WorldWideScience

Sample records for rap2 effector kinases

  1. Diacylglycerol kinases in T cell tolerance and effector function

    Directory of Open Access Journals (Sweden)

    Shelley S Chen

    2016-11-01

    Full Text Available Diacylglycerol kinases (DGKs are a family of enzymes that regulate the relative levels of diacylglycerol (DAG and phosphatidic acid (PA in cells by phosphorylating DAG to produce PA. Both DAG and PA are important second messengers cascading T cell receptor (TCR signal by recruiting multiple effector molecules such as RasGRP1, PKC, and mTOR. Studies have revealed important physiological functions of DGKs in the regulation of receptor signaling and the development and activation of immune cells. In this review, we will focus on recent progresses in our understanding of two DGK isoforms,  and , in CD8 T effector and memory cell differentiation, regulatory T cell development and function, and invariant NKT cell development and effector lineage differentiation.

  2. Rap2B promotes proliferation, migration, and invasion of human breast cancer through calcium-related ERK1/2 signaling pathway.

    Science.gov (United States)

    Di, Jiehui; Huang, Hui; Qu, Debao; Tang, Juangjuan; Cao, Wenjia; Lu, Zheng; Cheng, Qian; Yang, Jing; Bai, Jin; Zhang, Yanping; Zheng, Junnian

    2015-07-23

    Rap2B, a member of GTP-binding proteins, is widely upregulated in many types of tumors and promotes migration and invasion of human suprarenal epithelioma. However, the function of Rap2B in breast cancer is unknown. Expression of Rap2B was examined in breast cancer cell lines and human normal breast cell line using Western blot analysis. Using the CCK-8 cell proliferation assay, cell cycle analysis, and transwell migration assay, we also elucidated the role of Rap2B in breast cancer cell proliferation, migration, and invasion. Results showed that the expression of Rap2B is higher in tumor cells than in normal cells. Flow cytometry and Western blot analysis revealed that Rap2B elevates the intracellular calcium level and further promotes extracellular signal-related kinase (ERK) 1/2 phosphorylation. By contrast, calcium chelator BAPTM/AM and MEK inhibitor (U0126) can reverse Rap2B-induced ERK1/2 phosphorylation. Furthermore, Rap2B knockdown inhibits cell proliferation, migration, and invasion abilities via calcium related-ERK1/2 signaling. In addition, overexpression of Rap2B promotes cell proliferation, migration and invasion abilities, which could be neutralized by BAPTM/AM and U0126. Taken together, these findings shed light on Rap2B as a therapeutic target for breast cancer.

  3. Protein kinase inhibitors CK59 and CID755673 alter primary human NK cell effector functions

    Directory of Open Access Journals (Sweden)

    Maxi eScheiter

    2013-03-01

    Full Text Available Natural killer (NK cells are part of the innate immune response and play a crucial role in the defense against tumors and virus-infected cells. Their effector functions include the specific killing of target cells, as well as the modulation of other immune cells by cytokine release. Kinases constitute a relevant part in signaling, are prime targets in drug research and the protein kinase inhibitor Dasatinib is already used for immune-modulatory theraphies. In this study, we have tested the effects of the kinase inhibitors CK59 and CID755673. These inhibitors are directed against CaMKII (CK59 and PKD family kinases (CID755673 that were previously suggested as novel components of NK activation pathways. Here, we use a multi-parameter, FACS-based assay to validate the influence of CK59 and CID755673 on the effector functions of primary NK cells. Dose dependent treatment with CK59 and CID755673 indeed results in a significant reduction of NK cell degranulation markers and cytokine release in freshly isolated PBMC populations from healthy blood donors. These results underline the importance of CaMKII for NK cell signaling and suggest PKD2 as a novel signaling component in NK cell activation. Notably, kinase inhibition studies on pure NK cell populations indicate significant donor variations.

  4. Mutations in CDK5RAP2 cause Seckel syndrome.

    Science.gov (United States)

    Yigit, Gökhan; Brown, Karen E; Kayserili, Hülya; Pohl, Esther; Caliebe, Almuth; Zahnleiter, Diana; Rosser, Elisabeth; Bögershausen, Nina; Uyguner, Zehra Oya; Altunoglu, Umut; Nürnberg, Gudrun; Nürnberg, Peter; Rauch, Anita; Li, Yun; Thiel, Christian Thomas; Wollnik, Bernd

    2015-09-01

    Seckel syndrome is a heterogeneous, autosomal recessive disorder marked by prenatal proportionate short stature, severe microcephaly, intellectual disability, and characteristic facial features. Here, we describe the novel homozygous splice-site mutations c.383+1G>C and c.4005-9A>G in CDK5RAP2 in two consanguineous families with Seckel syndrome. CDK5RAP2 (CEP215) encodes a centrosomal protein which is known to be essential for centrosomal cohesion and proper spindle formation and has been shown to be causally involved in autosomal recessive primary microcephaly. We establish CDK5RAP2 as a disease-causing gene for Seckel syndrome and show that loss of functional CDK5RAP2 leads to severe defects in mitosis and spindle organization, resulting in cells with abnormal nuclei and centrosomal pattern, which underlines the important role of centrosomal and mitotic proteins in the pathogenesis of the disease. Additionally, we present an intriguing case of possible digenic inheritance in Seckel syndrome: A severely affected child of nonconsanguineous German parents was found to carry heterozygous mutations in CDK5RAP2 and CEP152. This finding points toward a potential additive genetic effect of mutations in CDK5RAP2 and CEP152.

  5. Five Xanthomonas type III effectors suppress cell death induced by components of immunity-associated MAP kinase cascades.

    Science.gov (United States)

    Teper, Doron; Sunitha, Sukumaran; Martin, Gregory B; Sessa, Guido

    2015-01-01

    Mitogen-activated protein kinase (MAPK) cascades play a fundamental role in signaling of plant immunity and mediate elicitation of cell death. Xanthomonas spp. manipulate plant signaling by using a type III secretion system to deliver effector proteins into host cells. We examined the ability of 33 Xanthomonas effectors to inhibit cell death induced by overexpression of components of MAPK cascades in Nicotiana benthamiana plants. Five effectors inhibited cell death induced by overexpression of MAPKKKα and MEK2, but not of MAP3Kε. In addition, expression of AvrBs1 in yeast suppressed activation of the high osmolarity glycerol MAPK pathway, suggesting that the target of this effector is conserved in eukaryotic organisms. These results indicate that Xanthomonas employs several type III effectors to suppress immunity-associated cell death mediated by MAPK cascades.

  6. E2~Ub conjugates regulate the kinase activity of Shigella effector OspG during pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Pruneda, Jonathan N. [Department of Biochemistry, University of Washington, Seattle WA USA; Smith, F. Donelson [Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle WA USA; Daurie, Angela [Department of Microbiology and Immunology, Dalhousie University, Halifax NS Canada; Swaney, Danielle L. [Department of Genome Sciences, University of Washington, Seattle WA USA; Villén, Judit [Department of Genome Sciences, University of Washington, Seattle WA USA; Scott, John D. [Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle WA USA; Stadnyk, Andrew W. [Department of Pediatrics, Dalhousie University, Halifax NS Canada; Le Trong, Isolde [Department of Biological Structure, University of Washington, Seattle WA USA; Stenkamp, Ronald E. [Department of Biochemistry, University of Washington, Seattle WA USA; Department of Biological Structure, University of Washington, Seattle WA USA; Klevit, Rachel E. [Department of Biochemistry, University of Washington, Seattle WA USA; Rohde, John R. [Department of Microbiology and Immunology, Dalhousie University, Halifax NS Canada; Brzovic, Peter S. [Department of Biochemistry, University of Washington, Seattle WA USA

    2014-01-20

    Pathogenic bacteria introduce effector proteins directly into the cytosol of eukaryotic cells to promote invasion and colonization. OspG, a Shigella spp. effector kinase, plays a role in this process by helping to suppress the host inflammatory response. OspG has been reported to bind host E2 ubiquitin-conjugating enzymes activated with ubiquitin (E2~Ub), a key enzyme complex in ubiquitin transfer pathways. A cocrystal structure of the OspG/UbcH5c~Ub complex reveals that complex formation has important ramifications for the activity of both OspG and the UbcH5c~Ub conjugate. OspG is a minimal kinase domain containing only essential elements required for catalysis. UbcH5c~Ub binding stabilizes an active conformation of the kinase, greatly enhancing OspG kinase activity. In contrast, interaction with OspG stabilizes an extended, less reactive form of UbcH5c~Ub. Recognizing conserved E2 features, OspG can interact with at least ten distinct human E2s~Ub. Mouse oral infection studies indicate that E2~Ub conjugates act as novel regulators of OspG effector kinase function in eukaryotic host cells.

  7. Structural and Functional Studies Indicate That the EPEC Effector, EspG, Directly Binds p21-Activated Kinase

    Energy Technology Data Exchange (ETDEWEB)

    Germane, Katherine L.; Spiller, Benjamin W. (Vanderbilt)

    2011-09-20

    Bacterial pathogens secrete effectors into their hosts that subvert host defenses and redirect host processes. EspG is a type three secretion effector with a disputed function that is found in enteropathogenic Escherichia coli. Here we show that EspG is structurally similar to VirA, a Shigella virulence factor; EspG has a large, conserved pocket on its surface; EspG binds directly to the amino-terminal inhibitory domain of human p21-activated kinase (PAK); and mutations to conserved residues in the surface pocket disrupt the interaction with PAK.

  8. The interplay between a Phytophthora RXLR effector and an Arabidopsis lectin receptor kinase

    NARCIS (Netherlands)

    Bouwmeester, K.

    2010-01-01

    Phytophthora infestans – the causal agent of potato late blight – secretes a plethora of effector proteins to facilitate plant infection. The central subject of this thesis is ipiO, one of the first cloned Phytophthora genes with a putative function in pathogenicity as was anticipated based on its

  9. Identification of Fhit as a post-transcriptional effector of Thymidine Kinase 1 expression.

    Science.gov (United States)

    Kiss, Daniel L; Waters, Catherine E; Ouda, Iman M; Saldivar, Joshua C; Karras, Jenna R; Amin, Zaynab A; Mahrous, Seham; Druck, Teresa; Bundschuh, Ralf A; Schoenberg, Daniel R; Huebner, Kay

    2017-03-01

    FHIT is a genome caretaker gene that is silenced in >50% of cancers. Loss of Fhit protein expression promotes accumulation of DNA damage, affects apoptosis and epithelial-mesenchymal transition, though molecular mechanisms underlying these alterations have not been fully elucidated. Initiation of genome instability directly follows Fhit loss and the associated reduced Thymidine Kinase 1 (TK1) protein expression. The effects on TK1 of Fhit knockdown and Fhit induction in the current study confirmed the role of Fhit in regulating TK1 expression. Changes in Fhit expression did not impact TK1 protein turnover or transcription from the TK1 promoter, nor steady-state levels of TK1 mRNA or turnover. Polysome profile analysis showed that up-regulated Fhit expression resulted in decreased TK1 RNA in non-translating messenger ribonucleoproteins and increased ribosome density on TK1 mRNA. Fhit does not bind RNA but its expression increased luciferase expression from a transgene bearing the TK1 5'-UTR. Fhit has been reported to act as a scavenger decapping enzyme, and a similar result with a mutant (H96) that binds but does not cleave nucleoside 5',5'-triphosphates suggests the impact on TK1 translation is due to its ability to modulate the intracellular level of cap-like molecules. Consistent with this, cells expressing Fhit mutants with reduced activity toward cap-like dinucleotides exhibit DNA damage resulting from TK1 deficiency, whereas cells expressing wild-type Fhit or the H96N mutant do not. The results have implications for the mechanism by which Fhit regulates TK1 mRNA, and more broadly, for its modulation of multiple functions as tumor suppressor/genome caretaker. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Cdk5rap2 regulates centrosome function and chromosome segregation in neuronal progenitors

    Science.gov (United States)

    Lizarraga, Sofia B.; Margossian, Steven P.; Harris, Marian H.; Campagna, Dean R.; Han, An-Ping; Blevins, Sherika; Mudbhary, Raksha; Barker, Jane E.; Walsh, Christopher A.; Fleming, Mark D.

    2010-01-01

    Microcephaly affects ∼1% of the population and is associated with mental retardation, motor defects and, in some cases, seizures. We analyzed the mechanisms underlying brain size determination in a mouse model of human microcephaly. The Hertwig's anemia (an) mutant shows peripheral blood cytopenias, spontaneous aneuploidy and a predisposition to hematopoietic tumors. We found that the an mutation is a genomic inversion of exon 4 of Cdk5rap2, resulting in an in-frame deletion of exon 4 from the mRNA. The finding that CDK5RAP2 human mutations cause microcephaly prompted further analysis of Cdk5rap2an/an mice and we demonstrated that these mice exhibit microcephaly comparable to that of the human disease, resulting from striking neurogenic defects that include proliferative and survival defects in neuronal progenitors. Cdk5rap2an/an neuronal precursors exit the cell cycle prematurely and many undergo apoptosis. These defects are associated with impaired mitotic progression coupled with abnormal mitotic spindle pole number and mitotic orientation. Our findings suggest that the reduction in brain size observed in humans with mutations in CDK5RAP2 is associated with impaired centrosomal function and with changes in mitotic spindle orientation during progenitor proliferation. PMID:20460369

  11. A Xanthomonas oryzae pv. oryzae effector, XopR, associates with receptor-like cytoplasmic kinases and suppresses PAMP-triggered stomatal closure.

    Science.gov (United States)

    Wang, Shuangfeng; Sun, Jianhang; Fan, Fenggui; Tan, Zhaoyun; Zou, Yanmin; Lu, Dongping

    2016-09-01

    Receptor-like kinases (RLKs) play important roles in plant immunity signaling; thus, many are hijacked by pathogen effectors to promote successful pathogenesis. Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of rice leaf blight disease. The strain PXO99A has 18 non-TAL (transcription activation-like) effectors; however, their mechanisms of action and host target proteins remain largely unknown. Although the effector XopR from the Xoo strain MAFF311018 was shown to suppress PAMP-triggered immune responses in Arabidopsis, its target has not yet been identified. Here, we show that PXO99A XopR interacts with BIK1 at the plasma membrane. BIK1 is a receptor-like cytoplasmic kinase (RLCK) belonging to the RLK family of proteins and mediates PAMP-triggered stomatal immunity. In turn, BIK1 phosphorylates XopR. Furthermore, XopR suppresses PAMP-triggered stomatal closure in transgenic Arabidopsis expressing XopR. In addition, XopR is able to associate with RLCKs other than BIK1. These results suggest that XopR likely suppresses plant immunity by targeting BIK1 and other RLCKs.

  12. Crystal Structure of Xanthomonas AvrRxo1-ORF1, a Type III Effector with a Polynucleotide Kinase Domain, and Its Interactor AvrRxo1-ORF2.

    Science.gov (United States)

    Han, Qian; Zhou, Changhe; Wu, Shuchi; Liu, Yi; Triplett, Lindsay; Miao, Jiamin; Tokuhisa, James; Deblais, Loïc; Robinson, Howard; Leach, Jan E; Li, Jianyong; Zhao, Bingyu

    2015-10-06

    Xanthomonas oryzae pv. oryzicola (Xoc) causes bacterial leaf streak (BLS) disease on rice plants. Xoc delivers a type III effector AvrRxo1-ORF1 into rice plant cells that can be recognized by disease resistance (R) protein Rxo1, and triggers resistance to BLS disease. However, the mechanism and virulence role of AvrRxo1 is not known. In the genome of Xoc, AvrRxo1-ORF1 is adjacent to another gene AvrRxo1-ORF2, which was predicted to encode a molecular chaperone of AvrRxo1-ORF1. We report the co-purification and crystallization of the AvrRxo1-ORF1:AvrRxo1-ORF2 tetramer complex at 1.64 Å resolution. AvrRxo1-ORF1 has a T4 polynucleotide kinase domain, and expression of AvrRxo1-ORF1 suppresses bacterial growth in a manner dependent on the kinase motif. Although AvrRxo1-ORF2 binds AvrRxo1-ORF1, it is structurally different from typical effector-binding chaperones, in that it has a distinct fold containing a novel kinase-binding domain. AvrRxo1-ORF2 functions to suppress the bacteriostatic activity of AvrRxo1-ORF1 in bacterial cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The Campylobacter jejuni CiaD effector protein activates MAP kinase signaling pathways and is required for the development of disease.

    Science.gov (United States)

    Samuelson, Derrick R; Eucker, Tyson P; Bell, Julia A; Dybas, Leslie; Mansfield, Linda S; Konkel, Michael E

    2013-10-21

    Enteric pathogens utilize a distinct set of proteins to modulate host cell signaling events that promote host cell invasion, induction of the inflammatory response, and intracellular survival. Human infection with Campylobacter jejuni, the causative agent of campylobacteriosis, is characterized by diarrhea containing blood and leukocytes. The clinical presentation of acute disease, which is consistent with cellular invasion, requires the delivery of the Campylobacter invasion antigens (Cia) to the cytosol of host cells via a flagellar Type III Secretion System (T3SS). We identified a novel T3SS effector protein, which we termed CiaD that is exported from the C. jejuni flagellum and delivered to the cytosol of host cells. We show that the host cell kinases p38 and Erk 1/2 are activated by CiaD, resulting in the secretion of interleukin-8 (IL-8) from host cells. Additional experiments revealed that CiaD-mediated activation of p38 and Erk 1/2 are required for maximal invasion of host cells by C. jejuni. CiaD contributes to disease, as evidenced by infection of IL-10 knockout mice. Noteworthy is that CiaD contains a Mitogen-activated protein (MAP) kinase-docking site that is found within effector proteins produced by other enteric pathogens. These findings indicate that C. jejuni activates the MAP kinase signaling pathways Erk 1/2 and p38 to promote cellular invasion and the release of the IL-8 pro-inflammatory chemokine. The identification of a novel T3SS effector protein from C. jejuni significantly expands the knowledge of virulence proteins associated with C. jejuni pathogenesis and provides greater insight into the mechanism utilized by C. jejuni to invade host cells.

  14. The Campylobacter jejuni CiaD effector protein activates MAP kinase signaling pathways and is required for the development of disease

    Science.gov (United States)

    2013-01-01

    Background Enteric pathogens utilize a distinct set of proteins to modulate host cell signaling events that promote host cell invasion, induction of the inflammatory response, and intracellular survival. Human infection with Campylobacter jejuni, the causative agent of campylobacteriosis, is characterized by diarrhea containing blood and leukocytes. The clinical presentation of acute disease, which is consistent with cellular invasion, requires the delivery of the Campylobacter invasion antigens (Cia) to the cytosol of host cells via a flagellar Type III Secretion System (T3SS). We identified a novel T3SS effector protein, which we termed CiaD that is exported from the C. jejuni flagellum and delivered to the cytosol of host cells. Results We show that the host cell kinases p38 and Erk 1/2 are activated by CiaD, resulting in the secretion of interleukin-8 (IL-8) from host cells. Additional experiments revealed that CiaD-mediated activation of p38 and Erk 1/2 are required for maximal invasion of host cells by C. jejuni. CiaD contributes to disease, as evidenced by infection of IL-10 knockout mice. Noteworthy is that CiaD contains a Mitogen-activated protein (MAP) kinase-docking site that is found within effector proteins produced by other enteric pathogens. These findings indicate that C. jejuni activates the MAP kinase signaling pathways Erk 1/2 and p38 to promote cellular invasion and the release of the IL-8 pro-inflammatory chemokine. Conclusions The identification of a novel T3SS effector protein from C. jejuni significantly expands the knowledge of virulence proteins associated with C. jejuni pathogenesis and provides greater insight into the mechanism utilized by C. jejuni to invade host cells. PMID:24144181

  15. Roles of JnRAP2.6-like from the transition zone of black walnut in hormone signaling

    Science.gov (United States)

    Zhonglian Huang; Peng Zhao; Jose Medina; Richard Meilan; Keith Woeste

    2013-01-01

    An EST sequence, designated JnRAP2-like, was isolated from tissue at the heartwood/sapwood transition zone (TZ) in black walnut (Juglans nigra L). The deduced amino acid sequence of JnRAP2-like protein consists of a single AP2- containing domain with significant similarity to conserved AP2/ERF DNA-binding domains in other...

  16. The Bacterial Effector AvrB-Induced RIN4 Hyperphosphorylation Is Mediated by a Receptor-Like Cytoplasmic Kinase Complex in Arabidopsis.

    Science.gov (United States)

    Xu, Ning; Luo, Xuming; Li, Wen; Wang, Zongyi; Liu, Jun

    2017-06-01

    Bacterial pathogen Pseudomonas syringae delivers diverse type III effectors into host cells to interfere with their immune responses. One of the effectors, AvrB, targets a host guardee protein RIN4 and induces RIN4 phosphorylation in Arabidopsis. Phosphorylated RIN4 activates the immune receptor RPM1 to mount defense. AvrB-induced RIN4 phosphorylation depends on RIPK, a receptor-like cytoplasmic kinase (RLCK). In this study, we found several other RLCKs that were also able to phosphorylate RIN4. We demonstrated that these RLCKs formed a complex with RIPK and were functionally redundant to RIPK. We also found that unphosphorylated RIN4 was epistatic to phosphorylated RIN4 in terms of RPM1 activation. AvrB-induced RLCK gene expression and phosphorylated RIN4-triggered RPM1 activation required RAR1, a central regulator in plant innate immunity. Our results unravel a mechanism in which plants employ multiple kinases to hyperphosphorylate the guardee protein RIN4 to ensure immune activation during pathogen invasion.

  17. Overexpression of the transcription factor RAP2.6 leads to enhanced callose deposition in syncytia and enhanced resistance against the beet cyst nematode Heterodera schachtii in Arabidopsis roots

    Science.gov (United States)

    2013-01-01

    Background Cyst nematodes invade the roots of their host plants as second stage juveniles and induce a syncytium which is their source of nutrients throughout their life. A transcriptome analysis of syncytia induced by the beet cyst nematode Heterodera schachtii in Arabidopsis roots has shown that gene expression in the syncytium is different from that of the root with thousands of genes upregulated or downregulated. Among the downregulated genes are many which code for defense-related proteins. One gene which is strongly downregulated codes for the ethylene response transcription factor RAP2.6. The genome of Arabidopsis contains 122 ERF transcription factor genes which are involved in a variety of developmental and stress responses. Results Expression of RAP2.6 was studied with RT-PCR and a promoter::GUS line. During normal growth conditions the gene was expressed especially in roots and stems. It was inducible by Pseudomonas syringae but downregulated in syncytia from a very early time point on. Overexpression of the gene enhanced the resistance against H. schachtii which was seen by a lower number of nematodes developing on these plants as well as smaller syncytia and smaller female nematodes. A T-DNA mutant had a reduced RAP2.6 transcript level but this did not further increase the susceptibility against H. schachtii. Neither overexpression lines nor mutants had an effect on P. syringae. Overexpression of RAP2.6 led to an elevated expression of JA-responsive genes during early time points after infection by H. schachtii. Syncytia developing on overexpression lines showed enhanced deposition of callose. Conclusions Our results showed that H. schachtii infection is accompanied by a downregulation of RAP2.6. It seems likely that the nematodes use effectors to actively downregulate the expression of this and other defense-related genes to avoid resistance responses of the host plant. Enhanced resistance of RAP2.6 overexpression lines seemed to be due to enhanced

  18. Human microcephaly ASPM protein is a spindle pole-focusing factor that functions redundantly with CDK5RAP2.

    Science.gov (United States)

    Tungadi, Elsa A; Ito, Ami; Kiyomitsu, Tomomi; Goshima, Gohta

    2017-11-01

    Nonsense mutations in the ASPM gene have been most frequently identified among familial microcephaly patients. Depletion of the Drosophila orthologue (asp) causes spindle pole unfocusing during mitosis in multiple cell types. However, it remains unknown whether human ASPM has a similar function. Here, by performing CRISPR-based gene knockout (KO) and RNA interference combined with auxin-inducible degron, we show that ASPM functions in spindle pole organisation during mitotic metaphase redundantly with another microcephaly protein, CDK5RAP2 (also called CEP215), in human tissue culture cells. Deletion of the ASPM gene alone did not affect spindle morphology or mitotic progression. However, when the pericentriolar material protein CDK5RAP2 was depleted in ASPM KO cells, spindle poles were unfocused during prometaphase, and anaphase onset was significantly delayed. The phenotypic analysis of CDK5RAP2-depleted cells suggested that the pole-focusing function of CDK5RAP2 is independent of its known function to localise the kinesin-14 motor HSET (also known as KIFC1) or activate the γ-tubulin complex. Finally, a hypomorphic mutation identified in ASPM microcephaly patients similarly caused spindle pole unfocusing in the absence of CDK5RAP2, suggesting a possible link between spindle pole disorganisation and microcephaly. © 2017. Published by The Company of Biologists Ltd.

  19. Adenovirus Protein E4-ORF1 Activation of PI3 Kinase Reveals Differential Regulation of Downstream Effector Pathways in Adipocytes

    Directory of Open Access Journals (Sweden)

    Natasha Chaudhary

    2016-12-01

    Full Text Available Insulin activation of phosphatidylinositol 3-kinase (PI3K regulates metabolism, including the translocation of the Glut4 glucose transporter to the plasma membrane and inactivation of the FoxO1 transcription factor. Adenoviral protein E4-ORF1 stimulates cellular glucose metabolism by mimicking growth-factor activation of PI3K. We have used E4-ORF1 as a tool to dissect PI3K-mediated signaling in adipocytes. E4-ORF1 activation of PI3K in adipocytes recapitulates insulin regulation of FoxO1 but not regulation of Glut4. This uncoupling of PI3K effects occurs despite E4-ORF1 activating PI3K and downstream signaling to levels achieved by insulin. Although E4-ORF1 does not fully recapitulate insulin’s effects on Glut4, it enhances insulin-stimulated insertion of Glut4-containing vesicles to the plasma membrane independent of Rab10, a key regulator of Glut4 trafficking. E4-ORF1 also stimulates plasma membrane translocation of ubiquitously expressed Glut1 glucose transporter, an effect that is likely essential for E4-ORF1 to promote an anabolic metabolism in a broad range of cell types.

  20. Oxygen Sensing via the Ethylene Response Transcription Factor RAP2.12 Affects Plant Metabolism and Performance under Both Normoxia and Hypoxia.

    Science.gov (United States)

    Paul, Melanie Verena; Iyer, Srignanakshi; Amerhauser, Carmen; Lehmann, Martin; van Dongen, Joost T; Geigenberger, Peter

    2016-09-01

    Subgroup-VII-ethylene-response-factor (ERF-VII) transcription factors are involved in the regulation of hypoxic gene expression and regulated by proteasome-mediated proteolysis via the oxygen-dependent branch of the N-end-rule pathway. While research into ERF-VII mainly focused on their role to regulate anoxic gene expression, little is known on the impact of this oxygen-sensing system in regulating plant metabolism and growth. By comparing Arabidopsis (Arabidopsis thaliana) plants overexpressing N-end-rule-sensitive and insensitive forms of the ERF-VII-factor RAP2.12, we provide evidence that oxygen-dependent RAP2.12 stability regulates central metabolic processes to sustain growth, development, and anoxic resistance of plants. (1) Under normoxia, overexpression of N-end-rule-insensitive Δ13RAP2.12 led to increased activities of fermentative enzymes and increased accumulation of fermentation products, which were accompanied by decreased adenylate energy states and starch levels, and impaired plant growth and development, indicating a role of oxygen-regulated RAP2.12 degradation to prevent aerobic fermentation. (2) In Δ13RAP2.12-overexpressing plants, decreased carbohydrate reserves also led to a decrease in anoxic resistance, which was prevented by external Suc supply. (3) Overexpression of Δ13RAP2.12 led to decreased respiration rates, changes in the levels of tricarboxylic acid cycle intermediates, and accumulation of a large number of amino acids, including Ala and γ-amino butyric acid, indicating a role of oxygen-regulated RAP2.12 abundance in controlling the flux-modus of the tricarboxylic acid cycle. (4) The increase in amino acids was accompanied by increased levels of immune-regulatory metabolites. These results show that oxygen-sensing, mediating RAP2.12 degradation is indispensable to optimize metabolic performance, plant growth, and development under both normoxic and hypoxic conditions. © 2016 American Society of Plant Biologists. All rights

  1. A novel type 3 secretion system effector, YspI of Yersinia enterocolitica, induces cell paralysis by reducing total focal adhesion kinase

    National Research Council Canada - National Science Library

    LeGrand, Karen; Matsumoto, Hiroyuki; Young, Glenn M

    2015-01-01

    ...   B iovar 1 B , that inhibits host cell motility. The action of YspI comes about through its specific interaction with focal adhesion kinase, FAK , which is a fulcrum of focal adhesion complexes for controlling cellular motility...

  2. RAP2.4a Is Transported through the Phloem to Regulate Cold and Heat Tolerance in Papaya Tree (Carica papaya cv. Maradol): Implications for Protection Against Abiotic Stress.

    Science.gov (United States)

    Figueroa-Yañez, Luis; Pereira-Santana, Alejandro; Arroyo-Herrera, Ana; Rodriguez-Corona, Ulises; Sanchez-Teyer, Felipe; Espadas-Alcocer, Jorge; Espadas-Gil, Francisco; Barredo-Pool, Felipe; Castaño, Enrique; Rodriguez-Zapata, Luis Carlos

    2016-01-01

    Plants respond to stress through metabolic and morphological changes that increase their ability to survive and grow. To this end, several transcription factor families are responsible for transmitting the signals that are required for these changes. Here, we studied the transcription factor superfamily AP2/ERF, particularly, RAP2.4 from Carica papaya cv. Maradol. We isolated four genes (CpRap2.4a, CpRAap2.4b, CpRap2.1 and CpRap2.10), and an in silico analysis showed that the four genes encode proteins that contain a conserved APETALA2 (AP2) domain located within group I and II transcription factors of the AP2/ERF superfamily. Semiquantitative PCR experiments indicated that each CpRap2 gene is differentially expressed under stress conditions, such as extreme temperatures. Moreover, genetic transformants of tobacco plants overexpressing CpRap2.4a and CpRap2.4b genes show a high level of tolerance to cold and heat stress compared to non-transformed plants. Confocal microscopy analysis of tobacco transgenic plants showed that CpRAP2.4a and CpRAP2.4b proteins were mainly localized to the nuclei of cells from the leaves and roots and also in the sieve elements. Moreover, the movement of CpRap2.4a RNA in tobacco grafting was analyzed. Our results indicate that CpRap2.4a and CpRap2.4b RNA in the papaya tree have a functional role in the response to stress conditions such as exposure to extreme temperatures via direct translation outside the parental RNA cell.

  3. Knockout of the PKN Family of Rho Effector Kinases Reveals a Non-redundant Role for PKN2 in Developmental Mesoderm Expansion

    Directory of Open Access Journals (Sweden)

    Ivan Quétier

    2016-01-01

    Full Text Available In animals, the protein kinase C (PKC family has expanded into diversely regulated subgroups, including the Rho family-responsive PKN kinases. Here, we describe knockouts of all three mouse PKN isoforms and reveal that PKN2 loss results in lethality at embryonic day 10 (E10, with associated cardiovascular and morphogenetic defects. The cardiovascular phenotype was not recapitulated by conditional deletion of PKN2 in endothelial cells or the developing heart. In contrast, inducible systemic deletion of PKN2 after E7 provoked collapse of the embryonic mesoderm. Furthermore, mouse embryonic fibroblasts, which arise from the embryonic mesoderm, depend on PKN2 for proliferation and motility. These cellular defects are reflected in vivo as dependence on PKN2 for mesoderm proliferation and neural crest migration. We conclude that failure of the mesoderm to expand in the absence of PKN2 compromises cardiovascular integrity and development, resulting in lethality.

  4. Subcellular proteomic approach for identifying the signaling effectors of protein kinase C-?2 under high glucose conditions in human umbilical vein endothelial cells

    OpenAIRE

    Zhang, Min; Sun, Fang; Chen, Fangfang; Zhou, Bo; DUAN, YAQIAN; SU, HONG; LIN, XUEBO

    2015-01-01

    The high glucose-induced activation of protein kinase C-?2 (PKC-?2) has an essential role in the pathophysiology of diabetes-associated vascular disease. In the present study, human umbilical vein endothelial cells (HUVECs) were cultured in high and normal glucose conditions prior to being infected with a recombinant adenovirus to induce the overexpression of PKC-?2. The activity of PKC-?2 was also decreased using a selective PKC-?2 inhibitor. A series of two-dimensional electrophoresis image...

  5. RAP2.4a Is Transported through the Phloem to Regulate Cold and Heat Tolerance in Papaya Tree (Carica papaya cv. Maradol): Implications for Protection Against Abiotic Stress

    National Research Council Canada - National Science Library

    Figueroa-Yañez, Luis; Pereira-Santana, Alejandro; Arroyo-Herrera, Ana; Rodriguez-Corona, Ulises; Sanchez-Teyer, Felipe; Espadas-Alcocer, Jorge; Espadas-Gil, Francisco; Barredo-Pool, Felipe; Castaño, Enrique; Rodriguez-Zapata, Luis Carlos

    2016-01-01

    ...) domain located within group I and II transcription factors of the AP2/ERF superfamily. Semiquantitative PCR experiments indicated that each CpRap2 gene is differentially expressed under stress conditions, such as extreme temperatures...

  6. A novel mutation in CDK5RAP2 gene causes primary microcephaly with speech impairment and sparse eyebrows in a consanguineous Pakistani family

    DEFF Research Database (Denmark)

    Abdullah, Uzma; Farooq, Muhammad; Mang, Yuan

    2017-01-01

    2 mutations is still under explored as only eleven families have been reported worldwide. Here, we analyzed a consanguineous Pakistani MCPH family, characterized by moderate to severe intellectual disability, speech impairment, moderately short stature and sparse eyebrows. Whole exome sequencing...... of the proband identified a 2bp duplication in exon 34 of CDK5RAP2 that causes frame-shift, leading to a premature stop codon. The resultant transcript is resistant to nonsense mediated decay, suggesting that the mutation leads to a truncated protein lacking C-terminal domains; CDK5R1, and Cnn motif 2 (CM2...

  7. End-effector microprocessor

    Science.gov (United States)

    Doggett, William R.

    1992-01-01

    The topics are presented in viewgraph form and include: automated structures assembly facility current control hierarchy; automated structures assembly facility purposed control hierarchy; end-effector software state transition diagram; block diagram for ideal install composite; and conclusions.

  8. Biochemistry and cell signaling taught by bacterial effectors.

    Science.gov (United States)

    Cui, Jixin; Shao, Feng

    2011-10-01

    Bacterial virulence often relies on secreted effectors that modulate eukaryotic signal transduction. Recent studies provide a collection of examples in which bacterial effectors carry out unprecedented posttranslational modifications of key signaling molecules or organize a new signaling network. OspF and YopJ families of effectors use novel modification activities to block kinase phosphoactivation. Targeting of the ubiquitin system by IpaH and Cif/CHBP families provides insights into host ubiquitin signaling. Manipulation of small GTPases by VopS/IbpA and SidM suggests previously underappreciated regulation of signaling. Several other effectors, including SifA and EspG, organize newly discovered signaling networks in membrane trafficking. Studies of these effectors can generate new knowledge in enzyme catalysis and provide new angles for furthering our understanding of biochemical regulation of important signaling pathways. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. The tomato Prf complex is a molecular trap for bacterial effectors based on Pto transphosphorylation.

    Directory of Open Access Journals (Sweden)

    Vardis Ntoukakis

    2013-01-01

    Full Text Available The major virulence strategy of phytopathogenic bacteria is to secrete effector proteins into the host cell to target the immune machinery. AvrPto and AvrPtoB are two such effectors from Pseudomonas syringae, which disable an overlapping range of kinases in Arabidopsis and Tomato. Both effectors target surface-localized receptor-kinases to avoid bacterial recognition. In turn, tomato has evolved an intracellular effector-recognition complex composed of the NB-LRR protein Prf and the Pto kinase. Structural analyses have shown that the most important interaction surface for AvrPto and AvrPtoB is the Pto P+1 loop. AvrPto is an inhibitor of Pto kinase activity, but paradoxically, this kinase activity is a prerequisite for defense activation by AvrPto. Here using biochemical approaches we show that disruption of Pto P+1 loop stimulates phosphorylation in trans, which is possible because the Pto/Prf complex is oligomeric. Both P+1 loop disruption and transphosphorylation are necessary for signalling. Thus, effector perturbation of one kinase molecule in the complex activates another. Hence, the Pto/Prf complex is a sophisticated molecular trap for effectors that target protein kinases, an essential aspect of the pathogen's virulence strategy. The data presented here give a clear view of why bacterial virulence and host recognition mechanisms are so often related and how the slowly evolving host is able to keep pace with the faster-evolving pathogen.

  10. Identification and characterization of CKLiK, a novel granulocyteCa^(++)/calmodulin-dependent kinase

    NARCIS (Netherlands)

    Verploegen, Sandra; Lammers, J.W.J.; Koenderman, L.; Coffer, P.J.

    2000-01-01

    Human granulocytes are characterized by a variety of specific effector functions involved in host defense. Several widely expressed protein kinases have been implicated in the regulation of these effector functions. A polymerase chain reaction- based strategy was used to identify

  11. Effector glycosyltransferases in Legionella

    Directory of Open Access Journals (Sweden)

    Yury eBelyi

    2011-04-01

    Full Text Available Legionella causes severe pneumonia in humans. The pathogen produces an array of effectors, which interfere with host cell functions. Among them are the glucosyltransferases Lgt1, Lgt2 and Lgt3 from L. pneumophila. Lgt1 and Lgt2 are produced predominately in the post-exponential phase of bacterial growth, while synthesis of Lgt3 is induced mainly in the lag-phase before intracellular replication of bacteria starts. Lgt glucosyltransferases are structurally similar to clostridial glucosylating toxins. The enzymes use UDP-glucose as a donor substrate and modify eukaryotic elongation factor eEF1A at serine-53. This modification results in inhibition of protein synthesis and death of target cells. In addition to Lgts, Legionella genomes disclose several genes, coding for effector proteins likely to possess glycosyltransferase activities, including SetA, which influences vesicular trafficking in the yeast model system and displays tropism for late endosomal/lysosomal compartments of mammalian cells. This review mainly discusses recent results on the structure-function relationship of Lgt glucosyltransferases.

  12. The effector AvrRxo1 phosphorylates NAD in planta.

    Directory of Open Access Journals (Sweden)

    Teja Shidore

    2017-06-01

    Full Text Available Gram-negative bacterial pathogens of plants and animals employ type III secreted effectors to suppress innate immunity. Most characterized effectors work through modification of host proteins or transcriptional regulators, although a few are known to modify small molecule targets. The Xanthomonas type III secreted avirulence factor AvrRxo1 is a structural homolog of the zeta toxin family of sugar-nucleotide kinases that suppresses bacterial growth. AvrRxo1 was recently reported to phosphorylate the central metabolite and signaling molecule NAD in vitro, suggesting that the effector might enhance bacterial virulence on plants through manipulation of primary metabolic pathways. In this study, we determine that AvrRxo1 phosphorylates NAD in planta, and that its kinase catalytic sites are necessary for its toxic and resistance-triggering phenotypes. A global metabolomics approach was used to independently identify 3'-NADP as the sole detectable product of AvrRxo1 expression in yeast and bacteria, and NAD kinase activity was confirmed in vitro. 3'-NADP accumulated upon transient expression of AvrRxo1 in Nicotiana benthamiana and in rice leaves infected with avrRxo1-expressing strains of X. oryzae. Mutation of the catalytic aspartic acid residue D193 abolished AvrRxo1 kinase activity and several phenotypes of AvrRxo1, including toxicity in yeast, bacteria, and plants, suppression of the flg22-triggered ROS burst, and ability to trigger an R gene-mediated hypersensitive response. A mutation in the Walker A ATP-binding motif abolished the toxicity of AvrRxo1, but did not abolish the 3'-NADP production, virulence enhancement, ROS suppression, or HR-triggering phenotypes of AvrRxo1. These results demonstrate that a type III effector targets the central metabolite and redox carrier NAD in planta, and that this catalytic activity is required for toxicity and suppression of the ROS burst.

  13. MAP Kinase Signaling Pathways: A Hub of Plant-Microbe Interactions.

    Science.gov (United States)

    Bi, Guozhi; Zhou, Jian-Min

    2017-03-08

    In 2007, we reported that a phytopathogen effector directly inhibits a MAP kinase cascade. In the decade since, many more effectors have been found to inhibit MAP kinase cascades, providing not only a mechanistic understanding of pathogenesis and immunity in plants, but also the identification of previously unknown enzymes. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Inhibitors caveolin-1 and protein kinase G show differential ...

    African Journals Online (AJOL)

    protein interactions with caveolin-1 before extracellular activating signals release it for nitric oxide (NO) production. Smooth muscle protein kinase G (PKG) is a down-stream effector of NO signaling for relaxation of vascular smooth muscle cells ...

  15. Identification of Novel Host Interactors of Effectors Secreted by Salmonella and Citrobacter

    Energy Technology Data Exchange (ETDEWEB)

    Sontag, Ryan L.; Nakayasu, Ernesto S.; Brown, Roslyn N.; Niemann, George S.; Sydor, Michael A.; Sanchez, Octavio; Ansong, Charles; Lu, Shao-Yeh; Choi, Hyungwon; Valleau, Dylan; Weitz, Karl K.; Savchenko, Alexei; Cambronne, Eric D.; Adkins, Joshua N.; McFall-Ngai, Margaret J.

    2016-07-12

    Many pathogenic bacteria of the familyEnterobacteriaceaeuse type III secretion systems to inject virulence proteins, termed “effectors,” into the host cell cytosol. Although host-cellular activities of several effectors have been demonstrated, the function and host-targeted pathways of most of the effectors identified to date are largely undetermined. To gain insight into host proteins targeted by bacterial effectors, we performed coaffinity purification of host proteins from cell lysates using recombinant effectors from theEnterobacteriaceaeintracellular pathogensSalmonella entericaserovar Typhimurium andCitrobacter rodentium. We identified 54 high-confidence host interactors for theSalmonellaeffectors GogA, GtgA, GtgE, SpvC, SrfH, SseL, SspH1, and SssB collectively and 21 interactors for theCitrobactereffectors EspT, NleA, NleG1, and NleK. We biochemically validated the interaction between the SrfHSalmonellaprotein and the extracellular signal-regulated kinase 2 (ERK2) host protein kinase, which revealed a role for this effector in regulating phosphorylation levels of this enzyme, which plays a central role in signal transduction.

    IMPORTANCEDuring infection, pathogenic bacteria face an adverse environment of factors driven by both cellular and humoral defense mechanisms. To help evade the immune response and ultimately proliferate inside the host, many bacteria evolved specialized secretion systems to deliver effector proteins directly into host cells. Translocated effector proteins function to subvert host defense mechanisms. Numerous pathogenic bacteria use a specialized secretion system called type III secretion to deliver effectors into the host cell cytosol. Here, we identified 75 new host targets ofSalmonellaandCitrobactereffectors, which will help elucidate their mechanisms of

  16. Improving a Gripper End Effector

    Energy Technology Data Exchange (ETDEWEB)

    Mullen, O Dennis; Smith, Christopher M.; Gervais, Kevin L.

    2001-01-31

    This paper discusses the improvement made to an existing four-bar linkage gripping end effector to adapt it for use in a current project. The actuating linkage was modified to yield higher jaw force overall and particularly in the critical range of jaw displacement

  17. RNAi effector diversity in nematodes.

    Directory of Open Access Journals (Sweden)

    Johnathan J Dalzell

    2011-06-01

    Full Text Available While RNA interference (RNAi has been deployed to facilitate gene function studies in diverse helminths, parasitic nematodes appear variably susceptible. To test if this is due to inter-species differences in RNAi effector complements, we performed a primary sequence similarity survey for orthologs of 77 Caenorhabditis elegans RNAi pathway proteins in 13 nematode species for which genomic or transcriptomic datasets were available, with all outputs subjected to domain-structure verification. Our dataset spanned transcriptomes of Ancylostoma caninum and Oesophagostomum dentatum, and genomes of Trichinella spiralis, Ascaris suum, Brugia malayi, Haemonchus contortus, Meloidogyne hapla, Meloidogyne incognita and Pristionchus pacificus, as well as the Caenorhabditis species C. brenneri, C. briggsae, C. japonica and C. remanei, and revealed that: (i Most of the C. elegans proteins responsible for uptake and spread of exogenously applied double stranded (dsRNA are absent from parasitic species, including RNAi-competent plant-nematodes; (ii The Argonautes (AGOs responsible for gene expression regulation in C. elegans are broadly conserved, unlike those recruited during the induction of RNAi by exogenous dsRNA; (iii Secondary Argonautes (SAGOs are poorly conserved, and the nuclear AGO NRDE-3 was not identified in any parasite; (iv All five Caenorhabditis spp. possess an expanded RNAi effector repertoire relative to the parasitic nematodes, consistent with the propensity for gene loss in nematode parasites; (v In spite of the quantitative differences in RNAi effector complements across nematode species, all displayed qualitatively similar coverage of functional protein groups. In summary, we could not identify RNAi effector deficiencies that associate with reduced susceptibility in parasitic nematodes. Indeed, similarities in the RNAi effector complements of RNAi refractory and competent nematode parasites support the broad applicability of this research

  18. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants

    Directory of Open Access Journals (Sweden)

    Nam-Soo Jwa

    2017-09-01

    Full Text Available Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP-triggered immunity (PTI and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.

  19. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants.

    Science.gov (United States)

    Jwa, Nam-Soo; Hwang, Byung Kook

    2017-01-01

    Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.

  20. Receptor Tyrosine Kinases in Drosophila Development

    Science.gov (United States)

    Sopko, Richelle; Perrimon, Norbert

    2013-01-01

    Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases. PMID:23732470

  1. Crystal structure of Cryptosporidium parvum pyruvate kinase.

    Directory of Open Access Journals (Sweden)

    William J Cook

    Full Text Available Pyruvate kinase plays a critical role in cellular metabolism of glucose by serving as a major regulator of glycolysis. This tetrameric enzyme is allosterically regulated by different effector molecules, mainly phosphosugars. In response to binding of effector molecules and substrates, significant structural changes have been identified in various pyruvate kinase structures. Pyruvate kinase of Cryptosporidium parvum is exceptional among known enzymes of protozoan origin in that it exhibits no allosteric property in the presence of commonly known effector molecules. The crystal structure of pyruvate kinase from C. parvum has been solved by molecular replacement techniques and refined to 2.5 Å resolution. In the active site a glycerol molecule is located near the γ-phosphate site of ATP, and the protein structure displays a partially closed active site. However, unlike other structures where the active site is closed, the α6' helix in C. parvum pyruvate kinase unwinds and assumes an extended conformation. In the crystal structure a sulfate ion is found at a site that is occupied by a phosphate of the effector molecule in many pyruvate kinase structures. A new feature of the C. parvum pyruvate kinase structure is the presence of a disulfide bond cross-linking the two monomers in the asymmetric unit. The disulfide bond is formed between cysteine residue 26 in the short N-helix of one monomer with cysteine residue 312 in a long helix (residues 303-320 of the second monomer at the interface of these monomers. Both cysteine residues are unique to C. parvum, and the disulfide bond remained intact in a reduced environment. However, the significance of this bond, if any, remains unknown at this time.

  2. The Rho kinases I and II regulate different aspects of myosin II activity

    DEFF Research Database (Denmark)

    Yoneda, Atsuko; Multhaupt, Hinke A B; Couchman, John R

    2005-01-01

    The homologous mammalian rho kinases (ROCK I and II) are assumed to be functionally redundant, based largely on kinase construct overexpression. As downstream effectors of Rho GTPases, their major substrates are myosin light chain and myosin phosphatase. Both kinases are implicated in microfilament...

  3. The phosphothreonine lyase activity of a bacterial type III effector family.

    Science.gov (United States)

    Li, Hongtao; Xu, Hao; Zhou, Yan; Zhang, Jie; Long, Chengzu; Li, Shuqin; Chen, She; Zhou, Jian-Min; Shao, Feng

    2007-02-16

    Pathogenic bacteria use the type III secretion system to deliver effector proteins into host cells to modulate the host signaling pathways. In this study, the Shigella type III effector OspF was shown to inactivate mitogen-activated protein kinases (MAPKs) [extracellular signal-regulated kinases 1 and 2 (Erk1/2), c-Jun N-terminal kinase, and p38]. OspF irreversibly removed phosphate groups from the phosphothreonine but not from the phosphotyrosine residue in the activation loop of MAPKs. Mass spectrometry revealed a mass loss of 98 daltons in p-Erk2, due to the abstraction of the alpha proton concomitant with cleavage of the C-OP bond in the phosphothreonine residue. This unexpected enzymatic activity, termed phosphothreonine lyase, appeared specific for MAPKs and was shared by other OspF family members.

  4. Effector-independent and effector-dependent sequence representations underlie general and specific perceptuomotor sequence learning.

    Science.gov (United States)

    Andresen, David R; Marsolek, Chad J

    2012-01-01

    Perceptuomotor sequence learning could be due to learning of effector-independent sequence information (e.g., response locations), effector-dependent information (e.g., motor movements of a particular effector), or both. Evidence also suggests that learning of statistical regularities in sequences (general-regularity learning) and specific sequences (specific-sequence learning) are dissociable. The authors examined the degree to which general and specific-sequence learning rely on effector-independent and effector-dependent representations. During training, participants typed sequences that followed a construction rule with a subset of sequences repeatedly processed. At test, effector-independent and effector-dependent learning was examined with respect to general-regularity and specific-sequence learning. Results suggest that general-regularity learning is subserved by effector-independent sequence representations, whereas specific-sequence learning is subserved by effector-dependent sequence representations, further dissociating these types of learning.

  5. Cyclic AMP (cAMP)-mediated stimulation of adipocyte differentiation requires the synergistic action of Epac- and cAMP-dependent protein kinase-dependent processes

    DEFF Research Database (Denmark)

    Petersen, Rasmus Koefoed; Madsen, Lise; Pedersen, Lone Møller

    2008-01-01

    Cyclic AMP (cAMP)-dependent processes are pivotal during the early stages of adipocyte differentiation. We show that exchange protein directly activated by cAMP (Epac), which functions as a guanine nucleotide exchange factor for the Ras-like GTPases Rap1 and Rap2, was required for cAMP-dependent ......Cyclic AMP (cAMP)-dependent processes are pivotal during the early stages of adipocyte differentiation. We show that exchange protein directly activated by cAMP (Epac), which functions as a guanine nucleotide exchange factor for the Ras-like GTPases Rap1 and Rap2, was required for c......AMP-dependent stimulation of adipocyte differentiation. Epac, working via Rap, acted synergistically with cAMP-dependent protein kinase (protein kinase A [PKA]) to promote adipogenesis. The major role of PKA was to down-regulate Rho and Rho-kinase activity, rather than to enhance CREB phosphorylation. Suppression of Rho......-kinase impaired proadipogenic insulin/insulin-like growth factor 1 signaling, which was restored by activation of Epac. This interplay between PKA and Epac-mediated processes not only provides novel insight into the initiation and tuning of adipocyte differentiation, but also demonstrates a new mechanism of c...

  6. Deciphering interplay between Salmonella invasion effectors.

    Directory of Open Access Journals (Sweden)

    Robert J Cain

    2008-04-01

    Full Text Available Bacterial pathogens have evolved a specialized type III secretion system (T3SS to translocate virulence effector proteins directly into eukaryotic target cells. Salmonellae deploy effectors that trigger localized actin reorganization to force their own entry into non-phagocytic host cells. Six effectors (SipC, SipA, SopE/2, SopB, SptP can individually manipulate actin dynamics at the plasma membrane, which acts as a 'signaling hub' during Salmonella invasion. The extent of crosstalk between these spatially coincident effectors remains unknown. Here we describe trans and cisbinary entry effector interplay (BENEFIT screens that systematically examine functional associations between effectors following their delivery into the host cell. The results reveal extensive ordered synergistic and antagonistic relationships and their relative potency, and illuminate an unexpectedly sophisticated signaling network evolved through longstanding pathogen-host interaction.

  7. Space Station end effector strategy study

    Science.gov (United States)

    Katzberg, Stephen J.; Jensen, Robert L.; Willshire, Kelli F.; Satterthwaite, Robert E.

    1987-01-01

    The results of a study are presented for terminology definition, identification of functional requirements, technolgy assessment, and proposed end effector development strategies for the Space Station Program. The study is composed of a survey of available or under-developed end effector technology, identification of requirements from baselined Space Station documents, a comparative assessment of the match between technology and requirements, and recommended strategies for end effector development for the Space Station Program.

  8. Function and targets of Fusarium oxysporum effectors

    NARCIS (Netherlands)

    Gawehns, F.K.K.

    2014-01-01

    A multi-layered immune system protects plants against pathogens. Adapted pathogens overcome or evade this immune system by secreting small proteins, called effectors. Often susceptibility genes encode host targets for these effectors, and loss-of-function mutations in such target genes can confer

  9. Host Cell Nuclear Localization of Shigella flexneri Effector OspF Is Facilitated by SUMOylation.

    Science.gov (United States)

    Jo, Kyungmin; Kim, Eun Jin; Yu, Hyun Jin; Yun, Cheol-Heui; Kim, Dong Wook

    2017-03-28

    When Shigella infect host cells, various effecter molecules are delivered into the cytoplasm of the host cell through the type III secretion system (TTSS) to facilitate their invasion process and control the host immune responses. Among these effectors, the S. flexneri effector OspF dephosphorylates mitogen-activated protein kinases and translocates itself to the nucleus, thus preventing histone H3 modification to regulate expression of proinflammatory cytokines. Despite the critical role of OspF, the mechanism by which it localizes in the nucleus has remained to be elucidated. In the present study, we identified a potential small ubiquitin-related modifier (SUMO) modification site within OspF and we demonstrated that Shigella TTSS effector OspF is conjugated with SUMO in the host cell and this modification mediates the nuclear translocation of OspF. Our results show a bacterial virulence factor can exploit host post-translational machinery to execute its intracellular trafficking.

  10. A candidate RxLR effector from Plasmopara viticola can elicit immune responses in Nicotiana benthamiana.

    Science.gov (United States)

    Xiang, Jiang; Li, Xinlong; Yin, Ling; Liu, Yunxiao; Zhang, Yali; Qu, Junjie; Lu, Jiang

    2017-04-14

    Diverse plant pathogens deliver effectors into plant cells to alter host processes. Oomycete pathogen encodes a large number of putative RxLR effectors which are likely to play a role in manipulating plant defense responses. The secretome of Plasmopara viticola (downy mildew of grapevine) contains at least 162 candidate RxLR effectors discovered in our recent studies, but their roles in infection and pathogenicity remain to be determined. Here, we characterize in depth one of the putative RxLR effectors, PvRxLR16, which has been reported to induce cell death in Nicotiana benthamiana in our previous study. The nuclear localization, W/Y/L motifs, and a putative N-glycosylation site in C-terminal of PvRxLR16 were essential for cell death-inducing activity. Suppressor of G-two allele of Skp1 (SGT1), heat shock protein 90 (HSP90) and required for Mla12 resistance (RAR1), but not somatic embryogenesis receptor-like kinase (SERK3), were required for the cell death response triggered by PvRxLR16 in N. benthamiana. Some mitogen-activated protein kinases and transcription factors were also involved in the perception of PvRxLR16 by N. benthamiana. PvRxLR16 could also significantly enhance plant resistance to Phytophthora capsici and the nuclear localization was required for this ability. However, some other PvRxLR effectors could suppress defense responses and disease resistance induced by PvRxLR16, suggesting that it may not trigger host cell death or immune responses during physiological infection under natural conditions. These data demonstrate that PvRxLR16 may be recognized by endogenous proteins in nucleus to trigger immune responses in N. benthamiana, which in turn can be suppressed by other PvRxLR effectors.

  11. Combover/CG10732, a novel PCP effector for Drosophila wing hair formation.

    Directory of Open Access Journals (Sweden)

    Jeremy K Fagan

    Full Text Available The polarization of cells is essential for the proper functioning of most organs. Planar Cell Polarity (PCP, the polarization within the plane of an epithelium, is perpendicular to apical-basal polarity and established by the non-canonical Wnt/Fz-PCP signaling pathway. Within each tissue, downstream PCP effectors link the signal to tissue specific readouts such as stereocilia orientation in the inner ear and hair follicle orientation in vertebrates or the polarization of ommatidia and wing hairs in Drosophila melanogaster. Specific PCP effectors in the wing such as Multiple wing hairs (Mwh and Rho Kinase (Rok are required to position the hair at the correct position and to prevent ectopic actin hairs. In a genome-wide screen in vitro, we identified Combover (Cmb/CG10732 as a novel Rho kinase substrate. Overexpression of Cmb causes the formation of a multiple hair cell phenotype (MHC, similar to loss of rok and mwh. This MHC phenotype is dominantly enhanced by removal of rok or of other members of the PCP effector gene family. Furthermore, we show that Cmb physically interacts with Mwh, and cmb null mutants suppress the MHC phenotype of mwh alleles. Our data indicate that Cmb is a novel PCP effector that promotes to wing hair formation, a function that is antagonized by Mwh.

  12. Combover/CG10732, a novel PCP effector for Drosophila wing hair formation.

    Science.gov (United States)

    Fagan, Jeremy K; Dollar, Gretchen; Lu, Qiuheng; Barnett, Austen; Pechuan Jorge, Joaquin; Schlosser, Andreas; Pfleger, Cathie; Adler, Paul; Jenny, Andreas

    2014-01-01

    The polarization of cells is essential for the proper functioning of most organs. Planar Cell Polarity (PCP), the polarization within the plane of an epithelium, is perpendicular to apical-basal polarity and established by the non-canonical Wnt/Fz-PCP signaling pathway. Within each tissue, downstream PCP effectors link the signal to tissue specific readouts such as stereocilia orientation in the inner ear and hair follicle orientation in vertebrates or the polarization of ommatidia and wing hairs in Drosophila melanogaster. Specific PCP effectors in the wing such as Multiple wing hairs (Mwh) and Rho Kinase (Rok) are required to position the hair at the correct position and to prevent ectopic actin hairs. In a genome-wide screen in vitro, we identified Combover (Cmb)/CG10732 as a novel Rho kinase substrate. Overexpression of Cmb causes the formation of a multiple hair cell phenotype (MHC), similar to loss of rok and mwh. This MHC phenotype is dominantly enhanced by removal of rok or of other members of the PCP effector gene family. Furthermore, we show that Cmb physically interacts with Mwh, and cmb null mutants suppress the MHC phenotype of mwh alleles. Our data indicate that Cmb is a novel PCP effector that promotes to wing hair formation, a function that is antagonized by Mwh.

  13. ROBOTIC TANK INSPECTION END EFFECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Landry

    1999-10-01

    The objective of this contract between Oceaneering Space Systems (OSS) and the Department of Energy (DOE) was to provide a tool for the DOE to inspect the inside tank walls of underground radioactive waste storage tanks in their tank farms. Some of these tanks are suspected to have leaks, but the harsh nature of the environment within the tanks precludes human inspection of tank walls. As a result of these conditions only a few inspection methods can fulfill this task. Of the methods available, OSS chose to pursue Alternating Current Field Measurement (ACFM), because it does not require clean surfaces for inspection, nor any contact with the Surface being inspected, and introduces no extra by-products in the inspection process (no coupling fluids or residues are left behind). The tool produced by OSS is the Robotic Tank Inspection End Effector (RTIEE), which is initially deployed on the tip of the Light Duty Utility Arm (LDUA). The RTEE combines ACFM with a color video camera for both electromagnetic and visual inspection The complete package consists of an end effector, its corresponding electronics and software, and a user's manual to guide the operator through an inspection. The system has both coarse and fine inspection modes and allows the user to catalog defects and suspected areas of leakage in a database for further examination, which may lead to emptying the tank for repair, decommissioning, etc.. The following is an updated report to OSS document OSS-21100-7002, which was submitted in 1995. During the course of the contract, two related subtasks arose, the Wall and Coating Thickness Sensor and the Vacuum Scarifying and Sampling Tool Assembly. The first of these subtasks was intended to evaluate the corrosion and wall thinning of 55-gallon steel drums. The second was retrieved and characterized the waste material trapped inside the annulus region of the underground tanks on the DOE's tank farms. While these subtasks were derived from the original

  14. Regulation of uridine kinase quaternary structure. Dissociation by the inhibitor CTP.

    Science.gov (United States)

    Payne, R C; Traut, T W

    1982-11-10

    Uridine kinase from mouse Ehrlich ascites cells can exist in a variety of different aggregation states, from monomer up to aggregates that may contain 32 or more subunits. With very crude enzyme preparations, uridine kinase activity is always associated with several different coexisting molecular weight species. Changes in the aggregation state are produced in the presence of normal effectors (orthophosphate, ATP and CTP) at physiological concentrations. With uridine kinase that has been purified 9,000-fold, enzyme activity is associated with only a single molecular weight species, but is still responsive to the same physiological effectors. In the presence of orthophosphate, uridine kinase has a molecular weight of 380,000 (appropriate for a dodecamer). In the presence of CTP, the enzyme dissociates with concomitant loss of activity. The dissociated enzyme can be reassociated to the native size. These results imply that alteration of the enzyme's quaternary structure by normal effectors constitutes a mechanism for regulating uridine kinase activity in vivo.

  15. MAP kinase cascades in Arabidopsis innate immunity

    DEFF Research Database (Denmark)

    Rasmussen, Magnus Wohlfahrt; Roux, Milena Edna; Petersen, Morten

    2012-01-01

    Plant mitogen-activated protein kinase (MAPK) cascades generally transduce extracellular stimuli into cellular responses. These stimuli include the perception of pathogen-associated molecular patterns (PAMPs) by host transmembrane pattern recognition receptors which trigger MAPK-dependent innate...... immune responses. In the model Arabidopsis, molecular genetic evidence implicates a number of MAPK cascade components in PAMP signaling, and in responses to immunity-related phytohormones such as ethylene, jasmonate, and salicylate. In a few cases, cascade components have been directly linked...... to the transcription of target genes or to the regulation of phytohormone synthesis. Thus MAPKs are obvious targets for bacterial effector proteins and are likely guardees of resistance proteins, which mediate defense signaling in response to the action of effectors, or effector-triggered immunity. This mini...

  16. A new Rab7 effector controls phosphoinositide conversion in endosome maturation.

    Science.gov (United States)

    Casanova, James E; Winckler, Bettina

    2017-10-02

    Endosome maturation requires a coordinated change in the Rab GTPase and phosphoinositide composition of the endosomal membrane. In this issue, Liu et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201705151) identify WDR91 as a ubiquitous Rab7 effector that inhibits phosphatidylinositol 3-kinase activity on endosomes and is critical for endosome maturation, viability, and dendrite growth of neurons in vivo. © 2017 Casanova and Winckler.

  17. Oxysterols and Their Cellular Effectors

    Directory of Open Access Journals (Sweden)

    Eija Nissilä

    2012-02-01

    Full Text Available Oxysterols are oxidized 27-carbon cholesterol derivatives or by-products of cholesterol biosynthesis, with a spectrum of biologic activities. Several oxysterols have cytotoxic and pro-apoptotic activities, the ability to interfere with the lateral domain organization, and packing of membrane lipids. These properties may account for their suggested roles in the pathology of diseases such as atherosclerosis, age-onset macular degeneration and Alzheimer’s disease. Oxysterols also have the capacity to induce inflammatory responses and play roles in cell differentiation processes. The functions of oxysterols as intermediates in the synthesis of bile acids and steroid hormones, and as readily transportable forms of sterol, are well established. Furthermore, their actions as endogenous regulators of gene expression in lipid metabolism via liver X receptors and the Insig (insulin-induced gene proteins have been investigated in detail. The cytoplasmic oxysterol-binding protein (OSBP homologues form a group of oxysterol/cholesterol sensors that has recently attracted a lot of attention. However, their mode of action is, as yet, poorly understood. Retinoic acid receptor-related orphan receptors (ROR α and γ, and Epstein-Barr virus induced gene 2 (EBI2 have been identified as novel oxysterol receptors, revealing new physiologic oxysterol effector mechanisms in development, metabolism, and immunity, and evoking enhanced interest in these compounds in the field of biomedicine.

  18. Mycobacterium tuberculosis effectors interfering host apoptosis signaling.

    Science.gov (United States)

    Liu, Minqiang; Li, Wu; Xiang, Xiaohong; Xie, Jianping

    2015-07-01

    Tuberculosis remains a serious human public health concern. The coevolution between its pathogen Mycobacterium tuberculosis and human host complicated the way to prevent and cure TB. Apoptosis plays subtle role in this interaction. The pathogen endeavors to manipulate the apoptosis via diverse effectors targeting key signaling nodes. In this paper, we summarized the effectors pathogen used to subvert the apoptosis, such as LpqH, ESAT-6/CFP-10, LAMs. The interplay between different forms of cell deaths, such as apoptosis, autophagy, necrosis, is also discussed with a focus on the modes of action of effectors, and implications for better TB control.

  19. Effector biology exhibits diversity at every level.

    Science.gov (United States)

    Ma, Wenbo; Wang, Yuanchao; McDowell, John M

    2017-11-21

    Effector proteins play key roles in the molecular interplay between plants and plant-associated organisms, and effector biology remains one of the most active areas in the research field of molecular plant-microbe Interactions. Using effectors as probes, much has been learned about pathogen virulence and host immunity, which has broad implications in developing disease-resistant crops that are essential for global food security. Thus, the MPMI Editorial Board felt that it is an opportune time to showcase recent progress in this area.

  20. Epigenetic control of effectors in plant pathogens

    Directory of Open Access Journals (Sweden)

    Mark eGijzen

    2014-11-01

    Full Text Available Plant pathogens display impressive versatility in adapting to host immune systems. Pathogen effector proteins facilitate disease but can become avirulence (Avr factors when the host acquires discrete recognition capabilities that trigger immunity. The mechanisms that lead to changes to pathogen Avr factors that enable escape from host immunity are diverse, and include epigenetic switches that allow for reuse or recycling of effectors. This perspective outlines possibilities of how epigenetic control of Avr effector gene expression may have arisen and persisted in plant pathogens, and how it presents special problems for diagnosis and detection of specific pathogen strains or pathotypes.

  1. The Salmonella effector protein SpvC, a phosphothreonine lyase is functional in plant cells.

    Science.gov (United States)

    Neumann, Christina; Fraiture, Malou; Hernàndez-Reyes, Casandra; Akum, Fidele N; Virlogeux-Payant, Isabelle; Chen, Ying; Pateyron, Stephanie; Colcombet, Jean; Kogel, Karl-Heinz; Hirt, Heribert; Brunner, Frédéric; Schikora, Adam

    2014-01-01

    Salmonella is one of the most prominent causes of food poisoning and growing evidence indicates that contaminated fruits and vegetables are an increasing concern for human health. Successful infection demands the suppression of the host immune system, which is often achieved via injection of bacterial effector proteins into host cells. In this report we present the function of Salmonella effector protein in plant cell, supporting the new concept of trans-kingdom competence of this bacterium. We screened a range of Salmonella Typhimurium effector proteins for interference with plant immunity. Among these, the phosphothreonine lyase SpvC attenuated the induction of immunity-related genes when present in plant cells. Using in vitro and in vivo systems we show that this effector protein interacts with and dephosphorylates activated Arabidopsis Mitogen-activated Protein Kinase 6 (MPK6), thereby inhibiting defense signaling. Moreover, the requirement of Salmonella SpvC was shown by the decreased proliferation of the ΔspvC mutant in Arabidopsis plants. These results suggest that some Salmonella effector proteins could have a conserved function during proliferation in different hosts. The fact that Salmonella and other Enterobacteriaceae use plants as hosts strongly suggests that plants represent a much larger reservoir for animal pathogens than so far estimated.

  2. The Salmonella effector protein SpvC, a phosphothreonine lyase is functional in plant cells

    KAUST Repository

    Neumann, Christina

    2014-10-17

    Salmonella is one of the most prominent causes of food poisoning and growing evidence indicates that contaminated fruits and vegetables are an increasing concern for human health. Successful infection demands the suppression of the host immune system, which is often achieved via injection of bacterial effector proteins into host cells. In this report we present the function of Salmonella effector protein in plant cell, supporting the new concept of trans-kingdom competence of this bacterium. We screened a range of Salmonella Typhimurium effector proteins for interference with plant immunity. Among these, the phosphothreonine lyase SpvC attenuated the induction of immunity-related genes when present in plant cells. Using in vitro and in vivo systems we show that this effector protein interacts with and dephosphorylates activated Arabidopsis Mitogen-activated Protein Kinase 6 (MPK6), thereby inhibiting defense signaling. Moreover, the requirement of Salmonella SpvC was shown by the decreased proliferation of the ΔspvC mutant in Arabidopsis plants. These results suggest that some Salmonella effector proteins could have a conserved function during proliferation in different hosts. The fact that Salmonella and other Enterobacteriaceae use plants as hosts strongly suggests that plants represent a much larger reservoir for animal pathogens than so far estimated.

  3. A finger mechanism for adaptive end effectors

    OpenAIRE

    Dubey, Venketesh N.; Crowder, Richard M.

    2002-01-01

    This paper presents design and analysis of a rigid link finger, which may be suitable for a number of adaptive end effectors. The design has evolved from an industrial need for a tele-operated system to be used in nuclear environments. The end effector is designed to assist repair work in nuclear reactors during retrieval operation, particularly for the purpose of grasping objects of various shape, size and mass. The work is based on the University of Southampton's Whole Arm Manipulator, whic...

  4. An emerging role for p21-activated kinases (Paks) in viral infections

    DEFF Research Database (Denmark)

    Van den Broeke, Celine; Radu, Maria; Chernoff, Jonathan

    2010-01-01

    p21-activated protein kinases (Paks) are cytosolic serine/threonine protein kinases that act as effectors for small (p21) GTPases of the Cdc42 and Rac families. It has long been established that Paks play a major role in a host of vital cellular functions such as proliferation, survival...

  5. CB1 Cannabinoid Receptors Modulate Kinase and Phosphatase Activity during Extinction of Conditioned Fear in Mice

    Science.gov (United States)

    Kamprath, Kornelia; Hermann, Heike; Lutz, Beat; Marsicano, Giovanni; Cannich, Astrid; Wotjak, Carsten T.

    2004-01-01

    Cannabinoid receptors type 1 (CB1) play a central role in both short-term and long-term extinction of auditory-cued fear memory. The molecular mechanisms underlying this function remain to be clarified. Several studies indicated extracellular signal-regulated kinases (ERKs), the phosphatidylinositol 3-kinase with its downstream effector AKT, and…

  6. Regulation of proteinaceous effector expression in phytopathogenic fungi.

    Science.gov (United States)

    Tan, Kar-Chun; Oliver, Richard P

    2017-04-01

    Effectors are molecules used by microbial pathogens to facilitate infection via effector-triggered susceptibility or tissue necrosis in their host. Much research has been focussed on the identification and elucidating the function of fungal effectors during plant pathogenesis. By comparison, knowledge of how phytopathogenic fungi regulate the expression of effector genes has been lagging. Several recent studies have illustrated the role of various transcription factors, chromosome-based control, effector epistasis, and mobilisation of endosomes within the fungal hyphae in regulating effector expression and virulence on the host plant. Improved knowledge of effector regulation is likely to assist in improving novel crop protection strategies.

  7. Regulation of proteinaceous effector expression in phytopathogenic fungi.

    Directory of Open Access Journals (Sweden)

    Kar-Chun Tan

    2017-04-01

    Full Text Available Effectors are molecules used by microbial pathogens to facilitate infection via effector-triggered susceptibility or tissue necrosis in their host. Much research has been focussed on the identification and elucidating the function of fungal effectors during plant pathogenesis. By comparison, knowledge of how phytopathogenic fungi regulate the expression of effector genes has been lagging. Several recent studies have illustrated the role of various transcription factors, chromosome-based control, effector epistasis, and mobilisation of endosomes within the fungal hyphae in regulating effector expression and virulence on the host plant. Improved knowledge of effector regulation is likely to assist in improving novel crop protection strategies.

  8. Casein kinases

    DEFF Research Database (Denmark)

    Issinger, O G

    1993-01-01

    The present review on casein kinases focuses mainly on the possible metabolic role of CK-2, with special emphasis on its behavior in pathological tissues. From these data at least three ways to regulate CK-2 activity emerge: (i) CK-2 activity changes during embryogenesis, being high at certain...

  9. Engineering Barriers to Infection by Undermining Pathogen Effector Function or by Gaining Effector Recognition

    DEFF Research Database (Denmark)

    Ahmed, Ali Abdurehim; Mclellan, Hazel; Aguilar, Geziel Barbosa

    2016-01-01

    This chapter reviews potential disease control strategies by employing the current understanding of Pathogen-Associated Molecular Patterns (PAMPs) and their receptors, as well as effectors and their targets. It discusses how effectoromics, i.e. surveying which, and to what level, effectors...

  10. End effector with astronaut foot restraint

    Science.gov (United States)

    Monford, Leo G., Jr. (Inventor)

    1991-01-01

    The combination of a foot restraint platform designed primarily for use by an astronaut being rigidly and permanently attached to an end effector which is suitable for attachment to the manipulator arm of a remote manipulating system is described. The foot restraint platform is attached by a brace to the end effector at a location away from the grappling interface of the end effector. The platform comprises a support plate provided with a pair of stirrups for receiving the toe portion of an astronaut's boots when standing on the platform and a pair of heel retainers in the form of raised members which are fixed to the surface of the platform and located to provide abutment surfaces for abutting engagement with the heels of the astronaut's boots when his toes are in the stirrups. The heel retainers preclude a backward sliding movement of the feet on the platform and instead require a lifting of the heels in order to extract the feet. The brace for attaching the foot restraint platform to the end effector may include a pivot or swivel joint to permit various orientations of the platform with respect to the end effector.

  11. Functionally redundant RXLR effectors from Phytophthora infestans act at different steps to suppress early flg22-triggered immunity.

    Directory of Open Access Journals (Sweden)

    Xiangzi Zheng

    2014-04-01

    Full Text Available Genome sequences of several economically important phytopathogenic oomycetes have revealed the presence of large families of so-called RXLR effectors. Functional screens have identified RXLR effector repertoires that either compromise or induce plant defense responses. However, limited information is available about the molecular mechanisms underlying the modes of action of these effectors in planta. The perception of highly conserved pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs, such as flg22, triggers converging signaling pathways recruiting MAP kinase cascades and inducing transcriptional re-programming, yielding a generic anti-microbial response. We used a highly synchronizable, pathogen-free protoplast-based assay to identify a set of RXLR effectors from Phytophthora infestans (PiRXLRs, the causal agent of potato and tomato light blight that manipulate early stages of flg22-triggered signaling. Of thirty-three tested PiRXLR effector candidates, eight, called Suppressor of early Flg22-induced Immune response (SFI, significantly suppressed flg22-dependent activation of a reporter gene under control of a typical MAMP-inducible promoter (pFRK1-Luc in tomato protoplasts. We extended our analysis to Arabidopsis thaliana, a non-host plant species of P. infestans. From the aforementioned eight SFI effectors, three appeared to share similar functions in both Arabidopsis and tomato by suppressing transcriptional activation of flg22-induced marker genes downstream of post-translational MAP kinase activation. A further three effectors interfere with MAMP signaling at, or upstream of, the MAP kinase cascade in tomato, but not in Arabidopsis. Transient expression of the SFI effectors in Nicotiana benthamiana enhances susceptibility to P. infestans and, for the most potent effector, SFI1, nuclear localization is required for both suppression of MAMP signaling and virulence function. The present study provides a framework to decipher the

  12. CB1 Cannabinoid Receptors Modulate Kinase and Phosphatase Activity During Extinction of Conditioned Fear in Mice

    OpenAIRE

    Cannich, Astrid; Carsten T. Wotjak; Kamprath, Kornelia; Hermann, Heike; Lutz, Beat; Marsicano, Giovanni

    2004-01-01

    Cannabinoid receptors type 1 (CB1) play a central role in both short-term and long-term extinction of auditory-cued fear memory. The molecular mechanisms underlying this function remain to be clarified. Several studies indicated extracellular signal-regulated kinases (ERKs), the phosphatidylinositol 3-kinase with its downstream effector AKT, and the phosphatase calcineurin as potential molecular substrates of extinction behavior. To test the involvement of these kinase and phosphatase activit...

  13. Cellular senescence and its effector programs

    Science.gov (United States)

    Salama, Rafik; Sadaie, Mahito; Hoare, Matthew; Narita, Masashi

    2014-01-01

    Cellular senescence is a stress response that accompanies stable exit from the cell cycle. Classically, senescence, particularly in human cells, involves the p53 and p16/Rb pathways, and often both of these tumor suppressor pathways need to be abrogated to bypass senescence. In parallel, a number of effector mechanisms of senescence have been identified and characterized. These studies suggest that senescence is a collective phenotype of these multiple effectors, and their intensity and combination can be different depending on triggers and cell types, conferring a complex and diverse nature to senescence. Series of studies on senescence-associated secretory phenotype (SASP) in particular have revealed various layers of functionality of senescent cells in vivo. Here we discuss some key features of senescence effectors and attempt to functionally link them when it is possible. PMID:24449267

  14. Bacterial virulence proteins as tools to rewire kinase pathways in yeast and immune cells.

    Science.gov (United States)

    Wei, Ping; Wong, Wilson W; Park, Jason S; Corcoran, Ethan E; Peisajovich, Sergio G; Onuffer, James J; Weiss, Arthur; Lim, Wendell A

    2012-08-16

    Bacterial pathogens have evolved specific effector proteins that, by interfacing with host kinase signalling pathways, provide a mechanism to evade immune responses during infection. Although these effectors contribute to pathogen virulence, we realized that they might also serve as valuable synthetic biology reagents for engineering cellular behaviour. Here we exploit two effector proteins, the Shigella flexneri OspF protein and Yersinia pestis YopH protein, to rewire kinase-mediated responses systematically both in yeast and mammalian immune cells. Bacterial effector proteins can be directed to inhibit specific mitogen-activated protein kinase pathways selectively in yeast by artificially targeting them to pathway-specific complexes. Moreover, we show that unique properties of the effectors generate new pathway behaviours: OspF, which irreversibly inactivates mitogen-activated protein kinases, was used to construct a synthetic feedback circuit that shows novel frequency-dependent input filtering. Finally, we show that effectors can be used in T cells, either as feedback modulators to tune the T-cell response amplitude precisely, or as an inducible pause switch that can temporarily disable T-cell activation. These studies demonstrate how pathogens could provide a rich toolkit of parts to engineer cells for therapeutic or biotechnological applications.

  15. The machinery at endoplasmic reticulum-plasma membrane contact sites contributes to spatial regulation of multiple Legionella effector proteins.

    Directory of Open Access Journals (Sweden)

    Andree Hubber

    2014-07-01

    Full Text Available The Dot/Icm system of the intracellular pathogen Legionella pneumophila has the capacity to deliver over 270 effector proteins into host cells during infection. Important questions remain as to spatial and temporal mechanisms used to regulate such a large array of virulence determinants after they have been delivered into host cells. Here we investigated several L. pneumophila effector proteins that contain a conserved phosphatidylinositol-4-phosphate (PI4P-binding domain first described in the effector DrrA (SidM. This PI4P binding domain was essential for the localization of effectors to the early L. pneumophila-containing vacuole (LCV, and DrrA-mediated recruitment of Rab1 to the LCV required PI4P-binding activity. It was found that the host cell machinery that regulates sites of contact between the plasma membrane (PM and the endoplasmic reticulum (ER modulates PI4P dynamics on the LCV to control localization of these effectors. Specifically, phosphatidylinositol-4-kinase IIIα (PI4KIIIα was important for generating a PI4P signature that enabled L. pneumophila effectors to localize to the PM-derived vacuole, and the ER-associated phosphatase Sac1 was involved in metabolizing the PI4P on the vacuole to promote the dissociation of effectors. A defect in L. pneumophila replication in macrophages deficient in PI4KIIIα was observed, highlighting that a PM-derived PI4P signature is critical for biogenesis of a vacuole that supports intracellular multiplication of L. pneumophila. These data indicate that PI4P metabolism by enzymes controlling PM-ER contact sites regulate the association of L. pneumophila effectors to coordinate early stages of vacuole biogenesis.

  16. Protection after stroke: cellular effectors of neurovascular unit integrity

    Directory of Open Access Journals (Sweden)

    Rafael Andres Posada-Duque

    2014-08-01

    Full Text Available Neurological disorders are prevalent worldwide. Cerebrovascular diseases (CVDs, which account for 55% of all neurological diseases, are the leading cause of permanent disability, cognitive and motor disorders and dementia. Stroke affects the function and structure of blood-brain barrier, the loss of cerebral blood flow regulation, oxidative stress, inflammation and the loss of neural connections. Currently, no gold standard treatments are available outside the acute therapeutic window to improve outcome in stroke patients. Some promising candidate targets have been identified for the improvement of long-term recovery after stroke, such as Rho GTPases, cell adhesion proteins, kinases, and phosphatases. Previous studies by our lab indicated that Rho GTPases (Rac and RhoA are involved in both tissue damage and survival, as these proteins are essential for the morphology and movement of neurons, astrocytes and endothelial cells, thus playing a critical role in the balance between cell survival and death. Treatment with a pharmacological inhibitor of RhoA/ROCK blocks the activation of the neurodegeneration cascade. In addition, Rac and synaptic adhesion proteins (p120 catenin and N-catenin play critical roles in protection against cerebral infarction and in recovery by supporting the neurovascular unit and cytoskeletal remodeling activity to maintain the integrity of the brain parenchyma. Interestingly, neuroprotective agents, such as atorvastatin, and CDK5 silencing after cerebral ischemia and in a glutamate-induced excitotoxicity model may act on the same cellular effectors to recover neurovascular unit integrity. Therefore, future efforts must focus on individually targeting the structural and functional roles of each effector of neurovascular unit and the interactions in neural and non-neural cells in the post-ischemic brain and address how to promote the recovery or prevent the loss of homeostasis in the short, medium and long term.

  17. Exploitation of eukaryotic subcellular targeting mechanisms by bacterial effectors.

    Science.gov (United States)

    Hicks, Stuart W; Galán, Jorge E

    2013-05-01

    Several bacterial species have evolved specialized secretion systems to deliver bacterial effector proteins into eukaryotic cells. These effectors have the capacity to modulate host cell pathways in order to promote bacterial survival and replication. The spatial and temporal context in which the effectors exert their biochemical activities is crucial for their function. To fully understand effector function in the context of infection, we need to understand the mechanisms that lead to the precise subcellular localization of effectors following their delivery into host cells. Recent studies have shown that bacterial effectors exploit host cell machinery to accurately target their biochemical activities within the host cell.

  18. Cif type III effector protein: a smart hijacker of the host cell cycle.

    Science.gov (United States)

    Samba-Louaka, Ascel; Taieb, Frédéric; Nougayrède, Jean-Philippe; Oswald, Eric

    2009-09-01

    During coevolution with their hosts, bacteria have developed functions that allow them to interfere with the mechanisms controlling the proliferation of eukaryotic cells. Cycle inhibiting factor (Cif) is one of these cyclomodulins, the family of bacterial effectors that interfere with the host cell cycle. Acquired early during evolution by bacteria isolated from vertebrates and invertebrates, Cif is an effector protein of type III secretion machineries. Cif blocks the host cell cycle in G1 and G2 by inducing the accumulation of the cyclin-dependent kinase inhibitors p21(waf1/cip1) and p27(kip1). The x-ray crystal structure of Cif reveals it to be a divergent member of a superfamily of enzymes including cysteine proteases and acetyltransferases. This review summarizes and discusses what we know about Cif, from the bacterial gene to the host target.

  19. Minimal Mimicry: Mere Effector Matching Induces Preference

    Science.gov (United States)

    Sparenberg, Peggy; Topolinski, Sascha; Springer, Anne; Prinz, Wolfgang

    2012-01-01

    Both mimicking and being mimicked induces preference for a target. The present experiments investigate the minimal sufficient conditions for this mimicry-preference link to occur. We argue that mere effector matching between one's own and the other person's movement is sufficient to induce preference, independent of which movement is actually…

  20. MARTX toxins as effector delivery platforms.

    Science.gov (United States)

    Gavin, Hannah E; Satchell, Karla J F

    2015-12-01

    Bacteria frequently manipulate their host environment via delivery of microbial 'effector' proteins to the cytosol of eukaryotic cells. In the case of the multifunctional autoprocessing repeats-in-toxins (MARTX) toxin, this phenomenon is accomplished by a single, >3500 amino acid polypeptide that carries information for secretion, translocation, autoprocessing and effector activity. MARTX toxins are secreted from bacteria by dedicated Type I secretion systems. The released MARTX toxins form pores in target eukaryotic cell membranes for the delivery of up to five cytopathic effectors, each of which disrupts a key cellular process. Targeted cellular processes include modulation or modification of small GTPases, manipulation of host cell signaling and disruption of cytoskeletal integrity. More recently, MARTX toxins have been shown to be capable of heterologous protein translocation. Found across multiple bacterial species and genera--frequently in pathogens lacking Type 3 or Type 4 secretion systems--MARTX toxins in multiple cases function as virulence factors. Innovative research at the intersection of toxin biology and bacterial genetics continues to elucidate the intricacies of the toxin as well as the cytotoxic mechanisms of its diverse effector collection. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Computational prediction and molecular characterization of an oomycete effector and the cognate Arabidopsis resistance gene

    National Research Council Canada - National Science Library

    Goritschnig, Sandra; Krasileva, Ksenia V; Dahlbeck, Douglas; Staskawicz, Brian J

    2012-01-01

    .... The availability of the Hpa genome sequence allowed the computational prediction of effectors and the development of effector delivery systems enabled validation of the predicted effectors in Arabidopsis...

  2. Repeat-containing protein effectors of plant-associated organisms

    OpenAIRE

    Mesarich, Carl H.; Joanna K Bowen; Hamiaux, Cyril; Templeton, Matthew D.

    2015-01-01

    Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered imm...

  3. Yeast as a Heterologous Model System to Uncover Type III Effector Function.

    Directory of Open Access Journals (Sweden)

    Crina Popa

    2016-02-01

    Full Text Available Type III effectors (T3E are key virulence proteins that are injected by bacterial pathogens inside the cells of their host to subvert cellular processes and contribute to disease. The budding yeast Saccharomyces cerevisiae represents an important heterologous system for the functional characterisation of T3E proteins in a eukaryotic environment. Importantly, yeast contains eukaryotic processes with low redundancy and are devoid of immunity mechanisms that counteract T3Es and mask their function. Expression in yeast of effectors from both plant and animal pathogens that perturb conserved cellular processes often resulted in robust phenotypes that were exploited to elucidate effector functions, biochemical properties, and host targets. The genetic tractability of yeast and its amenability for high-throughput functional studies contributed to the success of this system that, in recent years, has been used to study over 100 effectors. Here, we provide a critical view on this body of work and describe advantages and limitations inherent to the use of yeast in T3E research. "Favourite" targets of T3Es in yeast are cytoskeleton components and small GTPases of the Rho family. We describe how mitogen-activated protein kinase (MAPK signalling, vesicle trafficking, membrane structures, and programmed cell death are also often altered by T3Es in yeast and how this reflects their function in the natural host. We describe how effector structure-function studies and analysis of candidate targeted processes or pathways can be carried out in yeast. We critically analyse technologies that have been used in yeast to assign biochemical functions to T3Es, including transcriptomics and proteomics, as well as suppressor, gain-of-function, or synthetic lethality screens. We also describe how yeast can be used to select for molecules that block T3E function in search of new antibacterial drugs with medical applications. Finally, we provide our opinion on the limitations

  4. Multiple host kinases contribute to Akt activation during Salmonella infection.

    Directory of Open Access Journals (Sweden)

    Bernhard Roppenser

    Full Text Available SopB is a type 3 secreted effector with phosphatase activity that Salmonella employs to manipulate host cellular processes, allowing the bacteria to establish their intracellular niche. One important function of SopB is activation of the pro-survival kinase Akt/protein kinase B in the infected host cell. Here, we examine the mechanism of Akt activation by SopB during Salmonella infection. We show that SopB-mediated Akt activation is only partially sensitive to PI3-kinase inhibitors LY294002 and wortmannin in HeLa cells, suggesting that Class I PI3-kinases play only a minor role in this process. However, depletion of PI(3,4 P2/PI(3-5 P3 by expression of the phosphoinositide 3-phosphatase PTEN inhibits Akt activation during Salmonella invasion. Therefore, production of PI(3,4 P2/PI(3-5 P3 appears to be a necessary event for Akt activation by SopB and suggests that non-canonical kinases mediate production of these phosphoinositides during Salmonella infection. We report that Class II PI3-kinase beta isoform, IPMK and other kinases identified from a kinase screen all contribute to Akt activation during Salmonella infection. In addition, the kinases required for SopB-mediated activation of Akt vary depending on the type of infected host cell. Together, our data suggest that Salmonella has evolved to use a single effector, SopB, to manipulate a remarkably large repertoire of host kinases to activate Akt for the purpose of optimizing bacterial replication in its host.

  5. Shigella flexneri type III secreted effector OspF reveals new crosstalks of proinflammatory signaling pathways during bacterial infection.

    OpenAIRE

    Reiterer Veronika; Grossniklaus Lars; Tschon Therese; Kasper Christoph Alexander; Sorg Isabel; Arrieumerlou Cécile

    2011-01-01

    Shigella flexneri type III secreted effector OspF harbors a phosphothreonine lyase activity that irreversibly dephosphorylates MAP kinases (MAPKs) p38 and ERK in infected epithelial cells and thereby dampens innate immunity. Whereas this activity has been well characterized the impact of OspF on other host signaling pathways that control inflammation was unknown. Here we report that OspF potentiates the activation of the MAPK JNK and the transcription factor NF ?B during S. flexneri infection...

  6. In silico identification and characterization of effector catalogs

    NARCIS (Netherlands)

    Jonge, de R.

    2012-01-01

    Many characterized fungal effector proteins are small secreted proteins. Effectors are defined as those proteins that alter host cell structure and/or function by facilitating pathogen infection. The identification of effectors by molecular and cell biology techniques is a difficult task. However,

  7. TAL effector-mediated genome visualization (TGV).

    Science.gov (United States)

    Miyanari, Yusuke

    2014-09-01

    The three-dimensional remodeling of chromatin within nucleus is being recognized as determinant for genome regulation. Recent technological advances in live imaging of chromosome loci begun to explore the biological roles of the movement of the chromatin within the nucleus. To facilitate better understanding of the functional relevance and mechanisms regulating genome architecture, we applied transcription activator-like effector (TALE) technology to visualize endogenous repetitive genomic sequences in mouse cells. The application, called TAL effector-mediated genome visualization (TGV), allows us to label specific repetitive sequences and trace nuclear remodeling in living cells. Using this system, parental origin of chromosomes was specifically traced by distinction of single-nucleotide polymorphisms (SNPs). This review will present our approaches to monitor nuclear dynamics of target sequences and highlights key properties and potential uses of TGV. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Novel Control Effectors for Truss Braced Wing

    Science.gov (United States)

    White, Edward V.; Kapania, Rakesh K.; Joshi, Shiv

    2015-01-01

    At cruise flight conditions very high aspect ratio/low sweep truss braced wings (TBW) may be subject to design requirements that distinguish them from more highly swept cantilevered wings. High aspect ratio, short chord length and relative thinness of the airfoil sections all contribute to relatively low wing torsional stiffness. This may lead to aeroelastic issues such as aileron reversal and low flutter margins. In order to counteract these issues, high aspect ratio/low sweep wings may need to carry additional high speed control effectors to operate when outboard ailerons are in reversal and/or must carry additional structural weight to enhance torsional stiffness. The novel control effector evaluated in this study is a variable sweep raked wing tip with an aileron control surface. Forward sweep of the tip allows the aileron to align closely with the torsional axis of the wing and operate in a conventional fashion. Aft sweep of the tip creates a large moment arm from the aileron to the wing torsional axis greatly enhancing aileron reversal. The novelty comes from using this enhanced and controllable aileron reversal effect to provide roll control authority by acting as a servo tab and providing roll control through intentional twist of the wing. In this case the reduced torsional stiffness of the wing becomes an advantage to be exploited. The study results show that the novel control effector concept does provide roll control as described, but only for a restricted class of TBW aircraft configurations. For the configuration studied (long range, dual aisle, Mach 0.85 cruise) the novel control effector provides significant benefits including up to 12% reduction in fuel burn.

  9. Ustilago maydis effectors and their impact on virulence.

    Science.gov (United States)

    Lanver, Daniel; Tollot, Marie; Schweizer, Gabriel; Lo Presti, Libera; Reissmann, Stefanie; Ma, Lay-Sun; Schuster, Mariana; Tanaka, Shigeyuki; Liang, Liang; Ludwig, Nicole; Kahmann, Regine

    2017-07-01

    Biotrophic fungal plant pathogens establish an intimate relationship with their host to support the infection process. Central to this strategy is the secretion of a range of protein effectors that enable the pathogen to evade plant immune defences and modulate host metabolism to meet its needs. In this Review, using the smut fungus Ustilago maydis as an example, we discuss new insights into the effector repertoire of smut fungi that have been gained from comparative genomics and discuss the molecular mechanisms by which U. maydis effectors change processes in the plant host. Finally, we examine how the expression of effector genes and effector secretion are coordinated with fungal development in the host.

  10. Impact of end effector technology on telemanipulation performance

    Science.gov (United States)

    Bejczy, A. K.; Szakaly, Z.; Ohm, T.

    1990-01-01

    Generic requirements for end effector design are briefly summarized as derived from generic functional and operational requirements. Included is a brief summary of terms and definitions related to end effector technology. The second part contains a brief overview of end effector technology work as JPL during the past ten years, with emphasis on the evolution of new mechanical, sensing and control capabilities of end effectors. The third and major part is devoted to the description of current end effector technology. The ongoing work addresses mechanical, sensing and control details with emphasis on mechanical ruggedness, increased resolution in sensing, and close electronic and control integration with overall telemanipulator control system.

  11. Regulators and effectors of bone morphogenetic protein signalling in the cardiovascular system.

    Science.gov (United States)

    Luo, Jiang-Yun; Zhang, Yang; Wang, Li; Huang, Yu

    2015-07-15

    Bone morphogenetic proteins (BMPs) play key roles in the regulation of cell proliferation, differentiation and apoptosis in various tissues and organs, including the cardiovascular system. BMPs signal through both Smad-dependent and -independent cascades to exert a wide spectrum of biological activities. Cardiovascular disorders such as abnormal angiogenesis, atherosclerosis, pulmonary hypertension and cardiac hypertrophy have been linked to aberrant BMP signalling. To correct the dysregulated BMP signalling in cardiovascular pathogenesis, it is essential to get a better understanding of how the regulators and effectors of BMP signalling control cardiovascular function and how the dysregulated BMP signalling contributes to cardiovascular dysfunction. We hence highlight several key regulators of BMP signalling such as extracellular regulators of ligands, mechanical forces, microRNAs and small molecule drugs as well as typical BMP effectors like direct downstream target genes, mitogen-activated protein kinases, reactive oxygen species and microRNAs. The insights into these molecular processes will help target both the regulators and important effectors to reverse BMP-associated cardiovascular pathogenesis. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  12. Repeat-containing protein effectors of plant-associated organisms

    Science.gov (United States)

    Mesarich, Carl H.; Bowen, Joanna K.; Hamiaux, Cyril; Templeton, Matthew D.

    2015-01-01

    Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms. PMID:26557126

  13. The molecular regulation of Janus kinase (JAK) activation

    OpenAIRE

    Babon, Jeffrey J.; Lucet, Isabelle S; Murphy, James M.; Nicola, Nicos A.; Varghese, Leila N.

    2014-01-01

    The Janus Kinase (JAK) family members serve essential roles as the intracellular signalling effectors of cytokine receptors. This family, comprising JAK1, JAK2, JAK3 and TYK2, was first described more than 20 years ago, but the complexities underlying their activation, regulation and pleiotropic signalling functions are still being explored. Here, we review the current knowledge of their physiological functions and the causative role of activating and inactivating JAK mutations in human disea...

  14. Auto-phosphorylation Represses Protein Kinase R Activity.

    Science.gov (United States)

    Wang, Die; de Weerd, Nicole A; Willard, Belinda; Polekhina, Galina; Williams, Bryan R G; Sadler, Anthony J

    2017-03-10

    The central role of protein kinases in controlling disease processes has spurred efforts to develop pharmaceutical regulators of their activity. A rational strategy to achieve this end is to determine intrinsic auto-regulatory processes, then selectively target these different states of kinases to repress their activation. Here we investigate auto-regulation of the innate immune effector protein kinase R, which phosphorylates the eukaryotic initiation factor 2α to inhibit global protein translation. We demonstrate that protein kinase R activity is controlled by auto-inhibition via an intra-molecular interaction. Part of this mechanism of control had previously been reported, but was then controverted. We account for the discrepancy and extend our understanding of the auto-inhibitory mechanism by identifying that auto-inhibition is paradoxically instigated by incipient auto-phosphorylation. Phosphor-residues at the amino-terminus instigate an intra-molecular interaction that enlists both of the N-terminal RNA-binding motifs of the protein with separate surfaces of the C-terminal kinase domain, to co-operatively inhibit kinase activation. These findings identify an innovative mechanism to control kinase activity, providing insight for strategies to better regulate kinase activity.

  15. Recent developments in effector biology of filamentous plant pathogens.

    Science.gov (United States)

    Oliva, Ricardo; Win, Joe; Raffaele, Sylvain; Boutemy, Laurence; Bozkurt, Tolga O; Chaparro-Garcia, Angela; Segretin, Maria Eugenia; Stam, Remco; Schornack, Sebastian; Cano, Liliana M; van Damme, Mireille; Huitema, Edgar; Thines, Marco; Banfield, Mark J; Kamoun, Sophien

    2010-06-01

    Filamentous pathogens, such as plant pathogenic fungi and oomycetes, secrete an arsenal of effector molecules that modulate host innate immunity and enable parasitic infection. It is now well accepted that these effectors are key pathogenicity determinants that enable parasitic infection. In this review, we report on the most interesting features of a representative set of filamentous pathogen effectors and highlight recent findings. We also list and describe all the linear motifs reported to date in filamentous pathogen effector proteins. Some of these motifs appear to define domains that mediate translocation inside host cells.

  16. Effectors of Filamentous Plant Pathogens: Commonalities amid Diversity.

    Science.gov (United States)

    Franceschetti, Marina; Maqbool, Abbas; Jiménez-Dalmaroni, Maximiliano J; Pennington, Helen G; Kamoun, Sophien; Banfield, Mark J

    2017-06-01

    Fungi and oomycetes are filamentous microorganisms that include a diversity of highly developed pathogens of plants. These are sophisticated modulators of plant processes that secrete an arsenal of effector proteins to target multiple host cell compartments and enable parasitic infection. Genome sequencing revealed complex catalogues of effectors of filamentous pathogens, with some species harboring hundreds of effector genes. Although a large fraction of these effector genes encode secreted proteins with weak or no sequence similarity to known proteins, structural studies have revealed unexpected similarities amid the diversity. This article reviews progress in our understanding of effector structure and function in light of these new insights. We conclude that there is emerging evidence for multiple pathways of evolution of effectors of filamentous plant pathogens but that some families have probably expanded from a common ancestor by duplication and diversification. Conserved folds, such as the oomycete WY and the fungal MAX domains, are not predictive of the precise function of the effectors but serve as a chassis to support protein structural integrity while providing enough plasticity for the effectors to bind different host proteins and evolve unrelated activities inside host cells. Further effector evolution and diversification arise via short linear motifs, domain integration and duplications, and oligomerization. Copyright © 2017 American Society for Microbiology.

  17. The Spontaneously Adhesive Leukocyte Function-associated Antigen-1 (LFA-1) Integrin in Effector T Cells Mediates Rapid Actin- and Calmodulin-dependent Adhesion Strengthening to Ligand under Shear Flow*

    Science.gov (United States)

    Lek, Hwee San; Morrison, Vicky L.; Conneely, Michael; Campbell, Paul A.; McGloin, David; Kliche, Stefanie; Watts, Colin; Prescott, Alan; Fagerholm, Susanna C.

    2013-01-01

    Integrins in effector T cells are highly expressed and important for trafficking of these cells and for their effector functions. However, how integrins are regulated in effector T cells remains poorly characterized. Here, we have investigated effector T cell leukocyte function-associated antigen-1 (LFA-1) regulation in primary murine effector T cells. These cells have high LFA-1 integrin expression and display high spontaneous binding to intercellular adhesion molecule-1 (ICAM-1) ligand under static conditions. In addition, these cells are able to migrate spontaneously on ICAM-1. Atomic force microscopy measurements showed that the force required for unbinding of integrin-ligand interactions increases over time (0.5–20-s contact time). The maximum unbinding force for this interaction was ∼140 piconewtons at 0.5-s contact time, increasing to 580 piconewtons at 20-s contact time. Also, the total work required to disrupt the interaction increased over the 20-s contact time, indicating LFA-1-mediated adhesion strengthening in primary effector T cells over a very quick time frame. Effector T cells adhered spontaneously to ICAM-1 under conditions of shear flow, in the absence of chemokine stimulation, and this binding was independent of protein kinase B/Akt and protein kinase C kinase activity, but dependent on calcium/calmodulin signaling and an intact actin cytoskeleton. These results indicate that effector T cell integrins are highly expressed and spontaneously adhesive in the absence of inside-out integrin signaling but that LFA-1-mediated firm adhesion under conditions of shear flow requires downstream integrin signaling, which is dependent on calcium/calmodulin and the actin cytoskeleton. PMID:23585567

  18. Yeast functional genomic screens lead to identification of a role for a bacterial effector in innate immunity regulation.

    Directory of Open Access Journals (Sweden)

    Roger W Kramer

    2007-02-01

    Full Text Available Numerous bacterial pathogens manipulate host cell processes to promote infection and ultimately cause disease through the action of proteins that they directly inject into host cells. Identification of the targets and molecular mechanisms of action used by these bacterial effector proteins is critical to understanding pathogenesis. We have developed a systems biological approach using the yeast Saccharomyces cerevisiae that can expedite the identification of cellular processes targeted by bacterial effector proteins. We systematically screened the viable yeast haploid deletion strain collection for mutants hypersensitive to expression of the Shigella type III effector OspF. Statistical data mining of the results identified several cellular processes, including cell wall biogenesis, which when impaired by a deletion caused yeast to be hypersensitive to OspF expression. Microarray experiments revealed that OspF expression resulted in reversed regulation of genes regulated by the yeast cell wall integrity pathway. The yeast cell wall integrity pathway is a highly conserved mitogen-activated protein kinase (MAPK signaling pathway, normally activated in response to cell wall perturbations. Together these results led us to hypothesize and subsequently demonstrate that OspF inhibited both yeast and mammalian MAPK signaling cascades. Furthermore, inhibition of MAPK signaling by OspF is associated with attenuation of the host innate immune response to Shigella infection in a mouse model. These studies demonstrate how yeast systems biology can facilitate functional characterization of pathogenic bacterial effector proteins.

  19. Yeast functional genomic screens lead to identification of a role for a bacterial effector in innate immunity regulation.

    Science.gov (United States)

    Kramer, Roger W; Slagowski, Naomi L; Eze, Ngozi A; Giddings, Kara S; Morrison, Monica F; Siggers, Keri A; Starnbach, Michael N; Lesser, Cammie F

    2007-02-01

    Numerous bacterial pathogens manipulate host cell processes to promote infection and ultimately cause disease through the action of proteins that they directly inject into host cells. Identification of the targets and molecular mechanisms of action used by these bacterial effector proteins is critical to understanding pathogenesis. We have developed a systems biological approach using the yeast Saccharomyces cerevisiae that can expedite the identification of cellular processes targeted by bacterial effector proteins. We systematically screened the viable yeast haploid deletion strain collection for mutants hypersensitive to expression of the Shigella type III effector OspF. Statistical data mining of the results identified several cellular processes, including cell wall biogenesis, which when impaired by a deletion caused yeast to be hypersensitive to OspF expression. Microarray experiments revealed that OspF expression resulted in reversed regulation of genes regulated by the yeast cell wall integrity pathway. The yeast cell wall integrity pathway is a highly conserved mitogen-activated protein kinase (MAPK) signaling pathway, normally activated in response to cell wall perturbations. Together these results led us to hypothesize and subsequently demonstrate that OspF inhibited both yeast and mammalian MAPK signaling cascades. Furthermore, inhibition of MAPK signaling by OspF is associated with attenuation of the host innate immune response to Shigella infection in a mouse model. These studies demonstrate how yeast systems biology can facilitate functional characterization of pathogenic bacterial effector proteins.

  20. [Cytoplasmic kinase inhibitors].

    Science.gov (United States)

    Mano, Hiroyuki

    2010-10-01

    Protein kinases play essential roles in the regulation of cell proliferation. Point mutations or/and fusions of protein kinases are frequently identified in human cancers, and targeting such activated kinases provides us with a chance to eradicate tumor cells. This was first proved by imatinib mesylate that inhibits ABL tyrosine kinase and, thereby, efficiently kills malignant cells in chronic myeloid leukemia. In addition, other clinical trials are ongoing for kinase inhibitors against EML4--ALK in lung cancer, JAK2 in myeloproliferative disorders and BRAF in malignant melanoma. Early reports indeed reveal that such targeting compounds are promising drugs for human cancers with activated kinases.

  1. Rack Insertion End Effector (RIEE) automation

    Science.gov (United States)

    Malladi, Narasimha

    1993-01-01

    NASA is developing a mechanism to manipulate and insert Racks into the Space Station Logistic modules. The mechanism consists of the following: a base with three motorized degrees of freedom, a 3 section motorized boom that goes from 15 to 44 feet in length, and a Rack Insertion End Effector (RIEE) with 5 hand wheels for precise alignment. The robotics section was tasked with the automation of the RIEE unit. In this report, for the automation of the RIEE unit, application of the Perceptics Vision System was conceptually developed to determine the position and orientation of the RIEE relative to the logistic module, and a MathCad program is written to display the needed displacements for precise alignment and final insertion of the Rack. The uniqueness of this report is that the whole report is in fact a MathCad program including text, derivations, and executable equations with example inputs and outputs.

  2. RhoA/Rho-Kinase in the Cardiovascular System.

    Science.gov (United States)

    Shimokawa, Hiroaki; Sunamura, Shinichiro; Satoh, Kimio

    2016-01-22

    Twenty years ago, Rho-kinase was identified as an important downstream effector of the small GTP-binding protein, RhoA. Thereafter, a series of studies demonstrated the important roles of Rho-kinase in the cardiovascular system. The RhoA/Rho-kinase pathway is now widely known to play important roles in many cellular functions, including contraction, motility, proliferation, and apoptosis, and its excessive activity induces oxidative stress and promotes the development of cardiovascular diseases. Furthermore, the important role of Rho-kinase has been demonstrated in the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, and heart failure. Cyclophilin A is secreted by vascular smooth muscle cells and inflammatory cells and activated platelets in a Rho-kinase-dependent manner, playing important roles in a wide range of cardiovascular diseases. Thus, the RhoA/Rho-kinase pathway plays crucial roles under both physiological and pathological conditions and is an important therapeutic target in cardiovascular medicine. Recently, functional differences between ROCK1 and ROCK2 have been reported in vitro. ROCK1 is specifically cleaved by caspase-3, whereas granzyme B cleaves ROCK2. However, limited information is available on the functional differences and interactions between ROCK1 and ROCK2 in the cardiovascular system in vivo. Herein, we will review the recent advances about the importance of RhoA/Rho-kinase in the cardiovascular system. © 2016 American Heart Association, Inc.

  3. Nematode effector proteins: an emerging paradigm of parasitism

    Science.gov (United States)

    Phytonematodes use a stylet and secreted effectors to invade host tissues and extract nutrients to support their growth and development. The molecular function of nematode effectors is currently the subject of intense investigation. In this review, we summarize our current understanding of nematode ...

  4. Computational Prediction of Effector Proteins in Fungi: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Humira eSonah

    2016-02-01

    Full Text Available Effector proteins are mostly secretory proteins that stimulate plant infection by manipulating the host response. Identifying fungal effector proteins and understanding their function is of great importance in efforts to curb losses to plant diseases. Recent advances in high-throughput sequencing technologies have facilitated the availability of several fungal genomes and thousands of transcriptomes. As a result, the growing amount of genomic information has provided great opportunities to identify putative effector proteins in different fungal species. There is little consensus over the annotation and functionality of effector proteins, and mostly small secretory proteins are considered as effector proteins, a concept that tends to overestimate the number of proteins involved in a plant-pathogen interaction. With the characterization of Avr genes, criteria for computational prediction of effector proteins are becoming more efficient. There are hundreds of tools available for the identification of conserved motifs, signature sequences and structural features in the proteins. Many pipelines and online servers, which combine several tools, are made available to perform genome-wide identification of effector proteins. In this review, available tools and pipelines, their strength and limitations for effective identification of fungal effector proteins are discussed. We also present an exhaustive list of classically secreted proteins along with their key conserved motifs found in 12 common plant pathogens (11 fungi and one oomycete through an analytical pipeline.

  5. Tissue specific heterogeneity in effector immune cell response

    Directory of Open Access Journals (Sweden)

    Saba eTufail

    2013-08-01

    Full Text Available Post pathogen invasion, migration of effector T-cell subsets to specific tissue locations is of prime importance for generation of robust immune response. Effector T cells are imprinted with distinct ‘homing codes’ (adhesion molecules and chemokine receptors during activation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph node microenvironment along with external stimuli from food (vitamin A and sunlight (vitamin D3 prime dendritic cells, imprinting them to play centrestage in the induction of tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells, exhibit tissue tropic migration. In this review, we have focused on the factors regulating the generation and migration of effector T cells to various tissues alongwith giving an overview of tissue tropism in B cells.

  6. Proper actin ring formation and septum constriction requires coordinated regulation of SIN and MOR pathways through the germinal centre kinase MST-1.

    Science.gov (United States)

    Heilig, Yvonne; Dettmann, Anne; Mouriño-Pérez, Rosa R; Schmitt, Kerstin; Valerius, Oliver; Seiler, Stephan

    2014-04-01

    Nuclear DBF2p-related (NDR) kinases constitute a functionally conserved protein family of eukaryotic regulators that control cell division and polarity. In fungi, they function as effector kinases of the morphogenesis (MOR) and septation initiation (SIN) networks and are activated by pathway-specific germinal centre (GC) kinases. We characterized a third GC kinase, MST-1, that connects both kinase cascades. Genetic and biochemical interactions with SIN components and life cell imaging identify MST-1 as SIN-associated kinase that functions in parallel with the GC kinase SID-1 to activate the SIN-effector kinase DBF-2. SID-1 and MST-1 are both regulated by the upstream SIN kinase CDC-7, yet in an opposite manner. Aberrant cortical actomyosin rings are formed in Δmst-1, which resulted in mis-positioned septa and irregular spirals, indicating that MST-1-dependent regulation of the SIN is required for proper formation and constriction of the septal actomyosin ring. However, MST-1 also interacts with several components of the MOR network and modulates MOR activity at multiple levels. MST-1 functions as promiscuous enzyme and also activates the MOR effector kinase COT-1 through hydrophobic motif phosphorylation. In addition, MST-1 physically interacts with the MOR kinase POD-6, and dimerization of both proteins inactivates the GC kinase hetero-complex. These data specify an antagonistic relationship between the SIN and MOR during septum formation in the filamentous ascomycete model Neurospora crassa that is, at least in part, coordinated through the GC kinase MST-1. The similarity of the SIN and MOR pathways to the animal Hippo and Ndr pathways, respectively, suggests that intensive cross-communication between distinct NDR kinase modules may also be relevant for the homologous NDR kinases of higher eukaryotes.

  7. A dock and coalesce mechanism driven by hydrophobic interactions governs Cdc42 binding with its effector protein ACK.

    Science.gov (United States)

    Tetley, George J N; Mott, Helen R; Cooley, R Neil; Owen, Darerca

    2017-07-07

    Cdc42 is a Rho-family small G protein that has been widely studied for its role in controlling the actin cytoskeleton and plays a part in several potentially oncogenic signaling networks. Similar to most other small G proteins, Cdc42 binds to many downstream effector proteins to elicit its cellular effects. These effector proteins all engage the same face of Cdc42, the conformation of which is governed by the activation state of the G protein. Previously, the importance of individual residues in conferring binding affinity has been explored for residues within Cdc42 for three of its Cdc42/Rac interactive binding (CRIB) effectors, activated Cdc42 kinase (ACK), p21-activated kinase (PAK), and Wiskott-Aldrich syndrome protein (WASP). Here, in a complementary study, we have used our structure of Cdc42 bound to ACK via an intrinsically disordered ACK region to guide an analysis of the Cdc42 interface on ACK, creating a panel of mutant proteins with which we can now describe the complete energetic landscape of the Cdc42-binding site on ACK. Our data suggest that the binding affinity of ACK relies on several conserved residues that are critical for stabilizing the quaternary structure. These residues are centered on the CRIB region, with the complete binding region anchored at each end by hydrophobic interactions. These findings suggest that ACK adopts a dock and coalesce binding mechanism with Cdc42. In contrast to other CRIB-family effectors and indeed other intrinsically disordered proteins, hydrophobic residues likely drive Cdc42-ACK binding. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Characterization of a nucleotide kinase encoded by bacteriophage T7.

    Science.gov (United States)

    Tran, Ngoc Q; Tabor, Stanley; Amarasiriwardena, Chitra J; Kulczyk, Arkadiusz W; Richardson, Charles C

    2012-08-24

    Gene 1.7 protein is the only known nucleotide kinase encoded by bacteriophage T7. The enzyme phosphorylates dTMP and dGMP to dTDP and dGDP, respectively, in the presence of a phosphate donor. The phosphate donors are dTTP, dGTP, and ribo-GTP as well as the thymidine and guanosine triphosphate analogs ddTTP, ddGTP, and dITP. The nucleotide kinase is found in solution as a 256-kDa complex consisting of ~12 monomers of the gene 1.7 protein. The two molecular weight forms co-purify as a complex, but each form has nearly identical kinase activity. Although gene 1.7 protein does not require a metal ion for its kinase activity, the presence of Mg(2+) in the reaction mixture results in either inhibition or stimulation of the rate of kinase reactions depending on the substrates used. Both the dTMP and dGMP kinase reactions are reversible. Neither dTDP nor dGDP is a phosphate acceptor of nucleoside triphosphate donors. Gene 1.7 protein exhibits two different equilibrium patterns toward deoxyguanosine and thymidine substrates. The K(m) of 4.4 × 10(-4) M obtained with dTTP for dTMP kinase is ~3-fold higher than that obtained with dGTP for dGMP kinase (1.3 × 10(-4) M), indicating that a higher concentration of dTTP is required to saturate the enzyme. Inhibition studies indicate a competitive relationship between dGDP and both dGTP, dGMP, whereas dTDP appears to have a mixed type of inhibition of dTMP kinase. Studies suggest two functions of dTTP, as a phosphate donor and a positive effector of the dTMP kinase reaction.

  9. Characterization of a Nucleotide Kinase Encoded by Bacteriophage T7*

    Science.gov (United States)

    Tran, Ngoc Q.; Tabor, Stanley; Amarasiriwardena, Chitra J.; Kulczyk, Arkadiusz W.; Richardson, Charles C.

    2012-01-01

    Gene 1.7 protein is the only known nucleotide kinase encoded by bacteriophage T7. The enzyme phosphorylates dTMP and dGMP to dTDP and dGDP, respectively, in the presence of a phosphate donor. The phosphate donors are dTTP, dGTP, and ribo-GTP as well as the thymidine and guanosine triphosphate analogs ddTTP, ddGTP, and dITP. The nucleotide kinase is found in solution as a 256-kDa complex consisting of ∼12 monomers of the gene 1.7 protein. The two molecular weight forms co-purify as a complex, but each form has nearly identical kinase activity. Although gene 1.7 protein does not require a metal ion for its kinase activity, the presence of Mg2+ in the reaction mixture results in either inhibition or stimulation of the rate of kinase reactions depending on the substrates used. Both the dTMP and dGMP kinase reactions are reversible. Neither dTDP nor dGDP is a phosphate acceptor of nucleoside triphosphate donors. Gene 1.7 protein exhibits two different equilibrium patterns toward deoxyguanosine and thymidine substrates. The Km of 4.4 × 10−4 m obtained with dTTP for dTMP kinase is ∼3-fold higher than that obtained with dGTP for dGMP kinase (1.3 × 10−4 m), indicating that a higher concentration of dTTP is required to saturate the enzyme. Inhibition studies indicate a competitive relationship between dGDP and both dGTP, dGMP, whereas dTDP appears to have a mixed type of inhibition of dTMP kinase. Studies suggest two functions of dTTP, as a phosphate donor and a positive effector of the dTMP kinase reaction. PMID:22761426

  10. Identification of a novel protein complex essential for effector translocation across the parasitophorous vacuole membrane of Toxoplasma gondii.

    Science.gov (United States)

    Marino, Nicole D; Panas, Michael W; Franco, Magdalena; Theisen, Terence C; Naor, Adit; Rastogi, Suchita; Buchholz, Kerry R; Lorenzi, Hernan A; Boothroyd, John C

    2018-01-01

    Toxoplasma gondii is an obligate intracellular parasite that can infect virtually all nucleated cells in warm-blooded animals. The ability of Toxoplasma tachyzoites to infect and successfully manipulate its host is dependent on its ability to transport "GRA" proteins that originate in unique secretory organelles called dense granules into the host cell in which they reside. GRAs have diverse roles in Toxoplasma's intracellular lifecycle, including co-opting crucial host cell functions and proteins, such as the cell cycle, c-Myc and p38 MAP kinase. Some of these GRA proteins, such as GRA16 and GRA24, are secreted into the parasitophorous vacuole (PV) within which Toxoplasma replicates and are transported across the PV membrane (PVM) into the host cell, but the translocation process and its machinery are not well understood. We previously showed that TgMYR1, which is cleaved by TgASP5 into two fragments, localizes to the PVM and is essential for GRA transport into the host cell. To identify additional proteins necessary for effector transport, we screened Toxoplasma mutants defective in c-Myc up-regulation for their ability to export GRA16 and GRA24 to the host cell nucleus. Here we report that novel proteins MYR2 and MYR3 play a crucial role in translocation of a subset of GRAs into the host cell. MYR2 and MYR3 are secreted into the PV space and co-localize with PV membranes and MYR1. Consistent with their predicted transmembrane domains, all three proteins are membrane-associated, and MYR3, but not MYR2, stably associates with MYR1, whose N- and C-terminal fragments are disulfide-linked. We further show that fusing intrinsically disordered effectors to a structured DHFR domain blocks the transport of other effectors, consistent with a translocon-based model of effector transport. Overall, these results reveal a novel complex at the PVM that is essential for effector translocation into the host cell.

  11. Experimental and computational tools useful for (re)construction of dynamic kinase-substrate networks

    DEFF Research Database (Denmark)

    Tan, Chris Soon Heng; Linding, Rune

    2009-01-01

    The explosion of site- and context-specific in vivo phosphorylation events presents a potentially rich source of biological knowledge and calls for novel data analysis and modeling paradigms. Perhaps the most immediate challenge is delineating detected phosphorylation sites to their effector...... kinases. This is important for (re)constructing transient kinase-substrate interaction networks that are essential for mechanistic understanding of cellular behaviors and therapeutic intervention, but has largely eluded high-throughput protein-interaction studies due to their transient nature and strong...... dependencies on cellular context. Here, we surveyed some of the computational approaches developed to dissect phosphorylation data detected in systematic proteomic experiments and reviewed some experimental and computational approaches used to map phosphorylation sites to their effector kinases in efforts...

  12. Effector biology of plant-associated organisms: concepts and perspectives.

    Science.gov (United States)

    Win, J; Chaparro-Garcia, A; Belhaj, K; Saunders, D G O; Yoshida, K; Dong, S; Schornack, S; Zipfel, C; Robatzek, S; Hogenhout, S A; Kamoun, S

    2012-01-01

    Every plant is closely associated with a variety of living organisms. Therefore, deciphering how plants interact with mutualistic and parasitic organisms is essential for a comprehensive understanding of the biology of plants. The field of plant-biotic interactions has recently coalesced around an integrated model. Major classes of molecular players both from plants and their associated organisms have been revealed. These include cell surface and intracellular immune receptors of plants as well as apoplastic and host-cell-translocated (cytoplasmic) effectors of the invading organism. This article focuses on effectors, molecules secreted by plant-associated organisms that alter plant processes. Effectors have emerged as a central class of molecules in our integrated view of plant-microbe interactions. Their study has significantly contributed to advancing our knowledge of plant hormones, plant development, plant receptors, and epigenetics. Many pathogen effectors are extraordinary examples of biological innovation; they include some of the most remarkable proteins known to function inside plant cells. Here, we review some of the key concepts that have emerged from the study of the effectors of plant-associated organisms. In particular, we focus on how effectors function in plant tissues and discuss future perspectives in the field of effector biology.

  13. Rancangan End-effector untuk Robot Pemanen Buah Paprika

    Directory of Open Access Journals (Sweden)

    I Dewa Made Subrata

    2011-10-01

    Full Text Available A research on designing an end-effector for a sweet pepper (Capsicum grossum harvesting robot has been conducted. The objectives of this research were to design an end-effector prototype for the sweet pepper harvesting robot and to examine the performance of the end-effector in actuating the harvesting work. The end-effector was constructed in such a way so that enable to perform cutting and gripping motion in one action. The end-effector was designed using aluminum materials in order to get as light mass as possible. It dimension was 28 cm in length, 14 cm in width, and about 90 grams in weight. The field test of the prototype was conducted based on the conditions of plantation inside the greenhouse. Three kinds of inclination slope including 0o, 10o, and 20o were treated for the end-effector installation. The experimental result show that the third installation treatment ie: the end-effector with 20° inclination slope tend to produce the best performance which has the highest number of harvesting succeed.

  14. Rhizobia utilize pathogen-like effector proteins during symbiosis.

    Science.gov (United States)

    Kambara, Kumiko; Ardissone, Silvia; Kobayashi, Hajime; Saad, Maged M; Schumpp, Olivier; Broughton, William J; Deakin, William J

    2009-01-01

    A type III protein secretion system (T3SS) is an important host range determinant for the infection of legumes by Rhizobium sp. NGR234. Although a functional T3SS can have either beneficial or detrimental effects on nodule formation, only the rhizobial-specific positively acting effector proteins, NopL and NopP, have been characterized. NGR234 possesses three open reading frames potentially encoding homologues of effector proteins from pathogenic bacteria. NopJ, NopM and NopT are secreted by the T3SS of NGR234. All three can have negative effects on the interaction with legumes, but NopM and NopT also stimulate nodulation on certain plants. NopT belongs to a family of pathogenic effector proteases, typified by the avirulence protein, AvrPphB. The protease domain of NopT is required for its recognition and a subsequent strong inhibition in infection of Crotalaria juncea. In contrast, the negative effects of NopJ are relatively minor when compared with those induced by its Avr homologues. Thus NGR234 uses a mixture of rhizobial-specific and pathogen-derived effector proteins. Whereas some legumes recognize an effector as potentially pathogen-derived, leading to a block in the infection process, others perceive both the negative- and positive-acting effectors concomitantly. It is this equilibrium of effector action that leads to modulation of symbiotic development.

  15. Bioprospecting open reading frames for peptide effectors.

    Science.gov (United States)

    Xiong, Ling; Scott, Charles

    2014-01-01

    Recent successes in the development of small-molecule antagonists of protein-protein interactions designed based on co-crystal structures of peptides bound to their biological targets confirm that short peptides derived from interacting proteins can be high-value ligands for pharmacologic validation of targets and for identification of druggable sites. Evolved sequence space is likely to be enriched for interacting peptides, but identifying minimal peptide effectors within genomic sequence can be labor intensive. Here we describe the use of incremental truncation to diversify genetic material on the scale of open reading frames into comprehensive libraries of constituent peptides. The approach is capable of generating peptides derived from both continuous and discontinuous sequence elements, and is compatible with the expression of free linear or backbone cyclic peptides, with peptides tethered to amino- or carboxyl-terminal fusion partners or with the expression of peptides displayed within protein scaffolds (peptide aptamers). Incremental truncation affords a valuable source of molecular diversity to interrogate the druggable genome or evaluate the therapeutic potential of candidate genes.

  16. TAL effectors specificity stems from negative discrimination.

    Directory of Open Access Journals (Sweden)

    Basile I M Wicky

    Full Text Available Transcription Activator-Like (TAL effectors are DNA-binding proteins secreted by phytopathogenic bacteria that interfere with native cellular functions by binding to plant DNA promoters. The key element of their architecture is a domain of tandem-repeats with almost identical sequences. Most of the polymorphism is located at two consecutive amino acids termed Repeat Variable Diresidue (RVD. The discovery of a direct link between the RVD composition and the targeted nucleotide allowed the design of TAL-derived DNA-binding tools with programmable specificities that revolutionized the field of genome engineering. Despite structural data, the molecular origins of this specificity as well as the recognition mechanism have remained unclear. Molecular simulations of the recent crystal structures suggest that most of the protein-DNA binding energy originates from non-specific interactions between the DNA backbone and non-variable residues, while RVDs contributions are negligible. Based on dynamical and energetic considerations we postulate that, while the first RVD residue promotes helix breaks--allowing folding of TAL as a DNA-wrapping super-helix--the second provides specificity through a negative discrimination of matches. Furthermore, we propose a simple pharmacophore-like model for the rationalization of RVD-DNA interactions and the interpretation of experimental findings concerning shared affinities and binding efficiencies. The explanatory paradigm presented herein provides a better comprehension of this elegant architecture and we hope will allow for improved designs of TAL-derived biotechnological tools.

  17. The Rho GTPase Effector ROCK Regulates Cyclin A, Cyclin D1, and p27Kip1 Levels by Distinct Mechanisms

    OpenAIRE

    Croft, Daniel R.; Olson, Michael F.

    2006-01-01

    The members of the Rho GTPase family are well known for their regulation of actin cytoskeletal structures. In addition, they influence progression through the cell cycle. The RhoA and RhoC proteins regulate numerous effector proteins, with a central and vital signaling role mediated by the ROCK I and ROCK II serine/threonine kinases. The requirement for ROCK function in the proliferation of numerous cell types has been revealed by studies utilizing ROCK-selective inhibitors such as Y-27632. H...

  18. Effectors from Wheat Rust Fungi Suppress Multiple Plant Defense Responses.

    Science.gov (United States)

    Ramachandran, Sowmya R; Yin, Chuntao; Kud, Joanna; Tanaka, Kiwamu; Mahoney, Aaron K; Xiao, Fangming; Hulbert, Scot H

    2017-01-01

    Fungi that cause cereal rust diseases (genus Puccinia) are important pathogens of wheat globally. Upon infection, the fungus secretes a number of effector proteins. Although a large repository of putative effectors has been predicted using bioinformatic pipelines, the lack of available high-throughput effector screening systems has limited functional studies on these proteins. In this study, we mined the available transcriptomes of Puccinia graminis and P. striiformis to look for potential effectors that suppress host hypersensitive response (HR). Twenty small (acids), secreted proteins, with no predicted functions were selected for the HR suppression assay using Nicotiana benthamiana, in which each of the proteins were transiently expressed and evaluated for their ability to suppress HR caused by four cytotoxic effector-R gene combinations (Cp/Rx, ATR13/RPP13, Rpt2/RPS-2, and GPA/RBP-1) and one mutated R gene-Pto(Y207D). Nine out of twenty proteins, designated Shr1 to Shr9 (suppressors of hypersensitive response), were found to suppress HR in N. benthamiana. These effectors varied in the effector-R gene defenses they suppressed, indicating these pathogens can interfere with a variety of host defense pathways. In addition to HR suppression, effector Shr7 also suppressed PAMP-triggered immune response triggered by flg22. Finally, delivery of Shr7 through Pseudomonas fluorescens EtHAn suppressed nonspecific HR induced by Pseudomonas syringae DC3000 in wheat, confirming its activity in a homologous system. Overall, this study provides the first evidence for the presence of effectors in Puccinia species suppressing multiple plant defense responses.

  19. Global impact of Salmonella type III secretion effector SteA on host cells

    Energy Technology Data Exchange (ETDEWEB)

    Cardenal-Muñoz, Elena, E-mail: e_cardenal@us.es; Gutiérrez, Gabriel, E-mail: ggpozo@us.es; Ramos-Morales, Francisco, E-mail: framos@us.es

    2014-07-11

    Highlights: • We analyzed HeLa cells transcriptome in response to Salmonella SteA. • Significant differential expression was detected for 58 human genes. • They are involved in ECM organization and regulation of some signaling pathways. • Cell death, cell adhesion and cell migration were decreased in SteA-expressing cells. • These results contribute to understand the role of SteA during infections. - Abstract: Salmonella enterica is a Gram-negative bacterium that causes gastroenteritis, bacteremia and typhoid fever in several animal species including humans. Its virulence is greatly dependent on two type III secretion systems, encoded in pathogenicity islands 1 and 2. These systems translocate proteins called effectors into eukaryotic host cell. Effectors interfere with host signal transduction pathways to allow the internalization of pathogens and their survival and proliferation inside vacuoles. SteA is one of the few Salmonella effectors that are substrates of both type III secretion systems. Here, we used gene arrays and bioinformatics analysis to study the genetic response of human epithelial cells to SteA. We found that constitutive synthesis of SteA in HeLa cells leads to induction of genes related to extracellular matrix organization and regulation of cell proliferation and serine/threonine kinase signaling pathways. SteA also causes repression of genes related to immune processes and regulation of purine nucleotide synthesis and pathway-restricted SMAD protein phosphorylation. In addition, a cell biology approach revealed that epithelial cells expressing steA show altered cell morphology, and decreased cytotoxicity, cell–cell adhesion and migration.

  20. Genomic, Network, and Phylogenetic Analysis of the Oomycete Effector Arsenal.

    Science.gov (United States)

    McGowan, Jamie; Fitzpatrick, David A

    2017-01-01

    The oomycetes are a class of microscopic, filamentous eukaryotes within the stramenopiles-alveolate- Rhizaria (SAR) supergroup and include ecologically significant animal and plant pathogens. Oomycetes secrete large arsenals of effector proteins that degrade host cell components, manipulate host immune responses, and induce necrosis, enabling parasitic colonization. This study investigated the expansion and evolution of effectors in 37 oomycete species in 4 oomycete orders, including Albuginales , Peronosporales , Pythiales , and Saprolegniales species. Our results highlight the large expansions of effector protein families, including glycoside hydrolases, pectinases, and necrosis-inducing proteins, in Phytophthora species. Species-specific expansions, including expansions of chitinases in Aphanomyces astaci and Pythium oligandrum , were detected. Novel effectors which may be involved in suppressing animal immune responses in Ap. astaci and Py. insidiosum were also identified. Type 2 necrosis-inducing proteins with an unusual phylogenetic history were also located in a number of oomycete species. We also investigated the "RxLR" effector complement of all 37 species and, as expected, observed large expansions in Phytophthora species numbers. Our results provide in-depth sequence information on all putative RxLR effectors from all 37 species. This work represents an up-to-date in silico catalogue of the effector arsenal of the oomycetes based on the 37 genomes currently available. IMPORTANCE The oomycetes are a class of microscopic, filamentous eukaryotes and include ecologically significant animal and plant pathogens. Oomycetes secrete large arsenals of effector proteins that degrade host cell components, manipulate host immune responses, and induce necrosis, enabling parasitic colonization. In this study, we catalogued the number and evolution of effectors in 37 oomycete species whose genomes have been completely sequenced. Large expansions of effector protein

  1. The tomato kinome and the tomato kinase library ORFeome: novel resources for the study of kinases and signal transduction in tomato and solanaceae species.

    Science.gov (United States)

    Singh, Dharmendra K; Calviño, Mauricio; Brauer, Elizabeth K; Fernandez-Pozo, Noe; Strickler, Susan; Yalamanchili, Roopa; Suzuki, Hideyuki; Aoki, Koh; Shibata, Daisuke; Stratmann, Johannes W; Popescu, George V; Mueller, Lukas A; Popescu, Sorina C

    2014-01-01

    Protein kinase-driven phosphorylation constitutes the core of cellular signaling. Kinase components of signal transduction pathways are often targeted for inactivation by pathogens. The study of kinases and immune signal transduction in the model crop tomato (Solanum lycopersicum) would benefit from the availability of community-wide resources for large scale and systems-level experimentation. Here, we defined the tomato kinome and performed a comprehensive comparative analysis of the tomato kinome and 15 other plant species. We constructed a tomato kinase library (TOKN 1.0) of over 300 full-length open reading frames (ORF) cloned into a recombination-based vector. We developed a high-throughput pipeline to isolate and transform tomato protoplasts. A subset of the TOKN 1.0 library kinases were expressed in planta, were purified, and were used to generate a functional tomato protein microarray. All resources created were utilized to test known and novel associations between tomato kinases and Pseudomonas syringae DC3000 effectors in a large-scale format. Bsk7 was identified as a component of the plant immune response and a candidate effector target. These resources will enable comprehensive investigations of signaling pathways and host-pathogen interactions in tomato and other Solanaceae spp.

  2. The Linker Histone H1.2 Is an Intermediate in the Apoptotic Response to Cytokine Deprivation in T-Effectors

    Directory of Open Access Journals (Sweden)

    Megha Garg

    2014-01-01

    Full Text Available Tissue homeostasis is a dynamic process involving proliferation and the removal of redundant or damaged cells. This is exemplified in the coordinated deletion—triggered by limiting trophic factors/cytokines in the extracellular milieu—of differentiated T cells overproduced during the mammalian immune response. However, mechanisms by which extracellular cues are perceived and transduced as apoptotic triggers remain incompletely understood. T-effectors are dependent on cytokines for survival and undergo apoptosis following cytokine withdrawal. Here we report that leptomycin B (LMB, an inhibitor of nuclear export machinery, protected T-effectors from apoptosis implicating a nuclear intermediate in the apoptotic pathway. Evidence is presented that the linker histone H1.2 localizes to the cytoplasm, by a mechanism sensitive to regulation by LMB, to activate apoptotic signaling culminating in nuclear and mitochondrial damage in T-effectors in response to cytokine deprivation. H1.2 is detected in a complex with the proapoptotic mitochondrial resident Bak and its subcellular localization regulated by Jun-N-terminal kinase (JNK, an intermediate in the apoptotic cascade in T-effectors. These data suggest that metabolic stressors may impinge on H1.2 dynamics favoring its activity at the mitochondrion, thereby functioning as a molecular switch for T-effector apoptosis.

  3. Piperine from black pepper inhibits activation-induced proliferation and effector function of T lymphocytes.

    Science.gov (United States)

    Doucette, Carolyn D; Rodgers, Gemma; Liwski, Robert S; Hoskin, David W

    2015-11-01

    Piperine is a major alkaloid component of black pepper (Piper nigrum Linn), which is a widely consumed spice. Here, we investigated the effect of piperine on mouse T lymphocyte activation. Piperine inhibited polyclonal and antigen-specific T lymphocyte proliferation without affecting cell viability. Piperine also suppressed T lymphocyte entry into the S and G2 /M phases of the cell cycle, and decreased expression of G1 -associated cyclin D3, CDK4, and CDK6. In addition, piperine inhibited CD25 expression, synthesis of interferon-γ, interleukin (IL)-2, IL-4, and IL-17A, and the generation of cytotoxic effector cells. The inhibitory effect of piperine on T lymphocytes was associated with hypophosphorylation of Akt, extracellular signal-regulated kinase, and inhibitor of κBα, but not ZAP-70. The ability of piperine to inhibit several key signaling pathways involved in T lymphocyte activation and the acquisition of effector function suggests that piperine might be useful in the management of T lymphocyte-mediated autoimmune and chronic inflammatory disorders. © 2015 Wiley Periodicals, Inc.

  4. Coxiella burnetii effector CvpB modulates phosphoinositide metabolism for optimal vacuole development.

    Science.gov (United States)

    Martinez, Eric; Allombert, Julie; Cantet, Franck; Lakhani, Anissa; Yandrapalli, Naresh; Neyret, Aymeric; Norville, Isobel H; Favard, Cyril; Muriaux, Delphine; Bonazzi, Matteo

    2016-06-07

    The Q fever bacterium Coxiella burnetii replicates inside host cells within a large Coxiella-containing vacuole (CCV) whose biogenesis relies on the Dot/Icm-dependent secretion of bacterial effectors. Several membrane trafficking pathways contribute membranes, proteins, and lipids for CCV biogenesis. These include the endocytic and autophagy pathways, which are characterized by phosphatidylinositol 3-phosphate [PI(3)P]-positive membranes. Here we show that the C. burnetii secreted effector Coxiella vacuolar protein B (CvpB) binds PI(3)P and phosphatidylserine (PS) on CCVs and early endosomal compartments and perturbs the activity of the phosphatidylinositol 5-kinase PIKfyve to manipulate PI(3)P metabolism. CvpB association to early endosome triggers vacuolation and clustering, leading to the channeling of large PI(3)P-positive membranes to CCVs for vacuole expansion. At CCVs, CvpB binding to early endosome- and autophagy-derived PI(3)P and the concomitant inhibition of PIKfyve favor the association of the autophagosomal machinery to CCVs for optimal homotypic fusion of the Coxiella-containing compartments. The importance of manipulating PI(3)P metabolism is highlighted by mutations in cvpB resulting in a multivacuolar phenotype, rescuable by gene complementation, indicative of a defect in CCV biogenesis. Using the insect model Galleria mellonella, we demonstrate the in vivo relevance of defective CCV biogenesis by highlighting an attenuated virulence phenotype associated with cvpB mutations.

  5. Distinct roles of Cdc42 in thymopoiesis and effector and memory T cell differentiation.

    Directory of Open Access Journals (Sweden)

    Fukun Guo

    Full Text Available Cdc42 of the Rho GTPase family has been implicated in cell actin organization, proliferation, survival, and migration but its physiological role is likely cell-type specific. By a T cell-specific deletion of Cdc42 in mouse, we have recently shown that Cdc42 maintains naïve T cell homeostasis through promoting cell survival and suppressing T cell activation. Here we have further investigated the involvement of Cdc42 in multiple stages of T cell differentiation. We found that in Cdc42(-/- thymus, positive selection of CD4(+CD8(+ double-positive thymocytes was defective, CD4(+ and CD8(+ single-positive thymocytes were impaired in migration and showed an increase in cell apoptosis triggered by anti-CD3/-CD28 antibodies, and thymocytes were hyporesponsive to anti-CD3/-CD28-induced cell proliferation and hyperresponsive to anti-CD3/-CD28-stimulated MAP kinase activation. At the periphery, Cdc42-deficient naive T cells displayed an impaired actin polymerization and TCR clustering during the formation of mature immunological synapse, and showed an enhanced differentiation to Th1 and CD8(+ effector and memory cells in vitro and in vivo. Finally, Cdc42(-/- mice exhibited exacerbated liver damage in an induced autoimmune disease model. Collectively, these data establish that Cdc42 is critically involved in thymopoiesis and plays a restrictive role in effector and memory T cell differentiation and autoimmunity.

  6. Translation is actively regulated during the differentiation of CD8(+) effector T cells.

    Science.gov (United States)

    Araki, Koichi; Morita, Masahiro; Bederman, Annelise G; Konieczny, Bogumila T; Kissick, Haydn T; Sonenberg, Nahum; Ahmed, Rafi

    2017-09-01

    Translation is a critical process in protein synthesis, but translational regulation in antigen-specific T cells in vivo has not been well defined. Here we have characterized the translatome of virus-specific CD8(+) effector T cells (Teff cells) during acute infection of mice with lymphocytic choriomeningitis virus (LCMV). Antigen-specific T cells exerted dynamic translational control of gene expression that correlated with cell proliferation and stimulation via the T cell antigen receptor (TCR). The translation of mRNAs that encode translation machinery, including ribosomal proteins, was upregulated during the T cell clonal-expansion phase, followed by inhibition of the translation of those transcripts when the CD8(+) Teff cells stopped dividing just before the contraction phase. That translational suppression was more pronounced in terminal effector cells than in memory precursor cells and was regulated by antigenic stimulation and signals from the kinase mTOR. Our studies show that translation of transcripts encoding ribosomal proteins is regulated during the differentiation of CD8(+) Teff cells and might have a role in fate 'decisions' involved in the formation of memory cells.

  7. Experimental approaches to investigate effector translocation into host cells in the Ustilago maydis/maize pathosystem.

    Science.gov (United States)

    Tanaka, Shigeyuki; Djamei, Armin; Presti, Libera Lo; Schipper, Kerstin; Winterberg, Sarah; Amati, Simone; Becker, Dirk; Büchner, Heike; Kumlehn, Jochen; Reissmann, Stefanie; Kahmann, Regine

    2015-01-01

    The fungus Ustilago maydis is a pathogen that establishes a biotrophic interaction with Zea mays. The interaction with the plant host is largely governed by more than 300 novel, secreted protein effectors, of which only four have been functionally characterized. Prerequisite to examine effector function is to know where effectors reside after secretion. Effectors can remain in the extracellular space, i.e. the plant apoplast (apoplastic effectors), or can cross the plant plasma membrane and exert their function inside the host cell (cytoplasmic effectors). The U. maydis effectors lack conserved motifs in their primary sequences that could allow a classification of the effectome into apoplastic/cytoplasmic effectors. This represents a significant obstacle in functional effector characterization. Here we describe our attempts to establish a system for effector classification into apoplastic and cytoplasmic members, using U. maydis for effector delivery. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Uncovering the Legionella genus effector repertoire - strength in diversity and numbers

    Science.gov (United States)

    Burstein, David; Amaro, Francisco; Zusman, Tal; Lifshitz, Ziv; Cohen, Ofir; Gilbert, Jack A; Pupko, Tal; Shuman, Howard A; Segal, Gil

    2016-01-01

    Infection by the human pathogen Legionella pneumophila relies on the translocation of ~300 virulence proteins, termed effectors, which manipulate host-cell processes. However, almost no information exists regarding effectors in other Legionella pathogens. Here we sequenced, assembled and characterized the genomes of 38 Legionella species, and predicted their effector repertoire using a previously validated machine-learning approach. This analysis revealed a treasure trove of 5,885 predicted effectors. The effector repertoire of different Legionella species was found to be largely non-overlapping, and only seven core-effectors were shared among all species studied. Species-specific effectors had atypically low GC content, suggesting exogenous acquisition, possibly from their natural protozoan hosts. Furthermore, we detected numerous novel conserved effector domains, and discovered new domain combinations, which allowed inferring yet undescribed effector functions. The effector collection and network of domain architectures described here can serve as a roadmap for future studies of effector function and evolution. PMID:26752266

  9. Ramularia collo-cygni effectors and their role in planta

    DEFF Research Database (Denmark)

    Lopez, Jean-Baptiste

    2017-01-01

    and epidemiologic point of view, but few studies have been done at the molecular level. During my PhD, I studied this interaction with a focus on the effectors proteins. Effectors are small secreted protein allowing microorganism to bypass or counteract plant immune defense. In order to be able to study those...... proteins, I first developed a pipeline allowing in a semi high-throughput fashion cloning expression and screening in the host plant of the effectors. In the second part of this thesis I report my work on the functional characterization of a novel effector produced via the previously mentioned pipeline....... Finally, I contributed to a joint project on comparative transcriptomic between 2 Rcc isolates infecting 2 barley cultivars with contrasting sensitivities to Rcc. My first focus was to understand how Rcc adapt its transcriptome depending on the host. Secondly, I was interested to look at the differential...

  10. Gunite Scarifying End Effector. Innovative Technology Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-09-01

    The Gunite Scarifying End Effector (GSEE) is designed to remove a layer of the gunite tank walls, which are contaminated with radioactivity. Removing this radioactivity is necessary to close the tank.

  11. Toxoplasma gondii effectors are master regulators of the inflammatory response

    Science.gov (United States)

    Melo, Mariane B.; Jensen, Kirk D.C.; Saeij, Jeroen P.J.

    2011-01-01

    Toxoplasma is a highly successful parasite that establishes a life-long chronic infection. To do this it must carefully regulate immune activation and host cell effector mechanisms. Here we review the latest developments in our understanding of how Toxoplasma counteracts the host’s immune response, and in some cases provokes it, through the use of specific parasite effector proteins. An emerging theme from these discoveries is that Toxoplasma effectors are master regulators of the pro-inflammatory response, which elicits many of the host’s toxoplasmacidal mechanisms. We speculate that combinations of these effectors present in certain Toxoplasma strains work to maintain an optimal parasite burden in different hosts to ensure parasite transmission. PMID:21893432

  12. Characterization of the largest effector gene cluster of Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Thomas Brefort

    2014-07-01

    Full Text Available In the genome of the biotrophic plant pathogen Ustilago maydis, many of the genes coding for secreted protein effectors modulating virulence are arranged in gene clusters. The vast majority of these genes encode novel proteins whose expression is coupled to plant colonization. The largest of these gene clusters, cluster 19A, encodes 24 secreted effectors. Deletion of the entire cluster results in severe attenuation of virulence. Here we present the functional analysis of this genomic region. We show that a 19A deletion mutant behaves like an endophyte, i.e. is still able to colonize plants and complete the infection cycle. However, tumors, the most conspicuous symptoms of maize smut disease, are only rarely formed and fungal biomass in infected tissue is significantly reduced. The generation and analysis of strains carrying sub-deletions identified several genes significantly contributing to tumor formation after seedling infection. Another of the effectors could be linked specifically to anthocyanin induction in the infected tissue. As the individual contributions of these genes to tumor formation were small, we studied the response of maize plants to the whole cluster mutant as well as to several individual mutants by array analysis. This revealed distinct plant responses, demonstrating that the respective effectors have discrete plant targets. We propose that the analysis of plant responses to effector mutant strains that lack a strong virulence phenotype may be a general way to visualize differences in effector function.

  13. Immune Effector Recovery in Chronic Myeloid Leukemia and Treatment-Free Remission.

    Science.gov (United States)

    Hughes, Amy; Yong, Agnes S M

    2017-01-01

    Chronic myeloid leukemia (CML) is a hematological cancer, characterized by a reciprocal chromosomal translocation between chromosomes 9 and 22 [t(9;22)], producing the Bcr-Abl oncogene. Tyrosine kinase inhibitors (TKIs) represent the standard of care for CML patients and exert a dual mode of action: direct oncokinase inhibition and restoration of effector-mediated immune surveillance, which is rendered dysfunctional in CML patients at diagnosis, prior to TKI therapy. TKIs such as imatinib, and more potent second-generation nilotinib and dasatinib induce a high rate of deep molecular response (DMR, BCR-ABL1 ≤ 0.01%) in CML patients. As a result, the more recent goal of therapy in CML treatment is to induce a durable DMR as a prelude to successful treatment-free remission (TFR), which occurs in approximately half of all CML patients who cease TKI therapy. The lack of overt relapse in such patients has been attributed to immunological control of CML. In this review, we discuss an immunological timeline to successful TFR, focusing on the immunology of CML during TKI treatment; an initial period of immune suppression, limiting antitumor immune effector responses in newly diagnosed CML patients, linked to an expansion of immature myeloid-derived suppressor cells and regulatory T cells and aberrant expression of immune checkpoint signaling pathways, including programmed death-1/programmed death ligand-1. Commencement of TKI treatment is associated with immune system re-activation and restoration of effector-mediated [natural killer (NK) cell and T cell] immune surveillance in CML patients, albeit with differing frequencies in concert with differing levels of molecular response achieved on TKI. DMR is associated with maximal restoration of immune recovery in CML patients on TKI. Current data suggest a net balance between both the effector and suppressor arms of the immune system, at a minimum involving mature, cytotoxic CD56(dim) NK cells may be important in

  14. ASPM and citron kinase co-localize to the midbody ring during cytokinesis.

    Science.gov (United States)

    Paramasivam, Murugan; Chang, Yoon Jeung; LoTurco, Joseph J

    2007-07-01

    Mutations in ASPM (abnormal spindle-like microcephaly associated) and citron kinase (CITK) cause primary microcephaly in humans and rodents, respectively. Both proteins are expressed during neurogenesis and play important roles in neuronal progenitor cell division. ASPM is localized to the spindle pole, and is essential for maintaining proliferative cell division. CITK is present at the cytokinesis furrow and midbody ring, and it is essential for cellular abscission. We report here that ASPM also localizes to the midbody ring in mammalian cells. ASPM co-localizes with CITK at the midbody ring and coimmunoprecipitates with CITK in lysates prepared from HeLa cells and embryonic neuroepithelium. Furthermore, a GFP-tagged fragment of the N-terminus of ASPM localizes to centrosomes and spindle poles, while a GFP-tagged fragment of the C-terminus localizes to midbodies. All reported ASPM mutations that cause microcephaly involve a truncation or mutation of the C-terminus. In addition, at least two other microcephaly-related proteins, CENPJ and CDK5RAP2, previously localized to spindle poles, also localize to midbodies. Together our observations support a model of neurogenesis in which spindle dynamics and cellular abscission are coordinated.

  15. Integrin cytoplasmic domain-associated protein-1 (ICAP-1) interacts with the ROCK-I kinase at the plasma membrane

    NARCIS (Netherlands)

    Stroeken, Peter J. M.; Alvarez, Belén; van Rheenen, Jacco; Wijnands, Yvonne M.; Geerts, Dirk; Jalink, Kees; Roos, Ed

    2006-01-01

    The integrin cytoplasmic domain-associated protein-1 (ICAP-1) binds via its C-terminal PTB (phosphotyrosine-binding) domain to the cytoplasmic tails of beta1 but not other integrins. Using the yeast two-hybrid assay, we found that ICAP-1 binds the ROCK-I kinase, an effector of the RhoA GTPase. By

  16. Focal adhesion kinase is required for intestinal regeneration and tumorigenesis downstream of Wnt/c-Myc signaling

    NARCIS (Netherlands)

    Ashton, Gabrielle H.; Morton, Jennifer P.; Myant, Kevin; Phesse, Toby J.; Ridgway, Rachel A.; Marsh, Victoria; Wilkins, Julie A.; Athineos, Dimitris; Muncan, Vanesa; Kemp, Richard; Neufeld, Kristi; Clevers, Hans; Brunton, Valerie; Winton, Douglas J.; Wang, Xiaoyan; Sears, Rosalie C.; Clarke, Alan R.; Frame, Margaret C.; Sansom, Owen J.

    2010-01-01

    The intestinal epithelium has a remarkable capacity to regenerate after injury and DNA damage. Here, we show that the integrin effector protein Focal Adhesion Kinase (FAK) is dispensable for normal intestinal homeostasis and DNA damage signaling, but is essential for intestinal regeneration

  17. Muscle phosphorylase kinase deficiency

    DEFF Research Database (Denmark)

    Preisler, N; Orngreen, M C; Echaniz-Laguna, A

    2012-01-01

    To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD).......To examine metabolism during exercise in 2 patients with muscle phosphorylase kinase (PHK) deficiency and to further define the phenotype of this rare glycogen storage disease (GSD)....

  18. Shigella flexneri type III secreted effector OspF reveals new crosstalks of proinflammatory signaling pathways during bacterial infection.

    Science.gov (United States)

    Reiterer, Veronika; Grossniklaus, Lars; Tschon, Therese; Kasper, Christoph Alexander; Sorg, Isabel; Arrieumerlou, Cécile

    2011-07-01

    Shigella flexneri type III secreted effector OspF harbors a phosphothreonine lyase activity that irreversibly dephosphorylates MAP kinases (MAPKs) p38 and ERK in infected epithelial cells and thereby, dampens innate immunity. Whereas this activity has been well characterized, the impact of OspF on other host signaling pathways that control inflammation was unknown. Here we report that OspF potentiates the activation of the MAPK JNK and the transcription factor NF-κB during S. flexneri infection. This unexpected effect of OspF was dependent on the phosphothreonine lyase activity of OspF on p38, and resulted from the disruption of a negative feedback loop regulation between p38 and TGF-beta activated kinase 1 (TAK1), mediated via the phosphorylation of TAK1-binding protein 1. Interestingly, potentiated JNK activation was not associated with enhanced c-Jun signaling as OspF also inhibits c-Jun expression at the transcriptional level. Altogether, our data reveal the impact of OspF on the activation of NF-κB, JNK and c-Jun, and demonstrate the existence of a negative feedback loop regulation between p38 and TAK1 during S. flexneri infection. Furthermore, this study validates the use of bacterial effectors as molecular tools to identify the crosstalks that connect important host signaling pathways induced upon bacterial infection. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Distinct effectors of platelet-derived growth factor receptor-α signaling are required for cell survival during embryogenesis

    Science.gov (United States)

    Van Stry, Melanie; Kazlauskas, Andrius; Schreiber, Stuart L.; Symes, Karen

    2005-01-01

    Platelet-derived growth factor receptor (PDGFR) signaling is essential for normal embryonic development in many organisms, including frog, mouse, zebrafish, and sea urchin. The mode of action of PDGFR signaling during early development is poorly understood, however, mostly because inhibition of signaling through either the PDGFRα or PDGFRβ is embryonic lethal. In Xenopus embryos, disruption of PDGFRα signaling causes migrating anterior mesoderm cells to lose direction and undergo apoptosis through the mitochondrial pathway. To understand the mechanism of PDGFRα function in this process, we have analyzed all known effector-binding sites in vivo. By using a chemical inducer of dimerization to activate chimera PDGFRαs, we have identified a role for phospholipase Cγ (PLCγ) in protecting cells from death. PDGFRα-mediated cell survival requires PLCγ and phosphatidylinositol 3-kinase signaling, and that PDGFRα with binding sites for these two signaling factors is sufficient for this activity. Other effectors of PDGFRα signaling, Shf, SHP-2, and Crk, are not required for this process. Thus, our findings show that PDGFRα signaling through PLCγ and phosphatidylinositol 3-kinase has a protective role in preventing apoptosis in early development. Furthermore, we demonstrate that small molecule inducers of dimerization provide a powerful system to manipulate receptor function in developing embryos. PMID:15919820

  20. Distinct effectors of platelet-derived growth factor receptor-alpha signaling are required for cell survival during embryogenesis.

    Science.gov (United States)

    Van Stry, Melanie; Kazlauskas, Andrius; Schreiber, Stuart L; Symes, Karen

    2005-06-07

    Platelet-derived growth factor receptor (PDGFR) signaling is essential for normal embryonic development in many organisms, including frog, mouse, zebrafish, and sea urchin. The mode of action of PDGFR signaling during early development is poorly understood, however, mostly because inhibition of signaling through either the PDGFRalpha or PDGFRbeta is embryonic lethal. In Xenopus embryos, disruption of PDGFRalpha signaling causes migrating anterior mesoderm cells to lose direction and undergo apoptosis through the mitochondrial pathway. To understand the mechanism of PDGFRalpha function in this process, we have analyzed all known effector-binding sites in vivo. By using a chemical inducer of dimerization to activate chimera PDGFRalphas, we have identified a role for phospholipase Cgamma (PLCgamma) in protecting cells from death. PDGFRalpha-mediated cell survival requires PLCgamma and phosphatidylinositol 3-kinase signaling, and that PDGFRalpha with binding sites for these two signaling factors is sufficient for this activity. Other effectors of PDGFRalpha signaling, Shf, SHP-2, and Crk, are not required for this process. Thus, our findings show that PDGFRalpha signaling through PLCgamma and phosphatidylinositol 3-kinase has a protective role in preventing apoptosis in early development. Furthermore, we demonstrate that small molecule inducers of dimerization provide a powerful system to manipulate receptor function in developing embryos.

  1. The C-terminal region of A-kinase anchor protein 350 (AKAP350A) enables formation of microtubule-nucleation centers and interacts with pericentriolar proteins.

    Science.gov (United States)

    Kolobova, Elena; Roland, Joseph T; Lapierre, Lynne A; Williams, Janice A; Mason, Twila A; Goldenring, James R

    2017-12-15

    Microtubules in animal cells assemble (nucleate) from both the centrosome and the cis-Golgi cisternae. A-kinase anchor protein 350 kDa (AKAP350A, also called AKAP450/CG-NAP/AKAP9) is a large scaffolding protein located at both the centrosome and Golgi apparatus. Previous findings have suggested that AKAP350 is important for microtubule dynamics at both locations, but how this scaffolding protein assembles microtubule nucleation machinery is unclear. Here, we found that overexpression of the C-terminal third of AKAP350A, enhanced GFP-AKAP350A(2691-3907), induces the formation of multiple microtubule-nucleation centers (MTNCs). Nevertheless, these induced MTNCs lacked "true" centriole proteins, such as Cep135. Mapping analysis with AKAP350A truncations demonstrated that AKAP350A contains discrete regions responsible for promoting or inhibiting the formation of multiple MTNCs. Moreover, GFP-AKAP350A(2691-3907) recruited several pericentriolar proteins to MTNCs, including γ-tubulin, pericentrin, Cep68, Cep170, and Cdk5RAP2. Proteomic analysis indicated that Cdk5RAP2 and Cep170 both interact with the microtubule nucleation-promoting region of AKAP350A, whereas Cep68 interacts with the distal C-terminal AKAP350A region. Yeast two-hybrid assays established a direct interaction of Cep170 with AKAP350A. Super-resolution and deconvolution microscopy analyses were performed to define the association of AKAP350A with centrosomes, and these studies disclosed that AKAP350A spans the bridge between centrioles, co-localizing with rootletin and Cep68 in the linker region. siRNA-mediated depletion of AKAP350A caused displacement of both Cep68 and Cep170 from the centrosome. These results suggest that AKAP350A acts as a scaffold for factors involved in microtubule nucleation at the centrosome and coordinates the assembly of protein complexes associating with the intercentriolar bridge.

  2. A secreted Ustilago maydis effector promotes virulence by targeting anthocyanin biosynthesis in maize.

    Science.gov (United States)

    Tanaka, Shigeyuki; Brefort, Thomas; Neidig, Nina; Djamei, Armin; Kahnt, Jörg; Vermerris, Wilfred; Koenig, Stefanie; Feussner, Kirstin; Feussner, Ivo; Kahmann, Regine

    2014-01-01

    The biotrophic fungus Ustilago maydis causes smut disease in maize with characteristic tumor formation and anthocyanin induction. Here, we show that anthocyanin biosynthesis is induced by the virulence promoting secreted effector protein Tin2. Tin2 protein functions inside plant cells where it interacts with maize protein kinase ZmTTK1. Tin2 masks a ubiquitin-proteasome degradation motif in ZmTTK1, thus stabilizing the active kinase. Active ZmTTK1 controls activation of genes in the anthocyanin biosynthesis pathway. Without Tin2, enhanced lignin biosynthesis is observed in infected tissue and vascular bundles show strong lignification. This is presumably limiting access of fungal hyphae to nutrients needed for massive proliferation. Consistent with this assertion, we observe that maize brown midrib mutants affected in lignin biosynthesis are hypersensitive to U. maydis infection. We speculate that Tin2 rewires metabolites into the anthocyanin pathway to lower their availability for other defense responses. DOI: http://dx.doi.org/10.7554/eLife.01355.001.

  3. The molecular regulation of Janus kinase (JAK) activation.

    Science.gov (United States)

    Babon, Jeffrey J; Lucet, Isabelle S; Murphy, James M; Nicola, Nicos A; Varghese, Leila N

    2014-08-15

    The JAK (Janus kinase) family members serve essential roles as the intracellular signalling effectors of cytokine receptors. This family, comprising JAK1, JAK2, JAK3 and TYK2 (tyrosine kinase 2), was first described more than 20 years ago, but the complexities underlying their activation, regulation and pleiotropic signalling functions are still being explored. Here, we review the current knowledge of their physiological functions and the causative role of activating and inactivating JAK mutations in human diseases, including haemopoietic malignancies, immunodeficiency and inflammatory diseases. At the molecular level, recent studies have greatly advanced our knowledge of the structures and organization of the component FERM (4.1/ezrin/radixin/moesin)-SH2 (Src homology 2), pseudokinase and kinase domains within the JAKs, the mechanism of JAK activation and, in particular, the role of the pseudokinase domain as a suppressor of the adjacent tyrosine kinase domain's catalytic activity. We also review recent advances in our understanding of the mechanisms of negative regulation exerted by the SH2 domain-containing proteins, SOCS (suppressors of cytokine signalling) proteins and LNK. These recent studies highlight the diversity of regulatory mechanisms utilized by the JAK family to maintain signalling fidelity, and suggest alternative therapeutic strategies to complement existing ATP-competitive kinase inhibitors.

  4. Type VI secretion delivers bacteriolytic effectors to target cells.

    Science.gov (United States)

    Russell, Alistair B; Hood, Rachel D; Bui, Nhat Khai; LeRoux, Michele; Vollmer, Waldemar; Mougous, Joseph D

    2011-07-20

    Peptidoglycan is the major structural constituent of the bacterial cell wall, forming a meshwork outside the cytoplasmic membrane that maintains cell shape and prevents lysis. In Gram-negative bacteria, peptidoglycan is located in the periplasm, where it is protected from exogenous lytic enzymes by the outer membrane. Here we show that the type VI secretion system of Pseudomonas aeruginosa breaches this barrier to deliver two effector proteins, Tse1 and Tse3, to the periplasm of recipient cells. In this compartment, the effectors hydrolyse peptidoglycan, thereby providing a fitness advantage for P. aeruginosa cells in competition with other bacteria. To protect itself from lysis by Tse1 and Tse3, P. aeruginosa uses specific periplasmically localized immunity proteins. The requirement for these immunity proteins depends on intercellular self-intoxication through an active type VI secretion system, indicating a mechanism for export whereby effectors do not access donor cell periplasm in transit.

  5. Shigella flexneri type III secretion system effectors OspB and OspF target the nucleus to downregulate the host inflammatory response via interactions with retinoblastoma protein.

    Science.gov (United States)

    Zurawski, Daniel V; Mumy, Karen L; Faherty, Christina S; McCormick, Beth A; Maurelli, Anthony T

    2009-01-01

    OspF, OspG and IpaH(9.8) are type III secretion system (T3SS) effectors of Shigella flexneri that downregulate the host innate immune response. OspF modifies mitogen-activated protein kinase pathways and polymorphonuclear leucocyte transepithelial migration associated with Shigella invasion. OspF also localizes in the nucleus to mediate chromatin remodelling, resulting in reduced transcription of inflammatory cytokines. We now report that OspB can be added to the set of S. flexneri T3SS effectors required to modulate the innate immune response. T84 cells infected with a Delta ospB mutant resulted in reduced polymorphonuclear leucocyte transepithelial migration and mitogen-activated protein kinase signalling. Tagged versions of OspB localized with endosomes and the nucleus. Further, T84 cells infected with the Delta ospB mutant showed increased levels of secreted IL-8 compared with wild-type infected cells. Both GST-OspB and GST-OspF coprecipitated retinoblastoma protein from host cell lysates. Because Delta ospB and Delta ospF mutants share similar phenotypes, and OspB and OspF share a host binding partner, we propose that OspB and OspF facilitate the remodelling of chromatin via interactions with retinoblastoma protein, resulting in diminished inflammatory cytokine production. The requirement of multiple T3SS effectors to modulate the innate immune response correlates to the complexity of the human immune system.

  6. Identification of Anaplasma marginale type IV secretion system effector proteins.

    Directory of Open Access Journals (Sweden)

    Svetlana Lockwood

    Full Text Available Anaplasma marginale, an obligate intracellular alphaproteobacterium in the order Rickettsiales, is a tick-borne pathogen and the leading cause of anaplasmosis in cattle worldwide. Complete genome sequencing of A. marginale revealed that it has a type IV secretion system (T4SS. The T4SS is one of seven known types of secretion systems utilized by bacteria, with the type III and IV secretion systems particularly prevalent among pathogenic Gram-negative bacteria. The T4SS is predicted to play an important role in the invasion and pathogenesis of A. marginale by translocating effector proteins across its membrane into eukaryotic target cells. However, T4SS effector proteins have not been identified and tested in the laboratory until now.By combining computational methods with phylogenetic analysis and sequence identity searches, we identified a subset of potential T4SS effectors in A. marginale strain St. Maries and chose six for laboratory testing. Four (AM185, AM470, AM705 [AnkA], and AM1141 of these six proteins were translocated in a T4SS-dependent manner using Legionella pneumophila as a reporter system.The algorithm employed to find T4SS effector proteins in A. marginale identified four such proteins that were verified by laboratory testing. L. pneumophila was shown to work as a model system for A. marginale and thus can be used as a screening tool for A. marginale effector proteins. The first T4SS effector proteins for A. marginale have been identified in this work.

  7. p21-ras effector domain mutants constructed by "cassette" mutagenesis

    DEFF Research Database (Denmark)

    Stone, J C; Vass, W C; Willumsen, B M

    1988-01-01

    A series of mutations encoding single-amino-acid substitutions within the v-rasH effector domain were constructed, and the ability of the mutants to induce focal transformation of NIH 3T3 cells was studied. The mutations, which spanned codons 32 to 40, were made by a "cassette" mutagenesis...... technique that involved replacing this portion of the v-rasH effector domain with a linker carrying two BspMI sites in opposite orientations. Since BspMI cleaves outside its recognition sequence, BspMI digestion of the plasmid completely removed the linker, creating a double-stranded gap whose missing ras...

  8. NopP, a phosphorylated effector of Rhizobium sp. strain NGR234, is a major determinant of nodulation of the tropical legumes Flemingia congesta and Tephrosia vogelii.

    Science.gov (United States)

    Skorpil, Peter; Saad, Maged M; Boukli, Nawal M; Kobayashi, Hajime; Ares-Orpel, Florencia; Broughton, William J; Deakin, William J

    2005-09-01

    Rhizobium sp. NGR234 nodulates many plants, some of which react to proteins secreted via a type three secretion system (T3SS) in a positive- (Flemingia congesta, Tephrosia vogelii) or negative- (Crotalaria juncea, Pachyrhizus tuberosus) manner. T3SSs are devices that Gram-negative bacteria use to inject effector proteins into the cytoplasm of eukaryotic cells. The only two rhizobial T3SS effector proteins characterized to date are NopL and NopP of NGR234. NopL can be phosphorylated by plant kinases and we show this to be true for NopP as well. Mutation of nopP leads to a dramatic reduction in nodule numbers on F. congesta and T. vogelii. Concomitant mutation of nopL and nopP further diminishes nodulation capacity to levels that, on T. vogelii, are lower than those produced by the T3SS null mutant NGR(Omega)rhcN. We also show that the T3SS of NGR234 secretes at least one additional effector, which remains to be identified. In other words, NGR234 secretes a cocktail of effectors, some of which have positive effects on nodulation of certain plants while others are perceived negatively and block nodulation. NopL and NopP are two components of this mix that extend the ability of NGR234 to nodulate certain legumes.

  9. Studying Kinetochore Kinases

    NARCIS (Netherlands)

    Saurin, Adrian T; Kops, Geert J P L

    2016-01-01

    Mitotic kinetochores are signaling network hubs that regulate chromosome movements, attachment error-correction, and the spindle assembly checkpoint. Key switches in these networks are kinases and phosphatases that enable rapid responses to changing conditions. Describing the mechanisms and dynamics

  10. Pyruvate kinase blood test

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003357.htm Pyruvate kinase blood test To use the sharing features on this page, ... energy when oxygen levels are low. How the Test is Performed A blood sample is needed. In the laboratory, white blood ...

  11. Bacterial effector binding to ribosomal protein s3 subverts NF-kappaB function.

    Directory of Open Access Journals (Sweden)

    Xiaofei Gao

    2009-12-01

    Full Text Available Enteric bacterial pathogens cause food borne disease, which constitutes an enormous economic and health burden. Enterohemorrhagic Escherichia coli (EHEC causes a severe bloody diarrhea following transmission to humans through various means, including contaminated beef and vegetable products, water, or through contact with animals. EHEC also causes a potentially fatal kidney disease (hemolytic uremic syndrome for which there is no effective treatment or prophylaxis. EHEC and other enteric pathogens (e.g., enteropathogenic E. coli (EPEC, Salmonella, Shigella, Yersinia utilize a type III secretion system (T3SS to inject virulence proteins (effectors into host cells. While it is known that T3SS effectors subvert host cell function to promote diarrheal disease and bacterial transmission, in many cases, the mechanisms by which these effectors bind to host proteins and disrupt the normal function of intestinal epithelial cells have not been completely characterized. In this study, we present evidence that the E. coli O157:H7 nleH1 and nleH2 genes encode T3SS effectors that bind to the human ribosomal protein S3 (RPS3, a subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB transcriptional complexes. NleH1 and NleH2 co-localized with RPS3 in the cytoplasm, but not in cell nuclei. The N-terminal region of both NleH1 and NleH2 was required for binding to the N-terminus of RPS3. NleH1 and NleH2 are autophosphorylated Ser/Thr protein kinases, but their binding to RPS3 is independent of kinase activity. NleH1, but not NleH2, reduced the nuclear abundance of RPS3 without altering the p50 or p65 NF-kappaB subunits or affecting the phosphorylation state or abundance of the inhibitory NF-kappaB chaperone IkappaBalpha NleH1 repressed the transcription of a RPS3/NF-kappaB-dependent reporter plasmid, but did not inhibit the transcription of RPS3-independent reporters. In contrast, NleH2 stimulated RPS3-dependent transcription, as well

  12. Robotic End Effectors for Hard-Rock Climbing

    Science.gov (United States)

    Kennedy, Brett; Leger, Patrick

    2004-01-01

    Special-purpose robot hands (end effectors) now under development are intended to enable robots to traverse cliffs much as human climbers do. Potential applications for robots having this capability include scientific exploration (both on Earth and other rocky bodies in space), military reconnaissance, and outdoor search and rescue operations. Until now, enabling robots to traverse cliffs has been considered too difficult a task because of the perceived need of prohibitively sophisticated planning algorithms as well as end effectors as dexterous as human hands. The present end effectors are being designed to enable robots to attach themselves to typical rock-face features with less planning and simpler end effectors. This advance is based on the emulation of the equipment used by human climbers rather than the emulation of the human hand. Climbing-aid equipment, specifically cams, aid hooks, and cam hooks, are used by sport climbers when a quick ascent of a cliff is desired (see Figure 1). Currently two different end-effector designs have been created. The first, denoted the simple hook emulator, consists of three "fingers" arranged around a central "palm." Each finger emulates the function of a particular type of climbing hook (aid hook, wide cam hook, and a narrow cam hook). These fingers are connected to the palm via a mechanical linkage actuated with a leadscrew/nut. This mechanism allows the fingers to be extended or retracted. The second design, denoted the advanced hook emulator (see Figure 2), shares these features, but it incorporates an aid hook and a cam hook into each finger. The spring-loading of the aid hook allows the passive selection of the type of hook used. The end effectors can be used in several different modes. In the aid-hook mode, the aid hook on one of the fingers locks onto a horizontal ledge while the other two fingers act to stabilize the end effector against the cliff face. In the cam-hook mode, the broad, flat tip of the cam hook is

  13. Characterization of the Wheat Stripe Rust (Puccinia striiformis f. sp. tritici) Fungal Effector Candidate PEC6 and Its Corresponding Host Targets

    DEFF Research Database (Denmark)

    Liu, Changhai

    Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important fungal diseases on wheat worldwide and a serious threat to wheat production. Understanding the plant-microbe interaction mechanism is the basic step to assist future plant breeding aiming at increasing...... factor. By using the yeast two-hybrid system, the adenosine kinase (ADK) was identified as a host target of PEC6. Virus-induced gene silencing (VIGS) of ADK enhanced wheat susceptibility to stripe rust indicates that ADK is a positive regulator in plant defense. Based on EtHAn-mediated effector delivery...... resistance upon Pst-inoculation. In conclusion, the stripe rust fungal effector candidate PEC6 works as a PTI suppressor probably by targeting host ADK protein and interfering with its activity. A few wheat lines apparently carry R-genes able to recognize PEC6 but still are susceptible to Pst, so some other...

  14. Identification and characterization of novel effectors of Cladosporium fulvum

    NARCIS (Netherlands)

    Ökmen, B.

    2013-01-01

    In order to establish disease, plant pathogenic fungi deliver effectors in the apoplastic space surrounding host cells as well as into host cells themselves to manipulate host physiology in favour of their own growth. Cladosporium fulvum is a non-obligate biotrophic fungus causing leaf mould disease

  15. Type IV secretion system of Brucella spp. and its effectors.

    Science.gov (United States)

    Ke, Yuehua; Wang, Yufei; Li, Wengfeng; Chen, Zeliang

    2015-01-01

    Brucella spp. are intracellular bacterial pathogens that cause infection in domestic and wild animals. They are often used as model organisms to study intracellular bacterial infections. Brucella VirB T4SS is a key virulence factor that plays important roles in mediating intracellular survival and manipulating host immune response to infection. In this review, we discuss the roles of Brucella VirB T4SS and 15 effectors that are proposed to be crucial for Brucella pathogenesis. VirB T4SS regulates the inflammation response and manipulates vesicle trafficking inside host cells. VirB T4SS also plays crucial roles in the inhibition of the host immune response and intracellular survival during infection. Here, we list the key molecular events in the intracellular life cycle of Brucella that are potentially targeted by the VirB T4SS effectors. Elucidating the functions of these effectors will help clarify the molecular role of T4SS during infection. Furthermore, studying the effectors secreted by Brucella spp. might provide insights into the mechanisms used by the bacteria to hijack the host signaling pathways and aid in the development of better vaccines and therapies against brucellosis.

  16. Toxoplasma polymorphic effectors determine macrophage polarization and intestinal inflammation

    NARCIS (Netherlands)

    Jensen, K.D.C.; Wang, Y.; Tait Wonjo, E.D.; Shastri, A.J.; Hu, K.; Cornel, L.; Boedec, E.; Ong, Y.C.; Chien, Y.H.; Hunter, C.A.; Boothroyd, J.C.; Saeij, J.P.J.

    2011-01-01

    European and North American strains of the parasite Toxoplasma gondii belong to three distinct clonal lineages, type I, type II, and type III, which differ in virulence. Understanding the basis of Toxoplasma strain differences and how secreted effectors work to achieve chronic infection is a major

  17. Memory versus effector immune responses in oncolytic virotherapies.

    Science.gov (United States)

    Macnamara, Cicely; Eftimie, Raluca

    2015-07-21

    The main priority when designing cancer immuno-therapies has been to seek viable biological mechanisms that lead to permanent cancer eradication or cancer control. Understanding the delicate balance between the role of effector and memory cells on eliminating cancer cells remains an elusive problem in immunology. Here we make an initial investigation into this problem with the help of a mathematical model for oncolytic virotherapy; although the model can in fact be made general enough to be applied also to other immunological problems. According to this model, we find that long-term cancer control is associated with a large number of persistent effector cells (irrespective of the initial peak in effector cell numbers). However, this large number of persistent effector cells is sustained by a relatively large number of memory cells. Moreover, the results of the mathematical model suggest that cancer control from a dormant state cannot be predicted by the size of the memory population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Plasmodium cellular effector mechanisms and the hepatic microenvironment

    Science.gov (United States)

    Frevert, Ute; Krzych, Urszula

    2015-01-01

    Plasmodium falciparum malaria remains one of the most serious health problems globally. Immunization with attenuated parasites elicits multiple cellular effector mechanisms capable of eliminating Plasmodium liver stages. However, malaria liver stage (LS) immunity is complex and the mechanisms effector T cells use to locate the few infected hepatocytes in the large liver in order to kill the intracellular LS parasites remain a mystery to date. Here, we review our current knowledge on the behavior of CD8 effector T cells in the hepatic microvasculature, in malaria and other hepatic infections. Taking into account the unique immunological and lymphogenic properties of the liver, we discuss whether classical granule-mediated cytotoxicity might eliminate infected hepatocytes via direct cell contact or whether cytokines might operate without cell–cell contact and kill Plasmodium LSs at a distance. A thorough understanding of the cellular effector mechanisms that lead to parasite death hence sterile protection is a prerequisite for the development of a successful malaria vaccine to protect the 40% of the world’s population currently at risk of Plasmodium infection. PMID:26074888

  19. Cell volume homeostatic mechanisms: effectors and signalling pathways

    DEFF Research Database (Denmark)

    Hoffmann, E K; Pedersen, Stine Helene Falsig

    2011-01-01

    . Later work addressed the mechanisms through which cellular signalling pathways regulate the volume regulatory effectors or flux pathways. These studies were facilitated by the molecular identification of most of the relevant channels and transporters, and more recently also by the increased...

  20. How to conquer a tomato plant? Fusarium oxysporum effector targets

    NARCIS (Netherlands)

    de Sain, M.

    2016-01-01

    Pathogens secrete small proteins, called effectors, to alter the environment in their host to facilitate infection. The causal agent of Fusarium wilt on tomato, Fusarium oxysporum f. sp. lycopersici (Fol), secretes these proteins in the xylem sap of infected plants and hence they have been called

  1. Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi.

    Science.gov (United States)

    de Guillen, Karine; Ortiz-Vallejo, Diana; Gracy, Jérome; Fournier, Elisabeth; Kroj, Thomas; Padilla, André

    2015-10-01

    Phytopathogenic ascomycete fungi possess huge effector repertoires that are dominated by hundreds of sequence-unrelated small secreted proteins. The molecular function of these effectors and the evolutionary mechanisms that generate this tremendous number of singleton genes are largely unknown. To get a deeper understanding of fungal effectors, we determined by NMR spectroscopy the 3-dimensional structures of the Magnaporthe oryzae effectors AVR1-CO39 and AVR-Pia. Despite a lack of sequence similarity, both proteins have very similar 6 β-sandwich structures that are stabilized in both cases by a disulfide bridge between 2 conserved cysteins located in similar positions of the proteins. Structural similarity searches revealed that AvrPiz-t, another effector from M. oryzae, and ToxB, an effector of the wheat tan spot pathogen Pyrenophora tritici-repentis have the same structures suggesting the existence of a family of sequence-unrelated but structurally conserved fungal effectors that we named MAX-effectors (Magnaporthe Avrs and ToxB like). Structure-informed pattern searches strengthened this hypothesis by identifying MAX-effector candidates in a broad range of ascomycete phytopathogens. Strong expansion of the MAX-effector family was detected in M. oryzae and M. grisea where they seem to be particularly important since they account for 5-10% of the effector repertoire and 50% of the cloned avirulence effectors. Expression analysis indicated that the majority of M. oryzae MAX-effectors are expressed specifically during early infection suggesting important functions during biotrophic host colonization. We hypothesize that the scenario observed for MAX-effectors can serve as a paradigm for ascomycete effector diversity and that the enormous number of sequence-unrelated ascomycete effectors may in fact belong to a restricted set of structurally conserved effector families.

  2. Genome-scale identification of Legionella pneumophila effectors using a machine learning approach.

    Directory of Open Access Journals (Sweden)

    David Burstein

    2009-07-01

    Full Text Available A large number of highly pathogenic bacteria utilize secretion systems to translocate effector proteins into host cells. Using these effectors, the bacteria subvert host cell processes during infection. Legionella pneumophila translocates effectors via the Icm/Dot type-IV secretion system and to date, approximately 100 effectors have been identified by various experimental and computational techniques. Effector identification is a critical first step towards the understanding of the pathogenesis system in L. pneumophila as well as in other bacterial pathogens. Here, we formulate the task of effector identification as a classification problem: each L. pneumophila open reading frame (ORF was classified as either effector or not. We computationally defined a set of features that best distinguish effectors from non-effectors. These features cover a wide range of characteristics including taxonomical dispersion, regulatory data, genomic organization, similarity to eukaryotic proteomes and more. Machine learning algorithms utilizing these features were then applied to classify all the ORFs within the L. pneumophila genome. Using this approach we were able to predict and experimentally validate 40 new effectors, reaching a success rate of above 90%. Increasing the number of validated effectors to around 140, we were able to gain novel insights into their characteristics. Effectors were found to have low G+C content, supporting the hypothesis that a large number of effectors originate via horizontal gene transfer, probably from their protozoan host. In addition, effectors were found to cluster in specific genomic regions. Finally, we were able to provide a novel description of the C-terminal translocation signal required for effector translocation by the Icm/Dot secretion system. To conclude, we have discovered 40 novel L. pneumophila effectors, predicted over a hundred additional highly probable effectors, and shown the applicability of machine

  3. The Shigella flexneri OspB effector: an early immunomodulator.

    Science.gov (United States)

    Ambrosi, Cecilia; Pompili, Monica; Scribano, Daniela; Limongi, Dolores; Petrucca, Andrea; Cannavacciuolo, Sonia; Schippa, Serena; Zagaglia, Carlo; Grossi, Milena; Nicoletti, Mauro

    2015-01-01

    Through the action of the type three secretion system (T3SS) Shigella flexneri delivers several effectors into host cells to promote cellular invasion, multiplication and to exploit host-cell signaling pathways to modulate the host innate immune response. Although much progress has been made in the understanding of many type III effectors, the molecular and cellular mechanism of the OspB effector is still poorly characterized. In this study we present new evidence that better elucidates the role of OspB as pro-inflammatory factor at very early stages of infection. Indeed, we demonstrate that, during the first hour of infection, OspB is required for full activation of ERK1/2 and p38 MAPKs and the cytosolic phospholipase A(2) (cPLA(2)). Activation of cPLA(2) ultimately leads to the production and secretion of PMN chemoattractant metabolite(s) uncoupled with release of IL-8. Moreover, we also present evidence that OspB is required for the development of the full and promptly inflammatory reaction characteristic of S. flexneri wild-type infection in vivo. Based on OspB and OspF similarity (both effectors share similar transcription regulation, temporal secretion into host cells and nuclear localization) we hypothesized that OspB and OspF effectors may form a pair aimed at modulating the host cell response throughout the infection process, with opposite effects. A model is presented to illustrate how OspB activity would promote S. flexneri invasion and bacterial dissemination at early critical phases of infection. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Rho-kinase inhibition ameliorates metabolic disorders through activation of AMPK pathway in mice.

    Directory of Open Access Journals (Sweden)

    Kazuki Noda

    Full Text Available BACKGROUND: Metabolic disorders, caused by excessive calorie intake and low physical activity, are important cardiovascular risk factors. Rho-kinase, an effector protein of the small GTP-binding protein RhoA, is an important cardiovascular therapeutic target and its activity is increased in patients with metabolic syndrome. We aimed to examine whether Rho-kinase inhibition improves high-fat diet (HFD-induced metabolic disorders, and if so, to elucidate the involvement of AMP-activated kinase (AMPK, a key molecule of metabolic conditions. METHODS AND RESULTS: Mice were fed a high-fat diet, which induced metabolic phenotypes, such as obesity, hypercholesterolemia and glucose intolerance. These phenotypes are suppressed by treatment with selective Rho-kinase inhibitor, associated with increased whole body O2 consumption and AMPK activation in the skeletal muscle and liver. Moreover, Rho-kinase inhibition increased mRNA expression of the molecules linked to fatty acid oxidation, mitochondrial energy production and glucose metabolism, all of which are known as targets of AMPK in those tissues. In systemic overexpression of dominant-negative Rho-kinase mice, body weight, serum lipid levels and glucose metabolism were improved compared with littermate control mice. Furthermore, in AMPKα2-deficient mice, the beneficial effects of fasudil, a Rho-kinase inhibitor, on body weight, hypercholesterolemia, mRNA expression of the AMPK targets and increase of whole body O2 consumption were absent, whereas glucose metabolism was restored by fasudil to the level in wild-type mice. In cultured mouse myocytes, pharmacological and genetic inhibition of Rho-kinase increased AMPK activity through liver kinase b1 (LKB1, with up-regulation of its targets, which effects were abolished by an AMPK inhibitor, compound C. CONCLUSIONS: These results indicate that Rho-kinase inhibition ameliorates metabolic disorders through activation of the LKB1/AMPK pathway, suggesting that

  5. From Phosphosites to Kinases

    DEFF Research Database (Denmark)

    Munk, Stephanie; Refsgaard, Jan C; Olsen, Jesper V

    2016-01-01

    Kinases play a pivotal role in propagating the phosphorylation-mediated signaling networks in living cells. With the overwhelming quantities of phosphoproteomics data being generated, the number of identified phosphorylation sites (phosphosites) is ever increasing. Often, proteomics investigations...... sequence motifs, mostly based on large scale in vivo and in vitro experiments. The context of the kinase and the phosphorylated proteins in a biological system is equally important for predicting association between the enzymes and substrates, an aspect that is also being tackled with available...

  6. Transcription Factors Encoded on Core and Accessory Chromosomes of Fusarium oxysporum Induce Expression of Effector Genes

    NARCIS (Netherlands)

    van der Does, H.C.; Fokkens, L.; Yang, A.; Schmidt, S.M.; Langereis, L.; Lukasiewicz, J.M.; Hughes, T.R.; Rep, M.

    2016-01-01

    Proteins secreted by pathogens during host colonization largely determine the outcome of pathogen-host interactions and are commonly called 'effectors'. In fungal plant pathogens, coordinated transcriptional up-regulation of effector genes is a key feature of pathogenesis and effectors are often

  7. The NO-cGMP-PKG Signaling Pathway Regulates Synaptic Plasticity and Fear Memory Consolidation in the Lateral Amygdala via Activation of ERK/MAP Kinase

    Science.gov (United States)

    Ota, Kristie T.; Pierre, Vicki J.; Ploski, Jonathan E.; Queen, Kaila; Schafe, Glenn E.

    2008-01-01

    Recent studies have shown that nitric oxide (NO) signaling plays a crucial role in memory consolidation of Pavlovian fear conditioning and in synaptic plasticity in the lateral amygdala (LA). In the present experiments, we examined the role of the cGMP-dependent protein kinase (PKG), a downstream effector of NO, in fear memory consolidation and…

  8. Evidence for acquisition of virulence effectors in pathogenic chytrids

    Directory of Open Access Journals (Sweden)

    Summers Kyle

    2011-07-01

    Full Text Available Abstract Background The decline in amphibian populations across the world is frequently linked to the infection of the chytrid fungus Batrachochytrium dendrobatidis (Bd. This is particularly perplexing because Bd was only recently discovered in 1999 and no chytrid fungus had previously been identified as a vertebrate pathogen. Results In this study, we show that two large families of known virulence effector genes, crinkler (CRN proteins and serine peptidases, were acquired by Bd from oomycete pathogens and bacteria, respectively. These two families have been duplicated after their acquisition by Bd. Additional selection analyses indicate that both families evolved under strong positive selection, suggesting that they are involved in the adaptation of Bd to its hosts. Conclusions We propose that the acquisition of virulence effectors, in combination with habitat disruption and climate change, may have driven the Bd epidemics and the decline in amphibian populations. This finding provides a starting point for biochemical investigations of chytridiomycosis.

  9. Identification of Novel Type III Effectors Using Latent Dirichlet Allocation

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2012-01-01

    Full Text Available Among the six secretion systems identified in Gram-negative bacteria, the type III secretion system (T3SS plays important roles in the disease development of pathogens. T3SS has attracted a great deal of research interests. However, the secretion mechanism has not been fully understood yet. Especially, the identification of effectors (secreted proteins is an important and challenging task. This paper adopts machine learning methods to identify type III secreted effectors (T3SEs. We extract features from amino acid sequences and conduct feature reduction based on latent semantic information by using latent Dirichlet allocation model. The experimental results on Pseudomonas syringae data set demonstrate the good performance of the new methods.

  10. A Vibrio parahaemolyticus T3SS Effector Mediates Pathogenesis by Independently Enabling Intestinal Colonization and Inhibiting TAK1 Activation

    Directory of Open Access Journals (Sweden)

    Xiaohui Zhou

    2013-05-01

    Full Text Available Vibrio parahaemolyticus type III secretion system 2 (T3SS2 is essential for the organism’s virulence, but the effectors required for intestinal colonization and induction of diarrhea by this pathogen have not been identified. Here, we identify a type III secretion system (T3SS2-secreted effector, VopZ, that is essential for V. parahaemolyticus pathogenicity. VopZ plays distinct, genetically separable roles in enabling intestinal colonization and diarrheagenesis. Truncation of VopZ prevents V. parahaemolyticus colonization, whereas deletion of VopZ amino acids 38–62 abrogates V. parahaemolyticus-induced diarrhea and intestinal pathology but does not impair colonization. VopZ inhibits activation of the kinase TAK1 and thereby prevents the activation of MAPK and NF-κB signaling pathways, which lie downstream. In contrast, the VopZ internal deletion mutant cannot counter the activation of pathways regulated by TAK1. Collectively, our findings suggest that VopZ’s inhibition of TAK1 is critical for V. parahaemolyticus to induce diarrhea and intestinal pathology.

  11. A Novel Function for the Streptococcus pneumoniae Aminopeptidase N: Inhibition of T Cell Effector Function through Regulation of TCR Signaling

    Directory of Open Access Journals (Sweden)

    Lance K. Blevins

    2017-11-01

    Full Text Available Streptococcus pneumoniae (Spn causes a variety of disease states including fatal bacterial pneumonia. Our previous finding that introduction of Spn into an animal with ongoing influenza virus infection resulted in a CD8+ T cell population with reduced effector function gave rise to the possibility of direct regulation by pneumococcal components. Here, we show that treatment of effector T cells with lysate derived from Spn resulted in inhibition of IFNγ and tumor necrosis factor α production as well as of cytolytic granule release. Spn aminopeptidase N (PepN was identified as the inhibitory bacterial component and surprisingly, this property was independent of the peptidase activity found in this family of proteins. Inhibitory activity was associated with reduced activation of ZAP-70, ERK1/2, c-Jun N-terminal kinase, and p38, demonstrating the ability of PepN to negatively regulate TCR signaling at multiple points in the cascade. These results reveal a novel immune regulatory function for a bacterial aminopeptidase.

  12. PKC-theta in regulatory and effector T-cell functions

    Directory of Open Access Journals (Sweden)

    Vedran eBrezar

    2015-10-01

    Full Text Available One of the major goals in immunology research is to understand the regulatory mechanisms that underpin the rapid switch on/off of robust and efficient effector (Teff or regulatory (Tregs T-cell responses. Understanding the molecular mechanisms underlying the regulation of such responses is critical for the development of effective therapies. T-cell activation involves the engagement of T-cell receptor and co-stimulatory signals, but the subsequent recruitment of serine/threonine-specific protein Kinase C-theta (PKC-θ to the immunological synapse is instrumental for the formation of signalling complexes, that ultimately lead to a transcriptional network in T cells. Recent studies demonstrated that major differences between Teffs and Tregs occurred at the immunological synapse where its formation induces altered signalling pathways in Tregs. These pathways are characterized by reduced recruitment of PKC-θ, suggesting that PKC-θ inhibits Tregs suppressive function in a negative feedback loop. As the balance of Teffs and Tregs has been shown to be central in several diseases, it was not surprising that some studies revealed that PKC-θ plays a major role in the regulation of this balance.This review will examine recent knowledge on the role of PKC-θ in T-cell transcriptional responses and how this protein can impact on the function of both Tregs and Teffs.

  13. Immunomodulation by the Pseudomonas syringae HopZ type III effector family in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jennifer D Lewis

    Full Text Available Pseudomonas syringae employs a type III secretion system to inject 20-30 different type III effector (T3SE proteins into plant host cells. A major role of T3SEs is to suppress plant immune responses and promote bacterial infection. The YopJ/HopZ acetyltransferases are a superfamily of T3SEs found in both plant and animal pathogenic bacteria. In P. syringae, this superfamily includes the evolutionarily diverse HopZ1, HopZ2 and HopZ3 alleles. To investigate the roles of the HopZ family in immunomodulation, we generated dexamethasone-inducible T3SE transgenic lines of Arabidopsis for HopZ family members and characterized them for immune suppression phenotypes. We show that all of the HopZ family members can actively suppress various facets of Arabidopsis immunity in a catalytic residue-dependent manner. HopZ family members can differentially suppress the activation of mitogen-activated protein (MAP kinase cascades or the production of reactive oxygen species, whereas all members can promote the growth of non-virulent P. syringae. Localization studies show that four of the HopZ family members containing predicted myristoylation sites are localized to the vicinity of the plasma membrane while HopZ3 which lacks the myristoylation site is at least partially nuclear localized, suggesting diversification of immunosuppressive mechanisms. Overall, we demonstrate that despite significant evolutionary diversification, all HopZ family members can suppress immunity in Arabidopsis.

  14. Regulation of mucosal immune responses in effector sites.

    Science.gov (United States)

    Bailey, M; Plunkett, F J; Rothkötter, H J; Vega-Lopez, M A; Haverson, K; Stokes, C R

    2001-11-01

    In human disease and rodent models, immune responses in the intestinal mucosa can be damaging. Damage is characterised by villus atrophy, crypt hyperplasia and reduced ability to digest and absorb nutrients. In normal individuals active responses to harmless environmental antigens associated with food and commensal bacteria are controlled by the development of immunological tolerance. Similar pathological changes occur in piglets weaned early from their mothers. Active immune responses to food antigens are observed in these piglets, and we and others have hypothesised that the changes occur as a result of transient allergic immune responses to novel food or bacteria antigens. The normal mechanism for producing tolerance to food antigens may operate at induction (Peyer's patches and mesenteric lymph nodes) or at the effector stage (intestinal lamina propria). In our piglet studies immunological tolerance occurs despite the initial active response. Together with evidence from rodents, this observation suggests that active responses are likely to be controlled at the effector stage, within the intestinal lamina propria. Support for this mechanism comes from the observation that human and pig intestinal T-cells are susceptible to apoptosis, and that this process is accelerated by antigen. We suggest that the role of the normal mature intestinal lamina propria is a balance between immunological effector and regulatory function. In neonatal animals this balance develops slowly and is dependant on contact with antigen. Immunological insults such as weaning may tip the balance of the developing mucosal immune system into excessive effector or regulatory function resulting in transient or chronic allergy or disease susceptibility.

  15. Assembly of Designer TAL Effectors by Golden Gate Cloning

    OpenAIRE

    Weber, Ernst; Gruetzner, Ramona; Werner, Stefan; Engler, Carola; Marillonnet, Sylvestre

    2011-01-01

    Generation of customized DNA binding domains targeting unique sequences in complex genomes is crucial for many biotechnological applications. The recently described DNA binding domain of the transcription activator-like effectors (TALEs) from Xanthomonas consists of a series of repeats arranged in tandem, each repeat binding a nucleotide of the target sequence. We present here a strategy for engineering of TALE proteins with novel DNA binding specificities based on the 17.5 repeat-containing ...

  16. Modulation of hemoglobin dynamics by an allosteric effector.

    Science.gov (United States)

    Lal, Jyotsana; Maccarini, Marco; Fouquet, Peter; Ho, Nancy T; Ho, Chien; Makowski, Lee

    2017-03-01

    Hemoglobin (Hb) is an extensively studied paradigm of proteins that alter their function in response to allosteric effectors. Models of its action have been used as prototypes for structure-function relationships in many proteins, and models for the molecular basis of its function have been deeply studied and extensively argued. Recent reports suggest that dynamics may play an important role in its function. Relatively little is known about the slow, correlated motions of hemoglobin subunits in various structural states because experimental and computational strategies for their characterization are challenging. Allosteric effectors such as inositol hexaphosphate (IHP) bind to both deoxy-Hb and HbCO, albeit at different sites, leading to a lowered oxygen affinity. The manner in which these effectors impact oxygen binding is unclear and may involve changes in structure, dynamics or both. Here we use neutron spin echo measurements accompanied by wide-angle X-ray scattering to show that binding of IHP to HbCO results in an increase in the rate of coordinated motions of Hb subunits relative to one another with little if any change in large scale structure. This increase of large-scale dynamics seems to be coupled with a decrease in the average magnitude of higher frequency modes of individual residues. These observations indicate that enhanced dynamic motions contribute to the functional changes induced by IHP and suggest that they may be responsible for the lowered oxygen affinity triggered by these effectors. Published by Wiley-Blackwell. © 2016 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  17. A Legionella Effector Disrupts Host Cytoskeletal Structure by Cleaving Actin.

    Directory of Open Access Journals (Sweden)

    Yao Liu

    2017-01-01

    Full Text Available Legionella pneumophila, the etiological agent of Legionnaires' disease, replicates intracellularly in protozoan and human hosts. Successful colonization and replication of this pathogen in host cells requires the Dot/Icm type IVB secretion system, which translocates approximately 300 effector proteins into the host cell to modulate various cellular processes. In this study, we identified RavK as a Dot/Icm substrate that targets the host cytoskeleton and reduces actin filament abundance in mammalian cells upon ectopic expression. RavK harbors an H95EXXH99 motif associated with diverse metalloproteases, which is essential for the inhibition of yeast growth and for the induction of cell rounding in HEK293T cells. We demonstrate that the actin protein itself is the cellular target of RavK and that this effector cleaves actin at a site between residues Thr351 and Phe352. Importantly, RavK-mediated actin cleavage also occurs during L. pneumophila infection. Cleavage by RavK abolishes the ability of actin to form polymers. Furthermore, an F352A mutation renders actin resistant to RavK-mediated cleavage; expression of the mutant in mammalian cells suppresses the cell rounding phenotype caused by RavK, further establishing that actin is the physiological substrate of RavK. Thus, L. pneumophila exploits components of the host cytoskeleton by multiple effectors with distinct mechanisms, highlighting the importance of modulating cellular processes governed by the actin cytoskeleton in the intracellular life cycle of this pathogen.

  18. Assembly and activation of a kinase ribozyme.

    Science.gov (United States)

    Burke, Donald H; Rhee, Steven S

    2010-12-01

    RNA activities can be regulated by modulating the relative energies of all conformations in a folding landscape; however, it is often unknown precisely how peripheral elements perturb the overall landscape in the absence of discrete alternative folds (inactive ensemble). This work explores the effects of sequence and secondary structure in governing kinase ribozyme activity. Kin.46 catalyzes thiophosphoryl transfer from ATPγS onto the 5' hydroxyl of polynucleotide substrates, and is regulated 10,000-fold by annealing an effector oligonucleotide to form activator helix P4. Transfer kinetics for an extensive series of ribozyme variants identified several dispensable internal single-stranded segments, in addition to a potential pseudoknot at the active site between segments J1/4 and J3/2 that is partially supported by compensatory rescue. Standard allosteric mechanisms were ruled out, such as formation of discrete repressive structures or docking P4 into the rest of the ribozyme via backbone 2' hydroxyls. Instead, P4 serves both to complete an important structural element (100-fold contribution to the reaction relative to a P4-deleted variant) and to mitigate nonspecific, inhibitory effects of the single-stranded tail (an additional 100-fold contribution to the apparent rate constant, k(obs)). Thermodynamic activation parameters ΔH(‡) and ΔS(‡), calculated from the temperature dependence of k(obs), varied with tail length and sequence. Inhibitory effects of the unpaired tail are largely enthalpic for short tails and are both enthalpic and entropic for longer tails. These results refine the structural view of this kinase ribozyme and highlight the importance of nonspecific ensemble effects in conformational regulation by peripheral elements.

  19. EGFR tyrosine kinases inhibitors in cancer treatment: in vitro and in vivo evidence.

    Science.gov (United States)

    Quatrale, Anna Elisa; Porcelli, Letizia; Silvestris, Nicola; Colucci, Giuseppe; Angelo, Angelo; Azzariti, Amalia

    2011-01-01

    The increasing understanding of the molecular mechanisms of neoplastic transformation and progression has prompted the search for novel drugs that could interfere with the intracellular targets involved in this process. EGFR is implicated in the development and progression of the majority of the common human epithelial cancer; therefore different agents have been developed to block EGFR activation in cancer cells. This review focuses on EGFR-tyrosine kinase inhibitors in clinical practice that interfere with ATP binding, inhibiting tyrosine kinase activity and subsequently blocking signal transduction from EGFR. We report current knowledge on molecular mechanisms underlying the anticancer activity of EGFR-tyrosine kinase inhibitors in preclinical models, with particular attention to EGFR downstream effectors responsible for treatment efficacy or resistance.

  20. JAK protein kinase inhibitors.

    Science.gov (United States)

    Thompson, James E

    2005-06-01

    In humans, the Janus protein tyrosine kinase family (JAKs) contains four members: JAK1, JAK2, JAK3 and TYK2. JAKs phosphorylate signal transducers and activators of transcription (STATs) simultaneously with other phosphorylations required for activation, and there are several cellular mechanisms in place to inhibit JAK/STAT signaling. That one might be able to modulate selected JAK/STAT-mediated cellular signals by inhibiting JAK kinase activity to effect a positive therapeutic outcome is a tantalizing prospect, as yet incompletely realized. While current data suggest no therapeutic use for JAK1 and TYK2 inhibition, JAK2 inhibition seems a promising but not definitively tested mechanism for treatment of leukemia. More promising, however, are data indicating a possible therapeutic use of JAK3 inhibition. The restriction of the JAK3-deficient phenotype to the hematopoietic system and the resulting profound immune suppression suggest that JAK3 could be a target for immunosuppressive therapies used to prevent organ transplant rejection.

  1. Tyrosine kinases in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Kobayashi Akiko

    2011-08-01

    Full Text Available Abstract Rheumatoid arthritis (RA is an inflammatory, polyarticular joint disease. A number of cellular responses are involved in the pathogenesis of rheumatoid arthritis, including activation of inflammatory cells and cytokine expression. The cellular responses involved in each of these processes depends on the specific signaling pathways that are activated; many of which include protein tyrosine kinases. These pathways include the mitogen-activated protein kinase pathway, Janus kinases/signal transducers and activators transcription pathway, spleen tyrosine kinase signaling, and the nuclear factor κ-light-chain-enhancer of activated B cells pathway. Many drugs are in development to target tyrosine kinases for the treatment of RA. Based on the number of recently published studies, this manuscript reviews the role of tyrosine kinases in the pathogenesis of RA and the potential role of kinase inhibitors as new therapeutic strategies of RA.

  2. Eukaryotic-like Kinase Expression in Enterohemorrhagic Escherichia coli: Potential for Enhancing Host Aggressive Inflammatory Response.

    Science.gov (United States)

    Li, Tao; Li, Zhan; Chen, Fanghong; Liu, Xiong; Ning, Nianzhi; Huang, Jie; Wang, Hui

    2017-11-27

    Enterohemorrhagic Escherichia coli (EHEC) or other attaching/effacing pathogen infections often cause host intestinal inflammation and pathology, which is thought to result in part from a host aggressive innate immune response. However, few effectors that play an important role in this pathology change have been reported. In this study, we discovered a previously unknown EHEC effector, Stk (putative serine/threonine kinase), which induces host aggressive inflammatory response during EHEC infection. Interestingly, homologous proteins of Stk are widely distributed in many pathogens. After translocating into the infected host cells, Stk efficiently phosphorylates IκBα and activates the NF-κB pathway. In EHEC-infected mice, Stk increases serum keratinocyte-derived cytokine (KC) levels and hyperactivates the inflammatory response of the colon, intensifying pathological injury of the colon. The virulence of Stk is based on its eukaryotic-like kinase activity. In conclusion, our data suggest that Stk is a new effector that induces the host aggressive inflammatory response during EHEC infection. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  3. Identification and Characterisation CRN Effectors in Phytophthora capsici Shows Modularity and Functional Diversity.

    Directory of Open Access Journals (Sweden)

    Remco Stam

    Full Text Available Phytophthora species secrete a large array of effectors during infection of their host plants. The Crinkler (CRN gene family encodes a ubiquitous but understudied class of effectors with possible but as of yet unknown roles in infection. To appreciate CRN effector function in Phytophthora, we devised a simple Crn gene identification and annotation pipeline to improve effector prediction rates. We predicted 84 full-length CRN coding genes and assessed CRN effector domain diversity in sequenced Oomycete genomes. These analyses revealed evidence of CRN domain innovation in Phytophthora and expansion in the Peronosporales. We performed gene expression analyses to validate and define two classes of CRN effectors, each possibly contributing to infection at different stages. CRN localisation studies revealed that P. capsici CRN effector domains target the nucleus and accumulate in specific sub-nuclear compartments. Phenotypic analyses showed that few CRN domains induce necrosis when expressed in planta and that one cell death inducing effector, enhances P. capsici virulence on Nicotiana benthamiana. These results suggest that the CRN protein family form an important class of intracellular effectors that target the host nucleus during infection. These results combined with domain expansion in hemi-biotrophic and necrotrophic pathogens, suggests specific contributions to pathogen lifestyles. This work will bolster CRN identification efforts in other sequenced oomycete species and set the stage for future functional studies towards understanding CRN effector functions.

  4. Identification and Characterisation CRN Effectors in Phytophthora capsici Shows Modularity and Functional Diversity.

    Science.gov (United States)

    Stam, Remco; Jupe, Julietta; Howden, Andrew J M; Morris, Jenny A; Boevink, Petra C; Hedley, Pete E; Huitema, Edgar

    2013-01-01

    Phytophthora species secrete a large array of effectors during infection of their host plants. The Crinkler (CRN) gene family encodes a ubiquitous but understudied class of effectors with possible but as of yet unknown roles in infection. To appreciate CRN effector function in Phytophthora, we devised a simple Crn gene identification and annotation pipeline to improve effector prediction rates. We predicted 84 full-length CRN coding genes and assessed CRN effector domain diversity in sequenced Oomycete genomes. These analyses revealed evidence of CRN domain innovation in Phytophthora and expansion in the Peronosporales. We performed gene expression analyses to validate and define two classes of CRN effectors, each possibly contributing to infection at different stages. CRN localisation studies revealed that P. capsici CRN effector domains target the nucleus and accumulate in specific sub-nuclear compartments. Phenotypic analyses showed that few CRN domains induce necrosis when expressed in planta and that one cell death inducing effector, enhances P. capsici virulence on Nicotiana benthamiana. These results suggest that the CRN protein family form an important class of intracellular effectors that target the host nucleus during infection. These results combined with domain expansion in hemi-biotrophic and necrotrophic pathogens, suggests specific contributions to pathogen lifestyles. This work will bolster CRN identification efforts in other sequenced oomycete species and set the stage for future functional studies towards understanding CRN effector functions.

  5. Regulation of Autophagy by Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda, E-mail: alakananda.basu@unthsc.edu [Department of Molecular Biology and Immunology, Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2011-06-09

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets.

  6. Reciprocal Regulation as a Source of Ultrasensitivity in Two-Component Systems with a Bifunctional Sensor Kinase

    Science.gov (United States)

    Straube, Ronny

    2014-01-01

    Two-component signal transduction systems, where the phosphorylation state of a regulator protein is modulated by a sensor kinase, are common in bacteria and other microbes. In many of these systems, the sensor kinase is bifunctional catalyzing both, the phosphorylation and the dephosphorylation of the regulator protein in response to input signals. Previous studies have shown that systems with a bifunctional enzyme can adjust the phosphorylation level of the regulator protein independently of the total protein concentrations – a property known as concentration robustness. Here, I argue that two-component systems with a bifunctional enzyme may also exhibit ultrasensitivity if the input signal reciprocally affects multiple activities of the sensor kinase. To this end, I consider the case where an allosteric effector inhibits autophosphorylation and, concomitantly, activates the enzyme's phosphatase activity, as observed experimentally in the PhoQ/PhoP and NRII/NRI systems. A theoretical analysis reveals two operating regimes under steady state conditions depending on the effector affinity: If the affinity is low the system produces a graded response with respect to input signals and exhibits stimulus-dependent concentration robustness – consistent with previous experiments. In contrast, a high-affinity effector may generate ultrasensitivity by a similar mechanism as phosphorylation-dephosphorylation cycles with distinct converter enzymes. The occurrence of ultrasensitivity requires saturation of the sensor kinase's phosphatase activity, but is restricted to low effector concentrations, which suggests that this mode of operation might be employed for the detection and amplification of low abundant input signals. Interestingly, the same mechanism also applies to covalent modification cycles with a bifunctional converter enzyme, which suggests that reciprocal regulation, as a mechanism to generate ultrasensitivity, is not restricted to two-component systems, but

  7. Telepresence Master Glove Controller For Dexterous Robotic End-Effectors

    Science.gov (United States)

    Fowler, A. M.; Joyce, R. R.; Britt, J. P.

    1987-03-01

    This paper describes recent research in the Aerospace Human Factors Research Division at NASA's Ames Research Center to develop a glove-like, control and data-recording device (DataGlove) that records and transmits to a host computerin real time, and at appropriate resolution, a numeric data-record of a user's hand/finger shape and dynamics. System configuration and performance specifications are detailed, and current research is discussed investigating its applications in operator control of dexterous robotic end-effectors and for use as a human factors research tool in evaluation of operator hand function requirements and performance in other specialized task environments.

  8. Hacker Within! Ehrlichia chaffeensis Effector Driven Phagocyte Reprogramming Strategy

    Directory of Open Access Journals (Sweden)

    Taslima Taher Lina

    2016-05-01

    Full Text Available Ehrlichia chaffeensis is a small, gram negative, obligately intracellular bacterium that preferentially infects mononuclear phagocytes. It is the etiologic agent of human monocytotropic ehrlichiosis (HME, an emerging life-threatening tick-borne zoonosis. Mechanisms by which E. chaffeensis establishes intracellular infection, and avoids host defenses are not well understood, but involve functionally relevant host-pathogen interactions associated with tandem and ankyrin repeat effector proteins. In this review, we discuss the recent advances in our understanding of the molecular and cellular mechanisms that underlie Ehrlichia host cellular reprogramming strategies that enable intracellular survival.

  9. Exact positioning of the robotic arm end effector

    Science.gov (United States)

    Korepanov, Valery; Dudkin, Fedir

    2016-07-01

    Orbital service becomes a new challenge of space exploration. The necessity to introduce it is connected first of all with an attractive opportunity to prolong the exploitation terms of expensive commercial satellites by, e.g., refilling of fuel or changing batteries. Other application area is a fight with permanently increasing amount of space litter - defunct satellites, burnt-out rocket stages, discarded trash and other debris. Now more than few tens of thousands orbiting objects larger than 5-10 cm (or about 1 million junks larger than 1 cm) are a huge problem for crucial and costly satellites and manned vehicles. For example, in 2014 the International Space Station had to change three times its orbit to avoid collision with space debris. So the development of the concepts and actions related to removal of space debris or non-operational satellites with use of robotic arm of a servicing satellite is very actual. Such a technology is also applicable for unmanned exploratory missions in solar system, for example for collecting a variety of samples from a celestial body surface. Naturally, the robotic arm movements should be controlled with great accuracy at influence of its non-rigidity, thermal and other factors. In these circumstances often the position of the arm end effector has to be controlled with high accuracy. The possibility of coordinate determination for the robotic arm end effector with use of a low frequency active electromagnetic system has been considered in the presented report. The proposed design of such a system consists of a small magnetic dipole source, which is mounted inside of the arm end effector and two or three 3-component magnetic field sensors mounted on a servicing satellite body. The data from this set of 3-component magnetic field sensors, which are fixed relatively to the satellite body, allows use of the mathematical approach for determination of position and orientation of the magnetic dipole source. The theoretical

  10. Hacker within! Ehrlichia chaffeensis Effector Driven Phagocyte Reprogramming Strategy.

    Science.gov (United States)

    Lina, Taslima T; Farris, Tierra; Luo, Tian; Mitra, Shubhajit; Zhu, Bing; McBride, Jere W

    2016-01-01

    Ehrlichia chaffeensis is a small, gram negative, obligately intracellular bacterium that preferentially infects mononuclear phagocytes. It is the etiologic agent of human monocytotropic ehrlichiosis (HME), an emerging life-threatening tick-borne zoonosis. Mechanisms by which E. chaffeensis establishes intracellular infection, and avoids host defenses are not well understood, but involve functionally relevant host-pathogen interactions associated with tandem and ankyrin repeat effector proteins. In this review, we discuss the recent advances in our understanding of the molecular and cellular mechanisms that underlie Ehrlichia host cellular reprogramming strategies that enable intracellular survival.

  11. Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil.

    Science.gov (United States)

    Johnston, Joe; Gopalarathnam, Ashok

    2012-09-01

    A flap mounted on the upper surface of an airfoil, called a 'lift-enhancing effector', has been shown in wind tunnel tests to have a similar function to a bird's covert feathers, which rise off the wing's surface in response to separated flows. The effector, fabricated from a thin Mylar sheet, is allowed to rotate freely about its leading edge. The tests were performed in the NCSU subsonic wind tunnel at a chord Reynolds number of 4 × 10(5). The maximum lift coefficient with the effector was the same as that for the clean airfoil, but was maintained over an angle-of-attack range from 12° to almost 20°, resulting in a very gentle stall behavior. To better understand the aerodynamics and to estimate the deployment angle of the free-moving effector, fixed-angle effectors fabricated out of stiff wood were also tested. A progressive increase in the stall angle of attack with increasing effector angle was observed, with diminishing returns beyond the effector angle of 60°. Drag tests on both the free-moving and fixed effectors showed a marked improvement in drag at high angles of attack. Oil flow visualization on the airfoil with and without the fixed-angle effectors proved that the effector causes the separation point to move aft on the airfoil, as compared to the clean airfoil. This is thought to be the main mechanism by which an effector improves both lift and drag. A comparison of the fixed-effector results with those from the free-effector tests shows that the free effector's deployment angle is between 30° and 45°. When operating at and beyond the clean airfoil's stall angle, the free effector automatically deploys to progressively higher angles with increasing angles of attack. This slows down the rapid upstream movement of the separation point and avoids the severe reduction in the lift coefficient and an increase in the drag coefficient that are seen on the clean airfoil at the onset of stall. Thus, the effector postpones the stall by 4-8° and makes the

  12. Phosphatidylinositol monophosphate-binding interface in the oomycete RXLR effector AVR3a is required for its stability in host cells to modulate plant immunity.

    Science.gov (United States)

    Yaeno, Takashi; Li, Hua; Chaparro-Garcia, Angela; Schornack, Sebastian; Koshiba, Seizo; Watanabe, Satoru; Kigawa, Takanori; Kamoun, Sophien; Shirasu, Ken

    2011-08-30

    The oomycete pathogen Phytophthora infestans causes potato late blight, one of the most economically damaging plant diseases worldwide. P. infestans produces AVR3a, an essential modular virulence effector with an N-terminal RXLR domain that is required for host-cell entry. In host cells, AVR3a stabilizes and inhibits the function of the E3 ubiquitin ligase CMPG1, a key factor in host immune responses including cell death triggered by the pathogen-derived elicitor protein INF1 elicitin. To elucidate the molecular basis of AVR3a effector function, we determined the structure of Phytophthora capsici AVR3a4, a close homolog of P. infestans AVR3a. Our structural and functional analyses reveal that the effector domain of AVR3a contains a conserved, positively charged patch and that this region, rather than the RXLR domain, is required for binding to phosphatidylinositol monophosphates (PIPs) in vitro. Mutations affecting PIP binding do not abolish AVR3a recognition by the resistance protein R3a but reduce its ability to suppress INF1-triggered cell death in planta. Similarly, stabilization of CMPG1 in planta is diminished by these mutations. The steady-state levels of non-PIP-binding mutant proteins in planta are reduced greatly, although these proteins are stable in vitro. Furthermore, overexpression of a phosphatidylinositol phosphate 5-kinase results in reduction of AVR3a levels in planta. Our results suggest that the PIP-binding ability of the AVR3a effector domain is essential for its accumulation inside host cells to suppress CMPG1-dependent immunity.

  13. The Botrytis cinerea PAK kinase BcCla4 mediates morphogenesis, growth and cell cycle regulating processes downstream of BcRac.

    Science.gov (United States)

    Minz-Dub, Anna; Sharon, Amir

    2017-05-01

    Rac proteins are involved in a variety of cellular processes. Effector proteins that interact with active Rac convey the GTPase-generated signal to downstream developmental cascades and processes. Here we report on the analysis of the main effector and signal cascade downstream of BcRac, the Rac homolog of the grey mold fungus Botrytis cinerea. Several lines of evidence highlighted the p21-activated kinase Cla4 as an important effector of Rac in fungi. Analysis of Δbccla4 strains revealed that the BcCla4 protein was sufficient to mediate all of the examined BcRac-driven processes, including hyphal growth and morphogenesis, conidia production and pathogenicity. In addition, the Δbccla4 strains had altered nuclei content, a phenomenon that was previously observed in Δbcrac isolates, thus connecting the BcRac/BcCla4 module with cell cycle control. Further analyses revealed that BcRac/BcCla4 control mitotic entry through changes in phosphorylation status of the cyclin dependent kinase BcCdk1. The complete cascade includes the kinase BcWee1, which is downstream of BcCla4 and upstream of BcCdk1. These results provide a mechanistic insight on the connection of cell cycle, morphogenesis and pathogenicity in fungi, and position BcCla4 as the most essential effector and central regulator of all of these processes downstream of BcRac. © 2017 John Wiley & Sons Ltd.

  14. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten

    2010-01-01

    enzymes that are unique in exploiting the ATP/GTP-binding Walker motif to catalyze phosphorylation of protein tyrosine residues. Characterized for the first time only a decade ago, BY-kinases have now come to the fore. Important regulatory roles have been linked with these enzymes, via their involvement......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine...

  15. Lessons in Effector and NLR Biology of Plant-Microbe Systems.

    Science.gov (United States)

    Białas, Aleksandra; Zess, Erin K; De la Concepcion, Juan Carlos; Franceschetti, Marina; Pennington, Helen G; Yoshida, Kentaro; Upson, Jessica L; Chanclud, Emilie; Wu, Chih-Hang; Langner, Thorsten; Maqbool, Abbas; Varden, Freya A; Derevnina, Lida; Belhaj, Khaoula; Fujisaki, Koki; Saitoh, Hiromasa; Terauchi, Ryohei; Banfield, Mark J; Kamoun, Sophien

    2017-11-16

    A diversity of plant-associated organisms secrete effectors-proteins and metabolites that modulate plant physiology to favor host infection and colonization. However, effectors can also activate plant immune receptors, notably nucleotide-binding domain and leucine-rich repeat region (NLR)-containing proteins, enabling plants to fight off invading organisms. This interplay between effectors, their host targets, and the matching immune receptors is shaped by intricate molecular mechanisms and exceptionally dynamic coevolution. In this article, we focus on three effectors, AVR-Pik, AVR-Pia, and AVR-Pii, from the rice blast fungus Magnaporthe oryzae (syn. Pyricularia oryzae), and their corresponding rice NLR immune receptors, Pik, Pia, and Pii, to highlight general concepts of plant-microbe interactions. We draw 12 lessons in effector and NLR biology that have emerged from studying these three little effectors and are broadly applicable to other plant-microbe systems.

  16. Effector candidates in the secretome of Piriformospora indica, a ubiquitous plant-associated fungus

    Directory of Open Access Journals (Sweden)

    Maryam eRafiqi

    2013-07-01

    Full Text Available One of the emerging systems in plant-microbe interaction is the study of proteins, referred to as effectors, secreted by microbes in order to modulate host cells function and structure and to promote microbial growth on plant tissue. Current knowledge on fungal effectors derives mainly from biotrophic and hemibiotrophic plant fungal pathogens that have a limited host range. Here, we focus on effectors of Piriformospora indica, a soil borne endophyte forming intimate associations with roots of a wide range of plant species. Complete genome sequencing provides an opportunity to investigate the role of effectors during the interaction of this mutualistic fungus with plants. We describe in silico analyses to predict effectors of P. indica and we explore effector features considered here to mine a high priority protein list for functional analysis.

  17. Effector candidates in the secretome of Piriformospora indica, a ubiquitous plant-associated fungus.

    Science.gov (United States)

    Rafiqi, Maryam; Jelonek, Lukas; Akum, Ndifor F; Zhang, Feng; Kogel, Karl-Heinz

    2013-01-01

    One of the emerging systems in plant-microbe interaction is the study of proteins, referred to as effectors, secreted by microbes in order to modulate host cells function and structure and to promote microbial growth on plant tissue. Current knowledge on fungal effectors derives mainly from biotrophic and hemibiotrophic plant fungal pathogens that have a limited host range. Here, we focus on effectors of Piriformospora indica, a soil borne endophyte forming intimate associations with roots of a wide range of plant species. Complete genome sequencing provides an opportunity to investigate the role of effectors during the interaction of this mutualistic fungus with plants. We describe in silico analyses to predict effectors of P. indica and we explore effector features considered here to mine a high priority protein list for functional analysis.

  18. Innovative technology summary report: Confined sluicing end effector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    A Confined Sluicing End-Effector (CSEE) was field tested during the summer of 1997 in Tank W-3, one of the Gunite and Associated Tanks (GAAT) at the Oak Ridge Reservation (ORR). It should be noted that the specific device used at the Oak Ridge Reservation demonstration was the Sludge Retrieval End-Effector (SREE), although in common usage it is referred to as the CSEE. Deployed by the Modified Light-Duty Utility Arm (MLDUA) and the Houdini remotely operated vehicle (ROV), the CSEE was used to mobilize and retrieve waste from the tank. After removing the waste, the CSEE was used to scarify the gunite walls of Tank W-3, removing approximately 0.1 in of material. The CSEE uses three rotating water-jets to direct a short-range pressurized jet of water to effectively mobilize the waste. Simultaneously, the water and dislodged tank waste, or scarified materials, are aspirated using a water-jet pump-driven conveyance system. The material is then pumped outside of the tank, where it can be stored for treatment. The technology, its performance, uses, cost, and regulatory issues are discussed.

  19. Mast cell-derived mediators promote murine neutrophil effector functions.

    Science.gov (United States)

    Doener, Fatma; Michel, Anastasija; Reuter, Sebastian; Friedrich, Pamela; Böhm, Livia; Relle, Manfred; Codarri, Laura; Tenzer, Stefan; Klein, Matthias; Bopp, Tobias; Schmitt, Edgar; Schild, Hansjörg; Radsak, Markus Philipp; Taube, Christian; Stassen, Michael; Becker, Marc

    2013-10-01

    Mast cells are able to trigger life-saving immune responses in murine models for acute inflammation. In such settings, several lines of evidence indicate that the rapid and protective recruitment of neutrophils initiated by the release of mast cell-derived pro-inflammatory mediators is a key element of innate immunity. Herein, we investigate the impact of mast cells on critical parameters of neutrophil effector function. In the presence of activated murine bone marrow-derived mast cells, neutrophils freshly isolated from bone marrow rapidly lose expression of CD62L and up-regulate CD11b, the latter being partly driven by mast cell-derived TNF and GM-CSF. Mast cells also strongly enhance neutrophil phagocytosis and generation of reactive oxygen species. All these phenomena partly depend on mast cell-derived TNF and to a greater extend on GM-CSF. Furthermore, spontaneous apoptosis of neutrophils is greatly diminished due to the ability of mast cells to deliver antiapoptotic GM-CSF. Finally, we show in a murine model for acute lung inflammation that neutrophil phagocytosis is impaired in mast cell-deficient Kit (W-sh) /Kit (W-sh) mice but can be restored upon mast cell engraftment. Thus, a previously underrated feature of mast cells is their ability to boost neutrophil effector functions in immune responses.

  20. Posttranscriptional Control of T Cell Effector Function by Aerobic Glycolysis

    Science.gov (United States)

    Chang, Chih-Hao; Curtis, Jonathan D.; Maggi, Leonard B.; Faubert, Brandon; Villarino, Alejandro V.; O’Sullivan, David; Huang, Stanley Ching-Cheng; van der Windt, Gerritje J.W.; Blagih, Julianna; Qiu, Jing; Weber, Jason D.; Pearce, Edward J.; Jones, Russell G.; Pearce, Erika L.

    2013-01-01

    SUMMARY A “switch” from oxidative phosphorylation (OXPHOS) to aerobic glycolysis is a hallmark of T cell activation and is thought to be required to meet the metabolic demands of proliferation. However, why proliferating cells adopt this less efficient metabolism, especially in an oxygen-replete environment, remains incompletely understood. We show here that aerobic glycolysis is specifically required for effector function in T cells but that this pathway is not necessary for proliferation or survival. When activated T cells are provided with costimulation and growth factors but are blocked from engaging glycolysis, their ability to produce IFN-γ is markedly compromised. This defect is translational and is regulated by the binding of the glycolysis enzyme GAPDH to AU-rich elements within the 3′ UTR of IFN-γ mRNA. GAPDH, by engaging/disengaging glycolysis and through fluctuations in its expression, controls effector cytokine production. Thus, aerobic glycolysis is a metabolically regulated signaling mechanism needed to control cellular function. PMID:23746840

  1. OspF and OspC1 are Shigella flexneri type III secretion system effectors that are required for postinvasion aspects of virulence.

    Science.gov (United States)

    Zurawski, Daniel V; Mitsuhata, Chieko; Mumy, Karen L; McCormick, Beth A; Maurelli, Anthony T

    2006-10-01

    Shigella flexneri is the causative agent of dysentery, and its pathogenesis is mediated by a type III secretion system (T3SS). S. flexneri secretes effector proteins into the eukaryotic cell via the T3SS, and these proteins usurp host cellular functions to the benefit of the bacteria. OspF and OspC1 are known to be secreted by S. flexneri, but their functions are unknown. We transformed S. flexneri with a plasmid that expresses a two-hemagglutinin tag (2HA) in frame with OspF or OspC1 and verified that these proteins are secreted in a T3SS-dependent manner. Immunofluorescence of HeLa cells infected with S. flexneri expressing OspF-2HA or OspC1-2HA revealed that both proteins localize in the nucleus and cytoplasm of host cells. To elucidate the function of these T3SS effectors, we constructed DeltaospF and DeltaospC1 deletion mutants by allelic exchange. We found that DeltaospF and DeltaospC1 mutants invade host cells and form plaques in confluent monolayers similar to wild-type S. flexneri. However, in the polymorphonuclear (PMN) cell migration assay, a decrease in neutrophil migration was observed for both mutants in comparison to the migration of wild-type bacteria. Moreover, infection of polarized T84 intestinal cells infected with DeltaospF and DeltaospC1 mutants resulted in decreased phosphorylation of extracellular signal-regulated kinase 1/2 in comparison to that of T84 cells infected with wild-type S. flexneri. To date, these are the first examples of T3SS effectors implicated in mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathway activation. Ultimately, OspF and OspC1 are essential for PMN transepithelial migration, a phenotype associated with increased inflammation and bacterial access to the submucosa, which are fundamental aspects of S. flexneri pathogenesis.

  2. MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility

    OpenAIRE

    Hutin, Mathilde; Alvaro L Pérez-Quintero; Lopez, Camilo; Szurek, Boris

    2015-01-01

    Many plant-pathogenic xanthomonads rely on Transcription Activator-Like (TAL) effectors to colonize their host. This particular family of type III effectors functions as specific plant transcription factors via a programmable DNA-binding domain. Upon binding to the promoters of plant disease susceptibility genes in a sequence-specific manner, the expression of these host genes is induced. However, plants have evolved specific strategies to counter the action of TAL effectors and confer resist...

  3. MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility

    OpenAIRE

    Mathilde eHutin; Alvaro L Pérez-Quintero; Camilo eLopez; Boris eSzurek

    2015-01-01

    Many plant-pathogenic xanthomonads rely on Transcription Activator-Like (TAL) effectors to colonize their host. This particular family of type III effectors functions as specific plant transcription factors via a novel programmable DNA-binding domain. Upon binding to the promoters of plant disease susceptibility genes in a sequence-specific manner, the expression of these host genes is induced. However, plants have evolved specific strategies to counter the action of TAL effectors and confer ...

  4. Evaluation of secretion prediction highlights differing approaches needed for oomycete and fungal effectors

    Directory of Open Access Journals (Sweden)

    Jana eSperschneider

    2015-12-01

    Full Text Available The steadily increasing number of sequenced fungal and oomycete genomes has enabled detailed studies of how these eukaryotic microbes infect plants and cause devastating losses in food crops. During infection, fungal and oomycete pathogens secrete effector molecules which manipulate host plant cell processes to the pathogen’s advantage. Proteinaceous effectors are synthesised intracellularly and must be externalised to interact with host cells. Computational prediction of secreted proteins from genomic sequences is an important technique to narrow down the candidate effector repertoire for subsequent experimental validation. In this study, we benchmark secretion prediction tools on experimentally validated fungal and oomycete effectors. We observe that for a set of fungal SwissProt protein sequences, SignalP 4 and the neural network predictors of SignalP 3 (D-score and SignalP 2 perform best. For effector prediction in particular, the use of a sensitive method can be desirable to obtain the most complete candidate effector set. We show that the neural network predictors of SignalP 2 and 3, as well as TargetP were the most sensitive tools for fungal effector secretion prediction, whereas the hidden Markov model predictors of SignalP 2 and 3 were the most sensitive tools for oomycete effectors. Thus, previous versions of SignalP retain value for oomycete effector prediction, as the current version, SignalP 4, was unable to reliably predict the signal peptide of the oomycete Crinkler effectors in the test set. Our assessment of subcellular localisation predictors shows that cytoplasmic effectors are often predicted as not extracellular. This limits the reliability of secretion predictions that depend on these tools. We present our assessment with a view to informing future pathogenomics studies and suggest revised pipelines for secretion prediction to obtain optimal effector predictions in fungi and oomycetes.

  5. Effector candidates in the secretome of Piriformospora indica, a ubiquitous plant-associated fungus

    OpenAIRE

    Rafiqi, Maryam; Jelonek, Lukas; Akum, Ndifor F.; Zhang, Feng; Kogel, Karl-Heinz

    2013-01-01

    One of the emerging systems in plant–microbe interaction is the study of proteins, referred to as effectors, secreted by microbes in order to modulate host cells function and structure and to promote microbial growth on plant tissue. Current knowledge on fungal effectors derives mainly from biotrophic and hemibiotrophic plant fungal pathogens that have a limited host range. Here, we focus on effectors of Piriformospora indica, a soil borne endophyte forming intimate associations with roots of...

  6. A plethora of virulence strategies hidden behind nuclear targeting of microbial effectors

    Directory of Open Access Journals (Sweden)

    Susana eRivas

    2011-12-01

    Full Text Available Plant immune responses depend on the ability to couple rapid recognition of the invading microbe to an efficient response. During evolution, plant pathogens have acquired the ability to deliver effector molecules inside host cells in order to manipulate cellular and molecular processes and establish pathogenicity. Following translocation into plant cells, microbial effectors may be addressed to different subcellular compartments. Intriguingly, a significant number of effector proteins from different pathogenic microorganisms, including viruses, oomycetes, fungi, nematodes and bacteria, is targeted to the nucleus of host cells. In agreement with this observation, increasing evidence highlights the crucial role played by nuclear dynamics and nucleocytoplasmic protein trafficking during a great variety of analyzed plant-pathogen interactions. Once in the nucleus, effector proteins are able to manipulate host transcription or directly subvert essential host components to promote virulence. Along these lines, it has been suggested that some effectors may affect histone packing and, thereby, chromatin configuration. In addition, microbial effectors may either directly activate transcription or target host transcription factors to alter their regular molecular functions. Alternatively, nuclear translocation of effectors may affect subcellular localization of their cognate resistance proteins in a process that is essential for resistance protein-mediated plant immunity. Here, we review recent progress in our field on the identification of microbial effectors that are targeted to the nucleus of host plant cells. In addition, we discuss different virulence strategies deployed by microbes, which have been uncovered through examination of the mechanisms that guide nuclear localization of effector proteins.

  7. Effector Biology in Focus: A Primer for Computational Prediction and Functional Characterization.

    Science.gov (United States)

    Dalio, Ronaldo J D; Herlihy, John; Oliveira, Tiago S; McDowell, John M; Machado, Marcos

    2018-01-01

    Plant-pathogen interactions are controlled by a multilayered immune system, which is activated by pathogen recognition in the host. Pathogens secrete effector molecules to interfere with the immune recognition or signaling network and reprogram cell structure or metabolism. Understanding the effector repertoires of diverse pathogens will contribute to unraveling the molecular mechanism of virulence and developing sustainable disease-control strategies for crops and natural ecosystems. Effector functionality has been investigated extensively in only a small number of pathogen species. However, many more pathogen genomes are becoming available, and much can be learned from a broader view of effector biology in diverse pathosystems. The purpose of this review is to summarize methodology for computational prediction of protein effectors, functional characterization of effector proteins and their targets, and the use of effectors as probes to screen for new sources of host resistance. Although these techniques were generally developed in model pathosystems, many of the approaches are directly applicable for exploration and exploitation of effector biology in pathosystems that are less well studied. We hope to facilitate such exploration, which will broaden understanding of the mechanisms that underpin the biological diversity of plant-pathogen interactions, and maximize the impact of new approaches that leverage effector biology for disease control.

  8. Virus-specific regulatory T cells ameliorate encephalitis by repressing effector T cell functions from priming to effector stages.

    Directory of Open Access Journals (Sweden)

    Jingxian Zhao

    2014-08-01

    Full Text Available Several studies have demonstrated the presence of pathogen-specific Foxp3+ CD4 regulatory T cells (Treg in infected animals, but little is known about where and how these cells affect the effector T cell responses and whether they are more suppressive than bulk Treg populations. We recently showed the presence of both epitope M133-specific Tregs (M133 Treg and conventional CD4 T cells (M133 Tconv in the brains of mice with coronavirus-induced encephalitis. Here, we provide new insights into the interactions between pathogenic Tconv and Tregs responding to the same epitope. M133 Tregs inhibited the proliferation but not initial activation of M133 Tconv in draining lymph nodes (DLN. Further, M133 Tregs inhibited migration of M133 Tconv from the DLN. In addition, M133 Tregs diminished microglia activation and decreased the number and function of Tconv in the infected brain. Thus, virus-specific Tregs inhibited pathogenic CD4 T cell responses during priming and effector stages, particularly those recognizing cognate antigen, and decreased mortality and morbidity without affecting virus clearance. These cells are more suppressive than bulk Tregs and provide a targeted approach to ameliorating immunopathological disease in infectious settings.

  9. Mycobacterium tuberculosis type VII secreted effector EsxH targets host ESCRT to impair trafficking.

    Directory of Open Access Journals (Sweden)

    Alka Mehra

    2013-10-01

    Full Text Available Mycobacterium tuberculosis (Mtb disrupts anti-microbial pathways of macrophages, cells that normally kill bacteria. Over 40 years ago, D'Arcy Hart showed that Mtb avoids delivery to lysosomes, but the molecular mechanisms that allow Mtb to elude lysosomal degradation are poorly understood. Specialized secretion systems are often used by bacterial pathogens to translocate effectors that target the host, and Mtb encodes type VII secretion systems (TSSSs that enable mycobacteria to secrete proteins across their complex cell envelope; however, their cellular targets are unknown. Here, we describe a systematic strategy to identify bacterial virulence factors by looking for interactions between the Mtb secretome and host proteins using a high throughput, high stringency, yeast two-hybrid (Y2H platform. Using this approach we identified an interaction between EsxH, which is secreted by the Esx-3 TSSS, and human hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs/Hrs, a component of the endosomal sorting complex required for transport (ESCRT. ESCRT has a well-described role in directing proteins destined for lysosomal degradation into intraluminal vesicles (ILVs of multivesicular bodies (MVBs, ensuring degradation of the sorted cargo upon MVB-lysosome fusion. Here, we show that ESCRT is required to deliver Mtb to the lysosome and to restrict intracellular bacterial growth. Further, EsxH, in complex with EsxG, disrupts ESCRT function and impairs phagosome maturation. Thus, we demonstrate a role for a TSSS and the host ESCRT machinery in one of the central features of tuberculosis pathogenesis.

  10. Selective Inhibition of STAT3 Phosphorylation Using a Nuclear-Targeted Kinase Inhibitor.

    Science.gov (United States)

    Bartolowits, Matthew D; Brown, Wells; Ali, Remah; Pedley, Anthony M; Chen, Qingshou; Harvey, Kyle E; Wendt, Michael K; Davisson, Vincent Jo

    2017-09-15

    The discovery of compounds that selectively modulate signaling and effector proteins downstream of EGFR could have important implications for understanding specific roles for pathway activation. A complicating factor for receptor tyrosine kinases is their capacity to be translocated to the nucleus upon ligand engagement. Once localized in subcellular compartments like the nucleus, the roles for EGFR take on additional features, many of which are still being revealed. Additionally, nuclear localization of EGFR has been implicated in downstream events that have significance for therapy resistance and disease progression. The challenges to addressing the differential roles for EGFR in the nucleus motivated experimental approaches that can selectively modulate its subcellular function. By adding modifications to the established EGFR kinase inhibitor gefitinib, an approach to small molecule conjugates with a unique nuclear-targeting peptoid sequence was tested in both human and murine breast tumor cell models for their capacity to inhibit EGF-stimulated activation of ERK1/2 and STAT3. While gefitinib alone inhibits both of these downstream effectors, data acquired here indicate that compartmentalization of the gefitinib conjugates allows for pathway specific inhibition of STAT3 while not affecting ERK1/2 signaling. The inhibitor conjugates offered a more direct route to evaluate the role of EGF-stimulated epithelial-to-mesenchymal transition in these breast cancer cell models. These conjugates revealed that STAT3 activation is not involved in EGF-induced EMT, and instead utilization of the cytoplasmic MAP kinase signaling pathway is critical to this process. This is the first example of a conjugate kinase inhibitor capable of partitioning to the nucleus and offers a new approach to enhancing kinase inhibitor specificity.

  11. T3SEdb: data warehousing of virulence effectors secreted by the bacterial Type III Secretion System.

    Science.gov (United States)

    Tay, Daniel Ming Ming; Govindarajan, Kunde Ramamoorthy; Khan, Asif M; Ong, Terenze Yao Rui; Samad, Hanif M; Soh, Wei Wei; Tong, Minyan; Zhang, Fan; Tan, Tin Wee

    2010-10-15

    Effectors of Type III Secretion System (T3SS) play a pivotal role in establishing and maintaining pathogenicity in the host and therefore the identification of these effectors is important in understanding virulence. However, the effectors display high level of sequence diversity, therefore making the identification a difficult process. There is a need to collate and annotate existing effector sequences in public databases to enable systematic analyses of these sequences for development of models for screening and selection of putative novel effectors from bacterial genomes that can be validated by a smaller number of key experiments. Herein, we present T3SEdb http://effectors.bic.nus.edu.sg/T3SEdb, a specialized database of annotated T3SS effector (T3SE) sequences containing 1089 records from 46 bacterial species compiled from the literature and public protein databases. Procedures have been defined for i) comprehensive annotation of experimental status of effectors, ii) submission and curation review of records by users of the database, and iii) the regular update of T3SEdb existing and new records. Keyword fielded and sequence searches (BLAST, regular expression) are supported for both experimentally verified and hypothetical T3SEs. More than 171 clusters of T3SEs were detected based on sequence identity comparisons (intra-cluster difference up to ~60%). Owing to this high level of sequence diversity of T3SEs, the T3SEdb provides a large number of experimentally known effector sequences with wide species representation for creation of effector predictors. We created a reliable effector prediction tool, integrated into the database, to demonstrate the application of the database for such endeavours. T3SEdb is the first specialised database reported for T3SS effectors, enriched with manual annotations that facilitated systematic construction of a reliable prediction model for identification of novel effectors. The T3SEdb represents a platform for inclusion of

  12. T3SEdb: data warehousing of virulence effectors secreted by the bacterial Type III Secretion System

    Directory of Open Access Journals (Sweden)

    Tong Minyan

    2010-10-01

    Full Text Available Abstract Background Effectors of Type III Secretion System (T3SS play a pivotal role in establishing and maintaining pathogenicity in the host and therefore the identification of these effectors is important in understanding virulence. However, the effectors display high level of sequence diversity, therefore making the identification a difficult process. There is a need to collate and annotate existing effector sequences in public databases to enable systematic analyses of these sequences for development of models for screening and selection of putative novel effectors from bacterial genomes that can be validated by a smaller number of key experiments. Results Herein, we present T3SEdb http://effectors.bic.nus.edu.sg/T3SEdb, a specialized database of annotated T3SS effector (T3SE sequences containing 1089 records from 46 bacterial species compiled from the literature and public protein databases. Procedures have been defined for i comprehensive annotation of experimental status of effectors, ii submission and curation review of records by users of the database, and iii the regular update of T3SEdb existing and new records. Keyword fielded and sequence searches (BLAST, regular expression are supported for both experimentally verified and hypothetical T3SEs. More than 171 clusters of T3SEs were detected based on sequence identity comparisons (intra-cluster difference up to ~60%. Owing to this high level of sequence diversity of T3SEs, the T3SEdb provides a large number of experimentally known effector sequences with wide species representation for creation of effector predictors. We created a reliable effector prediction tool, integrated into the database, to demonstrate the application of the database for such endeavours. Conclusions T3SEdb is the first specialised database reported for T3SS effectors, enriched with manual annotations that facilitated systematic construction of a reliable prediction model for identification of novel effectors

  13. Prediction and identification of the effectors of heterotrimeric G proteins in rice (Oryza sativa L.).

    Science.gov (United States)

    Li, Kuan; Xu, Chaoqun; Huang, Jian; Liu, Wei; Zhang, Lina; Wan, Weifeng; Tao, Huan; Li, Ling; Lin, Shoukai; Harrison, Andrew; He, Huaqin

    2017-03-01

    Heterotrimeric G protein signaling cascades are one of the primary metazoan sensing mechanisms linking a cell to environment. However, the number of experimentally identified effectors of G protein in plant is limited. We have therefore studied which tools are best suited for predicting G protein effectors in rice. Here, we compared the predicting performance of four classifiers with eight different encoding schemes on the effectors of G proteins by using 10-fold cross-validation. Four methods were evaluated: random forest, naive Bayes, K-nearest neighbors and support vector machine. We applied these methods to experimentally identified effectors of G proteins and randomly selected non-effector proteins, and tested their sensitivity and specificity. The result showed that random forest classifier with composition of K-spaced amino acid pairs and composition of motif or domain (CKSAAP_PROSITE_200) combination method yielded the best performance, with accuracy and the Mathew's correlation coefficient reaching 74.62% and 0.49, respectively. We have developed G-Effector, an online predictor, which outperforms BLAST, PSI-BLAST and HMMER on predicting the effectors of G proteins. This provided valuable guidance for the researchers to select classifiers combined with different feature selection encoding schemes. We used G-Effector to screen the effectors of G protein in rice, and confirmed the candidate effectors by gene co-expression data. Interestingly, one of the top 15 candidates, which did not appear in the training data set, was validated in a previous research work. Therefore, the candidate effectors list in this article provides both a clue for researchers as to their function and a framework of validation for future experimental work. It is accessible at http://bioinformatics.fafu.edu.cn/geffector. © The Author 2016. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  14. Krebs cycle rewired for macrophage and dendritic cell effector functions.

    Science.gov (United States)

    Ryan, Dylan Gerard; O'Neill, Luke A J

    2017-10-01

    The Krebs cycle is an amphibolic pathway operating in the mitochondrial matrix of all eukaryotic organisms. In response to proinflammatory stimuli, macrophages and dendritic cells undergo profound metabolic remodelling to support the biosynthetic and bioenergetic requirements of the cell. Recently, it has been discovered that this metabolic shift also involves the rewiring of the Krebs cycle to regulate cellular metabolic flux and the accumulation of Krebs cycle intermediates, notably, citrate, succinate and fumarate. Interestingly, a new role for Krebs cycle intermediates as signalling molecules and immunomodulators that dictate the inflammatory response has begun to emerge. This review will discuss the latest developments in Krebs cycle rewiring and immune cell effector functions, with a particular focus on the regulation of cytokine production. © 2017 Federation of European Biochemical Societies.

  15. Hanford Waste End Effector Phase I Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Berglin, Eric J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hatchell, Brian K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mount, Jason C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Neill, Kevin J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wells, Beric E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burns, Carolyn A.M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-22

    This test plan describes the Phase 1 testing program of the Hanford Waste End Effector (HWEE) at the Washington River Protection Solutions’ Cold Test Facility (CTF) using a Pacific Northwest National Laboratory (PNNL)-designed testing setup. This effort fulfills the informational needs for initial assessment of the HWEE to support Hanford single-shell tank A-105 retrieval. This task will install the HWEE on a PNNL-designed robotic gantry system at CTF, install and calibrate instrumentation to measure reaction forces and process parameters, prepare and characterize simulant materials, and implement the test program. The tests will involve retrieval of water, sludge, and hardpan simulants to determine pumping rate, dilution factors, and screen fouling rate.

  16. [Transcription activator-like effectors(TALEs)based genome engineering].

    Science.gov (United States)

    Zhao, Mei-Wei; Duan, Cheng-Li; Liu, Jiang

    2013-10-01

    Systematic reverse-engineering of functional genome architecture requires precise modifications of gene sequences and transcription levels. The development and application of transcription activator-like effectors(TALEs) has created a wealth of genome engineering possibilities. TALEs are a class of naturally occurring DNA-binding proteins found in the plant pathogen Xanthomonas species. The DNA-binding domain of each TALE typically consists of tandem 34-amino acid repeat modules rearranged according to a simple cipher to target new DNA sequences. Customized TALEs can be used for a wide variety of genome engineering applications, including transcriptional modulation and genome editing. Such "genome engineering" has now been established in human cells and a number of model organisms, thus opening the door to better understanding gene function in model organisms, improving traits in crop plants and treating human genetic disorders.

  17. Gibberellin Perception by the Gibberellin Receptor and its Effector Recognition

    Science.gov (United States)

    Hakoshima, Toshio; Murase, Kohji; Hirano, Yoshinori; Sun, Tai-Ping

    Gibberellins control a diverse range of growth and developmental processes in higher plants and have been widely utilized in the agricultural industry. By binding to a nuclear receptor GIBBERELLIN INSENSITIVE DWARF1 (GID1), gibberellins regulate gene expression by promoting degradation of the transcriptional regulator DELLA proteins. The precise manner in which GID1 discriminates and becomes activated by bioactive gibberellins for specific binding to DELLA proteins remains unclear. We present the crystal structure of a ternary complex of Arabidopsis thaliana GID1A, a bioactive gibberellin and the N-terminal DELLA domain of GAI. In this complex, GID1a occludes gibberellin in a deep binding pocket covered by its N-terminal helical switch region, which in turn interacts with the DELLA domain containing DELLA, VHYNP and LExLE motifs. Our results establish a structural model of a plant hormone receptor which is distinct from the hormone-perception mechanism and effector recognition of the known auxin receptors.

  18. Dysregulation of Protein Kinase Gene Expression in NK Cells from Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients.

    Science.gov (United States)

    Chacko, Anu; Staines, Donald R; Johnston, Samantha C; Marshall-Gradisnik, Sonya M

    2016-01-01

    The etiology and pathomechanism of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) are unknown. However, natural killer (NK) cell dysfunction, in particular reduced NK cytotoxic activity, is a consistent finding in CFS/ME patients. Previous research has reported significant changes in intracellular mitogen-activated protein kinase pathways from isolated NK cells. The purpose of this present investigation was to examine whether protein kinase genes have a role in abnormal NK cell intracellular signaling in CFS/ME. Messenger RNA (mRNA) expression of 528 protein kinase genes in isolated NK cells was analyzed (nCounter GX Human Kinase Kit v2 (XT); NanoString Technologies) from moderate (n = 11; age, 54.9 ± 10.3 years) and severe (n = 12; age, 47.5 ± 8.0 years) CFS/ME patients (classified by the 2011 International Consensus Criteria) and nonfatigued controls (n = 11; age, 50.0 ± 12.3 years). The expression of 92 protein kinase genes was significantly different in the severe CFS/ME group compared with nonfatigued controls. Among these, 37 genes were significantly upregulated and 55 genes were significantly downregulated in severe CFS/ME patients compared with nonfatigued controls. In severe CFS/ME patients, dysfunction in protein kinase genes may contribute to impairments in NK cell intracellular signaling and effector function. Similar changes in protein kinase genes may be present in other cells, potentially contributing to the pathomechanism of this illness.

  19. Genotyping of polymorphic effectors of Toxoplasma gondii isolates from China

    Directory of Open Access Journals (Sweden)

    Weisheng Cheng

    2017-11-01

    Full Text Available Abstract Background Toxoplasma gondii is an opportunistic protozoan apicomplexan and obligate intracellular parasite that infects a wide range of animals and humans. Rhoptry proteins 5 (ROP5, ROP16, ROP18 and dense granules 15 (GRA15 are the important effectors secreted by T. gondii which link to the strain virulence for mice and modulate the host’s response to the parasite. Little has been known about these molecules as well as GRA3 in type Chinese 1 strains that show polymorphism among strains of archetypical genotypes. This study examined the genetic diversity of these effectors and its correlated virulence in mice among T. gondii isolates from China. Results Twenty-one isolates from stray cats were detected, of which 15 belong to Chinese 1, and 6 to ToxoDB #205. Wh6 isolate, a Chinese 1 strain, has an avirulent phenotype. PCR-RFLP results of ROP5 and ROP18 presented few variations among the strains. Genotyping of GRA15 and ROP16 revealed that all the strains belong to type II allele except Xz7 which carries type I allele. ROP16 amino acid alignment at 503 locus demonstrated that 17 isolates are featured as type I or type III (ROP16I/III, and the other 4 as type II (ROP16II. The strains investigated may be divided into four groups based on GRA3 amino acid alignment, and all isolates of type Chinese 1 belong to the μ-1 allele except Wh6 which is identical to type II strain. Conclusions PCR-RFLP and sequence alignment analyses of ROP5, ROP16, ROP18, GRA3, and GRA15 in T. gondii revealed that strains with the same genotype may have variations in some of their key genes. GRA3 variation exhibited by Wh6 strain may be associated with the difference in phenotype and pathogenesis.

  20. NEGATIVE REGULATORY EFFECTS OF PHOSPHATIDYLINOSITOL3-KINASE PATHWAY ON PHAGOCYTOSIS AND MACROPINOCYTOSIS IN BOVINE MONOCYTES.

    Science.gov (United States)

    Ammari, Mais G; Harris, Autumn N; Stokes, John V; Bailey, Richard H; Pinchuk, Lesya M

    2014-08-31

    Recent studies have shown that monocytes and macrophages not only present antigens to effector T cells and stimulate and shape T cell-mediated immune responses, but they also prime naïve T cells, thus initiating adaptive immune responses. Phosphatidylinositol 3-kinase functions at an early phase of toll-like receptor signaling pathways, modulates the magnitude of the primary immune responses, and is involved in the reorganization of the actin cytoskeleton during macropinocytic and phagocytic antigen uptakes, important early steps in triggering adaptive immune responses. We assessed by flow cytometry the endocytic capacities of bovine monocytes by using endocytic tracers and Salmonella transformed with a green fluorescence plasmid GFP to evaluate macropinocytosis, mannose receptor-mediated endocytosis, and phagocytosis in bovine professional antigen presenting cells, respectively. Our data reveal that wortmannin, an inhibitor of phosphatidylinositol 3-kinase signaling pathway, significantly increased macropinocytosis and phagocytosis but did not affect the mannose receptor-mediated antigen uptake in bovine monocytes. Protein expression data support these findings by showing decreased levels of phosphoinositide 3-kinase in the presence of wortmannin during macropinocytosis. We expanded further the key role of phosphatidylinositol 3-kinase as an endogenous suppressor of primary immune responses, suggesting a novel mechanism of phosphatidylinositol 3-kinase antigen uptake modulation that may provide a unique therapeutic target for controlling excessive inflammation.

  1. A novel predicted calcium-regulated kinase family implicated in neurological disorders.

    Directory of Open Access Journals (Sweden)

    Małgorzata Dudkiewicz

    Full Text Available The catalogues of protein kinases, the essential effectors of cellular signaling, have been charted in Metazoan genomes for a decade now. Yet, surprisingly, using bioinformatics tools, we predicted protein kinase structure for proteins coded by five related human genes and their Metazoan homologues, the FAM69 family. Analysis of three-dimensional structure models and conservation of the classic catalytic motifs of protein kinases present in four out of five human FAM69 proteins suggests they might have retained catalytic phosphotransferase activity. An EF-hand Ca(2+-binding domain in FAM69A and FAM69B proteins, inserted within the structure of the kinase domain, suggests they may function as Ca(2+-dependent kinases. The FAM69 genes, FAM69A, FAM69B, FAM69C, C3ORF58 (DIA1 and CXORF36 (DIA1R, are by large uncharacterised molecularly, yet linked to several neurological disorders in genetics studies. The C3ORF58 gene is found deleted in autism, and resides in the Golgi. Unusually high cysteine content and presence of signal peptides in some of the family members suggest that FAM69 proteins may be involved in phosphorylation of proteins in the secretory pathway and/or of extracellular proteins.

  2. Elucidating the role of effectors in plant-fungal interactions: Progress and Challenges

    Directory of Open Access Journals (Sweden)

    DILANTHA eFERNANDO

    2016-04-01

    Full Text Available Pathogenic fungi have diverse growth lifestyles that support fungal colonization on plants. Successful colonization and infection for all lifestyles depends upon the ability to modify living host plants to sequester the necessary nutrients required for growth and reproduction. Secretion of virulence determinants referred to as ‘effectors’ is assumed to be the key governing factor that determines host infection and colonization. Effector proteins are capable of suppressing plant defense responses and alter plant physiology to accommodate fungal invaders. This review focuses on effector molecules of biotrophic and hemibiotrophic plant pathogenic fungi, and the mechanism required for the release and uptake of effector molecules by the fungi and plant cells, respectively. We also place emphasis on the discovery of effectors, difficulties associated with predicting the effector repertoire, and fungal genomic features that have helped promote effector diversity leading to fungal evolution. We discuss the role of specific effectors found in biotrophic and hemibiotrophic fungi and examine how CRISPR technology may provide a new avenue for accelerating our ability in the discovery of fungal effector function.

  3. Establishment of an inducing medium for type III effector secretion in Xanthomonas campestris pv. campestris

    Directory of Open Access Journals (Sweden)

    Guo-Feng Jiang

    2013-09-01

    Full Text Available It is well known that the type III secretion system (T3SS and type III (T3 effectors are essential for the pathogenicity of most bacterial phytopathogens and that the expression of T3SS and T3 effectors is suppressed in rich media but induced in minimal media and plants. To facilitate in-depth studies on T3SS and T3 effectors, it is crucial to establish a medium for T3 effector expression and secretion. Xanthomonas campestris pv. campestris (Xcc is a model bacterium for studying plant-pathogen interactions. To date no medium for Xcc T3 effector secretion has been defined. Here, we compared four minimal media (MME, MMX, XVM2, and XOM2 which are reported for T3 expression induction in Xanthomonas spp. and found that MME is most efficient for expression and secretion of Xcc T3 effectors. By optimization of carbon and nitrogen sources and pH value based on MME, we established XCM1 medium, which is about 3 times stronger than MME for Xcc T3 effectors secretion. We further optimized the concentration of phosphate, calcium, and magnesium in XCM1 and found that XCM1 with a lower concentration of magnesium (renamed as XCM2 is about 10 times as efficient as XCM1 (meanwhile, about 30 times stronger than MME. Thus, we established an inducing medium XCM2 which is preferred for T3 effector secretion in Xcc.

  4. Homologous RXLR effectors from Hyaloperonospora arabidopsidis and Phytophthora sojae suppress immunity in distantly related plants

    Science.gov (United States)

    Diverse pathogens secrete effector proteins into plant cells to manipulate host cellular processes. Oomycete pathogens contain very large complements of predicted effector genes defined by an RXLR host cell entry motif. The genome of Hyaloperonospora arabidopsidis (Hpa, downy mildew of Arabidopsis) ...

  5. Characterization of naïve, memory and effector T cells in progressive multiple sclerosis

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Romme; Ratzer, Rikke; Börnsen, Lars

    2017-01-01

    We characterized naïve, central memory (CM), effector memory (EM) and terminally differentiated effector memory (TEMRA) CD4+ and CD8+ T cells and their expression of CD49d and CD26 in peripheral blood in patients with multiple sclerosis (MS) and healthy controls. CD26+ CD28+ CD4+ TEMRA T cells were...

  6. Pathophysiological effects of RhoA and Rho-associated kinase on cardiovascular system.

    Science.gov (United States)

    Cai, Anping; Li, Liwen; Zhou, Yingling

    2016-01-01

    In past decades, growing evidence from basic and clinical researches reveal that small guanosine triphosphate binding protein ras homolog gene family, member A (RhoA) and its main effector Rho-associated kinase (ROCK) play central and complex roles in cardiovascular systems, and increasing RhoA and ROCK activity is associated with a broad range of cardiovascular diseases such as congestive heart failure, atherosclerosis, and hypertension. Favorable outcomes have been observed with ROCK inhibitors treatment. In this review, we briefly summarize the pathophysiological roles of RhoA/ROCK signaling pathway on cardiovascular system, displaying the potential benefits in the cardiovascular system with controlling RhoA/ROCK signaling pathway.

  7. Genetics Home Reference: phosphoglycerate kinase deficiency

    Science.gov (United States)

    ... Genetic Testing Registry: Phosphoglycerate kinase 1 deficiency Other Diagnosis and Management Resources (1 link) Children Living with Inherited Metabolic Diseases (CLIMB) (UK): Phosphoglycerate Kinase Deficiency (PDF) General Information ...

  8. Innate immunity kinase TAK1 phosphorylates Rab1 on a hotspot for posttranslational modifications by host and pathogen.

    Science.gov (United States)

    Levin, Rebecca S; Hertz, Nicholas T; Burlingame, Alma L; Shokat, Kevan M; Mukherjee, Shaeri

    2016-08-16

    TGF-β activated kinase 1 (TAK1) is a critical signaling hub responsible for translating antigen binding signals to immune receptors for the activation of the AP-1 and NF-κB master transcriptional programs. Despite its importance, known substrates of TAK1 are limited to kinases of the MAPK and IKK families and include no direct effectors of biochemical processes. Here, we identify over 200 substrates of TAK1 using a chemical genetic kinase strategy. We validate phosphorylation of the dynamic switch II region of GTPase Rab1, a mediator of endoplasmic reticulum to Golgi vesicular transport, at T75 to be regulated by TAK1 in vivo. TAK1 preferentially phosphorylates the inactive (GDP-bound) state of Rab1. Phosphorylation of Rab1 disrupts interaction with GDP dissociation inhibitor 1 (GDI1), but not guanine exchange factor (GEF) or GTPase-activating protein (GAP) enzymes, and is exclusive to membrane-localized Rab1, suggesting phosphorylation may stimulate Rab1 membrane association. Furthermore, we found phosphorylation of Rab1 at T75 to be essential for Rab1 function. Previous studies established that the pathogen Legionella pneumophila is capable of hijacking Rab1 function through posttranslational modifications of the switch II region. Here, we present evidence that Rab1 is regulated by the host in a similar fashion, and that the innate immunity kinase TAK1 and Legionella effectors compete to regulate Rab1 by switch II modifications during infection.

  9. Diverse targets of phytoplasma effectors: from plant development to defense against insects.

    Science.gov (United States)

    Sugio, Akiko; MacLean, Allyson M; Kingdom, Heather N; Grieve, Victoria M; Manimekalai, R; Hogenhout, Saskia A

    2011-01-01

    Phytoplasma research begins to bloom (75). Indeed, this review shows that substantial progress has been made with the identification of phytoplasma effectors that alter flower development, induce witches' broom, affect leaf shape, and modify plant-insect interactions. Phytoplasmas have a unique life cycle among pathogens, as they invade organisms of two distinct kingdoms, namely plants (Plantae) and insects (Animalia), and replicate intracellularly in both. Phytoplasmas release effectors into host cells of plants and insects to target host molecules, and in plants these effectors unload from the phloem to access distal tissues and alter basic developmental processes. The effectors provide phytoplasmas with a fitness advantage by modulating their plant and insect hosts. We expect that further research on the functional characterization of phytoplasma effectors will generate new knowledge that is relevant to fundamental aspects of plant sciences and entomology, and for agriculture by improving yields of crops affected by phytoplasma diseases. Copyright © 2011 by Annual Reviews. All rights reserved.

  10. MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility.

    Science.gov (United States)

    Hutin, Mathilde; Pérez-Quintero, Alvaro L; Lopez, Camilo; Szurek, Boris

    2015-01-01

    Many plant-pathogenic xanthomonads rely on Transcription Activator-Like (TAL) effectors to colonize their host. This particular family of type III effectors functions as specific plant transcription factors via a programmable DNA-binding domain. Upon binding to the promoters of plant disease susceptibility genes in a sequence-specific manner, the expression of these host genes is induced. However, plants have evolved specific strategies to counter the action of TAL effectors and confer resistance. One mechanism is to avoid the binding of TAL effectors by mutations of their DNA binding sites, resulting in resistance by loss-of-susceptibility. This article reviews our current knowledge of the susceptibility hubs targeted by Xanthomonas TAL effectors, possible evolutionary scenarios for plants to combat the pathogen with loss-of-function alleles, and how this knowledge can be used overall to develop new pathogen-informed breeding strategies and improve crop resistance.

  11. MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility

    Directory of Open Access Journals (Sweden)

    Mathilde eHutin

    2015-07-01

    Full Text Available Many plant-pathogenic xanthomonads rely on Transcription Activator-Like (TAL effectors to colonize their host. This particular family of type III effectors functions as specific plant transcription factors via a novel programmable DNA-binding domain. Upon binding to the promoters of plant disease susceptibility genes in a sequence-specific manner, the expression of these host genes is induced. However, plants have evolved specific strategies to counter the action of TAL effectors and confer resistance. One mechanism is to avoid the binding of TAL effectors by mutations of their DNA binding sites, resulting in resistance by loss-of-susceptibility. This article reviews our current knowledge of the susceptibility hubs targeted by Xanthomonas TAL effectors, possible evolutionary scenarios for plants to combat the pathogen with loss-of-function alleles, and how this knowledge can be used overall to develop new pathogen-informed breeding strategies and improve crop resistance.

  12. Pyruvate kinase M2: a potential target for regulating inflammation

    Directory of Open Access Journals (Sweden)

    Jose Carlos eAlves-Filho

    2016-04-01

    Full Text Available Pyruvate kinase (PK is the enzyme responsible for catalyzing the last step of glycolysis. Of the four PK isoforms expressed in mammalian cells, PKM2 has generated the most interest due to its impact on changes in cellular metabolism observed in cancer as well as in activated immune cells. As our understanding of dysregulated metabolism in cancer develops, and in light of the growing field of immunometabolism, intense efforts are in place to define the mechanism by which PKM2 regulates the metabolic profile of cancer as well as of immune cells. The enzymatic activity of PKM2 is heavily regulated by endogenous allosteric effectors as well as by intracellular signalling pathways, affecting both the enzymatic activity of PKM2 as a pyruvate kinase and the regulation of the recently described non-canonical nuclear functions of PKM2. We here review the current literature on PKM2 and its regulation, and discuss the potential for PKM2 as a therapeutic target in inflammatory and metabolic disorders.

  13. The genome sequence and effector complement of the flax rust pathogen Melampsora lini.

    Science.gov (United States)

    Nemri, Adnane; Saunders, Diane G O; Anderson, Claire; Upadhyaya, Narayana M; Win, Joe; Lawrence, Gregory J; Jones, David A; Kamoun, Sophien; Ellis, Jeffrey G; Dodds, Peter N

    2014-01-01

    Rust fungi cause serious yield reductions on crops, including wheat, barley, soybean, coffee, and represent real threats to global food security. Of these fungi, the flax rust pathogen Melampsora lini has been developed most extensively over the past 80 years as a model to understand the molecular mechanisms that underpin pathogenesis. During infection, M. lini secretes virulence effectors to promote disease. The number of these effectors, their function and their degree of conservation across rust fungal species is unknown. To assess this, we sequenced and assembled de novo the genome of M. lini isolate CH5 into 21,130 scaffolds spanning 189 Mbp (scaffold N50 of 31 kbp). Global analysis of the DNA sequence revealed that repetitive elements, primarily retrotransposons, make up at least 45% of the genome. Using ab initio predictions, transcriptome data and homology searches, we identified 16,271 putative protein-coding genes. An analysis pipeline was then implemented to predict the effector complement of M. lini and compare it to that of the poplar rust, wheat stem rust and wheat stripe rust pathogens to identify conserved and species-specific effector candidates. Previous knowledge of four cloned M. lini avirulence effector proteins and two basidiomycete effectors was used to optimize parameters of the effector prediction pipeline. Markov clustering based on sequence similarity was performed to group effector candidates from all four rust pathogens. Clusters containing at least one member from M. lini were further analyzed and prioritized based on features including expression in isolated haustoria and infected leaf tissue and conservation across rust species. Herein, we describe 200 of 940 clusters that ranked highest on our priority list, representing 725 flax rust candidate effectors. Our findings on this important model rust species provide insight into how effectors of rust fungi are conserved across species and how they may act to promote infection on their

  14. Diverse secreted effectors are required for Salmonella persistence in a mouse infection model.

    Directory of Open Access Journals (Sweden)

    Afshan S Kidwai

    Full Text Available Salmonella enterica serovar Typhimurium causes typhoid-like disease in mice and is a model of typhoid fever in humans. One of the hallmarks of typhoid is persistence, the ability of the bacteria to survive in the host weeks after infection. Virulence factors called effectors facilitate this process by direct transfer to the cytoplasm of infected cells thereby subverting cellular processes. Secretion of effectors to the cell cytoplasm takes place through multiple routes, including two separate type III secretion (T3SS apparati as well as outer membrane vesicles. The two T3SS are encoded on separate pathogenicity islands, SPI-1 and -2, with SPI-1 more strongly associated with the intestinal phase of infection, and SPI-2 with the systemic phase. Both T3SS are required for persistence, but the effectors required have not been systematically evaluated. In this study, mutations in 48 described effectors were tested for persistence. We replaced each effector with a specific DNA barcode sequence by allelic exchange and co-infected with a wild-type reference to calculate the ratio of wild-type parent to mutant at different times after infection. The competitive index (CI was determined by quantitative PCR in which primers that correspond to the barcode were used for amplification. Mutations in all but seven effectors reduced persistence demonstrating that most effectors were required. One exception was CigR, a recently discovered effector that is widely conserved throughout enteric bacteria. Deletion of cigR increased lethality, suggesting that it may be an anti-virulence factor. The fact that almost all Salmonella effectors are required for persistence argues against redundant functions. This is different from effector repertoires in other intracellular pathogens such as Legionella.

  15. Diverse Secreted Effectors Are Required for Salmonella Persistence in a Mouse Infection Model

    Energy Technology Data Exchange (ETDEWEB)

    Kidwai, Afshan S.; Mushamiri, Ivy T.; Niemann, George; Brown, Roslyn N.; Adkins, Joshua N.; Heffron, Fred

    2013-08-12

    Salmonella enterica serovar Typhimurium causes typhoid-like disease in mice and is a model of typhoid fever in humans. One of the hallmarks of typhoid is persistence, the ability of the bacteria to survive in the host weeks after infection. Virulence factors called effectors facilitate this process by direct transfer to the cytoplasm of infected cells thereby subverting cellular processes. Secretion of effectors to the cell cytoplasm takes place through multiple routes, including two separate type III secretion (T3SS) apparati as well as outer membrane vesicles. The two T3SS are encoded on separate pathogenicity islands, SPI-1 and -2, with SPI-1 more strongly associated with the intestinal phase of infection, and SPI-2 with the systemic phase. Both T3SS are required for persistence, but the effectors required have not been systematically evaluated. In this study, mutations in 48 described effectors were tested for persistence. We replaced each effector with a specific DNA barcode sequence by allelic exchange and co-infected with a wild-type reference to calculate the ratio of wild-type parent to mutant at different times after infection. The competitive index (CI) was determined by quantitative PCR in which primers that correspond to the barcode were used for amplification. Mutations in all but seven effectors reduced persistence demonstrating that most effectors were required. One exception was CigR, a recently discovered effector that is widely conserved throughout enteric bacteria. Deletion of cigR increased lethality, suggesting that it may be an anti-virulence factor. The fact that almost all Salmonella effectors are required for persistence argues against redundant functions. This is different from effector repertoires in other intracellular pathogens such as Legionella.

  16. The genome sequence and effector complement of the flax rust pathogen Melampsora lini

    Directory of Open Access Journals (Sweden)

    Adnane eNemri

    2014-03-01

    Full Text Available Rust fungi cause serious yield reductions on crops, including wheat, barley, soybean, coffee, and represent real threats to global food security. Of these fungi, the flax rust pathogen Melampsora lini has been developed extensively over the past 80 years as a model to understand the molecular mechanisms that underpin pathogenesis. During infection, M. lini secretes virulence effectors to promote disease. The number of these effectors, their function and their degree of conservation across rust fungal species is unknown. To assess this, we sequenced and assembled de novo the genome of M. lini isolate CH5 into 21,130 scaffolds spanning 189 Mbp (scaffold N50 of 31 kbp. Global analysis of the DNA sequence revealed that repetitive elements, primarily retrotransposons, make up at least 45% of the genome. Using ab initio predictions, transcriptome data and homology searches, we identified 16,271 putative protein-coding genes. An analysis pipeline was then implemented to predict the effector complement of M. lini and compare it to that of the poplar rust, wheat stem rust and wheat stripe rust pathogens to identify conserved and species-specific effector candidates. Previous knowledge of four cloned M. lini avirulence effector proteins and two basidiomycete effectors was used to optimise parameters of the effector prediction pipeline. Markov clustering based on sequence similarity was performed to group effector candidates from all four rust pathogens. Clusters containing at least one member from M. lini were further analysed and prioritized based on features including expression in isolated haustoria and infected leaf tissue and conservation across rust species. Herein, we describe 200 of 940 clusters that ranked highest on our priority list, representing 725 flax rust candidate effectors. Our findings on this important model rust species provide insight into how effectors of rust fungi are conserved across species and how they may act to promote

  17. Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi.

    Science.gov (United States)

    Saunders, Diane G O; Win, Joe; Cano, Liliana M; Szabo, Les J; Kamoun, Sophien; Raffaele, Sylvain

    2012-01-01

    Rust fungi are obligate biotrophic pathogens that cause considerable damage on crop plants. Puccinia graminis f. sp. tritici, the causal agent of wheat stem rust, and Melampsora larici-populina, the poplar leaf rust pathogen, have strong deleterious impacts on wheat and poplar wood production, respectively. Filamentous pathogens such as rust fungi secrete molecules called disease effectors that act as modulators of host cell physiology and can suppress or trigger host immunity. Current knowledge on effectors from other filamentous plant pathogens can be exploited for the characterisation of effectors in the genome of recently sequenced rust fungi. We designed a comprehensive in silico analysis pipeline to identify the putative effector repertoire from the genome of two plant pathogenic rust fungi. The pipeline is based on the observation that known effector proteins from filamentous pathogens have at least one of the following properties: (i) contain a secretion signal, (ii) are encoded by in planta induced genes, (iii) have similarity to haustorial proteins, (iv) are small and cysteine rich, (v) contain a known effector motif or a nuclear localization signal, (vi) are encoded by genes with long intergenic regions, (vii) contain internal repeats, and (viii) do not contain PFAM domains, except those associated with pathogenicity. We used Markov clustering and hierarchical clustering to classify protein families of rust pathogens and rank them according to their likelihood of being effectors. Using this approach, we identified eight families of candidate effectors that we consider of high value for functional characterization. This study revealed a diverse set of candidate effectors, including families of haustorial expressed secreted proteins and small cysteine-rich proteins. This comprehensive classification of candidate effectors from these devastating rust pathogens is an initial step towards probing plant germplasm for novel resistance components.

  18. Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi.

    Directory of Open Access Journals (Sweden)

    Diane G O Saunders

    Full Text Available Rust fungi are obligate biotrophic pathogens that cause considerable damage on crop plants. Puccinia graminis f. sp. tritici, the causal agent of wheat stem rust, and Melampsora larici-populina, the poplar leaf rust pathogen, have strong deleterious impacts on wheat and poplar wood production, respectively. Filamentous pathogens such as rust fungi secrete molecules called disease effectors that act as modulators of host cell physiology and can suppress or trigger host immunity. Current knowledge on effectors from other filamentous plant pathogens can be exploited for the characterisation of effectors in the genome of recently sequenced rust fungi. We designed a comprehensive in silico analysis pipeline to identify the putative effector repertoire from the genome of two plant pathogenic rust fungi. The pipeline is based on the observation that known effector proteins from filamentous pathogens have at least one of the following properties: (i contain a secretion signal, (ii are encoded by in planta induced genes, (iii have similarity to haustorial proteins, (iv are small and cysteine rich, (v contain a known effector motif or a nuclear localization signal, (vi are encoded by genes with long intergenic regions, (vii contain internal repeats, and (viii do not contain PFAM domains, except those associated with pathogenicity. We used Markov clustering and hierarchical clustering to classify protein families of rust pathogens and rank them according to their likelihood of being effectors. Using this approach, we identified eight families of candidate effectors that we consider of high value for functional characterization. This study revealed a diverse set of candidate effectors, including families of haustorial expressed secreted proteins and small cysteine-rich proteins. This comprehensive classification of candidate effectors from these devastating rust pathogens is an initial step towards probing plant germplasm for novel resistance components.

  19. Sequential Delivery of Host-Induced Virulence Effectors by Appressoria and Intracellular Hyphae of the Phytopathogen Colletotrichum higginsianum

    Science.gov (United States)

    Kleemann, Jochen; Neumann, Ulla; van Themaat, Emiel Ver Loren; van der Does, H. Charlotte; Hacquard, Stéphane; Stüber, Kurt; Will, Isa; Schmalenbach, Wolfgang; Schmelzer, Elmon; O'Connell, Richard J.

    2012-01-01

    Phytopathogens secrete effector proteins to manipulate their hosts for effective colonization. Hemibiotrophic fungi must maintain host viability during initial biotrophic growth and elicit host death for subsequent necrotrophic growth. To identify effectors mediating these opposing processes, we deeply sequenced the transcriptome of Colletotrichum higginsianum infecting Arabidopsis. Most effector genes are host-induced and expressed in consecutive waves associated with pathogenic transitions, indicating distinct effector suites are deployed at each stage. Using fluorescent protein tagging and transmission electron microscopy-immunogold labelling, we found effectors localised to stage-specific compartments at the host-pathogen interface. In particular, we show effectors are focally secreted from appressorial penetration pores before host invasion, revealing new levels of functional complexity for this fungal organ. Furthermore, we demonstrate that antagonistic effectors either induce or suppress plant cell death. Based on these results we conclude that hemibiotrophy in Colletotrichum is orchestrated through the coordinated expression of antagonistic effectors supporting either cell viability or cell death. PMID:22496661

  20. Structural insight into effector proteins of Gram‐negative bacterial pathogens that modulate the phosphoproteome of their host

    National Research Council Canada - National Science Library

    Grishin, Andrey M; Beyrakhova, Ksenia A; Cygler, Miroslaw

    2015-01-01

    ... and ∼130 phosphatases in the human genome. Pathogens affect the phosphoproteome either directly through the action of bacterial effectors, and/or indirectly through downstream effects of host proteins modified by the effectors...

  1. Design schemes and comparison research of the end-effector of large space manipulator

    Science.gov (United States)

    Feng, Fei; Liu, Yiwei; Liu, Hong; Cai, Hegao

    2012-07-01

    The end-effector of the large space manipulator is employed to assist the manipulator in handling and manipulating large payloads on orbit. Currently, there are few researches about the end-effector, and the existing end-effectors have some disadvantages, such as poor misalignment tolerance capability and complex mechanical components. According to the end positioning errors and the residual vibration characters of the large space manipulators, two basic performance requirements of the end-effector which include the capabilities of misalignment tolerance and soft capture are proposed. And the end-effector should accommodate the following misalignments of the mechanical interface. The translation misalignments in axial and radial directions and the angular misalignments in roll, pitch and yaw are ±100 mm, 100 mm, ±10o, ±15o, ±15o, respectively. Seven end-effector schemes are presented and the capabilities of misalignment tolerance and soft capture are analyzed elementarily. The three fingers-three petals end-effector and the steel cable-snared end-effector are the most feasible schemes among the seven schemes, and they are designed in detail. The capabilities of misalignment tolerance and soft capture are validated and evaluated, through the experiment on the micro-gravity simulating device and the dynamic analysis in ADAMS software. The results show that the misalignment tolerance capabilities of these two schemes could satisfy the requirement. And the translation misalignment tolerances in axial and radial directions and the angular misalignment tolerances in roll, pitch and yaw of the steel cable-snared end-effector are 30mm, 15mm, 6o, 3o and 3o larger than those of the three fingers-three petals end-effector, respectively. And the contact force of the steel cable-snared end-effector is smaller and smoother than that of the three fingers-three petals end-effector. The end-effector schemes and research methods are beneficial to the developments of the large

  2. The effector protein Avr2 of the xylem-colonizing fungus Fusarium oxysporum activates the tomato resistance protein I-2 intracellularly

    NARCIS (Netherlands)

    Houterman, P.M.; Ma, L.; van Ooijen, G.; de Vroomen, M.J.; Cornelissen, B.J.C.; Takken, F.L.W.; Rep, M.

    2009-01-01

    To promote host colonization, many plant pathogens secrete effector proteins that either suppress or counteract host defences. However, when these effectors are recognized by the host's innate immune system, they trigger resistance rather than promoting virulence. Effectors are therefore key

  3. Deregulation of Rab and Rab effector genes in bladder cancer.

    Directory of Open Access Journals (Sweden)

    Joel R Ho

    Full Text Available Growing evidence indicates that Rab GTPases, key regulators of intracellular transport in eukaryotic cells, play an important role in cancer. We analysed the deregulation at the transcriptional level of the genes encoding Rab proteins and Rab-interacting proteins in bladder cancer pathogenesis, distinguishing between the two main progression pathways so far identified in bladder cancer: the Ta pathway characterized by a high frequency of FGFR3 mutation and the carcinoma in situ pathway where no or infrequent FGFR3 mutations have been identified. A systematic literature search identified 61 genes encoding Rab proteins and 223 genes encoding Rab-interacting proteins. Transcriptomic data were obtained for normal urothelium samples and for two independent bladder cancer data sets corresponding to 152 and 75 tumors. Gene deregulation was analysed with the SAM (significant analysis of microarray test or the binomial test. Overall, 30 genes were down-regulated, and 13 were up-regulated in the tumor samples. Five of these deregulated genes (LEPRE1, MICAL2, RAB23, STXBP1, SYTL1 were specifically deregulated in FGFR3-non-mutated muscle-invasive tumors. No gene encoding a Rab or Rab-interacting protein was found to be specifically deregulated in FGFR3-mutated tumors. Cluster analysis showed that the RAB27 gene cluster (comprising the genes encoding RAB27 and its interacting partners was deregulated and that this deregulation was associated with both pathways of bladder cancer pathogenesis. Finally, we found that the expression of KIF20A and ZWINT was associated with that of proliferation markers and that the expression of MLPH, MYO5B, RAB11A, RAB11FIP1, RAB20 and SYTL2 was associated with that of urothelial cell differentiation markers. This systematic analysis of Rab and Rab effector gene deregulation in bladder cancer, taking relevant tumor subgroups into account, provides insight into the possible roles of Rab proteins and their effectors in bladder

  4. Deregulation of Rab and Rab Effector Genes in Bladder Cancer

    Science.gov (United States)

    Ho, Joel R.; Chapeaublanc, Elodie; Kirkwood, Lisa; Nicolle, Remy; Benhamou, Simone; Lebret, Thierry; Allory, Yves; Southgate, Jennifer; Radvanyi, François; Goud, Bruno

    2012-01-01

    Growing evidence indicates that Rab GTPases, key regulators of intracellular transport in eukaryotic cells, play an important role in cancer. We analysed the deregulation at the transcriptional level of the genes encoding Rab proteins and Rab-interacting proteins in bladder cancer pathogenesis, distinguishing between the two main progression pathways so far identified in bladder cancer: the Ta pathway characterized by a high frequency of FGFR3 mutation and the carcinoma in situ pathway where no or infrequent FGFR3 mutations have been identified. A systematic literature search identified 61 genes encoding Rab proteins and 223 genes encoding Rab-interacting proteins. Transcriptomic data were obtained for normal urothelium samples and for two independent bladder cancer data sets corresponding to 152 and 75 tumors. Gene deregulation was analysed with the SAM (significant analysis of microarray) test or the binomial test. Overall, 30 genes were down-regulated, and 13 were up-regulated in the tumor samples. Five of these deregulated genes (LEPRE1, MICAL2, RAB23, STXBP1, SYTL1) were specifically deregulated in FGFR3-non-mutated muscle-invasive tumors. No gene encoding a Rab or Rab-interacting protein was found to be specifically deregulated in FGFR3-mutated tumors. Cluster analysis showed that the RAB27 gene cluster (comprising the genes encoding RAB27 and its interacting partners) was deregulated and that this deregulation was associated with both pathways of bladder cancer pathogenesis. Finally, we found that the expression of KIF20A and ZWINT was associated with that of proliferation markers and that the expression of MLPH, MYO5B, RAB11A, RAB11FIP1, RAB20 and SYTL2 was associated with that of urothelial cell differentiation markers. This systematic analysis of Rab and Rab effector gene deregulation in bladder cancer, taking relevant tumor subgroups into account, provides insight into the possible roles of Rab proteins and their effectors in bladder cancer pathogenesis

  5. Protein Kinase D Enzymes as Regulators of EMT and Cancer Cell Invasion

    Directory of Open Access Journals (Sweden)

    Nisha Durand

    2016-02-01

    Full Text Available The Protein Kinase D (PKD isoforms PKD1, PKD2, and PKD3 are effectors of the novel Protein Kinase Cs (nPKCs and diacylglycerol (DAG. PKDs impact diverse biological processes like protein transport, cell migration, proliferation, epithelial to mesenchymal transition (EMT and apoptosis. PKDs however, have distinct effects on these functions. While PKD1 blocks EMT and cell migration, PKD2 and PKD3 tend to drive both processes. Given the importance of EMT and cell migration to the initiation and progression of various malignancies, abnormal expression of PKDs has been reported in multiple types of cancers, including breast, pancreatic and prostate cancer. In this review, we discuss how EMT and cell migration are regulated by PKD isoforms and the significance of this regulation in the context of cancer development.

  6. Binding of regulatory subunits of cyclic AMP-dependent protein kinase to cyclic CMP agarose.

    Science.gov (United States)

    Hammerschmidt, Andreas; Chatterji, Bijon; Zeiser, Johannes; Schröder, Anke; Genieser, Hans-Gottfried; Pich, Andreas; Kaever, Volkhard; Schwede, Frank; Wolter, Sabine; Seifert, Roland

    2012-01-01

    The bacterial adenylyl cyclase toxins CyaA from Bordetella pertussis and edema factor from Bacillus anthracis as well as soluble guanylyl cyclase α(1)β(1) synthesize the cyclic pyrimidine nucleotide cCMP. These data raise the question to which effector proteins cCMP binds. Recently, we reported that cCMP activates the regulatory subunits RIα and RIIα of cAMP-dependent protein kinase. In this study, we used two cCMP agarose matrices as novel tools in combination with immunoblotting and mass spectrometry to identify cCMP-binding proteins. In agreement with our functional data, RIα and RIIα were identified as cCMP-binding proteins. These data corroborate the notion that cAMP-dependent protein kinase may serve as a cCMP target.

  7. Targeting of chromatin readers: a novel strategy used by the Shigella flexneri virulence effector OspF to reprogram transcription

    Directory of Open Access Journals (Sweden)

    Habiba Harouz

    2014-12-01

    Full Text Available Shigella flexneri, a gram-negative bacterium responsible of bacillary dysentery, uses multiple strategies to overcome host immune defense. We have decrypted how this bacterium manipulates host-cell chromatin binders to take control of immune gene expression. We found that OspF, an injected virulence factor previously identified as a repressor of immune gene expression, targets the chromatin reader HP1γ. Heterochromatin Protein 1 family members specifically recognize and bind histone H3 methylated at Lys 9. Although initially identified as chromatin-associated transcriptional silencers in heterochromatin, their location in euchromatin indicates an active role in gene expression. Notably, HP1γ phosphorylation at Serine 83 defines a subpopulation exclusively located to euchromatin, targeted to the site of transcriptional elongation. We showed that OspF directly interacts with HP1γ, and causes HP1 dephosphorylation, suggesting a model in which this virulence effector “uses” HP1 proteins as beacons to target and repress immune gene expression (Harouz, et al. EMBO J (2014. OspF alters HP1γ phosphorylation mainly by inactivating the Erk-activated kinase MSK1, spotlighting it as a new HP1 kinase. In vivo, infectious stresses trigger HP1γ phosphorylation in the colon, principally in the lamina propria and the intestinal crypts. Several lines of evidence suggest that HP1 proteins are modified as extensively as histones, and decrypting the impact of these HP1 post-translational modifications on their transcriptional activities in vivo will be the next challenges to be taken up.

  8. Targeting of chromatin readers: a novel strategy used by the Shigella flexneri virulence effector OspF to reprogram transcription.

    Science.gov (United States)

    Harouz, Habiba; Rachez, Christophe; Meijer, Benoit; Muchardt, Christian; Arbibe, Laurence

    2014-12-28

    Shigella flexneri, a gram-negative bacterium responsible of bacillary dysentery, uses multiple strategies to overcome host immune defense. We have decrypted how this bacterium manipulates host-cell chromatin binders to take control of immune gene expression. We found that OspF, an injected virulence factor previously identified as a repressor of immune gene expression, targets the chromatin reader HP1γ. Heterochromatin Protein 1 family members specifically recognize and bind histone H3 methylated at Lys 9. Although initially identified as chromatin-associated transcriptional silencers in heterochromatin, their location in euchromatin indicates an active role in gene expression. Notably, HP1γ phosphorylation at Serine 83 defines a subpopulation exclusively located to euchromatin, targeted to the site of transcriptional elongation. We showed that OspF directly interacts with HP1γ, and causes HP1 dephosphorylation, suggesting a model in which this virulence effector "uses" HP1 proteins as beacons to target and repress immune gene expression (Harouz, et al. EMBO J (2014)). OspF alters HP1γ phosphorylation mainly by inactivating the Erk-activated kinase MSK1, spotlighting it as a new HP1 kinase. In vivo, infectious stresses trigger HP1γ phosphorylation in the colon, principally in the lamina propria and the intestinal crypts. Several lines of evidence suggest that HP1 proteins are modified as extensively as histones, and decrypting the impact of these HP1 post-translational modifications on their transcriptional activities in vivo will be the next challenges to be taken up.

  9. DMPD: MyDths and un-TOLLed truths: sensor, instructive and effector immunity totuberculosis. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18191460 MyDths and un-TOLLed truths: sensor, instructive and effector immunity totuberculosis...g) (.svg) (.html) (.csml) Show MyDths and un-TOLLed truths: sensor, instructive and effector immunity totuberculosis...e and effector immunity totuberculosis. Authors Reiling N, Ehlers S, Holscher C. Publication Immunol Lett. 2

  10. The novel Cladosporium fulvum lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species

    NARCIS (Netherlands)

    Bolton, Melvin D.; van Esse, H. Peter; Vossen, Jack H.; de Jonge, Ronnie; Stergiopoulos, Ioannis; Stulemeijer, Iris J. E.; van den Berg, Grardy C. M.; Borrás-Hidalgo, Orlando; Dekker, Henk L.; de Koster, Chris G.; de Wit, Pierre J. G. M.; Joosten, Matthieu H. A. J.; Thomma, Bart P. H. J.

    2008-01-01

    During tomato leaf colonization, the biotrophic fungus Cladosporium fulvum secretes several effector proteins into the apoplast. Eight effectors have previously been characterized and show no significant homology to each other or to other fungal genes. To discover novel C. fulvum effectors that

  11. Effector-mining in the poplar rust fungus Melampsora larici populina secretome

    Directory of Open Access Journals (Sweden)

    Cecile eLorrain

    2015-12-01

    Full Text Available The poplar leaf rust fungus, Melampsora larici-populina has been established as a tree-microbe interaction model. Understanding the molecular mechanisms controlling infection by pathogens appears essential for durable management of tree plantations. In biotrophic plant parasites, effectors are known to condition host cell colonization. Thus, investigation of candidate secreted effector proteins is a major goal in the poplar-poplar rust interaction. Unlike oomycetes, fungal effectors do not share conserved motifs and candidate prediction relies on a set of a priori criteria established from reported bona fide effectors. Secretome prediction, genome-wide analysis of gene families and transcriptomics of M. larici-populina have led to catalogues of more than a thousand secreted proteins. Automatized effector mining pipelines hold great promise for rapid and systematic identification and prioritization of candidate secreted effector proteins for functional characterization. In this review, we report on and discuss the current status of the poplar rust fungus secretome and prediction of candidate effectors in this species.

  12. Plasma Aerodynamic Control Effectors for Improved Wind Turbine Performance

    Energy Technology Data Exchange (ETDEWEB)

    Mehul P. Patel; Srikanth Vasudevan; Robert C. Nelson; Thomas C. Corke

    2008-08-01

    Orbital Research Inc is developing an innovative Plasma Aerodynamic Control Effectors (PACE) technology for improved performance of wind turbines. The PACE system is aimed towards the design of "smart" rotor blades to enhance energy capture and reduce aerodynamic loading and noise using flow-control. The PACE system will provide ability to change aerodynamic loads and pitch distribution across the wind turbine blade without any moving surfaces. Additional benefits of the PACE system include reduced blade structure weight and complexity that should translate into a substantially reduced initial cost. During the Phase I program, the ORI-UND Team demonstrated (proof-of-concept) performance improvements on select rotor blade designs using PACE concepts. Control of both 2-D and 3-D flows were demonstrated. An analytical study was conducted to estimate control requirements for the PACE system to maintain control during wind gusts. Finally, independent laboratory experiments were conducted to identify promising dielectric materials for the plasma actuator, and to examine environmental effects (water and dust) on the plasma actuator operation. The proposed PACE system will be capable of capturing additional energy, and reducing aerodynamic loading and noise on wind turbines. Supplementary benefits from the PACE system include reduced blade structure weight and complexity that translates into reduced initial capital costs.

  13. Exosomes: novel effectors of human platelet lysate activity.

    Science.gov (United States)

    Torreggiani, E; Perut, F; Roncuzzi, L; Zini, N; Baglìo, S R; Baldini, N

    2014-09-22

    Despite the popularity of platelet-rich plasma (PRP) and platelet lysate (PL) in orthopaedic practice, the mechanism of action and the effectiveness of these therapeutic tools are still controversial. So far, the activity of PRP and PL has been associated with different growth factors (GF) released during platelet degranulation. This study, for the first time, identifies exosomes, nanosized vesicles released in the extracellular compartment by a number of elements, including platelets, as one of the effectors of PL activity. Exosomes were isolated from human PL by differential ultracentrifugation, and analysed by electron microscopy and Western blotting. Bone marrow stromal cells (MSC) treated with three different exosome concentrations (0.6 μg, 5 μg and 50 μg) showed a significant, dose-dependent increase in cell proliferation and migration compared to the control. In addition, osteogenic differentiation assays demonstrated that exosome concentration differently affected the ability of MSC to deposit mineralised matrix. Finally, the analysis of exosome protein content revealed a higher amount of basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF-BB) and transforming growth factor beta 1 (TGF-β1) as compared to PL. In regards to RNA content, an enrichment of small RNAs in exosomes as compared to donor platelets has been found. These results suggest that exosomes consistently contribute to PL activity and could represent an advantageous nanodelivery system for cell-free regeneration therapies.

  14. Tissue-specific effector functions of innate lymphoid cells

    Science.gov (United States)

    Björkström, Niklas K; Kekäläinen, Eliisa; Mjösberg, Jenny

    2013-01-01

    Innate lymphoid cells (ILCs) is the collective term for a group of related innate lymphocytes, including natural killer (NK) cells and the more recently discovered non-NK ILCs, which all lack rearranged antigen receptors such as those expressed by T and B cells. Similar to NK cells, the newly discovered ILCs depend on the transcription factor Id2 and the common γ-chain of the interleukin-2 receptor for development. However, in contrast to NK cells, non-NK ILCs also require interleukin-7. In addition to the cytotoxic functions of NK cells, assuring protection against tumour development and viruses, new data indicate that ILCs contribute to a wide range of homeostatic and pathophysiological conditions in various organs via specialized cytokine production capabilities. Here we summarize current knowledge on ILCs with a particular emphasis on their tissue-specific effector functions, in the gut, liver, lungs and uterus. When possible, we try to highlight the role that these cells play in humans. PMID:23489335

  15. Assembly of designer TAL effectors by Golden Gate cloning.

    Directory of Open Access Journals (Sweden)

    Ernst Weber

    Full Text Available Generation of customized DNA binding domains targeting unique sequences in complex genomes is crucial for many biotechnological applications. The recently described DNA binding domain of the transcription activator-like effectors (TALEs from Xanthomonas consists of a series of repeats arranged in tandem, each repeat binding a nucleotide of the target sequence. We present here a strategy for engineering of TALE proteins with novel DNA binding specificities based on the 17.5 repeat-containing AvrBs3 TALE as a scaffold. For each of the 17 full repeats, four module types were generated, each with a distinct base preference. Using this set of 68 repeat modules, recognition domains for any 17 nucleotide DNA target sequence of choice can be constructed by assembling selected modules in a defined linear order. Assembly is performed in two successive one-pot cloning steps using the Golden Gate cloning method that allows seamless fusion of multiple DNA fragments. Applying this strategy, we assembled designer TALEs with new target specificities and tested their function in vivo.

  16. Assembly of designer TAL effectors by Golden Gate cloning.

    Science.gov (United States)

    Weber, Ernst; Gruetzner, Ramona; Werner, Stefan; Engler, Carola; Marillonnet, Sylvestre

    2011-01-01

    Generation of customized DNA binding domains targeting unique sequences in complex genomes is crucial for many biotechnological applications. The recently described DNA binding domain of the transcription activator-like effectors (TALEs) from Xanthomonas consists of a series of repeats arranged in tandem, each repeat binding a nucleotide of the target sequence. We present here a strategy for engineering of TALE proteins with novel DNA binding specificities based on the 17.5 repeat-containing AvrBs3 TALE as a scaffold. For each of the 17 full repeats, four module types were generated, each with a distinct base preference. Using this set of 68 repeat modules, recognition domains for any 17 nucleotide DNA target sequence of choice can be constructed by assembling selected modules in a defined linear order. Assembly is performed in two successive one-pot cloning steps using the Golden Gate cloning method that allows seamless fusion of multiple DNA fragments. Applying this strategy, we assembled designer TALEs with new target specificities and tested their function in vivo.

  17. Strain Specific Factors Control Effector Gene Silencing in Phytophthora sojae.

    Directory of Open Access Journals (Sweden)

    Sirjana Devi Shrestha

    Full Text Available The Phytophthora sojae avirulence gene Avr3a encodes an effector that is capable of triggering immunity on soybean plants carrying the resistance gene Rps3a. P. sojae strains that express Avr3a are avirulent to Rps3a plants, while strains that do not are virulent. To study the inheritance of Avr3a expression and virulence towards Rps3a, genetic crosses and self-fertilizations were performed. A cross between P. sojae strains ACR10 X P7076 causes transgenerational gene silencing of Avr3a allele, and this effect is meiotically stable up to the F5 generation. However, test-crosses of F1 progeny (ACR10 X P7076 with strain P6497 result in the release of silencing of Avr3a. Expression of Avr3a in the progeny is variable and correlates with the phenotypic penetrance of the avirulence trait. The F1 progeny from a direct cross of P6497 X ACR10 segregate for inheritance for Avr3a expression, a result that could not be explained by parental imprinting or heterozygosity. Analysis of small RNA arising from the Avr3a gene sequence in the parental strains and hybrid progeny suggests that the presence of small RNA is necessary but not sufficient for gene silencing. Overall, we conclude that inheritance of the Avr3a gene silenced phenotype relies on factors that are variable among P. sojae strains.

  18. NFKB1 regulates human NK cell maturation and effector functions.

    Science.gov (United States)

    Lougaris, Vassilios; Patrizi, Ornella; Baronio, Manuela; Tabellini, Giovanna; Tampella, Giacomo; Damiati, Eufemia; Frede, Natalie; van der Meer, Jos W M; Fliegauf, Manfred; Grimbacher, Bodo; Parolini, Silvia; Plebani, Alessandro

    2017-02-01

    NFKB1, a component of the canonical NF-κB pathway, was recently reported to be mutated in a limited number of CVID patients. CVID-associated mutations in NFKB2 (non-canonical pathway) have previously been shown to impair NK cell cytotoxic activity. Although a biological function of NFKB1 in non-human NK cells has been reported, the role of NFKB1 mutations for human NK cell biology and disease has not been investigated yet. We decided therefore to evaluate the role of monoallelic NFKB1 mutations in human NK cell maturation and functions. We show that NFKB1 mutated NK cells present impaired maturation, defective cytotoxicity and reduced IFN-γ production upon in vitro stimulation. Furthermore, human IL-2 activated NFKB1 mutated NK cells fail to up-regulate the expression of the activating marker NKp44 and show reduced proliferative capacity. These data suggest that NFKB1 plays an essential novel role for human NK cell maturation and effector functions. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Altered effector function of peripheral cytotoxic cells in COPD

    Directory of Open Access Journals (Sweden)

    Corne Jonathan M

    2009-06-01

    Full Text Available Abstract Background There is mounting evidence that perforin and granzymes are important mediators in the lung destruction seen in COPD. We investigated the characteristics of the three main perforin and granzyme containing peripheral cells, namely CD8+ T lymphocytes, natural killer (NK; CD56+CD3- cells and NKT-like (CD56+CD3+ cells. Methods Peripheral blood mononuclear cells (PBMCs were isolated and cell numbers and intracellular granzyme B and perforin were analysed by flow cytometry. Immunomagnetically selected CD8+ T lymphocytes, NK (CD56+CD3- and NKT-like (CD56+CD3+ cells were used in an LDH release assay to determine cytotoxicity and cytotoxic mechanisms were investigated by blocking perforin and granzyme B with relevant antibodies. Results The proportion of peripheral blood NKT-like (CD56+CD3+ cells in smokers with COPD (COPD subjects was significantly lower (0.6% than in healthy smokers (smokers (2.8%, p +CD3- cells from COPD subjects were significantly less cytotoxic than in smokers (16.8% vs 51.9% specific lysis, p +CD3+ cells (16.7% vs 52.4% specific lysis, p +CD3- and NKT-like (CD56+CD3+ cells from smokers and HNS. Conclusion In this study, we show that the relative numbers of peripheral blood NK (CD56+CD3- and NKT-like (CD56+CD3+ cells in COPD subjects are reduced and that their cytotoxic effector function is defective.

  20. Requirements for Driving Antipathogen Effector Genes into Populations of Disease Vectors by Homing.

    Science.gov (United States)

    Beaghton, Andrea; Hammond, Andrew; Nolan, Tony; Crisanti, Andrea; Godfray, H Charles J; Burt, Austin

    2017-04-01

    There is a need for new interventions against the ongoing burden of vector-borne diseases such as malaria and dengue. One suggestion has been to develop genes encoding effector molecules that block parasite development within the vector, and then use the nuclease-based homing reaction as a form of gene drive to spread those genes through target populations. If the effector gene reduces the fitness of the mosquito and does not contribute to the drive, then loss-of-function mutations in the effector will eventually replace functional copies, but protection may nonetheless persist sufficiently long to provide a public health benefit. Here, we present a quantitative model allowing one to predict the duration of protection as a function of the probabilities of different molecular processes during the homing reaction, various fitness effects, and the efficacy of the effector in blocking transmission. Factors that increase the duration of protection include reducing the frequency of pre-existing resistant alleles, the probability of nonrecombinational DNA repair, the probability of homing-associated loss of the effector, the fitness costs of the nuclease and effector, and the completeness of parasite blocking. For target species that extend over an area much larger than the typical dispersal distance, the duration of protection is expected to be highest at the release site, and decrease away from there, eventually falling to zero, as effector-less drive constructs replace effector-containing ones. We also model an alternative strategy of using the nuclease to target an essential gene, and then linking the effector to a sequence that restores the essential function and is resistant to the nuclease. Depending upon parameter values, this approach can prolong the duration of protection. Our models highlight the key design criteria needed to achieve a desired level of public health benefit. Copyright © 2017 Beaghton et al.

  1. Motor resonance in left- and right-handers: evidence for effector-independent motor representations

    Directory of Open Access Journals (Sweden)

    Luisa eSartori

    2013-02-01

    Full Text Available The idea of motor resonance was born at the time that it was demonstrated that cortical and spinal pathways of the motor system are specifically activated during both action-observation and execution. What is not known is if the human action observation-execution matching system simulates actions through motor representations specifically attuned to the laterality of the observed effectors (i.e., effector-dependent representations or through abstract motor representations unconnected to the observed effector (i.e., effector-independent representations.To answer that question we need to know how the information necessary for motor resonance is represented or integrated within the representation of an effector. Transcranial magnetic stimulation (TMS-induced motor evoked potentials (MEPs were thus recorded from the dominant and non-dominant hands of left- and right-handed participants while they observed a left- or a right-handed model grasping an object. The anatomical correspondence between the effector being observed and the observer’s effector classically reported in the literature was confirmed by the MEP response in the dominant hand of participants observing models with their same hand preference. This effect was found in both left- as well as in right-handers. When a broader spectrum of options, such as actions performed by a model with a different hand preference, was instead considered, that correspondence disappeared. Motor resonance was noted in the observer’s dominant effector regardless of the laterality of the hand being observed. This would indicate that there is a more sophisticated mechanism which works to convert someone else’s pattern of movement into the observer’s optimal motor commands and that effector-independent representations specifically modulate motor resonance.

  2. Mining novel effector proteins from the esophageal gland cells of Meloidogyne incognita.

    Science.gov (United States)

    Rutter, William B; Hewezi, Tarek; Abubucker, Sahar; Maier, Tom R; Huang, Guozhong; Mitreva, Makedonka; Hussey, Richard S; Baum, Thomas J

    2014-09-01

    Meloidogyne incognita is one of the most economically damaging plant pathogens in agriculture and horticulture. Identifying and characterizing the effector proteins which M. incognita secretes into its host plants during infection is an important step toward finding new ways to manage this pest. In this study, we have identified the cDNAs for 18 putative effectors (i.e., proteins that have the potential to facilitate M. incognita parasitism of host plants). These putative effectors are secretory proteins that do not contain transmembrane domains and whose genes are specifically expressed in the secretory gland cells of the nematode, indicating that they are likely secreted from the nematode through its stylet. We have determined that, in the plant cells, these putative effectors are likely to localize to the cytoplasm. Furthermore, the transcripts of many of these novel effectors are specifically upregulated during different stages of the nematode's life cycle, indicating that they function at specific stages during M. incognita parasitism. The predicted proteins showed little to no homology to known proteins from free-living nematode species, suggesting that they evolved recently to support the parasitic lifestyle. On the other hand, several of the effectors are part of gene families within the M. incognita genome as well as that of M. hapla, which points to an important role that these putative effectors are playing in both parasites. With the discovery of these putative effectors, we have increased our knowledge of the effector repertoire utilized by root-knot nematodes to infect, feed on, and reproduce on their host plants. Future studies investigating the roles that these proteins play in planta will help mitigate the effects of this damaging pest.

  3. Genome-Wide Analysis of Corynespora cassiicola Leaf Fall Disease Putative Effectors

    Directory of Open Access Journals (Sweden)

    David Lopez

    2018-03-01

    Full Text Available Corynespora cassiicola is an Ascomycetes fungus with a broad host range and diverse life styles. Mostly known as a necrotrophic plant pathogen, it has also been associated with rare cases of human infection. In the rubber tree, this fungus causes the Corynespora leaf fall (CLF disease, which increasingly affects natural rubber production in Asia and Africa. It has also been found as an endophyte in South American rubber plantations where no CLF outbreak has yet occurred. The C. cassiicola species is genetically highly diverse, but no clear relationship has been evidenced between phylogenetic lineage and pathogenicity. Cassiicolin, a small glycosylated secreted protein effector, is thought to be involved in the necrotrophic interaction with the rubber tree but some virulent C. cassiicola isolates do not have a cassiicolin gene. This study set out to identify other putative effectors involved in CLF. The genome of a highly virulent C. cassiicola isolate from the rubber tree (CCP was sequenced and assembled. In silico prediction revealed 2870 putative effectors, comprising CAZymes, lipases, peptidases, secreted proteins and enzymes associated with secondary metabolism. Comparison with the genomes of 44 other fungal species, focusing on effector content, revealed a striking proximity with phylogenetically unrelated species (Colletotrichum acutatum, Colletotrichum gloesporioides, Fusarium oxysporum, nectria hematococca, and Botrosphaeria dothidea sharing life style plasticity and broad host range. Candidate effectors involved in the compatible interaction with the rubber tree were identified by transcriptomic analysis. Differentially expressed genes included 92 putative effectors, among which cassiicolin and two other secreted singleton proteins. Finally, the genomes of 35 C. cassiicola isolates representing the genetic diversity of the species were sequenced and assembled, and putative effectors identified. At the intraspecific level, effector

  4. Design and force analysis of end-effector for plug seedling transplanter

    Science.gov (United States)

    Hu, Yang; Jiang, Huanyu; Tong, Junhua

    2017-01-01

    Automatic transplanters have been very important in greenhouses since the popularization of seedling nurseries. End-effector development is a key technology for transplanting plug seedlings. Most existing end-effectors have problems with holding root plugs or releasing plugs. An efficient end-effector driven by a linear pneumatic cylinder was designed in this study, which could hold root plugs firmly and release plugs easily. This end-effector with four needles could clamp the plug simultaneously while the needles penetrate into the substrate. The depth and verticality of the needles could be adjusted conveniently for different seedling trays. The effectiveness of this end-effector was tested by a combinational trial examining three seedling nursery factors (the moisture content of the substrate, substrate bulk density and the volume proportion of substrate ingredients). Results showed that the total transplanting success rate for the end-effector was 100%, and the root plug harm rate was below 17%. A force measure system with tension and pressure transducers was installed on the designed end-effector. The adhesive force FL between the root plug and the cell of seedling trays and the extrusion force FK on the root plug were measured and analyzed. The results showed that all three variable factors and their interactions had significant effects on the extrusion force. Each factor had a significant effect on adhesive force. Additionally, it was found that the end-effector did not perform very well when the value of FK/FL was beyond the range of 5.99~8.67. This could provide a scientific basis for end-effector application in transplanting. PMID:28678858

  5. Stretch-induced mitogen-activated protein kinase activation in lung fibroblasts is independent of receptor tyrosine kinases.

    Science.gov (United States)

    Boudreault, Francis; Tschumperlin, Daniel J

    2010-07-01

    Lung growth and remodeling are modulated by mechanical stress, with fibroblasts thought to play a leading role. Little mechanistic information is available about how lung fibroblasts respond to mechanical stress. We exposed cultured lung fibroblasts to tonic stretch and measured changes in phosphorylation status of mitogen-activated protein kinases (MAPKs), selected receptor tyrosine kinases (RTKs), and phospholipase Cgamma1 (PLCgamma1) and activation of the small G-protein Ras. Human lung fibroblasts (LFs) were seeded on matrix-coated silicone membranes and exposed to equibiaxial 10 to 40% static stretch or 20% contraction. LFs were stimulated with EGF, FGF2, or PDGF-BB or exposed to stretch in the presence of inhibitors of EGFR (AG1478), FGFR (PD173074), and PDGFR (AG1296). Phospho-MAPK, phospho-RTK, and phospho-PLCgamma1 levels were measured by Western blotting. Active GTP-Ras was quantified by immunoblotting after pull-down with a glutathione S-transferase-Raf-RBD construct. Normalized p-ERK1/2, p-JNK, and p-p38 levels increased after stretch but not contraction. Ligands to RTKs broadly stimulated MAPKs, with the responses to EGF and PDGF most similar to stretch in terms of magnitude and rank order of MAPK responses. Stretching cells failed to elicit measurable activation of EGFR, FGFR (FRS2alpha phosphorylation), or PDGFR. Potent inhibitors of the kinase activity of each receptor failed to attenuate stretch-induced MAPK activation. PLCgamma1 and Ras, prominent effectors downstream of RTKs, were not activated by stretch. Our findings demonstrate that MAPKs are potently activated by stretch in lung fibroblasts, but, in contrast to stress responses observed in other cell types, RTKs are not necessary for stretch-induced MAPK activation in LFs.

  6. PI3-kinase in concert with Src promotes the S-phase entry of oestradiol-stimulated MCF-7 cells

    Science.gov (United States)

    Castoria, Gabriella; Migliaccio, Antimo; Bilancio, Antonio; Di Domenico, Marina; de Falco, Antonietta; Lombardi, Maria; Fiorentino, Roberto; Varricchio, Lilian; Barone, Maria Vittoria; Auricchio, Ferdinando

    2001-01-01

    The p85-associated phosphatidylinositol (PI) 3-kinase/Akt pathway mediates the oestradiol-induced S-phase entry and cyclin D1 promoter activity in MCF-7 cells. Experiments with Src, p85α and Akt dominant-negative forms indicate that in oestradiol-treated cells these signalling effectors target the cyclin D1 promoter. Oestradiol acutely increases PI3-kinase and Akt activities in MCF-7 cells. In NIH 3T3 cells expressing ERα, a dominant-negative p85 suppresses hormone stimulation of Akt. The Src inhibitor, PP1, prevents hormone stimulation of Akt and PI3-kinase activities in MCF-7 cells. In turn, stimulation of Src activity is abolished in ERα-expressing NIH 3T3 fibroblasts by co-transfection of the dominant-negative p85α and in MCF-7 cells by the PI3-kinase inhibitor, LY294002. These findings indicate a novel reciprocal cross-talk between PI3-kinase and Src. Hormone stimulation of MCF-7 cells rapidly triggers association of ERα with Src and p85. In vitro these proteins are assembled in a ternary complex with a stronger association than that of the binary complexes composed by the same partners. The ternary complex probably favours hormone activation of Src- and PI3-kinase-dependent pathways, which converge on cell cycle progression. PMID:11689445

  7. An injected bacterial effector targets chromatin access for transcription factor NF-kappaB to alter transcription of host genes involved in immune responses.

    Science.gov (United States)

    Arbibe, Laurence; Kim, Dong Wook; Batsche, Eric; Pedron, Thierry; Mateescu, Bogdan; Muchardt, Christian; Parsot, Claude; Sansonetti, Philippe J

    2007-01-01

    Phosphorylation of histone H3 at Ser10 increases chromatin accessibility to transcription factor NF-kappaB on a subset of genes involved in immune responses. Here we report that a bacterial pathogen abrogated phosphorylation of histone H3 to 'shape' the transcriptional responses of infected host cells. We identify the Shigella flexneri protein effector OspF as a dually specific phosphatase that dephosphorylated mitogen-activated protein kinases in the nucleus, thus preventing histone H3 phosphorylation at Ser10 in a gene-specific way. That activity of OspF enabled shigella to block the activation of a subset of NF-kappaB-responsive genes, leading to compromised recruitment of polymorphonuclear leukocytes to infected tissues. S. flexneri has thus evolved the capacity to precisely modulate host cell epigenetic 'information' as a strategy for repressing innate immunity.

  8. Use of 31P nuclear magnetic resonance spectroscopy and 14C fluorography in studies of glycolysis and regulation of pyruvate kinase in Streptococcus lactis.

    OpenAIRE

    Thompson, J.; Torchia, D A

    1984-01-01

    High-resolution 31P nuclear magnetic resonance spectroscopy and 14C fluorography have been used to identify and quantitate intermediates of the Embden-Meyerhof pathway in intact cells and cell extracts of Streptococcus lactis. Glycolysing cells contained high levels of fructose 1,6-bisphosphate (a positive effector of pyruvate kinase) but comparatively low concentrations of other glycolytic metabolites. By contrast, starved organisms contained only high levels of 3-phosphoglycerate, 2-phospho...

  9. Terrific protein traffic: the mystery of effector protein delivery by filamentous plant pathogens.

    Science.gov (United States)

    Panstruga, Ralph; Dodds, Peter N

    2009-05-08

    Many biotrophic fungal and oomycete plant pathogens deliver effector proteins directly into host cells during infection. Recent advances are revealing the extensive effector repertoires of these pathogens and are beginning to shed light on how they manipulate host cells to establish a parasitic relationship. Surprisingly, oomycete effectors seem to share a common uptake system with those from the human malaria pathogen. The current explosion of information is opening new research avenues in molecular plant pathology and is providing new opportunities to limit the impact of plant disease on food production.

  10. Effects of chronic Δ9-tetrahydrocannabinol treatment on Rho/Rho-kinase signalization pathway in mouse brain

    Directory of Open Access Journals (Sweden)

    Halil Mahir Kaplan

    2017-11-01

    Full Text Available Δ9-Tetrahydrocannabinol (Δ9-THC shows its effects by activating cannabinoid receptors which are on some tissues and neurons. Cannabinoid systems have role on cell proliferation and development of neurons. Furthermore, it is interesting that cannabinoid system and rho/rho-kinase signalization pathway, which have important role on cell development and proliferation, may have role on neuron proliferation and development together. Thus, a study is planned to investigate rhoA and rho-kinase enzyme expressions and their activities in the brain of chronic Δ9-THC treated mice. One group of mice are treated with Δ9-THC once to see effects of acute treatment. Another group of mice are treated with Δ9-THC three times per day for one month. After this period, rhoA and rho-kinase enzyme expressions and their activities in mice brains are analyzed by ELISA method. Chronic administration of Δ9-THC decreased the expression of rhoA while acute treatment has no meaningful effect on it. Administration of Δ9-THC did not affect expression of rho-kinase on both chronic and acute treatment. Administration of Δ9-THC increased rho-kinase activity on both chronic and acute treatment, however, chronic treatment decreased its activity with respect to acute treatment. This study showed that chronic Δ9-THC treatment down-regulated rhoA expression and did not change the expression level of rho-kinase which is downstream effector of rhoA. However, it elevated the rho-kinase activity. Δ9-THC induced down-regulation of rhoA may cause elevation of cypin expression and may have benefit on cypin related diseases. Furthermore, use of rho-kinase inhibitors and Δ9-THC together can be useful on rho-kinase related diseases.

  11. Molecular cloning of L-JAK, a Janus family protein-tyrosine kinase expressed in natural killer cells and activated leukocytes.

    Science.gov (United States)

    Kawamura, M; McVicar, D W; Johnston, J A; Blake, T B; Chen, Y Q; Lal, B K; Lloyd, A R; Kelvin, D J; Staples, J E; Ortaldo, J R

    1994-01-01

    Protein-tyrosine kinases (PTKs) are critical enzymes for receptor-mediated signaling in lymphocytes. Because natural killer (NK) cells are large granular lymphocytes with specialized effector function, we set out to identify PTKs preferentially expressed in these cells. One such PTK was identified and molecularly cloned. The predicted amino acid sequence shows that this kinase lacks SH2 or SH3 domains typical of src family kinases but has tandem nonidentical catalytic domains, indicating that it is a member of the Janus family of PTKs. Immunoprecipitation using antiserum generated against a peptide corresponding to the deduced amino acid sequence of this gene revealed a kinase with a molecular weight of approximately 125,000. The pattern of expression of this kinase contrasted sharply with that of other Janus kinases, which are ubiquitously expressed. The kinase described in the present study was found to be more limited in its expression; expression was found in NK cells and an NK-like cell line but not in resting T cells or in other tissues. In contrast, stimulated and transformed T cells expressed the gene, suggesting a role in lymphoid activation. Because of its homology and tissue expression, we have tentatively termed this PTK gene L-JAK for leukocyte Janus kinase. Images PMID:8022790

  12. The I-BAR protein Ivy1 is an effector of the Rab7 GTPase Ypt7 involved in vacuole membrane homeostasis.

    Science.gov (United States)

    Numrich, Johannes; Péli-Gulli, Marie-Pierre; Arlt, Henning; Sardu, Alessandro; Griffith, Janice; Levine, Tim; Engelbrecht-Vandré, Siegfried; Reggiori, Fulvio; De Virgilio, Claudio; Ungermann, Christian

    2015-07-01

    Membrane fusion at the vacuole depends on a conserved machinery that includes SNAREs, the Rab7 homolog Ypt7 and its effector HOPS. Here, we demonstrate that Ypt7 has an unexpected additional function by controlling membrane homeostasis and nutrient-dependent signaling on the vacuole surface. We show that Ivy1, the yeast homolog of mammalian missing-in-metastasis (MIM), is a vacuolar effector of Ypt7-GTP and interacts with the EGO/ragulator complex, an activator of the target of rapamycin kinase complex 1 (TORC1) on vacuoles. Loss of Ivy1 does not affect EGO vacuolar localization and function. In combination with the deletion of individual subunits of the V-ATPase, however, we observed reduced TORC1 activity and massive enlargement of the vacuole surface. Consistent with this, Ivy1 localizes to invaginations at the vacuole surface and on liposomes in a phosphoinositide- and Ypt7-GTP-controlled manner, which suggests a role in microautophagy. Our data, thus, reveal that Ivy1 is a novel regulator of vacuole membrane homeostasis with connections to TORC1 signaling. © 2015. Published by The Company of Biologists Ltd.

  13. New kids on the block: The Popeye domain containing (POPDC) protein family acting as a novel class of cAMP effector proteins in striated muscle.

    Science.gov (United States)

    Brand, Thomas; Schindler, Roland

    2017-12-01

    The cyclic 3',5'-adenosine monophosphate (cAMP) signalling pathway constitutes an ancient signal transduction pathway present in prokaryotes and eukaryotes. Previously, it was thought that in eukaryotes three effector proteins mediate cAMP signalling, namely protein kinase A (PKA), exchange factor directly activated by cAMP (EPAC) and the cyclic-nucleotide gated channels. However, recently a novel family of cAMP effector proteins emerged and was termed the Popeye domain containing (POPDC) family, which consists of three members POPDC1, POPDC2 and POPDC3. POPDC proteins are transmembrane proteins, which are abundantly present in striated and smooth muscle cells. POPDC proteins bind cAMP with high affinity comparable to PKA. Presently, their biochemical activity is poorly understood. However, mutational analysis in animal models as well as the disease phenotype observed in patients carrying missense mutations suggests that POPDC proteins are acting by modulating membrane trafficking of interacting proteins. In this review, we will describe the current knowledge about this gene family and also outline the apparent gaps in our understanding of their role in cAMP signalling and beyond. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. A comprehensive analysis of transcript signatures of the phosphatidylinositol-3 kinase/protein kinase B signal-transduction pathway in prostate cancer.

    Science.gov (United States)

    Hellwinkel, Olaf J C; Rogmann, Jan-Peer; Asong, Legrehndem E; Luebke, Andreas M; Eichelberg, Christian; Ahyai, Sascha; Isbarn, Hendrik; Graefen, Markus; Huland, Hartwig; Schlomm, Thorsten

    2008-06-01

    To assess the gene activities of various important members of the phosphatidylinositol 3 kinase (PIK3)/protein kinase B (PKB/Akt) pathway (involved in the promotion and regulation of cellular metabolism, proliferation and apoptosis) for alterations in prostate carcinoma. Using quantitative real-time reverse-transcription polymerase chain reaction, we analysed the transcript levels of 12 genes involved in the PIK3/PKB pathway in microdissected tumour tissues from 20 patients with varying stages of prostate cancer, assessing differences from adjacent normal tissues and from a pool of prostate tissues from healthy controls. In cancer samples with a high Gleason grade, the PIK3/PKB pathway was principally affected by marked decreases in expression over almost all the investigated stages of the pathway. These changes were in effectors of the pathway, especially PIK3 p85 alpha (PIK3R1) and integrin-linked kinase, and the pathway target fork-head box protein (FOXO)-1A, while the transcript quantities of regulators, e.g. phosphatase/tensin homologue (PTEN), were decreased in a smaller proportion of the patients. Transcript amounts of FOXO-1A and FOXO-3A were significantly higher in normal tumour-adjacent tissues than in the healthy controls. Down-regulation of the PIK3/PKB pathway by repression of involved effector and regulator genes at all stages of the molecular pathway could represent a marker for the formation of highly de-differentiated prostate cancers from low-grade tumour foci. Also, parts of the pathway are deviant in normal tumour-adjacent tissue; this might represent a reaction to neighbouring tumours or be a sign of pre-cancerous biological alterations.

  15. Citron kinase - renaissance of a neglected mitotic kinase.

    Science.gov (United States)

    D'Avino, Pier Paolo

    2017-05-15

    Cell division controls the faithful segregation of genomic and cytoplasmic materials between the two nascent daughter cells. Members of the Aurora, Polo and cyclin-dependent (Cdk) kinase families are known to regulate multiple events throughout cell division, whereas another kinase, citron kinase (CIT-K), for a long time has been considered to function solely during cytokinesis, the last phase of cell division. CIT-K was originally proposed to regulate the ingression of the cleavage furrow that forms at the equatorial cortex of the dividing cell after chromosome segregation. However, studies in the last decade have clarified that this kinase is, instead, required for the organization of the midbody in late cytokinesis, and also revealed novel functions of CIT-K earlier in mitosis and in DNA damage control. Moreover, CIT-K mutations have recently been linked to the development of human microcephaly, and CIT-K has been identified as a potential target in cancer therapy. In this Commentary, I describe and re-evaluate the functions and regulation of CIT-K during cell division and its involvement in human disease. Finally, I offer my perspectives on the open questions and future challenges that are necessary to address, in order to fully understand this important and yet unjustly neglected mitotic kinase. © 2017. Published by The Company of Biologists Ltd.

  16. Role for ZAP-70 Signaling in the Differential Effector Functions of Rituximab and Obinutuzumab (GA101) in Chronic Lymphocytic Leukemia B Cells.

    Science.gov (United States)

    Skopelja-Gardner, Sladjana; Jones, Jonathan D; Hamilton, B JoNell; Danilov, Alexey V; Rigby, William F C

    2017-08-15

    Rituximab (RTX) has been the hallmark anti-CD20 mAb for the treatment of B cell neoplasms, including B cell chronic lymphocytic leukemia (B-CLL). Recently, a novel humanized anti-CD20 mAb obinutuzumab (GA101) has been implemented as first-line CLL therapy. Treatment of CLL patients with RTX is associated with CD20 loss via an FcγR-mediated process, trogocytosis. RTX-induced trogocytosis has been characterized as both the means of resistance to therapy, via loss of cell surface target proteins (antigenic modulation), as well as a process that alters B cell phenotype and function. This study investigates the nature and clinical relevance of GA101-mediated trogocytosis. In this study, we demonstrate that GA101 is a more potent mediator of trogocytosis than RTX in vitro in both normal B cells and B-CLL cells. Qualitative differences in the effector function of these anti-CD20 Abs appear specific to B-CLL cells. GA101-mediated CD19 and CD20 trogocytosis from B-CLL cells is associated with its ability to induce homotypic adhesion (HA). The degree of HA varies between CLL patients and positively correlates with the expression of ZAP-70, a BCR-associated kinase. Deregulation of ZAP-70 using tyrosine kinase inhibitors, gefitinib or ibrutinib, diminishes HA formation and trogocytosis by GA101. Taken together, these findings elucidate the differences in trogocytosis and HA formation mediated by anti-CD20 mAbs RTX and GA101, as well as provide a novel link between ZAP-70 expression and these effector functions. Copyright © 2017 by The American Association of Immunologists, Inc.

  17. A Molecular Dynamics Study of Allosteric Transitions in Leishmania mexicana Pyruvate Kinase.

    Science.gov (United States)

    Naithani, Ankita; Taylor, Paul; Erman, Burak; Walkinshaw, Malcolm D

    2015-09-15

    A comparative molecular dynamics analysis of the pyruvate kinase from Leishmania mexicana is presented in the absence and presence of the allosteric effector fructose 2,6-bisphosphate. Comparisons of the simulations of the large 240 kDa apo and holo tetramers show that binding of fructose 2,6-bisphosphate cools the enzyme and reduces dynamic movement, particularly of the B-domain. The reduced dynamic movement of the holo form traps the pyruvate kinase tetramer in its enzymatically active state with the B-domain acting as a lid to cover the active site. The simulations are also consistent with a transition of the mobile active-site α6' helix, which would adopt a helical conformation in the active R-state and a less structured coil conformation in the inactive T-state. Analysis of the rigid body motions over the trajectory highlights the concerted anticorrelated rigid body rocking motion of the four protomers, which drives the T to R transition. The transitions predicted by these simulations are largely consistent with the Monod-Wyman-Changeux model for allosteric activation but also suggest that rigidification or cooling of the overall structure upon effector binding plays an additional role in enzyme activation. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Intraspecies Competition in Serratia marcescens Is Mediated by Type VI-Secreted Rhs Effectors and a Conserved Effector-Associated Accessory Protein.

    Science.gov (United States)

    Alcoforado Diniz, Juliana; Coulthurst, Sarah J

    2015-07-01

    The type VI secretion system (T6SS) is widespread in Gram-negative bacteria and can deliver toxic effector proteins into eukaryotic cells or competitor bacteria. Antibacterial T6SSs are increasingly recognized as key mediators of interbacterial competition and may contribute to the outcome of many polymicrobial infections. Multiple antibacterial effectors can be delivered by these systems, with diverse activities against target cells and distinct modes of secretion. Polymorphic toxins containing Rhs repeat domains represent a recently identified and as-yet poorly characterized class of T6SS-dependent effectors. Previous work had revealed that the potent antibacterial T6SS of the opportunistic pathogen Serratia marcescens promotes intraspecies as well as interspecies competition (S. L. Murdoch, K. Trunk, G. English, M. J. Fritsch, E. Pourkarimi, and S. J. Coulthurst, J Bacteriol 193:6057-6069, 2011, http://dx.doi.org/10.1128/JB.05671-11). In this study, two new Rhs family antibacterial effectors delivered by this T6SS have been identified. One of these was shown to act as a DNase toxin, while the other contains a novel, cytoplasmic-acting toxin domain. Importantly, using S. marcescens, it has been demonstrated for the first time that Rhs proteins, rather than other T6SS-secreted effectors, can be the primary determinant of intraspecies competition. Furthermore, a new family of accessory proteins associated with T6SS effectors has been identified, exemplified by S. marcescens EagR1, which is specifically required for deployment of its associated Rhs effector. Together, these findings provide new insight into how bacteria can use the T6SS to deploy Rhs-family effectors and mediate different types of interbacterial interactions. Infectious diseases caused by bacterial pathogens represent a continuing threat to health and economic prosperity. To counter this threat, we must understand how such organisms survive and prosper. The type VI secretion system is a weapon that

  19. 3D Reconstruction of End-Effector in Autonomous Positioning Process Using Depth Imaging Device

    National Research Council Canada - National Science Library

    Hu, Yanzhu; Li, Leiyuan

    2016-01-01

    .... In order to solve this problem, a simple depth imaging equipment (Kinect) is used and Kalman filtering method based on three-frame subtraction to capture the end-effector motion is proposed in this paper...

  20. Role of Soluble Innate Effector Molecules in Pulmonary Defense against Fungal Pathogens

    NARCIS (Netherlands)

    Ordonez, Soledad R; Veldhuizen, Edwin J A|info:eu-repo/dai/nl/19545264X; van Eijk, Martin|info:eu-repo/dai/nl/255160216; Haagsman, Henk P|info:eu-repo/dai/nl/069273278

    2017-01-01

    Fungal infections of the lung are life-threatening but rarely occur in healthy, immunocompetent individuals, indicating efficient clearance by pulmonary defense mechanisms. Upon inhalation, fungi will first encounter the airway surface liquid which contains several soluble effector molecules that

  1. Effector Regulatory T Cell Differentiation and Immune Homeostasis Depend on the Transcription Factor Myb.

    Science.gov (United States)

    Dias, Sheila; D'Amico, Angela; Cretney, Erika; Liao, Yang; Tellier, Julie; Bruggeman, Christine; Almeida, Francisca F; Leahy, Jamie; Belz, Gabrielle T; Smyth, Gordon K; Shi, Wei; Nutt, Stephen L

    2017-01-17

    FoxP3-expressing regulatory T (Treg) cells are essential for maintaining immune homeostasis. Activated Treg cells undergo further differentiation into an effector state that highly expresses genes critical for Treg cell function, although how this process is coordinated on a transcriptional level is poorly understood. Here, we demonstrate that mice lacking the transcription factor Myb in Treg cells succumbed to a multi-organ inflammatory disease. Myb was specifically expressed in, and required for the differentiation of, thymus-derived effector Treg cells. The combination of transcriptome and genomic footprint analyses revealed that Myb directly regulated a large proportion of the gene expression specific to effector Treg cells, identifying Myb as a critical component of the gene regulatory network controlling effector Treg cell differentiation and function. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Gene Expression Profiles of Human Phosphotyrosine Phosphatases Consequent to Th1 Polarisation and Effector Function

    National Research Council Canada - National Science Library

    Patricia Castro-Sánchez; Rocio Ramirez-Munoz; Pedro Roda-Navarro

    2017-01-01

    .... Despite the relevance of CD4 T cell polarisation and effector function in human autoimmune diseases, the expression profile of PTPs during T helper polarisation and restimulation at inflammatory...

  3. Cellular response to low dose radiation: Role of phosphatidylinositol-3 kinase like kinases

    Energy Technology Data Exchange (ETDEWEB)

    Balajee, A.S.; Meador, J.A.; Su, Y.

    2011-03-24

    It is increasingly realized that human exposure either to an acute low dose or multiple chronic low doses of low LET radiation has the potential to cause different types of cancer. Therefore, the central theme of research for DOE and NASA is focused on understanding the molecular mechanisms and pathways responsible for the cellular response to low dose radiation which would not only improve the accuracy of estimating health risks but also help in the development of predictive assays for low dose radiation risks associated with tissue degeneration and cancer. The working hypothesis for this proposal is that the cellular mechanisms in terms of DNA damage signaling, repair and cell cycle checkpoint regulation are different for low and high doses of low LET radiation and that the mode of action of phosphatidylinositol-3 kinase like kinases (PIKK: ATM, ATR and DNA-PK) determines the dose dependent cellular responses. The hypothesis will be tested at two levels: (I) Evaluation of the role of ATM, ATR and DNA-PK in cellular response to low and high doses of low LET radiation in simple in vitro human cell systems and (II) Determination of radiation responses in complex cell microenvironments such as human EpiDerm tissue constructs. Cellular responses to low and high doses of low LET radiation will be assessed from the view points of DNA damage signaling, DNA double strand break repair and cell cycle checkpoint regulation by analyzing the activities (i.e. post-translational modifications and kinetics of protein-protein interactions) of the key target proteins for PI-3 kinase like kinases both at the intra-cellular and molecular levels. The proteins chosen for this proposal are placed under three categories: (I) sensors/initiators include ATM ser1981, ATR, 53BP1, gamma-H2AX, MDC1, MRE11, Rad50 and Nbs1; (II) signal transducers include Chk1, Chk2, FANCD2 and SMC1; and (III) effectors include p53, CDC25A and CDC25C. The primary goal of this proposal is to elucidate the

  4. Transcriptomic analysis of the phytopathogenic oomycete Phytophthora cactorum provides insights into infection-related effectors.

    Science.gov (United States)

    Chen, Xiao-Ren; Zhang, Bo-Yue; Xing, Yu-Ping; Li, Qi-Yuan; Li, Yan-Peng; Tong, Yun-Hui; Xu, Jing-You

    2014-11-18

    Phytophthora cactorum, a hemibiotrophic oomycete pathogen, can cause destructive diseases on numerous crops worldwide, leading to essential economic losses every year. However, little has been known about its molecular pathogenicity mechanisms. To gain insight into its repertoire of effectors, the P. cactorum transcriptome was investigated using Illumina RNA-seq. We first demonstrated an in vitro inoculation method that can be used to mimic natural cyst germination on host plants. Over 28 million cDNA reads were obtained for five life cycle stages (mycelium, sporangium, zoospore, cyst and germinating cyst) and de novo assembled into 21,662 unique genes. By comparisons with 11 public databases, 88.99% of the unique genes were annotated, including 15,845 mapped to the gene models of the annotated relative Phytophthora infestans. Using TribeMCL, 5,538 gene families conserved across P. cactorum and other three completely sequenced Phytophthora pathogen species were determined. In silico analyses revealed that 620 P. cactorum effector homologues including 94 RXLR effector candidates matched known or putative virulence genes in other oomycetes. About half of the RXLR effector candidates were predicted to share a conserved structure unit, termed the WY-domain fold. A subset of the effector genes were checked and validated by PCR amplification. Transcriptional experiments indicated that effector genes were differentially expressed during the life cycle and host infection stages of P. cactorum. Ectopic expression in Nicotiana benthamiana revealed that RXLR, elicitin and NLP effectors can trigger plant cell death. These effectors are highly conserved across oomycete species. Single nucleotide polymorphisms for RXLR effectors were detected in a collection of P. cactorum isolates from different countries and hosts. This study demonstrates the comprehensive sequencing, de novo assembly, and analyses of the transcriptome of P. cactorum life cycle stages. In the absence of genome

  5. Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells

    OpenAIRE

    Christie, Peter J.; Vogel, Joseph P.

    2000-01-01

    Several bacterial pathogens utilize conjugation machines to export effector molecules during infection. Such systems are members of the type IV or ‘adapted conjugation’ secretion family. The prototypical type IV system is the Agrobacterium tumefaciens T-DNA transfer machine, which delivers oncogenic nucleoprotein particles to plant cells. Other pathogens, including Bordetella pertussis, Legionella pneumophila, Brucella spp. and Helicobacter pylori, use type IV machines to export effector prot...

  6. A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid.

    Directory of Open Access Journals (Sweden)

    Jorunn I B Bos

    2010-11-01

    Full Text Available Aphids are amongst the most devastating sap-feeding insects of plants. Like most plant parasites, aphids require intimate associations with their host plants to gain access to nutrients. Aphid feeding induces responses such as clogging of phloem sieve elements and callose formation, which are suppressed by unknown molecules, probably proteins, in aphid saliva. Therefore, it is likely that aphids, like plant pathogens, deliver proteins (effectors inside their hosts to modulate host cell processes, suppress plant defenses, and promote infestation. We exploited publicly available aphid salivary gland expressed sequence tags (ESTs to apply a functional genomics approach for identification of candidate effectors from Myzus persicae (green peach aphid, based on common features of plant pathogen effectors. A total of 48 effector candidates were identified, cloned, and subjected to transient overexpression in Nicotiana benthamiana to assay for elicitation of a phenotype, suppression of the Pathogen-Associated Molecular Pattern (PAMP-mediated oxidative burst, and effects on aphid reproductive performance. We identified one candidate effector, Mp10, which specifically induced chlorosis and local cell death in N. benthamiana and conferred avirulence to recombinant Potato virus X (PVX expressing Mp10, PVX-Mp10, in N. tabacum, indicating that this protein may trigger plant defenses. The ubiquitin-ligase associated protein SGT1 was required for the Mp10-mediated chlorosis response in N. benthamiana. Mp10 also suppressed the oxidative burst induced by flg22, but not by chitin. Aphid fecundity assays revealed that in planta overexpression of Mp10 and Mp42 reduced aphid fecundity, whereas another effector candidate, MpC002, enhanced aphid fecundity. Thus, these results suggest that, although Mp10 suppresses flg22-triggered immunity, it triggers a defense response, resulting in an overall decrease in aphid performance in the fecundity assays. Overall, we

  7. Identification of Hyaloperonospora arabidopsidis Transcript Sequences Expressed during Infection Reveals Isolate-Specific Effectors

    OpenAIRE

    Cabral, A.; Stassen, J.H.; Seidl, M.F.; Bautor, J.; Parker, J. E.; Van den Ackerveken, G.

    2011-01-01

    Biotrophic plant pathogens secrete effector proteins that are important for infection of the host. The aim of this study was to identify effectors of the downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa) that are expressed during infection of its natural host Arabidopsis thaliana. Infection-related transcripts were identified from Expressed Sequence Tags (ESTs) derived from leaves of the susceptible Arabidopsis Ws eds1-1 mutant inoculated with the highly virulent Hpa isolate Waco9. A...

  8. The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease.

    Science.gov (United States)

    Oudit, Gavin Y; Sun, Hui; Kerfant, Benoit-Gilles; Crackower, Michael A; Penninger, Josef M; Backx, Peter H

    2004-08-01

    Phosphoinositide-3 kinases (PI3Ks) are a family of evolutionary conserved lipid kinases that mediate many cellular responses in both physiologic and pathophysiologic states. Class I PI3K can be activated by either receptor tyrosine kinase (RTK)/cytokine receptor activation (class I(A)) or G-protein-coupled receptors (GPCR) (class I(B)). Once activated PI3Ks generate phosphatidylinositols (PtdIns) (3,4,5)P(3) leading to the recruitment and activation of Akt/protein kinase B (PKB), PDK1 and monomeric G-proteins (e.g. Rac-GTPases), which then activate a range of downstream targets including glycogen synthase kinase-3beta (GSK-3beta), mammalian target of rapamycin (mTOR), p70S6 kinase, endothelial nitric oxide synthase (eNOS) and several anti-apoptotic effectors. Class I(A) (PI3Kalpha, beta and delta) and class I(B) (PI3Kgamma) PI3Ks mediate distinct phenotypes in the heart and under negative control by the 3'-lipid phosphatase, phosphatase and tensin homolog on chromosome ten (PTEN) which dephosphorylate PtdIns(3,4,5)P(3) into PtdIns(4,5)P(2). PI3Kalpha, gamma and PTEN are expressed in cardiomyocytes, fibroblasts, endothelial cells and vascular smooth muscle cells where they modulate cell survival/apoptosis, hypertrophy, contractility, metabolism and mechanotransduction. Several transgenic and knockout models support a fundamental role of PI3K/PTEN signaling in the regulation of myocardial contractility and hypertrophy. Consequently the PI3K/PTEN signaling pathways are involved in a wide variety of diseases including cardiac hypertrophy, heart failure, preconditioning and hypertension. In this review, we discuss the biochemistry and molecular biology of PI3K (class I isoforms) and PTEN and their critical role in cardiovascular physiology and diseases.

  9. 3-Phosphoglycerate is an allosteric activator of pyruvate kinase from the hyperthermophilic archaeon Pyrobaculum aerophilum.

    Science.gov (United States)

    Solomons, J T Graham; Johnsen, Ulrike; Schönheit, Peter; Davies, Christopher

    2013-08-27

    Pyruvate kinase (PK) is a highly regulated enzyme that catalyzes the final step of glycolysis. PK from the hyperthermophilic archaeon Pyrobaculum aerophilum (PaPK) is distinguished from most PK enzymes of eukarya and bacteria by not responding to any known allosteric effectors and apparently exhibiting only cooperative regulation. We determined the crystal structure of PaPK to 2.2 Å resolution and, in a manner consistent with the lack of a response to conventional effectors, observed that the canonical allosteric site is occluded by a tyrosine. Unexpectedly, though, a bound sulfate was observed at a position equivalent to the 6'-phosphate of sugar effectors, suggesting an allosteric site, but for an unknown effector and sharing only the phosphate position. A search of three-carbon intermediates of glycolysis revealed 3-phosphoglycerate (3PG) as a potent allosteric activator of PaPK. The response was abolished by mutation of residues that contact the sulfate and of an arginine proposed to interact with the 3PG carboxylate group. Regulation of PK by 3PG is consistent with the ancestral glycolysis of hyperthermophilic archaea in which this intermediate is produced by an irreversible enzyme, glyceraldehyde 3-phosphate ferredoxin oxidoreductase. Coordinated regulation within the lower half of glycolysis contrasts sharply with conventional glycolysis in which 3PG is produced reversibly and PK is regulated by fructose 1,6-bisphosphate, the product of phosphofructokinase, an irreversible enzyme in the upper half of the pathway. Regulation of PaPK by a carboxylate molecule rather than a sugar phosphate may reflect a step in the evolution of glycolysis that predates the dominance of sugars in metabolism.

  10. Biophysical analysis of the interaction of Rab6a GTPase with its effector domains.

    Science.gov (United States)

    Bergbrede, Tim; Chuky, Nam; Schoebel, Stefan; Blankenfeldt, Wulf; Geyer, Matthias; Fuchs, Evelyn; Goody, Roger S; Barr, Francis; Alexandrov, Kirill

    2009-01-30

    Rab GTPases are key regulators of intracellular vesicular transport that control vesicle budding, cargo sorting, transport, tethering, and fusion. In the inactive (GDP-bound) conformation, Rab GTPases are targeted to intracellular compartments where they are converted into the active GTP-bound form and recruit effector domain containing proteins. Rab6a has been implicated in dynein-mediated vesicle movement at the Golgi apparatus and shown to interact with a plethora of effector proteins. In this study, we identify minimal Rab6a binding domains of three Rab6a effector proteins: PIST, BicaudalD2, and p150(glued). All three domains are >15-kDa fragments predicted to form coiled-coil structures that display no sequence homology to each other. Complex formation with BicaudalD2 and p150 has a moderate inhibitory effect on the intrinsic GTPase activity of Rab6a, while interaction with PIST has no influence on the hydrolysis rate. The effectors bind activated Rab6a with comparable affinities with K(d) values ranging from high nanomolar to low micromolar. Transient kinetic analysis revealed that effectors bind to Rab6a in an apparent single-step reaction characterized by relatively rapid on- and off-rates. We propose that the high off-rates of Rab6.effector complexes enable GTPase-activating protein-mediated net dissociation, which would not be possible if the off-rate were significantly slower.

  11. Human memory CD8 T cell effector potential is epigenetically preserved during in vivo homeostasis.

    Science.gov (United States)

    Abdelsamed, Hossam A; Moustaki, Ardiana; Fan, Yiping; Dogra, Pranay; Ghoneim, Hazem E; Zebley, Caitlin C; Triplett, Brandon M; Sekaly, Rafick-Pierre; Youngblood, Ben

    2017-06-05

    Antigen-independent homeostasis of memory CD8 T cells is vital for sustaining long-lived T cell-mediated immunity. In this study, we report that maintenance of human memory CD8 T cell effector potential during in vitro and in vivo homeostatic proliferation is coupled to preservation of acquired DNA methylation programs. Whole-genome bisulfite sequencing of primary human naive, short-lived effector memory (TEM), and longer-lived central memory (TCM) and stem cell memory (TSCM) CD8 T cells identified effector molecules with demethylated promoters and poised for expression. Effector-loci demethylation was heritably preserved during IL-7- and IL-15-mediated in vitro cell proliferation. Conversely, cytokine-driven proliferation of TCM and TSCM memory cells resulted in phenotypic conversion into TEM cells and was coupled to increased methylation of the CCR7 and Tcf7 loci. Furthermore, haploidentical donor memory CD8 T cells undergoing in vivo proliferation in lymphodepleted recipients also maintained their effector-associated demethylated status but acquired TEM-associated programs. These data demonstrate that effector-associated epigenetic programs are preserved during cytokine-driven subset interconversion of human memory CD8 T cells. © 2017 Abdelsamed et al.

  12. SPRYSEC effectors: a versatile protein-binding platform to disrupt plant innate immunity

    Directory of Open Access Journals (Sweden)

    Amalia Diaz-Granados

    2016-10-01

    Full Text Available Persistent infections by sedentary plant-parasitic nematodes are a major threat to important food crops all over the world. These round worms manipulate host plant cell morphology and physiology to establish sophisticated feeding structures. Key modifications to plant cells during their transition into feeding structures are largely attributed to the activity of effectors secreted by the nematodes. The SPRYSEC effectors were initially identified in the potato cyst nematodes Globodera rostochiensis and G. pallida, and are characterized by a single SPRY domain, a non-catalytic domain present in modular proteins with different functions. The SPRY domain is wide-spread among eukaryotes and thought to be involved in mediating protein-protein interactions. Thus far, the SPRY domain is only reported as a functional domain in effectors of plant-parasitic nematodes, but not of other plant pathogens. SPRYSEC effectors have been implicated in both suppression and activation of plant immunity, but other possible roles in nematode virulence remain undefined. Here, we review the latest reports on the structure, function, and sequence diversity of SPRYSEC effectors, which provide support for a model featuring these effectors as a versatile protein-binding platform for the nematodes to target a wide range of host proteins during parasitism.

  13. New clues in the nucleus: Transcriptional reprogramming in effector-triggered immunity

    Directory of Open Access Journals (Sweden)

    SAIKAT eBHATTACHARJEE

    2013-09-01

    Full Text Available The robustness of plant effector-triggered immunity is correlated with massive alterations of the host transcriptome. Yet the molecular mechanisms that cause and underlie this reprogramming remain obscure. Here we will review recent advances in deciphering nuclear functions of plant immune receptors and of associated proteins. Important open questions remain, such as the identities of the primary transcription factors involved in control of effector-triggered immune responses, and indeed whether this can be generalized or whether particular effector-resistance protein interactions impinge on distinct sectors in the transcriptional response web. Multiple lines of evidence have implicated WRKY transcription factors at the core of responses to microbe-associated molecular patterns and in intersections with effector-triggered immunity. Recent findings from yeast two-hybrid studies suggest that members of the TCP transcription factor family are targets of several effectors from diverse pathogens. Additional transcription factor families that are directly or indirectly involved in effector-triggered immunity are likely to be identified.

  14. Aurora kinase B inhibition reduces the proliferation of metastatic melanoma cells and enhances the response to chemotherapy.

    Science.gov (United States)

    Porcelli, Letizia; Guida, Gabriella; Quatrale, Anna E; Cocco, Tiziana; Sidella, Letizia; Maida, Immacolata; Iacobazzi, Rosa M; Ferretta, Anna; Stolfa, Diana A; Strippoli, Sabino; Guida, Stefania; Tommasi, Stefania; Guida, Michele; Azzariti, Amalia

    2015-01-27

    The poor response to chemotherapy and the brief response to vemurafenib in metastatic melanoma patients, make the identification of new therapeutic approaches an urgent need. Interestingly the increased expression and activity of the Aurora kinase B during melanoma progression suggests it as a promising therapeutic target. The efficacy of the Aurora B kinase inhibitor barasertib-HQPA was evaluated in BRAF mutated cells, sensitive and made resistant to vemurafenib after chronic exposure to the drug, and in BRAF wild type cells. The drug effectiveness has been evaluated as cell growth inhibition, cell cycle progression and cell migration. In addition, cellular effectors of drug resistance and response were investigated. The characterization of the effectors responsible for the resistance to vemurafenib evidenced the increased expression of MITF or the activation of Erk1/2 and p-38 kinases in the newly established cell lines with a phenotype resistant to vemurafenib. The sensitivity of cells to barasertib-HQPA was irrespective of BRAF mutational status. Barasertib-HQPA induced the mitotic catastrophe, ultimately causing apoptosis and necrosis of cells, inhibited cell migration and strongly affected the glycolytic metabolism of cells inducing the release of lactate. In association i) with vemurafenib the gain in effectiveness was found only in BRAF(V600K) cells while ii) with nab-paclitaxel, the combination was more effective than each drug alone in all cells. These findings suggest barasertib as a new therapeutic agent and as enhancer of chemotherapy in metastatic melanoma treatment.

  15. Structure of the pseudokinase–kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition

    Science.gov (United States)

    Lupardus, Patrick J.; Ultsch, Mark; Wallweber, Heidi; Bir Kohli, Pawan; Johnson, Adam R.; Eigenbrot, Charles

    2014-01-01

    Janus kinases (JAKs) are receptor-associated multidomain tyrosine kinases that act downstream of many cytokines and interferons. JAK kinase activity is regulated by the adjacent pseudokinase domain via an unknown mechanism. Here, we report the 2.8-Å structure of the two-domain pseudokinase–kinase module from the JAK family member TYK2 in its autoinhibited form. We find that the pseudokinase and kinase interact near the kinase active site and that most reported mutations in cancer-associated JAK alleles cluster in or near this interface. Mutation of residues near the TYK2 interface that are analogous to those in cancer-associated JAK alleles, including the V617F and “exon 12” JAK2 mutations, results in increased kinase activity in vitro. These data indicate that JAK pseudokinases are autoinhibitory domains that hold the kinase domain inactive until receptor dimerization stimulates transition to an active state. PMID:24843152

  16. Structure of the pseudokinase-kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition.

    Science.gov (United States)

    Lupardus, Patrick J; Ultsch, Mark; Wallweber, Heidi; Bir Kohli, Pawan; Johnson, Adam R; Eigenbrot, Charles

    2014-06-03

    Janus kinases (JAKs) are receptor-associated multidomain tyrosine kinases that act downstream of many cytokines and interferons. JAK kinase activity is regulated by the adjacent pseudokinase domain via an unknown mechanism. Here, we report the 2.8-Å structure of the two-domain pseudokinase-kinase module from the JAK family member TYK2 in its autoinhibited form. We find that the pseudokinase and kinase interact near the kinase active site and that most reported mutations in cancer-associated JAK alleles cluster in or near this interface. Mutation of residues near the TYK2 interface that are analogous to those in cancer-associated JAK alleles, including the V617F and "exon 12" JAK2 mutations, results in increased kinase activity in vitro. These data indicate that JAK pseudokinases are autoinhibitory domains that hold the kinase domain inactive until receptor dimerization stimulates transition to an active state.

  17. Aberrant Activation of p38 MAP Kinase-Dependent Innate Immune Responses Is Toxic to Caenorhabditis elegans.

    Science.gov (United States)

    Cheesman, Hilary K; Feinbaum, Rhonda L; Thekkiniath, Jose; Dowen, Robert H; Conery, Annie L; Pukkila-Worley, Read

    2016-01-27

    Inappropriate activation of innate immune responses in intestinal epithelial cells underlies the pathophysiology of inflammatory disorders of the intestine. Here we examine the physiological effects of immune hyperactivation in the intestine of the nematode Caenorhabditis elegans. We previously identified an immunostimulatory xenobiotic that protects C. elegans from bacterial infection by inducing immune effector expression via the conserved p38 MAP kinase pathway, but was toxic to nematodes developing in the absence of pathogen. To investigate a possible connection between the toxicity and immunostimulatory properties of this xenobiotic, we conducted a forward genetic screen for C. elegans mutants that are resistant to the deleterious effects of the compound, and identified five toxicity suppressors. These strains contained hypomorphic mutations in each of the known components of the p38 MAP kinase cassette (tir-1, nsy-1, sek-1, and pmk-1), demonstrating that hyperstimulation of the p38 MAPK pathway is toxic to animals. To explore mechanisms of immune pathway regulation in C. elegans, we conducted another genetic screen for dominant activators of the p38 MAPK pathway, and identified a single allele that had a gain-of-function (gf) mutation in nsy-1, the MAP kinase kinase kinase that acts upstream of p38 MAPK pmk-1. The nsy-1(gf) allele caused hyperinduction of p38 MAPK PMK-1-dependent immune effectors, had greater levels of phosphorylated p38 MAPK, and was more resistant to killing by the bacterial pathogen Pseudomonas aeruginosa compared to wild-type controls. In addition, the nsy-1(gf) mutation was toxic to developing animals. Together, these data suggest that the activity of the MAPKKK NSY-1 is tightly regulated as part of a physiological mechanism to control p38 MAPK-mediated innate immune hyperactivation, and ensure cellular homeostasis in C. elegans. Copyright © 2016 Cheesman et al.

  18. Insulin utilizes the PI 3-kinase pathway to inhibit SP-A gene expression in lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Snyder Jeanne M

    2002-10-01

    Full Text Available Abstract Background It has been proposed that high insulin levels may cause delayed lung development in the fetuses of diabetic mothers. A key event in lung development is the production of adequate amounts of pulmonary surfactant. Insulin inhibits the expression of surfactant protein A (SP-A, the major surfactant-associated protein, in lung epithelial cells. In the present study, we investigated the signal transduction pathways involved in insulin inhibition of SP-A gene expression. Methods H441 cells, a human lung adenocarcinoma cell line, or human fetal lung explants were incubated with or without insulin. Transcription run-on assays were used to determine SP-A gene transcription rates. Northern blot analysis was used to examine the effect of various signal transduction inhibitors on SP-A gene expression. Immunoblot analysis was used to evaluate the levels and phosphorylation states of signal transduction protein kinases. Results Insulin decreased SP-A gene transcription in human lung epithelial cells within 1 hour. Insulin did not affect p44/42 mitogen-activated protein kinase (MAPK phosphorylation and the insulin inhibition of SP-A mRNA levels was not affected by PD98059, an inhibitor of the p44/42 MAPK pathway. In contrast, insulin increased p70 S6 kinase Thr389 phosphorylation within 15 minutes. Wortmannin or LY294002, both inhibitors of phosphatidylinositol 3-kinase (PI 3-kinase, or rapamycin, an inhibitor of the activation of p70 S6 kinase, a downstream effector in the PI 3-kinase pathway, abolished or attenuated the insulin-induced inhibition of SP-A mRNA levels. Conclusion Insulin inhibition of SP-A gene expression in lung epithelial cells probably occurs via the rapamycin-sensitive PI 3-kinase signaling pathway.

  19. Functional, genetic and bioinformatic characterization of a calcium/calmodulin kinase gene in Sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    Rodriguez-del Valle Nuri

    2007-11-01

    Full Text Available Abstract Background Sporothrix schenckii is a pathogenic, dimorphic fungus, the etiological agent of sporotrichosis, a subcutaneous lymphatic mycosis. Dimorphism in S. schenckii responds to second messengers such as cAMP and calcium, suggesting the possible involvement of a calcium/calmodulin kinase in its regulation. In this study we describe a novel calcium/calmodulin-dependent protein kinase gene in S. schenckii, sscmk1, and the effects of inhibitors of calmodulin and calcium/calmodulin kinases on the yeast to mycelium transition and the yeast cell cycle. Results Using the PCR homology approach a new member of the calcium/calmodulin kinase family, SSCMK1, was identified in this fungus. The cDNA sequence of sscmk1 revealed an open reading frame of 1,221 nucleotides encoding a 407 amino acid protein with a predicted molecular weight of 45.6 kDa. The genomic sequence of sscmk1 revealed the same ORF interrupted by five introns. Bioinformatic analyses of SSCMK1 showed that this protein had the distinctive features that characterize a calcium/calmodulin protein kinase: a serine/threonine protein kinase domain and a calmodulin-binding domain. When compared to homologues from seven species of filamentous fungi, SSCMK1 showed substantial similarities, except for a large and highly variable region that encompasses positions 330 – 380 of the multiple sequence alignment. Inhibition studies using calmodulin inhibitor W-7, and calcium/calmodulin kinase inhibitors, KN-62 and lavendustin C, were found to inhibit budding by cells induced to re-enter the yeast cell cycle and to favor the yeast to mycelium transition. Conclusion This study constitutes the first evidence of the presence of a calcium/calmodulin kinase-encoding gene in S. schenckii and its possible involvement as an effector of dimorphism in this fungus. These results suggest that a calcium/calmodulin dependent signaling pathway could be involved in the regulation of dimorphism in this fungus

  20. Design of endoscopic micro-robotic end effectors: safety and performance evaluation based on physical intestinal tissue damage characteristics.

    Science.gov (United States)

    Kim, Young-Tae; Kim, Dae-Eun; Yang, Sungwook; Yoon, Eui-Sung

    2014-06-01

    During the last several years, legged locomotive mechanism has been considered as one of the main self-propelling mechanisms for future endoscopic microrobots due to its superior propulsion efficiency of an endoscopic microrobot inside the intestinal track. Nevertheless, its clinical application has been largely limited since the legged locomotive mechanism utilizes an end effector which has a sharp tip to generate sufficient traction by physically penetrating and interlocking with the intestinal tissue. This can cause excessive physical tissue damage or even complete perforation of the intestinal wall that can lead to abdominal inflammation. Hence, in this work two types of new end effectors, penetration-limited end effector (PLEE) and bi-material structured end effector (BMEE) were specially designed to acquire high medical safety as well as effective traction generation performance. The microscopic end effector specimens were fabricated with micro-wire electric discharge machining process. Traction generation performance of the end effectors was evaluated by direct measurement of resistance forces during contact-sliding tests using a custom-built contact-sliding tester. The safety of the end effector design was evaluated by examination of microscopic intestinal tissue damage using a scanning electron microscope (SEM). Physical damage characteristics of the intestinal tissue and related contact physics of the end effectors were discussed. From the results, the end effectors were evaluated with respect to their prospects in future medical applications as safe end effectors as well as micro-surgical tools.

  1. Anticancer Alkaloid Lamellarins Inhibit Protein Kinases

    Directory of Open Access Journals (Sweden)

    Laurent Meijer

    2008-10-01

    Full Text Available Lamellarins, a family of hexacyclic pyrrole alkaloids originally isolated from marine invertebrates, display promising anti-tumor activity. They induce apoptotic cell death through multi-target mechanisms, including inhibition of topoisomerase I, interaction with DNA and direct effects on mitochondria. We here report that lamellarins inhibit several protein kinases relevant to cancer such as cyclin-dependent kinases, dualspecificity tyrosine phosphorylation activated kinase 1A, casein kinase 1, glycogen synthase kinase-3 and PIM-1. A good correlation is observed between the effects of lamellarins on protein kinases and their action on cell death, suggesting that inhibition of specific kinases may contribute to the cytotoxicity of lamellarins. Structure/activity relationship suggests several paths for the optimization of lamellarins as kinase inhibitors.

  2. A multisubstrate deoxyribonucleoside kinase from plants

    DEFF Research Database (Denmark)

    Clausen, Anders R.; Girandon, Lenart; Knecht, Wolfgang

    2008-01-01

    Deoxyribonucleoside kinases catalyze the rate limiting step during the salvage of deoxyribonucleosides and convert them into the corresponding monophosphate compounds. We have identified and characterized a unique multisubstrate deoxyribonucleoside kinase from plants. The phylogenetic relationshi...

  3. The Rho-GTPase effector ROCK regulates meiotic maturation of the bovine oocyte via myosin light chain phosphorylation and cofilin phosphorylation.

    Science.gov (United States)

    Lee, So-Rim; Xu, Yong-Nan; Jo, Yu-Jin; Namgoong, Suk; Kim, Nam-Hyung

    2015-11-01

    Oocyte meiosis involves a unique asymmetric division involving spindle movement from the central cytoplasm to the cortex, followed by polar body extrusion. ROCK is a Rho-GTPase effector involved in various cellular functions in somatic cells as well as oocyte meiosis. ROCK was previously shown to promote actin organization by phosphorylating several downstream targets, including LIM domain kinase (LIMK), phosphorylated cofilin (p-cofilin), and myosin light chain (MLC). In this study, we investigated the roles of ROCK and MLC during bovine oocyte meiosis. We found that ROCK was localized around the nucleus at the oocyte's germinal-vesicle (GV) stage, but spreads to the rest of the cytoplasm in later developmental stages. On the other hand, phosphorylated MLC (p-MLC) localized at the cortex, and its abundance decreased by the metaphase-II stage. Disrupting ROCK activity, via RNAi or the chemical inhibitor Y-27632, blocked both cell cycle progression and polar body extrusion. ROCK inhibition also resulted in decreased cortical actin, p-cofilin, and p-MLC levels. Similar to the phenotype associated with inhibition of ROCK activity, inhibition of MLC kinase by the chemical inhibitor ML-7 caused defects in polar body extrusion. Collectively, our results suggest that the ROCK/MLC/actomyosin as well as ROCK/LIMK/cofilin pathways regulate meiotic spindle migration and cytokinesis during bovine oocyte maturation. © 2015 Wiley Periodicals, Inc.

  4. Imbalanced expression of functional surface molecules in regulatory and effector T cells in systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    D. Mesquita Júnior

    2014-08-01

    Full Text Available Regulatory T (TREG cells play an important role in maintaining immune tolerance and avoiding autoimmunity. We analyzed the expression of membrane molecules in TREG and effector T cells in systemic lupus erythematosus (SLE. TREG and effector T cells were analyzed for the expression of CTLA-4, PD1, CD28, CD95, GITR, HLA-DR, OX40, CD40L, and CD45RO in 26 patients with active disease, 31 with inactive disease, and 26 healthy controls. TREG cells were defined as CD25+/highCD127Ø/lowFoxP3+, and effector T cells were defined as CD25+CD127+FoxP3Ø. The ratio of TREG to effector T cells expressing GITR, PD1, HLA-DR, OX40, CD40L, and CD45RO was determined in the three groups. The frequency of TREG cells was similar in patients with SLE and controls. However, SLE patients had a decreased frequency of CTLA-4+TREG and CD28+TREG cells and an increased frequency of CD40L+TREG cells. There was a decrease in the TREG/effector-T ratio for GITR+, HLA-DR+, OX40+, and CD45RO+ cells, and an increased ratio of TREG/effector-T CD40L+ cells in patients with SLE. In addition, CD40L+TREG cell frequency correlated with the SLE disease activity index (P=0.0163. In conclusion, our findings showed several abnormalities in the expression of functionally critical surface molecules in TREG and effector T cells in SLE that may be relevant to the pathogenesis of this disease.

  5. Transcription Factors Encoded on Core and Accessory Chromosomes of Fusarium oxysporum Induce Expression of Effector Genes.

    Directory of Open Access Journals (Sweden)

    H Charlotte van der Does

    2016-11-01

    Full Text Available Proteins secreted by pathogens during host colonization largely determine the outcome of pathogen-host interactions and are commonly called 'effectors'. In fungal plant pathogens, coordinated transcriptional up-regulation of effector genes is a key feature of pathogenesis and effectors are often encoded in genomic regions with distinct repeat content, histone code and rate of evolution. In the tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol, effector genes reside on one of four accessory chromosomes, known as the 'pathogenicity' chromosome, which can be exchanged between strains through horizontal transfer. The three other accessory chromosomes in the Fol reference strain may also be important for virulence towards tomato. Expression of effector genes in Fol is highly up-regulated upon infection and requires Sge1, a transcription factor encoded on the core genome. Interestingly, the pathogenicity chromosome itself contains 13 predicted transcription factor genes and for all except one, there is a homolog on the core genome. We determined DNA binding specificity for nine transcription factors using oligonucleotide arrays. The binding sites for homologous transcription factors were highly similar, suggesting that extensive neofunctionalization of DNA binding specificity has not occurred. Several DNA binding sites are enriched on accessory chromosomes, and expression of FTF1, its core homolog FTF2 and SGE1 from a constitutive promoter can induce expression of effector genes. The DNA binding sites of only these three transcription factors are enriched among genes up-regulated during infection. We further show that Ftf1, Ftf2 and Sge1 can activate transcription from their binding sites in yeast. RNAseq analysis revealed that in strains with constitutive expression of FTF1, FTF2 or SGE1, expression of a similar set of plant-responsive genes on the pathogenicity chromosome is induced, including most effector genes. We conclude that the Fol

  6. Homologous RXLR effectors from Hyaloperonospora arabidopsidis and Phytophthora sojae suppress immunity in distantly related plants.

    Science.gov (United States)

    Anderson, Ryan G; Casady, Megan S; Fee, Rachel A; Vaughan, Martha M; Deb, Devdutta; Fedkenheuer, Kevin; Huffaker, Alisa; Schmelz, Eric A; Tyler, Brett M; McDowell, John M

    2012-12-01

    Diverse pathogens secrete effector proteins into plant cells to manipulate host cellular processes. Oomycete pathogens contain large complements of predicted effector genes defined by an RXLR host cell entry motif. The genome of Hyaloperonospora arabidopsidis (Hpa, downy mildew of Arabidopsis) contains at least 134 candidate RXLR effector genes. Only a small subset of these genes is conserved in related oomycetes from the Phytophthora genus. Here, we describe a comparative functional characterization of the Hpa RXLR effector gene HaRxL96 and a homologous gene, PsAvh163, from the Glycine max (soybean) pathogen Phytophthora sojae. HaRxL96 and PsAvh163 are induced during the early stages of infection and carry a functional RXLR motif that is sufficient for protein uptake into plant cells. Both effectors can suppress immune responses in soybean. HaRxL96 suppresses immunity in Nicotiana benthamiana, whereas PsAvh163 induces an HR-like cell death response in Nicotiana that is dependent on RAR1 and Hsp90.1. Transgenic Arabidopsis plants expressing HaRxL96 or PsAvh163 exhibit elevated susceptibility to virulent and avirulent Hpa, as well as decreased callose deposition in response to non-pathogenic Pseudomonas syringae. Both effectors interfere with defense marker gene induction, but do not affect salicylic acid biosynthesis. Together, these experiments demonstrate that evolutionarily conserved effectors from different oomycete species can suppress immunity in plant species that are divergent from the source pathogen's host. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  7. Imbalanced expression of functional surface molecules in regulatory and effector T cells in systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita Júnior, D. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Cruvinel, W.M. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Departamento de Biomedicina, Universidade Católica de Goiás, Goiânia, GO (Brazil); Araujo, J.A.P. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Salmazi, K.C.; Kallas, E.G. [Disciplina de Imunologia Clínica e Alergia, Departamento de Clínica Médica, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Andrade, L.E.C. [Disciplina de Reumatologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-08-22

    Regulatory T (TREG) cells play an important role in maintaining immune tolerance and avoiding autoimmunity. We analyzed the expression of membrane molecules in TREG and effector T cells in systemic lupus erythematosus (SLE). TREG and effector T cells were analyzed for the expression of CTLA-4, PD1, CD28, CD95, GITR, HLA-DR, OX40, CD40L, and CD45RO in 26 patients with active disease, 31 with inactive disease, and 26 healthy controls. TREG cells were defined as CD25{sup +/high}CD127{sup Ø/low}FoxP3{sup +}, and effector T cells were defined as CD25{sup +}CD127{sup +}FoxP3{sup Ø}. The ratio of TREG to effector T cells expressing GITR, PD1, HLA-DR, OX40, CD40L, and CD45RO was determined in the three groups. The frequency of TREG cells was similar in patients with SLE and controls. However, SLE patients had a decreased frequency of CTLA-4{sup +}TREG and CD28{sup +}TREG cells and an increased frequency of CD40L{sup +}TREG cells. There was a decrease in the TREG/effector-T ratio for GITR{sup +}, HLA-DR{sup +}, OX40{sup +}, and CD45RO{sup +} cells, and an increased ratio of TREG/effector-T CD40L{sup +} cells in patients with SLE. In addition, CD40L{sup +}TREG cell frequency correlated with the SLE disease activity index (P=0.0163). In conclusion, our findings showed several abnormalities in the expression of functionally critical surface molecules in TREG and effector T cells in SLE that may be relevant to the pathogenesis of this disease.

  8. Transcription Factors Encoded on Core and Accessory Chromosomes of Fusarium oxysporum Induce Expression of Effector Genes.

    Science.gov (United States)

    van der Does, H Charlotte; Fokkens, Like; Yang, Ally; Schmidt, Sarah M; Langereis, Léon; Lukasiewicz, Joanna M; Hughes, Timothy R; Rep, Martijn

    2016-11-01

    Proteins secreted by pathogens during host colonization largely determine the outcome of pathogen-host interactions and are commonly called 'effectors'. In fungal plant pathogens, coordinated transcriptional up-regulation of effector genes is a key feature of pathogenesis and effectors are often encoded in genomic regions with distinct repeat content, histone code and rate of evolution. In the tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol), effector genes reside on one of four accessory chromosomes, known as the 'pathogenicity' chromosome, which can be exchanged between strains through horizontal transfer. The three other accessory chromosomes in the Fol reference strain may also be important for virulence towards tomato. Expression of effector genes in Fol is highly up-regulated upon infection and requires Sge1, a transcription factor encoded on the core genome. Interestingly, the pathogenicity chromosome itself contains 13 predicted transcription factor genes and for all except one, there is a homolog on the core genome. We determined DNA binding specificity for nine transcription factors using oligonucleotide arrays. The binding sites for homologous transcription factors were highly similar, suggesting that extensive neofunctionalization of DNA binding specificity has not occurred. Several DNA binding sites are enriched on accessory chromosomes, and expression of FTF1, its core homolog FTF2 and SGE1 from a constitutive promoter can induce expression of effector genes. The DNA binding sites of only these three transcription factors are enriched among genes up-regulated during infection. We further show that Ftf1, Ftf2 and Sge1 can activate transcription from their binding sites in yeast. RNAseq analysis revealed that in strains with constitutive expression of FTF1, FTF2 or SGE1, expression of a similar set of plant-responsive genes on the pathogenicity chromosome is induced, including most effector genes. We conclude that the Fol pathogenicity

  9. SKI-606 (bosutinib), a novel Src kinase inhibitor, suppresses migration and invasion of human breast cancer cells

    Science.gov (United States)

    Vultur, Adina; Buettner, Ralf; Kowolik, Claudia; Liang, Wei; Smith, David; Boschelli, Frank; Jove, Richard

    2009-01-01

    Src family kinase (SFK) activity is elevated in many human tumors, including breast cancer, and is often associated with aggressive disease. We examined the effects of SKI-606 (bosutinib), a selective SFK inhibitor, on human cancer cells derived from breast cancer patients in order to assess its potential for breast cancer treatment. Our results show that SKI-606 caused a decrease in cell motility and invasion of breast cancer cell lines with an IC50 of ~250 nM, which was also the IC50 for inhibition of c-Src kinase activity in intact tumor cells. These changes were accompanied by an increase in cell-to-cell adhesion and membrane localization of beta-catenin. By contrast, cell proliferation and survival were unaffected by SKI-606 at concentrations sufficient to block cell migration and invasion. Analysis of downstream effectors of Src revealed that SKI-606 inhibits the phosphorylation of focal adhesion kinase (FAK), proline-rich tyrosine kinase 2 (Pyk2) and Crk-associated substrate (p130Cas) with an IC50 similar to inhibition of c-Src kinase. Our findings indicate that SKI-606 inhibits signaling pathways involved in controlling tumor cell motility and invasion, suggesting that SKI-606 is a promising therapeutic for breast cancer. PMID:18483306

  10. A multisubstrate deoxyribonucleoside kinase from plants.

    Science.gov (United States)

    Clausen, Anders Ranegaard; Girandon, Lenart; Knecht, Wolfgang; Survery, Sabeen; Andreasson, Erik; Munch-Petersen, Birgitte; Piskur, Jure

    2008-01-01

    Deoxyribonucleoside kinases catalyze the rate limiting step during the salvage of deoxyribonucleosides and convert them into the corresponding monophosphate compounds. We have identified and characterized a unique multisubstrate deoxyribonucleoside kinase from plants. The phylogenetic relationship and biochemical properties suggest that this deoxyribonucleoside kinase represents a living fossil resembling the progenitor of the modern animal deoxycytidine, deoxyguanosine and thymidine 2 kinases. The broad substrate specificity makes this enzyme an interesting candidate to be evaluated as a suicide gene in anti-cancer therapy.

  11. Role of calcium in the expression of MAP kinase kinases (MKKs ...

    African Journals Online (AJOL)

    The mitogen activated protein kinase (MAPK) cascade is an important intracellular signaling module that functions as a convergent point for crosstalk during stress signaling. In this study, we constructed a phylogenetic tree for MAP kinase kinases (MKKs) and MAP kinases (MPKs) in Arabidopsis and Lycopersicon ...

  12. The alpha-kinase family: an exceptional branch on the protein kinase tree.

    NARCIS (Netherlands)

    Middelbeek, J.A.J.; Clark, K.; Venselaar, H.; Huynen, M.A.; Leeuwen, F.N. van

    2010-01-01

    The alpha-kinase family represents a class of atypical protein kinases that display little sequence similarity to conventional protein kinases. Early studies on myosin heavy chain kinases in Dictyostelium discoideum revealed their unusual propensity to phosphorylate serine and threonine residues in

  13. Calixarene methylene bisphosphonic acids as promising effectors of biochemical processes

    Directory of Open Access Journals (Sweden)

    S. V. Komisarenko

    2013-12-01

    Full Text Available This interdisciplinary study, performed with participation of research workers of Palladin Institute of Biochemistry and Institute of Organic Chemist­ry of NAS of Ukraine, is devoted to analysis of biochemical effects of some calixarene methylene bisphosphonic acids (cyclic phenol oligomers on two well-known biological phenomenons – Mg2+-dependent ATP hydrolysis (myosin subfragment-1 of myometrium smooth muscle was used as an example and fibrin polymerization. Calix[4]arene С-97 (calix[4]arene methylene bisphosphonic acids is a macrocyclic substance, which contains intramolecular highly ordered lipophilic cavity formed by four aromatic rings, one of which is functionalized at the upper rim with methylene bisphosphonic group. At concentration of 100 µM, this substance was shown to effectively inhibit ATPase activity of pig myometrium myosin subfragment-1 (inhibition coefficient І0.5 = 83 ± 7 µM. At the same time, this calix[4]arene causes significant (vs. control increase of myosin subfragment-1 hydrodynamic diameter, which may indicate formation of an intermolecular complex between calixa­rene and myosin head. Computer simulation methods (docking and molecular dynamics with addition of grid technologies enabled to elucidate the grounds of intermolecular interactions between calix[4]arene С-97 and myometrium myosin subfragment-1, that involve hydrophobic, electrostatic and π-π-stacking interactions, some of which are close to the ATPase active centre. In view of the ability of calixarenes to penetrate into the cell and their low toxicity, the results obtained may be used as a basis for further development of a new generation of supramolecular effectors (starting from the above mentioned substances, in particular calix[4]arene С-97 for regulation of smooth muscle contractile activity at the level of ATP dependent actin-myosin interaction. Calix[4]arenes bearing two or four methylenebisphosphonic acid groups at the macrocyclic upper

  14. A Mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis.

    Science.gov (United States)

    Nakagami, Hirofumi; Soukupová, Hanka; Schikora, Adam; Zárský, Viktor; Hirt, Heribert

    2006-12-15

    Mitogen-activated protein kinase kinase kinases (MAPKKKs) play key roles in intra- and extracellular signaling in eukaryotes. Here we report that the MAPKKK MEKK1 regulates redox homeostasis in Arabidopsis. We show that MEKK1-deficient plants are misregulated in the expression of a number of genes involved in cellular redox control and accumulate reactive oxygen species (ROS). Most strikingly, homozygous mekk1 mutant plants exhibit a lethal phenotype when developing true leaves. MEKK1 kinase activity and protein stability was regulated by H(2)O(2) in a proteasome-dependent manner and mekk1 plants were compromised in ROS-induced MAPK MPK4 activation. Whereas mpk3 and mpk6 knock out plants showed no defects in development or changes in redox control genes, mpk4 null mutant shared several phenotypic and transcript profile features with mekk1 plants. In agreement with the concept that ROS negatively regulates auxin responses in plants, mekk1 and mpk4 mutants show reduced expression of several auxin-inducible marker genes. Overall, our data defines MPK4 as downstream target of MEKK1 and show that MEKK1 functions in integrating ROS homeostasis with plant development and hormone signaling.

  15. The JAK kinases: not just another kinase drug discovery target.

    Science.gov (United States)

    Wilks, Andrew F

    2008-08-01

    There are four members of the JAK family of protein tyrosine kinases (PTKs) in the human genome. Since their discovery in 1989, great strides have been made in the understanding of their role in normal intracellular signalling. Importantly, their roles in pathologies ranging from cancer to immune deficiencies have placed them front and centre as potential drug targets. The recent discovery of the role of activating mutations in the kinase-like domain (KLD) of JAK2 in the development of polycythemia rubra vera, and the elaboration of KLD mutation as a broader mechanism by which cells might become hyperproliferative has sparked enormous interest in the development of JAK selective drug candidates. I review herein the progress that has been made in the discovery of JAK-targeted inhibitors, and discuss the challenges that face the development of these drugs for use in the clinic.

  16. The Salmonella effector SteA binds phosphatidylinositol 4-phosphate for subcellular targeting within host cells.

    Science.gov (United States)

    Domingues, Lia; Ismail, Ahmad; Charro, Nuno; Rodríguez-Escudero, Isabel; Holden, David W; Molina, María; Cid, Víctor J; Mota, Luís Jaime

    2016-07-01

    Many bacterial pathogens use specialized secretion systems to deliver virulence effector proteins into eukaryotic host cells. The function of these effectors depends on their localization within infected cells, but the mechanisms determining subcellular targeting of each effector are mostly elusive. Here, we show that the Salmonella type III secretion effector SteA binds specifically to phosphatidylinositol 4-phosphate [PI(4)P]. Ectopically expressed SteA localized at the plasma membrane (PM) of eukaryotic cells. However, SteA was displaced from the PM of Saccharomyces cerevisiae in mutants unable to synthesize the local pool of PI(4)P and from the PM of HeLa cells after localized depletion of PI(4)P. Moreover, in infected cells, bacterially translocated or ectopically expressed SteA localized at the membrane of the Salmonella-containing vacuole (SCV) and to Salmonella-induced tubules; using the PI(4)P-binding domain of the Legionella type IV secretion effector SidC as probe, we found PI(4)P at the SCV membrane and associated tubules throughout Salmonella infection of HeLa cells. Both binding of SteA to PI(4)P and the subcellular localization of ectopically expressed or bacterially translocated SteA were dependent on a lysine residue near the N-terminus of the protein. Overall, this indicates that binding of SteA to PI(4)P is necessary for its localization within host cells. © 2015 John Wiley & Sons Ltd.

  17. Antimicrobial effectors in the nematode Caenorhabditis elegans: an outgroup to the Arthropoda.

    Science.gov (United States)

    Dierking, Katja; Yang, Wentao; Schulenburg, Hinrich

    2016-05-26

    Nematodes and arthropods likely form the taxon Ecdysozoa. Information on antimicrobial effectors from the model nematode Caenorhabditis elegans may thus shed light on the evolutionary origin of these defences in arthropods. This nematode species possesses an extensive armory of putative antimicrobial effector proteins, such as lysozymes, caenopores (or saposin-like proteins), defensin-like peptides, caenacins and neuropeptide-like proteins, in addition to the production of reactive oxygen species and autophagy. As C. elegans is a bacterivore that lives in microbe-rich environments, some of its effector peptides and proteins likely function in both digestion of bacterial food and pathogen elimination. In this review, we provide an overview of C. elegans immune effector proteins and mechanisms. We summarize the experimental evidence of their antimicrobial function and involvement in the response to pathogen infection. We further evaluate the microbe-induced expression of effector genes using WormExp, a recently established database for C. elegans gene expression analysis. We emphasize the need for further analysis at the protein level to demonstrate an antimicrobial activity of these molecules both in vitro and in vivoThis article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. © 2016 The Author(s).

  18. A Secreted Effector Protein of Ustilago maydis Guides Maize Leaf Cells to Form Tumors

    Science.gov (United States)

    Redkar, Amey; Hoser, Rafal; Schilling, Lena; Zechmann, Bernd; Krzymowska, Magdalena; Walbot, Virginia; Doehlemann, Gunther

    2015-01-01

    The biotrophic smut fungus Ustilago maydis infects all aerial organs of maize (Zea mays) and induces tumors in the plant tissues. U. maydis deploys many effector proteins to manipulate its host. Previously, deletion analysis demonstrated that several effectors have important functions in inducing tumor expansion specifically in maize leaves. Here, we present the functional characterization of the effector See1 (Seedling efficient effector1). See1 is required for the reactivation of plant DNA synthesis, which is crucial for tumor progression in leaf cells. By contrast, See1 does not affect tumor formation in immature tassel floral tissues, where maize cell proliferation occurs independent of fungal infection. See1 interacts with a maize homolog of SGT1 (Suppressor of G2 allele of skp1), a factor acting in cell cycle progression in yeast (Saccharomyces cerevisiae) and an important component of plant and human innate immunity. See1 interferes with the MAPK-triggered phosphorylation of maize SGT1 at a monocot-specific phosphorylation site. We propose that See1 interferes with SGT1 activity, resulting in both modulation of immune responses and reactivation of DNA synthesis in leaf cells. This identifies See1 as a fungal effector that directly and specifically contributes to the formation of leaf tumors in maize. PMID:25888589

  19. Hierarchical effector protein transport by the Salmonella Typhimurium SPI-1 type III secretion system.

    Directory of Open Access Journals (Sweden)

    Brit Winnen

    Full Text Available BACKGROUND: Type III secretion systems (TTSS are employed by numerous pathogenic and symbiotic bacteria to inject a cocktail of different "effector proteins" into host cells. These effectors subvert host cell signaling to establish symbiosis or disease. METHODOLOGY/PRINCIPAL FINDINGS: We have studied the injection of SipA and SptP, two effector proteins of the invasion-associated Salmonella type III secretion system (TTSS-1. SipA and SptP trigger different host cell responses. SipA contributes to triggering actin rearrangements and invasion while SptP reverses the actin rearrangements after the invasion has been completed. Nevertheless, SipA and SptP were both pre-formed and stored in the bacterial cytosol before host cell encounter. By time lapse microscopy, we observed that SipA was injected earlier than SptP. Computer modeling revealed that two assumptions were sufficient to explain this injection hierarchy: a large number of SipA and SptP molecules compete for transport via a limiting number of TTSS; and the TTSS recognize SipA more efficiently than SptP. CONCLUSIONS/SIGNIFICANCE: This novel mechanism of hierarchical effector protein injection may serve to avoid functional interference between SipA and SptP. An injection hierarchy of this type may be of general importance, allowing bacteria to precisely time the host cell manipulation by type III effectors.

  20. Shigella IpaH Family Effectors as a Versatile Model for Studying Pathogenic Bacteria.

    Science.gov (United States)

    Ashida, Hiroshi; Sasakawa, Chihiro

    2015-01-01

    Shigella spp. are highly adapted human pathogens that cause bacillary dysentery (shigellosis). Via the type III secretion system (T3SS), Shigella deliver a subset of virulence proteins (effectors) that are responsible for pathogenesis, with functions including pyroptosis, invasion of the epithelial cells, intracellular survival, and evasion of host immune responses. Intriguingly, T3SS effector activity and strategies are not unique to Shigella, but are shared by many other bacterial pathogens, including Salmonella, Yersinia, and enteropathogenic Escherichia coli (EPEC). Therefore, studying Shigella T3SS effectors will not only improve our understanding of bacterial infection systems, but also provide a molecular basis for developing live bacterial vaccines and antibacterial drugs. One of Shigella T3SS effectors, IpaH family proteins, which have E3 ubiquitin ligase activity and are widely conserved among other bacterial pathogens, are very relevant because they promote bacterial survival by triggering cell death and modulating the host immune responses. Here, we describe selected examples of Shigella pathogenesis, with particular emphasis on the roles of IpaH family effectors, which shed new light on bacterial survival strategies and provide clues about how to overcome bacterial infections.

  1. Wind Tunnel Test of an RPV with Shape-Change Control Effector and Sensor Arrays

    Science.gov (United States)

    Raney, David L.; Cabell, Randolph H.; Sloan, Adam R.; Barnwell, William G.; Lion, S. Todd; Hautamaki, Bret A.

    2004-01-01

    A variety of novel control effector concepts have recently emerged that may enable new approaches to flight control. In particular, the potential exists to shift the composition of the typical aircraft control effector suite from a small number of high authority, specialized devices (rudder, aileron, elevator, flaps), toward larger numbers of smaller, less specialized, distributed device arrays. The concept envisions effector and sensor networks composed of relatively small high-bandwidth devices able to simultaneously perform a variety of control functions using feedback from disparate data sources. To investigate this concept, a remotely piloted flight vehicle has been equipped with an array of 24 trailing edge shape-change effectors and associated pressure measurements. The vehicle, called the Multifunctional Effector and Sensor Array (MESA) testbed, was recently tested in NASA Langley's 12-ft Low Speed wind tunnel to characterize its stability properties, control authorities, and distributed pressure sensitivities for use in a dynamic simulation prior to flight testing. Another objective was to implement and evaluate a scheme for actively controlling the spanwise pressure distribution using the shape-change array. This report describes the MESA testbed, design of the pressure distribution controller, and results of the wind tunnel test.

  2. The role of effectors in nonhost resistance to filamentous plant pathogens.

    Science.gov (United States)

    Stam, Remco; Mantelin, Sophie; McLellan, Hazel; Thilliez, Gaëtan

    2014-01-01

    In nature, most plants are resistant to a wide range of phytopathogens. However, mechanisms contributing to this so-called nonhost resistance (NHR) are poorly understood. Besides constitutive defenses, plants have developed two layers of inducible defense systems. Plant innate immunity relies on recognition of conserved pathogen-associated molecular patterns (PAMPs). In compatible interactions, pathogenicity effector molecules secreted by the invader can suppress host defense responses and facilitate the infection process. Additionally, plants have evolved pathogen-specific resistance mechanisms based on recognition of these effectors, which causes secondary defense responses. The current effector-driven hypothesis is that NHR in plants that are distantly related to the host plant is triggered by PAMP recognition that cannot be efficiently suppressed by the pathogen, whereas in more closely related species, nonhost recognition of effectors would play a crucial role. In this review we give an overview of current knowledge of the role of effector molecules in host and NHR and place these findings in the context of the model. We focus on examples from filamentous pathogens (fungi and oomycetes), discuss their implications for the field of plant-pathogen interactions and relevance in plant breeding strategies for development of durable resistance in crops.

  3. The effector repertoire of Fusarium oxysporum determines the tomato xylem proteome composition following infection

    Directory of Open Access Journals (Sweden)

    Fleur eGawehns

    2015-11-01

    Full Text Available Plant pathogens secrete small proteins, of which some are effectors that promote infection. During colonization of the tomato xylem vessels the fungus Fusarium oxysporum f. sp. lycopersici (Fol secretes small proteins that are referred to as SIX (Secreted In Xylem proteins. Of these, Six1 (Avr3, Six3 (Avr2, Six5 and Six6 are required for full virulence, denoting them as effectors. To investigate their activities in the plant, the xylem sap proteome of plants inoculated with Fol wild-type or either AVR2, AVR3, SIX2, SIX5 or SIX6 knockout strains was analyzed with nano-Liquid Chromatography-Mass Spectrometry (nLC-MSMS. Compared to mock-inoculated sap 12 additional plant proteins appeared while 45 proteins were no longer detectable in the xylem sap of Fol-infected plants. Of the 285 proteins found in both uninfected and infected plants the abundance of 258 proteins changed significantly following infection. The xylem sap proteome of plants infected with four Fol effector knockout strains differed significantly from plants infected with wild-type Fol, while that of the SIX2-knockout inoculated plants remained unchanged. Besides an altered abundance of a core set of 24 differentially accumulated proteins (DAPs, each of the four effector knockout strains affected specifically the abundance of a subset of DAPs. Hence, Fol effectors have both unique and shared effects on the composition of the tomato xylem sap proteome.

  4. MorTAL Kombat : the story of defense against TAL effectors through loss-of-susceptibility [plus corrigendum

    OpenAIRE

    Hutin, M.; Perez-Quintero, A. L.; Lopez, C; Szurek, Boris

    2015-01-01

    Many plant-pathogenic xanthomonads rely on Transcription Activator-Like (TAL) effectors to colonize their host. This particular family of type Ill effectors functions as specific plant transcription factors via a programmable DNA-binding domain. Upon binding to the promoters of plant disease susceptibility genes in a sequence-specific manner, the expression of these host genes is induced. However, plants have evolved specific strategies to counter the action of TAL effectors and confer resist...

  5. The Legionella pneumophila IcmSW complex interacts with multiple Dot/Icm effectors to facilitate type IV translocation.

    Directory of Open Access Journals (Sweden)

    Eric D Cambronne

    2007-12-01

    Full Text Available Many gram-negative pathogens use a type IV secretion system (T4SS to deliver effector proteins into eukaryotic host cells. The fidelity of protein translocation depends on the efficient recognition of effector proteins by the T4SS. Legionella pneumophila delivers a large number of effector proteins into eukaryotic cells using the Dot/Icm T4SS. How the Dot/Icm system is able to recognize and control the delivery of effectors is poorly understood. Recent studies suggest that the IcmS and IcmW proteins interact to form a stable complex that facilitates translocation of effector proteins by the Dot/Icm system by an unknown mechanism. Here we demonstrate that the IcmSW complex is necessary for the productive translocation of multiple Dot/Icm effector proteins. Effector proteins that were able to bind IcmSW in vitro required icmS and icmW for efficient translocation into eukaryotic cells during L. pneumophila infection. We identified regions in the effector protein SidG involved in icmSW-dependent translocation. Although the full-length SidG protein was translocated by an icmSW-dependent mechanism, deletion of amino terminal regions in the SidG protein resulted in icmSW-independent translocation, indicating that the IcmSW complex is not contributing directly to recognition of effector proteins by the Dot/Icm system. Biochemical and genetic studies showed that the IcmSW complex interacts with a central region of the SidG protein. The IcmSW interaction resulted in a conformational change in the SidG protein as determined by differences in protease sensitivity in vitro. These data suggest that IcmSW binding to effectors could enhance effector protein delivery by mediating a conformational change that facilitates T4SS recognition of a translocation domain located in the carboxyl region of the effector protein.

  6. Epidermal growth factor stimulates Rac1 and p21-activated kinase in vascular smooth muscle cells.

    Science.gov (United States)

    Beier, Imke; Düsing, Rainer; Vetter, Hans; Schmitz, Udo

    2008-01-01

    Epidermal growth factor (EGF) has been shown to be a potent mitogen for vascular smooth muscle cells (VSMC) both in vitro and in vivo, thus contributing to the development of atherosclerosis and hypertension. Stimulation of Rho-family GTPases Rac/Cdc42 exerts pleiotropic cellular effects and have been demonstrated to contribute to EGF-induced proliferation in other cell systems. However, the effect of EGF on Rac/Cdc42 activation is unknown for VSMC. In the present report, we evaluated stimulation of Rac/Cdc42 by EGF in VSMC performing PAK-PBD binding assay. EGF treatment of VSMC induced time and concentration dependent binding of GTP-bound Rac1 to PAK-PBD peaking at 1 min and showing sustained activation up to 15 min. However, stimulation of Cdc42 could not be demonstrated. To further evaluate downstream effectors of Rac1 stimulation of p21-activated kinase (PAK) and c-Jun N-terminal kinase (JNK) by EGF was determined. In VSMC, EGF sequentially stimulated PAK, peaking at 5 min, and JNK, peaking at 15 min. Pretreatment of VSMC by EGF receptor specific tyrosine kinase inhibitor AG1478 and non-specific tyrosine kinase inhibitor genistein inhibited EGF-induced activation of Rac1, PAK and JNK, whereas tyrosine kinase inhibitors specific for Src (PP1) and specific for platelet-derived growth factor (AG1296) had no effect. Specific inhibition or Rac1 by NSC23766 attenuated EGF-induced [(3)H] thymidine incorporation in VSMC. Our data provide evidence for EGF-induced Rac1 activation and implicate PAK and JNK as downstream targets of Rac1 in EGF signal transduction in VSMC.

  7. Inhibitors of unactivated p38 MAP kinase.

    Science.gov (United States)

    Bullington, James; Argentieri, Dennis; Averill, Kristin; Carter, Demetrius; Cavender, Druie; Fahmy, Bohumila; Fan, Xiaodong; Hall, Daniel; Heintzelman, Geoffrey; Jackson, Paul; Leung, Wai-Ping; Li, Xun; Ling, Ping; Olini, Gilbert; Razler, Thomas; Reuman, Michael; Rupert, Kenneth; Russell, Ronald; Siekierka, John; Wadsworth, Scott; Wolff, Russell; Xiang, Bangping; Zhang, Yue-Mei

    2006-12-01

    Inhibition of the p38 map kinase pathway has been shown to be beneficial in the treatment of inflammatory diseases. The first class of potent p38 kinase inhibitors was the pyridinylimidazole compounds from SKB. Since then several pyridinylimidazole-based compounds have been shown to inhibit activated p38 kinase in vitro and in vivo. We have developed a novel series of pyridinylimidazole-based compounds, which potently inhibit the p38 pathway by binding to unactivated p38 kinase and only weakly inhibiting activated p38 kinase activity in vitro.

  8. Neuronal nitric oxide contributes to neuroplasticity-associated protein expression through cGMP, protein kinase G, and extracellular signal-regulated kinase.

    Science.gov (United States)

    Gallo, Eduardo F; Iadecola, Costantino

    2011-05-11

    Nitric oxide (NO) synthesized by neuronal NO synthase (nNOS) has long been implicated in brain plasticity. However, it is unclear how this short-lived mediator contributes to the long-term molecular changes underlying neuroplasticity, which typically require activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) signaling pathway and gene expression. To address this issue, we used a neuroplasticity model based on treatment of neuronal cultures with bicuculline and a model of experience-dependent plasticity in the barrel cortex. In neuronal cultures, NOS inhibition attenuated the bicuculline-induced activation of ERK and the expression of c-Fos, Egr-1, Arc, and brain-derived neurotrophic factor (BDNF), proteins essential for neuroplasticity. Furthermore, inhibition of the NO target soluble guanylyl cyclase or of the cGMP effector kinase protein kinase G (PKG) reduced both ERK activation and plasticity-related protein expression. NOS inhibition did not affect phosphorylation of cAMP response element-binding protein (CREB), a well-established ERK nuclear target, but it attenuated the nuclear accumulation of the CREB coactivator TORC1 and suppressed the activation of Elk-1, another transcription factor target of ERK. Consistent with these in vitro observations, induction of c-Fos, Egr-1, and BDNF was attenuated in the D1 cortical barrel of nNOS(-/-) mice subjected to single whisker experience. These results establish nNOS-derived NO as a key factor in the expression of proteins involved in neuroplasticity, an effect mediated through cGMP, PKG, and ERK signaling. These actions of NO do not depend on CREB phosphorylation but may involve TORC1 and Elk-1. Our data unveil a previously unrecognized link between neuronal NO and the molecular machinery responsible for the sustained synaptic changes underlying neuroplasticity.

  9. A pivotal role for endogenous TGF-β-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway

    Science.gov (United States)

    Xie, Min; Zhang, Dou; Dyck, Jason R. B.; Li, Yi; Zhang, Hui; Morishima, Masae; Mann, Douglas L.; Taffet, George E.; Baldini, Antonio; Khoury, Dirar S.; Schneider, Michael D.

    2006-01-01

    TGF-β-activated kinase-1 (TAK1), also known as MAPKK kinase-7 (MAP3K7), is a candidate effector of multiple circuits in cardiac biology and disease. Here, we show that inhibition of TAK1 in mice by a cardiac-specific dominant-negative mutation evokes electrophysiological and biochemical properties reminiscent of human Wolff–Parkinson–White syndrome, arising from mutations in AMP-activated protein kinase (AMPK), most notably, accelerated atrioventricular conduction and impaired AMPK activation. To test conclusively the biochemical connection from TAK1 to AMPK suggested by this phenotype, we disrupted TAK1 in mouse embryos and embryonic fibroblasts by Cre-mediated recombination. In TAK1-null embryos, the activating phosphorylation of AMPK at T172 was blocked, accompanied by defective AMPK activity. However, loss of endogenous TAK1 causes midgestation lethality, with defective yolk sac and intraembryonic vasculature. To preclude confounding lethal defects, we acutely ablated floxed TAK1 in culture by viral delivery of Cre. In culture, endogenous TAK1 was activated by oligomycin, the antidiabetic drug metformin, 5-aminoimidazole-4-carboxamide riboside (AICAR), and ischemia, well established triggers of AMPK activity. Loss of TAK1 in culture blocked T172 phosphorylation induced by all three agents, interfered with AMPK activation, impaired phosphorylation of the endogenous AMPK substrate acetyl CoA carboxylase, and also interfered with activation of the AMPK kinase LKB1. Thus, by disrupting the endogenous TAK1 locus, we prove a pivotal role for TAK1 in the LKB1/AMPK signaling axis, an essential governor of cell metabolism. PMID:17085580

  10. A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway.

    Science.gov (United States)

    Xie, Min; Zhang, Dou; Dyck, Jason R B; Li, Yi; Zhang, Hui; Morishima, Masae; Mann, Douglas L; Taffet, George E; Baldini, Antonio; Khoury, Dirar S; Schneider, Michael D

    2006-11-14

    TGF-beta-activated kinase-1 (TAK1), also known as MAPKK kinase-7 (MAP3K7), is a candidate effector of multiple circuits in cardiac biology and disease. Here, we show that inhibition of TAK1 in mice by a cardiac-specific dominant-negative mutation evokes electrophysiological and biochemical properties reminiscent of human Wolff-Parkinson-White syndrome, arising from mutations in AMP-activated protein kinase (AMPK), most notably, accelerated atrioventricular conduction and impaired AMPK activation. To test conclusively the biochemical connection from TAK1 to AMPK suggested by this phenotype, we disrupted TAK1 in mouse embryos and embryonic fibroblasts by Cre-mediated recombination. In TAK1-null embryos, the activating phosphorylation of AMPK at T172 was blocked, accompanied by defective AMPK activity. However, loss of endogenous TAK1 causes midgestation lethality, with defective yolk sac and intraembryonic vasculature. To preclude confounding lethal defects, we acutely ablated floxed TAK1 in culture by viral delivery of Cre. In culture, endogenous TAK1 was activated by oligomycin, the antidiabetic drug metformin, 5-aminoimidazole-4-carboxamide riboside (AICAR), and ischemia, well established triggers of AMPK activity. Loss of TAK1 in culture blocked T172 phosphorylation induced by all three agents, interfered with AMPK activation, impaired phosphorylation of the endogenous AMPK substrate acetyl CoA carboxylase, and also interfered with activation of the AMPK kinase LKB1. Thus, by disrupting the endogenous TAK1 locus, we prove a pivotal role for TAK1 in the LKB1/AMPK signaling axis, an essential governor of cell metabolism.

  11. TOR Complex 2-Regulated Protein Kinase Fpk1 Stimulates Endocytosis via Inhibition of Ark1/Prk1-Related Protein Kinase Akl1 in Saccharomyces cerevisiae.

    Science.gov (United States)

    Roelants, Françoise M; Leskoske, Kristin L; Pedersen, Ross T A; Muir, Alexander; Liu, Jeffrey M-H; Finnigan, Gregory C; Thorner, Jeremy

    2017-04-01

    Depending on the stress, plasma membrane alterations activate or inhibit yeast target of rapamycin (TOR) complex 2, which, in turn, upregulates or downregulates the activity of its essential downstream effector, protein kinase Ypk1. Through phosphorylation of multiple substrates, Ypk1 controls many processes that restore homeostasis. One such substrate is protein kinase Fpk1, which is negatively regulated by Ypk1. Fpk1 phosphorylates and stimulates flippases that translocate aminoglycerophospholipids from the outer to the inner leaflet of the plasma membrane. Fpk1 has additional roles, but other substrates were uncharacterized. We show that Fpk1 phosphorylates and inhibits protein kinase Akl1, related to protein kinases Ark1 and Prk1, which modulate the dynamics of actin patch-mediated endocytosis. Akl1 has two Fpk1 phosphorylation sites (Ark1 and Prk1 have none) and is hypophosphorylated when Fpk1 is absent. Conversely, under conditions that inactivate TORC2-Ypk1 signaling, which alleviates Fpk1 inhibition, Akl1 is hyperphosphorylated. Monitoring phosphorylation of known Akl1 substrates (Sla1 and Ent2) confirmed that Akl1 is hyperactive when not phosphorylated by Fpk1. Fpk1-mediated negative regulation of Akl1 enhances endocytosis, because an Akl1 mutant immune to Fpk1 phosphorylation causes faster dissociation of Sla1 from actin patches, confers elevated resistance to doxorubicin (a toxic compound whose entry requires endocytosis), and impedes Lucifer yellow uptake (a marker of fluid phase endocytosis). Thus, TORC2-Ypk1, by regulating Fpk1-mediated phosphorylation of Akl1, adjusts the rate of endocytosis. Copyright © 2017 Roelants et al.

  12. Extracellular signal-regulated kinase is essential for interleukin-1-induced and nuclear factor kappaB-mediated gene expression in insulin-producing INS-1E cells

    DEFF Research Database (Denmark)

    Larsen, Lykke; Størling, J; Darville, M

    2005-01-01

    The beta cell destruction and insulin deficiency that characterises type 1 diabetes mellitus is partially mediated by cytokines, such as IL-1beta, and by nitric oxide (NO)-dependent and -independent effector mechanisms. IL-1beta activates mitogen-activated protein kinases (MAPKs), including...... extracellular signal-regulated kinase (ERK), p38 and c-Jun NH2-terminal kinase (JNK), and the nuclear factor kappa B (NFkappaB) pathway. Both pathways are required for expression of the gene encoding inducible nitric oxide synthase (iNOS) and for IL-1beta-mediated beta cell death. The molecular mechanisms...... by which these two pathways regulate beta cell Nos2 expression are currently unknown. Therefore, the aim of this study was to clarify the putative crosstalk between MAPK and NFkappaB activation in beta cells....

  13. Characterizing and measuring endocytosis of lipid-binding effectors in mammalian cells.

    Science.gov (United States)

    Clark, Helen R; Hayes, Tristan A; Kale, Shiv D

    2014-01-01

    Pathogen-host interactions are mediated in part by secreted microbial proteins capable of exploiting host cells for their survival. Several of these manipulations involve, but are not limited to, suppression of defense responses, alterations in host vesicular trafficking, and manipulation of gene expression. The delivery of such molecules from microbe to host has been of intense interest in several microbe-host systems. Several well-studied bacterial effectors are delivered directly into host cells through a needle injection apparatus. Conversely, there have been several examples of secreted effectors and protein toxins from bacteria and eukaryotic microbes, such as fungi and oomycetes, being internalized into host cells by receptor-mediated endocytosis. In the following chapter, we discuss various techniques utilized to measure these endocytosed lipid-binding effectors that can be delivered in the absence of the pathogen. © 2014 Elsevier Inc. All rights reserved.

  14. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis.

    Science.gov (United States)

    Liu, Tingli; Song, Tianqiao; Zhang, Xiong; Yuan, Hongbo; Su, Liming; Li, Wanlin; Xu, Jing; Liu, Shiheng; Chen, Linlin; Chen, Tianzi; Zhang, Meixiang; Gu, Lichuan; Zhang, Baolong; Dou, Daolong

    2014-08-26

    Plant diseases caused by fungi and oomycetes pose an increasing threat to food security and ecosystem health worldwide. These filamentous pathogens, while taxonomically distinct, modulate host defense responses by secreting effectors, which are typically identified based on the presence of signal peptides. Here we show that Phytophthora sojae and Verticillium dahliae secrete isochorismatases (PsIsc1 and VdIsc1, respectively) that are required for full pathogenesis. PsIsc1 and VdIsc1 can suppress salicylate-mediated innate immunity in planta and hydrolyse isochorismate in vitro. A conserved triad of catalytic residues is essential for both functions. Thus, the two proteins are isochorismatase effectors that disrupt the plant salicylate metabolism pathway by suppressing its precursor. Furthermore, these proteins lack signal peptides, but exhibit characteristics that lead to unconventional secretion. Therefore, this secretion pathway is a novel mechanism for delivering effectors and might play an important role in host-pathogen interactions.

  15. Simulation modeling and tracing optimal trajectory of robotic mining machine effector

    Science.gov (United States)

    Fryanov, VN; Pavlova, LD

    2017-02-01

    Within the framework of the robotic coal mine design for deep-level coal beds with the high gas content in the seismically active areas in the southern Kuzbass, the motion path parameters for an effector of a robotic mining machine are evaluated. The simulation model is meant for selection of minimum energy-based optimum trajectory for the robot effector, calculation of stresses and strains in a coal bed in a variable perimeter shortwall in the course of coal extraction, determination of coordinates of a coal bed edge area with the maximum disintegration of coal, and for choice of direction of the robot effector to get in contact with the mentioned area and to break coal at the minimum energy input. It is suggested to use the model in the engineering of the robot intelligence.

  16. Candidate effectors contribute to race differentiation and virulence of the lentil anthracnose pathogen Colletotrichum lentis.

    Science.gov (United States)

    Bhadauria, Vijai; MacLachlan, Ron; Pozniak, Curtis; Banniza, Sabine

    2015-08-22

    The hemibiotroph Colletotrichum lentis, causative agent of anthracnose on Lens culinaris (lentil) was recently described as a new species. During its interaction with the host plant, C. lentis likely secretes numerous effector proteins, including toxins to alter the plant's innate immunity, thereby gaining access to the host tissues for nutrition and reproduction. In silico analysis of 2000 ESTs generated from C. lentis-infected lentil leaf tissues identified 15 candidate effectors. In planta infection stage-specific gene expression waves among candidate effectors were revealed for the appressorial penetration phase, biotrophic phase and necrotrophic phase. No sign of positive selection pressure [ω (dN/dS) Colletotrichum. ClToxB is further characterized as a host-specific toxin that is likely to contribute to quantitative differences in virulence between the races 0 and 1.

  17. Transcription Factor Networks Directing the Development, Function, and Evolution of Innate Lymphoid Effectors

    Science.gov (United States)

    Kang, Joonsoo; Malhotra, Nidhi

    2015-01-01

    Mammalian lymphoid immunity is mediated by fast and slow responders to pathogens. Fast innate lymphocytes are active within hours after infections in mucosal tissues. Slow adaptive lymphocytes are conventional T and B cells with clonal antigen receptors that function days after pathogen exposure. A transcription factor (TF) regulatory network guiding early T cell development is at the core of effector function diversification in all innate lymphocytes, and the kinetics of immune responses is set by developmental programming. Operational units within the innate lymphoid system are not classified by the types of pathogen-sensing machineries but rather by discrete effector functions programmed by regulatory TF networks. Based on the evolutionary history of TFs of the regulatory networks, fast effectors likely arose earlier in the evolution of animals to fortify body barriers, and in mammals they often develop in fetal ontogeny prior to the establishment of fully competent adaptive immunity. PMID:25650177

  18. Guanosine triphosphatase activating protein (GAP) interacts with the p21 ras effector binding domain

    DEFF Research Database (Denmark)

    Adari, H; Lowy, D R; Willumsen, B M

    1988-01-01

    -ras as well as with N-ras proteins. To identify the region of ras p21 with which GAP interacts, 21 H-ras mutant proteins were purified and tested for their ability to undergo stimulation of GTPase activity by GAP. Mutations in nonessential regions of H-ras p21 as well as mutations in its carboxyl....... Transforming mutations at positions 12, 59, and 61 (the phosphoryl binding region) abolished GTPase stimulation by GAP. Point mutations in the putative effector region of ras p21 (amino acids 35, 36, and 38) were also insensitive to GAP. However, a point mutation at position 39, shown previously not to impair...... effector function, did not alter GAP-p21 interaction. These results indicate that GAP interaction may be essential for ras p21 biological activity and that it may be a ras effector protein....

  19. A systems biology perspective on plant-microbe interactions: biochemical and structural targets of pathogen effectors.

    Science.gov (United States)

    Pritchard, Leighton; Birch, Paul

    2011-04-01

    Plants have biochemical defences against stresses from predators, parasites and pathogens. In this review we discuss the interaction of plant defences with microbial pathogens such as bacteria, fungi and oomycetes, and viruses. We examine principles of complex dynamic networks that allow identification of network components that are differentially and predictably sensitive to perturbation, thus making them likely effector targets. We relate these principles to recent developments in our understanding of known effector targets in plant-pathogen systems, and propose a systems-level framework for the interpretation and modelling of host-microbe interactions mediated by effectors. We describe this framework briefly, and conclude by discussing useful experimental approaches for populating this framework. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Role of Rab family GTPases and their effectors in melanosomal logistics.

    Science.gov (United States)

    Ohbayashi, Norihiko; Fukuda, Mitsunori

    2012-04-01

    Rab GTPases constitute a family of small GTPases that regulate a variety of membrane trafficking events in all eukaryotic cells by recruiting their specific effector molecules. Recent accumulating evidence indicates that members of the mammalian Rab small GTPase family are involved in certain physiological and pathological processes. In particular, functional impairments of specific Rab proteins, e.g. Rab38 and Rab27A, their regulators or their effectors cause pigmentation disorders in humans and coat colour variations in mice because such impairments cause defects in melanosomal logistics, i.e. defects in melanosome biogenesis and transport. Genetic and biochemical analyses of the gene products responsible for mammalian pigmentation disorders in the past decade have revealed that Rab-mediated endosomal transport systems and melanosome transport systems play crucial roles in the efficient darkening of mammalian hair and skin. In this article, we review current knowledge regarding melanosomal logistics, with particular focus on the roles of Rab small GTPases and their effectors.

  1. CD152 (CTLA-4) regulates effector functions of CD8+ T lymphocytes by repressing Eomesodermin.

    Science.gov (United States)

    Hegel, Johannes K; Knieke, Karin; Kolar, Paula; Reiner, Steven L; Brunner-Weinzierl, Monika C

    2009-03-01

    CD8(+) T lymphocytes are required for effective host defense against pathogens and also for mediating effector responses against uncontrolled proliferating self-tissues. In this study, we determine that individual CD8(+) T cells are tightly controlled in their effector functions by CD152 (CTLA-4). We demonstrate that signals induced by CD152 reduce the frequency of IFN-gamma and granzyme B expressing CD8(+) T cells independently of the transcription factors T-bet or cKrox by selectively inhibiting accumulation of Eomesodermin mRNA and protein. Ectopic expression of Eomesodermin reversed the CD152-mediated inhibition of effector molecule production. Additionally, enhanced cytotoxicity of individual CD8(+) T cells differentiated in the absence of CD152 signaling was determined in vivo. These novel insights extend our understanding of how immune responses of CD8(+) T cells are selectively modulated.

  2. The role of effectors of biotrophic and hemibiotrophic fungi in infection.

    Science.gov (United States)

    Koeck, Markus; Hardham, Adrienne R; Dodds, Peter N

    2011-12-01

    Biotrophic and hemibiotrophic fungi are successful groups of plant pathogens that require living plant tissue to survive and complete their life cycle. Members of these groups include the rust fungi and powdery mildews and species in the Ustilago, Cladosporium and Magnaporthe genera. Collectively, they represent some of the most destructive plant parasites, causing huge economic losses and threatening global food security. During plant infection, pathogens synthesize and secrete effector proteins, some of which are translocated into the plant cytosol where they can alter the host's response to the invading pathogen. In a successful infection, pathogen effectors facilitate suppression of the plant's immune system and orchestrate the reprogramming of the infected tissue so that it becomes a source of nutrients that are required by the pathogen to support its growth and development. This review summarizes our current understanding of the function of fungal effectors in infection. © 2011 Blackwell Publishing Ltd.

  3. Structural basis for sequence-specific recognition of DNA by TAL effectors

    KAUST Repository

    Deng, Dong

    2012-01-05

    TAL (transcription activator-like) effectors, secreted by phytopathogenic bacteria, recognize host DNA sequences through a central domain of tandem repeats. Each repeat comprises 33 to 35 conserved amino acids and targets a specific base pair by using two hypervariable residues [known as repeat variable diresidues (RVDs)] at positions 12 and 13. Here, we report the crystal structures of an 11.5-repeat TAL effector in both DNA-free and DNA-bound states. Each TAL repeat comprises two helices connected by a short RVD-containing loop. The 11.5 repeats form a right-handed, superhelical structure that tracks along the sense strand of DNA duplex, with RVDs contacting the major groove. The 12th residue stabilizes the RVD loop, whereas the 13th residue makes a base-specific contact. Understanding DNA recognition by TAL effectors may facilitate rational design of DNA-binding proteins with biotechnological applications.

  4. Thymidine kinase diversity in bacteria

    DEFF Research Database (Denmark)

    Sandrini, Michael; Clausen, A.R.; Munch-Petersen, B.

    2006-01-01

    Thymidine kinases (TKs) appear to be almost ubiquitous and are found in nearly all prokaryotes, eukaryotes, and several viruses. They are the key enzymes in thymidine salvage and activation of several anti-cancer and antiviral drugs. We show that bacterial TKs can be subdivided into 2 groups. The....... The TKs from Gram-positive bacteria are more closely related to the eukaryotic TK1 enzymes than are TKs from Gram-negative bacteria....

  5. Oncoprotein protein kinase antibody kit

    Science.gov (United States)

    Karin, Michael [San Diego, CA; Hibi, Masahiko [San Diego, CA; Lin, Anning [La Jolla, CA

    2008-12-23

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  6. DMPD: Bruton's tyrosine kinase (Btk)-the critical tyrosine kinase in LPS signalling? [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15081522 Bruton's tyrosine kinase (Btk)-the critical tyrosine kinase in LPS signall...ruton's tyrosine kinase (Btk)-the critical tyrosine kinase in LPS signalling? PubmedID 15081522 Title Bruton...'s tyrosine kinase (Btk)-the critical tyrosine kinase in LPS signalling? Authors

  7. Establishment of pten knockout medaka with transcription activator-like effector nucleases (TALENs as a model of PTEN deficiency disease.

    Directory of Open Access Journals (Sweden)

    Yuriko Matsuzaki

    Full Text Available Phosphatase and tensin homolog (PTEN is a lipid and protein phosphatase that antagonizes signaling by the phosphatidylinositol 3-kinase (PI3K-AKT signaling pathway. The PTEN gene is a major tumor suppressor, with mutations of this gene occurring frequently in tumors of humans and mice. We have now developed mutant medaka deficient in PTEN with the use of transcription activator-like effector nuclease (TALEN technology. Medaka possesses two pten genes, ptena and ptenb, similar to zebrafish. We established 16 ptena mutant lines and two ptenb mutant lines. Homozygous single pten mutants were found to be viable and fertile. In contrast, pten double-knockout (dko embryos manifested severe abnormalities in vasculogenesis, eye size, and tail development at 72 hours post fertilization(hpf and died before hatching. Immunoblot analysis revealed that the ratio of phosphorylated to total forms of AKT (pAKT/AKT in pten dko embryos was four times that in wild-type embryos, indicative of up-regulation of signaling by the PI3K-AKT pathway. Treatment of pten dko embryos with the PI3K inhibitor LY294002 reduced the pAKT/AKT ratio by about one-half and partially rescued the defect in vasculogenesis. Additional inhibitors of the PI3K-AKT pathway, including rapamycin and N-α-tosyl-L-phenylalanyl chloromethyl ketone, also partially restored vasculogenesis in the dko embryos. Our model system thus allows pten dko embryos to be readily distinguished from wild-type embryos at an early stage of development and is suitable for the screening of drugs able to compensate for PTEN deficiency.

  8. TAL effectors and activation of predicted host targets distinguish Asian from African strains of the rice pathogen Xanthomonas oryzae pv. oryzicola while strict conservation suggests universal importance of five TAL effectors

    Directory of Open Access Journals (Sweden)

    Katherine E. Wilkins

    2015-07-01

    Full Text Available Xanthomonas oryzae pv. oryzicola (Xoc causes the increasingly important disease bacterial leaf streak of rice (BLS in part by type III delivery of repeat-rich transcription activator-like (TAL effectors to upregulate host susceptibility genes. By pathogen whole genome, single molecule, real-time sequencing and host RNA sequencing, we compared TAL effector content and rice transcriptional responses across 10 geographically diverse Xoc strains. TAL effector content is surprisingly conserved overall, yet distinguishes Asian from African isolates. Five TAL effectors are conserved across all strains. In a prior laboratory assay in rice cv. Nipponbare, only two contributed to virulence in strain BLS256 but the strict conservation indicates all five may be important, in different rice genotypes or in the field. Concatenated and aligned, TAL effector content across strains largely reflects relationships based on housekeeping genes, suggesting predominantly vertical transmission. Rice transcriptional responses did not reflect these relationships, and on average, only 28% of genes upregulated and 22% of genes downregulated by a strain are up- and downregulated (respectively by all strains. However, when only known TAL effector targets were considered, the relationships resembled those of the TAL effectors. Toward identifying new targets, we used the TAL effector-DNA recognition code to predict effector binding elements in promoters of genes upregulated by each strain, but found that for every strain, all upregulated genes had at least one. Filtering with a classifier we developed previously decreases the number of predicted binding elements across the genome, suggesting that it may reduce false positives among upregulated genes. Applying this filter and eliminating genes for which upregulation did not strictly correlate with presence of the corresponding TAL effector, we generated testable numbers of candidate targets for four of the five strictly

  9. A generalized quantitative antibody homeostasis model: maintenance of global antibody equilibrium by effector functions.

    Science.gov (United States)

    Prechl, József

    2017-11-01

    The homeostasis of antibodies can be characterized as a balanced production, target-binding and receptor-mediated elimination regulated by an interaction network, which controls B-cell development and selection. Recently, we proposed a quantitative model to describe how the concentration and affinity of interacting partners generates a network. Here we argue that this physical, quantitative approach can be extended for the interpretation of effector functions of antibodies. We define global antibody equilibrium as the zone of molar equivalence of free antibody, free antigen and immune complex concentrations and of dissociation constant of apparent affinity: [Ab]=[Ag]=[AbAg]= K D . This zone corresponds to the biologically relevant K D range of reversible interactions. We show that thermodynamic and kinetic properties of antibody-antigen interactions correlate with immunological functions. The formation of stable, long-lived immune complexes correspond to a decrease of entropy and is a prerequisite for the generation of higher-order complexes. As the energy of formation of complexes increases, we observe a gradual shift from silent clearance to inflammatory reactions. These rules can also be applied to complement activation-related immune effector processes, linking the physicochemical principles of innate and adaptive humoral responses. Affinity of the receptors mediating effector functions shows a wide range of affinities, allowing the continuous sampling of antibody-bound antigen over the complete range of concentrations. The generation of multivalent, multicomponent complexes triggers effector functions by crosslinking these receptors on effector cells with increasing enzymatic degradation potential. Thus, antibody homeostasis is a thermodynamic system with complex network properties, nested into the host organism by proper immunoregulatory and effector pathways. Maintenance of global antibody equilibrium is achieved by innate qualitative signals modulating a

  10. Coxiella burnetii effector proteins that localize to the parasitophorous vacuole membrane promote intracellular replication.

    Science.gov (United States)

    Larson, Charles L; Beare, Paul A; Voth, Daniel E; Howe, Dale; Cockrell, Diane C; Bastidas, Robert J; Valdivia, Raphael H; Heinzen, Robert A

    2015-02-01

    The intracellular bacterial pathogen Coxiella burnetii directs biogenesis of a parasitophorous vacuole (PV) that acquires host endolysosomal components. Formation of a PV that supports C. burnetii replication requires a Dot/Icm type 4B secretion system (T4BSS) that delivers bacterial effector proteins into the host cell cytosol. Thus, a subset of T4BSS effectors are presumed to direct PV biogenesis. Recently, the PV-localized effector protein CvpA was found to promote C. burnetii intracellular growth and PV expansion. We predict additional C. burnetii effectors localize to the PV membrane and regulate eukaryotic vesicle trafficking events that promote pathogen growth. To identify these vacuolar effector proteins, a list of predicted C. burnetii T4BSS substrates was compiled using bioinformatic criteria, such as the presence of eukaryote-like coiled-coil domains. Adenylate cyclase translocation assays revealed 13 proteins were secreted in a Dot/Icm-dependent fashion by C. burnetii during infection of human THP-1 macrophages. Four of the Dot/Icm substrates, termed Coxiella vacuolar protein B (CvpB), CvpC, CvpD, and CvpE, labeled the PV membrane and LAMP1-positive vesicles when ectopically expressed as fluorescently tagged fusion proteins. C. burnetii ΔcvpB, ΔcvpC, ΔcvpD, and ΔcvpE mutants exhibited significant defects in intracellular replication and PV formation. Genetic complementation of the ΔcvpD and ΔcvpE mutants rescued intracellular growth and PV generation, whereas the growth of C. burnetii ΔcvpB and ΔcvpC was rescued upon cohabitation with wild-type bacteria in a common PV. Collectively, these data indicate C. burnetii encodes multiple effector proteins that target the PV membrane and benefit pathogen replication in human macrophages. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Effector-independent motor sequence representations exist in extrinsic and intrinsic reference frames.

    Science.gov (United States)

    Wiestler, Tobias; Waters-Metenier, Sheena; Diedrichsen, Jörn

    2014-04-02

    Many daily activities rely on the ability to produce meaningful sequences of movements. Motor sequences can be learned in an effector-specific fashion (such that benefits of training are restricted to the trained hand) or an effector-independent manner (meaning that learning also facilitates performance with the untrained hand). Effector-independent knowledge can be represented in extrinsic/world-centered or in intrinsic/body-centered coordinates. Here, we used functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis to determine the distribution of intrinsic and extrinsic finger sequence representations across the human neocortex. Participants practiced four sequences with one hand for 4 d, and then performed these sequences during fMRI with both left and right hand. Between hands, these sequences were equivalent in extrinsic or intrinsic space, or were unrelated. In dorsal premotor cortex (PMd), we found that sequence-specific activity patterns correlated higher for extrinsic than for unrelated pairs, providing evidence for an extrinsic sequence representation. In contrast, primary sensory and motor cortices showed effector-independent representations in intrinsic space, with considerable overlap of the two reference frames in caudal PMd. These results suggest that effector-independent representations exist not only in world-centered, but also in body-centered coordinates, and that PMd may be involved in transforming sequential knowledge between the two. Moreover, although effector-independent sequence representations were found bilaterally, they were stronger in the hemisphere contralateral to the trained hand. This indicates that intermanual transfer relies on motor memories that are laid down during training in both hemispheres, but preferentially draws upon sequential knowledge represented in the trained hemisphere.

  12. A combination of tyrosine kinase inhibitors, crizotinib and dasatinib for the treatment of glioblastoma multiforme.

    Science.gov (United States)

    Nehoff, Hayley; Parayath, Neha N; McConnell, Melanie J; Taurin, Sebastien; Greish, Khaled

    2015-11-10

    Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor. Despite the advances in surgery, radiotherapy and chemotherapy, patient survival averages only 14.6 months. In most GBM tumors, tyrosine kinases show increased activity and/or expression and actively contribute to the development, recurrence and onset of treatment resistance; making their inhibition an appealing therapeutic strategy. We compared the cytotoxicity of 12 tyrosine kinase inhibitors in vitro. A combination of crizotinib and dasatinib emerged as the most cytotoxic across established and primary human GBM cell lines. The combination treatment induced apoptotic cell death and polyploidy. Furthermore, the combination treatment led to the altered expression and localization of several tyrosine kinase receptors such as Met and EGFR and downstream effectors as such as SRC. Furthermore, the combination treatment reduced the migration and invasion of GBM cells and prevented endothelial cell tube formation in vitro. Overall, our study demonstrated the broad specificity of a combination of crizotinib and dasatinib across multiple GBM cell lines. These findings provide insight into the development of alternative therapy for the treatment of GBM.

  13. mTOR Kinase: A Possible Pharmacological Target in the Management of Chronic Pain

    Directory of Open Access Journals (Sweden)

    Lucia Lisi

    2015-01-01

    Full Text Available Chronic pain represents a major public health problem worldwide. Current pharmacological treatments for chronic pain syndromes, including neuropathic pain, are only partially effective, with significant pain relief achieved in 40–60% of patients. Recent studies suggest that the mammalian target of rapamycin (mTOR kinase and downstream effectors may be implicated in the development of chronic inflammatory, neuropathic, and cancer pain. The expression and activity of mTOR have been detected in peripheral and central regions involved in pain transmission. mTOR immunoreactivity was found in primary sensory axons, in dorsal root ganglia (DRG, and in dorsal horn neurons. This kinase is a master regulator of protein synthesis, and it is critically involved in the regulation of several neuronal functions, including the synaptic plasticity that is a major mechanism leading to the development of chronic pain. Enhanced activation of this pathway is present in different experimental models of chronic pain. Consistently, pharmacological inhibition of the kinase activity turned out to have significant antinociceptive effects in several experimental models of inflammatory and neuropathic pain. We will review the main evidence from animal and human studies supporting the hypothesis that mTOR may be a novel pharmacological target for the management of chronic pain.

  14. Growth Inhibition by Bupivacaine Is Associated with Inactivation of Ribosomal Protein S6 Kinase 1

    Directory of Open Access Journals (Sweden)

    Mushtaq Ahmad Beigh

    2014-01-01

    Full Text Available Bupivacaine is an amide type long acting local anesthetic used for epidural anesthesia and nerve blockade in patients. Use of bupivacaine is associated with severe cytotoxicity and apoptosis along with inhibition of cell growth and proliferation. Although inhibition of Erk, Akt, and AMPK seemingly appears to mediate some of the bupivacaine effects, potential downstream targets that mediate its effect remain unknown. S6 kinase 1 is a common downstream effector of several growth regulatory pathways involved in cell growth and proliferation known to be affected by bupivacaine. We have accordingly attempted to relate the growth inhibitory effects of bupivacaine with the status of S6K1 activity and we present evidence that decrease in cell growth and proliferation by bupivacaine is mediated through inactivation of S6 kinase 1 in a concentration and time dependent manner. We also show that ectopic expression of constitutively active S6 kinase 1 imparts substantial protection from bupivacaine induced cytotoxicity. Inactivation of S6K1 though associated with loss of putative mTOR mediated phosphorylation did not correspond with loss of similar phosphorylations in 4EBP1 indicating that S6K1 inhibition was not mediated through inactivation of mTORC1 signaling pathway or its down regulation.

  15. Expression of HopAI interferes with MAP kinase signalling in Magnaporthe oryzae.

    Science.gov (United States)

    Zhang, Xue; Liu, Wende; Li, Yang; Li, Guotian; Xu, Jin-Rong

    2017-10-01

    The Pmk1 and Mps1 MAP kinases are essential for appressorium formation and plant infection in Magnaporthe oryzae. However, their exact roles during invasive growth are not clear because pmk1 and mps1 mutants are defective in penetration. To further characterize their functions after penetration, in this study we expressed the Pseudomonas syringae effector HopAI known to inactivate plant MAP kinases in M. oryzae. Constitutive expression of HopAI with the RP27 or TrpC promoter resulted in defects in hyphal growth, conidiation, appressorium penetration and pathogenicity, which is similar to the phenotype of the mps1 mutant. HopAI interacted strongly with Mps1 in vivo and expression of dominant active MKK2 partially suppressed the defects of PRP27 -HopAI transformants, which were significantly reduced in Mps1 phosphorylation. When the infection-specific MIR1 (Magnaporthe-infection-related gene-1) promoter was used to express HopAI, PMIR1 -HopAI transformants were defective in the spreading of invasive hyphae and elicited strong defense responses in penetrated plant cells. Expression of HopAI in Fusarium graminearum also mainly affected the activation of Mgv1, an Mps1 orthologue. Taken together, our results showed that Mps1 is the major intracellular target of HopAI when it is overexpressed, and MAP kinase signalling is important for cell-to-cell movement of invasive hyphae in M. oryzae. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. A bifurcated signaling cascade of NIMA-related kinases controls distinct kinesins in anaphase.

    Science.gov (United States)

    Cullati, Sierra N; Kabeche, Lilian; Kettenbach, Arminja N; Gerber, Scott A

    2017-08-07

    In mitosis, cells undergo a precisely orchestrated series of spatiotemporal changes in cytoskeletal structure to divide their genetic material. These changes are coordinated by a sophisticated network of protein-protein interactions and posttranslational modifications. In this study, we report a bifurcation in a signaling cascade of the NIMA-related kinases (Neks) Nek6, Nek7, and Nek9 that is required for the localization and function of two kinesins essential for cytokinesis, Mklp2 and Kif14. We demonstrate that a Nek9, Nek6, and Mklp2 signaling module controls the timely localization and bundling activity of Mklp2 at the anaphase central spindle. We further show that a separate Nek9, Nek7, and Kif14 signaling module is required for the recruitment of the Rho-interacting kinase citron to the anaphase midzone. Our findings uncover an anaphase-specific function for these effector kinesins that is controlled by specific Nek kinase signaling modules to properly coordinate cytokinesis. © 2017 Cullati et al.

  17. Design of a Robot End-Effector Grabbing Mechanism Based on a Bionic Snake Mouth

    OpenAIRE

    Fu Zhuang; Zhou Hangfei; Liu Zijuan; Fei Jian; Yan Weixin; Zhao Yanzheng

    2013-01-01

    Inspired by the bite and swallowing function of a snake’s mouth, a robot end‐effector grabbing mechanism was designed. The grabbing movement is realized by the ‘bite’ function of the bionic snake mouth actuator, and the ‘swallowing’ function insures a continuous grip on the object. To implement the continuous grip function of the new robot end‐effector, the complex motion of a snake’s mouth is simplified into three basic movements based on the anatomy of a snake’s mouth and with a combination...

  18. Granulocytes: effector cells or immunomodulators in the immune response to helminth infection?

    Science.gov (United States)

    Cadman, E T; Lawrence, R A

    2010-01-01

    Granulocytes are effector cells in defence against helminth infections. We review the current evidence for the role of granulocytes in protective immunity against different helminth infections and note that for each parasite species the role of granulocytes as effector cells can vary. Emerging evidence also points to granulocytes as immunomodulatory cells able to produce many cytokines, chemokines and modulatory factors which can bias the immune response in a particular direction. Thus, the role of granulocytes in an immunomodulatory context is discussed including the most recent data that points to an important role for basophils under this guise.

  19. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor

    Science.gov (United States)

    Dagdas, Yasin F; Belhaj, Khaoula; Maqbool, Abbas; Chaparro-Garcia, Angela; Pandey, Pooja; Petre, Benjamin; Tabassum, Nadra; Cruz-Mireles, Neftaly; Hughes, Richard K; Sklenar, Jan; Win, Joe; Menke, Frank; Findlay, Kim; Banfield, Mark J; Kamoun, Sophien; Bozkurt, Tolga O

    2016-01-01

    Plants use autophagy to safeguard against infectious diseases. However, how plant pathogens interfere with autophagy-related processes is unknown. Here, we show that PexRD54, an effector from the Irish potato famine pathogen Phytophthora infestans, binds host autophagy protein ATG8CL to stimulate autophagosome formation. PexRD54 depletes the autophagy cargo receptor Joka2 out of ATG8CL complexes and interferes with Joka2's positive effect on pathogen defense. Thus, a plant pathogen effector has evolved to antagonize a host autophagy cargo receptor to counteract host defenses. DOI: http://dx.doi.org/10.7554/eLife.10856.001 PMID:26765567

  20. A proteomic approach for comprehensively screening substrates of protein kinases such as Rho-kinase.

    Directory of Open Access Journals (Sweden)

    Mutsuki Amano

    Full Text Available BACKGROUND: Protein kinases are major components of signal transduction pathways in multiple cellular processes. Kinases directly interact with and phosphorylate downstream substrates, thus modulating their functions. Despite the importance of identifying substrates in order to more fully understand the signaling network of respective kinases, efficient methods to search for substrates remain poorly explored. METHODOLOGY/PRINCIPAL FINDINGS: We combined mass spectrometry and affinity column chromatography of the catalytic domain of protein kinases to screen potential substrates. Using the active catalytic fragment of Rho-kinase/ROCK/ROK as the model bait, we obtained about 300 interacting proteins from the rat brain cytosol fraction, which included the proteins previously reported as Rho-kinase substrates. Several novel interacting proteins, including doublecortin, were phosphorylated by Rho-kinase both in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE: This method would enable identification of novel specific substrates for kinases such as Rho-kinase with high sensitivity.

  1. Genome-wide transcriptomic analyses provide insights into the lifestyle transition and effector repertoire of Leptosphaeria maculans during the colonization of Brassica napus seedlings.

    Science.gov (United States)

    Haddadi, Parham; Ma, Lisong; Wang, Haiyan; Borhan, M Hossein

    2016-10-01

    Molecular interaction between the causal agent of blackleg disease, Leptosphaeria maculans (Lm), and its host, Brassica napus, is largely unknown. We applied a deep RNA-sequencing approach to gain insight into the pathogenicity mechanisms of Lm and the defence response of B. napus. RNA from the infected susceptible B. napus cultivar Topas DH16516, sampled at 2-day intervals (0-8 days), was sequenced and used for gene expression profiling. Patterns of gene expression regulation in B. napus showed multifaceted defence responses evident by the differential expression of genes encoding the pattern recognition receptor CERK1 (chitin elicitor receptor kinase 1), receptor like proteins and WRKY transcription factors. The up-regulation of genes related to salicylic acid and jasmonic acid at the initial and late stages of infection, respectively, provided evidence for the biotrophic and necrotrophic life stages of Lm during the infection of B. napus cotyledons. Lm transition from biotrophy to necrotropy was also supported by the expression function of Lm necrosis and ethylene-inducing (Nep-1)-like peptide. Genes encoding polyketide synthases and non-ribosomal peptide synthetases, with potential roles in pathogenicity, were up-regulated at 6-8 days after inoculation. Among other plant defence-related genes differentially regulated in response to Lm infection were genes involved in the reinforcement of the cell wall and the production of glucosinolates. Dual RNA-sequencing allowed us to define the Lm candidate effectors expressed during the infection of B. napus. Several candidate effectors suppressed Bax-induced cell death when transiently expressed in Nicotiana benthamaina leaves. © 2015 Her Majesty The Queen in Right of Canada Molecular Plant Pathology © 2015 BSPP and John Wiley & Sons Ltd Reproduced with the permission of the Minister of Agriculture and Agri-Food Canada.

  2. Functional analysis of NopM, a novel E3 ubiquitin ligase (NEL domain effector of Rhizobium sp. strain NGR234.

    Directory of Open Access Journals (Sweden)

    Da-Wei Xin

    Full Text Available Type 3 effector proteins secreted via the bacterial type 3 secretion system (T3SS are not only virulence factors of pathogenic bacteria, but also influence symbiotic interactions between nitrogen-fixing nodule bacteria (rhizobia and leguminous host plants. In this study, we characterized NopM (nodulation outer protein M of Rhizobium sp. strain NGR234, which shows sequence similarities with novel E3 ubiquitin ligase (NEL domain effectors from the human pathogens Shigella flexneri and Salomonella enterica. NopM expressed in Escherichia coli, but not the non-functional mutant protein NopM-C338A, showed E3 ubiquitin ligase activity in vitro. In vivo, NopM, but not inactive NopM-C338A, promoted nodulation of the host plant Lablab purpureus by NGR234. When NopM was expressed in yeast, it inhibited mating pheromone signaling, a mitogen-activated protein (MAP kinase pathway. When expressed in the plant Nicotiana benthamiana, NopM inhibited one part of the plant's defense response, as shown by a reduced production of reactive oxygen species (ROS in response to the flagellin peptide flg22, whereas it stimulated another part, namely the induction of defense genes. In summary, our data indicate the potential for NopM as a functional NEL domain E3 ubiquitin ligase. Our findings that NopM dampened the flg22-induced ROS burst in N. benthamiana but promoted defense gene induction are consistent with the concept that pattern-triggered immunity is split in two separate signaling branches, one leading to ROS production and the other to defense gene induction.

  3. Identification and characterisation of a hyper-variable apoplastic effector gene family of the potato cyst nematodes.

    Directory of Open Access Journals (Sweden)

    Sebastian Eves-van den Akker

    2014-09-01

    Full Text Available Sedentary endoparasitic nematodes are obligate biotrophs that modify host root tissues, using a suite of effector proteins to create and maintain a feeding site that is their sole source of nutrition. Using assumptions about the characteristics of genes involved in plant-nematode biotrophic interactions to inform the identification strategy, we provide a description and characterisation of a novel group of hyper-variable extracellular effectors termed HYP, from the potato cyst nematode Globodera pallida. HYP effectors comprise a large gene family, with a modular structure, and have unparalleled diversity between individuals of the same population: no two nematodes tested had the same genetic complement of HYP effectors. Individuals vary in the number, size, and type of effector subfamilies. HYP effectors are expressed throughout the biotrophic stages in large secretory cells associated with the amphids of parasitic stage nematodes as confirmed by in situ hybridisation. The encoded proteins are secreted into the host roots where they are detectable by immunochemistry in the apoplasm, between the anterior end of the nematode and the feeding site. We have identified HYP effectors in three genera of plant parasitic nematodes capable of infecting a broad range of mono- and dicotyledon crop species. In planta RNAi targeted to all members of the effector family causes a reduction in successful parasitism.

  4. A Meloidogyne incognita effector is imported into the nucleus and exhibits transcriptional activation activity in planta.

    Science.gov (United States)

    Zhang, Lei; Davies, Laura J; Elling, Axel A

    2015-01-01

    Root-knot nematodes are sedentary biotrophic endoparasites that maintain a complex interaction with their host plants. Nematode effector proteins are synthesized in the oesophageal glands of nematodes and secreted into plant tissue through a needle-like stylet. Effectors characterized to date have been shown to mediate processes essential for nematode pathogenesis. To gain an insight into their site of action and putative function, the subcellular localization of 13 previously isolated Meloidogyne incognita effectors was determined. Translational fusions were created between effectors and EGFP-GUS (enhanced green fluorescent protein-β-glucuronidase) reporter genes, which were transiently expressed in tobacco leaf cells. The majority of effectors localized to the cytoplasm, with one effector, 7H08, imported into the nuclei of plant cells. Deletion analysis revealed that the nuclear localization of 7H08 was mediated by two novel independent nuclear localization domains. As a result of the nuclear localization of the effector, 7H08 was tested for the ability to activate gene transcription. 7H08 was found to activate the expression of reporter genes in both yeast and plant systems. This is the first report of a plant-parasitic nematode effector with transcriptional activation activity. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  5. Recognition of Verticillium effector Ave1 by tomato immune receptor Ve1 mediates Verticillium resistance in diverse plant species

    NARCIS (Netherlands)

    Song, Yin

    2017-01-01

    Plant-pathogenic microbes secrete effector molecules to establish disease on their hosts, whereas plants in turn employ immune receptors to try and intercept such effectors in order to prevent pathogen colonization. Based on structure and subcellular location, immune receptors fall into two major

  6. Effector gene suites in some soil isolates of Fusarium oxysporum are not sufficient predictors of vascular wilt in tomato

    Science.gov (United States)

    This is the first study examining the distribution of fungal effector genes among soil populations of Fusarium oxysporum in a tomato field undergoing a wilt disease epidemic. 74 F. oxysporum soil isolates were assayed for known effector genes present in a Race 3 tomato wilt strain (FOL MN-25) obtain...

  7. Partial Diversity Generates Effector Immunity Specificity of the Bac41-Like Bacteriocins of Enterococcus faecalis Clinical Strains

    National Research Council Canada - National Science Library

    Kurushima, Jun; Ike, Yasuyoshi; Tomita, Haruyoshi

    2016-01-01

    Bacteriocin 41 (Bac41) is the plasmid-encoded bacteriocin produced by the opportunistic pathogen Enterococcus faecalis Its genetic determinant consists of bacL1 (effector), bacL2 (regulator), bacA (effector), and bacI (immunity...

  8. Effector Gene Suites in Some Soil Isolates of Fusarium oxysporum Are Not Sufficient Predictors of Vascular Wilt in Tomato.

    Science.gov (United States)

    Jelinski, Nicolas A; Broz, Karen; Jonkers, Wilfried; Ma, Li-Jun; Kistler, H Corby

    2017-07-01

    Seventy-four Fusarium oxysporum soil isolates were assayed for known effector genes present in an F. oxysporum f. sp. lycopersici race 3 tomato wilt strain (FOL MN-25) obtained from the same fields in Manatee County, Florida. Based on the presence or absence of these genes, four haplotypes were defined, two of which represented 96% of the surveyed isolates. These two most common effector haplotypes contained either all or none of the assayed race 3 effector genes. We hypothesized that soil isolates with all surveyed effector genes, similar to FOL MN-25, would be pathogenic toward tomato, whereas isolates lacking all effectors would be nonpathogenic. However, inoculation experiments revealed that presence of the effector genes alone was not sufficient to ensure pathogenicity on tomato. Interestingly, a nonpathogenic isolate containing the full suite of unmutated effector genes (FOS 4-4) appears to have undergone a chromosomal rearrangement yet remains vegetatively compatible with FOL MN-25. These observations confirm the highly dynamic nature of the F. oxysporum genome and support the conclusion that pathogenesis among free-living populations of F. oxysporum is a complex process. Therefore, the presence of effector genes alone may not be an accurate predictor of pathogenicity among soil isolates of F. oxysporum.

  9. A semisynthetic epitope for kinase substrates.

    Science.gov (United States)

    Allen, Jasmina J; Li, Manqing; Brinkworth, Craig S; Paulson, Jennifer L; Wang, Dan; Hübner, Anette; Chou, Wen-Hai; Davis, Roger J; Burlingame, Alma L; Messing, Robert O; Katayama, Carol D; Hedrick, Stephen M; Shokat, Kevan M

    2007-06-01

    The ubiquitous nature of protein phosphorylation makes it challenging to map kinase-substrate relationships, which is a necessary step toward defining signaling network architecture. To trace the activity of individual kinases, we developed a semisynthetic reaction scheme, which results in the affinity tagging of substrates of the kinase in question. First, a kinase, engineered to use a bio-orthogonal ATPgammaS analog, catalyzes thiophosphorylation of its direct substrates. Second, alkylation of thiophosphorylated serine, threonine or tyrosine residues creates an epitope for thiophosphate ester-specific antibodies. We demonstrated the generality of semisynthetic epitope construction with 13 diverse kinases: JNK1, p38alpha MAPK, Erk1, Erk2, Akt1, PKCdelta, PKCepsilon, Cdk1/cyclinB, CK1, Cdc5, GSK3beta, Src and Abl. Application of this approach, in cells isolated from a mouse that expressed endogenous levels of an analog-specific (AS) kinase (Erk2), allowed purification of a direct Erk2 substrate.

  10. Mechanistic Sharing Between NK Cells in ABMR and Effector T Cells in TCMR.

    Science.gov (United States)

    Parkes, M D; Halloran, P F; Hidalgo, L G

    2018-01-01

    Human organ allograft rejection depends on effector lymphocytes: NK cells in antibody-mediated rejection (ABMR) and effector T cells in T cell-mediated rejection (TCMR). We hypothesized that NK cell CD16a stimulation and CD8 T cell TCR/CD3 stimulation represent highly similar effector systems, and should lead to shared molecular changes between ABMR and TCMR. We studied similarity between soluble proteins and the transcripts induced in CD16a stimulated NK cells and TCR/CD3-stimulated T cells in vitro. Of 30 soluble mediators tested, CD16a-activated NK cells and CD3/TCR activated T cells produced the same limited set of five mediators-CCL3, CCL4, CSF2, IFNG, and TNF-and failed to produce 25 others. Many transcripts increased in stimulated NK cells were also increased in CD3-stimulated CD8 T cells (FDR T cells and CD16a-NK cells and all were strongly increased in ABMR and TCMR. The molecules such as CD160 and XCL1 shared between NK cells in ABMR and effector T cells in TCMR may hold insights into important rejection mechanisms. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  11. Comprehensive analysis of the specificity of transcription activator-like effector nucleases

    DEFF Research Database (Denmark)

    Juillerat, Alexandre; Dubois, Gwendoline; Valton, Julien

    2014-01-01

    -like effector nucleases (TALEN). The analysis of >15 500 unique TALEN/DNA cleavage profiles allowed us to monitor the specificity gradient of the RVDs along a TALEN/DNA binding array and to present a specificity scoring matrix for RVD/nucleotide association. Furthermore, we report that TALEN can only...

  12. Combinative effects of a bacterial type-III effector and a biocontrol ...

    Indian Academy of Sciences (India)

    Expression of HpaGXoo, a bacterial type-III effector, in transgenic plants induces disease resistance. Resistance also can be elicited by biocontrol bacteria. In both cases, plant growth is often promoted. Here we address whether biocontrol bacteria and HpaGXoo can act together to provide better results in crop improvement ...

  13. Combinative effects of a bacterial type-III effector and a biocontrol ...

    Indian Academy of Sciences (India)

    Madhu

    acts to suppress salicylic acid-mediated SAR (Xiong and. Yang 2003). SAR, however, serves as a pathway of type-III effectors in harpin group to induce disease resistance when the proteins are applied to plants (Strobel et al 1996; Dong et al 1999) or produced in transgenic plants (Peng et al. 2004b). Nevertheless, plant ...

  14. Phytophthora infestans RXLR effector AVR1 and its host target Sec5

    NARCIS (Netherlands)

    Du, Y.

    2014-01-01

    Summary Late blight, caused by the oomycete Phytophthora infestans, is one of the most devastating potato diseases worldwide. To successfully colonize its host, P. infestans secretes a plethora of RXLR effectors that translocate into host cells to modulate plant defense. The RXLR

  15. Assessing the ability of Salmonella enterica to translocate Type III effectors into plant cells

    Science.gov (United States)

    Salmonella enterica, a human enteric pathogen, has the ability to multiply and survive endophytically in plants, and mutations in genes encoding the type III secretion system (T3SS) or its effectors (T3Es) may contribute to this colonization. Two reporter plasmids for T3E translocation into plant ce...

  16. Rail-guided robotic end-effector position error due to rail compliance and ship motion

    NARCIS (Netherlands)

    Borgerink, Dian; Stegenga, J.; Brouwer, Dannis Michel; Woertche, H.J.; Stramigioli, Stefano

    2014-01-01

    A rail-guided robotic system is currently being designed for the inspection of ballast water tanks in ships. This robotic system will manipulate sensors toward the interior walls of the tank. In this paper, the influence of rail compliance on the end-effector position error due to ship movement is

  17. Identification of virulence factors and type III effectors of Phylotype I ...

    Indian Academy of Sciences (India)

    HP2000

    Remigi P., Anisimova M., Guidot A., Genin S. and Peeter N. 2011 Functional diversification of the GALA type III effector family contributes to Ralstonia solanacearum adaptation on different plant hosts. New Phytol. 192, 976-987. Saile,E., McGarvey, J., Schell, M. and Denny, T. 1997 Role of Extracellular Polysaccharide and.

  18. Evaluation of Salmonella enterica Type III Secretion System Effector Proteins as Carriers for Heterologous Vaccine Antigens

    Science.gov (United States)

    Hegazy, Wael Abdel Halim; Xu, Xin; Metelitsa, Leonid

    2012-01-01

    Live attenuated strains of Salmonella enterica have a high potential as carriers of recombinant vaccines. The type III secretion system (T3SS)-dependent translocation of S. enterica can be deployed for delivery of heterologous antigens to antigen-presenting cells. Here we investigated the efficacy of various effector proteins of the Salmonella pathogenicity island (SPI2)-encoded T3SS for the translocation of model antigens and elicitation of immune responses. The SPI2 T3SS effector proteins SifA, SteC, SseL, SseJ, and SseF share an endosomal membrane-associated subcellular localization after translocation. We observed that all effector proteins could be used to translocate fusion proteins with the model antigens ovalbumin and listeriolysin into the cytosol of host cells. Under in vitro conditions, fusion proteins with SseJ and SteC stimulated T-cell responses that were superior to those triggered by fusion proteins with SseF. However, in mice vaccinated with Salmonella carrier strains, only fusion proteins based on SseJ or SifA elicited potent T-cell responses. These data demonstrate that the selection of an optimal SPI2 effector protein for T3SS-mediated translocation is a critical parameter for the rational design of effective Salmonella-based recombinant vaccines. PMID:22252866

  19. Actin Cytoskeleton Manipulation by Effector Proteins Secreted by Diarrheagenic Escherichia coli Pathotypes

    Directory of Open Access Journals (Sweden)

    Fernando Navarro-Garcia

    2013-01-01

    Full Text Available The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. Disruption of the epithelial barrier coincides with alterations of the actin cytoskeleton in several disease states. These disruptions primarily affect the paracellular space, which is normally regulated by tight junctions. Thereby, the actin cytoskeleton is a common and recurring target of bacterial virulence factors. In order to manipulate the actin cytoskeleton, bacteria secrete and inject toxins and effectors to hijack the host cell machinery, which interferes with host-cell pathways and with a number of actin binding proteins. An interesting model to study actin manipulation by bacterial effectors is Escherichia coli since due to its genome plasticity it has acquired diverse genetic mobile elements, which allow having different E. coli varieties in one bacterial species. These E. coli pathotypes, including intracellular and extracellular bacteria, interact with epithelial cells, and their interactions depend on a specific combination of virulence factors. In this paper we focus on E. coli effectors that mimic host cell proteins to manipulate the actin cytoskeleton. The study of bacterial effector-cytoskeleton interaction will contribute not only to the comprehension of the molecular causes of infectious diseases but also to increase our knowledge of cell biology.

  20. Mutualistic co-evolution of type III effector genes in Sinorhizobium fredii and Bradyrhizobium japonicum.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Kimbrel

    2013-02-01

    Full Text Available Two diametric paradigms have been proposed to model the molecular co-evolution of microbial mutualists and their eukaryotic hosts. In one, mutualist and host exhibit an antagonistic arms race and each partner evolves rapidly to maximize their own fitness from the interaction at potential expense of the other. In the opposing model, conflicts between mutualist and host are largely resolved and the interaction is characterized by evolutionary stasis. We tested these opposing frameworks in two lineages of mutualistic rhizobia, Sinorhizobium fredii and Bradyrhizobium japonicum. To examine genes demonstrably important for host-interactions we coupled the mining of genome sequences to a comprehensive functional screen for type III effector genes, which are necessary for many Gram-negative pathogens to infect their hosts. We demonstrate that the rhizobial type III effector genes exhibit a surprisingly high degree of conservation in content and sequence that is in contrast to those of a well characterized plant pathogenic species. This type III effector gene conservation is particularly striking in the context of the relatively high genome-wide diversity of rhizobia. The evolution of rhizobial type III effectors is inconsistent with the molecular arms race paradigm. Instead, our results reveal that these loci are relatively static in rhizobial lineages and suggest that fitness conflicts between rhizobia mutualists and their host plants have been largely resolved.

  1. Motion control skill assessment based on kinematic analysis of robotic end-effector movements.

    Science.gov (United States)

    Liang, Ke; Xing, Yuan; Li, Jianmin; Wang, Shuxin; Li, Aimin; Li, Jinhua

    2018-02-01

    The performance of robotic end-effector movements can reflect the user's operation skill difference in robot-assisted minimally invasive surgery. This study quantified the trade-off of speed-accuracy-stability by kinematic analysis of robotic end-effector movements to assess the motion control skill of users with different levels of experience. Using 'MicroHand S' system, 10 experts, 10 residents and 10 novices performed single-hand test and bimanual coordination test. Eight metrics based on the movements of robotic end-effectors were applied to evaluate the users' performance. In the single-hand test, experts outperformed other groups except for movement speed; in the bimanual coordination test, experts also performed better except for movement time and movement speed. No statistically significant difference in performance was found between residents and novices. The kinematic differences obtained from the movements of robotic end-effectors can be applied to assess the motion control skill of users with different skill levels. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Virulence of the maize smut Ustilago maydis is shaped by organ-specific effectors.

    Science.gov (United States)

    Schilling, Lena; Matei, Alexandra; Redkar, Amey; Walbot, Virginia; Doehlemann, Gunther

    2014-10-01

    With the exception of Ustilago maydis, smut fungi infecting monocotyledonous hosts systemically colonize infected plants and cause symptoms exclusively in the inflorescences. Ustilago may disinfects primordia of all aerial organs of maize (Zea mays L.) and results in the formation of large plant tumours. Previously, we have found that U. maydis infection of seedling leaves, adult leaves and tassels causes organ-specific transcriptional changes in both the pathogen and the host. Of particular interest, U. may disgenes encoding secreted proteins are differentially expressed depending on the colonized maize organ. Therefore, we hypothesized that the fungus secretes virulence-related proteins (effectors)that act in an organ-specific manner. Here, we present the identification and functional characterization of 20 presumptive organ-specific U. maydis effector genes. Ustilago maydis deletion strains for these genes were generated and tested for infectivity of maize seedling leaves and tassels. This approach identified 11 effector genes required for the full virulence of U. maydis. In nine cases, virulence was only affected in one of the tested plant organs. These results demonstrate that individual fungal effector proteins contribute to fungal virulence in an organ-specific manner.

  3. Effector diversification within compartments of the Leptosphaeria maculans genome affected by repeat induced point mutations

    NARCIS (Netherlands)

    Rouxel, T.; Grandaubert, J.; Hane, J.K.; Hoede, C.; Wouw, A.; Couloux, A.; Dominguez, V.; Anthouard, V.; Bally, P.; Bourras, S.; Cozijnsen, A.J.; Ciuffetti, L.M.; Degrave, A.; Dilmaghani, A.; Duret, L.; Fudal, L.; Goodwin, S.B.; Gout, L.; Glaser, N.; Linglin, J.; Kema, G.H.J.; Lapalu, N.; Lawrence, C.B.; May, K.; Meyer, M.; Ollivier, B.; Poulain, J.; Schoch, C.L.; Simon, A.; Spatafora, J.W.; Stachowiak, A.; Turgeon, B.G.; Tyler, B.M.; Vincent, D.; Weissenbach, J.; Amselem, J.; Quesneville, H.; Oliver, R.P.; Wincker, P.; Balesdent, M.H.; Howlett, B.J.

    2011-01-01

    Fungi are of primary ecological, biotechnological and economic importance. Many fundamental biological processes that are shared by animals and fungi are studied in fungi due to their experimental tractability. Many fungi are pathogens or mutualists and are model systems to analyse effector genes

  4. The Phytophthora infestans avirulence gene Avr4 encodes an RXLR-dEER effector

    NARCIS (Netherlands)

    Poppel, van P.M.J.A.; Jun Guo, J.; Vondervoort, van de P.J.I.; Jung, M.W.M.; Birch, P.R.J.; Whisson, S.C.; Govers, F.

    2008-01-01

    Resistance in potato against the oomycete Phytophthora infestans is conditioned by resistance (R) genes that are introgressed from wild Solanum spp. into cultivated potato. According to the gene-for-gene model, proteins encoded by R genes recognize race-specific effectors resulting in a

  5. Terminal reassortment drives the quantum evolution of type III effectors in bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    John Stavrinides

    2006-10-01

    Full Text Available Many bacterial pathogens employ a type III secretion system to deliver type III secreted effectors (T3SEs into host cells, where they interact directly with host substrates to modulate defense pathways and promote disease. This interaction creates intense selective pressures on these secreted effectors, necessitating rapid evolution to overcome host surveillance systems and defenses. Using computational and evolutionary approaches, we have identified numerous mosaic and truncated T3SEs among animal and plant pathogens. We propose that these secreted virulence genes have evolved through a shuffling process we have called "terminal reassortment." In terminal reassortment, existing T3SE termini are mobilized within the genome, creating random genetic fusions that result in chimeric genes. Up to 32% of T3SE families in species with relatively large and well-characterized T3SE repertoires show evidence of terminal reassortment, as compared to only 7% of non-T3SE families. Terminal reassortment may permit the near instantaneous evolution of new T3SEs and appears responsible for major modifications to effector activity and function. Because this process plays a more significant role in the evolution of T3SEs than non-effectors, it provides insight into the evolutionary origins of T3SEs and may also help explain the rapid emergence of new infectious agents.

  6. Construction and characterization of an effector strain of streptococcus mutans for replacement therapy of dental caries.

    NARCIS (Netherlands)

    Hillman, J.D.; Brooks, T.A.; Michalek, S.M.; Harmon, C.C.; van der Weijden, C.C.; Snoep, J.L.

    2000-01-01

    An effector strain has been constructed for use in the replacement therapy of dental caries. Recombinant DNA methods were used to make the Streptococcus mutans supercolonizing strain, JH1140, lactate dehydrogenase deficient by deleting virtually all of the ldh open reading frame (ORF). To compensate

  7. Field test of different end-effectors for robotic harvesting of sweet-pepper

    NARCIS (Netherlands)

    Hemming, J.; Tuijl, van B.A.J.; Gauchel, W.; Wais, Ehud

    2016-01-01

    This paper focusses on field experiments with two different types of endeffectors for robotic harvesting of sweet-pepper fruits. One of the major issues is to reach, grasp and detach the fruit efficiently, without damaging it, while avoiding obstacles in the environment. End-effectors for

  8. Structural insight into gene transcriptional regulation and effector binding by the Lrp/AsnC family

    NARCIS (Netherlands)

    Thaw, P.; Sedelnikova, S.E.; Muranova, T.; Wiese, S.; Ayora, S.; Alonso, J.C.; Brinkman, A.B.; Akerboom, A.P.; Oost, van der J.; Rafferty, J.B.

    2006-01-01

    The Lrp/AsnC family of transcriptional regulatory proteins is found in both archaea and bacteria. Members of the family influence cellular metabolism in both a global (Lrp) and specific (AsnC) manner, often in response to exogenous amino acid effectors. In the present study we have determined both

  9. T Cell factor 1 represses CD8+ effector T cell formation and function.

    Science.gov (United States)

    Tiemessen, Machteld M; Baert, Miranda R M; Kok, Lianne; van Eggermond, Marja C J A; van den Elsen, Peter J; Arens, Ramon; Staal, Frank J T

    2014-12-01

    The Wnt-responsive transcription factor T cell factor 1 (Tcf1) is well known for its role in thymic T cell development and the formation of memory CD8(+) T cells. However, its role in the initial phases of CD8(+) T effector cell formation has remained unexplored. We report that high levels of Wnt signaling and Tcf1 are operational in naive and memory CD8(+) T cells, whereas Wnt signaling and Tcf1 were low in effector CD8(+) T cells. CD8(+) T cells deficient in Tcf1 produce IFN-γ more rapidly, coinciding with increased demethylation of the IFN-γ enhancer and higher expression of the transcription factors Tbet and Blimp1. Moreover, virus-specific Tcf1(-/-) CD8(+) T cells show accelerated expansion in acute infection, which is associated with increased IFN-γ and TNF production and lower viral load. Genetic complementation experiments with various Tcf1 isoforms indicate that Tcf1 dosage and protein stability are critical in suppressing IFN-γ production. Isoforms lacking the β-catenin binding domain are equally effective in inhibiting CD8(+) effector T cell formation. Thus, Tcf1 functions as a repressor of CD8(+) effector T cell formation in a β-catenin/Wnt-independent manner. Copyright © 2014 by The American Association of Immunologists, Inc.

  10. Suppression of plant resistance gene-based immunity by a fungal effector.

    Directory of Open Access Journals (Sweden)

    Petra M Houterman

    2008-05-01

    Full Text Available The innate immune system of plants consists of two layers. The first layer, called basal resistance, governs recognition of conserved microbial molecules and fends off most attempted invasions. The second layer is based on Resistance (R genes that mediate recognition of effectors, proteins secreted by pathogens to suppress or evade basal resistance. Here, we show that a plant-pathogenic fungus secretes an effector that can both trigger and suppress R gene-based immunity. This effector, Avr1, is secreted by the xylem-invading fungus Fusarium oxysporum f.sp. lycopersici (Fol and triggers disease resistance when the host plant, tomato, carries a matching R gene (I or I-1. At the same time, Avr1 suppresses the protective effect of two other R genes, I-2 and I-3. Based on these observations, we tentatively reconstruct the evolutionary arms race that has taken place between tomato R genes and effectors of Fol. This molecular analysis has revealed a hitherto unpredicted strategy for durable disease control based on resistance gene combinations.

  11. Suppression of Tcf1 by Inflammatory Cytokines Facilitates Effector CD8 T Cell Differentiation.

    Science.gov (United States)

    Danilo, Maxime; Chennupati, Vijaykumar; Silva, Joana Gomes; Siegert, Stefanie; Held, Werner

    2018-02-20

    The formation of central CD8 T cell memory in response to infection depends on the transcription factor Tcf1 (Tcf7). Tcf1 is expressed at high levels in naive CD8 T cells but downregulated in most CD8 T cells during effector differentiation. The relevance of Tcf1 downregulation for effector differentiation and the signals controlling Tcf1 expression have not been elucidated. Here, we show that systemic inflammatory signals downregulated Tcf1 in CD8 T cells during dendritic cell vaccination and bacterial infections. The suppressive effect was mediated by the inflammatory cytokine interleukin 12 (IL-12), which acted via STAT4 in CD8 T cells. IL-12-induced Tcf1 downregulation required cell cycling, occurred at the transcriptional level, and was prevented in part by inhibiting DNA methyltransferases. Absence of Tcf1 during T cell priming circumvented the need of systemic inflammation for effector differentiation. We conclude that silencing of Tcf1 by systemic inflammation facilitates effector CD8 T cell differentiation. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. A Plant Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors.

    Science.gov (United States)

    Sarris, Panagiotis F; Duxbury, Zane; Huh, Sung Un; Ma, Yan; Segonzac, Cécile; Sklenar, Jan; Derbyshire, Paul; Cevik, Volkan; Rallapalli, Ghanasyam; Saucet, Simon B; Wirthmueller, Lennart; Menke, Frank L H; Sohn, Kee Hoon; Jones, Jonathan D G

    2015-05-21

    Defense against pathogens in multicellular eukaryotes depends on intracellular immune receptors, yet surveillance by these receptors is poorly understood. Several plant nucleotide-binding, leucine-rich repeat (NB-LRR) immune receptors carry fusions with other protein domains. The Arabidopsis RRS1-R NB-LRR protein carries a C-terminal WRKY DNA binding domain and forms a receptor complex with RPS4, another NB-LRR protein. This complex detects the bacterial effectors AvrRps4 or PopP2 and then activates defense. Both bacterial proteins interact with the RRS1 WRKY domain, and PopP2 acetylates lysines to block DNA binding. PopP2 and AvrRps4 interact with other WRKY domain-containing proteins, suggesting these effectors interfere with WRKY transcription factor-dependent defense, and RPS4/RRS1 has integrated a "decoy" domain that enables detection of effectors that target WRKY proteins. We propose that NB-LRR receptor pairs, one member of which carries an additional protein domain, enable perception of pathogen effectors whose function is to target that domain. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Distribution of non-LEE-encoded type 3 secretion system dependent effectors in enteropathogenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Fábia A. Salvador

    2014-09-01

    Full Text Available Enteropathogenic Escherichia coli (EPEC are important human gastroenteritis agents. The prevalence of six non-LEE genes encoding type 3 translocated effectors was investigated. The nleC, cif and nleB genes were more prevalent in typical than in atypical EPEC, although a higher diversity of genes combinations was observed in atypical EPEC.

  14. Physiologically based kinetic model of effector cell biodistribution in mammals: implications for adoptive immunotherapy.

    Science.gov (United States)

    Zhu, H; Melder, R J; Baxter, L T; Jain, R K

    1996-08-15

    The goal of the present investigation was to develop a physiologically based kinetic model to describe the biodistribution of immunologically active effector cells in normal and neoplastic tissues of mammals based on the current understanding of lymphocyte trafficking pathways and signals. The model was used to extrapolate biodistribution among different animal species and to identify differences among different effector populations and between intra-arterial and systemic injections. Most importantly, the model was used to discern critical parameters for improving the delivery of effector cells. In the model, the mammalian body was divided into 12 organ compartments, interconnected in anatomic fashion. Each compartment was characterized by blood flow rate, organ volume and lymphatic flow rate, and other physiological and immunological parameters. The resulting set of 45 differential equations was solved numerically. The model was used to simulate the following biodistribution data: (a) nonactivated T lymphocytes in rats; (b) interleukin 2-activated tumor-infiltrating lymphocytes in humans; (c) nonactivated natural killer (NK) cells in rats; and (d) interleukin 2-activated adherent NK cells in mice. Comparisons between simulations and data demonstrated the feasibility of the model and the scaling scheme. The similarities as well as differences in biodistribution of different lymphocyte populations were revealed as results of their trafficking properties. The importance of lymphocyte infiltration from surrounding normal tissues into tumor tissue was found to depend on lymphocyte migration rate, tumor size, and host organ. The study confirmed that treatment with effector cells has not been as impressive as originally promised, due, in part, to the biodistribution problems. The model simulations demonstrated that low effector concentrations in the systemic circulation greatly limited their delivery to tumor. This was due to high retention in normal tissues, especially

  15. Abstract and Effector-Selective Decision Signals Exhibit Qualitatively Distinct Dynamics before Delayed Perceptual Reports.

    Science.gov (United States)

    Twomey, Deirdre M; Kelly, Simon P; O'Connell, Redmond G

    2016-07-13

    Electrophysiological research has isolated neural signatures of decision formation in a variety of brain regions. Studies in rodents and monkeys have focused primarily on effector-selective signals that translate the emerging decision into a specific motor plan, but, more recently, research on the human brain has identified an abstract signature of evidence accumulation that does not appear to play any direct role in action preparation. The functional dissociations between these distinct signal types have only begun to be characterized, and their dynamics during decisions with deferred actions with or without foreknowledge of stimulus-effector mapping, a commonly studied task scenario in single-unit and functional imaging investigations, have not been established. Here we traced the dynamics of distinct abstract and effector-selective decision signals in the form of the broad-band centro-parietal positivity (CPP) and limb-selective β-band (8-16 and 18-30 Hz) EEG activity, respectively, during delayed-reported motion direction decisions with and without foreknowledge of direction-response mapping. With foreknowledge, the CPP and β-band signals exhibited a similar gradual build-up following evidence onset, but whereas choice-predictive β-band activity persisted up until the delayed response, the CPP dropped toward baseline after peaking. Without foreknowledge, the CPP exhibited identical dynamics, whereas choice-selective β-band activity was eliminated. These findings highlight qualitative functional distinctions between effector-selective and abstract decision signals and are of relevance to the assumptions founding functional neuroimaging investigations of decision-making. Neural signatures of evidence accumulation have been isolated in numerous brain regions. Although animal neurophysiology has largely concentrated on effector-selective decision signals that translate the emerging decision into a specific motor plan, recent research on the human brain has

  16. Structures of the inactive and active states of RIP2 kinase inform on the mechanism of activation.

    Directory of Open Access Journals (Sweden)

    Erika Pellegrini

    Full Text Available Innate immune receptors NOD1 and NOD2 are activated by bacterial peptidoglycans leading to recruitment of adaptor kinase RIP2, which, upon phosphorylation and ubiquitination, becomes a scaffold for downstream effectors. The kinase domain (RIP2K is a pharmaceutical target for inflammatory diseases caused by aberrant NOD2-RIP2 signalling. Although structures of active RIP2K in complex with inhibitors have been reported, the mechanism of RIP2K activation remains to be elucidated. Here we analyse RIP2K activation by combining crystal structures of the active and inactive states with mass spectrometric characterization of their phosphorylation profiles. The active state has Helix αC inwardly displaced and the phosphorylated Activation Segment (AS disordered, whilst in the inactive state Helix αC is outwardly displaced and packed against the helical, non-phosphorylated AS. Biophysical measurements show that the active state is a stable dimer whilst the inactive kinase is in a monomer-dimer equilibrium, consistent with the observed structural differences at the dimer interface. We conclude that RIP2 kinase auto-phosphorylation is intimately coupled to dimerization, similar to the case of BRAF. Our results will help drug design efforts targeting RIP2 as a potential treatment for NOD2-RIP2 related inflammatory diseases.

  17. How versatile are inositol phosphate kinases?

    OpenAIRE

    Shears, Stephen B.

    2004-01-01

    This review assesses the extent and the significance of catalytic versatility shown by several inositol phosphate kinases: the inositol phosphate multikinase, the reversible Ins(1,3,4) P (3)/Ins(3,4,5,6) P (4) kinase, and the kinases that synthesize diphosphoinositol polyphosphates. Particular emphasis is placed upon data that are relevant to the situation in vivo. It will be shown that catalytic promiscuity towards different inositol phosphates is not typically an evolutionary compromise, bu...

  18. Mediobasal hypothalamic p70 S6 kinase 1 modulates the control of energy homeostasis.

    Science.gov (United States)

    Blouet, Clémence; Ono, Hiraku; Schwartz, Gary J

    2008-12-01

    p70 S6 kinase 1 (S6K) is a major downstream effector of the mammalian target of rapamycin (mTOR), primarily implicated in the control of protein synthesis, cell growth, and proliferation. Here we demonstrate that specific bidirectional molecular targeting of mediobasal hypothalamic (MBH) S6K activity in rats is sufficient to significantly alter food intake, body weight, hypothalamic orexigenic neuropeptide expression, hypothalamic leptin sensitivity, and the metabolic and feeding responses to a fast. In addition, adenoviral-mediated constitutive activation of MBH S6K improved cold tolerance and protected against high-fat diet-induced overeating, fat deposition, and insulin resistance. Our results provide direct evidence that MBH S6K activity bidirectionally drives behavioral and metabolic determinants of energy balance and promote the assessment of MBH S6K activity as a therapeutic target in metabolic diseases.

  19. Allosteric mechanism of pyruvate kinase from Leishmania mexicana uses a rock and lock model.

    Science.gov (United States)

    Morgan, Hugh P; McNae, Iain W; Nowicki, Matthew W; Hannaert, Véronique; Michels, Paul A M; Fothergill-Gilmore, Linda A; Walkinshaw, Malcolm D

    2010-04-23

    Allosteric regulation provides a rate management system for enzymes involved in many cellular processes. Ligand-controlled regulation is easily recognizable, but the underlying molecular mechanisms have remained elusive. We have obtained the first complete series of allosteric structures, in all possible ligated states, for the tetrameric enzyme, pyruvate kinase, from Leishmania mexicana. The transition between inactive T-state and active R-state is accompanied by a simple symmetrical 6 degrees rigid body rocking motion of the A- and C-domain cores in each of the four subunits. However, formation of the R-state in this way is only part of the mechanism; eight essential salt bridge locks that form across the C-C interface provide tetramer rigidity with a coupled 7-fold increase in rate. The results presented here illustrate how conformational changes coupled with effector binding correlate with loss of flexibility and increase in thermal stability providing a general mechanism for allosteric control.

  20. Mechanical pressure-induced phosphorylation of p38 mitogen-activated protein kinase in epithelial cells via Src and protein kinase C.

    Science.gov (United States)

    Hofmann, Matthias; Zaper, Julijana; Bernd, August; Bereiter-Hahn, Jürgen; Kaufmann, Roland; Kippenberger, Stefan

    2004-04-09

    Mechanical stimulation is known to modulate cell physiology in a variety of different tissues. Particularly, epithelial cells are permanently exposed to mechanical stimulation generated by externally applied forces. The present in vitro study demonstrated mechanical pressure as a trigger-factor of the p38 mitogen-activated protein kinase (MAPK) pathway in epithelial cells. Mechanical pressure applied by teflon weights (1.02g/cm(2)) led to a rapid phosphorylation of p38 peaking between 5 and 10min. Furthermore, phosphorylation of the small heat shock protein 27 (HSP27) was shown in response to mechanical pressure. Suppression of p38 function by using specific inhibitors blocked the pressure-mediated phosphorylation of HSP27. In order to identify upstream regulators of p38, a contribution of Src and protein kinase C (PKC) in pressure-signaling was investigated. We could demonstrate that inhibition of Src or PKC suppressed the pressure-induced phosphorylation of p38. These findings suggest mechanical pressure as a new type of effector stimulus for the p38 pathway with implications to (patho-) physiological conditions.

  1. A Yersinia effector with enhanced inhibitory activity on the NF-κB pathway activates the NLRP3/ASC/caspase-1 inflammasome in macrophages.

    Directory of Open Access Journals (Sweden)

    Ying Zheng

    2011-04-01

    Full Text Available A type III secretion system (T3SS in pathogenic Yersinia species functions to translocate Yop effectors, which modulate cytokine production and regulate cell death in macrophages. Distinct pathways of T3SS-dependent cell death and caspase-1 activation occur in Yersinia-infected macrophages. One pathway of cell death and caspase-1 activation in macrophages requires the effector YopJ. YopJ is an acetyltransferase that inactivates MAPK kinases and IKKβ to cause TLR4-dependent apoptosis in naïve macrophages. A YopJ isoform in Y. pestis KIM (YopJ(KIM has two amino acid substitutions, F177L and K206E, not present in YopJ proteins of Y. pseudotuberculosis and Y. pestis CO92. As compared to other YopJ isoforms, YopJ(KIM causes increased apoptosis, caspase-1 activation, and secretion of IL-1β in Yersinia-infected macrophages. The molecular basis for increased apoptosis and activation of caspase-1 by YopJ(KIM in Yersinia-infected macrophages was studied. Site directed mutagenesis showed that the F177L and K206E substitutions in YopJ(KIM were important for enhanced apoptosis, caspase-1 activation, and IL-1β secretion. As compared to YopJ(CO92, YopJ(KIM displayed an enhanced capacity to inhibit phosphorylation of IκB-α in macrophages and to bind IKKβ in vitro. YopJ(KIM also showed a moderately increased ability to inhibit phosphorylation of MAPKs. Increased caspase-1 cleavage and IL-1β secretion occurred in IKKβ-deficient macrophages infected with Y. pestis expressing YopJ(CO92, confirming that the NF-κB pathway can negatively regulate inflammasome activation. K+ efflux, NLRP3 and ASC were important for secretion of IL-1β in response to Y. pestis KIM infection as shown using macrophages lacking inflammasome components or by the addition of exogenous KCl. These data show that caspase-1 is activated in naïve macrophages in response to infection with a pathogen that inhibits IKKβ and MAPK kinases and induces TLR4-dependent apoptosis. This pro

  2. MST kinases in development and disease.

    Science.gov (United States)

    Thompson, Barry J; Sahai, Erik

    2015-09-14

    The mammalian MST kinase family, which is related to the Hippo kinase in Drosophila melanogaster, includes five related proteins: MST1 (also called STK4), MST2 (also called STK3), MST3 (also called STK24), MST4, and YSK1 (also called STK25 or SOK1). MST kinases are emerging as key signaling molecules that influence cell proliferation, organ size, cell migration, and cell polarity. Here we review the regulation and function of these kinases in normal physiology and pathologies, including cancer, endothelial malformations, and autoimmune disease. © 2015 Thompson and Sahai.

  3. Identification of putative effector genes and their transcripts in three strains related to 'Candidatus Phytoplasma aurantifolia'.

    Science.gov (United States)

    Anabestani, Ameneh; Izadpanah, Keramat; Abbà, Simona; Galetto, Luciana; Ghorbani, Abozar; Palmano, Sabrina; Siampour, Majid; Veratti, Flavio; Marzachì, Cristina

    2017-06-01

    Molecular mechanisms underlying phytoplasma interactions with host plants are largely unknown. In this study attempts were made to identify effectors of three phytoplasma strains related to 'Ca. P. aurantifolia', crotalaria phyllody (CrP), faba bean phyllody (FBP), and witches' broom disease of lime (WBDL), using information from draft genome of peanut witches' broom phytoplasma. Seven putative effectors were identified in WBDL genome (SAP11, SAP21, Eff64, Eff115, Eff197, Eff211 and EffSAP67), five (SAP11, SAP21, Eff64, Eff99 and Eff197) in CrP and two (SAP11, Eff64) in FBP. No homologs to Eff64, Eff197 and Eff211 in phytoplasmas of other phylogenetic groups were found. SAP11 and Eff64 homologs of 'Ca. P. aurantifolia' strains shared at least 95.9% identity and were detected in the three phytoplasmas, supporting their role within the group. Five of the putative effectors (SAP11, SAP21, Eff64, Eff115, and Eff99) were transcribed from total RNA extracts of periwinkle plants infected with these phytoplasmas. Transcription profiles of selected putative effectors of CrP, FBP and WBDL indicated that SAP11 transcripts were the most abundant in the three phytoplasmas. SAP21 transcript levels were comparable to those of SAP11 for CrP and not measurable for the other phytoplasmas. Eff64 had the lowest transcription level irrespective of sampling date and phytoplasma isolate. Eff115 transcript levels were the highest in WBDL infected plants. This work reports the first sequence information for 14 putative effectors in three strains related to 'Ca. P. aurantifolia', and offers novel insight into the transcription profile of five of them during infection of periwinkle. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Brucella Modulates Secretory Trafficking via Multiple Type IV Secretion Effector Proteins

    Science.gov (United States)

    Myeni, Sebenzile; Child, Robert; Ng, Tony W.; Kupko, John J.; Wehrly, Tara D.; Porcella, Stephen F.; Knodler, Leigh A.; Celli, Jean

    2013-01-01

    The intracellular pathogenic bacterium Brucella generates a replicative vacuole (rBCV) derived from the endoplasmic reticulum via subversion of the host cell secretory pathway. rBCV biogenesis requires the expression of the Type IV secretion system (T4SS) VirB, which is thought to translocate effector proteins that modulate membrane trafficking along the endocytic and secretory pathways. To date, only a few T4SS substrates have been identified, whose molecular functions remain unknown. Here, we used an in silico screen to identify putative T4SS effector candidate proteins using criteria such as limited homology in other bacterial genera, the presence of features similar to known VirB T4SS effectors, GC content and presence of eukaryotic-like motifs. Using β-lactamase and CyaA adenylate cyclase reporter assays, we identified eleven proteins translocated into host cells by Brucella, five in a VirB T4SS-dependent manner, namely BAB1_0678 (BspA), BAB1_0712 (BspB), BAB1_0847 (BspC), BAB1_1671 (BspE) and BAB1_1948 (BspF). A subset of the translocated proteins targeted secretory pathway compartments when ectopically expressed in HeLa cells, and the VirB effectors BspA, BspB and BspF inhibited protein secretion. Brucella infection also impaired host protein secretion in a process requiring BspA, BspB and BspF. Single or combined deletions of bspA, bspB and bspF affected Brucella ability to replicate in macrophages and persist in the liver of infected mice. Taken together, these findings demonstrate that Brucella modulates secretory trafficking via multiple T4SS effector proteins that likely act coordinately to promote Brucella pathogenesis. PMID:23950720

  5. Systematic analysis and prediction of type IV secreted effector proteins by machine learning approaches.

    Science.gov (United States)

    Wang, Jiawei; Yang, Bingjiao; An, Yi; Marquez-Lago, Tatiana; Leier, André; Wilksch, Jonathan; Hong, Qingyang; Zhang, Yang; Hayashida, Morihiro; Akutsu, Tatsuya; Webb, Geoffrey I; Strugnell, Richard A; Song, Jiangning; Lithgow, Trevor

    2017-11-27

    In the course of infecting their hosts, pathogenic bacteria secrete numerous effectors, namely, bacterial proteins that pervert host cell biology. Many Gram-negative bacteria, including context-dependent human pathogens, use a type IV secretion system (T4SS) to translocate effectors directly into the cytosol of host cells. Various type IV secreted effectors (T4SEs) have been experimentally validated to play crucial roles in virulence by manipulating host cell gene expression and other processes. Consequently, the identification of novel effector proteins is an important step in increasing our understanding of host-pathogen interactions and bacterial pathogenesis. Here, we train and compare six machine learning models, namely, Naïve Bayes (NB), K-nearest neighbor (KNN), logistic regression (LR), random forest (RF), support vector machines (SVMs) and multilayer perceptron (MLP), for the identification of T4SEs using 10 types of selected features and 5-fold cross-validation. Our study shows that: (1) including different but complementary features generally enhance the predictive performance of T4SEs; (2) ensemble models, obtained by integrating individual single-feature models, exhibit a significantly improved predictive performance and (3) the 'majority voting strategy' led to a more stable and accurate classification performance when applied to predicting an ensemble learning model with distinct single features. We further developed a new method to effectively predict T4SEs, Bastion4 (Bacterial secretion effector predictor for T4SS), and we show our ensemble classifier clearly outperforms two recent prediction tools. In summary, we developed a state-of-the-art T4SE predictor by conducting a comprehensive performance evaluation of different machine learning algorithms along with a detailed analysis of single- and multi-feature selections. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Mechanisms of action of Coxiella burnetii effectors inferred from host-pathogen protein interactions.

    Science.gov (United States)

    Wallqvist, Anders; Wang, Hao; Zavaljevski, Nela; Memišević, Vesna; Kwon, Keehwan; Pieper, Rembert; Rajagopala, Seesandra V; Reifman, Jaques

    2017-01-01

    Coxiella burnetii is an obligate Gram-negative intracellular pathogen and the etiological agent of Q fever. Successful infection requires a functional Type IV secretion system, which translocates more than 100 effector proteins into the host cytosol to establish the infection, restructure the intracellular host environment, and create a parasitophorous vacuole where the replicating bacteria reside. We used yeast two-hybrid (Y2H) screening of 33 selected C. burnetii effectors against whole genome human and murine proteome libraries to generate a map of potential host-pathogen protein-protein interactions (PPIs). We detected 273 unique interactions between 20 pathogen and 247 human proteins, and 157 between 17 pathogen and 137 murine proteins. We used orthology to combine the data and create a single host-pathogen interaction network containing 415 unique interactions between 25 C. burnetii and 363 human proteins. We further performed complementary pairwise Y2H testing of 43 out of 91 C. burnetii-human interactions involving five pathogen proteins. We used the combined data to 1) perform enrichment analyses of target host cellular processes and pathways, 2) examine effectors with known infection phenotypes, and 3) infer potential mechanisms of action for four effectors with uncharacterized functions. The host-pathogen interaction profiles supported known Coxiella phenotypes, such as adapting cell morphology through cytoskeletal re-arrangements, protein processing and trafficking, organelle generation, cholesterol processing, innate immune modulation, and interactions with the ubiquitin and proteasome pathways. The generated dataset of PPIs-the largest collection of unbiased Coxiella host-pathogen interactions to date-represents a rich source of information with respect to secreted pathogen effector proteins and their interactions with human host proteins.

  7. Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen.

    Science.gov (United States)

    Lu, Xunli; Kracher, Barbara; Saur, Isabel M L; Bauer, Saskia; Ellwood, Simon R; Wise, Roger; Yaeno, Takashi; Maekawa, Takaki; Schulze-Lefert, Paul

    2016-10-18

    Disease-resistance genes encoding intracellular nucleotide-binding domain and leucine-rich repeat proteins (NLRs) are key components of the plant innate immune system and typically detect the presence of isolate-specific avirulence (AVR) effectors from pathogens. NLR genes define the fastest-evolving gene family of flowering plants and are often arranged in gene clusters containing multiple paralogs, contributing to copy number and allele-specific NLR variation within a host species. Barley mildew resistance locus a (Mla) has been subject to extensive functional diversification, resulting in allelic resistance specificities each recognizing a cognate, but largely unidentified, AVRa gene of the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). We applied a transcriptome-wide association study among 17 Bgh isolates containing different AVRa genes and identified AVRa1 and AVRa13, encoding candidate-secreted effectors recognized by Mla1 and Mla13 alleles, respectively. Transient expression of the effector genes in barley leaves or protoplasts was sufficient to trigger Mla1 or Mla13 allele-specific cell death, a hallmark of NLR receptor-mediated immunity. AVRa1 and AVRa13 are phylogenetically unrelated, demonstrating that certain allelic MLA receptors evolved to recognize sequence-unrelated effectors. They are ancient effectors because corresponding loci are present in wheat powdery mildew. AVRA1 recognition by barley MLA1 is retained in transgenic Arabidopsis, indicating that AVRA1 directly binds MLA1 or that its recognition involves an evolutionarily conserved host target of AVRA1 Furthermore, analysis of transcriptome-wide sequence variation among the Bgh isolates provides evidence for Bgh population structure that is partially linked to geographic isolation.

  8. Desirable cytolytic immune effector cell recruitment by interleukin-15 dendritic cells.

    Science.gov (United States)

    Van Acker, Heleen H; Beretta, Ottavio; Anguille, Sébastien; De Caluwé, Lien; Papagna, Angela; Van den Bergh, Johan M; Willemen, Yannick; Goossens, Herman; Berneman, Zwi N; Van Tendeloo, Viggo F; Smits, Evelien L; Foti, Maria; Lion, Eva

    2017-02-21

    Success of dendritic cell (DC) therapy in treating malignancies is depending on the DC capacity to attract immune effector cells, considering their reciprocal crosstalk is partially regulated by cell-contact-dependent mechanisms. Although critical for therapeutic efficacy, immune cell recruitment is a largely overlooked aspect regarding optimization of DC vaccination. In this paper we have made a head-to-head comparison of interleukin (IL)-15-cultured DCs and conventional IL-4-cultured DCs with regard to their proficiency in the recruitment of (innate) immune effector cells. Here, we demonstrate that IL-4 DCs are suboptimal in attracting effector lymphocytes, while IL15 DCs provide a favorable chemokine milieu for recruiting CD8+ T cells, natural killer (NK) cells and gamma delta (γδ) T cells. Gene expression analysis revealed that IL-15 DCs exhibit a high expression of chemokines involved in antitumor immune effector cell attraction, while IL-4 DCs display a more immunoregulatory profile characterized by the expression of Th2 and regulatory T cell-attracting chemokines. This is confirmed by functional data indicating an enhanced recruitment of granzyme B+ effector lymphocytes by IL-15 DCs, as compared to IL-4 DCs, and subsequent superior killing of tumor cells by the migrated lymphocytes. Elevated CCL4 gene expression in IL-15 DCs and lowered CCR5 expression on both migrated γδ T cells and NK cells, led to validation of increased CCL4 secretion by IL15 DCs. Moreover, neutralization of CCR5 prior to migration resulted in an important inhibition of γδ T cell and NK cell recruitment by IL-15 DCs. These findings further underscore the strong immunotherapeutic potential of IL-15 DCs.

  9. The E. coli effector protein NleF is a caspase inhibitor.

    Directory of Open Access Journals (Sweden)

    Sonja Blasche

    Full Text Available Enterohemorrhagic and enteropathogenic E. coli (EHEC and EPEC can cause severe and potentially life-threatening infections. Their pathogenicity is mediated by at least 40 effector proteins which they inject into their host cells by a type-III secretion system leading to the subversion of several cellular pathways. However, the molecular function of several effectors remains unknown, even though they contribute to virulence. Here we show that one of them, NleF, binds to caspase-4, -8, and -9 in yeast two-hybrid, LUMIER, and direct interaction assays. NleF inhibits the catalytic activity of the caspases in vitro and in cell lysate and prevents apoptosis in HeLa and Caco-2 cells. We have solved the crystal structure of the caspase-9/NleF complex which shows that NleF uses a novel mode of caspase inhibition, involving the insertion of the carboxy-terminus of NleF into the active site of the protease. In conformance with our structural model, mutagenized NleF with truncated or elongated carboxy-termini revealed a complete loss in caspase binding and apoptosis inhibition. Evasion of apoptosis helps pathogenic E. coli and other pathogens to take over the host cell by counteracting the cell's ability to self-destruct upon infection. Recently, two other effector proteins, namely NleD and NleH, were shown to interfere with apoptosis. Even though NleF is not the only effector protein capable of apoptosis inhibition, direct inhibition of caspases by bacterial effectors has not been reported to date. Also unique so far is its mode of inhibition that resembles the one obtained for synthetic peptide-type inhibitors and as such deviates substantially from previously reported caspase-9 inhibitors such as the BIR3 domain of XIAP.

  10. Reactive Neutrophil Responses Dependent on the Receptor Tyrosine Kinase c-MET Limit Cancer Immunotherapy.

    Science.gov (United States)

    Glodde, Nicole; Bald, Tobias; van den Boorn-Konijnenberg, Debby; Nakamura, Kyohei; O'Donnell, Jake S; Szczepanski, Sabrina; Brandes, Maria; Eickhoff, Sarah; Das, Indrajit; Shridhar, Naveen; Hinze, Daniel; Rogava, Meri; van der Sluis, Tetje C; Ruotsalainen, Janne J; Gaffal, Evelyn; Landsberg, Jennifer; Ludwig, Kerstin U; Wilhelm, Christoph; Riek-Burchardt, Monika; Müller, Andreas J; Gebhardt, Christoffer; Scolyer, Richard A; Long, Georgina V; Janzen, Viktor; Teng, Michele W L; Kastenmüller, Wolfgang; Mazzone, Massimiliano; Smyth, Mark J; Tüting, Thomas; Hölzel, Michael

    2017-10-17

    Inhibitors of the receptor tyrosine kinase c-MET are currently used in the clinic to target oncogenic signaling in tumor cells. We found that concomitant c-MET inhibition promoted adoptive T cell transfer and checkpoint immunotherapies in murine cancer models by increasing effector T cell infiltration in tumors. This therapeutic effect was independent of tumor cell-intrinsic c-MET dependence. Mechanistically, c-MET inhibition impaired the reactive mobilization and recruitment of neutrophils into tumors and draining lymph nodes in response to cytotoxic immunotherapies. In the absence of c-MET inhibition, neutrophils recruited to T cell-inflamed microenvironments rapidly acquired immunosuppressive properties, restraining T cell expansion and effector functions. In cancer patients, high serum levels of the c-MET ligand HGF correlated with increasing neutrophil counts and poor responses to checkpoint blockade therapies. Our findings reveal a role for the HGF/c-MET pathway in neutrophil recruitment and function and suggest that c-MET inhibitor co-treatment may improve responses to cancer immunotherapy in settings beyond c-MET-dependent tumors. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Conserved RXLR Effector Genes of Phytophthora infestans Expressed at the Early Stage of Potato Infection Are Suppressive to Host Defense

    Directory of Open Access Journals (Sweden)

    Junliang Yin

    2017-12-01

    Full Text Available Late blight has been the most devastating potato disease worldwide. The causal agent, Phytophthora infestans, is notorious for its capability to rapidly overcome host resistance. Changes in the expression pattern and the encoded protein sequences of effector genes in the pathogen are responsible for the loss of host resistance. Among numerous effector genes, the class of RXLR effector genes is well-known in mediating host genotype-specific resistance. We therefore performed deep sequencing of five genetically diverse P. infestans strains using in planta materials infected with zoospores (12 h post inoculation and focused on the identification of RXLR effector genes that are conserved in coding sequences, are highly expressed in early stages of plant infection, and have defense suppression activities. In all, 245 RXLR effector genes were expressed in five transcriptomes, with 108 being co-expressed in all five strains, 47 of them comparatively highly expressed. Taking sequence polymorphism into consideration, 18 candidate core RXLR effectors that were conserved in sequence and with higher in planta expression levels were selected for further study. Agrobacterium tumefaciens-mediated transient expression of the selected effector genes in Nicotiana benthamiana and potato demonstrated their potential virulence function, as shown by suppression of PAMP-triggered immunity (PTI or/and effector-triggered immunity (ETI. The identified collection of core RXLR effectors will be useful in the search for potential durable late blight resistance genes. Analysis of 10 known Avr RXLR genes revealed that the resistance genes R2, Rpi-blb2, Rpi-vnt1, Rpi-Smira1, and Rpi-Smira2 may be effective in potato cultivars. Analysis of 8 SFI (Suppressor of early Flg22-induced Immune response RXLR effector genes showed that SFI2, SFI3, and SFI4 were highly expressed in all examined strains, suggesting their potentially important function in early stages of pathogen infection.

  12. The Arabidopsis kinase-associated protein phosphatase controls internalization of the somatic embryogenesis receptor kinase 1

    NARCIS (Netherlands)

    Shah, K.; Russinova, E.; Gadella, T.W.J.; Willemse, J.; Vries, de S.C.

    2002-01-01

    The AtSERK1 protein is a plasma membrane-located LRR receptor-like serine threonine kinase that is transiently expressed during plant embryogenesis. Our results show that AtSERK1 interacts with the kinase-associated protein phosphatase (KAPP) in vitro. The kinase interaction (KI) domain of KAPP does

  13. Novel Library of Selenocompounds as Kinase Modulators

    Directory of Open Access Journals (Sweden)

    Carmen Sanmartín

    2011-07-01

    Full Text Available Although the causes of cancer lie in mutations or epigenic changes at the genetic level, their molecular manifestation is the dysfunction of biochemical pathways at the protein level. The 518 protein kinases encoded by the human genome play a central role in various diseases, a fact that has encouraged extensive investigations on their biological function and three dimensional structures. Selenium (Se is an important nutritional trace element involved in different physiological functions with antioxidative, antitumoral and chemopreventive properties. The mechanisms of action for selenocompounds as anticancer agents are not fully understood, but kinase modulation seems to be a possible pathway. Various organosulfur compounds have shown antitumoral and kinase inhibition effects but, in many cases, the replacement of sulfur by selenium improves the antitumoral effect of compounds. Although Se atom possesses a larger atomic volume and nucleophilic character than sulfur, Se can also formed interactions with aminoacids of the catalytic centers of proteins. So, we propose a novel chemical library that includes organoselenium compounds as kinase modulators. In this study thirteen selenocompounds have been evaluated at a concentration of 3 or 10 µM in a 24 kinase panel using a Caliper LabChip 3000 Drug Discover Platform. Several receptor (EGFR, IGFR1, FGFR1… and non-receptor (Abl kinases have been selected, as well as serine/threonine/lipid kinases (AurA, Akt, CDKs, MAPKs… implicated in main cancer pathways: cell cycle regulation, signal transduction, angiogenesis regulation among them. The obtained results showed that two compounds presented inhibition values higher than 50% in at least four kinases and seven derivatives selectively inhibited one or two kinases. Furthermore, three compounds selectively activated IGF-1R kinase with values ranging from −98% to −211%. In conclusion, we propose that the replacement of sulfur by selenium seems to be

  14. Protein kinase B/Akt activates c-Jun NH(2)-terminal kinase by increasing NO production in response to shear stress

    Science.gov (United States)

    Go, Y. M.; Boo, Y. C.; Park, H.; Maland, M. C.; Patel, R.; Pritchard, K. A. Jr; Fujio, Y.; Walsh, K.; Darley-Usmar, V.; Jo, H.

    2001-01-01

    Laminar shear stress activates c-Jun NH(2)-terminal kinase (JNK) by the mechanisms involving both nitric oxide (NO) and phosphatidylinositide 3-kinase (PI3K). Because protein kinase B (Akt), a downstream effector of PI3K, has been shown to phosphorylate and activate endothelial NO synthase, we hypothesized that Akt regulates shear-dependent activation of JNK by stimulating NO production. Here, we examined the role of Akt in shear-dependent NO production and JNK activation by expressing a dominant negative Akt mutant (Akt(AA)) and a constitutively active mutant (Akt(Myr)) in bovine aortic endothelial cells (BAEC). As expected, pretreatment of BAEC with the PI3K inhibitor (wortmannin) prevented shear-dependent stimulation of Akt and NO production. Transient expression of Akt(AA) in BAEC by using a recombinant adenoviral construct inhibited the shear-dependent stimulation of NO production and JNK activation. However, transient expression of Akt(Myr) by using a recombinant adenoviral construct did not induce JNK activation. This is consistent with our previous finding that NO is required, but not sufficient on its own, to activate JNK in response to shear stress. These results and our previous findings strongly suggest that shear stress triggers activation of PI3K, Akt, and endothelial NO synthase, leading to production of NO, which (along with O(2-), which is also produced by shear) activates Ras-JNK pathway. The regulation of Akt, NO, and JNK by shear stress is likely to play a critical role in its antiatherogenic effects.

  15. Host Serine/Threonine Kinases mTOR and Protein Kinase C-α Promote InlB-Mediated Entry of Listeria monocytogenes

    Science.gov (United States)

    Bhalla, Manmeet; Law, Daria; Dowd, Georgina C.

    2017-01-01

    ABSTRACT The bacterial pathogen Listeria monocytogenes causes foodborne illnesses resulting in gastroenteritis, meningitis, or abortion. Listeria induces its internalization into some human cells through interaction of the bacterial surface protein InlB with the host receptor tyrosine kinase Met. InlB-dependent entry requires localized polymerization of the host actin cytoskeleton. The signal transduction pathways that act downstream of Met to regulate actin filament assembly or other processes during Listeria uptake remain incompletely characterized. Here, we demonstrate important roles for the human serine/threonine kinases mTOR and protein kinase C-α (PKC-α) in InlB-dependent entry. Experiments involving RNA interference (RNAi) indicated that two multiprotein complexes containing mTOR, mTORC1 and mTORC2, are each needed for efficient internalization of Listeria into cells of the human cell line HeLa. InlB stimulated Met-dependent phosphorylation of mTORC1 or mTORC2 substrates, demonstrating activation of both mTOR-containing complexes. RNAi studies indicated that the mTORC1 effectors 4E-BP1 and hypoxia-inducible factor 1α (HIF-1α) and the mTORC2 substrate PKC-α each control Listeria uptake. Genetic or pharmacological inhibition of PKC-α reduced the internalization of Listeria and the accumulation of actin filaments that normally accompanies InlB-mediated entry. Collectively, our results identify mTOR and PKC-α to be host factors exploited by Listeria to promote infection. PKC-α controls Listeria entry, at least in part, by regulating the actin cytoskeleton downstream of the Met receptor. PMID:28461391

  16. Host Serine/Threonine Kinases mTOR and Protein Kinase C-α Promote InlB-Mediated Entry of Listeria monocytogenes.

    Science.gov (United States)

    Bhalla, Manmeet; Law, Daria; Dowd, Georgina C; Ireton, Keith

    2017-07-01

    The bacterial pathogen Listeria monocytogenes causes foodborne illnesses resulting in gastroenteritis, meningitis, or abortion. Listeria induces its internalization into some human cells through interaction of the bacterial surface protein InlB with the host receptor tyrosine kinase Met. InlB-dependent entry requires localized polymerization of the host actin cytoskeleton. The signal transduction pathways that act downstream of Met to regulate actin filament assembly or other processes during Listeria uptake remain incompletely characterized. Here, we demonstrate important roles for the human serine/threonine kinases mTOR and protein kinase C-α (PKC-α) in InlB-dependent entry. Experiments involving RNA interference (RNAi) indicated that two multiprotein complexes containing mTOR, mTORC1 and mTORC2, are each needed for efficient internalization of Listeria into cells of the human cell line HeLa. InlB stimulated Met-dependent phosphorylation of mTORC1 or mTORC2 substrates, demonstrating activation of both mTOR-containing complexes. RNAi studies indicated that the mTORC1 effectors 4E-BP1 and hypoxia-inducible factor 1α (HIF-1α) and the mTORC2 substrate PKC-α each control Listeria uptake. Genetic or pharmacological inhibition of PKC-α reduced the internalization of Listeria and the accumulation of actin filaments that normally accompanies InlB-mediated entry. Collectively, our results identify mTOR and PKC-α to be host factors exploited by Listeria to promote infection. PKC-α controls Listeria entry, at least in part, by regulating the actin cytoskeleton downstream of the Met receptor. Copyright © 2017 American Society for Microbiology.

  17. Genome-wide Identification and Expression Analysis of Calcium-dependent Protein Kinase and Its Closely Related Kinase Genes in Capsicum annuum

    Directory of Open Access Journals (Sweden)

    hanyang ecai

    2015-09-01

    Full Text Available As Ca2+ sensors and effectors, calcium-dependent protein kinases (CDPKs play important roles in regulating the downstream components of calcium signaling, which are ubiquitously involved in plant growth, development, and response to environmental cues. However, no CDPKs have been characterized in Capsicum annuum thus far. Herein, a comprehensive analysis of genes encoding pepper CDPKs and CDPK-related protein kinases (CRKs was performed, and 31 CDPK genes and five closely related kinase genes were identified, which were phylogenetically divided into four distinct subfamilies and unevenly distributed across nine chromosomes. Conserved sequence and exon-intron structures were found to be shared by pepper CDPKs within the same subfamily, and the expansion of the CaCPK family in pepper was found to be due to segmental duplication events. Five CDPKs in the Capsicum annuum variety CM334 were found to be mutated in the Chiltepin variety, and one CDPK present in CM334 was lost in Chiltepin. The majority of CDPK and CRK genes were expressed in different pepper tissues and developmental stages, and 10, 12, and eight CDPK genes were transcriptionally modified by salt, heat, and Ralstonia solanacearum stresses, respectively. Furthermore, these genes were found to respond specifically to one stress as well as respond synergistically to two stresses or three stresses, suggesting that these CDPK genes might be involved in the specific or synergistic response of pepper to salt, heat, and R. solanacearum. Our results lay the foundation for future functional characterization of pepper CDPK and its closely related gene families.

  18. MST kinases in development and disease

    National Research Council Canada - National Science Library

    Thompson, Barry J; Sahai, Erik

    2015-01-01

    The mammalian MST kinase family, which is related to the Hippo kinase in Drosophila melanogaster, includes five related proteins: MST1 (also called STK4), MST2 (also called STK3), MST3 (also called STK24), MST4, and YSK1...

  19. Rho-kinase inhibitors from adlay seeds.

    Science.gov (United States)

    Amen, Yhiya; Zhu, Qinchang; Tran, Hai-Bang; Afifi, Mohamed S; Halim, Ahmed F; Ashour, Ahmed; Fujimoto, Ryoji; Goto, Takahiro; Shimizu, Kuniyoshi

    2017-07-19

    Rho-kinase enzymes are one of the most important targets recently identified in our bodies. Several lines of evidence indicate that these enzymes are involved in many diseases and cellular disorders. ROCK inhibitors may have clinical applications for cancer, hypertension, glaucoma, etc. Our study aims to identify the possible involvement of Rho-kinase inhibition to the multiple biological activities of adlay seeds and provide a rationale for their folkloric medicines. Hence, we evaluated Rho-kinase I and II inhibitory activity of the ethanol extract and 28 compounds derived from the seeds. A molecular docking assay was designed to estimate the binding affinity of the tested compounds with the target enzymes. The results of our study suggest a possible involvement of Rho-kinase inhibition to the multiple biological activities of the seeds. Furthermore, the results obtained with the tested compounds revealed some interesting skeletons as a scaffold for design and development of natural Rho-kinase inhibitors.

  20. Glycogen Synthase Kinase-3β

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Lenskjold, Toke; Jacoby, Anne Sophie

    2016-01-01

    Evidence indicates a role for glycogen synthase kinase-3β (GSK-3β) in the pathophysiology of mood disorders and in cognitive disturbances; however, the natural variation in GSK-3β activity over time is unknown. We aimed to investigate GSK-3β activity over time and its possible correlation...... with emotional lability, subjective mood fluctuations and cognitive function in healthy individuals. Thirty-seven healthy subjects were evaluated with neuropsychological tests and blood samples at baseline and 12-week follow-up. Total GSK-3β and serine-9-phosphorylated GSK-3β in peripheral blood mononuclear...... analysis revealed lower activity of GSK-3β in spring and summer compared with the fall season. No correlation was observed between GSK-3β activity and emotional lability, subjective mood fluctuations or cognitive function. The results suggest that intra- and interindividual variation in GSK-3β activity...

  1. Shigella flexneri T3SS effectors OspB and OspF target the nucleus to down-regulate the host inflammatory response via interactions with retinoblastoma protein

    Science.gov (United States)

    Zurawski, Daniel V.; Mumy, Karen L.; Faherty, Christina S.; McCormick, Beth A.; Maurelli, Anthony T.

    2009-01-01

    Summary OspF, OspG, and IpaH9.8 are type III secretion system (T3SS) effectors of Shigella flexneri that down-regulate the host innate immune response. OspF modifies mitogen-activated protein kinase (MAPK) pathways and polymorphonuclear leukocyte (PMN) transepithelial migration associated with Shigella invasion. OspF also localizes in the nucleus to mediate chromatin remodeling resulting in reduced transcription of inflammatory cytokines. We now report that OspB can be added to the set of S. flexneri T3SS effectors required to modulate the innate immune response. T84 cells infected with a ΔospB mutant resulted in reduced PMN transepithelial migration and MAPK signaling. Tagged versions of OspB localized with endosomes and the nucleus. Further, T84 cells infected with the ΔospB mutant showed increased levels of secreted IL-8 compared to wild-type infected cells. Both GST-OspB and GST-OspF co-precipitated retinoblastoma protein (Rb) from host cell lysates. Because ΔospB and ΔospF mutants share similar phenotypes, and OspB and OspF share a host binding partner, we propose that OspB and OspF facilitate the remodeling of chromatin via interactions with Rb resulting in diminished inflammatory cytokine production. The requirement of multiple T3SS effectors to modulate the innate immune response correlates to the complexity of the human immune system. PMID:19017275

  2. A massive expansion of effector genes underlies gall-formation in the wheat pest Mayetiola destructor

    DEFF Research Database (Denmark)

    Zhao, Chaoyang; Escalante, Lucio Navarro; Chen, Hang

    2015-01-01

    Gall-forming arthropods are highly specialized herbivores that, in combination with their hosts, produce extended phenotypes with unique morphologies [1]. Many are economically important, and others have improved our understanding of ecology and adaptive radiation [2]. However, the mechanisms......-parasitic lifestyle. Among several adaptive modifications, we discovered an expansive reservoir of potential effector proteins. Nearly 5% of the 20,163 predicted gene models matched putative effector gene transcripts present in the M. destructor larval salivary gland. Another 466 putative effectors were discovered...

  3. Molecular and biochemical analysis of symbiotic plant receptor kinase complexes

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Douglas R; Riely, Brendan K

    2010-09-01

    DE-FG02-01ER15200 was a 36-month project, initiated on Sept 1, 2005 and extended with a one-year no cost extension to August 31, 2009. During the project period we published seven manuscripts (2 in review). Including the prior project period (2002-2005) we published 12 manuscripts in journals that include Science, PNAS, The Plant Cell, Plant Journal, Plant Physiology, and MPMI. The primary focus of this work was to further elucidate the function of the Nod factor signaling pathway that is involved in initiation of the legume-rhizobium symbiosis and in particular to explore the relationship between receptor kinase-like proteins and downstream effectors of symbiotic development. During the project period we have map-base cloned two additional players in symbiotic development, including an ERF transcription factor and an ethylene pathway gene (EIN2) that negatively regulates symbiotic signaling; we have also further characterized the subcellular distribution and function of a nuclear-localized symbiosis-specific ion channel, DMI1. The major outcome of the work has been the development of systems for exploring and validating protein-protein interactions that connect symbiotic receptor-like proteins to downstream responses. In this regard, we have developed both homologous (i.e., in planta) and heterologous (i.e., in yeast) systems to test protein interactions. Using yeast 2-hybrid screens we isolated the only known interactor of the nuclear-localized calcium-responsive kinase DMI3. We have also used yeast 2-hybrid methodology to identify interactions between symbiotic signaling proteins and certain RopGTPase/RopGEF proteins that regulate root hair polar growth. More important to the long-term goals of our work, we have established a TAP tagging system that identifies in planta interactions based on co-immuno precipitation and mass spectrometry. The validity of this approach has been shown using known interactors that either co-iummnoprecipate (i.e., remorin) or co

  4. Advances in development of phosphatidylinositol 3-kinase inhibitors.

    Science.gov (United States)

    Kong, Dexin; Yamori, Takao

    2009-01-01

    Phosphatidylinositol 3-kinases (PI3Ks) are a class of lipid kinases that phosphorylate phosphatidylinositol 4,5-bisphosphate (PIP2) at the 3-OH of the inositol ring to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3), which in turn activates Akt and the downstream effectors like mTOR, and therefore play important roles in cell growth, survival, etc. The phosphatase and tensin homolog deleted in chromosome ten (PTEN), acts as the catalytic antagonist of PI3K by dephosphorylating PIP3 to PIP2. PI3K has become an important drug target for cancer therapy, since gain-of-function mutations of PIK3CA encoding PI3Kalpha, as well as loss-of-function mutations of PTEN, have been frequently found in human cancers. The pharmaceutical development of PI3K inhibitors has made a great leap forward during the last 3 years. While PI3Kbeta, delta and gamma isoform-specific PI3K inhibitors (TGX-221, IC87114 and AS-605240) have been developed for therapy of coronary heart disease, asthma, and glomerulonephritis, respectively, a promising PI3Kalpha specific inhibitor is not yet available. Correspondingly, almost all of the promising PI3K inhibitors under development for caner therapy, such as NVP-BEZ235, GDC-0941 and ZSTK474, are pan-PI3K isoform inhibitors. Each of these pan-PI3K inhibitors seems to induce a common G1 phase arrest. All have shown favorable in vivo anticancer efficacies and low toxicities, and therefore most have entered evaluation in clinical trials. P-Akt and p-S6 have been reported to be feasible pharmacodynamic biomarkers for monitoring the efficacy of these agents. In the process of discovery of these and other PI3K inhibitors, detailed structure-activity relationship studies were carried out. This review summarizes key advances in the development of PI3K inhibitors, which is preceded by an introduction of PI3K family and their functions.

  5. Transcription activator-like effector hybrids for conditional control and rewiring of chromosomal transgene expression.

    Science.gov (United States)

    Li, Yi; Moore, Richard; Guinn, Michael; Bleris, Leonidas

    2012-01-01

    The ability to conditionally rewire pathways in human cells holds great therapeutic potential. Transcription activator-like effectors (TALEs) are a class of naturally occurring specific DNA binding proteins that can be used to introduce targeted genome modifications or control gene expression. Here we present TALE hybrids engineered to respond to endogenous signals and capable of controlling transgenes by applying a predetermined and tunable action at the single-cell level. Specifically, we first demonstrate that combinations of TALEs can be used to modulate the expression of stably integrated genes in kidney cells. We then introduce a general purpose two-hybrid approach that can be customized to regulate the function of any TALE either using effector molecules or a heterodimerization reaction. Finally, we demonstrate the successful interface of TALEs to specific endogenous signals, namely hypoxia signaling and microRNAs, essentially closing the loop between cellular information and chromosomal transgene expression.

  6. BtpB, a novel Brucella TIR-containing effector protein with immune modulatory functions

    Science.gov (United States)

    Salcedo, Suzana P.; Marchesini, María I.; Degos, Clara; Terwagne, Matthieu; Von Bargen, Kristine; Lepidi, Hubert; Herrmann, Claudia K.; Santos Lacerda, Thais L.; Imbert, Paul R. C.; Pierre, Philippe; Alexopoulou, Lena; Letesson, Jean-Jacques; Comerci, Diego J.; Gorvel, Jean-Pierre

    2013-01-01

    Several bacterial pathogens have TIR domain-containing proteins that contribute to their pathogenesis. We identified a second TIR-containing protein in Brucella spp. that we have designated BtpB. We show it is a potent inhibitor of TLR signaling, probably via MyD88. BtpB is a novel Brucella effector that is translocated into host cells and interferes with activation of dendritic cells. In vivo mouse studies revealed that BtpB is contributing to virulence and control of local inflammatory responses with relevance in the establishment of chronic brucellosis. Together, our results show that BtpB is a novel Brucella effector that plays a major role in the modulation of host innate immune response during infection. PMID:23847770

  7. Licensing delineates helper and effector NK cell subsets during viral infection.

    Science.gov (United States)

    Zamora, Anthony E; Aguilar, Ethan G; Sungur, Can M; Khuat, Lam T; Dunai, Cordelia; Lochhead, G Raymond; Du, Juan; Pomeroy, Claire; Blazar, Bruce R; Longo, Dan L; Venstrom, Jeffrey M; Baumgarth, Nicole; Murphy, William J

    2017-05-18

    Natural killer (NK) cells can be divided into phenotypic subsets based on expression of receptors that bind self-MHC-I molecules, a concept termed licensing or education. Here we show NK cell subsets with different migratory, effector, and immunoregulatory functions in dendritic cell and antigen (ag)-specific CD8+ T cell responses during influenza and murine cytomegalovirus infections. Shortly after infection, unlicensed NK cells localized in draining lymph nodes and produced GM-CSF, which correlated with the expansion and activation of dendritic cells, and resulted in greater and sustained ag-specific T cell responses. In contrast, licensed NK cells preferentially migrated to infected tissues and produced IFN-γ. Importantly, human NK cell subsets exhibited similar phenotypic characteristics. Collectively, our studies demonstrate a critical demarcation between the functions of licensed and unlicensed NK cell subsets, with the former functioning as the classical effector subset and the latter as the stimulator of adaptive immunity helping to prime immune responses.

  8. Generation of knockout rabbits using transcription activator-like effector nucleases

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2014-01-01

    Full Text Available Zinc-finger nucleases and transcription activator-like effector nucleases are novel gene-editing platforms contributing to redefine the boundaries of modern biological research. They are composed of a non-specific cleavage domain and a tailor made DNA-binding module, which enables a broad range of genetic modifications by inducing efficient DNA double-strand breaks at desired loci. Among other remarkable uses, these nucleases have been employed to produce gene knockouts in mid-size and large animals, such as rabbits and pigs, respectively. This approach is cost effective, relatively quick, and can produce invaluable models for human disease studies, biotechnology or agricultural purposes. Here we describe a protocol for the efficient generation of knockout rabbits using transcription activator-like effector nucleases, and a perspective of the field.

  9. Conservation of the Ustilago maydis effector See1 in related smuts.

    Science.gov (United States)

    Redkar, Amey; Villajuana-Bonequi, Mitzi; Doehlemann, Gunther

    2015-01-01

    Ustilago maydis is a biotrophic fungus that induces formation of tumors in maize (Zea mays L). In a recent study we identified See1 (Seedling efficient effector 1) as an U. maydis organ-specific effector required for tumor formation in leaves. See1 is required for U. maydis induced reactivation of plant DNA synthesis during leaf tumor progression. The protein is secreted from biotrophic hyphae and localizes to the cytoplasm and nucleus of plant cell. See1 interacts with maize SGT1, a cell cycle and immune regulator, interfering with its MAPK-triggered phosphorylation. Here, we present new data on the conservation of See1 in other closely related smuts and experimental data on the functionality of See1 ortholog in Ustilago hordei, the causal agent of barley covered smut disease.

  10. Tailored immune responses: novel effector helper T cell subsets in protective immunity.

    Science.gov (United States)

    Kara, Ervin E; Comerford, Iain; Fenix, Kevin A; Bastow, Cameron R; Gregor, Carly E; McKenzie, Duncan R; McColl, Shaun R

    2014-02-01

    Differentiation of naïve CD4⁺ cells into functionally distinct effector helper T cell subsets, characterised by distinct "cytokine signatures," is a cardinal strategy employed by the mammalian immune system to efficiently deal with the rapidly evolving array of pathogenic microorganisms encountered by the host. Since the T(H)1/T(H)2 paradigm was first described by Mosmann and Coffman, research in the field of helper T cell biology has grown exponentially with seven functionally unique subsets having now been described. In this review, recent insights into the molecular mechanisms that govern differentiation and function of effector helper T cell subsets will be discussed in the context of microbial infections, with a focus on how these different helper T cell subsets orchestrate immune responses tailored to combat the nature of the pathogenic threat encountered.

  11. Tailored immune responses: novel effector helper T cell subsets in protective immunity.

    Directory of Open Access Journals (Sweden)

    Ervin E Kara

    2014-02-01

    Full Text Available Differentiation of naïve CD4⁺ cells into functionally distinct effector helper T cell subsets, characterised by distinct "cytokine signatures," is a cardinal strategy employed by the mammalian immune system to efficiently deal with the rapidly evolving array of pathogenic microorganisms encountered by the host. Since the T(H1/T(H2 paradigm was first described by Mosmann and Coffman, research in the field of helper T cell biology has grown exponentially with seven functionally unique subsets having now been described. In this review, recent insights into the molecular mechanisms that govern differentiation and function of effector helper T cell subsets will be discussed in the context of microbial infections, with a focus on how these different helper T cell subsets orchestrate immune responses tailored to combat the nature of the pathogenic threat encountered.

  12. Saccades and reaches curve away from the other effector's target in simultaneous eye and hand movements.

    Science.gov (United States)

    Nissens, Tom; Fiehler, Katja

    2017-10-11

    Simultaneous eye and hand movements are highly coordinated and tightly coupled. This raises the question whether the selection of eye and hand targets relies on a shared attentional mechanism or separate attentional systems. Previous studies have revealed conflicting results by reporting evidence for both a shared as well as separate systems. Movement properties such as movement curvature can provide novel insights into this question as they provide a sensitive measure for attentional allocation during target selection. In the current study, participants performed simultaneous eye and hand movements to the same or different visual target locations. We show that both saccade and reaching movements curve away from the other effector's target location when they are simultaneously performed to spatially distinct locations. We argue that there is a shared attentional mechanism involved in selecting eye and hand targets which may be found on the level of effector independent priority maps. Copyright © 2017, Journal of Neurophysiology.

  13. A substrate-inspired probe monitors translocation, activation, and subcellular targeting of bacterial type III effector protease AvrPphB.

    Science.gov (United States)

    Lu, Haibin; Wang, Zheming; Shabab, Mohammed; Oeljeklaus, Julian; Verhelst, Steven H; Kaschani, Farnusch; Kaiser, Markus; Bogyo, Matthew; van der Hoorn, Renier A L

    2013-02-21

    The AvrPphB effector of Pseudomonas syringae is a papain-like protease that is injected into the host plant cell and cleaves specific kinases to disrupt immune signaling. Here, we used the unique substrate specificity of AvrPphB to generate a specific activity-based probe. This probe displays various AvrPphB isoforms in bacterial extracts, upon secretion and inside the host plant. We show that AvrPphB is secreted as a proprotease and that secretion requires the prodomain, but probably does not involve a pH-dependent unfolding mechanism. The prodomain removal is required for the ability of AvrPphB to trigger a hypersensitive cell death in resistant host plants, presumably since processing exposes a hidden acylation site required for subcellular targeting in the host cell. We detected two active isoforms of AvrPphB in planta, of which the major one localizes exclusively to membranes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. The potential of effector-target genes in breeding for plant innate immunity

    OpenAIRE

    Gawehns, F.; Cornelissen, B.J.C.; Takken, F.L.W.

    2013-01-01

    Increasing numbers of infectious crop diseases that are caused by fungi and oomycetes urge the need to develop alternative strategies for resistance breeding. As an alternative for the use of resistance (R) genes, the application of mutant susceptibility (S) genes has been proposed as a potentially more durable type of resistance. Identification of S genes is hampered by their recessive nature. Here we explore the use of pathogen-derived effectors as molecular probes to identify S genes. Effe...

  15. Mesenchymal stromal cells engage complement and complement receptor bearing innate effector cells to modulate immune responses.

    Directory of Open Access Journals (Sweden)

    Guido Moll

    Full Text Available Infusion of human third-party mesenchymal stromal cells (MSCs appears to be a promising therapy for acute graft-versus-host disease (aGvHD. To date, little is known about how MSCs interact with the body's innate immune system after clinical infusion. This study shows, that exposure of MSCs to blood type ABO-matched human blood activates the complement system, which triggers complement-mediated lymphoid and myeloid effector cell activation in blood. We found deposition of complement component C3-derived fragments iC3b and C3dg on MSCs and fluid-phase generation of the chemotactic anaphylatoxins C3a and C5a. MSCs bound low amounts of immunoglobulins and lacked expression of complement regulatory proteins MCP (CD46 and DAF (CD55, but were protected from complement lysis via expression of protectin (CD59. Cell-surface-opsonization and anaphylatoxin-formation triggered complement receptor 3 (CD11b/CD18-mediated effector cell activation in blood. The complement-activating properties of individual MSCs were furthermore correlated with their potency to inhibit PBMC-proliferation in vitro, and both effector cell activation and the immunosuppressive effect could be blocked either by using complement inhibitor Compstatin or by depletion of CD14/CD11b-high myeloid effector cells from mixed lymphocyte reactions. Our study demonstrates for the first time a major role of the complement system in governing the immunomodulatory activity of MSCs and elucidates how complement activation mediates the interaction with other immune cells.

  16. A Farnesylated Coxiella burnetii Effector Forms a Multimeric Complex at the Mitochondrial Outer Membrane during Infection.

    Science.gov (United States)

    Fielden, Laura F; Moffatt, Jennifer H; Kang, Yilin; Baker, Michael J; Khoo, Chen Ai; Roy, Craig R; Stojanovski, Diana; Newton, Hayley J

    2017-05-01

    Coxiella burnetii, the causative agent of Q fever, establishes a unique lysosome-derived intracellular niche termed the Coxiella-containing vacuole (CCV). The Dot/Icm-type IVB secretion system is essential for the biogenesis of the CCV and the intracellular replication of Coxiella Effector proteins, translocated into the host cell through this apparatus, act to modulate host trafficking and signaling processes to facilitate CCV development. Here we investigated the role of CBU0077, a conserved Coxiella effector that had previously been observed to localize to lysosomal membranes. CBU0077 was dispensable for the intracellular replication of Coxiella in HeLa and THP-1 cells and did not appear to participate in CCV biogenesis. Intriguingly, native and epitope-tagged CBU0077 produced by Coxiella displayed specific punctate localization at host cell mitochondria. As such, we designated CBU0077 MceA (mitochondrial Coxiellaeffector protein A). Analysis of ectopically expressed MceA truncations revealed that the capacity to traffic to mitochondria is encoded within the first 84 amino acids of this protein. MceA is farnesylated by the host cell; however, this does not impact mitochondrial localization. Examination of mitochondria isolated from infected cells revealed that MceA is specifically integrated into the mitochondrial outer membrane and forms a complex of approximately 120 kDa. Engineering Coxiella to express either MceA tagged with 3×FLAG or MceA tagged with 2×hemagglutinin allowed us to perform immunoprecipitation experiments that showed that MceA forms a homo-oligomeric species at the mitochondrial outer membrane during infection. This research reveals that mitochondria are a bona fide target of Coxiella effectors and MceA is a complex-forming effector at the mitochondrial outer membrane during Coxiella infection. Copyright © 2017 American Society for Microbiology.

  17. Characterisation of cell death inducing Phytophthora capsici CRN effectors suggests diverse activities in the host nucleus

    Directory of Open Access Journals (Sweden)

    Remco eStam

    2013-10-01

    Full Text Available Plant-Microbe interactions are complex associations that feature recognition of Pathogen Associated Molecular Patterns by the plant immune system and dampening of subsequent responses by pathogen encoded secreted effectors. With large effector repertoires now identified in a range of sequenced microbial genomes, much attention centres on understanding their roles in immunity or disease. These studies not only allow identification of pathogen virulence factors and strategies, they also provide an important molecular toolset suited for studying immunity in plants. The Phytophthora intracellular effector repertoire encodes a large class of proteins that translocate into host cells and exclusively target the host nucleus. Recent functional studies have implicated the CRN protein family as an important class of diverse effectors that target distinct subnuclear compartments and modify host cell signalling. Here, we characterised three necrosis inducing CRNs and show that there are differences in the levels of cell death. We show that only expression of CRN20_624 has an additive effect on PAMP induced cell death but not AVR3a induced ETI. Given their distinctive phenotypes, we assessed localisation of each CRN with a set of nuclear markers and found clear differences in CRN subnuclear distribution patterns. These assays also revealed that expression of CRN83_152 leads to a distinct change in nuclear chromatin organisation, suggesting a distinct series of events that leads to cell death upon over-expression. Taken together, our results suggest diverse functions carried by CRN C-termini, which can be exploited to identify novel processes that take place in the host nucleus and are required for immunity or susceptibility.

  18. Test plan for the remote conveyance and innovative end effector demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Rice, P.; Smith, A.M. [EG& G Idaho, Inc., Idaho Falls, ID (United States). Idaho National Engineering Lab.; Peterson, R.

    1994-08-01

    This test plan describes the demonstration of innovative equipment and processes specifically designed to be superior to currently employed technology for buried waste retrieval. The dumping of dry soil into a funnel/dumpster arrangement has been found to be the primary mechanism for dust generation during the retrieval of buried transuranic waste. The primary goal of the innovative end effector is to reduce dust generation and the potential spread of airborne contaminants during the dumping operation. In addition, regardless of the excavation technique, exhumed waste will have to be conveyed away from the retrieval area to a packaging area or directly to a treatment facility. The remote conveyance system is aimed at developing a remotely controlled vehicle to convey retrieved waste that will operate on variable terrain and remove workers from the hazardous zone. To demonstrate the remote conveyance system and the innovative end effector, the Buried Waste Integrated Demonstration (BWID) Program has subcontracted with RAHCO International to provide equipment and services to perform a demonstration of the technologies. The demonstration will be performed in two phases. In Phase I, the subcontractor will perform a full scale demonstration to assess the ability of the innovative end effector to control dust generation and the potential spread of contamination during dumping operations. Phase II includes performing a retrieval/conveyance demonstration. This demonstration will excavate, dump, and convey simulated waste to demonstrate the functionality of the system (e.g., maneuverability, retrieval rates, and system integration). Phase II of the demonstration will include all elements of the remote conveyance and end effector system. This test plan will describe the demonstration objectives, data quality objectives, equipment operation, and methods for collecting data during the demonstration.

  19. Pro-inflammatory effector Th cells transmigrate through anti-inflammatory environments into the murine fetus.

    Science.gov (United States)

    Wienecke, J; Hebel, K; Hegel, K J; Pierau, M; Brune, T; Reinhold, D; Pethe, A; Brunner-Weinzierl, M C

    2012-01-01

    The presence of maternal DNA or even maternal cells within the offspring (microchimerism) has been reported for many fetal tissues, including the liver, heart, and spleen. Microchimerism is believed to be involved in the pathogenesis of autoimmune diseases; however, the cellular origin of this phenomenon remains unknown. Here, we determined whether differentiated T lymphocytes could transmigrate through the immunosuppressive environment of the placenta to reach the fetus. In vitro-differentiated effector/memory Th1 and Th17 cells from OVA₃₂₃₋₃₃₉-specific TCR(tg) T cells of OT-II mice were adoptively transferred (i.v.) into the tail veins of pregnant Ly5.1 mice at d15 and d19 of gestation. Mice were then sacrificed 40 h after adoptive cell transfer. Using radioactive labeling of T cells with sodium chromate [Cr⁵¹] prior to adoptive transfer, we observed that homing of pro-inflammatory Th cells was equally efficient in both pregnant and non-pregnant mice. Transmigration of Th1- and Th17-like cells through the highly immunosuppressive environment of the placenta into the fetus was significantly enhanced in experimental mice compared to control mice (P cells accumulated in the placenta. Finally, we found that treatment with Pertussis Toxin resulted in a 3-fold increase in the transmigration of effector Th17 cells into the fetus (P cells were injected into syngeneic mothers, almost all of the fetuses analyzed exhibited radioactivity, suggesting that transmigration of effector T cells occurs frequently. Our results suggest the possibility of novel roles for these maternal effector cells in the pathogenesis or reduction of disease. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Neutrophils are essential as a source of IL-17 in the effector phase of arthritis.

    Directory of Open Access Journals (Sweden)

    Masaki Katayama

    Full Text Available OBJECTIVE: Th17 has been shown to have a pivotal role in the development of arthritis. However, the role of IL-17 in the T cell-independent effector phase has not fully been examined. We investigated whether IL-17 is involved in the effector phase of arthritis by using K/BxN serum-induced arthritis model. METHODS: K/BxN serum was transferred into IL-17 knockout (KO mice, SCID mice and their control mice, and arthritis was evaluated over time. In order to clarify the source of IL-17 in the effector phase, neutrophils or CD4+ T cells collected from IL-17 KO or control mice were injected into IL-17 KO recipient mice together with K/BxN serum. To examine if neutrophils secrete IL-17 upon stimulation, neutrophils were stimulated with immune complex in vitro and IL-17 in the supernatant was measured by ELISA. RESULTS: K/BxN serum-induced arthritis was much less severe in IL-17 KO mice than in WT mice. Since K/BxN serum-transferred SCID mice developed severe arthritis with high serum IL-17 concentration, we speculated neutrophils are the responsible player as an IL-17 source. When wild type (WT but not IL-17 KO neutrophils were co-injected with K/BxN serum into IL-17 KO mice, arthritis was exacerbated, whereas co-injection of WT CD4+ T cells had no effect. In vitro, stimulation of neutrophils with immune complex caused IL-17 secretion. CONCLUSIONS: Neutrophils are essential as a source of IL-17 in the effector phase of arthritis. The trigger of secreting IL-17 from neutrophils may be immune complex.

  1. The Piriformospora indica effector PIIN_08944 promotes the mutualistic Sebacinalean symbiosis

    Science.gov (United States)

    Akum, Fidele N.; Steinbrenner, Jens; Biedenkopf, Dagmar; Imani, Jafargholi; Kogel, Karl-Heinz

    2015-01-01

    Pathogenic and mutualistic microbes actively suppress plant defense by secreting effector proteins to manipulate the host responses for their own benefit. Current knowledge about fungal effectors has been mainly derived from biotrophic and hemibiotrophic plant pathogenic fungi and oomycetes with restricted host range. We studied colonization strategies of the root endophytic basidiomycete Piriformospora indica that colonizes a wide range of plant species thereby establishing long-term mutualistic relationships. The release of P. indica’s genome helped to identify hundreds of genes coding for candidate effectors and provides an opportunity to investigate the role of those proteins in a mutualistic symbiosis. We demonstrate that the candidate effector PIIN_08944 plays a crucial role during fungal colonization of Arabidopsis thaliana roots. PIIN_08944 expression was detected during chlamydospore germination, and fungal deletion mutants (PiΔ08944) showed delayed root colonization. Constitutive over-expression of PIIN_08944 in Arabidopsis rescued the delayed colonization phenotype of the deletion mutant. PIIN_08944-expressing Arabidopsis showed a reduced expression of flg22-induced marker genes of pattern-triggered immunity (PTI) and the salicylic acid (SA) defense pathway, and expression of PIIN_08944 in barley reduced the burst of reactive oxygen species (ROS) triggered by flg22 and chitin. These data suggest that PIIN_08944 contributes to root colonization by P. indica by interfering with SA-mediated basal immune responses of the host plant. Consistent with this, PIIN_08944-expressing Arabidopsis also supported the growth of the biotrophic oomycete Hyaloperonospora arabidopsidis while growth of the necrotrophic fungi Botrytis cinerea on Arabidopsis and Fusarium graminearum on barley was not affected. PMID:26579156

  2. The Piriformospora indica effector PIIN_08944 promotes the mutualistic Sebacinalean symbiosis.

    Science.gov (United States)

    Akum, Fidele N; Steinbrenner, Jens; Biedenkopf, Dagmar; Imani, Jafargholi; Kogel, Karl-Heinz

    2015-01-01

    Pathogenic and mutualistic microbes actively suppress plant defense by secreting effector proteins to manipulate the host responses for their own benefit. Current knowledge about fungal effectors has been mainly derived from biotrophic and hemibiotrophic plant pathogenic fungi and oomycetes with restricted host range. We studied colonization strategies of the root endophytic basidiomycete Piriformospora indica that colonizes a wide range of plant species thereby establishing long-term mutualistic relationships. The release of P. indica's genome helped to identify hundreds of genes coding for candidate effectors and provides an opportunity to investigate the role of those proteins in a mutualistic symbiosis. We demonstrate that the candidate effector PIIN_08944 plays a crucial role during fungal colonization of Arabidopsis thaliana roots. PIIN_08944 expression was detected during chlamydospore germination, and fungal deletion mutants (PiΔ08944) showed delayed root colonization. Constitutive over-expression of PIIN_08944 in Arabidopsis rescued the delayed colonization phenotype of the deletion mutant. PIIN_08944-expressing Arabidopsis showed a reduced expression of flg22-induced marker genes of pattern-triggered immunity (PTI) and the salicylic acid (SA) defense pathway, and expression of PIIN_08944 in barley reduced the burst of reactive oxygen species (ROS) triggered by flg22 and chitin. These data suggest that PIIN_08944 contributes to root colonization by P. indica by interfering with SA-mediated basal immune responses of the host plant. Consistent with this, PIIN_08944-expressing Arabidopsis also supported the growth of the biotrophic oomycete Hyaloperonospora arabidopsidis while growth of the necrotrophic fungi Botrytis cinerea on Arabidopsis and Fusarium graminearum on barley was not affected.

  3. The Piriformospora indica effector PIIN_08944 promotes the mutualistic Sebacinalean symbiosis

    Directory of Open Access Journals (Sweden)

    Fidele Ndifor Akum

    2015-10-01

    Full Text Available Pathogenic and mutualistic microbes actively suppress plant defense by secreting effector proteins to manipulate the host responses for their own benefit. Current knowledge about fungal effectors has been mainly derived from biotrophic and hemibiotrophic plant pathogenic fungi and oomycetes with restricted host range. We studied colonization strategies of the root endophytic basidiomycete Piriformospora indica that colonizes a wide range of plant species thereby establishing long-term mutualistic relationships. The release of P. indica’s genome helped to identify hundreds of genes coding for candidate effectors and provides an opportunity to investigate the role of those proteins in a mutualistic symbiosis. We demonstrate that the candidate effector PIIN_08944 plays a crucial role during fungal colonization of Arabidopsis thaliana roots. PIIN_08944 expression was detected during chlamydospore germination, and fungal deletion mutants (Pi∆08944 showed delayed root colonization. Constitutive over-expression of PIIN_08944 in Arabidopsis rescued the delayed colonization phenotype of the deletion mutant. PIIN_08944-expressing Arabidopsis showed a reduced expression of flg22-induced marker genes of pattern-triggered immunity (PTI and the salicylic acid (SA defense pathway, and expression of PIIN_08944 in barley reduced the burst of reactive oxygen species (ROS triggered by flg22 and chitin. These data suggest that PIIN_08944 contributes to root colonization by P. indica by interfering with SA-mediated basal immune responses of the host plant. Consistent with this, PIIN_08944-expressing Arabidopsis also supported the growth of the biotrophic oomycete Hyaloperonospora arabidopsidis while growth of the necrotrophic fungi Botrytis cinerea on Arabidopsis and Fusarium graminearum on barley was not affected.

  4. Stimulation over primary motor cortex during action observation impairs effector recognition.

    Science.gov (United States)

    Naish, Katherine R; Barnes, Brittany; Obhi, Sukhvinder S

    2016-04-01

    Recent work suggests that motor cortical processing during action observation plays a role in later recognition of the object involved in the action. Here, we investigated whether recognition of the effector making an action is also impaired when transcranial magnetic stimulation (TMS) - thought to interfere with normal cortical activity - is applied over the primary motor cortex (M1) during action observation. In two experiments, single-pulse TMS was delivered over the hand area of M1 while participants watched short clips of hand actions. Participants were then asked whether an image (experiment 1) or a video (experiment 2) of a hand presented later in the trial was the same or different to the hand in the preceding video. In Experiment 1, we found that participants' ability to recognise static images of hands was significantly impaired when TMS was delivered over M1 during action observation, compared to when no TMS was delivered, or when stimulation was applied over the vertex. Conversely, stimulation over M1 did not affect recognition of dot configurations, or recognition of hands that were previously presented as static images (rather than action movie clips) with no object. In Experiment 2, we found that effector recognition was impaired when stimulation was applied part way through (300ms) and at the end (500ms) of the action observation period, indicating that 200ms of action-viewing following stimulation was not long enough to form a new representation that could be used for later recognition. The findings of both experiments suggest that interfering with cortical motor activity during action observation impairs subsequent recognition of the effector involved in the action, which complements previous findings of motor system involvement in object memory. This work provides some of the first evidence that motor processing during action observation is involved in forming representations of the effector that are useful beyond the action observation period

  5. Mining the human gut microbiota for effector strains that shape the immune system.

    Science.gov (United States)

    Ahern, Philip P; Faith, Jeremiah J; Gordon, Jeffrey I

    2014-06-19

    The gut microbiota codevelops with the immune system beginning at birth. Mining the microbiota for bacterial strains responsible for shaping the structure and dynamic operations of the innate and adaptive arms of the immune system represents a formidable combinatorial problem but one that needs to be overcome to advance mechanistic understanding of microbial community and immune system coregulation and to develop new diagnostic and therapeutic approaches that promote health. Here, we discuss a scalable, less biased approach for identifying effector strains in complex microbial communities that impact immune function. The approach begins by identifying uncultured human fecal microbiota samples that transmit immune phenotypes to germ-free mice. Clonally arrayed sequenced collections of bacterial strains are constructed from representative donor microbiota. If the collection transmits phenotypes, effector strains are identified by testing randomly generated subsets with overlapping membership in individually housed germ-free animals. Detailed mechanistic studies of effector strain-host interactions can then be performed. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Bacterial Internalization, Localization, and Effectors Shape the Epithelial Immune Response during Shigella flexneri Infection.

    Science.gov (United States)

    Lippmann, Juliane; Gwinner, Frederik; Rey, Camille; Tamir, Uyanga; Law, Helen K W; Schwikowski, Benno; Enninga, Jost

    2015-09-01

    Intracellular pathogens are differentially sensed by the compartmentalized host immune system. Nevertheless, gene expression studies of infected cells commonly average the immune responses, neglecting the precise pathogen localization. To overcome this limitation, we dissected the transcriptional immune response to Shigella flexneri across different infection stages in bulk and single cells. This identified six distinct transcriptional profiles characterizing the dynamic, multilayered host response in both bystander and infected cells. These profiles were regulated by external and internal danger signals, as well as whether bacteria were membrane bound or cytosolic. We found that bacterial internalization triggers a complex, effector-independent response in bystander cells, possibly to compensate for the undermined host gene expression in infected cells caused by bacterial effectors, particularly OspF. Single-cell analysis revealed an important bacterial strategy to subvert host responses in infected cells, demonstrating that OspF disrupts concomitant gene expression of proinflammatory, apoptosis, and stress pathways within cells. This study points to novel mechanisms through which bacterial internalization, localization, and injected effectors orchestrate immune response transcriptional signatures. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. How effector-specific is the effect of sequence learning by motor execution and motor imagery?

    Science.gov (United States)

    Sobierajewicz, Jagna; Przekoracka-Krawczyk, Anna; Jaśkowski, Wojciech; van der Lubbe, Rob H J

    2017-12-01

    The aim of the present study was twofold. First, we wanted to examine how effector specific the effect of sequence learning by motor execution is, and second, we wanted to compare this effect with learning by motor imagery. We employed a Go/NoGo discrete sequence production task in which in each trial a spatial sequence of five stimuli was presented. After a Go signal the corresponding spatial response sequence had to be executed, while after a NoGo signal, the response sequence had to be mentally imagined. For the training phase, participants were divided into two groups. In the index finger group, participants had to respond (physically or mentally) with the left or right index finger, while in the hand group they had to respond with four fingers of the left or right hand. In a final test phase both execution modes were compared and all trials had to be executed. Response times and the percentage of correct responses were determined to establish learning effects. Results showed that sequence learning effects as assessed in the test phase were independent of the effector used during the training phase. Results revealed the presence of aspecific learning effects in the case of learning a required motor task with an index finger, but sequence-specific learning effects, both due to motor execution and to motor imagery, were not effector specific.

  8. A manipulative instrument with simultaneous gesture and end-effector trajectory planning and controlling

    Science.gov (United States)

    Lin, Hsien-I.; Nguyen, Xuan-Anh

    2017-05-01

    To operate a redundant manipulator to accomplish the end-effector trajectory planning and simultaneously control its gesture in online programming, incorporating the human motion is a useful and flexible option. This paper focuses on a manipulative instrument that can simultaneously control its arm gesture and end-effector trajectory via human teleoperation. The instrument can be classified by two parts; first, for the human motion capture and data processing, marker systems are proposed to capture human gesture. Second, the manipulator kinematics control is implemented by an augmented multi-tasking method, and forward and backward reaching inverse kinematics, respectively. Especially, the local-solution and divergence problems of a multi-tasking method are resolved by the proposed augmented multi-tasking method. Computer simulations and experiments with a 7-DOF (degree of freedom) redundant manipulator were used to validate the proposed method. Comparison among the single-tasking, original multi-tasking, and augmented multi-tasking algorithms were performed and the result showed that the proposed augmented method had a good end-effector position accuracy and the most similar gesture to the human gesture. Additionally, the experimental results showed that the proposed instrument was realized online.

  9. Modulating Cytotoxic Effector Functions by Fc Engineering to Improve Cancer Therapy.

    Science.gov (United States)

    Kellner, Christian; Otte, Anna; Cappuzzello, Elisa; Klausz, Katja; Peipp, Matthias

    2017-09-01

    In the last two decades, monoclonal antibodies have revolutionized the therapy of cancer patients. Although antibody therapy has continuously been improved, still a significant number of patients do not benefit from antibody therapy. Therefore, rational optimization of the antibody molecule by Fc engineering represents a major area of translational research to further improve this potent therapeutic option. Monoclonal antibodies are able to trigger a variety of effector mechanisms. Especially Fc-mediated effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement- dependent cytotoxicity (CDC) are considered important in antibody therapy of cancer. Novel mechanistic insights into the action of monoclonal antibodies allowed the development of various Fc engineering approaches to modulate antibodies' effector functions. Strategies in modifying the Fc glycosylation profile (Fc glyco-engineering) or approaches in engineering the protein backbone (Fc protein engineering) have been intensively evaluated. In the current review, Fc engineering strategies resulting in improved ADCC, ADCP and CDC activity are summarized and discussed.

  10. Temporal Dynamics of CD8+ T Cell Effector Responses during Primary HIV Infection

    Science.gov (United States)

    Demers, Korey R.; Makedonas, George; Buggert, Marcus; Eller, Michael A.; Ratcliffe, Sarah J.; Goonetilleke, Nilu; Li, Chris K.; Eller, Leigh Anne; Rono, Kathleen; Maganga, Lucas; Nitayaphan, Sorachai; Kibuuka, Hannah; Routy, Jean-Pierre; Slifka, Mark K.; Haynes, Barton F.; Bernard, Nicole F.; Robb, Merlin L.; Betts, Michael R.

    2016-01-01

    The loss of HIV-specific CD8+ T cell cytolytic function is a primary factor underlying progressive HIV infection, but whether HIV-specific CD8+ T cells initially possess cytolytic effector capacity, and when and why this may be lost during infection, is unclear. Here, we assessed CD8+ T cell functional evolution from primary to chronic HIV infection. We observed a profound expansion of perforin+ CD8+ T cells immediately following HIV infection that quickly waned after acute viremia resolution. Selective expression of the effector-associated transcription factors T-bet and eomesodermin in cytokine-producing HIV-specific CD8+ T cells differentiated HIV-specific from bulk memory CD8+ T cell effector expansion. As infection progressed expression of perforin was maintained in HIV-specific CD8+ T cells with high levels of T-bet, but not necessarily in the population of T-betLo HIV-specific CD8+ T cells that expand as infection progresses. Together, these data demonstrate that while HIV-specific CD8+ T cells in acute HIV infection initially possess cytolytic potential, progressive transcriptional dysregulation leads to the reduced CD8+ T cell perforin expression characteristic of chronic HIV infection. PMID:27486665

  11. Targeted disruption of Chlamydia trachomatis invasion by in trans expression of dominant negative Tarp effectors

    Directory of Open Access Journals (Sweden)

    Christopher J Parrett

    2016-08-01

    Full Text Available Chlamydia trachomatis invasion of eukaryotic host cells is facilitated, in part, by the type III secreted effector protein, Tarp. The role of Tarp in chlamydiae entry of host cells is supported by molecular approaches that examined recombinant Tarp or Tarp effectors expressed within heterologous systems. A major limitation in the ability to study the contribution of Tarp to chlamydial invasion of host cells was the prior absence of genetic tools for chlamydiae. Based on our knowledge of Tarp domain structure and function along with the introduction of genetic approaches in C. trachomatis, we hypothesized that Tarp function could be disrupted in vivo by the introduction of dominant negative mutant alleles. We provide evidence that transformed C. trachomatis produced epitope tagged Tarp, which was secreted into the host cell during invasion. We examined the effects of domain specific Tarp mutations on chlamydial invasion and growth and demonstrate that C. trachomatis clones harboring engineered Tarp mutants lacking either the actin binding domain or the phosphorylation domain had reduced levels of invasion into host cells. These data provide the first in vivo evidence for the critical role of Tarp in C. trachomatis pathogenesis and indicate that chlamydial invasion of host cells can be attenuated via the introduction of engineered dominant negative type three effectors.

  12. Different Subsets of T Cells, Memory, Effector Functions, and CAR-T Immunotherapy

    Directory of Open Access Journals (Sweden)

    Vita Golubovskaya

    2016-03-01

    Full Text Available This review is focused on different subsets of T cells: CD4 and CD8, memory and effector functions, and their role in CAR-T therapy––a cellular adoptive immunotherapy with T cells expressing chimeric antigen receptor. The CAR-T cells recognize tumor antigens and induce cytotoxic activities against tumor cells. Recently, differences in T cell functions and the role of memory and effector T cells were shown to be important in CAR-T cell immunotherapy. The CD4+ subsets (Th1, Th2, Th9, Th17, Th22, Treg, and Tfh and CD8+ memory and effector subsets differ in extra-cellular (CD25, CD45RO, CD45RA, CCR-7, L-Selectin [CD62L], etc.; intracellular markers (FOXP3; epigenetic and genetic programs; and metabolic pathways (catabolic or anabolic; and these differences can be modulated to improve CAR-T therapy. In addition, CD4+ Treg cells suppress the efficacy of CAR-T cell therapy, and different approaches to overcome this suppression are discussed in this review. Thus, next-generation CAR-T immunotherapy can be improved, based on our knowledge of T cell subsets functions, differentiation, proliferation, and signaling pathways to generate more active CAR-T cells against tumors.

  13. The 3 major types of innate and adaptive cell-mediated effector immunity.

    Science.gov (United States)

    Annunziato, Francesco; Romagnani, Chiara; Romagnani, Sergio

    2015-03-01

    The immune system has tailored its effector functions to optimally respond to distinct species of microbes. Based on emerging knowledge on the different effector T-cell and innate lymphoid cell (ILC) lineages, it is clear that the innate and adaptive immune systems converge into 3 major kinds of cell-mediated effector immunity, which we propose to categorize as type 1, type 2, and type 3. Type 1 immunity consists of T-bet(+) IFN-γ-producing group 1 ILCs (ILC1 and natural killer cells), CD8(+) cytotoxic T cells (TC1), and CD4(+) TH1 cells, which protect against intracellular microbes through activation of mononuclear phagocytes. Type 2 immunity consists of GATA-3(+) ILC2s, TC2 cells, and TH2 cells producing IL-4, IL-5, and IL-13, which induce mast cell, basophil, and eosinophil activation, as well as IgE antibody production, thus protecting against helminthes and venoms. Type 3 immunity is mediated by retinoic acid-related orphan receptor γt(+) ILC3s, TC17 cells, and TH17 cells producing IL-17, IL-22, or both, which activate mononuclear phagocytes but also recruit neutrophils and induce epithelial antimicrobial responses, thus protecting against extracellular bacteria and fungi. On the other hand, type 1 and 3 immunity mediate autoimmune diseases, whereas type 2 responses can cause allergic diseases. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  14. Afferents from vocal motor and respiratory effectors are recruited during vocal production in juvenile songbirds.

    Science.gov (United States)

    Bottjer, Sarah W; To, Michelle

    2012-08-08

    Learned behaviors require coordination of diverse sensory inputs with motivational and motor systems. Although mechanisms underlying vocal learning in songbirds have focused primarily on auditory inputs, it is likely that sensory inputs from vocal effectors also provide essential feedback. We investigated the role of somatosensory and respiratory inputs from vocal effectors of juvenile zebra finches (Taeniopygia guttata) during the stage of sensorimotor integration when they are learning to imitate a previously memorized tutor song. We report that song production induced expression of the immediate early gene product Fos in trigeminal regions that receive hypoglossal afferents from the tongue and syrinx (the main vocal organ). Furthermore, unilateral lesion of hypoglossal afferents greatly diminished singing-induced Fos expression on the side ipsilateral to the lesion, but not on the intact control side. In addition, unilateral lesion of the vagus reduced Fos expression in the ipsilateral nucleus of the solitary tract in singing birds. Lesion of the hypoglossal nerve to the syrinx greatly disrupted vocal behavior, whereas lesion of the hypoglossal nerve to the tongue exerted no obvious disruption and lesions of the vagus caused some alterations to song behavior. These results provide the first functional evidence that somatosensory and respiratory feedback from peripheral effectors is activated during vocal production and conveyed to brainstem regions. Such feedback is likely to play an important role in vocal learning during sensorimotor integration in juvenile birds and in maintaining stereotyped vocal behavior in adults.

  15. A Pseudomonas aeruginosa type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells.

    Science.gov (United States)

    Jiang, Feng; Waterfield, Nicholas R; Yang, Jian; Yang, Guowei; Jin, Qi

    2014-05-14

    Widely found in animal and plant-associated proteobacteria, type VI secretion systems (T6SSs) are potentially capable of facilitating diverse interactions with eukaryotes and/or other bacteria. Pseudomonas aeruginosa encodes three distinct T6SS haemolysin coregulated protein (Hcp) secretion islands (H1, H2, and H3-T6SS), each involved in different aspects of the bacterium's interaction with other organisms. Here we describe the characterization of a P. aeruginosa H3-T6SS-dependent phospholipase D effector, PldB, and its three tightly linked cognate immunity proteins. PldB targets the periplasm of prokaryotic cells and exerts an antibacterial activity. Surprisingly, PldB also facilitates intracellular invasion of host eukaryotic cells by activation of the PI3K/Akt pathway, revealing it to be a trans-kingdom effector. Our findings imply a potentially widespread T6SS-mediated mechanism, which deploys a single phospholipase effector to influence both prokaryotic cells and eukaryotic hosts. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Attention to body-parts varies with visual preference and verb-effector associations.

    Science.gov (United States)

    Boyer, Ty W; Maouene, Josita; Sethuraman, Nitya

    2017-05-01

    Theories of embodied conceptual meaning suggest fundamental relations between others' actions, language, and our own actions and visual attention processes. Prior studies have found that when people view an image of a neutral body in a scene they first look toward, in order, the head, torso, hands, and legs. Other studies show associations between action verbs and the body-effectors used in performing the action (e.g., "jump" with feet/legs; "talk" with face/head). In the present experiment, the visual attention of participants was recorded with a remote eye-tracking system while they viewed an image of an actor pantomiming an action and heard a concrete action verb. Participants manually responded whether or not the action image was a good example of the verb they heard. The eye-tracking results confirmed that participants looked at the head most, followed by the hands, and the feet least of all; however, visual attention to each of the body-parts also varied as a function of the effector associated with the spoken verb on image/verb congruent trials, particularly for verbs associated with the legs. Overall, these results suggest that language influences some perceptual processes; however, hearing auditory verbs did not alter the previously reported fundamental hierarchical sequence of directed attention, and fixations on specific body-effectors may not be essential for verb comprehension as peripheral visual cues may be sufficient to perform the task.

  17. Coevolution between a family of parasite virulence effectors and a class of LINE-1 retrotransposons.

    Directory of Open Access Journals (Sweden)

    Soledad Sacristán

    2009-10-01

    Full Text Available Parasites are able to evolve rapidly and overcome host defense mechanisms, but the molecular basis of this adaptation is poorly understood. Powdery mildew fungi (Erysiphales, Ascomycota are obligate biotrophic parasites infecting nearly 10,000 plant genera. They obtain their nutrients from host plants through specialized feeding structures known as haustoria. We previously identified the AVR(k1 powdery mildew-specific gene family encoding effectors that contribute to the successful establishment of haustoria. Here, we report the extensive proliferation of the AVR(k1 gene family throughout the genome of B. graminis, with sequences diverging in formae speciales adapted to infect different hosts. Also, importantly, we have discovered that the effectors have coevolved with a particular family of LINE-1 retrotransposons, named TE1a. The coevolution of these two entities indicates a mutual benefit to the association, which could ultimately contribute to parasite adaptation and success. We propose that the association would benefit 1 the powdery mildew fungus, by providing a mechanism for amplifying and diversifying effectors and 2 the associated retrotransposons, by providing a basis for their maintenance through selection in the fungal genome.

  18. A novel nematode effector suppresses plant immunity by activating host reactive oxygen species-scavenging system.

    Science.gov (United States)

    Lin, Borong; Zhuo, Kan; Chen, Shiyan; Hu, Lili; Sun, Longhua; Wang, Xiaohong; Zhang, Lian-Hui; Liao, Jinling

    2016-02-01

    Evidence is emerging that plant-parasitic nematodes can secrete effectors to interfere with the host immune response, but it remains unknown how these effectors can conquer host immune responses. Here, we depict a novel effector, MjTTL5, that could suppress plant immune response. Immunolocalization and transcriptional analyses showed that MjTTL5 is expressed specifically within the subventral gland of Meloidogyne javanica and up-regulated in the early parasitic stage of the nematode. Transgenic Arabidopsis lines expressing MjTTL5 were significantly more susceptible to M. javanica infection than wild-type plants, and vice versa, in planta silencing of MjTTL5 substantially increased plant resistance to M. javanica. Yeast two-hybrid, coimmunoprecipitation and bimolecular fluorescent complementation assays showed that MjTTL5 interacts specifically with Arabidopsis ferredoxin : thioredoxin reductase catalytic subunit (AtFTRc), a key component of host antioxidant system. The expression of AtFTRc is induced by the infection of M. javanica. Interaction between AtFTRc and MjTTL could drastically increase host reactive oxygen species-scavenging activity, and result in suppression of plant basal defenses and attenuation of host resistance to the nematode infection. Our results demonstrate that the host ferredoxin : thioredoxin system can be exploited cunningly by M. javanica, revealing a novel mechanism utilized by plant-parasitic nematodes to subjugate plant innate immunity and thereby promoting parasitism. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  19. The Why, what, and How of the New FACT standards for immune effector cells.

    Science.gov (United States)

    Maus, Marcela V; Nikiforow, Sarah

    2017-01-01

    Novel cellular therapies outside of traditional hematopoietic stem cell transplantation or hematopoietic progenitor cell (HPC) therapy are currently under evaluation in clinical trials across the United States and around the world. Several cellular products, e.g., CD19-directed Chimeric Antigen Receptor (CAR) T cells, are poised for FDA approval and thus increased use at a wider range of academic centers within the next year, with the likelihood of dissemination to standard oncology practice once safety is confirmed. However, these therapies entail some unique challenges in terms of logistics of delivery and toxicity management. Building on experiences and Standards established for HPC programs, the Foundation for the Accreditation of Cellular Therapy (FACT) has established new Standards specific to the use of Immune Effector Cells (IEC), including gene-modified T cells and natural (NK) cells. These Standards specify the clinical and quality infrastructure to facilitate safe administration of immune effector cells and formalize subsequent monitoring and reporting of patient outcomes to enable continual process improvement. Below we detail why these standards came into being, what they entail, and how a clinical team might access educational materials and implement these Standards. We propose that these Standards will be increasingly useful and relied up on as institutions and clinical service lines seek access to these treatment for their patients. FACT will begin accrediting programs that meet these new Standards for clinical administration of Immune Effector Cells in 2017.

  20. Putative Rust Fungal Effector Proteins in Infected Bean and Soybean Leaves.

    Science.gov (United States)

    Cooper, Bret; Campbell, Kimberly B; Beard, Hunter S; Garrett, Wesley M; Islam, Nazrul

    2016-05-01

    The plant-pathogenic fungi Uromyces appendiculatus and Phakopsora pachyrhizi cause debilitating rust diseases on common bean and soybean. These rust fungi secrete effector proteins that allow them to infect plants, but their effector repertoires are not understood. The discovery of rust fungus effectors may eventually help guide decisions and actions that mitigate crop production loss. Therefore, we used mass spectrometry to identify thousands of proteins in infected beans and soybeans and in germinated fungal spores. The comparative analysis between the two helped differentiate a set of 24 U. appendiculatus proteins targeted for secretion that were specifically found in infected beans and a set of 34 U. appendiculatus proteins targeted for secretion that were found in germinated spores and infected beans. The proteins specific to infected beans included family 26 and family 76 glycoside hydrolases that may contribute to degrading plant cell walls. There were also several types of proteins with structural motifs that may aid in stabilizing the specialized fungal haustorium cell that interfaces the plant cell membrane during infection. There were 16 P. pachyrhizi proteins targeted for secretion that were found in infected soybeans, and many of these proteins resembled the U. appendiculatus proteins found in infected beans, which implies that these proteins are important to rust fungal pathology in general. This data set provides insight to the biochemical mechanisms that rust fungi use to overcome plant immune systems and to parasitize cells.

  1. The haustorial transcriptomes of Uromyces appendiculatus and Phakopsora pachyrhizi and their candidate effector families.

    Science.gov (United States)

    Link, Tobias I; Lang, Patrick; Scheffler, Brian E; Duke, Mary V; Graham, Michelle A; Cooper, Bret; Tucker, Mark L; van de Mortel, Martijn; Voegele, Ralf T; Mendgen, Kurt; Baum, Thomas J; Whitham, Steven A

    2014-05-01

    Haustoria of biotrophic rust fungi are responsible for the uptake of nutrients from their hosts and for the production of secreted proteins, known as effectors, which modulate the host immune system. The identification of the transcriptome of haustoria and an understanding of the functions of expressed genes therefore hold essential keys for the elucidation of fungus-plant interactions and the development of novel fungal control strategies. Here, we purified haustoria from infected leaves and used 454 sequencing to examine the haustorial transcriptomes of Phakopsora pachyrhizi and Uromyces appendiculatus, the causal agents of soybean rust and common bean rust, respectively. These pathogens cause extensive yield losses in their respective legume crop hosts. A series of analyses were used to annotate expressed sequences, including transposable elements and viruses, to predict secreted proteins from the assembled sequences and to identify families of candidate effectors. This work provides a foundation for the comparative analysis of haustorial gene expression with further insights into physiology and effector evolution. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  2. Mitotic regulation by NIMA-related kinases

    Directory of Open Access Journals (Sweden)

    Blot Joelle

    2007-08-01

    Full Text Available Abstract The NIMA-related kinases represent a family of serine/threonine kinases implicated in cell cycle control. The founding member of this family, the NIMA kinase of Aspergillus nidulans, as well as the fission yeast homologue Fin1, contribute to multiple aspects of mitotic progression including the timing of mitotic entry, chromatin condensation, spindle organization and cytokinesis. Mammals contain a large family of eleven NIMA-related kinases, named Nek1 to Nek11. Of these, there is now substantial evidence that Nek2, Nek6, Nek7 and Nek9 also regulate mitotic events. At least three of these kinases, as well as NIMA and Fin1, have been localized to the microtubule organizing centre of their respective species, namely the centrosome or spindle pole body. Here, they have important functions in microtubule organization and mitotic spindle assembly. Other Nek kinases have been proposed to play microtubule-dependent roles in non-dividing cells, most notably in regulating the axonemal microtubules of cilia and flagella. In this review, we discuss the evidence that NIMA-related kinases make a significant contribution to the orchestration of mitotic progression and thereby protect cells from chromosome instability. Furthermore, we highlight their potential as novel chemotherapeutic targets.

  3. Mitotic regulation by NIMA-related kinases.

    Science.gov (United States)

    O'regan, Laura; Blot, Joelle; Fry, Andrew M

    2007-08-29

    The NIMA-related kinases represent a family of serine/threonine kinases implicated in cell cycle control. The founding member of this family, the NIMA kinase of Aspergillus nidulans, as well as the fission yeast homologue Fin1, contribute to multiple aspects of mitotic progression including the timing of mitotic entry, chromatin condensation, spindle organization and cytokinesis. Mammals contain a large family of eleven NIMA-related kinases, named Nek1 to Nek11. Of these, there is now substantial evidence that Nek2, Nek6, Nek7 and Nek9 also regulate mitotic events. At least three of these kinases, as well as NIMA and Fin1, have been localized to the microtubule organizing centre of their respective species, namely the centrosome or spindle pole body. Here, they have important functions in microtubule organization and mitotic spindle assembly. Other Nek kinases have been proposed to play microtubule-dependent roles in non-dividing cells, most notably in regulating the axonemal microtubules of cilia and flagella. In this review, we discuss the evidence that NIMA-related kinases make a significant contribution to the orchestration of mitotic progression and thereby protect cells from chromosome instability. Furthermore, we highlight their potential as novel chemotherapeutic targets.

  4. Deletion of Protein Kinase C λ in POMC Neurons Predisposes to Diet-Induced Obesity.

    Science.gov (United States)

    Dorfman, Mauricio D; Krull, Jordan E; Scarlett, Jarrad M; Guyenet, Stephan J; Sajan, Mini P; Damian, Vincent; Nguyen, Hong T; Leitges, Michael; Morton, Gregory J; Farese, Robert V; Schwartz, Michael W; Thaler, Joshua P

    2017-04-01

    Effectors of the phosphoinositide 3-kinase (PI3K) signal transduction pathway contribute to the hypothalamic regulation of energy and glucose homeostasis in divergent ways. Here we show that central nervous system (CNS) action of the PI3K signaling intermediate atypical protein kinase C (aPKC) constrains food intake, weight gain, and glucose intolerance in both rats and mice. Pharmacological inhibition of CNS aPKC activity acutely increases food intake and worsens glucose tolerance in chow-fed rodents and causes excess weight gain during high-fat diet (HFD) feeding. Similarly, selective deletion of the aPKC isoform Pkc-λ in proopiomelanocortin (POMC) neurons disrupts leptin action, reduces melanocortin content in the paraventricular nucleus, and markedly increases susceptibility to obesity, glucose intolerance, and insulin resistance specifically in HFD-fed male mice. These data implicate aPKC as a novel regulator of energy and glucose homeostasis downstream of the leptin-PI3K pathway in POMC neurons. © 2017 by the American Diabetes Association.

  5. Sclerotiorin inhibits protein kinase G from Mycobacterium tuberculosis and impairs mycobacterial growth in macrophages.

    Science.gov (United States)

    Chen, Dongni; Ma, Shuangshuang; He, Lei; Yuan, Peibo; She, Zhigang; Lu, Yongjun

    2017-03-01

    As a eukaryotic-like Ser/Thr protein kinase, Mycobacterium tuberculosis virulent effector protein kinase G (PknG) mediates mycobacterial survival by regulating bacterial cell metabolic processes and preventing phagosome-lysosome fusion in host macrophages. Targeting PknG is an effective strategy for development of anti-tuberculosis (TB) drugs. In the study, we found that sclerotiorin, derived from marine fungi from the South China Sea, exhibited moderately strong inhibitory effects on recombinant PknG, with an IC50 value of 76.5 μM, and acted as a non-competitive inhibitor. The dissociation constant (KD) of sclerotiorin determined by MST was 11.4 μM, demonstrating a moderate binding strength between them. Sclerotiorin could substantially impair the mycobacterial survival in infected macrophages while the macrophage viability remained unaffected, though it did not inhibit the mycobacterial growth in culture. When sclerotiorin was used in combination with rifampicin, intracellular mycobacterial growth decreased as sclerotiorin concentration increased. Docking analysis suggested a binding mechanism of inhibition with performing interactions with the P-loop and catalytic loop of PknG. In summary, we reported that sclerotiorin had moderately strong PknG inhibitory activity, but no cytotoxicity, and it could substantially decrease the mycobacterial growth inside macrophages, suggesting that sclerotiorin has potential to supplement antibiotic therapy for TB. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. EhRho1 regulates plasma membrane blebbing through PI3 kinase in Entamoeba histolytica.

    Science.gov (United States)

    Bharadwaj, Ravi; Arya, Ranjana; Shahid Mansuri, M; Bhattacharya, Sudha; Bhattacharya, Alok

    2017-10-01

    The protozoan parasite Entamoeba histolytica causes amoebiasis, a major public health problem in developing countries. Motility of E. histolytica is important for its pathogenesis. Blebbing is an essential process contributing to cellular motility in many systems. In mammalian cells, formation of plasma membrane blebs is regulated by Rho-GTPases through its effectors, such as Rho kinase, mDia1, and acto-myosin proteins. In this study, we have illuminated the role of EhRho1 in bleb formation and motility of E. histolytica. EhRho1 was found at the site of bleb formation in plasma membrane of trophozoites. Overexpression of mutant EhRho1 defective for Guanosine triphosphate (GTP)-binding or down-regulating EhRho1 by antisense RNA resulted in reduced blebbing and motility. Moreover, serum-starvation reduced blebbing that was restored on serum-replenishment. Lysophosphatidic acid treatment induced bleb formation, whereas wortmannin inhibited the process. In all these cases, concentration of GTP-EhRho1 (active) and Phosphatidylinositol 4,5-bisphosphate (PIP2) inversely correlated with the level of plasma membrane blebbing. Our study suggests the role of EhRho1 in blebbing and bleb-based motility through PI3 kinase pathway in E. histolytica. © 2017 John Wiley & Sons Ltd.

  7. Rho-Kinase/ROCK as a Potential Drug Target for Vitreoretinal Diseases

    Directory of Open Access Journals (Sweden)

    Muneo Yamaguchi

    2017-01-01

    Full Text Available Rho-associated kinase (Rho-kinase/ROCK was originally identified as an effector protein of the G protein Rho. Its involvement in various diseases, particularly cancer and cardiovascular disease, has been elucidated, and ROCK inhibitors have already been applied clinically for cerebral vasospasm and glaucoma. Vitreoretinal diseases including diabetic retinopathy, age-related macular degeneration, and proliferative vitreoretinoapthy are still a major cause of blindness. While anti-VEGF therapy has recently been widely used for vitreoretinal disorders due to its efficacy, attention has been drawn to new unmet needs. The importance of ROCK in pathological vitreoretinal conditions has also been elucidated and is attracting attention as a potential therapeutic target. ROCK is involved in angiogenesis and hyperpermeability and also in the pathogenesis of various pathologies such as inflammation and fibrosis. It has been expected that ROCK inhibitors will become new molecular target drugs for vitreoretinal diseases. This review summarizes the recent progress on the mechanisms of action of ROCK and their applications in disease treatment.

  8. A translocated effector required for Bartonella dissemination from derma to blood safeguards migratory host cells from damage by co-translocated effectors.

    Science.gov (United States)

    Okujava, Rusudan; Guye, Patrick; Lu, Yun-Yueh; Mistl, Claudia; Polus, Florine; Vayssier-Taussat, Muriel; Halin, Cornelia; Rolink, Antonius G; Dehio, Christoph

    2014-06-01

    Numerous bacterial pathogens secrete multiple effectors to modulate host cellular functions. These effectors may interfere with each other to efficiently control the infection process. Bartonellae are Gram-negative, facultative intracellular bacteria using a VirB type IV secretion system to translocate a cocktail of Bartonella effector proteins (Beps) into host cells. Based on in vitro infection models we demonstrate here that BepE protects infected migratory cells from injurious effects triggered by BepC and is required for in vivo dissemination of bacteria from the dermal site of inoculation to blood. Human endothelial cells (HUVECs) infected with a ΔbepE mutant of B. henselae (Bhe) displayed a cell fragmentation phenotype resulting from Bep-dependent disturbance of rear edge detachment during migration. A ΔbepCE mutant did not show cell fragmentation, indicating that BepC is critical for triggering this deleterious phenotype. Complementation of ΔbepE with BepEBhe or its homologues from other Bartonella species abolished cell fragmentation. This cyto-protective activity is confined to the C-terminal Bartonella intracellular delivery (BID) domain of BepEBhe (BID2.EBhe). Ectopic expression of BID2.EBhe impeded the disruption of actin stress fibers by Rho Inhibitor 1, indicating that BepE restores normal cell migration via the RhoA signaling pathway, a major regulator of rear edge retraction. An intradermal (i.d.) model for B. tribocorum (Btr) infection in the rat reservoir host mimicking the natural route of infection by blood sucking arthropods allowed demonstrating a vital role for BepE in bacterial dissemination from derma to blood. While the Btr mutant ΔbepDE was abacteremic following i.d. inoculation, complementation with BepEBtr, BepEBhe or BIDs.EBhe restored bacteremia. Given that we observed a similar protective effect of BepEBhe on infected bone marrow-derived dendritic cells migrating through a monolayer of lymphatic endothelial cells we propose that

  9. A translocated effector required for Bartonella dissemination from derma to blood safeguards migratory host cells from damage by co-translocated effectors.

    Directory of Open Access Journals (Sweden)

    Rusudan Okujava

    2014-06-01

    Full Text Available Numerous bacterial pathogens secrete multiple effectors to modulate host cellular functions. These effectors may interfere with each other to efficiently control the infection process. Bartonellae are Gram-negative, facultative intracellular bacteria using a VirB type IV secretion system to translocate a cocktail of Bartonella effector proteins (Beps into host cells. Based on in vitro infection models we demonstrate here that BepE protects infected migratory cells from injurious effects triggered by BepC and is required for in vivo dissemination of bacteria from the dermal site of inoculation to blood. Human endothelial cells (HUVECs infected with a ΔbepE mutant of B. henselae (Bhe displayed a cell fragmentation phenotype resulting from Bep-dependent disturbance of rear edge detachment during migration. A ΔbepCE mutant did not show cell fragmentation, indicating that BepC is critical for triggering this deleterious phenotype. Complementation of ΔbepE with BepEBhe or its homologues from other Bartonella species abolished cell fragmentation. This cyto-protective activity is confined to the C-terminal Bartonella intracellular delivery (BID domain of BepEBhe (BID2.EBhe. Ectopic expression of BID2.EBhe impeded the disruption of actin stress fibers by Rho Inhibitor 1, indicating that BepE restores normal cell migration via the RhoA signaling pathway, a major regulator of rear edge retraction. An intradermal (i.d. model for B. tribocorum (Btr infection in the rat reservoir host mimicking the natural route of infection by blood sucking arthropods allowed demonstrating a vital role for BepE in bacterial dissemination from derma to blood. While the Btr mutant ΔbepDE was abacteremic following i.d. inoculation, complementation with BepEBtr, BepEBhe or BIDs.EBhe restored bacteremia. Given that we observed a similar protective effect of BepEBhe on infected bone marrow-derived dendritic cells migrating through a monolayer of lymphatic endothelial cells we

  10. Bacterial Type III Secretion System Effector Proteins are Distinct between Plant Symbiotic, Plant Pathogenic and Animal Pathogenic Bacteria

    National Research Council Canada - National Science Library

    Nakano, Yuuichi; Iwadate, Mitsuo; Umeyama, Hideaki; Taguchi, Y-h

    2014-01-01

    ... interesting. In this paper, we successfully discriminated T3SS effector proteins between plant pathogenic, animal pathogenic and plant symbiotic bacteria based on feature vectors inferred computationally by Yahara et al...

  11. Multiple candidate effectors from the oomycete pathogen Hyaloperonospora arabidopsidis suppress host plant immunity.

    Directory of Open Access Journals (Sweden)

    Georgina Fabro

    2011-11-01

    Full Text Available Oomycete pathogens cause diverse plant diseases. To successfully colonize their hosts, they deliver a suite of effector proteins that can attenuate plant defenses. In the oomycete downy mildews, effectors carry a signal peptide and an RxLR motif. Hyaloperonospora arabidopsidis (Hpa causes downy mildew on the model plant Arabidopsis thaliana (Arabidopsis. We investigated if candidate effectors predicted in the genome sequence of Hpa isolate Emoy2 (HaRxLs were able to manipulate host defenses in different Arabidopsis accessions. We developed a rapid and sensitive screening method to test HaRxLs by delivering them via the bacterial type-three secretion system (TTSS of Pseudomonas syringae pv tomato DC3000-LUX (Pst-LUX and assessing changes in Pst-LUX growth in planta on 12 Arabidopsis accessions. The majority (~70% of the 64 candidates tested positively contributed to Pst-LUX growth on more than one accession indicating that Hpa virulence likely involves multiple effectors with weak accession-specific effects. Further screening with a Pst mutant (ΔCEL showed that HaRxLs that allow enhanced Pst-LUX growth usually suppress callose deposition, a hallmark of pathogen-associated molecular pattern (PAMP-triggered immunity (PTI. We found that HaRxLs are rarely strong avirulence determinants. Although some decreased Pst-LUX growth in particular accessions, none activated macroscopic cell death. Fewer HaRxLs conferred enhanced Pst growth on turnip, a non-host for Hpa, while several reduced it, consistent with the idea that turnip's non-host resistance against Hpa could involve a combination of recognized HaRxLs and ineffective HaRxLs. We verified our results by constitutively expressing in Arabidopsis a sub-set of HaRxLs. Several transgenic lines showed increased susceptibility to Hpa and attenuation of Arabidopsis PTI responses, confirming the HaRxLs' role in Hpa virulence. This study shows TTSS screening system provides a useful tool to test whether

  12. Variable Virulence of Biotype 3 Vibrio vulnificus due to MARTX Toxin Effector Domain Composition.

    Science.gov (United States)

    Kim, Byoung Sik; Gavin, Hannah E; Satchell, Karla J F

    2017-01-01

    Vibrio vulnificus is an environmental organism that causes septic human infections characterized by high morbidity and mortality. The annual incidence and global distribution of this pathogen are increasing as ocean waters warm. Clinical strains exhibit variations in the primary virulence toxin, suggesting a potential for the emergence of new strains with altered virulence properties. A clonal outbreak of tilapia-associated wound infections in Israel serves as a natural experiment for the sudden emergence of a new V. vulnificus strain. The effector domain content of the multifunctional autoprocessing RTX (MARTX) toxin of the outbreak-associated biotype 3 (BT3) strains was previously shown to harbor a modification generated by recombination. The modification introduced an actin-induced adenylate cyclase effector domain (ExoY) and an effector domain that disrupts the Golgi organelle (DmX). Here, we report that the exchange of these effector domains for a putative progenitor biotype 1 toxin arrangement produces a toxin that slows the lysis kinetics of targeted epithelial cells but increases cellular rounding phenotypes in response to bacteria. In addition, replacing the biotype 3 toxin variant with the putative progenitor biotype 1 variant renders the resulting strain significantly more virulent in mice. This suggests that the exchange of MARTX effector domains during the emergence of BT3 generated a toxin with reduced toxin potency, resulting in decreased virulence of this outbreak-associated strain. We posit that selection for reduced virulence may serve as a route for this lethal infectious agent to enter the human food chain by allowing it to persist in natural hosts. IMPORTANCEVibrio vulnificus is a serious infection linked to climate change. The virulence capacity of these bacteria can vary by gene exchange, resulting in new variants of the primary virulence toxin. In this study, we tested whether the emergence of an epidemic strain of V. vulnificus with a

  13. Bio-effectors from waste materials as growth promoters, an agronomic and metabolomic study

    Science.gov (United States)

    Alwanney, Deaa; Chami, Ziad Al; Angelica De Pascali, Sandra; Cavoski, Ivana; Fanizzi, Francesco Paolo

    2014-05-01

    Nowadays, improving plant performance by providing growth promoters is a main concern of the organic agriculture. As a consequence of increased food demands, more efficient and alternatives of the current plant nutrition strategies are becoming urgent. Recently, a novel concept "bio-effectors" raised on to describe a group of products that are able to improve plant performance and do not belong to fertilizers or pesticides. Agro-Food processing residues are promising materials as bio-effector. Three plant-derived materials: brewers' spent grain (BSG), fennel processing residues (FPR) and lemon processing residues (LPR) were chosen as bio-effector candidates. Plant-derived materials were characterized in term of total macro and micronutrients content. Green extraction methodology and solvent choice (aqueous; ethanol; and aqueous: ethanol mixture 1:1) was based on the extraction yield as main factor. Optimum extracts, to be used on the tomato test plant, were determined using phytotoxicity test (seed germination test) as main constraint. Thereafter, selected extracts were characterized and secondary metabolites profiling were detected by NMR technique. Selected extracts were applied on tomato in a growth chamber at different doses in comparison to humic-like substances as positive control (Ctrl+) and to a Hoagland solution as negative control (Ctrl-). At the end of the experiment, agronomical parameters were determined and NMR-metabolomic profiling were conducted on tomato seedlings. Results are summarized as follow: (i) raw showed an interesting content, either at nutritional or biological level; (ii) aqueous extraction resulted higher yield than other used solvent; (iii) at high extraction ratio (1:25 for BSG; 1:100 for FPR; and 1:200 for LPR) aqueous extracts were not phytotoxic on the tomato test plant; (iv) all aqueous extract are differently rich in nutrients, aminoacids, sugars and low molecular weight molecules; (v) all extract exhibited a growth promotion at

  14. A Legionella pneumophila effector protein encoded in a region of genomic plasticity binds to Dot/Icm-modified vacuoles.

    Directory of Open Access Journals (Sweden)

    Shira Ninio

    2009-01-01

    Full Text Available Legionella pneumophila is an opportunistic pathogen that can cause a severe pneumonia called Legionnaires' disease. In the environment, L. pneumophila is found in fresh water reservoirs in a large spectrum of environmental conditions, where the bacteria are able to replicate within a variety of protozoan hosts. To survive within eukaryotic cells, L. pneumophila require a type IV secretion system, designated Dot/Icm, that delivers bacterial effector proteins into the host cell cytoplasm. In recent years, a number of Dot/Icm substrate proteins have been identified; however, the function of most of these proteins remains unknown, and it is unclear why the bacterium maintains such a large repertoire of effectors to promote its survival. Here we investigate a region of the L. pneumophila chromosome that displays a high degree of plasticity among four sequenced L. pneumophila strains. Analysis of GC content suggests that several genes encoded in this region were acquired through horizontal gene transfer. Protein translocation studies establish that this region of genomic plasticity encodes for multiple Dot/Icm effectors. Ectopic expression studies in mammalian cells indicate that one of these substrates, a protein called PieA, has unique effector activities. PieA is an effector that can alter lysosome morphology and associates specifically with vacuoles that support L. pneumophila replication. It was determined that the association of PieA with vacuoles containing L. pneumophila requires modifications to the vacuole mediated by other Dot/Icm effectors. Thus, the localization properties of PieA reveal that the Dot/Icm system has the ability to spatially and temporally control the association of an effector with vacuoles containing L. pneumophila through activities mediated by other effector proteins.

  15. Protecting and rescuing the effectors: roles of differentiation and survival in the control of memory T cell development

    Directory of Open Access Journals (Sweden)

    Sema eKurtulus

    2013-01-01

    Full Text Available Vaccines, arguably the single most important intervention in improving human health, have exploited the phenomenon of immunological memory. The elicitation of memory T cells is often an essential part of successful long-lived protective immunity. Our understanding of T cell memory has been greatly aided by the development of TCR Tg mice and MHC tetrameric staining reagents that have allowed the precise tracking of antigen-specific T cell responses. Indeed, following acute infection or immunization, naïve T cells undergo a massive expansion culminating in the generation of a robust effector T cell population. This peak effector response is relatively short-lived and, while most effector T cells die by apoptosis, some remain and develop into memory cells. Although the molecular mechanisms underlying this cell fate decision remain incompletely defined, substantial progress has been made, particularly with regards to CD8+ T cells. For example, the effector CD8+ T cells generated during a response are heterogeneous, consisting of cells with more or less potential to develop into full-fledged memory cells. Development of CD8+ T cell memory is regulated by the transcriptional programs that control the differentiation and survival of effector T cells. While the type of antigenic stimulation and level of inflammation control effector CD8+ T cell differentiation, availability of cytokines and their ability to control expression and function of Bcl-2 family members governs their survival. These distinct differentiation and survival programs may allow for finer therapeutic intervention to control both the quality and quantity of CD8+ T cell memory. Effector to memory transition of CD4+ T cells is less well characterized than CD8+ T cells, emerging details will be discussed. This review will focus on the recent progress made in our understanding of the mechanisms underlying the development of T cell memory with an emphasis on factors controlling survival of

  16. A point mutation at tyrosine-809 in the human colony-stimulating factor 1 receptor impairs mitogenesis without abrogating tyrosine kinase activity, association with phosphatidylinositol 3-kinase, or induction of c-fos and junB genes

    Energy Technology Data Exchange (ETDEWEB)

    Roussel, M.F. (Univ. of Tennessee, Memphis (USA)); Shurtleff, S.A.; Downing, J.R. (Saint Jude Children' s Research Hospital, Memphis, TN (USA)); Sherr, C.J. (Univ. of Tennessee College of Medicine, Memphis (USA) Saint Jude Children' s Research Hospital, Memphis, TN (USA))

    1990-09-01

    Substitution of phenylalanine for tyrosine-809 in the human colony-stimulating factor 1 receptor (CSF-1R) inhibited its ability to transduce ligand-dependent mitogenic signals in mouse NIH 3T3 cells. When combined with an activating mutation at codon 301 that induces constitutive CSF-1R tyrosine kinase activity, the codon 809 mutation suppressed ligand-independent cell transformation. Comparative mapping tryptic phosphopeptides from mutant and wild-type CSF-1R indicated that tyrosine-809 is a site of ligand-dependent receptor phosphorylation in vivo. The mutant receptor was active as a tyrosine kinase in vitro and in vivo, underwent CSF-1-dependent association with a phosphatidylinositol 3-kinase, and induced expression of the protooncogenes c-fos and junB, underscoring its ability to trigger some of the known cellular responses to CSF-1. The mutant receptor is likely to be impaired in its ability to interact with critical cellular effectors whose activity is required for mitogenesis.

  17. Phenylbutazone radicals inactivate creatine kinase.

    Science.gov (United States)

    Miura, T; Muraoka, S; Fujimoto, Y

    2001-02-01

    Creatine kinase (CK) was used as a marker molecule to examine the side effect of damage to tissues by phenylbutazone (PB), an effective drug to treat rheumatic and arthritic diseases, with horseradish peroxidase and hydrogen peroxide (HRP-H(2)O2). PB inactivated CK during its interaction with HRP-H(2) O(2), and inactivated CK in rat heart homogenate. PB carbon-centered radicals were formed during the interaction of PB with HRP-H(2)O2. The CK efficiently reduced electron spin resonance signals of the PB carbon-centered radicals. The spin trap agent 2-methyl-2-nitrosopropane strongly prevented CK inactivation. These results show that CK was inactivated through interaction with PB carbon-centered radicals. Sulfhydryl groups and tryptophan residues in CK were lost during the interaction of PB with HRP-H(2)O2, suggesting that cysteine and tryptophan residues are oxidized by PB carbon-centered radicals. Other enzymes, including alcohol dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, but not lactate dehydrogenase, were also inactivated. Sulfhydryl enzymes seem to be sensitive to attack by PB carbon-centered radicals. Inhibition of SH enzymes may explain some of the deleterious effects induced by PB.

  18. SPRYSEC effectors

    NARCIS (Netherlands)

    Diaz Granados Muñoz, A.; Petrescu, A.J.; Goverse, A.; Smant, G.

    2016-01-01

    Persistent infections by sedentary plant-parasitic nematodes are a major threat to important food crops all over the world. These roundworms manipulate host plant cell morphology and physiology to establish sophisticated feeding structures. Key modifications to plant cells during their transition

  19. Phytoplasma Effector SAP54 Induces Indeterminate Leaf-Like Flower Development in Arabidopsis Plants1[C][W][OA

    Science.gov (United States)

    MacLean, Allyson M.; Sugio, Akiko; Makarova, Olga V.; Findlay, Kim C.; Grieve, Victoria M.; Tóth, Réka; Nicolaisen, Mogens; Hogenhout, Saskia A.

    2011-01-01

    Phytoplasmas are insect-transmitted bacterial plant pathogens that cause considerable damage to a diverse range of agricultural crops globally. Symptoms induced in infected plants suggest that these phytopathogens may modulate developmental processes within the plant host. We report herein that Aster Yellows phytoplasma strain Witches’ Broom (AY-WB) readily infects the model plant Arabidopsis (Arabidopsis thaliana) ecotype Columbia, inducing symptoms that are characteristic of phytoplasma infection, such as the production of green leaf-like flowers (virescence and phyllody) and increased formation of stems and branches (witches’ broom). We found that the majority of genes encoding secreted AY-WB proteins (SAPs), which are candidate effector proteins, are expressed in Arabidopsis and the AY-WB insect vector Macrosteles quadrilineatus (Hemiptera; Cicadellidae). To identify which of these effector proteins induce symptoms of phyllody and virescence, we individually expressed the effector genes in Arabidopsis. From this screen, we have identified a novel AY-WB effector protein, SAP54, that alters floral development, resulting in the production of leaf-like flowers that are similar to those produced by plants infected with this phytoplasma. This study offers novel insight into the effector profile of an insect-transmitted plant pathogen and reports to our knowledge the first example of a microbial pathogen effector protein that targets flower development in a host. PMID:21849514

  20. Kinase inhibitors for advanced medullary thyroid carcinoma

    Directory of Open Access Journals (Sweden)

    Martin Schlumberger

    2012-01-01

    Full Text Available The recent availability of molecular targeted therapies leads to a reconsideration of the treatment strategy for patients with distant metastases from medullary thyroid carcinoma. In patients with progressive disease, treatment with kinase inhibitors should be offered.

  1. Regulation of the interaction between protein kinase C-related protein kinase 2 (PRK2) and its upstream kinase, 3-phosphoinositide-dependent protein kinase 1 (PDK1)

    DEFF Research Database (Denmark)

    Dettori, Rosalia; Sonzogni, Silvina; Meyer, Lucas

    2009-01-01

    of numerous AGC kinases, including the protein kinase C-related protein kinases (PRKs). Here we studied the docking interaction between PDK1 and PRK2 and analyzed the mechanisms that regulate this interaction. In vivo labeling of recombinant PRK2 by (32)P(i) revealed phosphorylation at two sites......, the activation loop and the Z/TM in the C-terminal extension. We provide evidence that phosphorylation of the Z/TM site of PRK2 inhibits its interaction with PDK1. Our studies further provide a mechanistic model to explain different steps in the docking interaction and regulation. Interestingly, we found...... that the mechanism that negatively regulates the docking interaction of PRK2 to the upstream kinase PDK1 is directly linked to the activation mechanism of PRK2 itself. Finally, our results indicate that the mechanisms underlying the regulation of the interaction between PRK2 and PDK1 are specific for PRK2 and do...

  2. Regulation of mammalian Ste20 (Mst) kinases.

    Science.gov (United States)

    Rawat, Sonali J; Chernoff, Jonathan

    2015-03-01

    Initially identified as mammalian homologs to yeast Ste20 kinases, the mammalian sterile twenty-like (Mst) 1/2 kinases have been widely investigated subsequent to their rediscovery as key components of the Hippo tumor suppressor pathway in flies. To date, our understanding of Mst substrates and downstream signaling outstrips our knowledge of how these enzymes are controlled by upstream signals. While much remains to be discovered regarding the mechanisms of Mst regulation, it is clear that Mst1 kinase activity is governed at least in part by its state of dimerization, including self-association and also heterodimerization with various other signaling partners. Here we review the basic architecture of Mst signaling and function and discuss recent advances in our understanding of how these important kinases are regulated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A MAP Kinase pathway in Caenorhabditis elegans is required for defense against infection by opportunistic Proteus species.

    Science.gov (United States)

    JebaMercy, Gnanasekaran; Vigneshwari, Loganathan; Balamurugan, Krishnaswamy

    2013-01-01

    Caenorhabditis elegans innate immunity requires a conserved mitogen activated protein kinase (MAPK) pathway that regulates the basal and pathogen-induced expression of immune effectors. Being in the group of opportunistic pathogens, Proteus spp. cause large number of nosocomial infections. Since, Proteus spp. do not cause death in wild type C. elegans, to understand the role and contribution of MAP Kinase pathway, the mutants (sek-1 and pmk-1) of this pathway were employed. Physiological experiments revealed that the Proteus spp. were able to kill MAP Kinase pathway mutant's C. elegans significantly. To understand the involvement of innate immune pathways specific players at the mRNA level, the regulation of few candidate antimicrobial genes were kinetically investigated during Proteus spp. infections. Real-time PCR analysis indicated a regulation of few candidate immune regulatory genes (F08G5.6, lys-7, nlp-29, ATF-7 and daf-16) during the course of Proteus spp. infections. In addition, the lipopolysaccharides (LPS) isolated from Proteus mirabilis upon exposure to mutant C. elegans showed modifications at their functional regions suggesting that the pathogen modifies its internal machinery according to the specific host for effective pathogenesis. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  4. Identification of the Raptor-binding motif on Arabidopsis S6 kinase and its use as a TOR signaling suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Son, Ora; Kim, Sunghan; Hur, Yoon-Sun; Cheon, Choong-Ill, E-mail: ccheon@sookmyung.ac.kr

    2016-03-25

    TOR (target of rapamycin) kinase signaling plays central role as a regulator of growth and proliferation in all eukaryotic cells and its key signaling components and effectors are also conserved in plants. Unlike the mammalian and yeast counterparts, however, we found through yeast two-hybrid analysis that multiple regions of the Arabidopsis Raptor (regulatory associated protein of TOR) are required for binding to its substrate. We also identified that a 44-amino acid region at the N-terminal end of Arabidopsis ribosomal S6 kinase 1 (AtS6K1) specifically interacted with AtRaptor1, indicating that this region may contain a functional equivalent of the TOS (TOR-Signaling) motif present in the mammalian TOR substrates. Transient over-expression of this 44-amino acid fragment in Arabidopsis protoplasts resulted in significant decrease in rDNA transcription, demonstrating a feasibility of developing a new plant-specific TOR signaling inhibitor based upon perturbation of the Raptor-substrate interaction. - Highlights: • Multiple regions on the Arabidopsis Raptor protein were found to be involved in substrate binding. • N-terminal end of the Arabidopsis ribosomal S6 kinase 1 (AtS6K1) was responsible for interacting with AtRaptor1. • The Raptor-interacting fragment of AtS6K1 could be utilized as an effective inhibitor of plant TOR signaling.

  5. MAP kinases nomenclature: Time for curation.

    Science.gov (United States)

    Moustafa, Khaled

    2017-12-02

    The nomenclature of Mitogen Activated Protein Kinases (MAPKs) takes different formats composed of symbols, prefixes, suffixes, or descriptive acronyms of their functions that sometimes lead to confusion and make the indexed information redundant and inconsistent. To avoid such redundancy and reduce confusion, a curation of the terminology of MAP kinase families, and that of other protein families that present similar nomenclature issues, is required. Some arguable suggestions are presented here toward this goal.

  6. Protein Kinase A Modulation by Dietary Phytochemicals

    OpenAIRE

    Fagervoll, Anne Marthe

    2007-01-01

    Abstract Evidence from epidemiologic studies has shown that diets rich in fruit and vegetables are associated with reduced risk of chronic and degenerative diseases. Plants contain phytochemicals, which are believed to account for some of the positive effects through interactions with protein kinases. The present work is a screening of dietary phytochemicals for their ability to modulate the activity of the intracellular protein kinase A (PKA) using a novel PKA-sensitive luciferase. Som...

  7. Fyn kinase regulates translation in mammalian mitochondria.

    Science.gov (United States)

    Koc, Emine C; Miller-Lee, Jennifer L; Koc, Hasan

    2017-03-01

    Mitochondrial translation machinery solely exists for the synthesis of 13 mitochondrially-encoded subunits of the oxidative phosphorylation (OXPHOS) complexes in mammals. Therefore, it plays a critical role in mitochondrial energy production. However, regulation of the mitochondrial translation machinery is still poorly understood. In comprehensive proteomics studies with normal and diseased tissues and cell lines, we and others have found the majority of mitochondrial ribosomal proteins (MRPs) to be phosphorylated. Neither the kinases for these phosphorylation events nor their specific roles in mitochondrial translation are known. Mitochondrial kinases are responsible for phosphorylation of MRPs enriched from bovine mitoplasts by strong cation-exchange chromatography and identified by mass spectrometry-based proteomics analyses of kinase rich fractions. Phosphorylation of recombinant MRPs and 55S ribosomes was assessed by in vitro phosphorylation assays using the kinase-rich fractions. The effect of identified kinase on OXPHOS and mitochondrial translation was assessed by various cell biological and immunoblotting approaches. Here, we provide the first evidence for the association of Fyn kinase, a Src family kinase, with mitochondrial translation components and its involvement in phosphorylation of 55S ribosomal proteins in vitro. Modulation of Fyn expression in human cell lines has provided a link between mitochondrial translation and energy metabolism, which was evident by the changes in 13 mitochondrially encoded subunits of OXPHOS complexes. Our findings suggest that Fyn kinase is part of a complex mechanism that regulates protein synthesis and OXPHOS possibly by tyrosine phosphorylation of translation components in mammalian mitochondria. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The Golgi apparatus regulates cGMP-dependent protein kinase I compartmentation and proteolysis.

    Science.gov (United States)

    Kato, Shin; Chen, Jingsi; Cornog, Katherine H; Zhang, Huili; Roberts, Jesse D

    2015-06-01

    cGMP-dependent protein kinase I (PKGI) is an important effector of cGMP signaling that regulates vascular smooth muscle cell (SMC) phenotype and proliferation. PKGI has been detected in the perinuclear region of cells, and recent data indicate that proprotein convertases (PCs) typically resident in the Golgi apparatus (GA) can stimulate PKGI proteolysis and generate a kinase fragment that localizes to the nucleus and regulates gene expression. However, the role of the endomembrane system in PKGI compartmentation and processing is unknown. Here, we demonstrate that PKGI colocalizes with endoplasmic reticulum (ER), ER-Golgi intermediate compartment, GA cisterna, and trans-Golgi network proteins in pulmonary artery SMC and cell lines. Moreover, PKGI localizes with furin, a trans-Golgi network-resident PC known to cleave PKGI. ER protein transport influences PKGI localization because overexpression of a constitutively inactive Sar1 transgene caused PKGI retention in the ER. Additionally, PKGI appears to reside within the GA because PKGI immunoreactivity was determined to be resistant to cytosolic proteinase K treatment in live cells. The GA appears to play a role in PKGI proteolysis because overexpression of inositol 1,4,5-trisphosphate receptor-associated cGMP kinase substrate, not only tethered heterologous PKGI-β to the ER and decreased its localization to the GA, but also diminished PKGI proteolysis and nuclear translocation. Also, inhibiting intra-GA protein transport with monensin was observed to decrease PKGI cleavage. These studies detail a role for the endomembrane system in regulating PKGI compartmentation and proteolysis. Moreover, they support the investigation of mechanisms regulating PKGI-dependent nuclear cGMP signaling in the pulmonary vasculature with Golgi dysfunction. Copyright © 2015 the American Physiological Society.

  9. Contribution of canonical nonhomologous end joining to chromosomal rearrangements is enhanced by ATM kinase deficiency.

    Science.gov (United States)

    Bhargava, Ragini; Carson, Caree R; Lee, Gabriella; Stark, Jeremy M

    2017-01-24

    A likely mechanism of chromosomal rearrangement formation involves joining the ends from two different chromosomal double-strand breaks (DSBs). These events could potentially be mediated by either of two end-joining (EJ) repair pathways [canonical nonhomologous end joining (C-NHEJ) or alternative end joining (ALT-EJ)], which cause distinct rearrangement junction patterns. The relative role of these EJ pathways during rearrangement formation has remained controversial. Along these lines, we have tested whether the DNA damage response mediated by the Ataxia Telangiectasia Mutated (ATM) kinase may affect the relative influence of C-NHEJ vs. ALT-EJ on rearrangement formation. We developed a reporter in mouse cells for a 0.4-Mbp deletion rearrangement that is formed by EJ between two DSBs induced by the Cas9 endonuclease. We found that disruption of the ATM kinase causes an increase in the frequency of the rearrangement as well as a shift toward rearrangement junctions that show hallmarks of C-NHEJ. Furthermore, ATM suppresses rearrangement formation in an experimental condition, in which C-NHEJ is the predominant EJ repair event (i.e., expression of the 3' exonuclease Trex2). Finally, several C-NHEJ factors are required for the increase in rearrangement frequency caused by inhibition of the ATM kinase. We also examined ATM effectors and found that H2AX shows a similar influence as ATM, whereas the influence of ATM on this rearrangement seems independent of 53BP1. We suggest that the contribution of the C-NHEJ pathway to the formation of a 0.4-Mbp deletion rearrangement is enhanced in ATM-deficient cells.

  10. MAP kinase meets mitosis: A role for Raf Kinase Inhibitory Protein in spindle checkpoint regulation

    Directory of Open Access Journals (Sweden)

    Rosner Marsha

    2007-01-01

    Full Text Available Abstract Raf Kinase Inhibitory Protein (RKIP is an evolutionarily conserved protein that functions as a modulator of signaling by the MAP kinase cascade. Implicated as a metastasis suppressor, Raf Kinase Inhibitory Protein depletion correlates with poor prognosis for breast, prostate and melanoma tumors but the mechanism is unknown. Recent evidence indicates that Raf Kinase Inhibitory Protein regulates the mitotic spindle assembly checkpoint by controlling Aurora B Kinase activity, and the mechanism involves Raf/MEK/ERK signaling. In contrast to elevated MAP kinase signaling during the G1, S or G2 phases of the cell cycle that activates checkpoints and induces arrest or senescence, loss of RKIP during M phase leads to bypass of the spindle assembly checkpoint and the generation of chromosomal abnormalities. These results reveal a role for Raf Kinase Inhibitory Protein and the MAP kinase cascade in ensuring the fidelity of chromosome segregation prior to cell division. Furthermore, these data highlight the need for precise titration of the MAP kinase signal to ensure the integrity of the spindle assembly process and provide a mechanism for generating genomic instability in tumors. Finally, these results raise the possibility that RKIP status in tumors could influence the efficacy of treatments such as poisons that stimulate the Aurora B-dependent spindle assembly checkpoint.

  11. Kinase Inhibitor Profiling Reveals Unexpected Opportunities to Inhibit Disease-Associated Mutant Kinases

    Directory of Open Access Journals (Sweden)

    Krisna C. Duong-Ly

    2016-02-01

    Full Text Available Small-molecule kinase inhibitors have typically been designed to inhibit wild-type kinases rather than the mutant forms that frequently arise in diseases such as cancer. Mutations can have serious clinical implications by increasing kinase catalytic activity or conferring therapeutic resistance. To identify opportunities to repurpose inhibitors against disease-associated mutant kinases, we conducted a large-scale functional screen of 183 known kinase inhibitors against 76 recombinant mutant kinases. The results revealed lead compounds with activity against clinically important mutant kinases, including ALK, LRRK2, RET, and EGFR, as well as unexpected opportunities for repurposing FDA-approved kinase inhibitors as leads for additional indications. Furthermore, using T674I PDGFRα as an example, we show how single-dose screening data can provide predictive structure-activity data to guide subsequent inhibitor optimization. This study provides a resource for the development of inhibitors against numerous disease-associated mutant kinases and illustrates the potential of unbiased profiling as an approach to compound-centric inhibitor development.

  12. Tyrosine kinase inhibitors in hematological malignancies

    Directory of Open Access Journals (Sweden)

    Kamila Kosior

    2011-12-01

    Full Text Available Recently novel treatment modalities has focused on targeted therapies. Tyrosine <