WorldWideScience

Sample records for rapeseed canola oil

  1. Canola/rapeseed protein-functionality and nutrition

    Directory of Open Access Journals (Sweden)

    Wanasundara Janitha P.D.

    2016-07-01

    Full Text Available Protein rich meal is a valuable co-product of canola/rapeseed oil extraction. Seed storage proteins that include cruciferin (11S and napin (2S dominate the protein complement of canola while oleosins, lipid transfer proteins and other minor proteins of non-storage nature are also found. Although oil-free canola meal contains 36–40% protein on a dry weight basis, non-protein components including fibre, polymeric phenolics, phytates and sinapine, etc. of the seed coat and cellular components make protein less suitable for food use. Separation of canola protein from non-protein components is a technical challenge but necessary to obtain full nutritional and functional potential of protein. Process conditions of raw material and protein preparation are critical of nutritional and functional value of the final protein product. The storage proteins of canola can satisfy many nutritional and functional requirements for food applications. Protein macromolecules of canola also provide functionalities required in applications beyond edible uses; there exists substantial potential as a source of plant protein and a renewable biopolymer. Available information at present is mostly based on the protein products that can be obtained as mixtures of storage protein types and other chemical constituents of the seed; therefore, full potential of canola storage proteins is yet to be revealed.

  2. 21 CFR 184.1555 - Rapeseed oil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Rapeseed oil. 184.1555 Section 184.1555 Food and... Substances Affirmed as GRAS § 184.1555 Rapeseed oil. (a) Fully hydrogenated rapeseed oil. (1) Fully hydrogenated rapeseed oil is a mixture of triglycerides in which the fatty acid composition is a mixture of...

  3. 7 CFR 457.161 - Canola and rapeseed crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ...: Canola and Rapeseed Crop Provisions If a conflict exists among the policy provisions, the order of... application of disease control measures; (e) Wildlife; (f) Earthquake; (g) Volcanic eruption; or (h) Failure... injurious to human or animal health. (3) Quality will be a factor in determining your loss in canola...

  4. Environmental effect of rapeseed oil ethyl ester

    International Nuclear Information System (INIS)

    Makareviciene, V.; Janulis, P.

    2003-01-01

    Exhaust emission tests were conducted on rapeseed oil methyl ester (RME), rapeseed oil ethyl ester (REE) and fossil diesel fuel as well as on their mixtures. Results showed that when considering emissions of nitrogen oxides (NO x ), carbon monoxide (CO) and smoke density, rapeseed oil ethyl ester had less negative effect on the environment in comparison with that of rapeseed oil methyl ester. When fuelled with rapeseed oil ethyl ester, the emissions of NO x showed an increase of 8.3% over those of fossil diesel fuel. When operated on 25-50% bio-ester mixed with fossil diesel fuel, NO x emissions marginally decreased. When fuelled with pure rapeseed oil ethyl ester, HC emissions decreased by 53%, CO emissions by 7.2% and smoke density 72.6% when compared with emissions when fossil diesel fuel was used. Carbon dioxide (CO 2 ) emissions, which cause greenhouse effect, decreased by 782.87 g/kWh when rapeseed oil ethyl ester was used and by 782.26 g/kWh when rapeseed oil methyl ester was used instead of fossil diesel fuel. Rapeseed oil ethyl ester was more rapidly biodegradable in aqua environment when compared with rapeseed oil methyl ester and especially with fossil diesel fuel. During a standard 21 day period, 97.7% of rapeseed oil methyl ester, 98% of rapeseed oil ethyl ester and only 61.3% of fossil diesel fuel were biologically decomposed. (author)

  5. Investigation of rapeseed oil at Riga Technical University

    International Nuclear Information System (INIS)

    Gudriniece, E.; Strele, M.; Serzhane, R.

    2002-01-01

    Literature data on investigation of rapeseed oil have been summarized, particular attention paid to the investigations carried out at the Riga Technical University (RTU). The results obtained by scientists of the RTU have revealed following opportunities: to produce high-quality rapeseed oil in Latvia; to simplify the refinement procedure of rapeseed oil - to combine the process of hydration with neutralization using local materials, for example, Ca(OH) 2 ; to utilize the absorbents obtained from Latvian clay deposits for the bleaching of rapeseed oil; to organize the production of bio fuel at the experimental factory. (authors)

  6. The phytotoxic effects and biodegradability of stored rapeseed oil and rapeseed oil methyl ester

    Directory of Open Access Journals (Sweden)

    V. VAUHKONEN

    2008-12-01

    Full Text Available The aims of this study were to determine the phytotoxicity of stored rapeseed (Brassica rapa oil (RSO and rapeseed oil methyl ester (RME after "spill like" contamination on the growth of barley (Hordeum vulgare and the biodegradability of these substances in OECD 301F test conditions and in ground water. Rapeseed oil and rapeseed oil methyl ester were both stored for a period of time and their fuel characteristics (e.g. acid number had changed from those set by the fuel standards and are considered to have an effect on its biodegradation. The phytotoxicity was tested using two different types of barley cultivars: ‘Saana’ and ‘Vilde’. The phytotoxic effect on the barley varieties was determined, after the growth season, by measuring the total biomass growth and the mass of 1000 kernels taken from the tests plots. Also visual inspection was used to determine what the effects on the barley growth were. These measurements suggest that both RSO and RME have a negative impact on barley sprouts and therefore the total growth of the barley. RSO and RME both decreased the total amount of harvested phytomass. The weight of 1000 kernels increased with low concentrations of these contaminants and high contamination levels reduced the mass of the kernels. The results of these experiments suggest that the stored rapeseed oil and rapeseed oil methyl ester are both phytotoxic materials and therefore will cause substantial loss of vegetation in the case of a fuel spill. The RSO and RME biodegraded effectively in the measurement period of 28 days under OECD test conditions: the degree of biodegradation being over 60%. The biodegradation in the ground water was much slower: the degree of biodegradation being about 10% after 28 days.;

  7. Quality evaluation of rapeseed oils used as engine fuels

    Directory of Open Access Journals (Sweden)

    Marek Světlík

    2012-01-01

    Full Text Available Samples from six reference decentralised facilities and one industrial production unit of rapeseed oils were taken for the evaluation of the influence of production processes to the properties specified in the technical standard; in the laboratories, the properties limited by the standard for rapeseed oils were determined. In addition, long-term monitoring of changes in the oxidation stability in the storage test of rapeseed oils additived in the quantities of 200, 400 and 600 mg.kg−1 of the Baynox antioxidant was started. The results confirmed that the critical points in the rapeseed oil production process consist in the contamination with ash-forming elements, such as phosphorus, magnesium, calcium and overall impurities. Not only in the case of hot pressing, but also in two-step cold pressing of rapeseed it is necessary to reduce the content of ash-forming elements using additional processes, such as degumming, neutralisation and whitening. The safety step consisting of filtration down to maximum particle size of 1 μm must be always in place before the oil distribution. A positive effect of the Baynox antioxidant was clearly proved. As 200 mg.kg−1 of Baynox was added, the oxidation stability value increased from 8 to 9.05 hrs immediately after the pressing with a consequent decrease to 6 hrs after 270 days. With using of addition 400 ppm Baynox decreased oxidation stability under 6 hours not until after 390 days of storage. With addition 600 ppm Baynox the oxidation stability of rapeseed oil even after 510 days of storage makes 6.5 hours. The quality monitoring brought about necessary findings and knowledge for the optimisation of the rapeseed oil production and distribution as engine fuels. In addition, it serves as an initial supporting document for the creation of the necessary quality control system.

  8. Qualitative analysis of pure and adulterated canola oil via SIMCA

    Science.gov (United States)

    Basri, Katrul Nadia; Khir, Mohd Fared Abdul; Rani, Rozina Abdul; Sharif, Zaiton; Rusop, M.; Zoolfakar, Ahmad Sabirin

    2018-05-01

    This paper demonstrates the utilization of near infrared (NIR) spectroscopy to classify pure and adulterated sample of canola oil. Soft Independent Modeling Class Analogies (SIMCA) algorithm was implemented to discriminate the samples to its classes. Spectral data obtained was divided using Kennard Stone algorithm into training and validation dataset by a fixed ratio of 7:3. The model accuracy obtained based on the model built is 0.99 whereas the sensitivity and precision are 0.92 and 1.00. The result showed the classification model is robust to perform qualitative analysis of canola oil for future application.

  9. Biodiesel in Belgium. From rapeseed oil to used vegetable oils

    International Nuclear Information System (INIS)

    Pelkmans, L.

    1997-01-01

    There are two motives for the search for alternative motor fuels: reducing the growing pressure of traffic on environment, and looking for a replacement for petrol and diesel oil that are bound to be worn-out in a few decades. A promising alternative motor fuel is biodiesel. The author's institute is involved in its second biodiesel demonstration project. In the first project RME (rapeseed methyl ester) was used undiluted in five passenger cars for two years. There were no technical problems and a clear environmental advantage was noticed. However, the price remains a problem. The use of waste vegetable oils for the production of biodiesel could help to overcome this problem. Therefore, a second biodiesel demonstration project was started in which UVOME (used vegetable oil methyl ester) is used. The preliminary results show a great similarity with the RME results and no technical problems in real life use. 1 fig., 1 tab., 5 refs

  10. Characterisation of Rapeseed Oil Based Resins Using Infrared and ...

    African Journals Online (AJOL)

    The hydroxylated chemical structure was crosslinked using methylene-pphenyl diisocyanate to produce a thermoset rapeseed oil resin. The cross linking process was monitored in situ using the Attenuated Total Internal Reflectance Fourier Transform-Infrared spectroscopy and the thermogravimetric analysis techniques.

  11. Predicting rapeseed oil content with near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Roberta Rossato

    2013-12-01

    Full Text Available The objective of this work was to establish a calibration equation and to estimate the efficiency of near-infrared reflectance (NIR spectroscopy for evaluating rapeseed oil content in Southern Brazil. Spectral data from 124 half-sib families were correlated with oil contents determined by the chemical method. The accuracy of the equation was verified by coefficient of determination (R² of 0.92, error of calibration (SEC of 0.78, and error of performance (SEP of 1.22. The oil content of ten genotypes, which were not included in the calibration with NIR, was similar to the one obtained by the standard chemical method. NIR spectroscopy is adequate to differentiate oil content of rapeseed genotypes.

  12. Interesterification of rapeseed oil catalyzed by tin octoate

    International Nuclear Information System (INIS)

    Galia, Alessandro; Centineo, Alessio; Saracco, Guido; Schiavo, Benedetto; Scialdone, Onofrio

    2014-01-01

    The interesterification of rapeseed oil was performed for the first time by using tin octoate as Lewis acid homogeneous catalysts and methyl or ethyl acetate as acyl acceptors in a batch reactor, within the temperature range 393–483 K. The yields in fatty acid ethyl esters (FAEE) and triacetin (TA) after 20 h of reaction time increased from 8% and 2%–to 61% and 22%, respectively, when the reaction temperature increased from 423 to 483 K. An optimum value of 40 for the acyl acceptor to oil molar ratio was found to be necessary to match good fatty acid alkyl ester yields with high enough reaction rate. The rate of generation of esters was significantly higher when methyl acetate was used as acyl acceptor instead of its ethyl homologue. The collected results suggest that tin octoate can be used as effective catalyst for the interesterification of rapeseed oil with methyl or ethyl acetate being highly soluble in the reaction system, less expensive than enzymes and allowing the operator to work under milder conditions than supercritical interesterification processes. - Highlights: • We study the interesterification of rapeseed oil catalyzed by tin(II) octoate. • Tin(II) octoate is an effective homogeneous catalyst at 483 K. • The acyl acceptor to oil molar ratio must be optimized. • Higher rate of reaction is obtained with methyl acetate as acyl acceptor

  13. Possibility of direct electricity production from waste canola oil

    Science.gov (United States)

    Włodarczyk, Paweł P.; Włodarczyk, Barbara; Kalinichenko, Antonina

    2017-10-01

    Powering high-efficiency devices, such as fuel cells, with waste products will allow for a broader development of renewable energy sources and utilisation of by- products. This publication presents the possibility of electrooxidation of the emulsion of waste rapeseed oil, prepared on the basis of the detergent Syntanol DS-10. The process of electrooxidation was carried out on platinum electrode in alkaline (KOH) and acidic (H2SO4) electrolyte, in the temperature range of 293-333 K. In each analysed case the process of electrooxidation took place. The maximum current density obtained was 7 mA cm-2. Thus, it has been shown that it is possible to generate electricity directly from the emulsion of the waste rapeseed oil.

  14. Possibility of direct electricity production from waste canola oil

    Directory of Open Access Journals (Sweden)

    Włodarczyk Paweł P.

    2017-01-01

    Full Text Available Powering high-efficiency devices, such as fuel cells, with waste products will allow for a broader development of renewable energy sources and utilisation of by- products. This publication presents the possibility of electrooxidation of the emulsion of waste rapeseed oil, prepared on the basis of the detergent Syntanol DS-10. The process of electrooxidation was carried out on platinum electrode in alkaline (KOH and acidic (H2SO4 electrolyte, in the temperature range of 293-333 K. In each analysed case the process of electrooxidation took place. The maximum current density obtained was 7 mA cm-2. Thus, it has been shown that it is possible to generate electricity directly from the emulsion of the waste rapeseed oil.

  15. Impact of Endogenous Phenolics in Canola Oil on the Oxidative Stability of Oil-in-Water Emulsions

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Friel, James; Moser, Jill

    canola seeds. Fractionated extracts of Sinapic acid, Sinapine and Canolol was used as well as a non fractionated extract. These extracts was added (100 and 350 μM) to 10% o/w emulsion with stripped canola oil in order to evaluate their effect on lipid oxidation in emulsions. For comparison......Canola oil is low in saturated fat, high in monounsaturated fat and has a favourable omega-6:omega-3 ratio . Therefore, Canola oil has a healthier fatty acid profile compared to other plant oils such as soy oil. Therefore, canola oil is also an ingredient in many food products. However, the content...... of unsaturated lipid makes canola oil susceptible towards lipid oxidation. Many food products are lipid containing emulsions and a lot of efforts have been put into developing methods to protect the lipids against oxidation. Since lipid oxidation has a negative influence on the shelf life of the foods, efficient...

  16. Effects of Two Traditional Chinese Cooking Oils, Canola and Pork, on pH and Cholic Acid Content of Faeces and Colon Tumorigenesis in Kunming Mice.

    Science.gov (United States)

    He, Xiao-Qiong; Duan, Jia-Li; Zhou, Jin; Song, Zhong-Yu; Cichello, Simon Angelo

    2015-01-01

    Faecal pH and cholate are two important factors that can affect colon tumorigenesis, and can be modified by diet. In this study, the effects of two Chinese traditional cooking oils (pork oil and canola/rapeseed oil) on the pH and the cholic acid content in feces, in addition to colon tumorigenesis, were studied in mice. Kunming mice were randomized into various groups; negative control group (NCG), azoxymethane control group (ACG), pork oil group (POG), and canola oil Ggroup (COG). Mice in the ACG were fed a basic rodent chow; mice in POG and COG were given 10% cooking oil rodent chow with the respective oil type. All mice were given four weekly AOM (azoxymethane) i.p. injections (10 mg/kg). The pH and cholic acid of the feces were examined every two weeks. Colon tumors, aberrant crypt foci and organ weights were examined 32 weeks following the final AOM injection. The results showed that canola oil significantly decreased faecal pH in female mice (P0.05). Pork oil significantly increased the feces pH in both male and female mice (Pcooking oil effects faecal pH, but does not affect the faecal cholic acid content and thus AOM-induced colon neoplastic ACF is modified by dietary fat.

  17. Canola Oil Fuel Cell Demonstration: Volume 2 - Market Availability of Agricultural Crops for Fuel Cell Applications

    National Research Council Canada - National Science Library

    Adams, John W; Cassarino, Craig; Spangler, Lee; Johnson, Duane; Lindstrom, Joel; Binder, Michael J; Holcomb, Franklin H; Lux, Scott M

    2006-01-01

    .... The reformation of vegetable oil crops for fuel cell uses is not well known; yet vegetable oils such as canola oil represent a viable alternative and complement to traditional fuel cell feedstocks...

  18. Rapeseed oil, olive oil, plant sterols, and cholesterol metabolism: an ileostomy study.

    Science.gov (United States)

    Ellegård, L; Andersson, H; Bosaeus, I

    2005-12-01

    To study whether olive oil and rapeseed oil have different effects on cholesterol metabolism. Short-term experimental study, with controlled diets. Outpatients at a metabolic-ward kitchen. A total of nine volunteers with conventional ileostomies. Two 3-day diet periods; controlled diet including 75 g of rapeseed oil or olive oil. Cholesterol absorption, ileal excretion of cholesterol, and bile acids. Serum levels of cholesterol and bile acid metabolites. Differences between diets evaluated with Wilcoxon's signed rank sum test. Rapeseed oil diet contained 326 mg more plant sterols than the olive oil diet. Rapeseed oil tended to decrease cholesterol absorption by 11% (P = 0.050), and increased excretion of cholesterol, bile acids, and their sum as sterols by 9% (P = 0.021), 32% (P = 0.038), and 51% (P = 0.011) compared to olive oil. A serum marker for bile acid synthesis (7alpha-hydroxy-4-cholesten-3-one) increased by 28% (P = 0.038) within 10 h of consumption, and serum cholesterol levels decreased by 7% (P = 0.024), whereas a serum marker for cholesterol synthesis (lathosterol) as well as serum levels of plant sterols remained unchanged. Rapeseed oil and olive oil have different effects on cholesterol metabolism. Rapeseed oil, tends to decrease cholesterol absorption, increases excretion of cholesterol and bile acids, increases serum marker of bile acid synthesis, and decreases serum levels of cholesterol compared to olive oil. This could in part be explained by different concentrations of natural plant sterols. Supported by the Göteborg Medical Society, the Swedish Medical Society, the Swedish Board for Agricultural Research (SJFR) grant 50.0444/98 and by University of Göteborg.

  19. Value-added potential of expeller-pressed canola oil refining: characterization of sinapic acid derivatives and tocopherols from byproducts.

    Science.gov (United States)

    Chen, Yougui; Thiyam-Hollander, Usha; Barthet, Veronique J; Aachary, Ayyappan A

    2014-10-08

    Valuable phenolic antioxidants are lost during oil refining, but evaluation of their occurrence in refining byproducts is lacking. Rapeseed and canola oil are both rich sources of sinapic acid derivatives and tocopherols. The retention and loss of sinapic acid derivatives and tocopherols in commercially produced expeller-pressed canola oils subjected to various refining steps and the respective byproducts were investigated. Loss of canolol (3) and tocopherols were observed during bleaching (84.9%) and deodorization (37.6%), respectively. Sinapic acid (2) (42.9 μg/g), sinapine (1) (199 μg/g), and canolol (344 μg/g) were found in the refining byproducts, namely, soap stock, spent bleaching clay, and wash water, for the first time. Tocopherols (3.75 mg/g) and other nonidentified phenolic compounds (2.7 mg sinapic acid equivalent/g) were found in deodistillates, a byproduct of deodorization. DPPH radical scavenging confirmed the antioxidant potential of the byproducts. This study confirms the value-added potential of byproducts of refining as sources of endogenous phenolics.

  20. Physico-chemical characteristics and sensory acceptance of Italiantype salami with canola oil addition

    Directory of Open Access Journals (Sweden)

    Nelcindo Nascimento Terra

    2014-02-01

    Full Text Available The aim of this study was to evaluate the effects of partial pork fat replacement with emulsified canola oil in Italian-type salami. Three treatments were done: Control (100% pork fat, without fat replacement, T1 (15% pork fat was replaced by emulsified canola oil and T2 (30% pork fat was replaced by emulsified oil canola. There were evaluated the salamis’ physicochemical characteristics (pH, water activity, weight loss, color and lipid oxidation during the manufacture and storage period, and sensory evaluation after the manufacture process. The emulsified canola oil addition at different levels did not change the pH and color during the manufacture process, even though significant differences were found in these parameters during the storage period. The water activity did not differ significantly among the treatments. However, the treatments with emulsified canola oil added have a lower weight loss than the control. It was possible to observe an elevation on lipid oxidation values in the T2 during manufacture and storage periods, while in the T1, the values did not differ from the control at the end of manufactures and remained lower than the control during the storage period. Even more, the partial replacement of pork fat by emulsified canola oil did not affect the acceptance of the product for aroma, flavor, color, texture and visual appearance. Thus, the 15% pork fat replacement by emulsified canola oil in Italian-type salami is a viable alternative for the product diversification.

  1. DHA-enriched high–oleic acid canola oil improves lipid profile and lowers predicted cardiovascular disease risk in the canola oil multicenter randomized controlled trial123

    Science.gov (United States)

    Jones, Peter JH; Senanayake, Vijitha K; Pu, Shuaihua; Jenkins, David JA; Connelly, Philip W; Lamarche, Benoît; Couture, Patrick; Charest, Amélie; Baril-Gravel, Lisa; West, Sheila G; Liu, Xiaoran; Fleming, Jennifer A; McCrea, Cindy E; Kris-Etherton, Penny M

    2014-01-01

    Background: It is well recognized that amounts of trans and saturated fats should be minimized in Western diets; however, considerable debate remains regarding optimal amounts of dietary n−9, n−6, and n−3 fatty acids. Objective: The objective was to examine the effects of varying n−9, n−6, and longer-chain n−3 fatty acid composition on markers of coronary heart disease (CHD) risk. Design: A randomized, double-blind, 5-period, crossover design was used. Each 4-wk treatment period was separated by 4-wk washout intervals. Volunteers with abdominal obesity consumed each of 5 identical weight-maintaining, fixed-composition diets with one of the following treatment oils (60 g/3000 kcal) in beverages: 1) conventional canola oil (Canola; n−9 rich), 2) high–oleic acid canola oil with docosahexaenoic acid (CanolaDHA; n−9 and n−3 rich), 3) a blend of corn and safflower oil (25:75) (CornSaff; n−6 rich), 4) a blend of flax and safflower oils (60:40) (FlaxSaff; n−6 and short-chain n−3 rich), or 5) high–oleic acid canola oil (CanolaOleic; highest in n−9). Results: One hundred thirty individuals completed the trial. At endpoint, total cholesterol (TC) was lowest after the FlaxSaff phase (P < 0.05 compared with Canola and CanolaDHA) and highest after the CanolaDHA phase (P < 0.05 compared with CornSaff, FlaxSaff, and CanolaOleic). Low-density lipoprotein (LDL) cholesterol and high-density lipoprotein (HDL) cholesterol were highest, and triglycerides were lowest, after CanolaDHA (P < 0.05 compared with the other diets). All diets decreased TC and LDL cholesterol from baseline to treatment endpoint (P < 0.05). CanolaDHA was the only diet that increased HDL cholesterol from baseline (3.5 ± 1.8%; P < 0.05) and produced the greatest reduction in triglycerides (−20.7 ± 3.8%; P < 0.001) and in systolic blood pressure (−3.3 ± 0.8%; P < 0.001) compared with the other diets (P < 0.05). Percentage reductions in Framingham 10-y CHD risk scores (FRS) from

  2. Oil-structuring characterization of natural waxes in canola oil oleogels: Rheological, thermal, and oxidative properties

    Science.gov (United States)

    Natural waxes (candelilla wax, carnauba wax, and beeswax) were utilized as canola oil structurants to produce oleogels and their physicochemical properties were evaluated from rheological, thermal, and oxidative points of view. The oleogels with candelilla wax exhibited the highest hardness, followe...

  3. An investigation on rapeseed oil as potential insulating liquid

    Science.gov (United States)

    Katim, N. I. A.; Nasir, M. S. M.; Ishak, M. T.; Hamid, M. H. A.

    2018-02-01

    Insulation oils are a vital part in power transformers. Insulation oil is not only work as electrical insulation but also as a coolant inside the transformer. Due to the increasing tight regulations on the environment and safety in recent years, vegetable oils are being considered for insulation oils in power transformer. This paper presents two conditions of Rapeseed Oil (RO), which are as received (new) and dried (dry) under difference uniform field electrodes configuration (mushroom-to-mushroom and sphere-to-sphere) with gap distance at 2.5 mm as recommended by the international standards. A comparative study of AC breakdown voltage, dissipation factor (tan δ), and resistivity under variation of temperature were investigated. The experimental works were done according to the IEC 60156 and IEC 60247 standards. The results indicated that the breakdown voltages of both condition are comparable to mineral oil. The dielectric constant and resistivity of two conditions are decreased along with the increasing temperature. However, the dissipation factor properties rose up along with the temperature. The Weibull distribution was used to determine the withstand voltages at 1% and 50% for RO in two probabilities conditions.

  4. Science and sustainability? Biodegradable polymers from canola and flaxseed oils

    Energy Technology Data Exchange (ETDEWEB)

    Narins, S.S. [Alberta Univ., Edmonton, AB (Canada). Alberta Bioplastics Network

    2002-07-01

    Little progress has been made in value-added development to crops. The development of biodegradable plastics was spurred by environmental concerns and the use of renewable resources. There is a worldwide market for such products, which complements the strategy of the petrochemical industry. Greater sustainability achieved by partnering with the value-added agricultural industry. The drivers impacting the future polymer industry are: environmental and health concerns, consumer attitudes, cost of cheap feedstocks, carbon credits, greenhouse gases reduction, and criteria air contaminant reduction. Two niche markets are food packaging and biomedical products. The opportunity exists for the development of poly lactic acid (PLA) using canola as a primary feedstock in Alberta as there is a well established petrochemical industry, a vegetable oil infrastructure, and a desire to match petrochemical with bio-renewable. The benefits are higher value processing and a new source of monomers from renewable biomass. The main objective is the development of bio-polymer industry in Alberta based on canola and flaxseed oils. Food and agricultural materials have a similar structure and identical instrumentation to study structure and functionality. The author displayed pictures of the major instrumentation required to conduct this type of research. The rheological properties of polymers include flow, mechanical strength, and thermal properties. The author, along with colleagues, has developed a unique approach. The team members were identified, as well as an overview of the expertise required to perform this research. The author is about to file three related patents. This process is not energy intensive and does not use solvent. The author is about to move into scale-up phase of the reactions which produce the monomers. tabs., figs.

  5. Some rape/canola seed oils: fatty acid composition and tocopherols.

    Science.gov (United States)

    Matthaus, Bertrand; Özcan, Mehmet Musa; Al Juhaimi, Fahad

    2016-03-01

    Seed samples of some rape and canola cultivars were analysed for oil content, fatty acid and tocopherol profiles. Gas liquid chromotography and high performance liquid chromotography were used for fatty acid and tocopherol analysis, respectively. The oil contents of rape and canola seeds varied between 30.6% and 48.3% of the dry weight (ptocopherols were found in rape and canola oils in various amounts: α-tocopherol, γ-tocopherol, δ-tocopherol, β-tocopherol and α-tocotrienol. The major tocopherol in the seed oils of rape and canola cultivars were α-tocopherol (13.22-40.01%) and γ-tocopherol (33.64-51.53%) accompanied by α-T3 (0.0-1.34%) and δ-tocopherol (0.25-1.86%) (ptocopherol contents differ significantly among the cultivars.

  6. Rapeseed Oil as Renewable Resource for Polyol Synthesis

    Science.gov (United States)

    Stirna, Uldis; Fridrihsone, Anda; Misane, Marija; Vilsone, Dzintra

    2011-01-01

    Vegetable oils are one of the most important platform chemicals due to their accessibility, specific structure of oils and low price. Rapeseed oil (RO) polyols were prepared by amidization of RO with diethanolamine (DEA). To determine the kinetics of amidization reaction, experiments were carried out. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), amine (NH) value was determined. Group contribution method by Fedor‵s was used to calculate solubility parameters, van der Waals volume was calculated by Askadskii. Obtained polyol‵s OH and NH value are from 304 up to 415 mg KOH/g. RO polyols synthesis meets the criteria of "green chemistry". In the present study, reaction of RO amidization with DEA was investigated, as well as optimum conditions for polyol synthesis was established to obtain polyols for polyurethane production. Calculations of solubility parameter and cohesion energy density were calculated, as RO polyols will be used as side chains in polymers, and solubility parameter will be used to explain properties of polymers.

  7. Exploration of process parameters for continuous hydrolysis of canola oil, camelina oil and algal oil

    KAUST Repository

    Wang, Weicheng

    2012-07-01

    Thermal hydrolysis of triglycerides to form free fatty acid (FFA) is a well-established industry practice. Recently, this process has been employed as a first step in the production of biofuels from lipids. To that end, batch and continuous hydrolysis of various feedstocks has been examined at the laboratory scale. Canola, the primary feedstock in this paper, camelina and algal oils were converted to high quality FFA. For the different reaction temperatures, the continuous hydrolysis system was found to provide better yields than the laboratory batch system. In addition, CFD simulation with ANSYS-CFX was used to model the performance and reactant/product separation in the continuous, counter-flow reactor. The effects of reaction temperature, water-to-oil ratio (ratio of water and oil volumetric inflow rate), and preheating of the reactants were examined experimentally. Optimization of these parameters has resulted in an improved, continuous process with high mass yields (89-93%, for reactor temperature of 260°C and water-to-oil ratio of 4:1) and energy efficiency (76%, for reactor temperature of 250°C and water-to-oil ratio of 2:1). Based on the product quality and energy efficiency considerations, the reactor temperature of 260°C and water-to-oil ratio of 4:1 have provided the optimal condition for the lab scale continuous hydrolysis reaction. © 2012 Elsevier B.V.

  8. Exploration of process parameters for continuous hydrolysis of canola oil, camelina oil and algal oil

    KAUST Repository

    Wang, Weicheng; Turner, Timothy L.; Stikeleather, Larry F.; Roberts, William L.

    2012-01-01

    Thermal hydrolysis of triglycerides to form free fatty acid (FFA) is a well-established industry practice. Recently, this process has been employed as a first step in the production of biofuels from lipids. To that end, batch and continuous hydrolysis of various feedstocks has been examined at the laboratory scale. Canola, the primary feedstock in this paper, camelina and algal oils were converted to high quality FFA. For the different reaction temperatures, the continuous hydrolysis system was found to provide better yields than the laboratory batch system. In addition, CFD simulation with ANSYS-CFX was used to model the performance and reactant/product separation in the continuous, counter-flow reactor. The effects of reaction temperature, water-to-oil ratio (ratio of water and oil volumetric inflow rate), and preheating of the reactants were examined experimentally. Optimization of these parameters has resulted in an improved, continuous process with high mass yields (89-93%, for reactor temperature of 260°C and water-to-oil ratio of 4:1) and energy efficiency (76%, for reactor temperature of 250°C and water-to-oil ratio of 2:1). Based on the product quality and energy efficiency considerations, the reactor temperature of 260°C and water-to-oil ratio of 4:1 have provided the optimal condition for the lab scale continuous hydrolysis reaction. © 2012 Elsevier B.V.

  9. Application of Canola Oil Biodiesel/Diesel Blends in a Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Jun Cong Ge

    2016-12-01

    Full Text Available In this study, the application effects of canola oil biodiesel/diesel blends in a common rail diesel engine was experimentally investigated. The test fuels were denoted as ULSD (ultra low sulfur diesel, BD20 (20% canola oil blended with 80% ULSD by volume, and PCO (pure canola oil, respectively. These three fuels were tested under an engine speed of 1500 rpm with various brake mean effective pressures (BMEPs. The results indicated that PCO can be used well in the diesel engine without engine modification, and that BD20 can be used as a good alternative fuel to reduce the exhaust pollution. In addition, at low engine loads (0.13 MPa and 0.26 MPa, the combustion pressure of PCO is the smallest, compared with BD20 and ULSD, because the lower calorific value of PCO is lower than that of ULSD. However, at high engine loads (0.39 MPa and 0.52 MPa, the rate of heat release (ROHR of BD20 is the highest because the canola oil biodiesel is an oxygenated fuel that promotes combustion, shortening the ignition delay period. For exhaust emissions, by using canola oil biodiesel, the particulate matter (PM and carbon monoxide (CO emissions were considerably reduced with increased BMEP. The nitrogen oxide (NOx emissions increased only slightly due to the inherent presence of oxygen in biodiesel.

  10. Production of rapeseed oil fuel in decentralized oil extraction plants. Handbook. 2. new rev. and enl. ed.; Herstellung von Rapsoelkraftstoff in dezentralen Oelgewinnungsanlagen. Handbuch

    Energy Technology Data Exchange (ETDEWEB)

    Remmele, Edgar [Technologie- und Foerderzentrum (TFZ) im Kompetenzzentrum fuer Nachwachsende Rohstoffe, Straubing (Germany)

    2009-11-15

    Increasing oil prices, the dependence on petroleum imports and the desire to reduce the CO{sub 2} emissions, are arguments to accelerate the production and utilization of biofuels. In 2007, 3.3 million tons of biodiesel and 772,000 tons of vegetable oil were used as fuel. The technically and economically successful production of rapeseed oil fuel in decentralized oil mills requires a quality assurance. Specifically, the brochure under consideration reports on the following: (1) Oilseed processing; (2) Centralized oil production in Germany; (3) Design of a decentralized oil mill; (4) Production of rapeseed oil fuel in decentralized systems; (5) Quality assurance for rapeseed oil fuel in decentralized oil mills; (6) Properties of rapeseed oil fuel; (7) Quality of rapeseed oil fuel from decentralized oil mills; (8) Economic aspects of decentralized oil extraction; (9) Legal framework conditions.

  11. Short Distance Standoff Raman Detection of Extra Virgin Olive Oil Adulterated with Canola and Grapeseed Oils.

    Science.gov (United States)

    Farley, Carlton; Kassu, Aschalew; Bose, Nayana; Jackson-Davis, Armitra; Boateng, Judith; Ruffin, Paul; Sharma, Anup

    2017-06-01

    A short distance standoff Raman technique is demonstrated for detecting economically motivated adulteration (EMA) in extra virgin olive oil (EVOO). Using a portable Raman spectrometer operating with a 785 nm laser and a 2-in. refracting telescope, adulteration of olive oil with grapeseed oil and canola oil is detected between 1% and 100% at a minimum concentration of 2.5% from a distance of 15 cm and at a minimum concentration of 5% from a distance of 1 m. The technique involves correlating the intensity ratios of prominent Raman bands of edible oils at 1254, 1657, and 1441 cm -1 to the degree of adulteration. As a novel variation in the data analysis technique, integrated intensities over a spectral range of 100 cm -1 around the Raman line were used, making it possible to increase the sensitivity of the technique. The technique is demonstrated by detecting adulteration of EVOO with grapeseed and canola oils at 0-100%. Due to the potential of this technique for making measurements from a convenient distance, the short distance standoff Raman technique has the promise to be used for routine applications in food industry such as identifying food items and monitoring EMA at various checkpoints in the food supply chain and storage facilities.

  12. Quality control of mixtures consisting of engine oil and rapeseed oil by means of online oil sensors; Qualitaetsueberwachung von Motoroel-Rapsoelmischungen mit Online-Oelsensoren. Labortests

    Energy Technology Data Exchange (ETDEWEB)

    Thuneke, Klaus; Schreiber, Katja [Technologie- und Foerderzentrum, Straubing (Germany)

    2013-10-01

    It was the goal of the work to investigate interactions between motor oils and rapeseed oil fuel and to test oil sensors for monitoring the quality of aged mixtures of motor oil and rapeseed oil. At first oil samples were aged in the laboratory, whereby motor oil type, share of rapeseed oil and aeration was varied. Depending on type of engine oil different ageing effects were noticed. Higher shares of rapeseed and aeration stimulate increase of viscosity and acid value. In a further step online oil sensors were tested in both, a model of a lubrication system and a test engine. The signals of the sensors plausibly described the oil ageing process by the indicators dynamic or acoustic viscosity, permittivity number, specific electric conductivity. In particular viscosity and permittivity are suitable for showing changes in different motor oil rapeseed oil mixtures during oil ageing. However, for a reliable control system detecting critical rapeseed oil enrichment in the motor oil onboard, further work has to be done. (orig.)

  13. Tribological characteristics of monodispersed cerium borate nanospheres in biodegradable rapeseed oil lubricant

    Energy Technology Data Exchange (ETDEWEB)

    Boshui, Chen, E-mail: boshuichen@163.com; Kecheng, Gu; Jianhua, Fang; Jiang, Wu; Jiu, Wang; Nan, Zhang

    2015-10-30

    Graphical abstract: - Highlights: • Monodispersed stearic acid-capped cerium borate composite nanoparticles were prepared by hydrothermal method. Their morphologies, element compositions, size distributions, crystal and chemical structures, hydrophobic characteristics were also characterized. • The surface-capped cerium borate nanoparticles exhibited excellent dispersing stability in rapeseed oil. As new lubricating additives, they were also outstanding in enhancing friction-reducing and anti-wear capacities of rapeseed oil in biodegradable rapeseed oil. The results presented in this paper would be of important significance for developing green lubricants and lubricant additives. • The prominent tribological performances of SA/CeBO{sub 3} in rapeseed oil were investigated and attributed to the formation of a composite boundary lubrication film mainly composed of lubricous tribochemical species on the tribo-surfaces. - Abstract: Stearic acid-capped cerium borate composite nanoparticles, abbreviated as SA/CeBO{sub 3}, were prepared by hydrothermal method. The morphologies, element compositions, size distributions, crystal and chemical structures, hydrophobic characteristics, of SA/CeBO{sub 3} were characterized by scanning electron microscope, energy dispersive X-ray spectrometer, dynamic laser particle size analyzer, X-ray diffraction, and Fourier transform infrared spectrometer, respectively. The friction and wear performances of SA/CeBO{sub 3} as a lubricating additive in a rapeseed oil were evaluated on a four-ball tribo-tester. The tribochemical characteristics of the worn surfaces were investigated by X-ray photoelectron spectroscopy. The results showed that the hydrophobic SA/CeBO{sub 3} were monodispersed nanospheres with an average diameter of 8 nm, and exhibited excellent dispersing stability in rapeseed oil. Meanwhile, SA/CeBO{sub 3} nanospheres were outstanding in enhancing friction-reducing and anti-wear capacities of rapeseed oil. The prominent

  14. Enhanced fish oil-in-water emulsions enabled by rapeseed lecithins obtained under different processing conditions.

    Science.gov (United States)

    Li, Jingbo; Pedersen, Jacob Nedergaard; Anankanbil, Sampson; Guo, Zheng

    2018-10-30

    It is hypothesized that rapeseed lecithins may have different emulsifying and antioxidant properties in delivering fish oil compared to soy lecithin based on previous studies. The results showed that in vitro antioxidant activities of rapeseed lecithins were stronger than those of soy lecithin. Emulsions stabilized by rapeseed based lecithins and DATEM were stable over 3 months at 4 °C, whereas the creaming of emulsions containing soy lecithin started immediately after its preparation. Zeta-potential of rapeseed lecithins was higher than soy lecithin and DATEM, which partially contributed to the emulsion stability. Although the particle sizes of emulsions prepared by rapeseed lecithins increased after 14 days storage, no creaming was observed. Lipid oxidation as indicated by TBARS values suggested that DATEM was the most unfavorable, followed by soy lecithin. It is concluded that rapeseed lecithins are better than soy lecithin and DATEM in terms of emulsion stability and antioxidant capability, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Chemical modification of nanocellulose with canola oil fatty acid methyl ester

    Science.gov (United States)

    Liqing Wei; Umesh P. Agarwal; Kolby C. Hirth; Laurent M. Matuana; Ronald C. Sabo; Nicole M. Stark

    2017-01-01

    Cellulose nanocrystals (CNCs), produced from dissolving wood pulp, were chemically functionalized by transesterification with canola oil fatty acid methyl ester (CME). CME performs as both the reaction reagent and solvent. Transesterified CNC (CNCFE) was characterized for their chemical structure, morphology, crystalline structure, thermal stability, and hydrophobicity...

  16. Additives for rapeseed oil fuel. Influence on the exhaust gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kastl, Johannes; Remmele, Edgar; Thuneke, Klaus [Technologie- und Foerderzentrum, Straubing (Germany)

    2013-06-01

    In contrast to fossil diesel fuel, the use of additives is not common in rapeseed oil fuel. In a preceding research project the efficacy of several additives, that are commercially available for the use in fossil diesel or FAME, has been investigated for rapeseed oil fuel in the lab. Four additives could be identified, which have a significant influence on the ignition delay or the low temperature flow behaviour of rapeseed oil fuel. To investigate whether there are negative effects of the additives on other fuel-related properties in practical use, a test series on an agricultural tractor capable of running on vegetable oils has been conducted. Attention is focused on the operating parameters like power, torque or fuel consumption as well as on regulated emissions (CO, HC, particulate matter or NOx) and non-regulated emissions like polycyclic aromatic hydrocarbons. Additionally, the influence of the additives on the storage stability of rapeseed oil fuel is investigated in long term studies. No negative influence of the additives on the regulated emissions could be seen in the experiments, the data of the non-regulated emissions is still being analysed. This paper will focus on the emissions testing; results of the long term studies will be given in the presentation. (orig.)

  17. Monitoring lipase-catalyzed butterfat interesterification with rapesee oil by Fourier transform near-infrared spectroscopy

    DEFF Research Database (Denmark)

    Zhang, Hong; Mu, Huiling; Xu, Xuebing

    2006-01-01

    This work demonstrates the application of FT-NIR spectroscopy to monitor the enzymatic interesterification process for butterfat modification. The reactions were catalyzed by Lipozyme TL IM at 70 C for the blend of butterfat/rapeseed oil (70/30, w/w) in a packed-bed reactor. The blend and intere...

  18. Notice and Supplemental Determination for Renewable Fuels Produced Under the Final Renewable Fuel Standard Program from Canola Oil

    Science.gov (United States)

    This rule finalizes the determination that canola oil biodiesel meets the lifecycle greenhouse gas (GHG) emission reduction threshold of 50 required by the Energy Independence and Security Act of 2007 (EISA).

  19. Food grade microemulsion systems: canola oil/lecithin:n-propanol/water.

    Science.gov (United States)

    Abbasi, Soleiman; Radi, Mohsen

    2016-03-01

    In this study, the capability of a natural surfactant, lecithin, and the influence of ionic strength, pH, and temperature on some properties of a food grade microemulsion system were evaluated. For this purpose, the pseudoternary phase diagrams of canola oil/lecithin:n-propanol/water microemulsions in the presence of different salts (NaCl and CaCl2), ionic strengths, pHs, and temperatures were constructed. Our findings showed that the presence of salts slightly increased the W/O areas on the phase diagrams, whereas pH variation was not effective on the microemulsion formation. The expansion of microemulsion areas with temperature indicated the greater triglycerides solubilization capacity of lecithin based microemulsions at higher temperatures. These findings revealed the efficiency of lecithin-based microemulsion system for solubilization of triglycerides which can potentially be used for extraction of edible vegetable oils particularly canola oil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Randomized controlled trial to evaluate the effect of canola oil on blood vessel function in peripheral arterial disease: rationale and design of the Canola-PAD Study

    Directory of Open Access Journals (Sweden)

    Enns JE

    2014-10-01

    Full Text Available Jennifer E Enns,1,2 Peter Zahradka,1–3 Randolph P Guzman,4,5 Alanna Baldwin,1 Brendon Foot,1 Carla G Taylor1–31Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Research Centre, Winnipeg, Canada; 2Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada; 3Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; 4IH Asper Clinical Research Institute, St Boniface Hospital, Winnipeg, Canada; 5Section of Vascular Surgery, Department of Surgery, St Boniface Hospital, Winnipeg, CanadaBackground: Individuals with peripheral arterial disease (PAD are at high risk for cardiac events due to atherosclerosis. Dietary fatty acid composition has been shown to modulate blood vessel properties, but whether a diet enriched in conventional canola oil can improve clinical endpoints in PAD is not known.Purpose: To describe the rationale and design of a clinical trial testing the effect of canola oil consumption on vascular function and cardiovascular risk factors in an 8-week dietary intervention in individuals with PAD.Methods: The Canola-PAD Study was a single center, prospective, double-blind, randomized controlled trial in 50 patients over 40 years old with PAD. Participants were randomized into two groups and consumed food items containing either conventional canola oil (25 g/day or an oil mixture representing the Western diet (25 g/day for 8 weeks as part of their usual diet. The primary outcome was vascular function (ankle-brachial index, arterial stiffness, endothelial dysfunction, walking capacity, and cognitive function. Secondary measurements included anthropometrics, serum lipid profile and fatty acid composition, markers of inflammation and glycemic control, and serum metabolite profile.Discussion: The Canola-PAD Study uses an innovative and noninvasive approach to evaluate the effect of canola oil on clinically relevant outcomes in individuals with PAD, including

  1. Effects of fish oil type, lipid antioxidants and presence of rapeseed oil on oxidative flavour stability of fish oil enriched milk

    DEFF Research Database (Denmark)

    Bruni Let, Mette; Jacobsen, Charlotte; Meyer, Anne S.

    2004-01-01

    As a part of our ongoing experiments on optimization of the oxidative stability of fish oils in genuine food systems, this study investigated the oxidative deterioration of fish oil enriched milk emulsions during cold storage. The experimental data showed that addition of rapeseed oil to fish oil...... (1:1) prior to emulsification into milk significantly protected the emulsions against oxidative deterioration. Addition of propyl gallate and a citric acid ester to the fish oil prior to emulsification also protected the fish oil enriched milk during storage. Emulsions containing a rapeseed:fish oil...... mixture were oxidatively stable during 11 d at 2 øC. Thus, no additional inhibitory effect of the added antioxidants was observed. The peroxide value and concentrations of five selected volatiles derived from n- 3 PUFA degradation in rapeseed:fish oil mixture emulsions were not significantly different...

  2. Time-Series Analyses of Transcriptomes and Proteomes Reveal Molecular Networks Underlying Oil Accumulation in Canola.

    Science.gov (United States)

    Wan, Huafang; Cui, Yixin; Ding, Yijuan; Mei, Jiaqin; Dong, Hongli; Zhang, Wenxin; Wu, Shiqi; Liang, Ying; Zhang, Chunyu; Li, Jiana; Xiong, Qing; Qian, Wei

    2016-01-01

    Understanding the regulation of lipid metabolism is vital for genetic engineering of canola ( Brassica napus L.) to increase oil yield or modify oil composition. We conducted time-series analyses of transcriptomes and proteomes to uncover the molecular networks associated with oil accumulation and dynamic changes in these networks in canola. The expression levels of genes and proteins were measured at 2, 4, 6, and 8 weeks after pollination (WAP). Our results show that the biosynthesis of fatty acids is a dominant cellular process from 2 to 6 WAP, while the degradation mainly happens after 6 WAP. We found that genes in almost every node of fatty acid synthesis pathway were significantly up-regulated during oil accumulation. Moreover, significant expression changes of two genes, acetyl-CoA carboxylase and acyl-ACP desaturase, were detected on both transcriptomic and proteomic levels. We confirmed the temporal expression patterns revealed by the transcriptomic analyses using quantitative real-time PCR experiments. The gene set association analysis show that the biosynthesis of fatty acids and unsaturated fatty acids are the most significant biological processes from 2-4 WAP and 4-6 WAP, respectively, which is consistent with the results of time-series analyses. These results not only provide insight into the mechanisms underlying lipid metabolism, but also reveal novel candidate genes that are worth further investigation for their values in the genetic engineering of canola.

  3. Ultrasound-assisted production of biodiesel FAME from rapeseed oil in a novel two-compartment reactor

    DEFF Research Database (Denmark)

    Nakayama, Ryo-ichi; Imai, Masanao; Woodley, John

    2017-01-01

    Ultrasonication has been proposed as a promising technique for enzymatic transesterification. In contrast, excess ultrasonication causes an enzyme inactivation. This paper presents enzymatic transesterification to produce fatty acid methyl ester (FAME) from rapeseed oil using Callera Trans L™ usi...

  4. In Vitro Rumen Fermentation Characteristics and Fatty Acid Profiles Added with Calcium Soap of Canola/Flaxseed Oil

    Directory of Open Access Journals (Sweden)

    S. Suharti

    2017-12-01

    Full Text Available This research aimed to assess the effect of adding canola oil and flaxseed oil which were protected with calcium soap (Ca-soap on the fermentation characteristics, rumen microbial population, and the profile of fatty acids in the rumen during 4 and 8 hours in the in vitro fermentation. The research design used in this study was a completely randomized block design with 3 treatments and 4 replications. The treatments consisted of control ration (Napier grass and concentrate at the ratio of 60 : 40, control + 6% of Ca-soap of canola oil, and control + 6% of Ca-soap of flaxseed oil. Variables observed were pH value, NH3 concentration, volatile fatty acid (VFA, dry matter and organic matter digestibility, and fatty acid profile.  The results showed that the addition of Ca-soap of canola or flaxseed oil did not affect the pH value, NH3 concentration, dry matter digestibility, organic matter digestibility, total population of bacteria and protozoa in the rumen. However, the total production of ruminal VFA was increased (P<0.05 with the addition of Ca soap of canola oil/flaxseed oil. The use of Ca-soap of flaxseed oil increased (P<0.05 the content of unsaturated fatty acids in the rumen at 4 h incubation. The addition of Ca-soap of flaxseed oil resulted the lowest (P<0.05 level of unsaturated fatty acids biohydrogenation compared to the other treatments at 4 h incubation. In conclusion, the addition of Ca soap of canola/flaxseed oil could improve VFA total production. Vegetable oils protected using calcium soap could inhibit unsaturated fatty acid biohidrogenation by rumen microbes. Ca-soap of flaxseed oil could survive from rumen biohydrogenation in the rumen better than Ca-soap of canola oil.

  5. Hydrogenation of rapeseed oil for production of liquid bio-chemicals

    International Nuclear Information System (INIS)

    Pinto, F.; Martins, S.; Gonçalves, M.; Costa, P.; Gulyurtlu, I.; Alves, A.; Mendes, B.

    2013-01-01

    Highlights: ► Production of renewable liquid hydrocarbons through rapeseed oil hydrogenation. ► Hydrogenation at lower temperature and lower hydrogen pressures. ► Test of a catalyst commonly employed in petrochemical industry. ► Improve of hydrogenation process viability by decreasing operational costs. ► Analysis of hydrogenated product applications as bio-chemicals. -- Abstract: The main objective of rapeseed oil hydrogenation tests was the production of liquid bio-chemicals to be used as renewable raw material for the production of several chemicals and in chemical synthesis to substitute petroleum derived stuff. As, hydrogenation of vegetable oils is already applied for the production of biofuels, the work done focused in producing aromatic compounds, due to their economic value. The effect of experimental conditions on rapeseed oil hydrogenation was studied, namely, reaction temperature and time with the aim of selecting the most favourable conditions to convert rapeseed oil into liquid valuable bio-chemicals. Rapeseed oil was hydrogenated at a hydrogen initial pressure of 1.10 MPa. Reaction temperature varied in the range from 200 °C to 400 °C, while reaction times between 6 and 180 min were tested. The performance of a commercial cobalt and molybdenum catalyst was also studied. The highest hydrocarbons yields were obtained at the highest temperature and reaction times tested. At a temperature of 400 °C and at the reaction time of 120 min hydrocarbons yield was about 92% in catalyst presence, while in the absence of the catalyst this value decreased to 85%. Hydrocarbons yield was even higher when the reaction time of 180 min was used in the presence of catalyst, as the yield of 97% was observed. At these conditions hydrocarbons formed had a high content of aromatic compounds, around 50%. For this reason, the viscosity values of hydrogenated oils were lower than that established by EN590, which together with hydrogenated liquids composition

  6. Different effects of diets rich in olive oil, rapeseed oil and sunflower-seed oil on postprandial lipid and lipoprotein concentrations and on lipoprotein oxidation susceptibility

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall; Pedersen, A.; Sandstrøm, B.

    2002-01-01

    oxidation of fasting and postprandial lipoproteins eighteen males consumed diets enriched with rapeseed oil (RO), olive oil (OO), or sunflower-seed oil (SO) in randomised order for periods of 3 weeks followed by a RO test meal. In the postprandial state the concentrations of cholesterol and triacylglycerol...

  7. EFFECT OF FEEDING CANOLA AND SOYBEAN OILS ON SERUM LIPID PROFILE IN COMMERCIAL LAYERS

    Directory of Open Access Journals (Sweden)

    Shakoor. H. I., M. L. Khan, Z. Nasir, N. Mukhtar and M. S. Rehman

    2002-04-01

    Full Text Available The purpose of this study was to assess the effect of canola oil and soybean oil on production performance and serum lipid profile in layers. In this study 15 experimental units (8 layers per experimental unit were randomly allotted to 5 different dietary treatments viz control (A. containing 2.5 % canola oil (B, 5% canola oil (C, 2.5% soybean oil (D and 5% soybean oil (E for a period of 9 weeks. Effects of five treatments on production parameters including egg production, egg quality, weight gain and serum lipid profile, serum cholesterol, triglycerides, low-density lipoprotein and high-density lipoprotein were monitored. Serum lipid profile was determined 0.31 and 63 days from start of experiment. Significantly (P<0.05 less serum cholesterol was found in treatment C (295.1 mg/dl as compared with treatment A (321 mg/dl. Low density lipoprotein cholesterol (LDL was significantly (P<0.01 , less in treatment C ( 131.7 mg/dl as compared with treatment A. ( 161 mg/dl and high density lipoprotein cholesterol (HDL was significantly (P<0.01 high in treatment C (31.76 mg/dl as compared with treatment A (25.42 mg/dl and triglyceride (TG was found significantly (P<0.01 less in treatment E ( 907.3 mg/dl as compared with treatment A (960 mg/dl. The results suggested that as the percentage of oils increased in the diet, serum lipid profile showed a positive trend.

  8. Study on Spray Characteristics and Spray Droplets Dynamic Behavior of Diesel Engine Fueled by Rapeseed Oil

    Directory of Open Access Journals (Sweden)

    Sapit Azwan

    2014-07-01

    Full Text Available Fuel-air mixing is important process in diesel combustion. It directly affects the combustion and emission of diesel engine. Biomass fuel needs great help to atomize because the fuel has high viscosity and high distillation temperature. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fueled by rapeseed oil (RO. Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the rapeseed oil spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. The results show that RO has very poor atomization due to the high viscosity nature of the fuel. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  9. Influence of metal loading on hydrocracking of rapeseed oil using bifunctional micro-/mesoporous composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Gille, T.; Busse, O.; Reschetilowski, W. [Technische Univ. Dresden (Germany). Inst. of Industrial Chemistry

    2013-11-01

    Hydrocracking of rapeseed oil has been investigated in a fixed bed reactor under integral conditions. A synthesized micro-/mesoporous composite material Al-MCM-41/ZSM-5 modified by different metal loadings (NiMo, PtNiMo, Pt) was used as catalyst system. It could be demonstrated that the support material and their metal loading influence the product selectivity as well as the deactivation tendencies of the catalyst sample. (orig.)

  10. Extraction of oil and minor lipids from cold-press rapeseed cake with supercritical CO2

    Directory of Open Access Journals (Sweden)

    E. Uquiche

    2012-09-01

    Full Text Available This study examines the extraction of oil from cold-press rapeseed cake using Supercritical CO2(SC-CO2. The effects of pressure (20, 30, and 40 MPa, temperature (40, 50, and 60 ºC, and extraction time (60, 90, and 120 min on oil yield and composition (tocopherols and carotenoids were studied using response surface design. The results indicated that pressure influenced the most the yield of oil, followed by temperature and extraction time. Extraction time had no effect on oil composition. Extraction pressure and temperature did not affect the tocopherol concentration of the oil to a great extent, whereas temperature had no affect in its carotenoid concentration. A comparison was made between the relative qualities of oil extracted with SC-CO2at 40 MPa and 60 ºC and with n-hexane. Neither solvent affected the unsaponifiable matter content or the composition of phytosterols (mainly β-sitosterol, campesterol and brassicasterol of the oils, although there was a significant difference (p<0.05 in tocopherol. Extraction with SC-CO2at 40 MPa and 60 ºC is recommended to obtain rapeseed-oil enriched with tocopherols and carotenoids as important functional components.

  11. Transesterification of rapeseed and palm oils in supercritical methanol and ethanol

    International Nuclear Information System (INIS)

    Biktashev, Sh.A.; Usmanov, R.A.; Gabitov, R.R.; Gazizov, R.A.; Gumerov, F.M.; Gabitov, F.R.; Abdulagatov, I.M.; Yarullin, R.S.; Yakushev, I.A.

    2011-01-01

    The results of the rapeseed and palm oils transesterification with supercritical methanol and ethanol were presented. The studies were performed using the experimental setups which are working in batch and continuous regimes. The effect of reaction conditions (temperature, pressure, oil to alcohol ratio, reaction time) on the biodiesel production (conversion yield) was studied. Also the effect of preliminary ultrasonic treatment (ultrasonic irradiation, emulsification of immiscible oil and alcohol mixture) of the initial reagents (emulsion preparation) on the stage before transesterification reaction conduction on the conversion yield was studied. We found that the preliminary ultrasonic treatment of the initial reagents increases considerably the conversion yield. Optimal technological conditions were determined to be as follows: pressure within 20-30 MPa, temperature within 573-623 K. The optimal values of the oil to alcohol ratio strongly depend on preliminary treatment of the reaction mixture. The study showed that the conversion yield at the same temperature with 96 wt.% of ethanol is higher than with 100 wt.% of methanol. -- Highlights: → The results of the rapeseed and palm oils transesterification with supercritical methanol and ethanol were presented. → The effect of reaction conditions (temperature, pressure, oil to alcohol ratio, reaction time) on the biodiesel production (conversion yield) was studied. → Transesterification of vegetable oil with supercritical alcohols. → Effect of temperature and pressure on conversion yield. → Preliminary ultrasonic treatment of the vegetable oil+methanol mixture.

  12. Interactive Role of Fungicides and Plant Growth Regulator (Trinexapac on Seed Yield and Oil Quality of Winter Rapeseed

    Directory of Open Access Journals (Sweden)

    Muhammad Ijaz

    2015-09-01

    Full Text Available This study was designed to evaluate the role of growth regulator trinexapac and fungicides on growth, yield, and quality of winter rapeseed (Brassica napus L.. The experiment was conducted simultaneously at different locations in Germany using two cultivars of rapeseed. Five different fungicides belonging to the triazole and strobilurin groups, as well as a growth regulator trinexapac, were tested in this study. A total of seven combinations of these fungicides and growth regulator trinexapac were applied at two growth stages of rapeseed. These two stages include green floral bud stage (BBCH 53 and the course of pod development stage (BBCH 65. The results showed that plant height and leaf area index were affected significantly by the application of fungicides. Treatments exhibited induced photosynthetic ability and delayed senescence, which improved the morphological characters and yield components of rape plants at both locations. Triazole, in combination with strobilurin, led to the highest seed yield over other treatments at both experimental locations. Significant effects of fungicides on unsaturated fatty acids of rapeseed oil were observed. Fungicides did not cause any apparent variation in the values of free fatty acids and peroxide of rapeseed oil. Results of our study demonstrate that judicious use of fungicides in rapeseed may help to achieve sustainable farming to obtain higher yield and better quality of rapeseed.

  13. Tribological study on rapeseed oil with nano-additives in close contact sliding situation

    Science.gov (United States)

    Gupta, Rajeev Nayan; Harsha, A. P.; Singh, Sagar

    2018-02-01

    The present work deals with the tribological evaluation of three types of nano-additives, i.e., copper oxide (CuO; ≈ 151.2 nm), cerium oxide (CeO2; ≈ 80 nm) and polytetrafluoroethylene (PTFE; ≈ 90.4 nm) with rapeseed oil under steel-steel sliding contacts. The nano-additives concentrations in the base oil were 0.1, 0.25 and 0.5% w/v for the lubricant formulation. Further, the rapeseed oil was also epoxidized by a chemical method and the tribological behavior was compared with the base oil (unmodified oil) at similar nano-additives concentrations. The ASTM standards were followed for the study of wear preventive and extreme-pressure analysis of nanolubricants, and it was carried out using four-ball tester. In the antiwear test, CeO2 and PTFE nano-additives have shown the significant reduction in the wear scar diameter at the concentration of 0.1% w/v. In the extreme-pressure test, 0.5% w/v concentration was optimum for oxide nanoparticles; however, PTFE nanoparticles did not show positive effect with both the base oils. Different characterization techniques were employed to confirm the oil modification and for the study of the worn surfaces.

  14. French environmental communication on sunflower and rapeseed oils based on life cycle assessment

    Directory of Open Access Journals (Sweden)

    Badey Laureen

    2013-07-01

    Full Text Available The French “Grenelle” laws sparked a French national experiment trialling the environmental labelling of fast-moving consumer goods. The data required for this labelling scheme are generated by carrying out a life cycle assessment (LCA. The aim of this study is to provide all necessary information to fit the national experiment for two standard oils: sunflower oil and rapeseed oil. The complete oil life cycle was studied, from oilseed farming through to the end-of-life of the packaging. We focused heavily on the impacts of crushing and refining. The seed processing data was collected from different plants that are representative of the French crushing/refining industry and packaging site practice. The data inventory was used to calculate the identified environmental labelling indicators, i.e. greenhouse gas (GHG emissions and water consumption. The production of 100g of refined bulk sunflower and rapeseed emits 89 and 127 g equivalent CO2 and consumes 1.7 L and 0.8 L of water, respectively. Most impacts on the studied indicators stem from the farming phase. Energy and water consumptions during crushing and refining also weigh on the studied indicators. The results of this study provide a relevant overview of all sunflower and rapeseed oils produced in France, and are usable as standard values for vegetable oil producers and users. Oil supply chain operators can use these values to compare to their own process values and gauge the improvements brought about by their ecodesign strategies. For example, using a biomass boiler, using less packaging, and making different choices on seed suppliers can lead to a lower set of impact values.

  15. High-oleic canola oil consumption enriches LDL particle cholesteryl oleate content and reduces LDL proteoglycan binding in humans.

    Science.gov (United States)

    Jones, Peter J H; MacKay, Dylan S; Senanayake, Vijitha K; Pu, Shuaihua; Jenkins, David J A; Connelly, Philip W; Lamarche, Benoît; Couture, Patrick; Kris-Etherton, Penny M; West, Sheila G; Liu, Xiaoran; Fleming, Jennifer A; Hantgan, Roy R; Rudel, Lawrence L

    2015-02-01

    Oleic acid consumption is considered cardio-protective according to studies conducted examining effects of the Mediterranean diet. However, animal models have shown that oleic acid consumption increases LDL particle cholesteryl oleate content which is associated with increased LDL-proteoglycan binding and atherosclerosis. The objective was to examine effects of varying oleic, linoleic and docosahexaenoic acid consumption on human LDL-proteoglycan binding in a non-random subset of the Canola Oil Multi-center Intervention Trial (COMIT) participants. COMIT employed a randomized, double-blind, five-period, cross-over trial design. Three of the treatment oil diets: 1) a blend of corn/safflower oil (25:75); 2) high oleic canola oil; and 3) DHA-enriched high oleic canola oil were selected for analysis of LDL-proteoglycan binding in 50 participants exhibiting good compliance. LDL particles were isolated from frozen plasma by gel filtration chromatography and LDL cholesteryl esters quantified by mass-spectrometry. LDL-proteoglycan binding was assessed using surface plasmon resonance. LDL particle cholesterol ester fatty acid composition was sensitive to the treatment fatty acid compositions, with the main fatty acids in the treatments increasing in the LDL cholesterol esters. The corn/safflower oil and high-oleic canola oil diets lowered LDL-proteoglycan binding relative to their baseline values (p = 0.0005 and p = 0.0012, respectively). At endpoint, high-oleic canola oil feeding resulted in lower LDL-proteoglycan binding than corn/safflower oil (p = 0.0243) and DHA-enriched high oleic canola oil (p = 0.0249), although high-oleic canola oil had the lowest binding at baseline (p = 0.0344). Our findings suggest that high-oleic canola oil consumption in humans increases cholesteryl oleate percentage in LDL, but in a manner not associated with a rise in LDL-proteoglycan binding. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Enzymatic interesterification of butterfat with rapeseed oil in a continuous packed bed reactor

    DEFF Research Database (Denmark)

    Rønne, Torben Harald; Yang, Tiankui; Mu, Huiling

    2005-01-01

    , whereafter it dramatically decreased over the next 10 days to an activity level of 40%. In general, the study shows no significant difference for butterfat interesterification in terms of enzyme behavior from normal vegetable oils and fats even though it contains short-chain fatty acids and cholesterol......Lipase-catalyzed interesterification of butterfat blended with rapeseed oil (70/30, w/w) was investigated both in batch and in continuous reactions. Six commercially available immobilized lipases were screened in batch experiments, and the lipases, Lipozyme TL IM and Lipozyme RM IM, were chosen...

  17. Evaluation of rapeseed genotypes for yield and oil quality under ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... The total consumption of edible oil amounted to 2.381 million tons during 2007 - 2008; local production of edible oil was estimated at 0.833 million tons and the remaining ... susceptible to a number of pests, insect control need more care to reduce losses and check costly pesticide damaging to honeybees ...

  18. Impact of nanoparticles and butanol on properties and spray characteristics of waste cooking oil biodiesel and pure rapeseed oil

    Directory of Open Access Journals (Sweden)

    Ahmad K. H.

    2017-01-01

    Full Text Available Renewable biofuels can offset greenhouse gases by replacing fossil fuels destined for internal combustion engines. However, biofuels have their own setbacks and may lead to poor combustion inside the engine cylinder. In this study, nanoparticles and butanol were blended either separately or together with waste cooking oil biodiesel and neat rape seed oil to investigate the impact of these additives on the properties and spray characteristics. The investigation comprised of three stages, with each having an effect on how the next stage of the investigation was conducted. Initially, the physicochemical characteristics of 25ppm, 50ppm, 75ppm and 100ppm concentrations of aluminium oxide and copper oxide nanoparticle blends with fossil diesel, waste cooking oil biodiesel and rapeseed oil were investigated. The results from first stage investigation showed that, in general, blends containing aluminium oxide nanoparticles gave better results for almost all the concentrations when compared with copper oxide nanoparticle blends with the same nanoparticle concentrations. Overall, waste cooking oil biodiesel blended with 100ppm aluminium oxide nanoparticle showed most promising results like the flash point of 159.3°C, kinematic viscosity @40°C of 4.66 cSt, and gross calorific value of 44.43 MJ/kg. These values were 61.6% higher, 51.3% higher and 3.2% lower than that of corresponding fossil diesel values. Subsequently, in the second stage of the study, the addition of butanol was investigated to assess its ability to enhance the emulsion of biofuel-nanoparticles blends. Four blends containing 90% biodiesel & 10% butanol, and 90% rapeseed oil & 10% butanol, with and without 100ppm Al2O3 were prepared. Results showed that the kinematic viscosity of the fuel blends containing 100ppm aluminium oxide nanoparticles were decreased by 0.4% and 3.3%, for 90% biodiesel & 10% butanol and 90% rapeseed oil & 10% butanol blends respectively, when compared to without

  19. Impact of nanoparticles and butanol on properties and spray characteristics of waste cooking oil biodiesel and pure rapeseed oil

    Science.gov (United States)

    Ahmad, K. H.; Hossain, A. K.

    2017-11-01

    Renewable biofuels can offset greenhouse gases by replacing fossil fuels destined for internal combustion engines. However, biofuels have their own setbacks and may lead to poor combustion inside the engine cylinder. In this study, nanoparticles and butanol were blended either separately or together with waste cooking oil biodiesel and neat rape seed oil to investigate the impact of these additives on the properties and spray characteristics. The investigation comprised of three stages, with each having an effect on how the next stage of the investigation was conducted. Initially, the physicochemical characteristics of 25ppm, 50ppm, 75ppm and 100ppm concentrations of aluminium oxide and copper oxide nanoparticle blends with fossil diesel, waste cooking oil biodiesel and rapeseed oil were investigated. The results from first stage investigation showed that, in general, blends containing aluminium oxide nanoparticles gave better results for almost all the concentrations when compared with copper oxide nanoparticle blends with the same nanoparticle concentrations. Overall, waste cooking oil biodiesel blended with 100ppm aluminium oxide nanoparticle showed most promising results like the flash point of 159.3°C, kinematic viscosity @40°C of 4.66 cSt, and gross calorific value of 44.43 MJ/kg. These values were 61.6% higher, 51.3% higher and 3.2% lower than that of corresponding fossil diesel values. Subsequently, in the second stage of the study, the addition of butanol was investigated to assess its ability to enhance the emulsion of biofuel-nanoparticles blends. Four blends containing 90% biodiesel & 10% butanol, and 90% rapeseed oil & 10% butanol, with and without 100ppm Al2O3 were prepared. Results showed that the kinematic viscosity of the fuel blends containing 100ppm aluminium oxide nanoparticles were decreased by 0.4% and 3.3%, for 90% biodiesel & 10% butanol and 90% rapeseed oil & 10% butanol blends respectively, when compared to without the nanoparticles. The

  20. Counteracting foaming caused by lipids or proteins in biogas reactors using rapeseed oil or oleic acid as antifoaming agents

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Boe, Kanokwan; Einarsdottir, E. S.

    2015-01-01

    in biogas reactors fed with protein or lipid rich substrates. The results showed that both antifoams efficiently suppressed foaming. Moreover rapeseed oil resulted in stimulation of the biogas production. Finally, it was reckoned that the chemical structure of lipids, and more specifically their carboxylic...... deterioration of the methanogenic process. Many commercial antifoams are derivatives of fatty acids or oils. However, it is well known that lipids can induce foaming in manure based biogas plants. This study aimed to elucidate the effect of rapeseed oil and oleic acid on foam reduction and process performance...

  1. Effect of Packaging Films on the Quality of Canola Oil under Photooxidation Conditions

    Directory of Open Access Journals (Sweden)

    Hao Sun

    2015-01-01

    Full Text Available The objective of this study was to evaluate the influence of packaging films on the quality of canola oil which contains high concentration of fat under photooxidation condition and get the oxidation kinetics based on measuring the oxidation intensities including peroxide value, hexanal, and photosensitizer (chlorophyll. The canola oil was packaged by PET/CPP; KPET/PE was used for experiments. The change of light and oxygen transmission rate (OTR of PET/CPP which was considered as the typical fatty foods packaging film under different light intensities was also tested. The results show that the peroxide value increased rapidly under light conditions and fitted the zero order kinetics; also the oxygen transmission rate had great impact on it; hexanal fitted the zero order kinetic in oil whose package of low OTR generated a lot; however package in high OTR films changed very slowly that might be dependent on the performance of hexanal through plastic films. The degradation of chlorophyll fitted the first order kinetic and decreased quickly under light but was almost independent of OTR of transparent packaging material. Light reduced the oxygen barrier properties of the films, which should be considered as the photooxidation condition (and the photooxidation condition thus should be considered.

  2. Tribological Performance of Hydrogenated Amorphous Carbon (a-C: H DLC Coating when Lubricated with Biodegradable Vegetal Canola Oil

    Directory of Open Access Journals (Sweden)

    H.M. Mobarak

    2014-06-01

    Full Text Available Increasing environmental awareness and demands for lowering energy consumptions are strong driving forces behind the development of the vehicles of tomorrow. Without the advances of lubricant chemistry and adequate lubricant formulation, expansion of modern engines would not have been possible. Considering environmental awareness factors as compared to mineral oils, vegetal oil based biolubricants are renewable, biodegradable, non-toxic and have a least amount of greenhouse gases. Furthermore, improvement in engine performance and transmission components, which were impossible to achieve by applying only lubricants design, is now possible through diamond like carbon (DLC coatings. DLC coatings exhibit brilliant tribological properties, such as good wear resistance and low friction. In this regard, tribological performance of a-C: H DLC coating when lubricated with Canola vegetal oil has been investigated by the help of a ball-on-flat geometry. Experimental results demonstrated that the a-C: H DLC coating exhibited better performance with Canola oil in terms of friction and wear as compared to the uncoated materials. Large amount of polar components in the Canola oil significantly improved the tribological properties of the a-C:H coating. Thus, usage of a-C: H DLC coating with Canola oil in the long run may have a positive impact on engine life.

  3. In situ visualization and effect of glycerol in lipase-catalyzed ethanolysis of rapeseed oil

    DEFF Research Database (Denmark)

    Xu, Yuan; Nordblad, Mathias; Nielsen, Per M.

    2011-01-01

    Immobilized lipases can be used in biodiesel production to overcome many disadvantages of the conventional base-catalyzed process. However, the glycerol by-product poses a potential problem for the biocatalytic process as it is known to inhibit immobilized lipases, most likely by clogging...... of the catalyst particles. In this paper, this negative effect was further investigated and confirmed in ethanolysis of rapeseed oil. A dyeing method was developed for in situ visualization of glycerol in order to study its partitioning and accumulation during the ethanolysis reaction. The method was used...

  4. The Optimization of the Oiling Bath Cosmetic Composition Containing Rapeseed Phospholipids and Grapeseed Oil by the Full Factorial Design

    Directory of Open Access Journals (Sweden)

    Michał Górecki

    2015-04-01

    Full Text Available The proper condition of hydrolipid mantle and the stratum corneum intercellular matrix determines effective protection against transepidermal water loss (TEWL. Some chemicals, improper use of cosmetics, poor hygiene, old age and some diseases causes disorder in the mentioned structures and leads to TEWL increase. The aim of this study was to obtain the optimal formulation composition of an oiling bath cosmetic based on rapeseed phospholipids and vegetable oil with high content of polyunsaturated fatty acids. In this work, the composition of oiling bath form was calculated and the degree of oil dispersion after mixing the bath preparation with water was selected as the objective function in the optimizing procedure. The full factorial design 23 in the study was used. The concentrations of rapeseed lecithin ethanol soluble fraction (LESF, alcohol (E and non-ionic emulsifier (P were optimized. Based on the calculations from our results, the optimal composition of oiling bath cosmetic was: L (LESF 5.0 g, E (anhydrous ethanol 20.0 g and P (Polysorbate 85 1.5 g. The optimization procedure used in the study allowed to obtain the oiling bath cosmetic which gives above 60% higher emulsion dispersion degree 5.001 × 10−5 cm−1 compared to the initial formulation composition with the 3.096 × 10−5 cm−1.

  5. A comparative study on the effect of unsaturation degree of camelina and canola oils on the optimization of bio-diesel production

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2016-11-01

    Full Text Available Transesterification is the most common method of producing biodiesel from vegetable oils. A comparative study on the optimization of reaction variables for refined canola oil, unrefined canola oil, and unrefined camelina oil using a four-factor (temperature, time, molar ratio of methanol to oil, and catalyst loading face-centered central composite design (FCCCD was carried out. The optimum settings of these four factors that jointly maximize product, fatty acid methyl ester (FAME and biodiesel yields for each of refined canola, unrefined canola and unrefined camelina were determined. Results showed that the optimized conditions were associated with the fatty acid profile and physical properties of the parent oils. The optimum temperature of vegetable oil with low polyunsaturation degree was higher than that of oils with high polyunsaturation degree. High free fatty acid content in parent oils led to low optimized catalyst concentration, and the decreased reaction rate could be compensated by increased reaction temperature due to significant interaction effect between reaction temperature and catalyst loading in the transesterification process. The highest biodiesel yields from the optimum setting for refined canola oil, unrefined canola oil, and unrefined camelina oil were 97.7%, 95.2%, and 95.6%, respectively. This study provided guidelines on how to optimize different reaction variables taking economic viability and feedstock availability into consideration when producing biodiesel at plant scale.

  6. Biocompounds from rapeseed oil industry co-stream as active ingredients for skin care applications.

    Science.gov (United States)

    Rivera, D; Rommi, K; Fernandes, M M; Lantto, R; Tzanov, T

    2015-10-01

    Despite the great number of substances produced by the skincare industry, very few of them seem to truly have an effect on the skin. Therefore, given the social implications surrounding physical appearance, the search for new bioactive compounds to prevent or attenuate skin ageing and enhance self-image is a priority of current research. In this context, being rich in valuable compounds, such as proteins, phenolics, lipids and vitamins, this study is focused on the potential activity of rapeseed press cake hydrolysates to be used as raw materials for skincare applications. In this study, the protein-rich press residue from the rapeseed oil industry was converted enzymatically into short-chain biologically active peptides using four protease products with varying substrate specificity - Alcalase 2.4L FG, Protex 6L, Protamex and Corolase 7089. The antioxidant, anti-wrinkle and anti-inflammatory activities of the obtained hydrolysates were evaluated in vitro while their biocompatibility with human skin fibroblasts was tested. All hydrolysates were biocompatible with skin fibroblasts after 24 h of exposure, while the non-hydrolysed extract induced cell toxicity. Alcalase 2,4L FG and Protex 6L-obtained hydrolysates were the most promising extracts showing improved bioactivities suitable for skin anti-ageing formulations, namely antioxidant activity, inhibiting approximately 80% cellular reactive oxidative species, anti-inflammatory and anti-wrinkle properties, inhibiting around 36% of myeloperoxidase activity and over 83% of elastase activity. The enzymatic technology applied to the rapeseed oil industry costream results in the release of bioactive compounds suitable for skincare applications. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  7. Exposure to mutagenic aldehydes and particulate matter during panfrying of beefsteak with margarine, rapeseed oil, olive oil or soybean oil.

    Science.gov (United States)

    Sjaastad, Ann Kristin; Svendsen, Kristin

    2008-11-01

    The aim of the study was to see if a cook could be exposed to mutagenic aldehydes in fumes from frying of beefsteak using margarine, rapeseed oil, soybean oil or virgin olive oil as frying fat. In addition, levels of particle exposure were measured to make the results comparable to other studies. The levels of higher aldehydes and total particles were measured in the breathing zone of the cook during the panfrying of beefsteak with the four different frying fats. In addition, the number of particles in the size intervals 0.3-0.5, 0.5-0.7 and 0.7-1.0 microm in the kitchen was registered. Measured levels of mutagenic aldehydes were between non-detectable and 25.33 microg m(-3) air. The exposure level of total aerosol was between 1.0 and 11.6 mg m(-3). Higher aldehydes were detected in all samples from this study, and mutagenic aldehydes were detected in most of the samples. Frying with margarine gave statistically significantly higher levels of mutagenic aldehydes and particles in all three size fractions than frying with the three different kinds of oil.

  8. Kinetic Modeling of Glycerolysis – Hydrolysis of Canola Oil in Supercritical Carbon Dioxide Media Using Equilibrium Data

    Czech Academy of Sciences Publication Activity Database

    Moquin, P.H.L.; Temelli, F.; Sovová, Helena; Saldana, M.D.A.

    2006-01-01

    Roč. 37, č. 3 (2006), s. 417-424 ISSN 0896-8446. [International Symposium on Supercritical Fluids. Orlando, 01.05.2005-04.05.2005] Institutional research plan: CEZ:AV0Z40720504 Keywords : canola oil * glycrolysis * kinetics Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.037, year: 2006

  9. Improved rapeseed oil extraction yield and quality via cold separation of ethanol miscella

    Directory of Open Access Journals (Sweden)

    Citeau Morgane

    2018-03-01

    Full Text Available In the extraction of vegetable oils, the idea of using ethanol as a solvent, allowing solvent recycling without distillation, can be attested as early as 1948 (Beckel, yet it is now seldom envisaged. The development of organic farming and a growing demand for a more natural diet prompted us to revisit this approach, which takes advantage of the relatively low affinity of ethanol for lipids to produce pure crude oils and meal with higher protein content. This method is based on the change of oil solubility in ethanol with temperature. Rapeseed oil extraction was carried out by hot pressurized ethanol (subcritical extraction condition. Oil was then recovered by cooling the miscella and demixing of two phases, an oil-rich phase and a solvent-rich phase. This study, after verifying the kinetics of extraction, focused on the optimization of the demixing temperature based on the amount and quality of recovered oil. The results show that ethanol extraction followed by cold demixing of the miscella makes it possible to obtain a high quality oil, free of free fatty acids and phospholipids.

  10. Moisture Sensitivity, Optical, Mechanical and Structural Properties of Whey Protein-Based Edible Films Incorporated with Rapeseed Oil

    Directory of Open Access Journals (Sweden)

    Justyna Kadzińska

    2016-01-01

    Full Text Available The objective of this work is to study the effect of the rapeseed oil content on the physical properties of whey protein emulsion films. For this purpose, whey protein films with the addition of 0, 1, 2 and 3 % of rapeseed oil, and glycerol as a plasticizer were obtained by the casting method. Film-forming emulsions were evaluated and compared using light scattering granulometry. The Sauter mean diameters (d32 of lipid droplets in film-forming solutions showed an increasing trend when increasing the oil volume fractions. The inclusion of rapeseed oil enhanced the hydrophobic character of whey protein films, reducing moisture content and film solubility in water. All emulsified films showed high lightness (L*≈90. Parameter a* decreased and parameter b* and total colour difference (ΔE increased with the increase of the volume fractions of oil. These results were consistent with visual observations; control films were transparent and those containing oil opaque. Water vapour sorption experimental data at the full range of water activity values from 0.11 to 0.93 were well described with Peleg’s equation (R2≥0.99. The tensile strength, Young’s modulus and elongation at break increased with the increase of rapeseed oil volume fraction, which could be explained by interactions between lipids and the protein matrix. These results revealed that rapeseed oil has enormous potential to be incorporated into whey protein to make edible film or coating for some food products. The mechanical resistance decreased with the addition of the lipids, and the opacity and soluble matter content increased.

  11. Moisture Sensitivity, Optical, Mechanical and Structural Properties of Whey Protein-Based Edible Films Incorporated with Rapeseed Oil.

    Science.gov (United States)

    Galus, Sabina; Kadzińska, Justyna

    2016-03-01

    The objective of this work is to study the effect of the rapeseed oil content on the physical properties of whey protein emulsion films. For this purpose, whey protein films with the addition of 0, 1, 2 and 3% of rapeseed oil, and glycerol as a plasticizer were obtained by the casting method. Film-forming emulsions were evaluated and compared using light scattering granulometry. The Sauter mean diameters ( d 32 ) of lipid droplets in film-forming solutions showed an increasing trend when increasing the oil volume fractions. The inclusion of rapeseed oil enhanced the hydrophobic character of whey protein films, reducing moisture content and film solubility in water. All emulsified films showed high lightness ( L* ≈90). Parameter a * decreased and parameter b* and total colour difference (∆ E ) increased with the increase of the volume fractions of oil. These results were consistent with visual observations; control films were transparent and those containing oil opaque. Water vapour sorption experimental data at the full range of water activity values from 0.11 to 0.93 were well described with Peleg's equation (R 2 ≥0.99). The tensile strength, Young's modulus and elongation at break increased with the increase of rapeseed oil volume fraction, which could be explained by interactions between lipids and the protein matrix. These results revealed that rapeseed oil has enormous potential to be incorporated into whey protein to make edible film or coating for some food products. The mechanical resistance decreased with the addition of the lipids, and the opacity and soluble matter content increased.

  12. Lipase immobilization and production of fatty acid methyl esters from canola oil using immobilized lipase

    International Nuclear Information System (INIS)

    Yuecel, Yasin; Demir, Cevdet; Dizge, Nadir; Keskinler, Buelent

    2011-01-01

    Lipase enzyme from Aspergillus oryzae (EC 3.1.1.3) was immobilized onto a micro porous polymeric matrix which contains aldehyde functional groups and methyl esters of long chain fatty acids (biodiesel) were synthesized by transesterification of crude canola oil using immobilized lipase. Micro porous polymeric matrix was synthesized from styrene-divinylbenzene (STY-DVB) copolymers by using high internal phase emulsion technique and two different lipases, Lipozyme TL-100L ® and Novozym 388 ® , were used for immobilization by both physical adsorption and covalent attachment. Biodiesel production was carried out with semi-continuous operation. Methanol was added into the reactor by three successive additions of 1:4 M equivalent of methanol to avoid enzyme inhibition. The transesterification reaction conditions were as follows: oil/alcohol molar ratio 1:4; temperature 40 o C and total reaction time 6 h. Lipozyme TL-100L ® lipase provided the highest yield of fatty acid methyl esters as 92%. Operational stability was determined with immobilized lipase and it indicated that a small enzyme deactivation occurred after used repeatedly for 10 consecutive batches with each of 24 h. Since the process is yet effective and enzyme does not leak out from the polymer, the method can be proposed for industrial applications. -- Research highlights: → Lipozyme TL-100L and Novozym 388 were immobilized onto micro porous polymeric matrix by both physical adsorption and covalent linking. → Immobilized enzymes were used for synthesis of fatty acid methyl esters by transesterification of canola oil and methanol using semi-continuous operation system. → According to chromatographic analysis, Lipase Lipozyme TL-100L resulted in the highest yield of methyl ester as 92%.

  13. Micro-pressing of rapeseed (Brassica napus L. and Arabidopsis thaliana seeds for evaluation of the oil extractability

    Directory of Open Access Journals (Sweden)

    Savoire Raphaëlle

    2010-03-01

    Full Text Available Pressing is a crucial step in the crushing process of rapeseed seeds, regarding its major effect on the oil extraction yield, the energy consumption and the quality of the meal. In order to study and model in a rigorous way the behaviour of rapeseed seeds, and the oil extraction during pressing, the potential of a micro-pressing technique using a instrumented micro press adapted to quantities of seeds as low as 10 g for rapeseed and 3 g for Arabidopsis thaliana was examined and discussed. Using a phenomenological model, data from the pressing process and the material behaviour (compressibility modules were obtained with a good precision, highlighting small differences between samples. The well-known positive effect of the temperature on the oil extraction yield was confirmed with A. thaliana. Micro-pressing of ground and cooked rapeseed seeds did not lead to the results usually reported in the literature for continuous pressing. The results strongly suggest that the performance of the static micro-pressing is related to the macro-and micro-structure of seeds and is less sensitive to the moisture than continuous pressing. Further experiments are needed to confirm that the micro-pressing could be an effective tool for predicting the extractability of oil and therefore, contribute to plant breeding programmes in the future.

  14. The Comparison of Co, Ni, Mo, CoMo and NiMo Sulfided Catalysts in Rapeseed Oil Hydrodeoxygenation.

    Czech Academy of Sciences Publication Activity Database

    Kaluža, Luděk; Kubička, D.

    2017-01-01

    Roč. 122, č. 1 (2017), s. 333-341 ISSN 1878-5190 R&D Projects: GA ČR(CZ) GA17-22490S Institutional support: RVO:67985858 Keywords : triolein hydrodeoxygenation scheme * rapeseed oil * sulfide catalysts Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 1.264, year: 2016

  15. The effect of palm oil or canola oil on feedlot performance, plasma and tissue fatty acid profile and meat quality in goats.

    Science.gov (United States)

    Karami, M; Ponnampalam, E N; Hopkins, D L

    2013-06-01

    Twenty-four entire male Kacang kid goats were fed diets containing 3% canola (n=12) or palm oil (n=12) supplements for 16 weeks. The goats had an initial live weight of 14.2±1.46 kg and were fed a mixed ration ad libitum (10.4 MJ/ME and 14% crude protein). There was no difference in feedlot performance due to diet. Inclusion of canola oil reduced (Pgoats' diet increased muscle omega-3 fatty acid content, but lipid oxidation was lowered in the blood and muscle LL. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Product sampling during transient continuous countercurrent hydrolysis of canola oil and development of a kinetic model

    KAUST Repository

    Wang, Weicheng

    2013-11-01

    A chemical kinetic model has been developed for the transient stage of the continuous countercurrent hydrolysis of triglycerides to free fatty acids and glycerol. Departure functions and group contribution methods were applied to determine the equilibrium constants of the four reversible reactions in the kinetic model. Continuous countercurrent hydrolysis of canola oil in subcritical water was conducted experimentally in a lab-scale reactor over a range of temperatures and the concentrations of all neutral components were quantified. Several of the rate constants in the model were obtained by modeling this experimental data, with the remaining determined from calculated equilibrium constants. Some reactions not included in the present, or previous, hydrolysis modeling efforts were identified from glycerolysis kinetic studies and may explain the slight discrepancy between model and experiment. The rate constants determined in this paper indicate that diglycerides in the feedstock accelerate the transition from "emulsive hydrolysis" to "rapid hydrolysis". © 2013 Elsevier Ltd.

  17. A diet rich in monounsaturated rapeseed oil reduces the lipoprotein cholesterol concentration and increases the relative content of n-3 fatty acids in serum in hyperlipidemic subjects.

    Science.gov (United States)

    Gustafsson, I B; Vessby, B; Ohrvall, M; Nydahl, M

    1994-03-01

    The effects of 3 wk on a diet rich in monounsaturated rapeseed oil were compared with those of a diet containing sunflower oil within a lipid-lowering diet. Ninety-five subjects with moderate hyperlipoproteinemia were randomly assigned to one of the two well-controlled diets prepared at the hospital kitchen. Total serum, low-density- and high-density-lipoprotein cholesterol concentrations decreased by 15%, 16%, and 11% (P oil diet and by 16%, 14%, and 13% (P oil diet. Serum triglycerides decreased more markedly (by 29%, P oil than on the rapeseed oil diet (14%, P oil diet but decreased on the sunflower oil diet. There was an increase in the alpha-tocopherol concentrations after both diets. The findings indicate that low erucic acid rapeseed oil can replace oils and fats rich in polyunsaturated fatty acids in a lipid-lowering diet.

  18. Effects of Partial Substitution of Lean Meat with Pork Backfat or Canola Oil on Sensory Properties of Korean Traditional Meat Patties (Tteokgalbi)

    Science.gov (United States)

    Imm, Bue-Young; Kim, Chung Hwan; Imm, Jee-Young

    2014-01-01

    Korean traditional meat patties (Tteokgalbi) were prepared by replacing part of the lean meat content with either pork backfat or canola oil and the effect of substitution on sensory quality of the meat patties was investigated. Compared to the control patties, pork-loin Tteokgalbi with 10% pork backfat or 10% canola oil had significantly higher overall acceptability and higher perceived intensity of meat flavor, sweetness, umami, and oiliness. The pork-loin patties containing 10% fat also had lower perceived firmness, toughness, and chalkiness of than the control Tteokgalbi. The chicken breast Tteokgalbi with 10% canola oil had the lowest perceived firmness and chalkiness (control > pork backfat > canola oil). No significant difference was noted in the overall acceptability of chicken breast patties with 10% pork backfat and those with 10% canola oil. These results indicate that substituting 10% of lean meat of Tteokgalbi with fat improved the sensory acceptability of the product for Korean customers regardless of the lean meat and/or fat source used in the patties. Lean meat patties formulated with a limited amount of vegetable oil such as canola oil can be a healthy option for Korean consumers by providing desirable fatty acid profiles without sacrificing sensory quality of the product. PMID:26761287

  19. Maternal consumption of canola oil suppressed mammary gland tumorigenesis in C3(1) TAg mice offspring

    International Nuclear Information System (INIS)

    Ion, Gabriela; Akinsete, Juliana A; Hardman, W Elaine

    2010-01-01

    Maternal consumption of a diet high in omega 6 polyunsaturated fats (n-6 PUFA) has been shown to increase risk whereas a diet high in omega 3 polyunsaturated fats (n-3 PUFA) from fish oil has been shown to decrease risk for mammary gland cancer in female offspring of rats. The aim of this study was to determine whether increasing n-3 PUFA and reducing n-6 PUFA by using canola oil instead of corn oil in the maternal diet might reduce the risk for breast cancer in female offspring. Female SV 129 mice were divided into two groups and placed on diets containing either 10% w/w corn oil (which is 50% n-6 PUFA, control diet) or 10% w/w canola oil (which is 20% n-6 PUFA, 10% n-3 PUFA, test diet). After two weeks on the diets the females were bred with homozygous C3(1) TAg transgenic mice. Mother mice consumed the assigned diet throughout gestation and nursing of the offspring. After weaning, all female offspring were maintained on the control diet. Compared to offspring of mothers fed the corn oil diet (CO/CO group), offspring of mothers fed the canola oil diet (CA/CO group) had significantly fewer mammary glands with tumors throughout the experiment. At 130 days of age, the CA/CO group had significantly fewer tumors per mouse (multiplicity); the tumor incidence (fraction of mice with any tumor) and the total tumor weight (per mouse that developed tumor) was less than one half that of the CO/CO group. At 170 days of age, the total tumor weight per mouse was significantly less in the CA/CO group and if a tumor developed the rate of tumor growth rate was half that of CO/CO group. These results indicate that maternal consumption of canola oil was associated with delayed appearance of mammary gland tumors and slowed growth of the tumors that developed. Substituting canola oil for corn oil is an easy dietary change for people to make; such a change to the maternal diet may decrease risk for breast cancer in the daughter

  20. Preparation of Biodiesel with Liquid Synergetic Lipases from Rapeseed Oil Deodorizer Distillate.

    Science.gov (United States)

    Zeng, Leping; He, Yaojia; Jiao, Liangcheng; Li, Kai; Yan, Yunjun

    2017-11-01

    To reduce industrial production cost, cheap and easily available rapeseed oil deodorizer distillates were used as feedstock to prepare biodiesel in this study. As a result, liquid forms of Candida rugosa lipase and Rhizopus oryzae lipase (ROL) were functioned as new and effective catalysts with biodiesel yield of 92.63% for 30 h and 94.36% for 9 h, respectively. Furthermore, the synergetic effect between the two lipases was employed to enhance biodiesel yield with a result of 98.16% in 6 h under optimized conditions via response surface methodology. The obtained conversion rate surpassed both yields of the individual two lipases and markedly shortened the reaction time. The resultant optimal conditions were ROL ratio 0.84, water content 46 wt% (w/w), reaction temperature 34 °C, and reaction time 6 h.

  1. Shear and Rapeseed Oil Addition Affect the Crystal Polymorphic Behavior of Milk Fat

    DEFF Research Database (Denmark)

    Kaufmann, Niels; Kirkensgaard, Jacob Judas Kain; Andersen, Ulf

    2013-01-01

    The effect of shear on the crystallization kinetics of anhydrous milk fat (AMF) and blends with 20 and 30 % w/w added rapeseed oil (RO) was studied. Pulse 1H NMR was used to follow the a to b0 polymorphic transition. The NMR method was confirmed and supported by SAXS/WAXS experiments. Samples were...... faster in the presence of RO allowing more room for the conformational changes to occur. Final SFC decreased with increasing RO content. Shear applied in 20 and 30 % blends caused the destruction of b0-related 3L structure leaving only 2L packing. In AMF and statically crystallized samples, both 3L and 2......L packing existed. Shear did not affect the amount of b crystals formed. The study shows that both shear and RO affect the polymorphic behavior of milk fat, and that 1H NMR is able to detect polymorphic transition in blends with up to 30 % w/w RO....

  2. Wheat bran extracts: a potent source of natural antioxidants for the stabilization of canola oil

    Directory of Open Access Journals (Sweden)

    Shahid Chatha, Shahzad Ali

    2011-06-01

    Full Text Available In the present work, the antioxidant activity of different solvent extracts of wheat (var. Inqalab 91 bran was evaluated following different antioxidant assays using canola oil as the oxidation substrate. The bran samples were extracted with 80% and 100% methanol and acetone. A preliminary assessment of the antioxidant activity of the 80 and 100% acetone and methanolic extracts of wheat bran was done by the measurement of % inhibition of peroxidation in a linoleic acid system, total phenolic contents (TPC and bleachability of β-carotene in the linoleic acid system. Additionally, the canola oil samples were stabilized with crude concentrated extracts and subjected to ambient aging (6 months. The extent of oxidative deterioration was followed by the measurement of peroxide-, p-anisidine-, conjugated dienes-, and trienes- values. The results of ambient stored samples revealed a significant improvement in these oxidation parameters. The overall order of antioxidant activity of the extracts as determined by various antioxidant assays was determined to be; 80% methanolic extract > 100% methanolic extract > 80% acetone extracts . 100% acetone extract. The results of the present comprehensive analysis demonstrate that extracts of the wheat bran indigenous to Pakistan are a viable source of natural antioxidants and might be exploited for commercial and neutraceutical applications.

    En el presente trabajo la actividad antioxidante de diferentes extractos obtenidos con disolventes del salvado de trigo (var. Inqalab 91 fue evaluada mediante diferentes ensayos antioxidantes y aceite de canola como substrato de oxidación. Las muestras de salvado fueron extraídas con metanol y acetona al 80% y al 100%. La evaluación preliminar de la actividad antioxidante de los extractos de metanol y de acetona al 80% y 100% fue hecha mediante la medida del % de inhibición de la peroxidación en un sistema con ácido linoleico, el contenido total de fenoles

  3. Economics of small-scale on-farm use of canola and soybean for biodiesel and straight vegetable oil biofuels

    International Nuclear Information System (INIS)

    Fore, Seth R.; Porter, Paul; Jordan, Nicholas; Lazarus, William

    2011-01-01

    While the cost competitiveness of vegetable oil-based biofuels (VOBB) has impeded extensive commercialization on a large-scale, the economic viability of small-scale on-farm production of VOBB is unclear. This study assessed the cost competitiveness of small-scale on-farm production of canola- [Brassica napus (L.)] and soybean-based [Glycine max (L.)] biodiesel and straight vegetable oil (SVO) biofuels in the upper Midwest at 2007 price levels. The effects of feedstock type, feedstock valuation (cost of production or market price), biofuel type, and capitalization level on the cost L -1 of biofuel were examined. Valuing feedstock at the cost of production, the cost of canola-based biodiesel ranged from 0.94 to 1.13 L -1 and SVO from 0.64 to 0.83 L -1 depending on capitalization level. Comparatively, the cost of soybean-based biodiesel and SVO ranged from 0.40 to 0.60 L -1 and from 0.14 to 0.33 L -1 , respectively, depending on capitalization level. Valuing feedstock at the cost of production, soybean biofuels were cost competitive whereas canola biofuels were not. Valuing feedstock at its market price, canola biofuels were more cost competitive than soybean-based biofuels, though neither were cost competitive with petroleum diesel. Feedstock type proved important in terms of the meal co-product credit, which decreased the cost of biodiesel by 1.39 L -1 for soybean and 0.44 L -1 for canola. SVO was less costly to produce than biodiesel due to reduced input costs. At a small scale, capital expenditures have a substantial impact on the cost of biofuel, ranging from 0.03 to 0.25 L -1 . (author)

  4. Economics of small-scale on-farm use of canola and soybean for biodiesel and straight vegetable oil biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Fore, Seth R.; Porter, Paul; Jordan, Nicholas [Department of Agronomy and Plant Genetics, 1991 Upper Buford Circle, Borlaug 411, The University of Minnesota, Saint Paul, Minnesota 55108 (United States); Lazarus, William [Department of Applied Economics, 231 Classroom Office Building, 1994 Buford Avenue, The University of Minnesota, Saint Paul, Minnesota 55108 (United States)

    2011-01-15

    While the cost competitiveness of vegetable oil-based biofuels (VOBB) has impeded extensive commercialization on a large-scale, the economic viability of small-scale on-farm production of VOBB is unclear. This study assessed the cost competitiveness of small-scale on-farm production of canola- [Brassica napus (L.)] and soybean-based [Glycine max (L.)] biodiesel and straight vegetable oil (SVO) biofuels in the upper Midwest at 2007 price levels. The effects of feedstock type, feedstock valuation (cost of production or market price), biofuel type, and capitalization level on the cost L{sup -1} of biofuel were examined. Valuing feedstock at the cost of production, the cost of canola-based biodiesel ranged from 0.94 to 1.13 L{sup -1} and SVO from 0.64 to 0.83 L{sup -1} depending on capitalization level. Comparatively, the cost of soybean-based biodiesel and SVO ranged from 0.40 to 0.60 L{sup -1} and from 0.14 to 0.33 L{sup -1}, respectively, depending on capitalization level. Valuing feedstock at the cost of production, soybean biofuels were cost competitive whereas canola biofuels were not. Valuing feedstock at its market price, canola biofuels were more cost competitive than soybean-based biofuels, though neither were cost competitive with petroleum diesel. Feedstock type proved important in terms of the meal co-product credit, which decreased the cost of biodiesel by 1.39 L{sup -1} for soybean and 0.44 L{sup -1} for canola. SVO was less costly to produce than biodiesel due to reduced input costs. At a small scale, capital expenditures have a substantial impact on the cost of biofuel, ranging from 0.03 to 0.25 L{sup -1}. (author)

  5. Interactions between Obesity Status and Dietary Intake of Monounsaturated and Polyunsaturated Oils on Human Gut Microbiome Profiles in the Canola Oil Multicenter Intervention Trial (COMIT

    Directory of Open Access Journals (Sweden)

    Shuaihua Pu

    2016-10-01

    Full Text Available Long-term dietary fatty acid intake is believed to induce changes in the human gut microbiome which might be associated with human health or obesity status; however, considerable debate remains regarding the most favorable ratios of fatty acids to optimize these processes. The objective of this sub-study of a double-blinded randomized crossover clinical study, the canola oil multi-center intervention trial (COMIT, was to investigate effects of five different novel oil blends fed for 30 days each on the intestinal microbiota in 25 volunteers with risk of metabolic syndrome. The 60 g treatments included three MUFA-rich diets: 1 conventional canola oil (Canola; 2 DHA-enriched high oleic canola oil (CanolaDHA; 3 high oleic canola oil (CanolaOleic; and two PUFA-rich diets: 4 a blend of corn/safflower oil (25:75 (CornSaff; and 5 a blend of flax/safflower oil (60:40 (FlaxSaff. Stool samples were collected at the end of each period. DNA was extracted and amplified for pyrosequencing. A total of 17 phyla and 187 genera were identified. While five novel oil treatments failed to alter bacterial phyla composition, obese participants produced a higher proportion of Firmicutes to Bacteroidetes than overweight or normal weight groups (P = 0.01. Similarly at the genus level, overall bacterial distribution was highly associated with subjects’ body mass index (BMI. Treatment effects were observed between MUFA- and PUFA-rich diets, with the three MUFA diets elevating Parabacteroides, Prevotella, Turicibacter, and Enterobacteriaceae (F’s populations, while the two PUFA-rich diets favored the abundance of Isobaculum. High MUFA content feedings also resulted in an increase of Parabacteroides and a decrease of Isobaculum in obese, but not overweight subjects. Data suggest that BMI is a predominant factor in characterization of human gut microbiota profiles, and that MUFA-rich and PUFA-rich diets impact the composition of gut microbiota at lower taxonomical levels

  6. Antioxidant Activity of Potato Peel Extracts in a Fish-RapeseedOil Mixture and in Oil-in-Water Emulsions

    DEFF Research Database (Denmark)

    Farvin, Sabeena; Nielsen, Nina Skall; Jacobsen, Charlotte

    2010-01-01

    The objectives of the present work were (a) to extract the phenolic fraction from the peels of two Danish varieties of potatoes, viz. Sava and Bintje, and examine their antioxidant capacity in in-vitro systems (b) to evaluate the effect of these extracts on the storage stability of a fish- rapeseed...... oil mixture and oil-in-water emulsions. Multiple antioxidant activity of the potato peel extracts was evident from in-vitro systems as they showed strong reducing power, radical scavenging ability, ferrous ion chelating activity and prevented oxidation in a liposome model system. The Sava variety...... in emulsions. Thus, the results of the present study show the possibility of utilizing waste potato peel as a promising source of natural antioxidants for retarding lipid oxidation....

  7. Effect of graded levels of rapeseed oil in isonitrogenous diets on the development of the gastrointestinal tract, and utilisation of protein, fat and energy in broiler chickens

    DEFF Research Database (Denmark)

    Jørgensen, Henry; Zhao, Xin Quan; Theil, Peter Kappel

    2008-01-01

    The effect of feeding 0, 4, 8 and 16% rapeseed oil from 12-42 days of age was studied in broiler chickens on performance, digestibility of nutrients, and development of gastrointestinal tract, protein and energy metabolism. Thirty six female chickens (Ross 208) with initial body weight average 246...... periods each of five days with two 24 h measurements of gas exchange in two open-air-circuit respiration chambers inserted on the second and third day of each period. The addition of rapeseed oil increased the amount of gutfill indicating a reduced rate of passage and causing a hypertrophy...... of the gastrointestinal tract. There was a positive effect on feed utilisation as well as on digestibility especially of dietary fat together with higher utilisation of protein with addition of rapeseed oil. The partial fat digestibility of rapeseed oil estimated by regression was 91.1% and the partial metabolisability...

  8. Polycyclic aromatic hydrocarbons (PAHs) in exhaust emissions from diesel engines powered by rapeseed oil methylester and heated non-esterified rapeseed oil

    Science.gov (United States)

    Vojtisek-Lom, Michal; Czerwinski, Jan; Leníček, Jan; Sekyra, Milan; Topinka, Jan

    2012-12-01

    Polycyclic aromatic hydrocarbons (PAHs) of exhaust emissions were studied in four direct-injection turbocharged four-cylinder diesel engines, with power ratings of 90-136 kW. The engines were operated on biodiesel (B-100), a blend of 30% biodiesel in diesel fuel (B-30), and heated rapeseed oil (RO) in two independent laboratories. Diesel particle filters (DPF) and selective catalytic reduction (SCR) systems were used with B-30 and B-100. Concentrations of individual PAHs sampled in different substrates (quartz, borosilicate fiber and fluorocarbon membrane filters, polyurethane foam) were analyzed using different methods. Benzo[a]pyrene toxic equivalents (BaP TEQ) were calculated using different sets of toxic equivalency factors (TEF). Operation on B-100 without aftertreatment devices, compared to diesel fuel, yielded a mean reduction in PAHs of 73%, consistent across engines and among TEF used. A lower PAH reduction was obtained using B-30. The BaP TEQ reductions on DPF were 91-99% using B-100, for one non-catalyzed DPF, and over 99% in all other cases. The BaP TEQ for heated RO were higher than those for B-100 and one half lower to over twice as high as that of diesel fuel. B-100 and RO samples featured, compared to diesel fuel, a relatively high share of higher molecular weight PAH and a relatively low share of lighter PAHs. Using different sets of TEF or different detection methods did not consistently affect the observed effect of fuels on BaP TEQ. The compilation of multiple tests was helpful for discerning emerging patterns. The collection of milligrams of particulate matter per sample was generally needed for quantification of all individual PAHs.

  9. Influence of de-hulled rapeseed roasting on the physicochemical composition and oxidative state of oil

    International Nuclear Information System (INIS)

    Rękas, A.; Siger, A.; Wroniak, M.; Ścibisz, I.; Derewiaka, D.; Anders, A.

    2017-01-01

    The effect of roasting time on the contents of bioactive compounds (tocopherols, phytosterols, phenolic compounds), antioxidant capacity and physicochemical properties of rapeseed oil pressed from de-hulled seeds was investigated. The de-hulled seeds were roasted at a temperature of 165 °C for 20, 40, 60, 80, and 100 min. The results of this study show that a roasting pre-treatment led to a gradual increase in canolol content (from 1.34 to 117.33 mg/100 g), total phytosterols (from 573.51 to 609.86 mg/100 g) and total carotenoids (0.82 to 2.41 mg/100 g), while only slight changes in the contents of tocopherols were noted. With the increase in roasting time a gradual increase in oxidative stability (from 4.27 to 6.85 h), and antioxidant capacity, seen mainly in the hydrophilic fraction of oil (from 0.32 to 2.30 mmol TEAC/l) was found. Although roasting resulted in the formation of primary and secondary oxidation products, the quality parameters of oils were within Codex Alimentarius limits. [es

  10. Synthesis of novel octyl sinapate to enhance antioxidant capacity of rapeseed-linseed oil mixture.

    Science.gov (United States)

    Szydłowska-Czerniak, Aleksandra; Rabiej, Dobrochna; Krzemiński, Marek

    2018-03-01

    Lipophilisation allows the formation of new functionalised antioxidants having beneficial properties compared to natural hydrophilic phenolic acids. Therefore, this work focused on the synthesis of lipophilic antioxidants, such as a new octyl sinapate, octyl caffeate and octyl ferulate using the modified Fischer esterification of selected hydroxycinnamic acids with 1-octanol. The lipophilic octyl sinapate was obtained for the first time with satisfactory yield (83%) after purification by column chromatography. The identity of the synthesised phenolipids was confirmed by chromatographic and spectroscopic analyses. Antioxidant capacity of phenolipids was determined by DPPH (IC 50  = 35.87-52.24 μg mL -1 ) and ABTS (IC 50  = 39.45-48.72 μg mL -1 ) methods and compared with IC 50 values (7.37-35.30 μg mL -1 and 7.55-41.67 μg mL -1 , respectively) for well known antioxidants. The antioxidant capacity of rapeseed-linseed oil enriched with the purified esters was about two to 30 times higher in comparison with a non-supplemented oil. The novel octyl sinapate as well as octyl caffeate and octyl ferulate have antioxidant properties and lipophilic character, therefore they may be added to vegetable oils as potential antioxidants for tackling oxidative processes. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Intake, nutrient apparent digestibility and ruminal constituents of sheep fed diets with canola, sunflower or castor oils

    Directory of Open Access Journals (Sweden)

    Michelle de Oliveira Maia

    2012-11-01

    Full Text Available The objective in this experiment was to determine the effects of feeding diets with canola, sunflower or castor oils on intake, nutrient apparent digestibility and ruminal constituents of crossbred Dorper × Santa Inês sheep. Four rumen-cannulated animals of 90.2±11.4 kg average body weight were assigned to a 4 × 4 latin square. Animals remained individually in cages for the metabolism assay and were fed diets containing roughage at 500 g/kg and concentrate based on ground corn and soybean meal also at 500 g/kg. No oil was added to the control diet, whereas the others had canola, sunflower or castor oils at 30 g/kg (DM basis. There was no difference for the intake of DM and nutrients, except for ether extract, which was greater when animals received oil. The digestibility coefficients of dry matter, organic matter, crude protein, non-fiber carbohydrates and neutral detergent fiber were not changed; however, the addition of oil increased the ether extract digestibility. The values of total digestible nutrients (TDN, g/kg of DM, digestible energy (DE, Mcal/kg of DM, TDN intake and DE intake also did not change with the addition of lipids. Concerning the ruminal constituents, the addition of vegetable oils reduced the concentrations of acetate, butyrate and total short-chain fatty acids. Adding canola, sunflower or castor oils at 30 g/kg in diets with 500 g roughage/kg and 500 g concentrate/kg does not impair the intake or digestibility of nutrients in sheep, although it reduces the concentration of short-chain fatty acids in the rumen.

  12. Low pressure catalytic co-conversion of biogenic waste (rapeseed cake) and vegetable oil.

    Science.gov (United States)

    Giannakopoulou, Kanellina; Lukas, Michael; Vasiliev, Aleksey; Brunner, Christoph; Schnitzer, Hans

    2010-05-01

    Zeolite catalysts of three types (H-ZSM-5, Fe-ZSM-5 and H-Beta) were tested in the catalytic co-conversion of rapeseed cake and safflower oil into bio-fuel. This low pressure process was carried out at the temperatures of 350 and 400 degrees Celsius. The yields and compositions of the product mixtures depended on the catalyst nature and the process temperatures. The produced organic phases consisted mainly of hydrocarbons, fatty acids and nitriles. This mixture possessed improved characteristics (e.g. heating value, water content, density, viscosity, pH) compared with the bio-oils, making possible its application as a bio-fuel. The most effective catalyst, providing the highest yield of organic liquid phase, was the highly acidic/wide-pore H-Beta zeolite. The products obtained on this catalyst demonstrated the highest degree of deoxygenation and the higher HHV (Higher Heating Value). The aqueous liquid phase contained water-soluble carboxylic acids, phenols and heterocyclic compounds. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Pineapple by-product and canola oil as partial fat replacers in low-fat beef burger: Effects on oxidative stability, cholesterol content and fatty acid profile.

    Science.gov (United States)

    Selani, Miriam M; Shirado, Giovanna A N; Margiotta, Gregório B; Rasera, Mariana L; Marabesi, Amanda C; Piedade, Sonia M S; Contreras-Castillo, Carmen J; Canniatti-Brazaca, Solange G

    2016-05-01

    The effect of freeze-dried pineapple by-product and canola oil as fat replacers on the oxidative stability, cholesterol content and fatty acid profile of low-fat beef burgers was evaluated. Five treatments were performed: conventional (CN, 20% fat) and four low-fat formulations (10% fat): control (CT), pineapple by-product (PA), canola oil (CO), and pineapple by-product and canola oil (PC). Low-fat cooked burgers showed a mean cholesterol content reduction of 9.15% compared to the CN. Canola oil addition improved the fatty acid profile of the burgers, with increase in the polyunsaturated/saturated fatty acids ratio and decrease in the n-6/n-3 ratio, in the atherogenic and thrombogenic indexes. The oxidative stability of the burgers was affected by the vegetable oil addition. However, at the end of the storage time (120 days), malonaldehyde values of CO and PC were lower than the threshold for the consumer's acceptance. Canola oil, in combination with pineapple by-product, can be considered promising fat replacers in the development of healthier burgers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Cold-pressed and hot-pressed rapeseed oil: The effects of roasting and seed moisture on the antioxi- dant activity, canolol, and tocopherol level.

    Science.gov (United States)

    Siger, Aleksander; Józefiak, Marta; Górnaś, Paweł

    2017-01-01

    The paper looks at the levels of canolol, tocopherols and antioxidant activity in cold-pressed and hot-pressed rapeseed oils produced from seeds of various moisture levels (5%, 7.5%, and 10%). The paper also considers the effects of seed roasting on the levels of these compounds. The material used for the tests was rapeseed cv. Adrianna. The quality of the oils obtained is determined using peroxide and acid values. The levels of canolol and tocopherols are analyzed using HPLC. The DPPH radical-scavenging activity method for oil samples and phenolic extract from oils was used. It has been demonstrated that the oils produced from rapeseeds with a 5% moisture content, and   in particular from cold-pressed oils, were characterized by the lowest peroxide values. Cold-pressed oils produced from rapeseeds with a 5% moisture content were characterized by higher levels of tocopherols and plastochromanol-8. In the case of hot-pressed oils, the highest levels of tocopherols were found in oils pro- duced from seeds with a 7.5% moisture content, and the greatest amount of PC-8 (more than 4 mg/100 g) was found in oils produced from seeds with a 10% moisture content. Hot-pressed oils have been shown to have higher levels of these compounds than cold-pressed oils. Both roasting and hot pressing led to an increase in the amount of canolol in the oils investigated. When analysing the antioxidant activity of the oils and phenolic extracts it was shown that phenolic compounds are responsible for approx. 10% of total antioxidant activity. Various levels of biologically active compounds were shown to be present in the rapeseed oil obtained from raw materials of a varying moisture content. The type of pressing process (cold-pressing or hot-pressing) and whether the seeds have undergone roasting has also been shown to affect the resulting oil and the level of native antioxidants it contains.

  15. Effect of incremental levels of crude degummed canola oil on milk progesterone, plasma

    Directory of Open Access Journals (Sweden)

    John R. Otto

    2014-12-01

    Full Text Available Dietary supplementation of lactating cows with fat can alter the profiles of key reproductive hormones and boost postpartum energy balance. However, published data under Australian pasture-based dairy production conditions are scanty and inconsistent. Therefore, the objective of this study was to determine whether dietary inclusion of crude degummed canola oil (CDCO at incremental levels for eight-weeks will have significant influence on progesterone (P4, luteinizing hormone (LH and follicle stimulating hormone (FSH of primiparous Holstein–Friesian cows grazing pastures. We tested the hypothesis that postpartum supplementation of primiparous Holstein–Friesian cows with dietary CDCO in a pasture-based system will alter the concentrations of P4, LH and FSH reproductive hormones. A random allocation of twenty primiparous Holstein–Friesian cows into four treatment groups that consisted of a wheat-based pelleted basal diet with no supplemental CDCO (control, or a wheat-based pelleted basal diet with CDCO added at 25 ml/kg (low, 35 ml/kg (medium and 50 ml/kg (high was employed in an eight-week feeding trial after two weeks of adjustment. Supplementation levels of CDCO and week of data collection were significant sources of variation (P  0.05. It was apparent that cows in the high (0.459 ng/ml, medium (0.367 ng/ml and low (0.251 ng/ml levels of oil treatments had higher mean plasma FSH concentrations compared to the control (0.172 ng/ml cows. It was concluded that the current levels of CDCO can be used in pasture-based dairy systems to increase FSH, but not LH and P4.

  16. Surface tension and wetting properties of rapeseed oil to biofuel conversion by-products

    Science.gov (United States)

    Muszyński, Siemowit; Sujak, Agnieszka; Stępniewski, Andrzej; Kornarzyński, Krzysztof; Ejtel, Marta; Kowal, Natalia; Tomczyk-Warunek, Agnieszka; Szcześniak, Emil; Tomczyńska-Mleko, Marta; Mleko, Stanisław

    2018-04-01

    This work presents a study on the surface tension, density and wetting behaviour of distilled glycerol, technical grade glycerol and the matter organic non-glycerin fraction. The research was conducted to expand the knowledge about the physical properties of wastes from the rapeseed oil biofuel production. The results show that the densities of technical grade glycerol (1.300 g cm-3) and distilled glycerol (1.267 g cm-3) did not differ and were significantly lower than the density of the matter organic non-glycerin fraction (1.579 g cm-3). Furthermore, the surface tension of distilled glycerol (49.6 mN m-1) was significantly higher than the matter organic non-glycerin fraction (32.7 mN m-1) and technical grade glycerol (29.5 mN m-1). As a result, both technical grade glycerol and the matter organic non-glycerin fraction had lower contact angles than distilled glycerol. The examined physical properties of distilled glycerol were found to be very close to that of the commercially available pure glycerol. The results suggest that technical grade glycerol may have potential application in the production of glycerol/fuel blends or biosurfactants. The presented results indicate that surface tension measurements are more useful when examining the quality of biofuel wastes than is density determination, as they allow for a more accurate analysis of the effects of impurities on the physical properties of the biofuel by-products.

  17. Rapeseed oil-rich diet alters in vitro menadione and nimesulide hepatic mitochondrial toxicity.

    Science.gov (United States)

    Monteiro, João P; Silva, Ana M; Jurado, Amália S; Oliveira, Paulo J

    2013-10-01

    Diet-induced changes in the lipid composition of mitochondrial membranes have been shown to influence physiological processes. However, the modulation effect of diet on mitochondrially-active drugs has not yet received the deserved attention. Our hypothesis is that modulation of membrane dynamics by diet impacts drug-effects on liver mitochondrial functioning. In a previous work, we have shown that a diet rich in rapeseed oil altered mitochondrial membrane composition and bioenergetics in Wistar rats. In the present work, we investigated the influence of the modified diet on hepatic mitochondrial activity of two drugs, menadione and nimesulide, and FCCP, a classic protonophore, was used for comparison. The results showed that the effects of menadione and nimesulide were less severe on liver mitochondria for rats fed the modified diet than on rats fed the control diet. A specific effect on complex I seemed to be involved in drug-induced mitochondria dysfunction. Liver mitochondria from the modified diet group were more susceptible to nimesulide effects on MPT induction. The present work demonstrates that diet manipulation aimed at modifying mitochondrial membrane properties alters the toxicity of mitochondria active agents. This work highlights that diet may potentiate mitochondrial pharmacologic effects or increase drug-induced liabilities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Comparision on dynamic behavior of diesel spray and rapeseed oil spray in diesel engine

    Science.gov (United States)

    Sapit, Azwan; Azahari Razali, Mohd; Faisal Hushim, Mohd; Jaat, Norrizam; Nizam Mohammad, Akmal; Khalid, Amir

    2017-04-01

    Fuel-air mixing is important process in diesel combustion. It significantly affects the combustion and emission of diesel engine. Biomass fuel has high viscosity and high distillation temperature and may negatively affect the fuel-air mixing process. Thus, study on the spray development and atomization of this type of fuel is important. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fuelled by rapeseed oil (RO) and comparison to diesel fuel (GO). Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. Using in-house image processing algorithm, the images were processed and the boundary condition of each spray was also studied. The results show that RO has very poor atomization due to the high viscosity nature of the fuel when compared to GO. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the RO spray droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  19. Crystallization of low saturated lipid blends of palm and canola oils with sorbitan monostearate and fully hydrogenated palm oil.

    Science.gov (United States)

    Barbosa, Karina Martins; Cardoso, Lisandro Pavie; Ribeiro, Ana Paula Badan; Kieckbusch, Theo Guenter; Buscato, Monise Helen Masuchi

    2018-03-01

    Several scientific investigations have focused on providing new strategies for supporting the development of low saturated and zero trans lipid materials, as healthier fat alternatives for food application. This work evaluated the consistency, crystallization behavior, microstructure and polymorphism of six blends composed of palm and canola oils at different concentrations (100:0, 80:20, 60:40, 40:60, 20:80 and 0:100, in w/w%) added with 5.0% of fully hydrogenated palm oil (FHPO) or with a mixture of 2.5% of FHPO and 2.5% of sorbitan monostearate (SMS). The results were compared with the non-structured blends (standard samples). Through microstructure images, the formation of a more homogeneous and denser packed crystal network was observed for samples added with both crystallization modifiers (FHPO/SMS) compared to the corresponding standard samples, after stabilization at 25 °C during 3 h. In particular, enhanced crystallization modifications were observed for the 40:60 blend, in which the crystal form β' emerged after the addition of FHPO/SMS. Moreover, the 40:60 blend structured with FHPO/SMS showed increased consistency (from 30 to 658 g F /cm 2 ) and induced onset crystallization in a higher temperature (from 13.1 to 23.9 °C) compared with the non-structured one, due to the specific crystallization effects provided by both added structurants.

  20. Life cycle assessment of rapeseed oil, rape methyl ester and ethanol as fuels - a comparison between large- and smallscale production

    Energy Technology Data Exchange (ETDEWEB)

    Bernesson, Sven [Swedish Univ. of Agriculture Sciences, Uppsala (Sweden). Dep. of Biometry and Engineering

    2004-05-01

    Production of rapeseed oil, rape methyl ester (RME) and ethanol fuel for heavy diesel engines can be carried out with different systems solutions, in which the choice of system is usually related to the scale of the production. The main purpose of this study was to analyse whether the use of a small-scale rapeseed oil, RME and ethanol fuel production system reduced the environmental load in comparison to a medium- and a large-scale system. To fulfil this purpose, a limited LCA, including air-emissions and energy requirements, was carried out for the three fuels and the three plant sizes. Four different methods to allocate the environmental burden between different products were compared: physical allocation according to the lower heat value in the products [MJ/kg], economic allocation according to the product prices [SEK/kg], no allocation and allocation with a system expansion so that rapemeal and distiller's waste could replace soymeal mixed with soyoil and glycerine could replace glycerine produced from fossil raw material. The functional unit, to which the total environmental load was related, was 1.0 MJ of energy delivered on the engine shaft to the final consumer. Production of raw materials, cultivation, transport, fuel production and use of the fuels produced were included in the systems studied. It was shown in the study that the differences in environmental impact and energy requirement between small-, medium- and large-scale systems were small or even negligible in most cases for all three fuels, except for the photochemical ozone creation potential (POCP) during ethanol fuel production. The longer transport distances to a certain degree outweighed the higher oil extraction efficiency, the higher energy efficiency and the more efficient use of machinery and buildings in the large-scale system. The dominating production step was the cultivation, in which production of fertilisers, followed by soil emissions and tractive power, made major contributions to

  1. Life cycle assessment of rapeseed oil, rape methyl ester and ethanol as fuels - a comparison between large- and smallscale production

    Energy Technology Data Exchange (ETDEWEB)

    Bernesson, Sven [Swedish Univ. of Agriculture Sciences, Uppsala (Sweden). Dep. of Biometry and Engineering

    2004-05-01

    Production of rapeseed oil, rape methyl ester (RME) and ethanol fuel for heavy diesel engines can be carried out with different systems solutions, in which the choice of system is usually related to the scale of the production. The main purpose of this study was to analyse whether the use of a small-scale rapeseed oil, RME and ethanol fuel production system reduced the environmental load in comparison to a medium- and a large-scale system. To fulfil this purpose, a limited LCA, including air-emissions and energy requirements, was carried out for the three fuels and the three plant sizes. Four different methods to allocate the environmental burden between different products were compared: physical allocation according to the lower heat value in the products [MJ/kg], economic allocation according to the product prices [SEK/kg], no allocation and allocation with a system expansion so that rapemeal and distiller's waste could replace soymeal mixed with soyoil and glycerine could replace glycerine produced from fossil raw material. The functional unit, to which the total environmental load was related, was 1.0 MJ of energy delivered on the engine shaft to the final consumer. Production of raw materials, cultivation, transport, fuel production and use of the fuels produced were included in the systems studied. It was shown in the study that the differences in environmental impact and energy requirement between small-, medium- and large-scale systems were small or even negligible in most cases for all three fuels, except for the photochemical ozone creation potential (POCP) during ethanol fuel production. The longer transport distances to a certain degree outweighed the higher oil extraction efficiency, the higher energy efficiency and the more efficient use of machinery and buildings in the large-scale system. The dominating production step was the cultivation, in which production of fertilisers, followed by soil emissions and tractive power, made major

  2. Exploring genotypic variations for improved oil content and healthy fatty acids composition in rapeseed (Brassica napus L.).

    Science.gov (United States)

    Ishaq, Muhammad; Razi, Raziuddin; Khan, Sabaz Ali

    2017-04-01

    Development of new genotypes having high oil content and desirable levels of fatty acid compositions is a major objective of rapeseed breeding programmes. In the current study combining ability was determined for oil, protein, glucosinolates and various fatty acids content using 8 × 8 full diallel in rapeseed (Brassica napus). Highly significant genotypic differences were observed for oil, protein, glucosinolates, oleic acid, linolenic acid and erucic acid content. Mean squares due to general combining ability (GCA), specific combining ability (SCA) and reciprocal combining ability (RCA) were highly significant (P ≤ 0.01) for biochemical traits. Parental line AUP-17 for high oil content and low glucosinolates, genotype AUP-2 for high protein and oleic acids, and AUP-18 for low lenolenic and erucic acid were best general combiners. Based on desirable SCA effects, F 1 hybrids AUP-17 × AUP-20; AUP-2 × AUP-8; AUP-7 × AUP-14; AUP-2 × AUP-9; AUP-7 × AUP-14 and AUP-2 × AUP-9 were found superior involving at least one best general combiner. F 1 hybrids AUP-17 × AUP-20 (for oil content); AUP-2 × AUP-8 (for protein content); AUP-7 × AUP-14 (for glucosinolates); AUP-2 × AUP-9 (for oleic acid); AUP-7 × AUP-14 (for linolenic acid) and AUP-2 × AUP-9 (for erucic acid) were found superior involving at least one best general combiner. As reciprocal crosses of AUP-14 with AUP-7 and AUP-8 were superior had low × low and low × high GCA effects for glucosinolates and oleic acid, respectively therefore, these could be exploited in future rapeseed breeding programmes to develop new lines with good quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Canola Oil in Lactating Dairy Cow Diets Reduces Milk Saturated Fatty Acids and Improves Its Omega-3 and Oleic Fatty Acid Content.

    Science.gov (United States)

    Welter, Katiéli Caroline; Martins, Cristian Marlon de Magalhães Rodrigues; de Palma, André Soligo Vizeu; Martins, Mellory Martinson; Dos Reis, Bárbara Roqueto; Schmidt, Bárbara Laís Unglaube; Saran Netto, Arlindo

    2016-01-01

    To produce milk that is healthier for human consumption, the present study evaluated the effect of including canola oil in the diet of dairy cows on milk production and composition as well as the nutritional quality of this milk fat. Eighteen Holstein cows with an average daily milk yield of 22 (± 4) kg/d in the middle stage of lactation were used. The cows were distributed in 6 contemporary 3x3 Latin squares consisting of 3 periods and 3 treatments: control diet (without oil), 3% inclusion of canola oil in the diet and 6% inclusion of canola oil in the diet (dry matter basis). The inclusion of 6% canola oil in the diet of lactating cows linearly reduced the milk yield by 2.51 kg/d, short-chain fatty acids (FA) by 41.42%, medium chain FA by 27.32%, saturated FA by 20.24%, saturated/unsaturated FA ratio by 39.20%, omega-6/omega-3 ratio by 39.45%, and atherogenicity index by 48.36% compared with the control treatment. Moreover, with the 6% inclusion of canola oil in the diet of cows, there was an increase in the concentration of long chain FA by 45.91%, unsaturated FA by 34.08%, monounsaturated FA by 40.37%, polyunsaturated FA by 17.88%, milk concentration of omega-3 by 115%, rumenic acid (CLA) by 16.50%, oleic acid by 44.87% and h/H milk index by 94.44% compared with the control treatment. Thus, the inclusion of canola oil in the diet of lactating dairy cows makes the milk fatty acid profile nutritionally healthier for the human diet; however, the lactating performance of dairy cows is reduce.

  4. Synergetic Use of Principal Component Analysis Applied to Normed Physicochemical Measurements and GC × GC-MS to Reveal the Stabilization Effect of Selected Essential Oils on Heated Rapeseed Oil.

    Science.gov (United States)

    Sghaier, Lilia; Cordella, Christophe B Y; Rutledge, Douglas N; Lefèvre, Fanny; Watiez, Mickaël; Breton, Sylvie; Sassiat, Patrick; Thiebaut, Didier; Vial, Jérôme

    2017-06-01

    Lipid oxidation leads to the formation of volatile compounds and very often to off-flavors. In the case of the heating of rapeseed oil, unpleasant odors, characterized as a fishy odor, are emitted. In this study, 2 different essential oils (coriander and nutmeg essential oils) were added to refined rapeseed oil as odor masking agents. The aim of this work was to determine a potential antioxidant effect of these essential oils on the thermal stability of rapeseed oil subject to heating cycles between room temperature and 180 °C. For this purpose, normed determinations of different parameters (peroxide value, anisidine value, and the content of total polar compounds, free fatty acids and tocopherols) were carried out to examine the differences between pure and degraded oil. No significant difference was observed between pure rapeseed oil and rapeseed oil with essential oils for each parameter separately. However, a stabilizing effect of the essential oils, with a higher effect for the nutmeg essential oil was highlighted by principal component analysis applied on physicochemical dataset. Moreover, the analysis of the volatile compounds performed by GC × GC showed a substantial loss of the volatile compounds of the essential oils from the first heating cycle. © 2017 Institute of Food Technologists®.

  5. Influence of supplemental canola or soybean oil on milk yield, fatty acid profile and postpartum weight changes in grazing dairy goats.

    Science.gov (United States)

    Lerma-Reyes, Israel; Mendoza-Martínez, German D; Rojo-Rubio, Rolado; Mejia, Mario; García-Lopez, J C; Lee-Rangel, Héctor A

    2018-02-01

    This experiment was designed to evaluate the effect of supplementation with soybean or canola oil on milk production and the composition of long chain fatty acids as well as weight changes in the goats and their kids. Thirty nine mulitparous crossed Alpine×Nubian goats (initial body weight [BW] 43.5±1.7 kg) from the day of parturition were assigned to the treatments: grazing control (n = 15); grazing plus 20 mL/goat/d of supplemental soybean oil (n = 12); and grazing plus 20 mL/goat/d of supplemental canola oil (n = 12) from November 26, 2014 to March 7, 2015. The planned contrasts were: CI (control vs supplemented with oils); CII (soybean vs canola oil) to compare the treatment effects. The vegetable oil supplementation reduced weight losses in lactating goats (CI: -0.060 vs 0.090 kg/d; p = 0.03) but did not improve milk production or affect kids' growth. The content of C4, C6, C8, C10, C11, C14, and C18:1n9t in the milk was increased (poils compared to the control group. Supplementation with 20 mL/d of soybean or canola oil did not affect milk production or kids' performance; however, it increased CLA concentration and reduced the reduced weight losses in lactating goats.

  6. Effect of micella interesterification on fatty acids composition and volatile components of soybean and rapeseed oils

    Directory of Open Access Journals (Sweden)

    Afifi, Sherine M.

    2000-10-01

    Full Text Available Micella interesterification of soybean and rapeseed oils was carried out using 0.2, 0.4 and 0.6 percentages of nickel catalyst, each at different temperatures of 60, 90 and 120ºC for 2, 4, and 6 hours. The proposed interesterification reaction conditions to obtain an oil with low linoleic acid level were 0.2 % nickel catalyst at 120ºC for 4 hours, 0.4% nickel catalyst at 90ºC for 4 hours and 0.6% at 60ºC for 4 hours. Fatty acid composition and chemical analysis of the interesterified and non-esterified oils were estimated. Selected samples undergo heating at 180ºC for 4 hours determining the volatile components. The appearance of some components supported the interesterification process for modification of fatty acid constituents of the oils.Se ha llevado a cabo la interesterificación en fase miscelar de aceites de soja y de colza usando un 0.2%, 0.4% y 0.6% de níquel como catalizador, a diferentes temperaturas (60, 90 y 120ºC durante 2, 4 y 6 horas. Las condiciones de reacción de interesterificación propuestas para obtener un aceite con niveles de ácidos linolénicos bajos fueron 0.2 % de níquel a 120ºC durante 4 horas, 0.4 % de níquel a 90ºC durante 4 horas y 0.6 % a 60ºC durante 4 horas. Se han estimado la composición en ácidos grasos y el análisis químico de los aceites interesterificados y no-esterificados. Las muestras seleccionadas se sometieron a calentamiento a 180ºC durante 4 horas determinando los componentes volátiles. La aparición de algunos componentes apoyó el proceso de interesterificación por modificación de los ácidos grasos constituyentes de los aceites.

  7. Desempenho e qualidade dos ovos de poedeiras semipesadas alimentadas com dietas contendo óleos de soja e canola Performance and eggs quality in laying hens fed diets with soybean and canola oils

    Directory of Open Access Journals (Sweden)

    Fernando Guilherme Perazzo Costa

    2008-08-01

    Full Text Available Objetivou-se analisar a influência da adição de níveis crescentes de óleo de soja e canola sobre os índices de desempenho e qualidade interna e externa dos ovos de poedeiras comerciais semipesadas da linhagem Bovans Goldline durante cinco períodos de 28 dias. Foram utilizadas 280 aves com 18 semanas de idade, em um delineamento inteiramente casualizado, com sete tratamentos em um esquema fatorial 2 × 3 + 1 (dois tipos de óleo e três níveis de óleo mais um testemunha adicional com cinco repetições e oito aves por unidade experimental. Os níveis de óleo de soja e de canola não alteraram o consumo de ração, os pesos dos ovos, de albúmen, de gema e de casca, as porcentagens de albúmen, de gema e de casca e a gravidade específica dos ovos. Houve influência significativa da interação tipo × nível de óleo sobre a produção de ovos e a conversão por massa e por dúzia de ovos. Com o aumento do nível de óleo de soja, os resultados obtidos para estas variáveis melhoraram, entretanto, a conversão por massa de ovo piorou com o aumento dos níveis de óleo de canola. A adição de óleo de soja promoveu desempenho melhor que o obtido com óleo de canola.The objective of this study was to evaluate the influence of soybean and canola oil added in crescent levels on production performance indexes and internal and external egg quality of brown commercial layers of the strain Bovans Goldline during five periods of 28 days. Two hundred and eighty hens with 18 weeks old were distributed in a completely randomized design, with seven diets in a 2 × 3 + 1 factorial arrangement (oil type and oil level, and an additional control, with 5 replicates of 8 hens per experimental unit. The soybean and canola oil levels did not affect the feed consumption; egg, albumen, yolk and shell weights; albumen, yolk and shell percentages, neither the specific gravity. There was an interaction between type and oils levels on egg production and mass

  8. Counteracting foaming caused by lipids or proteins in biogas reactors using rapeseed oil or oleic acid as antifoaming agents.

    Science.gov (United States)

    Kougias, P G; Boe, K; Einarsdottir, E S; Angelidaki, I

    2015-08-01

    Foaming is one of the major operational problems in biogas plants, and dealing with foaming incidents is still based on empirical practices. Various types of antifoams are used arbitrarily to combat foaming in biogas plants, but without any scientific support this action can lead to serious deterioration of the methanogenic process. Many commercial antifoams are derivatives of fatty acids or oils. However, it is well known that lipids can induce foaming in manure based biogas plants. This study aimed to elucidate the effect of rapeseed oil and oleic acid on foam reduction and process performance in biogas reactors fed with protein or lipid rich substrates. The results showed that both antifoams efficiently suppressed foaming. Moreover rapeseed oil resulted in stimulation of the biogas production. Finally, it was reckoned that the chemical structure of lipids, and more specifically their carboxylic ends, is responsible for their foam promoting or foam counteracting behaviour. Thus, it was concluded that the fatty acids and oils could suppress foaming, while salt of fatty acids could generate foam. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Dietary high oleic canola oil supplemented with docosahexaenoic acid attenuates plasma proprotein convertase subtilisin kexin type 9 (PCSK9) levels in participants with cardiovascular disease risk: A randomized control trial.

    Science.gov (United States)

    Pu, Shuaihua; Rodríguez-Pérez, Celia; Ramprasath, Vanu Ramkumar; Segura-Carretero, Antonio; Jones, Peter J H

    2016-12-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a novel circulating protein which plays an important role in regulation of cholesterol metabolism by promoting hepatic LDL receptor degradation. However, the action of dietary fat composition on PCSK9 levels remains to be fully elucidated. The objective was to investigate the action of different dietary oils on circulating PCSK9 levels in the Canola Oil Multicenter Intervention Trial (COMIT). COMIT employed a double-blinded crossover randomized control design, consisting of five 30-d treatment periods. Diets were provided based on a 3000Kcal/d intake, including a 60g/d treatment of conventional canola oil (Canola), a high oleic canola/DHA oil blend (CanolaDHA), a corn/safflower oil blend (CornSaff), a flax/safflower oil blend (FlaxSaff) or a high oleic canola oil (CanolaOleic). Plasma PCSK9 levels were assessed using ELISA at the end of each phase. Lipid profiles (n=84) showed that CanolaDHA feeding resulted in the highest (P<0.05) serum total cholesterol (TC, 5.06±0.09mmol/L) and LDL-cholesterol levels (3.15±0.08mmol/L) across all five treatments. CanolaDHA feeding also produced the lowest (P<0.05) plasma PCSK9 concentrations (216.42±8.77ng/mL) compared to other dietary oil treatments. Plasma PCSK9 levels positively correlated (P<0.05) with serum TC, LDL-cholesterol, apolipoprotein A, and apolipoprotein B levels but did not correlate to HDL-cholesterol levels. Results indicate that post-treatment response in PCSK9 may be altered with the CanolaDHA diet. In conclusion, the elevated LDL-C levels from a DHA oil treatment may not be relevant for the observed decline in PCSK9 levels. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Effects of Replacing Pork Back Fat with Canola and Flaxseed Oils on Physicochemical Properties of Emulsion Sausages from Spent Layer Meat

    Directory of Open Access Journals (Sweden)

    Ki Ho Baek

    2016-06-01

    Full Text Available The objective of this study was to investigate the effects of canola and flaxseed oils on the physicochemical properties and sensory quality of emulsion-type sausage made from spent layer meat. Three types of sausage were manufactured with different fat sources: 20% pork back fat (CON, 20% canola oil (CA and 20% flaxseed oil (FL. The pH value of the CA was significantly higher than the others (p<0.05. The highest water holding capacity was also presented for CA; in other words, CA demonstrated a significantly lower water loss value among the treatments (p<0.05. CA had the highest lightness value (p<0.05. However, FL showed the highest yellowness value (p<0.05 because of its own high-density yellow color. The texture profile of the treatments manufactured with vegetable oils showed higher values than for the CON (p<0.05; furthermore, CA had the highest texture profile values (p<0.05 among the treatments. The replacement of pork back fat with canola and flaxseed oils in sausages significantly increased the omega-3 fatty acid content (p<0.05 over 15 to 86 times, respectively. All emulsion sausages containing vegetable oil exhibited significantly lower values for saturated fatty acid content and the omega-6 to omega-3 ratios compared to CON (p<0.05. The results show that using canola or flaxseed oils as a pork fat replacer has a high potential to produce healthier products, and notably, the use of canola oil produced characteristics of great emulsion stability and sensory quality.

  11. Effects of Replacing Pork Back Fat with Canola and Flaxseed Oils on Physicochemical Properties of Emulsion Sausages from Spent Layer Meat.

    Science.gov (United States)

    Baek, Ki Ho; Utama, Dicky Tri; Lee, Seung Gyu; An, Byoung Ki; Lee, Sung Ki

    2016-06-01

    The objective of this study was to investigate the effects of canola and flaxseed oils on the physicochemical properties and sensory quality of emulsion-type sausage made from spent layer meat. Three types of sausage were manufactured with different fat sources: 20% pork back fat (CON), 20% canola oil (CA) and 20% flaxseed oil (FL). The pH value of the CA was significantly higher than the others (p<0.05). The highest water holding capacity was also presented for CA; in other words, CA demonstrated a significantly lower water loss value among the treatments (p<0.05). CA had the highest lightness value (p<0.05). However, FL showed the highest yellowness value (p<0.05) because of its own high-density yellow color. The texture profile of the treatments manufactured with vegetable oils showed higher values than for the CON (p<0.05); furthermore, CA had the highest texture profile values (p<0.05) among the treatments. The replacement of pork back fat with canola and flaxseed oils in sausages significantly increased the omega-3 fatty acid content (p<0.05) over 15 to 86 times, respectively. All emulsion sausages containing vegetable oil exhibited significantly lower values for saturated fatty acid content and the omega-6 to omega-3 ratios compared to CON (p<0.05). The results show that using canola or flaxseed oils as a pork fat replacer has a high potential to produce healthier products, and notably, the use of canola oil produced characteristics of great emulsion stability and sensory quality.

  12. Biofuel by isomerizing metathesis of rapeseed oil esters with (bio)ethylene for use in contemporary diesel engines.

    Science.gov (United States)

    Pfister, Kai F; Baader, Sabrina; Baader, Mathias; Berndt, Silvia; Goossen, Lukas J

    2017-06-01

    Rapeseed oil methyl ester (RME) and (bio)ethylene are converted into biofuel with an evenly rising boiling point curve, which fulfills the strict boiling specifications prescribed by the fuel standard EN 590 for modern (petro)diesel engines. Catalyzed by a Pd/Ru system, RME undergoes isomerizing metathesis in a stream of ethylene gas, leading to a defined olefin, monoester, and diester blend. This innovative refining concept requires negligible energy input (60°C) and no solvents and does not produce waste. It demonstrates that the pressing challenge of increasing the fraction of renewables in engine fuel may be addressed purely chemically rather than by motor engineering.

  13. Dietary docosahexaenoic acid ameliorates, but rapeseed oil and safflower oil accelerate renal injury in stroke-prone spontaneously hypertensive rats as compared with soybean oil, which is associated with expression for renal transforming growth factor-beta, fibronectin and renin.

    Science.gov (United States)

    Miyazaki, M; Takemura, N; Watanabe, S; Hata, N; Misawa, Y; Okuyama, H

    2000-01-03

    We have noted that n-3 fatty acid-rich oils, such as fish oil, perilla oil and flaxseed oil as well as ethyl docosahexaenoate (DHA) prolonged the survival time of stroke-prone spontaneously hypertensive rats (SHRSP) rats by approximately 10% as compared with linoleate (n-6)-rich safflower oil. Rapeseed oil with a relatively low n-6/n-3 ratio unusually shortened the survival time by approximately 40%, suggesting the presence of minor components unfavorable to SHRSP rats. This study examined the effects of dietary oils and DHA on renal injury and gene expression related to renal injury in SHRSP rats. Rats fed rapeseed oil- and safflower oil-supplemented diets developed more severe proteinuria than those fed soybean oil-supplemented diet used as a control, but there were no significant differences in blood pressure. In contrast, the DHA-supplemented diet inhibited the development of proteinuria and suppressed hypertension. The mRNA levels for renal TGF-beta, fibronectin and renin were higher in the rapeseed oil and safflower oil groups after 9 weeks of feeding of the experimental diet than in the soybean oil and DHA groups. The fatty acid composition of kidney phospholipids was markedly affected by these diets. These results indicate that the renal injury observed in the groups fed safflower oil with a high n-6/n-3 ratio and rapeseed oil with presumed minor components is accompanied by increased expression of the TGF-beta, renin and fibronectin genes, and that dietary DHA suppresses renal injury and gene expression as compared with soybean oil.

  14. Effects of Mo, Zn, Sr and Ba loads on these elements' uptake and oil content and fatty acid composition of rapeseed

    Directory of Open Access Journals (Sweden)

    Kastori Rudolf R.

    2003-01-01

    Full Text Available Studied in the present paper were the long-term effects of the application of high Mo, Zn, Sr and Ba rates (0, 90, 270, and 810 kg ha-1 on rapeseed oil content and oil fatty acid composition. The trace elements were applied in the spring of 1991, while the rapeseed was sown on a calcareous сhernozem soil in 2001. The trace elements differed significantly in their rates of accumulation in rapeseed plants. Relative to the control, the Mo content of the stem increased up to 1,000 times, that of the chaff over 100 times, and that of the seed around 60 times. The levels of the other trace elements increased considerably less relative to the control. The increases were typically twofold to threefold, depending on the plant part involved. The trace elements accumulated the most in the vegetative plant parts, except for Zn, a major quantity of which was found in the seed as well. The application of the high rates of Sr, Zn and, to an extent. Mo reduced the seed oil content of rapeseed. However, the differences were not statistically significant. The application of the trace elements had no significant effect on the fatty acid composition of the rapeseed oil, either. The increased levels of the trace elements found in the rapeseed plants indicate that 11 years after application significant amounts of the applied elements are still present in the soil in a form available to plants. However, the rates were not high enough to affect the synthesis of oil and its fatty acid composition.

  15. Effects of pineapple byproduct and canola oil as fat replacers on physicochemical and sensory qualities of low-fat beef burger.

    Science.gov (United States)

    Selani, Miriam M; Shirado, Giovanna A N; Margiotta, Gregório B; Saldaña, Erick; Spada, Fernanda P; Piedade, Sonia M S; Contreras-Castillo, Carmen J; Canniatti-Brazaca, Solange G

    2016-02-01

    Pineapple byproduct and canola oil were evaluated as fat replacers on physicochemical and sensory characteristics of low-fat burgers. Five treatments were performed: conventional (CN, 20% fat) and four low-fat formulations (10% fat): control (CT), pineapple byproduct (PA), canola oil (CO), pineapple byproduct and canola oil (PC). Higher water and fat retention and lower cooking loss and diameter reduction were found in burgers with byproduct addition. In raw burgers, byproduct incorporation reduced L*, a*, and C* values, but these alterations were masked after cooking, leading to products similar to CN. Low-fat treatments were harder, chewier, and more cohesive than full-fat burgers. However, in Warner Bratzler shear measurements, PA and PC were as tender as CN. In QDA, no difference was found between CN and PC. Pineapple byproducts along with canola oil are promising fat replacers in beef burgers. In order to increase the feasibility of use of pineapple byproduct in the meat industry, alternative processes of byproduct preparation should be evaluated in future studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Lipase-catalyzed acidolysis of canola oil with caprylic acid to produce medium-, long- and medium-chain-type structured lipids

    DEFF Research Database (Denmark)

    Wang, Yingyao; Xia, Luan; Xu, Xuebing

    2012-01-01

    Lipase-catalyzed acidolysis of canola oil with caprylic acid was performed to produce structured lipids (SLs) containing medium-chain fatty acid (M) at position sn-1,3 and long-chain fatty acid (L) at the sn-2 position in a solvent-free system. Six commercial lipases from different sources were...

  17. Effect of a 6-month intervention with cooking oils containing a high concentration of monounsaturated fatty acids (olive and canola oils) compared with control oil in male Asian Indians with nonalcoholic fatty liver disease.

    Science.gov (United States)

    Nigam, Priyanka; Bhatt, Suryaprakash; Misra, Anoop; Chadha, Davinder S; Vaidya, Meera; Dasgupta, Jharna; Pasha, Qadar M A

    2014-04-01

    We investigated the effects of dietary intervention with canola or olive oil in comparison with commonly used refined oil in Asian Indians with nonalcoholic fatty liver disease (NAFLD). This was a 6-month intervention study including 93 males with NAFLD, matched for age and body mass index (BMI). Subjects were randomized into three groups to receive olive oil (n=30), canola oil (n=33), and commonly used soyabean/safflower oil (control; n=30) as cooking medium (not exceeding 20 g/day) along with counseling for therapeutic lifestyle changes. The BMI, fasting blood glucose (FBG) and insulin levels, lipids, homeostasis model of assessment for insulin resistance (HOMA-IR), HOMA denoting β-cell function (HOMA-βCF), and disposition index (DI) were measured at pre- and post-intervention. Data were analyzed with one-way analysis of variance (ANOVA) and Tukey's Honestly Significant Difference multiple comparison test procedures. Olive oil intervention led to a significant decrease in weight and BMI (ANOVA, P=0.01) compared with the control oil group. In a comparison of olive and canola oil, a significant decrease in fasting insulin level, HOMA-IR, HOMA-βCF, and DI (Poil group. Pre- and post-intervention analysis revealed a significant increase in high-density lipoprotein level (P=0.004) in the olive oil group and a significant decrease in FBG (P=0.03) and triglyceride (P=0.02) levels in the canola oil group. The pre- and post-intervention difference in liver span was significant only in the olive (1.14 ± 2 cm; Poil groups. In the olive and canola oil groups, post-intervention grading of fatty liver was reduced significantly (grade I, from 73.3% to 23.3% and from 60.5% to 20%, respectively [Poil group no significant change was observed. Results suggest significant improvements in grading of fatty liver, liver span, measures of insulin resistance, and lipids with use of canola and olive oil compared with control oils in Asian Indians with NAFLD.

  18. Effects of dietary cold-pressed turnip rapeseed oil and butter on serum lipids, oxidized LDL and arterial elasticity in men with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Wallenius Marja

    2010-12-01

    Full Text Available Abstract Background Rapeseed oil is the principal dietary source of monounsaturated and n-3 polyunsaturated fatty acids in the Northern Europe. However, the effect of rapeseed oil on the markers of subclinical atherosclerosis is not known. The purpose of this study was to compare the effects of dietary intake of cold-pressed turnip rapeseed oil (CPTRO and butter on serum lipids, oxidized LDL and arterial elasticity in men with metabolic syndrome. Methods Thirty-seven men with metabolic syndrome completed an open and balanced crossover study. Treatment periods lasted for 6 to 8 weeks and they were separated from each other with an eight-week washout period. Subjects maintained their normal dietary habits and physical activity without major variations. The daily fat adjunct consisted either of 37.5 grams of butter or 35 mL of VirginoR CPTRO. Participants were asked to spread butter on bread on the butter period and to drink CPTRO on the oil period. The fat adjunct was used as such without heating or frying. Results Compared to butter, administration of CPTRO was followed by a reduction of total cholesterol by 8% (p Conclusion Cold-pressed turnip rapeseed oil had favourable effects on circulating LDL cholesterol and oxidized LDL, which may be important in the management of patients at high cardiovascular risk. Trial registration ClinicalTrial.gov NCT01119690

  19. The effect of biological fertilizers on yield, yield components and seed oil contents of three cultivars of canola (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    A Koocheki

    2016-05-01

    Full Text Available Introduction Canola is the world third oil crop with 25 to 55 percent oil content (Hezbavi & Minaei, 2008. In recent years, tendency towards expansion of the acreage of canola in Iran has been increasing and for the years 2010-2011 an area of 93000 ha with a total production of 190000 tons has been reported (Ministry of Jihad of Agriculture, 2013. Application of biological fertilizers which are environmentally friendly agents have been reported to enhance yield and quality of different crops (Shoghi Kalkhoran et al., 2012; Afrasiabi et al., 2011. The purpose of the present study was to investigate the effects of biological fertilizers on quantitative and quality criteria of canola. Material and methods For this study, a factorial arrangement based on randomized complete block design and three replicates was used. The experimental treatments were three canola cultivars namely Okapi, Zarfam and Modena which was combined with four levels of biological fertilizers: Nitroxin, Phosphat solubilizing bacteria (PSB, Nitroxin+PSB and a control. Seeds were planted in plots of 2×3 m2. All field managements were carried out based on conventional practices. The measured criteria were plant height, number of pods per plant, 1000- seed weight, biomass yield, harvest index, oil content and yield. Results and discussion The results showed that in all studied criteria except 1000- seed weight there were significant differences between cultivars. Different fertilizer treatments had a significant effect on all criteria except 1000- seed weight and HI. Modena cultivar had the highest oil yield and quantitative characteristics. Composition of phosphate solubilizing bacteria+nitroxin also had the highest oil yield and quantitative characteristics. The interactions between biofertilizer treatments and cultivars in all criteria were not significant. The result of this experiment indicated the effectiveness of use of biofertilizers. References Afrasiabi, M., Amini

  20. Oxidative stability of rice bran, corn, canola, sunflower and soybean oils d baking process and storage of bread

    Directory of Open Access Journals (Sweden)

    Najmeh Jahani

    2016-01-01

    Full Text Available Oxidation of bread lipids during baking and storage reduces the nutritional value of the product and leads to the formation of off-flavors and off-odors. In this research, oxidative stability of rice bran, corn, canola, sunflower and soybean oils during Brotchen bread baking process and storage was evaluated. Baking process caused a significant increase in oxidative indices such as peroxide, anisidine, Totox and thiobarbitoric acid values and free fatty acid content. However, storage of breads for 6 days in room temperature did not affect the value of the indices. Generaly, the value of the indices in bread containing rice bran oil was lower than those of the other breads, which indicated the higher oxidative stability of rice bran oil in baking process and storage. Pure oils treated in simulated baking process and storage had an oxidative quality similar to that of breads. This means that bread ingridients may not have an effect on oil oxidative stability. Bread containing rice bran oil gained also higher scores in sensory evaluation, which of course were in agree with its better oxidative status.

  1. Comparative performance of direct injection diesel engine operating on ethanol, petrol and rapeseed oil blends

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys

    2009-01-01

    This article presents the bench testing results of a four stroke, four cylinder, direct injection, unmodified, diesel engine operating on pure rapeseed oil (RO) and its 2.5 vol%, 5 vol%, 7.5 vol% and 10 vol% blends with ethanol (ERO), petrol (PRO) and both improving agents applied in equal proportions as 50:50 vol% (EPRO). The purpose of the research is to examine the effect of ethanol and petrol addition into RO on the biofuel kinematical viscosity, brake mean effective pressure (bmep), brake specific fuel consumption (bsfc) of a diesel engine and its brake thermal efficiency (bte). Addition into RO from 2.5 to 7.5 vol% of ethanol and petrol its viscosity at ambient temperature of 20 deg. C diminishes by 9.2-28.3% and 14.1-31.7%, respectively. Heating up to the temperature of 60 deg. C the viscosity of pure RO, blends ERO2.5-7.5 and PRO2.5-10 further diminishes 4.2, 3.9-3.8 and 3.9-3.6 times. At 1800 min -1 speed, the maximum brake mean effective pressure (bmep) higher up to 1.6% comparing with that of pure RO (0.77 MPa) ensure three agent blends EPRO5-7.5, whereas at rated 2200 min -1 speed, the bmep higher by 5.6% can be obtained when fuelling the engine with blend PRO2.5. Brake specific fuel consumption (bsfc) at maximum torque (240.2 g/kWh) and rated power (234.0 g/kWh) is correspondingly lower by 3.4% and 5.5% in comparison with pure RO when biofuel blends EPRO5 and PRO2.5 are used. The biggest brake thermal efficiency at maximum torque (0.40-0.41) and rated power (0.42-0.43) relative to that of RO (0.39) suggest blends PRO2.5 and EPRO5-7.5, respectively

  2. Rapeseed with tolerance to the non selective herbicide glufosinate ammonium

    Energy Technology Data Exchange (ETDEWEB)

    Rasche, E. [Hoechst Schering AgrEvo GmbH, Frankfurt am Main (Germany)

    1998-12-31

    Weed control with herbicides is essential to grow rapeseed. Glufosinate Ammonium is used as a non selective herbicide successfully in many countries for over 10 years. It conforms well with ever increasing safety standards for human beings, animals and the environment. The tolerance of rapeseed and other crop plants was achieved by genetic modification. A resistance gene (PAT or BAR) was transfered into previously susceptible rapeseed plants. This new approach allowed the development of Glufosinate Ammonium as an almost ideal selective herbicide. In cooperation with major seed companies and by own breeding programmes new Glufosinate tolerant rapeseed varieties and hybrids are developed. Data on metabolism, toxicity, residues, efficacy etc. were generated to get registration for the selective herbicide use. In addition various studies were done for safety assessments of the PAT gene and the modified rapeseed. In spring 1995 Canadian authorities granted worldwide the first approvals for the selective use of Glufosinate Ammonium (trademark Liberty) and Glufosinate tolerant (trademark and logo Liberty Link) spring rapeseed (Canola). After a successful launch in 1995 about 150.000 ha of Liberty Link Canola were grown and treated with Liberty in 1996. The Liberty Link Canola growers were very well satisfied. In a grower survey 84% stated that they will definitely use the Liberty Link System again. In Europe registrations for Glufosinate Ammonium as a selective herbicide and for the first Glufosinate tolerant rapeseed varieties are expected in the course of 1997. The Liberty Link System will be launched in rapeseed most probably in 1998. (orig.)

  3. Influence of supplemental canola or soybean oil on milk yield, fatty acid profile and postpartum weight changes in grazing dairy goats

    Directory of Open Access Journals (Sweden)

    Israel Lerma-Reyes

    2018-02-01

    Full Text Available Objective This experiment was designed to evaluate the effect of supplementation with soybean or canola oil on milk production and the composition of long chain fatty acids as well as weight changes in the goats and their kids. Methods Thirty nine mulitparous crossed Alpine×Nubian goats (initial body weight [BW] 43.5±1.7 kg from the day of parturition were assigned to the treatments: grazing control (n = 15; grazing plus 20 mL/goat/d of supplemental soybean oil (n = 12; and grazing plus 20 mL/goat/d of supplemental canola oil (n = 12 from November 26, 2014 to March 7, 2015. The planned contrasts were: CI (control vs supplemented with oils; CII (soybean vs canola oil to compare the treatment effects. Results The vegetable oil supplementation reduced weight losses in lactating goats (CI: −0.060 vs 0.090 kg/d; p = 0.03 but did not improve milk production or affect kids’ growth. The content of C4, C6, C8, C10, C11, C14, and C18:1n9t in the milk was increased (p<0.05 with respect to control. However, C12, C14, C16, C18, C18:1n9c, C18:2n6c, and C18:3n3 were reduced (p<0.05 in supplemented goats. Conjugated linoleic acid (CLA was increased (p<0.05 in goats supplemented with oils compared to the control group. Conclusion Supplementation with 20 mL/d of soybean or canola oil did not affect milk production or kids’ performance; however, it increased CLA concentration and reduced the reduced weight losses in lactating goats.

  4. Impact of Flax Seed and Canola Oils Mixture Supplementation on The Physiological and Biochemical Changes Induced by Monosodium Glutamate in Rats

    International Nuclear Information System (INIS)

    Anwar, M.M.; Mohamed, N.E.

    2010-01-01

    One of the most important problems in the human health nutrition field is the use of food flavor. Monosodium glutamate is one of the main flavors used as an ingredient in various food products, however it produces physiological and biochemical changes. The main objective of this study is to evaluate the supplementation of flax seed and canola oils mixture against the physiological and biochemical changes induced by monosodium glutamate in rats. In addition to analyses the physical and chemical characteristics of flax seed and canola oil and fatty acids composition by using gas liquid chromatography. The results concerning that unsaturated fatty acids of flax seed oil were oleic (18:1) 22%, linoleic acid (18:2) 30 % and linolenic acid (18:3) 36%. Total unsaturated fatty acids percentage in flaxseed oil was 88% and total saturated fatty acids 12%. The unsaturated fatty acids of canola oil were oleic (18:1) 66%, linoleic acid (18:2) 18% and linolenic acid (18:3) 7%, total unsaturated fatty acids percentage in canola oil was 92% and total saturated fatty acids was 8%. On the other hand, treatment of rats with monosodium glutamate for ten consecutive days led to a decrease in RBCs, Hb, Hct % and increased platelet count with decrease in WBCs and undesirable changes in its differential count. There is also, high significant increase in testicular thiobarbituric acid reactive substances (TBARS) which is accompanied with significant reduction in catalase (CAT) activity, reduced glutathione (GSH) content and serum testosterone level. These disturbances were associated with significant increase in the liver enzymes ALT,AST and ALP and increase in the level of total biluribin and glucose. Also, significant increase in urea, creatinine and uric acid were recorded. The supplementation with mixture of flax seed and canola oils mixture for one month after the injection of monosodium glutamate caused noticeable amelioration in the damage occurred as a result of this flavor. To

  5. Long-term experiences in the use of rapeseed oil fuel in tractors of the emissions levels I and II; Langzeiterfahrungen zum Einsatz von Rapsoelkraftstoff in Traktoren der Abgasstufe I und II

    Energy Technology Data Exchange (ETDEWEB)

    Emberger, Peter; Thuneke, Klaus; Remmele, Edgar

    2013-06-01

    The operational behavior as well as the emission behavior should be clarified in long-term use by means of tractors which are powered by rapeseed oil fuel. This is based on the following measures: review of the quality of rapeseed oil fuel used; testing of the quality of the engine oil on a random basis; documentation of failures, maintenance and repair work; measurement of performance and fuel economy; measurement of exhaust emissions; diagnosis of engines.

  6. A jojoba beta-Ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants.

    Science.gov (United States)

    Lassner, M W; Lardizabal, K; Metz, J G

    1996-02-01

    beta-Ketoacyl-coenzyme A (CoA) synthase (KCS) catalyzes the condensation of malonyl-CoA with long-chain acyl-CoA. This reaction is the initial step of the microsomal fatty acyl-CoA elongation pathway responsible for formation of very long chain fatty acids (VLCFAs, or fatty acids with chain lengths > 18 carbons). Manipulation of this pathway is significant for agriculture, because it is the basis of conversion of high erucic acid rapeseed into canola. High erucic acid rapeseed oil, used as an industrial feedstock, is rich in VLCFAs, whereas the edible oil extracted from canola is essentially devoid of VLCFAs. Here, we report the cloning of a cDNA from developing jojoba embryos involved in microsomal fatty acid elongation. The jojoba cDNA is homologous to the recently cloned Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene that has been suggested to encode KCS. We characterize the jojoba enzyme and present biochemical data indicating that the jojoba cDNA does indeed encode KCS. Transformation of low erucic acid rapeseed with the jojoba cDNA restored KCS activity to developing embryos and altered the transgenic seed oil composition to contain high levels of VLCFAs. The data reveal the key role KCS plays in determining the chain lengths of fatty acids found in seed oils.

  7. Impact of alpha-, gamma-, and delta-tocopherol on the radiation induced oxidation of rapeseed oil triacylglycerols

    Energy Technology Data Exchange (ETDEWEB)

    Braunrath, Robert; Isnardy, Bettina; Solar, Sonja, E-mail: sonja.solar@univie.ac.at; Elmadfa, Ibrahim

    2010-07-15

    Gamma-irradiation (doses: 2, 4, 7, and 10 kGy) was used as oxidation tool to study the antioxidant effects of alpha-, gamma-, and delta-tocopherol (enrichments 500-5000 ppm) in purified rapeseed oil triacylglycerols (RSOTG). Fatty acid composition, tocopherol degradation, primary (conjugated dienes (CD) and peroxide value (POV)) and secondary (p-anisidine value) oxidation products were chosen as test parameters. Fatty acid composition did not change. While secondary oxidation products could not be found in the irradiated samples, the POVs and CDs showed a significant, dose-dependent increase. alpha-Tocopherol did not inhibit the formation of peroxides, whereas gamma- and delta-tocopherol reduced the POVs by more than 30%. No uniform effect of the different tocopherol concentrations at the particular doses could be established. The influence of the individual tocopherols on the CD formation was not pronounced. The degradation of the tocopherols decreased with increasing concentration. None of the tocopherols showed a prooxidant effect.

  8. Impact of α-, γ-, and δ-tocopherol on the radiation induced oxidation of rapeseed oil triacylglycerols

    International Nuclear Information System (INIS)

    Braunrath, Robert; Isnardy, Bettina; Solar, Sonja; Elmadfa, Ibrahim

    2010-01-01

    Gamma-irradiation (doses: 2, 4, 7, and 10 kGy) was used as oxidation tool to study the antioxidant effects of α-, γ-, and δ-tocopherol (enrichments 500-5000 ppm) in purified rapeseed oil triacylglycerols (RSOTG). Fatty acid composition, tocopherol degradation, primary (conjugated dienes (CD) and peroxide value (POV)) and secondary (p-anisidine value) oxidation products were chosen as test parameters. Fatty acid composition did not change. While secondary oxidation products could not be found in the irradiated samples, the POVs and CDs showed a significant, dose-dependent increase. α-Tocopherol did not inhibit the formation of peroxides, whereas γ- and δ-tocopherol reduced the POVs by more than 30%. No uniform effect of the different tocopherol concentrations at the particular doses could be established. The influence of the individual tocopherols on the CD formation was not pronounced. The degradation of the tocopherols decreased with increasing concentration. None of the tocopherols showed a prooxidant effect.

  9. Physical and sensory characteristics of pork sausages from enzymatically modified blends of lard and rapeseed oil during storage

    DEFF Research Database (Denmark)

    Cheong, L.Z.; Zhang, H.; Nersting, L.

    2010-01-01

    Physical and sensory characteristic of pork sausages produced from enzymatic interesterified blends of lard and rapeseed oil during storage were evaluated. All three enzymatic interesterified blends (IE90, IE70 and IE50) had ratios of unsaturated to saturated fatty acids within the range of 1.......47-2.84 which is favourable for cardiovascular disease risk reduction. Blends of IE90 and IE70 were found to have suitable solid fat content, melting and crystallization profile suitable for sausages production. Sausages were produced from blends of IE90 and IE70 with different muscle types (musculus...... longissimus dorsi and musculus sternomandibularis) and processing conditions such as cooling rates and final processing temperature. Cooling rate was found to have no significant (P>0.05) effect on hardness of the sausages throughout storage. Both musculus longissimus dorsi and high final processing...

  10. Effect of soybean lecithin on iron-catalyzed or chlorophyll-photosensitized oxidation of canola oil emulsion.

    Science.gov (United States)

    Choe, Jeesu; Oh, Boyoung; Choe, Eunok

    2014-11-01

    The effect of soybean lecithin addition on the iron-catalyzed or chlorophyll-photosensitized oxidation of emulsions consisting of purified canola oil and water (1:1, w/w) was studied based on headspace oxygen consumption using gas chromatography and hydroperoxide production using the ferric thiocyanate method. Addition levels of iron sulfate, chlorophyll, and soybean lecithin were 5, 4, and 350 mg/kg, respectively. Phospholipids (PLs) during oxidation of the emulsions were monitored by high performance liquid chromatography. Addition of soybean lecithin to the emulsions significantly reduced and decelerated iron-catalyzed oil oxidation by lowering headspace oxygen consumption and hydroperoxide production. However, soybean lecithin had no significant antioxidant effect on chlorophyll-photosensitized oxidation of the emulsions. PLs in soybean lecithin added to the emulsions were degraded during both oxidation processes, although there was little change in PL composition. Among PLs in soybean lecithin, phosphatidylethanolamine and phosphatidylinositol were degraded the fastest in the iron-catalyzed and the chlorophyll-photosensitized oxidation, respectively. The results suggest that addition of soybean lecithin as an emulsifier can also improve the oxidative stability of oil in an emulsion. © 2014 Institute of Food Technologists®

  11. Triacylglycerol composition, physico-chemical characteristics and oxidative stability of interesterified canola oil and fully hydrogenated cottonseed oil blends.

    Science.gov (United States)

    Imran, Muhammad; Nadeem, Muhammad

    2015-10-29

    Partial hydrogenation process is used worldwide to produce shortening, baking, and pastry margarines for food applications. However, demand for such products is decreased during last decade due to their possible links to consumer health and disease. This has raised the need to replace hydrogenation with alternative acceptable interesterification process which has advantage in context of modifying the physico-chemical properties of edible fat-based products. Therefore, the main mandate of research was the development of functional fat through chemical interesterification of canola oil (CaO) and fully hydrogenated cottonseed oil (FHCSO) mixtures. Blends were prepared in the proportions of 75:25 (T1), 50:50 (T2) and 25:75 (T3) of CaO:FHCSO (w/w). Interesterification was performed using sodium methoxide (0.2 %) as catalyst at 120 °C, under reduced pressure and constant agitation for 60 minutes. The non-interesterified and interesterified CaO:FHCSO blends were evaluated for triacylglycerol (TAG) composition, physico-chemical characteristics, oxidative stability and consumer acceptability at 0, 30 and 60 days of storage interval. The oleic acid (58.3 ± 0.6 %) was predominantly present in CaO while the contents of stearic acid (72 ± 0.8 %) were significantly higher in FHCSO. Maximum trisaturated (S3) contents (63.9 ± 0.5 %) were found in T3 while monounsaturated (S2U), diunsaturated (U2S) and triunsaturated (U3) contents were quite low in T2 and T3 before interesterification. A marked reduction in S3 and U3 contents with concomitant increase in S2U and U2S contents was observed for all CaO:FHCSO blends on interesterification. During storage, the changes in S3, S2U and U2S contents were not found significant (p ≥ 0.05). However, maximum decrease 13 %, 7.5 and 5.6 % in U3 contents for T1, T2 and T3 was noted after 60-days of interesterification, respectively. The Lovibond color R, melting point, refractive index, specific gravity, peroxide and free

  12. Effects of canola oil supplemented with atherogenic element and nigella sativa (kalonji) on serum lipids in albino rats - an experimental study

    International Nuclear Information System (INIS)

    Ahmed, M.; Farooq, M.; Kousar, N.

    2015-01-01

    To compare effects of canola oil supplemented with atherogenic element and Nigella sativa on serum lipids in albino rats. Place and Duration of Study: Study was conducted at Pathology Department of Postgraduate Medical Institute, for 12 weeks. Study Design: Laboratory based randomized controlled trials. Material and Methods: Seventy two albino rats were selected and randomly divided into six groups of twelve animals with equal number of male and female in each. Fourteen days after acclimatization to the environment and basal diet, fasting blood samples (zero week) were collected by heart puncture under ether anesthesia and experimental diets were started which were continued for 12 weeks. All parameters were measured using enzymatic colorimetric methods. Results: Estimations of serum lipids showed increase in total cholesterol (TC) and High Density Lipoprotein Cholesterol (HDL-c) levels but fall in LDL-c concentrations in groups fed on canola oil diet. On the other hand, even atherogenic supplemented groups had decrease in cardio-protective HDL-c and raised LDL-c; although statistically non-significant. Thus canola oil diets were not hyperlipidaemic and prevented adiposity. Nigella sativa (NS) diets significantly decreased serum total cholesterol and LDL-c while HDL-c was raised but non-significantly. Thus Nigella sativa prevented deposition of lipids in tissues, thus preventing tendency to obesity and atherogenesis by decreasing LDL-c in serum. Conclusion: Nigella sativa produces antilipidaemic and anti-obesity effects by decreasing low density lipoprotein cholesterol level which is statistically significant in two out of the three groups fed on Ns; it also increased high density cholesterol which was however non-significant in comparison with Canola oil alone. (author)

  13. Determination of performance and combustion characteristics of a diesel engine fueled with canola and waste palm oil methyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Ozsezen, Ahmet Necati [Department of Automotive Engineering Technology, Kocaeli University, 41380 Izmit (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Izmit (Turkey); Canakci, Mustafa, E-mail: canakci@kocaeli.edu.t [Department of Automotive Engineering Technology, Kocaeli University, 41380 Izmit (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Izmit (Turkey)

    2011-01-15

    In this study, the performance, combustion and injection characteristics of a direct injection diesel engine have been investigated experimentally when it was fueled with canola oil methyl ester (COME) and waste (frying) palm oil methyl ester (WPOME). In order to determine the performance and combustion characteristics, the experiments were conducted at constant engine speeds under the full load condition of the engine. The results indicated that when the test engine was fueled with WPOME or COME instead of petroleum based diesel fuel (PBDF), the brake power reduced by 4-5%, while the brake specific fuel consumption increased by 9-10%. On the other hand, methyl esters caused reductions in carbon monoxide (CO) by 59-67%, in unburned hydrocarbon (HC) by 17-26%, in carbon dioxide (CO{sub 2}) by 5-8%, and smoke opacity by 56-63%. However, both methyl esters produced more nitrogen oxides (NO{sub x}) emissions by 11-22% compared with those of the PBDF over the speed range.

  14. Determination of performance and combustion characteristics of a diesel engine fueled with canola and waste palm oil methyl esters

    International Nuclear Information System (INIS)

    Ozsezen, Ahmet Necati; Canakci, Mustafa

    2011-01-01

    In this study, the performance, combustion and injection characteristics of a direct injection diesel engine have been investigated experimentally when it was fueled with canola oil methyl ester (COME) and waste (frying) palm oil methyl ester (WPOME). In order to determine the performance and combustion characteristics, the experiments were conducted at constant engine speeds under the full load condition of the engine. The results indicated that when the test engine was fueled with WPOME or COME instead of petroleum based diesel fuel (PBDF), the brake power reduced by 4-5%, while the brake specific fuel consumption increased by 9-10%. On the other hand, methyl esters caused reductions in carbon monoxide (CO) by 59-67%, in unburned hydrocarbon (HC) by 17-26%, in carbon dioxide (CO 2 ) by 5-8%, and smoke opacity by 56-63%. However, both methyl esters produced more nitrogen oxides (NO x ) emissions by 11-22% compared with those of the PBDF over the speed range.

  15. Effect of bioactive substances found in rapeseed, raspberry and strawberry seed oils on blood lipid profile and selected parameters of oxidative status in rats.

    Science.gov (United States)

    Pieszka, Marek; Tombarkiewicz, Barbara; Roman, Adam; Migdał, Władysław; Niedziółka, Jerzy

    2013-11-01

    Rapeseed, strawberry and raspberry seed oils are a rich source of polyunsaturated fatty acids and antioxidants such as tocols, bioflavonoids and phytosterols. The aim of the study was to determine changes in the blood lipid profile of rats fed with rapeseed, strawberry and raspberry seed oils and their effects on selected parameters of oxidative status. The experiment was carried out on male Wistar rats. The oils were administered by oral gavage for 5 weeks once daily at the dose of about 0.8 ml per rat. Blood samples were taken before and after supplementation period. The activity of superoxide dismutase (SOD) and glutathione peroxidase (cGPx) was assessed in erythrocytes and contents of triglycerides (TG), total cholesterol, low-density fraction of cholesterol (LDL) and high-density fraction of cholesterol (HDL) were assessed in plasma. The experiment shows that oils supplemented in the diet for 5 weeks had no significant effect on the level of triglyceride (TG), total cholesterol as well as HDL and LDL fractions. Reduced activity of cGPX and SOD in the group of rats receiving raspberry and strawberry seed oils suggests that these native oils may contribute to oxidative stability (improves antioxidant status). Thus, strawberry and raspberry seed oils can be considered as special biological oils, which constitute potential nutraceuticals reducing oxidative stress. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Apparent and true ileal and total tract digestibility of fat in canola press-cake or canola oil and effects of increasing dietary fat on amino acid and energy digestibility in growing pigs.

    Science.gov (United States)

    Zhou, X; Beltranena, E; Zijlstra, R T

    2017-06-01

    Digestibility of remaining oil in canola press-cake (CPC) may be lower than that of extracted, liquid canola oil (CO) because oil may be partly entrapped in the CPC matrix. To determine true digestibility of fat in ingredients, endogenous fat losses should be estimated. Dietary fat may interact with digestion of other dietary components. To test these hypotheses, 10 ileal-cannulated pigs (initial BW, 25.4 kg) were fed 10 diets for 8 periods in a 10 × 8 Youden square. A basal diet was formulated based on wheat, barley, and canola meal. The 4 CPC and 4 CO test diets were prepared by replacing identical portion of basal diet with 10%, 20%, 30%, or 40% CPC, or 1.5%, 3.0%, 4.5%, or 6.0% CO, respectively, to match the fat content of CPC diet with CO diet at each fat level. An N-free diet based on corn starch was prepared to measure basal endogenous losses of AA. Apparent total tract digestibility (ATTD) and apparent ileal digestibility (AID) of acid-hydrolyzed ether extract (AEE) were calculated for each diet. True ileal digestibility (TID) and true total tract (TTTD) digestibility of AEE in CPC and CO, and total endogenous losses of AEE were estimated by regressing apparent digestible AEE (g/kg of DMI) against dietary AEE intake (g/kg of DM) at the total tract and distal ileum, respectively. The mean AID and ATTD of AEE in CPC diets were 78.9% and 61.5%, which were lower ( digestible AEE content in CPC and CO diets increased linearly ( 0.05) total tract or ileal endogenous losses of AEE. The TID and TTTD of AEE in CPC were 92.3% and 94.5%, respectively, lower ( digestibility (SID) of CP, Lys, Met, Thr, and Trp, and quadratically increased ( digestibility of AEE in CPC than in CO indicates that fat digestibility of CPC should be considered to predict its nutritional value accurately. Dietary inclusion of CO may increase digestibility of CP and energy originating from the balance of the diet.

  17. Canola and hydrogenated soybean oils accelerate ectopic bone formation induced by implantation of bone morphogenetic protein in mice

    Directory of Open Access Journals (Sweden)

    Yoko Hashimoto

    2014-01-01

    Full Text Available Canola oil (Can and hydrogenated soybean oil (H2-Soy are commonly used edible oils. However, in contrast to soybean oil (Soy, they shorten the survival of stroke-prone spontaneously hypertensive (SHRSP rats. It has been proposed that the adverse effects of these oils on the kidney and testis are caused at least in part by dihydro-vitamin K (VK 1 in H2-Soy and unidentified component(s in Can. Increased intake of dihydro-VK1 is associated with decreased tissue VK2 levels and bone mineral density in rats and humans, respectively. The aim of the present study was to determine the effects of these oils on bone morphogenetic protein (BMP-induced ectopic bone formation, which is promoted by VK2 deficiency, in relation to the role of VK in the γ-carboxylation of osteocalcin and matrix Gla protein. A crude extract of BMPs was implanted into a gap in the fascia of the femoral muscle in 5-week-old mice maintained on a Soy, Can, or H2-Soy diet. Newly formed bone volume, assessed by three-dimensional X-ray micro-computed tomography and three-dimensional reconstruction imaging for bone, was 4-fold greater in the Can and H2-Soy groups than in the Soy group. The plasma carboxylated osteocalcin (Gla-OC and total OC (Gla-OC plus undercarboxylated osteocalcin [Glu-OC] levels were significantly lower in the Can group than in the Soy group (p < 0.05. However, these levels did not significantly differ between the H2-Soy and Soy groups. The plasma Gla-OC/Glu-OC ratio in the Can and H2-Soy groups was significantly lower (in Can; p = 0.044 or was almost significantly lower (in H2-Soy; p = 0.053 than that in the Soy group. In conclusion, Can and H2-Soy accelerated BMP-induced bone formation in mice to a greater extent than Soy. Further research is required to evaluate whether the difference in accelerated ectopic bone formation is associated with altered levels of VK2 and VK-dependent protein(s among the three dietary groups.

  18. Effects of Canola Oil Biodiesel Fuel Blends on Combustion, Performance, and Emissions Reduction in a Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Sam Ki Yoon

    2014-12-01

    Full Text Available In this study, we investigated the effects of canola oil biodiesel (BD to improve combustion and exhaust emissions in a common rail direct injection (DI diesel engine using BD fuel blended with diesel. Experiments were conducted with BD blend amounts of 10%, 20%, and 30% on a volume basis under various engine speeds. As the BD blend ratio increased, the combustion pressure and indicated mean effective pressure (IMEP decreased slightly at the low engine speed of 1500 rpm, while they increased at the middle engine speed of 2500 rpm. The brake specific fuel consumption (BSFC increased at all engine speeds while the carbon monoxide (CO and particulate matter (PM emissions were considerably reduced. On the other hand, the nitrogen oxide (NOx emissions only increased slightly. When increasing the BD blend ratio at an engine speed of 2000 rpm with exhaust gas recirculation (EGR rates of 0%, 10%, 20%, and 30%, the combustion pressure and IMEP tended to decrease. The CO and PM emissions decreased in proportion to the BD blend ratio. Also, the NOx emissions decreased considerably as the EGR rate increased whereas the BD blend ratio only slightly influenced the NOx emissions.

  19. Effect of strong electrolytes on edible oils part III: viscosity of canola ...

    African Journals Online (AJOL)

    ... in the positive values of B-coefficient. Fluidity parameters were also evaluated and the change in these values with temperature and concentration of oil shows that the electrolytes behave as structure breaker. The energy of activation, latent heat of vaporization and molar volume of oil were also evaluated and discussed.

  20. EFFECTS OF PLANT NUTRITION ON CANOLA (Brassica napus L. GROWTH

    Directory of Open Access Journals (Sweden)

    Sami Süzer

    2016-03-01

    Full Text Available Canola (Brassica napus L. is an important edible oilseed crop in the World and in Turkey. It has a healthy vegetable oil because of its balance with omega 3-6-9 essential fatty acids, making canola oil a healthy vegetable oil throughout the World for cooking and processed food industry. Canola production of high yield and good quality usually depends on well-balanced plant nutrition and growing conditions. A well-balanced soil condition also affects canola plants responses to stress factors such as disease and bad weather conditions. Nitrogen, phosphorus and potassium (NPK are some of the major nutrients required to significantly increase canola yield. Fertilizer application dosages in canola production vary because of the variable occurrence of NPK in the soil. A high yielding canola production needs a well-balanced fertilization program.

  1. Impact of residual glycerides on viscosity of biodiesel (waste and rapeseed oil blends)

    OpenAIRE

    Z. Jurac; L. Pomenić

    2013-01-01

    Purpose: Biodiesel, mixture of fatty acid methyl esters is a biodegradable alternative fuel that is obtained from renewable sources as a vegetable oils or animal fats. Use of waste cooking oils reduce the cost of raw materials for biodiesel production and also reduces the environment pollution. Moreover, pure edible vegetable oils for biodiesel production have an ethical significance because food is used to produce fuel. The aim of this work is a presentation of effects that r...

  2. Optimization of Process Parameters for Palm Oil and Rapeseed Oil Hot Pot Soup Stock%棕榈油与菜籽油复合火锅底料关键工艺参数优化

    Institute of Scientific and Technical Information of China (English)

    张丽珠; 唐洁; 车振明; 肖文艳; 黄清吉

    2014-01-01

    采用响应曲面分析法对棕榈油与菜籽油复合火锅底料关键工艺参数进行了优化。在单因素试验的基础上,以火锅底料的感观综合评分为响应值,进行了棕榈油与菜籽油用油量、油配比、熬制时间3个因素的显著性和交互作用分析,优化得到其最佳工艺参数条件:用油量为52%(m/m),棕榈油与菜籽油配比为3∶2∶3(5℃棕榈油∶8℃棕榈油∶菜籽油),熬制时间为26 min。在此条件下对棕榈油与菜籽油复合火锅底料进行感官综合评分,其中组织形态89.16分、浑汤度88.83分、色泽89.02分、香味92.87分、滋味87.29分,感官综合评分为89.65分。%The critical processing parameters of palm oil and rapesee d oil blend hot pot soup stock are optimized by response surface methodology (RSM).Use sensory scores to evaluate the response value,and the significance and interactions of three factors,including content of palm oil and rapeseed oil,oils ra-tio and stewing time.The optimal process parameters are obtained as follows:oil content is 5 2%(m/m),ratio of palm oil and rapeseed oil is 3∶2∶3 (palm oil with melting point of 5 ℃∶palm oil with melting point of 8 ℃∶rapeseed oil),the optimum stewing time established is 26 min.Under such conditions,the sensory evaluation score for palm oil and rapeseed oil hot pot soup stock is 89.16 for appearance,88.83 for turbidity,89.02 for color,92.87 for smell,87.29 for taste,and the overall sensory evaluation score is excellent at 89.65.

  3. Chemical composition and resistance to oxidation of high-oleic rapeseed oil pressed from microwave pre-treated intact and de-hulled seeds

    International Nuclear Information System (INIS)

    Rękas, A.; Wroniak, M.; Siger, A.; Ścibisz, I.

    2017-01-01

    The influence of a microwave (MV) pre-treatment (3, 6, 9 min, 800W) on the physicochemical properties of high-oleic rapeseed oil prepared from intact (HORO) and de-hulled seeds (DHORO) was investigated in this study. A control DHORO contained higher levels of total tocopherols and carotenoids, while higher concentrations of total phenolic compounds and chlorophylls were detected in the HORO. The MV pre-treatment caused a decrease in the unsaturated fatty acids content that was more evident for the DHOROs. The microwaving time significantly affected phytochemical contents and the color of both types of oils. A vast increase in canolol concentration was noticeable following 9 min of microwaving, which increased 506- and 155-fold in the HORO and DHORO, respectively. At the same time, the antioxidant capacity of oil produced from MV pre-treated seeds for 9 min was nearly 4 times higher than that of the control oil for both types of oils. [es

  4. Improved tribological properties of the synthesized copper/carbon nanotube nanocomposites for rapeseed oil-based additives

    Science.gov (United States)

    Wang, Zhiqiang; Ren, Ruirui; Song, Haojie; Jia, Xiaohua

    2018-01-01

    Carbon nanotubes (CNTs) decorated with uniform copper nanoparticles (Cu NPs) were successfully prepared via a facile approach towards surface modification of CNTs with spontaneous polydopamine (PDA). The structures and morphologies of the nanocomposites were investigated by different kinds of techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Cu/PDA/CNTs nanocomposites were fabricated by growing the Cu NPs with an average diameter of 5 nm on the surfaces of PDA-modified CNTs. The CNTs functionalized with PDA layer not only provide an anchoring platform for the Cu NPs immobilization, but also endow Cu/PDA/CNTs with good dispersion stability when Cu/PDA/CNTs nanocomposites were used as lubricant additive. The tribological performance of the nanocomposites as the rapeseed oil lubricant additive, as well as Cu NPs, CNTs, and Cu/CNTs, was also investigated using a MS-T3000 ball-on-disk tribometer. Results show that the 0.2 wt% Cu/PDA/CNTs nanoadditive simultaneously reduce the friction and wear by 33.5% and 23.7%, respectively, outperformed the tribological performance of Cu NPs, CNTs, and Cu/CNTs nanoadditives. In addition, the presence of active sites in Cu/PDA/CNTs was beneficial to reduce the time of running-in period, give rise to the fastest speed to be stable of the friction coefficient curve as compared to the other nanoadditives. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy of the worn surfaces lubricated by the soybean oil with Cu/PDA/CNTs nanocomposites showed that formation of low shear strength tribofilms containing Cu/PDA/CNTs nanocomposites and its self-lubricating property was key factor in reduction of the friction and protection against wear and deformation.

  5. Antioxidant activities and interactions of alpha- and gamma-tocopherols within canola and soybean oil emulsions

    Science.gov (United States)

    The effect of differing concentrations and ratios of alpha- and gamma-TOH on oxidative stability over time was determined by measuring the development of hydroperoxides and volatile secondary oxidation products (hexanal) within a series of oil-in-water (o/w) emulsion systems produced from both canol...

  6. The effects of conjugated linoleic acid (CLA) and canola oil on the ...

    African Journals Online (AJOL)

    Dietary conjugated linoleic acid (CLA) causes adverse effects on quality of eggs by modifying the fatty acid composition of the yolk. Supplementing oils prevent CLA-induced changes, but cause a decrease in the level of egg CLA. The objective of the study was to investigate the incorporation of CLA into the egg and its effect ...

  7. Transesterification of rapeseed oil for biodiesel production in trickle-bed reactors packed with heterogeneous Ca/Al composite oxide-based alkaline catalyst.

    Science.gov (United States)

    Meng, Yong-Lu; Tian, Song-Jiang; Li, Shu-Fen; Wang, Bo-Yang; Zhang, Min-Hua

    2013-05-01

    A conventional trickle bed reactor and its modified type both packed with Ca/Al composite oxide-based alkaline catalysts were studied for biodiesel production by transesterification of rapeseed oil and methanol. The effects of the methanol usage and oil flow rate on the FAME yield were investigated under the normal pressure and methanol boiling state. The oil flow rate had a significant effect on the FAME yield for the both reactors. The modified trickle bed reactor kept over 94.5% FAME yield under 0.6 mL/min oil flow rate and 91 mL catalyst bed volume, showing a much higher conversion and operational stability than the conventional type. With the modified trickle bed reactor, both transesterification and methanol separation could be performed simultaneously, and glycerin and methyl esters were separated additionally by gravity separation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Study of exhaust emissions of direct injection diesel engine operating on ethanol, petrol and rapeseed oil blends

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys

    2009-01-01

    This article presents the bench testing results of a four stroke, four cylinder, direct injection, unmodified, diesel engine operating on pure rapeseed oil (RO) and its 2.5 vol%, 5 vol%, 7.5 vol% and 10 vol% blends with ethanol (ERO), petrol (PRO) and both improving agents applied in equal proportions as 50:50 vol% (EPRO). The purpose of the research is to examine the effect of ethanol and petrol addition into RO on diesel engine emission characteristics and smoke opacity of the exhausts. The biggest NO x emissions, 1954 and 2078 ppm, at 2000 min -1 speed generate blends PRO10 (9.72%) and EPRO5 (11.13%) against, 1731 and 1411 ppm, produced from ERO5 (12%) and ERO10 (13.2% oxygen) blends. The carbon monoxide, CO, emissions emitted from a fully loaded engine fuelled with three agent blends EPRO5-7.5 at maximum torque and rated speed are higher by 39.5-18.8% and 27.5-16.1% and smoke opacity lower by 3.3-9.0% and 24.1-17.6% comparing with RO case. When operating at rated 2200 min -1 mode, the carbon dioxide, CO 2 , emissions are lower, 6.9-6.3 vol%, from blends EPRO5-7.5 relative to that from RO, 7.8 vol%, accompanied by a slightly higher emission of unburned hydrocarbons HC, 16 ppm, and residual oxygen contents O 2 , 10.4-12.0 vol%, in the exhausts

  9. Degradation of acrylonitrile butadiene rubber and fluoroelastomers in rapeseed biodiesel and hydrogenated vegetable oil

    OpenAIRE

    Akhlaghi, Shahin

    2017-01-01

    Biodiesel and hydrotreated vegetable oil (HVO) are currently viewed by the transportation sector as the most viable alternative fuels to replace petroleum-based fuels. The use of biodiesel has, however, been limited by the deteriorative effect of biodiesel on rubber parts in automobile fuel systems. This work therefore aimed at investigating the degradation of acrylonitrile butadiene rubber (NBR) and fluoroelastomers (FKM) on exposure to biodiesel and HVO at different temperatures and oxygen ...

  10. CFD simulation of transient stage of continuous countercurrent hydrolysis of canola oil

    KAUST Repository

    Wang, Weicheng

    2012-08-01

    Computational Fluid Dynamic (CFD) modeling of a continuous countercurrent hydrolysis process was performed using ANSYS-CFX. The liquid properties and flow behavior such as density, specific heats, dynamic viscosity, thermal conductivity, and thermal expansivity as well as water solubility of the hydrolysis components triglyceride, diglyceride, monoglyceride, free fatty acid, and glycerol were calculated. Chemical kinetics for the hydrolysis reactions were simulated in this model by applying Arrhenius parameters. The simulation was based on actual experimental reaction conditions including temperature and water-to-oil ratio. The results not only have good agreement with experimental data but also show instantaneous distributions of concentrations of every component in hydrolysis reaction. This model provided visible insight into the continuous countercurrent hydrolysis process. © 2012 Elsevier Ltd.

  11. CFD simulation of transient stage of continuous countercurrent hydrolysis of canola oil

    KAUST Repository

    Wang, Weicheng; Natelson, Robert H.; Stikeleather, Larry F.; Roberts, William L.

    2012-01-01

    Computational Fluid Dynamic (CFD) modeling of a continuous countercurrent hydrolysis process was performed using ANSYS-CFX. The liquid properties and flow behavior such as density, specific heats, dynamic viscosity, thermal conductivity, and thermal expansivity as well as water solubility of the hydrolysis components triglyceride, diglyceride, monoglyceride, free fatty acid, and glycerol were calculated. Chemical kinetics for the hydrolysis reactions were simulated in this model by applying Arrhenius parameters. The simulation was based on actual experimental reaction conditions including temperature and water-to-oil ratio. The results not only have good agreement with experimental data but also show instantaneous distributions of concentrations of every component in hydrolysis reaction. This model provided visible insight into the continuous countercurrent hydrolysis process. © 2012 Elsevier Ltd.

  12. Effects of Pilot Injection Timing and EGR on Combustion, Performance and Exhaust Emissions in a Common Rail Diesel Engine Fueled with a Canola Oil Biodiesel-Diesel Blend

    Directory of Open Access Journals (Sweden)

    Jun Cong Ge

    2015-07-01

    Full Text Available Biodiesel as a clean energy source could reduce environmental pollution compared to fossil fuel, so it is becoming increasingly important. In this study, we investigated the effects of different pilot injection timings from before top dead center (BTDC and exhaust gas recirculation (EGR on combustion, engine performance, and exhaust emission characteristics in a common rail diesel engine fueled with canola oil biodiesel-diesel (BD blend. The pilot injection timing and EGR rate were changed at an engine speed of 2000 rpm fueled with BD20 (20 vol % canola oil and 80 vol % diesel fuel blend. As the injection timing advanced, the combustion pressure, brake specific fuel consumption (BSFC, and peak combustion pressure (Pmax changed slightly. Carbon monoxide (CO and particulate matter (PM emissions clearly decreased at BTDC 20° compared with BTDC 5°, but nitrogen oxide (NOx emissions increased slightly. With an increasing EGR rate, the combustion pressure and indicated mean effective pressure (IMEP decreased slightly at BTDC 20° compared to other injection timings. However, the Pmax showed a remarkable decrease. The BSFC and PM emissions increased slightly, but the NOx emission decreased considerably.

  13. Electro-catalytic biodiesel production from canola oil in methanolic and ethanolic solutions with low cost stainless steel and hybrid ion-exchange resin grafted electrodes

    Science.gov (United States)

    Allioux, Francois-Marie; Holland, Brendan J.; Kong, Lingxue; Dumée, Ludovic F.

    2017-07-01

    Biodiesel is a growing alternative to petroleum fuels and is produced by the catalysed transesterification of fats in presence of an alcohol base. Transesterification processes using homogeneous catalysts are considered to be amongst the most efficient methods but rely on the feedstock quality and low water content in order to avoid undesirable saponification reactions. In this work, the electro-catalytic conversion of canola oil to biodiesel in a 1% aqueous methanolic and ethanolic reaction mixture was performed without the addition of external catalyst or co-solvent. An inexpensive stainless steel electrode and a hybrid stainless steel electrode coated with an ion-exchange resin catalyst were used as cathode materials while the anode was composed of a plain carbon paper. The cell voltages were varied from 10 to 40 V and the reaction temperature maintained at 20 or 40°C. The canola oil conversion rates were found to be superior at 40°C without saponification reactions for cell voltages below 30 V. The conversion rates were as high as 87% for the hybrid electrode and 81% for the plain stainless steel electrode. This work could inspire new process development for the conversion of high water content feedstock for the production of second-generation biodiesel.

  14. Degummed crude canola oil, sire breed and gender effects on intramuscular long-chain omega-3 fatty acid properties of raw and cooked lamb meat.

    Science.gov (United States)

    Flakemore, Aaron Ross; Malau-Aduli, Bunmi Sherifat; Nichols, Peter David; Malau-Aduli, Aduli Enoch Othniel

    2017-01-01

    Omega-3 long-chain (≥C 20 ) polyunsaturated fatty acids (ω3 LC-PUFA) confer important attributes to health-conscious meat consumers due to the significant role they play in brain development, prevention of coronary heart disease, obesity and hypertension. In this study, the ω3 LC-PUFA content of raw and cooked Longissimus thoracis et lumborum (LTL) muscle from genetically divergent Australian prime lambs supplemented with dietary degummed crude canola oil (DCCO) was evaluated. Samples of LTL muscle were sourced from 24 first cross ewe and wether lambs sired by Dorset, White Suffolk and Merino rams joined to Merino dams that were assigned to supplemental regimes of degummed crude canola oil (DCCO): a control diet at 0 mL/kg DM of DCCO (DCCOC); 25 mL/kg DM of DCCO (DCCOM) and 50 mL/kg DCCO (DCCOH). Lambs were individually housed and offered 1 kg/day/head for 42 days before being slaughtered. Samples for cooked analysis were prepared to a core temperature of 70 °C using conductive dry-heat. Within raw meats: DCCOH supplemented lambs had significantly ( P  culinary preparation method can be used as effective management tools to deliver nutritionally improved ω3 LC-PUFA lamb to meat consumers.

  15. Electro-Catalytic Biodiesel Production from Canola Oil in Methanolic and Ethanolic Solutions with Low-Cost Stainless Steel and Hybrid Ion-Exchange Resin Grafted Electrodes

    Directory of Open Access Journals (Sweden)

    Francois-Marie Allioux

    2017-07-01

    Full Text Available Biodiesel is a growing alternative to petroleum fuels and is produced by the catalyzed transesterification of fats in presence of an alcohol base. Transesterification processes using homogeneous catalysts are considered to be among the most efficient methods but rely on the feedstock quality and low water content in order to avoid undesirable saponification reactions. In this work, the electro-catalytic conversion of canola oil to biodiesel in a 1% aqueous methanolic and ethanolic reaction mixture was performed without the addition of external catalyst or cosolvent. An inexpensive stainless steel (SS electrode and a hybrid SS electrode coated with an ion-exchange resin catalyst were used as cathode materials while the anode was composed of a plain carbon paper. The cell voltages were varied from 10 to 40 V and the reaction temperature maintained at 20 or 40°C. The canola oil conversion rates were found to be superior at 40°C without saponification reactions for cell voltages below 30 V. The conversion rates were as high as 87% for the hybrid electrode and 81% for the plain SS electrode. This work could inspire new process development for the conversion of high water content feedstock for the production of second-generation biodiesel.

  16. Effect of advanced injection timing on the performance of rapeseed oil in diesel engines

    International Nuclear Information System (INIS)

    Nwafor, O.M.I.; Rice, G.; Ogbonna, A.I.

    2000-01-01

    Combustion studies on both diesel fuel and vegetable oil fuels, with the standard and advanced injection timing, were carried out using the same engine and test procedures so that comparative assessments may be made. The diesel engine principle demands self-ignition of the fuel as it is injected at some degrees before top dead centre (BTDC) into the hot compressed cylinder gas. Longer delays between injection and ignition lead to unacceptable rates of pressure rise with the result of diesel knock because too much fuel is ready to take part in premixed combustion. Alternative fuels have been noted to exhibit longer delay periods and slower burning rate especially at low load operating conditions hence resulting in late combustion in the expansion stroke. Advanced injection timing is expected to compensate these effects. The engine has standard injection timing of 30degC BTDC. The injection was first advanced by 5.5degC given injection timing of 35.5degC BTDC. The engine performance was very erratic on this timing. The injection was then advanced by 3.5degC and the effects are presented in this paper. The engine performance was smooth especially at low load levels. The ignition delay was reduced through advanced injection but tended to incur a slight increase in fuel consumption. Moderate advanced injection timing is recommended for low speed operations. (Author)

  17. Effects of chronic ethanol intake on metabolic conversions of 14C erucic acid by the livers of rat fed with rapeseed or ground nut oil

    International Nuclear Information System (INIS)

    Lecerf, J.; Bezard, J.

    1975-01-01

    The effects of addition of ethanol to diets containing rapeseed or ground nut oil on the metabolic conversion of 14 14 C erudic and 9-10 3 H oleic acid were studied in the rat liver. Whatever the diet more 14 C than 3 H radioactivity was recovered in liver lipids 2 and 19 hours after injection of labelled fatty acids. Ethanol has little effect on this incorporation. Only small amounts of 3 H oleic acid were converted. In all cases, the metabolic conversion of erucic acid was identical: the main part of 14 C was not recovered as erucic acid but was present in other mono unsaturated fatty acids n-9:oleic acid (18:1), which was the most labelled acid, 16:1, 20:1 and nervonic acid (24:1). The amount of erucic acid converted to shorter chain fatty acids was unchanged by addition of ethanol but the alcohol increased the proportion of 14 C radioactivity recovered as nervonic acid. This latter effect was opposite to the effect of rapeseed oil diet, which consisted in a decrease in the conversion of erucic to nervonic acid. A high amount of 14 C radioactivity was recovered in the F.F.A. fraction of the liver as an unknown compound (13 and 80% of 14 C radioacitivty respectively after 2 and 19h). Its identification is presently under investigation [fr

  18. Determination of the agricultural and process-related boundary conditions for the use of rapeseed oil and its refinery products as motor fuel. Final report; Ermittlung der landwirtschaftlichen, prozesstechnischen und verfahrenstechnischen Rahmenbedingungen fuer die Verwendung von Rapsoel und seiner Umwandlungsprodukte als Kraftstoff. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schliephake, D; Hacker, C M

    1994-11-01

    The use of rapeseed oil as a motor fuel is viewed from various angles: Production aspects; environmental aspects; marketing aspects in agriculture; business management aspects in the Federal Republic of Germany; production and refining of rapeseed oil; use of rapeseed oil methyl ester as diesel fuel and in mineral oil processing plants; engine performance. (orig./SR) [Deutsch] In dem vorliegenden Bericht wird der Einsatz von Rapsoel als Kraftstoff aus verschiedenen Blickwinkeln betrachtet: Produktionsaspekte, Umweltaspekte, marktwirtschaftliche Aspekte in der Landwirtschaft; betriebswirtschaftliche Aspekte in der Bundesrepublik Deutschland; Herstellung und Raffination von Rapsoel; Einsatz von Rapsoelmethylester als Dieselkraftstoff und in Anlagen der Mineraloelverarbeitung; Motortechnische Untersuchungsergebnisse. (orig./SR)

  19. Effect of Tocotrienols enriched canola oil on glycemic control and oxidative status in patients with type 2 diabetes mellitus: A randomized double-blind placebo-controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Mohammadreza Vafa

    2015-01-01

    Full Text Available Background: Tocotrienols have been shown to improve glycemic control and redox balance in an animal study, but their effects on patients with diabetes are unknown. The study aimed to investigate whether tocotrienols improves glycemic control, insulin sensitivity, and oxidative stress in individuals with type 2 diabetes mellitus (T2DM. Materials and Methods: This study was a double-blinded, placebo-controlled, randomized trial. A total of 50 patients, aged 35-60 years, with T2DM treated by noninsulin hypoglycemic drugs were randomly assigned to receive either 15 mL/day tocotrienols (200 mg enriched canola oil (n = 25 or pure canola oil (n = 25 for 8 weeks. Fasting blood sugar (FBS, fasting insulin, total antioxidant capacity (TAC, malondialdehyde (MDA, and homeostatic model assessment for insulin resistance (HOMA-IR were determined before and after the intervention. The data were compared between and within groups, before and after the intervention. Results: Baseline characteristics of participants including age, sex, physical activity, disease duration, and type of drug consumption were not significantly different between the two groups. In tocotrienol enriched canola oil, FBS (mean percent change: -15.4% vs. 3.9%; P = 0.006 and MDA (median percent change: -35.6% vs. 16.3%; P = 0.003 were significantly reduced while TAC was significantly increased (median percent change: 21.4% vs. 2.3%; P = 0.001 compared to pure canola oil. At the end of the study, patients who treated with tocotrienols had lower FBS (P = 0.023 and MDA (P = 0.044 compared to the pure canola oil group. However, tocotrienols had no effect on insulin concentrations and HOMA-IR. Conclusion: Tocotrienols can improve FBS concentrations and modifies redox balance in T2DM patients with poor glycemic control and can be considered in combination with hypoglycemic drugs to better control of T2DM.

  20. Rapeseed research and production in China

    Directory of Open Access Journals (Sweden)

    Qiong Hu

    2017-04-01

    Full Text Available Rapeseed (Brassica napus L. is the largest oilseed crop in China and accounts for about 20% of world production. For the last 10 years, the production, planting area, and yield of rapeseed have been stable, with improvement of seed quality and especially seed oil content. China is among the leading countries in rapeseed genomic research internationally, having jointly with other countries accomplished the whole genome sequencing of rapeseed and its two parental species, Brassica oleracea and Brassica rapa. Progress on functional genomics including the identification of QTL governing important agronomic traits such as yield, seed oil content, fertility regulation, disease and insect resistance, abiotic stress, nutrition use efficiency, and pod shattering resistance has been achieved. As a consequence, molecular markers have been developed and used in breeding programs. During 2005–2014, 215 rapeseed varieties were registered nationally, including 210 winter- and 5 spring-type varieties. Mechanization across the whole process of rapeseed production was investigated and operating instructions for all relevant techniques were published. Modern techniques for rapeseed field management such as high-density planting, controlled-release fertilizer, and biocontrol of disease and pests combined with precision tools such as drones have been developed and are being adopted in China. With the application of advanced breeding and production technologies, in the near future, the oil yield and quality of rapeseed varieties will be greatly increased, and more varieties with desirable traits, especially early maturation, high yield, high resistance to biotic and abiotic stress, and suitability for mechanized harvesting will be developed. Application of modern technologies on the mechanized management of rapeseed will greatly increase grower profit.

  1. Degummed crude canola oil, sire breed and gender effects on intramuscular long-chain omega-3 fatty acid properties of raw and cooked lamb meat

    Directory of Open Access Journals (Sweden)

    Aaron Ross Flakemore

    2017-08-01

    Full Text Available Abstract Background Omega-3 long-chain (≥C20 polyunsaturated fatty acids (ω3 LC-PUFA confer important attributes to health-conscious meat consumers due to the significant role they play in brain development, prevention of coronary heart disease, obesity and hypertension. In this study, the ω3 LC-PUFA content of raw and cooked Longissimus thoracis et lumborum (LTL muscle from genetically divergent Australian prime lambs supplemented with dietary degummed crude canola oil (DCCO was evaluated. Methods Samples of LTL muscle were sourced from 24 first cross ewe and wether lambs sired by Dorset, White Suffolk and Merino rams joined to Merino dams that were assigned to supplemental regimes of degummed crude canola oil (DCCO: a control diet at 0 mL/kg DM of DCCO (DCCOC; 25 mL/kg DM of DCCO (DCCOM and 50 mL/kg DCCO (DCCOH. Lambs were individually housed and offered 1 kg/day/head for 42 days before being slaughtered. Samples for cooked analysis were prepared to a core temperature of 70 °C using conductive dry-heat. Results Within raw meats: DCCOH supplemented lambs had significantly (P < 0.05 higher concentrations of eicosapentaenoic (EPA, 20:5ω3 and EPA + docosahexaenoic (DHA, 22:6ω3 acids than those supplemented with DCCOM or DCCOC; Dorset sired lambs contained significantly (P < 0.05 more EPA and EPA + DHA than other sire breeds; diet and sire breed interactions were significant (P < 0.05 in affecting EPA and EPA + DHA concentrations. In cooked meat, ω3 LC-PUFA concentrations in DCCOM (32 mg/100 g, DCCOH (38 mg/100 g, Dorset (36 mg/100 g, White Suffolk (32 mg/100 g, ewes (32 mg/100 g and wethers (33 mg/100 g, all exceeded the minimum content of 30 mg/100 g of edible cooked portion of EPA + DHA for Australian defined ‘source’ level ω3 LC-PUFA classification. Conclusion These results present that combinations of dietary degummed crude canola oil, sheep genetics and culinary preparation method can be used as

  2. Comparison of the effect of sinapic and ferulic acids derivatives (4-vinylsyringol vs. 4-vinylguaiacol) as antioxidants of rapeseed, flaxseed, and extra virgin olive oils.

    Science.gov (United States)

    Tańska, Małgorzata; Mikołajczak, Natalia; Konopka, Iwona

    2018-02-01

    The aim of the work is to compare the antioxidant activity of 4-vinylguaiacol (4-VQ) and 4-vinylsyringol (4-VS) added to stabilize three (flaxseed, olive and rapeseed) commercial oils. The phenolics were added at concentration of 20, 40 and 80mg per 100g of oil. The oils were oxidized in a Rancimat test at 110°C. The linear dependences between the concentrations of each of these compounds and the induction period (IP) were found. Generally, 4-VQ was more effective, since the determined IP increase after its addition was from 5 to 25-fold higher than for the same addition of 4-VS. The highest increase was noted for flaxseed oil, for which 80mg 4-VQ addition per 100g of oil resulted in 50% IP increase. The highest absolute values of IP were reached by extra virgin olive oil, naturally abundant in phenolic compounds and with the lowest fatty acids oxidation index. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Evaluation of Yield Component Traits of Honeybee-Pollinated (Apis mellifera L.Rapeseed Canola (Brassica napus L. Evaluación de Parámetros de Rendimiento del Raps (Brassica napus L. Polinizado por Abejas (Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Ximena Araneda Durán

    2010-06-01

    Full Text Available Recent introduction of hybrid varieties raises the question if bees (Apis mellifera L. contribute as pollinator agents in developing the full yield potential of rapeseed (Brassica napus L.. In order to evaluate the yield achieved by B. napus cv. Artus pollinated by A. mellifera testing was carried out in the district of Freire, La Araucanía Region, Chile. This consisted in isolating or excluding rapeseed plants from pollinators with exclusion cages. Treatments applied were total exclusion (T1, partial exclusion (T2 and free pollination (T0 with a density of 6.5 hives ha-1, in order to determine the following yield components traits: grains per silique, siliques per plant, 1000 grain weight and yield. The experimental design used was randomized complete blocks with three treatments and three replicates. Results obtained show that the parameter least affected by bee intervention was the grains per silique variable. In contrast, siliques per plant and 1000 grain weight parameters presented significant differences, contributing to a yield greater than 5 t ha-1; which represented a figure 50.34% higher than in the treatment without bees. It may be concluded that the inclusion of bees in crops is fully justified as a production tool.La reciente introducción de variedades híbridas plantea la interrogante de la contribución que pueda tener la presencia de abejas (Apis mellifera L. como agentes polinizadores para desarrollar en pleno el potencial productivo del raps (Brassica napus L.. Con el objetivo de evaluar el rendimiento alcanzado por B. napus cv. Artus polinizado por A. mellifera, se realizó un ensayo en la localidad de Freire, Región de La Araucanía, Chile. Éste consistió en aislar o excluir las plantas de raps de los polinizadores mediante el uso de jaulas excluidoras. Los tratamientos consistieron en la exclusión total (T1, exclusión parcial (T2 y libre polinización (T0 con una densidad de 6,5 colmenas ha-1, con el fin de determinar

  4. The effect of low calorie structured lipid palm mid fraction, virgin coconut oil and canola oil blend on rats body weight and plasma profile

    Science.gov (United States)

    Bakar, Aftar Mizan Abu; Ayob, Mohd Khan; Maskat, Mohamad Yusof

    2016-11-01

    This study was carried out to evaluate the effect of low calorie cocoa butter substitutes, the structured lipids (SLs) on rats' body weight and plasma lipid levels. The SLs were developed from a ternary blending of palm mid fraction (PMF), virgin coconut oil (VCO) and canola oil (CO). The optimized blends were then underwent enzymatic acidolysisusing sn-1,3-specific lipase. This process produced A12, a SL which hasa solid fat content almost comparable to cocoa butter but has low calories. Therefore, it has a high potential to be used for cocoa butter substitute with great nutritional values. Fourty two Sprague Dawley rats were divided into 6 groups and were force feed for a period of 2 months (56 days) and the group were Control 1(rodent chow), Control 2(cocoa butter), Control 3(PMF:VCO:CO 90:5:5 - S3 blend), High doseSL (A12:C8+S3), Medium dose SL (A12:C8+S3) and Low dose SL (A12:C8+S3). The body weight of each rat was recorded once daily. The plasma profile of treated and control rats, which comprised of total cholesterol, HDL cholesterol, LDL cholesterol and triglyceride was measured on day 0 (baseline) and day 56 (post-treatment). Low calorie structured lipid (SL) was synthesized through acidolysis reaction using sn 1-3-specific lipase of ThermomycesLanuginos (TLIM) among 25 samples with optimum parameter obtained from the RSM. Blood samples for plasma separation were collected using cardiac puncture and requiring anesthesia via tail vein(Anesthetics for rats: Ketamine/Xylazine) for day 0 and day 56. Results of the study showed that rats in group 1 and group 2 has gained weight by 1.66 g and 4.75 g respectively and showed significant difference (p0.05) between G3 on day 0 and 56 days for total cholesterol. Meanwhile, total plasma HDLcholesterol content of rats fed with C8:0 was significantly higher (pstructured lipids effectively altered the plasma cholesterol levels of experimental rats.

  5. Efeito da suplementação de linhaça, óleo de canola e vitamina E na dieta sobre as concentrações de ácidos graxos poliinsaturados em ovos de galinha Effect of dietary supplementation of flaxseed, canola oil and vitamin E upon polyunsaturated fatty acids in chicken eggs

    Directory of Open Access Journals (Sweden)

    M.C.G. Pita

    2006-10-01

    Full Text Available Estudou-se o efeito de diferentes fontes de ácidos graxos insaturados (óleo de canola e semente de linhaça, acrescidas de diferentes teores de alfa-tocoferol nas dietas de poedeiras, sobre a composição de ácidos graxos da gema do ovo foi estudado. Foram utilizadas 288 galinhas da linhagem Babcock que receberam dietas com 6% de óleo de canola, 20% de semente de linhaça moída ou 3% de óleo de canola e 10% de linhaça moída com teores de 0, 100 e 200UI/kg de alfa-tocoferol. As dietas com 20% de semente de linhaça proporcionaram teores mais elevados de ácidos graxos poliinsaturados no ovo com aumento, em particular, dos teores de ácido alfa-linolênico e EPA (ácido eicosapentaenóico e diminuição de ácido araquidônico na gema. Os teores de vitamina E contidos nas rações experimentais não determinaram alteração significativa na deposição dos diferentes ácidos graxos na gema dos ovos, exceto com relação aos ácidos graxos saturados.The effect of dietary sources of polyunsaturated fatty acids - canola oil and flaxseed - with different vitamin E supplementation on the fatty acid deposition into the eggs of 288 Babcock laying hens was investigated. Birds were fed diets containing 6% of canola oil, 20% of flaxseed or a combination of 3% of canola oil and 10% of flaxseed, enriched with 0, 100 or 200Ul of dl-alpha-tocopheril acetate. The inclusion of flaxseed in the diets increased the yolk polyunsaturated fatty acids, mainly alpha-linolenic acid and EPA (eicosapentaenoic acid. The concentration of alpha-tocopherol in the diet did not change the egg yolk, fatty acids deposition but changed the saturated fatty acids deposition.

  6. LIQUID-LIQUID EQUILIBRIUM FOR TERNARY SYSTEMS CONTAINING ETHYLIC BIODIESEL + ANHYDROUS ETHANOL + REFINED VEGETABLE OIL (SUNFLOWER OIL, CANOLA OIL AND PALM OIL): EXPERIMENTAL DATA AND THERMODYNAMIC MODELING

    OpenAIRE

    Dias, T. P. V. B.; Mielke Neto, P.; Ansolin, M.; Follegatti-Romero, L. A.; Batista, E. A. C.; Meirelles, A. J. A.

    2015-01-01

    Abstract Phase equilibria of the reaction components are essential data for the design and process operations of biodiesel production. Despite their importance for the production of ethylic biodiesel, the reaction mixture, reactant (oil and ethanol) and the product (fatty acid ethyl esters) up to now have received less attention than the corresponding systems formed during the separation and purification phases of biodiesel production using ethanol. In this work, new experimental measurements...

  7. LIQUID-LIQUID EQUILIBRIUM FOR TERNARY SYSTEMS CONTAINING ETHYLIC BIODIESEL + ANHYDROUS ETHANOL + REFINED VEGETABLE OIL (SUNFLOWER OIL, CANOLA OIL AND PALM OIL): EXPERIMENTAL DATA AND THERMODYNAMIC MODELING

    OpenAIRE

    T. P. V. B. Dias; P. Mielke Neto; L. A. Follegatti-Romero; E. A. C. Batista; A. J. A. Meirelles

    2015-01-01

    AbstractPhase equilibria of the reaction components are essential data for the design and process operations of biodiesel production. Despite their importance for the production of ethylic biodiesel, the reaction mixture, reactant (oil and ethanol) and the product (fatty acid ethyl esters) up to now have received less attention than the corresponding systems formed during the separation and purification phases of biodiesel production using ethanol. In this work, new experimental measurements ...

  8. Comparison of the Effects of Edible Oils: Rice Bran, Grape Seed, and Canola on Serum Lipid Profile and Paraoxonase Activity in Hyperlipidemic Rats

    Directory of Open Access Journals (Sweden)

    Maryam Ranjbar-Zahedani

    2015-03-01

    Full Text Available Background: Dyslipidemia is considered as one of the crucial contributors to cardio- cerebro-vascular diseases. Objectives: The present study aimed to compare the effects of Rice Barn Oil (RBO, Grape Seed Oil (GSO, and Canola Oil (CO on dyslipidemia and oxidative stress in experimentally induced hyperlipidemic rats. Materials and Methods: In the present experimental study, forty hyperlipidemic male Wistar rats were randomly assigned to 4 groups to receive RBO, GSO, or CO or Soy Bean Oil (SBO, as controls, for 4 weeks following a 3-week period of Atherogenic Diet (AD intake. Blood samples were collected at the beginning of the study, after inducing dyslipidemia, and at the end of the experimental period. Then, the data were entered into the SPSS statistical software (v. 13.0 and analyzed using paired t-test, paired sample Wilcoxon signed rank test, and Kruskal-Wallis test. Results: AD elevated lipid and/or lipoprotein profile and decreased the paraoxonase activity in the hyperlipidemic rats. The results of paired t-test revealed that RBO led to a significant improvement in serum lipoprotein profile and paraoxonase activity. Besides, a significant difference was found in the GSO group regarding all the measured parameters, except for paraoxonase activity. Moreover, CO diet showed a significant hypolipidemic effect on serum Triglyceride (TG and Total Cholesterol (TC and led to a slight improvement in Low Density Lipoprotein-Cholesterol (LDL-C and High Density Lipoprotein-Cholesterol (HDL-C. Conclusions: The results of the present study suggested that vegetable oils, including RBO, GSO, and CO, might improve dyslipidemia and oxidative stress in hyperlipidemic rats. Indeed, substituting saturated fatty acids with unsaturated fatty acids in rats’ diet had beneficial effects on serum lipid profile and oxidative stress. Comparison of the 3 edible oils showed that GSO had a more profound effect on decreasing hyperlipidemia.

  9. A general computation model based on inverse analysis principle used for rheological analysis of W/O rapeseed and soybean oil emulsions

    Science.gov (United States)

    Vintila, Iuliana; Gavrus, Adinel

    2017-10-01

    The present research paper proposes the validation of a rigorous computation model used as a numerical tool to identify rheological behavior of complex emulsions W/O. Considering a three-dimensional description of a general viscoplastic flow it is detailed the thermo-mechanical equations used to identify fluid or soft material's rheological laws starting from global experimental measurements. Analyses are conducted for complex emulsions W/O having generally a Bingham behavior using the shear stress - strain rate dependency based on a power law and using an improved analytical model. Experimental results are investigated in case of rheological behavior for crude and refined rapeseed/soybean oils and four types of corresponding W/O emulsions using different physical-chemical composition. The rheological behavior model was correlated with the thermo-mechanical analysis of a plane-plane rheometer, oil content, chemical composition, particle size and emulsifier's concentration. The parameters of rheological laws describing the industrial oils and the W/O concentrated emulsions behavior were computed from estimated shear stresses using a non-linear regression technique and from experimental torques using the inverse analysis tool designed by A. Gavrus (1992-2000).

  10. Changes in Growth and Oil Yield Indices of Rapeseed (Brassica napus L., cv. Hyola 401 in Different Concentrations andTimes of Application of Supplementary Nitrogen Fertilizer

    Directory of Open Access Journals (Sweden)

    P. Tousi Kehal

    2013-03-01

    Full Text Available In order to investigate the effect of concentration and time of supplementary nitrogen fertilizer spray on growth indices of rapeseed (cv. Hyola 401, a field experiment was conducted at Rice Research Institute of Iran as a randomized complete blocks design with 16 treatments and 3 replications in 2008-2009. The treatments included concentration of nitrogen fertilizer (urea at two levels (5 and 10 ppm in seven levels of application time:1 spraying at 6-8- leaf stage, 2 beginning of stem elongation, 3 prior to flowering, 4 at 6-8- leaf stage + beginning of stem elongation, 5 at 6-8- leaf + prior to flowering, 6 beginning of stem elongation+ prior to flowering, and 7 at 6-8- leaf + beginning of stem elongation+ prior to flowering, which were compared with two control treatments (no fertilizer nitrogen and conventional soil fertilization. Results showed that significant difference was observed between spray treatments including concentration and times of nitrogen application, between controls and between controls with spray treatments, of grain and oil yield, crop growth rate (CGR, leaf area index (LAI and leaf area duration (LAD. Application of nitrogen (10 ppm at the beginning of stem elongation+ prior to flowering stages produced maximum grain yield (4221.7 kg/ha and oil yield (1771.1 kg/ha. Spray treatments produced maximum oil yield index (15.3% compared to controls. Maximum LAI (6.9 and 5.6 respectively, CGR (15.2 and 14.3 g/m2.10 GDD, respectively and LAD (1204 and 1029 cm2/10 GDD, respectively were also obtained from spray application of nitrogen (10 ppm at the beginning of stem elongation+ prior to flowering stages and at 6-8-leaf stage + beginning of stem elongation + prior to flowering. According to the results of the present investigation, it seems that foliar application of supplementary nitrogen fertilizer at the end growth stages (beginning of stem elongation and prior to flowering of rapeseed plants may help to enhance growth indices

  11. Cogeneration of biodiesel and nontoxic rapeseed meal from rapeseed through in-situ alkaline transesterification.

    Science.gov (United States)

    Qian, Junfeng; Yang, Qiuhui; Sun, Fuan; He, Mingyang; Chen, Qun; Yun, Zhi; Qin, Lizhen

    2013-01-01

    In-situ alkaline transesterification of rapeseed oil with methanol for the production of biodiesel and nontoxic rapeseed meal was carried out. Water removal from milled rapeseed by methanol washing was more effective than vacuum drying. The conversion rate of rapeseed oil into FAME was 92%, FAME mass was 8.81 g, glucosinolates content in remaining rapeseed meal was 0.12% by methanol washing, while by vacuum drying the values were 46%, 4.44 g, 0.58%, respectively. In the presence of 0.10 mol/L NaOH in methanol, with methanol/oil molar ratio of 180:1 and a 3h reaction at 40 °C, a conversion rate of 98% was achieved, and the glucosinolates content was reduce to 0.07%, a value which below the GB/T 22514-2008 standard in China. Thus the rapeseed meal can be used as a source of protein in animal feed. The FAME prepared through in-situ alkaline transesterification met the ASTM specifications for biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Combustion, Performance, and Emission Evaluation of a Diesel Engine with Biodiesel Like Fuel Blends Derived From a Mixture of Pakistani Waste Canola and Waste Transformer Oils

    Directory of Open Access Journals (Sweden)

    Muhammad Qasim

    2017-07-01

    Full Text Available The aim of this work was to study the combustion, performance, and emission characteristics of a 5.5 kW four-stroke single-cylinder water-cooled direct-injection diesel engine operated with blends of biodiesel-like fuel (BLF15, BLF20 & BLF25 obtained from a 50:50 mixture of transesterified waste transformer oil (TWTO and waste canola oil methyl esters (WCOME with petroleum diesel. The mixture of the waste oils was named as biodiesel-like fuel (BLF.The engine fuelled with BLF blends was evaluated in terms of combustion, performance, and emission characteristics. FTIR analysis was carried out to know the functional groups in the BLF fuel. The experimental results revealed the shorter ignition delay and marginally higher brake specific fuel consumption (BSFC, brake thermal efficiency (BTE and exhaust gas temperature (EGT values for BLF blends as compared to diesel. The hydrocarbon (HC and carbon monoxide (CO emissions were decreased by 10.92–31.17% and 3.80–6.32%, respectively, as compared to those of diesel fuel. Smoke opacity was significantly reduced. FTIR analysis has confirmed the presence of saturated alkanes and halide groups in BLF fuel. In comparison to BLF20 and BLF25, the blend BLF15 has shown higher brake thermal efficiency and lower fuel consumption values. The HC, CO, and smoke emissions of BLF15 were found lower than those of petroleum diesel. The fuel blend BLF15 is suggested to be used as an alternative fuel for diesel engines without any engine modification.

  13. Effects of Source and Rate of Nitrogen Fertilizer on Yield, Yield Components and Quality of Winter Rapeseed (Brassica napus L. Efecto de la Fuente y Dosis de Fertilizantes Nitrogenados en el Rendimiento, Componentes de Rendimiento y Calidad de Semilla de Canola (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Özden Öztürk

    2010-03-01

    Full Text Available Winter rapeseed (Brassica napus L. has potential to become an alternate oilseed crop both for edible oil production and energy agriculture (biofuel production for Turkey. This study was conducted to determine the effect of year, N sources and doses on the yield and quality traits of winter rapeseed in a cereal system in calcareous soils over two seasons, 2000-2001 and 2001-2002, in Central Anatolia. Three N sources, ammonium sulfate, ammonium nitrate and urea, were applied as hand broadcast on the soil surface at five doses (0, 50, 100, 150, and 200 kg N ha-1. The traits investigated were plant height, number of branches and pods per plant, number of seed per pod, thousand seed weight, seed yield, oil and protein content. There were significantly effects on seed yield, oil and protein content, and other yield components due to N sources and rates. In general, ammonium sulfate and urea gave higher seed yield than ammonium nitrate. Mean values of both seasons indicated that 100 and 150 kg N ha-1 rate increased significantly yield and quality traits with regard to other N treatments. The present results highlight the practical importance of adequate N fertilization and true N source in seed yield in winter rapeseed and suggest that ammonium sulfate at 150 kg N ha-1 will be about adequate to meet crop N requirements.El raps (Brassica napus L. tiene potencial para convertirse en un cultivo oleaginoso alternativo para producción de aceite comestible y agricultura energética (producción de biodiesel en Turquía. Este estudio fue conducido para determinar el efecto del año, fuente y dosis de N en las características de rendimiento y calidad de raps en un sistema cerealero en suelos calcáreos en dos temporadas, 2000-2001 y 2001-2002, en Anatolia Central. Se aplicaron al voleo tres fuentes de N (sulfato de amonio, nitrato de amonio y urea en cinco dosis (0, 50, 100, 150 y 200 kg N ha-1. Las características investigadas fueron altura de planta, n

  14. Bovine Mammary Nutrigenomics and Changes in the Milk Composition due to Rapeseed or Sunflower Oil Supplementation of High-Forage or High-Concentrate Diets.

    Science.gov (United States)

    Leroux, Christine; Bernard, Laurence; Faulconnier, Yannick; Rouel, Jacques; de la Foye, Anne; Domagalski, Jordann; Chilliard, Yves

    2016-01-01

    Fatty acid (FA) composition plays a crucial role in milk nutritional quality. Despite the known nutritional regulation of ruminant milk composition, the overall mammary mechanisms underlying this regulation are far from being understood. The aim of our study was to determine nutritional regulation of mammary transcriptomes in relation to the cow milk composition. Twelve cows received diets differing in the forage-to-concentrate ratio [high forage (HF) and low forage (LF)] supplemented or not with lipids [HF with whole intact rapeseeds (RS) and LF sunflower oil (SO)] in a 4 × 4 Latin square design. Milk production and FA composition were determined. The gene expression profile was studied using RT-qPCR and a bovine microarray. Our results showed a higher amplitude of milk composition and mammary transcriptome responses to lipid supplementation with the LF-SO compared with the LF diet than with the HF-RS compared with the HF diet. Forty-nine differentially expressed genes, including genes involved in lipid metabolism, were identified with LF-SO versus LF, whereas RS supplementation to the HF diet did not affect the mammary transcriptome. This study highlights different responses to lipid supplementation of milk production and composition and mammary transcriptomes depending on the nature of lipid supplementation and the percentage of dietary concentrate. © 2016 S. Karger AG, Basel.

  15. Plasma fatty acid changes following consumption of dietary oils containing n-3, n-6, and n-9 fatty acids at different proportions: preliminary findings of the Canola Oil Multicenter Intervention Trial (COMIT).

    Science.gov (United States)

    Senanayake, Vijitha K; Pu, Shuaihua; Jenkins, David A; Lamarche, Benoît; Kris-Etherton, Penny M; West, Sheila G; Fleming, Jennifer A; Liu, Xiaoran; McCrea, Cindy E; Jones, Peter J

    2014-04-23

    The Canola Oil Multicenter Intervention Trial (COMIT) was a randomized controlled crossover study designed to evaluate the effects of five diets that provided different oils and/or oil blends on cardiovascular disease (CVD) risk factors in individuals with abdominal obesity. The present objective is to report preliminary findings on plasma fatty acid profiles in volunteers with abdominal obesity, following the consumption of diets enriched with n-3, n-6 and n-9 fatty acids. COMIT was conducted at three clinical sites, Winnipeg, Manitoba, Canada, Québec City, Québec, Canada and University Park, Pennsylvania, United States. Inclusion criteria were at least one of the followings: waist circumference (≥90 cm for males and ≥84 cm for females), and at least one other criterion: triglycerides ≥1.7 mmol/L, high density lipoprotein cholesterol safflower oil blend, and corn oil and safflower oil blend. A per protocol approach with a mixed model analysis was decided to be appropriate for data analysis. One hundred and seventy volunteers were randomized and 130 completed the study with a dropout rate of 23.5%. The mean plasma total DHA concentrations, which were analyzed among all participants as a measure of adherence, increased by more than 100% in the DHA-enriched phase, compared to other phases, demonstrating excellent dietary adherence. Recruitment and retention strategies were effective in achieving a sufficient number of participants who completed the study protocol to enable sufficient statistical power to resolve small differences in outcome measures. It is expected that the study will generate important data thereby enhancing our understanding of the effects of n-3, n-6, and n-9 fatty acid-containing oils on CVD risks. ClinicalTrials.gov NCT01351012.

  16. Economics of rapeseed production in Serbia

    Directory of Open Access Journals (Sweden)

    Popović Rade

    2010-01-01

    Full Text Available Rapeseed production in Serbia is characterized by an increasing trend, as a result of positive price signals from international market. Since previous researches on economics of rapeseed production were aimed at non-family farms, focus in this paper is on the same aspects on family farms from lowland production region. Results are analyzed in view of micro and macro-economic trends. Increase of world demand for oil crops, as a result of increasing production of renewable fuels and food needs, causes a trend of higher prices, which will probably remain in the following period. Due to this, opportunities are made for Serbian farmers in lowland production region to increase agriculture area under rapeseed. .

  17. Achievements in NS rapeseed hybrids breeding

    Directory of Open Access Journals (Sweden)

    Marjanović-Jeromela Ana

    2016-01-01

    Full Text Available The increased production of oilseed rape (Brassica napus L. is evident on a global scale, but also in Serbia in the last decade. Rapeseed is used primarily for vegetable oil and processing industry, but also as a source of protein for animal feed and green manure. Following the cultivation of varieties, breeding and cultivation of hybrid rapeseed started in the 1990's, to take advantage of heterosis in F1 generation, while protecting the breeder's rights during seed commercialization. The breeding of hybrid oilseed rape requires high quality starting material (lines with good combining abilities for introduction of male sterility. Ogura sterility system is primarily used at the Institute of Field and Vegetable Crops, Novi Sad, Serbia. To use this system, separate lines are modified with genes for cytoplasmic male sterility (cms female line - mother line and restoration of fertility (Rf male lines - father line. In order to maintain the sterility of the mother line it is necessary to produce a maintainer line of cytoplasmic male sterility. Creation of these lines and hybrids at the Institute of Field and Vegetable Crops was successfully monitored with intense use of cytogenetic laboratory methods. The structure and vitality of pollen, including different phases during meiosis were checked so that cms stability was confirmed during the introduction of these genes into different lines. Rapeseed breeding program in Serbia resulted in numerous varieties through collaboration of researchers engaged in breeding and genetics of this plant species. So far, in addition to 12 varieties of winter rapeseed and two varieties of spring rapeseed, a new hybrid of winter rapeseed NS Ras was registered in Serbia. NS Ras is an early-maturing hybrid characterized by high seed yield and oil content. Average yield of NS Ras for two seasons and three sites was 4256 kg ha-1 of seed and 1704 kg ha-1 of oil. Three promising winter rapeseed hybrids are in the process of

  18. Interesterification of engkabang (Shorea macrophylla) fat--canola oil blend with lipase from Candida antarctica to simulate the properties of lard.

    Science.gov (United States)

    Illiyin, Mohamed Roslan Nur; Marikkar, Jalaldeen Mohamed Nazrim; Loke, Mei Key; Shuhaimi, Musthafa; Mahiran, Basri; Miskandar, Mat Saari

    2014-01-01

    A study was carried out to compare the composition and thermal properties of lard (LD) and engkabang fat (EF) - canola oil (CaO) blend interesterified with Candida antartica lipase (C. antartica). A fat blend EF-4 (40% EF in CaO) was prepared and interesterified using C. antartica lipase at 60°C for different time intervals (6 h, 12 h and 24 h) with 200 rpm agitation. The fat blends before and after interesterification were compared to LD with respect to their slip melting points (SMP), fatty acid and triacyglycerol (TAG) compositions, melting, solidification and polymorphic properties. Result showed that the slip melting point (SMP) of the fat blend interesterified for 6 h was the closest to that of LD. The solid fat content (SFC) values of fat blends interesterified for 12 and 24 h were found to become equal to those of LD within the temperature range of 0 to 20°C. In addition, all three interesterified blends had SFC values similar to those of LD within the temperature range of 30-40°C. According to thermal analysis, the transition of the fat blend interesterified for 24 h appearing at -2.39°C was similar to the low melting thermal transition of LD and the transition of the fat blend interesterified for 12 h appearing at 26.25°C was similar to the high melting thermal transition of LD. However, there is no compatibility between LD and all three interesterified blends with regard to polymorphic behaviour.

  19. Effects of antioxidant additives on engine performance and exhaust emissions of a diesel engine fueled with canola oil methyl ester–diesel blend

    International Nuclear Information System (INIS)

    İleri, Erol; Koçar, Günnur

    2013-01-01

    Highlights: • BHA, BHT, TBHQ, EHN synthetic antioxidants were employed in the study. • Antioxidant additives are a promising candidate for improving cetane number, oxidation stability and decreasing NO x emissions • Cetane number improving efficiency of the antioxidants was ordered as EHN>BHA>BHT>TBHQ. • Formation of CO emissions has been increased with addition of each of the antioxidants to B20. - Abstract: An experimental investigation has been carried out to analyze the effect of antioxidants on engine performance and exhaust emissions of a diesel engine fueled with B20 (20 vol.% canola oil methyl ester and 80 vol.% diesel fuel blend). The four synthetic antioxidants, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), tert-butylhydroquinone (TBHQ) and 2-ethylhexyl nitrate (EHN), were tested on a Land Rover turbocharged direct injection (TDI) 110 type diesel engine with water cooled, 4-cycl and 4-cylinder. The addition of antioxidants to B20 did not cause any negative effect on basic fuel properties of B20. According to engine performance test results, brake specific fuel consumption (BSFC) of B20 with antioxidants decreased compared to those of B20 without antioxidants. A 1000 ppm concentration of TBHQ was optimal as BSFC values were considerably reduced (10.19%) in the whole engine speeds when compared to B20. EHN antioxidant with B20 presented the best mean oxides of nitrogen (NO x ) with a reduction of 4.63%. However, formation of carbon monoxide (CO) emissions has been increased with addition of each of the antioxidants to B20

  20. Technical and Economical Evaluations of Canola Harvesting Losses in Different Maturity Stages Using Three Different Combine Harverster Heads

    Directory of Open Access Journals (Sweden)

    J Taghinazhad

    2013-09-01

    Full Text Available Rapeseed cultivation in Iran is growing rapidly while this product has been facing specific problems. Every year a significant portion of edible oil is imported to the country from other countries. Despite this deficit, a great amount of canola is being lost every year. Therefore, in compliance with technical points, adding a suitable platform to the exisiting machineries may reduce the losses. A field study was conducted in Moghan Agricultural Research Centre to study the technical and economical characteristics of harvesting machineries and evaluate Canola harvesting losses in different maturity stages, using three different combine harvester heads. The experiments were conducted in a completely randomized\tsplit split plot design with four replications. The main plot included seed maturity stage at three levels: A 60%, B 70% and C 80%, and the subplot was the harvester’s ground speed at three levels: A 1.5, B 2.5 and C 3.5 km h-1. The sub-subplot was combine head type with three forms: A Mechanical, B Hydraulically Joybar and C Hydraulically Biso's Head. The results of ANOVA showed that maximum cutter bar losses occurred with Mechanical Head (5.36% while the loss of Hydraulically Joybar's and Biso's head were 4.28 and 4.13 %, respectively. The results also showed that the maximum cutter bar losses occurred when 80% of seeds were matured and adequate time for canola harvesting was 70% of seeds maturity. The results of analysing the effects of harvesting ground speeds showed that the maximum cutter bar losses occurred with the speed of 3.5 km h-1. Finally, the results showed that the minimum cutter bar loss was obtained with Hydraulically Joybar's head considering the benefit per cost ratio. The cost for Mechanical head and Hydraulically Biso's head were 13500 and 262500 Rial ha-1, respectively.

  1. 75 FR 59622 - Supplemental Determination for Renewable Fuels Produced Under the Final RFS2 Program From Canola Oil

    Science.gov (United States)

    2010-09-28

    ..., heating oil or jet fuel). In addition, this rule includes a new regulatory provision establishing a... work would be completed through a supplemental final rulemaking process. This supplemental final rule... the final RFS2 rule, EPA will revisit our lifecycle analyses in the future as new information becomes...

  2. Interference and Mechanism of Dill Seed Essential Oil and Contribution of Carvone and Limonene in Preventing Sclerotinia Rot of Rapeseed

    Science.gov (United States)

    Huang, Bo; He, Jingsheng; Tian, Jun; Zeng, Hong; Chen, Yuxin; Wang, Youwei

    2015-01-01

    This study aimed to evaluate the inhibitory effects of dill (Anethum graveolens L.) seed essential oil against Sclerotinia sclerotiorum and its mechanism of action. The antifungal activities of the two main constituents, namely carvone and limonene, were also measured. Mycelial growth and sclerotial germination were thoroughly inhibited by dill seed essential oil at the 1.00 μL/mL under contact condition and 0.125μL/mL air under vapor condition. Carvone also contributed more than limonene in inhibiting the growth of S. sclerotiorum. Carvone and limonene synergistically inhibited the growth of the fungus. In vivo experiments, the essential oil remarkably suppressed S. sclerotiorum, and considerable morphological alterations were observed in the hyphae and sclerotia. Inhibition of ergosterol synthesis, malate dehydrogenase, succinate dehydrogenase activities, and external medium acidification were investigated to elucidate the antifungal mechanism of the essential oil. The seed essential oil of A. graveolens can be extensively used in agriculture for preventing the oilseed crops fungal disease. PMID:26133771

  3. Interference and Mechanism of Dill Seed Essential Oil and Contribution of Carvone and Limonene in Preventing Sclerotinia Rot of Rapeseed.

    Directory of Open Access Journals (Sweden)

    Bingxin Ma

    Full Text Available This study aimed to evaluate the inhibitory effects of dill (Anethum graveolens L. seed essential oil against Sclerotinia sclerotiorum and its mechanism of action. The antifungal activities of the two main constituents, namely carvone and limonene, were also measured. Mycelial growth and sclerotial germination were thoroughly inhibited by dill seed essential oil at the 1.00 μL/mL under contact condition and 0.125μL/mL air under vapor condition. Carvone also contributed more than limonene in inhibiting the growth of S. sclerotiorum. Carvone and limonene synergistically inhibited the growth of the fungus. In vivo experiments, the essential oil remarkably suppressed S. sclerotiorum, and considerable morphological alterations were observed in the hyphae and sclerotia. Inhibition of ergosterol synthesis, malate dehydrogenase, succinate dehydrogenase activities, and external medium acidification were investigated to elucidate the antifungal mechanism of the essential oil. The seed essential oil of A. graveolens can be extensively used in agriculture for preventing the oilseed crops fungal disease.

  4. Applying Mendelian rules in rapeseed (Brassica napus breeding

    Directory of Open Access Journals (Sweden)

    Marjanović-Jeromela Ana

    2016-01-01

    Full Text Available Rapeseed is one of the most important sources of edible oil, raw material for industry, as well as feed. The yield and quality of rapeseed have significantly been improved in recent decades as a result of intensive breeding and optimized production technology. The application of Mendel's rules in introducing monogenic traits has also contributed to success in rapeseed breeding. Rule 1, which refers to the uniformity of F1 generation, is now the basis of widespread development of rapeseed hybrids. Rule 2, dealing with genetic segregation in the F2 generation, is the basis for understanding the process of breeding lines. Rule 3, regarding the independent segregation of genes and traits, while exempting linked traits, is the basis of combining different desirable properties by selection. In the last few decades, the systematic use of Mendel's rules has contributed to the improvement of many properties of rapeseed, including tolerance to biotic and abiotic stress, yield and seed quality. Particular progress has been made in breeding for resistance to diseases, including the identification of molecular markers for marker-assisted selection. The next objective of rapeseed breeding is to create varieties with improved tolerance to environmental stress (e.g. frost, heat, and drought. Based on Mendel's rules, classical breeding methods and the latest developments in the field of molecular genetics and breeding, future progress is expected in the field of rapeseed breeding with an emphasis on polygenic, quantitative traits such as biomass, seed, and oil yield.

  5. The effect of rapeseed oil biodiesel fuel on combustion, performance, and the emission formation process within a heavy-duty DI diesel engine

    International Nuclear Information System (INIS)

    Lešnik, Luka; Biluš, Ignacijo

    2016-01-01

    Highlights: • Sub-models for parameter determination can be derived using experimental results. • Proposed sub-models can be used for calculation of model parameters. • Biodiesel fuel reduces emissions compared to diesel fuel on full engine load. • Usage of biodiesel fuel slow down the emission formation rate. • Oxygen content in biodiesel fuel decreases the amount of formatted CO emissions. - Abstract: This study presents the influence of biodiesel fuel and blends with mineral diesel fuel on diesel engine performance, the combustion process, and the formation of emissions. The study was conducted numerically and experimentally. The aim of the study was to test the possibility of replacing mineral diesel fuel with biodiesel fuel made from rapeseed oil. Pure biodiesel fuel and three blends of biodiesel fuel with mineral diesel fuel were tested experimentally for that purpose on a heavy-duty bus diesel engine. The engine’s performance, in-cylinder pressure, fuel consumption, and the amount of produced NO_x and CO emissions were monitored during experimental measurements, which were repeated numerically using the AVL BOOST simulation program. New empirical sub-models are proposed for determining a combustion model and emission models parameters. The proposed sub-models allow the determination of necessary combustion and emission model parameters regarding the properties of the tested fuel and the engine speed. When increasing the percentage of biodiesel fuel within the fuel blends, the reduction in engine torque and brake mean effective pressures are obtained for most of the test regimes. The reduction is caused due to the lower calorific value of the biodiesel fuel. Higher oxygen content in biodiesel fuel contributes to a better oxidation process within the combustion chamber when running on pure biodiesel or its blends. Better oxidation further results in a reduction of the formatted carbon and nitrogen oxides. The reduction of carbon emission is also

  6. Study of Sowing Date and Seed Priming Effect on Seed Yield, Its Components and Some of Agronomic and Qualitative Properties of Two Spring Canola Cultivars in Hamedan

    Directory of Open Access Journals (Sweden)

    A. Mohagheghi

    2014-12-01

    Full Text Available To determine the effect of planting date, cultivar and seed priming on yield, yield components, oil and protein content of seeds of two spring canola cultivars a field experiment was conducted in Bu-Ali Sina University in 2012. The experiment was factorial in a randomized complete block design with three replications. Factors consisted of sowing dates (14 and 24th March and 3rd April, seed priming treatments (no-primed, primed with water and zinc sulfate solution and two canola cultivars (Hayola401 and RGS003. The evaluated traits were number of pod per plant, number of seed per pod, 1000 seeds weight, plant height, oil and protein percentage, yields of seed, oil and biologic and harvest index. The results showed that delay in sowing, except of seed protein percentage, decreased all traits. Seed priming could increase traits of plant height, 1000 seed weight, number of seed per pod, oil percentage and yield and protein percentage in all sowing dates. Seed priming with zinc sulfate solution and water increased the number of pod per plant 16.1 and 10.5 percent, respectively compared to no-primed treatment. The highest seed number per pod was achieved through the priming with water and zinc sulfate solution with an average of 14.3, in the first sowing date for Hayola401 cultivar. Priming with water, especially in the third sowing date increased oil yield by 56 percent in RGS003 cultivar in comparison with its no-primed treatment. Also priming with zinc sulfate and water, increased the harvest index 5.04 and 3.7% respectively compared to no-primed treatment. In general in the case of delay in sowing date in spring rapeseed cultivars especially for RGS003, primed seed preferably with zinc sulfate improves the quantitative and qualitative characteristics of the production.

  7. Cluster Analysis in Rapeseed (Brassica Napus L.)

    International Nuclear Information System (INIS)

    Mahasi, J.M

    2002-01-01

    With widening edible deficit, Kenya has become increasingly dependent on imported edible oils. Many oilseed crops (e.g. sunflower, soya beans, rapeseed/mustard, sesame, groundnuts etc) can be grown in Kenya. But oilseed rape is preferred because it very high yielding (1.5 tons-4.0 tons/ha) with oil content of 42-46%. Other uses include fitting in various cropping systems as; relay/inter crops, rotational crops, trap crops and fodder. It is soft seeded hence oil extraction is relatively easy. The meal is high in protein and very useful in livestock supplementation. Rapeseed can be straight combined using adjusted wheat combines. The priority is to expand domestic oilseed production, hence the need to introduce improved rapeseed germplasm from other countries. The success of any crop improvement programme depends on the extent of genetic diversity in the material. Hence, it is essential to understand the adaptation of introduced genotypes and the similarities if any among them. Evaluation trials were carried out on 17 rapeseed genotypes (nine Canadian origin and eight of European origin) grown at 4 locations namely Endebess, Njoro, Timau and Mau Narok in three years (1992, 1993 and 1994). Results for 1993 were discarded due to severe drought. An analysis of variance was carried out only on seed yields and the treatments were found to be significantly different. Cluster analysis was then carried out on mean seed yields and based on this analysis; only one major group exists within the material. In 1992, varieties 2,3,8 and 9 didn't fall in the same cluster as the rest. Variety 8 was the only one not classified with the rest of the Canadian varieties. Three European varieties (2,3 and 9) were however not classified with the others. In 1994, varieties 10 and 6 didn't fall in the major cluster. Of these two, variety 10 is of Canadian origin. Varieties were more similar in 1994 than 1992 due to favorable weather. It is evident that, genotypes from different geographical

  8. Impact of endogenous canola phenolics on the oxidative stability of oil‐in‐water emulsions

    DEFF Research Database (Denmark)

    Sørensen, Ann-Dorit Moltke; Friel, James; Winkler‐Moser, Jill K.

    2013-01-01

    The aim of this study was to evaluate the antioxidative effect of phenolics naturally present in canola seeds and meal. Individual phenolics were extracted from ground, defatted canola seeds, and meal. Fractionated extracts rich in sinapic acid, sinapine, or canolol as well as a non......‐fractionated extract were used. These extracts (100 and 350 µM) were evaluated as antioxidants in stripped canola oil‐in‐water (o/w) emulsion. For comparison, the antioxidative effect of phenolic standards for sinapic acid and sinapine (as sinapine thiocyanate) and butylated hydroxytoluene (BTH) as a positive control....... Therefore, these canola extracts can be used for protecting canola oil emulsion or other emulsions against lipid oxidation. However, the results indicate that the antioxidant activity of the extracts rich in sinapine and canolol had a concentration‐sensitive effect. In order to get the best antioxidative...

  9. Multivariate analysis of quantitative traits can effectively classify rapeseed germplasm

    Directory of Open Access Journals (Sweden)

    Jankulovska Mirjana

    2014-01-01

    Full Text Available In this study, the use of different multivariate approaches to classify rapeseed genotypes based on quantitative traits has been presented. Tree regression analysis, PCA analysis and two-way cluster analysis were applied in order todescribe and understand the extent of genetic variability in spring rapeseed genotype by trait data. The traits which highly influenced seed and oil yield in rapeseed were successfully identified by the tree regression analysis. Principal predictor for both response variables was number of pods per plant (NP. NP and 1000 seed weight could help in the selection of high yielding genotypes. High values for both traits and oil content could lead to high oil yielding genotypes. These traits may serve as indirect selection criteria and can lead to improvement of seed and oil yield in rapeseed. Quantitative traits that explained most of the variability in the studied germplasm were classified using principal component analysis. In this data set, five PCs were identified, out of which the first three PCs explained 63% of the total variance. It helped in facilitating the choice of variables based on which the genotypes’ clustering could be performed. The two-way cluster analysissimultaneously clustered genotypes and quantitative traits. The final number of clusters was determined using bootstrapping technique. This approach provided clear overview on the variability of the analyzed genotypes. The genotypes that have similar performance regarding the traits included in this study can be easily detected on the heatmap. Genotypes grouped in the clusters 1 and 8 had high values for seed and oil yield, and relatively short vegetative growth duration period and those in cluster 9, combined moderate to low values for vegetative growth duration and moderate to high seed and oil yield. These genotypes should be further exploited and implemented in the rapeseed breeding program. The combined application of these multivariate methods

  10. Characteristics of a tractor engine using mineral and biodiesel fuels blended with rapeseed oil Características de um motor de trator alimentado com combustíveis mineral e biodisel misturados com óleo de colza

    Directory of Open Access Journals (Sweden)

    Tone Godeša

    2010-10-01

    Full Text Available One of the most unfavourable characteristics of crude vegetable oil when used as the fuel is the high viscosity. To improve this weakness, oil can be blended with mineral diesel or biodiesel fuels. This study was designed to evaluate how the use of mineral diesel or biodiesel blend with cold pressed rapeseed (Brassica napus oil affects the engine power, torque and fuel consumption. A tractor equipped with direct injection, water cooling system and three-cylinder diesel engine was used for the experiment. Fuels used were standard diesel fuel (diesel, rapeseed oil methyl ester - biodiesel (B100 and their mixtures with 10, 30 and 50 vol. % of cold pressed rapeseed oil (RO. Increased portion of RO in diesel fuel blends had almost no effect on the torque measured on the tractor PTO shaft; it however decreased the maximal power. Fuel blends with B100 and rising RO content (up to 50% gave a positive correlation with maximal torque and power. By increasing the portion of RO from 0 to 50%, the minimal specific fuel consumption increased by 6.65% with diesel and decreased by 2.98% with B100 based fuel.Uma das características mais desfavoráveis dos óleos vegetais crus usados como combustível é a alta viscosidade. Para melhorar este ponto fraco, o óleo pode ser misturado com diesel mineral ou biodiesel. Este estudo foi desenvolvido para avaliar como o uso de diesel mineral ou biodiesel misturado a oleo de colza (Brassica napus extraído por pressão a frio afeta a potência do motor, o torque e o consumo de combustível, empregando um trator equipado com injeção direta, sistema de refrigeração de água e um motor de três cilindros. Os combustíveis utilizados foram o diesel padrão (diesel, éster metílico de óleo de sementes de colza - biodiesel (B100 e suas misturas com 10, 30 e 50 % vol. de óleo de semente de colza pressionado a frio (RO. Maiores proporções de RO nas misturas de diesel praticamente não tiveram efeito sobre o torque

  11. INTERNATIONAL TRADE WHITH RAPESEED

    Directory of Open Access Journals (Sweden)

    Radu Lucian PÂNZARU

    2013-01-01

    Full Text Available The study takes into consideration the international trade situation of rapeseed worldwide. To highlight the situation are analyzed sequentially imports and exports in five units continents: Africa, America, Asia, Europe and Oceania. Applicability and interest increased for trade with this product is emphasized by references from Romania. The study takes into consideration 2008-2010. In terms of world imports and their structure is noted preponderance Europe and Asia in the quantities imported - 87.38% (both, the weights low enough for Oceania and Africa - 0.04 together. If we analyze the situation of exports is apparent fact that Europe remains, as in the case of imports, the main player on the market (48.11%, but not followed by Asia, but of America with a very close relative weight (44 , 45%. Oceania owns more than 5% of world quantitatively of exports, while Asia and Africa have shares almost insignificant - 0.36 and 0.05% respectively. Regarding the situation of global trade balance exchanges for rapeseed can be seen a globally deficient character.

  12. The properties of the mixture of beef tallow and rapeseed oil with a high content of tallow after chemical and enzymatic interesterification

    Directory of Open Access Journals (Sweden)

    Gruczynska, Eliza

    2005-12-01

    Full Text Available A mixture of beef tallow with rapeseed oil (3:1 wt/wt was interesterified using sodium metoxide or immobilized lipases from Rhizomucor miehei (Lipozyme IM and Candida antarctica (Novozym 435 as catalysts. Chemical interesterifications were carried out at 60 and 90 ºC for 0.5 and 1.5 h using 0.4, 0.6 and 1.0 wt-% CH3ONa. Depending on the catalyst used enzymatic interesterifications were carried out at 60 ºC for 8 h (Lipozyme IM or at 80 ºC for 4 h (Novozym 435. The catalysts doses were kept constant (8 % but the water content in catalysts varied from 2 to 10 %. The starting mixture and the interesterified products were separated by column chromatography into a pure triacylglycerol fraction and a non-triacylglycerol fraction, which contained free fatty acids, mono- and diacylglycerols. It was found that the concentrations of free fatty acids and partial acylglycerols increased after interesterification. The slip melting points and solid fat contents of the triacylglycerol fractions isolated from interesterified fats were lower when compared with nonesterified blends. The sn-2 and sn-1,3 distributions of fatty acids in the triacylglycerol fractions before and after interesterification were determined.These distributions were random after chemical interesterification and near random when Novozym 435 was used. When Lipozyme IM was used, the fatty acid composition at the sn-2 position remained practically unchanged compared with the starting blend. The interesterified fats and isolated triacylglycerols had reduced oxidative stability, as assessed by Rancimat induction times. The addition of 0.02 % of BHA or BHT to the interesterified fats improved their stabilitie.Una mezcla de sebo con aceite de colza (3:1 p/p fue interesterificada usando metóxido de sodio y lipasas inmovilizadas de Rhizomucor miehei (Lipozyme IM and Candida antarctica (Novozym 435 como catalizadores. La interesterificación química se llevó a cabo a 60 ºC y 90

  13. Genotypic Correlation and Path Analysis of Some Traits related to Oil Yield and Grain Yield in Canola (Brassica napus L. under Non-stress and Water Deficit Stress Conditions

    Directory of Open Access Journals (Sweden)

    A Ismaili

    2017-03-01

    Full Text Available Introduction Obtaining varieties with acceptable yield and tolerant to different arid and semi-arid climate condition of Iran is an important goal in canola breeding programs. Selection of genotypes base on one or more traits without regarding to correlation between them, could biases the expected results. Therefore, identifying of genetic correlation among traits especially in environmental stress condition is very important. The use of genotypic correlation helps evaluating the magnitude and direction of associations between characters facilitating the application of indirect selection, because genetic changes in a given trait may change other traits, leading to faster and larger genetic gains in plant breeding programs. Therefore, the selection for another trait may result in indirect response in the low heritable trait, provided the following conditions are satisfied: the genetic correlation between them is substantial, and the heritability of the secondary trait is greater than that of the primary trait. The purpose of this study was estimating the total genotypic variability, genotypic correlations, and path analysis among some important traits for selection criteria for improving seed and oil yield in canola under water deficit stress condition. Materials and Methods For evaluation of genetic correlation among traits and identifying important affecting traits on grain yield and oil yield in canola genotypes, an experiment was conducted based on a randomized complete blocks design with three replications in two different conditions of water deficit (stress and non-stress. Different traits were measured including seed yield, 1000-seed weight, number of seeds per pod, number of pods per plant, silique length, oil content, days to maturity, protein content, plant height and water use efficiency. Genotypic and phenotypic correlation coefficients were calculated for ten characters during growing seasons. The genotypic correlation coefficients

  14. Adaptability and stability of canola hybrids in different sowing dates

    Directory of Open Access Journals (Sweden)

    Luiz Henrique da Silva Lima

    Full Text Available ABSTRACT Canola is an important crop in the world market, mainly for its oil being used for human consumption and biodiesel production, being a great economical option for the farmer, which are the reasons to the increase in its cultivation in Brazil. This study aimed to evaluate the adaptability and stability of canola hybrids, depending on the sowing dates. The canola hybrids (Hyola 61, Hyola 76, Hyola 411 and Hyola 433 were evaluated in three sowing dates (04/10, 04/25 and 05/10 in the agricultural years of 2013 and 2014, under a randomized complete block design with five replications. The response variables analyzed were seed yield and oil content. Adaptability and stability of the hybrids were evaluated by three methods: Wricke's ecovalence (1962; confidence index (ANNICCHIARICO, 1992 and method of maximum ideal deviation (LIN; BINNS, 1988. The methodology proposed by Wricke (1962 highlighted as stable the hybrids Hyola 61 for seed yield and Hyola 411 for oil content. In the methodology proposed by Lin and Binns (1988 and Annicchiarico (1992, the hybrids with higher general adaptability and stability were Hyola 411 and 433. These hybrids presented the highest means for seed yield and oil content with predictable and responsive behavior to changes in sowing dates tested in the region of Maringá-PR.

  15. Extremely fast increase in the organic loading rate during the co-digestion of rapeseed oil and sewage sludge in a CSTR--characterization of granules formed due to CaO addition to maintain process stability.

    Science.gov (United States)

    Kasina, M; Kleyböcker, A; Michalik, M; Würdemann, H

    2015-01-01

    In a co-digestion system running with rapeseed oil and sewage sludge, an extremely fast increase in the organic loading rate was studied to develop a procedure to allow for flexible and demand-driven energy production. The over-acidification of the digestate was successfully prevented by calcium oxide dosage, which resulted in granule formation. Mineralogical analyses revealed that the granules were composed of insoluble salts of long chain fatty acids and calcium and had a porous structure. Long chain fatty acids and calcium formed the outer cover of granules and offered interfaces on the inside thereby enhancing the growth of biofilms. With granule size and age, the pore size increased and indicated degradation of granular interfaces. A stable biogas production up to the organic loading rate of 10.4 kg volatile solids m(-3) d(-1) was achieved although the hydrogen concentration was not favorable for propionic acid degradation. However, at higher organic loading rates, unbalanced granule formation and degradation were observed. Obviously, the adaption time for biofilm growth was too short to maintain the balance, thereby resulting in a low methane yield.

  16. Effect of Replacing Pork Fat with Vegetable Oils on Quality Properties of Emulsion-type Pork Sausages

    OpenAIRE

    Lee, Hyun-Jin; Jung, Eun-Hee; Lee, Sang-Hwa; Kim, Jong-Hee; Lee, Jae-Joon; Choi, Yang-II

    2015-01-01

    This study was conducted to evaluate the quality properties of emulsion-type pork sausages when pork fat is replaced with vegetable oil mixtures during processing. Pork sausages were processed under six treatment conditions: T1 (20% pork fat), T2 (10% pork fat + 2% grape seed oil + 4% olive oil + 4% canola oil), T3 (4% grape seed oil + 16% canola oil), T4 (4% grape seed oil + 4% olive oil + 12% canola oil), T5 (4% grape seed oil + 8% olive oil + 8% canola oil), and T6 (4% grape seed oil + 12%...

  17. Characterization and Comparison of Fast Pyrolysis Bio-oils from Pinewood, Rapeseed Cake, and Wheat Straw Using 13C NMR and Comprehensive GC × GC

    NARCIS (Netherlands)

    Negahdar, Leila; Gonzalez-Quiroga, Arturo; Otyuskaya, Daria; Toraman, Hilal E.; Liu, Li; Jastrzebski, Johann T B H; Van Geem, Kevin M.; Marin, Guy B.; Thybaut, Joris W.; Weckhuysen, Bert M.

    2016-01-01

    Fast pyrolysis bio-oils are feasible energy carriers and a potential source of chemicals. Detailed characterization of bio-oils is essential to further develop its potential use. In this study, quantitative 13C nuclear magnetic resonance (13C NMR) combined with comprehensive two-dimensional gas

  18. Nutritional evaluation of canola meals produced from new varieties of canola seeds for poultry.

    Science.gov (United States)

    Chen, X; Parr, C; Utterback, P; Parsons, C M

    2015-05-01

    This study evaluated the nutritional value of 14 canola meals from new varieties of canola and compared them to conventional canola meal samples and soybean meals in chickens. Five experiments that included different sources of canola meals or soybean meals were conducted. For each experiment, a precision-fed rooster assay with conventional or cecectomized roosters was conducted to determine TMEn or amino acid digestibility. Analyzed nutritional composition of the canola meal samples indicated increases in crude protein and amino acids for all test canola meals (49.41 to 50.58% crude protein on a dry matter basis) compared to conventional canola meals (40.73 to 43.01%). All test canola meals also contained lower amounts of neutral detergent fiber and acid detergent fiber. Most test canola meals had significantly higher TMEn values than the conventional canola meals (P nutritional value of the canola meal from new varieties of canola was greater than conventional canola meal for poultry. © 2015 Poultry Science Association Inc.

  19. Morphological characterization of local landraces of rapeseed (Brassica campestris L. var toria of Nepal

    Directory of Open Access Journals (Sweden)

    Salik Ram Gupta

    2015-12-01

    Full Text Available Rapeseed (Brassica campestris L. var toria is the main source of edible oil for Nepalese people. 54 rapeseed lines were collected from different hilly district of Nepal ranging from 987 m to 2550 m altitude. These lines were planted in augmented design for its traits characterization in Khumaltar 2013. Different traits of local rapeseed were characterized, and evaluated. NGRC 02778 performed better followed by SR-02 than local checks Morang-2, Chitwan Local and Unnati in terms of yield, days to maturity and pest infestation. Similarly, genotype SR-18 was late and SR-16 was earlier in terms of days to maturity. In conclusion, SR-02 was found better genotype based on different characteristics measured among all local rapeseeds planted in Khumaltar 2013. Thus SR-2 can be used as parents in crossing material for further breeding purposes and it can also be tested in further trial.

  20. Influence of de-hulled rapeseed roasting on the physicochemical composition and oxidative state of oil; Influencia del tostado de colza descascarillada sobre la composición fisicoquímica y el estado oxidativo del aceite.

    Energy Technology Data Exchange (ETDEWEB)

    Rękas, A.; Siger, A.; Wroniak, M.; Ścibisz, I.; Derewiaka, D.; Anders, A.

    2017-07-01

    The effect of roasting time on the contents of bioactive compounds (tocopherols, phytosterols, phenolic compounds), antioxidant capacity and physicochemical properties of rapeseed oil pressed from de-hulled seeds was investigated. The de-hulled seeds were roasted at a temperature of 165 °C for 20, 40, 60, 80, and 100 min. The results of this study show that a roasting pre-treatment led to a gradual increase in canolol content (from 1.34 to 117.33 mg/100 g), total phytosterols (from 573.51 to 609.86 mg/100 g) and total carotenoids (0.82 to 2.41 mg/100 g), while only slight changes in the contents of tocopherols were noted. With the increase in roasting time a gradual increase in oxidative stability (from 4.27 to 6.85 h), and antioxidant capacity, seen mainly in the hydrophilic fraction of oil (from 0.32 to 2.30 mmol TEAC/l) was found. Although roasting resulted in the formation of primary and secondary oxidation products, the quality parameters of oils were within Codex Alimentarius limits. [Spanish] Se estudió el efecto del tiempo de tostado sobre el contenido de compuestos bioactivos (tocoferoles, fitoesteroles, compuestos fenólicos), capacidad antioxidante y propiedades fisicoquímicas del aceite de prensado de semillas descascarilladas de colza. Las semillas descascarilladas se tostaron a una temperatura de 165 ºC durante 20, 40, 60, 80 y 100 min. Los resultados de este estudio muestran que el pretratamiento con tostado condujo a un aumento gradual del contenido de canolol (de 1,34 a 117,33 mg/100 g), fitosteroles totales (de 573,51 a 609,86 mg/100 g) y carotenoides totales (0,82 a 2,41 mg/ 100 g). Sólo se observaron ligeros cambios en el contenido de tocoferoles. Con el incremento del tiempo de tostado se observó un aumento gradual de la estabilidad oxidativa (de 4,27 a 6,85 h) y se encontró capacidad antioxidante, observada principalmente en la fracción hidrofílica de aceite (de 0,32 a 2,30 mmol TEAC/l). Aunque, el tostado produjo formación de

  1. Resistance of Four Canola Genotypes Against Cabbage Aphid Brevicoryne brassicae (L.

    Directory of Open Access Journals (Sweden)

    S.H. MousaviAnzabi

    2017-12-01

    Full Text Available Introduction: Canola (Brassica napus L. is one of the prominent oil seed plants in Iran. This plant has good agricultural and food nourishment properties, such as resistant to drought, cold and salinity stresses and low level of cholesterol. Cabbage waxy aphid Brevicorynebrassicae (L. is the most important and cosmopolitan pest of cruciferous crops. This aphid is reduced 9 to 77% grain yields and up to 11% oil content. Developing environmental-friendly methods, such as deploying insect-resistant varieties to pest control was advised by scientists. Resistant varieties decrease production costs and can be integrated with other pest control policies in IPM programs. In a greenhouse experiment plants of cabbage, cauliflower wassusceptible host plant and broccoli, turnip, rapeseed, showed resistance to cabbage aphid. With the aim of identifying the existence of resistance resources, a laboratory study was conducted to evaluate the effects of seven canola genotypes on biological parameters of cabbage aphid. Detected resistant variety could be used as a resistance source. Material and Methods: In order to resistancy evaluation of canola, genotypes contain “RGS”,“Hyola-308”,“Hyola-401” and “Sarigol” to cabbage aphid, two experiments was conducted under field and greenhouse conditions in Kahriz region of West Azerbaijan province in 2010.In this study infestation index and tolerance in Field conditions and antibiosis study in greenhouse conditions was evaluated.To study antibiosis, genotypes were planted in pots with 10 replications based on completely random design and cabbage aphid population intrinsic rate of increase (rm was calculated. As followed: (Lotka 1924: 1= other population parameters computed by Carey (1993 method. Field experiment contains10 replications wereperformed based on complete randomized blocks experimental designs that five of them were under natural infestation and five others, free of infestation (control. To

  2. OIL QUALITY OF CANOLA CULTIVARS IN RESPONSE TO WATER STRESS AND SUPER ABSORBENT POLYMER APPLICATION QUALIDADE DE ÓLEO DE CULTIVARES DE CANOLA EM RESPOSTA AO ESTRESSE HÍDRICO E APLICAÇÃO DE POLÍMERO HIDROABSORVENTE

    Directory of Open Access Journals (Sweden)

    Hossein Zahedi

    2011-10-01

    Full Text Available

    Water stress significantly limits plant growth and crop yield. Hence, the efficient management of soil moisture and the study of metabolic changes which occur in response to drought stress are important for agriculture. The present study was conducted to evaluate the effect of six oilseed rape (Brassica napus L. genotypes (Rgs003, Sarigol, Option500, Hyola401, Hyola330, and Hyola420, with and without drought stress, and with and without the use of super absorbent polymer, on oil quality and content. A complete randomized blocks design, with a split-plot arrangement, in a 2x2x6 factorial scheme (drought stress x polymer x genotypes, with three replications, was used. The research was carried out in a farm owned by the Seed and Plant Improvement Institute, in Karaj, Iran. Results showed a significant difference for drought stress levels, presence of super absorbent and genotypes on oil content and composition, as well as on glucosinolate content in the oil. Drought stress conditions decreased the oil and linoleic acid contents, but increased the glucosinolate and stearic acid contents. The use of super absorbent polymer increased the linoleic acid content, but decreased other components. It was possible to conclude that, under drought stress conditions, the super absorbent polymer application, for reserving higher amounts of water in itself, increased the soil ability to store water, what increased the plant vegetative period and consequently the oil quality by decreasing saturate fatty acids and increasing unsaturated fatty acids.

    Lysophosphatidic Acid Acyltransferase from Coconut Endosperm Mediates the Insertion of Laurate at the sn-2 Position of Triacylglycerols in Lauric Rapeseed Oil and Can Increase Total Laurate Levels

    Science.gov (United States)

    Knutzon, Deborah S.; Hayes, Thomas R.; Wyrick, Annette; Xiong, Hui; Maelor Davies, H.; Voelker, Toni A.

    1999-01-01

    Expression of a California bay laurel (Umbellularia californica) 12:0-acyl-carrier protein thioesterase, bay thioesterase (BTE), in developing seeds of oilseed rape (Brassica napus) led to the production of oils containing up to 50% laurate. In these BTE oils, laurate is found almost exclusively at the sn-1 and sn-3 positions of the triacylglycerols (T.A. Voelker, T.R. Hayes, A.C. Cranmer, H.M. Davies [1996] Plant J 9: 229–241). Coexpression of a coconut (Cocos nucifera) 12:0-coenzyme A-preferring lysophosphatitic acid acyltransferase (D.S. Knutzon, K.D. Lardizabal, J.S. Nelsen, J.L. Bleibaum, H.M. Davies, J.G. Metz [1995] Plant Physiol 109: 999–1006) in BTE oilseed rape seeds facilitates efficient laurate deposition at the sn-2 position, resulting in the acccumulation of trilaurin. The introduction of the coconut protein into BTE oilseed rape lines with laurate above 50 mol % further increases total laurate levels. PMID:10398708

  3. Preparation and mechanical properties of edible rapeseed protein films.

    Science.gov (United States)

    Jang, Sung-Ae; Lim, Geum-Ok; Song, Kyung Bin

    2011-03-01

    Edible films were manufactured from rapeseed oil extraction residues. To prepare rapeseed protein (RP) films, various concentrations of plasticizers and emulsifiers were incorporated into the preparation of a film-forming solution. The optimal conditions for the preparation of the RP film were 2% sorbitol/0.5% sucrose as plasticizer and 1.5% polysorbate 20 as an emulsifier. In addition, RP blend films were prepared. Gelidium corneum or gelatin was added to improve the physical properties of the RP film, and the highest tensile strength value of the films was 53.45 MPa for the 3% RP/4% gelatin film. Our results suggest that the RP-gelatin blend film is suitable for applications in food packaging. Edible RP films prepared in the present investigation can be applied in food packaging.

  4. Molecular and systems approaches towards drought-tolerant canola crops.

    Science.gov (United States)

    Zhu, Mengmeng; Monroe, J Grey; Suhail, Yasir; Villiers, Florent; Mullen, Jack; Pater, Dianne; Hauser, Felix; Jeon, Byeong Wook; Bader, Joel S; Kwak, June M; Schroeder, Julian I; McKay, John K; Assmann, Sarah M

    2016-06-01

    1169 I. 1170 II. 1170 III. 1172 IV. 1176 V. 1181 VI. 1182 1183 References 1183 SUMMARY: Modern agriculture is facing multiple challenges including the necessity for a substantial increase in production to meet the needs of a burgeoning human population. Water shortage is a deleterious consequence of both population growth and climate change and is one of the most severe factors limiting global crop productivity. Brassica species, particularly canola varieties, are cultivated worldwide for edible oil, animal feed, and biodiesel, and suffer dramatic yield loss upon drought stress. The recent release of the Brassica napus genome supplies essential genetic information to facilitate identification of drought-related genes and provides new information for agricultural improvement in this species. Here we summarize current knowledge regarding drought responses of canola, including physiological and -omics effects of drought. We further discuss knowledge gained through translational biology based on discoveries in the closely related reference species Arabidopsis thaliana and through genetic strategies such as genome-wide association studies and analysis of natural variation. Knowledge of drought tolerance/resistance responses in canola together with research outcomes arising from new technologies and methodologies will inform novel strategies for improvement of drought tolerance and yield in this and other important crop species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  5. Nutritional evaluation of treated canola straw for ruminants using in ...

    African Journals Online (AJOL)

    The results show that organic matter digestibility (OMD) and metabolizable energy (ME) for treated canola straw were significantly higher than that of untreated canola straw (control) (p<0.001). Gas productions at 24 h for untreated canola straw (control) and treated canola straw were 20.03 and 27.07 ml, respectively.

  6. Disparate metabolic effects of blackcurrant seed oil in rats fed a basal and obesogenic diet.

    Science.gov (United States)

    Jurgoński, Adam; Fotschki, Bartosz; Juśkiewicz, Jerzy

    2015-09-01

    It was hypothesised that blackcurrant seed oil beneficially modulates metabolic disorders related to obesity and its complications. The study also aimed to investigate the potentially adverse effects of an unbalanced diet on the distal intestine. Male Wistar rats were randomly assigned to four groups of eight animals each and were fed a basal or obesogenic (high in fat and low in fibre) diet that contained either rapeseed oil (Canola) or blackcurrant seed oil. A two-way analysis of variance was then applied to assess the effects of diet and oil and the interaction between them. After 8 weeks, the obesogenic dietary regimen increased the body weight, altered the plasma lipid profile and increased the liver fat content and the plasma transaminase activities. In addition, the obesogenic diet decreased bacterial glycolytic activity and short-chain fatty acid formation in the distal intestine. Dietary blackcurrant seed oil improved the lipid metabolism by lowering liver fat accumulation and the plasma triglyceride concentration and atherogenicity as well by increasing the plasma HDL-cholesterol concentration. However, in rats fed an obesogenic diet containing blackcurrant seed oil, the plasma HDL-cholesterol concentration was comparable with both rapeseed oil-containing diets, and a significant elevation of the plasma transaminase activities was noted instead. The obesogenic dietary regimen causes a number of metabolic disorders, including alterations in the hindgut microbial metabolism. Dietary blackcurrant seed oil ameliorates the lipid metabolism; however, the beneficial effect is restricted when it is provided together with the obesogenic diet, and a risk of liver injury may occur.

  7. Evaluation of the Effect of Sulfur Application and Thiobacillus on Some Soil Chemical Characteristics and Yield of Canola in Wheat-Canola Rotation System

    Directory of Open Access Journals (Sweden)

    H. Besharati

    2016-09-01

    Full Text Available Introduction: After soybean and palm oil, canola is third important oil seed in the world which belongs to the genus Brassicaceae, that its seeds contain about 40% oil. The per capita consumption of oil in Iran is about 14 kg, so approximately 900 thousand tons of oil will be required for each year. However, only less than 10% of this oil is produced in the country. In recent years, special attention has been paid to canola cultivation in order to increase oil production, so during recent years an apparent increase in canola cultivated lands is significant. In most of these canola cultivated lands, the soil is calcareous therefore; some available nutrients such as phosphorus, iron and zinc are less than the amounts required by plants. Increasing qualitative and quantitative yield of canola in calcareous soils is a priority to canola cultivation improvement. Sulfur plays an important role in oil content of oily seed crops. On the other hands sulfur oxidation in calcareous soils can improve some nutrients availability. The present study was designed to investigate the effect of sulfur on yield, oil content and nutrients uptake and also its impact on soil chemical properties with 8 treatments, in 3 replications. Materials and Methods: This study was conducted in Ekbatan research station in Hamedan province for 2 years as completely randomized block design with 8 treatments and 3 repetitions. The treatments were: T1: Control (Without sulfur and Thiobacillus, T2: Application of 150 kg sulfur per ha, T3: T2+ Thiobacillus inoculums (2% of applied sulfur, T4: Application of 300 kg sulfur per ha, T5: T4+ Thiobacillus inoculums (2% of applied sulfur, T6: Application of 600 kg sulfur per ha, T7: T6+ Thiobacillus inoculums (2% of applied sulfur T8: Fertilizing based on soil test without sulfur and Thiobacillus. Thiobacillus inoculant containing about 107 cells of Thiobacillus bacteria which belonged to neutrophile Thiobacilli were prepared at soil biology

  8. Integrated control of Rapeseed pests

    International Nuclear Information System (INIS)

    Khattak, S.U.; Hamed, M.

    1990-06-01

    Rapeseed crop is attacked by different insects amongst which cabbage butterfly in Pakistan. Integrated control was conducted and results are mentioned in this report. The mortality in the remaining insecticides varied from 55-83% which was significantly higher than control. The higher dosages of gamma radiation ranged between 60-225 krad and results revealed that the mortality response increased with the post-irradiation time. Mortality was also significantly higher at 80-120 krad as compared to control. These results concluded that mortality was dose dependent. (A.B.)

  9. Sinapinic and protocatechuic acids found in rapeseed: isolation, characterisation and potential benefits for human health as functional food ingredients

    Directory of Open Access Journals (Sweden)

    Quinn Leah

    2017-12-01

    Full Text Available Rapeseed is one of the world’s major oilseeds, and rapeseed oil is produced by pressing of the seeds. This process results in the production of a low-economic-value by-product, rapeseed meal, which is commonly used as animal feed. Rapeseed meal is rich in bioactive phenolic compounds, including sinapinic acid (SA and protocatechuic acid (PCA. Isolation of these bioactive compounds from a by-product of rapeseed oil production is largely in agreement with the current concept of the circular economy and total utilisation of crop harvest using a biorefinery approach. In this review, current information concerning traditional and novel methods to isolate phenolic compounds – including SA and PCA – from rapeseed meal, along with in vitro and in vivo studies concerning the bioactivity of SA and PCA and their associated health effects, is collated. These health effects include anti-inflammatory, anti-cancer, anti-diabetes activities, along with histone deacetylase inhibition and protective cardiovascular, neurological and hepatic effects. The traditional extraction methods include use of solvents and/or enzymes. However, a need for simpler, more efficient methodologies has led to the development of novel extraction processes, including microwave-assisted, ultrasound-assisted, pulsed electric field and high-voltage electrical discharge extraction processes.

  10. Preparation of function-enhanced vegetable oils

    Directory of Open Access Journals (Sweden)

    Hiroshi Maeda

    2016-01-01

    undergo formation lipid (alkyl peroxyl radicals which (ROO. in the presence of heme or other metallic compounds (ROOH à ROO. (Figure 1 [5, 11]. This peroxyradical can break DNA/RNA or damage proteins and lead to cell death [4-7, 11]. Time course of carotenoids extraction into the purified canola oil, in which 1 or 5% (dry wt/wt of tomato juice waste-residue yielded a significantly high carotenoid values, and extraction reached a plateau in about two to three weeks (Fig. 2A. The absorption spectrum shows multiple peaks corresponding lycopene (Fig. 2B. (b Anti-POV after heat and light exposure. Upon exposure to oxidation condition, POV was significantly suppressed to 25% after 5 hrs at 150oC and light exposure (above to the 5% (w/w tomato-residue-treated oil, and showed suppression of POV to about 25% (net at 5 hrs (Fig. 3. (c TBARS value after light and heat exposure. Figure 4C, D shows results of function fortified effect in oils treated with tomato- and wine ferment-waste-residues. They also showed significant suppression against the increase of acid value and POV (Figure 4A, B, which is consistent with absorption spectra. These results indicate antioxidant components in dried tomato juice-waste-residues and wine ferment waste-residues were extracted into commercial low functional grade rapeseed oil. The results warrant a simple procedure to convert low quality edible oils to function-enriched high grade oils. The procedure not only prevents oxidation of oils, but also beneficial in providing various functional components such as polyphenolics, flavonoids, carotenoid, or lycopene. This method and products thus obtained will ultimately benefit human health such as prevention of cancer and inflammation [8, 9, 11]. We have previously published that alkyl peroxyradical facilitates promotion step in carcinogenesis, and it was suppressed by various vegetable soup extracts, thus in suppressing promotion step in multistep carcinogenesis [2, 4, 10]. The step may be related to

  11. A large-scale field study examining effects of exposure to clothianidin seed-treated canola on honey bee colony health, development, and overwintering success

    OpenAIRE

    Cutler, G. Christopher; Scott-Dupree, Cynthia D.; Sultan, Maryam; McFarlane, Andrew D.; Brewer, Larry

    2014-01-01

    In summer 2012, we initiated a large-scale field experiment in southern Ontario, Canada, to determine whether exposure to clothianidin seed-treated canola (oil seed rape) has any adverse impacts on honey bees. Colonies were placed in clothianidin seed-treated or control canola fields during bloom, and thereafter were moved to an apiary with no surrounding crops grown from seeds treated with neonicotinoids. Colony weight gain, honey production, pest incidence, bee mortality, number of adults, ...

  12. Tobacco Rotated with Rapeseed for Soil-Borne Phytophthora Pathogen Biocontrol: Mediated by Rapeseed Root Exudates

    Directory of Open Access Journals (Sweden)

    Yuting Fang

    2016-06-01

    Full Text Available Black shank, caused by Phytophthora parasitica var. nicotianae, is a widespread and destructive disease of tobacco. Crop rotation is essential in controlling black shank. Here, we confirmed that rotating black shank-infested fields with rapeseed (Brassica napus suppressed the incidence this disease. Further study demonstrated that rapeseed roots have a strong ability to attract zoospores and subsequently stop the swimming of zoospores into cystospores. Then, rapeseed roots secrete a series of antimicrobial compounds, including 2-butenoic acid, benzothiazole, 2-(methylthiobenzothiazole, 1-(4-ethylphenyl-ethanone, and 4-methoxyindole, to inhibit the cystospore germination and mycelial growth of P. parasitica var. nicotianae. Thus, rapeseed rotated with tobacco suppresses tobacco black shank disease through the chemical weapons secreted by rapeseed roots.

  13. The effect of different physical forms of rapeseed as a fat supplement on the activity of some enzymes in the duodenal chyme of dairy cows

    DEFF Research Database (Denmark)

    Moharerry, A.; Brask, Maike; Weisbjerg, Martin Riis

    2014-01-01

    Studies on nutritional regulation of digestive enzymes in ruminants are scarce. Fat supplementation of diets for dairy cows changes the supply of nutrients for absorption and transport. The aim of this experiment was to study the effect of the physical form of rapeseed (Brassica napus) fat......) and three fat-supplemented rations with either rapeseed cake (RSC), whole cracked rape seed (WCR), or rapeseed oil (RSO). The correlation coefficients among duodenal enzyme activities and the relationship between α-amylase and protease activities were examined. Diurnal samples were taken from the duodenum...

  14. Canola meal on starting pigs feeding

    Directory of Open Access Journals (Sweden)

    Lina Maria Peñuela-Sierra

    2015-12-01

    Full Text Available Three experiments were carried out to determine the nutritional values and evaluate the performance of piglets fed on canola meal. In experiment I, a digestibility assay was conducted using fourteen barrow pigs, with an initial body weight of 20.62±3.30 kg. The evaluated feedstuff was canola meal, with a level of 250 g/kg in the basal diet (corn + soybean meal-based. The experimental unit consisted of one pig, with a total of seven experimental units per diet. The values as (fed basis of digestible (DE and metabolizable (ME energy of canola meal were 2,995 kcal/kg and 2,796 kcal/kg, respectively. In experiment II, ileal digestibility assays were carried out to determine the apparent and true ileal digestibility coefficient and digestible amino acids. Three crossbred pigs were used, with a BW of 38.6±1.98 kg. The treatments consisted of two diets, with a single source of protein (canola meal and one protein-free diet (OFD. The values of digestible amino acids in canola meal were as follows: lysine: 11.8 g/kg; methionine+cystine: 9.1 g/kg; threonine: 7.9 g/kg; tryptophan: 2.4 g/kg; leucine: 15.7 g/kg; and isoleucine: 8.7 g/kg. In experiment III, 60 piglets (BW= 15.08±0.72 kg to 30.26±2.78 kg were allotted in a completely randomized design. The treatments consisted of four diets with increasing levels of canola meal (50, 100, 150 and 200 g/kg, six replicates and experimental unit consisted of two pigs. Additionally, a control diet was formulated containing 0.0 g/kg CM. Regression analysis indicates that there was no effect (P?0.05 of the level of canola meal inclusion on pigs performance. The performance results suggest that it is feasible to use up to 200 g/kg of canola meal in starting pigs diet, without impairing performance and the feeding cost.

  15. Water and temperature stresses impact canola (Brassica napus L.) fatty acid, protein and yield over nitrogen and sulfur

    Science.gov (United States)

    Interactive effects of weather and soil nutrient status often control crop productivity. An experiment was conducted to determine effects of N and S fertilizer rate, soil water, and atmospheric temperature on canola fatty acid (FA), total oil, protein and grain yield. Nitrogen and S were assessed in...

  16. Light response of sunflower and canola as affected by plant density, plant genotype and N fertilization.

    Science.gov (United States)

    Soleymani, A

    2017-08-01

    Crop response to light is an important parameter determining crop growth. Three field (split plots) experiments were conducted to investigate the effects of plant density, plant genotype and N fertilization on the light absorption and light extinction of sunflower (Helianthus annuus L.) and canola (Brassica napus L.). A detailed set of plant growth, light absorption and crop yield and oil related parameters were determined. Light was measured at noon during the sunny days with clear sky. In experiment I, although the plant density (PD) of 14 resulted in the highest rate of sunflower light absorption (31.37%) and light extinction (0.756), the highest rate of grain yield and grain oil yield was resulted at PD12 at 3639 and 1457.9kg/ha, respectively; as well as by genotype SUP.A. In experiment II (canola), PD80 resulted in the highest rate of light absorption (13.13%), light extinction (0.63), grain yield (2189.4kg/ha) and grain oil yield (556.54kg/ha). This was also the case for Genotype H. In experiment III (canola), although N150 resulted in the highest rate of light absorption (10.74%) and light extinction (0.48), the highest rate of grain yield (3413.6kg/ha) and grain oil yield (891.86kg/ha) was resulted at N100 as well as by Genotype H401. Results indicate how light properties, crop growth and yield of sunflower and canola can be affected by plant and environmental parameters, which are also of practical use by farmers. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Unraveling the genetic basis of seed tocopherol content and composition in rapeseed (Brassica napus L.).

    Science.gov (United States)

    Wang, Xingxing; Zhang, Chunyu; Li, Lingjuan; Fritsche, Steffi; Endrigkeit, Jessica; Zhang, Wenying; Long, Yan; Jung, Christian; Meng, Jinling

    2012-01-01

    Tocopherols are important antioxidants in vegetable oils; when present as vitamin E, tocopherols are an essential nutrient for humans and livestock. Rapeseed (Brassica napus L, AACC, 2 n = 38) is one of the most important oil crops and a major source of tocopherols. Although the tocopherol biosynthetic pathway has been well elucidated in the model photosynthetic organisms Arabidopsis thaliana and Synechocystis sp. PCC6803, knowledge about the genetic basis of tocopherol biosynthesis in seeds of rapeseed is scant. This project was carried out to dissect the genetic basis of seed tocopherol content and composition in rapeseed through quantitative trait loci (QTL) detection, genome-wide association analysis, and homologous gene mapping. We used a segregating Tapidor × Ningyou7 doubled haploid (TNDH) population, its reconstructed F(2) (RC-F(2)) population, and a panel of 142 rapeseed accessions (association panel). Genetic effects mainly contributed to phenotypic variations in tocopherol content and composition; environmental effects were also identified. Thirty-three unique QTL were detected for tocopherol content and composition in TNDH and RC-F(2) populations. Of these, seven QTL co-localized with candidate sequences associated with tocopherol biosynthesis through in silico and linkage mapping. Several near-isogenic lines carrying introgressions from the parent with higher tocopherol content showed highly increased tocopherol content compared with the recurrent parent. Genome-wide association analysis was performed with 142 B. napus accessions. Sixty-one loci were significantly associated with tocopherol content and composition, 11 of which were localized within the confidence intervals of tocopherol QTL. This joint QTL, candidate gene, and association mapping study sheds light on the genetic basis of seed tocopherol biosynthesis in rapeseed. The sequences presented here may be used for marker-assisted selection of oilseed rape lines with superior tocopherol

  18. Unraveling the genetic basis of seed tocopherol content and composition in rapeseed (Brassica napus L..

    Directory of Open Access Journals (Sweden)

    Xingxing Wang

    Full Text Available BACKGROUND: Tocopherols are important antioxidants in vegetable oils; when present as vitamin E, tocopherols are an essential nutrient for humans and livestock. Rapeseed (Brassica napus L, AACC, 2 n = 38 is one of the most important oil crops and a major source of tocopherols. Although the tocopherol biosynthetic pathway has been well elucidated in the model photosynthetic organisms Arabidopsis thaliana and Synechocystis sp. PCC6803, knowledge about the genetic basis of tocopherol biosynthesis in seeds of rapeseed is scant. This project was carried out to dissect the genetic basis of seed tocopherol content and composition in rapeseed through quantitative trait loci (QTL detection, genome-wide association analysis, and homologous gene mapping. METHODOLOGY/PRINCIPAL FINDINGS: We used a segregating Tapidor × Ningyou7 doubled haploid (TNDH population, its reconstructed F(2 (RC-F(2 population, and a panel of 142 rapeseed accessions (association panel. Genetic effects mainly contributed to phenotypic variations in tocopherol content and composition; environmental effects were also identified. Thirty-three unique QTL were detected for tocopherol content and composition in TNDH and RC-F(2 populations. Of these, seven QTL co-localized with candidate sequences associated with tocopherol biosynthesis through in silico and linkage mapping. Several near-isogenic lines carrying introgressions from the parent with higher tocopherol content showed highly increased tocopherol content compared with the recurrent parent. Genome-wide association analysis was performed with 142 B. napus accessions. Sixty-one loci were significantly associated with tocopherol content and composition, 11 of which were localized within the confidence intervals of tocopherol QTL. CONCLUSIONS/SIGNIFICANCE: This joint QTL, candidate gene, and association mapping study sheds light on the genetic basis of seed tocopherol biosynthesis in rapeseed. The sequences presented here may be used

  19. Effect of pressing and combination of three storage temperatures and times on chemical composition and fatty acid profile of canola expellers

    Directory of Open Access Journals (Sweden)

    Matteo Guadagnin

    2013-05-01

    Full Text Available This experiment investigated the effects of combinations of three temperatures and storage times on chemical composition, fatty acid profile, and oxidative stability of canola expellers obtained from the cold-pressing extraction of oil. Canola seeds were single-crushed at moderate temperatures (60°C during 3 pressing sessions. Nine samples (100±1 g of each session were collected, inserted into sealed bags, stored at three temperatures (12, 24, 36°C over 3 periods of time (10, 20, 30 d. Then, samples (100±1 g of canola seeds collected before each pressing session and canola expellers collected before and after each storage time were analyzed for chemical composition, fatty acid profile, peroxide number and Kreis test. Before storage, the fatty acid profile of canola seeds and expellers differed significantly, except for myristic (P=0.18, palmitic (P=0.57, oleic (P=0.07, and α-linolenic acids (P=0.45. Compared to canola seeds, expellers showed greater content of saturated, poly-unsaturated, and n-6 fatty acids (P<0.01, but a lower content of mono-unsaturated fatty acids (P<0.01. Peroxide values were definitely (P<0.01 greater for expellers and averaged 4.22 and 4.11 mEq/kg fat before and after storage, respectively. The Kreis test was negative for all samples. Under different temperatures and times of storage, canola expellers showed to maintain a good oxidative stability, as highlighted by low peroxide values (<10 mEq/kg fat and negative response for Kreis test. Canola expellers obtained by on-farm cold extraction, despite great oil residual (from 17 to 19% ether extracts on dry matter basis, can be stored at farm without significant chemical and nutritional changes.

  1. Seed bank modelling of volunteer oil seed rape: from seeds fate in the soil to seedling emergence Modelagem do banco de sementes de canola: do destino das sementes no solo à emergência das plântulas

    Directory of Open Access Journals (Sweden)

    E. Soltani

    2013-06-01

    Full Text Available Studies were conducted to estimate parameters and relationships associated with sub-processes in soil seed banks of oilseed rape in Gorgan, Iran. After one month of burial, seed viability decreased to 39%, with a slope of 2.03% per day, and subsequently decreased with a lower slope of 0.01 until 365 days following burial in the soil. Germinability remained at its highest value in autumn and winter and decreased from spring to the last month of summer. Non-dormant seeds of volunteer oilseed rape did not germinate at temperatures lower than 3.8 ºC and a water potential of -1.4 MPa ºd. The hydrothermal values were 36.2 and 42.9 MPa ºd for sub- and supra-optimal temperatures, respectively. Quantification of seed emergence as influenced by burial depth was performed satisfactorily (R² = 0.98 and RMSE = 5.03. The parameters and relationships estimated here can be used for modelling soil seed bank dynamics or establishing a new model for the environment.Estudos foram realizados para estimar os parâmetros e as relações ligados a subprocessos em bancos de sementes de canola no solo, em Gorgan, Iran. Após um mês de enterrio, a viabilidade das sementes diminuiu para 39%, com inclinação de 2,03% ao dia; posteriormente, diminuiu com menor inclinação: de 0,01 até 365 dias após o enterrio no solo. A germinação manteve-se em seu maior valor no outono e inverno, reduzindo da primavera ao último mês do verão. Sementes de canola não dormentes não germinaram em temperaturas abaixo de 3,8 °C e potencial hídrico abaixo de -1,4 Mpaºd. Os valores hidrotermais foram de 36,2 e 42,9 Mpaºd para temperaturas sub e supraótima, respectivamente. A quantificação da emergência das sementes sob influência da profundidade de enterrio foi delineada de forma satisfatória (R²= 0,98 e RMSE = 5,03. Os parâmetros e as relações estimadas neste estudo podem ser utilizados em modelagens do banco de sementes do solo ou para estabelecer um novo modelo para

  2. Energy and environmental analysis of a rapeseed biorefinery conversion process

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Balzan, Alberto; Astrup, Thomas Fruergaard

    2013-01-01

    )-based environmental assessment of a Danish biorefinery system was carried out to thoroughly analyze and optimize the concept and address future research. The LCA study was based on case-specific mass and energy balances and inventory data, and was conducted using consequential LCA approach to take into account market...... mechanisms determining the fate of products, lost opportunities and marginal productions. The results show that introduction of enzymatic transesterification and improved oil extraction procedure result in environmental benefits compared to a traditional process. Utilization of rapeseed straw seems to have...... positive effects on the greenhouse gases (GHG) footprint of the biorefinery system, with improvements in the range of 9 % to 29 %, depending on the considered alternative. The mass and energy balances showed the potential for improvement of straw treatment processes (hydrothermal pre-treatment and dark...

  3. Can rapeseed lower methane emission from heifers?

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Sørensen, Martin Tang; Weisbjerg, Martin Riis

    2013-01-01

    Twelve heifers were assigned to either a control diet (CON) with 26 g fat per kg dry matter (DM) or a supplemented diet (FAT) with crushed rapeseed with 53 g fat per kg DM. Methane (CH4) emission was measured by open-circuit indirect calorimetry for four days when the heifers weighed approximately...

  4. Fungal enzyme production in seeds of transgenic canola plants for conversion of cellulosic materials to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, K.J.; Beauchemin, K.A. [Agriculture and Agri-Food Canada, Lethbridge, AB (Canada); Moloney, M.M. [Calgary Univ., AB (Canada). Dept. of Biological Sciences

    1997-07-01

    The fuel alcohol industry makes use of industrial enzymes to effectively degrade fibrous plant cell walls. Carbohydrates in cellulosic materials are in the form of complex sugars that can be hydrolyzed to simple sugars by fungal fibrolytic enzymes such as cellulases and xylanases. This study was conducted to find a cost effective way to produce fibrolytic enzymes using gene fusion technology in which a xylanase gene and a cellulase gene from two fungal species are introduced into canola to be a carrier for the production of these enzymes. The two genes had been analyzed for maximal enzymatic activity to minimize side effects. Results of the study demonstrated the stability and potential of transgenic oil-bodies as an immobilized enzyme matrix, and showed that it is possible to express fibrolytic enzymes in canola.

  5. Oxidative stability of diacylglycerol oil and butter blends containing diacylglycerols

    DEFF Research Database (Denmark)

    Kristensen, Janni Brogaard; Nielsen, Nina Skall; Jacobsen, Charlotte

    2006-01-01

    Diacylglycerol (DAG) oils produced from sunflower oil and traditional sunflower oil were stored for 20 wk at 38 degrees C, and their oxidative stability was measured. Moreover, two butter blends were produced containing 40 wt-% DAG oil made from sunflower oil or rapeseed oil, respectively, as well...... as two control butter blends with sunflower oil or rapeseed oil. Their oxidative stability during storage at 5 degrees C for up to 12 wk was examined by similar means as for the pure oils. The storage study of the oils indicated that the DAG oil was oxidatively less stable as compared to sunflower oil......, but that they had similar sensory quality. Storage of the butter blends revealed that blends with the two types of rapeseed oil (triacylglycerol (TAG) or DAG oil) were oxidatively more stable than the blends containing oils from sunflower. There was no unambiguous indication of DAG butter blends having a different...

  6. Genomic Prediction of Testcross Performance in Canola (Brassica napus)

    Science.gov (United States)

    Jan, Habib U.; Abbadi, Amine; Lücke, Sophie; Nichols, Richard A.; Snowdon, Rod J.

    2016-01-01

    Genomic selection (GS) is a modern breeding approach where genome-wide single-nucleotide polymorphism (SNP) marker profiles are simultaneously used to estimate performance of untested genotypes. In this study, the potential of genomic selection methods to predict testcross performance for hybrid canola breeding was applied for various agronomic traits based on genome-wide marker profiles. A total of 475 genetically diverse spring-type canola pollinator lines were genotyped at 24,403 single-copy, genome-wide SNP loci. In parallel, the 950 F1 testcross combinations between the pollinators and two representative testers were evaluated for a number of important agronomic traits including seedling emergence, days to flowering, lodging, oil yield and seed yield along with essential seed quality characters including seed oil content and seed glucosinolate content. A ridge-regression best linear unbiased prediction (RR-BLUP) model was applied in combination with 500 cross-validations for each trait to predict testcross performance, both across the whole population as well as within individual subpopulations or clusters, based solely on SNP profiles. Subpopulations were determined using multidimensional scaling and K-means clustering. Genomic prediction accuracy across the whole population was highest for seed oil content (0.81) followed by oil yield (0.75) and lowest for seedling emergence (0.29). For seed yieId, seed glucosinolate, lodging resistance and days to onset of flowering (DTF), prediction accuracies were 0.45, 0.61, 0.39 and 0.56, respectively. Prediction accuracies could be increased for some traits by treating subpopulations separately; a strategy which only led to moderate improvements for some traits with low heritability, like seedling emergence. No useful or consistent increase in accuracy was obtained by inclusion of a population substructure covariate in the model. Testcross performance prediction using genome-wide SNP markers shows considerable

  7. Evaluating the environmental sustainability of energy crops: A life cycle assessment of Spanish rapeseed and Argentinean soybean cultivation

    Directory of Open Access Journals (Sweden)

    Francisca Fernández-Tirado

    2017-04-01

    Full Text Available Rapeseed oil is expected to be increasingly used in Spain as raw material to produce biodiesel to the detriment of extra-EU imports of biodiesel mainly based on soybean oil from Argentina. Therefore, the environmental impacts produced throughout the life cycle of energy crops used to produce biodiesel which is consumed in Spain could be radically affected. In this context, the environmental impacts of rapeseed cultivation in Spain and soybean cultivation in Argentina, were compared under certain growing conditions using Life Cycle Assessment (LCA. Two methods of calculation for Life Cycle Impact Assessment (LCIA and two functional units (FUs were used to test potential biases. The results showed that the cultivation of soybean in Argentina had, in general, fewer environmental impacts than rapeseed cultivation in Spain when the FU was the area of cultivation, but these findings are inverted when the analysis is conducted according to the energy content of the biodiesel obtained from these crops. Soybean in fact has very low oil content, meaning that larger areas of land are required to obtain the same amount of biodiesel and that consequently it has a higher environmental impact by energy content. Fertilization was, in general, the process that generated the greatest environmental burdens, and is an area in which improvement is necessary in order to increase sustainability, particularly with regard to Spanish rapeseed.

  8. Evaluating the environmental sustainability of energy crops: A life cycle assessment of Spanish rapeseed and Argentinean soybean cultivation

    International Nuclear Information System (INIS)

    Fernández-Tirado, F.; Parra-López, C.; Romero-Gámez, M.

    2017-01-01

    Rapeseed oil is expected to be increasingly used in Spain as raw material to produce biodiesel to the detriment of extra-EU imports of biodiesel mainly based on soybean oil from Argentina. Therefore, the environmental impacts produced throughout the life cycle of energy crops used to produce biodiesel which is consumed in Spain could be radically affected. In this context, the environmental impacts of rapeseed cultivation in Spain and soybean cultivation in Argentina, were compared under certain growing conditions using Life Cycle Assessment (LCA). Two methods of calculation for Life Cycle Impact Assessment (LCIA) and two functional units (FUs) were used to test potential biases. The results showed that the cultivation of soybean in Argentina had, in general, fewer environmental impacts than rapeseed cultivation in Spain when the FU was the area of cultivation, but these findings are inverted when the analysis is conducted according to the energy content of the biodiesel obtained from these crops. Soybean in fact has very low oil content, meaning that larger areas of land are required to obtain the same amount of biodiesel and that consequently it has a higher environmental impact by energy content. Fertilization was, in general, the process that generated the greatest environmental burdens, and is an area in which improvement is necessary in order to increase sustainability, particularly with regard to Spanish rapeseed.

  9. Evaluating the environmental sustainability of energy crops: A life cycle assessment of Spanish rapeseed and Argentinean soybean cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Tirado, F.; Parra-López, C.; Romero-Gámez, M.

    2017-09-01

    Rapeseed oil is expected to be increasingly used in Spain as raw material to produce biodiesel to the detriment of extra-EU imports of biodiesel mainly based on soybean oil from Argentina. Therefore, the environmental impacts produced throughout the life cycle of energy crops used to produce biodiesel which is consumed in Spain could be radically affected. In this context, the environmental impacts of rapeseed cultivation in Spain and soybean cultivation in Argentina, were compared under certain growing conditions using Life Cycle Assessment (LCA). Two methods of calculation for Life Cycle Impact Assessment (LCIA) and two functional units (FUs) were used to test potential biases. The results showed that the cultivation of soybean in Argentina had, in general, fewer environmental impacts than rapeseed cultivation in Spain when the FU was the area of cultivation, but these findings are inverted when the analysis is conducted according to the energy content of the biodiesel obtained from these crops. Soybean in fact has very low oil content, meaning that larger areas of land are required to obtain the same amount of biodiesel and that consequently it has a higher environmental impact by energy content. Fertilization was, in general, the process that generated the greatest environmental burdens, and is an area in which improvement is necessary in order to increase sustainability, particularly with regard to Spanish rapeseed.

  10. Properties of a membrane-bound triglyceride lipase of rapeseed (Brassica napus L.) cotyledons.

    Science.gov (United States)

    Rosnitschek, I; Theimer, R R

    1980-04-01

    The properties of the alkaline lipase activity (EC 3.1.1.3) that was recovered almost completely from a microsomal membrane fraction of 4-d-old rapeseed (Brassica napus L.) cotyledons were studied employing a titrimetric test procedure. The apparent KM was 6.5 mmol l(-1), with emulgated sunflower oil as the substrate. The products of triglyceride hydrolysis in vitro were glycerol, free fatty acids, and minor amounts of mono- and diglycerides. Maximum lipase activity depended on the preincubation of the lipolytic membrane fraction in 0.15 mol l(-1) NaCl and on the presence of at least 0.1 mol l(-1) NaCl in the test mixture. Desoxycholate and up to 0.1 mol l(-1) CaCl2 also activated the enzyme while EDTA and detergents such as trito x-100, digitonin, tween 85, and sodium dodecylsulfate were inhibitory. The rapeseed lipase displayed a conspicuous substrate selectivity among different plant triglycerides; the activity was inversely correlated with the oleic acid content of the oils. Water-soluble triacetin and the phospholipid lecithin were not hydrolyzed. Increasing amounts of free fatty acids reduced lipase activity; erucic acid, a major component of rapeseed oil, exhibited the strongest effect, suggesting a possible role in the regulation of lipase activity in vivo. The data demonstrate that the lipolytic membrane fraction houses a triglyceride lipase with properties similar to other plant and animal lipases. It can both qualitatively and quantitatively account for the fat degradation in rapeseed cotyledons. The evidence that provides further reason to acknowledge the membranous appendices of the spherosomes as the intracellular site of lipolysis is discussed.

  11. Influences of Fuel Additive, Crude Palm and Waste Cooking Oil on Emission Characteristics of Small Diesel Engine

    Science.gov (United States)

    Khalid, Amir; Jaat, Norrizam; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari; Basharie, Mariam

    2017-08-01

    Major research has been conducted on the use of input products, such as rapeseed, canola, soybean, sunflower oil, waste cooking oil (WCO), crude palm oil (CPO) and crude jatropha oil as alternative fuels. Biodiesel is renewable, biodegradable and oxygenated, where it can be easily adopted by current existing conventional diesel engine without any major modification of the engine. To meet the future performance and emission regulations, is urged to improve the performance and exhaust emissions from biodiesel fuels. Hence, further investigation have been carried out on the emission characteristics of small diesel engine that fuelled by variant blending ratio of WCO and CPO with booster additive. For each of the biodiesel blends ratio from 5 to 15 percent volume which are WCO5, WCO10 and WCO15 for WCO biodiesel and CPO5, CPO10 and CPO15 for CPO biodiesel. The exhaust emissions were measured at engine speeds varied at 2000 rpm and 2500 rpm with different booster additive volume DRA (biodiesel without additive), DRB (0.2 ml) and DRC (0.4 ml). Emissions characteristics that had been measured were Hydrocarbon (HC), Carbon Monoxide (CO), Carbon Dioxide (CO2), Nitrogen Oxide (NOx), and smoke opacity. The results showed that increased of blending ratio with booster additive volume significantly decreased the CO emission, while increased in NOx and CO2 due to changes of fuel characteristics in biodiesel fuel blends.

  12. Food and biomass production in small oil expression facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kato, H.; Kanai, G.; Yakushido, K. [National Agricultural Research Center, Tsukuba (Japan). Biomass Production and Processing Research Team

    2010-07-01

    This paper reported on a study in which rapeseeds were separated into high quality seed for food oil and low quality seed for biofuels. A laboratory-scale oilseed screw press was then used to examine the effects of choke opening and seed preheating on the rapeseed pressing performance and the quality of food oil and biofuels oil. Oil recovery and chlorophyll content was found to increase as maximum pressure increased. In terms of pressing performance, the rapeseed heated by microwaves yielded more oil and chlorophyll than without heating. The NEB ratio of microwave heating press with an 8.0 mm choke opening was advantageous. Rapeseed oil extracted from low quality seeds was found to have a high acid value. The quality of oil extracted by oilseed screw press was found to be good and met the requirements of the Codex Alimentarius for edible oils.

  13. Effect of Tillage Systems with Corn Residue on Grain Yield of Rapeseed in Moghan Region

    Directory of Open Access Journals (Sweden)

    J Taghinazhad

    2014-09-01

    Full Text Available This study carried out to evaluate the effect of different tillage systems on rapeseed yield (hayola 401 planted in corn residues. This experiment was done in Moghan region with clay soils during 2009-2012. Different seedbed preparation methods include MT: moldboard + disk tillage (conventional tillage was included, SCT: Stem Crusher + chisel + disk tandem harrow, STT: Stem Crusher + double-disc, CT: chisel + disk tillage and DD: two heavy disks. The experiment was conducted in a randomized complete block design with four replications. The results showed that soil bulk density in the 0-10 cm layer was not significant in different tillage treatments, but it was significantly higher than the conventional tillage in 10-20 cm depth. However, penetration resistance in 10-30 cm under DD was significantly higher than other treatments, but it was not significant in 0-10 cm layer among all tillage treatments. Thus, Comparison of the soil bulk density, penetration resistance, and plant establishment showed that the reduced tillage in canola seedbed preparation was effective. Besides, the surveys indicated that there was a significant different between MWD after primary and secondary tillage. The mean diameter weighted under SCT and DD, were 1.19 and 1.24 cm, respectively had the best status. The highest value and the worst status of this parameter observed for MT which was 1.92 cm. The highest rate of grain yield obtained by application of treatment SCT, and it was 2563.8 kg ha-1, The SCT treatment can be recommended as an effective canola bed preparation due to its significant saving in time and cost after corn harvesting.

  14. Effect of Nitrogen and Zinc Sulphate Fertilizers and Azotobacter and Azospirillum Biofertilizer on Yield and Growth Traits of Rapeseed (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    N. Jafari

    2013-06-01

    Full Text Available In order to study the effects of simultaneous application of nitrogen (N and ZnSO4 fertilizers and biofertilizer (Azotobacter and Azospirillum on grain yield and growth traits of rapeseed, Hyola308 cultivar, a field experiment, with split plot factorial layout based on randomized complete blocks design with three replications, was conducted at Research Field of Faculty of Agriculture, University of Guilan, Rasht, Iran, during 2007-2008 growing season. Nitrogen fertilizer at four levels (0, 50, 100 and 150 kg/ha were the main plot and ZnSO4 fertilizer at two levels (0 and 50 kg/ha and biofertilizer at two levels (with and without biofertilizer were arranged in sub-plots. Results showed that maximum and minimum leaf area indices at flowering stage (average of 1.29 and 0.95, respectively were obtained in 150 kg/ha N+ZnSO4+ biofertilizer and in 50 kg/ha N+ no ZnSO4+ no biofertilizer treatments. Maximum and minimum crop growth rates at flowering stage (average of 5.89 and 3.19 g/m2.GDD, respectively were obtained in 150 kg/ha N+ZnSO4+ biofertilizer and control treatments. Maximum and minimum grain yields (2568, 2468 and 543 kg/ha, respectively were obtained in 150 kg/ha N+ with/without ZnSO4+ biofertilizer and control (no fertilizer treatments. Maximum and minimum oil yields (42.8 and 37.3%, respectively were measured in 0 kg/ha N+ZnSO4+ biofertilizer and 150 kg/ha N+ no ZnSO4+ no biofertilizer treatments. Since there was no significant difference between 150 and 100 kg/ha N+ZnSO4+ biofertilizer treatments in terms of impact on canola grain yield and growth traits, it seems that application of biofertilizer (Azotobacter and Azospirillum, without any reduction in yield, increased grain production and oil content and saved 50 kg/ha of N fertilizer. Biofertilizer (Azotobacter and Azospirillum, along with zinc and sulfur, produced phytohormones, and N fertilizer increased dry matter accumulation and leaf area index (by increasing carbohydrate conversion

  15. Chemical composition and resistance to oxidation of high-oleic rapeseed oil pressed from microwave pre-treated intact and de-hulled seeds; Composición química y resistencia a la oxidación de aceite de colza alto oleico prensado de semillas intactas y descascarilladas pre-tratadas con microondas

    Energy Technology Data Exchange (ETDEWEB)

    Rękas, A.; Wroniak, M.; Siger, A.; Ścibisz, I.

    2017-07-01

    The influence of a microwave (MV) pre-treatment (3, 6, 9 min, 800W) on the physicochemical properties of high-oleic rapeseed oil prepared from intact (HORO) and de-hulled seeds (DHORO) was investigated in this study. A control DHORO contained higher levels of total tocopherols and carotenoids, while higher concentrations of total phenolic compounds and chlorophylls were detected in the HORO. The MV pre-treatment caused a decrease in the unsaturated fatty acids content that was more evident for the DHOROs. The microwaving time significantly affected phytochemical contents and the color of both types of oils. A vast increase in canolol concentration was noticeable following 9 min of microwaving, which increased 506- and 155-fold in the HORO and DHORO, respectively. At the same time, the antioxidant capacity of oil produced from MV pre-treated seeds for 9 min was nearly 4 times higher than that of the control oil for both types of oils. [Spanish] En este estudio se investigó la influencia del pretratamiento con microondas (MV) en las propiedades fisicoquímicas del aceite de colza alto oleico preparado a partir de semillas húmedas (HORO) y descascarilladas (DHORO) (3, 6, 9 min, 800W). El control DHORO contenía un nivel más alto de tocoferoles totales y carotenoides, mientras que se detectó una mayor concentración de compuestos fenólicos totales y clorofilas en el HORO. El pretratamiento de MV provocó una disminución en el contenido de ácidos grasos insaturados que fue más evidente para los DHOROs. El tiempo de microondas afectó significativamente al contenido fitoquímico y al color de ambos tipos de aceites. Se observó un gran aumento de la concentración de canolol después de 9 min de microondas, que aumentó 506 y 155 veces en el HORO y DHORO, respectivamente. Al mismo tiempo, la capacidad antioxidante del aceite producido a partir de semillas pretratadas de MV durante 9 min fue casi 4 veces mayor que la del aceite de control para ambos tipos de

  16. Lipid composition and emulsifying properties of canola lecithin from enzymatic degumming.

    Science.gov (United States)

    Xie, Meizhen; Dunford, Nurhan Turgut

    2017-03-01

    This study investigated the polar lipid composition and emulsifying properties of canola lecithin from enzymatic degumming (CLED). Phospholipase A 1 was used for enzymatic degumming of crude canola oil to collect lecithin sample. Canola lecithin from water degumming (CLWD) was also collected and served as the control. The results showed that the contents of phosphatidylethanolamine (PE) (2.99%) and phosphatidylcholine (PC) (6.59%) in CLED were significantly lower than that in CLWD (PE 15.55% and PC 21.93%); while the content of lysophosphatidylcholine (LPC) (19.45%) in CLED was significantly higher than that in CLWD (3.27%). Unsaturated fatty acids accounted for a higher percentage of the total fatty acids in CLED than in CLWD. CLED promoted more stable o/w emulsions than CLWD. This study provides a better understanding of the chemical nature of CLED, and important information for utilization of CLED as o/w emulsifier. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Fixed-bed hydrogen pyrolysis of rapeseed: product yields and compositions

    International Nuclear Information System (INIS)

    Onay, O.; Kockar, O.M.; Gaines, A.F.; Snape, C.E.

    2006-01-01

    The fixed-bed hydro pyrolysis tests have been conducted on a sample of rapeseed to investigate the effect of hydro pyrolysis on the yields and chemical structures of bio-oils, with a view to improving overall product quality. A ammonium dioxydithiomolybdenate catalyst has been used in some tests to further increase conversion. The maximum bio-oil yield of 84% was obtained in hydrogen atmosphere (with catalyst) at hydrogen pressure of 15 MPa, hydrogen flow rate of 10 dm 3 min -1 , hydro pyrolysis temperature of 520 degree C, and heating rate of 5 o Cmin -1 . Then this bio-oil was characterized by elemental analysis and some spectroscopic and chromatographic techniques. And finally, this bio-oil yield and chemical composition compared with oil obtained from fast pyrolysis condition

  18. Biodiesel from rapeseed variety "Banaćanka" using KOH catalyst

    Directory of Open Access Journals (Sweden)

    Mićić Radoslav D.

    2013-01-01

    Full Text Available This paper presents a complete characterization of rapeseed oil, of Banaćanka variety, as well as the potential use of oil generated after filtering, in order to obtain biodiesel. Researches are based on the fact that Banaćanka is the oldest domestic rapeseed variety, the so-called double zero "00" (low in erucic acid, below 5%, and glucosinolates below than 30 mmol g-1, suitable for use in the region, since it is low temperatures tolerant, posseses high genetic potential for seed yield of about 5.2 t/ha, and high oil content of around 45%. Transesterification was carried out in batch reactor Parr 4520, with KOH as a catalyst. Cold pressed oil without prior treatment was used as feedstock for transesterificataion. The paper analyses the effects of temperature, reaction duration, catalyst amount and rate of agitation on the synthesis of biodiesel at constant pressure and molar methanol/oil ratio.[Projekat Ministarstva nauke Republike Srbije, br. TR-31046: Improvement of the quality of tractors and mobile systems with the aim of increasing competitiveness and preserving soil and environment

  19. Rapeseed (Brassica napus L. as a protein plant species

    Directory of Open Access Journals (Sweden)

    Marinković Radovan

    2010-01-01

    Full Text Available Proteins of plant origin have a profound impact on human and animal lives. It is impossible to solve worldwide nutrition problem without taking into concern needs for proteins. Inadequate nutrition can only be improved by providing adequate proteins. Humans need c. 120g proteins daily, a third of which should come from meat and milk. Certain population categories, such as the sick, children, pregnant women and sportspeople are more sensitive to lack of protein. Oil crops synthesise oil, which is the basic reserve material in seed, but they also synthesise high levels of protein and can serve as protein source for human and animal nutrition. Generally speaking, protein content in seed of rapeseed at site R. Šančevi was from 19.60% (NS-L-74 to 25.93% JR-NS-36, and at site Sombor from 19.26% (NS-L-74 to 24.06% and 24.09% (NS-L-46 and cultivar Mira. Genotype NS-L-74 had the lowest protein content at both testing sites. Higher protein content was evident with spring genotypes than with winter gentypes. .

  20. Canola Root–Associated Microbiomes in the Canadian Prairies

    Directory of Open Access Journals (Sweden)

    Chih-Ying Lay

    2018-06-01

    Full Text Available Canola is one of the most economically important crops in Canada, and the root and rhizosphere microbiomes of a canola plant likely impact its growth and nutrient uptake. The aim of this study was to determine whether canola has a core root microbiome (i.e., set of microbes that are consistently selected in the root environment, and whether this is distinct from the core microbiomes of other crops that are commonly grown in the Canadian Prairies, pea, and wheat. We also assessed whether selected agronomic treatments can modify the canola microbiome, and whether this was associated to enhanced yield. We used a field experiment with a randomized complete block design, which was repeated at three locations across the canola-growing zone of Canada. Roots and rhizosphere soil were harvested at the flowering stage of canola. We separately isolated total extractable DNA from plant roots and from adjacent rhizosphere soil, and constructed MiSeq amplicon libraries for each of 60 samples, targeting bacterial, and archaeal 16S rRNA genes and the fungal ITS region. We determined that the microbiome of the roots and rhizosphere of canola was consistently different from those of wheat and pea. These microbiomes comprise several putative plant-growth-promoting rhizobacteria, including Amycolatopsis sp., Serratia proteamaculans, Pedobacter sp., Arthrobacter sp., Stenotrophomonas sp., Fusarium merismoides, and Fusicolla sp., which correlated positively with canola yield. Crop species had a significant influence on bacterial and fungal assemblages, especially within the roots, while higher nutrient input or seeding density did not significantly alter the global composition of bacterial, fungal, or archaeal assemblages associated with canola roots. However, the relative abundance of Olpidium brassicae, a known pathogen of members of the Brassicaceae, was significantly reduced in the roots of canola planted at higher seeding density. Our results suggest that

  1. A candidate gene-based association study of tocopherol content and composition in rapeseed (Brassica napus

    Directory of Open Access Journals (Sweden)

    Steffi eFritsche

    2012-06-01

    Full Text Available Rapeseed (Brassica napus L. is the most important oil crop of temperate climates. Rapeseed oil contains tocopherols, also known as vitamin E, which is an indispensable nutrient for humans and animals due to its antioxidant and radical scavenging abilities. Moreover, tocopherols are also important for the oxidative stability of vegetable oils. Therefore, seed oil with increased tocopherol content or altered tocopherol composition is a target for breeding. We investigated the role of nucleotide variations within candidate genes from the tocopherol biosynthesis pathway. Field trials were carried out with 229 accessions from a worldwide B. napus collection which was divided into two panels of 96 and 133 accessions. Seed tocopherol content and composition were measured by HPLC. High heritabilities were found for both traits, ranging from 0.62 to 0.94. We identified polymorphisms by sequencing selected regions of the tocopherol genes from the 96 accession panel. Subsequently, we determined the population structure (Q and relative kinship (K as detected by genotyping with genome-wide distributed SSR markers. Association studies were performed using two models, the structure-based GLM+Q and the PK mixed model. Between 26 and 12 polymorphisms within two genes (BnaX.VTE3.a, BnaA.PDS1.c were significantly associated with tocopherol traits. The SNPs explained up to 16.93 % of the genetic variance for tocopherol composition and up to 10.48 % for total tocopherol content. Based on the sequence information we designed CAPS markers for genotyping the 133 accessions from the 2nd panel. Significant associations with various tocopherol traits confirmed the results from the first experiment. We demonstrate that the polymorphisms within the tocopherol genes clearly impact tocopherol content and composition in B. napus seeds. We suggest that these nucleotide variations may be used as selectable markers for breeding rapeseed with enhanced tocopherol quality.

  2. Evaluation of canola seeds of different cultivars with special emphasis on the quantification of erucic acid and glucosinolates

    Directory of Open Access Journals (Sweden)

    Anwar, Farooq

    2009-03-01

    Full Text Available This study reports the characterization of the seeds and seed oils of five locally grown canola cultivars: Zafar-2002, Bulbul (Frontier, Dunkeld, Oscar and Con-11. The oil contents from canola seeds ranged from 34.3 to 39.3%. The levels of protein, fiber, ash and moisture were found to be 22.1-41.0, 12.0-14.0, 3.0-3.5 and 4.0-7.5%, respectively. The glucosinolate (GSL contents in the canola seeds examined ranged from 49.7 to 78.1 mmol g-1. The extracted canola seed oils revealed an iodine value of 118.2-124.6 g of I/100g of oil; refractive index (40 °C, 1.460-1.464; density (24 °C, 0.914-0.919 mg m-1; saponification value, 187-195; unsaponifiable matter, 0.51-1.10%; acidity (% as oleic acid, 0.40-1.40, and color (1-in. cell, 1.35-1.73 R + 21.0-38.0 Y. Peroxide value (meq/ kg of oil and specific extinctions at 232 and 270 nm were determined to be 2.00-7.08, 2.17-3.16 and 0.44-0.91, respectively. The seed oils of the five canola cultivars mainly consisted of oleic (C18:1, linoleic (C18:2 and linolenic (C18:3 acids at levels of 49.16-62.14, 14.61, 23.45 and 6.97-9.10%, respectively. The concentrations of palmitic (C16:0, stearic (C18:0, erucic (C22:1 and gadoleic (C20:1 acids ranged from 3.47 to 6.00, 1.51 to 2.10, traces to 13.03 and 1.30 to 10.63%, respectively. A small amount of arachidic acid (20:0 with a contribution below 1% was also detected. The contents of tocopherols (α, γ, and δ in the canola oils accounted for 77.1-270.3, 191-500, 3.5-15.6 mg kg-1, respectively.The presence of rather high levels of erucic acid and GSL in the present analysis of canola emphasized the need to further reduce the contents of these two antinutritional constituents in the investigated cultivars.Este estudio describe de la caracterización de semillas y de sus aceites de cinco cultivos locales de canola: Zafar2002, Bulbul (Frontier, Dunkeld, Oscar y Con 11. El contenido de aceite de las semillas de canola varió entre un 34.3 y un 39.3%. Los niveles

  3. [Rapeseed poisoning of wild herbivores].

    Science.gov (United States)

    Schmid, A; Schmid, H

    1992-06-01

    Beginning with the simultaneous occurrence of the first extensive sowing of 00-rape and local increased losses among hares and roe deer in Western Germany and Austria at the end of 1986, the clinical and morphological symptoms of rape poisoning are discussed. They consist of damage to endo- and epithelium, cell membranes, blood, liver and in the so called "rape-blindness". Subsequently, the most important toxic agents of rape including their metabolites are presented. They consist in alkenyl- and indolyl-glucosinolates, leading to isothiocyanates (mustard oils), thiocyanates or thiocyanate ions resp., nitriles and antithyroid agents (e.g. goitrin) as well as S-methylcysteine sulphoxide and its metabolites, particularly dimethyl disulphide. Finally, the activity spectrum of the toxic agents or the metabolites and the clinical picture of the affected wildlife in 1986 are compared with the result that the losses of that period are most likely to be traced back to rape poisoning and that the rape-blindness mentioned is to be interpreted as a thiocyanate-psychosis.

  4. Improving rapeseed production practices in the southeastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D.L.; Breve, M.A.; Raymer, P.L.; Minton, N.A.; Sumner, D.R. (Georgia Univ., Tifton, GA (USA). Georgia Coastal Plain Experiment Station)

    1990-04-01

    Oilseed rape or rapeseed is a crop which offers a potential for double-cropping in the southeastern United States. This final project report describes the results from a three year study aimed at evaluating the effect of different planting and harvesting practices on establishment and yield of three rape cultivars, and the double cropping potential of rapeseed in the southeastern United States. The project was conducted on two yield sites in Tifton, Georgia during 1986--87, 1987--88 and 1988--89. The general objective of this research is to improve the seed and biomass yield of winter rapeseed in the southeastern United States by developing appropriate agronomic practices for the region. The primary constraint is to grow rapeseed within the allowable period for double cropping with an economically desirable crop, such as peanut or soybean. Planting and harvesting are the most critical steps in this process. Therefore, the specific objectives of this research were: evaluate and improve the emergence of rapeseed by developing planting techniques that enhance the soil, water and seed regimes for winter rapeseed in the southeast, and evaluate and improve the yields of harvested rapeseed by developing techniques for determining the optimum timing of harvest and efficient methods for harvesting winter rapeseed in the southeast. 6 refs., 12 figs., 9 tabs.

  5. On a Molecular Basis, Investigate Association of Molecular Structure with Bioactive Compounds, Anti-Nutritional Factors and Chemical and Nutrient Profiles of Canola Seeds and Co-Products from Canola Processing: Comparison Crusher Plants within Canada and within China as well as between Canada and China.

    Science.gov (United States)

    Gomaa, Walaa M S; Mosaad, Gamal M; Yu, Peiqiang

    2018-04-21

    The objectives of this study were to: (1) Use molecular spectroscopy as a novel technique to quantify protein molecular structures in relation to its chemical profiles and bioenergy values in oil-seeds and co-products from bio-oil processing. (2) Determine and compare: (a) protein molecular structure using Fourier transform infrared (FT/IR-ATR) molecular spectroscopy technique; (b) bioactive compounds, anti-nutritional factors, and chemical composition; and (c) bioenergy values in oil seeds (canola seeds), co-products (meal or pellets) from bio-oil processing plants in Canada in comparison with China. (3) Determine the relationship between protein molecular structural features and nutrient profiles in oil-seeds and co-products from bio-oil processing. Our results showed the possibility to characterize protein molecular structure using FT/IR molecular spectroscopy. Processing induced changes between oil seeds and co-products were found in the chemical, bioenergy profiles and protein molecular structure. However, no strong correlation was found between the chemical and nutrient profiles of oil seeds (canola seeds) and their protein molecular structure. On the other hand, co-products were strongly correlated with protein molecular structure in the chemical profile and bioenergy values. Generally, comparisons of oil seeds (canola seeds) and co-products (meal or pellets) in Canada, in China, and between Canada and China indicated the presence of variations among different crusher plants and bio-oil processing products.

  6. Fluidized bed treatment of rapeseed meal and cake as possibility for the production of canolol

    Directory of Open Access Journals (Sweden)

    Pudel Frank

    2014-01-01

    Full Text Available Canolol (2,6-dimethoxy-4-vinylphenol, 4-vinylsyringol, which is formed by thermally initiated CO2splitting off from sinapic acid, possesses a high antioxidant potential. Furthermore different positive physiological properties are described. Due to rapeseed’s high content of phenolic acids, particularly sinapic acid, it is obvious to produce canolol as by-product of rapeseed processing. Roasting of rapeseed meal or cake in a fluidized bed followed by extraction with supercritical carbon dioxide of the formed canolol represents a production procedure which not impairs the commercial oil mill process. This article summarizes results from the roasting process with rapeseed meal and cake in fluidized bed equipments of different design and size showing that it is a suitable technique to transform sinapic acid into canolol. The achieved canolol contents are at 500 mg/kg in minimum, if the material is rapidly cooled-down after reaching the optimal temperature of 165 °C. Further roasting leads to a fast reduction of the canolol content. In addition it could be observed, that the sinapic acid content is not decreasing in the same amount as the canolol content increases. Sinapic acid seems to be “reproduced” during roasting. The reaction mechanisms of the described phenomena are not known.

  7. USING OF SECONDARY PRODUCTS OF RAPESEED PROCESSING IN THE FOOD INDUSTRY

    Directory of Open Access Journals (Sweden)

    E. A. Raksha-Slusareva

    2014-04-01

    Full Text Available When oil and biodiesel are extracted from rapeseed, secondary derived products are formed, which are not used effectively at the moment. The article deals with the problems of possible their use in food industry. During food product preparation for special dietary consumption we used electrophysical (processing by hydroelectropulse and physical (drying, grinding, steam treatment processing of raw materials. Through the developed technology for rapeseed cake processing, we received raw materials suitable for use in food industry. On the basis of these raw materials, the «Nutrition product for special dietary consumption “Ripakovyi”» was developed. It is a part of rape seed meal obtained from the seeds with low content of glucosinolates and erucic acid processed by hydroelectropulse dried in the cabinet oven or in the convective dryer, crushed and disinfected based on a developed soft technology for biologically active substances conservation. The production of this product solves the problem of rational utilization of rapeseed meal and diversification of foods for special dietary consumption.

  8. Utilization of rapeseed pellet from fatty acid methyl esters production as an energy source.

    Science.gov (United States)

    Ciunel, Krzysztof; Klugmann-Radziemska, Ewa

    2014-01-01

    Rapeseed pellet - crushed seed residue from oil extraction is a by-product of fatty acid methyl esters production process. As other types of biomass, it can either be burned directly in furnaces or processed to increase its energetic value. Biomass is renewable, abundant and has domestic usage; the sources ofbiomass can help the world reduce its dependence on petroleum products, fossil coal and natural gas. Energetically effective utilization of rapeseed pellet could substantially improve the economic balance of an individual household in which biodiesel for fulfilling the producer's own energetic demand is obtained. In this article, the experimental results of combusting rapeseed pellet in a calorimeter, combustion in a boiler heater and the analysis of the emissions level of different pollutants in exhaust fumes during different stages of biomass boiler operation are presented. It has been proved that the pellet, a by-product of biodiesel production, is not only a valuable substitute of animal fodder, but also an excellent renewable and environmentally friendly energy source, viable for use in household tap water heating installations.

  9. Transesterification of canola, palm, peanut, soybean and sunflower oil with methanol, ethanol, isopropanol, butanol and tert-butanol to biodiesel: Modelling of chemical equilibrium, reaction kinetics and mass transfer based on fatty acid composition

    International Nuclear Information System (INIS)

    Likozar, Blaž; Levec, Janez

    2014-01-01

    Graphical abstract: Modelling of chemical equilibrium, reaction kinetics and mass transfer for triglyceride transesterification with different alcohols based on fatty acid composition. - Highlights: • Catalysed transesterification to biodiesel with various oils, alcohols and catalysts. • Analysis of components and reactivity based on fatty acid composition of all species. • Simultaneous modelling of mass transfer, reaction kinetics and chemical equilibrium. • Diffusivities, distribution and mass transfer coefficients for individual components. • Correlation of kinetic parameters with molecular structure of reactants and products. - Abstract: Mechanism of alcoholysis (e.g. methanolysis) using different oils, alcohols and homogeneous base catalysts was utilized to devise chemical kinetics and thermodynamics based on fatty acid composition, differentiating among triglycerides, diglycerides, monoglycerides and fatty acid alkyl esters (e.g. fatty acid alkyl esters, FAME) with bonded gadoleic, linoleic, linolenic, oleic, palmitic and stearic acid-originating substituents. Their concentrations were measured using an optimized high-performance liquid chromatography (HPLC) method. Hydrodynamics and diffusion limitations in emulsion were considered in overall model by determining diffusivities, distribution coefficients, molar volumes, boiling points and viscosities of individual components. Pre-exponential factors and activation energies were related with structure of reactants, intermediates and products acknowledging number of carbons, double bonds and alkyl branches by linear and mixed response surface methodology. Developed model may be used with batch and continuous flow reactors, e.g. for novel micro-structured or industrial-scale process intensification, different vegetable or non-edible oils (waste cooking Jatropha or microalgae lipids)

  10. An analysis of the energy efficiency of winter rapeseed biomass under different farming technologies. A case study of a large-scale farm in Poland

    International Nuclear Information System (INIS)

    Budzyński, Wojciech Stefan; Jankowski, Krzysztof Józef; Jarocki, Marcin

    2015-01-01

    The article presents the results of a three-year study investigating the impact of production technology on the energy efficiency of winter rapeseed produced in large-scale farms. Rapeseed biomass produced in a high-input system was characterized by the highest energy demand (30.00 GJ ha"−"1). The energy demand associated with medium-input and low-input systems was 20% and 34% lower, respectively. The highest energy value of oil, oil cake and straw was noted in winter rapeseed produced in the high-input system. In the total energy output (268.5 GJ ha"−"1), approximately 17% of energy was accumulated in oil, 20% in oil cake, and 63% in straw. In lower input systems, the energy output of oil decreased by 13–23%, the energy output of oil cake – by 6–16%, and the energy output of straw – by 29–37% without visible changes in the structure of energy accumulated in different components of rapeseed biomass. The highest energy gain was observed in the high-input system. The low-input system was characterized by the highest energy efficiency ratio, at 4.22 for seeds and 9.43 for seeds and straw. The increase in production intensity reduced the energy efficiency of rapeseed biomass production by 8–18% (seeds) and 5–9% (seeds and straw). - Highlights: • Energy inputs in the high-input production system reached 30 GJ ha"−"1. • Energy inputs in the medium- and low-input systems were reduced by 20% and 34%. • Energy gain in the high-input system was 15% and 42% higher than in other systems. • Energy ratio in the high-input system was 5–18% lower than in the low-input system.

  11. Evaluation of the Use of Spring Rapeseed in Phytoremediation of Soils Contaminated with Trace Elements and Their Effect on Yield Parameters

    Directory of Open Access Journals (Sweden)

    Szulc Piotr Mirosław

    2014-12-01

    Full Text Available The experimental material was made up by the plant organs of Brassica napus L. from a pot experiment during one vegetation period. There was investigated the effect of relatively high concentration of zinc, copper, lead and cadmium in soil on the rapeseed yield, the content of protein and oil in seeds. The impact of metals was defined based on the content of selected fatty acids in oil extracted from seeds. The highest contents of zinc and copper were found in leaves, lead - in roots and cadmium - in stems. The biological concentration factor values were respectively calculated for all the rapeseed organs. For Cu and Pb the values of biological concentration factor were low and very low for all the plant organs. The doses of Zn (300 mg × kg-1, 600 mg × kg-1 and Cu (80 mg × kg-1, 160 mg × kg-1 applied in the pot experiment resulted in the translocation of metals from the roots to the leaves. The doses of lead (400 mg × kg-1, 1600 mg × kg-1 did not trigger any translocation of that metal from the roots to the above-ground rapeseed plant parts, however, after the application of the cadmium doses (2 mg × kg-1, 6 mg × kg-1, there was recorded a clear translocation of Cd to the rapeseed stems and the leaves. A relatively high content of zinc, copper, lead and cadmium in soil had a significant effect neither on the yield parameters and nor on the qualitative characters of the rapeseed seed. Neither did they affect the content of protein, fat and fatty acids in seed-extracted oil. The results of the pot experiment suggest that spring rapeseed is suitable for the phytoremediation of moderately heavy-metalcontaminated soils.

  12. Effects of blending composition of tung oil and ultrasonic irradiation intensity on the biodiesel production

    International Nuclear Information System (INIS)

    Manh, Do-Van; Chen, Yi-Hung; Chang, Chia-Chi; Chang, Ching-Yuan; Hanh, Hoang-Duc; Chau, Nguyen-Hoai; Tuyen, Trinh-Van; Long, Pham-Quoc; Minh, Chau-Van

    2012-01-01

    The beneficial use of tung oil in pre-blended oil for the production of biodiesel was studied at various blending compositions of tung, canola and palm oils (C BT , C BC and C BP ). The effects of C BT , ultrasonic power (P WUS ) and sample loading (V L ) on the yield (Y F ) and the properties of acid value, iodine values (IV), kinematic viscosity (KV), density and cold filter plugging point (CFPP) were investigated. The pre-blending of tung oil with palm oil greatly decreases the CFPP of palm oil biodiesel, whereas the presence of canola and palm oils with tung oil reduces the IV and KV of tung oil biodiesel. For P WUS /V L = 0.92–2.08 W/mL, C BT can be as high as 60 wt.% with 30 wt.% C BC and 10 wt.% C BP to produce biodiesel with high Y F and satisfactory qualities of the said properties. -- Highlights: ► Yield and properties of tung oil biodiesel are improved as tung oil is pre-blended with canola and palm oils. ► Pre-blending of palm oil with tung and canola oils reduces the CFPP of palm oil biodiesel from 13 to −5 °C. ► A beneficial use of tung oil as high as 60 wt.% blended with canola and palm oils is achievable. ► A sufficient P WUS per sample volume is required to ensure satisfactory properties.

  13. High oleic acid content materials of rapeseed (Brassica napus) produced by radiation breeding

    International Nuclear Information System (INIS)

    Guan Chunyun; Liu Chunlin; Chen Sheyuan

    2006-01-01

    High oleic acid content rapeseed breeding has great significance, because high oleic acid oil is a healthy and nutritious oil, which is of a long shelflife and also propitious to producing biodiesel fuel. The high oleic acid content breeding materials of rapeseed (B. napus) were obtained by 80-100 kR ~(60)Co gamma ray ionizing radiation treatment of dry seeds and continuous selection. The results showed that the oleic acid contents of M (2), M (3) and M (4) progenies increased by different grades. Moreover, the oleic acid content of M (5) progeny increased greatly. The oleic acid contents were higher than 70% in the most of the plants and the highest one reached 93.5 %. The base G was transited by base A in fad (2) gene at the 270 site of high oleic acid mutation (M(6) 04-855). The location is at the beta folding area and conservative area of this protein. Base mutation at sites 1 044 and 1 062 also led to produce a stop condon. These changes in structure led to loss the function of fad (2). According to molecular mechanism of gene mutation, no matter what transvertion or transition happens, several replications are needed. That is to say several generations are needed. That was also the reason why high oleic acid content mutation occurred in later generations

  14. Light enables a very high efficiency of carbon storage in developing embryos of rapeseed.

    Science.gov (United States)

    Goffman, Fernando D; Alonso, Ana P; Schwender, Jörg; Shachar-Hill, Yair; Ohlrogge, John B

    2005-08-01

    The conversion of photosynthate to seed storage reserves is crucial to plant fitness and agricultural production, yet quantitative information about the efficiency of this process is lacking. To measure metabolic efficiency in developing seeds, rapeseed (Brassica napus) embryos were cultured in media in which all carbon sources were [U-14C]-labeled and their conversion into CO2, oil, protein, and other biomass was determined. The conversion efficiency of the supplied carbon into seed storage reserves was very high. When provided with 0, 50, or 150 micromol m(-2) s(-1) light, the proportion of carbon taken up by embryos that was recovered in biomass was 60% to 64%, 77% to 86%, and 85% to 95%, respectively. Light not only improved the efficiency of carbon storage, but also increased the growth rate, the proportion of 14C recovered in oil relative to protein, and the fixation of external 14CO2 into biomass. Embryos grown at 50 micromol m(-2) s(-1) in the presence of 5 microM 1,1-dimethyl-3-(3,4-dichlorophenyl) urea (an inhibitor of photosystem II) were reduced in total biomass and oil synthesis by 3.2-fold and 2.8-fold, respectively, to the levels observed in the dark. To explore if the reduced growth and carbon conversion efficiency in dark were related to oxygen supplied by photosystem II, embryos and siliques were cultured with increased oxygen. The carbon conversion efficiency of embryos remained unchanged when oxygen levels were increased 3-fold. Increasing the O2 levels surrounding siliques from 21% to 60% did not increase oil synthesis rates either at 1,000 micromol m(-2) s(-1) or in the dark. We conclude that light increases the growth, efficiency of carbon storage, and oil synthesis in developing rapeseed embryos primarily by providing reductant and/or ATP.

  15. Light Enables a Very High Efficiency of Carbon Storage in Developing Embryos of Rapeseed1

    Science.gov (United States)

    Goffman, Fernando D.; Alonso, Ana P.; Schwender, Jörg; Shachar-Hill, Yair; Ohlrogge, John B.

    2005-01-01

    The conversion of photosynthate to seed storage reserves is crucial to plant fitness and agricultural production, yet quantitative information about the efficiency of this process is lacking. To measure metabolic efficiency in developing seeds, rapeseed (Brassica napus) embryos were cultured in media in which all carbon sources were [U-14C]-labeled and their conversion into CO2, oil, protein, and other biomass was determined. The conversion efficiency of the supplied carbon into seed storage reserves was very high. When provided with 0, 50, or 150 μmol m−2 s−1 light, the proportion of carbon taken up by embryos that was recovered in biomass was 60% to 64%, 77% to 86%, and 85% to 95%, respectively. Light not only improved the efficiency of carbon storage, but also increased the growth rate, the proportion of 14C recovered in oil relative to protein, and the fixation of external 14CO2 into biomass. Embryos grown at 50 μmol m−2 s−1 in the presence of 5 μm 1,1-dimethyl-3-(3,4-dichlorophenyl) urea (an inhibitor of photosystem II) were reduced in total biomass and oil synthesis by 3.2-fold and 2.8-fold, respectively, to the levels observed in the dark. To explore if the reduced growth and carbon conversion efficiency in dark were related to oxygen supplied by photosystem II, embryos and siliques were cultured with increased oxygen. The carbon conversion efficiency of embryos remained unchanged when oxygen levels were increased 3-fold. Increasing the O2 levels surrounding siliques from 21% to 60% did not increase oil synthesis rates either at 1,000 μmol m−2 s−1 or in the dark. We conclude that light increases the growth, efficiency of carbon storage, and oil synthesis in developing rapeseed embryos primarily by providing reductant and/or ATP. PMID:16024686

  16. Effect of vegetable oils on fatty acid composition and cholesterol content of chicken frankfurters

    Science.gov (United States)

    Belichovska, D.; Pejkovski, Z.; Belichovska, K.; Uzunoska, Z.; Silovska-Nikolova, A.

    2017-09-01

    To study the effect of pork adipose tissue substitution with vegetable oils in chicken frankfurters, six frankfurter formulations were produced: control; with pork backfat; with olive oil; with rapeseed oil; with sunflower oil; with palm oil, and; with a mixture of 12% rapeseed oil and 8% palm oil. Fatty acid composition and cholesterol content and some oxides thereof were determined in the final products. The use of vegetable oils resulted in improvement of the fatty acid composition and nutritional of frankfurters. Frankfurters with vegetable oils contained significantly less cholesterol and some of its oxides, compared to the frankfurters with pork fat. The formulation with palm oil had the least favourable fatty acid composition. The use of 12% rapeseed oil improved the ratio of fatty acids in frankfurters with a mixture of rapeseed and palm oils. Complete pork fat replacement with vegetable oils in chicken frankfurter production is technologically possible. The mixture of 12% rapeseed oil and 8% palm oil is a good alternative to pork fat from health aspects. Further research is needed to find the most appropriate mixture of vegetable oils, which will produce frankfurters with good sensory characteristics, a more desirable fatty acid ratio and high nutritional value.

  17. Experimental investigations of combustion and emission characteristics of rapeseed oil–diesel blends in a two cylinder agricultural diesel engine

    International Nuclear Information System (INIS)

    Qi, D.H.; Lee, C.F.; Jia, C.C.; Wang, P.P.; Wu, S.T.

    2014-01-01

    Highlights: • The main properties of rapeseed oil and diesel fuel were measure and analyzed. • The cylinder pressure of the rapeseed oil–diesel blends was measured and compared. • The heat release rate of the test fuels was calculated and the combustion process was analyzed. • The fuel consumption and emissions characteristics were measured and compared. - Abstract: The main objective of this paper was to study the performance, emissions and combustion characteristics of a diesel engine using rapeseed oil–diesel blends. The main fuel properties of rapeseed oil (RSO) were investigated and compared with that of diesel fuel. The experimental results showed that the viscosity and density of the blends were decreased and approached to that of diesel fuel when RSO volume fraction was less than 20%. At low engine loads, the start of combustion for the blends was almost similar to that for diesel fuel, but the peak cylinder pressure and heat release rate were higher. At high engine loads, the start of combustion for the blends was slightly earlier than that for diesel fuel, but the peak cylinder pressure and heat release rate were identical. For the blends, there was slightly higher brake specific fuel consumptions (BSFC) and brake specific energy consumptions (BSEC) at low engine loads. Smoke emission was higher at low engine loads, but lower at high engine loads. Nitrogen oxide (NO x ) emission was observed slightly lower at low engine loads and almost identical at high engine loads. Carbon monoxide (CO) and hydrocarbon (HC) emission were higher under all range of engine loads for the blends

  18. Evaluation Physiological Characteristics and Grain Yield Canola Cultivars under end Seasonal Drought Stress in Weather Condition of Ahvaz

    Directory of Open Access Journals (Sweden)

    A Seyed Ahmadi

    2015-07-01

    Full Text Available To evaluate canola cultivars response to physiological characteristics and grain yield end seasonal drought stress in weather condition of Ahvaz, farm experiments were done at research farm of Khuzestan agriculture and natural resources center. During 2007-2008 and 2008-2009 crop years. Farm test comprised drought stress was done as split plot form with randomize complete block design with four replication, treatments consist of drought stress (main factor including 50, 60 and 70 percent of water use content, which was applied from early heading stage until physiological maturity, and three spring canola cultivar including Shirali, Hayola 401 and R.G.S. were considered as sub plots. Measurements include biological yield, grain yield, harvesting index, number of pod per plant 1000 grain weight, number of grain in pod, plant height, and stem diameter, oil and protein percentage. Results showed that drought stress reduced significantly grain yield, biological yield, harvest index and the average of reduction of them during 2 years for per unit reduce moisture from 50% to 70% were 2, 1.35, and 0.81 percent, respectively. During two years, 1000 grain weight, number of pods per plant and number of grain per pod reduced 27, 36 and 20 percent, respectively. Terminal Drought stress reduced significantly plant height, stem diameter, stem number per plant and pod length, this reduced were 12, 46, 36 and 14 percent, respectively. Stem diameter, and stem number per plant reduced more than other characteristics. In this study oil grain decreased 12 % and protein grain increased 18.5% but oil and protein yield decreased 44.9% and 27.1% respectively..Finally, in weather condition of Khuzestan, terminal drought stress on February and March in which has simultaneous with early flowering stage and filling seed, significantly, reduced yield and compounded yield and affects on stem growth and qualities oil and protein negatively. Therefore, with irrigation

  19. Effect of Different Levels of Sulphur Bentonite on Yield and Yield Components of Canola (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    B Rahimi

    2013-04-01

    Full Text Available In order to determine the effect of different levels of sulfur bentonite on yield and yield components of canola a factorial experiment was conducted on the basis of randomized complete block design with three replications in Mashhad in 2009-2010 growing season. Factors included four levels of sulfur bentonite (0, 300, 400 and 500 kg.h-1 and two varieties of canola (Modena and Zarfam. The result showed that the increase in sulfur increased some vegetative traits such as leaf area index and plant height. Using sulfur caused increased pod number, seed weight, in addition of oil and protein content and seed yield. Grain yield increase was due to seed weight and LAI. Two varieties were different to responses the sulfur. While in no sulfur application there was no significant difference in seed yield, in 500 Kg sulfur application yield of Zarfam compared to Modena increased about 29.63. According to the results there are significant differences between cultivars in terms of response to the sulfur fertilizer. Therefore it is necessary to evaluate effect of sulfur application of canola productivity in different climate conditions of Iran.

  20. Effect of rhizobacteria inoculation and humic acid application on canola (Brassica napus L.) crop

    International Nuclear Information System (INIS)

    Ahmad, S.; Duar, I.; Solaimani, S.G.A.; Mahmood, S.

    2016-01-01

    This study investigated eco-friendly approach of utilizing plant growth promoting rhizobacteria (PGPR) and humic acid (HA) as bio-stimulants to improve the growth, yield and nutrition of canola (Brassica napus L.). In this study, we isolated 20 indigenous rhizobacterial strains that were subsequently screened and characterized for their plant growth promoting traits. After that one promising PGPR strain identified as Acinetobacter pittii by 16S rRNA gene sequencing was selected for field trial. The field experiment was conducted using RCB design with split-plot arrangement that was replicated four times. Three levels of humic acid (0, 10 and 20 kg ha-1) as main plot factor and two treatments of PGPR (with and without PGPR) as sub-plot factor were used. Data was recorded on plant height (cm), root dry matter plant-1, number of lateral root plant-1, number of pods plant-1, number of seeds pod-1, 1000 seed weight (g), seed yield(kg ha-1), oil content (%), nitrogen (N), phosphorus (P) and potassium (K) contents and uptake. For most of the above mentioned parameters, significant enhancement was observed with the increment of humic acid, and also PGPR treatments were better than their respective control treatments. Maximum values of these parameters were recorded for the interaction of 20 kg HA ha-1 with the PGPR strain. It can be concluded that integrated application of HA and PGPR is a better strategy to improve nutrition and yield of canola. (author)

  1. Evaluation of Promising Mutant Lines of Canola Grown under New Reclamation Lands (Harsh Lands)

    International Nuclear Information System (INIS)

    Amer, I.M.; Farrag, M.E.; Soliman, S.S.; Hassan, A.A.

    2017-01-01

    Canola seed lots of four varieties (Serow4, Serow6, Pactol as local cultivars and Evita as exotic variety) were treated with gamma rays at four doses (0, 100, 400 and 600 Gy). The present study aims to evaluate useful mutations in canola which possess high seed yield and oil content under new reclamation desert land at Ras-Suder-Sinai (saline) and Inshas (harsh and poor fertility) in M 4 and M 5 generations. The results at M 4 and M 5 generations showed that the 13-selected mutant lines on the bases of number of pods and seed yield/plant differed in their yield response according to environmental conditions. Over the two locations, the highest number of pods plant and seed yield was found at line 75 (M4) and line 11 for seed yield and line 78 for number of pods in M5 compared to other genotypes. More over, all the mutant lines compared to their parents showed significant or insignificant increases for all studies traits during the two successive generations. Over the two generations, the highest mean value compared to all genotypes was found in line 22 for plant height at Sudr and line 11 at Inshas, for fruiting zone length, the highest value was noticed in line 18 at Sudr and line 75 at Inshas, for the highest number of pods, (125/plant) it was found in line 63 at Sudr and (193/plant) in line 75 at Inshas which reflected the highest seed yield ( 8 g/plant).The highest mean value compared to all genotypes was found for 100 seed-weight in line 8 at Sudr and line 11 at Inshas which appeared the highest seed yield at Suder. Over all studied conditions, the mutant line 75 derived from Evita variety was characterized by the highest mean values for fruiting zone length of plant and number of pods/plant, reflecting a high seed yield (6.47 g/plant ) or about 83.87% over its parent. The increase of seed yield/plant for mutant line 11 over its parent was about 68.8% followed by line 8 surpassed its parent for seed yield by about 60.2 %. The oil content of canola seeds in

  2. Biodegradation performance of environmentally-friendly insulating oil

    Science.gov (United States)

    Yang, Jun; He, Yan; Cai, Shengwei; Chen, Cheng; Wen, Gang; Wang, Feipeng; Fan, Fan; Wan, Chunxiang; Wu, Liya; Liu, Ruitong

    2018-02-01

    In this paper, biodegradation performance of rapeseed insulating oil (RDB) and FR3 insulating oil (FR3) was studied by means of ready biodegradation method which was performed with Organization for Economic Co-operation and Development (OECD) 301B. For comparison, the biodegradation behaviour of 25# mineral insulating oil was also characterized with the same method. The testing results shown that the biodegradation degree of rapeseed insulating oil, FR3 insulating oil and 25# mineral insulating oil was 95.8%, 98.9% and 38.4% respectively. Following the “new chemical risk assessment guidelines” (HJ/T 154 - 2004), which illustrates the methods used to identify and assess the process safety hazards inherent. The guidelines can draw that the two vegetable insulating oils, i.e. rapeseed insulating oil and FR3 insulating oil are easily biodegradable. Therefore, the both can be classified as environmentally-friendly insulating oil. As expected, 25# mineral insulating oil is hardly biodegradable. The main reason is that 25# mineral insulating oil consists of isoalkanes, cyclanes and a few arenes, which has few unsaturated bonds. Biodegradation of rapeseed insulating oil and FR3 insulating oil also remain some difference. Biodegradation mechanism of vegetable insulating oil was revealed from the perspective of hydrolysis kinetics.

  3. of integrated application of farmyard manure, plant growth promoting rhizobacteria and chemical fertilizers on production of canola (Brassica napus L. in saline soil of Qum

    Directory of Open Access Journals (Sweden)

    H. Sabahi

    2016-04-01

    Full Text Available Canola (Brassica napus L. is one of the most important oil seed crops. In order to evaluate the effects of integrated fertilization (chemical, manure and biofertilizers on canola (B. napus variety Hyola 401 yield and uptake of mineral nutrients in saline soil and water, a field experiment was conducted in randomized complete blocks (RCBD arrangement with eight treatments in three replications in Qum Province, Iran. Treatments were: (1 Control, P%100 (Phosphorus %100, (2 P%75B1 (Phosphorus %75+ Barvar biofertilizer, (3 P%75B2 (Phosphorus %75+ Nitroxin biofertilizer, (4 P%75M (Phosphorus %75+ farmyard manure, (5 P%75B1M (Phosphorus %75+ Barvar + Farmyard manure, (6 P%75B2M (Phosphorus %75+ Nitroxin+ Farmyard manure, (7 P%100B1 (Phosphorus %100 + Barvar and (8 P%125B2 (Phosphorus %125+ Nitroxin. The results showed that the highest yield was obtained from P%75B1M. Difference between integrated fertilization of farmyard manure and other treatments was significant. Farmyard manure increased canola yield which was attributed to increase in availability of mineral nutrients, decreasing effects of salinity and toxic ions. Integrated application of 5 t. ha-1 of farmyard manure and %75 recommended chemical P increased yield and decreased fertilizer consumption. The results revealed that integrated applications of farmyard manure and chemical fertilizer and after that integrated use of bio- and chemical fertilizer are the best strategies to increase nutrient availability and improving canola yield in saline soil.

  4. Xerophilic mycopopulations isolated from rapeseeds (Brassica napus

    Directory of Open Access Journals (Sweden)

    Škrinjar Marija M.

    2013-01-01

    Full Text Available This paper presents the results of an investigation related to mycological populations of rapeseed samples produced in the Institute of Field and Vegetable Crops in Novi Sad (location: Rimski Šančevi, Novi Sad, with a special emphasis on the potentially toxigenic mycopopulations. Mycological investigations were performed on the samples that were treated with 4% solution of Na-hypochlorite, and on the ones that were not submitted to this treatment. Isolation and determination of total mould count was carried out using Dichloran Glycerol Agar (DG18. The identification of isolated moulds was done according to modern keys for fungal determination. From 20 untreated tested samples, 17 were contaminated with moulds (10.0 to 4.7x102 cfu/g. When the samples were treated with 4% solution of Na-hypochlorite, moulds were isolated only form 4 samples, and the total mould count ranged from 10.0 to 60.0 cfu/g. In the isolated mycopopulations, xerophilic moulds dominated, especially those from the genera Aspergillus, Eurotium and Penicillium. In the isolated mycopopulations, high degree of isolated species belonged to toxigenic species from the genera Alternaria, Aspergillus, Fusarium, Eurotium and Penicillium. [Projekat Ministarstva nauke Republike Srbije, br. III46009 i br.TR31025

  5. 77 FR 462 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Science.gov (United States)

    2012-01-05

    ... sources--qualifying as cellulosic biofuel: [cir] Thermochemical pyrolysis. [cir] Thermochemical... covercrops, algal oil, biogenic waste oils/fats/greases, non-food grade corn oil, Canola/rapeseed oil, and... from annual covercrops, algal oil, biogenic waste oils/fats/greases, or non- food grade corn oil using...

  6. One Novel Multiple-Target Plasmid Reference Molecule Targeting Eight Genetically Modified Canola Events for Genetically Modified Canola Detection.

    Science.gov (United States)

    Li, Zhuqing; Li, Xiang; Wang, Canhua; Song, Guiwen; Pi, Liqun; Zheng, Lan; Zhang, Dabing; Yang, Litao

    2017-09-27

    Multiple-target plasmid DNA reference materials have been generated and utilized as good substitutes of matrix-based reference materials in the analysis of genetically modified organisms (GMOs). Herein, we report the construction of one multiple-target plasmid reference molecule, pCAN, which harbors eight GM canola event-specific sequences (RF1, RF2, MS1, MS8, Topas 19/2, Oxy235, RT73, and T45) and a partial sequence of the canola endogenous reference gene PEP. The applicability of this plasmid reference material in qualitative and quantitative PCR assays of the eight GM canola events was evaluated, including the analysis of specificity, limit of detection (LOD), limit of quantification (LOQ), and performance of pCAN in the analysis of various canola samples, etc. The LODs are 15 copies for RF2, MS1, and RT73 assays using pCAN as the calibrator and 10 genome copies for the other events. The LOQ in each event-specific real-time PCR assay is 20 copies. In quantitative real-time PCR analysis, the PCR efficiencies of all event-specific and PEP assays are between 91% and 97%, and the squared regression coefficients (R 2 ) are all higher than 0.99. The quantification bias values varied from 0.47% to 20.68% with relative standard deviation (RSD) from 1.06% to 24.61% in the quantification of simulated samples. Furthermore, 10 practical canola samples sampled from imported shipments in the port of Shanghai, China, were analyzed employing pCAN as the calibrator, and the results were comparable with those assays using commercial certified materials as the calibrator. Concluding from these results, we believe that this newly developed pCAN plasmid is one good candidate for being a plasmid DNA reference material in the detection and quantification of the eight GM canola events in routine analysis.

  7. Lipid components and oxidative status of selected specialty oils

    Energy Technology Data Exchange (ETDEWEB)

    Madawala, S. R. P.; Kochhar, S. P.; Dutta, P. C.

    2012-11-01

    Many vegetable oils are marketed as specialty oils because of their retained flavors, tastes and distinct characteristics. Specialty oil samples which were commercially produced and retailed were purchased from local superstores in Reading, UK, and Uppsala, Sweden and profiled for detailed lipid composition and oxidative status. These oil samples include: almond, hazelnut, walnut, macadamia nut, argan, avocado, grape seed, roasted sesame, rice bran, cold pressed, organic and cold pressed, warm pressed and refined rapeseed oils. The levels of PV were quite low (0.5-1.3mEq O{sub 2}/kg) but AV and Rancimat values at 100 degree centigrade (except for rapeseed oils) varied considerably at (0.5-15.5) and (4.2-37.0 h) respectively. Macadamia nut oil was found to be the most stable oil followed by argan oil, while walnut oil was the least stable. Among the specialty oils, macadamia nut oil had the lowest (4%) and walnut oil had the highest (71%) level of total PUFA. The organic cold pressed rapeseed oil had considerably lower PUFA (27%) compared with other rapeseed oils (28- 35%). In all the samples, {alpha}- and {gamma}- tocopherols were the major tocopherols; nut oils had generally lower levels. Total sterols ranged from 889 to 15,106 {mu}g/g oil. The major sterols were {beta}-sitosterol (61-85%) and campesterol (6-20%). Argan oil contained schottenol (35%) and spinasterol (32%). Compared with literature values, no marked differences were observed among the differently processed, organically grown or cold pressed rapeseed oils and other specialty oils in this study. (Author) 33 refs.

  8. Sustainability aspects of biobased products : comparison of different crops and products from the vegetable oil platform

    NARCIS (Netherlands)

    Meesters, K.P.H.; Corré, W.J.; Conijn, J.G.; Patel, M.K.; Bos, H.L.

    2012-01-01

    This study focusses on the production of vegetable oil based products. A limited number of aspacts of the sustainability of the full chain (from agriculture to product at the factory gate) was evaluated. Three different vegetable oils were taken into account: palm oil, soy oil and rapeseed oil. Also

  9. Storage stability of screwpress-extracted oils and residual meals from CELSS candidate oilseed crops

    Science.gov (United States)

    Stephens, S. D.; Watkins, B. A.; Nielsen, S. S.

    1997-01-01

    The efficacy of using screwpress extraction for oil was studied with three Controlled Ecological Life-Support System (CELSS) candidate oilseed crops (soybean, peanut, and canola), since use of volatile organic solvents for oil extraction likely would be impractical in a closed system. Low oil yields from initial work indicated that a modification of the process is necessary to increase extraction efficiency. The extracted oil from each crop was tested for stability and sensory characteristics. When stored at 23 degC, canola oil and meal were least stable to oxidative rancidity, whereas peanut oil and meal were least stable to hydrolytic rancidity. When stored at 65 degC, soybean oil and canola meal were least stable to oxidative rancidity, whereas peanut oil and meal were least stable to hydrolytic rancidity. Sensory evaluation of the extracted oils used in bread and salad dressing indicated that flavor, odor intensity, acceptability, and overall preference may be of concern for screwpress-extracted canola oil when it is used in an unrefined form. Overall results with screwpress-extracted crude oils indicated that soybean oil may be more stable and acceptable than canola or peanut under typical storage conditions.

  10. Oxidative stability of fish oil enriched drinking yoghurt

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall; Debnath, D.; Jacobsen, Charlotte

    2007-01-01

    The oxidative stability of fish oil enriched drinking yoghurt as well as the antioxidative effect of citric acid ester, vitamin K and disodium ethylenediaminetetraacetic acid (EDTA) were investigated by measuring peroxide value and volatile secondary oxidation products and by sensory analysis....... No oxidation was observed in yoghurt stored at 2 [degree sign]C for up to 19 days, with or without addition of citric acid ester. Fish oil enriched yoghurt was also very stable even when compared to yoghurt with added rapeseed oil or a mixture of rapeseed oil and fish oil stored for up to 29 days. The addition...

  11. Quantitative proteomics of seed filling in castor: comparison with soybean and rapeseed reveals differences between photosynthetic and nonphotosynthetic seed metabolism.

    Science.gov (United States)

    Houston, Norma L; Hajduch, Martin; Thelen, Jay J

    2009-10-01

    Seed maturation or seed filling is a phase of development that plays a major role in the storage reserve composition of a seed. In many plant seeds photosynthesis plays a major role in this process, although oilseeds, such as castor (Ricinus communis), are capable of accumulating oil without the benefit of photophosphorylation to augment energy demands. To characterize seed filling in castor, a systematic quantitative proteomics study was performed. Two-dimensional gel electrophoresis was used to resolve and quantify Cy-dye-labeled proteins expressed at 2, 3, 4, 5, and 6 weeks after flowering in biological triplicate. Expression profiles for 660 protein spot groups were established, and of these, 522 proteins were confidently identified by liquid chromatography-tandem mass spectrometry by mining against the castor genome. Identified proteins were classified according to function, and the most abundant groups of proteins were involved in protein destination and storage (34%), energy (19%), and metabolism (15%). Carbon assimilatory pathways in castor were compared with previous studies of photosynthetic oilseeds, soybean (Glycine max) and rapeseed (Brassica napus). These comparisons revealed differences in abundance and number of protein isoforms at numerous steps in glycolysis. One such difference was the number of enolase isoforms and their sum abundance; castor had approximately six times as many isoforms as soy and rapeseed. Furthermore, Rubisco was 11-fold less prominent in castor compared to rapeseed. These and other differences suggest some aspects of carbon flow, carbon recapture, as well as ATP and NADPH production in castor differs from photosynthetic oilseeds.

  12. Rapeseed oil as feedstock for high functionality polyol synthesis

    Czech Academy of Sciences Publication Activity Database

    Kirpluks, M.; Kalnbunde, D.; Walterová, Zuzana; Cabulis, U.

    2017-01-01

    Roč. 5, 3-4 (2017), s. 258-270 ISSN 2164-6325 Institutional support: RVO:61389013 Keywords : polyols * polyurethane foams * renewable raw materials Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 0.812, year: 2016

  13. Canola versus Wheat Rotation Effects on Subsequent Wheat Yield

    Science.gov (United States)

    Winter canola (Brassica napus L.) (WC) is considered the most promising, domestically-produced oilseed feedstock for biodiesel production and for diversifying wheat (Triticum aestivum L.)-based cropping systems in the Inland Pacific Northwest, USA (PNW). A law passed in 2006 requires that at least t...

  14. Nutritional evaluation of treated canola straw for ruminants using in ...

    African Journals Online (AJOL)

    Administrator

    2011-10-19

    Oct 19, 2011 ... value of molasses treated with canola straw using in vitro gas production technique with Taleshi native ... As straw is poorly fermented, it has low rates of ... Gas production was measured as the volume of gas in the calibrated syringes and was recorded before incubation and 2, 4, 6, 8, 12, 24,. 48, 72 and 96 ...

  15. Glucosinolates and other anti-nutritive compounds in canola meals ...

    African Journals Online (AJOL)

    Canola meals from six varieties cultivated in Egypt (Seru4 and Pactol) and Japan (Kirariboshi, Tohoku95, Oominantane and Kizakinonatane) were investigated regarding anti-nutritive compounds, namely glucosinolates, phytic acid, sinapine and total phenols. All varieties except Kirariboshi contained a high level of total ...

  16. Vegetable oil spills : oil properties and behaviour

    International Nuclear Information System (INIS)

    Fingas, M.; Fieldhouse, B.; Jokuty, P.

    2001-01-01

    In 1997, the United States Environmental Protection Agency conducted a thorough review of the issue regarding vegetable oil spills. Recent attention has refocused on this issue as a result of an incident where 20 tons of canola oil was spilled in the Vancouver Harbour in 2000. In the past, vegetable oils were suggested to be a useful test material because they were thought to be innocuous. It was even suggested they be used to remove petroleum oil residues from beaches. However, recent studies have shown that spills of vegetable oils can have major environmental consequences, equivalent to those of petroleum oil spills. The spills have devastating effects on birds and intertidal organisms. This paper presented a summary of historical vegetable spills from around the world. In this study, specific behaviour tests were examined for several oils including canola, soy bean, olive, castor and corn oils. Evaporation, water-in-oil emulsification and chemical dispersion were measured and were found to be nearly zero, suggesting that vegetable oil spills are not very soluble in water. The aquatic toxicity of vegetable oil is low, but their fate is quite different from petroleum. Vegetable oils do not evaporate to a significant degree, they do not form water-in-oil emulsions, nor do they disperse in water. The physical properties of vegetable oils were also measured, including density and viscosity. This paper presented the aquatic toxicity of several vegetable oils along with other environmental data including the degradation rates noted in the literature. Most environmental damage reported in the literature is by contact with birds feathers resulting in hypothermia and secondly by smothering of intertidal organisms. The effect of vegetable oil on fish has not been well studied, but it is expected that there will be little destructive effect except where smothering can occur. 35 refs., 3 tabs

  17. Vegetable oil spills : oil properties and behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Fingas, M.; Fieldhouse, B.; Jokuty, P. [Environment Canada, Ottawa, ON (Canada). Emergencies Science Div

    2001-07-01

    In 1997, the United States Environmental Protection Agency conducted a thorough review of the issue regarding vegetable oil spills. Recent attention has refocused on this issue as a result of an incident where 20 tons of canola oil was spilled in the Vancouver Harbour in 2000. In the past, vegetable oils were suggested to be a useful test material because they were thought to be innocuous. It was even suggested they be used to remove petroleum oil residues from beaches. However, recent studies have shown that spills of vegetable oils can have major environmental consequences, equivalent to those of petroleum oil spills. The spills have devastating effects on birds and intertidal organisms. This paper presented a summary of historical vegetable spills from around the world. In this study, specific behaviour tests were examined for several oils including canola, soy bean, olive, castor and corn oils. Evaporation, water-in-oil emulsification and chemical dispersion were measured and were found to be nearly zero, suggesting that vegetable oil spills are not very soluble in water. The aquatic toxicity of vegetable oil is low, but their fate is quite different from petroleum. Vegetable oils do not evaporate to a significant degree, they do not form water-in-oil emulsions, nor do they disperse in water. The physical properties of vegetable oils were also measured, including density and viscosity. This paper presented the aquatic toxicity of several vegetable oils along with other environmental data including the degradation rates noted in the literature. Most environmental damage reported in the literature is by contact with birds feathers resulting in hypothermia and secondly by smothering of intertidal organisms. The effect of vegetable oil on fish has not been well studied, but it is expected that there will be little destructive effect except where smothering can occur. 35 refs., 3 tabs.

  18. Visualizing tissue molecular structure of a black type of canola (Brassica) seed with a thick seed coat after heat-related processing in a chemical way.

    Science.gov (United States)

    Yu, Peiqiang

    2013-02-20

    Heat-related processing of cereal grains, legume seeds, and oil seeds could be used to improve nutrient availability in ruminants. However, different types of processing may have a different impact on intrinsic structure of tissues. To date, there is little research on structure changes after processing within intact tissues. The synchrotron-based molecular imaging technique enables us to detect inherent structure change on a molecular level. The objective of this study was to visualize tissue of black-type canola (Brassica) seed with a thick seed coat after heat-related processing in a chemical way using the synchrotron imaging technique. The results showed that the chemical images of protein amides were obtained through the imaging technique for the raw, wet, and dry heated black type of canola seed tissues. It seems that different types of processing have a different impact on the protein spectral profile in the black type of canola tissues. Wet heating had a greater impact on the protein α-helix to β-sheet ratio than dry heating. Both dry and wet heating resulted in different patterns in amide I, the second derivative, and FSD spectra. However, the exact differences in the tissue images are relatively difficult to be obtained through visual comparison. Future studies should focus on (1) comparing the response and sensitivity of canola seeds to various processing methods between the yellow-type and black-type of canola seeds; (2) developing a sensitive method to compare the image difference between tissues and between treatments; (3) developing a method to link images to nutrient digestion, and (4) revealing how structure changes affect nutrient absorption in humans and animals.

  19. Effect of randomization of mixtures of butter oil and vegetable oil on absorption and lipid metabolism in rats

    DEFF Research Database (Denmark)

    Becker, C.; Lund, Pia; Hølmer, Gunhild Kofoed

    2001-01-01

    of the dietary fats compared. Data on the fate of such lipids beyond the bloodstream is rather scarce and animal model studies are needed. Aim of the study To compare the metabolism of butter oil and mixtures of butter and rapeseed oil, native or randomized, in a model. The regiospecific fatty acid distribution...... present in dietary fats was followed through absorption, chylomicron formation, and deposition in adipose tissue and in different liver lipids (triacylglycerols, phospholipids, and cholesterol esters). Methods Rats were fed for 6 weeks from weaning either butter oil (BO), a butteroil- rapeseed oil mixture...... (interesterification) of butter oil with rapeseed oil (65:35 w/w) for use as edible fat did not have any impact on the fatty acid composition beyond the chylomicron step when compared to the native mixture....

  20. Impact of applying edible oils to silk channels on ear pests of sweet corn

    Science.gov (United States)

    The impact of applying vegetable oils to corn silks on ear-feeding insects in sweet corn production was evaluated in 2006 and 2007. Six vegetable oils used in this experiment were canola, corn, olive, peanut, sesame, and soybean. Water and two commercial insecticidal oils (Neemix' neem oil and Sun...

  1. Effects of replacing soybean meal with canola meal or treated canola meal on ruminal digestion, fermentation pattern, omasal nutrient flow, and performance in lactating dairy cows

    Science.gov (United States)

    Extrusion-treated canola meal (TCM) was produced in an attempt to increase the rumen undegradable protein (RUP) fraction of canola meal (CM). The objective of this study was to evaluate the effects of replacing soybean meal (SBM) with CM or TCM on ruminal digestion, fermentation pattern, omasal nutr...

  2. Effect of Zeolite, Selenium and Silicon on Yield, Yield Components and Some Physiological Traits of Canola under Salt Stress Conditions

    Directory of Open Access Journals (Sweden)

    A Bybordi

    2016-07-01

    chlorophyll, relative water content, catalase, peroxidase and superoxide dismutase activity, as well as malondialdehyde, sodium and potassium content in the leaves. The samples were immediately frozen in liquid nitrogen and kept in -80° C freezer. At the end of the growing season, agronomic traits such as silique number, seed number on silique, 1000- grain weight, grain yield, biological yield and harvest index were recorded. Total oil percentage and fatty acids (oleic, linolenic and linoleic percentage were measured. Results and Discussion The combined analysis of variance indicated that the effect of year was significant on all studied traits, except for silique number, grain number in silique, linoleic acid, chlorophyll content and peroxidase activity. In addition, the results showed that the main effect of zeolite, selenium and silicon were significant on all canola studied traits. However, relative water content and peroxidase activity were not affected by silicon application. Comparison of means indicated that triple interaction was significant at 1000- grain weight, grain yield, biological yield, chlorophyll content, photosynthesis rate, relative water content and antioxidant enzyme activity. Some traits such as 1000- grain weight, grain yield, biological yield, harvest index, oil percentage, linolenic percentage and superoxide dismutase activity as well as sodium content in leaves were found to be higher in the second year compared with the first year. Zeolite significantly increased silique number and grain number in silique. Furthermore, harvest index increased with the increase of zeolite level. According to the results, selenium increased silique number, grain number in silique and harvest index in canola plants. Silicon foliar application also significantly increased silique number, grain number in silique and harvest index. The highest chlorophyll contents, photosynthesis rate and relative water content were registered when zeolite was applied at 10% w: w and

  3. Enhanced bioenergy recovery from rapeseed plant in a biorefinery concept

    DEFF Research Database (Denmark)

    Luo, Gang; Talebnia, Farid; Karakashev, Dimitar Borisov

    2011-01-01

    peroxide and stream pretreatment. The byproducts (rapeseed cake, glycerol, hydrolysate and stillage) were evaluated for hydrogen and methane production. In batch experiments, the energy yields from each feedstock for, either methane production alone or for both hydrogen and methane, were similar. However...

  4. Oxidation stability of rapeseed biodiesel/petroleum diesel blends

    DEFF Research Database (Denmark)

    Østerstrøm, Freja From; Anderson, James E.; Mueller, Sherry A.

    2016-01-01

    of the oxidation of a biodiesel fuel blend consisting of 30% (v/v) rapeseed methyl ester in petroleum diesel (B30) was conducted at 70 and 90 °C with three aeration rates. Oxidation rates increased with increasing temperature as indicated by decreases in induction period (Rancimat), concentrations of unsaturated...

  5. Levels of bioactive lipids in cooking oils: olive oil is the richest source of oleoyl serine.

    Science.gov (United States)

    Bradshaw, Heather B; Leishman, Emma

    2016-05-01

    Rates of osteoporosis are significantly lower in regions of the world where olive oil consumption is a dietary cornerstone. Olive oil may represent a source of oleoyl serine (OS), which showed efficacy in animal models of osteoporosis. Here, we tested the hypothesis that OS as well as structurally analogous N-acyl amide and 2-acyl glycerol lipids are present in the following cooking oils: olive, walnut, canola, high heat canola, peanut, safflower, sesame, toasted sesame, grape seed, and smart balance omega. Methanolic lipid extracts from each of the cooking oils were partially purified on C-18 solid-phase extraction columns. Extracts were analyzed with high-performance liquid chromatography-tandem mass spectrometry, and 33 lipids were measured in each sample, including OS and bioactive analogs. Of the oils screened here, walnut oil had the highest number of lipids detected (22/33). Olive oil had the second highest number of lipids detected (20/33), whereas grape-seed and high-heat canola oil were tied for lowest number of detected lipids (6/33). OS was detected in 8 of the 10 oils tested and the levels were highest in olive oil, suggesting that there is something about the olive plant that enriches this lipid. Cooking oils contain varying levels of bioactive lipids from the N-acyl amide and 2-acyl glycerol families. Olive oil is a dietary source of OS, which may contribute to lowered prevalence of osteoporosis in countries with high consumption of this oil.

  6. Reuse of rapeseed by-products from biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Krička, T.; Matin, A.; Voća, N.; Jurišić, V.; Bilandžija, N.

    2015-07-01

    The objective of this paper is to investigate usability of rapeseed cake from biodiesel fuel production as an energy source. For this research, rapeseed was grown at the research site of the Faculty of Agriculture in Zagreb, Croatia. The investigated rapeseed cake, residue from cold pressing, was divided in two groups of samples. The first group was a mix of three varieties (Bristol, Express and Navajo), while the other group consisted of three hybrids (Artus, Baldur, Titan). The utilization of rapeseed cake for energy via two routes was evaluated; namely, utilization of rapeseed cake as (1) solid biofuel (pellets) with addition of 3% of glycerol, and (2) as substrate in anaerobic digestion (AD). In investigation of cake as solid fuel, proximate (moisture content, ash content, fixed carbon and volatile matter), ultimate (content of carbon, sulphur, hydrogen, oxygen and nitrogen) and physical and calometry analyses (abrasion, diameter, length, density, higher and lower heating value were carried out. As for its use in AD, production of biogas during 40 days was monitored with a view of assessing the use of digested residue as fertilizer in agricultural production. Both groups of digested residues were analysed (pH, electroconductivity, moisture content, ash content, content of nitrogen and carbon, C/N ratio, content of P2O5, K2O, Ca, Mg, Na). The analysis indicated that the investigated raw material is usable as solid and gas biofuel, and digested residue as fertilizer in ecological agriculture. The two groups of samples analysed here did not show significant differences. (Author)

  7. Reuse of rapeseed by-products from biodiesel production

    Directory of Open Access Journals (Sweden)

    Tajana Krička

    2015-03-01

    Full Text Available The objective of this paper is to investigate usability of rapeseed cake from biodiesel fuel production as an energy source. For this research, rapeseed was grown at the research site of the Faculty of Agriculture in Zagreb, Croatia. The investigated rapeseed cake, residue from cold pressing, was divided in two groups of samples. The first group was a mix of three varieties (Bristol, Express and Navajo, while the other group consisted of three hybrids (Artus, Baldur, Titan. The utilization of rapeseed cake for energy via two routes was evaluated; namely, utilization of rapeseed cake as (1 solid biofuel (pellets with addition of 3% of glycerol, and (2 as substrate in anaerobic digestion (AD. In investigation of cake as solid fuel, proximate (moisture content, ash content, fixed carbon and volatile matter, ultimate (content of carbon, sulphur, hydrogen, oxygen and nitrogen and physical and calometry analyses (abrasion, diameter, length, density, higher and lower heating value were carried out. As for its use in AD, production of biogas during 40 days was monitored with a view of assessing the use of digested residue as fertilizer in agricultural production. Both groups of digested residues were analysed (pH, electroconductivity, moisture content, ash content, content of nitrogen and carbon, C/N ratio, content of P2O5, K2O, Ca, Mg, Na. The analysis indicated that the investigated raw material is usable as solid and gas biofuel, and digested residue as fertilizer in ecological agriculture. The two groups of samples analysed here did not show significant differences.

  8. High-purity fatty acid methyl ester production from canola, soybean, palm, and yellow grease lipids by means of a membrane reactor

    International Nuclear Information System (INIS)

    Cao Peigang; Dube, Marc A.; Tremblay, Andre Y.

    2008-01-01

    High-purity fatty acid methyl ester (FAME) was produced from different lipids, such as soybean oil, canola oil, a hydrogenated palm oil/palm oil blend, yellow grease, and brown grease, combined with methanol using a continuous membrane reactor. The membrane reactor combines reaction and separation in a single unit, provides continuous mixing of raw materials, and maintains a high molar ratio of methanol to lipid in the reaction loop while maintaining two phases during the reaction. It was demonstrated that the membrane reactor can be operated using a very broad range of feedstocks at highly similar operating conditions to produce FAME. The total glycerine and free glycerine contents of the FAME produced were below the ASTM D6751 standard after a single reaction step. Under essentially the same reaction conditions, a conventional batch reaction was not able to achieve the same degree of FAME purity. The effect of the fatty acid composition of the lipid feedstocks on the FAME purity was also shown. It was demonstrated that, due to the fatty acid composition, FAME from virgin soybean oil and virgin canola oil was produced in the membrane reactor within ASTM specifications even without a water washing step

  9. Effects of cooking method, cooking oil, and food type on aldehyde emissions in cooking oil fumes.

    Science.gov (United States)

    Peng, Chiung-Yu; Lan, Cheng-Hang; Lin, Pei-Chen; Kuo, Yi-Chun

    2017-02-15

    Cooking oil fumes (COFs) contain a mixture of chemicals. Of all chemicals, aldehydes draw a great attention since several of them are considered carcinogenic and formation of long-chain aldehydes is related to fatty acids in cooking oils. The objectives of this research were to compare aldehyde compositions and concentrations in COFs produced by different cooking oils, cooking methods, and food types and to suggest better cooking practices. This study compared aldehydes in COFs produced using four cooking oils (palm oil, rapeseed oil, sunflower oil, and soybean oil), three cooking methods (stir frying, pan frying, and deep frying), and two foods (potato and pork loin) in a typical kitchen. Results showed the highest total aldehyde emissions in cooking methods were produced by deep frying, followed by pan frying then by stir frying. Sunflower oil had the highest emissions of total aldehydes, regardless of cooking method and food type whereas rapeseed oil and palm oil had relatively lower emissions. This study suggests that using gentle cooking methods (e.g., stir frying) and using oils low in unsaturated fatty acids (e.g., palm oil or rapeseed oil) can reduce the production of aldehydes in COFs, especially long-chain aldehydes such as hexanal and t,t-2,4-DDE. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Comparative proteome analysis of drought-sensitive and drought-tolerant rapeseed roots and their hybrid F1 line under drought stress.

    Science.gov (United States)

    Mohammadi, Payam Pour; Moieni, Ahmad; Komatsu, Setsuko

    2012-11-01

    Rapeseed (Brassica napus L.), which is the third leading source of vegetable oil, is sensitive to drought stress during the early vegetative growth stage. To investigate the initial response of rapeseed to drought stress, changes in the protein expression profiles of drought-sensitive (RGS-003) and drought-tolerant lines (SLM-003), and their F1 hybrid, were analyzed using a proteomics approach. Seven-day-old rapeseed seedlings were treated with drought stress by restricting water for 7 days, and proteins were extracted from roots and separated by two-dimensional polyacrylamide gel electrophoresis. In the sensitive rapeseed line, 35 protein spots were differentially expressed under drought stress, and proteins related to metabolism, energy, disease/defense, and transport were decreased. In the tolerant line, 32 protein spots were differentially expressed under drought stress, and proteins involved in metabolism, disease/defense, and transport were increased, while energy-related proteins were decreased. Six protein spots in F1 hybrid were common among expressed proteins in the drought-sensitive and -tolerant lines. Notably, tubulin beta-2 and heat shock protein 70 were decreased in the drought-sensitive line and hybrid F1 plants, while jasmonate-inducible protein and 20S proteasome subunit PAF1 were increased in the F1 hybrids and drought-tolerant line. These results indicate that (1) V-type H(+) ATPase, plasma-membrane associated cation-binding protein, HSP 90, and elongation factor EF-2 have a role in the drought tolerance of rapeseed; (2) The decreased levels of heat shock protein 70 and tubulin beta-2 in the drought-sensitive and hybrid F1 lines might explain the reduced growth of these lines in drought conditions.

  11. Altered Fruit and Seed Development of Transgenic Rapeseed (Brassica napus Over-Expressing MicroRNA394.

    Directory of Open Access Journals (Sweden)

    Jian Bo Song

    Full Text Available Fruit and seed development in plants is a complex biological process mainly involved in input and biosynthesis of many storage compounds such as proteins and oils. Although the basic biochemical pathways for production of the storage metabolites in plants are well characterized, their regulatory mechanisms are not fully understood. In this study, we functionally identified rapeseed (Brassica napus miR394 with its target gene Brassica napus leaf curling responsiveness (BnLCR to dissect a role of miR394 during the fruit and seed development. Transgenic rapeseed plants over-expressing miR394 under the control of the cauliflower mosaic virus 35S promoter were generated. miR394 over-expression plants exhibited a delayed flowering time and enlarged size of plants, leaf blade, pods and seed body, but developed seeds with higher contents of protein and glucosinolates (GLS and lower levels of oil accumulation as compared to wild-type. Over-expression of miR394 altered the fatty acid (FA composition by increasing several FA species such as C16:0 and C18:0 and unsaturated species of C20:1 and C22:1 but lowering C18:3. This change was accompanied by induction of genes coding for transcription factors of FA synthesis including leafy cotyledon1 (BnLEC1, BnLEC2, and FUSCA3 (FUS3. Because the phytohormone auxin plays a crucial role in fruit development and seed patterning, the DR5-GUS reporter was used for monitoring the auxin response in Arabidopsis siliques and demonstrated that the DR5 gene was strongly expressed. These results suggest that BnmiR394 is involved in rapeseed fruit and seed development.

  12. Effect of structured lipids based on fish oil on the growth and fatty acid composition in Rainbow Trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall; Gøttsche, Jesper; Holm, Jørgen

    2005-01-01

    containing DAG. A feeding experiment where groups of rainbow trout were fed six diets containing different types of oils for 61 days was performed. The lipid fraction of the six diets was as follows: 1) Fish oil and rapeseed oil (FO diet), 2) Specific structured lipid and rapeseed oil (SL diet), 3......) Randomised structured lipids and rapeseed oil (RL diet), 4) Medium chain triglyceride and fish oil (MCT diet), 5) Diacylglycerol and fish oil (DAG diet), 6) Fish oil (FOmax diet). Five of the diets (1-5) contained mixed oils blended to contain the same amount of EPA and DHA. Three of these diets (2,3 and 4......The aim of the study was to investigate whether it was possible a) to increase the relative incorporation of n - 3 very long chain polyunsaturated fatty acids (VLCPUFA) in a low VLCPUFA diet by feeding trout structured triacylglycerols and b) to reduce fat accumulation by feeding trout a diet...

  13. Application of Artificial Neural Networks in Canola Crop Yield Prediction

    Directory of Open Access Journals (Sweden)

    S. J. Sajadi

    2014-02-01

    Full Text Available Crop yield prediction has an important role in agricultural policies such as specification of the crop price. Crop yield prediction researches have been based on regression analysis. In this research canola yield was predicted using Artificial Neural Networks (ANN using 11 crop year climate data (1998-2009 in Gonbad-e-Kavoos region of Golestan province. ANN inputs were mean weekly rainfall, mean weekly temperature, mean weekly relative humidity and mean weekly sun shine hours and ANN output was canola yield (kg/ha. Multi-Layer Perceptron networks (MLP with Levenberg-Marquardt backpropagation learning algorithm was used for crop yield prediction and Root Mean Square Error (RMSE and square of the Correlation Coefficient (R2 criterions were used to evaluate the performance of the ANN. The obtained results show that the 13-20-1 network has the lowest RMSE equal to 101.235 and maximum value of R2 equal to 0.997 and is suitable for predicting canola yield with climate factors.

  14. Genetic basis of nitrogen use efficiency and yield stability across environments in winter rapeseed.

    Science.gov (United States)

    Bouchet, Anne-Sophie; Laperche, Anne; Bissuel-Belaygue, Christine; Baron, Cécile; Morice, Jérôme; Rousseau-Gueutin, Mathieu; Dheu, Jean-Eric; George, Pierre; Pinochet, Xavier; Foubert, Thomas; Maes, Olivier; Dugué, Damien; Guinot, Florent; Nesi, Nathalie

    2016-09-15

    Nitrogen use efficiency is an important breeding trait that can be modified to improve the sustainability of many crop species used in agriculture. Rapeseed is a major oil crop with low nitrogen use efficiency, making its production highly dependent on nitrogen input. This complex trait is suspected to be sensitive to genotype × environment interactions, especially genotype × nitrogen interactions. Therefore, phenotyping diverse rapeseed populations under a dense network of trials is a powerful approach to study nitrogen use efficiency in this crop. The present study aimed to determine the quantitative trait loci (QTL) associated with yield in winter oilseed rape and to assess the stability of these regions under contrasting nitrogen conditions for the purpose of increasing nitrogen use efficiency. Genome-wide association studies and linkage analyses were performed on two diversity sets and two doubled-haploid populations. These populations were densely genotyped, and yield-related traits were scored in a multi-environment design including seven French locations, six growing seasons (2009 to 2014) and two nitrogen nutrition levels (optimal versus limited). Very few genotype × nitrogen interactions were detected, and a large proportion of the QTL were stable across nitrogen nutrition conditions. In contrast, strong genotype × trial interactions in which most of the QTL were specific to a single trial were found. To obtain further insight into the QTL × environment interactions, genetic analyses of ecovalence were performed to identify the genomic regions contributing to the genotype × nitrogen and genotype × trial interactions. Fifty-one critical genomic regions contributing to the additive genetic control of yield-associated traits were identified, and the structural organization of these regions in the genome was investigated. Our results demonstrated that the effect of the trial was greater than the effect of nitrogen nutrition

  15. Nutritional value of yellow-seeded winter rapeseed cakes for growing pigs

    Directory of Open Access Journals (Sweden)

    Ewa Święch

    2016-08-01

    Full Text Available Objective of the study was to compare the composition and nutritional value of a winter brown- (BRC and three yellow-seeded (YRC cold-pressed rapeseed cakes as the components of pigs’ diets, and to assess their effects on colonic bacterial fermentation and the relative weight of organs. In experiment 1, the standardised ileal digestibility (SID of protein and amino acids (AA of cakes was determined in 12 male cannulated pigs. Each diet was fed to six pigs during three seven-day periods. Ileal digesta was collected during the last three days of the period. In experiment 2, five groups each containing six female pigs with initial body weights (BW of 20 kg were fed on diets containing BRC, YRC, or soyabean oil meal (SBM as the main protein source. The apparent total tract digestibility (ATTD of nutrients and growth performance were measured untill 60 kg BW was reached, and short chain fatty acids (SCFA concentrations in the colon, as well as the weight of the liver, kidney, heart, and thyroid, were recorded. The main differences between BRC and YRC were found in higher content of fat and protein, lower amounts of fibre and glucosinolates (Gls, and higher ATTD of fibre in YRC. Protein and AA SID, ATTD of nutrients, total SCFA colonic concentration, and growth performance did not significantly differ. The chemical composition of the three YRC was not uniform, the greatest differences were found among the amounts of Gls. The relative weights of the thyroid and heart were greater in pigs fed BRC than in YRC and SBM diets. Thyroid weight was positively correlated with dietary progoitrin, alkenyl Gls, and total Gls, whereas heart weight was positively correlated with progoitrin and alkenyl Gls. It was concluded that winter yellow-seeded rapeseed is a better raw material for cold-pressing than brown-seeded due to having lower Gls and fibre content. 

  16. Effects of electron beam irradiation on chemical composition, antinutritional factors, ruminal degradation and in vitro protein digestibility of canola meal

    Science.gov (United States)

    Taghinejad-Roudbaneh, M.; Ebrahimi, S. R.; Azizi, S.; Shawrang, P.

    2010-12-01

    The aim of the present study was to determine the impact of electron beam (EB) irradiation at doses of 15, 30 and 45 kGy on the nutritional value of canola meal. The phytic acid and total glucosinolate content of EB-irradiated canola meal decreased as irradiation doses increased ( Pruminal degradation and reducing antinutritional factors of irradiated canola meal.

  17. Effects of derived meals from juncea (Brassica juncea, yellow and black seeded canola (Brassica napus and multicarbohydrase enzymes supplementation on apparent metabolizable energy in broiler chickens

    Directory of Open Access Journals (Sweden)

    Balachandar Jayaraman

    2016-09-01

    MJ/kg. In conclusion, among the different processing methods of oil extraction, meals derived from yellow seeded canola had higher AMEn than B seeded canola and Juncea.

  18. Anti-nutritional factors in canola produced in the Western and ...

    African Journals Online (AJOL)

    The development of low erucic acid, low glucosinolate cultivars of canola seed has led to the availability of a feed ingredient with considerable potential to replace soyabean meal in diets for all classes of farm animals. The sinapine and glucosinolate content of various canola cultivars cultivated in two areas of the Western ...

  19. Comparison of Technical and Economical Effect of Different Planters using Varied Seed Rates on Canola Yield in Moghan Region

    Directory of Open Access Journals (Sweden)

    J Taghinazhad

    2017-10-01

    Full Text Available Introduction One of the most important agricultural crops is rape seed oil as its special features can play an important role in the agricultural region. Due to the presence of more than 40% oil and 25% protein in the grain can play an important role in the supply of edible oil. After determining of various factors such as uniformity of planting depth, evenness between shrub, plant height and grain yield concluded that Nordsten drill along the seeding density of 75 cm for mechanized planting is acceptable yield. Afzali nia et al. (1999 in one study aimed to assess the performance of common grain drills in Iran in Zarghan area in Fars Province showed that differences between treatments in terms of seed distribution uniformity factor, plant population per unit area and yield product is not significant. The purpose of this study was to evaluate and select the most suitable types of canola planter and variable seed rate planting density and aims to increase the canola cultivated area by the highest yield. Materials and Methods Moghan Plain, located in the north areas of Ardebil province, is considered as an important areas of canola planting in Iran. This study was performed in the agricultural research center of Ardabil Province (Moghan (39°39´N; 48°88´E; 78 m a.s.l. in Northwest of Iran. To evaluate different planters with varied seed rates on canola yield. The experimental design was carried out in a randomized complete block design with strip splits (varied seed rates 6, 8 and10 kg per hectare and different drills consist of B1: Barzagar Hamadani drill (conventional method B2: Amazon drill pals teeth harrow, B3: Gaspardo drill pals teeth harrow and B4: Agromaster drill and four replications. To investigatethe different treatments in the experiment, various parameters such as percent germination, seeding uniformity of width and depth intervals, plant establishment, effective field capacity, fuel consumption rate andgrain yield were measured

  20. Production and characterization of a functional Iranian white brined cheese by replacement of dairy fat with vegetable oils.

    Science.gov (United States)

    Achachlouei, B Fathi; Hesari, J; Damirchi, S Azadmard; Peighambardoust, Sh; Esmaiili, M; Alijani, S

    2013-10-01

    Full-fat cheese usually contains high amounts of saturated fatty acids and cholesterol, which may have negative health effects. In this study, full-fat white brined cheese, as a control sample, and experimental cheeses with olive and canola oils (T1, white brined cheese containing 50% canola oil, T2, white brined cheese containing 50% olive oil, T3, white brined cheese containing 100% canola oil and T4, white brined cheese containing 100% olive oil) were prepared from bovine milk. Physicochemical properties, lipolysis, proteolysis patterns and sensorial properties in the prepared samples were determined during 80 days of storage at 20-day intervals. Cheese incorporating vegetable oils showed lower amounts of saturated fatty acids and higher amounts of unsaturated fatty acids compared with the full-fat cheese (control) samples. Moisture, pH, lipolysis value, as assessed by the acid-degree value, and proteolysis values (pH 4.6 SN/TN% and NPN/TN%) significantly (p titrable acidity decreased during 40 days of ripening but then increased slightly. Sensory properties of white brined cheese incorporating with vegetable oils were different from those of full-fat cheese samples. White brined cheese containing olive and canola oils (100% fat substitution) received better sensory scores compared to other samples. The results showed that it is possible to replace dairy fat with olive and canola oils, which can lead to produce a new healthy and functional white brined cheese.

  1. Evaluation of Application Methods Efficiency of Zinc and Iron for Canola(Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Ahmad BYBORDI

    2010-03-01

    Full Text Available In order to evaluation of application method efficiency of zinc and iron microelements in canola, an experiment was conducted in the Agricultural Research Station of Eastern Azerbaijan province in 2008. The experimental design was a RCBD with eight treatments (F1: control, F2: iron, F3: zinc, F4: iron + zinc in the form of soil utility, F5: iron, F6: zinc, F7: iron+ zinc in the form of solution foliar application, and F8: iron + zinc in the form of soil utility and foliar application. Analysis of variance showed that there were significant differences among treatments on given traits, antioxidant enzymes activity, fatty acids percentage, plant height, seed weight to capitulum weight ratio, protein percentage, oil percentage, oil yield, 1000 seed weight, seed yield, nitrogen, phosphorous and potassium percentage of leaves, zinc and iron content of leaves and capitulum diameters. The highest seed yield, oil yield, oil percentage, 1000 seed weight, seed weight to capitulum weight ratio and protein percentage were obtained from the soil and foliar application of iron + zinc treatments (F8. Also, the highest amounts of nitrogen, phosphorous and potassium concentration in leaves were achieved from control treatment which was an indication of non-efficiency of iron and zinc on the absorption rate of these substances in the leaves. The correlation between effective traits on the seed yield, such as, capitalism diameter, number of seed rows in capitulum, seed weight to capitulum weight ratio and 1000 seed weight were positively significant. In general, foliar and soil application of zinc and iron had the highest efficiency in aspect of seed production. The comparison of the various methods of fertilization showed that foliar application was more effective than soil application. Also, micronutrient foliar application increased concentration of elements, especially zinc and iron. Antioxidant enzymes activity was different in response to treatments also the

  2. A large-scale field study examining effects of exposure to clothianidin seed-treated canola on honey bee colony health, development, and overwintering success

    Directory of Open Access Journals (Sweden)

    G. Christopher Cutler

    2014-10-01

    Full Text Available In summer 2012, we initiated a large-scale field experiment in southern Ontario, Canada, to determine whether exposure to clothianidin seed-treated canola (oil seed rape has any adverse impacts on honey bees. Colonies were placed in clothianidin seed-treated or control canola fields during bloom, and thereafter were moved to an apiary with no surrounding crops grown from seeds treated with neonicotinoids. Colony weight gain, honey production, pest incidence, bee mortality, number of adults, and amount of sealed brood were assessed in each colony throughout summer and autumn. Samples of honey, beeswax, pollen, and nectar were regularly collected, and samples were analyzed for clothianidin residues. Several of these endpoints were also measured in spring 2013. Overall, colonies were vigorous during and after the exposure period, and we found no effects of exposure to clothianidin seed-treated canola on any endpoint measures. Bees foraged heavily on the test fields during peak bloom and residue analysis indicated that honey bees were exposed to low levels (0.5–2 ppb of clothianidin in pollen. Low levels of clothianidin were detected in a few pollen samples collected toward the end of the bloom from control hives, illustrating the difficulty of conducting a perfectly controlled field study with free-ranging honey bees in agricultural landscapes. Overwintering success did not differ significantly between treatment and control hives, and was similar to overwintering colony loss rates reported for the winter of 2012–2013 for beekeepers in Ontario and Canada. Our results suggest that exposure to canola grown from seed treated with clothianidin poses low risk to honey bees.

  3. A large-scale field study examining effects of exposure to clothianidin seed-treated canola on honey bee colony health, development, and overwintering success.

    Science.gov (United States)

    Cutler, G Christopher; Scott-Dupree, Cynthia D; Sultan, Maryam; McFarlane, Andrew D; Brewer, Larry

    2014-01-01

    In summer 2012, we initiated a large-scale field experiment in southern Ontario, Canada, to determine whether exposure to clothianidin seed-treated canola (oil seed rape) has any adverse impacts on honey bees. Colonies were placed in clothianidin seed-treated or control canola fields during bloom, and thereafter were moved to an apiary with no surrounding crops grown from seeds treated with neonicotinoids. Colony weight gain, honey production, pest incidence, bee mortality, number of adults, and amount of sealed brood were assessed in each colony throughout summer and autumn. Samples of honey, beeswax, pollen, and nectar were regularly collected, and samples were analyzed for clothianidin residues. Several of these endpoints were also measured in spring 2013. Overall, colonies were vigorous during and after the exposure period, and we found no effects of exposure to clothianidin seed-treated canola on any endpoint measures. Bees foraged heavily on the test fields during peak bloom and residue analysis indicated that honey bees were exposed to low levels (0.5-2 ppb) of clothianidin in pollen. Low levels of clothianidin were detected in a few pollen samples collected toward the end of the bloom from control hives, illustrating the difficulty of conducting a perfectly controlled field study with free-ranging honey bees in agricultural landscapes. Overwintering success did not differ significantly between treatment and control hives, and was similar to overwintering colony loss rates reported for the winter of 2012-2013 for beekeepers in Ontario and Canada. Our results suggest that exposure to canola grown from seed treated with clothianidin poses low risk to honey bees.

  4. Application of gamma rays for induction of tolerance mutants to environmental stress conditions in canola

    International Nuclear Information System (INIS)

    Mansour, M.E.S.F.

    2013-01-01

    The present study aimed to induce useful mutations in canola possess high seed yield and oil content under new reclamation desert land at Ras-Suder-Sina (saline) and Inshas (harsh and poor fertility). Canola seeds of four varieties (Serow 4, Serow 6, Pactol as local cultivars and Evita as exotic variety) were treated with gamma rays at four doses (0, 100, 400 and 600 Gy). Thirty mutant plants for number of pods/plant and changes in morphological criteria were selected at M 2 generation. The mutants at M 3 generation confirmed that induction of mutant lines possessed higher number of pods and seed yield/plant than the mother varieties. The mutant lines possessed homogeneity at M 3 generation were 5, 8,10, 11, 18 and 22 at serow 4, 38 and 45 at serow 6, 63 and 66 at Pactol and mutant lines 74,75, 78,92 at Evita. Highest number of pods/plant (110) was recorded at line 74 derived from Evita variety. The results were appeared the same trend for seed yield/plant with number of pods/plant, the lines which possessed high number of pods/plant were had high seed yield/plant. The results at M 4 and M 5 generations for 13 homogeneity mutant lines selected from M 3 generation contained different response of mutant genotypes for different conditions on the bases of number of pods and seed yield/plant. Promising mutant lines were detected under both conditions possessed significant increases at both M 4 and M 5 generations. Oil percent as well as acid value at M 4 and M 5 were recorded the highest mean value was found at Inshas in line 75 and the lowest acid value was noticed at line 5. Finally nine mutant lines possessed promising traits of this study, lines 11, 66 and 87 under both conditions (Suder and Inshas), lines 8, 38 and 63 under Ras-Sudr and lines 74, 75 and 92 under Inshas condition.

  5. Effect of Different Salinity levels on some Photosynthetic Characters of Canola (Brassica napus L. Cultivars

    Directory of Open Access Journals (Sweden)

    F Tahmasbi

    2016-07-01

    Full Text Available Introduction Salinity is one of the most important factors limiting crop production in arid and semiarid regions of the world that affects crop yield. Salt tolerance of Brassica species are very complex due to genetic relationships. Because of low erucic acid (less than 2% of total fatty acids and glucosinolates contents (less than 3 µmol g-1, oil of Canola has many consumers around the world. Because Canola have tolerance potential against toxicity of salinity and its minerals, its growth can be successful in saline condition. According to the recent ongoing drought and the need to use low quality irrigation water for crops such as Canola, aim of this experiment was to evaluate the effect of salinity on changes in carbon fixation process and photosynthetic pigments of three Canola genotypes under salinity as well as determine most salt tolerant genotype for use in saline regions. Materials and Methods An experiment was conducted in the greenhouse of Shahid Chamran University during 2007-2008 growing season in factorial test based on a completely randomized design with four replications. The first factor (genotype included Hayola 401, RGS0003 and Shiraly and the second factor (salinity levels had four levels of salinity (50, 100 and 150 mM NaCl as well as distilled water as a control. Sources of salinity were NaCl and CaCl2 with equal ratio as most resembles to lower water quality resources in the region. Date and time of stress were considered four weeks after planting (four-leaf stage. A Stepped irrigation method using saline water was done every 12 days over three steps period. To perform this study 10 liters volume pots were used. Three pots per each treatment, and totally 144 pots were used. SAS (version 9.1, Excel and MSTAT-C software's was used for statistical analysis. The comparison of means was done by Duncan method. Results and Discussion The results showed that content of chlorophyll a, b and carotenoids in all three genotypes

  6. Mapping the Distribution and Flora of the Weeds in Canola Fields of Gorgan Township by Geographic Information System (GIS

    Directory of Open Access Journals (Sweden)

    sahar jannati ataie

    2018-02-01

    Full Text Available Introduction: Oil seeds are the second world’s food supply after cereals. These crops are grown primarily for the oil contained in the seeds. The major world sources of edible seed oils are soybeans, sunflowers, canola, cotton and peanuts. Canola is one of the most important plants in the world that has great importance. The plant belongs to the Brassica genus, the botanical family that includes cauliflower and cabbages. Weeds are one of the major problems in canola production that reduce yield and its quality. In general, one of the most important factors in development of management plans is information about the weed’s flora and geographic distribution. Knowledge of weed flora enables one to use the required herbicide and formulate other suitable management strategies. It is also useful in exploiting abundant weeds as a cover crop or pasture and for other economic uses. The geographic information system has the proper use in weed science and management of agricultural information and their analysis. In this study, distribution and flora of the weeds in canola fields of Gorgan Township investigated by Geographic Information System. Material and Methods: Crop sampling was conducted during May and June 2014, in 58 canola fields in Gorgan Township (Golestan province and the weed species were sampled and detected using a W method and by specific formula of density, frequency, uniformity, and abundance of each weed species was calculated. Also, geographic coordinates of fields (latitude, altitude and elevation were determined by using GPS model Garmin map 60. After collecting data, in order to create a database of weed distribution, the data was transferred from GPS to ArcGIS 9/3.1 software. From all information obtained, consistently a database with location was created and after separation of data based on present or absence of weeds on fields, distribution maps were produced. Results and Discussion: The results showed that there are 35 weed

  7. Effect of different methods of soil fertility increasing via application of organic, chemical and biological fertilizers on grain yield and quality of canola (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    K. Mohammadi

    2016-05-01

    Full Text Available Different resource of fertilizers had an effect on grain yield, oil and grain quality. Information regarding the effect of simultaneous application of organic, chemical and biological fertilizers on canola (Brassica napus L. traits is not available. In order to study the effect of different systems of soil fertility on grain yield and quality of canola (Talayeh cultivar, an experiment was conducted at experimental farm of Agricultural Research Center of Sanandaj, Iran, during two growing seasons of 2007-2008 and 2008-2009. The experimental units were arranged as split plots based on randomized complete blocks design with three replications. Main plots consisted of five methods for obtaining the basal fertilizers requirement including (N1: farm yard manure; (N2: compost; (N3: chemical fertilizers; (N4: farm yard manure + compost and (N5: farm yard manure + compost + chemical fertilizers; and control (N6. Sub plots consisted four levels of biofertilizers were (B1: Bacillus lentus and Pseudomonas putida; (B2: Trichoderma harzianum; (B3: Bacillus lentus and Pseudomonas putida and Trichoderma harzianum; and (B4: control, (without biofertilizers. Results showed that basal fertilizers and biofertilizers have a significant effect on grain yield. The highest grain yield was obtained from N5 treatment in which organic and chemical fertilizers were applied simultaneously applied. Basal fertilizers, biofertilizers have a significant effect on leaf chlorophyll. The highest nitrogen content (42.85 mg.g-1 and least amount of (N/S were obtained from N5 treatment. The highest oil percent was obtained from N1 and N2 treatments and highest oil yield was obtained from N5 treatment. Finally, application of organic manure and biofertilizers with chemical fertilizer led to an increase in yield and quality of canola grain.

  8. Consumo e digestibilidade em ovinos alimentados com grãos e subprodutos da canola Intake and digestibility of sheep fed grains and by-products of canola

    Directory of Open Access Journals (Sweden)

    Priscila Silva Neubern de Oliveira

    2009-03-01

    Full Text Available Objetivou-se avaliar a inclusão de 8% de grãos e subprodutos da canola (farelo ou torta nas dietas sobre o consumo e a digestibilidade. Seis ovinos machos não-castrados da raça Santa Inês (210 e 240 dias de idade e peso corporal de 44,8 + 4,2kg receberam dietas contendo 40% de feno de capim Tifton e 60% de concentrado composto por milho em grão, farelo de soja, mistura mineral, além de canola em grão integral, farelo de canola e torta de canola, que constituíram os três tratamentos. Não houve diferença (P>0,05 para o consumo de matéria seca (MS, matéria orgânica (MO, extrato etéreo (EE, energia bruta (EB, fibra em detergente neutro (FDN, carboidratos totais (CT e carboidratos não-fibrosos (CNF entre as dietas experimentais, no ensaio de digestibilidade. Não houve efeito (P>0,05 de tratamento para a digestibilidade de MS, MO, EE, PB, EB, FDN, CT e CNF. Recomenda-se incluir até 8% de grãos e subprodutos da canola (farelo ou torta na dieta de ovinos.The effect of feeding 8% of grains and byproducts (meal or cake of canola on intake and digestibility was evaluated. Six non castrated Santa Ines sheep (from 210 to 240 days old and body weight of 44.8 + 4.2kg were fed diets composed by 40% of Tifton hay and 60% of concentrate based on corn grain, soybean meal, whole grain canola, canola meal, canola cake and mineral mixture. No differences on the intakes of dry matter (DM, organic matter (OM, ether extract (EE, gross energy (GE, neutral detergent fiber (NDF, total carbohydrates (TC and non fiber carbohydrate (NFC were observed among treatments, in the digestibility trial. No treatment effect on the digestibilities of DM, OM, EE, CP, GE, NDF, TC and NFC was observed. It is recommended to include up to 8% of grains and byproducts (meal or cake of canola in the sheep diet.

  9. Hydration of vegetable oils for high-grade Diesel fuel components; Hydrierung von Pflanzenoelen zu hochwertigen Dieselkraftstoffkomponenten

    Energy Technology Data Exchange (ETDEWEB)

    Endisch, M.; Olschar, M.; Kuchling, T. [TU Bergakademie Freiberg (Germany); Balfanz, U. [BP AG, Global Fuels Technology, Bochum (Germany)

    2008-07-01

    The legally regulated admixture of biogenic fuel components for diesel fuels are actually realized in Germany by an admixture of vegetable oil methylester (e.g. from rapeseed oil). The paper describes the hydration of vegetable oils as alternative to this procedure. Infrared and {sup 13}NMR spectroscopy were used to analyse the reaction kinetics for rapeseed, soy been and palm oil hydration. Experimental results of investigations under operational conditions using a continuous test facility and different vegetable oils identified the possibilities of this technology. The technology allows the high-yield production of diesel fuel components with certain numbers higher than average.

  10. Oil crops: requirements and possibilities for their utilization as an energy source

    International Nuclear Information System (INIS)

    Boerner, G.; Schoenefeldt, J.; Mehring, I.

    1995-01-01

    Although vegetable oils have been used as an energy source for centuries, they were used almost exclusively in oil lamps. Their value as a foodstuff and the availability and low price of mineral oil had for a long time kept them from being seriously considered as a potential energy source. Now, owing to the increasing cost of fossil fuel, particularly oil, and increasing industrial energy consumption, as well as the negative impact of fossil fuel use on the environment, there is interest in a number of alternative energy sources, including vegetable oils. The discussion in this paper focuses on the use of untreated vegetable oils, particularly rapeseed oil. The energy potential of rapeseed oil is explored first. Then, conditions under which the use of oil crops as an energy source is feasible are briefly discussed; two concepts for decentralized oil-seed processing are described and, finally, future possibilities for use of vegetable oils as a fuel source are reviewed. (author)

  11. Computational estimation of soybean oil adulteration in Nepalese mustard seed oil based on fatty acid composition

    OpenAIRE

    Shrestha, Kshitij; De Meulenaer, Bruno

    2011-01-01

    The experiment was carried out for the computational estimation of soybean oil adulteration in the mustard seed oil using chemometric technique based on fatty acid composition. Principal component analysis and K-mean clustering of fatty acid composition data showed 4 major mustard/rapeseed clusters, two of high erucic and two of low erucic mustard type. Soybean and other possible adulterants made a distinct cluster from them. The methodology for estimation of soybean oil adulteration was deve...

  12. Processing and characteristics of canola protein-based biodegradable packaging: A review.

    Science.gov (United States)

    Zhang, Yachuan; Liu, Qiang; Rempel, Curtis

    2018-02-11

    Interest increased recently in manufacturing food packaging, such as films and coatings, from protein-based biopolymers. Among various protein sources, canola protein is a novel source for manufacturing polymer films. It can be concentrated or isolated by aqueous extraction technology followed by protein precipitation. Using this procedure, it was claimed that more than 99% of protein was extracted from the defatted canola meal, and protein recovery was 87.5%. Canola protein exhibits thermoplastic properties when plasticizers are present, including water, glycerol, polyethylene glycol, and sorbitol. Addition of these plasticizers allows the canola protein to undergo glass transition and facilitates deformation and processability. Normally, canola protein-based bioplastics showed low mechanical properties, which had tensile strength (TS) of 1.19 to 4.31 MPa. So, various factors were explored to improve it, including blending with synthetic polymers, modifying protein functionality through controlled denaturation, and adding cross-linking agents. Canola protein-based bioplastics were reported to have glass transition temperature, T g , below -50°C but it highly depends on the plasticizer content. Canola protein-based bioplastics have demonstrated comparable mechanical and moisture barrier properties compared with other plant protein-based bioplastics. They have great potential in food packaging applications, including their use as wraps, sacks, sachets, or pouches.

  13. Selection of pathogen-resistant mutants in rapeseed

    International Nuclear Information System (INIS)

    Spanier, A.; Roebbelen, G.

    1990-01-01

    Full text: Significant yield reductions are due to Phoma lingam and Alternaria brassicae. Toxin containing culture filtrates of the pathogens as well as concentrated toxins of Phoma (Sirodesmins) are used for resistance selections in in-vitro cultures of haploid rapeseed materials. A few days after transfer of the in-vitro materials to the selective media the inhibitory effect of both the culture filtrates as well as the Sirodesmins was apparent. Clones were obtained, surviving several transfers onto toxin containing media. Further experiments shall clarify whether the toxin tolerance, selected in vitro at the cell level, is expressed in the differentiated plant in the greenhouse and finally in the field. (author)

  14. Fuel properties of biodiesel from vegetable oils and oil mixtures. Influence of methyl esters distribution

    International Nuclear Information System (INIS)

    Martínez, G.; Sánchez, N.; Encinar, J.M.; González, J.F.

    2014-01-01

    In this work, the quality of biodiesel produced by basic transesterification from several vegetable oils (soybean, rapeseed, sunflower, high oleic sunflower, Cynara Cardunculus L., Brassica Carinata and Jatropha Curca) cultivated in Extremadura has been studied in detail. The influence of raw material composition on properties such as density, viscosity, cetane number, higher heating value, iodine and saponification values and cold filter plugging point has been verified. Other biodiesel properties such as acid value, water content and flash and combustion points were more dependent on characteristics of production process. Biodiesel produced by rapeseed, sunflower and high oleic sunflower oils transesterification have been biofuels with better properties according to Norm EN 14214. Finally, it has been tested that it is possible to use oils mixtures in biodiesel production in order to improve the biodiesel quality. In addition, with the same process conditions and knowing properties of biodiesel from pure oils; for biodiesel from oils mixtures, its methyl esters content, and therefore properties dependent this content can be predicted from a simple mathematical equation proposed in this work. - Highlights: • Biodiesel quality produced by basic transesterification from vegetable oils. • We examine influences of methyl esters distribution on biodiesel properties. • Biofuels from soybean, sunflower and rapeseed oils were with better properties. • Oils mixtures improve biodiesel quality to fulfill Norm EN 14214. • An equation to predict properties of biodiesel from oil mixtures is proposed

  15. Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil

    OpenAIRE

    Li Benkai; Li Changhe; Zhang Yanbin; Wang Yaogang; Jia Dongzhou; Yang Min

    2016-01-01

    Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL). This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oil, and palm oil as base oils. A K-P36 numerical-control precision surface grinder was used to perform plain grinding on a workpiece material with a high-temperature nickel base alloy. A YDM–III 99 three-dimensional dynamometer was used to measure grinding force, and a clip-type t...

  16. Modeling the yield potential of dryland canola under current and future climates in California

    Science.gov (United States)

    George, N.; Kaffka, S.; Beeck, C.; Bucaram, S.; Zhang, J.

    2012-12-01

    Models predict that the climate of California will become hotter, drier and more variable under future climate change scenarios. This will lead to both increased irrigation demand and reduced irrigation water availability. In addition, it is predicted that most common Californian crops will suffer a concomitant decline in productivity. To remain productive and economically viable, future agricultural systems will need to have greater water use efficiency, tolerance of high temperatures, and tolerance of more erratic temperature and rainfall patterns. Canola (Brassica napus) is the third most important oilseed globally, supporting large and well-established agricultural industries in Canada, Europe and Australia. It is an agronomically useful and economically valuable crop, with multiple end markets, that can be grown in California as a dryland winter rotation with little to no irrigation demand. This gives canola great potential as a new crop for Californian farmers both now and as the climate changes. Given practical and financial limitations it is not always possible to immediately or widely evaluate a crop in a new region. Crop production models are therefore valuable tools for assessing the potential of new crops, better targeting further field research, and refining research questions. APSIM is a modular modeling framework developed by the Agricultural Production Systems Research Unit in Australia, it combines biophysical and management modules to simulate cropping systems. This study was undertaken to examine the yield potential of Australian canola varieties having different water requirements and maturity classes in California using APSIM. The objective of the work was to identify the agricultural regions of California most ideally suited to the production of Australian cultivars of canola and to simulate the production of canola in these regions to estimate yield-potential. This will establish whether the introduction and in-field evaluation of better

  17. Effects of canola meal on growth and digestion of rainbow trout (Oncorhynchus mykiss) fry

    OpenAIRE

    YİĞİT, Nalan Özgür; KOCA, Seval BAHADIR; BAYRAK, Halit; DULLUÇ, Arife; DİLER, İbrahim

    2012-01-01

    A 12-week feeding trial was conducted with rainbow trout fry (initial weight of 1.57 ± 0.01 g) to examine the effects of partial substitution of canola meal in prepared diets on growth, feed conversion ratio (FCR), nutrient digestibility, somatic indices, and survival rate. Five isonitrogenous (44% crude protein) and isocaloric (4000 kcal/kg digestible energy) diets were formulated to contain 8%, 16%, 24%, and 32% canola meal against no canola meal (control group). A total of 375 rainbow trou...

  18. Characteristics of Oxidative Storage Stability of Canola Fatty Acid Methyl Ester Stabilised with Antioxidants

    Directory of Open Access Journals (Sweden)

    Tirto Prakoso

    2012-11-01

    Full Text Available The storage effects on the oxidation characteristics of fatty acid methyl ester of canola oil (CME were investigated in this study. CME stabilised with two antioxidants, i.e. 2,6-di-tert-bytyl-p-cresol (BHT and 6,6-di-tert-butyl-2, 2’-methylendi-p-cresol (BPH, was stored at 20, 40 and 60°C. The oxidation stability data were measured by the Rancimat test method and it was found that both BHT and BPH addition increased the oxidation resistance of the CME. The results showed that when BPH or BHT was added at a concentration of 100 ppm, the oxidation induction period of the neat CME samples increased from 5.53 h to 6.93 h and 6.14 h, respectively. Comparing both antioxidants, BPH proved to be more effective in increasing the oxidation resistance when both antioxidants were added at the same concentration. Furthermore, the oxidation induction time decreased linearly with the storage time. It was shown that the oxidation occurred rapidly in the first 8 weeks of storage. Later, a kinetic study was undertaken and first-order kinetics were applied to explain the oxidation characteristics of the CME added with antioxidants. This kinetic study focused on exploiting the activation energy values obtained from the Arrhenius equations. Also, the oxidation effects on other quality parameters, including acid value, peroxide value, kinematic viscosity, and water content, were examined.

  19. Effects of Super-Absorbent Polymer Application on Yield and Yield Components of Rapeseed (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Fariborz SHEKARI

    2015-09-01

    Full Text Available Limitation of water resources and its great impact on agricultural and natural resources play a crucial role in the efficiency of water use. Applying super absorbent polymer to the soil may be one of the methods to minimize the stress of weather dryness in arid and semi-arid regions. In order to evaluate the effects of hydrophilic polymer application on yield and water use efficiency of rapeseed plants, an experiment was conducted under field condition in 2012 at the Research Farm of the Faculty of Agriculture, University of Maragheh. Treatments’ factors were: (i 3 super absorbent polymers (SAP (Taravat A200 levels of 0 (without application, 75 and 150 kg ha-1 A200 application, (ii three irrigation levels of 80, 120 and 180 mm evaporation from class A basin in main plots, (iii two cultivars ʻHyola 401ʼ and ʻRVSʼ in sub plots as factorial split plot combination based on completely randomized block design with three replications. The results showed that in all of the measured traits within the experiment there were significant differences between SAP levels. Furthermore, increasing irrigation interval led to an increase in a thousand seeds’ weight, but decreased seed yield. Increasing water stress raised seed oil percent and infertile silique and subsequently resulted in reduced oil yield. ʻHyola 401ʼ was more susceptible to embryo abortion compared with ʻRVSʼ. As a conclusion of the research, SAP (A200 application in quantities smaller than 75 kg ha-1 may be recommended for rapeseed production under field condition.

  20. An analysis of growth factors of rapeseed at modern resource-saving technology

    Science.gov (United States)

    Filipova, M.; Zheleva, I.; Sulejmenova, N.; Abildaev, E.

    2017-10-01

    Nowadays the production of rapeseed has grown due to the variety of existing possibilities for its using. This calls the search for new, resource-saving technologies for its growing in Republic of Kazakhstan. For these new technologies it is needed to know which are the factors that influence the production of rapeseed and how each factor influence the production and the quality of this culture. The careful study of these factors is necessary for better understudying the process of the growing aimed increasing the yields and quantity of the rapeseed.

  1. Influence of alcohol: oil molar ratio on the production of ethyl esters ...

    African Journals Online (AJOL)

    The influence of alcohol:oil molar ratio on the canola oil transesterification reaction in solvent-free medium using free lipase from Thermomyces lanuginosus and Burkholderia cepacia was studied. The experiments conducted in batch reactor for 72 h at 37°C in cosolvent-free reaction system with ethanol addition in three ...

  2. Potential for optimized production and use of rapeseed biodiesel. Based on a comprehensive real-time LCA case study in Denmark with multiple pathways

    DEFF Research Database (Denmark)

    Herrmann, Ivan Tengbjerg; Jørgensen, Andreas; Bruun, Sander

    2013-01-01

    methods. The modeling of the LCA is based on a specific Danish biodiesel production facility. Methods: The functional unit is “1,000 km transportation for a standard passenger car.” All relevant process stages are included, such as rapeseed production including carbon sequestration and N2O balances......, and transportation of products used in the life cycle of biodiesel. System expansion has been used to handle allocation issues. Results and discussion: The climate change potential from the production and use of biodiesel today is 57 kg CO2-eq/ 1,000 km, while PC diesel is 214 kg CO2-eq/1,000 km. Options......Purpose: Several factors contribute to the current increased focus on alternative fuels such as biodiesel, including an increasing awareness of the environmental impact of petrochemical (PC) oil products such as PC diesel, the continuously increasing price of PC oil, and the depletion of PC oil...

  3. Oils

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, S

    1909-11-29

    Mineral, shale, and like oils are treated successively with sulfuric acid, milk of lime, and a mixture of calcium oxide, sodium chloride, and water, and finally a solution of naphthalene in toluene is added. The product is suitable for lighting, and for use as a motor fuel; for the latter purpose, it is mixed with a light spirit.

  4. Determining of Degradation and Digestion Coefficients of Canola meal Using of In situ and Gas production Techniques

    OpenAIRE

    Younes Tahmazi; Akbar Taghizadeh; Yousef Mehmannavaz; Mehdi Moghaddam

    2015-01-01

    This study was carried out to the determination of nutritive value of canola meal using naylon bag and cumulative gas production techniques in Gizel sheep. Tow fistulated Gizel sheep with average BW 45±2 kg used in a complete randomized design. The cumulative gas production was measured at 2, 4, 6, 8, 12, 16, 24, 36 and 48 h and ruminal DM and CP disappearance were measured up to 96 h. Coefficients of soluble CP degradation of canola meal (A), canola meal treated with 0.5% urea (B) and canola...

  5. High Quality Rapeseed Products as Feed for Sensitive Monogastrics

    DEFF Research Database (Denmark)

    Frandsen, Heidi Blok

    in plants of the order Brassicales (former known as Capparales), which include rapeseed, rype (Brassica campestris L.) Indian mustard (Brassica juncea L.), broccoli (Brassica oleracea L.var. italica) and many other plants. Glucosinolates have been studied widely for their biologic effects ranging from...... by xenobiotica enzymes in the liver. The last study (manuscript IV) deals with the novel processing techniques, pulsed electric field (PEF) and high pressure treatment (HPT) and the processing effects on glucosinolates in broccoli. The largest effects were observed to be a result of the different handling...... of the plant materials prior to the process treatment. It was thus found that a great amount of the glucosinolate loss has occurred in the broccoli juice and purée prior to PEF processing. Only a minor loss was observed in broccoli flowers prior to processing, and HP treatment at 700 MPa for 10 min. was found...

  6. Composition of fatty acids in selected vegetable oils

    OpenAIRE

    Helena Frančáková; Eva Ivanišová; Štefan Dráb; Tomáš Krajčovič; Marián Tokár; Ján Mareček; Janette Musilová

    2015-01-01

    Plant oils and fats are important and necessary components of the human nutrition. They are energy source and also contain fatty acids - compounds essential for human health. The aim of this study was to evaluate nutritional quality of selected plant oil - olive, rapeseed, pumpkin, flax and sesame; based on fatty acid composition in these oils. Fatty acids (MUFA, PUFA, SFA) were analyzed chromatography using system Agilent 6890 GC, injector multimode, detector FID. The highest c...

  7. Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate

    DEFF Research Database (Denmark)

    López-Linares, Juan Carlos; Romero, Inmaculada; Cara, Cristobal

    2018-01-01

    This study evaluated the possibility of using rapeseed straw hemicellulosic hydrolysate as a fermentation medium for xylitol production. Two yeast strains, namely Debaryomyces hansenii and Candida guilliermondii, were used for this bioconversion process and their performance to convert xylose...

  8. Genetic Segregation Analysis of a Rapeseed Dwarf Mutant

    International Nuclear Information System (INIS)

    Xiang, G.; Yu, S.; Zhang, T.; Zhao, J.; Lei, S.; Du, C.

    2016-01-01

    Dwarf resources in Brassica napus are very important for developing high-yield cultivars through dwarf-type and lodging-resistant breeding. However, few dwarf varieties have been available for this species. Here, we reported a new rapeseed dwarf mutant GRC1157, which exhibits obvious phenotypic variations on dwarf. Six generations (P /sub 1/, P/sub 1/, F/sub 1/, F/sub 1/, B/sub 1/, and B/sub 1/) were produced from a cross between dwarf mutant GRC1157 and an elite tall-type line XR16 to analyze genetic inheritances of plant height (PH), numbers of the 1st valid branch (VBN), main inflorescence length (MIL), pod numbers per main inflorescence (MPN), pod length (PL) and seed numbers per pod (PSN) using the mixed major gene plus polygene inheritance model. The genetic analysis shows different traits were controlled by different inheritance models: PH and PL by two pairs of additive-dominant-epistatic major genes plus additive-dominant-epistatic polygenes, MPN and PSN by two-pair additive-dominant-epistatic major genes plus additive-dominant polygenes, MIL by two-pair additive-dominant-epistatic major genes and VBN by one-pair additive-dominant major genes plus additive-dominant-epistatic polygenes. Furthermore, positive correlations between PH and some other traits were observed, suggesting that some traits may be co-regulated by several linkage or same loci/genes. In addition, high heritability (40.35-93.7 percent) were found for five traits (except VBN) in different segregating generations, indicating these traits were mainly affected by hereditary factors and suitable for early artificial selection. In sum, the dwarf mutant GRC1157 can serve as a valuable resource for rapeseed dwarf breeding and the genetic analysis in this study provided a foundation for further mapping and cloning dwarf genes in mutant GRC1157. (author)

  9. Rapeseed is an efficient energy crop which can still improve

    Directory of Open Access Journals (Sweden)

    Flenet Francis

    2007-11-01

    Full Text Available The ability of biofuels to contribute efficiently to the replacement of fossil energy and to the reduction of greenhouse gas emissions has been a matter of debate. Hence, there is a need to assess accurately the energy balance of biofuels and their ability to reduce greenhouse gas emissions, in order to evaluate and to improve the benefit for society. In rapeseed, the energy ratio (energy produced per unit of non-renewable energy input is well above 2 whatever the method of calculation. In order to investigate the variability of energy ratios and to identify ways of improvement, a study was conducted in France in 2005 and 2006. The method of mass allocation of input energy was used for calculations, instead of the substitution method, because with this method the results do not depend on the utilization of co-products. Hence, this method is better adapted to follow improvements. A great variability in the energy ratio was observed in 2005 and 2006. Seed yields and energy cost of fertilizer N explained most of this variability. Hence, improvements should focus on increasing yield with little increase in energy cost, and on decreasing wasting of N fertilizer. However the farmer incomes, and the net production of energy per hectare, must also be a matter of concern. The inventories of greenhouse gas emissions of biofuels are still uncertain because of the great variability of soil emissions, due to environmental and management factors. Hence, in order to assess the effect of rapeseed on greenhouse gas emissions, methods based on process-oriented models accounting for these factors must be used. Such models give promising results, but further testing is still needed.

  10. Characterization of the Factors that Influence Sinapine Concentration in Rapeseed Meal during Fermentation

    Science.gov (United States)

    Niu, Yanxing; Jiang, Mulan; Guo, Mian; Wan, Chuyun; Hu, Shuangxi; Jin, Hu; Huang, Fenghong

    2015-01-01

    We analyzed and compared the difference in sinapine concentration in rapeseed meal between the filamentous fungus, Trametes sp 48424, and the yeast, Saccharomyces cerevisiae, in both liquid and solid-state fermentation. During liquid and solid-state fermentation by Trametes sp 48424, the sinapine concentration decreased significantly. In contrast, the liquid and solid-state fermentation process by Saccharomyces cerevisiae just slightly decreased the sinapine concentration (P ≤ 0.05). After the solid-state fermented samples were dried, the concentration of sinapine in rapeseed meal decreased significantly in Saccharomyces cerevisiae. Based on the measurement of laccase activity, we observed that laccase induced the decrease in the concentration of sinapine during fermentation with Trametes sp 48424. In order to eliminate the influence of microorganisms and the metabolites produced during fermentation, high moisture rapeseed meal and the original rapeseed meal were dried at 90°C and 105°C, respectively. During drying, the concentration of sinapine in high moisture rapeseed meal decreased rapidly and we obtained a high correlation coefficient between the concentration of sinapine and loss of moisture. Our results suggest that drying and enzymes, especially laccase that is produced during the solid-state fermentation process, may be the main factors that affect the concentration of sinapine in rapeseed meal. PMID:25606856

  11. Phytoextraction of potentially toxic elements by Indian mustard, rapeseed, and sunflower from a contaminated riparian soil.

    Science.gov (United States)

    Shaheen, Sabry M; Rinklebe, Jörg

    2015-12-01

    The objective of this study was to quantify the phytoextraction of the potentially toxic elements Al, As, Cd, Co, Cr, Cu, Mo, Ni, Pb, Se, V, and Zn by Indian mustard, rapeseed, and sunflower from a contaminated riparian soil. To achieve this goal, a greenhouse pot experiment was established using a highly contaminated grassland soil collected at the Wupper River (Germany). The impact of ethylene-diamine-tetra-acetic acid (EDTA), humate (HK), and phosphate potassium (PK) on the mobility and uptake of the elements by rapeseed also was investigated. Indian mustard showed the highest efficiency for phytoextraction of Al, Cr, Mo, Se, and V; sunflower for Cd, Ni, Pb, and Zn, and rapeseed for Cu. The bioconcentration ratios were higher than 1 for the elements (except As and Cu), indicating the suitability of the studied plants for phytoextraction. Application of EDTA to the soil increased significantly the solubility of Cd, Co, Cr, Ni, and Pb and decreased the solubility of Al, As, Se, V, and Mo. Humate potassium decreased significantly the concentrations of Al and As in rapeseed but increased the concentrations of Cu, Se, and Zn. We may conclude that HK can be used for immobilization of Al and As, while it can be used for enhancing the phytoextraction of Cu, Se, and Zn by rapeseed. Phosphate potassium immobilized Al, Cd, Pb, and Zn, but enhanced phytoextraction of As, Cr, Mo, and Se by rapeseed.

  12. Rhizoremediation of diesel-contaminated soil with two rapeseed varieties and petroleum degraders reveals different responses of the plant defense mechanisms.

    Science.gov (United States)

    Wojtera-Kwiczor, Joanna; Zukowska, Weronika; Graj, Weronika; Małecka, Arleta; Piechalak, Aneta; Ciszewska, Liliana; Chrzanowski, Łukasz; Lisiecki, Piotr; Komorowicz, Izabela; Barałkiewicz, Danuta; Voss, Ingo; Scheibe, Renate; Tomaszewska, Barbara

    2014-01-01

    Plant-assisted bioremediation (rhizoremediation) stands out as a potential tool to inactivate or completely remove xenobiotics from the polluted environment. Therefore, it is of key importance to find an adequate combination of plant species and microorganisms that together enhance the clean-up process. To understand the response of plants upon bioaugmentation, the antioxidative and detoxification system was analyzed in high and low erucic acid rapeseed varieties (HEAR and LEAR, respectively), after 8 weeks of their treatment with petroleum degraders and 6000 mg diesel oil/kg dry soil. The oxidative stress was enhanced in LEAR being exposed to sole diesel oil, in comparison with HEAR. However, when LEAR plants were additionally inoculated with bacteria, suppression of total catalase (CAT) and ascorbate peroxidase (APX) activity were observed. Interestingly, glutathione transferase (GST) activity was found in these plants at a much higher level than in HEAR, which correlated with a more efficient diesel removal performed by LEAR in the polluted soil and upon bioaugmentation. A distinct profile of polycyclic aromatic hydrocarbons (PAH) was detected in leaves of these plants. Neither LEAR nor HEAR experienced any changes in the photosynthetic capacity upon diesel pollution and presence of petroleum degraders, which supports the usefulness of rhizoremediation with rapeseed.

  13. Effect of Zeolite and Nitrogen Fertilizer Application under Water Deficit Stress Conditions on Agronomical and Physiological Traits of Rapeseed

    Directory of Open Access Journals (Sweden)

    A. Ghiasvand Ghiasi

    2014-08-01

    Full Text Available In order to evaluation of zeolite and nitrogen fertilizer application effect on agronomic and physilogical traits of rapeseed (cv RGS003 under water deficit stress conditions, an experiment was conducted in factorial based on randomized complete block design with three replications during 2010 in Qazvin region, Iran. In the where, the two levels of irrigation factor as the normal irrigation (irrigation after 80 mm evaporation from class A pan as control and irrigation cease from stem elongation stage till end of growth, nitrogen factor was at three levels (0, 75 and 150 kg.ha-1 and zeolite factor (0 and 10tons per hectare were studied. Results showed that drought stress decreased evaluated traits such as silique per plant (41%, grain per silique (26%, 1000 seed weight (33%, grain yield (52.5%, oil percent (14%, RWC (31.5% and chlorophyll content (35%. Non-application of nitrogen had adverse effects on total traits and reduced them. However, zeolite application at water deficit stress conditions had positive and significant effect on total traits except of oil percent and chlorophyll content, specially improved grain yield and oil yield. Based on the results of this experiment, application of zeolite (10ton/ha-1 through storage and maintenance of water and nutrients, reduced the intensity and harmful effects of stress in plants and enhances crop yield.

  14. Effects of replacing soybean meal with canola meal or treated canola meal on nitrogen metabolism and total tract digestibility in lactating dairy cows

    Science.gov (United States)

    Dietary canola meal (CM) has been shown to improve N efficiency in dairy cows when compared with soybean meal (SBM). Treating CM may increase amino acid (AA) supply from the rumen undegradable protein fraction and improve absorbable AA in the metabolizable protein. The objective of this study was to...

  15. Glyphosate-Resistant and Conventional Canola (Brassica napus L.) Responses to Glyphosate and Aminomethylphosphonic Acid (AMPA) Treatment.

    Science.gov (United States)

    Corrêa, Elza Alves; Dayan, Franck E; Owens, Daniel K; Rimando, Agnes M; Duke, Stephen O

    2016-05-11

    Glyphosate-resistant (GR) canola contains two transgenes that impart resistance to the herbicide glyphosate: (1) the microbial glyphosate oxidase gene (gox) encoding the glyphosate oxidase enzyme (GOX) that metabolizes glyphosate to aminomethylphosphonic acid (AMPA) and (2) cp4 that encodes a GR form of the glyphosate target enzyme 5-enolpyruvylshikimic acid-3-phosphate synthase. The objectives of this research were to determine the phytotoxicity of AMPA to canola, the relative metabolism of glyphosate to AMPA in GR and conventional non-GR (NGR) canola, and AMPA pool sizes in glyphosate-treated GR canola. AMPA applied at 1.0 kg ha(-1) was not phytotoxic to GR or NGR. At this AMPA application rate, NGR canola accumulated a higher concentration of AMPA in its tissues than GR canola. At rates of 1 and 3.33 kg ae ha(-1) of glyphosate, GR canola growth was stimulated. This stimulatory effect is similar to that of much lower doses of glyphosate on NGR canola. Both shikimate and AMPA accumulated in tissues of these glyphosate-treated plants. In a separate experiment in which young GR and NGR canola plants were treated with non-phytotoxic levels of [(14)C]-glyphosate, very little glyphosate was metabolized in NGR plants, whereas most of the glyphosate was metabolized to AMPA in GR plants at 7 days after application. Untreated leaves of GR plants accumulated only metabolites (mostly AMPA) of glyphosate, indicating that GOX activity is very high in the youngest leaves. These data indicate that more glyphosate is transformed to AMPA rapidly in GR canola and that the accumulated AMPA is not toxic to the canola plant.

  16. Oils

    Energy Technology Data Exchange (ETDEWEB)

    Cobbett, G T.B.

    1907-07-08

    Crude petroleum having a density of 850 to 900 is purified with sulfuric acid, decanted, mixed with benzine or petrol, and again treated with sulfuric acid and decanted. The remaining acid and coloring-matter are removed by washing with water, or treating with oxalic acid, zinc carbonate, lead carbonate, calcium carbonate, or oxide of zinc. The product is used as a fuel for internal-combustion engines. Specifications No. 28,104, A.D. 1906, and No. 12,606, A.D. 1907, are referred to. According to the Provisional Specification, the process is applicable to shale or schist oil.

  17. Environmentally friendly properties of vegetable oil methyl esters

    Directory of Open Access Journals (Sweden)

    Gateau Paul

    2005-07-01

    Full Text Available Measurements were carried out on Vegetable Oil Methyl Esters (VOME or FAME answering the most recent specifications. The products tested are RME (Rapeseed oil Methyl Ester, ERME (Erucic Rapeseed oil Methyl Esters, SME (Sunflower oil Methyl Esters, and HOSME (High Oleic Sunflower oil Methyl Esters. They contain more than 99.5% of fatty acid mono esters. The compositions are given. VOME are not volatile and they are not easily flammable. They are not soluble in water and they are biodegradable. According to the methods implemented for the determination of the German classification of substances hazardous to waters WGK, they are not toxic on mammals and unlike diesel fuel they are not toxic on fish, daphnia, algae and bacteria. The RME is not either toxic for shrimps. According to tests on rabbits, RME and SME are not irritating for the skin and the eyes. VOME display particularly attractive environmental properties.

  18. Evaluating Sustainability: Soap versus Biodiesel Production from Plant Oils

    Science.gov (United States)

    Pohl, Nicola L. B.; Streff, Jennifer M.; Brokman, Steve

    2012-01-01

    Herein we describe a series of experiments for the undergraduate organic laboratory curriculum in which various plant oils (soybean, rapeseed, and olive) are subjected to saponification and transesterification reactions to create a set of compounds that can function as soaps or as fuels. The experiments introduce students to and asks them to…

  19. Solutions for Foaming Problems in Biogas Reactors Using Natural Oils or Fatty Acids as Defoamers

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Boe, Kanokwan; Angelidaki, Irini

    2015-01-01

    Foaming is one of the most common and important problems in biogas plants, leading to severe operational, economical, and environmental drawbacks. Because addition of easily degradable co-substrates for boosting the biogas production can suddenly raise the foaming problem, the full-scale biogas...... results from our previous extensive research along with some unpublished data on defoaming by rapeseed oil and oleic acid in manure-based biogas reactors. It was found that both compounds exhibited remarkable defoaming efficiency ranging from 30 to 57% in biogas reactors suffering from foaming problems...... promoted by the addition of protein, lipid, or carbohydrate co-substrates. However, in most cases, the defoaming efficiency of rapeseed oil was greater than that of oleic acid, and therefore, rapeseed oil is recommended to be used in biogas reactors to solve foaming problems....

  20. Evaluating lubricating capacity of vegetal oils using Abbott-Firestone curve

    Science.gov (United States)

    Georgescu, C.; Cristea, G. C.; Dima, C.; Deleanu, L.

    2017-02-01

    The paper presents the change of functional parameters defined on the Abbott-Firestone curve in order to evaluate the surface quality of the balls from the four ball tester, after tests done with several vegetable oils. The tests were done using two grades of rapeseed oil (degummed and refined) and two grades of soybean oil (coarse and degummed) and a common transmission oil (T90). Test parameters were 200 N and 0.576 m/s (1500 rpm) for 60 minutes. For the refined rapeseed oil, the changes in shape of the Abbott-Firestone curves are more dramatic, these being characterized by high values of Spk (the average value for the wear scars on the three balls), thus being 40% of the sum Svk + Sk + Spk, percentage also obtained for the soybean oil, but the value Spk being lower. For the degummed soybean oil, the profile height of the wear scars are taller than those obtained after testing the coarse soybean oil, meaning that the degumming process has a negative influence on the worn surface quality and the lubricating capacity of this oil. Comparing the surface quality of the wear scars on fixed tested balls is a reliable method to point out the lubricant properties of the vegetable oils, especially if they are compared to a “classical” lubricant as a non-additivated transmission mineral oil T90. The best surface after testing was obtained for the soybean oil, followed by T90 oil and the degummed grades of the soybean oil and rapeseed oil (these three giving very close values for the functional parameters), but the refined rapeseed oil generated the poorest quality of the wear scars on the balls, under the same testing conditions.

  1. Antioxidant properties of Australian canola meal protein hydrolysates.

    Science.gov (United States)

    Alashi, Adeola M; Blanchard, Christopher L; Mailer, Rodney J; Agboola, Samson O; Mawson, A John; He, Rong; Girgih, Abraham; Aluko, Rotimi E

    2014-03-01

    Antioxidant activities of canola protein hydrolysates (CPHs) and peptide fractions prepared using five proteases and ultrafiltration membranes (1, 3, 5, and 10kDa) were investigated. CPHs had similar and adequate quantities of essential amino acids. The effective concentration that scavenged 50% (EC50) of the ABTS(+) was greatest for the <1kDa pancreatin fraction at 10.1μg/ml. CPHs and peptide fractions scavenged DPPH(+) with most of the EC50 values being <1.0mg/ml. Scavenging of superoxide radical was generally weak, except for the <1kDa pepsin peptide fraction that had a value of 51%. All CPHs inhibited linoleic acid oxidation with greater efficiency observed for pepsin hydrolysates. The oxygen radical absorbance capacity of Alcalase, chymotrypsin and pepsin hydrolysates was found to be better than that of glutathione (GSH) (p<0.05). These results show that CPHs have the potential to be used as bioactive ingredients in the formulation of functional foods against oxidative stress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Evaluation of competitive and economic indices in canola and pea intercropping at different rates of nitrogen fertilizer

    Directory of Open Access Journals (Sweden)

    Seyfollah fallah

    2016-05-01

    Full Text Available The experiment was conducted in order to evaluate of competitive and economic indices in canola and pea intercropping at different rates of nitrogen fertilizer at Shahrekord University research farm during 1390 - 1391. Intercropping and sole cropping treatments (100% canola; 66% canola + 33% pea, 50% canola + 50% pea; 33% canola + 66% pea; 100% pea were evaluated as the first factor and nitrogen rates (100% need; 75% need and 50% need as the second factor in a randomized complete block design with three replications. The calculated competitive indices were included land equivalent ratio (LER, relative crowding coefficient (K, aggressively (A, the system production index (SPI, actual yield loss (AYL, competitive ratio (CR and economy indices included monetary advantage index (MAI, and the intercropping advantage (IA. Results showed that all the competitive and economic indices had the highest amount in 50 and 75% of nitrogen requirement. The amounts of AYLt and SPI and economic indices (MAI and IA were positive for all intercropping ratios. Also, LERt and Kt for all intercropping ratio were greater than one, that indicating the superiority of intercropping over sole cropping any of the two plants. The positive values aggressively index and the greater than one values competitive ratio for canola, indicated canola was superior competitor in compared to pea. In conclusion, the evaluation of competitive and economic indices appropriately describes intercropping advantage of canola with pea in reduced nitrogen fertilizer conditions.

  3. Anaerobic co-digestion of canola straw and buffalo dung: optimization of methane production in batch experiments

    International Nuclear Information System (INIS)

    Sahito, A.R.; Brohi, K.M.

    2014-01-01

    In several regions of the Pakistan, crop cultivation is leading to the production crop residues and its disposal problems. It has been suggested that the co-digestion of the crop residues with the buffalo dung might be a disposal way for the wasted portion of the crops residue. The objective of present study was to optimize the anaerobic co-digestion of canola straw and the buffalo dung through batch experiments in order to obtain maximum methane production. The optimization was carried out in three stages. In first stage, the best canola straw to buffalo dung ratio was evaluated. In second stage, the best concentration of sodium hydrogen carbonate was assessedas the alkaline pretreatment chemical, whereas in the third stage most suitable particle size of the canola strawwas evaluated. The assessment criteria for the optimization of a co-digestion were cumulative methane production and ABD (Anaerobic Biodegradability). The results yield that anaerobic co-digestibility of the canola straw and the buffalo dung is obviously influenced by all the three factors of optimization. The maximum methane production was obtained as 911 NmL from the canola straw to buffalo dung ratio of 40:60, the alkaline doze of 0.6 gNaHCO/sub 3/ gVS and canola straw particle size of 2mm. However, because of the higher shredding cost to produce 2mm sized canola straw, particle size 4mm could be the best canola straw particle size. (author)

  4. Anaerobic Co-Digestion of Canola Straw and Buffalo Dung: Optimization of Methane Production in Batch Experiments

    Directory of Open Access Journals (Sweden)

    Abdul Razaque Sahito

    2014-01-01

    Full Text Available In several regions of the Pakistan, crop cultivation is leading to the production crop residues and its disposal problems. It has been suggested that the co-digestion of the crop residues with the buffalo dung might be a disposal way for the wasted portion of the crops' residue. The objective of present study was to optimize the anaerobic co-digestion of canola straw and the buffalo dung through batch experiments in order to obtain maximum methane production. The optimization was carried out in three stages. In first stage, the best canola straw to buffalo dung ratio was evaluated. In second stage, the best concentration of sodium hydrogen carbonate was assessedas the alkaline pretreatment chemical, whereas in the third stage most suitable particle size of the canola strawwas evaluated. The assessment criteria for the optimization of a co-digestion were cumulative methane production and ABD (Anaerobic Biodegradability. The results yield that anaerobic co-digestibility of the canola straw and the buffalo dung is obviously influenced by all the three factors of optimization. The maximum methane production was obtained as 911 NmL from the canola straw to buffalo dung ratio of 40:60, the alkaline doze of 0.6 gNaHCO3 / gVS and canola straw particle size of 2mm. However, because of the higher shredding cost to produce 2mm sized canola straw, particle size 4mm could be the best canola straw particle size.

  5. Rhizoremediation of Diesel-Contaminated Soil with Two Rapeseed Varieties and Petroleum degraders Reveals Different Responses of the Plant Defense Mechanisms

    DEFF Research Database (Denmark)

    Wojtera-Kwiczor, Joanna; Żukowska, Weronika; Graj, Weronika

    2014-01-01

    . The oxidative stress was enhanced in LEAR being exposed to sole diesel oil, in comparison with HEAR. However, when LEAR plants were additionally inoculated with bacteria, suppression of total catalase (CAT) and ascorbate peroxidase (APX) activity were observed. Interestingly, glutathione transferase (GST......Plant-assisted bioremediation (rhizoremediation) stands out as a potential tool to inactivate or completely remove xenobiotics from the polluted environment. Therefore, it is of key importance to find an adequate combination of plant species and microorganisms that together enhance the clean......-up process. To understand the response of plants upon bioaugmentation, the antioxidative and detoxification system was analyzed in high and low erucic acid rapeseed varieties (HEAR and LEAR, respectively), after 8 weeks of their treatment with petroleum degraders and 6000 mg diesel oil/kg dry soil...

  6. Chemical characterization of a variety of cold-pressed gourmet oils available on the Brazilian market.

    Science.gov (United States)

    Cicero, Nicola; Albergamo, Ambrogina; Salvo, Andrea; Bua, Giuseppe Daniel; Bartolomeo, Giovanni; Mangano, Valentina; Rotondo, Archimede; Di Stefano, Vita; Di Bella, Giuseppa; Dugo, Giacomo

    2018-07-01

    Different specialty extra virgin oils, produced by cold-pressing fruits/nuts (olive, pequi, palm, avocado, coconut, macadamia and Brazil nut) and seeds (grapeseed and canola), and retailed in the Brazilian region of Minas Gerais, were chemically characterized. Specifically, for each type of oil, the fatty acid composition was elucidated by GC-FID, the contents of selected polyphenols and squalene were determined respectively by UHPLC-MS and UHPLC-PDA, whereas minerals were explored by means of ICP-MS. Olive oil was confirmed to have the highest MUFA content due to a valuable level of oleic acid, while oils from grapeseed, Brazil nut and canola were marked by nutritionally important PUFA levels. The highest SFA content found in coconut oil was mainly due to the high levels of lauric acid, known for its advantageous HDL-raising effects. As for polyphenols, gourmet oils from palm, coconut and canola showed higher levels of phenolic acids (e.g. p-hydroxybenzoic, ferulic, syringic, acids) than olive oil, which was though characterized by peculiar antioxidants, such as tyrosol and hydroxytyrosol. Also, olive oil had the highest amount of squalene, followed by the oil from Brazil nut. Finally, all the investigated oils had very low levels (order of μg/kg) of pro-oxidant elements, such as Cu, Fe and Mn. Overall, these findings may fill the gaps still present in literature on certain compositional aspects of commercially available gourmet oils. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Modeling identifies optimal fall planting times and irrigation requirements for canola and camelina at locations across California

    Directory of Open Access Journals (Sweden)

    Nicholas George

    2017-06-01

    Full Text Available In California, Brassica oilseeds may be viable crops for growers to diversify their cool-season crop options, helping them adapt to projected climate change and irrigation water shortages. Field trials have found germination and establishment problems in some late-planted canola, but not camelina at the same locations. We used computer modeling to analyze fall seedbed conditions to better understand this phenomenon. We found seedbeds may be too dry, too cold, or both, to support germination of canola during late fall. Based on seedbed temperatures only, canola should be sown no later than the last week of November in the Central Valley. Camelina has broader temperature and moisture windows for germination and can be sown from October to December with less risk, but yields of camelina are lower than canola yields. In areas without irrigation, growers could plant canola opportunistically when seedbed conditions are favorable and use camelina as a fallback option.

  8. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil.

    Science.gov (United States)

    Marchiol, L; Assolari, S; Sacco, P; Zerbi, G

    2004-11-01

    Phytoextraction can provide an effective in situ technique for removing heavy metals from polluted soils. The experiment reported in this paper was undertaken to study the basic potential of phytoextraction of Brassica napus (canola) and Raphanus sativus (radish) grown on a multi-metal contaminated soil in the framework of a pot-experiment. Chlorophyll contents and gas exchanges were measured during the experiment; the heavy metal phytoextraction efficiency of canola and radish were also determined and the phytoextraction coefficient for each metal calculated. Data indicated that both species are moderately tolerant to heavy metals and that radish is more so than canola. These species showed relatively low phytoremediation potential of multicontaminated soils. They could possibly be used with success in marginally polluted soils where their growth would not be impaired and the extraction of heavy metals could be maintained at satisfying levels.

  9. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil

    International Nuclear Information System (INIS)

    Marchiol, L.; Assolari, S.; Sacco, P.; Zerbi, G.

    2004-01-01

    Phytoextraction can provide an effective in situ technique for removing heavy metals from polluted soils. The experiment reported in this paper was undertaken to study the basic potential of phytoextraction of Brassica napus (canola) and Raphanus sativus (radish) grown on a multi-metal contaminated soil in the framework of a pot-experiment. Chlorophyll contents and gas exchanges were measured during the experiment; the heavy metal phytoextraction efficiency of canola and radish were also determined and the phytoextraction coefficient for each metal calculated. Data indicated that both species are moderately tolerant to heavy metals and that radish is more so than canola. These species showed relatively low phytoremediation potential of multicontaminated soils. They could possibly be used with success in marginally polluted soils where their growth would not be impaired and the extraction of heavy metals could be maintained at satisfying levels

  10. Pterostilbene Is a Potential Candidate for Control of Blackleg in Canola.

    Directory of Open Access Journals (Sweden)

    Joshua C O Koh

    Full Text Available Two stilbenes, resveratrol and pterostilbene, exhibit antifungal activity against Leptosphaeria maculans, the fungal pathogen responsible for blackleg (stem canker in canola (Brassica napus. In vitro studies on the effect of these stilbenes on L. maculans mycelial growth and conidia germination showed that pterostilbene is a potent fungicide and sporicide, but resveratrol only exerted minor inhibition on L. maculans. Cell viability of hyphae cultures was markedly reduced by pterostilbene and SYTOX green staining showed that cell membrane integrity was compromised. We demonstrate that pterostilbene exerts fungicidal activity across 10 different L. maculans isolates and the compound confers protection to the blackleg-susceptible canola cv. Westar seedlings. The potential of pterostilbene as a control agent against blackleg in canola is discussed.

  11. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Marchiol, L.; Assolari, S.; Sacco, P.; Zerbi, G

    2004-11-01

    Phytoextraction can provide an effective in situ technique for removing heavy metals from polluted soils. The experiment reported in this paper was undertaken to study the basic potential of phytoextraction of Brassica napus (canola) and Raphanus sativus (radish) grown on a multi-metal contaminated soil in the framework of a pot-experiment. Chlorophyll contents and gas exchanges were measured during the experiment; the heavy metal phytoextraction efficiency of canola and radish were also determined and the phytoextraction coefficient for each metal calculated. Data indicated that both species are moderately tolerant to heavy metals and that radish is more so than canola. These species showed relatively low phytoremediation potential of multicontaminated soils. They could possibly be used with success in marginally polluted soils where their growth would not be impaired and the extraction of heavy metals could be maintained at satisfying levels.

  12. Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil.

    Science.gov (United States)

    Ok, Yong Sik; Usman, Adel R A; Lee, Sang Soo; Abd El-Azeem, Samy A M; Choi, Bongsu; Hashimoto, Yohey; Yang, Jae E

    2011-10-01

    Rapeseed (Brassica napus L.) has been cultivated for biodiesel production worldwide. Winter rapeseed is commonly grown in the southern part of Korea under a rice-rapeseed double cropping system. In this study, a greenhouse pot experiment was conducted to assess the effects of rapeseed residue applied as a green manure alone or in combinations with mineral N fertilizer on Cd and Pb speciation in the contaminated paddy soil and their availability to rice plant (Oryza sativa L.). The changes in soil chemical and biological properties in response to the addition of rapeseed residue were also evaluated. Specifically, the following four treatments were evaluated: 100% mineral N fertilizer (N100) as a control, 70% mineral N fertilizer+rapeseed residue (N70+R), 30% mineral N fertilizer+rapeseed residue (N30+R) and rapeseed residue alone (R). The electrical conductivity and exchangeable cations of the rice paddy soil subjected to the R treatment or in combinations with mineral N fertilizer treatment, N70+R and N30+R, were higher than those in soils subjected to the N100 treatment. However, the soil pH value with the R treatment (pH 6.3) was lower than that with N100 treatment (pH 6.9). Use of rapeseed residue as a green manure led to an increase in soil organic matter (SOM) and enhanced the microbial populations in the soil. Sequential extraction also revealed that the addition of rapeseed residue decreased the easily accessible fraction of Cd by 5-14% and Pb by 30-39% through the transformation into less accessible fractions, thereby reducing metal availability to the rice plant. Overall, the incorporation of rapeseed residue into the metal contaminated rice paddy soils may sustain SOM, improve the soil chemical and biological properties, and decrease the heavy metal phytoavailability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Composition of fatty acids in selected vegetable oils

    Directory of Open Access Journals (Sweden)

    Helena Frančáková

    2015-12-01

    Full Text Available Plant oils and fats are important and necessary components of the human nutrition. They are energy source and also contain fatty acids - compounds essential for human health. The aim of this study was to evaluate nutritional quality of selected plant oil - olive, rapeseed, pumpkin, flax and sesame; based on fatty acid composition in these oils. Fatty acids (MUFA, PUFA, SFA were analyzed chromatography using system Agilent 6890 GC, injector multimode, detector FID. The highest content of saturated fatty acids was observed in pumpkinseed oil (19.07%, the lowest content was found in rapeseed oil (7.03%, with low level of palmitic and stearic acids and high level of behenic acid (0.32% among the evaluated oils. The highest content of linoleic acid was determined in pumpkinseed (46.40% and sesame oil (40.49%; in these samples was also found lowest content of α-linolenic acid. These oils have important antioxidant properties and are not subject to oxidation. The richest source of linolenic acid was flaxseed oil which, which is therefore more difficult to preserve and process in food industry. In olive oil was confirmed that belongs to the group of oils with a predominantly monosaturated oleic acid (more than 70% and a small amount of polysaturated fatty acid. The most commonly used rapeseed oil belongs to the group of oils with the medium content of linolenic acid (8.76%; this oil also showed a high content of linoleic acid (20.24%. The group of these essentially fatty acids showed a suitable ratio ∑n3/n6 in the rapessed oil (0.44.

  14. In Vitro Digestibility of Rapeseed and Bovine Whey Protein Mixtures.

    Science.gov (United States)

    Joehnke, Marcel Skejovic; Rehder, Alina; Sørensen, Susanne; Bjergegaard, Charlotte; Sørensen, Jens Christian; Markedal, Keld Ejdrup

    2018-01-24

    Partial replacement of animal protein sources with plant proteins is highly relevant for the food industry, but potential effects on protein digestibility need to be established. In this study, the in vitro protein digestibility (IVPD) of four protein sources and their mixtures (50:50 w/w ratio) was investigated using a transient pepsin hydrolysis (1 h) followed by pancreatin (1 h). The protein sources consisted of napin-rich rapeseed (Brassica napus L.) protein concentrates (RPCs; RP1, RP2) prepared in pilot scale and major bovine whey proteins (WPs; α-LA, alpha-lactalbumin; β-LG, beta-lactoglobulin). IVPD of individual protein sources was higher for WPs compared to RPCs. The RP2/β-LG mixture resulted in an unexpected high IVPD equivalent to β-LG protein alone. Protein mixtures containing RP1 showed a new IVPD response type due to the negative influence of a high trypsin inhibitor activity (TIA) level. Improved IVPD of RP1 alone and in protein mixtures was obtained by lowering the TIA level using dithiothreitol (DTT). These results showed that napin-rich protein products prepared by appropriate processing can be combined with specific WPs in mixtures to improve the IVPD.

  15. Enhanced phyto-extraction of cadmium and zinc using rapeseed

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, M.; Slycken, S.V.; Meers, E.; Tack, F.M.G. [Laboratory of Analytical Chemistry and Applied Ecochemistry, Ghent University, Ghent (Belgium); Naz, F. [National Insect Museum, National Agricultural Research Centre, Islamabad (Pakistan); Ali, S. [Agriculture Department, University of Haripur, Haripur (Pakistan)

    2013-07-01

    In a green house pot experiment, the effects of three amendments, sulphur (S), ammonium sulphate ((NH{sub 4}){sub 2}SO{sub 4}) and ethylenediaminetetracetic acid (EDTA) were tested for phyto-extraction of Cd and Zn by rapeseed (Brassica napus L.). Elemental sulphur was applied as 20.00, 60.00, and 120.00 mg.kg{sup -1} soil. EDTA was tested at a dose of 585.00 mg.kg{sup -1} soil, and (NH{sub 4}){sub 2}SO{sub 4}) at a rate of 0.23 mg.kg{sup -1} soil. All treatments received a base fertilization (Hogland) before sowing. Plants were harvested after 51 days of growth and shoot dry matter and soil samples were analysed for metal contents. All amendments caused a significant increase in Cd and Zn contents in plant shoots of all treatments than control treatment. Further, EDTA was most effective for extraction metals concentrations in shoot biomass but the plants showed significant signs of toxicity and yield were severely depressed. The addition of sulfur favorably influenced plant biomass production. The fertilized ammonium sulfate treatment resulted in the highest phyto-extraction of Cd and Zn and the amounts of these metals accumulated in plant shoot exceeded by a factor of 4 and 3 respectively. Finally, Brassica napus could be used for soil remediation keeping its other uses which will make the contaminated site income generating source for the farmers. (authors)

  16. Using ATR-FT/IR to detect carbohydrate-related molecular structure features of carinata meal and their in situ residues of ruminal fermentation in comparison with canola meal

    Science.gov (United States)

    Xin, Hangshu; Yu, Peiqiang

    2013-10-01

    There is no information on the co-products from carinata bio-fuel and bio-oil processing (carinata meal) in molecular structural profiles mainly related to carbohydrate biopolymers in relation to ruminant nutrition. Molecular analyses with Fourier transform infrared spectroscopy (FT/IR) technique with attenuated total reflectance (ATR) and chemometrics enable to detect structural features on a molecular basis. The objectives of this study were to: (1) determine carbohydrate conformation spectral features in original carinata meal, co-products from bio-fuel/bio-oil processing; and (2) investigate differences in carbohydrate molecular composition and functional group spectral intensities after in situ ruminal fermentation at 0, 12, 24 and 48 h compared to canola meal as a reference. The molecular spectroscopic parameters of carbohydrate profiles detected were structural carbohydrates (STCHO, mainly associated with hemi-cellulosic and cellulosic compounds; region and baseline ca. 1483-1184 cm-1), cellulosic compounds (CELC, region and baseline ca. 1304-1184 cm-1), total carbohydrates (CHO, region and baseline ca. 1193-889 cm-1) as well as the spectral ratios calculated based on respective spectral intensity data. The results showed that the spectral profiles of carinata meal were significantly different from that of canola meal in CHO 2nd peak area (center at ca. 1091 cm-1, region: 1102-1083 cm-1) and functional group peak intensity ratios such as STCHO 1st peak (ca. 1415 cm-1) to 2nd peak (ca. 1374 cm-1) height ratio, CHO 1st peak (ca. 1149 cm-1) to 3rd peak (ca. 1032 cm-1) height ratio, CELC to total CHO area ratio and STCHO to CELC area ratio, indicating that carinata meal may not in full accord with canola meal in carbohydrate utilization and availability in ruminants. Carbohydrate conformation and spectral features were changed by significant interaction of meal type and incubation time and almost all the spectral parameters were significantly decreased (P

  17. Dynamics of world oil crops market

    Directory of Open Access Journals (Sweden)

    Knežević Marija

    2012-01-01

    Full Text Available According to the harvested area, oil crops are the second most important crops after cereals. Soybean is the most important oil crop in terms of production and trade of oilseeds and meals, and second most important in terms of production and trade of vegetable oils after palm oil. Dynamics of prices of derived oil crop products in the international market is conditioned by the relationship between supply and demand in the overall market of oil crops. The substitution of animal fats with vegetable oils in human nutrition, the expansion of biodiesel industry and intensification of livestock production have led to increased demand for oil crops. The objective of this paper was to identify trends in production, consumption and trade of soybeans, rapeseed and sunflower and their derived products.

  18. Harmonised GHG accounting of decentralized rapeseed fuel production in Bavaria; Harmonisierte THG-Bilanzierung der dezentralen Rapsoelkraftstoffproduktion in Bayern

    Energy Technology Data Exchange (ETDEWEB)

    Dressler, Daniela [Technologie- und Foerderzentrum (TFZ), Straubing (Germany); Engelmann, Karsten; Remmele, Edgar; Thuneke, Klaus

    2016-08-01

    The Directive 2009/28/EG (RED) requires a minimum level of greenhouse gas reduction for biofuels to be marketed. Site-specific production conditions are not considered in default values, which are specified by RED for calculating the greenhouse gas emissions. However, calculations of regional and farm specific GHG balances in accordance to the method of ExpRessBio for the production of rape seed show a considerable range of GHG-emissions in CO{sup 2}-eq (25.2-43.6 g MJ{sup -1}). For the complete product system of decentralized rapeseed oil fuel production in Bavaria a GHG reduction of 58 % can be achieved. This is slightly higher than the default value of 57 % as specified in Directive 2009/28/EG. The reason for this is that the default value under Directive 2009/28/EG is based on an industrial oil production process whereas decentralized production leads to less GHG emissions. In comparison to the application of the energy allocation method the substitution method for the assessment of rape seed cake as protein feed leads to a distinct higher GHG reduction rate of 85%.

  19. Rapeseed meal in the diet of common carp reared in heated waters. Pt. 4

    International Nuclear Information System (INIS)

    Dabrowski, K.; Evans, R.; Czarnocki, J.; Kozlowska, H.; Fisheries Research Board of Canada, Winnipeg, Manitoba. Freshwater Inst.)

    1982-01-01

    Diets based on fish meal or barley meal as controls, and rapeseed meal were fed to common carp for approximately 3 months. Rapeseed meals differed due to processing and contained variable amounts of goitrogenic glucosinolate. Radioiodine Na 125 I was injected intraperitoneally and radioactivity measured in different tissues. It was found that thyroid centres in kidney accumulated the major part of the administred 125 I. Kidneys from fish fed high glucosinolate rapeseed meal (HRM) retained 37.3% of the isotope, a significant higher percentage than from the fish meal (27.45%) or barley meal (10.5%) fed fish. Thyroid centres in the pharyngeal region invariably retained 1.16-2.41% of the 125 I. In kidney extracts from fish fed HRM diet, 98.3% of the 125 I radioactivity was found in the sulfosalicyclic acid precipitate in comparison to 89.7% in those from low glucosinolate rapeseed based diet. Kidney thyroid cell heights were slightly larger in all rapeseed fed groups when compared to control fish; otherwise kidney thyroid tissue appeared normal. (orig.) [de

  20. Are olive oil diets antithrombotic?

    DEFF Research Database (Denmark)

    Larsen, L. F.; Jespersen, J.; Marckmann, Peter

    1999-01-01

    compared the effects of virgin olive oil with those of rapeseed and sunflower oils on blood coagulation factor VII (FVII), a key factor in thrombogenesis. DESIGN: In a randomized and strictly controlled crossover study, 18 healthy young men consumed diets enriched with 5 g/MJ (19% of total energy) olive...... FVII (FVIIa) were 11.3 +/- 5.1 U/L lower after olive oil than after sunflower oil, an 18% reduction (P diets...... with respect to nonfasting factor VII coagulant activity (FVII:c), prothrombin fragment 1+2 (F1+2), and tissue factor pathway inhibitor (TFPI) concentrations, or with respect to fasting plasma values of FVII protein, FVII:c, FVIIa, F1+2, or TFPI. CONCLUSION: A background diet rich in olive oil may attenuate...

  1. Biogenic greenhouse gas emissions linked to the life cycles of biodiesel derived from European rapeseed and Brazilian soybeans

    NARCIS (Netherlands)

    Reijnders, L.; Huijbregts, M.A.J.

    2008-01-01

    Biogenic emissions of carbonaceous greenhouse gases and N2O turn out to be important determinants of life cycle emissions of greenhouse gases linked to the life cycle of biodiesel from European rapeseed and Brazilian soybeans. For biodiesel from European rapeseed and for biodiesel from Brazilian

  2. Multispecies Adulteration Detection of Camellia Oil by Chemical Markers.

    Science.gov (United States)

    Dou, Xinjing; Mao, Jin; Zhang, Liangxiao; Xie, Huali; Chen, Lin; Yu, Li; Ma, Fei; Wang, Xiupin; Zhang, Qi; Li, Peiwu

    2018-01-25

    Adulteration of edible oils has attracted attention from more researchers and consumers in recent years. Complex multispecies adulteration is a commonly used strategy to mask the traditional adulteration detection methods. Most of the researchers were only concerned about single targeted adulterants, however, it was difficult to identify complex multispecies adulteration or untargeted adulterants. To detect adulteration of edible oil, identification of characteristic markers of adulterants was proposed to be an effective method, which could provide a solution for multispecies adulteration detection. In this study, a simple method of multispecies adulteration detection for camellia oil (adulterated with soybean oil, peanut oil, rapeseed oil) was developed by quantifying chemical markers including four isoflavones, trans-resveratrol and sinapic acid, which used liquid chromatography tandem mass spectrometry (LC-MS/MS) combined with solid phase extraction (SPE). In commercial camellia oil, only two of them were detected of daidzin with the average content of 0.06 ng/g while other markers were absent. The developed method was highly sensitive as the limits of detection (LODs) ranged from 0.02 ng/mL to 0.16 ng/mL and the mean recoveries ranged from 79.7% to 113.5%, indicating that this method was reliable to detect potential characteristic markers in edible oils. Six target compounds for pure camellia oils, soybean oils, peanut oils and rapeseed oils had been analyzed to get the results. The validation results indicated that this simple and rapid method was successfully employed to determine multispecies adulteration of camellia oil adulterated with soybean, peanut and rapeseed oils.

  3. Aclimatação ao frio e dano por geada em canola Acclimatization to cold and frost-injury in canola

    Directory of Open Access Journals (Sweden)

    Genei Antonio Dalmago

    2010-09-01

    Full Text Available O objetivo deste trabalho foi avaliar a influência da aclimatação ao frio sobre o dano causado pela geada em diferentes estádios fenológicos de genótipos de canola. Foram realizados cinco experimentos em ambiente controlado, em 2006, 2007 e 2008. Os fatores avaliados foram: genótipos, aclimatação (com; sem, intensidades de geada, estádios de desenvolvimento de plantas, regimes de aclimatação e regimes de geada. As variáveis avaliadas foram: queima de folhas, massa de matéria seca, estatura de plantas, duração de subperíodo, componentes de rendimento e rendimento de grãos. A aclimatação ao frio, antes da geada, resultou em menor queima de folhas e maior massa de matéria seca, em comparação a plantas não aclimatadas. As geadas foram prejudiciais a partir de -6°C no início do ciclo de desenvolvimento, principalmente em plantas não aclimatadas, e a partir de -4ºC na floração, com redução do número de síliquas e do número de grãos por síliqua. A aclimatação após as geadas não contribuiu para a tolerância da canola a esse evento. Geadas consecutivas não acarretaram maior prejuízo à canola. A aclimatação de plantas de canola antes da geada reduz os danos, principalmente quando a geada ocorre no início do desenvolvimento das plantas.The objective of this work was to evaluate the influence of cold acclimatization on frost damage at different phenological stages of canola genotypes. Five experiments were carried out under controlled conditions, in 2006, 2007, and 2008. The evaluated factors were: genotypes, acclimatization (with; without, frost gradient, plant developmental stages, acclimatization regimes and frost regimes. The evaluated variables were: leaf scorching symptoms, dry weight, plant height, length of subperiod, yield components and grain yield. The acclimatization before frost resulted in lesser leaf scorching symptoms and higher dry matter in comparison to plants not acclimated. Frosts were

  4. Tissue-specific distribution of secondary metabolites in rapeseed (Brassica napus L..

    Directory of Open Access Journals (Sweden)

    Jingjing Fang

    Full Text Available Four different parts, hypocotyl and radicle (HR, inner cotyledon (IC, outer cotyledon (OC, seed coat and endosperm (SE, were sampled from mature rapeseed (Brassica napus L. by laser microdissection. Subsequently, major secondary metabolites, glucosinolates and sinapine, as well as three minor ones, a cyclic spermidine conjugate and two flavonoids, representing different compound categories, were qualified and quantified in dissected samples by high-performance liquid chromatography with diode array detection and mass spectrometry. No qualitative and quantitative difference of glucosinolates and sinapine was detected in embryo tissues (HR, IC and OC. On the other hand, the three minor compounds were observed to be distributed unevenly in different rapeseed tissues. The hypothetic biological functions of the distribution patterns of different secondary metabolites in rapeseed are discussed.

  5. EFFECT OF FILLER LOADING ON PHYSICAL AND FLEXURAL PROPERTIES OF RAPESEED STEM/PP COMPOSITES

    Directory of Open Access Journals (Sweden)

    Seyed Majid Zabihzadeh

    2011-03-01

    Full Text Available The objective of the study is to develop a new filler for the production of natural filler thermoplastic composites using the waste rapeseed stalks. The long-term water absorption and thickness swelling behaviors and flexural properties of rapeseed filled polypropylene (PP composites were investigated. Three different contents of filler were tested: 30, 45, and 60 wt%. Results of long-term hygroscopic tests indicated that by the increase in filler content from 30% to 60%, water diffusion absorption and thickness swelling rate parameter increased. A swelling model developed by Shi and Gardner can be used to quantify the swelling rate. The increasing of filler content reduced the flexural strength of the rapeseed/PP composites significantly. In contrast to the flexural strength, the flexural modulus improved with increasing the filler content. The flexural properties of these composites were decreased after the water uptake, due to the effect of the water molecules.

  6. Polycyclic aromatic hydrocarbons (PAH) in exhaust emissions from diesel engines powered by rapeseed oil methylester and heated non-esterified rapeseed oil

    Czech Academy of Sciences Publication Activity Database

    Vojtíšek-Lom, M.; Czerwinski, J.; Leníček, J.; Sekyra, M.; Topinka, Jan

    2012-01-01

    Roč. 60, 14 JUNE (2012), s. 253-261 ISSN 1352-2310 R&D Projects: GA ČR GAP503/11/0142 Grant - others:GA ČR(CZ) GA101/08/1717; GA MŠk(CZ) 1M0568; project MEDETOX(XE) LIFE10ENV/CZ/651 Institutional research plan: CEZ:AV0Z50390703 Institutional support: RVO:68378041 Keywords : diesel engine * diesel emissions * particulate matter Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.110, year: 2012

  7. Effect of topdressing with nitrogen and boron on the yield and quality of rapeseed

    Directory of Open Access Journals (Sweden)

    Ladislav Varga

    2010-01-01

    Full Text Available Field trials with winter rape (Brassica napus L. var. napus variety Rasmus were established in August in the years 2002–2004 at the experimental station in Kolíňany which belongs to the Slovak University of Agriculture in Nitra. In the experiments we explore the effect of supplementary spring topdressing of rape with nitrogen and boron in the BBCH 29–30 stage with regard to the yields of seeds and their qualitative parameters (TSW, content of oil and crude protein. In the experiment we applied DAM–390 (solution of ammonium nitrate and urea, 30% N at a rate of 30 kg N/ha and Humix Bór (humic acids + N, K, B at a rate of 0.240 kg B / ha. The different climate conditions in the respective years had a significant effect on yields of rapeseed and ranged as follows: 2003: 1.80–2.29 t / ha; 2004: 2.60–3.35 t / ha; 2005: 2.45–3.29 t / ha. The significant decrease in seed yields in the first year of the experiment was caused namely by the deficit in precipitation in January, February and June 2003 and high temperatures in May and June in the same year. In terms of the individual years and the three-year average the application of Humix Bór itself did not significantly improve the yield and qualitative parameters of seeds compared to the unfertilised control. In a three-year average the application of the N fertiliser alone or in combination with Humix Bór increased seed yields and the crude protein content by 22.4–30.7 % and 4.0–4.9 rel. %, respectively, compared to the unfertilised control. The significantly highest seed yields (2.98 t / ha were achieved when the plants were treated with a combination of nitrogen and Humix Bór as compared to all the other treatments (2.28–2.79 t / ha. The oil content in seeds increased significantly to 44.1% only when treated with a combined application of DAM–390 and Humix Bór as against the unfertilised control (42.8%. Fertilisation did not change

  8. Effect of Dietary Supplementation by Irradiated Full-Fat Rapeseed on Biochemical Changes in Rats

    International Nuclear Information System (INIS)

    Farga, D. M. H.; El-Shennawy, H. M.; Soliman, N.A.

    2000-01-01

    Supplementation of 230 gk 1 of raw and irradiated full-fat rapeseed at 20 kGy in the food of male albino rats for ten weeks of age, caused significantly lower total plasma protein concentration as compared with those fed control diet, heated seeds and seeds irradiated at 50 and 70 kGy diets. On the other hand, the highest total plasma protein value was obtained from the control group flowed in descending order by heated and seeds irradiated at 70 kGy, and 50 kGy. Plasma albumin decreased significantly in rats fed either raw or rapeseed irradiated at 20 and 50 kGy as compared with rats fed control diet, heated or irradiated rapeseed at 70 kGy diets. The same result was observed with plasma globulin and A/G ratio. Supplementing the diet of rats with raw and irradiated rapeseed at 20 and 50 kGy caused significantly higher plasma transaminases activities (GOT and GPT) as compared with those fed control diet, heated or rapeseed irradiated at 70 kGy. However, rats fed raw and rapeseed irradiated at 20 kGy caused a significant increase in alkaline phosphatase as compared with those fed control diet, heated or irradiated seeds at 50 or 70 kGy diets. Moreover, there was no significant discrepancy between groups fed heated seed and seeds irradiated at 50 or 70 kGy as compared with those fed control diets. Level of plasma creatinine was significantly higher in groups of rats fed row and irradiated seeds at 20 kGy as compared with those fed heat processed and irradiated seeds at 50 kGy and 70 kGy and control diets. The results confirm that the applied radiation doses are insufficient enough to bring a complete detoxification of processed seeds. Increasing the applied radiation doses might be be beneficial in this respect

  9. Características de carcaça de cordeiros alimentados com grãos e subprodutos da canola = Carcass characteristics in lambs fed with grains and by-products of canola

    Directory of Open Access Journals (Sweden)

    José Carlos Barbosa

    2009-10-01

    Full Text Available O objetivo foi estudar a introdução de 8% de grãos e subprodutos (farelo ou torta da canola em dietas para cordeiros. Para a avaliação das características quantitativas da carcaça, foram utilizadas 24 carcaças de cordeiros, utilizando delineamento inteiramente casualizado. As dietas com média de 15,4% de PB na MS e 80,2% de NDT foram compostas por 40% de feno de capim-Tifton e 60% de concentrado composto por milho em grão, farelo de soja, canola em grão integral, farelo de canola, torta de canola e mistura mineral. A utilização de grãos e subprodutos da canola na dieta de borregos terminados em confinamento não influenciou (p > 0,05 as características quantitativas da carcaça. Em relação aos rendimentos dos cortes, não houve efeito dos tratamentos para nenhuma das variáveis analisadas. Assim, a introdução de 8% de grãos e subprodutos (farelo ou torta da canola possibilitaram bons resultados podendo ser recomendados nas formulações de dietas para cordeiros.The aim of this work was to evaluate the introduction of 8% grains and by-products (meal or cake of canola in the diets of lambs. To evaluate quantitative carcass characteristics, 24 Santa Ines lambs were used in a completely randomized design. Diets with averages of 15.4% of CP in DM and 80.2% of TDN were composed for 40% Tifton hay and 60% concentrate based on corn grain, soybean meal, whole grain canola, canola meal, canola cake and mineral mixture. The use of whole grains and by-products of canola in the diet of lambs finished in feedlot did not influence (p > 0.05 quantitative carcass characteristics. For cut dressing in relation to the CCW, no effect was observed for the analyzed variables among treatments. It was concluded that the introduction of grains and by-products of canola allow for satisfactory results, and could be recommended in the formulations of lamb diets.

  10. Crambe meal : evaluation, improvement and comparison with rapeseed meal

    NARCIS (Netherlands)

    Liu, Y.G.

    1994-01-01

    Crambe abyssinica has gradually been introduced in agriculture as a new oil-bearing crop. Its oil contains 55 to 60% erucic acid (C22:1, Δ13), desirable as lubricants, plastic additives or as a raw material for chemical synthesis. The defatted meal has high protein

  11. In vitro digestion and fermentation characteristics of canola co-products simulate their digestion in the pig intestine.

    Science.gov (United States)

    Woyengo, T A; Jha, R; Beltranena, E; Zijlstra, R T

    2016-06-01

    Canola co-products are sources of amino acid and energy in pig feeds, but their fermentation characteristics in the pig intestine are unknown. Thus, we determined the in vitro fermentation characteristics of the canola co-products Brassica juncea solvent-extracted canola meal (JSECM), Brassica napus solvent-extracted canola meal (NSECM), B. napus expeller-pressed canola meal (NEPCM) and B. napus cold-pressed canola cake (NCPCC) in comparison with soybean meal (SBM). Samples were hydrolysed in two steps using pepsin and pancreatin. Subsequently, residues were incubated in a buffer solution with fresh pig faeces as inocula for 72 h to measure gas production. Concentration of volatile fatty acids (VFA) per gram of dry matter (DM) of feedstuff was measured in fermented solutions. Apparent ileal digestibility (AID) and apparent hindgut fermentation (AHF) of gross energy (GE) for feedstuffs were obtained from pigs fed the same feedstuffs. On DM basis, SBM, JSECM, NSECM, NEPCM and NCPCC contained 15, 19, 22, 117 and 231 g/kg ether extract; and 85, 223, 306, 208 and 176 g/kg NDF, respectively. In vitro digestibility of DM (IVDDM) of SBM (82.3%) was greater (Pfermentation characteristics of canola co-products and SBM simulated their fermentation in the small and large intestine of pigs, respectively. The 30% greater VFA production for JSECM than NSECM due to lower lignified fibre of JSECM indicates that fermentation characteristics differ between canola species. The NSECM had the highest fermentability followed by NEPCM and then NCPCC, indicating that fat in canola co-products can limit their fermentability in the hindgut.

  12. Adulteration detection in olive oil using dielectric technique and data mining

    Directory of Open Access Journals (Sweden)

    Mahdi Rashvand

    2016-12-01

    Full Text Available Olive oil is one of the most important agricultural crops due to its digestive properties and economic status. However, olive oil production is a costly process which causes an expensive price of the final product. The most jobbery ways during olive oil production consist of mixing other oils such as maize, sunflower and soya oil into the olive oil. So, the aim of this study was to develop a dielectric-based system to detect adulteration in olive oil using cylindrical capacitive sensor. For categorizing of fake olive oil by using frequency specification, Linear Discriminant Analysis (LDA was developed. A set of 15 samples of olive oil, sunflower oil and canola oil which mixed with different ratio of adulteration, were used for calibration and evaluation of developed system. For each sample, 25 iterations were performed. Regarding results, the highest error rate was for a sample containing 60% olive oil-40% canola oil. In general, 7 iterations failed to be properly recognized. Regarding to accuracy indexes, specificity and sensitivity, the system had the minimum error for a mixed sample (60% olive oil-40% canola oil, specificity and sensitivity were obtained as 98% and 100%, respectively and accuracy was obtained as 72%, which was the weakest value. Finally, regarding mean value table for all sample, accuracy reached to 97%. Results showed the developed technique has a good capability of detecting impurities in olive oil. It is concluded from obtained results that the developed system revealed an acceptable adulterated detection in oil production. Keywords: Olive oil, Adulteration, Dielectric properties, LDA

  13. Regional greenhouse gas emissions from cultivation of winter wheat and winter rapeseed for biofuels in Denmark

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Olesen, Jørgen E; Hermansen, John Erik

    2013-01-01

    Biofuels from bioenergy crops may substitute a significant part of fossil fuels in the transport sector where, e.g., the European Union has set a target of using 10% renewable energy by 2020. Savings of greenhouse gas emissions by biofuels vary according to cropping systems and are influenced...... by such regional factors as soil conditions, climate and input of agrochemicals. Here we analysed at a regional scale the greenhouse gas (GHG) emissions associated with cultivation of winter wheat for bioethanol and winter rapeseed for rapeseed methyl ester (RME) under Danish conditions. Emitted CO2 equivalents...

  14. Ileal digestibility of sunfl ower meal, pea, rapeseed cake, and lupine in pigs

    DEFF Research Database (Denmark)

    Nørgaard, Jan Værum; Fernández, José Adalberto; Jørgensen, Henry

    2012-01-01

    .05) for soybean meal and pea compared to sunfl ower meal, rapeseed cake, and lupine. The SID of Lys and His were lowest (P pea to be a high-digestible protein source relative to sunfl ower......The standardized ileal digestibility (SID) of CP and AA was evaluated in soybean (Glycine max) meal, sunfl ower (Helianthus annuus) meal, rapeseed cake, and fi eld pea (Pisum sativum) using 10 pigs and in lupine (Lupinus angustifolius) using 7 pigs. Pigs were fi tted with either a T...

  15. Optimization of H2SO4-catalyzed hydrothermal pretreatment of rapeseed straw for bioconversion to ethanol

    DEFF Research Database (Denmark)

    Xuebin, Lu; Zhang, Y.; Angelidaki, Irini

    2009-01-01

    A central composite design of response surface method was used to optimize H2SO4-catalyzed hydrothermal pretreatment of rapeseed straw, in respect to acid concentration (0.5-2%), treatment time (5-20 min) and solid content (10-20%) at 180 degrees C. Enzymatic hydrolysis and fermentation were also...... content for 10 min at 180 degrees C was found to be the most optimal condition for pretreatment of rapeseed straw for ethanol production. After pretreatment at the optimal condition and enzymatic hydrolysis, 75.12% total xylan and 63.17% total glucan were converted to xylose and glucose, respectively...

  16. Selective isolation and characterization of agriculturally beneficial endopytic bacteria from wild hemp using canola

    International Nuclear Information System (INIS)

    Afzal, I.; Iqrar, I.

    2015-01-01

    Endophytic bacteria can provide a useful alternative to synthetic fertilizers to improve plant growth. Wild plants are little investigated as a source of growth promoting endophytic bacteria for commercial application to crops. In present study, endophytic bacteria were isolated from Cannabis sativa L. (hemp) using two different methods to examine their ability to promote canola growth. Besides direct isolation from the roots, endophytic bacteria were also selectively isolated from the rhizosphere of C. sativa using canola. Under gnotobiotic conditions, six bacteria from the selective isolation significantly improved canola root growth, as compared to the two bacteria isolated from direct method. Overall, three isolates performed distinctly well, namely, Pantoea vagans MOSEL-t13, Pseudomonas geniculata MOSEL-tnc1, and Serratia marcescens MOSEL-w2. These bacteria tolerated high salt concentrations and promoted canola growth under salt stress. Further, the isolated bacteria possessed plant growth promoting traits like IAA production, phosphate solubilization, and siderophore production. Most isolates produced plant cell-wall degrading enzymes, cellulase and pectinase. Some isolates were also effective in hindering the growth of two phytopathogenic fungi in dual culture assay, and displayed chitinase and protease activity. Paenibacillus sp. MOSEL-w13 displayed the greatest antifungal activity among all the isolates. Present findings conclude that wild plants can be a good source for isolating beneficial microbes, and validates the employed selective isolation for improved isolation of plant-beneficial endophytic bacteria. (author)

  17. Canola-Wheat Rotation versus Continuous Wheat for the Southern Plains

    OpenAIRE

    Duke, Jason C.; Epplin, Francis M.; Vitale, Jeffrey D.; Peeper, Thomas F.

    2009-01-01

    Crop rotations are not common in the wheat belt of the Southern Plains. After years of continuous wheat, weeds have become increasingly difficult and expensive to manage. Yield data were elicited from farmers and used to determine if canola-wheat-wheat rotations are economically competitive with continuous wheat in the region.

  18. Effects of gamma irradiation on chemical composition and ruminal protein degradation of canola meal

    Science.gov (United States)

    Shawrang, P.; Nikkhah, A.; Zare-Shahneh, A.; Sadeghi, A. A.; Raisali, G.; Moradi-Shahrebabak, M.

    2008-07-01

    Gamma irradiation of canola meal (at doses of 25, 50 and 75 kGy) could alter its ruminal protein degradation characteristics by cross-linking of the polypeptide chains. This processing resulted in decrease (linear effect, Pruminal protein degradation and increase (linear effect, Pruminant nutrition.

  19. Effects of Intercropping (Canola-Faba Bean on Density and Diversity of Weeds

    Directory of Open Access Journals (Sweden)

    Mohamad Hossain GHARINEH

    2010-03-01

    Full Text Available In order to evaluate the biological effect and interference of crop and weed in canola-faba bean intercropping in comparison with mono culture, an experiment was conducted in randomize completely blocks design with three replication at Ramin Agriculture and Natural Resources, University. In this experiment treatments were different compositions of canola (Brassica napus L. var. haylo and faba bean (local cultivar. Plant densities (0, 20 and 40 plants per m2 for canola and four levels include (0, 20, 40 and 60 plants per m2 for faba bean in accordance with additive form mixed culture system respectively. Weed dry weight was affected by culture system and different levels of plant densities in mixed culture and there were significant difference 1%. Lowest weed dry weight was obtained in 20-60 and 40-60 plants m-2 canola-bean intercropping. In the intercropping parts only two species was observed while in the sole culture more than three species were exist. Results showed that with increasing in bean diversity, weed dry weight declines. According to our results, it is possible to control weed effectively by using intercropping system, but more studied is required. Diversity of weeds had been clearly affected. Results showed that only Beta and Malva species were existed in intercropping comparing to sole cultures that Brassica, Beta, Rumex and Malva were existed.

  20. The Allelopathic Effect of the Exotic Tree Acacia saligna on the Germination of Wheat and Canola

    Directory of Open Access Journals (Sweden)

    Mohamed Kamel

    2015-06-01

    Full Text Available This study was carried out to investigate the allelopathic effect of aqueous extracts derived from leaves and stems of Acacia saligna (Labill. H.L.Wendl. upon two agricultural crops, wheat and canola. Seed germination (%, shoot and root elongation, fresh and dry weight, vigor index and phytotoxicity parameters were estimated. Leaf extract exhibits higher inhibitory effect than stem extract. Wheat seeds were more tolerant to the allelopathic action of A. saligna extracts than canola. Canola germination minimized to 8.33% at concentration 10% of leaf extract but the percent of germination was 60% in the case of stem extract. At 10% leaf extract, 76.67% of wheat seeds germinated; but at 10% stem extract, 93.33% of the seeds were germinated. The other growth parameters as shoot and root length, fresh and dry weight and vigor index also showed continued decrease with the increasing of allelopathic extract concentration. Leaf extract exhibits the stronger allelopathic effect. The phytotoxic effect was stronger on the germination of canola compared with wheat. It reached up to 91.76% inhibition at concentration 10%, but reached up only 23.33% in the case of wheat, respectively

  1. Rhagoletis cerasi: Oviposition Reduction Effects of Oil Products

    Directory of Open Access Journals (Sweden)

    Claudia Daniel

    2014-04-01

    Full Text Available The European cherry fruit fly, Rhagoletis cerasi (L. (Diptera: Tephritidae, is a highly destructive pest. Methods to control it are limited and alternatives are needed. Observations of cherry fruit flies suggest that females exert much effort to penetrate cherries at color change stage (from green to yellow for oviposition. Therefore, the question arose as to whether a physical barrier on the fruit surface could reduce oviposition. The effects of different commercial horticultural oil products on R. cerasi oviposition were evaluated in a series of laboratory, semi-field and field experiments. In the laboratory experiments, the rate of successful oviposition on fruits treated with 0.25% v/v of the rapeseed oil product Telmion was significantly reduced by 90% compared to the untreated control. In semi-field experiments, deposits of 1% of rapeseed, mineral and paraffinic oil significantly reduced oviposition for up to 3 days. Semi-field experiments indicated that the oil products lose efficacy within 3 to 6 days after application due to degradation. Although treatments with the rapeseed oil product Telmion reduced infestation rates in an on-farm field experiment, the infested fruit clearly exceeded the level of market tolerance of 2%. Further research is needed to assess whether combinations of oil products, higher application rates and different formulations might improve field efficacy.

  2. Authentication of edible vegetable oils adulterated with used frying oil by Fourier Transform Infrared Spectroscopy.

    Science.gov (United States)

    Zhang, Qing; Liu, Cheng; Sun, Zhijian; Hu, Xiaosong; Shen, Qun; Wu, Jihong

    2012-06-01

    The application of Fourier Transform Infrared (FTIR) Spectroscopy to authenticate edible vegetable oils (corn, peanut, rapeseed and soybean oil) adulterated with used frying oil was introduced in this paper. The FTIR spectrum of oil was divided into 22 regions which corresponded to the constituents and molecular structures of vegetable oils. Samples of calibration set were classified into four categories for corn and peanut oils and five categories for rapeseed and soybean oils by cluster analysis. Qualitative analysis of validation set was obtained by discriminant analysis. Area ratio between absorption band 19 and 20 and wavenumber shift of band 19 were treated by linear regression for quantitative analysis. For four adulteration types, LODs of area ratio were 6.6%, 7.2%, 5.5%, 3.6% and wavenumber shift were 8.1%, 9.0%, 6.9%, 5.6%, respectively. The proposed methodology is a useful tool to authenticate the edible vegetable oils adulterated with used frying oil. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Effects of canola proteins and hydrolysates on adipogenic differentiation of C3H10T/2 mesenchymal stem cells.

    Science.gov (United States)

    Alashi, Adeola M; Blanchard, Christopher L; Mailer, Rodney J; Agboola, Samson O; Mawson, A John; Aluko, Rotimi E; Strappe, Padraig

    2015-10-15

    This study assessed the ability of canola protein isolate (CPI) and enzymatic hydrolysates (CPHs) to inhibit adipogenic differentiation of C3H10T1/2 murine mesenchymal stem cells in vitro. Cell viability was maintained at concentrations of 60 μg/ml of sample. Cells treated with Alcalase hydrolysate demonstrated a higher reduction in anti-adipogenic differentiation through quantitation by oil-red O staining. qPCR analysis showed that CPI and CPH-treated cells significantly inhibited PPARγ expression, a key transcription factor involved in adipocyte differentiation, as evident in an ∼ 60-80% fold reduction of PPARγ mRNA. Immunofluorescence staining for PPARγ protein also showed a reduced expression in some treated cells when compared to differentiated untreated cells. The 50% inhibition concentration (IC50) of CPI, CPHs and their membrane ultrafiltration fractions on pancreatic lipase (PL) activity ranged between 0.75 and 2.5 mg/ml, (p < 0.05) for the hydrolysed and unhydrolysed samples. These findings demonstrate that CPI and CPHs contain bioactive components which can modulate in vitro adipocyte differentiation. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  4. Exposure to clothianidin seed-treated canola has no long-term impact on honey bees.

    Science.gov (United States)

    Cutler, G Christopher; Scott-Dupree, Cynthia D

    2007-06-01

    We conducted a long-term investigation to ascertain effects on honey bee, Apis mellifera L., colonies during and after exposure to flowering canola, Brassica napus variety Hyola 420, grown from clothianidin-treated seed. Colonies were placed in the middle of 1-ha clothianidin seed-treated or control canola fields for 3 wk during bloom, and thereafter they were moved to a fall apiary. There were four treated and four control fields, and four colonies per field, giving 32 colonies total. Bee mortality, worker longevity, and brood development were regularly assessed in each colony for 130 d from initial exposure to canola. Samples of honey, beeswax, pollen, and nectar were regularly collected for 130 d, and the samples were analyzed for clothianidin residues by using high-performance liquid chromatography with tandem mass spectrometry detection. Overall, no differences in bee mortality, worker longevity, or brood development occurred between control and treatment groups throughout the study. Weight gains of and honey yields from colonies in treated fields were not significantly different from those in control fields. Although clothianidin residues were detected in honey, nectar, and pollen from colonies in clothianidin-treated fields, maximum concentrations detected were 8- to 22-fold below the reported no observable adverse effects concentration. Clothianidin residues were not detected in any beeswax sample. Assessment of overwintered colonies in spring found no differences in those originally exposed to treated or control canola. The results show that honey bee colonies will, in the long-term, be unaffected by exposure to clothianidin seed-treated canola.

  5. Effect of Calcium Levels on Strontium Uptake by Canola Plants Grown on Different Texture Soils

    International Nuclear Information System (INIS)

    El-Shazly, A.A.; Rezk, M. A.; Abdel-Sabour, M.F.; Mousa, E.A.; Mostafa, M.A.Z.; Lotfy, S.M.; Farid, I.M.; Abbas, M.H.H.; Abbas, H.H.

    2016-01-01

    Canola is considered aphytoremediator where, it can remove adequate quantities of heavy metals when grown on polluted soils.This study aimed to investigate growth performance of canola plants grown on clayey non-calcareous, sandy non-calcareous and sandy clay loam calcareous soils with different CaCO 3 contents. These soils were artificially contaminated with 100 mg Sr kg -1 and cultivated with canola plants under three levels of applied calcium i.e. 0, 60 and 85 mg Ca kg -1 in the form of CaCl 2 . The grown plants were kept under the green house conditions until (pot experiment) maturity. Afterwards, plants were harvested, separated into shoots, roots and seeds, and analyzed for their contents of calcium and strontium. Application of calcium to the sandy soil increased Ca uptake by canola plants whereas, Sr uptake, plant growth and seed yield were reduced. In the other soils, Ca and Sr uptake values were increased with minimized Ca rate. Such increases were associated with significant increases in the plant biomass and crop yield in the clayey soil; whereas, in the sandy clay loam calcareous soil, such increases were insignificant. Increasing the dose of the applied Ca (its higher rate) was associated with significant reduction in the plant growth and seed yield in these two soils. Both the biological concentration factor and the biological accumulation factors were relatively high (>1). The biological transfer factor was also high indicating high translocation of Sr from root to shoot. However, Sr translocation decreased with Ca applications. Accordingly canola plants are highly recommended for phytoextraction of Sr from polluted soils

  6. Thallium and potassium uptake kinetics and competition differ between durum wheat and canola.

    Science.gov (United States)

    Renkema, Heidi; Koopmans, Amy; Hale, Beverley; Berkelaar, Edward

    2015-02-01

    Thallium (Tl) is very toxic to mammals but little is known about its accumulation by plants, and it would be useful if prediction of Tl accumulation could be done using potassium (K) accumulation models. The objectives of this study were to compare the uptake kinetics of Tl(+) and K(+), and to determine how readily K(+) can inhibit Tl(+) uptake. Durum wheat (Triticum turgidum L.) and spring canola (Brassica napus L.) were grown hydroponically and exposed to 0-75 μM Tl or 0-250 μM K for up to 150 min (kinetics experiment), or to 0.1 or 10 μM Tl with Tl to K ratios of 1:1 to 1:10,000 for up to 300 min (competition experiment). The rate of uptake of Tl(+) by canola was about three to five times faster than by wheat, while the rate of Tl(+) uptake in wheat was the same as the rate of K(+) uptake by either species. Uptake of Tl(+) was more readily suppressed by K(+) in wheat than in canola. When exposed to 0.1 uM Tl for 300 min with 100 or 1,000 uM K(+), Tl(+) uptake by wheat was reduced by 20 % and 50 %, respectively, while Tl(+) uptake by canola was not reduced. Our results suggest that predicting Tl accumulation using a K accumulation model with a correction factor may be possible for canola, but would be much more difficult for wheat, since uptake of Tl(+) is very sensitive to levels of K(.)

  7. Elaboration and characterization of nanoliposome made of soya; rapeseed and salmon lecithins: application to cell culture.

    Science.gov (United States)

    Arab Tehrany, Elmira; Kahn, Cyril J F; Baravian, Christophe; Maherani, Behnoush; Belhaj, Nabila; Wang, Xiong; Linder, Michel

    2012-06-15

    Health benefits of unsaturated fatty acids have been demonstrated over the last decades. Nanotechnology provided new process to produce particles such as liposomes and nanoliposomes made of pure phospholipids. These techniques are already used in pharmaceutics to augment the bioavailability and the bioefficiency of drugs. The aim of this paper is to characterize and evaluate the potential of nanoliposomes made of three lecithins (soya, rapeseed and salmon) on cell culture in order to use them in the future as drug delivery systems for tissue engineering. We began to measure, with zetasizer, the radius size of liposomes particles which are 125.5, 136.7 and 130.3 nm respectively for rapeseed, soya and salmon lecithin. Simultaneously, solutions observed by TEM demonstrated the particles were made much of liposomes than droplet (emulsion). Finally, we found that the solutions of lecithins were enough stable over 5 days at 37 °C to be used in culture medium. We investigated the effect of soya, rapeseed and salmon lecithin liposome from 2mg/mL to 5.2 μg/mL on metabolic activity and cell proliferation on rat bone marrow stem cells (rBMSC) during 14 days. The results showed that the three lecithins (soya, rapeseed and salmon) improve cell proliferation at different concentration. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Refined global methyl halide budgets with respect to rapeseed (Brassica napus) by life-cycle measurements

    Science.gov (United States)

    Jiao, Y.; Acdan, J.; Xu, R.; Deventer, M. J.; Rhew, R. C.

    2017-12-01

    A precise quantification of global methyl halide budgets is needed to evaluate the ozone depletion potential of these compounds and to predict future changes of stratospheric ozone. However, the global budgets of methyl halides are not balanced between currently identified and quantified sources and sinks. Our study re-evaluated the methyl bromide budget from global cultivated rapeseed (Brassica napus) through life-cycle flux measurements both in the greenhouse and in the field, yielding a methyl bromide emission rate that scales globally to 1.0 - 1.2 Gg yr-1. While this indicates a globally significant source, it is much smaller than the previously widely cited value of 5 - 6 Gg yr-1(Mead et al., 2008), even taking into account the near tripling of annual global yield of rapeseed since the previous evaluation was conducted. Our study also evaluated the methyl chloride and methyl iodide emission levels from rapeseed, yielding emission rates that scale to 5.4 Gg yr-1 for methyl chloride and 1.8 Gg yr-1 of methyl iodide. The concentrations of the methyl donor SAM (S-adenosyl methionine) and the resultant product SAH (S-Adenosyl-L-homocysteine) were also analyzed to explore their role in biogenic methyl halide formation. Halide gradient incubations showed that the magnitude of methyl halide emissions from rapeseed is highly correlated to soil halide levels, thus raising the concern that the heterogeneity of soil halide contents geographically should be considered when extrapolating to global budget.

  9. Integrated production of cellulosic bioethanol and succinic acid from rapeseed straw after dilute-acid pretreatment

    DEFF Research Database (Denmark)

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Dąbkowska, Katarzyna

    2018-01-01

    in high glucose yield (80%) and ethanol output (122-125 kg of EtOH/Mg of rapeseed straw). Supplementation the enzymatic process with 10% dosage of endoxylanases (Cellic® HTec2) reduced the hydrolysis time required to achieve the maximum glucan conversion by 44-46% and increased the xylose yield by 10...

  10. Effects of Toasting Time on Digestive Hydrolysis of Soluble and Insoluble 00-Rapeseed Meal Proteins

    NARCIS (Netherlands)

    Salazar-Villanea, Sergio; Bruininx, Erik M.A.M.; Gruppen, Harry; Carré, Patrick; Quinsac, Alain; Poel, van der Thomas

    2017-01-01

    Thermal damage to proteins can reduce their nutritional value. The effects of toasting time on the kinetics of hydrolysis, the resulting molecular weight distribution of 00-rapeseed meal (RSM) and the soluble and insoluble protein fractions separated from the RSM were studied. Hydrolysis was

  11. Performance of winter-rapeseed lines with an improved fatty acid composition

    International Nuclear Information System (INIS)

    Kraeling, K.

    1990-01-01

    Full text: High levels of linoleic (C18:2) and low content of linolenic acid (C18:3) are desired traits for rapeseed. Induced mutants with an improved fatty acid composition derived from the spring-rapeseed variety Oro were crossed with a winter-rapeseed line exhibiting an increased C18:2 content and backcrossed two times with several high yielding cultivars of winter-rapeseed. After each cross the F 2 was screened by gaschromatography for the mutant-type. After the second backcross from each of 118 lines (BC 2 -F 3 ) an observation plot (9.4 m 2 ) was sown. Results show that through backcrossing it was possible to develop lines with a high proportion of C18:2 and a reduced level of C18:3, whereas C18:1 remained unchanged, demonstrating new combinations different from the usual positive correlation between C18:2 and C18:3. Yield increased continuously with decreasing portion of the mutant genome. Relatively low genotype x location interaction for fatty acids was found. (author)

  12. Methane production and digestion of different physical forms of rapeseed as fat supplements in dairy cows

    DEFF Research Database (Denmark)

    Brask, Maike; Lund, Peter; Weisbjerg, Martin Riis

    2013-01-01

    The purpose of this experiment was to study the effect of the physical form of rapeseed fat on methane (CH4) mitigation properties, feed digestion, and rumen fermentation. Four lactating ruminal-, duodenal-, and ileal-cannulated Danish Holstein dairy cows (143 d in milk, milk yield of 34.3 kg) were...

  13. Nutritional and histopathological studies on Black Cutworm Agrotis Ipsilon (HUFN.) fed on irradiated Canola and bean plants

    International Nuclear Information System (INIS)

    Rizk, S.A.; Mansour, W.; Abdel-Hamid, I.A.

    2006-01-01

    The black cutworm (fifth instar) were fed on leaves of canola and bean plants irradiated as seeds at the dose levels 10, 20 and 30 Gy. Their effects on food utilization, consumption, digestion and on the mid gut were detected. It was noticed that using irradiated bean and canola plants leads to decrease in values of consumption index and growth rate than control. Also, approximate digest ability (A.D), efficiency of conversion of digested food (E.C.D) and efficiency of conversion of ingested food (E.C.I) were also less than control in most treatments. A. ipsilon larvae fed on bean and canola plants gamma irradiated at the dose levels 10 and 30 Gy in both bean and canola plants, respectively, caused some histopathological changes such as separation of muscle layers, breakdown of epithelium with the appearance of some gaps as well as disintegration of epithelial cells and appearance of vacuoles

  14. The potential of using vegetable oil fuels as fuel for diesel engines

    International Nuclear Information System (INIS)

    Altin, Recep; Cetinkaya, Selim; Yucesu, Huseyin Serdar

    2001-01-01

    Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. The effects of vegetable oil fuels and their methyl esters (raw sunflower oil, raw cottonseed oil, raw soybean oil and their methyl esters, refined corn oil, distilled opium poppy oil and refined rapeseed oil) on a direct injected, four stroke, single cylinder diesel engine performance and exhaust emissions was investigated in this paper. The results show that from the performance viewpoint, both vegetable oils and their esters are promising alternatives as fuel for diesel engines. Because of their high viscosity, drying with time and thickening in cold conditions, vegetable oil fuels still have problems, such as flow, atomisation and heavy particulate emissions. (Author)

  15. The potential of using vegetable oil fuels as fuel for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Altin, Recep [Ministry of Education, Projects Coordination Unit, Ankara (Turkey); Cetinkaya, Selim [Gazi Univ., Technical Education Faculty, Ankara (Turkey); Yucesu, Huseyin Serdar [Karaelmas Univ., Technical Education Faculty, Karabuk (Turkey)

    2001-03-01

    Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. The effects of vegetable oil fuels and their methyl esters (raw sunflower oil, raw cottonseed oil, raw soybean oil and their methyl esters, refined corn oil, distilled opium poppy oil and refined rapeseed oil) on a direct injected, four stroke, single cylinder diesel engine performance and exhaust emissions was investigated in this paper. The results show that from the performance viewpoint, both vegetable oils and their esters are promising alternatives as fuel for diesel engines. Because of their high viscosity, drying with time and thickening in cold conditions, vegetable oil fuels still have problems, such as flow, atomisation and heavy particulate emissions. (Author)

  16. Molecular phylogenetic implications in Brassica napus based on ...

    Indian Academy of Sciences (India)

    Brassica napus L. (canola, rapeseed) is one of the most important oil crops in many countries (Abdelmigid 2012;. Fayyaz et al. 2014), and thought to have originated from a cross where the maternal donor was closely related to two diploid species, B. oleracea (CC, 2n = 18) and B. rapa (AA, 2n = 20). Here, molecular ...

  17. 76 FR 16413 - Pesticide Products; Registration Applications

    Science.gov (United States)

    2011-03-23

    ..., lunaria, meadowfoam, milkweed, mustard seed, oil radish, poppy seed, rapeseed (canola), sesame, and sweet... treatment on alfalfa, potato, and rice; seed treatment on alfalfa, barley, dry bean and peas (crop subgroup 6C), potato, rice, soybeans, triticale, and wheat; and nursery seed and seedlings of conifers and...

  18. Effects of Super-Absorbent Polymer Application on Yield and Yield Components of Rapeseed (Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Fariborz SHEKARI

    2015-09-01

    Full Text Available Limitation of water resources and its great impact on agricultural and natural resources play a crucial role in the efficiency of water use. Applying super absorbent polymer to the soil may be one of the methods to minimize the stress of weather dryness in arid and semi-arid regions. In order to evaluate the effects of hydrophilic polymer application on yield and water use efficiency of rapeseed plants, an experiment was conducted under field condition in 2012 at the Research Farm of the Faculty of Agriculture, University of Maragheh. Treatments’ factors were: (i 3 super absorbent polymers (SAP (Taravat A200 levels of 0 (without application, 75 and 150 kg ha-1 A200 application, (ii three irrigation levels of 80, 120 and 180 mm evaporation from class A basin in main plots, (iii two cultivars ʻHyola 401ʼ and ʻRVSʼ in sub plots as factorial split plot combination based on completely randomized block design with three replications. The results showed that in all of the measured traits within the experiment there were significant differences between SAP levels. Furthermore, increasing irrigation interval led to an increase in a thousand seeds’ weight, but decreased seed yield. Increasing water stress raised seed oil percent and infertile silique and subsequently resulted in reduced oil yield. ʻHyola 401ʼ was more susceptible to embryo abortion compared with ʻRVSʼ. As a conclusion of the research, SAP (A200 application in quantities smaller than 75 kg ha-1 may be recommended for rapeseed production under field condition.

  19. Endogenous Phenolics in Hulls and Cotyledons of Mustard and Canola: A Comparative Study on Its Sinapates and Antioxidant Capacity

    OpenAIRE

    Mayengbam, Shyamchand; Aachary, Ayyappan; Thiyam-Holländer, Usha

    2014-01-01

    Endogenous sinapic acid (SA), sinapine (SP), sinapoyl glucose (SG) and canolol (CAN) of canola and mustard seeds are the potent antioxidants in various lipid-containing systems. The study investigated these phenolic antioxidants using different fractions of canola and mustard seeds. Phenolic compounds were extracted from whole seeds and their fractions: hulls and cotyledons, using 70% methanol by the ultrasonication method and quantified using HPLC-DAD. The major phenolics from both hulls and...

  20. Effects of electron beam irradiation on chemical composition, antinutritional factors, ruminal degradation and in vitro protein digestibility of canola meal

    International Nuclear Information System (INIS)

    Taghinejad-Roudbaneh, M.; Ebrahimi, S.R.; Azizi, S.; Shawrang, P.

    2010-01-01

    The aim of the present study was to determine the impact of electron beam (EB) irradiation at doses of 15, 30 and 45 kGy on the nutritional value of canola meal. The phytic acid and total glucosinolate content of EB-irradiated canola meal decreased as irradiation doses increased (P<0.01). From in situ results, irradiation of canola meal at doses of 45 kGy decreased (P<0.05) the effective degradibility of crude protein (CP) by 14%, compared with an untreated sample. In vitro CP digestibility of EB-irradiated canola meal at doses of 15 and 30 kGy was improved (P<0.05). Electrophoresis results showed that napin and cruciferin sub-units of 30 and 45 kGy EB-irradiated canola meal were more resistant to degradation, compared with an untreated sample. Electron beam irradiation was effective in protecting CP from ruminal degradation and reducing antinutritional factors of irradiated canola meal.

  1. Effects of electron beam irradiation on chemical composition, antinutritional factors, ruminal degradation and in vitro protein digestibility of canola meal

    Energy Technology Data Exchange (ETDEWEB)

    Taghinejad-Roudbaneh, M., E-mail: mtaghinejad@iaut.ac.i [Department of Animal Science, Faculty of Agriculture, Islamic Azad University, Tabriz Branch, P.O. Box 51589, Tabriz (Iran, Islamic Republic of); Ebrahimi, S.R. [Department of Animal Science, Faculty of Agriculture, Shahr-e-Qods Branch, Islamic Azad University, P.O. Box 37515-374, Shahr-e-Qods (Iran, Islamic Republic of); Azizi, S. [Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia University, P.O. Box 57155-1177, Urmia (Iran, Islamic Republic of); Shawrang, P. [Nuclear Science and Technology Research Institute, Agricultural, Medical and Industrial Research School, Atomic Energy Organization of Iran, P.O. Box 31485-498, Karaj (Iran, Islamic Republic of)

    2010-12-15

    The aim of the present study was to determine the impact of electron beam (EB) irradiation at doses of 15, 30 and 45 kGy on the nutritional value of canola meal. The phytic acid and total glucosinolate content of EB-irradiated canola meal decreased as irradiation doses increased (P<0.01). From in situ results, irradiation of canola meal at doses of 45 kGy decreased (P<0.05) the effective degradibility of crude protein (CP) by 14%, compared with an untreated sample. In vitro CP digestibility of EB-irradiated canola meal at doses of 15 and 30 kGy was improved (P<0.05). Electrophoresis results showed that napin and cruciferin sub-units of 30 and 45 kGy EB-irradiated canola meal were more resistant to degradation, compared with an untreated sample. Electron beam irradiation was effective in protecting CP from ruminal degradation and reducing antinutritional factors of irradiated canola meal.

  2. Effect of cottonseed and canola seed on unsaturated fatty acid ...

    African Journals Online (AJOL)

    student

    biohydrogenation in the rumen and showed that the type of dietary fat has a marked impact on lipid ... Keywords: Extruded oil seed, fatty acid, lamb plasma, liver, Mehraban lambs ..... Effects of diets low in fat or essential fatty acids on the fatty ... Review: Erythrocyte membrane: structure, function, and pathophysiology. Vet.

  3. Polyurethane foams based entirely on recycled polyols derived from natural oils

    Czech Academy of Sciences Publication Activity Database

    Horák, Pavel; Beneš, Hynek

    2015-01-01

    Roč. 60, č. 9 (2015), s. 579-585 ISSN 0032-2725 R&D Projects: GA MPO(CZ) FR-TI4/133 Institutional support: RVO:61389013 Keywords : polyurethane foam * recycled polyol * rapeseed oil Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.718, year: 2015

  4. The life cycle emission of greenhouse gases associated with plant oils used as biofuel

    NARCIS (Netherlands)

    Reijnders, L.

    2011-01-01

    Life cycle assessment of greenhouse gas emissions associated with biofuels should not only consider fossil fuel inputs, but also N2O emissions and changes in carbon stocks of (agro) ecosystems linked to the cultivation of biofuel crops. When this is done, current plant oils such as European rapeseed

  5. Effect of gamma radiation on biochemical components in rapeseed

    International Nuclear Information System (INIS)

    El-Khawas, K.H.A.

    1988-01-01

    The aim of this work was to study possibility of using safe doses of gamma rays (up to 10 KGy), dry heat treatments (roasting), humid heat treatments (autoclaving) as well as various soaking treatments to inactivate or minimize the antiqualities factors of rape seed (glucosinolate compounds and myrosinase enzyme) and detect the effects of these treatments on chemical composition of oil and residual meal Attention was focused on the effect of these treatments on the chemical composition, fatty acids constituents and unsaponifiable matter components of rape seed oil. Besides, the changes occurred in the chemical composition, total glucosinolate compounds and myrosinase activity of residual meal of rape seed were also studied

  6. Phenotypic and molecular evaluation of genetic diversity of rapeseed

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... seed yield per plant, 1000-seed weight, oil content and protein content) were analyzed in a three-year ... regard to many characters of value for breeding process. (Cowling ..... tances determined by molecular markers and heterosis ..... Comparative analysis of cultivated melon groups (Cucumis melo L.).

  7. Degradabilidade ruminal da matéria seca e proteína bruta, e tempo de colonização microbiana de oleaginosas, utilizadas na alimentação de ovinos - doi: 10.4025/actascianimsci.v33i4.11388 Ruminal degradability of dry matter and crude protein, and microbial colonization time of oil grains in sheep feeding - doi: 10.4025/actascianimsci.v33i4.11388

    Directory of Open Access Journals (Sweden)

    Euclides Reuter de Oliveira

    2011-09-01

    Full Text Available Avaliou-se a degradabilidade in situ, dos grãos de linhaça, canola, colza e milho, caroço de algodão, e dos concentrados casca e farelo de soja, em ovinos. Foram utilizados três animais da raça Santa Inês, fistulados e providos de cânulas ruminais, mantidos em baias individuais, recebendo diariamente capim picado e ração concentrada. Os alimentos foram incubados em ordem decrescente de 72, 48, 24, 18, 6, 3 e 0h. O teor de proteína dos alimentos avaliados foram 34,77; 30,07; 23,70; 10,64; 26,12; 14,65 e 56,90% para canola, colza, linhaça, milho, caroço de algodão, casca de soja e farelo de soja, respectivamente. A canola e a colza apresentaram baixa degradabilidade efetiva para a MS, com valor médio de 33,68%. O grão de linhaça apresentou degradabilidade efetiva para a MS de 64,24%, com fração potencialmente degradável de 87,89%. O milho apresentou fração solúvel de 12,33% e uma degradação de 39,67% para a MS. O farelo de soja apresentou-se dentro dos parâmetros normais de degradação com 52,61% para a MS e 52,83% para PB. Para a linhaça, canola e colza a degradabilidade da proteína apresentou valor médio de 18,34%. Os grãos de avaliados apresentaram baixa degradabilidade efetiva para a matéria seca e proteína bruta.This study evaluated in situ ruminal degradability of grains of linseed, canola, rapeseed and corn, whole cottonseed, as well as soybean hulls and soybean meal, in sheep. Three Santa Inês sheep were fistulated and fitted with rumen cannulas. The animals were housed in individual stalls, receiving chopped grass and concentrated feed daily. Feeds were incubated in descending order of 72, 48, 24, 18, 6, 3 and 0h. Protein content was 34.77% for canola, 30.07% for rapeseed, 23.70% for linseed, 10.64% for corn, 26.12% for cottonseed, 14.65% for soybean hulls, and 56.90% for soybean meal. Canola and rapeseed showed low effective degradability of DM, with mean value of 33.68%. Linseed grain had DM

  8. Determination of critical pH and Al concentration of acidic Ultisols for wheat and canola crops

    Science.gov (United States)

    Abdulaha-Al Baquy, M.; Li, Jiu-Yu; Xu, Chen-Yang; Mehmood, Khalid; Xu, Ren-Kou

    2017-02-01

    Soil acidity has become a principal constraint in dry land crop production systems of acidic Ultisols in tropical and subtropical regions of southern China, where winter wheat and canola are cultivated as important rotational crops. There is little information on the determination of critical soil pH as well as aluminium (Al) concentration for wheat and canola crops. The objective of this study is to determine the critical soil pH and exchangeable aluminium concentration (AlKCl) for wheat and canola production. Two pot cultures with two Ultisols from Hunan and Anhui (SE China) were conducted for wheat and canola crops in a controlled growth chamber. Aluminium sulfate (Al2(SO4)3) and hydrated lime (Ca(OH)2) were used to obtain the target soil pH levels from 3.7 (Hunan) and 3.97 (Anhui) to 6.5. Plant height, shoot dry weight, root dry weight, and chlorophyll content (SPAD value) of wheat and canola were adversely affected by soil acidity in both locations. The critical soil pH and AlKCl of the Ultisol from Hunan for wheat were 5.29 and 0.56 cmol kg-1, respectively. At Anhui, the threshold soil pH and AlKCl for wheat were 4.66 and 1.72 cmol kg-1, respectively. On the other hand, the critical soil pH for canola was 5.65 and 4.87 for the Ultisols from Hunan and Anhui, respectively. The critical soil exchangeable Al for canola cannot be determined from the experiment of this study. The results suggested that the critical soil pH and AlKCl varied between different locations for the same variety of crop, due to the different soil types and their other soil chemical properties. The critical soil pH for canola was higher than that for wheat for both Ultisols, and thus canola was more sensitive to soil acidity. Therefore, we recommend that liming should be undertaken to increase soil pH if it falls below these critical soil pH levels for wheat and canola production.

  9. Effect of endogenous reference genes on digital PCR assessment of genetically engineered canola events

    Directory of Open Access Journals (Sweden)

    Tigst Demeke

    2018-05-01

    Full Text Available Droplet digital PCR (ddPCR has been used for absolute quantification of genetically engineered (GE events. Absolute quantification of GE events by duplex ddPCR requires the use of appropriate primers and probes for target and reference gene sequences in order to accurately determine the amount of GE materials. Single copy reference genes are generally preferred for absolute quantification of GE events by ddPCR. Study has not been conducted on a comparison of reference genes for absolute quantification of GE canola events by ddPCR. The suitability of four endogenous reference sequences (HMG-I/Y, FatA(A, CruA and Ccf for absolute quantification of GE canola events by ddPCR was investigated. The effect of DNA extraction methods and DNA quality on the assessment of reference gene copy numbers was also investigated. ddPCR results were affected by the use of single vs. two copy reference genes. The single copy, FatA(A, reference gene was found to be stable and suitable for absolute quantification of GE canola events by ddPCR. For the copy numbers measured, the HMG-I/Y reference gene was less consistent than FatA(A reference gene. The expected ddPCR values were underestimated when CruA and Ccf (two copy endogenous Cruciferin sequences were used because of high number of copies. It is important to make an adjustment if two copy reference genes are used for ddPCR in order to obtain accurate results. On the other hand, real-time quantitative PCR results were not affected by the use of single vs. two copy reference genes. Keywords: Canola, Digital PCR, DNA extraction, GMO, Reference genes

  10. Effect of Replacement of Marine Ingredients with Vegetable Oil and Protein on Oxidative Changes during Ice Storage of Rainbow Trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Eymard, Sylvie; Timm Heinrich, Maike

    Recently, fish meal and fish oil have increasingly been replaced with proteins and oils from vegetable sources in the diets of farmed salmonids, but the consequences for the oxidative stability of the resulting fish products have only been investigated to a limited extent. This presentation...... will discuss results from two recent studies from our laboratory on this topic. In the first study, rainbow trout were fed six different diets, which differed in the ratio between marine oil and proteins vs. vegetable oil and protein. Rapeseed oil was used as the oil source and the vegetable proteins were...... a mix based on pea, wheat, sunflower and beans. In the second study, one group of rainbow trout was fed a traditional diet based on fish meal and fish oil, whereas the other five groups were fed diets in which 40 % of the fish meal was replaced with plant proteins from peas, horse bean and rapeseed...

  11. Synthesis and application of polyaminoamide as new paraffin inhibitor from vegetable oil

    OpenAIRE

    Chen, Gang; Tang, Ying; Zhang, Jie

    2011-01-01

    Abstract In this work, a series of novel paraffin inhibitor, polyaminoamide (PAA), was designed and prepared by aminolysis and poly-condensation using soybean oil and canola oil as the raw material. The property of the PAAs as paraffin inhibitor was investigated, the results show several PAA samples are potent in paraffin inhibition, and PPC-2 is the most effective one. Besides, the paraffin crystal morphology analysis was carried out to provide the mechanism of paraffin inhibition.

  12. Research of qualitative indicators of safflower oil

    Directory of Open Access Journals (Sweden)

    Ye. Z. Mateyev

    2017-01-01

    Full Text Available Fatty acid composition of vegetable oils is the fundamental quality characteristics. To determine the fatty acid composition, the SP-2560 column and Chromotec 5000.1 gas chromatograph were used. As a result of the studies it was established that fatty acids of 18 and 16 groups prevail in safflower oil, the content of the remaining fatty acids in the total is 1.2%. In the test sample, the prevalence of omega-6 fatty acids (concentration of 80% of linoleic and ?-linolenic fatty acids is observed. Omega-6 fatty acids help the body burn excess fat, instead of postponing it for future use. Natural fatty acids are the bricks of human prostaglandins, mountain-monopodic substances that help normalize blood pressure, control muscle contractions and participate in the immune response of the body. The qualitative characteristics of vegetable oil are also physicochemical indicators. The acid number of safflower oil was 1.07 mgKOH/g, the peroxide number was 8.09 mmol/kgO2, the anisidine number of safflower oil was 3.25. Moisture of rapeseed oil is 0.03%. Safflower oil can be used as a biofuel, the lowest heat of its combustion is 36.978 MJ/kg; density – 913 kg/m3; kinematic viscosity 85.6 mm2/s. In comparison with rapeseed oil, the specific effective fuel consumption is reduced by 2.08%. The obtained fatty acid content of the analyzed sample of safflower oil is well correlated with the literature data, which indicates the high accuracy of the studies, the sample does not belong to the high oleic vegetable oils. The obtained values for qualitative characteristics indicate the prospects of using this type of oil directly in food, as well as for the production of oilseeds, such as mayonnaise, sauces, spreads.

  13. Genome-wide Association Study Identifies New Loci for Resistance to Leptosphaeria maculans in Canola

    Directory of Open Access Journals (Sweden)

    Harsh Raman

    2016-10-01

    Full Text Available Blackleg, caused by Leptosphaeria maculans, is a significant disease which affects the sustainable production of canola. This study reports a genome-wide association study based on 18,804 polymorphic SNPs to identify loci associated with qualitative and quantitative resistance to L. maculans. Genomic regions delimited with 503 significant SNP markers, that are associated with resistance evaluated using 12 single spore isolates and pathotypes from four canola stubble were identified. Several significant associations were detected at known disease resistance loci including in the vicinity of recently cloned Rlm2/LepR3 genes, and at new loci on chromosomes A01/C01, A02/C02, A03/C03, A05/C05, A06, A08, and A09. In addition, we validated statistically significant associations on A01, A07 and A10 in four genetic mapping populations, demonstrating that GWAS marker loci are indeed associated with resistance to L. maculans. One of the novel loci identified for the first time, Rlm12, conveys adult plant resistance and mapped within 13.2 kb from Arabidopsis R gene of TIR-NBS class. We showed that resistance loci are located in the vicinity of R genes of A. thaliana and B. napus on the sequenced genome of B. napus cv. Darmor-bzh. Significantly associated SNP markers provide a valuable tool to enrich germplasm for favorable alleles in order to improve the level of resistance to L. maculans in canola.

  14. Effects of feeding high protein or conventional canola meal on dry cured and conventionally cured bacon.

    Science.gov (United States)

    Little, K L; Bohrer, B M; Stein, H H; Boler, D D

    2015-05-01

    Objectives were to compare belly, bacon processing, bacon slice, and sensory characteristics from pigs fed high protein canola meal (CM-HP) or conventional canola meal (CM-CV). Soybean meal was replaced with 0 (control), 33, 66, or 100% of both types of canola meal. Left side bellies from 70 carcasses were randomly assigned to conventional or dry cure treatment and matching right side bellies were assigned the opposite treatment. Secondary objectives were to test the existence of bilateral symmetry on fresh belly characteristics and fatty acid profiles of right and left side bellies originating from the same carcass. Bellies from pigs fed CM-HP were slightly lighter and thinner than bellies from pigs fed CM-CV, yet bacon processing, bacon slice, and sensory characteristics were unaffected by dietary treatment and did not differ from the control. Furthermore, testing the existence of bilateral symmetry on fresh belly characteristics revealed that bellies originating from the right side of the carcasses were slightly (P≤0.05) wider, thicker, heavier and firmer than bellies from the left side of the carcass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Sensitivity of Canola Seeds Associated Fungi to Gamma Rays During Storage

    International Nuclear Information System (INIS)

    Botros, H.W.

    2011-01-01

    The present study was carried out to investigate the possibility of using the gamma radiation to elongate the storage periods of canola seeds (Brassica naps L.). In this respect, canola seeds were irradiated at doses of 0.5, 1.5, 2.5, 3.5, 5.0 and 7.5 kGy gamma rays and stored at room temperature for periods 0, 3, 6, 9 and 12 months. The isolated fungi from non-irradiated post-harvest canola seeds included different species identified as Aspergillus flavus, A. niger, A. condidus, A. fumigatus, A. ochraceus, A. parasiticus, Fusarium oxysporium, F. moniliforme, Penicillium expansum, P. crysogenum, Alternaria brassicae, A. raphani and Trichoderma spp. It was noticed that the predominant species were A. ochraceus, A. flavus, A. niger and F. oxysporium at percentages 16.18, 14.73, 11.00 and 10.53%, respectively. The effective gamma irradiation on the predominant fungi (the sub-lethal dose) was 3.5 kGy for A. ochraceus and 5.0 kGy for F. oxysporium and F. moniliforme. Increasing the irradiated dose up to 7.5 kGy decreased significantly the growth of most isolated fungi. The data also showed that there was a decrease in the total fungal count in stored seeds under the effect of gamma rays for 12 months storage. Also, mycotoxins at the stored seeds were not detected after 12 months storage

  16. Identification of Dietetically Absorbed Rapeseed (Brassica campestris L. Bee Pollen MicroRNAs in Serum of Mice

    Directory of Open Access Journals (Sweden)

    Xuan Chen

    2016-01-01

    Full Text Available MicroRNAs (miRNAs are a class of small noncoding RNA that, through mediating posttranscriptional gene regulation, play a critical role in nearly all biological processes. Over the last decade it has become apparent that plant miRNAs may serve as a novel functional component of food with therapeutic effects including anti-influenza and antitumor. Rapeseed bee pollen has good properties in enhancing immune function as well as preventing and treating disease. In this study, we identified the exogenous miRNAs from rapeseed bee pollen in mice blood using RNA-seq technology. We found that miR-166a was the most highly enriched exogenous plant miRNAs in the blood of mice fed with rapeseed bee pollen, followed by miR-159. Subsequently, RT-qPCR results confirmed that these two miRNAs also can be detected in rapeseed bee pollen. Our results suggested that food-derived exogenous miRNAs from rapeseed bee pollen could be absorbed in mice and the abundance of exogenous miRNAs in mouse blood is dependent on their original levels in the rapeseed bee pollen.

  17. Direct bio-utilization of untreated rapeseed meal for effective iturin A production by Bacillus subtilis in submerged fermentation.

    Directory of Open Access Journals (Sweden)

    Hu Jin

    Full Text Available The feasibility of using untreated rapeseed meal as a nitrogen source for iturin A production by Bacillus subtilis 3-10 in submerged fermentation was first evaluated by comparison with two different commercial nitrogen sources of peptone and ammonium nitrate. A significant promoting effect of rapeseed meal on iturin A production was observed and the maximum iturin A concentration of 0.60 g/L was reached at 70 h, which was 20% and 8.0 fold higher than that produced from peptone and ammonium nitrate media, respectively. It was shown that rapeseed meal had a positive induction effect on protease secretion, contributing to the release of soluble protein from low water solubility solid rapeseed meal for an effective supply of available nitrogen during fermentation. Moreover, compared to raw rapeseed meal, the remaining residue following fermentation could be used as a more suitable supplementary protein source for animal feed because of the great decrease of major anti-nutritional components including sinapine, glucosinolate and its degradation products of isothiocyanate and oxazolidine thione. The results obtained from this study demonstrate the potential of direct utilization of low cost rapeseed meal as a nitrogen source for commercial production of iturin A and other secondary metabolites by Bacillus subtilis.

  18. Effects of diet energy concentration and an exogenous carbohydrase on growth performance of weanling pigs fed diets containing canola meal produced from high protein or conventional canola seeds

    DEFF Research Database (Denmark)

    Pedersen, Trine Friis; Liu, Yanhong; Stein, Hans H.

    2016-01-01

    The objectives were to determine effects of diet NE and an exogenous carbohydrase on growth performance and physiological parameters of weanling pigs fed a corn-soybean meal (SBM) diet or diets containing high protein canola meal (CM-HP) or conventional canola meal (CM-CV). A total of 492 pigs...... (initial BW: 9.15 ± 0.06 kg) were used in a randomized complete block design with 12 dietary treatments and 9 pens per treatment. A control diet based on corn and SBM and 4 diets containing 20% or 30% CM-HP or 20% or 30% CM-CV were formulated to a similar NE by adjusting inclusion of choice white grease....... Four additional diets also contained 20% or 30% CM-HP or 20% or 30% CM-CV, but no additional choice white grease, and NE in these diets, therefore, was less than in the control diet. The control diet and the diets containing 30% CM-HP or CM-CV without increased choice white grease were also formulated...

  19. Variations in fatty acid composition, glucosinolate profile and some phytochemical contents in selected oil seed rape (Brassica napus L.) cultivars

    OpenAIRE

    Amin Mohamed, Amal; El-Din Saad El-Beltagi, Hossam

    2010-01-01

    Rapeseed (Brassica napus L.) is now the third most important source of edible oil in the world after soybean and palm oil. In this study seeds of five different rapeseed cultivars namely; pactol, silvo, topas, serw 4 and serw 6 were evaluated for their fatty acid composition, glucosinolate profile, amino acids, total tocopherols and phenolic content. Among all cultivars significant variability in fatty acids were observed. The oleic acid (C18:1) ranged from 56.31% to 58.67%, linoleic acid (C1...

  20. The economic and environmental cost of delayed GM crop adoption: The case of Australia's GM canola moratorium.

    Science.gov (United States)

    Biden, Scott; Smyth, Stuart J; Hudson, David

    2018-01-02

    Incorporating socio-economic considerations (SECs) into national biosafety regulations regarding genetically modified (GM) crops have opportunity costs. Australia approved the cultivation of GM canola through a science-based risk assessment in 2003, but allowed state moratoria to be instituted based on potential trade impacts over the period 2004 to 2008 and 2010 in the main canola growing states. This analysis constructs a counterfactual assessment using Canadian GM canola adoption data to create an S-Curve of adoption in Australia to measure the environmental and economic opportunity costs of Australia's SEC-based moratoria between 2004 and 2014. The environmental impacts are measured through the amount of chemical active ingredients applied during pest management, the Environmental Impact Quotient indicator, and greenhouse gas emissions. The economic impacts are measured through the variable costs of the weed control programs, yield and the contribution margin. The environmental opportunity costs from delaying the adoption of GM canola in Australia include an additional 6.5 million kilograms of active ingredients applied to canola land; a 14.3% increase in environmental impact to farmers, consumers and the ecology; 8.7 million litres of diesel fuel burned; and an additional 24.2 million kilograms of greenhouse gas (GHG) and compound emissions released. The economic opportunity costs of the SEC-based moratoria resulted in foregone output of 1.1 million metric tonnes of canola and a net economic loss to canola farmers' of AU$485.6 million. The paper provides some of the first quantified, post-adoption evidence on the opportunity cost and environmental impacts of incorporating SECs into GM crop regulation.

  1. Present state of breeding of oil crops. Stand der Zuechtung von Oelpflanzen

    Energy Technology Data Exchange (ETDEWEB)

    Friedt, W. (Giessen Univ. (Germany). Inst. fuer Pflanzenbau und Pflanzenzuechtung)

    1992-04-01

    Different oil crops are characterized by specific fatty acid patterns. For example, rapeseed (Brassica napus) is naturally rich in erucic acid (C22:1), traditional genotypes of sunflower (Helianthus annuus L.) contain high levels of linoleic acid (C18:2) in their seed oil, and linseed (oilflax, Linum usitatissimum L.) oil is normally rich in linolenic acid (C18:3). Extreme modifications of these ''natural'' fatty acid patterns are possible by breeding. Impressive examples are, (1) the elimination of erucic acid from rapeseed oil, which made it possible to use this vegetable oil for human consumption, (2) the development of sunflower cultivars with high oleic acid, and (3) the selection of linseed mutants with extremely low linolenic acid contents. However, the yield potential of these ''alternative'' genotypes is usually lower than that of those which are predominantly used for oil production: i.e., ''normal'' (high-linolenic) linseed, ''normal'' (high-linoleic) sunflower, and ''0/00'' (low-erucic and low-glucosinolate) rapeseed cultivars. Even in these cases, the yield potential of modern varieties is not completely exhaused. Further improvements of plant production systems can help to improve both, the economical yield and the ecological acceptability of agricultural production of vegetable oils. (orig.)

  2. Product sampling during transient continuous countercurrent hydrolysis of canola oil and development of a kinetic model

    KAUST Repository

    Wang, Weicheng; Natelson, Robert H.; Stikeleather, Larry F.; Roberts, William L.

    2013-01-01

    A chemical kinetic model has been developed for the transient stage of the continuous countercurrent hydrolysis of triglycerides to free fatty acids and glycerol. Departure functions and group contribution methods were applied to determine

  3. Simulating the influence of crop spatial patterns on canola yield

    DEFF Research Database (Denmark)

    Griepentrog, H.W.; Nielsen, J.; Olsen, Jannie Maj

    2011-01-01

    plant uniformity on the yield of oil seed rape. Voronoi polygons (tessellations) which define the area closer to an individual than to any other individual were used as a measure of the area available to each plant, and corrections were included for extreme polygon shape and eccentricity of the plant...... location within the polygon. These adjusted polygon areas were used to investigate the potential influence of two of the most important determinants of crop sowing spatial uniformity: row width and longitudinal spacing accuracy, on yield per unit area, and to ask how changes in seeding technology would...

  4. Complete genome sequence of the rapeseed plant-growth promoting Serratia plymuthica strain AS9

    Energy Technology Data Exchange (ETDEWEB)

    Neupane, Saraswoti [Uppsala University, Uppsala, Sweden; Hogberg, Nils [Uppsala University, Uppsala, Sweden; Alstrom, Sadhna [Uppsala University, Uppsala, Sweden; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Han, James [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Lu, Megan [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Fiebig, Anne [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Finlay, Roger D. [Uppsala University, Uppsala, Sweden

    2012-01-01

    Serratia plymuthica are plant-associated, plant beneficial species belonging to the family Enterobacteriaceae. The members of the genus Serratia are ubiquitous in nature and their life style varies from endophytic to free-living. S. plymuthica AS9 is of special interest for its ability to inhibit fungal pathogens of rapeseed and to promote plant growth. The genome of S. plymuthica AS9 comprises a 5,442,880 bp long circular chromosome that consists of 4,952 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome is part of the project entitled Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens awarded through the 2010 DOE-JGI Community Sequencing Program (CSP2010).

  5. Detection of olive oil adulteration by low-field NMR relaxometry and UV-Vis spectroscopy upon mixing olive oil with various edible oils

    Directory of Open Access Journals (Sweden)

    S. Ok

    2017-03-01

    Full Text Available Adulteration of olive oil using unhealthy substitutes is considered a threat for public health. Low-field (LF proton (1H nuclear magnetic resonance (NMR relaxometry and ultra-violet (UV visible spectroscopy are used to detect adulteration of olive oil. Three different olive oil with different oleoyl acyl contents were mixed with almond, castor, corn, and sesame oils with three volumetric ratios, respectively. In addition, Arbequina olive oil was mixed with canola, flax, grape seed, peanut, soybean, and sunflower seed oils with three volumetric ratios. Transverse magnetization relaxation time (T2 curves were fitted with bi-exponential decaying functions. T2 times of each mixture of olive oils and castor oils, and olive oils and corn oils changed systematically as a function of volumetric ratio. To detect the adulteration in the mixtures with almond and sesame oils, both LF 1H NMR relaxometry and UV-Vis spectroscopy were needed, where UV-Vis-spectroscopy detected the adulteration qualitatively. In the mixtures of Arbequina olive oil and flax, peanut, soybean, and sunflower seed oils, both T21 and T22 values became longer systematically as the content of the olive oil was decreased. The unique UV-Vis maximum absorbance of flax oil at 320.0 nm shows the adulteration of olive oil qualitatively.

  6. Detection of olive oil adulteration by low-field NMR relaxometry and UV-Vis spectroscopy upon mixing olive oil with various edible oils

    International Nuclear Information System (INIS)

    Ok, S.

    2017-01-01

    Adulteration of olive oil using unhealthy substitutes is considered a threat for public health. Low-field (LF) proton (1H) nuclear magnetic resonance (NMR) relaxometry and ultra-violet (UV) visible spectroscopy are used to detect adulteration of olive oil. Three different olive oil with different oleoyl acyl contents were mixed with almond, castor, corn, and sesame oils with three volumetric ratios, respectively. In addition, Arbequina olive oil was mixed with canola, flax, grape seed, peanut, soybean, and sunflower seed oils with three volumetric ratios. Transverse magnetization relaxation time (T2) curves were fitted with bi-exponential decaying functions. T2 times of each mixture of olive oils and castor oils, and olive oils and corn oils changed systematically as a function of volumetric ratio. To detect the adulteration in the mixtures with almond and sesame oils, both LF 1H NMR relaxometry and UV-Vis spectroscopy were needed, where UV-Vis-spectroscopy detected the adulteration qualitatively. In the mixtures of Arbequina olive oil and flax, peanut, soybean, and sunflower seed oils, both T21 and T22 values became longer systematically as the content of the olive oil was decreased. The unique UV-Vis maximum absorbance of flax oil at 320.0 nm shows the adulteration of olive oil qualitatively. [es

  7. COMPARATIVE ASSESSMENT OF NUCLEAR MAGNETIC RELAXATION CHARACTERISTICS OF SUNFLOWER AND RAPESEED LECITHIN

    OpenAIRE

    Lisovaya E. V.; Victorova E. P.; Agafonov O. S.; Kornen N. N.; Shahray T. A.

    2015-01-01

    The article presents a comparative assessment and peculiarities of nuclear magnetic relaxation characteristics of rapeseed and sunflower lecithin. It was established, that lecithin’s nuclear magnetic relaxation characteristics, namely, protons’ spin-spin relaxation time and amplitudes of nuclear magnetic relaxation signals of lecithin components, depend on content of oil’s fat acids and phospholipids, contained in the lecithin. Comparative assessment of protons’ spin-spin relaxation time of r...

  8. Heavy metal immobilization in soil near abandoned mines using eggshell waste and rapeseed residue.

    Science.gov (United States)

    Lee, Sang Soo; Lim, Jung Eun; El-Azeem, Samy A M Abd; Choi, Bongsu; Oh, Sang-Eun; Moon, Deok Hyun; Ok, Yong Sik

    2013-03-01

    Heavy metal contamination of agricultural soils has received great concern due to potential risk to human health. Cadmium and Pb are largely released from abandoned or closed mines in Korea, resulting in soil contamination. The objective of this study was to evaluate the effects of eggshell waste in combination with the conventional nitrogen, phosphorous, and potassium fertilizer (also known as NPK fertilizer) or the rapeseed residue on immobilization of Cd and Pb in the rice paddy soil. Cadmium and Pb extractabilities were tested using two methods of (1) the toxicity characteristics leaching procedure (TCLP) and (2) the 0.1 M HCl extraction. With 5 % eggshell addition, the values of soil pH were increased from 6.33 and 6.51 to 8.15 and 8.04 in combination with NPK fertilizer and rapeseed residue, respectively, compared to no eggshell addition. The increase in soil pH may contribute to heavy metal immobilization by altering heavy metals into more stable in soils. Concentrations of TCLP-extracted Cd and Pb were reduced by up to 67.9 and 93.2 % by addition of 5 % eggshell compared to control. For 0.1 M HCl extraction method, the concentration of 0.1 M HCl-Cd in soils treated with NPK fertilizer and rapeseed residue was significantly reduced by up to 34.01 and 46.1 %, respectively, with 5 % eggshell addition compared to control. A decrease in acid phosphatase activity and an increase in alkaline phosphatase activity at high soil pH were also observed. Combined application of eggshell waste and rapeseed residue can be cost-effective and beneficial way to remediate the soil contaminated with heavy metals.

  9. SWOT Analysis of Industrial Development of Double-low Rapeseed in Hubei Province

    OpenAIRE

    Xiong, Qiu-fang; Sun, Xiu-li

    2011-01-01

    Based on SWOT analysis method, this paper conducts analysis on the industrial development environment of double-low rapeseed in Hubei Province from the following four aspects, in order to crystallize its resources advantage and disadvantage and make it how the opportunities and challenges that it is faced by. First, advantage analysis: excellent geographic conditions, vigorous government support, powerful scientific research force, sound industrial system support; second, disadvantage analysi...

  10. Deodorization of lipase-interesterified butterfat and rapeseed oil blends in a pilot deodorizer

    DEFF Research Database (Denmark)

    Rønne, Torben Harald; Jacobsen, Charlotte; Xu, Xuebing

    2006-01-01

    by free fatty acid (FFA) content, peroxide value (PV), volatiles, and the sensory evaluation of the samples with respect to flavor and odor (most importantly the butter flavor and odor and the off-flavor and odor from butyric acid). ANOVA partial least squares regression analysis showed that deodorization...

  11. The effect of rapeseed oil methyl ester on direct injection Diesel engine performance and exhaust emissions

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys

    2006-01-01

    This article presents the comparative bench testing results of a four stroke, four cylinder, direct injection, unmodified, naturally aspirated Diesel engine when operating on neat RME and its 5%, 10%, 20% and 35% blends with Diesel fuel. The purpose of this research is to examine the effects of RME inclusion in Diesel fuel on the brake specific fuel consumption (bsfc) of a high speed Diesel engine, its brake thermal efficiency, emission composition changes and smoke opacity of the exhausts. The brake specific fuel consumption at maximum torque (273.5 g/kW h) and rated power (281 g/kW h) for RME is higher by 18.7% and 23.2% relative to Diesel fuel. It is difficult to determine the RME concentration in Diesel fuel that could be recognised as equally good for all loads and speeds. The maximum brake thermal efficiency varies from 0.356 to 0.398 for RME and from 0.373 to 0.383 for Diesel fuel. The highest fuel energy content based economy (9.36-9.61 MJ/kW h) is achieved during operation on blend B10, whereas the lowest ones belong to B35 and neat RME. The maximum NO x emissions increase proportionally with the mass percent of oxygen in the biofuel and engine speed, reaching the highest values at the speed of 2000 min -1 , the highest being 2132 ppm value for the B35 blend and 2107 ppm for RME. The carbon monoxide, CO, emissions and visible smoke emerging from the biodiesel over all load and speed ranges are lower by up to 51.6% and 13.5% to 60.3%, respectively. The carbon dioxide, CO 2 , emissions along with the fuel consumption and gas temperature, are slightly higher for the B20 and B35 blends and neat RME. The emissions of unburned hydrocarbons, HC, for all biofuels are low, ranging at 5-21 ppm levels

  12. Biocompounds from rapeseed oil industry co-stream as active ingredients for skin care applications

    OpenAIRE

    Rivera Rodríguez, Diana Marcela; Rommi, Katariina; Macedo Fernandes, Margarida Maria; Lantto, Raija; Tzanov, Tzanko

    2015-01-01

    OBJECTIVE: Despite the great number of substances produced by the skincare industry, very few of them seem to truly have an effect on the skin. Therefore, given the social implications surrounding physical appearance, the search for new bioactive compounds to prevent or attenuate skin ageing and enhance self-image is a priority of current research. In this context, being rich in valuable compounds, such as proteins, phenolics, lipids and vitamins, this study is focused on the potential activi...

  13. Genotoxic potential of organic extracts from particle emissions of diesel and rapeseed oil powered engines

    Czech Academy of Sciences Publication Activity Database

    Topinka, Jan; Milcová, Alena; Schmuczerová, Jana; Mazac, M.; Pechout, M.; Vojtíšek-Lom, M.

    2012-01-01

    Roč. 212, č. 1 (2012), s. 11-17 ISSN 0378-4274 R&D Projects: GA ČR GAP503/11/0142; GA ČR(CZ) GBP503/12/G147 Grant - others:project MEDETOX(XE) LIFE10ENV/CZ/651 Institutional research plan: CEZ:AV0Z50390703 Institutional support: RVO:68378041 Keywords : biodiesel * diesel emissions * DNA adducts Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.145, year: 2012

  14. Analysis of genetic diversity among rapeseed cultivars and breeding lines by srap and ssr molecular markers

    International Nuclear Information System (INIS)

    Channa, S.A.; Tian, H.

    2016-01-01

    The knowledge of genetic diversity is very important for developing new rapeseed (Brassica napus L.) cultivars. The genetic diversity among 77 rapeseed accessions, including 22 varieties and 55 advanced breeding lines were analyzed by 47 sequence-related amplified polymorphism (SRAP) and 56 simple sequence repeat (SSR) primers. A total of 270 SRAP and 194 SSR polymorphic fragments were detected with an average of 5.74 and 3.46 for SRAP and SSR primer, respectively. The cluster analysis grouped the 77 accessions into five major clusters. Cluster I contained spring and winter type varieties from Czech Republic and semi-winter varieties and their respective breeding lines from China. The 16 elite breeding lines discovered in Cluster II, III, IV and V indicated higher genetic distance than accessions in Cluster I. The principal component analysis and structure analysis exhibited similar results to the cluster analysis. Analysis of molecular variance revealed that genetic diversity of the selected breeding lines was comparable to the rapeseed varieties, and variation among varieties and lines was significant. The diverse and unique group of 16 elite breeding lines detected in this study can be utilized in the future breeding program as a source for development of commercial varieties with more desirable characters. (author)

  15. Evaluation of a model for predicting Avena fatua and Descurainia sophia seed emergence in winter rapeseed

    Energy Technology Data Exchange (ETDEWEB)

    Aboutalebian, M.A.; Nazari, S.; Gonzalez-Andujar, J.L.

    2017-07-01

    Avena fatua and Descurainia sophia are two important annual weeds throughout winter rapeseed (Brassica napus L.) production systems in the semiarid region of Iran. Timely and more accurate control of both species may be developed if there is a better understanding of its emergence patterns. Non-linear regression techniques are usually unable to accurately predict field emergence under such environmental conditions. The objectives of this research were to evaluate the emergence patterns of A. fatua and D. sophia and determine if emergence could be predicted using cumulative soil thermal time in degree days (CTT). In the present work, cumulative seedling emergence from a winter rapeseed field during 3 years data set was fitted to cumulative soil CTT using Weibull and Gompertz functions. The Weibull model provided a better fit, based on coefficient of determination (R2sqr), root mean square of error (RMSE) and Akaike index (AICd), compared to the Gompertz model between 2013 and 2016 seasons for both species. Maximum emergence of A. fatua occured 70-119 days after sowing or after equals 329-426 °Cd, while in D. sophia it occurred 119-134 days after sowing rapeseed equals 373-470 °Cd. Both models can aid in the future study of A. fatua and D. sophia emergence and assist growers and agricultural professionals with planning timely and more accurate A. fatua and D. sophia control.

  16. Selective separation and concentration of antihypertensive peptides from rapeseed protein hydrolysate by electrodialysis with ultrafiltration membranes.

    Science.gov (United States)

    He, Rong; Girgih, Abraham T; Rozoy, Elodie; Bazinet, Laurent; Ju, Xing-Rong; Aluko, Rotimi E

    2016-04-15

    Rapeseed protein isolate was subjected to alcalase digestion to obtain a protein hydrolysate that was separated into peptide fractions using electrodialysis with ultrafiltration membrane (EDUF) technology. The EDUF process (6h duration) led to isolation of three peptide fractions: anionic (recovered in KCl-1 compartment), cationic (recovered in KCl-2 compartment), and those that remained in the feed compartment, which was labeled final rapeseed protein hydrolysate (FRPH). As expected the KCl-1 peptides were enriched in negatively-charged (43.57%) while KCl-2 contained high contents of positively-charged (28.35%) amino acids. All the samples inhibited angiotensin converting enzyme (ACE) and renin activities in dose-dependent manner with original rapeseed protein hydrolysate having the least ACE-inhibitory IC50 value of 0.0932±0.0037 mg/mL while FRPH and KCl-2 had least renin-inhibitory IC50 values of 0.47±0.05 and 0.55±0.06 mg/mL, respectively. Six hours after oral administration (100 mg/kg body weight) to spontaneously hypertensive rats, the FRPH produced the maximum systolic blood pressure reduction of -51 mmHg. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effect of Application of Pseudomonas fluorescent Strains on Yield and Yield Components of Rapeseed Cultivars

    Directory of Open Access Journals (Sweden)

    R Najafi

    2015-09-01

    Full Text Available Plant growth promoting rhizobacteria has been identified as an alternative to chemical fertilizer to enhance plant growth and yield directly and indirectly. Use of rhizosphere free living bacteria is one of the methods for crop production and leads to improvement of resources absorption. In order to study of yield, yield components and radiation use efficiency, under application of PGPR condition, an experiment was carried out in 2008 growing season at Agriculture and natural resources research station of Mashhad. The cultivars selected from three rapeseed species belong to Brassica napus, Brassica rapa and Brassica juncea (landrace, BP.18، Goldrush، Parkland، Hyola330، Hyola401. Experimental factorial design was randomized in complete block with three replications. Treatments included six varieties of Rapeseed and inoculations were four levels as non–inoculation, inoculation with P. fluorescens169, P. putida108 and use then together. Results showed that strains of fluorescent pseudomonas bacteria had greatest effects on yield and yield components cultivars. A significant difference in the number of pods per plant and 1000 seed weight observed. The cultivars were different in all treats except 1000 seed weight. Overall results indicated that application of growth stimulating bacteria in combination with different cultivars, had a positive effect growth, yield characteristics of plant varieties of rapeseed plants.

  18. Effect of Rapeseed Meal on Nutrient Digestibility and Gut Morphology in Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Lidija Peric

    2015-05-01

    Full Text Available The study was carried out to determine the effect of rapeseed meal (RSM on nutrient digestibility and intestinal parameters of jejunum of 21 days old broiler chickens. Three groups of Ross 308 chickens were formed and fed with corn-soy based feed (control group or feed with inclusion of 10% or 15% of rapeseed meal (low glucosinolate and low eruca acid content. All mixtures were balanced to the same energy and crude protein level.  To determine digestibility, 20 male chickens per treatment were put into metabolic cages. Digestibility was determined by using the method of total collection. Digestibility of dry matter, organic matter, crude protein, fat and energy was determined. At 21 days of age, chickens were sacrificed to obtain samples for morphometric parameters of jejunum. On jejunal samples, villus height and area, crypt depth and villus to crypt ratio were measured as indicators of gut integrity. No significant differences (P>0.05 were observed in any measured digestibility or gut health parameter. Addition of up to 15% of rapeseed meal in well balanced diets of young broiler chicken does not have an adverse effect on both digestibility of nutrients and broiler gut health.

  19. Optimization of uncatalyzed steam explosion pretreatment of rapeseed straw for biofuel production.

    Science.gov (United States)

    López-Linares, Juan C; Ballesteros, Ignacio; Tourán, Josefina; Cara, Cristóbal; Castro, Eulogio; Ballesteros, Mercedes; Romero, Inmaculada

    2015-08-01

    Rapeseed straw constitutes an agricultural residue with great potential as feedstock for ethanol production. In this work, uncatalyzed steam explosion was carried out as a pretreatment to increase the enzymatic digestibility of rapeseed straw. Experimental statistical design and response surface methodology were used to evaluate the influence of the temperature (185-215°C) and the process time (2.5-7.5min). According to the rotatable central composite design applied, 215°C and 7.5min were confirmed to be the optimal conditions, considering the maximization of enzymatic hydrolysis yield as optimization criterion. These conditions led to a maximum yield of 72.3%, equivalent to 81% of potential glucose in pretreated solid. Different configurations for bioethanol production from steam exploded rapeseed straw were investigated using the pretreated solid obtained under optimal conditions as a substrate. As a relevant result, concentrations of ethanol as high as 43.6g/L (5.5% by volume) were obtained as a consequence of using 20% (w/v) solid loading, equivalent to 12.4g ethanol/100g biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Responses of broiler chicks to radiation processed full-fat rapeseed

    International Nuclear Information System (INIS)

    Farag, El-Din Diaa.M.; Abd El-Hakeim, N.F.; Ali, Y.

    1999-01-01

    Studies were undertaken to determine a safe inclusion for full-fat rapeseed processed through radiation treatment, as a step towards detoxification, in broiler chick's diet. Raw and processed full-fat seeds (10 and 20 KGy) were fed to arbor acres broiler chicks from 7 d of 49 d of age. Body weight of chicks fed the control diet were heaviest followed in order against those fed seed irradiated at 20 and 10 KGy weight depression relative to birds fed, over the experimental duration, of chicks fed diets containing raw and irradiated rapeseed at 10 and 20 KGy were-11.2, - 7.2 and - 0.14%, respectively. In general, the study indicates that processed seeds at 20 KGy fed to broilers resulted in body weights (7 wk) similar to the control birds. leg abnormalities were seen in birds fed raw and irradiated rapeseed at 10 and 20 KGy to be 31.1, 17.8 and 8.9%, respectively. Mortality rate of birds fed raw seeds was more pronounced than those fed the irradiated seeds. Birds fed raw seeds showed thyroid and liver enlargement. Processed seeds at 10 and 20 KGy reduced the effect on these organs. Feeding chicks irradiated seed at 10 and 20 KGy did not normalize the weight of thyroid and liver. Meanwhile, there is no significant difference in relative weight of gizzard, pancreas, heart and kidney of chicks fed control diet and those fed irradiated seeds

  1. Sustainability assessment of straight vegetable oil used as self-supply biofuel in agriculture

    OpenAIRE

    Baquero Armans, Grau; Esteban Dalmau, Bernat; Puig Vidal, Rita; Riba Ruiz, Jordi-Roger; Rius Carrasco, Antoni

    2011-01-01

    This work proposes and analyses a model for an agricultural fuel self-supply exploitation. The model is based on the current extended crop rotation of wheat and barley in Anoia region (Catalonia, Spain). The introduction of rapeseed to the current crop rotation and its conversion into oil to be used as agricultural fuel is presented. Life cycle assessment methodology is used to carry out an environmental and an economic assessment. Environmental results show a preference for the vegetable oil...

  2. Endogenous Phenolics in Hulls and Cotyledons of Mustard and Canola: A Comparative Study on Its Sinapates and Antioxidant Capacity

    Directory of Open Access Journals (Sweden)

    Shyamchand Mayengbam

    2014-08-01

    Full Text Available Endogenous sinapic acid (SA, sinapine (SP, sinapoyl glucose (SG and canolol (CAN of canola and mustard seeds are the potent antioxidants in various lipid-containing systems. The study investigated these phenolic antioxidants using different fractions of canola and mustard seeds. Phenolic compounds were extracted from whole seeds and their fractions: hulls and cotyledons, using 70% methanol by the ultrasonication method and quantified using HPLC-DAD. The major phenolics from both hulls and cotyledons extracts were SP, with small amounts of SG, and SA with a significant difference of phenolic contents between the two seed fractions. Cotyledons showed relatively high content of SP, SA, SG and total phenolics in comparison to hulls (p < 0.001. The concentration of SP in different fractions ranged from 1.15 ± 0.07 to 12.20 ± 1.16 mg/g and followed a decreasing trend- canola cotyledons > mustard cotyledons > mustard seeds > canola seeds > mustard hulls > canola hulls. UPLC-tandem Mass Spectrometry confirmed the presence of sinapates and its fragmentation in these extracts. Further, a high degree of correlation (r = 0.93 was noted between DPPH scavenging activity and total phenolic content.

  3. Effect of phytase supplementation to barley-canola meal and barley-soybean meal diets on phosphorus and calcium balance in growing pigs

    NARCIS (Netherlands)

    Sauer, W.C.; Cervantes, M.; He, J.M.M.; Schulze, H.

    2003-01-01

    Two metabolism experiments were carried out, to determine the effect of microbial phytase addition to barley-canola meal and barley-soybean meal diets on P and Ca balance in growing. pigs; In experiment 1, six barrows (29.6kg: initial LW) were fed a barley-canola meal diet, without or. with phytase

  4. Antioxidant Effect on Oxidation Stability of Blend Fish Oil Biodiesel with Vegetable Oil Biodiesel and Petroleum Diesel Fuel

    Directory of Open Access Journals (Sweden)

    M. Hossain

    2013-06-01

    Full Text Available Two different phenolic synthetic antioxidants were used to improve the oxidation stability of fish oil biodiesel blends with vegetable oil biodiesel and petroleum diesel. Butylhydroxytoluene (BHT most effective for improvement of the oxidation stability of petro diesel, whereas  tert-butylhydroquinone (TBHQ showed good performance in fish oil biodiesel. Fish oil/Rapeseed oil biodiesel mixed showed some acceptable results in higher concentration ofantioxidants. TBHQ showed better oxidation stability than BHT in B100 composition. In fish oil biodiesel/diesel mixed fuel, BHT was more effective antioxidant than TBHQ to increase oxidationstability because BHT is more soluble than TBHQ. The stability behavior of biodiesel/diesel blends with the employment of the modified Rancimat method (EN 15751. The performance ofantioxidants was evaluated for treating fish oil biodiesel/Rapeseed oil biodiesel for B100, and blends with two type diesel fuel (deep sulfurization diesel and automotive ultra-low sulfur or zero sulfur diesels. The examined blends were in proportions of 5, 10, 15, and 20% by volume of fish oilbiodiesel.

  5. Association mapping of flowering time QTLs and insight into their contributions to rapeseed growth habits

    Directory of Open Access Journals (Sweden)

    Nian eWang

    2016-03-01

    Full Text Available Plants have developed sophisticated systems to adapt to local conditions during evolution, domestication and natural or artificial selection. The selective pressures of these different growing conditions have caused significant genomic divergence within species. The flowering time trait is the most crucial factor because it helps plants to maintain sustainable development. Controlling flowering at appropriate times can also prevent plants from suffering from adverse growth conditions, such as drought, winter hardness, and disease. Hence, discovering the genome-wide genetic mechanisms that influence flowering time variations and understanding their contributions to adaptation should be a central goal of plant genetics and genomics. A global core collection panel with 448 inbred rapeseed lines was first planted in four independent environments, and their flowering time traits were evaluated. We then performed a genome-wide association mapping of flowering times with a 60 K SNP array for this core collection. With quality control and filtration, 20,342 SNP markers were ultimately used for further analyses. In total, 312 SNPs showed marker-trait associations in all four environments, and they were based on a threshold p value of 4.06x10-4; the 40 QTLs showed significant association with flowering time variations. To explore flowering time QTLs and genes related to growth habits in rapeseed, selection signals related to divergent habits were screened at the genome-wide level and 117 genomic regions were found. Comparing locations of flowering time QTLs and genes with these selection regions revealed that 20 flowering time QTLs and 224 flowering time genes overlapped with 24 and 81 selected regions, respectively. Based on this study, a number of marker-trait associations and candidate genes for flowering time variations in rapeseed were revealed. Moreover, we also showed that both flowering time QTLs and genes play important roles in rapeseed growth

  6. Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications.

    Science.gov (United States)

    Golovitchev, Valeri I; Yang, Junfeng

    2009-01-01

    Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C(5)H(10)O(2)) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C(7)H(16) and C(7)H(8)O (and then, by mp2d, C(4)H(6)O(2) and propyne, C(3)H(4)) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C(19)H(34)O(2) (or C(19)H(36)O(2)). The main fuel vapor thermal properties were taken as those of methyl palmitate C(19)H(36)O(2) in the NASA polynomial form of the Burcat database. The special global reaction was introduced to "crack" the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NO(x) formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions.

  7. NAPUS 2000 Rapeseed (Brassica napus breeding for improved human nutrition

    Directory of Open Access Journals (Sweden)

    Friedt Wolfgang

    2001-01-01

    Full Text Available Following a competition announcement of the Federal Ministry of Research and Education (BMBF a project dealing with the improvement of the nutritional value of oilseed rape (Brassica napus for food applications and human nutrition was worked out and started in autumn 1999. A number of partners (Figure 2 are carrying out a complex project reaching from the discovery, characterisation, isolation and transfer of genes of interest up to breeding of well performing varieties combined with important agronomic traits. Economic studies and processing trials as well as nutritional investigations of the new qualities are undertaken. B. napus seed quality aspects with respect to seed coat colour, oil composition, lecithin and protein fractions and antioxidants like tocopherols and resveratrol will be improved.

  8. Effect of fluorescent light on quality and stability of edible fats and oils

    International Nuclear Information System (INIS)

    Ahmed, T.; Atta, S.; Sohail, M.; Khan, A.R.; Akhter, S.

    2011-01-01

    Photo oxidative stress were applied to commonly consumed edible oil and fat i.e., animal fat (AF), vanaspati ghee (VG), sunflower oil (SFO), desi ghee (DG), rapeseed oil (RSO), soybean oil (SBO) as well as sea buckthorn seed oil (SB Seed oil) and sea buckthorn pulp oil (SB Pulp oil). The changes in their quality parameters i.e. free fatty acid (FFA), peroxide value (POV), beta-carotene and color (OD) were determined. Photo oxidative stress significantly (p < 0.05) increased the FFA, POV and OD, however, concentration of beta carotene decreased in all the samples with the increase in storage time. The Sea buckthorn oil was found to be more stable than other oils owing to the presence of tocopherol contents and beta-carotene. (author)

  9. Impact of planting dates and insecticide strategies for managing crucifer flea beetles (Coleoptera: Chrysomelidae) in spring-planted canola.

    Science.gov (United States)

    Knodel, Janet J; Olson, Denise L; Hanson, Bryan K; Henson, Robert A

    2008-06-01

    Integration of cultural practices, such as planting date with insecticide-based strategies, was investigated to determine best management strategy for flea beetles (Phyllotreta spp.) (Coleoptera: Chrysomelidae) in canola (Brassica napus L.). We studied the effect of two spring planting dates of B. napus and different insecticide-based management strategies on the feeding injury caused by fleabeetles in North Dakota during 2002-2003. Adult beetle peak emergence usually coincided with the emergence of the early planted canola, and this resulted in greater feeding injury in the early planted canola than later planted canola. Use of late-planted canola may have limited potential for cultural control of flea beetle, because late-planted canola is at risk for yield loss due to heat stress during flowering. Flea beetle injury ratings declined when 1) the high rate of insecticide seed treatment plus a foliar insecticide applied 21 d after planting was used, 2) the high rate of insecticide seed treatment only was used, or 3) two foliar insecticide sprays were applied. These insecticide strategies provided better protection than the low rates of insecticide seed treatments or a single foliar spray, especially in areas with moderate-to-high flea beetle populations. The foliar spray on top of the seed treatment controlled later-emerging flea beetles as the seed treatment residual was diminishing and the crop became vulnerable to feeding injury. The best insecticide strategy for management of flea beetle was the high rate of insecticide seed treatment plus a foliar insecticide applied at 21 d after planting, regardless of planting date.

  10. Effect of endogenous reference genes on digital PCR assessment of genetically engineered canola events.

    Science.gov (United States)

    Demeke, Tigst; Eng, Monika

    2018-05-01

    Droplet digital PCR (ddPCR) has been used for absolute quantification of genetically engineered (GE) events. Absolute quantification of GE events by duplex ddPCR requires the use of appropriate primers and probes for target and reference gene sequences in order to accurately determine the amount of GE materials. Single copy reference genes are generally preferred for absolute quantification of GE events by ddPCR. Study has not been conducted on a comparison of reference genes for absolute quantification of GE canola events by ddPCR. The suitability of four endogenous reference sequences ( HMG-I/Y , FatA(A), CruA and Ccf) for absolute quantification of GE canola events by ddPCR was investigated. The effect of DNA extraction methods and DNA quality on the assessment of reference gene copy numbers was also investigated. ddPCR results were affected by the use of single vs. two copy reference genes. The single copy, FatA(A), reference gene was found to be stable and suitable for absolute quantification of GE canola events by ddPCR. For the copy numbers measured, the HMG-I/Y reference gene was less consistent than FatA(A) reference gene. The expected ddPCR values were underestimated when CruA and Ccf (two copy endogenous Cruciferin sequences) were used because of high number of copies. It is important to make an adjustment if two copy reference genes are used for ddPCR in order to obtain accurate results. On the other hand, real-time quantitative PCR results were not affected by the use of single vs. two copy reference genes.

  11. Gamma irradiation on canola seeds affects herbivore-plant and host-parasitoid interactions

    International Nuclear Information System (INIS)

    Akandeh, M.; Kocheili, F.; Rasekh, A.; Soufbaf, M.

    2017-01-01

    As an agricultural modernization, gamma irradiation is an important method for enhancing crop yield and quality. Nevertheless, its use can alter other plant traits such as nutrition and resistance to different biotic/abiotic stresses that consequently affect plant-insect interactions. A tritrophic system was utilized based on two canola mutant lines produced through gamma irradiation (RGS 8-1 and Talaye 8-3). Plutella xylostella (L.), as a worldwide pest of Brassicaceae and Cotesia vestalis (Holiday) as a key biocontrol agent of P. xylostella were examined for the potential indirect effects of canola seed irradiation on the experimental insects' performance when acting on the respective mutant lines. This study showed that physical mutation did not affect plant nitrogen and herbivore-damaged total phenolics; however, phenolic compounds showed greater concentration in damaged leaves than undamaged leaves of both mutant and control plants. The relative growth rate and pupal weight of P. xylostella reared on RGS 8-1 were significantly higher than those reared on the control RGS. There was no significant difference by performance parameters of the parasitoid, C. vestalis, including total pre-oviposition period, adult longevity, adult fresh body weight of males and females, pupal weight, forewing area, and total longevity of both sexes on tested canola cultivars in comparison with their mutant lines. Life table parameters of C. vestalis on mutant lines of both cultivars, RGS and Talaye, were not significantly different from their control treatments. Comprehensive studies should be conducted to find out the mechanisms under which gamma rays affect plant-insect interactions. (author)

  12. Digestibilidade aparente de dietas com diferentes níveis de farelo de canola para cavalos

    Directory of Open Access Journals (Sweden)

    Oliveira Kátia de

    2001-01-01

    Full Text Available Foram utilizados quatro eqüinos, machos, com média de 3,5 anos e peso vivo entre 400-450 kg, distribuídos em um delineamento experimental em quadrado latino 4 x 4 (período x animal. Os níveis de inclusão do farelo de canola nas rações foram de 0,0; 2,5; 4,5 e 7,0%, substituindo, respectivamente, 0; 35; 65 e 100% da proteína bruta (PB do farelo de soja. As rações foram isoprotéicas (13% PB e isocalóricas (4250 kcal/kg. Utilizou-se o método de coleta total de fezes para determinação dos coeficientes de digestibilidade dos nutrientes. Não houve efeito entre os níveis de substituição da proteína bruta do farelo de soja pelo farelo de canola para nenhum dos nutrientes avaliados. Os valores médios obtidos para os coeficientes de digestibilidade aparente da matéria seca, energia bruta, proteína bruta, fibra em detergente neutro e fibra em detergente ácido foram, respectivamente, 64,04; 55,82; 62,89; 51,20 e 42,05%. Os concentrados para eqüinos podem ser formulados com substituição total da proteína bruta do farelo de soja pelo farelo de canola (nível de inclusão de 7%, sem afetar adversamente a digestibilidade dos nutrientes, tornando-se, assim, uma fonte protéica alternativa para as dietas desta espécie.

  13. Gamma irradiation on canola seeds affects herbivore-plant and host-parasitoid interactions

    Energy Technology Data Exchange (ETDEWEB)

    Akandeh, M.; Kocheili, F.; Rasekh, A. [Dept. of Entomology, Shahid Chamran Univ of Ahvaz (Iran, Islamic Republic of); Soufbaf, M., E-mail: msoufbaf@nrcam.org [Agricultural, Medical and Industrial Research School, Karaj (Iran, Islamic Republic of)

    2017-06-15

    As an agricultural modernization, gamma irradiation is an important method for enhancing crop yield and quality. Nevertheless, its use can alter other plant traits such as nutrition and resistance to different biotic/abiotic stresses that consequently affect plant-insect interactions. A tritrophic system was utilized based on two canola mutant lines produced through gamma irradiation (RGS 8-1 and Talaye 8-3). Plutella xylostella (L.), as a worldwide pest of Brassicaceae and Cotesia vestalis (Holiday) as a key biocontrol agent of P. xylostella were examined for the potential indirect effects of canola seed irradiation on the experimental insects' performance when acting on the respective mutant lines. This study showed that physical mutation did not affect plant nitrogen and herbivore-damaged total phenolics; however, phenolic compounds showed greater concentration in damaged leaves than undamaged leaves of both mutant and control plants. The relative growth rate and pupal weight of P. xylostella reared on RGS 8-1 were significantly higher than those reared on the control RGS. There was no significant difference by performance parameters of the parasitoid, C. vestalis, including total pre-oviposition period, adult longevity, adult fresh body weight of males and females, pupal weight, forewing area, and total longevity of both sexes on tested canola cultivars in comparison with their mutant lines. Life table parameters of C. vestalis on mutant lines of both cultivars, RGS and Talaye, were not significantly different from their control treatments. Comprehensive studies should be conducted to find out the mechanisms under which gamma rays affect plant-insect interactions. (author)

  14. Standardized ileal digestibility of amino acids in European soya bean and rapeseed products fed to growing pigs.

    Science.gov (United States)

    Kaewtapee, C; Mosenthin, R; Nenning, S; Wiltafsky, M; Schäffler, M; Eklund, M; Rosenfelder-Kuon, P

    2018-04-01

    This study was conducted to determine the chemical composition and standardized ileal digestibility coefficients (SID) of crude protein (CP) and amino acids (AA) of European soya bean and rapeseed products in pigs. Six soya bean and two rapeseed products were used as the sole dietary source of CP and AA, including raw (FFSB) and roasted full-fat soya beans (FFSB R oasted ), soya bean (SBC) and rapeseed cake (RSC), and rapeseed meal (RSM) from Bavaria (Germany), soya bean meal (SBM) from the Danube region (Austria; SBM A ustria ), a commercially available standard SBM (SBM S td ) and an imported genetically modified organism-free SBM (SBM GMO -free ). Eight ileal- cannulated pigs with an initial body weight of 32 ± 2 kg were allotted to a row-column design with eight diets and six periods of seven days each. Trypsin inhibitor activity (TIA) ranged from 1.8 in SBM S td to 24.5 mg/g DM in FFSB. The SID of CP and all AA in FFSB R oasted were greater than in FFSB, but lower when compared to SBC and SBM A ustria (p soya bean and rapeseed products as influenced by differences in processing conditions. European SBC and SBM A ustria can be used as alternative to imported SBM GMO -free and SBM S td in diets for growing pigs. © 2017 Blackwell Verlag GmbH.

  15. Cloning and characterization of an acyl-CoA-dependent diacylglycerol acyltransferase 1 (DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content.

    Science.gov (United States)

    Xu, Jingyu; Francis, Tammy; Mietkiewska, Elzbieta; Giblin, E Michael; Barton, Dennis L; Zhang, Yan; Zhang, Meng; Taylor, David C

    2008-10-01

    A full-length cDNA encoding a putative diacylglycerol acyltransferase 1 (DGAT1, EC 2.3.1.20) was obtained from Tropaeolum majus (garden nasturtium). The 1557-bp open reading frame of this cDNA, designated TmDGAT1, encodes a protein of 518 amino acids showing high homology to other plant DGAT1s. The TmDGAT1 gene was expressed exclusively in developing seeds. Expression of recombinant TmDGAT1 in the yeast H1246MATalpha quadruple mutant (DGA1, LRO1, ARE1, ARE2) restored the capability of the mutant host to produce triacylglycerols (TAGs). The recombinant TmDGAT1 protein was capable of utilizing a range of (14)C-labelled fatty acyl-CoA donors and diacylglycerol acceptors, and could synthesize (14)C-trierucin. Collectively, these findings confirm that the TmDGAT1 gene encodes an acyl-CoA-dependent DGAT1. In plant transformation studies, seed-specific expression of TmDGAT1 was able to complement the low TAG/unusual fatty acid phenotype of the Arabidopsis AS11 (DGAT1) mutant. Over-expression of TmDGAT1 in wild-type Arabidopsis and high-erucic-acid rapeseed (HEAR) and canola Brassica napus resulted in an increase in oil content (3.5%-10% on a dry weight basis, or a net increase of 11%-30%). Site-directed mutagenesis was conducted on six putative functional regions/motifs of the TmDGAT1 enzyme. Mutagenesis of a serine residue in a putative SnRK1 target site resulted in a 38%-80% increase in DGAT1 activity, and over-expression of the mutated TmDGAT1 in Arabidopsis resulted in a 20%-50% increase in oil content on a per seed basis. Thus, alteration of this putative serine/threonine protein kinase site can be exploited to enhance DGAT1 activity, and expression of mutated DGAT1 can be used to enhance oil content.

  16. EFFECTS OF SEED IRRADIATION ON 14C FIXATION AND ANTIOXIDANT ACTIVITY OF VITAMIN C AND TOTAL PHENOLS OF CANOLA LEAVES

    International Nuclear Information System (INIS)

    KAMEL, H.A.

    2008-01-01

    Seeds of canola were gamma irradiated with doses of 10, 25, 50, 100 and 200 Gy then cultivated in 30 cm plastic pots containing 7 kg clay soil. After 45 days of cultivation, plants were used to measure 14 C fixation capacity, vitamin C, total phenol, free proline and peroxidase activity in addition to the antioxidant activity. The results showed decrease in the chlorophyll content and 14 C fixation at all gamma doses. Irradiation of canola seeds caused significant reduction in vitamin C and phenol content, while significant increase was occurred in free proline and peroxidase activity. Antioxidant activity of vitamin C was higher than that of phenols at all doses used

  17. Effects of Drought Stress on Canola (Brassica napus L. Genotypes Yield and Yield Components

    Directory of Open Access Journals (Sweden)

    R Khani

    2018-02-01

    Full Text Available Introduction Canola (Brassica napus L. genotypes with wide adaptability to environmental conditions could play a major role in Iran’s oilseed crop production. Selection of high performing genotypes is very important for developing canola cultivation. Water stress can reduce crop yield by affecting both source and sink for assimilation. Canola yield depends on genotype and environmental conditions and response of genotypes to environmental factors. Canola genotypes response to stress depends on the developmental stage and the events occurring prior to and during flowering stage. Resistance to water stress is divided to avoidance and tolerance. Some species are tolerable against water stress. In a while, other species respond ending life cycle, falling leaves and other reactions into water stress. Therefore, investigation of canola genotypes response to water stress in phenological growth stages can be valuable in order to determine resistant or tolerant genotypes. Materials and Methods In order to study the effect of drought stress on canola genotypes yield and its components, an experiment was conducted in 2013-2014 as a split plot based on randomized complete block design with three replications at the research farm, Agricultural and Natural Resources Research Center of East-Azarbaijan, Tabriz-Iran. Three levels of drought stress were considered as main plot (No-stress, stress at the flowering and pod setting growth stages and 18 canola genotypes including HW113, RS12, Karaj1, KR18, L73, L72, HW101, L146, L210, L183, SW101, L5, L201, HW118, KR4, Karaj2, Karaj3 and KS7 as subplots. Flood irrigation was scheduled at 50% field capacity, 30 and 30% field capacity for no-stress, stress at the flowering and pod setting growth stages, respectively; i.e. soil moisture capacity was maintained at 30% by irrigating to 100% field capacity when available moisture reached 30% in drought stress treatments. An ANOVA was conducted using the PROC-GLM procedure

  18. Effects of gamma irradiation on chemical composition and ruminal protein degradation of canola meal

    Energy Technology Data Exchange (ETDEWEB)

    Shawrang, P. [Agriculture, Medical and Industrial Research School, Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, P.O. Box 31485-498, Karaj (Iran, Islamic Republic of); Department of Animal Science, Faculty of Agriculture, Tehran University P.O. Box 4111, Karaj (Iran, Islamic Republic of)], E-mail: parvinshawrang@yahoo.co.uk; Nikkhah, A.; Zare-Shahneh, A. [Department of Animal Science, Faculty of Agriculture, Tehran University P.O. Box 4111, Karaj (Iran, Islamic Republic of); Sadeghi, A.A. [Department of Animal Science, Faculty of Agriculture, Science and Research Branch, Islamic Azad University, P.O. Box 14515-4933, Tehran (Iran, Islamic Republic of); Raisali, G. [Radiation Applications Research School, Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, P.O. Box 11365-3486, Tehran (Iran, Islamic Republic of); Moradi-Shahrebabak, M. [Department of Animal Science, Faculty of Agriculture, Tehran University P.O. Box 4111, Karaj (Iran, Islamic Republic of)

    2008-07-15

    Gamma irradiation of canola meal (at doses of 25, 50 and 75 kGy) could alter its ruminal protein degradation characteristics by cross-linking of the polypeptide chains. This processing resulted in decrease (linear effect, P<0.001) of ruminal protein degradation and increase (linear effect, P<0.001) of intestinal protein digestibility. The results showed that gamma irradiation at doses higher than 25 kGy can be used as a cross-linking agent to improve protein properties of supplements in ruminant nutrition.

  19. Effects of gamma irradiation on chemical composition and ruminal protein degradation of canola meal

    International Nuclear Information System (INIS)

    Shawrang, P.; Nikkhah, A.; Zare-Shahneh, A.; Sadeghi, A.A.; Raisali, G.; Moradi-Shahrebabak, M.

    2008-01-01

    Gamma irradiation of canola meal (at doses of 25, 50 and 75 kGy) could alter its ruminal protein degradation characteristics by cross-linking of the polypeptide chains. This processing resulted in decrease (linear effect, P<0.001) of ruminal protein degradation and increase (linear effect, P<0.001) of intestinal protein digestibility. The results showed that gamma irradiation at doses higher than 25 kGy can be used as a cross-linking agent to improve protein properties of supplements in ruminant nutrition

  20. Oil crops: requirements and possibilities for their utilization as an energy source

    Energy Technology Data Exchange (ETDEWEB)

    Boerner, G; Schoenefeldt, J; Mehring, I [OeHMI Forschung und Ingenieurtechnik GmbH, Magdeburg (Germany)

    1995-12-01

    Although vegetable oils have been used as an energy source for centuries, they were used almost exclusively in oil lamps. Their value as a foodstuff and the availability and low price of mineral oil had for a long time kept them from being seriously considered as a potential energy source. Now, owing to the increasing cost of fossil fuel, particularly oil, and increasing industrial energy consumption, as well as the negative impact of fossil fuel use on the environment, there is interest in a number of alternative energy sources, including vegetable oils. The discussion in this paper focuses on the use of untreated vegetable oils, particularly rapeseed oil. The energy potential of rapeseed oil is explored first. Then, conditions under which the use of oil crops as an energy source is feasible are briefly discussed; two concepts for decentralized oil-seed processing are described and, finally, future possibilities for use of vegetable oils as a fuel source are reviewed. (author) 5 refs, 4 figs, 4 tabs

  1. Detection and identification of extra virgin olive oil adulteration by GC-MS combined with chemometrics.

    Science.gov (United States)

    Yang, Yang; Ferro, Miguel Duarte; Cavaco, Isabel; Liang, Yizeng

    2013-04-17

    In this study, an analytical method for the detection and identification of extra virgin olive oil adulteration with four types of oils (corn, peanut, rapeseed, and sunflower oils) was proposed. The variables under evaluation included 22 fatty acids and 6 other significant parameters (the ratio of linoleic/linolenic acid, oleic/linoleic acid, total saturated fatty acids (SFAs), polyunsaturated fatty acids (PUFAs), monounsaturated fatty acids (MUFAs), MUFAs/PUFAs). Univariate analyses followed by multivariate analyses were applied to the adulteration investigation. As a result, the univariate analyses demonstrated that higher contents of eicosanoic acid, docosanoic acid, tetracosanoic acid, and SFAs were the peculiarities of peanut adulteration and higher levels of linolenic acid, 11-eicosenoic acid, erucic acid, and nervonic acid the characteristics of rapeseed adulteration. Then, PLS-LDA made the detection of adulteration effective with a 1% detection limit and 90% prediction ability; a Monte Carlo tree identified the type of adulteration with 85% prediction ability.

  2. Effect of spring versus autumn grass/clover silage and rapeseed supplementation on milk production, composition and quality in Jersey cows

    DEFF Research Database (Denmark)

    Larsen, Mette Krogh; Vogdanou, Stefania; Hellwing, Anne Louise Frydendahl

    2016-01-01

    of C16 : 0, riboflavin and α-tocopherol were decreased with autumn silage. The majority of C18 FAs in milk and α-tocopherol concentration increased with rapeseed whereas C11 : 0 to C16 : 0 FA were reduced. Autumn silage reduced biohydrogenation of C18 : 2n6, whereas rapeseed increased biohydrogenation...

  3. Effect of Nitrogen Foliar Application on Canola Yield (Brassica napus L. and Nitrogen Efficiency across Different Sowing Dates

    Directory of Open Access Journals (Sweden)

    S Doori

    2016-12-01

    Full Text Available Introduction Between oil seeds, from the quality, quantity and nutrition index point of view, canola has the top level . Because of the solubility of N fertilizers, the time of urea application, is very important and one of the main reasons of the reduction in N application efficiency is utilization of urea in an inappropriate time. By precisely foliar application of nitrogen, the efficiency of nitrogen transformation to the grain will be very high because in this method the leaf is considered the main organ of nitrogen uptake and a low amount of absorbed nitrogen was transferred to the root and entered the soil. The more division of N application in growth stages and in accordance with plant need and foliar application result in increasing nitrogen use efficiency. The delay in sowing will result in the reduction of yield and this is due to low LAI, and thus low radiation absorb in vegetable phase and shorter reproductive phase with high temperature in flowering and subsequent stages that result in low prolific silique and make disorder in transferring stored material to grain. In this experiment using N foliar application to decrease the adverse effect of delay in sowing is objective. Materials and Methods The experiment was conducted in 2013-2014 in Ramin Agriculture and Natural Resource University of Khuzestan. Experiment was conducted as split plots in a randomized complete blocks design with three replications. In this experiment sowing date]optimum sowing (27 November, 17 December and late sowing (30 December [were assigned to main plots and several time of N-foliar application with 5 percent density from urea (20 liter per ha, ]TO (control, T1 (foliar N application in rosette stage, T2 (foliar N application in budding stage, T3 (foliar N application in flowering stage[ were placed in sub-plots in randomized way. Fertilizing was based on the results of soil examination. Therefore, 162 kg ha-1 of pure nitrogen (from resource urea in the way

  4. Effect of processing of rapeseed under defined conditions in a pilot plant on chemical composition and standardized ileal amino acid digestibility in rapeseed meal for pigs.

    Science.gov (United States)

    Eklund, M; Sauer, N; Schöne, F; Messerschmidt, U; Rosenfelder, P; Htoo, J K; Mosenthin, R

    2015-06-01

    Five rapeseed meals (RSM) were produced from a single batch of rapeseed in a large-scale pilot plant under standardized conditions. The objective was to evaluate the effect of residence time in the desolventizer/toaster (DT) on chemical composition and standardized ileal digestibility (SID) of AA in RSM. Four RSM, with 48, 64, 76, and 93 min residence time and using unsaturated steam in the DT, referred to as RSM48, RSM64, RSM76, and RSM93, respectively, and 1 low-glucosinolate RSM, which was subjected to sequential treatment with unsaturated steam, saturated steam, and dry heat in the DT, referred to as low-GSL RSM, were assayed. Six barrows (average initial BW = 22 ± 1 kg) were surgically fitted with a T-cannula at the distal ileum. Pigs were allotted to a 5 × 6 row × column design with 5 diets and 5 periods. The 5 RSM were included in a cornstarch-casein-based basal diet. In addition, basal ileal endogenous losses and SID of AA originating from casein were determined at the conclusion of the experiment in 2 additional periods by means of the regression method and using 3 graded levels of casein. The SID of AA in the 5 RSM was determined in difference to SID of AA originating from casein. The glucosinolates (GSL) were efficiently reduced, whereas NDF, ADF, ADL, and NDIN contents increased and reactive Lys (rLys) and Lys:CP ratio decreased as the residence time in the DT was increased from 48 to 93 min. The SID of most AA in RSM linearly decreased (P based on content of NDIN, GSL, rLys or on Lys:CP ratio, in different batches of RSM used for feed manufacturing.

  5. Trans-fatty acids in cooking oils in Bogota, Colombia: changes in the food supply from 2008 to 2013.

    Science.gov (United States)

    Moynihan, Meghan; Villamor, Eduardo; Marin, Constanza; Mora-Plazas, Mercedes; Campos, Hannia; Baylin, Ana

    2015-12-01

    Long-chain n-3 fatty acid intake in Colombia is low because fish consumption is limited. Vegetable oils with high n-3 fatty acid content are recommended, but their concentrations of trans fats were high in previous studies. Thus, regular monitoring of the fatty acid composition of vegetable oils is required. Our objective was to quantify the fatty acid composition in commercially available oils in Bogota, Colombia and determine if composition changed from 2008 to 2013. Cross-sectional study. We obtained samples of all commercially available oils reported in a survey of low- and middle-income families with a child participating in the Bogota School Children Cohort. Bogota, Colombia. Not applicable. Sunflower oil had the highest trans-fatty acid content (2.18%). Canola oil had the lowest proportion of trans-fatty acids (0.40%) and the highest n-3 fatty acid content (9.37%). In terms of percentage reduction from 2008 to 2013 in 18:1 and 18:2 trans-fatty acids, canola oil had 89% and 65% reduction, mixed oils had 44% and 48% reduction, and sunflower oil had 25% and 51 % reduction, respectively. Soyabean oil became widely available in 2013. The content of trans-fatty acids decreased in all oils from 2008 to 2013, suggesting a voluntary reduction by industry. We believe that regular monitoring of the fatty acid composition of oils is warranted.

  6. A review of remote sensing applications for oil palm studies

    Institute of Scientific and Technical Information of China (English)

    Khai Loong Chong; Kasturi Devi Kanniah; Christine Pohl; Kian Pang Tan

    2017-01-01

    Oil palm becomes an increasingly important source of vegetable oil for its production exceeds soybean,sunflower,and rapeseed.The growth of the oil palm industry causes degradation to the environment,especially when the expansion of plantations goes uncontrolled.Remote sensing is a useful tool to monitor the development of oil palm plantations.In order to promote the use of remote sensing in the oil palm industry to support their drive for sustainability,this paper provides an understanding toward the use of remote sensing and its applications to oil palm plantation monitoring.In addition,the existing knowledge gaps are identified and recommendations for further research are given.

  7. State and trends of oil crops production in China

    Directory of Open Access Journals (Sweden)

    Yang Tiankui

    2016-11-01

    Full Text Available This paper attempts to present a full picture of current situation and future trends of Chinese oil crop production. The total oil crop production remained broadly constant during 2011–2014. The top three oil crops are soybean, peanut and rapeseed, together accounting for more than 70% of total oil crop production. The area under cultivation and the production of peanuts will keep steadily increasing because most Chinese like its pleasant roasted flavor. Because of their high content in polyunsaturated fatty acids and the natural minor functional components in their oils, more attention is being paid to sunflower seed and rice bran. The diminishing availability of arable land and concern over the security of edible oil supplies is driving both a change in cultivation structure of crops and improvements in the efficiency of oilseed production in China.

  8. Extracting sensitive spectrum bands of rapeseed using multiscale multifractal detrended fluctuation analysis

    Science.gov (United States)

    Jiang, Shan; Wang, Fang; Shen, Luming; Liao, Guiping; Wang, Lin

    2017-03-01

    Spectrum technology has been widely used in crop non-destructive testing diagnosis for crop information acquisition. Since spectrum covers a wide range of bands, it is of critical importance to extract the sensitive bands. In this paper, we propose a methodology to extract the sensitive spectrum bands of rapeseed using multiscale multifractal detrended fluctuation analysis. Our obtained sensitive bands are relatively robust in the range of 534 nm-574 nm. Further, by using the multifractal parameter (Hurst exponent) of the extracted sensitive bands, we propose a prediction model to forecast the Soil and plant analyzer development values ((SPAD), often used as a parameter to indicate the chlorophyll content) and an identification model to distinguish the different planting patterns. Three vegetation indices (VIs) based on previous work are used for comparison. Three evaluation indicators, namely, the root mean square error, the correlation coefficient, and the relative error employed in the SPAD values prediction model all demonstrate that our Hurst exponent has the best performance. Four rapeseed compound planting factors, namely, seeding method, planting density, fertilizer type, and weed control method are considered in the identification model. The Youden indices calculated by the random decision forest method and the K-nearest neighbor method show that our Hurst exponent is superior to other three Vis, and their combination for the factor of seeding method. In addition, there is no significant difference among the five features for other three planting factors. This interesting finding suggests that the transplanting and the direct seeding would make a big difference in the growth of rapeseed.

  9. Abnormal spindles in second meiosis in canola (Brassica napus and Brassica campestris

    Directory of Open Access Journals (Sweden)

    Alice Maria de Souza

    1999-01-01

    Full Text Available Studies were carried out on the occurrence of abnormal spindles in the second meiotic division in some canola cultivars recently introduced in Brazil. Fusion of spindles was observed in metaphase II rejoining the two sets of chromosomes segregated in anaphase I and also sequential and tripolar spindles were discovered rejoining two sets of chromatids segregated in anaphase II. The frequency of cells with abnormal spindles ranged from 3.18 to 8.10%. The results suggested that this abnormality was caused by environmental stress that affected the plants during the blooming period.O presente estudo descreve a ocorrência de fusos anormais na segunda divisão meiótica em algumas cultivares da canola recentemente introduzidas no Brasil. Fusão de fusos foi observada em metáfase II reunindo os dois conjuntos cromossômicos segregados na anáfase I; fusos sequenciais e tripolares reunindo cromátides segregadas na anáfase II também foram observados. A frequência de células com fusos anormais variou de 3,18 a 8,10% entre as variedades. Os resultados sugerem que estas anormalidades foram causadas por condições climáticas adversas que afetaram as plantas no período de florescimento. As implicações genéticas destas anormalidades são descritas.

  10. Applying a particle filtering technique for canola crop growth stage estimation in Canada

    Science.gov (United States)

    Sinha, Abhijit; Tan, Weikai; Li, Yifeng; McNairn, Heather; Jiao, Xianfeng; Hosseini, Mehdi

    2017-10-01

    Accurate crop growth stage estimation is important in precision agriculture as it facilitates improved crop management, pest and disease mitigation and resource planning. Earth observation imagery, specifically Synthetic Aperture Radar (SAR) data, can provide field level growth estimates while covering regional scales. In this paper, RADARSAT-2 quad polarization and TerraSAR-X dual polarization SAR data and ground truth growth stage data are used to model the influence of canola growth stages on SAR imagery extracted parameters. The details of the growth stage modeling work are provided, including a) the development of a new crop growth stage indicator that is continuous and suitable as the state variable in the dynamic estimation procedure; b) a selection procedure for SAR polarimetric parameters that is sensitive to both linear and nonlinear dependency between variables; and c) procedures for compensation of SAR polarimetric parameters for different beam modes. The data was collected over three crop growth seasons in Manitoba, Canada, and the growth model provides the foundation of a novel dynamic filtering framework for real-time estimation of canola growth stages using the multi-sensor and multi-mode SAR data. A description of the dynamic filtering framework that uses particle filter as the estimator is also provided in this paper.

  11. Binding of carbonyl flavours to canola, pea and wheat proteins using GC/MS approach.

    Science.gov (United States)

    Wang, Kun; Arntfield, Susan D

    2014-08-15

    Interactions of homologous aldehydes (hexanal, heptanal, and octanal) and ketones (2-hexanone, 2-heptanone, and 2-octanone) to salt and alkaline-extracted canola and pea proteins and commercial wheat gluten were studied using GC/MS. Long-chain aldehyde flavours exhibited higher binding affinity, regardless of protein type and isolation method. Salt-extracted canola protein isolates (CPIs) revealed the highest binding capacity to all aldehydes followed by wheat gluten and salt-extracted pea protein isolates (PPIs), while binding of ketone flavours decreased in the order: PPIs>wheat gluten>CPIs. Two aldolisation products, 2-butyl-2-octenal and 2-pentyl-2-nonenal, were detected from the interactions between CPIs with hexanal and heptanal, respectively. Protein thermal behaviour in the presence of these compounds was analysed by differential scanning calorimeter, where decreased ΔH inferred potential conformational changes due to partial denaturation of PPIs. Compared to ketones, aldehyde flavours possessed much higher "unfolding capacity" (lower ΔH), which accounted for their higher binding affinities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Extrusion enhances metabolizable energy and ileal amino acids digestibility of canola meal for broiler chickens

    Directory of Open Access Journals (Sweden)

    Aljuobori Ahmed

    2014-01-01

    Full Text Available The aim of the current study was to determine the effect of extrusion process on apparent metabolizable energy (AME, crude protein (CP and amino acid (AA digestibility of canola meal (CM in broiler chickens. A total of 36, 42-day-old broilers were randomly assigned into adaptation diets (no CM or 30% CM with six replicates. After 4 days of adaptation period, on day 47, birds were allowed to consume the assay diets that contain CM or extruded canola meal (ECM as the sole source of energy and protein. Following 4 h after feeding, the birds were killed and ileal contents were collected. The results showed that ECM had greater (P<0.001 AME (10.87 vs 9.39 MJ/kg compared to CM. The extrusion also significantly enhanced apparent ileal digestibility of CP and some of AA such as Asp, Glu, Ser, Thr and Trp. In conclusion, the extrusion treatment appeared to be a practical and effective approach in enhancing the digestibility of AME, CP and some AA of CM in broiler chickens.

  13. Blackleg (Leptosphaeria maculans) Severity and Yield Loss in Canola in Alberta, Canada

    Science.gov (United States)

    Hwang, Sheau-Fang; Strelkov, Stephen E.; Peng, Gary; Ahmed, Hafiz; Zhou, Qixing; Turnbull, George

    2016-01-01

    Blackleg, caused by Leptosphaeria maculans, is an important disease of oilseed rape (Brassica napus L.) in Canada and throughout the world. Severe epidemics of blackleg can result in significant yield losses. Understanding disease-yield relationships is a prerequisite for measuring the agronomic efficacy and economic benefits of control methods. Field experiments were conducted in 2013, 2014, and 2015 to determine the relationship between blackleg disease severity and yield in a susceptible cultivar and in moderately resistant to resistant canola hybrids. Disease severity was lower, and seed yield was 120%–128% greater, in the moderately resistant to resistant hybrids compared with the susceptible cultivar. Regression analysis showed that pod number and seed yield declined linearly as blackleg severity increased. Seed yield per plant decreased by 1.8 g for each unit increase in disease severity, corresponding to a decline in yield of 17.2% for each unit increase in disease severity. Pyraclostrobin fungicide reduced disease severity in all site-years and increased yield. These results show that the reduction of blackleg in canola crops substantially improves yields. PMID:27447676

  14. Blackleg (Leptosphaeria maculans Severity and Yield Loss in Canola in Alberta, Canada

    Directory of Open Access Journals (Sweden)

    Sheau-Fang Hwang

    2016-07-01

    Full Text Available Blackleg, caused by Leptosphaeria maculans, is an important disease of oilseed rape (Brassica napus L. in Canada and throughout the world. Severe epidemics of blackleg can result in significant yield losses. Understanding disease-yield relationships is a prerequisite for measuring the agronomic efficacy and economic benefits of control methods. Field experiments were conducted in 2013, 2014, and 2015 to determine the relationship between blackleg disease severity and yield in a susceptible cultivar and in moderately resistant to resistant canola hybrids. Disease severity was lower, and seed yield was 120%–128% greater, in the moderately resistant to resistant hybrids compared with the susceptible cultivar. Regression analysis showed that pod number and seed yield declined linearly as blackleg severity increased. Seed yield per plant decreased by 1.8 g for each unit increase in disease severity, corresponding to a decline in yield of 17.2% for each unit increase in disease severity. Pyraclostrobin fungicide reduced disease severity in all site-years and increased yield. These results show that the reduction of blackleg in canola crops substantially improves yields.

  15. Genetic diversity analysis for agro-morphological and seed quality traits in rapeseed (brassica campestris l.)

    International Nuclear Information System (INIS)

    Yousuf, M.; Ajmal, S.U.; Munir, M.; Ghafoor, A.

    2011-01-01

    One hundred fourteen accessions of rapeseed (Brassica campestris L.) were evaluated at National Agricultural Research Centre, Islamabad, Pakistan using cluster and principal component analyses during 2005 and 2006. Cluster analysis based on fifteen agro-morphological and six seed quality traits, divided 114 accessions into six and five clusters during 2005 and 2006, respectively. The first seven and five PCs with eigenvalues > 1 contributed 74.09% and 66.08% of the variability amongst accessions during 2005 and 2006, respectively. Nine important characters contributed positively to first two PCs during both the years 2005 and 2006. (author)

  16. Leaking tankers: how much oil was spilled?

    International Nuclear Information System (INIS)

    Simecek-Beatty, D. A.; Lehr, W. J.; Lankford, J. F.

    1997-01-01

    A model to estimate leak rates from tankers has been developed for use in emergency situations when more direct oil-loss estimation methods are not available. The model includes algorithms for gravity outflow and air and water ingestion. Three laboratory tests were conducted using fresh water and canola oil to evaluate the model output. Comparison with results from the laboratory experiments indicate good correlation of model results with measured data. However, it is not yet possible in the case of very large crude carriers to answer the question 'how much oil was spilled?' Sensitivity analysis and further laboratory testing were suggested to determine the effect of factors such as: pressure vacuum relief valves that prevent cavitation in the event of tank puncture; changing outside water levels due to wave and tidal action; tank and hole dimensions; and the amount and density of the product.10 refs., 4 figs

  17. Fermentation of rapeseed meal, sunflower meal and faba beans in combination with wheat bran increases solubility of protein and phosphorus

    DEFF Research Database (Denmark)

    Poulsen, Hanne Damgaard; Blaabjerg, Karoline

    2017-01-01

    BACKGROUND To increase self-supply of protein and phosphorus (P) in European pig and poultry diets and reduce nitrogen (N) and P excretion, attention is directed to approaches increasing protein and P digestibility of rapeseed, sunflower and faba beans. Wheat bran is rich in enzymes degrading...... and solubilizing protein and phytate. Herein, solubilization of protein, N and P was investigated when increasing ratios of wheat bran were fermented with rapeseed meal (RSM), sunflower meal (SFM), faba beans (FB) or a combination of these (RSM/SFM/FB). RESULTS Protein, N and P solubility was greater, for all...