water conservation in modern Tetrapoda are traced to a cluster of three aqp2-like genes in Actinistia that likely arose >500 Ma through duplication of an aqp0-like gene present in a jawless ancestor. In sea lamprey, we show that aqp0 first arose in a protocluster comprised of a novel aqp14 paralog and a fused aqp01 gene. To corroborate these findings, we conducted phylogenetic analyses of five syntenic nuclear receptor subfamilies, which, together with observations of extensive genome rearrangements, support the coincident loss of ancestral aqp2-like orthologs in Actinopterygii. We thus conclude that the divergence of sarcopterygian-specific aquaporin gene clusters was permissive for the evolution of water conservation mechanisms that facilitated tetrapod terrestrial adaptation.

  16. The lineage-specific evolution of aquaporin gene clusters facilitated tetrapod terrestrial adaptation.

    Directory of Open Access Journals (Sweden)

    Roderick Nigel Finn

    Full Text Available A major physiological barrier for aquatic organisms adapting to terrestrial life is dessication in the aerial environment. This barrier was nevertheless overcome by the Devonian ancestors of extant Tetrapoda, but the origin of specific molecular mechanisms that solved this water problem remains largely unknown. Here we show that an ancient aquaporin gene cluster evolved specifically in the sarcopterygian lineage, and subsequently diverged into paralogous forms of AQP2, -5, or -6 to mediate water conservation in extant Tetrapoda. To determine the origin of these apomorphic genomic traits, we combined aquaporin sequencing from jawless and jawed vertebrates with broad taxon assembly of >2,000 transcripts amongst 131 deuterostome genomes and developed a model based upon Bayesian inference that traces their convergent roots to stem subfamilies in basal Metazoa and Prokaryota. This approach uncovered an unexpected diversity of aquaporins in every lineage investigated, and revealed that the vertebrate superfamily consists of 17 classes of aquaporins (Aqp0 - Aqp16. The oldest orthologs associated with water conservation in modern Tetrapoda are traced to a cluster of three aqp2-like genes in Actinistia that likely arose >500 Ma through duplication of an aqp0-like gene present in a jawless ancestor. In sea lamprey, we show that aqp0 first arose in a protocluster comprised of a novel aqp14 paralog and a fused aqp01 gene. To corroborate these findings, we conducted phylogenetic analyses of five syntenic nuclear receptor subfamilies, which, together with observations of extensive genome rearrangements, support the coincident loss of ancestral aqp2-like orthologs in Actinopterygii. We thus conclude that the divergence of sarcopterygian-specific aquaporin gene clusters was permissive for the evolution of water conservation mechanisms that facilitated tetrapod terrestrial adaptation.

  17. Adaptive evolution of the Hox gene family for development in bats and dolphins.

    Directory of Open Access Journals (Sweden)

    Lu Liang

    Full Text Available Bats and cetaceans (i.e., whales, dolphins, porpoises are two kinds of mammals with unique locomotive styles and occupy novel niches. Bats are the only mammals capable of sustained flight in the sky, while cetaceans have returned to the aquatic environment and are specialized for swimming. Associated with these novel adaptations to their environment, various development changes have occurred to their body plans and associated structures. Given the importance of Hox genes in many aspects of embryonic development, we conducted an analysis of the coding regions of all Hox gene family members from bats (represented by Pteropus vampyrus, Pteropus alecto, Myotis lucifugus and Myotis davidii and cetaceans (represented by Tursiops truncatus for adaptive evolution using the available draft genome sequences. Differences in the selective pressures acting on many Hox genes in bats and cetaceans were found compared to other mammals. Positive selection, however, was not found to act on any of the Hox genes in the common ancestor of bats and only upon Hoxb9 in cetaceans. PCR amplification data from additional bat and cetacean species, and application of the branch-site test 2, showed that the Hoxb2 gene within bats had significant evidence of positive selection. Thus, our study, with genomic and newly sequenced Hox genes, identifies two candidate Hox genes that may be closely linked with developmental changes in bats and cetaceans, such as those associated with the pancreatic, neuronal, thymus shape and forelimb. In addition, the difference in our results from the genome-wide scan and newly sequenced data reveals that great care must be taken in interpreting results from draft genome data from a limited number of species, and deep genetic sampling of a particular clade is a powerful tool for generating complementary data to address this limitation.

  18. Adaptive evolution of the Hox gene family for development in bats and dolphins.

    Science.gov (United States)

    Liang, Lu; Shen, Yong-Yi; Pan, Xiao-Wei; Zhou, Tai-Cheng; Yang, Chao; Irwin, David M; Zhang, Ya-Ping

    2013-01-01

    Bats and cetaceans (i.e., whales, dolphins, porpoises) are two kinds of mammals with unique locomotive styles and occupy novel niches. Bats are the only mammals capable of sustained flight in the sky, while cetaceans have returned to the aquatic environment and are specialized for swimming. Associated with these novel adaptations to their environment, various development changes have occurred to their body plans and associated structures. Given the importance of Hox genes in many aspects of embryonic development, we conducted an analysis of the coding regions of all Hox gene family members from bats (represented by Pteropus vampyrus, Pteropus alecto, Myotis lucifugus and Myotis davidii) and cetaceans (represented by Tursiops truncatus) for adaptive evolution using the available draft genome sequences. Differences in the selective pressures acting on many Hox genes in bats and cetaceans were found compared to other mammals. Positive selection, however, was not found to act on any of the Hox genes in the common ancestor of bats and only upon Hoxb9 in cetaceans. PCR amplification data from additional bat and cetacean species, and application of the branch-site test 2, showed that the Hoxb2 gene within bats had significant evidence of positive selection. Thus, our study, with genomic and newly sequenced Hox genes, identifies two candidate Hox genes that may be closely linked with developmental changes in bats and cetaceans, such as those associated with the pancreatic, neuronal, thymus shape and forelimb. In addition, the difference in our results from the genome-wide scan and newly sequenced data reveals that great care must be taken in interpreting results from draft genome data from a limited number of species, and deep genetic sampling of a particular clade is a powerful tool for generating complementary data to address this limitation.

  19. Evolution in functional complexity of heart rate dynamics: a measure of cardiac allograft adaptability.

    Science.gov (United States)

    Kresh, J Y; Izrailtyan, I

    1998-09-01

    The capacity of self-organized systems to adapt is embodied in the functional organization of intrinsic control mechanisms. Evolution in functional complexity of heart rate variability (HRV) was used as measure of the capacity of the transplanted heart to express newly emergent regulatory order. In a cross-sectional study of 100 patients after (0-10 yr) heart transplantation (HTX), heart rate dynamics were assessed using pointwise correlation dimension (PD2) analysis. A new observation is that, commencing with the acute event of allograft transplantation, the dynamics of rhythm formation proceed through complex phase transitions. At implantation, the donor heart manifested metronome-like chronotropic behavior (PD2 approximately 1.0). At 11-100 days, dimensional complexity of HRV reached a peak (PD2 approximately 2.0) associated with resurgence in the high-frequency component (0.15-0.5 Hz) of the power spectral density. Subsequent dimensional loss to PD2 approximately 1.0 at 20-30 mo after HTX was followed by a progressive near-linear gain in system complexity, reaching PD2 approximately 3.0 7-10 yr after HTX. The "dynamic reorganization" in the allograft rhythm-generating system, seen in the first 100 days, is a manifestation of the adaptive capacity of intrinsic control mechanisms. The loss of HRV 2 yr after HTX implies a withdrawal of intrinsic autonomic control and/or development of an entrained dynamic pattern characteristic of extrinsic sympathetic input. The subsequent long-term progressive rise in dimensional complexity of HRV can be attributed to the restoration of a functional order patterning parasympathetic control. The recognition that the decentralized heart can restitute the multidimensional state space of HR generator dynamics independent of external autonomic signaling may provide a new perspective on principles that constitute homeodynamic regulation.

  20. Adaptive evolution influences the infectious dose of MERS-CoV necessary to achieve severe respiratory disease.

    Science.gov (United States)

    Douglas, Madeline G; Kocher, Jacob F; Scobey, Trevor; Baric, Ralph S; Cockrell, Adam S

    2017-12-22

    We recently established a mouse model (288-330+/+) that developed acute respiratory disease resembling human pathology following infection with a high dose (5 × 106 PFU) of mouse-adapted MERS-CoV (icMERSma1). Although this high dose conferred fatal respiratory disease in mice, achieving similar pathology at lower viral doses may more closely reflect naturally acquired infections. Through continued adaptive evolution of icMERSma1 we generated a novel mouse-adapted MERS-CoV (maM35c4) capable of achieving severe respiratory disease at doses between 103 and 105 PFU. Novel mutations were identified in the maM35c4 genome that may be responsible for eliciting etiologies of acute respiratory distress syndrome at 10-1000 fold lower viral doses. Importantly, comparative genetics of the two mouse-adapted MERS strains allowed us to identify specific mutations that remained fixed through an additional 20 cycles of adaptive evolution. Our data indicate that the extent of MERS-CoV adaptation determines the minimal infectious dose required to achieve severe respiratory disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Rare ecomorphological convergence on a complex adaptive landscape: Body size and diet mediate evolution of jaw shape in squirrels (Sciuridae).

    Science.gov (United States)

    Zelditch, Miriam Leah; Ye, Ji; Mitchell, Jonathan S; Swiderski, Donald L

    2017-03-01

    Convergence is widely regarded as compelling evidence for adaptation, often being portrayed as evidence that phenotypic outcomes are predictable from ecology, overriding contingencies of history. However, repeated outcomes may be very rare unless adaptive landscapes are simple, structured by strong ecological and functional constraints. One such constraint may be a limitation on body size because performance often scales with size, allowing species to adapt to challenging functions by modifying only size. When size is constrained, species might adapt by changing shape; convergent shapes may therefore be common when size is limiting and functions are challenging. We examine the roles of size and diet as determinants of jaw shape in Sciuridae. As expected, size and diet have significant interdependent effects on jaw shape and ecomorphological convergence is rare, typically involving demanding diets and limiting sizes. More surprising is morphological without ecological convergence, which is equally common between and within dietary classes. Those cases, like rare ecomorphological convergence, may be consequences of evolving on an adaptive landscape shaped by many-to-many relationships between ecology and function, many-to-one relationships between form and performance, and one-to-many relationships between functionally versatile morphologies and ecology. On complex adaptive landscapes, ecological selection can yield different outcomes. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  2. Gene duplication, modularity and adaptation in the evolution of the aflatoxin gene cluster

    Directory of Open Access Journals (Sweden)

    Jakobek Judy L

    2007-07-01

    Full Text Available Abstract Background The biosynthesis of aflatoxin (AF involves over 20 enzymatic reactions in a complex polyketide pathway that converts acetate and malonate to the intermediates sterigmatocystin (ST and O-methylsterigmatocystin (OMST, the respective penultimate and ultimate precursors of AF. Although these precursors are chemically and structurally very similar, their accumulation differs at the species level for Aspergilli. Notable examples are A. nidulans that synthesizes only ST, A. flavus that makes predominantly AF, and A. parasiticus that generally produces either AF or OMST. Whether these differences are important in the evolutionary/ecological processes of species adaptation and diversification is unknown. Equally unknown are the specific genomic mechanisms responsible for ordering and clustering of genes in the AF pathway of Aspergillus. Results To elucidate the mechanisms that have driven formation of these clusters, we performed systematic searches of aflatoxin cluster homologs across five Aspergillus genomes. We found a high level of gene duplication and identified seven modules consisting of highly correlated gene pairs (aflA/aflB, aflR/aflS, aflX/aflY, aflF/aflE, aflT/aflQ, aflC/aflW, and aflG/aflL. With the exception of A. nomius, contrasts of mean Ka/Ks values across all cluster genes showed significant differences in selective pressure between section Flavi and non-section Flavi species. A. nomius mean Ka/Ks values were more similar to partial clusters in A. fumigatus and A. terreus. Overall, mean Ka/Ks values were significantly higher for section Flavi than for non-section Flavi species. Conclusion Our results implicate several genomic mechanisms in the evolution of ST, OMST and AF cluster genes. Gene modules may arise from duplications of a single gene, whereby the function of the pre-duplication gene is retained in the copy (aflF/aflE or the copies may partition the ancestral function (aflA/aflB. In some gene modules, the

  3. Reconstructing the ups and downs of primate brain evolution: implications for adaptive hypotheses and Homo floresiensis

    Directory of Open Access Journals (Sweden)

    Barton Robert A

    2010-01-01

    Full Text Available Abstract Background Brain size is a key adaptive trait. It is often assumed that increasing brain size was a general evolutionary trend in primates, yet recent fossil discoveries have documented brain size decreases in some lineages, raising the question of how general a trend there was for brains to increase in mass over evolutionary time. We present the first systematic phylogenetic analysis designed to answer this question. Results We performed ancestral state reconstructions of three traits (absolute brain mass, absolute body mass, relative brain mass using 37 extant and 23 extinct primate species and three approaches to ancestral state reconstruction: parsimony, maximum likelihood and Bayesian Markov-chain Monte Carlo. Both absolute and relative brain mass generally increased over evolutionary time, but body mass did not. Nevertheless both absolute and relative brain mass decreased along several branches. Applying these results to the contentious case of Homo floresiensis, we find a number of scenarios under which the proposed evolution of Homo floresiensis' small brain appears to be consistent with patterns observed along other lineages, dependent on body mass and phylogenetic position. Conclusions Our results confirm that brain expansion began early in primate evolution and show that increases occurred in all major clades. Only in terms of an increase in absolute mass does the human lineage appear particularly striking, with both the rate of proportional change in mass and relative brain size having episodes of greater expansion elsewhere on the primate phylogeny. However, decreases in brain mass also occurred along branches in all major clades, and we conclude that, while selection has acted to enlarge primate brains, in some lineages this trend has been reversed. Further analyses of the phylogenetic position of Homo floresiensis and better body mass estimates are required to confirm the plausibility of the evolution of its small brain

  4. Hadoop-Benchmark: Rapid Prototyping and Evaluation of Self-Adaptive Behaviors in Hadoop Clusters (Artifact)

    OpenAIRE

    Zhang, Bo; Krikava, Filip; Rouvoy, Romain; Seinturier, Lionel

    2017-01-01

    Arising with the popularity of Hadoop, optimizing Hadoop executions has grabbed lots of attention from research community. Many research contributions are proposed to elevate Hadoop performance, particularly in the domain of self-adaptive software systems. However, due to the complexity of Hadoop operation and the difficulty to reproduce experiments, the efforts of these Hadoop-related research are hard to be evaluated. To address this limitation, we propose a research acceleration ...

  5. Rapid Adaptation of a Daphnia magna Population to Metal Stress Is Associated with Heterozygote Excess.

    Science.gov (United States)

    Hochmuth, Jennifer D; De Meester, Luc; Pereira, Cecília M S; Janssen, Colin R; De Schamphelaere, Karel A C

    2015-08-04

    Although natural populations can harbor evolutionary potential to adapt genetically to chemical stress, it is often thought that natural selection leads to a general reduction of genetic diversity and involves costs. Here, a 10 week microevolution experiment was conducted with a genetically diverse and representative sample of one natural Daphnia magna population that was exposed to copper and zinc. Both Cu- and Zn-selected populations developed a significantly higher metal tolerance (i.e., genetic adaptation), indicated by higher reproduction probabilities of clonal lines in Cu and Zn exposures than observed for the original and control populations. The complete recovery of the population densities after 10 weeks of Zn selection (following an initial decrease of 74%) illustrates an example of evolutionary rescue. Microsatellite genotyping revealed a decrease in clonal diversity but no change in allelic richness, and showed an excess in heterozygosity in the Cu- and Zn-selected populations compared to the control and original populations. The excess heterozygosity in metal-selected populations that we observed has important consequences for risk assessment, as it contributes to the maintenance of a higher allelic diversity under multigenerational chemical exposure. This study is, to our knowledge, the first report of an increase in heterozygosity following multigenerational exposure to metal stress, despite a decline in clonal diversity. In a follow-up study with the Zn-selected populations, we observed no effect of Zn selection on the tolerance to heat and cyanobacteria. However, we observed higher tolerance to Cd in the Zn-selected than in the original and control populations if the 20% effective concentration of Cd was considered (cross-tolerance). Our results suggest only limited costs of adaptation but future research is needed to evaluate the adaptive potential of metal-selected populations to novel stressors and to determine to what extent increased

  6. Radiation Driven Instability of Rapidly Rotating Relativistic Stars: Criterion and Evolution Equations Via Multipolar Expansion of Gravitational Waves

    Science.gov (United States)

    Chugunov, A. I.

    2017-10-01

    I suggest a novel approach for deriving evolution equations for rapidly rotating relativistic stars affected by radiation-driven Chandrasekhar-Friedman-Schutz instability. This approach is based on the multipolar expansion of gravitational wave emission and appeals to the global physical properties of the star (energy, angular momentum, and thermal state), but not to canonical energy and angular momentum, which is traditional. It leads to simple derivation of the Chandrasekhar-Friedman-Schutz instability criterion for normal modes and the evolution equations for a star, affected by this instability. The approach also gives a precise form to simple explanation of the Chandrasekhar-Friedman-Schutz instability; it occurs when two conditions are met: (a) gravitational wave emission removes angular momentum from the rotating star (thus releasing the rotation energy) and (b) gravitational waves carry less energy, than the released amount of the rotation energy. To illustrate the results, I take the r-mode instability in slowly rotating Newtonian stellar models as an example. It leads to evolution equations, where the emission of gravitational waves directly affects the spin frequency, being in apparent contradiction with widely accepted equations. According to the latter, effective spin frequency decrease is coupled with dissipation of unstable mode, but not with the instability as it is. This problem is shown to be superficial, and arises as a result of specific definition of the effective spin frequency applied previously. Namely, it is shown, that if this definition is taken into account properly, the evolution equations coincide with obtained here in the leading order in mode amplitude. I also argue that the next-to-leading order terms in evolution equations were not yet derived accurately and thus it would be more self-consistent to omit them.

  7. Microstructure evolution and thermal stability of rapidly solidified Al-Ni-Co-RE alloy

    Directory of Open Access Journals (Sweden)

    B. Karpe

    2013-07-01

    Full Text Available In the frame of this work, Al-5Ni-1Co-3RE (RE-Rare Earth (Mischmetal rapidly solidified ribbons were manufactured and analyzed. The morphology of the as-cast structure, as well as the microstructural features were analyzed by transmission electron microscopy (TEM and scanning electron microscopy (SEM. Thermal stability has been investigated by combination of four point scanning electrical resistivity measurement (ER, differential scanning calorimetry (DSC and microhardness measurement. From the results we can conclude, that Al-5Ni-1Co-3RE rapidly solidified alloys have good thermal stability due to very slow coarsening kinetics of precipitated particles.

  8. The precedence of syntax in the rapid emergence of human language in evolution as defined by the integration hypothesis.

    Directory of Open Access Journals (Sweden)

    Vitor eNóbrega

    2015-03-01

    Full Text Available Our core hypothesis is that the emergence of human language arose very rapidly from the linking of two pre-adapted systems found elsewhere in the animal world—an expression system, found, for example, in birdsong, and a lexical system, suggestively found in non-human primate calls (Miyagawa et al., 2013, 2014. We challenge the view that language has undergone a series of gradual changes—or a single preliminary protolinguistic stage—before achieving its full character. We argue that a full-fledged combinatorial operation Merge triggered the integration of these two pre-adapted systems, giving rise to a fully developed language. This goes against the gradualist view that there existed a structureless, protolinguistic stage, in which a rudimentary proto-Merge operation generated internally flat words. It is argued that compounds in present-day language are a fossilized form of this prior stage, a point which we will question.

  9. The precedence of syntax in the rapid emergence of human language in evolution as defined by the integration hypothesis.

    Science.gov (United States)

    Nóbrega, Vitor A; Miyagawa, Shigeru

    2015-01-01

    Our core hypothesis is that the emergence of human language arose very rapidly from the linking of two pre-adapted systems found elsewhere in the animal world-an expression system, found, for example, in birdsong, and a lexical system, suggestively found in non-human primate calls (Miyagawa et al., 2013, 2014). We challenge the view that language has undergone a series of gradual changes-or a single preliminary protolinguistic stage-before achieving its full character. We argue that a full-fledged combinatorial operation Merge triggered the integration of these two pre-adapted systems, giving rise to a fully developed language. This goes against the gradualist view that there existed a structureless, protolinguistic stage, in which a rudimentary proto-Merge operation generated internally flat words. It is argued that compounds in present-day language are a fossilized form of this prior stage, a point which we will question.

  10. Bony cranial ornamentation linked to rapid evolution of gigantic theropod dinosaurs

    Science.gov (United States)

    Gates, Terry A.; Organ, Chris; Zanno, Lindsay E.

    2016-09-01

    Exaggerated cranial structures such as crests and horns, hereafter referred to collectively as ornaments, are pervasive across animal species. These structures perform vital roles in visual communication and physical interactions within and between species. Yet the origin and influence of ornamentation on speciation and ecology across macroevolutionary time scales remains poorly understood for virtually all animals. Here, we explore correlative evolution of osseous cranial ornaments with large body size in theropod dinosaurs using a phylogenetic comparative framework. We find that body size evolved directionally toward phyletic giantism an order of magnitude faster in theropod species possessing ornaments compared with unadorned lineages. In addition, we find a body mass threshold below which bony cranial ornaments do not originate. Maniraptoriform dinosaurs generally lack osseous cranial ornaments despite repeatedly crossing this body size threshold. Our study provides novel, quantitative support for a shift in selective pressures on socio-sexual display mechanisms in theropods coincident with the evolution of pennaceous feathers.

  11. Adaptive evolution of threonine deaminase in plant defense against insect herbivores

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales-Vigil, Eliana; Bianchetti, Christopher M.; Phillips, Jr., George N.; Howe, Gregg A. (MSU); (UW)

    2011-11-07

    Gene duplication is a major source of plant chemical diversity that mediates plant-herbivore interactions. There is little direct evidence, however, that novel chemical traits arising from gene duplication reduce herbivory. Higher plants use threonine deaminase (TD) to catalyze the dehydration of threonine (Thr) to {alpha}-ketobutyrate and ammonia as the committed step in the biosynthesis of isoleucine (Ile). Cultivated tomato and related Solanum species contain a duplicated TD paralog (TD2) that is coexpressed with a suite of genes involved in herbivore resistance. Analysis of TD2-deficient tomato lines showed that TD2 has a defensive function related to Thr catabolism in the gut of lepidopteran herbivores. During herbivory, the regulatory domain of TD2 is removed by proteolysis to generate a truncated protein (pTD2) that efficiently degrades Thr without being inhibited by Ile. We show that this proteolytic activation step occurs in the gut of lepidopteran but not coleopteran herbivores, and is catalyzed by a chymotrypsin-like protease of insect origin. Analysis of purified recombinant enzymes showed that TD2 is remarkably more resistant to proteolysis and high temperature than the ancestral TD1 isoform. The crystal structure of pTD2 provided evidence that electrostatic interactions constitute a stabilizing feature associated with adaptation of TD2 to the extreme environment of the lepidopteran gut. These findings demonstrate a role for gene duplication in the evolution of a plant defense that targets and co-opts herbivore digestive physiology.

  12. Adaptive evolution of tight junction protein claudin-14 in echolocating whales.

    Science.gov (United States)

    Xu, Huihui; Liu, Yang; He, Guimei; Rossiter, Stephen J; Zhang, Shuyi

    2013-11-10

    Toothed whales and bats have independently evolved specialized ultrasonic hearing for echolocation. Recent findings have suggested that several genes including Prestin, Tmc1, Pjvk and KCNQ4 appear to have undergone molecular adaptations associated with the evolution of this ultrasonic hearing in mammals. Here we studied the hearing gene Cldn14, which encodes the claudin-14 protein and is a member of tight junction proteins that functions in the organ of Corti in the inner ear to maintain a cationic gradient between endolymph and perilymph. Particular mutations in human claudin-14 give rise to non-syndromic deafness, suggesting an essential role in hearing. Our results uncovered two bursts of positive selection, one in the ancestral branch of all toothed whales and a second in the branch leading to the delphinid, phocoenid and ziphiid whales. These two branches are the same as those previously reported to show positive selection in the Prestin gene. Furthermore, as with Prestin, the estimated hearing frequencies of whales significantly correlate with numbers of branch-wise non-synonymous substitutions in Cldn14, but not with synonymous changes. However, in contrast to Prestin, we found no evidence of positive selection in bats. Our findings from Cldn14, and comparisons with Prestin, strongly implicate multiple loci in the acquisition of echolocation in cetaceans, but also highlight possible differences in the evolutionary route to echolocation taken by whales and bats. © 2013.

  13. Dolphin genome provides evidence for adaptive evolution of nervous system genes and a molecular rate slowdown

    Science.gov (United States)

    McGowen, Michael R.; Grossman, Lawrence I.; Wildman, Derek E.

    2012-01-01

    Cetaceans (dolphins and whales) have undergone a radical transformation from the original mammalian bodyplan. In addition, some cetaceans have evolved large brains and complex cognitive capacities. We compared approximately 10 000 protein-coding genes culled from the bottlenose dolphin genome with nine other genomes to reveal molecular correlates of the remarkable phenotypic features of these aquatic mammals. Evolutionary analyses demonstrated that the overall synonymous substitution rate in dolphins has slowed compared with other studied mammals, and is within the range of primates and elephants. We also discovered 228 genes potentially under positive selection (dN/dS > 1) in the dolphin lineage. Twenty-seven of these genes are associated with the nervous system, including those related to human intellectual disabilities, synaptic plasticity and sleep. In addition, genes expressed in the mitochondrion have a significantly higher mean dN/dS ratio in the dolphin lineage than others examined, indicating evolution in energy metabolism. We encountered selection in other genes potentially related to cetacean adaptations such as glucose and lipid metabolism, dermal and lung development, and the cardiovascular system. This study underlines the parallel molecular trajectory of cetaceans with other mammalian groups possessing large brains. PMID:22740643

  14. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae.

    Science.gov (United States)

    Baek, Seung-Ho; Kwon, Eunice Y; Kim, Yong Hwan; Hahn, Ji-Sook

    2016-03-01

    There is an increasing demand for microbial production of lactic acid (LA) as a monomer of biodegradable poly lactic acid (PLA). Both optical isomers, D-LA and L-LA, are required to produce stereocomplex PLA with improved properties. In this study, we developed Saccharomyces cerevisiae strains for efficient production of D-LA. D-LA production was achieved by expressing highly stereospecific D-lactate dehydrogenase gene (ldhA, LEUM_1756) from Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293 in S. cerevisiae lacking natural LA production activity. D-LA consumption after glucose depletion was inhibited by deleting DLD1 encoding D-lactate dehydrogenase and JEN1 encoding monocarboxylate transporter. In addition, ethanol production was reduced by deleting PDC1 and ADH1 genes encoding major pyruvate decarboxylase and alcohol dehydrogenase, respectively, and glycerol production was eliminated by deleting GPD1 and GPD2 genes encoding glycerol-3-phosphate dehydrogenase. LA tolerance of the engineered D-LA-producing strain was enhanced by adaptive evolution and overexpression of HAA1 encoding a transcriptional activator involved in weak acid stress response, resulting in effective D-LA production up to 48.9 g/L without neutralization. In a flask fed-batch fermentation under neutralizing condition, our evolved strain produced 112.0 g/L D-LA with a yield of 0.80 g/g glucose and a productivity of 2.2 g/(L · h).

  15. Dolphin genome provides evidence for adaptive evolution of nervous system genes and a molecular rate slowdown.

    Science.gov (United States)

    McGowen, Michael R; Grossman, Lawrence I; Wildman, Derek E

    2012-09-22

    Cetaceans (dolphins and whales) have undergone a radical transformation from the original mammalian bodyplan. In addition, some cetaceans have evolved large brains and complex cognitive capacities. We compared approximately 10,000 protein-coding genes culled from the bottlenose dolphin genome with nine other genomes to reveal molecular correlates of the remarkable phenotypic features of these aquatic mammals. Evolutionary analyses demonstrated that the overall synonymous substitution rate in dolphins has slowed compared with other studied mammals, and is within the range of primates and elephants. We also discovered 228 genes potentially under positive selection (dN/dS > 1) in the dolphin lineage. Twenty-seven of these genes are associated with the nervous system, including those related to human intellectual disabilities, synaptic plasticity and sleep. In addition, genes expressed in the mitochondrion have a significantly higher mean dN/dS ratio in the dolphin lineage than others examined, indicating evolution in energy metabolism. We encountered selection in other genes potentially related to cetacean adaptations such as glucose and lipid metabolism, dermal and lung development, and the cardiovascular system. This study underlines the parallel molecular trajectory of cetaceans with other mammalian groups possessing large brains.

  16. Adaptive simplification and the evolution of gecko locomotion: morphological and biomechanical consequences of losing adhesion.

    Science.gov (United States)

    Higham, Timothy E; Birn-Jeffery, Aleksandra V; Collins, Clint E; Hulsey, C Darrin; Russell, Anthony P

    2015-01-20

    Innovations permit the diversification of lineages, but they may also impose functional constraints on behaviors such as locomotion. Thus, it is not surprising that secondary simplification of novel locomotory traits has occurred several times among vertebrates and could potentially lead to exceptional divergence when constraints are relaxed. For example, the gecko adhesive system is a remarkable innovation that permits locomotion on surfaces unavailable to other animals, but has been lost or simplified in species that have reverted to a terrestrial lifestyle. We examined the functional and morphological consequences of this adaptive simplification in the Pachydactylus radiation of geckos, which exhibits multiple unambiguous losses or bouts of simplification of the adhesive system. We found that the rates of morphological and 3D locomotor kinematic evolution are elevated in those species that have simplified or lost adhesive capabilities. This finding suggests that the constraints associated with adhesion have been circumvented, permitting these species to either run faster or burrow. The association between a terrestrial lifestyle and the loss/reduction of adhesion suggests a direct link between morphology, biomechanics, and ecology.

  17. Evolution of age-dependent sex-reversal under adaptive dynamics.

    Science.gov (United States)

    Calsina, Angel; Ripoll, Jordi

    2010-02-01

    We investigate the evolution of the age (or size) at sex-reversal in a model of sequential hermaphroditism, by means of the function-valued adaptive dynamics. The trait is the probability law of the age at sex-reversal considered as a random variable. Our analysis starts with the ecological model which was first introduced and analyzed by Calsina and Ripoll (Math Biosci 208(2), 393-418, 2007). The structure of the population is extended to a genotype class and a new model for an invading/mutant population is introduced. The invasion fitness functional is derived from the ecological setting, and it turns out to be controlled by a formula of Shaw-Mohler type. The problem of finding evolutionarily stable strategies is solved by means of infinite-dimensional linear optimization. We have found that these strategies correspond to sex-reversal at a single particular age (or size) even if the set of feasible strategies is considerably broader and allows for a probabilistic sex-reversal. Several examples, including in addition the population-dynamical stability, are illustrated. For a special case, we can show that an unbeatable size at sex-reversal must be larger than 69.3% of the expected size at death.

  18. Molecular Characterization of a Chromosomal Rearrangement Involved in the Adaptive Evolution of Yeast Strains

    Science.gov (United States)

    Pérez-Ortín, José E.; Querol, Amparo; Puig, Sergi; Barrio, Eladio

    2002-01-01

    Wine yeast strains show a high level of chromosome length polymorphism. This polymorphism is mainly generated by illegitimate recombination mediated by Ty transposons or subtelomeric repeated sequences. We have found, however, that the SSU1-R allele, which confers sulfite resistance to yeast cells, is the product of a reciprocal translocation between chromosomes VIII and XVI due to unequal crossing-over mediated by microhomology between very short sequences on the 5′ upstream regions of the SSU1 and ECM34 genes. We also show that this translocation is only present in wine yeast strains, suggesting that the use for millennia of sulfite as a preservative in wine production could have favored its selection. This is the first time that a gross chromosomal rearrangement is shown to be involved in the adaptive evolution of Saccharomyces cerevisiae. [The sequence data from this study have been submitted to EMBL under accession nos. AF239757, AF239758, and AJ458340–AJ458367. The following individual kindly provided reagents, samples, or unpublished information as indicated in the paper: N. Goto-Yamamoto.] PMID:12368245

  19. Evolution of cooperation in the spatial public goods game with adaptive reputation assortment

    Science.gov (United States)

    Chen, Mei-huan; Wang, Li; Sun, Shi-wen; Wang, Juan; Xia, Cheng-yi

    2016-01-01

    We present a new spatial public goods game model, which takes the individual reputation and behavior diversity into account at the same time, to investigate the evolution of cooperation. Initially, each player x will be endowed with an integer Rx between 1 and Rmax to characterize his reputation value, which will be adaptively varied according to the strategy action at each time step. Then, the agents play the game and the system proceeds in accordance with a Fermi-like rule, in which a multiplicative factor (wy) to denote the individual difference to perform the strategy transfer will be placed before the traditional Fermi probability. For influential participants, wy is set to be 1.0, but be a smaller value w (0 reputation threshold (RC), and the greater the threshold, the higher the fraction of cooperators. The origin of promotion of cooperation will be attributed to the fact that the larger reputation threshold renders the higher heterogeneity in the fraction of two types of players and strategy spreading capability. Our work is conducive to a better understanding of the emergence of cooperation within many real-world systems.

  20. The roles of life-history selection and sexual selection in the adaptive evolution of mating behavior in a beetle.

    Science.gov (United States)

    Maklakov, Alexei A; Cayetano, Luis; Brooks, Robert C; Bonduriansky, Russell

    2010-05-01

    Although there is continuing debate about whether sexual selection promotes or impedes adaptation to novel environments, the role of mating behavior in such adaptation remains largely unexplored. We investigated the evolution of mating behavior (latency to mating, mating probability and duration) in replicate populations of seed beetles Callosobruchus maculatus subjected to selection on life-history ("Young" vs. "Old" reproduction) under contrasting regimes of sexual selection ("Monogamy" vs. "Polygamy"). Life-history selection is predicted to favor delayed mating in "Old" females, but sexual conflict under polygamy can potentially retard adaptive life-history evolution. We found that life-history selection yielded the predicted changes in mating behavior, but sexual selection regime had no net effect. In within-line crosses, populations selected for late reproduction showed equally reduced early-life mating probability regardless of mating system. In between-line crosses, however, the effect of life-history selection on early-life mating probability was stronger in polygamous lines than in monogamous ones. Thus, although mating system influenced male-female coevolution, removal of sexual selection did not affect the adaptive evolution of mating behavior. Importantly, our study shows that the interaction between sexual selection and life-history selection can result in either increased or decreased reproductive divergence depending on the ecological context.

  1. Rapid evolution of virulence leading to host extinction under host-parasite coevolution.

    Science.gov (United States)

    Rafaluk, Charlotte; Gildenhard, Markus; Mitschke, Andreas; Telschow, Arndt; Schulenburg, Hinrich; Joop, Gerrit

    2015-06-13

    Host-parasite coevolution is predicted to result in changes in the virulence of the parasite in order to maximise its reproductive success and transmission potential, either via direct host-to-host transfer or through the environment. The majority of coevolution experiments, however, do not allow for environmental transmission or persistence of long lived parasite stages, in spite of the fact that these may be critical for the evolutionary success of spore forming parasites under natural conditions. We carried out a coevolution experiment using the red flour beetle, Tribolium castaneum, and its natural microsporidian parasite, Paranosema whitei. Beetles and their environment, inclusive of spores released into it, were transferred from generation to generation. We additionally took a modelling approach to further assess the importance of transmissive parasite stages on virulence evolution. In all parasite treatments of the experiment, coevolution resulted in extinction of the host population, with a pronounced increase in virulence being seen. Our modelling approach highlighted the presence of environmental transmissive parasite stages as being critical to the trajectory of virulence evolution in this system. The extinction of host populations was unexpected, particularly as parasite virulence is often seen to decrease in host-parasite coevolution. This, in combination with the increase in virulence and results obtained from the model, suggest that the inclusion of transmissive parasite stages is important to improving our understanding of virulence evolution.

  2. The evolution of genomic GC content undergoes a rapid reversal within the genus Plasmodium.

    Science.gov (United States)

    Nikbakht, Hamid; Xia, Xuhua; Hickey, Donal A

    2014-09-01

    The genome of the malarial parasite Plasmodium falciparum is extremely AT rich. This bias toward a low GC content is a characteristic of several, but not all, species within the genus Plasmodium. We compared 4283 orthologous pairs of protein-coding sequences between Plasmodium falciparum and the less AT-biased Plasmodium vivax. Our results indicate that the common ancestor of these two species was also extremely AT rich. This means that, although there was a strong bias toward A+T during the early evolution of the ancestral Plasmodium lineage, there was a subsequent reversal of this trend during the more recent evolution of some species, such as P. vivax. Moreover, we show that not only is the P. vivax genome losing its AT richness, it is actually gaining a very significant degree of GC richness. This example illustrates the potential volatility of nucleotide content during the course of molecular evolution. Such reversible fluxes in nucleotide content within lineages could have important implications for phylogenetic reconstruction based on molecular sequence data.

  3. Shared human-chimpanzee pattern of perinatal femoral shaft morphology and its implications for the evolution of hominin locomotor adaptations.

    Directory of Open Access Journals (Sweden)

    Naoki Morimoto

    Full Text Available BACKGROUND: Acquisition of bipedality is a hallmark of human evolution. How bipedality evolved from great ape-like locomotor behaviors, however, is still highly debated. This is mainly because it is difficult to infer locomotor function, and even more so locomotor kinematics, from fossil hominin long bones. Structure-function relationships are complex, as long bone morphology reflects phyletic history, developmental programs, and loading history during an individual's lifetime. Here we discriminate between these factors by investigating the morphology of long bones in fetal and neonate great apes and humans, before the onset of locomotion. METHODOLOGY/PRINCIPAL FINDINGS: Comparative morphometric analysis of the femoral diaphysis indicates that its morphology reflects phyletic relationships between hominoid taxa to a greater extent than taxon-specific locomotor adaptations. Diaphyseal morphology in humans and chimpanzees exhibits several shared-derived features, despite substantial differences in locomotor adaptations. Orangutan and gorilla morphologies are largely similar, and likely represent the primitive hominoid state. CONCLUSIONS/SIGNIFICANCE: These findings are compatible with two possible evolutionary scenarios. Diaphyseal morphology may reflect retained adaptive traits of ancestral taxa, hence human-chimpanzee shared-derived features may be indicative of the locomotor behavior of our last common ancestor. Alternatively, diaphyseal morphology might reflect evolution by genetic drift (neutral evolution rather than selection, and might thus be more informative about phyletic relationships between taxa than about locomotor adaptations. Both scenarios are consistent with the hypothesis that knuckle-walking in chimpanzees and gorillas resulted from convergent evolution, and that the evolution of human bipedality is unrelated to extant great ape locomotor specializations.

  4. Genome Sequencing and Mapping Reveal Loss of Heterozygosity as a Mechanism for Rapid Adaptation in the Vegetable Pathogen Phytophthora capsici

    Energy Technology Data Exchange (ETDEWEB)

    Lamour, Kurt H.; Mudge, Joann; Gobena, Daniel; Hurtado-Gonzales, Oscar P.; Schmutz, Jeremy; Kuo, Alan; Miller, Neil A.; Rice, Brandon J.; Raffaele, Sylvain; Cano, Liliana M.; Bharti, Arvind K.; Donahoo, Ryan S.; Finely, Sabra; Huitema, Edgar; Hulvey, Jon; Platt, Darren; Salamov, Asaf; Savidor, Alon; Sharma, Rahul; Stam, Remco; Sotrey, Dylan; Thines, Marco; Win, Joe; Haas, Brian J.; Dinwiddie, Darrell L.; Jenkins, Jerry; Knight, James R.; Affourtit, Jason P.; Han, Cliff S.; Chertkov, Olga; Lindquist, Erika A.; Detter, Chris; Grigoriev, Igor V.; Kamoun, Sophien; Kingsmore, Stephen F.

    2012-02-07

    The oomycete vegetable pathogen Phytophthora capsici has shown remarkable adaptation to fungicides and new hosts. Like other members of this destructive genus, P. capsici has an explosive epidemiology, rapidly producing massive numbers of asexual spores on infected hosts. In addition, P. capsici can remain dormant for years as sexually recombined oospores, making it difficult to produce crops at infested sites, and allowing outcrossing populations to maintain significant genetic variation. Genome sequencing, development of a high-density genetic map, and integrative genomic or genetic characterization of P. capsici field isolates and intercross progeny revealed significant mitotic loss of heterozygosity (LOH) in diverse isolates. LOH was detected in clonally propagated field isolates and sexual progeny, cumulatively affecting >30percent of the genome. LOH altered genotypes for more than 11,000 single-nucleotide variant sites and showed a strong association with changes in mating type and pathogenicity. Overall, it appears that LOH may provide a rapid mechanism for fixing alleles and may be an important component of adaptability for P. capsici.

  5. Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change.

    Science.gov (United States)

    Atlin, Gary N; Cairns, Jill E; Das, Biswanath

    2017-03-01

    Plant breeding is a key mechanism for adaptation of cropping systems to climate change. Much discussion of breeding for climate change focuses on genes with large effects on heat and drought tolerance, but phenology and stress tolerance are highly polygenic. Adaptation will therefore mainly result from continually adjusting allele frequencies at many loci through rapid-cycle breeding that delivers a steady stream of incrementally improved cultivars. This will require access to elite germplasm from other regions, shortened breeding cycles, and multi-location testing systems that adequately sample the target population of environments. The objective of breeding and seed systems serving smallholder farmers should be to ensure that they use varieties developed in the last 10 years. Rapid varietal turnover must be supported by active dissemination of new varieties, and active withdrawal of obsolete ones. Commercial seed systems in temperate regions achieve this through competitive seed markets, but in the developing world, most crops are not served by competitive commercial seed systems, and many varieties date from the end of the Green Revolution (the late 1970s, when the second generation of modern rice and wheat varieties had been widely adopted). These obsolete varieties were developed in a climate different than today's, placing farmers at risk. To reduce this risk, a strengthened breeding system is needed, with freer international exchange of elite varieties, short breeding cycles, high selection intensity, wide-scale phenotyping, and accurate selection supported by genomic technology. Governments need to incentivize varietal release and dissemination systems to continuously replace obsolete varieties.

  6. Divergence and adaptive evolution of the gibberellin oxidase genes in plants.

    Science.gov (United States)

    Huang, Yuan; Wang, Xi; Ge, Song; Rao, Guang-Yuan

    2015-09-29

    The important phytohormone gibberellins (GAs) play key roles in various developmental processes. GA oxidases (GAoxs) are critical enzymes in GA synthesis pathway, but their classification, evolutionary history and the forces driving the evolution of plant GAox genes remain poorly understood. This study provides the first large-scale evolutionary analysis of GAox genes in plants by using an extensive whole-genome dataset of 41 species, representing green algae, bryophytes, pteridophyte, and seed plants. We defined eight subfamilies under the GAox family, namely C19-GA2ox, C20-GA2ox, GA20ox,GA3ox, GAox-A, GAox-B, GAox-C and GAox-D. Of these, subfamilies GAox-A, GAox-B, GAox-C and GAox-D are described for the first time. On the basis of phylogenetic analyses and characteristic motifs of GAox genes, we demonstrated a rapid expansion and functional divergence of the GAox genes during the diversification of land plants. We also detected the subfamily-specific motifs and potential sites of some GAox genes, which might have evolved under positive selection. GAox genes originated very early-before the divergence of bryophytes and the vascular plants and the diversification of GAox genes is associated with the functional divergence and could be driven by positive selection. Our study not only provides information on the classification of GAox genes, but also facilitates the further functional characterization and analysis of GA oxidases.

  7. Human adaptation responses to a rapidly changing Arctic: A research context for building system resilience

    Science.gov (United States)

    Chapin, T.; Brinkman, T. J.

    2016-12-01

    Although human behavior accounts for more uncertainty in future trajectories in climate change than do biophysical processes, most climate-change research fails to include human actions in research design and implementation. This is well-illustrated in the Arctic. At the global scale, arctic processes strongly influence the strength of biophysical feedbacks between global human emissions and the rate of climate warming. However, most human actions in the arctic have little effect on these feedbacks, so research can contribute most effectively to reduction in arctic warming through improved understanding of the strength of arctic-global biophysical feedbacks, as in NASA's ABoVE program, and its effective communication to policy makers and the public. In contrast, at the local to regional scale within the arctic, human actions may influence the ecological and societal consequences of arctic warming, so research benefits from active stakeholder engagement in research design and implementation. Human communities and other stakeholders (government and NGOs) respond heterogeneously to socioeconomic and environmental change, so research that documents the range of historical and current adaptive responses to change provides insights on the resilience (flexibility of future options) of social-ecological processes in the arctic. Alaskan communities have attempted a range of adaptive responses to coastal erosion (e.g., seasonal migration, protection in place, relocation), wildfire (fire suppression to use of fire to manage wildlife habitat or landscape heterogeneity), declining sea ice (e.g., new hunting technology, sea ice observations and predictions), and changes in wildlife and fish availability (e.g., switch to harvest of alternative species, harvest times, or harvest locations). Research that draws on both traditional and western knowledge facilitates adaptation and predictions of the likely societal consequences of climate change in the Arctic. Effective inclusion of

  8. Population Genomics Reveal Recent Speciation and Rapid Evolutionary Adaptation in Polar Bears

    OpenAIRE

    Liu, Shiping; Lorenzen, Eline D.; Fumagalli, Matteo; Li, Bo; Harris, Kelley; Xiong, Zijun; ZHOU, Long; Korneliussen, Thorfinn Sand; Somel, Mehmet; Babbitt, Courtney; Wray, Greg; Li, Jianwen; He, Weiming; Wang, Zhuo; Fu, Wenjing

    2014-01-01

    Polar bears are uniquely adapted to life in the High Arctic and have undergone drastic physiological changes in response to Arctic climates and a hyperlipid diet of primarily marine mammal prey. We analyzed 89 complete genomes of polar bear and brown bear using population genomic modeling and show that the species diverged only 479–343 thousand years BP. We find that genes on the polar bear lineage have been under stronger positive selection than in brown bears; nine of the top 16 genes under...

  9. Rapid adaptive remote focusing microscope for sensing of volumetric neural activity.

    Science.gov (United States)

    Žurauskas, Mantas; Barnstedt, Oliver; Frade-Rodriguez, Maria; Waddell, Scott; Booth, Martin J

    2017-10-01

    The ability to record neural activity in the brain of a living organism at cellular resolution is of great importance for defining the neural circuit mechanisms that direct behavior. Here we present an adaptive two-photon microscope optimized for extraction of neural signals over volumes in intact Drosophila brains, even in the presence of specimen motion. High speed volume imaging was made possible through reduction of spatial resolution while maintaining the light collection efficiency of a high resolution, high numerical aperture microscope. This enabled simultaneous recording of odor-evoked calcium transients in a defined volume of mushroom body Kenyon cell bodies in a live fruit fly.

  10. Testing for adaptive evolution of the female reproductive protein ZPC in mammals, birds and fishes reveals problems with the M7-M8 likelihood ratio test.

    Science.gov (United States)

    Berlin, Sofia; Smith, Nick G C

    2005-11-10

    Adaptive evolution appears to be a common feature of reproductive proteins across a very wide range of organisms. A promising way of addressing the evolutionary forces responsible for this general phenomenon is to test for adaptive evolution in the same gene but among groups of species, which differ in their reproductive biology. One can then test evolutionary hypotheses by asking whether the variation in adaptive evolution is consistent with the variation in reproductive biology. We have attempted to apply this approach to the study of a female reproductive protein, zona pellucida C (ZPC), which has been previously shown by the use of likelihood ratio tests (LRTs) to be under positive selection in mammals. We tested for evidence of adaptive evolution of ZPC in 15 mammalian species, in 11 avian species and in six fish species using three different LRTs (M1a-M2a, M7-M8, and M8a-M8). The only significant findings of adaptive evolution came from the M7-M8 test in mammals and fishes. Since LRTs of adaptive evolution may yield false positives in some situations, we examined the properties of the LRTs by several different simulation methods. When we simulated data to test the robustness of the LRTs, we found that the pattern of evolution in ZPC generates an excess of false positives for the M7-M8 LRT but not for the M1a-M2a or M8a-M8 LRTs. This bias is strong enough to have generated the significant M7-M8 results for mammals and fishes. We conclude that there is no strong evidence for adaptive evolution of ZPC in any of the vertebrate groups we studied, and that the M7-M8 LRT can be biased towards false inference of adaptive evolution by certain patterns of non-adaptive evolution.

  11. Atkins diet program rapidly decreases atherogenic index of plasma in trained adapted overweight men.

    Science.gov (United States)

    Caminhotto, Rennan de Oliveira; Fonseca, Felipe Lucas Tavares da; Castro, Natalie Carolina de; Arantes, João Pedro; Sertié, Rogério Antonio Laurato

    2015-12-01

    The Atkins diet program is a great example of the application of low carbohydrate diets for obesity, with the intention of weight loss and improvement in cardiovascular risk (CV risk). A good CV risk predictor is the atherogenic index of plasma (AIP) calculated as log (TG/HDL [mmol]), which is strongly affected by serum triglycerides, which in turn is associated with the carbohydrate intake. This study determined the effect of the initial phase of Atkins diet program, consisting in 20 g/day of carbohydrate intake with positive urinary ketones measure, in AIP of 12 adult overweight trained adapted men. The AIP was calculated before and after intervention. After 14 days, BMI and triglycerides decreased significantly, while HDL-C increased. No alterations were described in LDL plasmatic concentration. Prior to the diet, 58.3% of subjects presented high CV risk and after 14 days of the diet program only 33.3% of subjects were classified as high CV risk, while more than 66% were low CV risk. The intervention was effective in 11 of 12 participants. However, in one person the dietary intervention increased AIP index. The initial phase of Atkins diet program could significantly decrease the AIP in 11 of 12 adult overweight trained adapted men. Dietary individual responses need to be more studied.

  12. Shooting the Rapids: Navigating Transitions to Adaptive Governance of Social-Ecological Systems

    Directory of Open Access Journals (Sweden)

    Per Olsson

    2006-06-01

    Full Text Available The case studies of Kristianstads Vattenrike, Sweden; the Northern Highlands Lake District and the Everglades in the USA; the Mae Nam Ping Basin, Thailand; and the Goulburn-Broken Catchment, Australia, were compared to assess the outcome of different actions for transforming social-ecological systems (SESs. The transformations consisted of two phases, a preparation phase and a transition phase, linked by a window of opportunity. Key leaders and shadow networks can prepare a system for change by exploring alternative system configurations and developing strategies for choosing from among possible futures. Key leaders can recognize and use or create windows of opportunity and navigate transitions toward adaptive governance. Leadership functions include the ability to span scales of governance, orchestrate networks, integrate and communicate understanding, and reconcile different problem domains. Successful transformations rely on epistemic and shadow networks to provide novel ideas and ways of governing SESs. We conclude by listing some ð"„¬rules of thumb" that can help build leadership and networks for successful transformations toward adaptive governance of social-ecological systems.

  13. A Rapid Model Adaptation Technique for Emotional Speech Recognition with Style Estimation Based on Multiple-Regression HMM

    Science.gov (United States)

    Ijima, Yusuke; Nose, Takashi; Tachibana, Makoto; Kobayashi, Takao

    In this paper, we propose a rapid model adaptation technique for emotional speech recognition which enables us to extract paralinguistic information as well as linguistic information contained in speech signals. This technique is based on style estimation and style adaptation using a multiple-regression HMM (MRHMM). In the MRHMM, the mean parameters of the output probability density function are controlled by a low-dimensional parameter vector, called a style vector, which corresponds to a set of the explanatory variables of the multiple regression. The recognition process consists of two stages. In the first stage, the style vector that represents the emotional expression category and the intensity of its expressiveness for the input speech is estimated on a sentence-by-sentence basis. Next, the acoustic models are adapted using the estimated style vector, and then standard HMM-based speech recognition is performed in the second stage. We assess the performance of the proposed technique in the recognition of simulated emotional speech uttered by both professional narrators and non-professional speakers.

  14. Evolution of nano-structures of silver due to rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Shyamal, E-mail: shyamal.mondal@saha.ac.in; Bhattacharyya, S. R., E-mail: shyamal.mondal@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India)

    2014-04-24

    This report deals with rapid thermal annealing (RTA) effect on continuous silver film on Si(100) substrate. For this purpose silver films of different thicknesses were deposited and subsequently annealed at 500 and 800 °C. The as-deposited and annealed samples were investigated by scanning electron microscope (SEM). Formations of different nano-structures have been observed. Fragmentation of formed nanoislands also observed at temperature below melting temperature.

  15. Rapid evolution of regulatory element libraries for tunable transcriptional and translational control of gene expression

    Directory of Open Access Journals (Sweden)

    Erqing Jin

    2017-12-01

    Full Text Available Engineering cell factories for producing biofuels and pharmaceuticals has spurred great interests to develop rapid and efficient synthetic biology tools customized for modular pathway engineering. Along the way, combinatorial gene expression control through modification of regulatory element offered tremendous opportunity for fine-tuning gene expression and generating digital-like genetic circuits. In this report, we present an efficient evolutionary approach to build a range of regulatory control elements. The reported method allows for rapid construction of promoter, 5′UTR, terminator and trans-activating RNA libraries. Synthetic overlapping oligos with high portion of degenerate nucleotides flanking the regulatory element could be efficiently assembled to a vector expressing fluorescence reporter. This approach combines high mutation rate of the synthetic DNA with the high assembly efficiency of Gibson Mix. Our constructed library demonstrates broad range of transcriptional or translational gene expression dynamics. Specifically, both the promoter library and 5′UTR library exhibits gene expression dynamics spanning across three order of magnitude. The terminator library and trans-activating RNA library displays relatively narrowed gene expression pattern. The reported study provides a versatile toolbox for rapidly constructing a large family of prokaryotic regulatory elements. These libraries also facilitate the implementation of combinatorial pathway engineering principles and the engineering of more efficient microbial cell factory for various biomanufacturing applications.

  16. Convergent evolution of highly reduced fruiting bodies in Pezizomycotina suggests key adaptations to the bee habitat.

    Science.gov (United States)

    Wynns, Anja Amtoft

    2015-07-21

    cyst are both shown to have evolved convergently within the bee habitat. The convergent evolution of these unusual ascocarps is hypothesized to be adaptive for bee-mediated dispersal. Elucidating the dispersal strategies of these fungal symbionts contributes to our understanding of their interaction with bees and provides insight into the factors which potentially drive the evolution of reduced ascocarps in Pezizomycotina.

  17. HYPOTHESIS: PARALOG FORMATION FROM PROGENITOR PROTEINS AND PARALOG MUTAGENESIS SPUR THE RAPID EVOLUTION OF TELOMERE BINDING PROTEINS

    Directory of Open Access Journals (Sweden)

    Arthur J Lustig

    2016-02-01

    Full Text Available Through elegant studies in fungal cells and complex organisms, we propose a unifying paradigm for the rapid evolution of telomere binding proteins (TBPs that associate with either (or both telomeric DNA and telomeric proteins. TBPs protect and regulate telomere structure and function. Four critical factors are involved. First, TBPs that commonly bind to telomeric DNA include the c-Myb binding proteins, OB-fold single-stranded binding proteins, and G-G base paired Hoogsteen structure (G4 binding proteins. Each contributes independently or, in some cases, cooperatively, to provide a minimum level of telomere function. As a result of these minimal requirements and the great abundance of homologs of these motifs in the proteome, DNA telomere-binding activity may be generated more easily than expected. Second, telomere dysfunction gives rise to genome instability, through the elevation of recombination rates, genome ploidy, and the frequency of gene mutations. The formation of paralogs that diverge from their progenitor proteins ultimately can form a high frequency of altered TBPs with altered functions. Third, TBPs that assemble into complexes (e.g. mammalian shelterin derive benefits from the novel emergent functions. Fourth, a limiting factor in the evolution of TBP complexes is the formation of mutually compatible interaction surfaces amongst the TBPs. These factors may have different degrees of importance in the evolution of different phyla, illustrated by the apparently simpler telomeres in complex plants. Selective pressures that can utilize the mechanisms of paralog formation and mutagenesis to drive TBP evolution along routes dependent on the requisite physiologic changes.

  18. Coastal saltmarsh managed realignment drives rapid breach inlet and external creek evolution, Freiston Shore (UK)

    Science.gov (United States)

    Friess, Daniel A.; Möller, Iris; Spencer, Thomas; Smith, Geoffrey M.; Thomson, Andrew G.; Hill, Ross A.

    2014-03-01

    The creation of saltmarsh through the managed realignment of sea defences, implemented in NW Europe as a sustainable coastal defence option, represents a substantial hydrodynamic perturbation to the local coastal system. The impact of a significantly increased tidal prism on hydromorphological features was investigated at Freiston Shore, Lincolnshire UK. Local tidal conditions and inadequate drainage at this realignment trial contributed to significant channel erosion due to the establishment of water surface slopes and pooling between the newly realigned site and the adjacent intertidal zone. Very high spatial resolution aerial photography and blimp photography were used to monitor inlet evolution from breaching in August 2002 to March 2008, showing a highly non-linear response with breach channels increasing in width by up to 960% within 2.5 months. Airborne laser scanning/LiDAR and terrestrial laser scanning quantified breach channel volume increases, showing a similar pattern. Breach channel evolution did not follow established tidal prism-channel width/cross-sectional area relationships that are often used to guide realignment design. Pre- and post-breach rates of external creek morphology change between 1999 and 2006 were also quantified, with intertidal creeks attached to the breach channels increasing significantly after realignment in both width and depth. This study highlights the physical processes affected by managed realignment, and the importance of understanding the causes of complex water surface slopes at multiple scales.

  19. Rapid evolution of asymmetric reproductive incompatibilities in stalk-eyed flies.

    Science.gov (United States)

    Rose, Emily G; Brand, Cara L; Wilkinson, Gerald S

    2014-02-01

    The steps by which isolated populations acquire reproductive incompatibilities remain poorly understood. One potentially important process is postcopulatory sexual selection because it can generate divergence between populations in traits that influence fertilization success after copulation. Here we present a comprehensive analysis of this form of reproductive isolation by conducting reciprocal crosses between variably diverged populations of stalk-eyed flies (Teleopsis dalmanni). First, we measure seven types of reproductive incompatibility between copulation and fertilization. We then compare fertilization success to hatching success to quantify hybrid inviability. Finally, we determine if sperm competition acts to reinforce or counteract any incompatibilities. We find evidence for multiple incompatibilities in most crosses, including failure to store sperm after mating, failure of sperm to reach the site of fertilization, failure of sperm to fertilize eggs, and failure of embryos to develop. Local sperm have precedence over foreign sperm, but this effect is due mainly to differences in sperm transfer and reduced hatching success. Crosses between recently diverged populations are asymmetrical with regard to the degree and type of incompatibility. Because sexual conflict in these flies is low, postcopulatory sexual selection, rather than antagonistic coevolution, likely causes incompatibilities due to mismatches between male and female reproductive traits. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  20. POPULATION GENOMICS REVEAL RECENT SPECIATION AND RAPID EVOLUTIONARY ADAPTATION IN POLAR BEARS

    Science.gov (United States)

    Liu, Shiping; Lorenzen, Eline D.; Fumagalli, Matteo; Li, Bo; Harris, Kelley; Xiong, Zijun; Zhou, Long; Korneliussen, Thorfinn Sand; Somel, Mehmet; Babbitt, Courtney; Wray, Greg; Li, Jianwen; He, Weiming; Wang, Zhuo; Fu, Wenjing; Xiang, Xueyan; Morgan, Claire C.; Doherty, Aoife; O’Connell, Mary J.; McInerney, James O.; Born, Erik W.; Dalén, Love; Dietz, Rune; Orlando, Ludovic; Sonne, Christian; Zhang, Guojie; Nielsen, Rasmus; Willerslev, Eske; Wang, Jun

    2014-01-01

    SUMMARY Polar bears are uniquely adapted to life in the High Arctic and have undergone drastic physiological changes in response to Arctic climates and a hyperlipid diet of primarily marine mammal prey. We analyzed 89 complete genomes of polar bear and brown bear using population genomic modeling and show that the species diverged only 479–343 thousand years BP. We find that genes on the polar bear lineage have been under stronger positive selection than in brown bears; nine of the top 16 genes under strong positive selection are associated with cardiomyopathy and vascular disease, implying important reorganization of the cardio-vascular system. One of the genes showing the strongest evidence of selection, APOB, encodes the primary lipoprotein component of low-density lipoprotein (LDL); functional mutations in APOB may explain how polar bears are able to cope with life-long elevated LDL levels that are associated with high risk of heart disease in humans. PMID:24813606

  1. Which Beak Fits the Bill? An Activity Examining Adaptation, Natural Selection and Evolution

    Science.gov (United States)

    Darling, Randi

    2014-01-01

    Evolution is a unifying concept within biology. In fact, Dobzhansky, a noted evolutionary biologist, argued, "Nothing in biology makes sense except in the light of evolution" (Dobzhansky, 1973). However, often students have misconceptions about evolution. There are a number of available activities where students use tools (representing…

  2. Rapid Computation of Thermodynamic Properties over Multidimensional Nonbonded Parameter Spaces Using Adaptive Multistate Reweighting.

    Science.gov (United States)

    Naden, Levi N; Shirts, Michael R

    2016-04-12

    We show how thermodynamic properties of molecular models can be computed over a large, multidimensional parameter space by combining multistate reweighting analysis with a linear basis function approach. This approach reduces the computational cost to estimate thermodynamic properties from molecular simulations for over 130,000 tested parameter combinations from over 1000 CPU years to tens of CPU days. This speed increase is achieved primarily by computing the potential energy as a linear combination of basis functions, computed from either modified simulation code or as the difference of energy between two reference states, which can be done without any simulation code modification. The thermodynamic properties are then estimated with the Multistate Bennett Acceptance Ratio (MBAR) as a function of multiple model parameters without the need to define a priori how the states are connected by a pathway. Instead, we adaptively sample a set of points in parameter space to create mutual configuration space overlap. The existence of regions of poor configuration space overlap are detected by analyzing the eigenvalues of the sampled states' overlap matrix. The configuration space overlap to sampled states is monitored alongside the mean and maximum uncertainty to determine convergence, as neither the uncertainty or the configuration space overlap alone is a sufficient metric of convergence. This adaptive sampling scheme is demonstrated by estimating with high precision the solvation free energies of charged particles of Lennard-Jones plus Coulomb functional form with charges between -2 and +2 and generally physical values of σij and ϵij in TIP3P water. We also compute entropy, enthalpy, and radial distribution functions of arbitrary unsampled parameter combinations using only the data from these sampled states and use the estimates of free energies over the entire space to examine the deviation of atomistic simulations from the Born approximation to the solvation free

  3. Rapid evolution of avirulence genes in rice blast fungus Magnaporthe oryzae

    OpenAIRE

    Huang, Ju; Si, Weina; Deng, Qiming; Li, Ping; Yang, Sihai

    2014-01-01

    Background Rice blast fungus Magnaporthe oryzae is one of the most devastating pathogens in rice. Avirulence genes in this fungus share a gene-for-gene relationship with the resistance genes in its host rice. Although numerous studies have shown that rice blast R-genes are extremely diverse and evolve rapidly in their host populations, little is known about the evolutionary patterns of the Avr-genes in the pathogens. Results Here, six well-characterized Avr-genes and seven randomly selected n...

  4. Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production.

    Science.gov (United States)

    Peris, David; Moriarty, Ryan V; Alexander, William G; Baker, EmilyClare; Sylvester, Kayla; Sardi, Maria; Langdon, Quinn K; Libkind, Diego; Wang, Qi-Ming; Bai, Feng-Yan; Leducq, Jean-Baptiste; Charron, Guillaume; Landry, Christian R; Sampaio, José Paulo; Gonçalves, Paula; Hyma, Katie E; Fay, Justin C; Sato, Trey K; Hittinger, Chris Todd

    2017-01-01

    Lignocellulosic biomass is a common resource across the globe, and its fermentation offers a promising option for generating renewable liquid transportation fuels. The deconstruction of lignocellulosic biomass releases sugars that can be fermented by microbes, but these processes also produce fermentation inhibitors, such as aromatic acids and aldehydes. Several research projects have investigated lignocellulosic biomass fermentation by the baker's yeast Saccharomyces cerevisiae. Most projects have taken synthetic biological approaches or have explored naturally occurring diversity in S. cerevisiae to enhance stress tolerance, xylose consumption, or ethanol production. Despite these efforts, improved strains with new properties are needed. In other industrial processes, such as wine and beer fermentation, interspecies hybrids have combined important traits from multiple species, suggesting that interspecies hybridization may also offer potential for biofuel research. To investigate the efficacy of this approach for traits relevant to lignocellulosic biofuel production, we generated synthetic hybrids by crossing engineered xylose-fermenting strains of S. cerevisiae with wild strains from various Saccharomyces species. These interspecies hybrids retained important parental traits, such as xylose consumption and stress tolerance, while displaying intermediate kinetic parameters and, in some cases, heterosis (hybrid vigor). Next, we exposed them to adaptive evolution in ammonia fiber expansion-pretreated corn stover hydrolysate and recovered strains with improved fermentative traits. Genome sequencing showed that the genomes of these evolved synthetic hybrids underwent rearrangements, duplications, and deletions. To determine whether the genus Saccharomyces contains additional untapped potential, we screened a genetically diverse collection of more than 500 wild, non-engineered Saccharomyces isolates and uncovered a wide range of capabilities for traits relevant to

  5. Evolutionary genomics and adaptive evolution of the Hedgehog gene family (Shh, Ihh and Dhh in vertebrates.

    Directory of Open Access Journals (Sweden)

    Joana Pereira

    Full Text Available The Hedgehog (Hh gene family codes for a class of secreted proteins composed of two active domains that act as signalling molecules during embryo development, namely for the development of the nervous and skeletal systems and the formation of the testis cord. While only one Hh gene is found typically in invertebrate genomes, most vertebrates species have three (Sonic hedgehog--Shh; Indian hedgehog--Ihh; and Desert hedgehog--Dhh, each with different expression patterns and functions, which likely helped promote the increasing complexity of vertebrates and their successful diversification. In this study, we used comparative genomic and adaptive evolutionary analyses to characterize the evolution of the Hh genes in vertebrates following the two major whole genome duplication (WGD events. To overcome the lack of Hh-coding sequences on avian publicly available databases, we used an extensive dataset of 45 avian and three non-avian reptilian genomes to show that birds have all three Hh paralogs. We find suggestions that following the WGD events, vertebrate Hh paralogous genes evolved independently within similar linkage groups and under different evolutionary rates, especially within the catalytic domain. The structural regions around the ion-binding site were identified to be under positive selection in the signaling domain. These findings contrast with those observed in invertebrates, where different lineages that experienced gene duplication retained similar selective constraints in the Hh orthologs. Our results provide new insights on the evolutionary history of the Hh gene family, the functional roles of these paralogs in vertebrate species, and on the location of mutational hotspots.

  6. Sequences from first settlers reveal rapid evolution in Icelandic mtDNA pool.

    Science.gov (United States)

    Helgason, Agnar; Lalueza-Fox, Carles; Ghosh, Shyamali; Sigurethardóttir, Sigrún; Sampietro, Maria Lourdes; Gigli, Elena; Baker, Adam; Bertranpetit, Jaume; Arnadóttir, Lilja; Thornorsteinsdottir, Unnur; Stefánsson, Kári

    2009-01-01

    A major task in human genetics is to understand the nature of the evolutionary processes that have shaped the gene pools of contemporary populations. Ancient DNA studies have great potential to shed light on the evolution of populations because they provide the opportunity to sample from the same population at different points in time. Here, we show that a sample of mitochondrial DNA (mtDNA) control region sequences from 68 early medieval Icelandic skeletal remains is more closely related to sequences from contemporary inhabitants of Scotland, Ireland, and Scandinavia than to those from the modern Icelandic population. Due to a faster rate of genetic drift in the Icelandic mtDNA pool during the last 1,100 years, the sequences carried by the first settlers were better preserved in their ancestral gene pools than among their descendants in Iceland. These results demonstrate the inferential power gained in ancient DNA studies through the application of population genetics analyses to relatively large samples.

  7. Maturation trends indicative of rapid evolution preceded the collapse of northern cod.

    Science.gov (United States)

    Olsen, Esben M; Heino, Mikko; Lilly, George R; Morgan, M Joanne; Brattey, John; Ernande, Bruno; Dieckmann, Ulf

    2004-04-29

    Northern cod, comprising populations of Atlantic cod (Gadus morhua) off southern Labrador and eastern Newfoundland, supported major fisheries for hundreds of years. But in the late 1980s and early 1990s, northern cod underwent one of the worst collapses in the history of fisheries. The Canadian government closed the directed fishing for northern cod in July 1992, but even after a decade-long offshore moratorium, population sizes remain historically low. Here we show that, up until the moratorium, the life history of northern cod continually shifted towards maturation at earlier ages and smaller sizes. Because confounding effects of mortality changes and growth-mediated phenotypic plasticity are accounted for in our analyses, this finding strongly suggests fisheries-induced evolution of maturation patterns in the direction predicted by theory. We propose that fisheries managers could use the method described here as a tool to provide warning signals about changes in life history before more overt evidence of population decline becomes manifest.

  8. Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears.

    Science.gov (United States)

    Liu, Shiping; Lorenzen, Eline D; Fumagalli, Matteo; Li, Bo; Harris, Kelley; Xiong, Zijun; Zhou, Long; Korneliussen, Thorfinn Sand; Somel, Mehmet; Babbitt, Courtney; Wray, Greg; Li, Jianwen; He, Weiming; Wang, Zhuo; Fu, Wenjing; Xiang, Xueyan; Morgan, Claire C; Doherty, Aoife; O'Connell, Mary J; McInerney, James O; Born, Erik W; Dalén, Love; Dietz, Rune; Orlando, Ludovic; Sonne, Christian; Zhang, Guojie; Nielsen, Rasmus; Willerslev, Eske; Wang, Jun

    2014-05-08

    Polar bears are uniquely adapted to life in the High Arctic and have undergone drastic physiological changes in response to Arctic climates and a hyper-lipid diet of primarily marine mammal prey. We analyzed 89 complete genomes of polar bear and brown bear using population genomic modeling and show that the species diverged only 479-343 thousand years BP. We find that genes on the polar bear lineage have been under stronger positive selection than in brown bears; nine of the top 16 genes under strong positive selection are associated with cardiomyopathy and vascular disease, implying important reorganization of the cardiovascular system. One of the genes showing the strongest evidence of selection, APOB, encodes the primary lipoprotein component of low-density lipoprotein (LDL); functional mutations in APOB may explain how polar bears are able to cope with life-long elevated LDL levels that are associated with high risk of heart disease in humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Tracking the Emergence of Host-Specific Simian Immunodeficiency Virus env and nef Populations Reveals nef Early Adaptation and Convergent Evolution in Brain of Naturally Progressing Rhesus Macaques.

    Science.gov (United States)

    Lamers, Susanna L; Nolan, David J; Rife, Brittany D; Fogel, Gary B; McGrath, Michael S; Burdo, Tricia H; Autissier, Patrick; Williams, Kenneth C; Goodenow, Maureen M; Salemi, Marco

    2015-08-01

    While a clear understanding of the events leading to successful establishment of host-specific viral populations and productive infection in the central nervous system (CNS) has not yet been reached, the simian immunodeficiency virus (SIV)-infected rhesus macaque provides a powerful model for the study of human immunodeficiency virus (HIV) intrahost evolution and neuropathogenesis. The evolution of the gp120 and nef genes, which encode two key proteins required for the establishment and maintenance of infection, was assessed in macaques that were intravenously inoculated with the same viral swarm and allowed to naturally progress to simian AIDS and potential SIV-associated encephalitis (SIVE). Longitudinal plasma samples and immune markers were monitored until terminal illness. Single-genome sequencing was employed to amplify full-length env through nef transcripts from plasma over time and from brain tissues at necropsy. nef sequences diverged from the founder virus faster than gp120 diverged. Host-specific sequence populations were detected in nef (~92 days) before they were detected in gp120 (~182 days). At necropsy, similar brain nef sequences were found in different macaques, indicating convergent evolution, while gp120 brain sequences remained largely host specific. Molecular clock and selection analyses showed weaker clock-like behavior and stronger selection pressure in nef than in gp120, with the strongest nef selection in the macaque with SIVE. Rapid nef diversification, occurring prior to gp120 diversification, indicates that early adaptation of nef in the new host is essential for successful infection. Moreover, the convergent evolution of nef sequences in the CNS suggests a significant role for nef in establishing neurotropic strains. The SIV-infected rhesus macaque model closely resembles HIV-1 immunopathogenesis, neuropathogenesis, and disease progression in humans. Macaques were intravenously infected with identical viral swarms to investigate

  10. Positive Selection Drives Rapid Evolution of the meq Oncogene of Marek's Disease Virus.

    Directory of Open Access Journals (Sweden)

    Abinash Padhi

    Full Text Available Marek's disease (MD, caused by Marek's disease virus (MDV, a poultry-borne alphaherpesvirus, is a devastating disease of poultry causing an estimated annual loss of one billion dollars to poultry producers, worldwide. Despite decades of control through vaccination, MDV field strains continue to emerge having increased virulence. The evolutionary mechanism driving the emergence of this continuum of strains to increased MDV virulence, however, remains largely enigmatic. Increase in MDV virulence has been associated with specific amino acid changes within the C-terminus domain of Mareks's EcoRI-Q (meq-encoded oncoprotein. In this study, we sought to determine whether the meq gene has evolved adaptively and whether past vaccination efforts have had any significant effect on the reduction or increase of MDV diversity over time. Our analysis suggests that meq is estimated to be evolving at a much faster rate than most dsDNA viruses, and is comparable with the evolutionary rate of RNA viruses. Interestingly, most of the polymorphisms in meq gene appear to have evolved under positive selection and the time of divergence at the meq locus coincides with the period during which the poultry industry had undergone transitions in management practices including the introduction and widespread use of live attenuated vaccines. Our study has revealed that the decades-long use of vaccines did not reduce MDV diversity, but rather had a stimulating effect on the emergence of field strains with increased genetic diversity until the early 2000s. During the years 2004-2005, there was an abrupt decline in the genetic diversity of field isolates followed by a recovery from this bottleneck in the year 2010. Collectively, these data suggest that vaccination seems to not have had any effect on MDV eradication, but rather had a stimulating effect on MDV emergence through adaptation.

  11. Evidence for adaptive evolution of low-temperature stress response genes in a Pooideae grass ancestor

    DEFF Research Database (Denmark)

    Vigeland, Magnus D; Spannagl, Manuel; Asp, Torben

    2013-01-01

    Adaptation to temperate environments is common in the grass subfamily Pooideae, suggesting an ancestral origin of cold climate adaptation. Here, we investigated substitution rates of genes involved in low-temperature-induced (LTI) stress responses to test the hypothesis that adaptive molecular ev...

  12. Transposable elements and viruses as factors in adaptation and evolution: an expansion and strengthening of the TE-Thrust hypothesis.

    Science.gov (United States)

    Oliver, Keith R; Greene, Wayne K

    2012-11-01

    In addition to the strong divergent evolution and significant and episodic evolutionary transitions and speciation we previously attributed to TE-Thrust, we have expanded the hypothesis to more fully account for the contribution of viruses to TE-Thrust and evolution. The concept of symbiosis and holobiontic genomes is acknowledged, with particular emphasis placed on the creativity potential of the union of retroviral genomes with vertebrate genomes. Further expansions of the TE-Thrust hypothesis are proposed regarding a fuller account of horizontal transfer of TEs, the life cycle of TEs, and also, in the case of a mammalian innovation, the contributions of retroviruses to the functions of the placenta. The possibility of drift by TE families within isolated demes or disjunct populations, is acknowledged, and in addition, we suggest the possibility of horizontal transposon transfer into such subpopulations. "Adaptive potential" and "evolutionary potential" are proposed as the extremes of a continuum of "intra-genomic potential" due to TE-Thrust. Specific data is given, indicating "adaptive potential" being realized with regard to insecticide resistance, and other insect adaptations. In this regard, there is agreement between TE-Thrust and the concept of adaptation by a change in allele frequencies. Evidence on the realization of "evolutionary potential" is also presented, which is compatible with the known differential survivals, and radiations of lineages. Collectively, these data further suggest the possibility, or likelihood, of punctuated episodes of speciation events and evolutionary transitions, coinciding with, and heavily underpinned by, intermittent bursts of TE activity.

  13. Cooperative Learning Groups and the Evolution of Human Adaptability : (Another Reason) Why Hermits Are Rare in Tonga and Elsewhere.

    Science.gov (United States)

    Bell, Adrian Viliami; Hernandez, Daniel

    2017-03-01

    Understanding the prevalence of adaptive culture in part requires understanding the dynamics of learning. Here we explore the adaptive value of social learning in groups and how formal social groups function as effective mediums of information exchange. We discuss the education literature on Cooperative Learning Groups (CLGs), which outlines the potential of group learning for enhancing learning outcomes. Four qualities appear essential for CLGs to enhance learning: (1) extended conversations, (2) regular interactions, (3) gathering of experts, and (4) incentives for sharing knowledge. We analyze these four qualities within the context of a small-scale agricultural society using data we collected in 2010 and 2012. Through an analysis of surveys, interviews, and observations in the Tongan islands, we describe the role CLGs likely plays in facilitating individuals' learning of adaptive information. Our analysis of group affiliation, membership, and topics of conversation suggest that the first three CLG qualities reflect conditions for adaptive learning in groups. We utilize ethnographic anecdotes to suggest the fourth quality is also conducive to adaptive group learning. Using an evolutionary model, we further explore the scope for CLGs outside the Tongan socioecological context. Model analysis shows that environmental volatility and migration rates among human groups mediate the scope for CLGs. We call for wider attention to how group structure facilitates learning in informal settings, which may be key to assessing the contribution of groups to the evolution of complex, adaptive culture.

  14. Microstructure Evolution and Biodegradation Behavior of Laser Rapid Solidified Mg–Al–Zn Alloy

    Directory of Open Access Journals (Sweden)

    Chongxian He

    2017-03-01

    Full Text Available The too fast degradation of magnesium (Mg alloys is a major impediment hindering their orthopedic application, despite their superior mechanical properties and favorable biocompatibility. In this study, the degradation resistance of AZ61 (Al 6 wt. %, Zn 1 wt. %, remaining Mg was enhanced by rapid solidification via selective laser melting (SLM. The results indicated that an increase of the laser power was beneficial for enhancing degradation resistance and microhardness due to the increase of relative density and formation of uniformed equiaxed grains. However, too high a laser power led to the increase of mass loss and decrease of microhardness due to coarsened equiaxed grains and a reduced solid solution of Al in the Mg matrix. In addition, immersion tests showed that the apatite increased with the increase of immersion time, which indicated that SLMed AZ61 possessed good bioactivity.

  15. Whole genome sequencing of bacteria in cystic fibrosis as a model for bacterial genome adaptation and evolution.

    Science.gov (United States)

    Sharma, Poonam; Gupta, Sushim Kumar; Rolain, Jean-Marc

    2014-03-01

    Cystic fibrosis (CF) airways harbor a wide variety of new and/or emerging multidrug resistant bacteria which impose a heavy burden on patients. These bacteria live in close proximity with one another, which increases the frequency of lateral gene transfer. The exchange and movement of mobile genetic elements and genomic islands facilitate the spread of genes between genetically diverse bacteria, which seem to be advantageous to the bacterium as it allows adaptation to the new niches of the CF lungs. Niche adaptation is one of the major evolutionary forces shaping bacterial genome composition and in CF the chronic strains adapt and become less virulent. The purpose of this review is to shed light on CF bacterial genome alterations. Next-generation sequencing technology is an exciting tool that may help us to decipher the genome architecture and the evolution of bacteria colonizing CF lungs.

  16. Genomic insights into the rapid emergence and evolution of MDR in Staphylococcus pseudintermedius.

    Science.gov (United States)

    McCarthy, Alex J; Harrison, Ewan M; Stanczak-Mrozek, Kinga; Leggett, Bernadette; Waller, Andrew; Holmes, Mark A; Lloyd, David H; Lindsay, Jodi A; Loeffler, Anette

    2015-04-01

    MDR methicillin-resistant Staphylococcus pseudintermedius (MRSP) strains have emerged rapidly as major canine pathogens and present serious treatment issues and concerns to public health due to their, albeit low, zoonotic potential. A further understanding of the genetics of resistance arising from a broadly susceptible background of S. pseudintermedius is needed. We sequenced the genomes of 12 S. pseudintermedius isolates of varied STs and resistance phenotypes. Nine distinct clonal lineages had acquired either staphylococcal cassette chromosome (SCC) mec elements and/or Tn5405-like elements carrying up to five resistance genes [aphA3, sat, aadE, erm(B), dfrG] to generate MRSP, MDR methicillin-susceptible S. pseudintermedius and MDR MRSP populations. The most successful and clinically problematic MDR MRSP clones, ST68 SCCmecV(T) and ST71 SCCmecII-III, have further accumulated mutations in gyrA and grlA conferring resistance to fluoroquinolones. The carriage of additional mobile genetic elements (MGEs) was highly variable, suggesting that horizontal gene transfer is frequent in S. pseudintermedius populations. Importantly, the data suggest that MDR MRSP evolved rapidly by the acquisition of a very limited number of MGEs and mutations, and that the use of many classes of antimicrobials may co-select for the spread and emergence of MDR and XDR strains. Antimicrobial stewardship will need to be comprehensive, encompassing human medicine and veterinary disciplines to successfully preserve antimicrobial efficacy. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Recovering from a bad start: rapid adaptation and tradeoffs to growth below a threshold density

    Directory of Open Access Journals (Sweden)

    Marx Christopher J

    2012-07-01

    Full Text Available Abstract Background Bacterial growth in well-mixed culture is often assumed to be an autonomous process only depending upon the external conditions under control of the investigator. However, increasingly there is awareness that interactions between cells in culture can lead to surprising phenomena such as density-dependence in the initiation of growth. Results Here I report the unexpected discovery of a density threshold for growth of a strain of Methylobacterium extorquens AM1 used to inoculate eight replicate populations that were evolved in methanol. Six of these populations failed to grow to the expected full density during the first couple transfers. Remarkably, the final cell number of six populations crashed to levels 60- to 400-fold smaller than their cohorts. Five of these populations recovered to full density soon after, but one population remained an order of magnitude smaller for over one hundred generations. These variable dynamics appeared to be due to a density threshold for growth that was specific to both this particular ancestral strain and to growth on methanol. When tested at full density, this population had become less fit than its ancestor. Simply increasing the initial dilution 16-fold reversed this result, revealing that this population had more than a 3-fold advantage when tested at this lower density. As this population evolved and ultimately recovered to the same final density range as the other populations this low-density advantage waned. Conclusions These results demonstrate surprisingly strong tradeoffs during adaptation to growth at low absolute densities that manifest over just a 16-fold change in density. Capturing laboratory examples of transitions to and from growth at low density may help us understand the physiological and evolutionary forces that have led to the unusual properties of natural bacteria that have specialized to low-density environments such as the open ocean.

  18. Sequences from first settlers reveal rapid evolution in Icelandic mtDNA pool.

    Directory of Open Access Journals (Sweden)

    Agnar Helgason

    2009-01-01

    Full Text Available A major task in human genetics is to understand the nature of the evolutionary processes that have shaped the gene pools of contemporary populations. Ancient DNA studies have great potential to shed light on the evolution of populations because they provide the opportunity to sample from the same population at different points in time. Here, we show that a sample of mitochondrial DNA (mtDNA control region sequences from 68 early medieval Icelandic skeletal remains is more closely related to sequences from contemporary inhabitants of Scotland, Ireland, and Scandinavia than to those from the modern Icelandic population. Due to a faster rate of genetic drift in the Icelandic mtDNA pool during the last 1,100 years, the sequences carried by the first settlers were better preserved in their ancestral gene pools than among their descendants in Iceland. These results demonstrate the inferential power gained in ancient DNA studies through the application of population genetics analyses to relatively large samples.

  19. The relative importance of rapid evolution for plant-microbe interactions depends on ecological context.

    Science.gov (United States)

    Terhorst, Casey P; Lennon, Jay T; Lau, Jennifer A

    2014-06-22

    Evolution can occur on ecological time-scales, affecting community and ecosystem processes. However, the importance of evolutionary change relative to ecological processes remains largely unknown. Here, we analyse data from a long-term experiment in which we allowed plant populations to evolve for three generations in dry or wet soils and used a reciprocal transplant to compare the ecological effect of drought and the effect of plant evolutionary responses to drought on soil microbial communities and nutrient availability. Plants that evolved under drought tended to support higher bacterial and fungal richness, and increased fungal : bacterial ratios in the soil. Overall, the magnitudes of ecological and evolutionary effects on microbial communities were similar; however, the strength and direction of these effects depended on the context in which they were measured. For example, plants that evolved in dry environments increased bacterial abundance in dry contemporary environments, but decreased bacterial abundance in wet contemporary environments. Our results suggest that interactions between recent evolutionary history and ecological context affect both the direction and magnitude of plant effects on soil microbes. Consequently, an eco-evolutionary perspective is required to fully understand plant-microbe interactions.

  20. Short-term memory trace in rapidly adapting synapses of inferior temporal cortex.

    Directory of Open Access Journals (Sweden)

    Yasuko Sugase-Miyamoto

    2008-05-01

    Full Text Available Visual short-term memory tasks depend upon both the inferior temporal cortex (ITC and the prefrontal cortex (PFC. Activity in some neurons persists after the first (sample stimulus is shown. This delay-period activity has been proposed as an important mechanism for working memory. In ITC neurons, intervening (nonmatching stimuli wipe out the delay-period activity; hence, the role of ITC in memory must depend upon a different mechanism. Here, we look for a possible mechanism by contrasting memory effects in two architectonically different parts of ITC: area TE and the perirhinal cortex. We found that a large proportion (80% of stimulus-selective neurons in area TE of macaque ITCs exhibit a memory effect during the stimulus interval. During a sequential delayed matching-to-sample task (DMS, the noise in the neuronal response to the test image was correlated with the noise in the neuronal response to the sample image. Neurons in perirhinal cortex did not show this correlation. These results led us to hypothesize that area TE contributes to short-term memory by acting as a matched filter. When the sample image appears, each TE neuron captures a static copy of its inputs by rapidly adjusting its synaptic weights to match the strength of their individual inputs. Input signals from subsequent images are multiplied by those synaptic weights, thereby computing a measure of the correlation between the past and present inputs. The total activity in area TE is sufficient to quantify the similarity between the two images. This matched filter theory provides an explanation of what is remembered, where the trace is stored, and how comparison is done across time, all without requiring delay period activity. Simulations of a matched filter model match the experimental results, suggesting that area TE neurons store a synaptic memory trace during short-term visual memory.

  1. The Warburg effect as an adaptation of cancer cells to rapid fluctuations in energy demand.

    Directory of Open Access Journals (Sweden)

    Tamir Epstein

    Full Text Available To maintain optimal fitness, a cell must balance the risk of inadequate energy reserve for response to a potentially fatal perturbation against the long-term cost of maintaining high concentrations of ATP to meet occasional spikes in demand. Here we apply a game theoretic approach to address the dynamics of energy production and expenditure in eukaryotic cells. Conventionally, glucose metabolism is viewed as a function of oxygen concentrations in which the more efficient oxidation of glucose to CO2 and H2O produces all or nearly all ATP except under hypoxic conditions when less efficient (2 ATP/ glucose vs. about 36ATP/glucose anaerobic metabolism of glucose to lactic acid provides an emergency backup. We propose an alternative in which energy production is governed by the complex temporal and spatial dynamics of intracellular ATP demand. In the short term, a cell must provide energy for constant baseline needs but also maintain capacity to rapidly respond to fluxes in demand particularly due to external perturbations on the cell membrane. Similarly, longer-term dynamics require a trade-off between the cost of maintaining high metabolic capacity to meet uncommon spikes in demand versus the risk of unsuccessfully responding to threats or opportunities. Here we develop a model and computationally explore the cell's optimal mix of glycolytic and oxidative capacity. We find the Warburg effect, high glycolytic metabolism even under normoxic conditions, is represents a metabolic strategy that allow cancer cells to optimally meet energy demands posed by stochastic or fluctuating tumor environments.

  2. Physiological and metabolic adaptations of Potamogeton pectinatus L. tubers support rapid elongation of stem tissue in the absence of oxygen.

    Science.gov (United States)

    Dixon, M H; Hill, S A; Jackson, M B; Ratcliffe, R G; Sweetlove, L J

    2006-01-01

    Tubers of Potamogeton pectinatus L., an aquatic pondweed, over-winter in the anoxic sediments of rivers, lakes and marshes. Growth of the pre-formed shoot that emerges from the tuber is remarkably tolerant to anoxia, with elongation of the stem occurring faster when oxygen is absent. This response, which allows the shoot to reach oxygenated waters, occurs despite a 69-81% reduction in the rate of ATP production, and it is underpinned by several physiological and metabolic adaptations that contribute to efficient energy usage. First, extension of the pre-formed shoot is the result of cell expansion, without the accumulation of new cellular material. Secondly, after over-wintering, the tuber and pre-formed shoot have the enzymes necessary for a rapid fermentative response at the onset of growth under anoxia. Thirdly, the incorporation of [(35)S]methionine into protein is greatly reduced under anoxia. The majority of the anoxically synthesized proteins differ from those in aerobically grown tissue, implying an extensive redirection of protein synthesis under anoxia. Finally, anoxia-induced cytoplasmic acidosis is prevented to an unprecedented degree. The adaptations of this anoxia-tolerant plant tissue emphasize the importance of the mechanisms that balance ATP production and consumption in the absence of oxygen.

  3. Multiple reciprocal adaptations and rapid genetic change upon experimental coevolution of an animal host and its microbial parasite.

    Science.gov (United States)

    Schulte, Rebecca D; Makus, Carsten; Hasert, Barbara; Michiels, Nico K; Schulenburg, Hinrich

    2010-04-20

    The coevolution between hosts and parasites is predicted to have complex evolutionary consequences for both antagonists, often within short time periods. To date, conclusive experimental support for the predictions is available mainly for microbial host systems, but for only a few multicellular host taxa. We here introduce a model system of experimental coevolution that consists of the multicellular nematode host Caenorhabditis elegans and the microbial parasite Bacillus thuringiensis. We demonstrate that 48 host generations of experimental coevolution under controlled laboratory conditions led to multiple changes in both parasite and host. These changes included increases in the traits of direct relevance to the interaction such as parasite virulence (i.e., host killing rate) and host resistance (i.e., the ability to survive pathogens). Importantly, our results provide evidence of reciprocal effects for several other central predictions of the coevolutionary dynamics, including (i) possible adaptation costs (i.e., reductions in traits related to the reproductive rate, measured in the absence of the antagonist), (ii) rapid genetic changes, and (iii) an overall increase in genetic diversity across time. Possible underlying mechanisms for the genetic effects were found to include increased rates of genetic exchange in the parasite and elevated mutation rates in the host. Taken together, our data provide comprehensive experimental evidence of the consequences of host-parasite coevolution, and thus emphasize the pace and complexity of reciprocal adaptations associated with these antagonistic interactions.