WorldWideScience

Sample records for ranking methods based

  1. A Case-Based Reasoning Method with Rank Aggregation

    Science.gov (United States)

    Sun, Jinhua; Du, Jiao; Hu, Jian

    2018-03-01

    In order to improve the accuracy of case-based reasoning (CBR), this paper addresses a new CBR framework with the basic principle of rank aggregation. First, the ranking methods are put forward in each attribute subspace of case. The ordering relation between cases on each attribute is got between cases. Then, a sorting matrix is got. Second, the similar case retrieval process from ranking matrix is transformed into a rank aggregation optimal problem, which uses the Kemeny optimal. On the basis, a rank aggregation case-based reasoning algorithm, named RA-CBR, is designed. The experiment result on UCI data sets shows that case retrieval accuracy of RA-CBR algorithm is higher than euclidean distance CBR and mahalanobis distance CBR testing.So we can get the conclusion that RA-CBR method can increase the performance and efficiency of CBR.

  2. International Conference on Robust Rank-Based and Nonparametric Methods

    CERN Document Server

    McKean, Joseph

    2016-01-01

    The contributors to this volume include many of the distinguished researchers in this area. Many of these scholars have collaborated with Joseph McKean to develop underlying theory for these methods, obtain small sample corrections, and develop efficient algorithms for their computation. The papers cover the scope of the area, including robust nonparametric rank-based procedures through Bayesian and big data rank-based analyses. Areas of application include biostatistics and spatial areas. Over the last 30 years, robust rank-based and nonparametric methods have developed considerably. These procedures generalize traditional Wilcoxon-type methods for one- and two-sample location problems. Research into these procedures has culminated in complete analyses for many of the models used in practice including linear, generalized linear, mixed, and nonlinear models. Settings are both multivariate and univariate. With the development of R packages in these areas, computation of these procedures is easily shared with r...

  3. Logic-based aggregation methods for ranking student applicants

    Directory of Open Access Journals (Sweden)

    Milošević Pavle

    2017-01-01

    Full Text Available In this paper, we present logic-based aggregation models used for ranking student applicants and we compare them with a number of existing aggregation methods, each more complex than the previous one. The proposed models aim to include depen- dencies in the data using Logical aggregation (LA. LA is a aggregation method based on interpolative Boolean algebra (IBA, a consistent multi-valued realization of Boolean algebra. This technique is used for a Boolean consistent aggregation of attributes that are logically dependent. The comparison is performed in the case of student applicants for master programs at the University of Belgrade. We have shown that LA has some advantages over other presented aggregation methods. The software realization of all applied aggregation methods is also provided. This paper may be of interest not only for student ranking, but also for similar problems of ranking people e.g. employees, team members, etc.

  4. Distant Supervision for Relation Extraction with Ranking-Based Methods

    Directory of Open Access Journals (Sweden)

    Yang Xiang

    2016-05-01

    Full Text Available Relation extraction has benefited from distant supervision in recent years with the development of natural language processing techniques and data explosion. However, distant supervision is still greatly limited by the quality of training data, due to its natural motivation for greatly reducing the heavy cost of data annotation. In this paper, we construct an architecture called MIML-sort (Multi-instance Multi-label Learning with Sorting Strategies, which is built on the famous MIML framework. Based on MIML-sort, we propose three ranking-based methods for sample selection with which we identify relation extractors from a subset of the training data. Experiments are set up on the KBP (Knowledge Base Propagation corpus, one of the benchmark datasets for distant supervision, which is large and noisy. Compared with previous work, the proposed methods produce considerably better results. Furthermore, the three methods together achieve the best F1 on the official testing set, with an optimal enhancement of F1 from 27.3% to 29.98%.

  5. Population based ranking of frameless CT-MRI registration methods

    Energy Technology Data Exchange (ETDEWEB)

    Opposits, Gabor; Kis, Sandor A.; Tron, Lajos; Emri, Miklos [Debrecen Univ. (Hungary). Dept. of Nuclear Medicine; Berenyi, Ervin [Debrecen Univ. (Hungary). Dept. of Biomedical Laboratory and Imaging Science; Takacs, Endre [Rotating Gamma Ltd., Debrecen (Hungary); Dobai, Jozsef G.; Bognar, Laszlo [Debrecen Univ., Medical Center (Hungary). Dept. of Neurosurgery; Szuecs, Bernadett [ScanoMed Ltd., Debrecen (Hungary)

    2015-07-01

    Clinical practice often requires simultaneous information obtained by two different imaging modalities. Registration algorithms are commonly used for this purpose. Automated procedures are very helpful in cases when the same kind of registration has to be performed on images of a high number of subjects. Radiotherapists would prefer to use the best automated method to assist therapy planning, however there are not accepted procedures for ranking the different registration algorithms. We were interested in developing a method to measure the population level performance of CT-MRI registration algorithms by a parameter of values in the [0,1] interval. Pairs of CT and MRI images were collected from 1051 subjects. Results of an automated registration were corrected manually until a radiologist and a neurosurgeon expert both accepted the result as good. This way 1051 registered MRI images were produced by the same pair of experts to be used as gold standards for the evaluation of the performance of other registration algorithms. Pearson correlation coefficient, mutual information, normalized mutual information, Kullback-Leibler divergence, L{sub 1} norm and square L{sub 2} norm (dis)similarity measures were tested for sensitivity to indicate the extent of (dis)similarity of a pair of individual mismatched images. The square Hellinger distance proved suitable to grade the performance of registration algorithms at population level providing the developers with a valuable tool to rank algorithms. The developed procedure provides an objective method to find the registration algorithm performing the best on the population level out of newly constructed or available preselected ones.

  6. A novel three-stage distance-based consensus ranking method

    Science.gov (United States)

    Aghayi, Nazila; Tavana, Madjid

    2018-05-01

    In this study, we propose a three-stage weighted sum method for identifying the group ranks of alternatives. In the first stage, a rank matrix, similar to the cross-efficiency matrix, is obtained by computing the individual rank position of each alternative based on importance weights. In the second stage, a secondary goal is defined to limit the vector of weights since the vector of weights obtained in the first stage is not unique. Finally, in the third stage, the group rank position of alternatives is obtained based on a distance of individual rank positions. The third stage determines a consensus solution for the group so that the ranks obtained have a minimum distance from the ranks acquired by each alternative in the previous stage. A numerical example is presented to demonstrate the applicability and exhibit the efficacy of the proposed method and algorithms.

  7. Research on B Cell Algorithm for Learning to Rank Method Based on Parallel Strategy.

    Science.gov (United States)

    Tian, Yuling; Zhang, Hongxian

    2016-01-01

    For the purposes of information retrieval, users must find highly relevant documents from within a system (and often a quite large one comprised of many individual documents) based on input query. Ranking the documents according to their relevance within the system to meet user needs is a challenging endeavor, and a hot research topic-there already exist several rank-learning methods based on machine learning techniques which can generate ranking functions automatically. This paper proposes a parallel B cell algorithm, RankBCA, for rank learning which utilizes a clonal selection mechanism based on biological immunity. The novel algorithm is compared with traditional rank-learning algorithms through experimentation and shown to outperform the others in respect to accuracy, learning time, and convergence rate; taken together, the experimental results show that the proposed algorithm indeed effectively and rapidly identifies optimal ranking functions.

  8. Recurrent fuzzy ranking methods

    Science.gov (United States)

    Hajjari, Tayebeh

    2012-11-01

    With the increasing development of fuzzy set theory in various scientific fields and the need to compare fuzzy numbers in different areas. Therefore, Ranking of fuzzy numbers plays a very important role in linguistic decision-making, engineering, business and some other fuzzy application systems. Several strategies have been proposed for ranking of fuzzy numbers. Each of these techniques has been shown to produce non-intuitive results in certain case. In this paper, we reviewed some recent ranking methods, which will be useful for the researchers who are interested in this area.

  9. The effect of uncertainties in distance-based ranking methods for multi-criteria decision making

    Science.gov (United States)

    Jaini, Nor I.; Utyuzhnikov, Sergei V.

    2017-08-01

    Data in the multi-criteria decision making are often imprecise and changeable. Therefore, it is important to carry out sensitivity analysis test for the multi-criteria decision making problem. The paper aims to present a sensitivity analysis for some ranking techniques based on the distance measures in multi-criteria decision making. Two types of uncertainties are considered for the sensitivity analysis test. The first uncertainty is related to the input data, while the second uncertainty is towards the Decision Maker preferences (weights). The ranking techniques considered in this study are TOPSIS, the relative distance and trade-off ranking methods. TOPSIS and the relative distance method measure a distance from an alternative to the ideal and antiideal solutions. In turn, the trade-off ranking calculates a distance of an alternative to the extreme solutions and other alternatives. Several test cases are considered to study the performance of each ranking technique in both types of uncertainties.

  10. MCDM based evaluation and ranking of commercial off-the-shelf using fuzzy based matrix method

    Directory of Open Access Journals (Sweden)

    Rakesh Garg

    2017-04-01

    Full Text Available In today’s scenario, software has become an essential component in all kinds of systems. The size and the complexity of the software increases with a corresponding increase in its functionality, hence leads to the development of the modular software systems. Software developers emphasize on the concept of component based software engineering (CBSE for the development of modular software systems. The CBSE concept consists of dividing the software into a number of modules; selecting Commercial Off-the-Shelf (COTS for each module; and finally integrating the modules to develop the final software system. The selection of COTS for any module plays a vital role in software development. To address the problem of selection of COTS, a framework for ranking and selection of various COTS components for any software system based on expert opinion elicitation and fuzzy-based matrix methodology is proposed in this research paper. The selection problem is modeled as a multi-criteria decision making (MCDM problem. The evaluation criteria are identified through extensive literature study and the COTS components are ranked based on these identified and selected evaluation criteria using the proposed methods according to the value of a permanent function of their criteria matrices. The methodology is explained through an example and is validated by comparing with an existing method.

  11. Network-based ranking methods for prediction of novel disease associated microRNAs.

    Science.gov (United States)

    Le, Duc-Hau

    2015-10-01

    Many studies have shown roles of microRNAs on human disease and a number of computational methods have been proposed to predict such associations by ranking candidate microRNAs according to their relevance to a disease. Among them, machine learning-based methods usually have a limitation in specifying non-disease microRNAs as negative training samples. Meanwhile, network-based methods are becoming dominant since they well exploit a "disease module" principle in microRNA functional similarity networks. Of which, random walk with restart (RWR) algorithm-based method is currently state-of-the-art. The use of this algorithm was inspired from its success in predicting disease gene because the "disease module" principle also exists in protein interaction networks. Besides, many algorithms designed for webpage ranking have been successfully applied in ranking disease candidate genes because web networks share topological properties with protein interaction networks. However, these algorithms have not yet been utilized for disease microRNA prediction. We constructed microRNA functional similarity networks based on shared targets of microRNAs, and then we integrated them with a microRNA functional synergistic network, which was recently identified. After analyzing topological properties of these networks, in addition to RWR, we assessed the performance of (i) PRINCE (PRIoritizatioN and Complex Elucidation), which was proposed for disease gene prediction; (ii) PageRank with Priors (PRP) and K-Step Markov (KSM), which were used for studying web networks; and (iii) a neighborhood-based algorithm. Analyses on topological properties showed that all microRNA functional similarity networks are small-worldness and scale-free. The performance of each algorithm was assessed based on average AUC values on 35 disease phenotypes and average rankings of newly discovered disease microRNAs. As a result, the performance on the integrated network was better than that on individual ones. In

  12. A Multiobjective Programming Method for Ranking All Units Based on Compensatory DEA Model

    Directory of Open Access Journals (Sweden)

    Haifang Cheng

    2014-01-01

    Full Text Available In order to rank all decision making units (DMUs on the same basis, this paper proposes a multiobjective programming (MOP model based on a compensatory data envelopment analysis (DEA model to derive a common set of weights that can be used for the full ranking of all DMUs. We first revisit a compensatory DEA model for ranking all units, point out the existing problem for solving the model, and present an improved algorithm for which an approximate global optimal solution of the model can be obtained by solving a sequence of linear programming. Then, we applied the key idea of the compensatory DEA model to develop the MOP model in which the objectives are to simultaneously maximize all common weights under constraints that the sum of efficiency values of all DMUs is equal to unity and the sum of all common weights is also equal to unity. In order to solve the MOP model, we transform it into a single objective programming (SOP model using a fuzzy programming method and solve the SOP model using the proposed approximation algorithm. To illustrate the ranking method using the proposed method, two numerical examples are solved.

  13. Feature selection for splice site prediction: A new method using EDA-based feature ranking

    Directory of Open Access Journals (Sweden)

    Rouzé Pierre

    2004-05-01

    Full Text Available Abstract Background The identification of relevant biological features in large and complex datasets is an important step towards gaining insight in the processes underlying the data. Other advantages of feature selection include the ability of the classification system to attain good or even better solutions using a restricted subset of features, and a faster classification. Thus, robust methods for fast feature selection are of key importance in extracting knowledge from complex biological data. Results In this paper we present a novel method for feature subset selection applied to splice site prediction, based on estimation of distribution algorithms, a more general framework of genetic algorithms. From the estimated distribution of the algorithm, a feature ranking is derived. Afterwards this ranking is used to iteratively discard features. We apply this technique to the problem of splice site prediction, and show how it can be used to gain insight into the underlying biological process of splicing. Conclusion We show that this technique proves to be more robust than the traditional use of estimation of distribution algorithms for feature selection: instead of returning a single best subset of features (as they normally do this method provides a dynamical view of the feature selection process, like the traditional sequential wrapper methods. However, the method is faster than the traditional techniques, and scales better to datasets described by a large number of features.

  14. Statistical methods for ranking data

    CERN Document Server

    Alvo, Mayer

    2014-01-01

    This book introduces advanced undergraduate, graduate students and practitioners to statistical methods for ranking data. An important aspect of nonparametric statistics is oriented towards the use of ranking data. Rank correlation is defined through the notion of distance functions and the notion of compatibility is introduced to deal with incomplete data. Ranking data are also modeled using a variety of modern tools such as CART, MCMC, EM algorithm and factor analysis. This book deals with statistical methods used for analyzing such data and provides a novel and unifying approach for hypotheses testing. The techniques described in the book are illustrated with examples and the statistical software is provided on the authors’ website.

  15. Critical review of methods for risk ranking of food related hazards, based on risks for human health

    DEFF Research Database (Denmark)

    van der Fels-Klerx, H. J.; van Asselt, E. D.; Raley, M.

    2018-01-01

    This study aimed to critically review methods for ranking risks related to food safety and dietary hazards on the basis of their anticipated human health impacts. A literature review was performed to identify and characterize methods for risk ranking from the fields of food, environmental science......, and the risk ranking method characterized. The methods were then clustered - based on their characteristics - into eleven method categories. These categories included: risk assessment, comparative risk assessment, risk ratio method, scoring method, cost of illness, health adjusted life years, multi......-criteria decision analysis, risk matrix, flow charts/decision trees, stated preference techniques and expert synthesis. Method categories were described by their characteristics, weaknesses and strengths, data resources, and fields of applications. It was concluded there is no single best method for risk ranking...

  16. The optimized expansion based low-rank method for wavefield extrapolation

    KAUST Repository

    Wu, Zedong

    2014-03-01

    Spectral methods are fast becoming an indispensable tool for wavefield extrapolation, especially in anisotropic media because it tends to be dispersion and artifact free as well as highly accurate when solving the wave equation. However, for inhomogeneous media, we face difficulties in dealing with the mixed space-wavenumber domain extrapolation operator efficiently. To solve this problem, we evaluated an optimized expansion method that can approximate this operator with a low-rank variable separation representation. The rank defines the number of inverse Fourier transforms for each time extrapolation step, and thus, the lower the rank, the faster the extrapolation. The method uses optimization instead of matrix decomposition to find the optimal wavenumbers and velocities needed to approximate the full operator with its explicit low-rank representation. As a result, we obtain lower rank representations compared with the standard low-rank method within reasonable accuracy and thus cheaper extrapolations. Additional bounds set on the range of propagated wavenumbers to adhere to the physical wave limits yield unconditionally stable extrapolations regardless of the time step. An application on the BP model provided superior results compared to those obtained using the decomposition approach. For transversely isotopic media, because we used the pure P-wave dispersion relation, we obtained solutions that were free of the shear wave artifacts, and the algorithm does not require that n > 0. In addition, the required rank for the optimization approach to obtain high accuracy in anisotropic media was lower than that obtained by the decomposition approach, and thus, it was more efficient. A reverse time migration result for the BP tilted transverse isotropy model using this method as a wave propagator demonstrated the ability of the algorithm.

  17. A comparison of sequential and information-based methods for determining the co-integration rank in heteroskedastic VAR MODELS

    DEFF Research Database (Denmark)

    Cavaliere, Giuseppe; Angelis, Luca De; Rahbek, Anders

    2015-01-01

    In this article, we investigate the behaviour of a number of methods for estimating the co-integration rank in VAR systems characterized by heteroskedastic innovation processes. In particular, we compare the efficacy of the most widely used information criteria, such as Akaike Information Criterion....... The relative finite-sample properties of the different methods are investigated by means of a Monte Carlo simulation study. For the simulation DGPs considered in the analysis, we find that the BIC-based procedure and the bootstrap sequential test procedure deliver the best overall performance in terms......-based method to over-estimate the co-integration rank in relatively small sample sizes....

  18. Critical review of methods for risk ranking of food-related hazards, based on risks for human health.

    Science.gov (United States)

    Van der Fels-Klerx, H J; Van Asselt, E D; Raley, M; Poulsen, M; Korsgaard, H; Bredsdorff, L; Nauta, M; D'agostino, M; Coles, D; Marvin, H J P; Frewer, L J

    2018-01-22

    This study aimed to critically review methods for ranking risks related to food safety and dietary hazards on the basis of their anticipated human health impacts. A literature review was performed to identify and characterize methods for risk ranking from the fields of food, environmental science and socio-economic sciences. The review used a predefined search protocol, and covered the bibliographic databases Scopus, CAB Abstracts, Web of Sciences, and PubMed over the period 1993-2013. All references deemed relevant, on the basis of predefined evaluation criteria, were included in the review, and the risk ranking method characterized. The methods were then clustered-based on their characteristics-into eleven method categories. These categories included: risk assessment, comparative risk assessment, risk ratio method, scoring method, cost of illness, health adjusted life years (HALY), multi-criteria decision analysis, risk matrix, flow charts/decision trees, stated preference techniques and expert synthesis. Method categories were described by their characteristics, weaknesses and strengths, data resources, and fields of applications. It was concluded there is no single best method for risk ranking. The method to be used should be selected on the basis of risk manager/assessor requirements, data availability, and the characteristics of the method. Recommendations for future use and application are provided.

  19. SibRank: Signed bipartite network analysis for neighbor-based collaborative ranking

    Science.gov (United States)

    Shams, Bita; Haratizadeh, Saman

    2016-09-01

    Collaborative ranking is an emerging field of recommender systems that utilizes users' preference data rather than rating values. Unfortunately, neighbor-based collaborative ranking has gained little attention despite its more flexibility and justifiability. This paper proposes a novel framework, called SibRank that seeks to improve the state of the art neighbor-based collaborative ranking methods. SibRank represents users' preferences as a signed bipartite network, and finds similar users, through a novel personalized ranking algorithm in signed networks.

  20. RANKING OF COMPANIES ACCORDING TO THE INDICATORS OF CORPORATE SOCIAL RESPONSIBILITY BASED ON SWARA AND ARAS METHODS

    Directory of Open Access Journals (Sweden)

    Darjan Karabasevic

    2016-05-01

    Full Text Available Corporate sector and companies have recognized the importance of implementation of strategy of corporate social responsibility in order to increase the company's image and responsibility towards society and the communities where they operate. Multinational companies in their everyday activities and operations pay more attention to sustainable models of corporate social responsibility. The focus of this paper is to identify the indicators of corporate social responsibility and to rank companies according to the indicators. Proposed framework for evaluation and ranking is based on the SWARA and the ARAS methods. The usability and efficiency of the proposed framework is shown on an illustrative example.

  1. Citation graph based ranking in Invenio

    CERN Document Server

    Marian, Ludmila; Rajman, Martin; Vesely, Martin

    2010-01-01

    Invenio is the web-based integrated digital library system developed at CERN. Within this framework, we present four types of ranking models based on the citation graph that complement the simple approach based on citation counts: time-dependent citation counts, a relevancy ranking which extends the PageRank model, a time-dependent ranking which combines the freshness of citations with PageRank and a ranking that takes into consideration the external citations. We present our analysis and results obtained on two main data sets: Inspire and CERN Document Server. Our main contributions are: (i) a study of the currently available ranking methods based on the citation graph; (ii) the development of new ranking methods that correct some of the identified limitations of the current methods such as treating all citations of equal importance, not taking time into account or considering the citation graph complete; (iii) a detailed study of the key parameters for these ranking methods. (The original publication is ava...

  2. Augmenting the Deliberative Method for Ranking Risks.

    Science.gov (United States)

    Susel, Irving; Lasley, Trace; Montezemolo, Mark; Piper, Joel

    2016-01-01

    The Department of Homeland Security (DHS) characterized and prioritized the physical cross-border threats and hazards to the nation stemming from terrorism, market-driven illicit flows of people and goods (illegal immigration, narcotics, funds, counterfeits, and weaponry), and other nonmarket concerns (movement of diseases, pests, and invasive species). These threats and hazards pose a wide diversity of consequences with very different combinations of magnitudes and likelihoods, making it very challenging to prioritize them. This article presents the approach that was used at DHS to arrive at a consensus regarding the threats and hazards that stand out from the rest based on the overall risk they pose. Due to time constraints for the decision analysis, it was not feasible to apply multiattribute methodologies like multiattribute utility theory or the analytic hierarchy process. Using a holistic approach was considered, such as the deliberative method for ranking risks first published in this journal. However, an ordinal ranking alone does not indicate relative or absolute magnitude differences among the risks. Therefore, the use of the deliberative method for ranking risks is not sufficient for deciding whether there is a material difference between the top-ranked and bottom-ranked risks, let alone deciding what the stand-out risks are. To address this limitation of ordinal rankings, the deliberative method for ranking risks was augmented by adding an additional step to transform the ordinal ranking into a ratio scale ranking. This additional step enabled the selection of stand-out risks to help prioritize further analysis. © 2015 Society for Risk Analysis.

  3. Reliability-based decision making for selection of ready-mix concrete supply using stochastic superiority and inferiority ranking method

    International Nuclear Information System (INIS)

    Chou, Jui-Sheng; Ongkowijoyo, Citra Satria

    2015-01-01

    Corporate competitiveness is heavily influenced by the information acquired, processed, utilized and transferred by professional staff involved in the supply chain. This paper develops a decision aid for selecting on-site ready-mix concrete (RMC) unloading type in decision making situations involving multiple stakeholders and evaluation criteria. The uncertainty of criteria weights set by expert judgment can be transformed in random ways based on the probabilistic virtual-scale method within a prioritization matrix. The ranking is performed by grey relational grade systems considering stochastic criteria weight based on individual preference. Application of the decision aiding model in actual RMC case confirms that the method provides a robust and effective tool for facilitating decision making under uncertainty. - Highlights: • This study models decision aiding method to assess ready-mix concrete unloading type. • Applying Monte Carlo simulation to virtual-scale method achieves a reliable process. • Individual preference ranking method enhances the quality of global decision making. • Robust stochastic superiority and inferiority ranking obtains reasonable results

  4. Centrality based Document Ranking

    Science.gov (United States)

    2014-11-01

    support task. As it turned out, the results were very poor, which suggests that using a general purpose IR sytem in this way is not a good idea... Management on the Semantic Web, 2005. 15. P. Mika, T. Tudorache, A. Bernstein, C. Welty, C. A. Knoblock, D. Vrandecic, P. T. Groth, N. F. Noy, K. Janowicz...question- focused sentence retrieval. In HLT ’05: Proceedings of the conference on Hu- man Language Technology and Empirical Methods in Natural

  5. Probabilistic real-time contingency ranking method

    International Nuclear Information System (INIS)

    Mijuskovic, N.A.; Stojnic, D.

    2000-01-01

    This paper describes a real-time contingency method based on a probabilistic index-expected energy not supplied. This way it is possible to take into account the stochastic nature of the electric power system equipment outages. This approach enables more comprehensive ranking of contingencies and it is possible to form reliability cost values that can form the basis for hourly spot price calculations. The electric power system of Serbia is used as an example for the method proposed. (author)

  6. A multicriteria model for ranking of improvement approaches in construction companies based on the PROMETHÉE II method

    Directory of Open Access Journals (Sweden)

    Renata Maciel de Melo

    2015-03-01

    Full Text Available The quality of the construction production process may be improved using several different methods such as Lean Construction, ISO 9001, ISO 14001 or ISO 18001. Construction companies need a preliminary study and systematic implementation of changes to become more competitive and efficient. This paper presents a multicriteria decision model for the selection and ranking of such alternatives for improvement approaches regarding the aspects of quality, sustainability and safety, based on the PROMETHEE II method. The adoption of this model provides more confidence and visibility for decision makers. One of the differentiators of this model is the use of a fragmented set of improvement alternatives. These alternatives were combined with some restrictions to create a global set of alternatives. An application to three scenarios, considering realistic data, was developed. The results of the application show that the model should be incorporated into the strategic planning process of organizations.

  7. A Rational Method for Ranking Engineering Programs.

    Science.gov (United States)

    Glower, Donald D.

    1980-01-01

    Compares two methods for ranking academic programs, the opinion poll v examination of career successes of the program's alumni. For the latter, "Who's Who in Engineering" and levels of research funding provided data. Tables display resulting data and compare rankings by the two methods for chemical engineering and civil engineering. (CS)

  8. Application of fuzzy-MOORA method: Ranking of components for reliability estimation of component-based software systems

    Directory of Open Access Journals (Sweden)

    Zeeshan Ali Siddiqui

    2016-01-01

    Full Text Available Component-based software system (CBSS development technique is an emerging discipline that promises to take software development into a new era. As hardware systems are presently being constructed from kits of parts, software systems may also be assembled from components. It is more reliable to reuse software than to create. It is the glue code and individual components reliability that contribute to the reliability of the overall system. Every component contributes to overall system reliability according to the number of times it is being used, some components are of critical usage, known as usage frequency of component. The usage frequency decides the weight of each component. According to their weights, each component contributes to the overall reliability of the system. Therefore, ranking of components may be obtained by analyzing their reliability impacts on overall application. In this paper, we propose the application of fuzzy multi-objective optimization on the basis of ratio analysis, Fuzzy-MOORA. The method helps us find the best suitable alternative, software component, from a set of available feasible alternatives named software components. It is an accurate and easy to understand tool for solving multi-criteria decision making problems that have imprecise and vague evaluation data. By the use of ratio analysis, the proposed method determines the most suitable alternative among all possible alternatives, and dimensionless measurement will realize the job of ranking of components for estimating CBSS reliability in a non-subjective way. Finally, three case studies are shown to illustrate the use of the proposed technique.

  9. PageRank as a method to rank biomedical literature by importance.

    Science.gov (United States)

    Yates, Elliot J; Dixon, Louise C

    2015-01-01

    Optimal ranking of literature importance is vital in overcoming article overload. Existing ranking methods are typically based on raw citation counts, giving a sum of 'inbound' links with no consideration of citation importance. PageRank, an algorithm originally developed for ranking webpages at the search engine, Google, could potentially be adapted to bibliometrics to quantify the relative importance weightings of a citation network. This article seeks to validate such an approach on the freely available, PubMed Central open access subset (PMC-OAS) of biomedical literature. On-demand cloud computing infrastructure was used to extract a citation network from over 600,000 full-text PMC-OAS articles. PageRanks and citation counts were calculated for each node in this network. PageRank is highly correlated with citation count (R = 0.905, P PageRank can be trivially computed on commodity cluster hardware and is linearly correlated with citation count. Given its putative benefits in quantifying relative importance, we suggest it may enrich the citation network, thereby overcoming the existing inadequacy of citation counts alone. We thus suggest PageRank as a feasible supplement to, or replacement of, existing bibliometric ranking methods.

  10. Monte Carlo methods of PageRank computation

    NARCIS (Netherlands)

    Litvak, Nelli

    2004-01-01

    We describe and analyze an on-line Monte Carlo method of PageRank computation. The PageRank is being estimated basing on results of a large number of short independent simulation runs initiated from each page that contains outgoing hyperlinks. The method does not require any storage of the hyperlink

  11. Ranking the Online Documents Based on Relative Credibility Measures

    Directory of Open Access Journals (Sweden)

    Ahmad Dahlan

    2013-09-01

    Full Text Available Information searching is the most popular activity in Internet. Usually the search engine provides the search results ranked by the relevance. However, for a certain purpose that concerns with information credibility, particularly citing information for scientific works, another approach of ranking the search engine results is required. This paper presents a study on developing a new ranking method based on the credibility of information. The method is built up upon two well-known algorithms, PageRank and Citation Analysis. The result of the experiment that used Spearman Rank Correlation Coefficient to compare the proposed rank (generated by the method with the standard rank (generated manually by a group of experts showed that the average Spearman 0 < rS < critical value. It means that the correlation was proven but it was not significant. Hence the proposed rank does not satisfy the standard but the performance could be improved.

  12. Ranking the Online Documents Based on Relative Credibility Measures

    Directory of Open Access Journals (Sweden)

    Ahmad Dahlan

    2009-05-01

    Full Text Available Information searching is the most popular activity in Internet. Usually the search engine provides the search results ranked by the relevance. However, for a certain purpose that concerns with information credibility, particularly citing information for scientific works, another approach of ranking the search engine results is required. This paper presents a study on developing a new ranking method based on the credibility of information. The method is built up upon two well-known algorithms, PageRank and Citation Analysis. The result of the experiment that used Spearman Rank Correlation Coefficient to compare the proposed rank (generated by the method with the standard rank (generated manually by a group of experts showed that the average Spearman 0 < rS < critical value. It means that the correlation was proven but it was not significant. Hence the proposed rank does not satisfy the standard but the performance could be improved.

  13. A new method for class prediction based on signed-rank algorithms applied to Affymetrix® microarray experiments

    Directory of Open Access Journals (Sweden)

    Vassal Aurélien

    2008-01-01

    Full Text Available Abstract Background The huge amount of data generated by DNA chips is a powerful basis to classify various pathologies. However, constant evolution of microarray technology makes it difficult to mix data from different chip types for class prediction of limited sample populations. Affymetrix® technology provides both a quantitative fluorescence signal and a decision (detection call: absent or present based on signed-rank algorithms applied to several hybridization repeats of each gene, with a per-chip normalization. We developed a new prediction method for class belonging based on the detection call only from recent Affymetrix chip type. Biological data were obtained by hybridization on U133A, U133B and U133Plus 2.0 microarrays of purified normal B cells and cells from three independent groups of multiple myeloma (MM patients. Results After a call-based data reduction step to filter out non class-discriminative probe sets, the gene list obtained was reduced to a predictor with correction for multiple testing by iterative deletion of probe sets that sequentially improve inter-class comparisons and their significance. The error rate of the method was determined using leave-one-out and 5-fold cross-validation. It was successfully applied to (i determine a sex predictor with the normal donor group classifying gender with no error in all patient groups except for male MM samples with a Y chromosome deletion, (ii predict the immunoglobulin light and heavy chains expressed by the malignant myeloma clones of the validation group and (iii predict sex, light and heavy chain nature for every new patient. Finally, this method was shown powerful when compared to the popular classification method Prediction Analysis of Microarray (PAM. Conclusion This normalization-free method is routinely used for quality control and correction of collection errors in patient reports to clinicians. It can be easily extended to multiple class prediction suitable with

  14. Ranking mutual funds using Sortino method

    Directory of Open Access Journals (Sweden)

    Khosro Faghani Makrani

    2014-04-01

    Full Text Available One of the primary concerns on most business activities is to determine an efficient method for ranking mutual funds. This paper performs an empirical investigation to rank 42 mutual funds listed on Tehran Stock Exchange using Sortino method over the period 2011-2012. The results of survey have been compared with market return and the results have confirmed that there were some positive and meaningful relationships between Sortino return and market return. In addition, there were some positive and meaningful relationship between two Sortino methods.

  15. Iris Template Protection Based on Local Ranking

    Directory of Open Access Journals (Sweden)

    Dongdong Zhao

    2018-01-01

    Full Text Available Biometrics have been widely studied in recent years, and they are increasingly employed in real-world applications. Meanwhile, a number of potential threats to the privacy of biometric data arise. Iris template protection demands that the privacy of iris data should be protected when performing iris recognition. According to the international standard ISO/IEC 24745, iris template protection should satisfy the irreversibility, revocability, and unlinkability. However, existing works about iris template protection demonstrate that it is difficult to satisfy the three privacy requirements simultaneously while supporting effective iris recognition. In this paper, we propose an iris template protection method based on local ranking. Specifically, the iris data are first XORed (Exclusive OR operation with an application-specific string; next, we divide the results into blocks and then partition the blocks into groups. The blocks in each group are ranked according to their decimal values, and original blocks are transformed to their rank values for storage. We also extend the basic method to support the shifting strategy and masking strategy, which are two important strategies for iris recognition. We demonstrate that the proposed method satisfies the irreversibility, revocability, and unlinkability. Experimental results on typical iris datasets (i.e., CASIA-IrisV3-Interval, CASIA-IrisV4-Lamp, UBIRIS-V1-S1, and MMU-V1 show that the proposed method could maintain the recognition performance while protecting the privacy of iris data.

  16. Two Ranking Methods of Single Valued Triangular Neutrosophic Numbers to Rank and Evaluate Information Systems Quality

    Directory of Open Access Journals (Sweden)

    Samah Ibrahim Abdel Aal

    2018-03-01

    Full Text Available The concept of neutrosophic can provide a generalization of fuzzy set and intuitionistic fuzzy set that make it is the best fit in representing indeterminacy and uncertainty. Single Valued Triangular Numbers (SVTrN-numbers is a special case of neutrosophic set that can handle ill-known quantity very difficult problems. This work intended to introduce a framework with two types of ranking methods. The results indicated that each ranking method has its own advantage. In this perspective, the weighted value and ambiguity based method gives more attention to uncertainty in ranking and evaluating ISQ as well as it takes into account cut sets of SVTrN numbers that can reflect the information on Truth-membership-membership degree, false membership-membership degree and Indeterminacy-membership degree. The value index and ambiguity index method can reflect the decision maker's subjectivity attitude to the SVTrN- numbers.

  17. Toward optimal feature selection using ranking methods and classification algorithms

    Directory of Open Access Journals (Sweden)

    Novaković Jasmina

    2011-01-01

    Full Text Available We presented a comparison between several feature ranking methods used on two real datasets. We considered six ranking methods that can be divided into two broad categories: statistical and entropy-based. Four supervised learning algorithms are adopted to build models, namely, IB1, Naive Bayes, C4.5 decision tree and the RBF network. We showed that the selection of ranking methods could be important for classification accuracy. In our experiments, ranking methods with different supervised learning algorithms give quite different results for balanced accuracy. Our cases confirm that, in order to be sure that a subset of features giving the highest accuracy has been selected, the use of many different indices is recommended.

  18. Equal opportunity for low-degree network nodes: a PageRank-based method for protein target identification in metabolic graphs.

    Directory of Open Access Journals (Sweden)

    Dániel Bánky

    Full Text Available Biological network data, such as metabolic-, signaling- or physical interaction graphs of proteins are increasingly available in public repositories for important species. Tools for the quantitative analysis of these networks are being developed today. Protein network-based drug target identification methods usually return protein hubs with large degrees in the networks as potentially important targets. Some known, important protein targets, however, are not hubs at all, and perturbing protein hubs in these networks may have several unwanted physiological effects, due to their interaction with numerous partners. Here, we show a novel method applicable in networks with directed edges (such as metabolic networks that compensates for the low degree (non-hub vertices in the network, and identifies important nodes, regardless of their hub properties. Our method computes the PageRank for the nodes of the network, and divides the PageRank by the in-degree (i.e., the number of incoming edges of the node. This quotient is the same in all nodes in an undirected graph (even for large- and low-degree nodes, that is, for hubs and non-hubs as well, but may differ significantly from node to node in directed graphs. We suggest to assign importance to non-hub nodes with large PageRank/in-degree quotient. Consequently, our method gives high scores to nodes with large PageRank, relative to their degrees: therefore non-hub important nodes can easily be identified in large networks. We demonstrate that these relatively high PageRank scores have biological relevance: the method correctly finds numerous already validated drug targets in distinct organisms (Mycobacterium tuberculosis, Plasmodium falciparum and MRSA Staphylococcus aureus, and consequently, it may suggest new possible protein targets as well. Additionally, our scoring method was not chosen arbitrarily: its value for all nodes of all undirected graphs is constant; therefore its high value captures

  19. Equal opportunity for low-degree network nodes: a PageRank-based method for protein target identification in metabolic graphs.

    Science.gov (United States)

    Bánky, Dániel; Iván, Gábor; Grolmusz, Vince

    2013-01-01

    Biological network data, such as metabolic-, signaling- or physical interaction graphs of proteins are increasingly available in public repositories for important species. Tools for the quantitative analysis of these networks are being developed today. Protein network-based drug target identification methods usually return protein hubs with large degrees in the networks as potentially important targets. Some known, important protein targets, however, are not hubs at all, and perturbing protein hubs in these networks may have several unwanted physiological effects, due to their interaction with numerous partners. Here, we show a novel method applicable in networks with directed edges (such as metabolic networks) that compensates for the low degree (non-hub) vertices in the network, and identifies important nodes, regardless of their hub properties. Our method computes the PageRank for the nodes of the network, and divides the PageRank by the in-degree (i.e., the number of incoming edges) of the node. This quotient is the same in all nodes in an undirected graph (even for large- and low-degree nodes, that is, for hubs and non-hubs as well), but may differ significantly from node to node in directed graphs. We suggest to assign importance to non-hub nodes with large PageRank/in-degree quotient. Consequently, our method gives high scores to nodes with large PageRank, relative to their degrees: therefore non-hub important nodes can easily be identified in large networks. We demonstrate that these relatively high PageRank scores have biological relevance: the method correctly finds numerous already validated drug targets in distinct organisms (Mycobacterium tuberculosis, Plasmodium falciparum and MRSA Staphylococcus aureus), and consequently, it may suggest new possible protein targets as well. Additionally, our scoring method was not chosen arbitrarily: its value for all nodes of all undirected graphs is constant; therefore its high value captures importance in the

  20. A cross-benchmark comparison of 87 learning to rank methods

    NARCIS (Netherlands)

    Tax, N.; Bockting, S.; Hiemstra, D.

    2015-01-01

    Learning to rank is an increasingly important scientific field that comprises the use of machine learning for the ranking task. New learning to rank methods are generally evaluated on benchmark test collections. However, comparison of learning to rank methods based on evaluation results is hindered

  1. CNN-based ranking for biomedical entity normalization.

    Science.gov (United States)

    Li, Haodi; Chen, Qingcai; Tang, Buzhou; Wang, Xiaolong; Xu, Hua; Wang, Baohua; Huang, Dong

    2017-10-03

    Most state-of-the-art biomedical entity normalization systems, such as rule-based systems, merely rely on morphological information of entity mentions, but rarely consider their semantic information. In this paper, we introduce a novel convolutional neural network (CNN) architecture that regards biomedical entity normalization as a ranking problem and benefits from semantic information of biomedical entities. The CNN-based ranking method first generates candidates using handcrafted rules, and then ranks the candidates according to their semantic information modeled by CNN as well as their morphological information. Experiments on two benchmark datasets for biomedical entity normalization show that our proposed CNN-based ranking method outperforms traditional rule-based method with state-of-the-art performance. We propose a CNN architecture that regards biomedical entity normalization as a ranking problem. Comparison results show that semantic information is beneficial to biomedical entity normalization and can be well combined with morphological information in our CNN architecture for further improvement.

  2. Quantum probability ranking principle for ligand-based virtual screening

    Science.gov (United States)

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal

    2017-04-01

    Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.

  3. Quantum probability ranking principle for ligand-based virtual screening.

    Science.gov (United States)

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal

    2017-04-01

    Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.

  4. Evaluating ranking methods on heterogeneous digital library collections

    CERN Document Server

    Canévet, Olivier; Marian, Ludmila; Chonavel, Thierry

    In the frame of research in particle physics, CERN has been developing its own web-based software /Invenio/ to run the digital library of all the documents related to CERN and fundamental physics. The documents (articles, photos, news, thesis, ...) can be retrieved through a search engine. The results matching the query of the user can be displayed in several ways: sorted by latest first, author, title and also ranked by word similarity. The purpose of this project is to study and implement a new ranking method in Invenio: distributed-ranking (D-Rank). This method aims at aggregating several ranking scores coming from different ranking methods into a new score. In addition to query-related scores such as word similarity, the goal of the work is to take into account non-query-related scores such as citations, journal impact factor and in particular scores related to the document access frequency in the database. The idea is that for two equally query-relevant documents, if one has been more downloaded for inst...

  5. Multi-stage classification method oriented to aerial image based on low-rank recovery and multi-feature fusion sparse representation.

    Science.gov (United States)

    Ma, Xu; Cheng, Yongmei; Hao, Shuai

    2016-12-10

    Automatic classification of terrain surfaces from an aerial image is essential for an autonomous unmanned aerial vehicle (UAV) landing at an unprepared site by using vision. Diverse terrain surfaces may show similar spectral properties due to the illumination and noise that easily cause poor classification performance. To address this issue, a multi-stage classification algorithm based on low-rank recovery and multi-feature fusion sparse representation is proposed. First, color moments and Gabor texture feature are extracted from training data and stacked as column vectors of a dictionary. Then we perform low-rank matrix recovery for the dictionary by using augmented Lagrange multipliers and construct a multi-stage terrain classifier. Experimental results on an aerial map database that we prepared verify the classification accuracy and robustness of the proposed method.

  6. Paired comparisons analysis: an axiomatic approach to ranking methods

    NARCIS (Netherlands)

    Gonzalez-Diaz, J.; Hendrickx, Ruud; Lohmann, E.R.M.A.

    2014-01-01

    In this paper we present an axiomatic analysis of several ranking methods for general tournaments. We find that the ranking method obtained by applying maximum likelihood to the (Zermelo-)Bradley-Terry model, the most common method in statistics and psychology, is one of the ranking methods that

  7. THE USE OF RANKING SAMPLING METHOD WITHIN MARKETING RESEARCH

    Directory of Open Access Journals (Sweden)

    CODRUŢA DURA

    2011-01-01

    Full Text Available Marketing and statistical literature available to practitioners provides a wide range of sampling methods that can be implemented in the context of marketing research. Ranking sampling method is based on taking apart the general population into several strata, namely into several subdivisions which are relatively homogenous regarding a certain characteristic. In fact, the sample will be composed by selecting, from each stratum, a certain number of components (which can be proportional or non-proportional to the size of the stratum until the pre-established volume of the sample is reached. Using ranking sampling within marketing research requires the determination of some relevant statistical indicators - average, dispersion, sampling error etc. To that end, the paper contains a case study which illustrates the actual approach used in order to apply the ranking sample method within a marketing research made by a company which provides Internet connection services, on a particular category of customers – small and medium enterprises.

  8. How Many Alternatives Can Be Ranked? A Comparison of the Paired Comparison and Ranking Methods.

    Science.gov (United States)

    Ock, Minsu; Yi, Nari; Ahn, Jeonghoon; Jo, Min-Woo

    2016-01-01

    To determine the feasibility of converting ranking data into paired comparison (PC) data and suggest the number of alternatives that can be ranked by comparing a PC and a ranking method. Using a total of 222 health states, a household survey was conducted in a sample of 300 individuals from the general population. Each respondent performed a PC 15 times and a ranking method 6 times (two attempts of ranking three, four, and five health states, respectively). The health states of the PC and the ranking method were constructed to overlap each other. We converted the ranked data into PC data and examined the consistency of the response rate. Applying probit regression, we obtained the predicted probability of each method. Pearson correlation coefficients were determined between the predicted probabilities of those methods. The mean absolute error was also assessed between the observed and the predicted values. The overall consistency of the response rate was 82.8%. The Pearson correlation coefficients were 0.789, 0.852, and 0.893 for ranking three, four, and five health states, respectively. The lowest mean absolute error was 0.082 (95% confidence interval [CI] 0.074-0.090) in ranking five health states, followed by 0.123 (95% CI 0.111-0.135) in ranking four health states and 0.126 (95% CI 0.113-0.138) in ranking three health states. After empirically examining the consistency of the response rate between a PC and a ranking method, we suggest that using five alternatives in the ranking method may be superior to using three or four alternatives. Copyright © 2016 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  9. Weighted Discriminative Dictionary Learning based on Low-rank Representation

    International Nuclear Information System (INIS)

    Chang, Heyou; Zheng, Hao

    2017-01-01

    Low-rank representation has been widely used in the field of pattern classification, especially when both training and testing images are corrupted with large noise. Dictionary plays an important role in low-rank representation. With respect to the semantic dictionary, the optimal representation matrix should be block-diagonal. However, traditional low-rank representation based dictionary learning methods cannot effectively exploit the discriminative information between data and dictionary. To address this problem, this paper proposed weighted discriminative dictionary learning based on low-rank representation, where a weighted representation regularization term is constructed. The regularization associates label information of both training samples and dictionary atoms, and encourages to generate a discriminative representation with class-wise block-diagonal structure, which can further improve the classification performance where both training and testing images are corrupted with large noise. Experimental results demonstrate advantages of the proposed method over the state-of-the-art methods. (paper)

  10. A Ranking Method for Evaluating Constructed Responses

    Science.gov (United States)

    Attali, Yigal

    2014-01-01

    This article presents a comparative judgment approach for holistically scored constructed response tasks. In this approach, the grader rank orders (rather than rate) the quality of a small set of responses. A prior automated evaluation of responses guides both set formation and scaling of rankings. Sets are formed to have similar prior scores and…

  11. Analysis and research of influence factors ranking of fuzzy language translation accuracy in literary works based on catastrophe progression method

    Directory of Open Access Journals (Sweden)

    Wei Dong

    2017-02-01

    Full Text Available This paper researches the problem of decline in translation accuracy caused by language “vagueness” in literary translation, and proposes to use the catastrophe model for importance ranking of various factors affecting the fuzzy language translation accuracy in literary works, and finally gives out the order of factors to be considered before translation. The multi-level evaluation system can be used to construct the relevant catastrophe progression model, and the normalization formula can be used to calculate the relative membership degree of each system and evaluation index, and make evaluation combined with the evaluation criteria table. The results show that, in the fuzzy language translation, in order to improve the translation accuracy, there is a need to consider the indicators ranking: A2 fuzzy language context → A1 words attribute → A3 specific meaning of digital words; B2 fuzzy semantics, B3 blur color words → B1 multiple meanings of words → B4 fuzzy digital words; C3 combination with context and cultural background, C4 specific connotation of color words → C1 combination with words emotion, C2 selection of words meaning → C5 combination with digits and language background.

  12. Method ranks competing projects by priorities, risk

    International Nuclear Information System (INIS)

    Moeckel, D.R.

    1993-01-01

    A practical, objective guide for ranking projects based on risk-based priorities has been developed by Sun Pipe Line Co. The deliberately simple system guides decisions on how to allocate scarce company resources because all managers employ the same criteria in weighing potential risks to the company versus benefits. Managers at all levels are continuously having to comply with an ever growing amount of legislative and regulatory requirements while at the same time trying to run their businesses effectively. The system primarily is designed for use as a compliance oversight and tracking process to document, categorize, and follow-up on work concerning various issues or projects. That is, the system consists of an electronic database which is updated periodically, and is used by various levels of management to monitor progress of health, safety, environmental and compliance-related projects. Criteria used in determining a risk factor and assigning a priority also have been adapted and found useful for evaluating other types of projects. The process enables management to better define potential risks and/or loss of benefits that are being accepted when a project is rejected from an immediate work plan or budget. In times of financial austerity, it is extremely important that the right decisions are made at the right time

  13. An Analytic Hierarchy Process-based Method to Rank the Critical Success Factors of Implementing a Pharmacy Barcode System.

    Science.gov (United States)

    Alharthi, Hana; Sultana, Nahid; Al-Amoudi, Amjaad; Basudan, Afrah

    2015-01-01

    Pharmacy barcode scanning is used to reduce errors during the medication dispensing process. However, this technology has rarely been used in hospital pharmacies in Saudi Arabia. This article describes the barriers to successful implementation of a barcode scanning system in Saudi Arabia. A literature review was conducted to identify the relevant critical success factors (CSFs) for a successful dispensing barcode system implementation. Twenty-eight pharmacists from a local hospital in Saudi Arabia were interviewed to obtain their perception of these CSFs. In this study, planning (process flow issues and training requirements), resistance (fear of change, communication issues, and negative perceptions about technology), and technology (software, hardware, and vendor support) were identified as the main barriers. The analytic hierarchy process (AHP), one of the most widely used tools for decision making in the presence of multiple criteria, was used to compare and rank these identified CSFs. The results of this study suggest that resistance barriers have a greater impact than planning and technology barriers. In particular, fear of change is the most critical factor, and training is the least critical factor.

  14. Ranking Journals Using Social Choice Theory Methods: A Novel Approach in Bibliometrics

    Energy Technology Data Exchange (ETDEWEB)

    Aleskerov, F.T.; Pislyakov, V.; Subochev, A.N.

    2016-07-01

    We use data on economic, management and political science journals to produce quantitative estimates of (in)consistency of evaluations based on seven popular bibliometric indica (impact factor, 5-year impact factor, immediacy index, article influence score, h-index, SNIP and SJR). We propose a new approach to aggregating journal rankings: since rank aggregation is a multicriteria decision problem, ordinal ranking methods from social choice theory may solve it. We apply either a direct ranking method based on majority rule (the Copeland rule, the Markovian method) or a sorting procedure based on a tournament solution, such as the uncovered set and the minimal externally stable set. We demonstrate that aggregate rankings reduce the number of contradictions and represent the set of single-indicator-based rankings better than any of the seven rankings themselves. (Author)

  15. Image Re-Ranking Based on Topic Diversity.

    Science.gov (United States)

    Qian, Xueming; Lu, Dan; Wang, Yaxiong; Zhu, Li; Tang, Yuan Yan; Wang, Meng

    2017-08-01

    Social media sharing Websites allow users to annotate images with free tags, which significantly contribute to the development of the web image retrieval. Tag-based image search is an important method to find images shared by users in social networks. However, how to make the top ranked result relevant and with diversity is challenging. In this paper, we propose a topic diverse ranking approach for tag-based image retrieval with the consideration of promoting the topic coverage performance. First, we construct a tag graph based on the similarity between each tag. Then, the community detection method is conducted to mine the topic community of each tag. After that, inter-community and intra-community ranking are introduced to obtain the final retrieved results. In the inter-community ranking process, an adaptive random walk model is employed to rank the community based on the multi-information of each topic community. Besides, we build an inverted index structure for images to accelerate the searching process. Experimental results on Flickr data set and NUS-Wide data sets show the effectiveness of the proposed approach.

  16. A STUDY ON RANKING METHOD IN RETRIEVING WEB PAGES BASED ON CONTENT AND LINK ANALYSIS: COMBINATION OF FOURIER DOMAIN SCORING AND PAGERANK SCORING

    Directory of Open Access Journals (Sweden)

    Diana Purwitasari

    2008-01-01

    Full Text Available Ranking module is an important component of search process which sorts through relevant pages. Since collection of Web pages has additional information inherent in the hyperlink structure of the Web, it can be represented as link score and then combined with the usual information retrieval techniques of content score. In this paper we report our studies about ranking score of Web pages combined from link analysis, PageRank Scoring, and content analysis, Fourier Domain Scoring. Our experiments use collection of Web pages relate to Statistic subject from Wikipedia with objectives to check correctness and performance evaluation of combination ranking method. Evaluation of PageRank Scoring show that the highest score does not always relate to Statistic. Since the links within Wikipedia articles exists so that users are always one click away from more information on any point that has a link attached, it it possible that unrelated topics to Statistic are most likely frequently mentioned in the collection. While the combination method show link score which is given proportional weight to content score of Web pages does effect the retrieval results.

  17. Adaptive Game Level Creation through Rank-based Interactive Evolution

    DEFF Research Database (Denmark)

    Liapis, Antonios; Martínez, Héctor Pérez; Togelius, Julian

    2013-01-01

    as fitness functions for the optimization of the generated content. The preference models are built via ranking-based preference learning, while the content is generated via evolutionary search. The proposed method is evaluated on the creation of strategy game maps, and its performance is tested using...

  18. Fuzzy-set based contingency ranking

    International Nuclear Information System (INIS)

    Hsu, Y.Y.; Kuo, H.C.

    1992-01-01

    In this paper, a new approach based on fuzzy set theory is developed for contingency ranking of Taiwan power system. To examine whether a power system can remain in a secure and reliable operating state under contingency conditions, those contingency cases that will result in loss-of-load, loss-of generation, or islanding are first identified. Then 1P-1Q iteration of fast decoupled load flow is preformed to estimate post-contingent quantities (line flows, bus voltages) for other contingency cases. Based on system operators' past experience, each post-contingent quantity is assigned a degree of severity according to the potential damage that could be imposed on the power system by the quantity, should the contingency occurs. An approach based on fuzzy set theory is developed to deal with the imprecision of linguistic terms

  19. Ranking Scientific Publications Based on Their Citation Graph

    CERN Document Server

    Marian, L; Rajman, M

    2009-01-01

    CDS Invenio is the web-based integrated digital library system developed at CERN. It is a suite of applications which provides the framework and tools for building and managing an autonomous digital library server. Within this framework, the goal of this project is to implement new ranking methods based on the bibliographic citation graph extracted from the CDS Invenio database. As a first step, we implemented the Citation Count as a baseline ranking method. The major disadvantage of this method is that all citations are treated equally, disregarding their importance and their publication date. To overcome this drawback, we consider two different approaches: a link-based approach which extends the PageRank model to the bibliographic citation graph and a time-dependent approach which takes into account time in the citation counts. In addition, we also combined these two approaches in a hybrid model based on a time-dependent PageRank. In the present document, we describe the conceptual background behind our new...

  20. Rank-based Tests of the Cointegrating Rank in Semiparametric Error Correction Models

    NARCIS (Netherlands)

    Hallin, M.; van den Akker, R.; Werker, B.J.M.

    2012-01-01

    Abstract: This paper introduces rank-based tests for the cointegrating rank in an Error Correction Model with i.i.d. elliptical innovations. The tests are asymptotically distribution-free, and their validity does not depend on the actual distribution of the innovations. This result holds despite the

  1. On the ranking of chemicals based on their PBT characteristics: comparison of different ranking methodologies using selected POPs as an illustrative example.

    Science.gov (United States)

    Sailaukhanuly, Yerbolat; Zhakupbekova, Arai; Amutova, Farida; Carlsen, Lars

    2013-01-01

    Knowledge of the environmental behavior of chemicals is a fundamental part of the risk assessment process. The present paper discusses various methods of ranking of a series of persistent organic pollutants (POPs) according to the persistence, bioaccumulation and toxicity (PBT) characteristics. Traditionally ranking has been done as an absolute (total) ranking applying various multicriteria data analysis methods like simple additive ranking (SAR) or various utility functions (UFs) based rankings. An attractive alternative to these ranking methodologies appears to be partial order ranking (POR). The present paper compares different ranking methods like SAR, UF and POR. Significant discrepancies between the rankings are noted and it is concluded that partial order ranking, as a method without any pre-assumptions concerning possible relation between the single parameters, appears as the most attractive ranking methodology. In addition to the initial ranking partial order methodology offers a wide variety of analytical tools to elucidate the interplay between the objects to be ranked and the ranking parameters. In the present study is included an analysis of the relative importance of the single P, B and T parameters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. An Adaptive Reordered Method for Computing PageRank

    Directory of Open Access Journals (Sweden)

    Yi-Ming Bu

    2013-01-01

    Full Text Available We propose an adaptive reordered method to deal with the PageRank problem. It has been shown that one can reorder the hyperlink matrix of PageRank problem to calculate a reduced system and get the full PageRank vector through forward substitutions. This method can provide a speedup for calculating the PageRank vector. We observe that in the existing reordered method, the cost of the recursively reordering procedure could offset the computational reduction brought by minimizing the dimension of linear system. With this observation, we introduce an adaptive reordered method to accelerate the total calculation, in which we terminate the reordering procedure appropriately instead of reordering to the end. Numerical experiments show the effectiveness of this adaptive reordered method.

  3. A stable systemic risk ranking in China's banking sector: Based on principal component analysis

    Science.gov (United States)

    Fang, Libing; Xiao, Binqing; Yu, Honghai; You, Qixing

    2018-02-01

    In this paper, we compare five popular systemic risk rankings, and apply principal component analysis (PCA) model to provide a stable systemic risk ranking for the Chinese banking sector. Our empirical results indicate that five methods suggest vastly different systemic risk rankings for the same bank, while the combined systemic risk measure based on PCA provides a reliable ranking. Furthermore, according to factor loadings of the first component, PCA combined ranking is mainly based on fundamentals instead of market price data. We clearly find that price-based rankings are not as practical a method as fundamentals-based ones. This PCA combined ranking directly shows systemic risk contributions of each bank for banking supervision purpose and reminds banks to prevent and cope with the financial crisis in advance.

  4. A Hybrid Distance-Based Ideal-Seeking Consensus Ranking Model

    Directory of Open Access Journals (Sweden)

    Madjid Tavana

    2007-01-01

    Full Text Available Ordinal consensus ranking problems have received much attention in the management science literature. A problem arises in situations where a group of k decision makers (DMs is asked to rank order n alternatives. The question is how to combine the DM rankings into one consensus ranking. Several different approaches have been suggested to aggregate DM responses into a compromise or consensus ranking; however, the similarity of consensus rankings generated by the different algorithms is largely unknown. In this paper, we propose a new hybrid distance-based ideal-seeking consensus ranking model (DCM. The proposed hybrid model combines parts of the two commonly used consensus ranking techniques of Beck and Lin (1983 and Cook and Kress (1985 into an intuitive and computationally simple model. We illustrate our method and then run a Monte Carlo simulation across a range of k and n to compare the similarity of the consensus rankings generated by our method with the best-known method of Borda and Kendall (Kendall 1962 and the two methods proposed by Beck and Lin (1983 and Cook and Kress (1985. DCM and Beck and Lin's method yielded the most similar consensus rankings, whereas the Cook-Kress method and the Borda-Kendall method yielded the least similar consensus rankings.

  5. Solutions of interval type-2 fuzzy polynomials using a new ranking method

    Science.gov (United States)

    Rahman, Nurhakimah Ab.; Abdullah, Lazim; Ghani, Ahmad Termimi Ab.; Ahmad, Noor'Ani

    2015-10-01

    A few years ago, a ranking method have been introduced in the fuzzy polynomial equations. Concept of the ranking method is proposed to find actual roots of fuzzy polynomials (if exists). Fuzzy polynomials are transformed to system of crisp polynomials, performed by using ranking method based on three parameters namely, Value, Ambiguity and Fuzziness. However, it was found that solutions based on these three parameters are quite inefficient to produce answers. Therefore in this study a new ranking method have been developed with the aim to overcome the inherent weakness. The new ranking method which have four parameters are then applied in the interval type-2 fuzzy polynomials, covering the interval type-2 of fuzzy polynomial equation, dual fuzzy polynomial equations and system of fuzzy polynomials. The efficiency of the new ranking method then numerically considered in the triangular fuzzy numbers and the trapezoidal fuzzy numbers. Finally, the approximate solutions produced from the numerical examples indicate that the new ranking method successfully produced actual roots for the interval type-2 fuzzy polynomials.

  6. A model-based approach to operational event groups ranking

    Energy Technology Data Exchange (ETDEWEB)

    Simic, Zdenko [European Commission Joint Research Centre, Petten (Netherlands). Inst. for Energy and Transport; Maqua, Michael [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany); Wattrelos, Didier [Institut de Radioprotection et de Surete Nucleaire (IRSN), Fontenay-aux-Roses (France)

    2014-04-15

    The operational experience (OE) feedback provides improvements in all industrial activities. Identification of the most important and valuable groups of events within accumulated experience is important in order to focus on a detailed investigation of events. The paper describes the new ranking method and compares it with three others. Methods have been described and applied to OE events utilised by nuclear power plants in France and Germany for twenty years. The results show that different ranking methods only roughly agree on which of the event groups are the most important ones. In the new ranking method the analytical hierarchy process is applied in order to assure consistent and comprehensive weighting determination for ranking indexes. The proposed method allows a transparent and flexible event groups ranking and identification of the most important OE for further more detailed investigation in order to complete the feedback. (orig.)

  7. A Citation-Based Ranking of Strategic Management Journals

    OpenAIRE

    Azar, Ofer H.; Brock, David M.

    2007-01-01

    Rankings of strategy journals are important for authors, readers, and promotion and tenure committees. We present several rankings, based either on the number of articles that cited the journal or the per-article impact. Our analyses cover various periods between 1991 and 2006, for most of which the Strategic Management Journal was in first place and Journal of Economics & Management Strategy (JEMS) second, although JEMS ranked first in certain instances. Long Range Planning and Technology An...

  8. Diagrammatic perturbation methods in networks and sports ranking combinatorics

    International Nuclear Information System (INIS)

    Park, Juyong

    2010-01-01

    Analytic and computational tools developed in statistical physics are being increasingly applied to the study of complex networks. Here we present recent developments in the diagrammatic perturbation methods for the exponential random graph models, and apply them to the combinatoric problem of determining the ranking of nodes in directed networks that represent pairwise competitions

  9. An adaptive ES with a ranking based constraint handling strategy

    Directory of Open Access Journals (Sweden)

    Kusakci Ali Osman

    2014-01-01

    Full Text Available To solve a constrained optimization problem, equality constraints can be used to eliminate a problem variable. If it is not feasible, the relations imposed implicitly by the constraints can still be exploited. Most conventional constraint handling methods in Evolutionary Algorithms (EAs do not consider the correlations between problem variables imposed by the constraints. This paper relies on the idea that a proper search operator, which captures mentioned implicit correlations, can improve performance of evolutionary constrained optimization algorithms. To realize this, an Evolution Strategy (ES along with a simplified Covariance Matrix Adaptation (CMA based mutation operator is used with a ranking based constraint-handling method. The proposed algorithm is tested on 13 benchmark problems as well as on a real life design problem. The outperformance of the algorithm is significant when compared with conventional ES-based methods.

  10. Ranking Fuzzy Numbers with a Distance Method using Circumcenter of Centroids and an Index of Modality

    Directory of Open Access Journals (Sweden)

    P. Phani Bushan Rao

    2011-01-01

    Full Text Available Ranking fuzzy numbers are an important aspect of decision making in a fuzzy environment. Since their inception in 1965, many authors have proposed different methods for ranking fuzzy numbers. However, there is no method which gives a satisfactory result to all situations. Most of the methods proposed so far are nondiscriminating and counterintuitive. This paper proposes a new method for ranking fuzzy numbers based on the Circumcenter of Centroids and uses an index of optimism to reflect the decision maker's optimistic attitude and also an index of modality that represents the neutrality of the decision maker. This method ranks various types of fuzzy numbers which include normal, generalized trapezoidal, and triangular fuzzy numbers along with crisp numbers with the particularity that crisp numbers are to be considered particular cases of fuzzy numbers.

  11. Solving the interval type-2 fuzzy polynomial equation using the ranking method

    Science.gov (United States)

    Rahman, Nurhakimah Ab.; Abdullah, Lazim

    2014-07-01

    Polynomial equations with trapezoidal and triangular fuzzy numbers have attracted some interest among researchers in mathematics, engineering and social sciences. There are some methods that have been developed in order to solve these equations. In this study we are interested in introducing the interval type-2 fuzzy polynomial equation and solving it using the ranking method of fuzzy numbers. The ranking method concept was firstly proposed to find real roots of fuzzy polynomial equation. Therefore, the ranking method is applied to find real roots of the interval type-2 fuzzy polynomial equation. We transform the interval type-2 fuzzy polynomial equation to a system of crisp interval type-2 fuzzy polynomial equation. This transformation is performed using the ranking method of fuzzy numbers based on three parameters, namely value, ambiguity and fuzziness. Finally, we illustrate our approach by numerical example.

  12. Improve Biomedical Information Retrieval using Modified Learning to Rank Methods.

    Science.gov (United States)

    Xu, Bo; Lin, Hongfei; Lin, Yuan; Ma, Yunlong; Yang, Liang; Wang, Jian; Yang, Zhihao

    2016-06-14

    In these years, the number of biomedical articles has increased exponentially, which becomes a problem for biologists to capture all the needed information manually. Information retrieval technologies, as the core of search engines, can deal with the problem automatically, providing users with the needed information. However, it is a great challenge to apply these technologies directly for biomedical retrieval, because of the abundance of domain specific terminologies. To enhance biomedical retrieval, we propose a novel framework based on learning to rank. Learning to rank is a series of state-of-the-art information retrieval techniques, and has been proved effective in many information retrieval tasks. In the proposed framework, we attempt to tackle the problem of the abundance of terminologies by constructing ranking models, which focus on not only retrieving the most relevant documents, but also diversifying the searching results to increase the completeness of the resulting list for a given query. In the model training, we propose two novel document labeling strategies, and combine several traditional retrieval models as learning features. Besides, we also investigate the usefulness of different learning to rank approaches in our framework. Experimental results on TREC Genomics datasets demonstrate the effectiveness of our framework for biomedical information retrieval.

  13. METHOD FOR SOLVING FUZZY ASSIGNMENT PROBLEM USING MAGNITUDE RANKING TECHNIQUE

    OpenAIRE

    D. Selvi; R. Queen Mary; G. Velammal

    2017-01-01

    Assignment problems have various applications in the real world because of their wide applicability in industry, commerce, management science, etc. Traditional classical assignment problems cannot be successfully used for real life problem, hence the use of fuzzy assignment problems is more appropriate. In this paper, the fuzzy assignment problem is formulated to crisp assignment problem using Magnitude Ranking technique and Hungarian method has been applied to find an optimal solution. The N...

  14. INTEL: Intel based systems move up in supercomputing ranks

    CERN Multimedia

    2002-01-01

    "The TOP500 supercomputer rankings released today at the Supercomputing 2002 conference show a dramatic increase in the number of Intel-based systems being deployed in high-performance computing (HPC) or supercomputing areas" (1/2 page).

  15. A network-based dynamical ranking system for competitive sports

    Science.gov (United States)

    Motegi, Shun; Masuda, Naoki

    2012-12-01

    From the viewpoint of networks, a ranking system for players or teams in sports is equivalent to a centrality measure for sports networks, whereby a directed link represents the result of a single game. Previously proposed network-based ranking systems are derived from static networks, i.e., aggregation of the results of games over time. However, the score of a player (or team) fluctuates over time. Defeating a renowned player in the peak performance is intuitively more rewarding than defeating the same player in other periods. To account for this factor, we propose a dynamic variant of such a network-based ranking system and apply it to professional men's tennis data. We derive a set of linear online update equations for the score of each player. The proposed ranking system predicts the outcome of the future games with a higher accuracy than the static counterparts.

  16. Yager’s ranking method for solving the trapezoidal fuzzy number linear programming

    Science.gov (United States)

    Karyati; Wutsqa, D. U.; Insani, N.

    2018-03-01

    In the previous research, the authors have studied the fuzzy simplex method for trapezoidal fuzzy number linear programming based on the Maleki’s ranking function. We have found some theories related to the term conditions for the optimum solution of fuzzy simplex method, the fuzzy Big-M method, the fuzzy two-phase method, and the sensitivity analysis. In this research, we study about the fuzzy simplex method based on the other ranking function. It is called Yager's ranking function. In this case, we investigate the optimum term conditions. Based on the result of research, it is found that Yager’s ranking function is not like Maleki’s ranking function. Using the Yager’s function, the simplex method cannot work as well as when using the Maleki’s function. By using the Yager’s function, the value of the subtraction of two equal fuzzy numbers is not equal to zero. This condition makes the optimum table of the fuzzy simplex table is undetected. As a result, the simplified fuzzy simplex table becomes stopped and does not reach the optimum solution.

  17. Ranking of Developing Countries Based on the Economic Freedom Index

    OpenAIRE

    Zirak, Masoumeh; Mehrara, Mohsen

    2013-01-01

    In this paper we’ve ranked developing countries based on the Economic Freedom index. Therefore we are trying to do the analysis how this ranking is done using numerical taxonomic methodology. To do this, by estimating the effects of the determinants of FDI in 123 developing countries from 1997 to 2010, results showed that with regard to the degree of economic freedom or Economic openness, attract foreign direct investment in each country is different. In this study china, Equator, Liberia, Az...

  18. Beyond Low Rank: A Data-Adaptive Tensor Completion Method

    OpenAIRE

    Zhang, Lei; Wei, Wei; Shi, Qinfeng; Shen, Chunhua; Hengel, Anton van den; Zhang, Yanning

    2017-01-01

    Low rank tensor representation underpins much of recent progress in tensor completion. In real applications, however, this approach is confronted with two challenging problems, namely (1) tensor rank determination; (2) handling real tensor data which only approximately fulfils the low-rank requirement. To address these two issues, we develop a data-adaptive tensor completion model which explicitly represents both the low-rank and non-low-rank structures in a latent tensor. Representing the no...

  19. Monte Carlo methods in PageRank computation: When one iteration is sufficient

    NARCIS (Netherlands)

    Avrachenkov, K.; Litvak, Nelli; Nemirovsky, D.; Osipova, N.

    2005-01-01

    PageRank is one of the principle criteria according to which Google ranks Web pages. PageRank can be interpreted as a frequency of visiting a Web page by a random surfer and thus it reflects the popularity of a Web page. Google computes the PageRank using the power iteration method which requires

  20. Monte Carlo methods in PageRank computation: When one iteration is sufficient

    NARCIS (Netherlands)

    Avrachenkov, K.; Litvak, Nelli; Nemirovsky, D.; Osipova, N.

    PageRank is one of the principle criteria according to which Google ranks Web pages. PageRank can be interpreted as a frequency of visiting a Web page by a random surfer, and thus it reflects the popularity of a Web page. Google computes the PageRank using the power iteration method, which requires

  1. Rank-based model selection for multiple ions quantum tomography

    International Nuclear Information System (INIS)

    Guţă, Mădălin; Kypraios, Theodore; Dryden, Ian

    2012-01-01

    The statistical analysis of measurement data has become a key component of many quantum engineering experiments. As standard full state tomography becomes unfeasible for large dimensional quantum systems, one needs to exploit prior information and the ‘sparsity’ properties of the experimental state in order to reduce the dimensionality of the estimation problem. In this paper we propose model selection as a general principle for finding the simplest, or most parsimonious explanation of the data, by fitting different models and choosing the estimator with the best trade-off between likelihood fit and model complexity. We apply two well established model selection methods—the Akaike information criterion (AIC) and the Bayesian information criterion (BIC)—two models consisting of states of fixed rank and datasets such as are currently produced in multiple ions experiments. We test the performance of AIC and BIC on randomly chosen low rank states of four ions, and study the dependence of the selected rank with the number of measurement repetitions for one ion states. We then apply the methods to real data from a four ions experiment aimed at creating a Smolin state of rank 4. By applying the two methods together with the Pearson χ 2 test we conclude that the data can be suitably described with a model whose rank is between 7 and 9. Additionally we find that the mean square error of the maximum likelihood estimator for pure states is close to that of the optimal over all possible measurements. (paper)

  2. Ranking of input parameters importance for BWR stability based on Ringhals-1

    International Nuclear Information System (INIS)

    Gajev, Ivan; Kozlowski, Tomasz; Xu, Yunlin; Downar, Thomas

    2011-01-01

    Unstable behavior of Boiling Water Reactors (BWRs) is known to occur during operation at certain power and flow conditions. Uncertainty calculations for BWR stability, based on the Wilks' formula, have been already done for the Ringhals-1 benchmark. In this work, these calculations have been used to identify and rank the most important parameters affecting the stability of the Ringhals-1 plant. The ranking has been done in two different ways and a comparison of these two methods has been demonstrated. Results show that the methods provide different, but meaningful evaluations of the ranking. (author)

  3. Support vector methods for survival analysis: a comparison between ranking and regression approaches.

    Science.gov (United States)

    Van Belle, Vanya; Pelckmans, Kristiaan; Van Huffel, Sabine; Suykens, Johan A K

    2011-10-01

    To compare and evaluate ranking, regression and combined machine learning approaches for the analysis of survival data. The literature describes two approaches based on support vector machines to deal with censored observations. In the first approach the key idea is to rephrase the task as a ranking problem via the concordance index, a problem which can be solved efficiently in a context of structural risk minimization and convex optimization techniques. In a second approach, one uses a regression approach, dealing with censoring by means of inequality constraints. The goal of this paper is then twofold: (i) introducing a new model combining the ranking and regression strategy, which retains the link with existing survival models such as the proportional hazards model via transformation models; and (ii) comparison of the three techniques on 6 clinical and 3 high-dimensional datasets and discussing the relevance of these techniques over classical approaches fur survival data. We compare svm-based survival models based on ranking constraints, based on regression constraints and models based on both ranking and regression constraints. The performance of the models is compared by means of three different measures: (i) the concordance index, measuring the model's discriminating ability; (ii) the logrank test statistic, indicating whether patients with a prognostic index lower than the median prognostic index have a significant different survival than patients with a prognostic index higher than the median; and (iii) the hazard ratio after normalization to restrict the prognostic index between 0 and 1. Our results indicate a significantly better performance for models including regression constraints above models only based on ranking constraints. This work gives empirical evidence that svm-based models using regression constraints perform significantly better than svm-based models based on ranking constraints. Our experiments show a comparable performance for methods

  4. Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM)

    International Nuclear Information System (INIS)

    Gao, Hao; Osher, Stanley; Yu, Hengyong; Wang, Ge

    2011-01-01

    We propose a compressive sensing approach for multi-energy computed tomography (CT), namely the prior rank, intensity and sparsity model (PRISM). To further compress the multi-energy image for allowing the reconstruction with fewer CT data and less radiation dose, the PRISM models a multi-energy image as the superposition of a low-rank matrix and a sparse matrix (with row dimension in space and column dimension in energy), where the low-rank matrix corresponds to the stationary background over energy that has a low matrix rank, and the sparse matrix represents the rest of distinct spectral features that are often sparse. Distinct from previous methods, the PRISM utilizes the generalized rank, e.g., the matrix rank of tight-frame transform of a multi-energy image, which offers a way to characterize the multi-level and multi-filtered image coherence across the energy spectrum. Besides, the energy-dependent intensity information can be incorporated into the PRISM in terms of the spectral curves for base materials, with which the restoration of the multi-energy image becomes the reconstruction of the energy-independent material composition matrix. In other words, the PRISM utilizes prior knowledge on the generalized rank and sparsity of a multi-energy image, and intensity/spectral characteristics of base materials. Furthermore, we develop an accurate and fast split Bregman method for the PRISM and demonstrate the superior performance of the PRISM relative to several competing methods in simulations. (papers)

  5. Result diversification based on query-specific cluster ranking

    NARCIS (Netherlands)

    He, J.; Meij, E.; de Rijke, M.

    2011-01-01

    Result diversification is a retrieval strategy for dealing with ambiguous or multi-faceted queries by providing documents that cover as many facets of the query as possible. We propose a result diversification framework based on query-specific clustering and cluster ranking, in which diversification

  6. Result Diversification Based on Query-Specific Cluster Ranking

    NARCIS (Netherlands)

    J. He (Jiyin); E. Meij; M. de Rijke (Maarten)

    2011-01-01

    htmlabstractResult diversification is a retrieval strategy for dealing with ambiguous or multi-faceted queries by providing documents that cover as many facets of the query as possible. We propose a result diversification framework based on query-specific clustering and cluster ranking,

  7. Ranking Institutional Settings Based on Publications in Community Psychology Journals

    Science.gov (United States)

    Jason, Leonard A.; Pokorny, Steven B.; Patka, Mazna; Adams, Monica; Morello, Taylor

    2007-01-01

    Two primary outlets for community psychology research, the "American Journal of Community Psychology" and the "Journal of Community Psychology", were assessed to rank institutions based on publication frequency and scientific influence of publications over a 32-year period. Three specific periods were assessed (1973-1983, 1984-1994, 1995-2004).…

  8. A ranking method for the concurrent learning of compounds with various activity profiles.

    Science.gov (United States)

    Dörr, Alexander; Rosenbaum, Lars; Zell, Andreas

    2015-01-01

    In this study, we present a SVM-based ranking algorithm for the concurrent learning of compounds with different activity profiles and their varying prioritization. To this end, a specific labeling of each compound was elaborated in order to infer virtual screening models against multiple targets. We compared the method with several state-of-the-art SVM classification techniques that are capable of inferring multi-target screening models on three chemical data sets (cytochrome P450s, dehydrogenases, and a trypsin-like protease data set) containing three different biological targets each. The experiments show that ranking-based algorithms show an increased performance for single- and multi-target virtual screening. Moreover, compounds that do not completely fulfill the desired activity profile are still ranked higher than decoys or compounds with an entirely undesired profile, compared to other multi-target SVM methods. SVM-based ranking methods constitute a valuable approach for virtual screening in multi-target drug design. The utilization of such methods is most helpful when dealing with compounds with various activity profiles and the finding of many ligands with an already perfectly matching activity profile is not to be expected.

  9. A method for integrating and ranking the evidence for biochemical pathways by mining reactions from text

    Science.gov (United States)

    Miwa, Makoto; Ohta, Tomoko; Rak, Rafal; Rowley, Andrew; Kell, Douglas B.; Pyysalo, Sampo; Ananiadou, Sophia

    2013-01-01

    Motivation: To create, verify and maintain pathway models, curators must discover and assess knowledge distributed over the vast body of biological literature. Methods supporting these tasks must understand both the pathway model representations and the natural language in the literature. These methods should identify and order documents by relevance to any given pathway reaction. No existing system has addressed all aspects of this challenge. Method: We present novel methods for associating pathway model reactions with relevant publications. Our approach extracts the reactions directly from the models and then turns them into queries for three text mining-based MEDLINE literature search systems. These queries are executed, and the resulting documents are combined and ranked according to their relevance to the reactions of interest. We manually annotate document-reaction pairs with the relevance of the document to the reaction and use this annotation to study several ranking methods, using various heuristic and machine-learning approaches. Results: Our evaluation shows that the annotated document-reaction pairs can be used to create a rule-based document ranking system, and that machine learning can be used to rank documents by their relevance to pathway reactions. We find that a Support Vector Machine-based system outperforms several baselines and matches the performance of the rule-based system. The success of the query extraction and ranking methods are used to update our existing pathway search system, PathText. Availability: An online demonstration of PathText 2 and the annotated corpus are available for research purposes at http://www.nactem.ac.uk/pathtext2/. Contact: makoto.miwa@manchester.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23813008

  10. Variants of the Borda count method for combining ranked classifier hypotheses

    NARCIS (Netherlands)

    van Erp, Merijn; Schomaker, Lambert; Schomaker, Lambert; Vuurpijl, Louis

    2000-01-01

    The Borda count is a simple yet effective method of combining rankings. In pattern recognition, classifiers are often able to return a ranked set of results. Several experiments have been conducted to test the ability of the Borda count and two variant methods to combine these ranked classifier

  11. 关于序区间偏好信息的群决策方法研究%Study on the method of ranking in group decision making based on ordinal interval preference information

    Institute of Scientific and Technical Information of China (English)

    陈侠; 陈岩

    2011-01-01

    It is a new important research topic to discuss the problem of ranking in group decision making based on ordinal interval preference information. In this paper, an analytic method is proposed to solve the problem of ranking based on the ordinal interval preference information in decision making. Firstly, some concepts and characters of the ordinal interval preference information are introduced. Then, based on introducing the concepts of possibility and possibility matrix, the conclusion is obtained that the matrices of possibility of all experts are fuzzy reciprocal matrices and they are weak consistent. Furthermore, an optimization model of group consensus is constructed to calculate the optimization weigh vector, and an analysis method of ranking in group decision making based on the ordinal interval preference information is proposed. Finally, a numerical example is given to illustrate the use of the proposed analysis method.%在群决策分析中,基于序区间偏好信息的排序方法的研究是一个新的重要研究课题.针对决策分析中基于序区间偏好信息的群决策方法问题,提出了一种新的分析方法.首先,提出了序区间的有关定义及性质;其次,通过定义序区间的可能度及可能度矩阵的概念,得出了每个专家的可能度矩阵均具有满意一致性的互补判断矩阵结论.进而构建了基于群体一致性的最优化模型,依据计算的最优权重向量给出了一种关于序区间偏好信息的群决策方案排序方法.最后,通过一个算例说明了提出的分析方法.

  12. Ranking of bank branches with undesirable and fuzzy data: A DEA-based approach

    Directory of Open Access Journals (Sweden)

    Sohrab Kordrostami

    2016-07-01

    Full Text Available Banks are one of the most important financial sectors in order to the economic development of each country. Certainly, efficiency scores and ranks of banks are significant and effective aspects towards future planning. Sometimes the performance of banks must be measured in the presence of undesirable and vague factors. For these reasons in the current paper a procedure based on data envelopment analysis (DEA is introduced for evaluating the efficiency and complete ranking of decision making units (DMUs where undesirable and fuzzy measures exist. To illustrate, in the presence of undesirable and fuzzy measures, DMUs are evaluated by using a fuzzy expected value approach and DMUs with similar efficiency scores are ranked by using constraints and the Maximal Balance Index based on the optimal shadow prices. Afterwards, the efficiency scores of 25 branches of an Iranian commercial bank are evaluated using the proposed method. Also, a complete ranking of bank branches is presented to discriminate branches.

  13. A rank-based Prediction Algorithm of Learning User's Intention

    Science.gov (United States)

    Shen, Jie; Gao, Ying; Chen, Cang; Gong, HaiPing

    Internet search has become an important part in people's daily life. People can find many types of information to meet different needs through search engines on the Internet. There are two issues for the current search engines: first, the users should predetermine the types of information they want and then change to the appropriate types of search engine interfaces. Second, most search engines can support multiple kinds of search functions, each function has its own separate search interface. While users need different types of information, they must switch between different interfaces. In practice, most queries are corresponding to various types of information results. These queries can search the relevant results in various search engines, such as query "Palace" contains the websites about the introduction of the National Palace Museum, blog, Wikipedia, some pictures and video information. This paper presents a new aggregative algorithm for all kinds of search results. It can filter and sort the search results by learning three aspects about the query words, search results and search history logs to achieve the purpose of detecting user's intention. Experiments demonstrate that this rank-based method for multi-types of search results is effective. It can meet the user's search needs well, enhance user's satisfaction, provide an effective and rational model for optimizing search engines and improve user's search experience.

  14. Fast and precise method of contingency ranking in modern power system

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain; Chen, Zhe; Thøgersen, Paul

    2011-01-01

    Contingency Analysis is one of the most important aspect of Power System Security Analysis. This paper presents a fast and precise method of contingency ranking for effective power system security analysis. The method proposed in this research work takes due consideration of both apparent power o...... is based on realistic approach taking practical situations into account. Besides taking real situations into consideration the proposed method is fast enough to be considered for on-line security analysis.......Contingency Analysis is one of the most important aspect of Power System Security Analysis. This paper presents a fast and precise method of contingency ranking for effective power system security analysis. The method proposed in this research work takes due consideration of both apparent power...

  15. Use of the dry-weight-rank method of botanical analysis in the ...

    African Journals Online (AJOL)

    The dry-weight-rank method of botanical analysis was tested in the highveld of the Eastern Transvaal and was found to be an efficient and accurate means of determining the botanical composition of veld herbage. Accuracy was increased by weighting ranks on the basis of quadrat yield, and by allocation of equal ranks to ...

  16. Introducing trimming and function ranking to Solid Works based on function analysis

    NARCIS (Netherlands)

    Chechurin, Leonid S.; Wits, Wessel Willems; Bakker, Hans M.; Cascini, G.; Vaneker, Thomas H.J.

    2011-01-01

    TRIZ based Function Analysis models existing products based on functional interactions between product parts. Such a function model description is the ideal starting point for product innovation. Design engineers can apply (TRIZ) methods such as trimming and function ranking to this function model

  17. Introducing Trimming and Function Ranking to SolidWorks based on Function Analysis

    NARCIS (Netherlands)

    Chechurin, L.S.; Wits, Wessel Willems; Bakker, Hans M.; Vaneker, Thomas H.J.

    2015-01-01

    TRIZ based Function Analysis models existing products based on functional interactions between product parts. Such a function model description is the ideal starting point for product innovation. Design engineers can apply (TRIZ) methods such as trimming and function ranking to this function model

  18. Application of a novel PROMETHEE-based method for construction of a group compromise ranking to prioritization of green suppliers in food supply chain

    DEFF Research Database (Denmark)

    Govindan, Kannan; Kadziński, Miłosz; Sivakumar, R.

    2017-01-01

    green supply chain management (GSCM) elements is essential for utilizing the food supply chain in an environmentally benign way. As a solution to the above challenge, the economic and green characteristics for supplier selection in green purchasing are studied in this paper. For an organization......, the evaluation and selection of the green supplier is a vital issue due to several tangible and intangible criteria involved. Accordingly, we apply multiple criteria decision aiding techniques.We propose a hybrid approach that combines the revised Simos procedure, PROMETHEE methods, algorithms for constructing......The food sector has a prodigious focus and is constantly gaining in importance in today's global economic marketplace. Due to an increasing global population, society faces a greater challenge for sustainable food production, quality, distribution, and food safety in the food supply chain. Adopting...

  19. CT Image Sequence Restoration Based on Sparse and Low-Rank Decomposition

    Science.gov (United States)

    Gou, Shuiping; Wang, Yueyue; Wang, Zhilong; Peng, Yong; Zhang, Xiaopeng; Jiao, Licheng; Wu, Jianshe

    2013-01-01

    Blurry organ boundaries and soft tissue structures present a major challenge in biomedical image restoration. In this paper, we propose a low-rank decomposition-based method for computed tomography (CT) image sequence restoration, where the CT image sequence is decomposed into a sparse component and a low-rank component. A new point spread function of Weiner filter is employed to efficiently remove blur in the sparse component; a wiener filtering with the Gaussian PSF is used to recover the average image of the low-rank component. And then we get the recovered CT image sequence by combining the recovery low-rank image with all recovery sparse image sequence. Our method achieves restoration results with higher contrast, sharper organ boundaries and richer soft tissue structure information, compared with existing CT image restoration methods. The robustness of our method was assessed with numerical experiments using three different low-rank models: Robust Principle Component Analysis (RPCA), Linearized Alternating Direction Method with Adaptive Penalty (LADMAP) and Go Decomposition (GoDec). Experimental results demonstrated that the RPCA model was the most suitable for the small noise CT images whereas the GoDec model was the best for the large noisy CT images. PMID:24023764

  20. BridgeRank: A novel fast centrality measure based on local structure of the network

    Science.gov (United States)

    Salavati, Chiman; Abdollahpouri, Alireza; Manbari, Zhaleh

    2018-04-01

    Ranking nodes in complex networks have become an important task in many application domains. In a complex network, influential nodes are those that have the most spreading ability. Thus, identifying influential nodes based on their spreading ability is a fundamental task in different applications such as viral marketing. One of the most important centrality measures to ranking nodes is closeness centrality which is efficient but suffers from high computational complexity O(n3) . This paper tries to improve closeness centrality by utilizing the local structure of nodes and presents a new ranking algorithm, called BridgeRank centrality. The proposed method computes local centrality value for each node. For this purpose, at first, communities are detected and the relationship between communities is completely ignored. Then, by applying a centrality in each community, only one best critical node from each community is extracted. Finally, the nodes are ranked based on computing the sum of the shortest path length of nodes to obtained critical nodes. We have also modified the proposed method by weighting the original BridgeRank and selecting several nodes from each community based on the density of that community. Our method can find the best nodes with high spread ability and low time complexity, which make it applicable to large-scale networks. To evaluate the performance of the proposed method, we use the SIR diffusion model. Finally, experiments on real and artificial networks show that our method is able to identify influential nodes so efficiently, and achieves better performance compared to other recent methods.

  1. Finding differentially expressed genes in high dimensional data: Rank based test statistic via a distance measure.

    Science.gov (United States)

    Mathur, Sunil; Sadana, Ajit

    2015-12-01

    We present a rank-based test statistic for the identification of differentially expressed genes using a distance measure. The proposed test statistic is highly robust against extreme values and does not assume the distribution of parent population. Simulation studies show that the proposed test is more powerful than some of the commonly used methods, such as paired t-test, Wilcoxon signed rank test, and significance analysis of microarray (SAM) under certain non-normal distributions. The asymptotic distribution of the test statistic, and the p-value function are discussed. The application of proposed method is shown using a real-life data set. © The Author(s) 2011.

  2. Computational Methods for Large Spatio-temporal Datasets and Functional Data Ranking

    KAUST Repository

    Huang, Huang

    2017-07-16

    This thesis focuses on two topics, computational methods for large spatial datasets and functional data ranking. Both are tackling the challenges of big and high-dimensional data. The first topic is motivated by the prohibitive computational burden in fitting Gaussian process models to large and irregularly spaced spatial datasets. Various approximation methods have been introduced to reduce the computational cost, but many rely on unrealistic assumptions about the process and retaining statistical efficiency remains an issue. We propose a new scheme to approximate the maximum likelihood estimator and the kriging predictor when the exact computation is infeasible. The proposed method provides different types of hierarchical low-rank approximations that are both computationally and statistically efficient. We explore the improvement of the approximation theoretically and investigate the performance by simulations. For real applications, we analyze a soil moisture dataset with 2 million measurements with the hierarchical low-rank approximation and apply the proposed fast kriging to fill gaps for satellite images. The second topic is motivated by rank-based outlier detection methods for functional data. Compared to magnitude outliers, it is more challenging to detect shape outliers as they are often masked among samples. We develop a new notion of functional data depth by taking the integration of a univariate depth function. Having a form of the integrated depth, it shares many desirable features. Furthermore, the novel formation leads to a useful decomposition for detecting both shape and magnitude outliers. Our simulation studies show the proposed outlier detection procedure outperforms competitors in various outlier models. We also illustrate our methodology using real datasets of curves, images, and video frames. Finally, we introduce the functional data ranking technique to spatio-temporal statistics for visualizing and assessing covariance properties, such as

  3. Ranking environmental projects model based on multicriteria decision-making and the weight sensitivity analysis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    With the fast growth of Chinese economic,more and more capital will be invested in environmental projects.How to select the environmental investment projects(alternatives)for obtaining the best environmental quality and economic benefits is an important problem for the decision makers.The purpose of this paper is to develop a decision-making model to rank a finite number of alternatives with several and sometimes conflicting criteria.A model for ranking the projects of municipal sewage treatment plants is proposed by using exports' information and the data of the real projects.And,the ranking result is given based on the PROMETHEE method. Furthermore,by means of the concept of the weight stability intervals(WSI),the sensitivity of the ranking results to the size of criteria values and the change of weights value of criteria are discussed.The result shows that some criteria,such as"proportion of benefit to projoct cost",will influence the ranking result of alternatives very strong while others not.The influence are not only from the value of criterion but also from the changing the weight of criterion.So,some criteria such as"proportion of benefit to projoct cost" are key critera for ranking the projects. Decision makers must be cautious to them.

  4. Variable screening and ranking using sampling-based sensitivity measures

    International Nuclear Information System (INIS)

    Wu, Y-T.; Mohanty, Sitakanta

    2006-01-01

    This paper presents a methodology for screening insignificant random variables and ranking significant important random variables using sensitivity measures including two cumulative distribution function (CDF)-based and two mean-response based measures. The methodology features (1) using random samples to compute sensitivities and (2) using acceptance limits, derived from the test-of-hypothesis, to classify significant and insignificant random variables. Because no approximation is needed in either the form of the performance functions or the type of continuous distribution functions representing input variables, the sampling-based approach can handle highly nonlinear functions with non-normal variables. The main characteristics and effectiveness of the sampling-based sensitivity measures are investigated using both simple and complex examples. Because the number of samples needed does not depend on the number of variables, the methodology appears to be particularly suitable for problems with large, complex models that have large numbers of random variables but relatively few numbers of significant random variables

  5. Analysis of some methods for reduced rank Gaussian process regression

    DEFF Research Database (Denmark)

    Quinonero-Candela, J.; Rasmussen, Carl Edward

    2005-01-01

    While there is strong motivation for using Gaussian Processes (GPs) due to their excellent performance in regression and classification problems, their computational complexity makes them impractical when the size of the training set exceeds a few thousand cases. This has motivated the recent...... proliferation of a number of cost-effective approximations to GPs, both for classification and for regression. In this paper we analyze one popular approximation to GPs for regression: the reduced rank approximation. While generally GPs are equivalent to infinite linear models, we show that Reduced Rank...... Gaussian Processes (RRGPs) are equivalent to finite sparse linear models. We also introduce the concept of degenerate GPs and show that they correspond to inappropriate priors. We show how to modify the RRGP to prevent it from being degenerate at test time. Training RRGPs consists both in learning...

  6. The Extrapolation-Accelerated Multilevel Aggregation Method in PageRank Computation

    Directory of Open Access Journals (Sweden)

    Bing-Yuan Pu

    2013-01-01

    Full Text Available An accelerated multilevel aggregation method is presented for calculating the stationary probability vector of an irreducible stochastic matrix in PageRank computation, where the vector extrapolation method is its accelerator. We show how to periodically combine the extrapolation method together with the multilevel aggregation method on the finest level for speeding up the PageRank computation. Detailed numerical results are given to illustrate the behavior of this method, and comparisons with the typical methods are also made.

  7. A Comparative Approach for Ranking Contaminated Sites Based on the Risk Assessment Paradigm Using Fuzzy PROMETHEE

    Science.gov (United States)

    Zhang, Kejiang; Kluck, Cheryl; Achari, Gopal

    2009-11-01

    A ranking system for contaminated sites based on comparative risk methodology using fuzzy Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE) was developed in this article. It combines the concepts of fuzzy sets to represent uncertain site information with the PROMETHEE, a subgroup of Multi-Criteria Decision Making (MCDM) methods. Criteria are identified based on a combination of the attributes (toxicity, exposure, and receptors) associated with the potential human health and ecological risks posed by contaminated sites, chemical properties, site geology and hydrogeology and contaminant transport phenomena. Original site data are directly used avoiding the subjective assignment of scores to site attributes. When the input data are numeric and crisp the PROMETHEE method can be used. The Fuzzy PROMETHEE method is preferred when substantial uncertainties and subjectivities exist in site information. The PROMETHEE and fuzzy PROMETHEE methods are both used in this research to compare the sites. The case study shows that this methodology provides reasonable results.

  8. Learning to Recommend Point-of-Interest with the Weighted Bayesian Personalized Ranking Method in LBSNs

    Directory of Open Access Journals (Sweden)

    Lei Guo

    2017-02-01

    Full Text Available Point-of-interest (POI recommendation has been well studied in recent years. However, most of the existing methods focus on the recommendation scenarios where users can provide explicit feedback. In most cases, however, the feedback is not explicit, but implicit. For example, we can only get a user’s check-in behaviors from the history of what POIs she/he has visited, but never know how much she/he likes and why she/he does not like them. Recently, some researchers have noticed this problem and began to learn the user preferences from the partial order of POIs. However, these works give equal weight to each POI pair and cannot distinguish the contributions from different POI pairs. Intuitively, for the two POIs in a POI pair, the larger the frequency difference of being visited and the farther the geographical distance between them, the higher the contribution of this POI pair to the ranking function. Based on the above observations, we propose a weighted ranking method for POI recommendation. Specifically, we first introduce a Bayesian personalized ranking criterion designed for implicit feedback to POI recommendation. To fully utilize the partial order of POIs, we then treat the cost function in a weighted way, that is give each POI pair a different weight according to their frequency of being visited and the geographical distance between them. Data analysis and experimental results on two real-world datasets demonstrate the existence of user preference on different POI pairs and the effectiveness of our weighted ranking method.

  9. A practical sensitivity analysis method for ranking sources of uncertainty in thermal–hydraulics applications

    Energy Technology Data Exchange (ETDEWEB)

    Pourgol-Mohammad, Mohammad, E-mail: pourgolmohammad@sut.ac.ir [Department of Mechanical Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Hoseyni, Seyed Mohsen [Department of Basic Sciences, East Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Hoseyni, Seyed Mojtaba [Building & Housing Research Center, Tehran (Iran, Islamic Republic of); Sepanloo, Kamran [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2016-08-15

    Highlights: • Existing uncertainty ranking methods prove inconsistent for TH applications. • Introduction of a new method for ranking sources of uncertainty in TH codes. • Modified PIRT qualitatively identifies and ranks uncertainty sources more precisely. • The importance of parameters is calculated by a limited number of TH code executions. • Methodology is applied successfully on LOFT-LB1 test facility. - Abstract: In application to thermal–hydraulic calculations by system codes, sensitivity analysis plays an important role for managing the uncertainties of code output and risk analysis. Sensitivity analysis is also used to confirm the results of qualitative Phenomena Identification and Ranking Table (PIRT). Several methodologies have been developed to address uncertainty importance assessment. Generally, uncertainty importance measures, mainly devised for the Probabilistic Risk Assessment (PRA) applications, are not affordable for computationally demanding calculations of the complex thermal–hydraulics (TH) system codes. In other words, for effective quantification of the degree of the contribution of each phenomenon to the total uncertainty of the output, a practical approach is needed by considering high computational burden of TH calculations. This study aims primarily to show the inefficiency of the existing approaches and then introduces a solution to cope with the challenges in this area by modification of variance-based uncertainty importance method. Important parameters are identified by the modified PIRT approach qualitatively then their uncertainty importance is quantified by a local derivative index. The proposed index is attractive from its practicality point of view on TH applications. It is capable of calculating the importance of parameters by a limited number of TH code executions. Application of the proposed methodology is demonstrated on LOFT-LB1 test facility.

  10. A practical sensitivity analysis method for ranking sources of uncertainty in thermal–hydraulics applications

    International Nuclear Information System (INIS)

    Pourgol-Mohammad, Mohammad; Hoseyni, Seyed Mohsen; Hoseyni, Seyed Mojtaba; Sepanloo, Kamran

    2016-01-01

    Highlights: • Existing uncertainty ranking methods prove inconsistent for TH applications. • Introduction of a new method for ranking sources of uncertainty in TH codes. • Modified PIRT qualitatively identifies and ranks uncertainty sources more precisely. • The importance of parameters is calculated by a limited number of TH code executions. • Methodology is applied successfully on LOFT-LB1 test facility. - Abstract: In application to thermal–hydraulic calculations by system codes, sensitivity analysis plays an important role for managing the uncertainties of code output and risk analysis. Sensitivity analysis is also used to confirm the results of qualitative Phenomena Identification and Ranking Table (PIRT). Several methodologies have been developed to address uncertainty importance assessment. Generally, uncertainty importance measures, mainly devised for the Probabilistic Risk Assessment (PRA) applications, are not affordable for computationally demanding calculations of the complex thermal–hydraulics (TH) system codes. In other words, for effective quantification of the degree of the contribution of each phenomenon to the total uncertainty of the output, a practical approach is needed by considering high computational burden of TH calculations. This study aims primarily to show the inefficiency of the existing approaches and then introduces a solution to cope with the challenges in this area by modification of variance-based uncertainty importance method. Important parameters are identified by the modified PIRT approach qualitatively then their uncertainty importance is quantified by a local derivative index. The proposed index is attractive from its practicality point of view on TH applications. It is capable of calculating the importance of parameters by a limited number of TH code executions. Application of the proposed methodology is demonstrated on LOFT-LB1 test facility.

  11. Multi-Label Classification Based on Low Rank Representation for Image Annotation

    Directory of Open Access Journals (Sweden)

    Qiaoyu Tan

    2017-01-01

    Full Text Available Annotating remote sensing images is a challenging task for its labor demanding annotation process and requirement of expert knowledge, especially when images can be annotated with multiple semantic concepts (or labels. To automatically annotate these multi-label images, we introduce an approach called Multi-Label Classification based on Low Rank Representation (MLC-LRR. MLC-LRR firstly utilizes low rank representation in the feature space of images to compute the low rank constrained coefficient matrix, then it adapts the coefficient matrix to define a feature-based graph and to capture the global relationships between images. Next, it utilizes low rank representation in the label space of labeled images to construct a semantic graph. Finally, these two graphs are exploited to train a graph-based multi-label classifier. To validate the performance of MLC-LRR against other related graph-based multi-label methods in annotating images, we conduct experiments on a public available multi-label remote sensing images (Land Cover. We perform additional experiments on five real-world multi-label image datasets to further investigate the performance of MLC-LRR. Empirical study demonstrates that MLC-LRR achieves better performance on annotating images than these comparing methods across various evaluation criteria; it also can effectively exploit global structure and label correlations of multi-label images.

  12. Nanotechnology strength indicators: international rankings based on US patents

    Science.gov (United States)

    Marinova, Dora; McAleer, Michael

    2003-01-01

    Technological strength indicators (TSIs) based on patent statistics for 1975-2000 are used to analyse patenting of nanotechnology in the USA, and to compile international rankings for the top 12 foreign patenting countries (namely Australia, Canada, France, Germany, Great Britain, Italy, Japan, Korea, the Netherlands, Sweden, Switzerland and Taiwan). As the indicators are not directly observable, various proxy variables are used, namely the technological specialization index for national priorities, patent shares for international presence, citation rate for the contribution of patents to knowledge development and rate of assigned patents for potential commercial benefits. The best performing country is France, followed by Japan and Canada. It is shown that expertise and strength in nanotechnology are not evenly distributed among the technologically advanced countries, with the TSIs revealing different emphases in the development of nanotechnology.

  13. Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution

    International Nuclear Information System (INIS)

    Gong, Wenyin; Cai, Zhihua

    2013-01-01

    Parameter identification of PEM (proton exchange membrane) fuel cell model is a very active area of research. Generally, it can be treated as a numerical optimization problem with complex nonlinear and multi-variable features. DE (differential evolution), which has been successfully used in various fields, is a simple yet efficient evolutionary algorithm for global numerical optimization. In this paper, with the objective of accelerating the process of parameter identification of PEM fuel cell models and reducing the necessary computational efforts, we firstly present a generic and simple ranking-based mutation operator for the DE algorithm. Then, the ranking-based mutation operator is incorporated into five highly-competitive DE variants to solve the PEM fuel cell model parameter identification problems. The main contributions of this work are the proposed ranking-based DE variants and their application to the parameter identification problems of PEM fuel cell models. Experiments have been conducted by using both the simulated voltage–current data and the data obtained from the literature to validate the performance of our approach. The results indicate that the ranking-based DE methods provide better results with respect to the solution quality, the convergence rate, and the success rate compared with their corresponding original DE methods. In addition, the voltage–current characteristics obtained by our approach are in good agreement with the original voltage–current curves in all cases. - Highlights: • A simple and generic ranking-based mutation operator is presented in this paper. • Several DE (differential evolution) variants are used to solve the parameter identification of PEMFC (proton exchange membrane fuel cells) model. • Results show that our method accelerates the process of parameter identification. • The V–I characteristics are in very good agreement with experimental data

  14. An Improved Fuzzy Based Missing Value Estimation in DNA Microarray Validated by Gene Ranking

    Directory of Open Access Journals (Sweden)

    Sujay Saha

    2016-01-01

    Full Text Available Most of the gene expression data analysis algorithms require the entire gene expression matrix without any missing values. Hence, it is necessary to devise methods which would impute missing data values accurately. There exist a number of imputation algorithms to estimate those missing values. This work starts with a microarray dataset containing multiple missing values. We first apply the modified version of the fuzzy theory based existing method LRFDVImpute to impute multiple missing values of time series gene expression data and then validate the result of imputation by genetic algorithm (GA based gene ranking methodology along with some regular statistical validation techniques, like RMSE method. Gene ranking, as far as our knowledge, has not been used yet to validate the result of missing value estimation. Firstly, the proposed method has been tested on the very popular Spellman dataset and results show that error margins have been drastically reduced compared to some previous works, which indirectly validates the statistical significance of the proposed method. Then it has been applied on four other 2-class benchmark datasets, like Colorectal Cancer tumours dataset (GDS4382, Breast Cancer dataset (GSE349-350, Prostate Cancer dataset, and DLBCL-FL (Leukaemia for both missing value estimation and ranking the genes, and the results show that the proposed method can reach 100% classification accuracy with very few dominant genes, which indirectly validates the biological significance of the proposed method.

  15. The Typicality Ranking Task: A New Method to Derive Typicality Judgments from Children

    Science.gov (United States)

    Ameel, Eef; Storms, Gert

    2016-01-01

    An alternative method for deriving typicality judgments, applicable in young children that are not familiar with numerical values yet, is introduced, allowing researchers to study gradedness at younger ages in concept development. Contrary to the long tradition of using rating-based procedures to derive typicality judgments, we propose a method that is based on typicality ranking rather than rating, in which items are gradually sorted according to their typicality, and that requires a minimum of linguistic knowledge. The validity of the method is investigated and the method is compared to the traditional typicality rating measurement in a large empirical study with eight different semantic concepts. The results show that the typicality ranking task can be used to assess children’s category knowledge and to evaluate how this knowledge evolves over time. Contrary to earlier held assumptions in studies on typicality in young children, our results also show that preference is not so much a confounding variable to be avoided, but that both variables are often significantly correlated in older children and even in adults. PMID:27322371

  16. Content-based image retrieval with ontological ranking

    Science.gov (United States)

    Tsai, Shen-Fu; Tsai, Min-Hsuan; Huang, Thomas S.

    2010-02-01

    Images are a much more powerful medium of expression than text, as the adage says: "One picture is worth a thousand words." It is because compared with text consisting of an array of words, an image has more degrees of freedom and therefore a more complicated structure. However, the less limited structure of images presents researchers in the computer vision community a tough task of teaching machines to understand and organize images, especially when a limit number of learning examples and background knowledge are given. The advance of internet and web technology in the past decade has changed the way human gain knowledge. People, hence, can exchange knowledge with others by discussing and contributing information on the web. As a result, the web pages in the internet have become a living and growing source of information. One is therefore tempted to wonder whether machines can learn from the web knowledge base as well. Indeed, it is possible to make computer learn from the internet and provide human with more meaningful knowledge. In this work, we explore this novel possibility on image understanding applied to semantic image search. We exploit web resources to obtain links from images to keywords and a semantic ontology constituting human's general knowledge. The former maps visual content to related text in contrast to the traditional way of associating images with surrounding text; the latter provides relations between concepts for machines to understand to what extent and in what sense an image is close to the image search query. With the aid of these two tools, the resulting image search system is thus content-based and moreover, organized. The returned images are ranked and organized such that semantically similar images are grouped together and given a rank based on the semantic closeness to the input query. The novelty of the system is twofold: first, images are retrieved not only based on text cues but their actual contents as well; second, the grouping

  17. Manifold Based Low-rank Regularization for Image Restoration and Semi-supervised Learning

    OpenAIRE

    Lai, Rongjie; Li, Jia

    2017-01-01

    Low-rank structures play important role in recent advances of many problems in image science and data science. As a natural extension of low-rank structures for data with nonlinear structures, the concept of the low-dimensional manifold structure has been considered in many data processing problems. Inspired by this concept, we consider a manifold based low-rank regularization as a linear approximation of manifold dimension. This regularization is less restricted than the global low-rank regu...

  18. A web-based tool for ranking landslide mitigation measures

    Science.gov (United States)

    Lacasse, S.; Vaciago, G.; Choi, Y. J.; Kalsnes, B.

    2012-04-01

    brief description, guidance on design, schematic details, practical examples and references for each mitigation measure. Each of the measures was given a score on its ability and applicability for different types of landslides and boundary conditions, and a decision support matrix was established. The web-based toolbox organizes the information in the compendium and provides an algorithm to rank the measures on the basis of the decision support matrix, and on the basis of the risk level estimated at the site. The toolbox includes a description of the case under study and offers a simplified option for estimating the hazard and risk levels of the slide at hand. The user selects the mitigation measures to be included in the assessment. The toolbox then ranks, with built-in assessment factors and weights and/or with user-defined ranking values and criteria, the mitigation measures included in the analysis. The toolbox includes data management, e.g. saving data half-way in an analysis, returning to an earlier case, looking up prepared examples or looking up information on mitigation measures. The toolbox also generates a report and has user-forum and help features. The presentation will give an overview of the mitigation measures considered and examples of the use of the toolbox, and will take the attendees through the application of the toolbox.

  19. Hyper-local, directions-based ranking of places

    DEFF Research Database (Denmark)

    Venetis, Petros; Gonzalez, Hector; Jensen, Christian S.

    2011-01-01

    they are numerous and contain precise locations. Specifically, the paper proposes a framework that takes a user location and a collection of near-by places as arguments, producing a ranking of the places. The framework enables a range of aspects of directions queries to be exploited for the ranking of places......, including the frequency with which places have been referred to in directions queries. Next, the paper proposes an algorithm and accompanying data structures capable of ranking places in response to hyper-local web queries. Finally, an empirical study with very large directions query logs offers insight...... into the potential of directions queries for the ranking of places and suggests that the proposed algorithm is suitable for use in real web search engines....

  20. Personalized Profile Based Search Interface With Ranked and Clustered Display

    National Research Council Canada - National Science Library

    Kumar, Sachin; Oztekin, B. U; Ertoz, Levent; Singhal, Saurabh; Han, Euihong; Kumar, Vipin

    2001-01-01

    We have developed an experimental meta-search engine, which takes the snippets from traditional search engines and presents them to the user either in the form of clusters, indices or re-ranked list...

  1. An extension of compromise ranking method with interval numbers for the evaluation of renewable energy sources

    Directory of Open Access Journals (Sweden)

    M. Mousavi

    2014-06-01

    Full Text Available Evaluating and prioritizing appropriate renewable energy sources is inevitably a complex decision process. Various information and conflicting attributes should be taken into account. For this purpose, multi-attribute decision making (MADM methods can assist managers or decision makers in formulating renewable energy sources priorities by considering important objective and attributes. In this paper, a new extension of compromise ranking method with interval numbers is presented for the prioritization of renewable energy sources that is based on the performance similarity of alternatives to ideal solutions. To demonstrate the applicability of the proposed decision method, an application example is provided and the computational results are analyzed. Results illustrate that the presented method is viable in solving the evaluation and prioritization problem of renewable energy sources.

  2. The use of fuzzy real option valuation method to rank Giga ...

    African Journals Online (AJOL)

    The use of fuzzy real option valuation method to rank Giga Investment Projects on Iran's natural gas reserves. ... Journal of Fundamental and Applied Sciences ... methodology – discounted cash flow analysis – in valuation of Giga investments.

  3. Implementation of preference ranking organization method for enrichment evaluation (Promethee) on selection system of student’s achievement

    Science.gov (United States)

    Karlitasari, L.; Suhartini, D.; Nurrosikawati, L.

    2018-03-01

    Selection of Student Achievement is conducted every year, starting from the level of Study Program, Faculty, to University, which then rank one will be sent to Kopertis level. The criteria made for the selection are Academic and Rich Scientific, Organizational, Personality, and English. In order for the selection of Student Achievement is Objective, then in addition to the presence of the jury is expected to use methods that support the decision to be more optimal in determining the Student Achievement. One method used is the Promethee Method. Preference Ranking Organization Method for Enrichment Evaluation (Promethee) is a method of ranking in Multi Criteria Decision Making (MCDM). PROMETHEE has the advantage that there is a preference type against the criteria that can take into account alternatives with other alternatives on the same criteria. The conjecture of alternate dominance over a criterion used in PROMETHEE is the use of values in the relationships between alternative ranking values. Based on the calculation result, from 7 applicants between Manual and Promethee Matrices, rank 1, 2, and 3, did not change, only 4 to 7 positions were changed. However, after the sensitivity test, almost all criteria experience a high level of sensitivity. Although it does not affect the students who will be sent to the next level, but can bring psychological impact on prospective student’s achievement

  4. Virtual drug screen schema based on multiview similarity integration and ranking aggregation.

    Science.gov (United States)

    Kang, Hong; Sheng, Zhen; Zhu, Ruixin; Huang, Qi; Liu, Qi; Cao, Zhiwei

    2012-03-26

    The current drug virtual screen (VS) methods mainly include two categories. i.e., ligand/target structure-based virtual screen and that, utilizing protein-ligand interaction fingerprint information based on the large number of complex structures. Since the former one focuses on the one-side information while the later one focuses on the whole complex structure, they are thus complementary and can be boosted by each other. However, a common problem faced here is how to present a comprehensive understanding and evaluation of the various virtual screen results derived from various VS methods. Furthermore, there is still an urgent need for developing an efficient approach to fully integrate various VS methods from a comprehensive multiview perspective. In this study, our virtual screen schema based on multiview similarity integration and ranking aggregation was tested comprehensively with statistical evaluations, providing several novel and useful clues on how to perform drug VS from multiple heterogeneous data sources. (1) 18 complex structures of HIV-1 protease with ligands from the PDB were curated as a test data set and the VS was performed with five different drug representations. Ritonavir ( 1HXW ) was selected as the query in VS and the weighted ranks of the query results were aggregated from multiple views through four similarity integration approaches. (2) Further, one of the ranking aggregation methods was used to integrate the similarity ranks calculated by gene ontology (GO) fingerprint and structural fingerprint on the data set from connectivity map, and two typical HDAC and HSP90 inhibitors were chosen as the queries. The results show that rank aggregation can enhance the result of similarity searching in VS when two or more descriptions are involved and provide a more reasonable similarity rank result. Our study shows that integrated VS based on multiple data fusion can achieve a remarkable better performance compared to that from individual ones and

  5. Supplier evaluation in manufacturing environment using compromise ranking method with grey interval numbers

    Directory of Open Access Journals (Sweden)

    Prasenjit Chatterjee

    2012-04-01

    Full Text Available Evaluation of proper supplier for manufacturing organizations is one of the most challenging problems in real time manufacturing environment due to a wide variety of customer demands. It has become more and more complicated to meet the challenges of international competitiveness and as the decision makers need to assess a wide range of alternative suppliers based on a set of conflicting criteria. Thus, the main objective of supplier selection is to select highly potential supplier through which all the set goals regarding the purchasing and manufacturing activity can be achieved. Because of these reasons, supplier selection has got considerable attention by the academicians and researchers. This paper presents a combined multi-criteria decision making methodology for supplier evaluation for given industrial applications. The proposed methodology is based on a compromise ranking method combined with Grey Interval Numbers considering different cardinal and ordinal criteria and their relative importance. A ‘supplier selection index’ is also proposed to help evaluation and ranking the alternative suppliers. Two examples are illustrated to demonstrate the potentiality and applicability of the proposed method.

  6. Fabric defect detection based on visual saliency using deep feature and low-rank recovery

    Science.gov (United States)

    Liu, Zhoufeng; Wang, Baorui; Li, Chunlei; Li, Bicao; Dong, Yan

    2018-04-01

    Fabric defect detection plays an important role in improving the quality of fabric product. In this paper, a novel fabric defect detection method based on visual saliency using deep feature and low-rank recovery was proposed. First, unsupervised training is carried out by the initial network parameters based on MNIST large datasets. The supervised fine-tuning of fabric image library based on Convolutional Neural Networks (CNNs) is implemented, and then more accurate deep neural network model is generated. Second, the fabric images are uniformly divided into the image block with the same size, then we extract their multi-layer deep features using the trained deep network. Thereafter, all the extracted features are concentrated into a feature matrix. Third, low-rank matrix recovery is adopted to divide the feature matrix into the low-rank matrix which indicates the background and the sparse matrix which indicates the salient defect. In the end, the iterative optimal threshold segmentation algorithm is utilized to segment the saliency maps generated by the sparse matrix to locate the fabric defect area. Experimental results demonstrate that the feature extracted by CNN is more suitable for characterizing the fabric texture than the traditional LBP, HOG and other hand-crafted features extraction method, and the proposed method can accurately detect the defect regions of various fabric defects, even for the image with complex texture.

  7. Speech Denoising in White Noise Based on Signal Subspace Low-rank Plus Sparse Decomposition

    Directory of Open Access Journals (Sweden)

    yuan Shuai

    2017-01-01

    Full Text Available In this paper, a new subspace speech enhancement method using low-rank and sparse decomposition is presented. In the proposed method, we firstly structure the corrupted data as a Toeplitz matrix and estimate its effective rank for the underlying human speech signal. Then the low-rank and sparse decomposition is performed with the guidance of speech rank value to remove the noise. Extensive experiments have been carried out in white Gaussian noise condition, and experimental results show the proposed method performs better than conventional speech enhancement methods, in terms of yielding less residual noise and lower speech distortion.

  8. Ranking filter methods for concentrating pathogens in lake water

    Science.gov (United States)

    Accurately comparing filtration methods for concentrating waterborne pathogens is difficult because of two important water matrix effects on recovery measurements, the effect on PCR quantification and the effect on filter performance. Regarding the first effect, we show how to create a control water...

  9. Improving predicted protein loop structure ranking using a Pareto-optimality consensus method.

    Science.gov (United States)

    Li, Yaohang; Rata, Ionel; Chiu, See-wing; Jakobsson, Eric

    2010-07-20

    Accurate protein loop structure models are important to understand functions of many proteins. Identifying the native or near-native models by distinguishing them from the misfolded ones is a critical step in protein loop structure prediction. We have developed a Pareto Optimal Consensus (POC) method, which is a consensus model ranking approach to integrate multiple knowledge- or physics-based scoring functions. The procedure of identifying the models of best quality in a model set includes: 1) identifying the models at the Pareto optimal front with respect to a set of scoring functions, and 2) ranking them based on the fuzzy dominance relationship to the rest of the models. We apply the POC method to a large number of decoy sets for loops of 4- to 12-residue in length using a functional space composed of several carefully-selected scoring functions: Rosetta, DOPE, DDFIRE, OPLS-AA, and a triplet backbone dihedral potential developed in our lab. Our computational results show that the sets of Pareto-optimal decoys, which are typically composed of approximately 20% or less of the overall decoys in a set, have a good coverage of the best or near-best decoys in more than 99% of the loop targets. Compared to the individual scoring function yielding best selection accuracy in the decoy sets, the POC method yields 23%, 37%, and 64% less false positives in distinguishing the native conformation, indentifying a near-native model (RMSD Pareto optimality and fuzzy dominance, the POC method is effective in distinguishing the best loop models from the other ones within a loop model set.

  10. Prewhitening for Rank-Deficient Noise in Subspace Methods for Noise Reduction

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Jensen, Søren Holdt

    2005-01-01

    A fundamental issue in connection with subspace methods for noise reduction is that the covariance matrix for the noise is required to have full rank, in order for the prewhitening step to be defined. However, there are important cases where this requirement is not fulfilled, e.g., when the noise...... has narrow-band characteristics, or in the case of tonal noise. We extend the concept of prewhitening to include the case when the noise covariance matrix is rank deficient, using a weighted pseudoinverse and the quotient SVD, and we show how to formulate a general rank-reduction algorithm that works...... also for rank deficient noise. We also demonstrate how to formulate this algorithm by means of a quotient ULV decomposition, which allows for faster computation and updating. Finally we apply our algorithm to a problem involving a speech signal contaminated by narrow-band noise....

  11. Convergence of Inner-Iteration GMRES Methods for Rank-Deficient Least Squares Problems

    Czech Academy of Sciences Publication Activity Database

    Morikuni, Keiichi; Hayami, K.

    2015-01-01

    Roč. 36, č. 1 (2015), s. 225-250 ISSN 0895-4798 Institutional support: RVO:67985807 Keywords : least squares problem * iterative methods * preconditioner * inner-outer iteration * GMRES method * stationary iterative method * rank-deficient problem Subject RIV: BA - General Mathematics Impact factor: 1.883, year: 2015

  12. Pathway Relevance Ranking for Tumor Samples through Network-Based Data Integration.

    Directory of Open Access Journals (Sweden)

    Lieven P C Verbeke

    Full Text Available The study of cancer, a highly heterogeneous disease with different causes and clinical outcomes, requires a multi-angle approach and the collection of large multi-omics datasets that, ideally, should be analyzed simultaneously. We present a new pathway relevance ranking method that is able to prioritize pathways according to the information contained in any combination of tumor related omics datasets. Key to the method is the conversion of all available data into a single comprehensive network representation containing not only genes but also individual patient samples. Additionally, all data are linked through a network of previously identified molecular interactions. We demonstrate the performance of the new method by applying it to breast and ovarian cancer datasets from The Cancer Genome Atlas. By integrating gene expression, copy number, mutation and methylation data, the method's potential to identify key pathways involved in breast cancer development shared by different molecular subtypes is illustrated. Interestingly, certain pathways were ranked equally important for different subtypes, even when the underlying (epi-genetic disturbances were diverse. Next to prioritizing universally high-scoring pathways, the pathway ranking method was able to identify subtype-specific pathways. Often the score of a pathway could not be motivated by a single mutation, copy number or methylation alteration, but rather by a combination of genetic and epi-genetic disturbances, stressing the need for a network-based data integration approach. The analysis of ovarian tumors, as a function of survival-based subtypes, demonstrated the method's ability to correctly identify key pathways, irrespective of tumor subtype. A differential analysis of survival-based subtypes revealed several pathways with higher importance for the bad-outcome patient group than for the good-outcome patient group. Many of the pathways exhibiting higher importance for the bad

  13. A rank based social norms model of how people judge their levels of drunkenness whilst intoxicated

    Directory of Open Access Journals (Sweden)

    Simon C. Moore

    2016-09-01

    Full Text Available Abstract Background A rank based social norms model predicts that drinkers’ judgements about their drinking will be based on the rank of their breath alcohol level amongst that of others in the immediate environment, rather than their actual breath alcohol level, with lower relative rank associated with greater feelings of safety. This study tested this hypothesis and examined how people judge their levels of drunkenness and the health consequences of their drinking whilst they are intoxicated in social drinking environments. Methods Breath alcohol testing of 1,862 people (mean age = 26.96 years; 61.86 % male in drinking environments. A subset (N = 400 also answered four questions asking about their perceptions of their drunkenness and the health consequences of their drinking (plus background measures. Results Perceptions of drunkenness and the health consequences of drinking were regressed on: (a breath alcohol level, (b the rank of the breath alcohol level amongst that of others in the same environment, and (c covariates. Only rank of breath alcohol level predicted perceptions: How drunk they felt (b 3.78, 95 % CI 1.69 5.87, how extreme they regarded their drinking that night (b 3.7, 95 % CI 1.3 6.20, how at risk their long-term health was due to their current level of drinking (b 4.1, 95 % CI 0.2 8.0 and how likely they felt they would experience liver cirrhosis (b 4.8. 95 % CI 0.7 8.8. People were more influenced by more sober others than by more drunk others. Conclusion Whilst intoxicated and in drinking environments, people base judgements regarding their drinking on how their level of intoxication ranks relative to that of others of the same gender around them, not on their actual levels of intoxication. Thus, when in the company of others who are intoxicated, drinkers were found to be more likely to underestimate their own level of drinking, drunkenness and associated risks. The implications of these results, for example

  14. Bibliometric Rankings of Journals Based on the Thomson Reuters Citations Database

    NARCIS (Netherlands)

    C-L. Chang (Chia-Lin); M.J. McAleer (Michael)

    2015-01-01

    markdownabstract__Abstract__ Virtually all rankings of journals are based on citations, including self citations by journals and individual academics. The gold standard for bibliometric rankings based on citations data is the widely-used Thomson Reuters Web of Science (2014) citations database,

  15. Bibliometric Rankings of Journals based on the Thomson Reuters Citations Database

    NARCIS (Netherlands)

    C-L. Chang (Chia-Lin); M.J. McAleer (Michael)

    2015-01-01

    markdownabstract__Abstract__ Virtually all rankings of journals are based on citations, including self citations by journals and individual academics. The gold standard for bibliometric rankings based on citations data is the widely-used Thomson Reuters Web of Science (2014) citations database,

  16. Semiparametric Gaussian copula models : Geometry and efficient rank-based estimation

    NARCIS (Netherlands)

    Segers, J.; van den Akker, R.; Werker, B.J.M.

    2014-01-01

    We propose, for multivariate Gaussian copula models with unknown margins and structured correlation matrices, a rank-based, semiparametrically efficient estimator for the Euclidean copula parameter. This estimator is defined as a one-step update of a rank-based pilot estimator in the direction of

  17. Fuzzy ranking based non-dominated sorting genetic algorithm-II for network overload alleviation

    Directory of Open Access Journals (Sweden)

    Pandiarajan K.

    2014-09-01

    Full Text Available This paper presents an effective method of network overload management in power systems. The three competing objectives 1 generation cost 2 transmission line overload and 3 real power loss are optimized to provide pareto-optimal solutions. A fuzzy ranking based non-dominated sorting genetic algorithm-II (NSGA-II is used to solve this complex nonlinear optimization problem. The minimization of competing objectives is done by generation rescheduling. Fuzzy ranking method is employed to extract the best compromise solution out of the available non-dominated solutions depending upon its highest rank. N-1 contingency analysis is carried out to identify the most severe lines and those lines are selected for outage. The effectiveness of the proposed approach is demonstrated for different contingency cases in IEEE 30 and IEEE 118 bus systems with smooth cost functions and their results are compared with other single objective evolutionary algorithms like Particle swarm optimization (PSO and Differential evolution (DE. Simulation results show the effectiveness of the proposed approach to generate well distributed pareto-optimal non-dominated solutions of multi-objective problem

  18. Accuracy Evaluation of C4.5 and Naive Bayes Classifiers Using Attribute Ranking Method

    Directory of Open Access Journals (Sweden)

    S. Sivakumari

    2009-03-01

    Full Text Available This paper intends to classify the Ljubljana Breast Cancer dataset using C4.5 Decision Tree and Nai?ve Bayes classifiers. In this work, classification is carriedout using two methods. In the first method, dataset is analysed using all the attributes in the dataset. In the second method, attributes are ranked using information gain ranking technique and only the high ranked attributes are used to build the classification model. We are evaluating the results of C4.5 Decision Tree and Nai?ve Bayes classifiers in terms of classifier accuracy for various folds of cross validation. Our results show that both the classifiers achieve good accuracy on the dataset.

  19. Research Notes Use of the dry-weight-rank method of botanical ...

    African Journals Online (AJOL)

    When used in combination with the double sampling (or comparative yield) method of yield estimation, the dry-weight-rank method of botanical analysis provides a rapid non-destructive means of estimating botanical composition. The composition is expressed in terms of the contribution of individual species to total herbage ...

  20. A Ranking Method for Neutral Pion and Eta Selection in Hadronic Events

    International Nuclear Information System (INIS)

    Bingoel, A.

    2004-01-01

    The selection of neutral pions and etas with a high purity while maintaining also a high efficiency can be important in the formation of statistically significant mass spectra in the reconstruction of short-lived particles such as the omega meson (ω→π + + π - + π 0 ). In this study a Ranking method has been optimized for data from the ALEPH Experiment, CERN. The results show that the Ranking method, when applied to high multiplicity events, yields significant improvements in the purity of selected pion candidates and facilitates the relaxation of standard cuts thereby avoiding some systematic uncertainties

  1. APPLYING ROBUST RANKING METHOD IN TWO PHASE FUZZY OPTIMIZATION LINEAR PROGRAMMING PROBLEMS (FOLPP

    Directory of Open Access Journals (Sweden)

    Monalisha Pattnaik

    2014-12-01

    Full Text Available Background: This paper explores the solutions to the fuzzy optimization linear program problems (FOLPP where some parameters are fuzzy numbers. In practice, there are many problems in which all decision parameters are fuzzy numbers, and such problems are usually solved by either probabilistic programming or multi-objective programming methods. Methods: In this paper, using the concept of comparison of fuzzy numbers, a very effective method is introduced for solving these problems. This paper extends linear programming based problem in fuzzy environment. With the problem assumptions, the optimal solution can still be theoretically solved using the two phase simplex based method in fuzzy environment. To handle the fuzzy decision variables can be initially generated and then solved and improved sequentially using the fuzzy decision approach by introducing robust ranking technique. Results and conclusions: The model is illustrated with an application and a post optimal analysis approach is obtained. The proposed procedure was programmed with MATLAB (R2009a version software for plotting the four dimensional slice diagram to the application. Finally, numerical example is presented to illustrate the effectiveness of the theoretical results, and to gain additional managerial insights. 

  2. Reference Information Based Remote Sensing Image Reconstruction with Generalized Nonconvex Low-Rank Approximation

    Directory of Open Access Journals (Sweden)

    Hongyang Lu

    2016-06-01

    Full Text Available Because of the contradiction between the spatial and temporal resolution of remote sensing images (RSI and quality loss in the process of acquisition, it is of great significance to reconstruct RSI in remote sensing applications. Recent studies have demonstrated that reference image-based reconstruction methods have great potential for higher reconstruction performance, while lacking accuracy and quality of reconstruction. For this application, a new compressed sensing objective function incorporating a reference image as prior information is developed. We resort to the reference prior information inherent in interior and exterior data simultaneously to build a new generalized nonconvex low-rank approximation framework for RSI reconstruction. Specifically, the innovation of this paper consists of the following three respects: (1 we propose a nonconvex low-rank approximation for reconstructing RSI; (2 we inject reference prior information to overcome over smoothed edges and texture detail losses; (3 on this basis, we combine conjugate gradient algorithms and a single-value threshold (SVT simultaneously to solve the proposed algorithm. The performance of the algorithm is evaluated both qualitatively and quantitatively. Experimental results demonstrate that the proposed algorithm improves several dBs in terms of peak signal to noise ratio (PSNR and preserves image details significantly compared to most of the current approaches without reference images as priors. In addition, the generalized nonconvex low-rank approximation of our approach is naturally robust to noise, and therefore, the proposed algorithm can handle low resolution with noisy inputs in a more unified framework.

  3. Dominance-based ranking functions for interval-valued intuitionistic fuzzy sets.

    Science.gov (United States)

    Chen, Liang-Hsuan; Tu, Chien-Cheng

    2014-08-01

    The ranking of interval-valued intuitionistic fuzzy sets (IvIFSs) is difficult since they include the interval values of membership and nonmembership. This paper proposes ranking functions for IvIFSs based on the dominance concept. The proposed ranking functions consider the degree to which an IvIFS dominates and is not dominated by other IvIFSs. Based on the bivariate framework and the dominance concept, the functions incorporate not only the boundary values of membership and nonmembership, but also the relative relations among IvIFSs in comparisons. The dominance-based ranking functions include bipolar evaluations with a parameter that allows the decision-maker to reflect his actual attitude in allocating the various kinds of dominance. The relationship for two IvIFSs that satisfy the dual couple is defined based on four proposed ranking functions. Importantly, the proposed ranking functions can achieve a full ranking for all IvIFSs. Two examples are used to demonstrate the applicability and distinctiveness of the proposed ranking functions.

  4. GeoSearcher: Location-Based Ranking of Search Engine Results.

    Science.gov (United States)

    Watters, Carolyn; Amoudi, Ghada

    2003-01-01

    Discussion of Web queries with geospatial dimensions focuses on an algorithm that assigns location coordinates dynamically to Web sites based on the URL. Describes a prototype search system that uses the algorithm to re-rank search engine results for queries with a geospatial dimension, thus providing an alternative ranking order for search engine…

  5. Hazard Ranking Method for Populations Exposed to Arsenic in Private Water Supplies: Relation to Bedrock Geology.

    Science.gov (United States)

    Crabbe, Helen; Fletcher, Tony; Close, Rebecca; Watts, Michael J; Ander, E Louise; Smedley, Pauline L; Verlander, Neville Q; Gregory, Martin; Middleton, Daniel R S; Polya, David A; Studden, Mike; Leonardi, Giovanni S

    2017-12-01

    Approximately one million people in the UK are served by private water supplies (PWS) where main municipal water supply system connection is not practical or where PWS is the preferred option. Chronic exposure to contaminants in PWS may have adverse effects on health. South West England is an area with elevated arsenic concentrations in groundwater and over 9000 domestic dwellings here are supplied by PWS. There remains uncertainty as to the extent of the population exposed to arsenic (As), and the factors predicting such exposure. We describe a hazard assessment model based on simplified geology with the potential to predict exposure to As in PWS. Households with a recorded PWS in Cornwall were recruited to take part in a water sampling programme from 2011 to 2013. Bedrock geologies were aggregated and classified into nine Simplified Bedrock Geological Categories (SBGC), plus a cross-cutting "mineralized" area. PWS were sampled by random selection within SBGCs and some 508 households volunteered for the study. Transformations of the data were explored to estimate the distribution of As concentrations for PWS by SBGC. Using the distribution per SBGC, we predict the proportion of dwellings that would be affected by high concentrations and rank the geologies according to hazard. Within most SBGCs, As concentrations were found to have log-normal distributions. Across these areas, the proportion of dwellings predicted to have drinking water over the prescribed concentration value (PCV) for As ranged from 0% to 20%. From these results, a pilot predictive model was developed calculating the proportion of PWS above the PCV for As and hazard ranking supports local decision making and prioritization. With further development and testing, this can help local authorities predict the number of dwellings that might fail the PCV for As, based on bedrock geology. The model presented here for Cornwall could be applied in areas with similar geologies. Application of the method

  6. A rapid place name locating algorithm based on ontology qualitative retrieval, ranking and recommendation

    Science.gov (United States)

    Fan, Hong; Zhu, Anfeng; Zhang, Weixia

    2015-12-01

    In order to meet the rapid positioning of 12315 complaints, aiming at the natural language expression of telephone complaints, a semantic retrieval framework is proposed which is based on natural language parsing and geographical names ontology reasoning. Among them, a search result ranking and recommended algorithms is proposed which is regarding both geo-name conceptual similarity and spatial geometry relation similarity. The experiments show that this method can assist the operator to quickly find location of 12,315 complaints, increased industry and commerce customer satisfaction.

  7. Ranking and selection of commercial off-the-shelf using fuzzy distance based approach

    Directory of Open Access Journals (Sweden)

    Rakesh Garg

    2015-06-01

    Full Text Available There is a tremendous growth of the use of the component based software engineering (CBSE approach for the development of software systems. The selection of the best suited COTS components which fulfils the necessary requirement for the development of software(s has become a major challenge for the software developers. The complexity of the optimal selection problem increases with an increase in alternative potential COTS components and the corresponding selection criteria. In this research paper, the problem of ranking and selection of Data Base Management Systems (DBMS components is modeled as a multi-criteria decision making problem. A ‘Fuzzy Distance Based Approach (FDBA’ method is proposed for the optimal ranking and selection of DBMS COTS components of an e-payment system based on 14 selection criteria grouped under three major categories i.e. ‘Vendor Capabilities’, ‘Business Issues’ and ‘Cost’. The results of this method are compared with other Analytical Hierarchy Process (AHP which is termed as a typical multi-criteria decision making approach. The proposed methodology is explained with an illustrated example.

  8. Structure-Based Low-Rank Model With Graph Nuclear Norm Regularization for Noise Removal.

    Science.gov (United States)

    Ge, Qi; Jing, Xiao-Yuan; Wu, Fei; Wei, Zhi-Hui; Xiao, Liang; Shao, Wen-Ze; Yue, Dong; Li, Hai-Bo

    2017-07-01

    Nonlocal image representation methods, including group-based sparse coding and block-matching 3-D filtering, have shown their great performance in application to low-level tasks. The nonlocal prior is extracted from each group consisting of patches with similar intensities. Grouping patches based on intensity similarity, however, gives rise to disturbance and inaccuracy in estimation of the true images. To address this problem, we propose a structure-based low-rank model with graph nuclear norm regularization. We exploit the local manifold structure inside a patch and group the patches by the distance metric of manifold structure. With the manifold structure information, a graph nuclear norm regularization is established and incorporated into a low-rank approximation model. We then prove that the graph-based regularization is equivalent to a weighted nuclear norm and the proposed model can be solved by a weighted singular-value thresholding algorithm. Extensive experiments on additive white Gaussian noise removal and mixed noise removal demonstrate that the proposed method achieves a better performance than several state-of-the-art algorithms.

  9. RANWAR: rank-based weighted association rule mining from gene expression and methylation data.

    Science.gov (United States)

    Mallik, Saurav; Mukhopadhyay, Anirban; Maulik, Ujjwal

    2015-01-01

    Ranking of association rules is currently an interesting topic in data mining and bioinformatics. The huge number of evolved rules of items (or, genes) by association rule mining (ARM) algorithms makes confusion to the decision maker. In this article, we propose a weighted rule-mining technique (say, RANWAR or rank-based weighted association rule-mining) to rank the rules using two novel rule-interestingness measures, viz., rank-based weighted condensed support (wcs) and weighted condensed confidence (wcc) measures to bypass the problem. These measures are basically depended on the rank of items (genes). Using the rank, we assign weight to each item. RANWAR generates much less number of frequent itemsets than the state-of-the-art association rule mining algorithms. Thus, it saves time of execution of the algorithm. We run RANWAR on gene expression and methylation datasets. The genes of the top rules are biologically validated by Gene Ontologies (GOs) and KEGG pathway analyses. Many top ranked rules extracted from RANWAR that hold poor ranks in traditional Apriori, are highly biologically significant to the related diseases. Finally, the top rules evolved from RANWAR, that are not in Apriori, are reported.

  10. Combinatoric Models of Information Retrieval Ranking Methods and Performance Measures for Weakly-Ordered Document Collections

    Science.gov (United States)

    Church, Lewis

    2010-01-01

    This dissertation answers three research questions: (1) What are the characteristics of a combinatoric measure, based on the Average Search Length (ASL), that performs the same as a probabilistic version of the ASL?; (2) Does the combinatoric ASL measure produce the same performance result as the one that is obtained by ranking a collection of…

  11. Unsupervised ensemble ranking of terms in electronic health record notes based on their importance to patients.

    Science.gov (United States)

    Chen, Jinying; Yu, Hong

    2017-04-01

    Allowing patients to access their own electronic health record (EHR) notes through online patient portals has the potential to improve patient-centered care. However, EHR notes contain abundant medical jargon that can be difficult for patients to comprehend. One way to help patients is to reduce information overload and help them focus on medical terms that matter most to them. Targeted education can then be developed to improve patient EHR comprehension and the quality of care. The aim of this work was to develop FIT (Finding Important Terms for patients), an unsupervised natural language processing (NLP) system that ranks medical terms in EHR notes based on their importance to patients. We built FIT on a new unsupervised ensemble ranking model derived from the biased random walk algorithm to combine heterogeneous information resources for ranking candidate terms from each EHR note. Specifically, FIT integrates four single views (rankers) for term importance: patient use of medical concepts, document-level term salience, word co-occurrence based term relatedness, and topic coherence. It also incorporates partial information of term importance as conveyed by terms' unfamiliarity levels and semantic types. We evaluated FIT on 90 expert-annotated EHR notes and used the four single-view rankers as baselines. In addition, we implemented three benchmark unsupervised ensemble ranking methods as strong baselines. FIT achieved 0.885 AUC-ROC for ranking candidate terms from EHR notes to identify important terms. When including term identification, the performance of FIT for identifying important terms from EHR notes was 0.813 AUC-ROC. Both performance scores significantly exceeded the corresponding scores from the four single rankers (P<0.001). FIT also outperformed the three ensemble rankers for most metrics. Its performance is relatively insensitive to its parameter. FIT can automatically identify EHR terms important to patients. It may help develop future interventions

  12. Ranking Based Locality Sensitive Hashing Enabled Cancelable Biometrics: Index-of-Max Hashing

    OpenAIRE

    Jin, Zhe; Lai, Yen-Lung; Hwang, Jung-Yeon; Kim, Soohyung; Teoh, Andrew Beng Jin

    2017-01-01

    In this paper, we propose a ranking based locality sensitive hashing inspired two-factor cancelable biometrics, dubbed "Index-of-Max" (IoM) hashing for biometric template protection. With externally generated random parameters, IoM hashing transforms a real-valued biometric feature vector into discrete index (max ranked) hashed code. We demonstrate two realizations from IoM hashing notion, namely Gaussian Random Projection based and Uniformly Random Permutation based hashing schemes. The disc...

  13. Selection and ranking of occupational safety indicators based on fuzzy AHP: A case study in road construction companies

    Directory of Open Access Journals (Sweden)

    Janackovic, Goran Lj.

    2013-11-01

    Full Text Available This paper presents the factors, performance, and indicators of occupational safety, as well as a method to select and rank occupational safety indicators based on the expert evaluation method and the fuzzy analytic hierarchy process (fuzzy AHP. A case study is done on road construction companies in Serbia. The key safety performance indicators for the road construction industry are identified and ranked according to the results of a survey that included experts who assessed occupational safety risks in these companies. The case study confirmed that organisational factors have a dominant effect on the quality of the occupational health and safety management system in Serbian road construction companies.

  14. Solving the Fully Fuzzy Bilevel Linear Programming Problem through Deviation Degree Measures and a Ranking Function Method

    OpenAIRE

    Aihong Ren

    2016-01-01

    This paper is concerned with a class of fully fuzzy bilevel linear programming problems where all the coefficients and decision variables of both objective functions and the constraints are fuzzy numbers. A new approach based on deviation degree measures and a ranking function method is proposed to solve these problems. We first introduce concepts of the feasible region and the fuzzy optimal solution of a fully fuzzy bilevel linear programming problem. In order to obtain a fuzzy optimal solut...

  15. Pathways of topological rank analysis (PoTRA: a novel method to detect pathways involved in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Chaoxing Li

    2018-04-01

    Full Text Available Complex diseases such as cancer are usually the result of a combination of environmental factors and one or several biological pathways consisting of sets of genes. Each biological pathway exerts its function by delivering signaling through the gene network. Theoretically, a pathway is supposed to have a robust topological structure under normal physiological conditions. However, the pathway’s topological structure could be altered under some pathological condition. It is well known that a normal biological network includes a small number of well-connected hub nodes and a large number of nodes that are non-hubs. In addition, it is reported that the loss of connectivity is a common topological trait of cancer networks, which is an assumption of our method. Hence, from normal to cancer, the process of the network losing connectivity might be the process of disrupting the structure of the network, namely, the number of hub genes might be altered in cancer compared to that in normal or the distribution of topological ranks of genes might be altered. Based on this, we propose a new PageRank-based method called Pathways of Topological Rank Analysis (PoTRA to detect pathways involved in cancer. We use PageRank to measure the relative topological ranks of genes in each biological pathway, then select hub genes for each pathway, and use Fisher’s exact test to test if the number of hub genes in each pathway is altered from normal to cancer. Alternatively, if the distribution of topological ranks of gene in a pathway is altered between normal and cancer, this pathway might also be involved in cancer. Hence, we use the Kolmogorov–Smirnov test to detect pathways that have an altered distribution of topological ranks of genes between two phenotypes. We apply PoTRA to study hepatocellular carcinoma (HCC and several subtypes of HCC. Very interestingly, we discover that all significant pathways in HCC are cancer-associated generally, while several

  16. Pathways of topological rank analysis (PoTRA): a novel method to detect pathways involved in hepatocellular carcinoma.

    Science.gov (United States)

    Li, Chaoxing; Liu, Li; Dinu, Valentin

    2018-01-01

    Complex diseases such as cancer are usually the result of a combination of environmental factors and one or several biological pathways consisting of sets of genes. Each biological pathway exerts its function by delivering signaling through the gene network. Theoretically, a pathway is supposed to have a robust topological structure under normal physiological conditions. However, the pathway's topological structure could be altered under some pathological condition. It is well known that a normal biological network includes a small number of well-connected hub nodes and a large number of nodes that are non-hubs. In addition, it is reported that the loss of connectivity is a common topological trait of cancer networks, which is an assumption of our method. Hence, from normal to cancer, the process of the network losing connectivity might be the process of disrupting the structure of the network, namely, the number of hub genes might be altered in cancer compared to that in normal or the distribution of topological ranks of genes might be altered. Based on this, we propose a new PageRank-based method called Pathways of Topological Rank Analysis (PoTRA) to detect pathways involved in cancer. We use PageRank to measure the relative topological ranks of genes in each biological pathway, then select hub genes for each pathway, and use Fisher's exact test to test if the number of hub genes in each pathway is altered from normal to cancer. Alternatively, if the distribution of topological ranks of gene in a pathway is altered between normal and cancer, this pathway might also be involved in cancer. Hence, we use the Kolmogorov-Smirnov test to detect pathways that have an altered distribution of topological ranks of genes between two phenotypes. We apply PoTRA to study hepatocellular carcinoma (HCC) and several subtypes of HCC. Very interestingly, we discover that all significant pathways in HCC are cancer-associated generally, while several significant pathways in subtypes

  17. Low rank alternating direction method of multipliers reconstruction for MR fingerprinting.

    Science.gov (United States)

    Assländer, Jakob; Cloos, Martijn A; Knoll, Florian; Sodickson, Daniel K; Hennig, Jürgen; Lattanzi, Riccardo

    2018-01-01

    The proposed reconstruction framework addresses the reconstruction accuracy, noise propagation and computation time for magnetic resonance fingerprinting. Based on a singular value decomposition of the signal evolution, magnetic resonance fingerprinting is formulated as a low rank (LR) inverse problem in which one image is reconstructed for each singular value under consideration. This LR approximation of the signal evolution reduces the computational burden by reducing the number of Fourier transformations. Also, the LR approximation improves the conditioning of the problem, which is further improved by extending the LR inverse problem to an augmented Lagrangian that is solved by the alternating direction method of multipliers. The root mean square error and the noise propagation are analyzed in simulations. For verification, in vivo examples are provided. The proposed LR alternating direction method of multipliers approach shows a reduced root mean square error compared to the original fingerprinting reconstruction, to a LR approximation alone and to an alternating direction method of multipliers approach without a LR approximation. Incorporating sensitivity encoding allows for further artifact reduction. The proposed reconstruction provides robust convergence, reduced computational burden and improved image quality compared to other magnetic resonance fingerprinting reconstruction approaches evaluated in this study. Magn Reson Med 79:83-96, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  18. Ranking alternatives based on imprecise multi-criteria data and pairwise overlap dominance relations

    DEFF Research Database (Denmark)

    Franco de los Rios, Camilo Andres; Hougaard, Jens Leth; Nielsen, Kurt

    illustrative example is given for comparison with standard methods like PROMETHEE. The proposed methodology takes into account the risk attitudes of decision makers, organizing the alternatives and ranking them according to their relevance. The whole interactive decision support allows understanding...

  19. Spectral-based features ranking for gamelan instruments identification using filter techniques

    Directory of Open Access Journals (Sweden)

    Diah P Wulandari

    2013-03-01

    Full Text Available In this paper, we describe an approach of spectral-based features ranking for Javanese gamelaninstruments identification using filter techniques. The model extracted spectral-based features set of thesignal using Short Time Fourier Transform (STFT. The rank of the features was determined using the fivealgorithms; namely ReliefF, Chi-Squared, Information Gain, Gain Ratio, and Symmetric Uncertainty. Then,we tested the ranked features by cross validation using Support Vector Machine (SVM. The experimentshowed that Gain Ratio algorithm gave the best result, it yielded accuracy of 98.93%.

  20. Fuzzy Group Decision Making Approach for Ranking Work Stations Based on Physical Pressure

    Directory of Open Access Journals (Sweden)

    Hamed Salmanzadeh

    2014-06-01

    Full Text Available This paper proposes a Fuzzy Group Decision Making approach for ranking work stations based on physical pressure. Fuzzy group decision making approach allows experts to evaluate different ergonomic factors using linguistic terms such as very high, high, medium, low, very low, rather than precise numerical values. In this way, there is no need to measure parameters and evaluation can be easily made in a group. According to ergonomics much work contents and situations, accompanied with multiple parameters and uncertainties, fuzzy group decision making is the best way to evaluate such a chameleon of concept. A case study was down to utilize the approach and illustrate its application in ergonomic assessment and ranking the work stations based on work pressure and found that this approach provides flexibility, practicality, efficiency in making decision around ergonomics areas. The normalized defuzzification numbers which are resulted from this method are compared with result of quantitative assessment of Automotive Assembly Work Sheet auto, it’s demonstrated that the proposed method result is 10% less than Automotive Assembly Work Sheet, approximately.

  1. Incorporating linguistic, probabilistic, and possibilistic information in a risk-based approach for ranking contaminated sites.

    Science.gov (United States)

    Zhang, Kejiang; Achari, Gopal; Pei, Yuansheng

    2010-10-01

    Different types of uncertain information-linguistic, probabilistic, and possibilistic-exist in site characterization. Their representation and propagation significantly influence the management of contaminated sites. In the absence of a framework with which to properly represent and integrate these quantitative and qualitative inputs together, decision makers cannot fully take advantage of the available and necessary information to identify all the plausible alternatives. A systematic methodology was developed in the present work to incorporate linguistic, probabilistic, and possibilistic information into the Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE), a subgroup of Multi-Criteria Decision Analysis (MCDA) methods for ranking contaminated sites. The identification of criteria based on the paradigm of comparative risk assessment provides a rationale for risk-based prioritization. Uncertain linguistic, probabilistic, and possibilistic information identified in characterizing contaminated sites can be properly represented as numerical values, intervals, probability distributions, and fuzzy sets or possibility distributions, and linguistic variables according to their nature. These different kinds of representation are first transformed into a 2-tuple linguistic representation domain. The propagation of hybrid uncertainties is then carried out in the same domain. This methodology can use the original site information directly as much as possible. The case study shows that this systematic methodology provides more reasonable results. © 2010 SETAC.

  2. A result-driven minimum blocking method for PageRank parallel computing

    Science.gov (United States)

    Tao, Wan; Liu, Tao; Yu, Wei; Huang, Gan

    2017-01-01

    Matrix blocking is a common method for improving computational efficiency of PageRank, but the blocking rules are hard to be determined, and the following calculation is complicated. In tackling these problems, we propose a minimum blocking method driven by result needs to accomplish a parallel implementation of PageRank algorithm. The minimum blocking just stores the element which is necessary for the result matrix. In return, the following calculation becomes simple and the consumption of the I/O transmission is cut down. We do experiments on several matrixes of different data size and different sparsity degree. The results show that the proposed method has better computational efficiency than traditional blocking methods.

  3. The application of low-rank and sparse decomposition method in the field of climatology

    Science.gov (United States)

    Gupta, Nitika; Bhaskaran, Prasad K.

    2018-04-01

    The present study reports a low-rank and sparse decomposition method that separates the mean and the variability of a climate data field. Until now, the application of this technique was limited only in areas such as image processing, web data ranking, and bioinformatics data analysis. In climate science, this method exactly separates the original data into a set of low-rank and sparse components, wherein the low-rank components depict the linearly correlated dataset (expected or mean behavior), and the sparse component represents the variation or perturbation in the dataset from its mean behavior. The study attempts to verify the efficacy of this proposed technique in the field of climatology with two examples of real world. The first example attempts this technique on the maximum wind-speed (MWS) data for the Indian Ocean (IO) region. The study brings to light a decadal reversal pattern in the MWS for the North Indian Ocean (NIO) during the months of June, July, and August (JJA). The second example deals with the sea surface temperature (SST) data for the Bay of Bengal region that exhibits a distinct pattern in the sparse component. The study highlights the importance of the proposed technique used for interpretation and visualization of climate data.

  4. Weakly intrusive low-rank approximation method for nonlinear parameter-dependent equations

    KAUST Repository

    Giraldi, Loic; Nouy, Anthony

    2017-01-01

    This paper presents a weakly intrusive strategy for computing a low-rank approximation of the solution of a system of nonlinear parameter-dependent equations. The proposed strategy relies on a Newton-like iterative solver which only requires evaluations of the residual of the parameter-dependent equation and of a preconditioner (such as the differential of the residual) for instances of the parameters independently. The algorithm provides an approximation of the set of solutions associated with a possibly large number of instances of the parameters, with a computational complexity which can be orders of magnitude lower than when using the same Newton-like solver for all instances of the parameters. The reduction of complexity requires efficient strategies for obtaining low-rank approximations of the residual, of the preconditioner, and of the increment at each iteration of the algorithm. For the approximation of the residual and the preconditioner, weakly intrusive variants of the empirical interpolation method are introduced, which require evaluations of entries of the residual and the preconditioner. Then, an approximation of the increment is obtained by using a greedy algorithm for low-rank approximation, and a low-rank approximation of the iterate is finally obtained by using a truncated singular value decomposition. When the preconditioner is the differential of the residual, the proposed algorithm is interpreted as an inexact Newton solver for which a detailed convergence analysis is provided. Numerical examples illustrate the efficiency of the method.

  5. Weakly intrusive low-rank approximation method for nonlinear parameter-dependent equations

    KAUST Repository

    Giraldi, Loic

    2017-06-30

    This paper presents a weakly intrusive strategy for computing a low-rank approximation of the solution of a system of nonlinear parameter-dependent equations. The proposed strategy relies on a Newton-like iterative solver which only requires evaluations of the residual of the parameter-dependent equation and of a preconditioner (such as the differential of the residual) for instances of the parameters independently. The algorithm provides an approximation of the set of solutions associated with a possibly large number of instances of the parameters, with a computational complexity which can be orders of magnitude lower than when using the same Newton-like solver for all instances of the parameters. The reduction of complexity requires efficient strategies for obtaining low-rank approximations of the residual, of the preconditioner, and of the increment at each iteration of the algorithm. For the approximation of the residual and the preconditioner, weakly intrusive variants of the empirical interpolation method are introduced, which require evaluations of entries of the residual and the preconditioner. Then, an approximation of the increment is obtained by using a greedy algorithm for low-rank approximation, and a low-rank approximation of the iterate is finally obtained by using a truncated singular value decomposition. When the preconditioner is the differential of the residual, the proposed algorithm is interpreted as an inexact Newton solver for which a detailed convergence analysis is provided. Numerical examples illustrate the efficiency of the method.

  6. Variable importance analysis based on rank aggregation with applications in metabolomics for biomarker discovery.

    Science.gov (United States)

    Yun, Yong-Huan; Deng, Bai-Chuan; Cao, Dong-Sheng; Wang, Wei-Ting; Liang, Yi-Zeng

    2016-03-10

    Biomarker discovery is one important goal in metabolomics, which is typically modeled as selecting the most discriminating metabolites for classification and often referred to as variable importance analysis or variable selection. Until now, a number of variable importance analysis methods to discover biomarkers in the metabolomics studies have been proposed. However, different methods are mostly likely to generate different variable ranking results due to their different principles. Each method generates a variable ranking list just as an expert presents an opinion. The problem of inconsistency between different variable ranking methods is often ignored. To address this problem, a simple and ideal solution is that every ranking should be taken into account. In this study, a strategy, called rank aggregation, was employed. It is an indispensable tool for merging individual ranking lists into a single "super"-list reflective of the overall preference or importance within the population. This "super"-list is regarded as the final ranking for biomarker discovery. Finally, it was used for biomarkers discovery and selecting the best variable subset with the highest predictive classification accuracy. Nine methods were used, including three univariate filtering and six multivariate methods. When applied to two metabolic datasets (Childhood overweight dataset and Tubulointerstitial lesions dataset), the results show that the performance of rank aggregation has improved greatly with higher prediction accuracy compared with using all variables. Moreover, it is also better than penalized method, least absolute shrinkage and selectionator operator (LASSO), with higher prediction accuracy or less number of selected variables which are more interpretable. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A LDA-based approach to promoting ranking diversity for genomics information retrieval.

    Science.gov (United States)

    Chen, Yan; Yin, Xiaoshi; Li, Zhoujun; Hu, Xiaohua; Huang, Jimmy Xiangji

    2012-06-11

    In the biomedical domain, there are immense data and tremendous increase of genomics and biomedical relevant publications. The wealth of information has led to an increasing amount of interest in and need for applying information retrieval techniques to access the scientific literature in genomics and related biomedical disciplines. In many cases, the desired information of a query asked by biologists is a list of a certain type of entities covering different aspects that are related to the question, such as cells, genes, diseases, proteins, mutations, etc. Hence, it is important of a biomedical IR system to be able to provide relevant and diverse answers to fulfill biologists' information needs. However traditional IR model only concerns with the relevance between retrieved documents and user query, but does not take redundancy between retrieved documents into account. This will lead to high redundancy and low diversity in the retrieval ranked lists. In this paper, we propose an approach which employs a topic generative model called Latent Dirichlet Allocation (LDA) to promoting ranking diversity for biomedical information retrieval. Different from other approaches or models which consider aspects on word level, our approach assumes that aspects should be identified by the topics of retrieved documents. We present LDA model to discover topic distribution of retrieval passages and word distribution of each topic dimension, and then re-rank retrieval results with topic distribution similarity between passages based on N-size slide window. We perform our approach on TREC 2007 Genomics collection and two distinctive IR baseline runs, which can achieve 8% improvement over the highest Aspect MAP reported in TREC 2007 Genomics track. The proposed method is the first study of adopting topic model to genomics information retrieval, and demonstrates its effectiveness in promoting ranking diversity as well as in improving relevance of ranked lists of genomics search

  8. Multiple graph regularized protein domain ranking

    KAUST Repository

    Wang, Jim Jing-Yan

    2012-11-19

    Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.

  9. Multiple graph regularized protein domain ranking

    KAUST Repository

    Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin

    2012-01-01

    Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.

  10. Multiple graph regularized protein domain ranking.

    Science.gov (United States)

    Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin

    2012-11-19

    Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.

  11. Multiple graph regularized protein domain ranking

    Directory of Open Access Journals (Sweden)

    Wang Jim

    2012-11-01

    Full Text Available Abstract Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.

  12. How to Rank Journals.

    Science.gov (United States)

    Bradshaw, Corey J A; Brook, Barry W

    2016-01-01

    There are now many methods available to assess the relative citation performance of peer-reviewed journals. Regardless of their individual faults and advantages, citation-based metrics are used by researchers to maximize the citation potential of their articles, and by employers to rank academic track records. The absolute value of any particular index is arguably meaningless unless compared to other journals, and different metrics result in divergent rankings. To provide a simple yet more objective way to rank journals within and among disciplines, we developed a κ-resampled composite journal rank incorporating five popular citation indices: Impact Factor, Immediacy Index, Source-Normalized Impact Per Paper, SCImago Journal Rank and Google 5-year h-index; this approach provides an index of relative rank uncertainty. We applied the approach to six sample sets of scientific journals from Ecology (n = 100 journals), Medicine (n = 100), Multidisciplinary (n = 50); Ecology + Multidisciplinary (n = 25), Obstetrics & Gynaecology (n = 25) and Marine Biology & Fisheries (n = 25). We then cross-compared the κ-resampled ranking for the Ecology + Multidisciplinary journal set to the results of a survey of 188 publishing ecologists who were asked to rank the same journals, and found a 0.68-0.84 Spearman's ρ correlation between the two rankings datasets. Our composite index approach therefore approximates relative journal reputation, at least for that discipline. Agglomerative and divisive clustering and multi-dimensional scaling techniques applied to the Ecology + Multidisciplinary journal set identified specific clusters of similarly ranked journals, with only Nature & Science separating out from the others. When comparing a selection of journals within or among disciplines, we recommend collecting multiple citation-based metrics for a sample of relevant and realistic journals to calculate the composite rankings and their relative uncertainty windows.

  13. A Novel Riemannian Metric Based on Riemannian Structure and Scaling Information for Fixed Low-Rank Matrix Completion.

    Science.gov (United States)

    Mao, Shasha; Xiong, Lin; Jiao, Licheng; Feng, Tian; Yeung, Sai-Kit

    2017-05-01

    Riemannian optimization has been widely used to deal with the fixed low-rank matrix completion problem, and Riemannian metric is a crucial factor of obtaining the search direction in Riemannian optimization. This paper proposes a new Riemannian metric via simultaneously considering the Riemannian geometry structure and the scaling information, which is smoothly varying and invariant along the equivalence class. The proposed metric can make a tradeoff between the Riemannian geometry structure and the scaling information effectively. Essentially, it can be viewed as a generalization of some existing metrics. Based on the proposed Riemanian metric, we also design a Riemannian nonlinear conjugate gradient algorithm, which can efficiently solve the fixed low-rank matrix completion problem. By experimenting on the fixed low-rank matrix completion, collaborative filtering, and image and video recovery, it illustrates that the proposed method is superior to the state-of-the-art methods on the convergence efficiency and the numerical performance.

  14. Prioritizing sewer rehabilitation projects using AHP-PROMETHEE II ranking method.

    Science.gov (United States)

    Kessili, Abdelhak; Benmamar, Saadia

    2016-01-01

    The aim of this paper is to develop a methodology for the prioritization of sewer rehabilitation projects for Algiers (Algeria) sewer networks to support the National Sanitation Office in its challenge to make decisions on prioritization of sewer rehabilitation projects. The methodology applies multiple-criteria decision making. The study includes 47 projects (collectors) and 12 criteria to evaluate them. These criteria represent the different issues considered in the prioritization of the projects, which are structural, hydraulic, environmental, financial, social and technical. The analytic hierarchy process (AHP) is used to determine weights of the criteria and the Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE II) method is used to obtain the final ranking of the projects. The model was verified using the sewer data of Algiers. The results have shown that the method can be used for prioritizing sewer rehabilitation projects.

  15. Grid-based lattice summation of electrostatic potentials by assembled rank-structured tensor approximation

    Science.gov (United States)

    Khoromskaia, Venera; Khoromskij, Boris N.

    2014-12-01

    Our recent method for low-rank tensor representation of sums of the arbitrarily positioned electrostatic potentials discretized on a 3D Cartesian grid reduces the 3D tensor summation to operations involving only 1D vectors however retaining the linear complexity scaling in the number of potentials. Here, we introduce and study a novel tensor approach for fast and accurate assembled summation of a large number of lattice-allocated potentials represented on 3D N × N × N grid with the computational requirements only weakly dependent on the number of summed potentials. It is based on the assembled low-rank canonical tensor representations of the collected potentials using pointwise sums of shifted canonical vectors representing the single generating function, say the Newton kernel. For a sum of electrostatic potentials over L × L × L lattice embedded in a box the required storage scales linearly in the 1D grid-size, O(N) , while the numerical cost is estimated by O(NL) . For periodic boundary conditions, the storage demand remains proportional to the 1D grid-size of a unit cell, n = N / L, while the numerical cost reduces to O(N) , that outperforms the FFT-based Ewald-type summation algorithms of complexity O(N3 log N) . The complexity in the grid parameter N can be reduced even to the logarithmic scale O(log N) by using data-sparse representation of canonical N-vectors via the quantics tensor approximation. For justification, we prove an upper bound on the quantics ranks for the canonical vectors in the overall lattice sum. The presented approach is beneficial in applications which require further functional calculus with the lattice potential, say, scalar product with a function, integration or differentiation, which can be performed easily in tensor arithmetics on large 3D grids with 1D cost. Numerical tests illustrate the performance of the tensor summation method and confirm the estimated bounds on the tensor ranks.

  16. Entropy-based gene ranking without selection bias for the predictive classification of microarray data

    Directory of Open Access Journals (Sweden)

    Serafini Maria

    2003-11-01

    Full Text Available Abstract Background We describe the E-RFE method for gene ranking, which is useful for the identification of markers in the predictive classification of array data. The method supports a practical modeling scheme designed to avoid the construction of classification rules based on the selection of too small gene subsets (an effect known as the selection bias, in which the estimated predictive errors are too optimistic due to testing on samples already considered in the feature selection process. Results With E-RFE, we speed up the recursive feature elimination (RFE with SVM classifiers by eliminating chunks of uninteresting genes using an entropy measure of the SVM weights distribution. An optimal subset of genes is selected according to a two-strata model evaluation procedure: modeling is replicated by an external stratified-partition resampling scheme, and, within each run, an internal K-fold cross-validation is used for E-RFE ranking. Also, the optimal number of genes can be estimated according to the saturation of Zipf's law profiles. Conclusions Without a decrease of classification accuracy, E-RFE allows a speed-up factor of 100 with respect to standard RFE, while improving on alternative parametric RFE reduction strategies. Thus, a process for gene selection and error estimation is made practical, ensuring control of the selection bias, and providing additional diagnostic indicators of gene importance.

  17. A Citation-Based Ranking of German-Speaking Researchers in Business Administration with Data of Google Scholar

    Science.gov (United States)

    Dilger, Alexander; Müller, Harry

    2013-01-01

    Rankings of academics can be constructed in two different ways, either based on journal rankings or based on citations. Although citation-based rankings promise some fundamental advantages they are still not common in German-speaking business administration. However, the choice of the underlying database is crucial. This article argues that for…

  18. Research on the Fusion of Dependent Evidence Based on Rank Correlation Coefficient

    Directory of Open Access Journals (Sweden)

    Fengjian Shi

    2017-10-01

    Full Text Available In order to meet the higher accuracy and system reliability requirements, the information fusion for multi-sensor systems is an increasing concern. Dempster–Shafer evidence theory (D–S theory has been investigated for many applications in multi-sensor information fusion due to its flexibility in uncertainty modeling. However, classical evidence theory assumes that the evidence is independent of each other, which is often unrealistic. Ignoring the relationship between the evidence may lead to unreasonable fusion results, and even lead to wrong decisions. This assumption severely prevents D–S evidence theory from practical application and further development. In this paper, an innovative evidence fusion model to deal with dependent evidence based on rank correlation coefficient is proposed. The model first uses rank correlation coefficient to measure the dependence degree between different evidence. Then, total discount coefficient is obtained based on the dependence degree, which also considers the impact of the reliability of evidence. Finally, the discount evidence fusion model is presented. An example is illustrated to show the use and effectiveness of the proposed method.

  19. Research on the Fusion of Dependent Evidence Based on Rank Correlation Coefficient.

    Science.gov (United States)

    Shi, Fengjian; Su, Xiaoyan; Qian, Hong; Yang, Ning; Han, Wenhua

    2017-10-16

    In order to meet the higher accuracy and system reliability requirements, the information fusion for multi-sensor systems is an increasing concern. Dempster-Shafer evidence theory (D-S theory) has been investigated for many applications in multi-sensor information fusion due to its flexibility in uncertainty modeling. However, classical evidence theory assumes that the evidence is independent of each other, which is often unrealistic. Ignoring the relationship between the evidence may lead to unreasonable fusion results, and even lead to wrong decisions. This assumption severely prevents D-S evidence theory from practical application and further development. In this paper, an innovative evidence fusion model to deal with dependent evidence based on rank correlation coefficient is proposed. The model first uses rank correlation coefficient to measure the dependence degree between different evidence. Then, total discount coefficient is obtained based on the dependence degree, which also considers the impact of the reliability of evidence. Finally, the discount evidence fusion model is presented. An example is illustrated to show the use and effectiveness of the proposed method.

  20. Zero point and zero suffix methods with robust ranking for solving fully fuzzy transportation problems

    Science.gov (United States)

    Ngastiti, P. T. B.; Surarso, Bayu; Sutimin

    2018-05-01

    Transportation issue of the distribution problem such as the commodity or goods from the supply tothe demmand is to minimize the transportation costs. Fuzzy transportation problem is an issue in which the transport costs, supply and demand are in the form of fuzzy quantities. Inthe case study at CV. Bintang Anugerah Elektrik, a company engages in the manufacture of gensets that has more than one distributors. We use the methods of zero point and zero suffix to investigate the transportation minimum cost. In implementing both methods, we use robust ranking techniques for the defuzzification process. The studyresult show that the iteration of zero suffix method is less than that of zero point method.

  1. Lake and Reservoir Evaporation Estimation: Sensitivity Analysis and Ranking Existing Methods

    Directory of Open Access Journals (Sweden)

    maysam majidi

    2016-02-01

    were acquired from the Doosti Dam weather station. Relative humidity, wind speed, atmospheric pressure and precipitation were acquired from the Pol−Khatoon weather station. Dew point temperature and sunshine data were collected from the Sarakhs weather station. Lake area was estimated from hypsometric curve in relation to lake level data. Temperature measurements were often performed in 16−day periods or biweekly from September 2011 to September 2012. Temperature profile of the lake (required for lake evaporation estimation was measured at different points of the reservoir using a portable multi−meter. The eighteen existing methods were compared and ranked based on Bowen ratio energy balance method (BREB. Results and Discussion: The estimated annual evaporation values by all of the applied methods in this study, ranged from 21 to 113mcm (million cubic meters. BREB annual evaporation obtained value was equal to 69.86mcm and evaporation rate averaged 5.47mm d-1 during the study period. According to the results, there is a relatively large difference between the obtained evaporation values from the adopted methods. The sensitivity analysis of evaporation methods for some input parameters indicated that the Hamon method (Eq. 16 was the most sensitive to the input parameters followed by the Brutsaert−Stricker and BREB, and radiation−temperature methods (Makkink, Jensen−Haise and Stephen−Stewart had the least sensitivity to input data. Besides, the air temperature, solar radiation (sunshine data, water surface temperature and wind speed data had the most effect on lake evaporation estimations, respectively. Finally, all evaporation estimation methods in this study have been ranked based on RMSD values. On a daily basis, the Jensen−Haise and the Makkink (solar radiation, temperature group, Penman (Combination group and Hamon (temperature, day length group methods had a relatively reasonable performance. As the results on a monthly scale, the Jensen−Haise and

  2. A Direct Elliptic Solver Based on Hierarchically Low-Rank Schur Complements

    KAUST Repository

    Chávez, Gustavo

    2017-03-17

    A parallel fast direct solver for rank-compressible block tridiagonal linear systems is presented. Algorithmic synergies between Cyclic Reduction and Hierarchical matrix arithmetic operations result in a solver with O(Nlog2N) arithmetic complexity and O(NlogN) memory footprint. We provide a baseline for performance and applicability by comparing with well-known implementations of the $$\\\\mathcal{H}$$ -LU factorization and algebraic multigrid within a shared-memory parallel environment that leverages the concurrency features of the method. Numerical experiments reveal that this method is comparable with other fast direct solvers based on Hierarchical Matrices such as $$\\\\mathcal{H}$$ -LU and that it can tackle problems where algebraic multigrid fails to converge.

  3. Wilcoxon signed-rank-based technique for the pulse-shape analysis of HPGe detectors

    Science.gov (United States)

    Martín, S.; Quintana, B.; Barrientos, D.

    2016-07-01

    The characterization of the electric response of segmented-contact high-purity germanium detectors requires scanning systems capable of accurately associating each pulse with the position of the interaction that generated it. This process requires an algorithm sensitive to changes above the electronic noise in the pulse shapes produced at different positions, depending on the resolution of the Ge crystal. In this work, a pulse-shape comparison technique based on the Wilcoxon signed-rank test has been developed. It provides a method to distinguish pulses coming from different interaction points in the germanium crystal. Therefore, this technique is a necessary step for building a reliable pulse-shape database that can be used later for the determination of the position of interaction for γ-ray tracking spectrometry devices such as AGATA, GRETA or GERDA. The method was validated by comparison with a χ2 test using simulated and experimental pulses corresponding to a Broad Energy germanium detector (BEGe).

  4. Wilcoxon signed-rank-based technique for the pulse-shape analysis of HPGe detectors

    International Nuclear Information System (INIS)

    Martín, S.; Quintana, B.; Barrientos, D.

    2016-01-01

    The characterization of the electric response of segmented-contact high-purity germanium detectors requires scanning systems capable of accurately associating each pulse with the position of the interaction that generated it. This process requires an algorithm sensitive to changes above the electronic noise in the pulse shapes produced at different positions, depending on the resolution of the Ge crystal. In this work, a pulse-shape comparison technique based on the Wilcoxon signed-rank test has been developed. It provides a method to distinguish pulses coming from different interaction points in the germanium crystal. Therefore, this technique is a necessary step for building a reliable pulse-shape database that can be used later for the determination of the position of interaction for γ-ray tracking spectrometry devices such as AGATA, GRETA or GERDA. The method was validated by comparison with a χ"2 test using simulated and experimental pulses corresponding to a Broad Energy germanium detector (BEGe).

  5. Solving the Fully Fuzzy Bilevel Linear Programming Problem through Deviation Degree Measures and a Ranking Function Method

    Directory of Open Access Journals (Sweden)

    Aihong Ren

    2016-01-01

    Full Text Available This paper is concerned with a class of fully fuzzy bilevel linear programming problems where all the coefficients and decision variables of both objective functions and the constraints are fuzzy numbers. A new approach based on deviation degree measures and a ranking function method is proposed to solve these problems. We first introduce concepts of the feasible region and the fuzzy optimal solution of a fully fuzzy bilevel linear programming problem. In order to obtain a fuzzy optimal solution of the problem, we apply deviation degree measures to deal with the fuzzy constraints and use a ranking function method of fuzzy numbers to rank the upper and lower level fuzzy objective functions. Then the fully fuzzy bilevel linear programming problem can be transformed into a deterministic bilevel programming problem. Considering the overall balance between improving objective function values and decreasing allowed deviation degrees, the computational procedure for finding a fuzzy optimal solution is proposed. Finally, a numerical example is provided to illustrate the proposed approach. The results indicate that the proposed approach gives a better optimal solution in comparison with the existing method.

  6. Low rank approximation methods for MR fingerprinting with large scale dictionaries.

    Science.gov (United States)

    Yang, Mingrui; Ma, Dan; Jiang, Yun; Hamilton, Jesse; Seiberlich, Nicole; Griswold, Mark A; McGivney, Debra

    2018-04-01

    This work proposes new low rank approximation approaches with significant memory savings for large scale MR fingerprinting (MRF) problems. We introduce a compressed MRF with randomized singular value decomposition method to significantly reduce the memory requirement for calculating a low rank approximation of large sized MRF dictionaries. We further relax this requirement by exploiting the structures of MRF dictionaries in the randomized singular value decomposition space and fitting them to low-degree polynomials to generate high resolution MRF parameter maps. In vivo 1.5T and 3T brain scan data are used to validate the approaches. T 1 , T 2 , and off-resonance maps are in good agreement with that of the standard MRF approach. Moreover, the memory savings is up to 1000 times for the MRF-fast imaging with steady-state precession sequence and more than 15 times for the MRF-balanced, steady-state free precession sequence. The proposed compressed MRF with randomized singular value decomposition and dictionary fitting methods are memory efficient low rank approximation methods, which can benefit the usage of MRF in clinical settings. They also have great potentials in large scale MRF problems, such as problems considering multi-component MRF parameters or high resolution in the parameter space. Magn Reson Med 79:2392-2400, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Interior Point Method for Solving Fuzzy Number Linear Programming Problems Using Linear Ranking Function

    Directory of Open Access Journals (Sweden)

    Yi-hua Zhong

    2013-01-01

    Full Text Available Recently, various methods have been developed for solving linear programming problems with fuzzy number, such as simplex method and dual simplex method. But their computational complexities are exponential, which is not satisfactory for solving large-scale fuzzy linear programming problems, especially in the engineering field. A new method which can solve large-scale fuzzy number linear programming problems is presented in this paper, which is named a revised interior point method. Its idea is similar to that of interior point method used for solving linear programming problems in crisp environment before, but its feasible direction and step size are chosen by using trapezoidal fuzzy numbers, linear ranking function, fuzzy vector, and their operations, and its end condition is involved in linear ranking function. Their correctness and rationality are proved. Moreover, choice of the initial interior point and some factors influencing the results of this method are also discussed and analyzed. The result of algorithm analysis and example study that shows proper safety factor parameter, accuracy parameter, and initial interior point of this method may reduce iterations and they can be selected easily according to the actual needs. Finally, the method proposed in this paper is an alternative method for solving fuzzy number linear programming problems.

  8. Discovering urban mobility patterns with PageRank based traffic modeling and prediction

    Science.gov (United States)

    Wang, Minjie; Yang, Su; Sun, Yi; Gao, Jun

    2017-11-01

    Urban transportation system can be viewed as complex network with time-varying traffic flows as links to connect adjacent regions as networked nodes. By computing urban traffic evolution on such temporal complex network with PageRank, it is found that for most regions, there exists a linear relation between the traffic congestion measure at present time and the PageRank value of the last time. Since the PageRank measure of a region does result from the mutual interactions of the whole network, it implies that the traffic state of a local region does not evolve independently but is affected by the evolution of the whole network. As a result, the PageRank values can act as signatures in predicting upcoming traffic congestions. We observe the aforementioned laws experimentally based on the trajectory data of 12000 taxies in Beijing city for one month.

  9. Many-Objective Optimization Using Adaptive Differential Evolution with a New Ranking Method

    Directory of Open Access Journals (Sweden)

    Xiaoguang He

    2014-01-01

    Full Text Available Pareto dominance is an important concept and is usually used in multiobjective evolutionary algorithms (MOEAs to determine the nondominated solutions. However, for many-objective problems, using Pareto dominance to rank the solutions even in the early generation, most obtained solutions are often the nondominated solutions, which results in a little selection pressure of MOEAs toward the optimal solutions. In this paper, a new ranking method is proposed for many-objective optimization problems to verify a relatively smaller number of representative nondominated solutions with a uniform and wide distribution and improve the selection pressure of MOEAs. After that, a many-objective differential evolution with the new ranking method (MODER for handling many-objective optimization problems is designed. At last, the experiments are conducted and the proposed algorithm is compared with several well-known algorithms. The experimental results show that the proposed algorithm can guide the search to converge to the true PF and maintain the diversity of solutions for many-objective problems.

  10. A DYNAMIC FEATURE SELECTION METHOD FOR DOCUMENT RANKING WITH RELEVANCE FEEDBACK APPROACH

    Directory of Open Access Journals (Sweden)

    K. Latha

    2010-07-01

    Full Text Available Ranking search results is essential for information retrieval and Web search. Search engines need to not only return highly relevant results, but also be fast to satisfy users. As a result, not all available features can be used for ranking, and in fact only a small percentage of these features can be used. Thus, it is crucial to have a feature selection mechanism that can find a subset of features that both meets latency requirements and achieves high relevance. In this paper we describe a 0/1 knapsack procedure for automatically selecting features to use within Generalization model for Document Ranking. We propose an approach for Relevance Feedback using Expectation Maximization method and evaluate the algorithm on the TREC Collection for describing classes of feedback textual information retrieval features. Experimental results, evaluated on standard TREC-9 part of the OHSUMED collections, show that our feature selection algorithm produces models that are either significantly more effective than, or equally effective as, models such as Markov Random Field model, Correlation Co-efficient and Count Difference method

  11. Ranking of Prokaryotic Genomes Based on Maximization of Sortedness of Gene Lengths.

    Science.gov (United States)

    Bolshoy, A; Salih, B; Cohen, I; Tatarinova, T

    How variations of gene lengths (some genes become longer than their predecessors, while other genes become shorter and the sizes of these factions are randomly different from organism to organism) depend on organismal evolution and adaptation is still an open question. We propose to rank the genomes according to lengths of their genes, and then find association between the genome rank and variousproperties, such as growth temperature, nucleotide composition, and pathogenicity. This approach reveals evolutionary driving factors. The main purpose of this study is to test effectiveness and robustness of several ranking methods. The selected method of evaluation is measuring of overall sortedness of the data. We have demonstrated that all considered methods give consistent results and Bubble Sort and Simulated Annealing achieve the highest sortedness. Also, Bubble Sort is considerably faster than the Simulated Annealing method.

  12. Rank-defective millimeter-wave channel estimation based on subspace-compressive sensing

    Directory of Open Access Journals (Sweden)

    Majid Shakhsi Dastgahian

    2016-11-01

    Full Text Available Millimeter-wave communication (mmWC is considered as one of the pioneer candidates for 5G indoor and outdoor systems in E-band. To subdue the channel propagation characteristics in this band, high dimensional antenna arrays need to be deployed at both the base station (BS and mobile sets (MS. Unlike the conventional MIMO systems, Millimeter-wave (mmW systems lay away to employ the power predatory equipment such as ADC or RF chain in each branch of MIMO system because of hardware constraints. Such systems leverage to the hybrid precoding (combining architecture for downlink deployment. Because there is a large array at the transceiver, it is impossible to estimate the channel by conventional methods. This paper develops a new algorithm to estimate the mmW channel by exploiting the sparse nature of the channel. The main contribution is the representation of a sparse channel model and the exploitation of a modified approach based on Multiple Measurement Vector (MMV greedy sparse framework and subspace method of Multiple Signal Classification (MUSIC which work together to recover the indices of non-zero elements of an unknown channel matrix when the rank of the channel matrix is defected. In practical rank-defective channels, MUSIC fails, and we need to propose new extended MUSIC approaches based on subspace enhancement to compensate the limitation of MUSIC. Simulation results indicate that our proposed extended MUSIC algorithms will have proper performances and moderate computational speeds, and that they are even able to work in channels with an unknown sparsity level.

  13. A Rank-Constrained Matrix Representation for Hypergraph-Based Subspace Clustering

    Directory of Open Access Journals (Sweden)

    Yubao Sun

    2015-01-01

    Full Text Available This paper presents a novel, rank-constrained matrix representation combined with hypergraph spectral analysis to enable the recovery of the original subspace structures of corrupted data. Real-world data are frequently corrupted with both sparse error and noise. Our matrix decomposition model separates the low-rank, sparse error, and noise components from the data in order to enhance robustness to the corruption. In order to obtain the desired rank representation of the data within a dictionary, our model directly utilizes rank constraints by restricting the upper bound of the rank range. An alternative projection algorithm is proposed to estimate the low-rank representation and separate the sparse error from the data matrix. To further capture the complex relationship between data distributed in multiple subspaces, we use hypergraph to represent the data by encapsulating multiple related samples into one hyperedge. The final clustering result is obtained by spectral decomposition of the hypergraph Laplacian matrix. Validation experiments on the Extended Yale Face Database B, AR, and Hopkins 155 datasets show that the proposed method is a promising tool for subspace clustering.

  14. Low-rank Quasi-Newton updates for Robust Jacobian lagging in Newton methods

    International Nuclear Information System (INIS)

    Brown, J.; Brune, P.

    2013-01-01

    Newton-Krylov methods are standard tools for solving nonlinear problems. A common approach is to 'lag' the Jacobian when assembly or preconditioner setup is computationally expensive, in exchange for some degradation in the convergence rate and robustness. We show that this degradation may be partially mitigated by using the lagged Jacobian as an initial operator in a quasi-Newton method, which applies unassembled low-rank updates to the Jacobian until the next full reassembly. We demonstrate the effectiveness of this technique on problems in glaciology and elasticity. (authors)

  15. The ranking of scientists based on scientific publications assessment.

    Science.gov (United States)

    Zerem, Enver

    2017-11-01

    It is generally accepted that the scientific impact factor (Web of Science) and the total number of citations of the articles published in a journal, are the most relevant parameters of the journal's significance. However, the significance of scientists is much more complicated to establish and the value of their scientific production cannot be directly reflected by the importance of the journals in which their articles are published. Evaluating the significance of scientists' accomplishments involves more complicated metrics than just their publication records. Based on a long term of academic experience, the author proposes objective criteria to estimate the scientific merit of an individual's publication record. This metric can serve as a pragmatic tool and the nidus for discussion within the readership of this journal. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. A Similarity-Ranking Method on Semantic Computing for Providing Information-Services in Station-Concierge System

    Directory of Open Access Journals (Sweden)

    Motoki Yokoyama

    2017-07-01

    Full Text Available The prevalence of smartphones and wireless broadband networks have been progressing as a new Railway infomration environment. According to the spread of such devices and information technology, various types of information can be obtained from databases connected to the Internet. One scenario of obtaining such a wide variety of information resources is in the phase of user’s transportation. This paper proposes an information provision system, named the Station Concierge System that matches the situation and intention of passengers. The purpose of this system is to estimate the needs of passengers like station staff or hotel concierge and to provide information resources that satisfy user’s expectations dynamically. The most important module of the system is constructed based on a new information ranking method for passenger intention prediction and service recommendation. This method has three main features, which are (1 projecting a user to semantic vector space by using her current context, (2 predicting the intention of a user based on selecting a semantic vector subspace, and (3 ranking the services by a descending order of relevant scores to the user’ intention. By comparing the predicted results of our method with those of two straightforward computation methods, the experimental studies show the effectiveness and efficiency of the proposed method. Using this system, users can obtain transit information and service map that dynamically matches their context.

  17. Rank-Based miRNA Signatures for Early Cancer Detection

    Directory of Open Access Journals (Sweden)

    Mario Lauria

    2014-01-01

    Full Text Available We describe a new signature definition and analysis method to be used as biomarker for early cancer detection. Our new approach is based on the construction of a reference map of transcriptional signatures of both healthy and cancer affected individuals using circulating miRNA from a large number of subjects. Once such a map is available, the diagnosis for a new patient can be performed by observing the relative position on the map of his/her transcriptional signature. To demonstrate its efficacy for this specific application we report the results of the application of our method to published datasets of circulating miRNA, and we quantify its performance compared to current state-of-the-art methods. A number of additional features make this method an ideal candidate for large-scale use, for example, as a mass screening tool for early cancer detection or for at-home diagnostics. Specifically, our method is minimally invasive (because it works well with circulating miRNA, it is robust with respect to lab-to-lab protocol variability and batch effects (it requires that only the relative ranking of expression value of miRNA in a profile be accurate not their absolute values, and it is scalable to a large number of subjects. Finally we discuss the need for HPC capability in a widespread application of our or similar methods.

  18. Microseismic Event Relocation and Focal Mechanism Estimation Based on PageRank Linkage

    Science.gov (United States)

    Aguiar, A. C.; Myers, S. C.

    2017-12-01

    Microseismicity associated with enhanced geothermal systems (EGS) is key in understanding how subsurface stimulation can modify stress, fracture rock, and increase permeability. Large numbers of microseismic events are commonly associated with hydroshearing an EGS, making data mining methods useful in their analysis. We focus on PageRank, originally developed as Google's search engine, and subsequently adapted for use in seismology to detect low-frequency earthquakes by linking events directly and indirectly through cross-correlation (Aguiar and Beroza, 2014). We expand on this application by using PageRank to define signal-correlation topology for micro-earthquakes from the Newberry Volcano EGS in Central Oregon, which has been stimulated two times using high-pressure fluid injection. We create PageRank signal families from both data sets and compare these to the spatial and temporal proximity of associated earthquakes. PageRank families are relocated using differential travel times measured by waveform cross-correlation (CC) and the Bayesloc approach (Myers et al., 2007). Prior to relocation events are loosely clustered with events at a distance from the cluster. After relocation, event families are found to be tightly clustered. Indirect linkage of signals using PageRank is a reliable way to increase the number of events confidently determined to be similar, suggesting an efficient and effective grouping of earthquakes with similar physical characteristics (ie. location, focal mechanism, stress drop). We further explore the possibility of using PageRank families to identify events with similar relative phase polarities and estimate focal mechanisms following Shelly et al. (2016) method, where CC measurements are used to determine individual polarities within event clusters. Given a positive result, PageRank might be a useful tool in adaptive approaches to enhance production at well-instrumented geothermal sites. Prepared by LLNL under Contract DE-AC52-07NA27344

  19. Ranking Support Vector Machine with Kernel Approximation

    Directory of Open Access Journals (Sweden)

    Kai Chen

    2017-01-01

    Full Text Available Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels can give higher accuracy than linear RankSVM (RankSVM with a linear kernel for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.

  20. Ranking Support Vector Machine with Kernel Approximation.

    Science.gov (United States)

    Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi

    2017-01-01

    Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.

  1. Social norms and rank-based nudging: Changing willingness to pay for healthy food.

    Science.gov (United States)

    Aldrovandi, Silvio; Brown, Gordon D A; Wood, Alex M

    2015-09-01

    People's evaluations in the domain of healthy eating are at least partly determined by the choice context. We systematically test reference level and rank-based models of relative comparisons against each other and explore their application to social norms nudging, an intervention that aims at influencing consumers' behavior by addressing their inaccurate beliefs about their consumption relative to the consumption of others. Study 1 finds that the rank of a product or behavior among others in the immediate comparison context, rather than its objective attributes, influences its evaluation. Study 2 finds that when a comparator is presented in isolation the same rank-based process occurs based on information retrieved from memory. Study 3 finds that telling people how their consumption ranks within a normative comparison sample increases willingness to pay for a healthy food by over 30% relative to the normal social norms intervention that tells them how they compare to the average. We conclude that social norms interventions should present rank information (e.g., "you are in the most unhealthy 10% of eaters") rather than information relative to the average (e.g., "you consume 500 calories more than the average person"). (c) 2015 APA, all rights reserved).

  2. Dose-volume based ranking of incident beam direction and its utility in facilitating IMRT beam placement

    International Nuclear Information System (INIS)

    Schreibmann, Eduard; Xing Lei

    2005-01-01

    Purpose: Beam orientation optimization in intensity-modulated radiation therapy (IMRT) is computationally intensive, and various single beam ranking techniques have been proposed to reduce the search space. Up to this point, none of the existing ranking techniques considers the clinically important dose-volume effects of the involved structures, which may lead to clinically irrelevant angular ranking. The purpose of this work is to develop a clinically sensible angular ranking model with incorporation of dose-volume effects and to show its utility for IMRT beam placement. Methods and Materials: The general consideration in constructing this angular ranking function is that a beamlet/beam is preferable if it can deliver a higher dose to the target without exceeding the tolerance of the sensitive structures located on the path of the beamlet/beam. In the previously proposed dose-based approach, the beamlets are treated independently and, to compute the maximally deliverable dose to the target volume, the intensity of each beamlet is pushed to its maximum intensity without considering the values of other beamlets. When volumetric structures are involved, the complication arises from the fact that there are numerous dose distributions corresponding to the same dose-volume tolerance. In this situation, the beamlets are not independent and an optimization algorithm is required to find the intensity profile that delivers the maximum target dose while satisfying the volumetric constraints. In this study, the behavior of a volumetric organ was modeled by using the equivalent uniform dose (EUD). A constrained sequential quadratic programming algorithm (CFSQP) was used to find the beam profile that delivers the maximum dose to the target volume without violating the EUD constraint or constraints. To assess the utility of the proposed technique, we planned a head-and-neck and abdominal case with and without the guidance of the angular ranking information. The qualities of the

  3. New public management based on rankings: From plann ing to evaluation

    Directory of Open Access Journals (Sweden)

    Andrés Valdez Zepeda

    2017-11-01

    Full Text Available This article focuses on the emergence and development of a new trend of public affairs and global government management known as ranking-based management. This type of management process is the result of performance measurement usually conducted by an external agent or prestigious institution, which generally uses a methodology based on indicators and audits. It also evaluates the results, achievements and progress in governance, which it ranks on a list on which they are compared against other comparable governments. As a global trend, supported by management rankings this process is not seen as an option, but as a real requirement for public agencies and government, which not only helps them in the process of continuous improvement, but also creates important incentives such as prestige, social recognition, construction and better branding.

  4. A rank-based sequence aligner with applications in phylogenetic analysis.

    Directory of Open Access Journals (Sweden)

    Liviu P Dinu

    Full Text Available Recent tools for aligning short DNA reads have been designed to optimize the trade-off between correctness and speed. This paper introduces a method for assigning a set of short DNA reads to a reference genome, under Local Rank Distance (LRD. The rank-based aligner proposed in this work aims to improve correctness over speed. However, some indexing strategies to speed up the aligner are also investigated. The LRD aligner is improved in terms of speed by storing [Formula: see text]-mer positions in a hash table for each read. Another improvement, that produces an approximate LRD aligner, is to consider only the positions in the reference that are likely to represent a good positional match of the read. The proposed aligner is evaluated and compared to other state of the art alignment tools in several experiments. A set of experiments are conducted to determine the precision and the recall of the proposed aligner, in the presence of contaminated reads. In another set of experiments, the proposed aligner is used to find the order, the family, or the species of a new (or unknown organism, given only a set of short Next-Generation Sequencing DNA reads. The empirical results show that the aligner proposed in this work is highly accurate from a biological point of view. Compared to the other evaluated tools, the LRD aligner has the important advantage of being very accurate even for a very low base coverage. Thus, the LRD aligner can be considered as a good alternative to standard alignment tools, especially when the accuracy of the aligner is of high importance. Source code and UNIX binaries of the aligner are freely available for future development and use at http://lrd.herokuapp.com/aligners. The software is implemented in C++ and Java, being supported on UNIX and MS Windows.

  5. An Efficient Normalized Rank Based SVM for Room Level Indoor WiFi Localization with Diverse Devices

    Directory of Open Access Journals (Sweden)

    Yasmine Rezgui

    2017-01-01

    Full Text Available This paper proposes an efficient and effective WiFi fingerprinting-based indoor localization algorithm, which uses the Received Signal Strength Indicator (RSSI of WiFi signals. In practical harsh indoor environments, RSSI variation and hardware variance can significantly degrade the performance of fingerprinting-based localization methods. To address the problem of hardware variance and signal fluctuation in WiFi fingerprinting-based localization, we propose a novel normalized rank based Support Vector Machine classifier (NR-SVM. Moving from RSSI value based analysis to the normalized rank transformation based analysis, the principal features are prioritized and the dimensionalities of signature vectors are taken into account. The proposed method has been tested using sixteen different devices in a shopping mall with 88 shops. The experimental results demonstrate its robustness with no less than 98.75% correct estimation in 93.75% of the tested cases and 100% correct rate in 56.25% of cases. In the experiments, the new method shows better performance over the KNN, Naïve Bayes, Random Forest, and Neural Network algorithms. Furthermore, we have compared the proposed approach with three popular calibration-free transformation based methods, including difference method (DIFF, Signal Strength Difference (SSD, and the Hyperbolic Location Fingerprinting (HLF based SVM. The results show that the NR-SVM outperforms these popular methods.

  6. PageRank-based identification of signaling crosstalk from transcriptomics data: the case of Arabidopsis thaliana.

    Science.gov (United States)

    Omranian, Nooshin; Mueller-Roeber, Bernd; Nikoloski, Zoran

    2012-04-01

    The levels of cellular organization, from gene transcription to translation to protein-protein interaction and metabolism, operate via tightly regulated mutual interactions, facilitating organismal adaptability and various stress responses. Characterizing the mutual interactions between genes, transcription factors, and proteins involved in signaling, termed crosstalk, is therefore crucial for understanding and controlling cells' functionality. We aim at using high-throughput transcriptomics data to discover previously unknown links between signaling networks. We propose and analyze a novel method for crosstalk identification which relies on transcriptomics data and overcomes the lack of complete information for signaling pathways in Arabidopsis thaliana. Our method first employs a network-based transformation of the results from the statistical analysis of differential gene expression in given groups of experiments under different signal-inducing conditions. The stationary distribution of a random walk (similar to the PageRank algorithm) on the constructed network is then used to determine the putative transcripts interrelating different signaling pathways. With the help of the proposed method, we analyze a transcriptomics data set including experiments from four different stresses/signals: nitrate, sulfur, iron, and hormones. We identified promising gene candidates, downstream of the transcription factors (TFs), associated to signaling crosstalk, which were validated through literature mining. In addition, we conduct a comparative analysis with the only other available method in this field which used a biclustering-based approach. Surprisingly, the biclustering-based approach fails to robustly identify any candidate genes involved in the crosstalk of the analyzed signals. We demonstrate that our proposed method is more robust in identifying gene candidates involved downstream of the signaling crosstalk for species for which large transcriptomics data sets

  7. Efficient File Sharing by Multicast - P2P Protocol Using Network Coding and Rank Based Peer Selection

    Science.gov (United States)

    Stoenescu, Tudor M.; Woo, Simon S.

    2009-01-01

    In this work, we consider information dissemination and sharing in a distributed peer-to-peer (P2P highly dynamic communication network. In particular, we explore a network coding technique for transmission and a rank based peer selection method for network formation. The combined approach has been shown to improve information sharing and delivery to all users when considering the challenges imposed by the space network environments.

  8. Web-based tool for subjective observer ranking of compressed medical images

    Science.gov (United States)

    Langer, Steven G.; Stewart, Brent K.; Andrew, Rex K.

    1999-05-01

    In the course of evaluating various compression schemes for ultrasound teleradiology applications, it became obvious that paper based methods of data collection were time consuming and error prone. A method was sought which allowed participating radiologists to view the ultrasound video clips (compressed to varying degree) at their desks. Furthermore, the method should allow observers to enter their evaluations and when finished, automatically submit the data to our statistical analysis engine. We have found the World Wide Web offered a ready solution. A web page was constructed that contains 18 embedded AVI video clips. The 18 clips represent 6 distinct anatomical areas, compressed by various methods and amounts, and then randomly distributed through the web page. To the right of each video, a series of questions are presented which ask the observer to rank (1 - 5) his/her ability to answer diagnostically relevant questions. When completed, the observer presses 'Submit' and a file of tab delimited test is created which can then be imported to an Excel workbook. Kappa analysis is then performed and the resulting plots demonstrate observer preferences.

  9. An improved rank based disease prediction using web navigation patterns on bio-medical databases

    Directory of Open Access Journals (Sweden)

    P. Dhanalakshmi

    2017-12-01

    Full Text Available Applying machine learning techniques to on-line biomedical databases is a challenging task, as this data is collected from large number of sources and it is multi-dimensional. Also retrieval of relevant document from large repository such as gene document takes more processing time and an increased false positive rate. Generally, the extraction of biomedical document is based on the stream of prior observations of gene parameters taken at different time periods. Traditional web usage models such as Markov, Bayesian and Clustering models are sensitive to analyze the user navigation patterns and session identification in online biomedical database. Moreover, most of the document ranking models on biomedical database are sensitive to sparsity and outliers. In this paper, a novel user recommendation system was implemented to predict the top ranked biomedical documents using the disease type, gene entities and user navigation patterns. In this recommendation system, dynamic session identification, dynamic user identification and document ranking techniques were used to extract the highly relevant disease documents on the online PubMed repository. To verify the performance of the proposed model, the true positive rate and runtime of the model was compared with that of traditional static models such as Bayesian and Fuzzy rank. Experimental results show that the performance of the proposed ranking model is better than the traditional models.

  10. DEA ranking of municipalities of the Republic of Serbia based on efficiency of SMEs in agribusiness

    Directory of Open Access Journals (Sweden)

    Maletić Radojka

    2015-01-01

    Full Text Available The most important aspect of any business is efficiency. The goal is to achieve a greater output results using less inputs, i.e. to maximize the use of available inputs. Numerous mathematical and statistical procedures, such as DEA technique (Data Envelopment Analysis, take an important place in the process of the effective management of the company and its business activities. This paper illustrated the application of DEA technique in assessing the business efficiency of SMEs in agribusiness in Vojvodina Measuring the efficiency of business operations of SMEs is based on the values of the following indicators: fixed assets, working capital, number of companies, number of employees, total income, profit and loss. The data used to calculate the values of indicators of business efficiency were obtained from the Statistical Office of the Republic of Serbia, based on the annual accounts of SMEs in agribusiness for four-year average (2008-2011. The aim of this paper is statistical assessment of business efficiency of SMEs in agribusiness using DEA technique, and then, based on the results obtained, to perform the ranking of Vojvodina municipalities in which observed SMEs were located, and finally, based on 4 models, to show sensitivity of DEA technique compared to different combination of input / output indicators, so therefore, caution is needed when this method is used. If the combination of parameters in the model is better, the results are more realistic, since if a key parameter is omitted, wrong decisions could be made.

  11. Fast Multipole Method as a Matrix-Free Hierarchical Low-Rank Approximation

    KAUST Repository

    Yokota, Rio

    2018-01-03

    There has been a large increase in the amount of work on hierarchical low-rank approximation methods, where the interest is shared by multiple communities that previously did not intersect. This objective of this article is two-fold; to provide a thorough review of the recent advancements in this field from both analytical and algebraic perspectives, and to present a comparative benchmark of two highly optimized implementations of contrasting methods for some simple yet representative test cases. The first half of this paper has the form of a survey paper, to achieve the former objective. We categorize the recent advances in this field from the perspective of compute-memory tradeoff, which has not been considered in much detail in this area. Benchmark tests reveal that there is a large difference in the memory consumption and performance between the different methods.

  12. Low rank approximation method for efficient Green's function calculation of dissipative quantum transport

    Science.gov (United States)

    Zeng, Lang; He, Yu; Povolotskyi, Michael; Liu, XiaoYan; Klimeck, Gerhard; Kubis, Tillmann

    2013-06-01

    In this work, the low rank approximation concept is extended to the non-equilibrium Green's function (NEGF) method to achieve a very efficient approximated algorithm for coherent and incoherent electron transport. This new method is applied to inelastic transport in various semiconductor nanodevices. Detailed benchmarks with exact NEGF solutions show (1) a very good agreement between approximated and exact NEGF results, (2) a significant reduction of the required memory, and (3) a large reduction of the computational time (a factor of speed up as high as 150 times is observed). A non-recursive solution of the inelastic NEGF transport equations of a 1000 nm long resistor on standard hardware illustrates nicely the capability of this new method.

  13. Fast Multipole Method as a Matrix-Free Hierarchical Low-Rank Approximation

    KAUST Repository

    Yokota, Rio; Ibeid, Huda; Keyes, David E.

    2018-01-01

    There has been a large increase in the amount of work on hierarchical low-rank approximation methods, where the interest is shared by multiple communities that previously did not intersect. This objective of this article is two-fold; to provide a thorough review of the recent advancements in this field from both analytical and algebraic perspectives, and to present a comparative benchmark of two highly optimized implementations of contrasting methods for some simple yet representative test cases. The first half of this paper has the form of a survey paper, to achieve the former objective. We categorize the recent advances in this field from the perspective of compute-memory tradeoff, which has not been considered in much detail in this area. Benchmark tests reveal that there is a large difference in the memory consumption and performance between the different methods.

  14. Empirical Bayes ranking and selection methods via semiparametric hierarchical mixture models in microarray studies.

    Science.gov (United States)

    Noma, Hisashi; Matsui, Shigeyuki

    2013-05-20

    The main purpose of microarray studies is screening of differentially expressed genes as candidates for further investigation. Because of limited resources in this stage, prioritizing genes are relevant statistical tasks in microarray studies. For effective gene selections, parametric empirical Bayes methods for ranking and selection of genes with largest effect sizes have been proposed (Noma et al., 2010; Biostatistics 11: 281-289). The hierarchical mixture model incorporates the differential and non-differential components and allows information borrowing across differential genes with separation from nuisance, non-differential genes. In this article, we develop empirical Bayes ranking methods via a semiparametric hierarchical mixture model. A nonparametric prior distribution, rather than parametric prior distributions, for effect sizes is specified and estimated using the "smoothing by roughening" approach of Laird and Louis (1991; Computational statistics and data analysis 12: 27-37). We present applications to childhood and infant leukemia clinical studies with microarrays for exploring genes related to prognosis or disease progression. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Superstring motivated gauge models based on a rank six subgroup of E6

    International Nuclear Information System (INIS)

    Lazarides, G.; Panagiotakopoulos, C.; Shafi, Q.

    1987-01-01

    We discuss gauge models based on a superstring motivated rank six subgroup of E 6 . Lepton number is an accidental unbroken symmetry of the models which leads to an essential stable proton. One of the neutral gauge bosons couples to B-L and may have mass below a TeV. (orig.)

  16. A new method for comparing rankings through complex networks: Model and analysis of competitiveness of major European soccer leagues

    Science.gov (United States)

    Criado, Regino; García, Esther; Pedroche, Francisco; Romance, Miguel

    2013-12-01

    In this paper, we show a new technique to analyze families of rankings. In particular, we focus on sports rankings and, more precisely, on soccer leagues. We consider that two teams compete when they change their relative positions in consecutive rankings. This allows to define a graph by linking teams that compete. We show how to use some structural properties of this competitivity graph to measure to what extend the teams in a league compete. These structural properties are the mean degree, the mean strength, and the clustering coefficient. We give a generalization of the Kendall's correlation coefficient to more than two rankings. We also show how to make a dynamic analysis of a league and how to compare different leagues. We apply this technique to analyze the four major European soccer leagues: Bundesliga, Italian Lega, Spanish Liga, and Premier League. We compare our results with the classical analysis of sport ranking based on measures of competitive balance.

  17. Rank-based permutation approaches for non-parametric factorial designs.

    Science.gov (United States)

    Umlauft, Maria; Konietschke, Frank; Pauly, Markus

    2017-11-01

    Inference methods for null hypotheses formulated in terms of distribution functions in general non-parametric factorial designs are studied. The methods can be applied to continuous, ordinal or even ordered categorical data in a unified way, and are based only on ranks. In this set-up Wald-type statistics and ANOVA-type statistics are the current state of the art. The first method is asymptotically exact but a rather liberal statistical testing procedure for small to moderate sample size, while the latter is only an approximation which does not possess the correct asymptotic α level under the null. To bridge these gaps, a novel permutation approach is proposed which can be seen as a flexible generalization of the Kruskal-Wallis test to all kinds of factorial designs with independent observations. It is proven that the permutation principle is asymptotically correct while keeping its finite exactness property when data are exchangeable. The results of extensive simulation studies foster these theoretical findings. A real data set exemplifies its applicability. © 2017 The British Psychological Society.

  18. Scheduling for Multiuser MIMO Downlink Channels with Ranking-Based Feedback

    Science.gov (United States)

    Kountouris, Marios; Sälzer, Thomas; Gesbert, David

    2008-12-01

    We consider a multi-antenna broadcast channel with more single-antenna receivers than transmit antennas and partial channel state information at the transmitter (CSIT). We propose a novel type of CSIT representation for the purpose of user selection, coined as ranking-based feedback. Each user calculates and feeds back the rank, an integer between 1 and W + 1, of its instantaneous channel quality information (CQI) among a set of W past CQI measurements. Apart from reducing significantly the required feedback load, ranking-based feedback enables the transmitter to select users that are on the highest peak (quantile) with respect to their own channel distribution, independently of the distribution of other users. It can also be shown that this feedback metric can restore temporal fairness in heterogeneous networks, in which users' channels are not identically distributed and mobile terminals experience different average signal-to-noise ratio (SNR). The performance of a system that performs user selection using ranking-based CSIT in the context of random opportunistic beamforming is analyzed, and we provide design guidelines on the number of required past CSIT samples and the impact of finite W on average throughput. Simulation results show that feedback reduction of order of 40-50% can be achieved with negligible decrease in system throughput.

  19. Ranking system for national regulatory jurisdictions based on pesticide standard values in major exposures

    Directory of Open Access Journals (Sweden)

    Zijian Li

    2017-07-01

    Full Text Available To control the risk of human exposure to pesticides, about 50 nations have promulgated pesticide soil regulatory guidance values (RGVs, and 104 nations have provided pesticide drinking water maximum concentration levels (MCLs. In addition, 90 nations have regulated pesticide agricultural commodity maximum residue limits (MRLs. Pesticide standard values (PSVs for one single pesticide varied in a range of six, seven, or even eight orders of magnitude. Some PSVs are too large to prevent the impact of pesticides on human health. Many nations have not provided PSVs for some commonly used pesticides until now. This research has introduced several completeness values and numerical values methods to evaluate the national jurisdiction’s performance on PSVs on a nation base. The national jurisdiction ranking system developed by these methods will be beneficial to the environmental regulation makers in the management of PSVs. Results also indicate that European countries perform better in the regulation of pesticide soil RGVs, drinking water MCLs, and agricultural commodity MRLs.

  20. Wilcoxon signed-rank-based technique for the pulse-shape analysis of HPGe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Martín, S., E-mail: sergiomr@usal.es; Quintana, B.; Barrientos, D.

    2016-07-01

    The characterization of the electric response of segmented-contact high-purity germanium detectors requires scanning systems capable of accurately associating each pulse with the position of the interaction that generated it. This process requires an algorithm sensitive to changes above the electronic noise in the pulse shapes produced at different positions, depending on the resolution of the Ge crystal. In this work, a pulse-shape comparison technique based on the Wilcoxon signed-rank test has been developed. It provides a method to distinguish pulses coming from different interaction points in the germanium crystal. Therefore, this technique is a necessary step for building a reliable pulse-shape database that can be used later for the determination of the position of interaction for γ-ray tracking spectrometry devices such as AGATA, GRETA or GERDA. The method was validated by comparison with a χ{sup 2} test using simulated and experimental pulses corresponding to a Broad Energy germanium detector (BEGe).

  1. Strategic Entrepreneurship Based Model of Catch-up University in Global Rankings

    Directory of Open Access Journals (Sweden)

    Kozlov Mikhail

    2016-01-01

    Full Text Available The paper will help answer the question, why only few universities managed to succeed significantly in their global ranking advancement, while most of their competitors fail. For this purpose it will introduce a new strategically entrepreneurial catch-up university framework, based on the combination of the resource based view, dynamic capabilities, strategic entrepreneurship and latecomer organization concepts. The new framework logics explains the advantages of being ambidextrous for ranking oriented universities and pursuing new potentially more favorable opportunities for research development. It will propose that substantial increase in the level of dynamic capabilities of the universities and their resource base accumulation is based on the use of the new combination of financial, human and social capital combined with strategic management of these resources in the process of identification and exploitation of greater opportunities.

  2. Enhancement of dynamic myocardial perfusion PET images based on low-rank plus sparse decomposition.

    Science.gov (United States)

    Lu, Lijun; Ma, Xiaomian; Mohy-Ud-Din, Hassan; Ma, Jianhua; Feng, Qianjin; Rahmim, Arman; Chen, Wufan

    2018-02-01

    The absolute quantification of dynamic myocardial perfusion (MP) PET imaging is challenged by the limited spatial resolution of individual frame images due to division of the data into shorter frames. This study aims to develop a method for restoration and enhancement of dynamic PET images. We propose that the image restoration model should be based on multiple constraints rather than a single constraint, given the fact that the image characteristic is hardly described by a single constraint alone. At the same time, it may be possible, but not optimal, to regularize the image with multiple constraints simultaneously. Fortunately, MP PET images can be decomposed into a superposition of background vs. dynamic components via low-rank plus sparse (L + S) decomposition. Thus, we propose an L + S decomposition based MP PET image restoration model and express it as a convex optimization problem. An iterative soft thresholding algorithm was developed to solve the problem. Using realistic dynamic 82 Rb MP PET scan data, we optimized and compared its performance with other restoration methods. The proposed method resulted in substantial visual as well as quantitative accuracy improvements in terms of noise versus bias performance, as demonstrated in extensive 82 Rb MP PET simulations. In particular, the myocardium defect in the MP PET images had improved visual as well as contrast versus noise tradeoff. The proposed algorithm was also applied on an 8-min clinical cardiac 82 Rb MP PET study performed on the GE Discovery PET/CT, and demonstrated improved quantitative accuracy (CNR and SNR) compared to other algorithms. The proposed method is effective for restoration and enhancement of dynamic PET images. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Efficient Multi-keyword Ranked Search over Outsourced Cloud Data based on Homomorphic Encryption

    Directory of Open Access Journals (Sweden)

    Nie Mengxi

    2016-01-01

    Full Text Available With the development of cloud computing, more and more data owners are motivated to outsource their data to the cloud server for great flexibility and less saving expenditure. Because the security of outsourced data must be guaranteed, some encryption methods should be used which obsoletes traditional data utilization based on plaintext, e.g. keyword search. To solve the search of encrypted data, some schemes were proposed to solve the search of encrypted data, e.g. top-k single or multiple keywords retrieval. However, the efficiency of these proposed schemes is not high enough to be impractical in the cloud computing. In this paper, we propose a new scheme based on homomorphic encryption to solve this challenging problem of privacy-preserving efficient multi-keyword ranked search over outsourced cloud data. In our scheme, the inner product is adopted to measure the relevance scores and the technique of relevance feedback is used to reflect the search preference of the data users. Security analysis shows that the proposed scheme can meet strict privacy requirements for such a secure cloud data utilization system. Performance evaluation demonstrates that the proposed scheme can achieve low overhead on both computation and communication.

  4. A heuristic ranking approach on capacity benefit margin determination using Pareto-based evolutionary programming technique.

    Science.gov (United States)

    Othman, Muhammad Murtadha; Abd Rahman, Nurulazmi; Musirin, Ismail; Fotuhi-Firuzabad, Mahmud; Rajabi-Ghahnavieh, Abbas

    2015-01-01

    This paper introduces a novel multiobjective approach for capacity benefit margin (CBM) assessment taking into account tie-line reliability of interconnected systems. CBM is the imperative information utilized as a reference by the load-serving entities (LSE) to estimate a certain margin of transfer capability so that a reliable access to generation through interconnected system could be attained. A new Pareto-based evolutionary programming (EP) technique is used to perform a simultaneous determination of CBM for all areas of the interconnected system. The selection of CBM at the Pareto optimal front is proposed to be performed by referring to a heuristic ranking index that takes into account system loss of load expectation (LOLE) in various conditions. Eventually, the power transfer based available transfer capability (ATC) is determined by considering the firm and nonfirm transfers of CBM. A comprehensive set of numerical studies are conducted on the modified IEEE-RTS79 and the performance of the proposed method is numerically investigated in detail. The main advantage of the proposed technique is in terms of flexibility offered to an independent system operator in selecting an appropriate solution of CBM simultaneously for all areas.

  5. A Heuristic Ranking Approach on Capacity Benefit Margin Determination Using Pareto-Based Evolutionary Programming Technique

    Directory of Open Access Journals (Sweden)

    Muhammad Murtadha Othman

    2015-01-01

    Full Text Available This paper introduces a novel multiobjective approach for capacity benefit margin (CBM assessment taking into account tie-line reliability of interconnected systems. CBM is the imperative information utilized as a reference by the load-serving entities (LSE to estimate a certain margin of transfer capability so that a reliable access to generation through interconnected system could be attained. A new Pareto-based evolutionary programming (EP technique is used to perform a simultaneous determination of CBM for all areas of the interconnected system. The selection of CBM at the Pareto optimal front is proposed to be performed by referring to a heuristic ranking index that takes into account system loss of load expectation (LOLE in various conditions. Eventually, the power transfer based available transfer capability (ATC is determined by considering the firm and nonfirm transfers of CBM. A comprehensive set of numerical studies are conducted on the modified IEEE-RTS79 and the performance of the proposed method is numerically investigated in detail. The main advantage of the proposed technique is in terms of flexibility offered to an independent system operator in selecting an appropriate solution of CBM simultaneously for all areas.

  6. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Lithner, Delilah, E-mail: delilah.lithner@gmail.com; Larsson, Ake; Dave, Goeran

    2011-08-15

    Plastics constitute a large material group with a global annual production that has doubled in 15 years (245 million tonnes in 2008). Plastics are present everywhere in society and the environment, especially the marine environment, where large amounts of plastic waste accumulate. The knowledge of human and environmental hazards and risks from chemicals associated with the diversity of plastic products is very limited. Most chemicals used for producing plastic polymers are derived from non-renewable crude oil, and several are hazardous. These may be released during the production, use and disposal of the plastic product. In this study the environmental and health hazards of chemicals used in 55 thermoplastic and thermosetting polymers were identified and compiled. A hazard ranking model was developed for the hazard classes and categories in the EU classification and labelling (CLP) regulation which is based on the UN Globally Harmonized System. The polymers were ranked based on monomer hazard classifications, and initial assessments were made. The polymers that ranked as most hazardous are made of monomers classified as mutagenic and/or carcinogenic (category 1A or 1B). These belong to the polymer families of polyurethanes, polyacrylonitriles, polyvinyl chloride, epoxy resins, and styrenic copolymers. All have a large global annual production (1-37 million tonnes). A considerable number of polymers (31 out of 55) are made of monomers that belong to the two worst of the ranking model's five hazard levels, i.e. levels IV-V. The polymers that are made of level IV monomers and have a large global annual production (1-5 million tonnes) are phenol formaldehyde resins, unsaturated polyesters, polycarbonate, polymethyl methacrylate, and urea-formaldehyde resins. This study has identified hazardous substances used in polymer production for which the risks should be evaluated for decisions on the need for risk reduction measures, substitution, or even phase out

  7. Ranking multiple docking solutions based on the conservation of inter-residue contacts

    KAUST Repository

    Oliva, Romina M.

    2013-06-17

    Molecular docking is the method of choice for investigating the molecular basis of recognition in a large number of functional protein complexes. However, correctly scoring the obtained docking solutions (decoys) to rank native-like (NL) conformations in the top positions is still an open problem. Herein we present CONSRANK, a simple and effective tool to rank multiple docking solutions, which relies on the conservation of inter-residue contacts in the analyzed decoys ensemble. First it calculates a conservation rate for each inter-residue contact, then it ranks decoys according to their ability to match the more frequently observed contacts. We applied CONSRANK to 102 targets from three different benchmarks, RosettaDock, DOCKGROUND, and Critical Assessment of PRedicted Interactions (CAPRI). The method performs consistently well, both in terms of NL solutions ranked in the top positions and of values of the area under the receiver operating characteristic curve. Its ideal application is to solutions coming from different docking programs and procedures, as in the case of CAPRI targets. For all the analyzed CAPRI targets where a comparison is feasible, CONSRANK outperforms the CAPRI scorers. The fraction of NL solutions in the top ten positions in the RosettaDock, DOCKGROUND, and CAPRI benchmarks is enriched on average by a factor of 3.0, 1.9, and 9.9, respectively. Interestingly, CONSRANK is also able to specifically single out the high/medium quality (HMQ) solutions from the docking decoys ensemble: it ranks 46.2 and 70.8% of the total HMQ solutions available for the RosettaDock and CAPRI targets, respectively, within the top 20 positions. © 2013 Wiley Periodicals, Inc.

  8. Use of rank sum method in identifying high occupational dose jobs for ALARA implementation

    International Nuclear Information System (INIS)

    Cho, Yeong Ho; Kang, Chang Sun

    1998-01-01

    The cost-effective reduction of occupational radiation exposure (ORE) dose at a nuclear power plant could not be achieved without going through an extensive analysis of accumulated ORE dose data of existing plants. It is necessary to identify what are high ORE jobs for ALARA implementation. In this study, the Rank Sum Method (RSM) is used in identifying high ORE jobs. As a case study, the database of ORE-related maintenance and repair jobs for Kori Units 3 and 4 is used for assessment, and top twenty high ORE jobs are identified. The results are also verified and validated using the Friedman test, and RSM is found to be a very efficient way of analyzing the data. (author)

  9. A rank-based algorithm of differential expression analysis for small cell line data with statistical control.

    Science.gov (United States)

    Li, Xiangyu; Cai, Hao; Wang, Xianlong; Ao, Lu; Guo, You; He, Jun; Gu, Yunyan; Qi, Lishuang; Guan, Qingzhou; Lin, Xu; Guo, Zheng

    2017-10-13

    To detect differentially expressed genes (DEGs) in small-scale cell line experiments, usually with only two or three technical replicates for each state, the commonly used statistical methods such as significance analysis of microarrays (SAM), limma and RankProd (RP) lack statistical power, while the fold change method lacks any statistical control. In this study, we demonstrated that the within-sample relative expression orderings (REOs) of gene pairs were highly stable among technical replicates of a cell line but often widely disrupted after certain treatments such like gene knockdown, gene transfection and drug treatment. Based on this finding, we customized the RankComp algorithm, previously designed for individualized differential expression analysis through REO comparison, to identify DEGs with certain statistical control for small-scale cell line data. In both simulated and real data, the new algorithm, named CellComp, exhibited high precision with much higher sensitivity than the original RankComp, SAM, limma and RP methods. Therefore, CellComp provides an efficient tool for analyzing small-scale cell line data. © The Author 2017. Published by Oxford University Press.

  10. Evaluation of image reconstruction methods for 123I-MIBG-SPECT. A rank-order study

    International Nuclear Information System (INIS)

    Soederberg, Marcus; Mattsson, Soeren; Oddstig, Jenny; Uusijaervi-Lizana, Helena; Leide-Svegborn, Sigrid; Valind, Sven; Thorsson, Ola; Garpered, Sabine; Prautzsch, Tilmann; Tischenko, Oleg

    2012-01-01

    Background: There is an opportunity to improve the image quality and lesion detectability in single photon emission computed tomography (SPECT) by choosing an appropriate reconstruction method and optimal parameters for the reconstruction. Purpose: To optimize the use of the Flash 3D reconstruction algorithm in terms of equivalent iteration (EI) number (number of subsets times the number of iterations) and to compare with two recently developed reconstruction algorithms ReSPECT and orthogonal polynomial expansion on disc (OPED) for application on 123 I-metaiodobenzylguanidine (MIBG)-SPECT. Material and Methods: Eleven adult patients underwent SPECT 4 h and 14 patients 24 h after injection of approximately 200 MBq 123 I-MIBG using a Siemens Symbia T6 SPECT/CT. Images were reconstructed from raw data using the Flash 3D algorithm at eight different EI numbers. The images were ranked by three experienced nuclear medicine physicians according to their overall impression of the image quality. The obtained optimal images were then compared in one further visual comparison with images reconstructed using the ReSPECT and OPED algorithms. Results: The optimal EI number for Flash 3D was determined to be 32 for acquisition 4 h and 24 h after injection. The average rank order (best first) for the different reconstructions for acquisition after 4 h was: Flash 3D 32 > ReSPECT > Flash 3D 64 > OPED, and after 24 h: Flash 3D 16 > ReSPECT > Flash 3D 32 > OPED. A fair level of inter-observer agreement concerning optimal EI number and reconstruction algorithm was obtained, which may be explained by the different individual preferences of what is appropriate image quality. Conclusion: Using Siemens Symbia T6 SPECT/CT and specified acquisition parameters, Flash 3D 32 (4 h) and Flash 3D 16 (24 h), followed by ReSPECT, were assessed to be the preferable reconstruction algorithms in visual assessment of 123 I-MIBG images

  11. A multimedia retrieval framework based on semi-supervised ranking and relevance feedback.

    Science.gov (United States)

    Yang, Yi; Nie, Feiping; Xu, Dong; Luo, Jiebo; Zhuang, Yueting; Pan, Yunhe

    2012-04-01

    We present a new framework for multimedia content analysis and retrieval which consists of two independent algorithms. First, we propose a new semi-supervised algorithm called ranking with Local Regression and Global Alignment (LRGA) to learn a robust Laplacian matrix for data ranking. In LRGA, for each data point, a local linear regression model is used to predict the ranking scores of its neighboring points. A unified objective function is then proposed to globally align the local models from all the data points so that an optimal ranking score can be assigned to each data point. Second, we propose a semi-supervised long-term Relevance Feedback (RF) algorithm to refine the multimedia data representation. The proposed long-term RF algorithm utilizes both the multimedia data distribution in multimedia feature space and the history RF information provided by users. A trace ratio optimization problem is then formulated and solved by an efficient algorithm. The algorithms have been applied to several content-based multimedia retrieval applications, including cross-media retrieval, image retrieval, and 3D motion/pose data retrieval. Comprehensive experiments on four data sets have demonstrated its advantages in precision, robustness, scalability, and computational efficiency.

  12. Ranking critical success factor in chaos management using BSC and AHP method

    Directory of Open Access Journals (Sweden)

    Ehsan Khosravi Asil

    2013-06-01

    Full Text Available Managing an organization under chaos and uncertainty is often a concern of academic society. These days, we may face unpleasant natural, economical or even political incidents where mangers need to handle them, properly. This paper presents an empirical survey to investigate on an electromotor maker when it faces different chaos. The proposed study uses balanced scorecard in terms of four different perspectives including internal process, learning and growth, customer and financial performances. For each perspective, the proposed study uses analytical hierarchy process to rank different sub-criteria. Based on the results of our survey profit margin is the most important item followed by profit capability and brand name while productivity and sales force performance were the least important items.

  13. Color correction with blind image restoration based on multiple images using a low-rank model

    Science.gov (United States)

    Li, Dong; Xie, Xudong; Lam, Kin-Man

    2014-03-01

    We present a method that can handle the color correction of multiple photographs with blind image restoration simultaneously and automatically. We prove that the local colors of a set of images of the same scene exhibit the low-rank property locally both before and after a color-correction operation. This property allows us to correct all kinds of errors in an image under a low-rank matrix model without particular priors or assumptions. The possible errors may be caused by changes of viewpoint, large illumination variations, gross pixel corruptions, partial occlusions, etc. Furthermore, a new iterative soft-segmentation method is proposed for local color transfer using color influence maps. Due to the fact that the correct color information and the spatial information of images can be recovered using the low-rank model, more precise color correction and many other image-restoration tasks-including image denoising, image deblurring, and gray-scale image colorizing-can be performed simultaneously. Experiments have verified that our method can achieve consistent and promising results on uncontrolled real photographs acquired from the Internet and that it outperforms current state-of-the-art methods.

  14. A gender-based comparison of academic rank and scholarly productivity in academic neurological surgery.

    Science.gov (United States)

    Tomei, Krystal L; Nahass, Meghan M; Husain, Qasim; Agarwal, Nitin; Patel, Smruti K; Svider, Peter F; Eloy, Jean Anderson; Liu, James K

    2014-07-01

    The number of women pursuing training opportunities in neurological surgery has increased, although they are still underrepresented at senior positions relative to junior academic ranks. Research productivity is an important component of the academic advancement process. We sought to use the h-index, a bibliometric previously analyzed among neurological surgeons, to evaluate whether there are gender differences in academic rank and research productivity among academic neurological surgeons. The h-index was calculated for 1052 academic neurological surgeons from 84 institutions, and organized by gender and academic rank. Overall men had statistically higher research productivity (mean 13.3) than their female colleagues (mean 9.5), as measured by the h-index, in the overall sample (p0.05) in h-index at the assistant professor (mean 7.2 male, 6.3 female), associate professor (11.2 male, 10.8 female), and professor (20.0 male, 18.0 female) levels based on gender. There was insufficient data to determine significance at the chairperson rank, as there was only one female chairperson. Although overall gender differences in scholarly productivity were detected, these differences did not reach statistical significance upon controlling for academic rank. Women were grossly underrepresented at the level of chairpersons in this sample of 1052 academic neurological surgeons, likely a result of the low proportion of females in this specialty. Future studies may be needed to investigate gender-specific research trends for neurosurgical residents, a cohort that in recent years has seen increased representation by women. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Data depth and rank-based tests for covariance and spectral density matrices

    KAUST Repository

    Chau, Joris

    2017-06-26

    In multivariate time series analysis, objects of primary interest to study cross-dependences in the time series are the autocovariance or spectral density matrices. Non-degenerate covariance and spectral density matrices are necessarily Hermitian and positive definite, and our primary goal is to develop new methods to analyze samples of such matrices. The main contribution of this paper is the generalization of the concept of statistical data depth for collections of covariance or spectral density matrices by exploiting the geometric properties of the space of Hermitian positive definite matrices as a Riemannian manifold. This allows one to naturally characterize most central or outlying matrices, but also provides a practical framework for rank-based hypothesis testing in the context of samples of covariance or spectral density matrices. First, the desired properties of a data depth function acting on the space of Hermitian positive definite matrices are presented. Second, we propose two computationally efficient pointwise and integrated data depth functions that satisfy each of these requirements. Several applications of the developed methodology are illustrated by the analysis of collections of spectral matrices in multivariate brain signal time series datasets.

  16. Data depth and rank-based tests for covariance and spectral density matrices

    KAUST Repository

    Chau, Joris; Ombao, Hernando; Sachs, Rainer von

    2017-01-01

    In multivariate time series analysis, objects of primary interest to study cross-dependences in the time series are the autocovariance or spectral density matrices. Non-degenerate covariance and spectral density matrices are necessarily Hermitian and positive definite, and our primary goal is to develop new methods to analyze samples of such matrices. The main contribution of this paper is the generalization of the concept of statistical data depth for collections of covariance or spectral density matrices by exploiting the geometric properties of the space of Hermitian positive definite matrices as a Riemannian manifold. This allows one to naturally characterize most central or outlying matrices, but also provides a practical framework for rank-based hypothesis testing in the context of samples of covariance or spectral density matrices. First, the desired properties of a data depth function acting on the space of Hermitian positive definite matrices are presented. Second, we propose two computationally efficient pointwise and integrated data depth functions that satisfy each of these requirements. Several applications of the developed methodology are illustrated by the analysis of collections of spectral matrices in multivariate brain signal time series datasets.

  17. Discrepancies between multicriteria decision analysis-based ranking and intuitive ranking for pharmaceutical benefit-risk profiles in a hypothetical setting.

    Science.gov (United States)

    Hoshikawa, K; Ono, S

    2017-02-01

    Multicriteria decision analysis (MCDA) has been generally considered a promising decision-making methodology for the assessment of drug benefit-risk profiles. There have been many discussions in both public and private sectors on its feasibility and applicability, but it has not been employed in official decision-makings. For the purpose of examining to what extent MCDA would reflect the first-hand, intuitive preference of evaluators in practical pharmaceutical assessments, we conducted a questionnaire survey involving the participation of employees of pharmaceutical companies. Showing profiles of the efficacy and safety of four hypothetical drugs, each respondent was asked to rank them following the standard MCDA process and then to rank them intuitively (i.e. without applying any analytical framework). These two approaches resulted in substantially different ranking patterns from the same individuals, and the concordance rate was surprisingly low (17%). Although many respondents intuitively showed a preference for mild, balanced risk-benefit profiles over profiles with a conspicuous advantage in either risk or benefit, the ranking orders based on MCDA scores did not reflect the intuitive preference. Observed discrepancies between the rankings seemed to be primarily attributed to the structural characteristics of MCDA, which assumes that evaluation on each benefit and risk component should have monotonic impact on final scores. It would be difficult for MCDA to reflect commonly observed non-monotonic preferences for risk and benefit profiles. Possible drawbacks of MCDA should be further investigated prior to the real-world application of its benefit-risk assessment. © 2016 John Wiley & Sons Ltd.

  18. Rank-based testing of equal survivorship based on cross-sectional survival data with or without prospective follow-up.

    Science.gov (United States)

    Chan, Kwun Chuen Gary; Qin, Jing

    2015-10-01

    Existing linear rank statistics cannot be applied to cross-sectional survival data without follow-up since all subjects are essentially censored. However, partial survival information are available from backward recurrence times and are frequently collected from health surveys without prospective follow-up. Under length-biased sampling, a class of linear rank statistics is proposed based only on backward recurrence times without any prospective follow-up. When follow-up data are available, the proposed rank statistic and a conventional rank statistic that utilizes follow-up information from the same sample are shown to be asymptotically independent. We discuss four ways to combine these two statistics when follow-up is present. Simulations show that all combined statistics have substantially improved power compared with conventional rank statistics, and a Mantel-Haenszel test performed the best among the proposal statistics. The method is applied to a cross-sectional health survey without follow-up and a study of Alzheimer's disease with prospective follow-up. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Novel Opportunistic Network Routing Based on Social Rank for Device-to-Device Communication

    Directory of Open Access Journals (Sweden)

    Tong Wang

    2017-01-01

    Full Text Available In recent years, there has been dramatic proliferation of research concerned with fifth-generation (5G mobile communication networks, among which device-to-device (D2D communication is one of the key technologies. Due to the intermittent connection of nodes, the D2D network topology may be disconnected frequently, which will lead to failure in transmission of large data files. In opportunistic networks, in case of encountering nodes which never meet before a flood message blindly to cause tremendous network overhead, a novel opportunistic network routing protocol based on social rank and intermeeting time (SRIT is proposed in this paper. An improved utility approach applied in utility replication based on encounter durations and intermeeting time is put forward to enhance the routing efficiency. Meanwhile, in order to select better candidate nodes in the network, a social graph among people is established when they socially relate to each other in social rank replication. The results under the scenario show an advantage of the proposed opportunistic network routing based on social rank and intermeeting time (SRIT over the compared algorithms in terms of delivery ratio, average delivery latency, and overhead ratio.

  20. Ranked solutions to a class of combinatorial optimizations - with applications in mass spectrometry based peptide sequencing

    Science.gov (United States)

    Doerr, Timothy; Alves, Gelio; Yu, Yi-Kuo

    2006-03-01

    Typical combinatorial optimizations are NP-hard; however, for a particular class of cost functions the corresponding combinatorial optimizations can be solved in polynomial time. This suggests a way to efficiently find approximate solutions - - find a transformation that makes the cost function as similar as possible to that of the solvable class. After keeping many high-ranking solutions using the approximate cost function, one may then re-assess these solutions with the full cost function to find the best approximate solution. Under this approach, it is important to be able to assess the quality of the solutions obtained, e.g., by finding the true ranking of kth best approximate solution when all possible solutions are considered exhaustively. To tackle this statistical issue, we provide a systematic method starting with a scaling function generated from the fininte number of high- ranking solutions followed by a convergent iterative mapping. This method, useful in a variant of the directed paths in random media problem proposed here, can also provide a statistical significance assessment for one of the most important proteomic tasks - - peptide sequencing using tandem mass spectrometry data.

  1. Enhancements to Graph based methods for Multi Document Summarization

    Directory of Open Access Journals (Sweden)

    Rengaramanujam Srinivasan

    2009-01-01

    Full Text Available This paper focuses its attention on extractivesummarization using popular graph based approaches. Graphbased methods can be broadly classified into two categories:non- PageRank type and PageRank type methods. Of themethods already proposed - the Centrality Degree methodbelongs to the former category while LexRank and ContinuousLexRank methods belong to later category. The paper goes on tosuggest two enhancements to both PageRank type and non-PageRank type methods. The first modification is that ofrecursively discounting the selected sentences, i.e. if a sentence isselected it is removed from further consideration and the nextsentence is selected based upon the contributions of theremaining sentences only. Next the paper suggests a method ofincorporating position weight to these schemes. In all 14methods –six of non- PageRank type and eight of PageRanktype have been investigated. To clearly distinguish betweenvarious schemes, we call the methods of incorporatingdiscounting and position weight enhancements over LexicalRank schemes as Sentence Rank (SR methods. Intrinsicevaluation of all the 14 graph based methods were done usingconventional Precision metric and metrics earlier proposed byus - Effectiveness1 (E1 and Effectiveness2 (E2. Experimentalstudy brings out that the proposed SR methods are superior toall the other methods.

  2. Ranking Operations Management conferences

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.; Gupta, Sushil; Laptaned, U

    2007-01-01

    Several publications have appeared in the field of Operations Management which rank Operations Management related journals. Several ranking systems exist for journals based on , for example, perceived relevance and quality, citation, and author affiliation. Many academics also publish at conferences

  3. Methodological Bases for Ranking the European Union Countries in Terms of Macroeconomic Security

    Directory of Open Access Journals (Sweden)

    Tymoshenko Olena V.

    2015-11-01

    Full Text Available The fundamental contradictions of existing methodical approaches to assessing the level of the state economic security have been substantiated and proposals on the introduction of a unified methodology for its assessment, which would be acceptable for use at the international level or for a specific cluster of countries, have been developed. Based on the conducted researches it has been found that the there are no unified signs for such classification of countries. To determine the most significant coefficients and critical values of the indicators of economic security, it is appropriate that the countries should be grouped in terms of the level of the economic development proposed by the UN Commission and the IMF. Analysis of the economic security level has been conducted for the countries-members of the European Union as a separate cluster of countries on the example of macroeconomic security indicators. Based on the evaluation it has been found that the proposed list of indicators and their critical values is economically sound and built on the principle of adequacy, representativeness and comprehensiveness. In 2004 the most secure countries of the EU corresponding to the macroeconomic security standards were Austria, Denmark, Sweden, Finland, and as in 2014 the percentage of absolutely secure countries decreased from 14.3 to 7.1%, only Denmark and Sweden remained in the ranking. During the analyzed period Bulgaria and Croatia got into the risk zone, Estonia, Lithuania, Latvia, Romania were in a danger zone. In 2014 Ukraine in terms of its macroeconomic security was in a critical state, which testified about serious structural and system imbalances in its development.

  4. A Topology Evolution Model Based on Revised PageRank Algorithm and Node Importance for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xiaogang Qi

    2015-01-01

    Full Text Available Wireless sensor network (WSN is a classical self-organizing communication network, and its topology evolution currently becomes one of the attractive issues in this research field. Accordingly, the problem is divided into two subproblems: one is to design a new preferential attachment method and the other is to analyze the dynamics of the network topology evolution. To solve the first subproblem, a revised PageRank algorithm, called Con-rank, is proposed to evaluate the node importance upon the existing node contraction, and then a novel preferential attachment is designed based on the node importance calculated by the proposed Con-rank algorithm. To solve the second one, we firstly analyze the network topology evolution dynamics in a theoretical way and then simulate the evolution process. Theoretical analysis proves that the network topology evolution of our model agrees with power-law distribution, and simulation results are well consistent with our conclusions obtained from the theoretical analysis and simultaneously show that our topology evolution model is superior to the classic BA model in the average path length and the clustering coefficient, and the network topology is more robust and can tolerate the random attacks.

  5. Ranking-based Method for News Stance Detection

    KAUST Repository

    Zhang, Qiang; Yilmaz, Emine; Liang, Shangsong

    2018-01-01

    A valuable step towards news veracity assessment is to understand stance from different information sources, and the process is known as the stance detection. Specifically, the stance detection is to detect four kinds of stances (

  6. Ranking-based Method for News Stance Detection

    KAUST Repository

    Zhang, Qiang

    2018-04-18

    A valuable step towards news veracity assessment is to understand stance from different information sources, and the process is known as the stance detection. Specifically, the stance detection is to detect four kinds of stances (

  7. A Simple Model to Rank Shellfish Farming Areas Based on the Risk of Disease Introduction and Spread.

    Science.gov (United States)

    Thrush, M A; Pearce, F M; Gubbins, M J; Oidtmann, B C; Peeler, E J

    2017-08-01

    The European Union Council Directive 2006/88/EC requires that risk-based surveillance (RBS) for listed aquatic animal diseases is applied to all aquaculture production businesses. The principle behind this is the efficient use of resources directed towards high-risk farm categories, animal types and geographic areas. To achieve this requirement, fish and shellfish farms must be ranked according to their risk of disease introduction and spread. We present a method to risk rank shellfish farming areas based on the risk of disease introduction and spread and demonstrate how the approach was applied in 45 shellfish farming areas in England and Wales. Ten parameters were used to inform the risk model, which were grouped into four risk themes based on related pathways for transmission of pathogens: (i) live animal movement, (ii) transmission via water, (iii) short distance mechanical spread (birds) and (iv) long distance mechanical spread (vessels). Weights (informed by expert knowledge) were applied both to individual parameters and to risk themes for introduction and spread to reflect their relative importance. A spreadsheet model was developed to determine quantitative scores for the risk of pathogen introduction and risk of pathogen spread for each shellfish farming area. These scores were used to independently rank areas for risk of introduction and for risk of spread. Thresholds were set to establish risk categories (low, medium and high) for introduction and spread based on risk scores. Risk categories for introduction and spread for each area were combined to provide overall risk categories to inform a risk-based surveillance programme directed at the area level. Applying the combined risk category designation framework for risk of introduction and spread suggested by European Commission guidance for risk-based surveillance, 4, 10 and 31 areas were classified as high, medium and low risk, respectively. © 2016 Crown copyright.

  8. A Fast, Open EEG Classification Framework Based on Feature Compression and Channel Ranking

    Directory of Open Access Journals (Sweden)

    Jiuqi Han

    2018-04-01

    Full Text Available Superior feature extraction, channel selection and classification methods are essential for designing electroencephalography (EEG classification frameworks. However, the performance of most frameworks is limited by their improper channel selection methods and too specifical design, leading to high computational complexity, non-convergent procedure and narrow expansibility. In this paper, to remedy these drawbacks, we propose a fast, open EEG classification framework centralized by EEG feature compression, low-dimensional representation, and convergent iterative channel ranking. First, to reduce the complexity, we use data clustering to compress the EEG features channel-wise, packing the high-dimensional EEG signal, and endowing them with numerical signatures. Second, to provide easy access to alternative superior methods, we structurally represent each EEG trial in a feature vector with its corresponding numerical signature. Thus, the recorded signals of many trials shrink to a low-dimensional structural matrix compatible with most pattern recognition methods. Third, a series of effective iterative feature selection approaches with theoretical convergence is introduced to rank the EEG channels and remove redundant ones, further accelerating the EEG classification process and ensuring its stability. Finally, a classical linear discriminant analysis (LDA model is employed to classify a single EEG trial with selected channels. Experimental results on two real world brain-computer interface (BCI competition datasets demonstrate the promising performance of the proposed framework over state-of-the-art methods.

  9. Reduced-rank approximations to the far-field transform in the gridded fast multipole method

    Science.gov (United States)

    Hesford, Andrew J.; Waag, Robert C.

    2011-05-01

    The fast multipole method (FMM) has been shown to have a reduced computational dependence on the size of finest-level groups of elements when the elements are positioned on a regular grid and FFT convolution is used to represent neighboring interactions. However, transformations between plane-wave expansions used for FMM interactions and pressure distributions used for neighboring interactions remain significant contributors to the cost of FMM computations when finest-level groups are large. The transformation operators, which are forward and inverse Fourier transforms with the wave space confined to the unit sphere, are smooth and well approximated using reduced-rank decompositions that further reduce the computational dependence of the FMM on finest-level group size. The adaptive cross approximation (ACA) is selected to represent the forward and adjoint far-field transformation operators required by the FMM. However, the actual error of the ACA is found to be greater than that predicted using traditional estimates, and the ACA generally performs worse than the approximation resulting from a truncated singular-value decomposition (SVD). To overcome these issues while avoiding the cost of a full-scale SVD, the ACA is employed with more stringent accuracy demands and recompressed using a reduced, truncated SVD. The results show a greatly reduced approximation error that performs comparably to the full-scale truncated SVD without degrading the asymptotic computational efficiency associated with ACA matrix assembly.

  10. Quantitative Analysis of Mixtures of Monoprotic Acids Applying Modified Model-Based Rank Annihilation Factor Analysis on Variation Matrices of Spectrophotometric Acid-Base Titrations

    Directory of Open Access Journals (Sweden)

    Ebrahim Ghorbani-Kalhor

    2015-04-01

    Full Text Available In the current work, a new version of rank annihilation factor analysis was developedto circumvent the rank deficiency problem in multivariate data measurements.Simultaneous determination of dissociation constant and concentration of monoprotic acids was performed by applying model-based rank annihilation factor analysis on variation matrices of spectrophotometric acid-base titrations data. Variation matrices can be obtained by subtracting first row of data matrix from all rows of the main data matrix. This method uses variation matrices instead of multivariate spectrophotometric acid-base titrations matrices to circumvent the rank deficiency problem in the rank quantitation step. The applicability of this approach was evaluated by simulated data at first stage, then the binary mixtures of ascorbic and sorbic acids as model compounds were investigated by the proposed method. At the end, the proposed method was successfully applied for resolving the ascorbic and sorbic acid in an orange juice real sample. Therefore, unique results were achieved by applying rank annihilation factor analysis on variation matrix and using hard soft model combination advantage without any problem and difficulty in rank determination. Normal 0 false false false EN-US X-NONE AR-SA /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi; mso-bidi-language:AR-SA;}    

  11. Super-resolution reconstruction of 4D-CT lung data via patch-based low-rank matrix reconstruction

    Science.gov (United States)

    Fang, Shiting; Wang, Huafeng; Liu, Yueliang; Zhang, Minghui; Yang, Wei; Feng, Qianjin; Chen, Wufan; Zhang, Yu

    2017-10-01

    Lung 4D computed tomography (4D-CT), which is a time-resolved CT data acquisition, performs an important role in explicitly including respiratory motion in treatment planning and delivery. However, the radiation dose is usually reduced at the expense of inter-slice spatial resolution to minimize radiation-related health risk. Therefore, resolution enhancement along the superior-inferior direction is necessary. In this paper, a super-resolution (SR) reconstruction method based on a patch low-rank matrix reconstruction is proposed to improve the resolution of lung 4D-CT images. Specifically, a low-rank matrix related to every patch is constructed by using a patch searching strategy. Thereafter, the singular value shrinkage is employed to recover the high-resolution patch under the constraints of the image degradation model. The output high-resolution patches are finally assembled to output the entire image. This method is extensively evaluated using two public data sets. Quantitative analysis shows that the proposed algorithm decreases the root mean square error by 9.7%-33.4% and the edge width by 11.4%-24.3%, relative to linear interpolation, back projection (BP) and Zhang et al’s algorithm. A new algorithm has been developed to improve the resolution of 4D-CT. In all experiments, the proposed method outperforms various interpolation methods, as well as BP and Zhang et al’s method, thus indicating the effectivity and competitiveness of the proposed algorithm.

  12. Development of a health effects based priority ranking system for air emissions reductions from oil refineries in Canada

    International Nuclear Information System (INIS)

    McColl, S.; Gower, S.; Hicks, J.; Shortreed, J.; Craig, L.

    2004-01-01

    This paper presents the concept and methodologies behind the development of a health effects priority ranking tool for the reduction of air emissions from oil refineries. The Health Effects Indicators Decision Index- Versions 2 (Heidi II) was designed to assist policy makers in prioritizing air emissions reductions on the basis of estimated risk to human health. Inputs include facility level rankings of potential health impacts associated with carcinogenic air toxics, non-carcinogenic air toxics and criteria air contaminants for each of the 20 refineries in Canada. Rankings of estimated health impacts are presented on predicted incidence of health effects. Heidi II considers site-specific annual pollutant emission data, ambient air concentrations associated with releases and concentration response functions for various types of health effects. Additional data includes location specific background air concentrations, site-specific population densities, and the baseline incidence of different health effects endpoints, such as cancer, non-cancer illnesses and cardiorespiratory illnesses and death. Air pollutants include the 29 air toxics reported annually in Environment Canada's National Pollutant Release Inventory. Three health impact ranking outputs are provided for each facility: ranking of pollutants based on predicted number of annual cases of health effects; ranking of pollutants based on simplified Disability Adjusted Life Years (DALYs); and ranking of pollutants based on more complex DALYs that consider types of cancer, systemic disease or types of cardiopulmonary health effects. Rankings rely on rough statistical estimates of predicted incidence rates for health endpoints. The models used to calculate rankings can provide useful guidance by comparing estimated health impacts. Heidi II has demonstrated that it is possible to develop a consistent and objective approach for ranking priority reductions of air emissions. Heidi II requires numerous types and

  13. Population models and simulation methods: The case of the Spearman rank correlation.

    Science.gov (United States)

    Astivia, Oscar L Olvera; Zumbo, Bruno D

    2017-11-01

    The purpose of this paper is to highlight the importance of a population model in guiding the design and interpretation of simulation studies used to investigate the Spearman rank correlation. The Spearman rank correlation has been known for over a hundred years to applied researchers and methodologists alike and is one of the most widely used non-parametric statistics. Still, certain misconceptions can be found, either explicitly or implicitly, in the published literature because a population definition for this statistic is rarely discussed within the social and behavioural sciences. By relying on copula distribution theory, a population model is presented for the Spearman rank correlation, and its properties are explored both theoretically and in a simulation study. Through the use of the Iman-Conover algorithm (which allows the user to specify the rank correlation as a population parameter), simulation studies from previously published articles are explored, and it is found that many of the conclusions purported in them regarding the nature of the Spearman correlation would change if the data-generation mechanism better matched the simulation design. More specifically, issues such as small sample bias and lack of power of the t-test and r-to-z Fisher transformation disappear when the rank correlation is calculated from data sampled where the rank correlation is the population parameter. A proof for the consistency of the sample estimate of the rank correlation is shown as well as the flexibility of the copula model to encompass results previously published in the mathematical literature. © 2017 The British Psychological Society.

  14. SRMDAP: SimRank and Density-Based Clustering Recommender Model for miRNA-Disease Association Prediction

    Directory of Open Access Journals (Sweden)

    Xiaoying Li

    2018-01-01

    Full Text Available Aberrant expression of microRNAs (miRNAs can be applied for the diagnosis, prognosis, and treatment of human diseases. Identifying the relationship between miRNA and human disease is important to further investigate the pathogenesis of human diseases. However, experimental identification of the associations between diseases and miRNAs is time-consuming and expensive. Computational methods are efficient approaches to determine the potential associations between diseases and miRNAs. This paper presents a new computational method based on the SimRank and density-based clustering recommender model for miRNA-disease associations prediction (SRMDAP. The AUC of 0.8838 based on leave-one-out cross-validation and case studies suggested the excellent performance of the SRMDAP in predicting miRNA-disease associations. SRMDAP could also predict diseases without any related miRNAs and miRNAs without any related diseases.

  15. Detecting determinism with improved sensitivity in time series: rank-based nonlinear predictability score.

    Science.gov (United States)

    Naro, Daniel; Rummel, Christian; Schindler, Kaspar; Andrzejak, Ralph G

    2014-09-01

    The rank-based nonlinear predictability score was recently introduced as a test for determinism in point processes. We here adapt this measure to time series sampled from time-continuous flows. We use noisy Lorenz signals to compare this approach against a classical amplitude-based nonlinear prediction error. Both measures show an almost identical robustness against Gaussian white noise. In contrast, when the amplitude distribution of the noise has a narrower central peak and heavier tails than the normal distribution, the rank-based nonlinear predictability score outperforms the amplitude-based nonlinear prediction error. For this type of noise, the nonlinear predictability score has a higher sensitivity for deterministic structure in noisy signals. It also yields a higher statistical power in a surrogate test of the null hypothesis of linear stochastic correlated signals. We show the high relevance of this improved performance in an application to electroencephalographic (EEG) recordings from epilepsy patients. Here the nonlinear predictability score again appears of higher sensitivity to nonrandomness. Importantly, it yields an improved contrast between signals recorded from brain areas where the first ictal EEG signal changes were detected (focal EEG signals) versus signals recorded from brain areas that were not involved at seizure onset (nonfocal EEG signals).

  16. Ensemble Manifold Rank Preserving for Acceleration-Based Human Activity Recognition.

    Science.gov (United States)

    Tao, Dapeng; Jin, Lianwen; Yuan, Yuan; Xue, Yang

    2016-06-01

    With the rapid development of mobile devices and pervasive computing technologies, acceleration-based human activity recognition, a difficult yet essential problem in mobile apps, has received intensive attention recently. Different acceleration signals for representing different activities or even a same activity have different attributes, which causes troubles in normalizing the signals. We thus cannot directly compare these signals with each other, because they are embedded in a nonmetric space. Therefore, we present a nonmetric scheme that retains discriminative and robust frequency domain information by developing a novel ensemble manifold rank preserving (EMRP) algorithm. EMRP simultaneously considers three aspects: 1) it encodes the local geometry using the ranking order information of intraclass samples distributed on local patches; 2) it keeps the discriminative information by maximizing the margin between samples of different classes; and 3) it finds the optimal linear combination of the alignment matrices to approximate the intrinsic manifold lied in the data. Experiments are conducted on the South China University of Technology naturalistic 3-D acceleration-based activity dataset and the naturalistic mobile-devices based human activity dataset to demonstrate the robustness and effectiveness of the new nonmetric scheme for acceleration-based human activity recognition.

  17. Use of percentile rank sum method in identifying repetitive high occupational radiation dose jobs in a nuclear power plant

    International Nuclear Information System (INIS)

    Cho, Y.H.; Ko, H.S.; Kim, S.H.; Kang, C.S.; Moon, J.H.; Kim, K.D.

    2004-01-01

    The cost-effective reduction of occupational radiation dose (ORD) at a nuclear power plant could not be achieved without going through an extensive analysis of accumulated ORD data of existing plants. Through the data analysis, it is required to identify what are the jobs of repetitive high ORD at the nuclear power plant. In general the point value method commonly used, over-estimates the role of mean and median values to identify the high ORD jobs which can lead to misjudgment. In this study, Percentile Rank Sum Method (PRSM) is proposed to identify repetitive high ORD jobs, which is based on non-parametric statistical theory. As a case study, the method is applied to ORD data of maintenance and repair jobs at Kori units 3 and 4 that are pressurized water reactors with 950 MWe capacity and have been operated since 1986 and 1987, respectively in Korea. The results were verified and validated, and PRSM has been demonstrated to be an efficient method of analyzing the data. (authors)

  18. Pareto-Ranking Based Quantum-Behaved Particle Swarm Optimization for Multiobjective Optimization

    Directory of Open Access Journals (Sweden)

    Na Tian

    2015-01-01

    Full Text Available A study on pareto-ranking based quantum-behaved particle swarm optimization (QPSO for multiobjective optimization problems is presented in this paper. During the iteration, an external repository is maintained to remember the nondominated solutions, from which the global best position is chosen. The comparison between different elitist selection strategies (preference order, sigma value, and random selection is performed on four benchmark functions and two metrics. The results demonstrate that QPSO with preference order has comparative performance with sigma value according to different number of objectives. Finally, QPSO with sigma value is applied to solve multiobjective flexible job-shop scheduling problems.

  19. Environmental restoration risk-based prioritization work package planning and risk ranking methodology. Revision 2

    International Nuclear Information System (INIS)

    Dail, J.L.; Nanstad, L.D.; White, R.K.

    1995-06-01

    This document presents the risk-based prioritization methodology developed to evaluate and rank Environmental Restoration (ER) work packages at the five US Department of Energy, Oak Ridge Field Office (DOE-ORO) sites [i.e., Oak Ridge K-25 Site (K-25), Portsmouth Gaseous Diffusion Plant (PORTS), Paducah Gaseous Diffusion Plant (PGDP), Oak Ridge National Laboratory (ORNL), and the Oak Ridge Y-12 Plant (Y-12)], the ER Off-site Program, and Central ER. This prioritization methodology was developed to support the increased rigor and formality of work planning in the overall conduct of operations within the DOE-ORO ER Program. Prioritization is conducted as an integral component of the fiscal ER funding cycle to establish program budget priorities. The purpose of the ER risk-based prioritization methodology is to provide ER management with the tools and processes needed to evaluate, compare, prioritize, and justify fiscal budget decisions for a diverse set of remedial action, decontamination and decommissioning, and waste management activities. The methodology provides the ER Program with a framework for (1) organizing information about identified DOE-ORO environmental problems, (2) generating qualitative assessments of the long- and short-term risks posed by DOE-ORO environmental problems, and (3) evaluating the benefits associated with candidate work packages designed to reduce those risks. Prioritization is conducted to rank ER work packages on the basis of the overall value (e.g., risk reduction, stakeholder confidence) each package provides to the ER Program. Application of the methodology yields individual work package ''scores'' and rankings that are used to develop fiscal budget requests. This document presents the technical basis for the decision support tools and process

  20. SQERTSS: Dynamic rank based throttling of transition probabilities in kinetic Monte Carlo simulations

    International Nuclear Information System (INIS)

    Danielson, Thomas; Sutton, Jonathan E.; Hin, Céline; Virginia Polytechnic Institute and State University; Savara, Aditya

    2017-01-01

    Lattice based Kinetic Monte Carlo (KMC) simulations offer a powerful simulation technique for investigating large reaction networks while retaining spatial configuration information, unlike ordinary differential equations. However, large chemical reaction networks can contain reaction processes with rates spanning multiple orders of magnitude. This can lead to the problem of “KMC stiffness” (similar to stiffness in differential equations), where the computational expense has the potential to be overwhelmed by very short time-steps during KMC simulations, with the simulation spending an inordinate amount of KMC steps / cpu-time simulating fast frivolous processes (FFPs) without progressing the system (reaction network). In order to achieve simulation times that are experimentally relevant or desired for predictions, a dynamic throttling algorithm involving separation of the processes into speed-ranks based on event frequencies has been designed and implemented with the intent of decreasing the probability of FFP events, and increasing the probability of slow process events -- allowing rate limiting events to become more likely to be observed in KMC simulations. This Staggered Quasi-Equilibrium Rank-based Throttling for Steady-state (SQERTSS) algorithm designed for use in achieving and simulating steady-state conditions in KMC simulations. Lastly, as shown in this work, the SQERTSS algorithm also works for transient conditions: the correct configuration space and final state will still be achieved if the required assumptions are not violated, with the caveat that the sizes of the time-steps may be distorted during the transient period.

  1. An Automatic Web Service Composition Framework Using QoS-Based Web Service Ranking Algorithm.

    Science.gov (United States)

    Mallayya, Deivamani; Ramachandran, Baskaran; Viswanathan, Suganya

    2015-01-01

    Web service has become the technology of choice for service oriented computing to meet the interoperability demands in web applications. In the Internet era, the exponential addition of web services nominates the "quality of service" as essential parameter in discriminating the web services. In this paper, a user preference based web service ranking (UPWSR) algorithm is proposed to rank web services based on user preferences and QoS aspect of the web service. When the user's request cannot be fulfilled by a single atomic service, several existing services should be composed and delivered as a composition. The proposed framework allows the user to specify the local and global constraints for composite web services which improves flexibility. UPWSR algorithm identifies best fit services for each task in the user request and, by choosing the number of candidate services for each task, reduces the time to generate the composition plans. To tackle the problem of web service composition, QoS aware automatic web service composition (QAWSC) algorithm proposed in this paper is based on the QoS aspects of the web services and user preferences. The proposed framework allows user to provide feedback about the composite service which improves the reputation of the services.

  2. Quantified Risk Ranking Model for Condition-Based Risk and Reliability Centered Maintenance

    Science.gov (United States)

    Chattopadhyaya, Pradip Kumar; Basu, Sushil Kumar; Majumdar, Manik Chandra

    2017-06-01

    In the recent past, risk and reliability centered maintenance (RRCM) framework is introduced with a shift in the methodological focus from reliability and probabilities (expected values) to reliability, uncertainty and risk. In this paper authors explain a novel methodology for risk quantification and ranking the critical items for prioritizing the maintenance actions on the basis of condition-based risk and reliability centered maintenance (CBRRCM). The critical items are identified through criticality analysis of RPN values of items of a system and the maintenance significant precipitating factors (MSPF) of items are evaluated. The criticality of risk is assessed using three risk coefficients. The likelihood risk coefficient treats the probability as a fuzzy number. The abstract risk coefficient deduces risk influenced by uncertainty, sensitivity besides other factors. The third risk coefficient is called hazardous risk coefficient, which is due to anticipated hazards which may occur in the future and the risk is deduced from criteria of consequences on safety, environment, maintenance and economic risks with corresponding cost for consequences. The characteristic values of all the three risk coefficients are obtained with a particular test. With few more tests on the system, the values may change significantly within controlling range of each coefficient, hence `random number simulation' is resorted to obtain one distinctive value for each coefficient. The risk coefficients are statistically added to obtain final risk coefficient of each critical item and then the final rankings of critical items are estimated. The prioritization in ranking of critical items using the developed mathematical model for risk assessment shall be useful in optimization of financial losses and timing of maintenance actions.

  3. Monte Carlo methods for top-k personalized PageRank lists and name disambiguation

    NARCIS (Netherlands)

    Avrachenkov, Konstatin; Litvak, Nelli; Nemirovsky, Danil; Smirnova, Elena; Sokol, Marina

    We study a problem of quick detection of top-k Personalized PageRank lists. This problem has a number of important applications such as finding local cuts in large graphs, estimation of similarity distance and name disambiguation. In particular, we apply our results to construct efficient algorithms

  4. A method for generating permutation distribution of ranks in a k ...

    African Journals Online (AJOL)

    ... in a combinatorial sense the distribution of the ranks is obtained via its generating function. The formulas are defined recursively to speed up computations using the computer algebra system Mathematica. Key words: Partitions, generating functions, combinatorics, permutation test, exact tests, computer algebra, k-sample, ...

  5. A rank-based approach for correcting systematic biases in spatial disaggregation of coarse-scale climate simulations

    Science.gov (United States)

    Nahar, Jannatun; Johnson, Fiona; Sharma, Ashish

    2017-07-01

    Use of General Circulation Model (GCM) precipitation and evapotranspiration sequences for hydrologic modelling can result in unrealistic simulations due to the coarse scales at which GCMs operate and the systematic biases they contain. The Bias Correction Spatial Disaggregation (BCSD) method is a popular statistical downscaling and bias correction method developed to address this issue. The advantage of BCSD is its ability to reduce biases in the distribution of precipitation totals at the GCM scale and then introduce more realistic variability at finer scales than simpler spatial interpolation schemes. Although BCSD corrects biases at the GCM scale before disaggregation; at finer spatial scales biases are re-introduced by the assumptions made in the spatial disaggregation process. Our study focuses on this limitation of BCSD and proposes a rank-based approach that aims to reduce the spatial disaggregation bias especially for both low and high precipitation extremes. BCSD requires the specification of a multiplicative bias correction anomaly field that represents the ratio of the fine scale precipitation to the disaggregated precipitation. It is shown that there is significant temporal variation in the anomalies, which is masked when a mean anomaly field is used. This can be improved by modelling the anomalies in rank-space. Results from the application of the rank-BCSD procedure improve the match between the distributions of observed and downscaled precipitation at the fine scale compared to the original BCSD approach. Further improvements in the distribution are identified when a scaling correction to preserve mass in the disaggregation process is implemented. An assessment of the approach using a single GCM over Australia shows clear advantages especially in the simulation of particularly low and high downscaled precipitation amounts.

  6. Validation of a model for ranking aquaculture facilities for risk-based disease surveillance.

    Science.gov (United States)

    Diserens, Nicolas; Falzon, Laura Cristina; von Siebenthal, Beat; Schüpbach-Regula, Gertraud; Wahli, Thomas

    2017-09-15

    A semi-quantitative model for risk ranking of aquaculture facilities in Switzerland with regard to the introduction and spread of Viral Haemorrhagic Septicaemia (VHS) and Infectious Haematopoietic Necrosis (IHN) was developed in a previous study (Diserens et al., 2013). The objective of the present study was to validate this model using data collected during field visits on aquaculture sites in four Swiss cantons compared to data collected through a questionnaire in the previous study. A discrepancy between the values obtained with the two different methods was found in 32.8% of the parameters, resulting in a significant difference (pranking of Swiss aquaculture facilities according to their risk of getting infected with or spreading of VHS and IHN, as the five facilities that tested positive for these diseases in the last ten years were ranked as medium or high risk. Moreover, because the seven fish farms that were infected with Infectious Pancreatic Necrosis (IPN) during the same period also belonged to the risk categories medium and high, the classification appeared to correlate with the occurrence of this third viral fish disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Rank Dynamics

    Science.gov (United States)

    Gershenson, Carlos

    Studies of rank distributions have been popular for decades, especially since the work of Zipf. For example, if we rank words of a given language by use frequency (most used word in English is 'the', rank 1; second most common word is 'of', rank 2), the distribution can be approximated roughly with a power law. The same applies for cities (most populated city in a country ranks first), earthquakes, metabolism, the Internet, and dozens of other phenomena. We recently proposed ``rank diversity'' to measure how ranks change in time, using the Google Books Ngram dataset. Studying six languages between 1800 and 2009, we found that the rank diversity curves of languages are universal, adjusted with a sigmoid on log-normal scale. We are studying several other datasets (sports, economies, social systems, urban systems, earthquakes, artificial life). Rank diversity seems to be universal, independently of the shape of the rank distribution. I will present our work in progress towards a general description of the features of rank change in time, along with simple models which reproduce it

  8. A comparison of average-based, percentile rank, and other citation impact indicators

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Castillo, J.; Albarran, P.

    2016-07-01

    The main aim of this paper is to defend the view that, in spite of the broad agreement in favor of the MNCS and the percentile rank indicators, there are two other citation indicators with desirable properties that the above indicators do not posses: (i) a member of the family of high-impact indicators introduced in Albarránet al. (2011), and (ii) a new indicator, based in the work of Herrero & Villar (2013), which measures the relative performance of the different research units in terms of a series of tournaments in which each research unit is confronted with all others repeatedly. We compare indicators from the point of view of their discriminatory power, measured by the range and the coefficient of variation. Using a large dataset indexed by Thomson Reuters, we consider 40 countries that have published at least 10,000 articles in all sciences in 1998-2003. There are two main findings. First, the new indicator exhibits a greater discriminatory power than percentile rank indicators. Second, the high-impact indicator exhibits the greatest discriminatory power. (Author)

  9. Feature selection model based on clustering and ranking in pipeline for microarray data

    Directory of Open Access Journals (Sweden)

    Barnali Sahu

    2017-01-01

    Full Text Available Most of the available feature selection techniques in the literature are classifier bound. It means a group of features tied to the performance of a specific classifier as applied in wrapper and hybrid approach. Our objective in this study is to select a set of generic features not tied to any classifier based on the proposed framework. This framework uses attribute clustering and feature ranking techniques in pipeline in order to remove redundant features. On each uncovered cluster, signal-to-noise ratio, t-statistics and significance analysis of microarray are independently applied to select the top ranked features. Both filter and evolutionary wrapper approaches have been considered for feature selection and the data set with selected features are given to ensemble of predefined statistically different classifiers. The class labels of the test data are determined using majority voting technique. Moreover, with the aforesaid objectives, this paper focuses on obtaining a stable result out of various classification models. Further, a comparative analysis has been performed to study the classification accuracy and computational time of the current approach and evolutionary wrapper techniques. It gives a better insight into the features and further enhancing the classification accuracy with less computational time.

  10. Semantic Descriptor Ranking: A Quantitative Method for Evaluating Qualitative Verbal Reports of Visual Cognition in the Laboratory or the Clinic

    Directory of Open Access Journals (Sweden)

    Matthew eMaestri

    2014-03-01

    Full Text Available For scientific, clinical, and machine learning purposes alike, it is desirable to quantify the verbal reports of high-level visual percepts. Methods to do this simply do not exist at present. Here we propose a novel methodological principle to help fill this gap, and provide empirical evidence designed to serve as the initial ‘proof’ of this principle. In the proposed method, subjects view images real-world scenes and describe, in their own words, what they saw. The verbal description is independently evaluated by several evaluators. Each evaluator assigns a rank score to the subject’s description of each visual object in each image using a novel ranking principle, which takes advantage of the well-known fact that semantic descriptions of real-life objects and scenes can usually be rank-ordered. Thus, for instance, ‘animal’, ‘dog’, and ‘retriever’ can be regarded as increasingly finer-level, and therefore higher-ranking, descriptions of a given object. These numeric scores can preserve the richness of the original verbal description, and can be subsequently evaluated using conventional statistical procedures. We describe an exemplar implementation of this method and empirical data that show its feasibility. With appropriate future standardization and validation, this novel method can serve as an important tool to help quantify the subjective experience of the visual world. In addition to being a novel, potentially powerful testing tool, our method also represents, to our knowledge, the only available method for numerically representing verbal accounts of real-world experience. Given that its minimal requirements, i.e., a verbal description and the ground truth that elicited the description, our method has a wide variety of potential real-world applications.

  11. RankExplorer: Visualization of Ranking Changes in Large Time Series Data.

    Science.gov (United States)

    Shi, Conglei; Cui, Weiwei; Liu, Shixia; Xu, Panpan; Chen, Wei; Qu, Huamin

    2012-12-01

    For many applications involving time series data, people are often interested in the changes of item values over time as well as their ranking changes. For example, people search many words via search engines like Google and Bing every day. Analysts are interested in both the absolute searching number for each word as well as their relative rankings. Both sets of statistics may change over time. For very large time series data with thousands of items, how to visually present ranking changes is an interesting challenge. In this paper, we propose RankExplorer, a novel visualization method based on ThemeRiver to reveal the ranking changes. Our method consists of four major components: 1) a segmentation method which partitions a large set of time series curves into a manageable number of ranking categories; 2) an extended ThemeRiver view with embedded color bars and changing glyphs to show the evolution of aggregation values related to each ranking category over time as well as the content changes in each ranking category; 3) a trend curve to show the degree of ranking changes over time; 4) rich user interactions to support interactive exploration of ranking changes. We have applied our method to some real time series data and the case studies demonstrate that our method can reveal the underlying patterns related to ranking changes which might otherwise be obscured in traditional visualizations.

  12. A Novel Multi-Sensor Environmental Perception Method Using Low-Rank Representation and a Particle Filter for Vehicle Reversing Safety

    Directory of Open Access Journals (Sweden)

    Zutao Zhang

    2016-06-01

    Full Text Available Environmental perception and information processing are two key steps of active safety for vehicle reversing. Single-sensor environmental perception cannot meet the need for vehicle reversing safety due to its low reliability. In this paper, we present a novel multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety. The proposed system consists of four main steps, namely multi-sensor environmental perception, information fusion, target recognition and tracking using low-rank representation and a particle filter, and vehicle reversing speed control modules. First of all, the multi-sensor environmental perception module, based on a binocular-camera system and ultrasonic range finders, obtains the distance data for obstacles behind the vehicle when the vehicle is reversing. Secondly, the information fusion algorithm using an adaptive Kalman filter is used to process the data obtained with the multi-sensor environmental perception module, which greatly improves the robustness of the sensors. Then the framework of a particle filter and low-rank representation is used to track the main obstacles. The low-rank representation is used to optimize an objective particle template that has the smallest L-1 norm. Finally, the electronic throttle opening and automatic braking is under control of the proposed vehicle reversing control strategy prior to any potential collisions, making the reversing control safer and more reliable. The final system simulation and practical testing results demonstrate the validity of the proposed multi-sensor environmental perception method using low-rank representation and a particle filter for vehicle reversing safety.

  13. Comparison of Document Index Graph Using TextRank and HITS Weighting Method in Automatic Text Summarization

    Science.gov (United States)

    Hadyan, Fadhlil; Shaufiah; Arif Bijaksana, Moch.

    2017-01-01

    Automatic summarization is a system that can help someone to take the core information of a long text instantly. The system can help by summarizing text automatically. there’s Already many summarization systems that have been developed at this time but there are still many problems in those system. In this final task proposed summarization method using document index graph. This method utilizes the PageRank and HITS formula used to assess the web page, adapted to make an assessment of words in the sentences in a text document. The expected outcome of this final task is a system that can do summarization of a single document, by utilizing document index graph with TextRank and HITS to improve the quality of the summary results automatically.

  14. Improved variable reduction in partial least squares modelling based on predictive-property-ranked variables and adaptation of partial least squares complexity.

    Science.gov (United States)

    Andries, Jan P M; Vander Heyden, Yvan; Buydens, Lutgarde M C

    2011-10-31

    The calibration performance of partial least squares for one response variable (PLS1) can be improved by elimination of uninformative variables. Many methods are based on so-called predictive variable properties, which are functions of various PLS-model parameters, and which may change during the variable reduction process. In these methods variable reduction is made on the variables ranked in descending order for a given variable property. The methods start with full spectrum modelling. Iteratively, until a specified number of remaining variables is reached, the variable with the smallest property value is eliminated; a new PLS model is calculated, followed by a renewed ranking of the variables. The Stepwise Variable Reduction methods using Predictive-Property-Ranked Variables are denoted as SVR-PPRV. In the existing SVR-PPRV methods the PLS model complexity is kept constant during the variable reduction process. In this study, three new SVR-PPRV methods are proposed, in which a possibility for decreasing the PLS model complexity during the variable reduction process is build in. Therefore we denote our methods as PPRVR-CAM methods (Predictive-Property-Ranked Variable Reduction with Complexity Adapted Models). The selective and predictive abilities of the new methods are investigated and tested, using the absolute PLS regression coefficients as predictive property. They were compared with two modifications of existing SVR-PPRV methods (with constant PLS model complexity) and with two reference methods: uninformative variable elimination followed by either a genetic algorithm for PLS (UVE-GA-PLS) or an interval PLS (UVE-iPLS). The performance of the methods is investigated in conjunction with two data sets from near-infrared sources (NIR) and one simulated set. The selective and predictive performances of the variable reduction methods are compared statistically using the Wilcoxon signed rank test. The three newly developed PPRVR-CAM methods were able to retain

  15. Ranking of healthcare programmes based on health outcome, health costs and safe delivery of care in hospital pharmacy practice.

    Science.gov (United States)

    Brisseau, Lionel; Bussières, Jean-François; Bois, Denis; Vallée, Marc; Racine, Marie-Claude; Bonnici, André

    2013-02-01

    To establish a consensual and coherent ranking of healthcare programmes that involve the presence of ward-based and clinic-based clinical pharmacists, based on health outcome, health costs and safe delivery of care. This descriptive study was derived from a structured dialogue (Delphi technique) among directors of pharmacy department. We established a quantitative profile of healthcare programmes at five sites that involved the provision of ward-based and clinic-based pharmaceutical care. A summary table of evidence established a unique quality rating per inpatient (clinic-based) or outpatient (ward-based) healthcare programme. Each director rated the perceived impact of pharmaceutical care per inpatient or outpatient healthcare programme on three fields: health outcome, health costs and safe delivery of care. They agreed by consensus on the final ranking of healthcare programmes. A ranking was assigned for each of the 18 healthcare programmes for outpatient care and the 17 healthcare programmes for inpatient care involving the presence of pharmacists, based on health outcome, health costs and safe delivery of care. There was a good correlation between ranking based on data from a 2007-2008 Canadian report on hospital pharmacy practice and the ranking proposed by directors of pharmacy department. Given the often limited human and financial resources, managers should consider the best evidence available on a profession's impact to plan healthcare services within an organization. Data are few on ranking healthcare programmes in order to prioritize which healthcare programme would mostly benefit from the delivery of pharmaceutical care by ward-based and clinic-based pharmacists. © 2012 The Authors. IJPP © 2012 Royal Pharmaceutical Society.

  16. A Third-Rank Tensor Field Based on a U(1) Gauge Theory in Loop Space

    OpenAIRE

    Shinichi, DEGUCHI; Tadahito, NAKAJIMA; Department of Physics and Atomic Energy Research Institute College of Science and Technology; Department of Physics and Atomic Energy Research Institute College of Science and Technology

    1995-01-01

    We derive the Stueckelberg formalism extended to a third-rank tensor field from a U(1) gauge theory in loop space, the space of all loops in space-time. The third-rank tensor field is regarded as a constrained U(1) gauge field on the loop space.

  17. Rank-based characterization of pollen assemblages collected by honey bees using a multi-locus metabarcoding approach.

    Science.gov (United States)

    Richardson, Rodney T; Lin, Chia-Hua; Quijia, Juan O; Riusech, Natalia S; Goodell, Karen; Johnson, Reed M

    2015-11-01

    Difficulties inherent in microscopic pollen identification have resulted in limited implementation for large-scale studies. Metabarcoding, a relatively novel approach, could make pollen analysis less onerous; however, improved understanding of the quantitative capacity of various plant metabarcode regions and primer sets is needed to ensure that such applications are accurate and precise. We applied metabarcoding, targeting the ITS2, matK, and rbcL loci, to characterize six samples of pollen collected by honey bees, Apis mellifera. Additionally, samples were analyzed by light microscopy. We found significant rank-based associations between the relative abundance of pollen types within our samples as inferred by the two methods. Our findings suggest metabarcoding data from plastid loci, as opposed to the ribosomal locus, are more reliable for quantitative characterization of pollen assemblages. Furthermore, multilocus metabarcoding of pollen may be more reliable than single-locus analyses, underscoring the need for discovering novel barcodes and barcode combinations optimized for molecular palynology.

  18. Research Ranking of Iranian Universities of Medical Sciences Based on International Indicators: An Experience From I.R. of Iran.

    Science.gov (United States)

    Baradaran Eftekhari, Monir; Sobhani, Zahra; Eltemasi, Masoumeh; Ghalenoee, Elham; Falahat, Katayoun; Habibi, Elham; Djalalinia, Shirin; Paykari, Niloofar; Ebadifar, Asghar; Akhondzadeh, Shahin

    2017-11-01

    In recent years, international ranking systems have been used by diverse users for various purposes. In most of these rankings, different aspects of performance of universities and research institutes, especially scientific performance, have been evaluated and ranked. In this article, we aimed to report the results of research ranking of Iranian universities of medical sciences (UMSs) based on some international indicators in 2015. In this study, after reviewing the research indicators of the majority of international ranking systems, with the participation of key stakeholders, we selected eight research indicators, namely research output, high-quality publications, leadership, total citations, citations per paper in 2015, papers per faculty member and h-index. The main sources for data gathering were Scopus, PubMed, and ISI, Web of Science. Data were extracted and normalized for Iranian governmental UMSs for 2015. A total of 18023 articles were indexed in 2015 in Scopus with affiliations of UMSs affiliation. Almost 17% of all articles were published in top journals and 15% were published with international collaborations. The maximum h-index (h-index = 110) belonged to Tehran University of Medical Sciences. The average paper per faculty member was 1.14 (Max = 2.5, Min = 0.13). The mean citation per published articles in Scopus was 0.33. Research ranking of Iranian UMSs can create favorable competition among them towards knowledge production.

  19. Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes.

    Directory of Open Access Journals (Sweden)

    Christof Winter

    Full Text Available Predicting the clinical outcome of cancer patients based on the expression of marker genes in their tumors has received increasing interest in the past decade. Accurate predictors of outcome and response to therapy could be used to personalize and thereby improve therapy. However, state of the art methods used so far often found marker genes with limited prediction accuracy, limited reproducibility, and unclear biological relevance. To address this problem, we developed a novel computational approach to identify genes prognostic for outcome that couples gene expression measurements from primary tumor samples with a network of known relationships between the genes. Our approach ranks genes according to their prognostic relevance using both expression and network information in a manner similar to Google's PageRank. We applied this method to gene expression profiles which we obtained from 30 patients with pancreatic cancer, and identified seven candidate marker genes prognostic for outcome. Compared to genes found with state of the art methods, such as Pearson correlation of gene expression with survival time, we improve the prediction accuracy by up to 7%. Accuracies were assessed using support vector machine classifiers and Monte Carlo cross-validation. We then validated the prognostic value of our seven candidate markers using immunohistochemistry on an independent set of 412 pancreatic cancer samples. Notably, signatures derived from our candidate markers were independently predictive of outcome and superior to established clinical prognostic factors such as grade, tumor size, and nodal status. As the amount of genomic data of individual tumors grows rapidly, our algorithm meets the need for powerful computational approaches that are key to exploit these data for personalized cancer therapies in clinical practice.

  20. In Silico target fishing: addressing a "Big Data" problem by ligand-based similarity rankings with data fusion.

    Science.gov (United States)

    Liu, Xian; Xu, Yuan; Li, Shanshan; Wang, Yulan; Peng, Jianlong; Luo, Cheng; Luo, Xiaomin; Zheng, Mingyue; Chen, Kaixian; Jiang, Hualiang

    2014-01-01

    Ligand-based in silico target fishing can be used to identify the potential interacting target of bioactive ligands, which is useful for understanding the polypharmacology and safety profile of existing drugs. The underlying principle of the approach is that known bioactive ligands can be used as reference to predict the targets for a new compound. We tested a pipeline enabling large-scale target fishing and drug repositioning, based on simple fingerprint similarity rankings with data fusion. A large library containing 533 drug relevant targets with 179,807 active ligands was compiled, where each target was defined by its ligand set. For a given query molecule, its target profile is generated by similarity searching against the ligand sets assigned to each target, for which individual searches utilizing multiple reference structures are then fused into a single ranking list representing the potential target interaction profile of the query compound. The proposed approach was validated by 10-fold cross validation and two external tests using data from DrugBank and Therapeutic Target Database (TTD). The use of the approach was further demonstrated with some examples concerning the drug repositioning and drug side-effects prediction. The promising results suggest that the proposed method is useful for not only finding promiscuous drugs for their new usages, but also predicting some important toxic liabilities. With the rapid increasing volume and diversity of data concerning drug related targets and their ligands, the simple ligand-based target fishing approach would play an important role in assisting future drug design and discovery.

  1. Designing fuzzy expert system for creating and ranking of tourism scenarios using fuzzy AHP method

    Directory of Open Access Journals (Sweden)

    Zohre Nikkhah

    2011-01-01

    Full Text Available One of the most important activities of tour and travel agencies is to select the appropriate tour configuration. There are normally two primary objectives of season and time period to set a group of cities called designing tour scenarios. The success of tour scenarios is deeply related to the experiments and wisdom of the experts and planners in travel agencies. This paper presents a fuzzy rule decision making to find the suitable set of cities where different possible criteria are ranked using analytical hierarchy procedure. The proposed model of this paper is applied for a real-world case study of Iranian tour agency and the results are analyzed under different circumstances.

  2. Ranking multiple docking solutions based on the conservation of inter-residue contacts

    KAUST Repository

    Oliva, Romina M.; Vangone, Anna; Cavallo, Luigi

    2013-01-01

    ) conformations in the top positions is still an open problem. Herein we present CONSRANK, a simple and effective tool to rank multiple docking solutions, which relies on the conservation of inter-residue contacts in the analyzed decoys ensemble. First

  3. Personalized PageRank Clustering: A graph clustering algorithm based on random walks

    Science.gov (United States)

    A. Tabrizi, Shayan; Shakery, Azadeh; Asadpour, Masoud; Abbasi, Maziar; Tavallaie, Mohammad Ali

    2013-11-01

    Graph clustering has been an essential part in many methods and thus its accuracy has a significant effect on many applications. In addition, exponential growth of real-world graphs such as social networks, biological networks and electrical circuits demands clustering algorithms with nearly-linear time and space complexity. In this paper we propose Personalized PageRank Clustering (PPC) that employs the inherent cluster exploratory property of random walks to reveal the clusters of a given graph. We combine random walks and modularity to precisely and efficiently reveal the clusters of a graph. PPC is a top-down algorithm so it can reveal inherent clusters of a graph more accurately than other nearly-linear approaches that are mainly bottom-up. It also gives a hierarchy of clusters that is useful in many applications. PPC has a linear time and space complexity and has been superior to most of the available clustering algorithms on many datasets. Furthermore, its top-down approach makes it a flexible solution for clustering problems with different requirements.

  4. A Ranking Approach to Genomic Selection.

    Science.gov (United States)

    Blondel, Mathieu; Onogi, Akio; Iwata, Hiroyoshi; Ueda, Naonori

    2015-01-01

    Genomic selection (GS) is a recent selective breeding method which uses predictive models based on whole-genome molecular markers. Until now, existing studies formulated GS as the problem of modeling an individual's breeding value for a particular trait of interest, i.e., as a regression problem. To assess predictive accuracy of the model, the Pearson correlation between observed and predicted trait values was used. In this paper, we propose to formulate GS as the problem of ranking individuals according to their breeding value. Our proposed framework allows us to employ machine learning methods for ranking which had previously not been considered in the GS literature. To assess ranking accuracy of a model, we introduce a new measure originating from the information retrieval literature called normalized discounted cumulative gain (NDCG). NDCG rewards more strongly models which assign a high rank to individuals with high breeding value. Therefore, NDCG reflects a prerequisite objective in selective breeding: accurate selection of individuals with high breeding value. We conducted a comparison of 10 existing regression methods and 3 new ranking methods on 6 datasets, consisting of 4 plant species and 25 traits. Our experimental results suggest that tree-based ensemble methods including McRank, Random Forests and Gradient Boosting Regression Trees achieve excellent ranking accuracy. RKHS regression and RankSVM also achieve good accuracy when used with an RBF kernel. Traditional regression methods such as Bayesian lasso, wBSR and BayesC were found less suitable for ranking. Pearson correlation was found to correlate poorly with NDCG. Our study suggests two important messages. First, ranking methods are a promising research direction in GS. Second, NDCG can be a useful evaluation measure for GS.

  5. An Integrated MCDM Method in Ranking BSC Perspectives and key Performance Indicators (KPIs

    Directory of Open Access Journals (Sweden)

    Mohsen Alvandi

    2012-04-01

    Full Text Available The balanced scorecard (BSC approach is an effective technique for performance evaluation. BSC can better reflect the dependence and feedback problems of each factor in real world situations. This study aims at developing a set of appropriate key performance indicators according to (BSC approach for SAPCO using multiple criteria decision making(MCDM method. We provide key performance indicators through literature reviews and experts' idea in SAPCO, which is one of the biggest vehicle spare suppliers in Iran. The proposed study uses decision making trial and evaluation laboratory (DEMATEL and analytic network process (ANP, respectively to measure the casual relationship between the perspectives as well as the relative weights. The results based on ANP method shows that ‘‘Customer’’ is the most influential factor. In addition, internal process, financial and learning and growth are in two to four positions. Three important key performance indicators are as bellow: Total price of parts, Customer satisfaction and Lack of parts in production.

  6. An empirical investigation on ranking financial risk factors using AHP method

    Directory of Open Access Journals (Sweden)

    Hassan Ghodrati

    2014-05-01

    Full Text Available This paper determines and ranks financial risk factors in Iranian corporations, using analytical hierarchy process (AHP. The present research includes one main question and four sub- questions. Its universe population includes managers, production and financial personnel of great corporations activating in Tehran Stock Exchange, who were selected to explain importance and weight of economic risks indices. The source of great corporations recognition is the Companies Registration Organization in Tehran Province, and according to this, there are 120 corporations. The results have indicated that financing risk maintains the highest priority followed by credit risk, liquidity risk, inflation risk and exchange risk. In terms of different risks associated with financing risk, risk of profit per share has been the number one priority followed by the risk of divisional profit per share, the risk of recessionary or boom and the risk of increasing partial pay profit rate. In terms of credit risk, the risk of loan has been number one priority followed by the risk of inability of loan payment and interest payment. Liquidity risk is another risk factor where demand has been the most important factor followed by rules and regulations and inflation risk. In terms of inflation, producers price risk has been the most important factor followed by consumer price risk, gross domestic product and producers price risk. Finally, in terms of different factors influencing exchange risk, export related issues are considered as the most important factors.

  7. CONSRANK: a server for the analysis, comparison and ranking of docking models based on inter-residue contacts

    KAUST Repository

    Chermak, Edrisse; Petta, A.; Serra, L.; Vangone, A.; Scarano, V.; Cavallo, Luigi; Oliva, R.

    2014-01-01

    Summary: Herein, we present CONSRANK, a web tool for analyzing, comparing and ranking protein–protein and protein–nucleic acid docking models, based on the conservation of inter-residue contacts and its visualization in 2D and 3D interactive contact maps.

  8. CONSRANK: a server for the analysis, comparison and ranking of docking models based on inter-residue contacts

    KAUST Repository

    Chermak, Edrisse

    2014-12-21

    Summary: Herein, we present CONSRANK, a web tool for analyzing, comparing and ranking protein–protein and protein–nucleic acid docking models, based on the conservation of inter-residue contacts and its visualization in 2D and 3D interactive contact maps.

  9. Local constructions of gender-based violence amongst IDPs in northern Uganda: analysis of archival data collected using a gender- and age-segmented participatory ranking methodology.

    Science.gov (United States)

    Ager, Alastair; Bancroft, Carolyn; Berger, Elizabeth; Stark, Lindsay

    2018-01-01

    Gender-based violence (GBV) is a significant problem in conflict-affected settings. Understanding local constructions of such violence is crucial to developing preventive and responsive interventions to address this issue. This study reports on a secondary analysis of archived data collected as part of formative qualitative work - using a group participatory ranking methodology (PRM) - informing research on the prevalence of GBV amongst IDPs in northern Uganda in 2006. Sixty-four PRM group discussions were held with women, with men, with girls (aged 14 to 18 years), and with boys (aged 14 to 18 years) selected on a randomized basis across four internally displaced persons (IDP) camps in Lira District. Discussions elicited problems facing women in the camps, and - through structured participatory methods - consensus ranking of their importance and narrative accounts explaining these judgments. Amongst forms of GBV faced by women, rape was ranked as the greatest concern amongst participants (with a mean problem rank of 3.4), followed by marital rape (mean problem rank of 4.5) and intimate partner violence (mean problem rank of 4.9). Girls ranked all forms of GBV as higher priority concerns than other participants. Discussions indicated that these forms of GBV were generally considered normalized within the camp. Gender roles and power, economic deprivation, and physical and social characteristics of the camp setting emerged as key explanatory factors in accounts of GBV prevalence, although these played out in different ways with respect to differing forms of violence. All groups acknowledged GBV to represent a significant threat - among other major concerns such as transportation, water, shelter, food and security - for women residing in the camps. Given evidence of the significantly higher risk in the camp of intimate partner violence and marital rape, the relative prominence of the issue of rape in all rankings suggests normalization of violence within the home

  10. Generalization Performance of Regularized Ranking With Multiscale Kernels.

    Science.gov (United States)

    Zhou, Yicong; Chen, Hong; Lan, Rushi; Pan, Zhibin

    2016-05-01

    The regularized kernel method for the ranking problem has attracted increasing attentions in machine learning. The previous regularized ranking algorithms are usually based on reproducing kernel Hilbert spaces with a single kernel. In this paper, we go beyond this framework by investigating the generalization performance of the regularized ranking with multiscale kernels. A novel ranking algorithm with multiscale kernels is proposed and its representer theorem is proved. We establish the upper bound of the generalization error in terms of the complexity of hypothesis spaces. It shows that the multiscale ranking algorithm can achieve satisfactory learning rates under mild conditions. Experiments demonstrate the effectiveness of the proposed method for drug discovery and recommendation tasks.

  11. Identifying and ranking implicit leadership strategies to promote evidence-based practice implementation in addiction health services.

    Science.gov (United States)

    Guerrero, Erick G; Padwa, Howard; Fenwick, Karissa; Harris, Lesley M; Aarons, Gregory A

    2016-05-14

    Despite a solid research base supporting evidence-based practices (EBPs) for addiction treatment such as contingency management and medication-assisted treatment, these services are rarely implemented and delivered in community-based addiction treatment programs in the USA. As a result, many clients do not benefit from the most current and efficacious treatments, resulting in reduced quality of care and compromised treatment outcomes. Previous research indicates that addiction program leaders play a key role in supporting EBP adoption and use. The present study expanded on this previous work to identify strategies that addiction treatment program leaders report using to implement new practices. We relied on a staged and iterative mixed-methods approach to achieve the following four goals: (a) collect data using focus groups and semistructured interviews and conduct analyses to identify implicit managerial strategies for implementation, (b) use surveys to quantitatively rank strategy effectiveness, (c) determine how strategies fit with existing theories of organizational management and change, and (d) use a consensus group to corroborate and expand on the results of the previous three stages. Each goal corresponded to a methodological phase, which included data collection and analytic approaches to identify and evaluate leadership interventions that facilitate EBP implementation in community-based addiction treatment programs. Findings show that the top-ranked strategies involved the recruitment and selection of staff members receptive to change, offering support and requesting feedback during the implementation process, and offering in vivo and hands-on training. Most strategies corresponded to emergent implementation leadership approaches that also utilize principles of transformational and transactional leadership styles. Leadership behaviors represented orientations such as being proactive to respond to implementation needs, supportive to assist staff members

  12. Ranking of concern, based on environmental indexes, for pharmaceutical and personal care products: an application to the Spanish case.

    Science.gov (United States)

    Ortiz de García, Sheyla; Pinto, Gilberto Pinto; García-Encina, Pedro A; Irusta Mata, Rubén I

    2013-11-15

    A wide range of Pharmaceuticals and Personal Care Products (PPCPs) are present in the environment, and many of their adverse effects are unknown. The emergence of new compounds or changes in regulations have led to dynamical studies of occurrence, impact and treatment, which consider geographical areas and trends in consumption and innovation in the pharmaceutical industry. A Quantitative study of Structure-Activity Relationship ((Q)SAR) was performed to assess the possible adverse effects of ninety six PPCPs and metabolites with negligible experimental data and establish a ranking of concern, which was supported by the EPA EPI Suite™ interface. The environmental and toxicological indexes, the persistence (P), the bioaccumulation (B), the toxicity (T) (extensive) and the occurrence in Spanish aquatic environments (O) (intensive) were evaluated. The most hazardous characteristics in the largest number of compounds were generated by the P index, followed by the T and B indexes. A high number of metabolites has a concern score equal to or greater than their parent compounds. Three PBT and OPBT rankings of concern were proposed using the total and partial ranking method (supported by a Hasse diagram) by the Decision Analysis by Ranking Techniques (DART) tool, which was recently recommended by the European Commission. An analysis of the sensibility of the relative weights of these indexes has been conducted. Hormones, antidepressants (and their metabolites), blood lipid regulators and all of the personal care products considered in this study were at the highest levels of risk according to the PBT and OPBT total rankings. Furthermore, when the OPBT partial ranking was performed, X-ray contrast media, H2 blockers and some antibiotics were included at the highest level of concern. It is important to improve and incorporate useful indexes for the predicted environmental impact of PPCPs and metabolites and thus focus experimental analysis on the compounds that require

  13. An evaluation of the use of the dry-weight-rank and the comparative yield biomass estimation methods in paramo ecosystem research

    Directory of Open Access Journals (Sweden)

    Hofstede Robert G.M.

    1993-12-01

    Full Text Available The use of the combination of the semi-destructive comparative yield method for overall biomass estimation and the non- destructive dry-weight-rank method for studying botanical composition on a dry weight basis in an undisturbed páramo vegetation in the Los Nevados national park (Colombian Central Cordillera was evaluated. These methods, developed for Australian production grasslands, were adapted for use in the páramo ecosystem. The average above ground biomass in the area was estimated as 2864 g dryweight. m-2 (sd.48, of which the bunchgrass Calamagrostis effusa contributed with ca 70%. When used with some adaptations, the comparative yield method seems suitable for biomass estimations in the páramo ecosystem. The here presented estimation of botanical eomposition with this method gave better results than dry-weight-rank method, which had too many shortcomings for use in the complex páramo grassland ecosystem.Se evaluó la aplicabilidad de una combinación de dos étodos para estimar la biomasa  general y la composición botánica, en una vegetación natural paramuna en el Parque Nacional Natural los Nevados (Cordillera Central de Colombia. El primer método (ecomparative yield determina la biomasa general, destruyendo parcialmente la vegetación de los cuadrantes de muestreo y el segundo (dryweight rank determina la composición botánica con base en el peso seco, sin destruir la vegetación. Estos métodos, inicialmente desarrollados para pajonales forrajeros en Australia, se adaptaron para ser utilizados en el ecosistema paramuno. Como resultado se obtuvo una estimación de la biomasa aérea de 2864 g peso seco m2 (desviación stándard 48 en la cual, la gramínea Calamagrostis effusa contribuyó con el 70%. Puede concluirse que el método de producción comparativa es útil para estimar la biomasa en el ecosistema paramuno, siempre y cuando se utilicen las adaptaciones mencionadas. Por otra parte la estimación de la composición bot

  14. Ranking provinces based on development scale in agriculture sector using taxonomy technique

    Directory of Open Access Journals (Sweden)

    Shahram Rostampour

    2012-08-01

    Full Text Available The purpose of this paper is to determine comparative ranking of agricultural development in different provinces of Iran using taxonomy technique. The independent variables are amount of annual rainfall amount, the number of permanent rivers, the width of pastures and forest, cultivated level of agricultural harvests and garden harvests, number of beehives, the number of fish farming ranches, the number of tractors and combines, the number of cooperative production societies, the number of industrial cattle breeding and aviculture. The results indicate that the maximum development coefficient value is associated with Razavi Khorasan province followed by Mazandaran, East Azarbayjan while the minimum ranking value belongs to Bushehr province.

  15. Rank-based characterization of pollen assemblages collected by honey bees using a multi-locus metabarcoding approach1

    Science.gov (United States)

    Richardson, Rodney T.; Lin, Chia-Hua; Quijia, Juan O.; Riusech, Natalia S.; Goodell, Karen; Johnson, Reed M.

    2015-01-01

    Premise of the study: Difficulties inherent in microscopic pollen identification have resulted in limited implementation for large-scale studies. Metabarcoding, a relatively novel approach, could make pollen analysis less onerous; however, improved understanding of the quantitative capacity of various plant metabarcode regions and primer sets is needed to ensure that such applications are accurate and precise. Methods and Results: We applied metabarcoding, targeting the ITS2, matK, and rbcL loci, to characterize six samples of pollen collected by honey bees, Apis mellifera. Additionally, samples were analyzed by light microscopy. We found significant rank-based associations between the relative abundance of pollen types within our samples as inferred by the two methods. Conclusions: Our findings suggest metabarcoding data from plastid loci, as opposed to the ribosomal locus, are more reliable for quantitative characterization of pollen assemblages. Furthermore, multilocus metabarcoding of pollen may be more reliable than single-locus analyses, underscoring the need for discovering novel barcodes and barcode combinations optimized for molecular palynology. PMID:26649264

  16. Low-rank extremal positive-partial-transpose states and unextendible product bases

    International Nuclear Information System (INIS)

    Leinaas, Jon Magne; Sollid, Per Oyvind; Myrheim, Jan

    2010-01-01

    It is known how to construct, in a bipartite quantum system, a unique low-rank entangled mixed state with positive partial transpose (a PPT state) from an unextendible product basis (UPB), defined as an unextendible set of orthogonal product vectors. We point out that a state constructed in this way belongs to a continuous family of entangled PPT states of the same rank, all related by nonsingular unitary or nonunitary product transformations. The characteristic property of a state ρ in such a family is that its kernel Ker ρ has a generalized UPB, a basis of product vectors, not necessarily orthogonal, with no product vector in Im ρ, the orthogonal complement of Ker ρ. The generalized UPB in Ker ρ has the special property that it can be transformed to orthogonal form by a product transformation. In the case of a system of dimension 3x3, we give a complete parametrization of orthogonal UPBs. This is then a parametrization of families of rank 4 entangled (and extremal) PPT states, and we present strong numerical evidence that it is a complete classification of such states. We speculate that the lowest rank entangled and extremal PPT states also in higher dimensions are related to generalized, nonorthogonal UPBs in similar ways.

  17. A Distributed Taxation Based Rank Adaptation Scheme for 5G Small Cells

    DEFF Research Database (Denmark)

    Catania, Davide; Cattoni, Andrea Fabio; Mahmood, Nurul Huda

    2015-01-01

    The further densification of small cells impose high and undesirable levels of inter-cell interference. Multiple Input Multiple Output (MIMO) systems along with advanced receiver techniques provide us with extra degrees of freedom to combat such a problem. With such tools, rank adaptation...

  18. Stakeholder Perspectives on Citation and Peer-Based Rankings of Higher Education Journals

    Science.gov (United States)

    Wilkins, Stephen; Huisman, Jeroen

    2015-01-01

    The purpose of this article is to identify and discuss the possible uses of higher education journal rankings, and the associated advantages and disadvantages of using them. The research involved 40 individuals--lecturers, university managers, journal editors and publishers--who represented a range of stakeholders involved with research into…

  19. Man-Made Object Extraction from Remote Sensing Imagery by Graph-Based Manifold Ranking

    Science.gov (United States)

    He, Y.; Wang, X.; Hu, X. Y.; Liu, S. H.

    2018-04-01

    The automatic extraction of man-made objects from remote sensing imagery is useful in many applications. This paper proposes an algorithm for extracting man-made objects automatically by integrating a graph model with the manifold ranking algorithm. Initially, we estimate a priori value of the man-made objects with the use of symmetric and contrast features. The graph model is established to represent the spatial relationships among pre-segmented superpixels, which are used as the graph nodes. Multiple characteristics, namely colour, texture and main direction, are used to compute the weights of the adjacent nodes. Manifold ranking effectively explores the relationships among all the nodes in the feature space as well as initial query assignment; thus, it is applied to generate a ranking map, which indicates the scores of the man-made objects. The man-made objects are then segmented on the basis of the ranking map. Two typical segmentation algorithms are compared with the proposed algorithm. Experimental results show that the proposed algorithm can extract man-made objects with high recognition rate and low omission rate.

  20. A hybrid method of grey relational analysis and data envelopment analysis for evaluating and selecting efficient suppliers plus a novel ranking method for grey numbers

    Directory of Open Access Journals (Sweden)

    Mohsen Sayyah Markabi

    2014-10-01

    Full Text Available Purpose: Evaluation and selection of efficient suppliers is one of the key issues in supply chain management which depends on wide range of qualitative and quantitative criteria. The aim of this research is to develop a mathematical model for evaluating and selecting efficient suppliers when faced with supply and demand uncertainties.Design/methodology/approach: In this research Grey Relational Analysis (GRA and Data Envelopment Analysis (DEA are used to evaluate and select efficient suppliers under uncertainties. Furthermore, a novel ranking method is introduced for the units that their efficiencies are obtained in the form of interval grey numbers.Findings: The study indicates that the proposed model in addition to providing satisfactory and acceptable results avoids time-consuming computations and consequently reduces the solution time. To name another advantage of the proposed model, we can point out that it enables us to make decision based on different levels of risk.Originality/value: The paper presents a mathematical model for evaluating and selecting efficient suppliers in a stochastic environment so that companies can use in order to make better decisions.

  1. Ranking scientific publications: the effect of nonlinearity

    Science.gov (United States)

    Yao, Liyang; Wei, Tian; Zeng, An; Fan, Ying; di, Zengru

    2014-10-01

    Ranking the significance of scientific publications is a long-standing challenge. The network-based analysis is a natural and common approach for evaluating the scientific credit of papers. Although the number of citations has been widely used as a metric to rank papers, recently some iterative processes such as the well-known PageRank algorithm have been applied to the citation networks to address this problem. In this paper, we introduce nonlinearity to the PageRank algorithm when aggregating resources from different nodes to further enhance the effect of important papers. The validation of our method is performed on the data of American Physical Society (APS) journals. The results indicate that the nonlinearity improves the performance of the PageRank algorithm in terms of ranking effectiveness, as well as robustness against malicious manipulations. Although the nonlinearity analysis is based on the PageRank algorithm, it can be easily extended to other iterative ranking algorithms and similar improvements are expected.

  2. Ranking scientific publications: the effect of nonlinearity.

    Science.gov (United States)

    Yao, Liyang; Wei, Tian; Zeng, An; Fan, Ying; Di, Zengru

    2014-10-17

    Ranking the significance of scientific publications is a long-standing challenge. The network-based analysis is a natural and common approach for evaluating the scientific credit of papers. Although the number of citations has been widely used as a metric to rank papers, recently some iterative processes such as the well-known PageRank algorithm have been applied to the citation networks to address this problem. In this paper, we introduce nonlinearity to the PageRank algorithm when aggregating resources from different nodes to further enhance the effect of important papers. The validation of our method is performed on the data of American Physical Society (APS) journals. The results indicate that the nonlinearity improves the performance of the PageRank algorithm in terms of ranking effectiveness, as well as robustness against malicious manipulations. Although the nonlinearity analysis is based on the PageRank algorithm, it can be easily extended to other iterative ranking algorithms and similar improvements are expected.

  3. Ranking Method for Peak-Load Shifting Considering Different Types of Data

    DEFF Research Database (Denmark)

    Wang, Peng; Wen, Fushuan; Pinson, Pierre

    2016-01-01

    , an evaluation system for the purpose of peak-load shifting is established from three aspects: economic, social, and environmental impacts. Then a mixed-data dominance method is employed in this work to determine the comprehensive closeness degree of each user under each index, and an optimal comprehensive...

  4. MEDRank: using graph-based concept ranking to index biomedical texts.

    Science.gov (United States)

    Herskovic, Jorge R; Cohen, Trevor; Subramanian, Devika; Iyengar, M Sriram; Smith, Jack W; Bernstam, Elmer V

    2011-06-01

    As the volume of biomedical text increases exponentially, automatic indexing becomes increasingly important. However, existing approaches do not distinguish central (or core) concepts from concepts that were mentioned in passing. We focus on the problem of indexing MEDLINE records, a process that is currently performed by highly trained humans at the National Library of Medicine (NLM). NLM indexers are assisted by a system called the Medical Text Indexer (MTI) that suggests candidate indexing terms. To improve the ability of MTI to select the core terms in MEDLINE abstracts. These core concepts are deemed to be most important and are designated as "major headings" by MEDLINE indexers. We introduce and evaluate a graph-based indexing methodology called MEDRank that generates concept graphs from biomedical text and then ranks the concepts within these graphs to identify the most important ones. We insert a MEDRank step into the MTI and compare MTI's output with and without MEDRank to the MEDLINE indexers' selected terms for a sample of 11,803 PubMed Central articles. We also tested whether human raters prefer terms generated by the MEDLINE indexers, MTI without MEDRank, and MTI with MEDRank for a sample of 36 PubMed Central articles. MEDRank improved recall of major headings designated by 30% over MTI without MEDRank (0.489 vs. 0.376). Overall recall was only slightly (6.5%) higher (0.490 vs. 0.460) as was F(2) (3%, 0.408 vs. 0.396). However, overall precision was 3.9% lower (0.268 vs. 0.279). Human raters preferred terms generated by MTI with MEDRank over terms generated by MTI without MEDRank (by an average of 1.00 more term per article), and preferred terms generated by MTI with MEDRank and the MEDLINE indexers at the same rate. The addition of MEDRank to MTI significantly improved the retrieval of core concepts in MEDLINE abstracts and more closely matched human expectations compared to MTI without MEDRank. In addition, MEDRank slightly improved overall recall

  5. Dynamic PET reconstruction using temporal patch-based low rank penalty for ROI-based brain kinetic analysis

    International Nuclear Information System (INIS)

    Kim, Kyungsang; Ye, Jong Chul; Son, Young Don; Cho, Zang Hee; Bresler, Yoram; Ra, Jong Beom

    2015-01-01

    Dynamic positron emission tomography (PET) is widely used to measure changes in the bio-distribution of radiopharmaceuticals within particular organs of interest over time. However, to retain sufficient temporal resolution, the number of photon counts in each time frame must be limited. Therefore, conventional reconstruction algorithms such as the ordered subset expectation maximization (OSEM) produce noisy reconstruction images, thus degrading the quality of the extracted time activity curves (TACs). To address this issue, many advanced reconstruction algorithms have been developed using various spatio-temporal regularizations. In this paper, we extend earlier results and develop a novel temporal regularization, which exploits the self-similarity of patches that are collected in dynamic images. The main contribution of this paper is to demonstrate that the correlation of patches can be exploited using a low-rank constraint that is insensitive to global intensity variations. The resulting optimization framework is, however, non-Lipschitz and non-convex due to the Poisson log-likelihood and low-rank penalty terms. Direct application of the conventional Poisson image deconvolution by an augmented Lagrangian (PIDAL) algorithm is, however, problematic due to its large memory requirements, which prevents its parallelization. Thus, we propose a novel optimization framework using the concave-convex procedure (CCCP) by exploiting the Legendre–Fenchel transform, which is computationally efficient and parallelizable. In computer simulation and a real in vivo experiment using a high-resolution research tomograph (HRRT) scanner, we confirm that the proposed algorithm can improve image quality while also extracting more accurate region of interests (ROI) based kinetic parameters. Furthermore, we show that the total reconstruction time for HRRT PET is significantly accelerated using our GPU implementation, which makes the algorithm very practical in clinical environments

  6. A Method on the Item Investment Risk Interval Decision-making of Processing Ranking Style

    Institute of Scientific and Technical Information of China (English)

    CHEN Li-wen

    2002-01-01

    In this paper, on the bases of the defeot of riskful type and indefinite type decisions, the concept of the type of item investment probability scheduling decision is given, and a linear programming model and its solution are made out. The feasibility of probability scheduling type item investment plan is studied by applying the quality of interval arithmetic.

  7. A collaborative filtering recommendation algorithm based on weighted SimRank and social trust

    Science.gov (United States)

    Su, Chang; Zhang, Butao

    2017-05-01

    Collaborative filtering is one of the most widely used recommendation technologies, but the data sparsity and cold start problem of collaborative filtering algorithms are difficult to solve effectively. In order to alleviate the problem of data sparsity in collaborative filtering algorithm, firstly, a weighted improved SimRank algorithm is proposed to compute the rating similarity between users in rating data set. The improved SimRank can find more nearest neighbors for target users according to the transmissibility of rating similarity. Then, we build trust network and introduce the calculation of trust degree in the trust relationship data set. Finally, we combine rating similarity and trust to build a comprehensive similarity in order to find more appropriate nearest neighbors for target user. Experimental results show that the algorithm proposed in this paper improves the recommendation precision of the Collaborative algorithm effectively.

  8. Microseismic Event Grouping Based on PageRank Linkage at the Newberry Volcano Geothermal Site

    Science.gov (United States)

    Aguiar, A. C.; Myers, S. C.

    2016-12-01

    The Newberry Volcano DOE FORGE site in Central Oregon has been stimulated two times using high-pressure fluid injection to study the Enhanced Geothermal Systems (EGS) technology. Several hundred microseismic events were generated during the first stimulation in the fall of 2012. Initial locations of this microseismicity do not show well defined subsurface structure in part because event location uncertainties are large (Foulger and Julian, 2013). We focus on this stimulation to explore the spatial and temporal development of microseismicity, which is key to understanding how subsurface stimulation modifies stress, fractures rock, and increases permeability. We use PageRank, Google's initial search algorithm, to determine connectivity within the events (Aguiar and Beroza, 2014) and assess signal-correlation topology for the micro-earthquakes. We then use this information to create signal families and compare these to the spatial and temporal proximity of associated earthquakes. We relocate events within families (identified by PageRank linkage) using the Bayesloc approach (Myers et al., 2007). Preliminary relocations show tight spatial clustering of event families as well as evidence of events relocating to a different cluster than originally reported. We also find that signal similarity (linkage) at several stations, not just one or two, is needed in order to determine that events are in close proximity to one another. We show that indirect linkage of signals using PageRank is a reliable way to increase the number of events that are confidently determined to be similar to one another, which may lead to efficient and effective grouping of earthquakes with similar physical characteristics, such as focal mechanisms and stress drop. Our ultimate goal is to determine whether changes in the state of stress and/or changes in the generation of subsurface fracture networks can be detected using PageRank topology as well as aid in the event relocation to obtain more accurate

  9. AN EXCEL-BASED DECISION SUPPORT SYSTEM FOR SCORING AND RANKING PROPOSED R&D PROJECTS

    OpenAIRE

    ANNE DE PIANTE HENRIKSEN; SUSAN W. PALOCSAY

    2008-01-01

    One of the most challenging aspects of technology management is the selection of research and development (R&D) projects from among a group of proposals. This paper introduces an interactive, user-friendly decision support system for evaluating and ranking R&D projects and demonstrates its application on an example R&D program. It employs the scoring methodology developed by Henriksen and Traynor to provide a practical technique that considers both project merit and project cost in the evalua...

  10. Study on the feature of the Fortune 500 and the enlightenment basing on the 2014 ranking

    OpenAIRE

    Xue, Mingyue; Zhang, Zhifeng

    2015-01-01

    The world’s 500 biggest companies have drawn more and more attention since the journal Fortune started the ranking, Summarize the law of development of the world top 500 enterprises to develop China's enterprises has an important reference and enlightenment function. This paper carries on an overall analysis of the world’s 500 biggest companies, summarizes the shortcomings of Chinese largest companies and offers suggestions to the process and strategy towards the world’s 500 for Chinese enter...

  11. Ranking REACH registered neutral, ionizable and ionic organic chemicals based on their aquatic persistency and mobility.

    Science.gov (United States)

    Arp, H P H; Brown, T N; Berger, U; Hale, S E

    2017-07-19

    The contaminants that have the greatest chances of appearing in drinking water are those that are mobile enough in the aquatic environment to enter drinking water sources and persistent enough to survive treatment processes. Herein a screening procedure to rank neutral, ionizable and ionic organic compounds for being persistent and mobile organic compounds (PMOCs) is presented and applied to the list of industrial substances registered under the EU REACH legislation as of December 2014. This comprised 5155 identifiable, unique organic structures. The minimum cut-off criteria considered for PMOC classification herein are a freshwater half-life >40 days, which is consistent with the REACH definition of freshwater persistency, and a log D oc water distribution coefficient). Experimental data were given the highest priority, followed by data from an array of available quantitative structure-activity relationships (QSARs), and as a third resort, an original Iterative Fragment Selection (IFS) QSAR. In total, 52% of the unique REACH structures made the minimum criteria to be considered a PMOC, and 21% achieved the highest PMOC ranking (half-life > 40 days, log D oc freshwater persistency, which was also the parameter that QSARs performed the most poorly at predicting. Several prioritized drinking water contaminants in the EU and USA, and other contaminants of concern, were identified as PMOCs. This identification and ranking procedure for PMOCs can be part of a strategy to better identify contaminants that pose a threat to drinking water sources.

  12. Learning to Recommend Point-of-Interest with the Weighted Bayesian Personalized Ranking Method in LBSNs

    OpenAIRE

    Lei Guo; Haoran Jiang; Xinhua Wang; Fangai Liu

    2017-01-01

    Point-of-interest (POI) recommendation has been well studied in recent years. However, most of the existing methods focus on the recommendation scenarios where users can provide explicit feedback. In most cases, however, the feedback is not explicit, but implicit. For example, we can only get a user’s check-in behaviors from the history of what POIs she/he has visited, but never know how much she/he likes and why she/he does not like them. Recently, some researchers have noticed this problem ...

  13. Ranking the types of intersections for assessing the safety of pedestrians using TOPSIS method

    Directory of Open Access Journals (Sweden)

    Călin ŞERBU

    2014-11-01

    Full Text Available Every year, more than 1500 accidents with pedestrian occur in the intersections in Romania. The number of accidents involving pedestrians in roundabouts intersections type increased approximately three times in 2013 compared to 2009 in Romania. This alarming increase led to the need of assessing the safety of pedestrians in intersections with or without safety systems. The safety systems for pedestrians and drivers include: the road marking, the pedestrian crossings marking, signal intersections with road signs, traffic lights or pedestrian safety barriers. We propose to assess the types of intersections with TOPSIS method.

  14. University Rankings: The Web Ranking

    Science.gov (United States)

    Aguillo, Isidro F.

    2012-01-01

    The publication in 2003 of the Ranking of Universities by Jiao Tong University of Shanghai has revolutionized not only academic studies on Higher Education, but has also had an important impact on the national policies and the individual strategies of the sector. The work gathers the main characteristics of this and other global university…

  15. A tilting approach to ranking influence

    KAUST Repository

    Genton, Marc G.

    2014-12-01

    We suggest a new approach, which is applicable for general statistics computed from random samples of univariate or vector-valued or functional data, to assessing the influence that individual data have on the value of a statistic, and to ranking the data in terms of that influence. Our method is based on, first, perturbing the value of the statistic by ‘tilting’, or reweighting, each data value, where the total amount of tilt is constrained to be the least possible, subject to achieving a given small perturbation of the statistic, and, then, taking the ranking of the influence of data values to be that which corresponds to ranking the changes in data weights. It is shown, both theoretically and numerically, that this ranking does not depend on the size of the perturbation, provided that the perturbation is sufficiently small. That simple result leads directly to an elegant geometric interpretation of the ranks; they are the ranks of the lengths of projections of the weights onto a ‘line’ determined by the first empirical principal component function in a generalized measure of covariance. To illustrate the generality of the method we introduce and explore it in the case of functional data, where (for example) it leads to generalized boxplots. The method has the advantage of providing an interpretable ranking that depends on the statistic under consideration. For example, the ranking of data, in terms of their influence on the value of a statistic, is different for a measure of location and for a measure of scale. This is as it should be; a ranking of data in terms of their influence should depend on the manner in which the data are used. Additionally, the ranking recognizes, rather than ignores, sign, and in particular can identify left- and right-hand ‘tails’ of the distribution of a random function or vector.

  16. Low-rank canonical-tensor decomposition of potential energy surfaces: application to grid-based diagrammatic vibrational Green's function theory

    Science.gov (United States)

    Rai, Prashant; Sargsyan, Khachik; Najm, Habib; Hermes, Matthew R.; Hirata, So

    2017-09-01

    A new method is proposed for a fast evaluation of high-dimensional integrals of potential energy surfaces (PES) that arise in many areas of quantum dynamics. It decomposes a PES into a canonical low-rank tensor format, reducing its integral into a relatively short sum of products of low-dimensional integrals. The decomposition is achieved by the alternating least squares (ALS) algorithm, requiring only a small number of single-point energy evaluations. Therefore, it eradicates a force-constant evaluation as the hotspot of many quantum dynamics simulations and also possibly lifts the curse of dimensionality. This general method is applied to the anharmonic vibrational zero-point and transition energy calculations of molecules using the second-order diagrammatic vibrational many-body Green's function (XVH2) theory with a harmonic-approximation reference. In this application, high dimensional PES and Green's functions are both subjected to a low-rank decomposition. Evaluating the molecular integrals over a low-rank PES and Green's functions as sums of low-dimensional integrals using the Gauss-Hermite quadrature, this canonical-tensor-decomposition-based XVH2 (CT-XVH2) achieves an accuracy of 0.1 cm-1 or higher and nearly an order of magnitude speedup as compared with the original algorithm using force constants for water and formaldehyde.

  17. Low-rank canonical-tensor decomposition of potential energy surfaces: application to grid-based diagrammatic vibrational Green's function theory

    International Nuclear Information System (INIS)

    Rai, Prashant; Sargsyan, Khachik; Najm, Habib; Hermes, Matthew R.; Hirata, So

    2017-01-01

    Here, a new method is proposed for a fast evaluation of high-dimensional integrals of potential energy surfaces (PES) that arise in many areas of quantum dynamics. It decomposes a PES into a canonical low-rank tensor format, reducing its integral into a relatively short sum of products of low-dimensional integrals. The decomposition is achieved by the alternating least squares (ALS) algorithm, requiring only a small number of single-point energy evaluations. Therefore, it eradicates a force-constant evaluation as the hotspot of many quantum dynamics simulations and also possibly lifts the curse of dimensionality. This general method is applied to the anharmonic vibrational zero-point and transition energy calculations of molecules using the second-order diagrammatic vibrational many-body Green's function (XVH2) theory with a harmonic-approximation reference. In this application, high dimensional PES and Green's functions are both subjected to a low-rank decomposition. Evaluating the molecular integrals over a low-rank PES and Green's functions as sums of low-dimensional integrals using the Gauss–Hermite quadrature, this canonical-tensor-decomposition-based XVH2 (CT-XVH2) achieves an accuracy of 0.1 cm -1 or higher and nearly an order of magnitude speedup as compared with the original algorithm using force constants for water and formaldehyde.

  18. A Bayesian method to rank different model forecasts of the same volcanic ash cloud: Chapter 24

    Science.gov (United States)

    Denlinger, Roger P.; Webley, P.; Mastin, Larry G.; Schwaiger, Hans F.

    2012-01-01

    Volcanic eruptions often spew fine ash high into the atmosphere, where it is carried downwind, forming long ash clouds that disrupt air traffic and pose a hazard to air travel. To mitigate such hazards, the community studying ash hazards must assess risk of ash ingestion for any flight path and provide robust and accurate forecasts of volcanic ash dispersal. We provide a quantitative and objective method to evaluate the efficacy of ash dispersal estimates from different models, using Bayes theorem to assess the predictions that each model makes about ash dispersal. We incorporate model and measurement uncertainty and produce a posterior probability for model input parameters. The integral of the posterior over all possible combinations of model inputs determines the evidence for each model and is used to compare models. We compare two different types of transport models, an Eulerian model (Ash3d) and a Langrangian model (PUFF), as applied to the 2010 eruptions of Eyjafjallajökull volcano in Iceland. The evidence for each model benefits from common physical characteristics of ash dispersal from an eruption column and provides a measure of how well each model forecasts cloud transport. Given the complexity of the wind fields, we find that the differences between these models depend upon the differences in the way the models disperse ash into the wind from the source plume. With continued observation, the accuracy of the estimates made by each model increases, increasing the efficacy of each model’s ability to simulate ash dispersal.

  19. Complex step-based low-rank extended Kalman filtering for state-parameter estimation in subsurface transport models

    KAUST Repository

    El Gharamti, Mohamad; Hoteit, Ibrahim

    2014-01-01

    The accuracy of groundwater flow and transport model predictions highly depends on our knowledge of subsurface physical parameters. Assimilation of contaminant concentration data from shallow dug wells could help improving model behavior, eventually resulting in better forecasts. In this paper, we propose a joint state-parameter estimation scheme which efficiently integrates a low-rank extended Kalman filtering technique, namely the Singular Evolutive Extended Kalman (SEEK) filter, with the prominent complex-step method (CSM). The SEEK filter avoids the prohibitive computational burden of the Extended Kalman filter by updating the forecast along the directions of error growth only, called filter correction directions. CSM is used within the SEEK filter to efficiently compute model derivatives with respect to the state and parameters along the filter correction directions. CSM is derived using complex Taylor expansion and is second order accurate. It is proven to guarantee accurate gradient computations with zero numerical round-off errors, but requires complexifying the numerical code. We perform twin-experiments to test the performance of the CSM-based SEEK for estimating the state and parameters of a subsurface contaminant transport model. We compare the efficiency and the accuracy of the proposed scheme with two standard finite difference-based SEEK filters as well as with the ensemble Kalman filter (EnKF). Assimilation results suggest that the use of the CSM in the context of the SEEK filter may provide up to 80% more accurate solutions when compared to standard finite difference schemes and is competitive with the EnKF, even providing more accurate results in certain situations. We analyze the results based on two different observation strategies. We also discuss the complexification of the numerical code and show that this could be efficiently implemented in the context of subsurface flow models. © 2013 Elsevier B.V.

  20. Complex step-based low-rank extended Kalman filtering for state-parameter estimation in subsurface transport models

    KAUST Repository

    El Gharamti, Mohamad

    2014-02-01

    The accuracy of groundwater flow and transport model predictions highly depends on our knowledge of subsurface physical parameters. Assimilation of contaminant concentration data from shallow dug wells could help improving model behavior, eventually resulting in better forecasts. In this paper, we propose a joint state-parameter estimation scheme which efficiently integrates a low-rank extended Kalman filtering technique, namely the Singular Evolutive Extended Kalman (SEEK) filter, with the prominent complex-step method (CSM). The SEEK filter avoids the prohibitive computational burden of the Extended Kalman filter by updating the forecast along the directions of error growth only, called filter correction directions. CSM is used within the SEEK filter to efficiently compute model derivatives with respect to the state and parameters along the filter correction directions. CSM is derived using complex Taylor expansion and is second order accurate. It is proven to guarantee accurate gradient computations with zero numerical round-off errors, but requires complexifying the numerical code. We perform twin-experiments to test the performance of the CSM-based SEEK for estimating the state and parameters of a subsurface contaminant transport model. We compare the efficiency and the accuracy of the proposed scheme with two standard finite difference-based SEEK filters as well as with the ensemble Kalman filter (EnKF). Assimilation results suggest that the use of the CSM in the context of the SEEK filter may provide up to 80% more accurate solutions when compared to standard finite difference schemes and is competitive with the EnKF, even providing more accurate results in certain situations. We analyze the results based on two different observation strategies. We also discuss the complexification of the numerical code and show that this could be efficiently implemented in the context of subsurface flow models. © 2013 Elsevier B.V.

  1. SpikeTemp: An Enhanced Rank-Order-Based Learning Approach for Spiking Neural Networks With Adaptive Structure.

    Science.gov (United States)

    Wang, Jinling; Belatreche, Ammar; Maguire, Liam P; McGinnity, Thomas Martin

    2017-01-01

    This paper presents an enhanced rank-order-based learning algorithm, called SpikeTemp, for spiking neural networks (SNNs) with a dynamically adaptive structure. The trained feed-forward SNN consists of two layers of spiking neurons: 1) an encoding layer which temporally encodes real-valued features into spatio-temporal spike patterns and 2) an output layer of dynamically grown neurons which perform spatio-temporal classification. Both Gaussian receptive fields and square cosine population encoding schemes are employed to encode real-valued features into spatio-temporal spike patterns. Unlike the rank-order-based learning approach, SpikeTemp uses the precise times of the incoming spikes for adjusting the synaptic weights such that early spikes result in a large weight change and late spikes lead to a smaller weight change. This removes the need to rank all the incoming spikes and, thus, reduces the computational cost of SpikeTemp. The proposed SpikeTemp algorithm is demonstrated on several benchmark data sets and on an image recognition task. The results show that SpikeTemp can achieve better classification performance and is much faster than the existing rank-order-based learning approach. In addition, the number of output neurons is much smaller when the square cosine encoding scheme is employed. Furthermore, SpikeTemp is benchmarked against a selection of existing machine learning algorithms, and the results demonstrate the ability of SpikeTemp to classify different data sets after just one presentation of the training samples with comparable classification performance.

  2. A Chemical Risk Ranking and Scoring Method for the Selection of Harmful Substances to be Specially Controlled in Occupational Environments

    Science.gov (United States)

    Shin, Saemi; Moon, Hyung-Il; Lee, Kwon Seob; Hong, Mun Ki; Byeon, Sang-Hoon

    2014-01-01

    This study aimed to devise a method for prioritizing hazardous chemicals for further regulatory action. To accomplish this objective, we chose appropriate indicators and algorithms. Nine indicators from the Globally Harmonized System of Classification and Labeling of Chemicals were used to identify categories to which the authors assigned numerical scores. Exposure indicators included handling volume, distribution, and exposure level. To test the method devised by this study, sixty-two harmful substances controlled by the Occupational Safety and Health Act in Korea, including acrylamide, acrylonitrile, and styrene were ranked using this proposed method. The correlation coefficients between total score and each indicator ranged from 0.160 to 0.641, and those between total score and hazard indicators ranged from 0.603 to 0.641. The latter were higher than the correlation coefficients between total score and exposure indicators, which ranged from 0.160 to 0.421. Correlations between individual indicators were low (−0.240 to 0.376), except for those between handling volume and distribution (0.613), suggesting that each indicator was not strongly correlated. The low correlations between each indicator mean that the indicators and independent and were well chosen for prioritizing harmful chemicals. This method proposed by this study can improve the cost efficiency of chemical management as utilized in occupational regulatory systems. PMID:25419874

  3. A Chemical Risk Ranking and Scoring Method for the Selection of Harmful Substances to be Specially Controlled in Occupational Environments

    Directory of Open Access Journals (Sweden)

    Saemi Shin

    2014-11-01

    Full Text Available This study aimed to devise a method for prioritizing hazardous chemicals for further regulatory action. To accomplish this objective, we chose appropriate indicators and algorithms. Nine indicators from the Globally Harmonized System of Classification and Labeling of Chemicals were used to identify categories to which the authors assigned numerical scores. Exposure indicators included handling volume, distribution, and exposure level. To test the method devised by this study, sixty-two harmful substances controlled by the Occupational Safety and Health Act in Korea, including acrylamide, acrylonitrile, and styrene were ranked using this proposed method. The correlation coefficients between total score and each indicator ranged from 0.160 to 0.641, and those between total score and hazard indicators ranged from 0.603 to 0.641. The latter were higher than the correlation coefficients between total score and exposure indicators, which ranged from 0.160 to 0.421. Correlations between individual indicators were low (−0.240 to 0.376, except for those between handling volume and distribution (0.613, suggesting that each indicator was not strongly correlated. The low correlations between each indicator mean that the indicators and independent and were well chosen for prioritizing harmful chemicals. This method proposed by this study can improve the cost efficiency of chemical management as utilized in occupational regulatory systems.

  4. University Rankings and Social Science

    OpenAIRE

    Marginson, S.

    2014-01-01

    University rankings widely affect the behaviours of prospective students and their families, university executive leaders, academic faculty, governments and investors in higher education. Yet the social science foundations of global rankings receive little scrutiny. Rankings that simply recycle reputation without any necessary connection to real outputs are of no common value. It is necessary that rankings be soundly based in scientific terms if a virtuous relationship between performance and...

  5. Dual channel rank-based intensity weighting for quantitative co-localization of microscopy images

    LENUS (Irish Health Repository)

    Singan, Vasanth R

    2011-10-21

    Abstract Background Accurate quantitative co-localization is a key parameter in the context of understanding the spatial co-ordination of molecules and therefore their function in cells. Existing co-localization algorithms consider either the presence of co-occurring pixels or correlations of intensity in regions of interest. Depending on the image source, and the algorithm selected, the co-localization coefficients determined can be highly variable, and often inaccurate. Furthermore, this choice of whether co-occurrence or correlation is the best approach for quantifying co-localization remains controversial. Results We have developed a novel algorithm to quantify co-localization that improves on and addresses the major shortcomings of existing co-localization measures. This algorithm uses a non-parametric ranking of pixel intensities in each channel, and the difference in ranks of co-localizing pixel positions in the two channels is used to weight the coefficient. This weighting is applied to co-occurring pixels thereby efficiently combining both co-occurrence and correlation. Tests with synthetic data sets show that the algorithm is sensitive to both co-occurrence and correlation at varying levels of intensity. Analysis of biological data sets demonstrate that this new algorithm offers high sensitivity, and that it is capable of detecting subtle changes in co-localization, exemplified by studies on a well characterized cargo protein that moves through the secretory pathway of cells. Conclusions This algorithm provides a novel way to efficiently combine co-occurrence and correlation components in biological images, thereby generating an accurate measure of co-localization. This approach of rank weighting of intensities also eliminates the need for manual thresholding of the image, which is often a cause of error in co-localization quantification. We envisage that this tool will facilitate the quantitative analysis of a wide range of biological data sets

  6. MO-DE-207A-05: Dictionary Learning Based Reconstruction with Low-Rank Constraint for Low-Dose Spectral CT

    International Nuclear Information System (INIS)

    Xu, Q; Liu, H; Xing, L; Yu, H; Wang, G

    2016-01-01

    Purpose: Spectral CT enabled by an energy-resolved photon-counting detector outperforms conventional CT in terms of material discrimination, contrast resolution, etc. One reconstruction method for spectral CT is to generate a color image from a reconstructed component in each energy channel. However, given the radiation dose, the number of photons in each channel is limited, which will result in strong noise in each channel and affect the final color reconstruction. Here we propose a novel dictionary learning method for spectral CT that combines dictionary-based sparse representation method and the patch based low-rank constraint to simultaneously improve the reconstruction in each channel and to address the inter-channel correlations to further improve the reconstruction. Methods: The proposed method has two important features: (1) guarantee of the patch based sparsity in each energy channel, which is the result of the dictionary based sparse representation constraint; (2) the explicit consideration of the correlations among different energy channels, which is realized by patch-by-patch nuclear norm-based low-rank constraint. For each channel, the dictionary consists of two sub-dictionaries. One is learned from the average of the images in all energy channels, and the other is learned from the average of the images in all energy channels except the current channel. With average operation to reduce noise, these two dictionaries can effectively preserve the structural details and get rid of artifacts caused by noise. Combining them together can express all structural information in current channel. Results: Dictionary learning based methods can obtain better results than FBP and the TV-based method. With low-rank constraint, the image quality can be further improved in the channel with more noise. The final color result by the proposed method has the best visual quality. Conclusion: The proposed method can effectively improve the image quality of low-dose spectral

  7. MO-DE-207A-05: Dictionary Learning Based Reconstruction with Low-Rank Constraint for Low-Dose Spectral CT

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Q [Xi’an Jiaotong University, Xi’an (China); Stanford University School of Medicine, Stanford, CA (United States); Liu, H; Xing, L [Stanford University School of Medicine, Stanford, CA (United States); Yu, H [University of Massachusetts Lowell, Lowell, MA (United States); Wang, G [Rensselaer Polytechnic Instute., Troy, NY (United States)

    2016-06-15

    Purpose: Spectral CT enabled by an energy-resolved photon-counting detector outperforms conventional CT in terms of material discrimination, contrast resolution, etc. One reconstruction method for spectral CT is to generate a color image from a reconstructed component in each energy channel. However, given the radiation dose, the number of photons in each channel is limited, which will result in strong noise in each channel and affect the final color reconstruction. Here we propose a novel dictionary learning method for spectral CT that combines dictionary-based sparse representation method and the patch based low-rank constraint to simultaneously improve the reconstruction in each channel and to address the inter-channel correlations to further improve the reconstruction. Methods: The proposed method has two important features: (1) guarantee of the patch based sparsity in each energy channel, which is the result of the dictionary based sparse representation constraint; (2) the explicit consideration of the correlations among different energy channels, which is realized by patch-by-patch nuclear norm-based low-rank constraint. For each channel, the dictionary consists of two sub-dictionaries. One is learned from the average of the images in all energy channels, and the other is learned from the average of the images in all energy channels except the current channel. With average operation to reduce noise, these two dictionaries can effectively preserve the structural details and get rid of artifacts caused by noise. Combining them together can express all structural information in current channel. Results: Dictionary learning based methods can obtain better results than FBP and the TV-based method. With low-rank constraint, the image quality can be further improved in the channel with more noise. The final color result by the proposed method has the best visual quality. Conclusion: The proposed method can effectively improve the image quality of low-dose spectral

  8. Ranking Hospitals Based on Colon Surgery and Abdominal Hysterectomy Surgical Site Infection Outcomes: Impact of Limiting Surveillance to the Operative Hospital.

    Science.gov (United States)

    Yokoe, Deborah S; Avery, Taliser R; Platt, Richard; Kleinman, Ken; Huang, Susan S

    2018-03-16

    Hospital-specific surgical site infection (SSI) performance following colon surgery and abdominal hysterectomies can impact hospitals' relative rankings around quality metrics used to determine financial penalties. Current SSI surveillance largely focuses on SSI detected at the operative hospital. Retrospective cohort study to assess the impact on hospitals' relative SSI performance rankings when SSI detected at non-operative hospitals are included. We utilized data from a California statewide hospital registry to assess for evidence of SSI following colon surgery or abdominal hysterectomies performed 3/1/2011-11/30/2013 using previously validated claims-based SSI surveillance methods. Risk-adjusted hospital-specific rankings based on SSI detected at operative hospitals versus any California hospital were generated. Among 60,059 colon surgeries at 285 hospitals and 64,918 abdominal hysterectomies at 270 hospitals, 5,921 (9.9%) colon surgeries and 1,481 (2.3%) abdominal hysterectomies received a diagnosis code for SSI within the 30 days following surgery. 7.2% of colon surgery and 13.4% of abdominal hysterectomy SSI would have been missed by operative hospital surveillance alone. The proportion of individual hospital's SSI detected during hospitalizations at other hospitals varied widely. Including non-operative hospital SSI resulted in improved relative ranking of 11 (3.9%) colon surgery and 13 (4.8%) hysterectomy hospitals so that they were no longer in the worst performing quartile, mainly among hospitals with relatively high surgical volumes. Standard SSI surveillance that mainly focuses on infections detected at the operative hospital causes varying degrees of SSI under-estimation, leading to inaccurate assignment or avoidance of financial penalties for approximately one in eleven to sixteen hospitals.

  9. A least square support vector machine-based approach for contingency classification and ranking in a large power system

    Directory of Open Access Journals (Sweden)

    Bhanu Pratap Soni

    2016-12-01

    Full Text Available This paper proposes an effective supervised learning approach for static security assessment of a large power system. Supervised learning approach employs least square support vector machine (LS-SVM to rank the contingencies and predict the system severity level. The severity of the contingency is measured by two scalar performance indices (PIs: line MVA performance index (PIMVA and Voltage-reactive power performance index (PIVQ. SVM works in two steps. Step I is the estimation of both standard indices (PIMVA and PIVQ that is carried out under different operating scenarios and Step II contingency ranking is carried out based on the values of PIs. The effectiveness of the proposed methodology is demonstrated on IEEE 39-bus (New England system. The approach can be beneficial tool which is less time consuming and accurate security assessment and contingency analysis at energy management center.

  10. Hierarchical partial order ranking

    International Nuclear Information System (INIS)

    Carlsen, Lars

    2008-01-01

    Assessing the potential impact on environmental and human health from the production and use of chemicals or from polluted sites involves a multi-criteria evaluation scheme. A priori several parameters are to address, e.g., production tonnage, specific release scenarios, geographical and site-specific factors in addition to various substance dependent parameters. Further socio-economic factors may be taken into consideration. The number of parameters to be included may well appear to be prohibitive for developing a sensible model. The study introduces hierarchical partial order ranking (HPOR) that remedies this problem. By HPOR the original parameters are initially grouped based on their mutual connection and a set of meta-descriptors is derived representing the ranking corresponding to the single groups of descriptors, respectively. A second partial order ranking is carried out based on the meta-descriptors, the final ranking being disclosed though average ranks. An illustrative example on the prioritisation of polluted sites is given. - Hierarchical partial order ranking of polluted sites has been developed for prioritization based on a large number of parameters

  11. Tackling Information Asymmetry in Networks: A New Entropy-Based Ranking Index

    Science.gov (United States)

    Barucca, Paolo; Caldarelli, Guido; Squartini, Tiziano

    2018-06-01

    Information is a valuable asset in socio-economic systems, a significant part of which is entailed into the network of connections between agents. The different interlinkages patterns that agents establish may, in fact, lead to asymmetries in the knowledge of the network structure; since this entails a different ability of quantifying relevant, systemic properties (e.g. the risk of contagion in a network of liabilities), agents capable of providing a better estimation of (otherwise) inaccessible network properties, ultimately have a competitive advantage. In this paper, we address the issue of quantifying the information asymmetry of nodes: to this aim, we define a novel index—InfoRank—intended to rank nodes according to their information content. In order to do so, each node ego-network is enforced as a constraint of an entropy-maximization problem and the subsequent uncertainty reduction is used to quantify the node-specific accessible information. We, then, test the performance of our ranking procedure in terms of reconstruction accuracy and show that it outperforms other centrality measures in identifying the "most informative" nodes. Finally, we discuss the socio-economic implications of network information asymmetry.

  12. Extreme learning machine for ranking: generalization analysis and applications.

    Science.gov (United States)

    Chen, Hong; Peng, Jiangtao; Zhou, Yicong; Li, Luoqing; Pan, Zhibin

    2014-05-01

    The extreme learning machine (ELM) has attracted increasing attention recently with its successful applications in classification and regression. In this paper, we investigate the generalization performance of ELM-based ranking. A new regularized ranking algorithm is proposed based on the combinations of activation functions in ELM. The generalization analysis is established for the ELM-based ranking (ELMRank) in terms of the covering numbers of hypothesis space. Empirical results on the benchmark datasets show the competitive performance of the ELMRank over the state-of-the-art ranking methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Personnel Selection Based on Fuzzy Methods

    Directory of Open Access Journals (Sweden)

    Lourdes Cañós

    2011-03-01

    Full Text Available The decisions of managers regarding the selection of staff strongly determine the success of the company. A correct choice of employees is a source of competitive advantage. We propose a fuzzy method for staff selection, based on competence management and the comparison with the valuation that the company considers the best in each competence (ideal candidate. Our method is based on the Hamming distance and a Matching Level Index. The algorithms, implemented in the software StaffDesigner, allow us to rank the candidates, even when the competences of the ideal candidate have been evaluated only in part. Our approach is applied in a numerical example.

  14. Rank reduction of correlation matrices by majorization

    NARCIS (Netherlands)

    R. Pietersz (Raoul); P.J.F. Groenen (Patrick)

    2004-01-01

    textabstractIn this paper a novel method is developed for the problem of finding a low-rank correlation matrix nearest to a given correlation matrix. The method is based on majorization and therefore it is globally convergent. The method is computationally efficient, is straightforward to implement,

  15. Using a consensus approach based on the conservation of inter-residue contacts to rank CAPRI models

    KAUST Repository

    Vangone, Anna

    2013-10-17

    Herein we propose the use of a consensus approach, CONSRANK, for ranking CAPRI models. CONSRANK relies on the conservation of inter-residue contacts in the analyzed decoys ensemble. Models are ranked according to their ability to match the most frequently observed contacts. We applied CONSRANK to 19 CAPRI protein-protein targets, covering a wide range of prediction difficulty and involved in a variety of biological functions. CONSRANK results are consistently good, both in terms of native-like (NL) solutions ranked in the top positions and of values of the Area Under the receiver operating characteristic Curve (AUC). For targets having a percentage of NL solutions above 3%, an excellent performance is found, with AUC values approaching 1. For the difficult target T46, having only 3.4% NL solutions, the number of NL solutions in the top 5 and 10 ranked positions is enriched by a factor 30, and the AUC value is as high as 0.997. AUC values below 0.8 are only found for targets featuring a percentage of NL solutions within 1.1%. Remarkably, a false consensus emerges only in one case, T42, which happens to be an artificial protein, whose assembly details remain uncertain, based on controversial experimental data. We also show that CONSRANK still performs very well on a limited number of models, provided that more than 1 NL solution is included in the ensemble, thus extending its applicability to cases where few dozens of models are available.© 2013 Wiley Periodicals, Inc.

  16. Evaluation of image reconstruction methods for {sup 123}I-MIBG-SPECT. A rank-order study

    Energy Technology Data Exchange (ETDEWEB)

    Soederberg, Marcus; Mattsson, Soeren; Oddstig, Jenny; Uusijaervi-Lizana, Helena; Leide-Svegborn, Sigrid [Medical Radiation Physics, Dept. of Clinical Sciences Malmoe, Lund Univ., Skaane Univ. Hospital, Malmoe (Sweden)], e-mail: marcus.soderberg@med.lu.se; Valind, Sven; Thorsson, Ola; Garpered, Sabine [Dept. of Clinical Physiology, Skaane Univ. Hospital, Malmoe (Sweden); Prautzsch, Tilmann [Scivis wissenschaftlice Bildverarbeitung GmbH, Goettingen (Germany); Tischenko, Oleg [Research Unit Medical Radiation Physics and Diagnostics (AMSD), Helmholtz Zentrum Muenchen (Germany); German Research Center for Environmental Health, Neuherberg (Germany)

    2012-09-15

    Background: There is an opportunity to improve the image quality and lesion detectability in single photon emission computed tomography (SPECT) by choosing an appropriate reconstruction method and optimal parameters for the reconstruction. Purpose: To optimize the use of the Flash 3D reconstruction algorithm in terms of equivalent iteration (EI) number (number of subsets times the number of iterations) and to compare with two recently developed reconstruction algorithms ReSPECT and orthogonal polynomial expansion on disc (OPED) for application on {sup 123}I-metaiodobenzylguanidine (MIBG)-SPECT. Material and Methods: Eleven adult patients underwent SPECT 4 h and 14 patients 24 h after injection of approximately 200 MBq {sup 123}I-MIBG using a Siemens Symbia T6 SPECT/CT. Images were reconstructed from raw data using the Flash 3D algorithm at eight different EI numbers. The images were ranked by three experienced nuclear medicine physicians according to their overall impression of the image quality. The obtained optimal images were then compared in one further visual comparison with images reconstructed using the ReSPECT and OPED algorithms. Results: The optimal EI number for Flash 3D was determined to be 32 for acquisition 4 h and 24 h after injection. The average rank order (best first) for the different reconstructions for acquisition after 4 h was: Flash 3D{sub 32} > ReSPECT > Flash 3D{sub 64} > OPED, and after 24 h: Flash 3D{sub 16} > ReSPECT > Flash 3D{sub 32} > OPED. A fair level of inter-observer agreement concerning optimal EI number and reconstruction algorithm was obtained, which may be explained by the different individual preferences of what is appropriate image quality. Conclusion: Using Siemens Symbia T6 SPECT/CT and specified acquisition parameters, Flash 3D{sub 32} (4 h) and Flash 3D{sub 16} (24 h), followed by ReSPECT, were assessed to be the preferable reconstruction algorithms in visual assessment of {sup 123}I-MIBG images.

  17. PRIMAL: Page Rank-Based Indoor Mapping and Localization Using Gene-Sequenced Unlabeled WLAN Received Signal Strength

    Directory of Open Access Journals (Sweden)

    Mu Zhou

    2015-09-01

    Full Text Available Due to the wide deployment of wireless local area networks (WLAN, received signal strength (RSS-based indoor WLAN localization has attracted considerable attention in both academia and industry. In this paper, we propose a novel page rank-based indoor mapping and localization (PRIMAL by using the gene-sequenced unlabeled WLAN RSS for simultaneous localization and mapping (SLAM. Specifically, first of all, based on the observation of the motion patterns of the people in the target environment, we use the Allen logic to construct the mobility graph to characterize the connectivity among different areas of interest. Second, the concept of gene sequencing is utilized to assemble the sporadically-collected RSS sequences into a signal graph based on the transition relations among different RSS sequences. Third, we apply the graph drawing approach to exhibit both the mobility graph and signal graph in a more readable manner. Finally, the page rank (PR algorithm is proposed to construct the mapping from the signal graph into the mobility graph. The experimental results show that the proposed approach achieves satisfactory localization accuracy and meanwhile avoids the intensive time and labor cost involved in the conventional location fingerprinting-based indoor WLAN localization.

  18. PRIMAL: Page Rank-Based Indoor Mapping and Localization Using Gene-Sequenced Unlabeled WLAN Received Signal Strength.

    Science.gov (United States)

    Zhou, Mu; Zhang, Qiao; Xu, Kunjie; Tian, Zengshan; Wang, Yanmeng; He, Wei

    2015-09-25

    Due to the wide deployment of wireless local area networks (WLAN), received signal strength (RSS)-based indoor WLAN localization has attracted considerable attention in both academia and industry. In this paper, we propose a novel page rank-based indoor mapping and localization (PRIMAL) by using the gene-sequenced unlabeled WLAN RSS for simultaneous localization and mapping (SLAM). Specifically, first of all, based on the observation of the motion patterns of the people in the target environment, we use the Allen logic to construct the mobility graph to characterize the connectivity among different areas of interest. Second, the concept of gene sequencing is utilized to assemble the sporadically-collected RSS sequences into a signal graph based on the transition relations among different RSS sequences. Third, we apply the graph drawing approach to exhibit both the mobility graph and signal graph in a more readable manner. Finally, the page rank (PR) algorithm is proposed to construct the mapping from the signal graph into the mobility graph. The experimental results show that the proposed approach achieves satisfactory localization accuracy and meanwhile avoids the intensive time and labor cost involved in the conventional location fingerprinting-based indoor WLAN localization.

  19. Ranking candidate disease genes from gene expression and protein interaction: a Katz-centrality based approach.

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    Full Text Available Many diseases have complex genetic causes, where a set of alleles can affect the propensity of getting the disease. The identification of such disease genes is important to understand the mechanistic and evolutionary aspects of pathogenesis, improve diagnosis and treatment of the disease, and aid in drug discovery. Current genetic studies typically identify chromosomal regions associated specific diseases. But picking out an unknown disease gene from hundreds of candidates located on the same genomic interval is still challenging. In this study, we propose an approach to prioritize candidate genes by integrating data of gene expression level, protein-protein interaction strength and known disease genes. Our method is based only on two, simple, biologically motivated assumptions--that a gene is a good disease-gene candidate if it is differentially expressed in cases and controls, or that it is close to other disease-gene candidates in its protein interaction network. We tested our method on 40 diseases in 58 gene expression datasets of the NCBI Gene Expression Omnibus database. On these datasets our method is able to predict unknown disease genes as well as identifying pleiotropic genes involved in the physiological cellular processes of many diseases. Our study not only provides an effective algorithm for prioritizing candidate disease genes but is also a way to discover phenotypic interdependency, cooccurrence and shared pathophysiology between different disorders.

  20. VHB-JOURQUAL2: Method, Results, and Implications of the German Academic Association for Business Research's Journal Ranking

    OpenAIRE

    Schrader, Ulf; Hennig-Thurau, Thorsten

    2009-01-01

    VHB-JOURQUAL represents the official journal ranking of the German Academic Association for Business Research. Since its introduction in 2003, the ranking has become the most influential journal evaluation approach in German-speaking countries, impacting several key managerial decisions of German, Austrian, and Swiss business schools. This article reports the methodological approach of the ranking’s second edition. It also presents the main results and additional analyses on the validity of t...

  1. Research of Subgraph Estimation Page Rank Algorithm for Web Page Rank

    Directory of Open Access Journals (Sweden)

    LI Lan-yin

    2017-04-01

    Full Text Available The traditional PageRank algorithm can not efficiently perform large data Webpage scheduling problem. This paper proposes an accelerated algorithm named topK-Rank,which is based on PageRank on the MapReduce platform. It can find top k nodes efficiently for a given graph without sacrificing accuracy. In order to identify top k nodes,topK-Rank algorithm prunes unnecessary nodes and edges in each iteration to dynamically construct subgraphs,and iteratively estimates lower/upper bounds of PageRank scores through subgraphs. Theoretical analysis shows that this method guarantees result exactness. Experiments show that topK-Rank algorithm can find k nodes much faster than the existing approaches.

  2. Standard test method for ranking resistance of materials to sliding wear using block-on-ring wear test

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers laboratory procedures for determining the resistance of materials to sliding wear. The test utilizes a block-on-ring friction and wear testing machine to rank pairs of materials according to their sliding wear characteristics under various conditions. 1.2 An important attribute of this test is that it is very flexible. Any material that can be fabricated into, or applied to, blocks and rings can be tested. Thus, the potential materials combinations are endless. However, the interlaboratory testing has been limited to metals. In addition, the test can be run with various lubricants, liquids, or gaseous atmospheres, as desired, to simulate service conditions. Rotational speed and load can also be varied to better correspond to service requirements. 1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. Wear test results are reported as the volume loss in cubic millimetres for both the block and ring. Materials...

  3. A Study of the Effects of Rank and Gender on Officers' Club Membership and Club Usage at U.S. Air Force Bases in the Continental United States

    National Research Council Canada - National Science Library

    Smith, C

    1999-01-01

    Scope and Method of Study: The purpose of this study was to examine relationships between both officer rank and officer gender and both club membership and member usage at Air Force officers' clubs in the Continental United States (CONUS...

  4. Ranking Adverse Drug Reactions With Crowdsourcing

    KAUST Repository

    Gottlieb, Assaf

    2015-03-23

    Background: There is no publicly available resource that provides the relative severity of adverse drug reactions (ADRs). Such a resource would be useful for several applications, including assessment of the risks and benefits of drugs and improvement of patient-centered care. It could also be used to triage predictions of drug adverse events. Objective: The intent of the study was to rank ADRs according to severity. Methods: We used Internet-based crowdsourcing to rank ADRs according to severity. We assigned 126,512 pairwise comparisons of ADRs to 2589 Amazon Mechanical Turk workers and used these comparisons to rank order 2929 ADRs. Results: There is good correlation (rho=.53) between the mortality rates associated with ADRs and their rank. Our ranking highlights severe drug-ADR predictions, such as cardiovascular ADRs for raloxifene and celecoxib. It also triages genes associated with severe ADRs such as epidermal growth-factor receptor (EGFR), associated with glioblastoma multiforme, and SCN1A, associated with epilepsy. Conclusions: ADR ranking lays a first stepping stone in personalized drug risk assessment. Ranking of ADRs using crowdsourcing may have useful clinical and financial implications, and should be further investigated in the context of health care decision making.

  5. Around power law for PageRank components in Buckley-Osthus model of web graph

    OpenAIRE

    Gasnikov, Alexander; Zhukovskii, Maxim; Kim, Sergey; Noskov, Fedor; Plaunov, Stepan; Smirnov, Daniil

    2017-01-01

    In the paper we investigate power law for PageRank components for the Buckley-Osthus model for web graph. We compare different numerical methods for PageRank calculation. With the best method we do a lot of numerical experiments. These experiments confirm the hypothesis about power law. At the end we discuss real model of web-ranking based on the classical PageRank approach.

  6. Using a consensus approach based on the conservation of inter-residue contacts to rank CAPRI models

    KAUST Repository

    Vangone, Anna; Cavallo, Luigi; Oliva, Romina M.

    2013-01-01

    Herein we propose the use of a consensus approach, CONSRANK, for ranking CAPRI models. CONSRANK relies on the conservation of inter-residue contacts in the analyzed decoys ensemble. Models are ranked according to their ability to match the most

  7. Compression and Combining Based on Channel Shortening and Rank Reduction Technique for Cooperative Wireless Sensor Networks

    KAUST Repository

    Ahmed, Qasim Zeeshan

    2013-12-18

    This paper investigates and compares the performance of wireless sensor networks where sensors operate on the principles of cooperative communications. We consider a scenario where the source transmits signals to the destination with the help of L sensors. As the destination has the capacity of processing only U out of these L signals, the strongest U signals are selected while the remaining (L?U) signals are suppressed. A preprocessing block similar to channel-shortening is proposed in this contribution. However, this preprocessing block employs a rank-reduction technique instead of channel-shortening. By employing this preprocessing, we are able to decrease the computational complexity of the system without affecting the bit error rate (BER) performance. From our simulations, it can be shown that these schemes outperform the channel-shortening schemes in terms of computational complexity. In addition, the proposed schemes have a superior BER performance as compared to channel-shortening schemes when sensors employ fixed gain amplification. However, for sensors which employ variable gain amplification, a tradeoff exists in terms of BER performance between the channel-shortening and these schemes. These schemes outperform channel-shortening scheme for lower signal-to-noise ratio.

  8. Reservoir characterization based on tracer response and rank analysis of production and injection rates

    Energy Technology Data Exchange (ETDEWEB)

    Refunjol, B.T. [Lagoven, S.A., Pdvsa (Venezuela); Lake, L.W. [Univ. of Texas, Austin, TX (United States)

    1997-08-01

    Quantification of the spatial distribution of properties is important for many reservoir-engineering applications. But, before applying any reservoir-characterization technique, the type of problem to be tackled and the information available should be analyzed. This is important because difficulties arise in reservoirs where production records are the only information for analysis. This paper presents the results of a practical technique to determine preferential flow trends in a reservoir. The technique is a combination of reservoir geology, tracer data, and Spearman rank correlation coefficient analysis. The Spearman analysis, in particular, will prove to be important because it appears to be insightful and uses injection/production data that are prevalent in circumstances where other data are nonexistent. The technique is applied to the North Buck Draw field, Campbell County, Wyoming. This work provides guidelines to assess information about reservoir continuity in interwell regions from widely available measurements of production and injection rates at existing wells. The information gained from the application of this technique can contribute to both the daily reservoir management and the future design, control, and interpretation of subsequent projects in the reservoir, without the need for additional data.

  9. Neophilia Ranking of Scientific Journals.

    Science.gov (United States)

    Packalen, Mikko; Bhattacharya, Jay

    2017-01-01

    The ranking of scientific journals is important because of the signal it sends to scientists about what is considered most vital for scientific progress. Existing ranking systems focus on measuring the influence of a scientific paper (citations)-these rankings do not reward journals for publishing innovative work that builds on new ideas. We propose an alternative ranking based on the proclivity of journals to publish papers that build on new ideas, and we implement this ranking via a text-based analysis of all published biomedical papers dating back to 1946. In addition, we compare our neophilia ranking to citation-based (impact factor) rankings; this comparison shows that the two ranking approaches are distinct. Prior theoretical work suggests an active role for our neophilia index in science policy. Absent an explicit incentive to pursue novel science, scientists underinvest in innovative work because of a coordination problem: for work on a new idea to flourish, many scientists must decide to adopt it in their work. Rankings that are based purely on influence thus do not provide sufficient incentives for publishing innovative work. By contrast, adoption of the neophilia index as part of journal-ranking procedures by funding agencies and university administrators would provide an explicit incentive for journals to publish innovative work and thus help solve the coordination problem by increasing scientists' incentives to pursue innovative work.

  10. Incorporation of Socio-Economic Features' Ranking in Multicriteria Analysis Based on Ecosystem Services for Marine Protected Area Planning.

    Directory of Open Access Journals (Sweden)

    Michelle E Portman

    Full Text Available Developed decades ago for spatial choice problems related to zoning in the urban planning field, multicriteria analysis (MCA has more recently been applied to environmental conflicts and presented in several documented cases for the creation of protected area management plans. Its application is considered here for the development of zoning as part of a proposed marine protected area management plan. The case study incorporates specially-explicit conservation features while considering stakeholder preferences, expert opinion and characteristics of data quality. It involves the weighting of criteria using a modified analytical hierarchy process. Experts ranked physical attributes which include socio-economically valued physical features. The parameters used for the ranking of (physical attributes important for socio-economic reasons are derived from the field of ecosystem services assessment. Inclusion of these feature values results in protection that emphasizes those areas closest to shore, most likely because of accessibility and familiarity parameters and because of data biases. Therefore, other spatial conservation prioritization methods should be considered to supplement the MCA and efforts should be made to improve data about ecosystem service values farther from shore. Otherwise, the MCA method allows incorporation of expert and stakeholder preferences and ecosystem services values while maintaining the advantages of simplicity and clarity.

  11. Sensitivity ranking for freshwater invertebrates towards hydrocarbon contaminants.

    Science.gov (United States)

    Gerner, Nadine V; Cailleaud, Kevin; Bassères, Anne; Liess, Matthias; Beketov, Mikhail A

    2017-11-01

    Hydrocarbons have an utmost economical importance but may also cause substantial ecological impacts due to accidents or inadequate transportation and use. Currently, freshwater biomonitoring methods lack an indicator that can unequivocally reflect the impacts caused by hydrocarbons while being independent from effects of other stressors. The aim of the present study was to develop a sensitivity ranking for freshwater invertebrates towards hydrocarbon contaminants, which can be used in hydrocarbon-specific bioindicators. We employed the Relative Sensitivity method and developed the sensitivity ranking S hydrocarbons based on literature ecotoxicological data supplemented with rapid and mesocosm test results. A first validation of the sensitivity ranking based on an earlier field study has been conducted and revealed the S hydrocarbons ranking to be promising for application in sensitivity based indicators. Thus, the first results indicate that the ranking can serve as the core component of future hydrocarbon-specific and sensitivity trait based bioindicators.

  12. Binding mode prediction and MD/MMPBSA-based free energy ranking for agonists of REV-ERBα/NCoR.

    Science.gov (United States)

    Westermaier, Yvonne; Ruiz-Carmona, Sergio; Theret, Isabelle; Perron-Sierra, Françoise; Poissonnet, Guillaume; Dacquet, Catherine; Boutin, Jean A; Ducrot, Pierre; Barril, Xavier

    2017-08-01

    The knowledge of the free energy of binding of small molecules to a macromolecular target is crucial in drug design as is the ability to predict the functional consequences of binding. We highlight how a molecular dynamics (MD)-based approach can be used to predict the free energy of small molecules, and to provide priorities for the synthesis and the validation via in vitro tests. Here, we study the dynamics and energetics of the nuclear receptor REV-ERBα with its co-repressor NCoR and 35 novel agonists. Our in silico approach combines molecular docking, molecular dynamics (MD), solvent-accessible surface area (SASA) and molecular mechanics poisson boltzmann surface area (MMPBSA) calculations. While docking yielded initial hints on the binding modes, their stability was assessed by MD. The SASA calculations revealed that the presence of the ligand led to a higher exposure of hydrophobic REV-ERB residues for NCoR recruitment. MMPBSA was very successful in ranking ligands by potency in a retrospective and prospective manner. Particularly, the prospective MMPBSA ranking-based validations for four compounds, three predicted to be active and one weakly active, were confirmed experimentally.

  13. Ranking production units according to marginal efficiency contribution

    DEFF Research Database (Denmark)

    Ghiyasi, Mojtaba; Hougaard, Jens Leth

    League tables associated with various forms of service activities from schools to hospitals illustrate the public need for ranking institutions by their productive performance. We present a new method for ranking production units which is based on each units marginal contribution to the technical...

  14. Feasibility of developing risk-based rankings of pressure boundary systems for inservice inspection

    Energy Technology Data Exchange (ETDEWEB)

    Vo, T.V.; Smith, B.W.; Simonen, F.A.; Gore, B.F.

    1994-08-01

    The goals of the Evaluation and Improvement of Non-destructive Examination Reliability for the In-service Inspection of Light Water Reactors Program sponsored by the Nuclear Regulatory Commission at Pacific Northwest Laboratory (PNL) are to (1) assess current ISI techniques and requirements for all pressure boundary systems and components, (2) determine if improvements to the requirements are needed, and (3) if necessary, develop recommendations for revising the applicable ASME Codes and regulatory requirements. In evaluating approaches that could be used to provide a technical basis for improved inservice inspection plans, PNL has developed and applied a method that uses results of probabilistic risk assessment (PRA) to establish piping system ISI requirements. In the PNL program, the feasibility of generic ISI requirements is being addressed in two phases. Phase I involves identifying and prioritizing the systems most relevant to plant safety. The results of these evaluations will be later consolidated into requirements for comprehensive inservice inspection of nuclear power plant components that will be developed in Phase II. This report presents Phase I evaluations for eight selected plants and attempts to compare these PRA-based inspection priorities with current ASME Section XI requirements for Class 1, 2 and 3 systems. These results show that there are generic insights that can be extrapolated from the selected plants to specific classes of light water reactors.

  15. Feasibility of developing risk-based rankings of pressure boundary systems for inservice inspection

    International Nuclear Information System (INIS)

    Vo, T.V.; Smith, B.W.; Simonen, F.A.; Gore, B.F.

    1994-08-01

    The goals of the Evaluation and Improvement of Non-destructive Examination Reliability for the In-service Inspection of Light Water Reactors Program sponsored by the Nuclear Regulatory Commission at Pacific Northwest Laboratory (PNL) are to (1) assess current ISI techniques and requirements for all pressure boundary systems and components, (2) determine if improvements to the requirements are needed, and (3) if necessary, develop recommendations for revising the applicable ASME Codes and regulatory requirements. In evaluating approaches that could be used to provide a technical basis for improved inservice inspection plans, PNL has developed and applied a method that uses results of probabilistic risk assessment (PRA) to establish piping system ISI requirements. In the PNL program, the feasibility of generic ISI requirements is being addressed in two phases. Phase I involves identifying and prioritizing the systems most relevant to plant safety. The results of these evaluations will be later consolidated into requirements for comprehensive inservice inspection of nuclear power plant components that will be developed in Phase II. This report presents Phase I evaluations for eight selected plants and attempts to compare these PRA-based inspection priorities with current ASME Section XI requirements for Class 1, 2 and 3 systems. These results show that there are generic insights that can be extrapolated from the selected plants to specific classes of light water reactors

  16. Ranking nodes in growing networks: When PageRank fails.

    Science.gov (United States)

    Mariani, Manuel Sebastian; Medo, Matúš; Zhang, Yi-Cheng

    2015-11-10

    PageRank is arguably the most popular ranking algorithm which is being applied in real systems ranging from information to biological and infrastructure networks. Despite its outstanding popularity and broad use in different areas of science, the relation between the algorithm's efficacy and properties of the network on which it acts has not yet been fully understood. We study here PageRank's performance on a network model supported by real data, and show that realistic temporal effects make PageRank fail in individuating the most valuable nodes for a broad range of model parameters. Results on real data are in qualitative agreement with our model-based findings. This failure of PageRank reveals that the static approach to information filtering is inappropriate for a broad class of growing systems, and suggest that time-dependent algorithms that are based on the temporal linking patterns of these systems are needed to better rank the nodes.

  17. PageRank versatility analysis of multilayer modality-based network for exploring the evolution of oil-water slug flow.

    Science.gov (United States)

    Gao, Zhong-Ke; Dang, Wei-Dong; Li, Shan; Yang, Yu-Xuan; Wang, Hong-Tao; Sheng, Jing-Ran; Wang, Xiao-Fan

    2017-07-14

    Numerous irregular flow structures exist in the complicated multiphase flow and result in lots of disparate spatial dynamical flow behaviors. The vertical oil-water slug flow continually attracts plenty of research interests on account of its significant importance. Based on the spatial transient flow information acquired through our designed double-layer distributed-sector conductance sensor, we construct multilayer modality-based network to encode the intricate spatial flow behavior. Particularly, we calculate the PageRank versatility and multilayer weighted clustering coefficient to quantitatively explore the inferred multilayer modality-based networks. Our analysis allows characterizing the complicated evolution of oil-water slug flow, from the opening formation of oil slugs, to the succedent inter-collision and coalescence among oil slugs, and then to the dispersed oil bubbles. These properties render our developed method particularly powerful for mining the essential flow features from the multilayer sensor measurements.

  18. Ranking the strategies for Indian medical tourism sector through the integration of SWOT analysis and TOPSIS method.

    Science.gov (United States)

    Ajmera, Puneeta

    2017-10-09

    Purpose Organizations have to evaluate their internal and external environments in this highly competitive world. Strengths, weaknesses, opportunities and threats (SWOT) analysis is a very useful technique which analyzes the strengths, weaknesses, opportunities and threats of an organization for taking strategic decisions and it also provides a foundation for the formulation of strategies. But the drawback of SWOT analysis is that it does not quantify the importance of individual factors affecting the organization and the individual factors are described in brief without weighing them. Because of this reason, SWOT analysis can be integrated with any multiple attribute decision-making (MADM) technique like the technique for order preference by similarity to ideal solution (TOPSIS), analytical hierarchy process, etc., to evaluate the best alternative among the available strategic alternatives. The paper aims to discuss these issues. Design/methodology/approach In this study, SWOT analysis is integrated with a multicriteria decision-making technique called TOPSIS to rank different strategies for Indian medical tourism in order of priority. Findings SO strategy (providing best facilitation and care to the medical tourists at par to developed countries) is the best strategy which matches with the four elements of S, W, O and T of SWOT matrix and 35 strategic indicators. Practical implications This paper proposes a solution based on a combined SWOT analysis and TOPSIS approach to help the organizations to evaluate and select strategies. Originality/value Creating a new technology or administering a new strategy always has some degree of resistance by employees. To minimize resistance, the author has used TOPSIS as it involves group thinking, requiring every manager of the organization to analyze and evaluate different alternatives and average measure of each parameter in final decision matrix.

  19. OutRank

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Assent, Ira; Steinhausen, Uwe

    2008-01-01

    Outlier detection is an important data mining task for consistency checks, fraud detection, etc. Binary decision making on whether or not an object is an outlier is not appropriate in many applications and moreover hard to parametrize. Thus, recently, methods for outlier ranking have been proposed...

  20. CONSTRUCTION OF REGULAR LDPC LIKE CODES BASED ON FULL RANK CODES AND THEIR ITERATIVE DECODING USING A PARITY CHECK TREE

    Directory of Open Access Journals (Sweden)

    H. Prashantha Kumar

    2011-09-01

    Full Text Available Low density parity check (LDPC codes are capacity-approaching codes, which means that practical constructions exist that allow the noise threshold to be set very close to the theoretical Shannon limit for a memory less channel. LDPC codes are finding increasing use in applications like LTE-Networks, digital television, high density data storage systems, deep space communication systems etc. Several algebraic and combinatorial methods are available for constructing LDPC codes. In this paper we discuss a novel low complexity algebraic method for constructing regular LDPC like codes derived from full rank codes. We demonstrate that by employing these codes over AWGN channels, coding gains in excess of 2dB over un-coded systems can be realized when soft iterative decoding using a parity check tree is employed.

  1. Groundwater contaminant plume ranking

    International Nuclear Information System (INIS)

    1988-08-01

    Containment plumes at Uranium Mill Tailings Remedial Action (UMTRA) Project sites were ranked to assist in Subpart B (i.e., restoration requirements of 40 CFR Part 192) compliance strategies for each site, to prioritize aquifer restoration, and to budget future requests and allocations. The rankings roughly estimate hazards to the environment and human health, and thus assist in determining for which sites cleanup, if appropriate, will provide the greatest benefits for funds available. The rankings are based on the scores that were obtained using the US Department of Energy's (DOE) Modified Hazard Ranking System (MHRS). The MHRS and HRS consider and score three hazard modes for a site: migration, fire and explosion, and direct contact. The migration hazard mode score reflects the potential for harm to humans or the environment from migration of a hazardous substance off a site by groundwater, surface water, and air; it is a composite of separate scores for each of these routes. For ranking the containment plumes at UMTRA Project sites, it was assumed that each site had been remediated in compliance with the EPA standards and that relict contaminant plumes were present. Therefore, only the groundwater route was scored, and the surface water and air routes were not considered. Section 2.0 of this document describes the assumptions and procedures used to score the groundwater route, and Section 3.0 provides the resulting scores for each site. 40 tabs

  2. Ranking economic history journals

    DEFF Research Database (Denmark)

    Di Vaio, Gianfranco; Weisdorf, Jacob Louis

    2010-01-01

    This study ranks-for the first time-12 international academic journals that have economic history as their main topic. The ranking is based on data collected for the year 2007. Journals are ranked using standard citation analysis where we adjust for age, size and self-citation of journals. We also...... compare the leading economic history journals with the leading journals in economics in order to measure the influence on economics of economic history, and vice versa. With a few exceptions, our results confirm the general idea about what economic history journals are the most influential for economic...... history, and that, although economic history is quite independent from economics as a whole, knowledge exchange between the two fields is indeed going on....

  3. Ranking Economic History Journals

    DEFF Research Database (Denmark)

    Di Vaio, Gianfranco; Weisdorf, Jacob Louis

    This study ranks - for the first time - 12 international academic journals that have economic history as their main topic. The ranking is based on data collected for the year 2007. Journals are ranked using standard citation analysis where we adjust for age, size and self-citation of journals. We...... also compare the leading economic history journals with the leading journals in economics in order to measure the influence on economics of economic history, and vice versa. With a few exceptions, our results confirm the general idea about what economic history journals are the most influential...... for economic history, and that, although economic history is quite independent from economics as a whole, knowledge exchange between the two fields is indeed going on....

  4. Development and first application of an operating events ranking tool

    International Nuclear Information System (INIS)

    Šimić, Zdenko; Zerger, Benoit; Banov, Reni

    2015-01-01

    Highlights: • A method using analitycal hierarchy process for ranking operating events is developed and tested. • The method is applied for 5 years of U.S. NRC Licensee Event Reports (1453 events). • Uncertainty and sensitivity of the ranking results are evaluated. • Real events assessment shows potential of the method for operating experience feedback. - Abstract: The operating experience feedback is important for maintaining and improving safety and availability in nuclear power plants. Detailed investigation of all events is challenging since it requires excessive resources, especially in case of large event databases. This paper presents an event groups ranking method to complement the analysis of individual operating events. The basis for the method is the use of an internationally accepted events characterization scheme that allows different ways of events grouping and ranking. The ranking method itself consists of implementing the analytical hierarchy process (AHP) by means of a custom developed tool which allows events ranking based on ranking indexes pre-determined by expert judgment. Following the development phase, the tool was applied to analyze a complete set of 5 years of real nuclear power plants operating events (1453 events). The paper presents the potential of this ranking method to identify possible patterns throughout the event database and therefore to give additional insights into the events as well as to give quantitative input for the prioritization of further more detailed investigation of selected event groups

  5. 14 CFR 1214.1105 - Final ranking.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Final ranking. 1214.1105 Section 1214.1105... Recruitment and Selection Program § 1214.1105 Final ranking. Final rankings will be based on a combination of... preference will be included in this final ranking in accordance with applicable regulations. ...

  6. AptRank: an adaptive PageRank model for protein function prediction on   bi-relational graphs.

    Science.gov (United States)

    Jiang, Biaobin; Kloster, Kyle; Gleich, David F; Gribskov, Michael

    2017-06-15

    Diffusion-based network models are widely used for protein function prediction using protein network data and have been shown to outperform neighborhood-based and module-based methods. Recent studies have shown that integrating the hierarchical structure of the Gene Ontology (GO) data dramatically improves prediction accuracy. However, previous methods usually either used the GO hierarchy to refine the prediction results of multiple classifiers, or flattened the hierarchy into a function-function similarity kernel. No study has taken the GO hierarchy into account together with the protein network as a two-layer network model. We first construct a Bi-relational graph (Birg) model comprised of both protein-protein association and function-function hierarchical networks. We then propose two diffusion-based methods, BirgRank and AptRank, both of which use PageRank to diffuse information on this two-layer graph model. BirgRank is a direct application of traditional PageRank with fixed decay parameters. In contrast, AptRank utilizes an adaptive diffusion mechanism to improve the performance of BirgRank. We evaluate the ability of both methods to predict protein function on yeast, fly and human protein datasets, and compare with four previous methods: GeneMANIA, TMC, ProteinRank and clusDCA. We design four different validation strategies: missing function prediction, de novo function prediction, guided function prediction and newly discovered function prediction to comprehensively evaluate predictability of all six methods. We find that both BirgRank and AptRank outperform the previous methods, especially in missing function prediction when using only 10% of the data for training. The MATLAB code is available at https://github.rcac.purdue.edu/mgribsko/aptrank . gribskov@purdue.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  7. Ranking procedure based on mechanical, durability and thermal behavior of mortars with incorporation of phase change materials

    Directory of Open Access Journals (Sweden)

    Cunha, S.

    2015-12-01

    Full Text Available Nowadays, considering the high variety of construction products, adequate material selection, based on their properties and function, becomes increasingly important. In this research, a ranking procedure developed by Czarnecki and Lukowski is applied in mortars with incorporation of phase change materials (PCM. The ranking procedure transforms experimental results of properties into one numerical value. The products can be classified according to their individual properties or even an optimized combination of different properties. The main purpose of this study was the ranking of mortars with incorporation of different contents of PCM based in different binders. Aerial lime, hydraulic lime, gypsum and cement were the binders studied. For each binder, three different mortars were developed. Reference mortars, mortars with incorporation of 40% of PCM and mortars with incorporation of 40% of PCM and 1% of fibers, were tested. Results show that the incorporation of PCM in mortars changes their global performance.Actualmente, existen varios productos de construcción, siendo importante una adecuada selección, con base en sus principales propiedades y funciones. En esta investigación se aplicó un procedimiento de clasificación desarrollado por Czarnecki y Lukowski, en morteros con incorporación de materiales de cambio de fase (PCM. Este procedimiento transforma los resultados experimentales de las propiedades en un único valor numérico. Los productos se clasifican de acuerdo con sus propiedades individuales o en una combinación optimizada de diferentes propiedades. El principal objetivo de este estudio fue la clasificación de morteros basado en los diferentes aglutinantes con incorporación de diferentes cantidades de PCM. Los aglutinantes utilizados fueran la cal aérea, cal hidráulica, yeso y cemento. Para cada aglutinante se han desarrollado tres morteros, siendo morteros de referencia, con incorporación de 40% de PCM y con incorporaci

  8. Ranking coastal flood protection designs from engineered to nature-based

    NARCIS (Netherlands)

    Nat, van der A.; Vellinga, P.; Leemans, R.; Slobbe, van E.

    2016-01-01

    Compared to traditional hard engineering, nature-based flood protection can be more cost effective, use up less raw materials, increase system adaptability and present opportunities to improve ecosystem functioning. However, high flood safety standards cause the need to combine nature-based

  9. A GIS based screening tool for locating and ranking of suitable stormwater harvesting sites in urban areas.

    Science.gov (United States)

    Inamdar, P M; Cook, S; Sharma, A K; Corby, N; O'Connor, J; Perera, B J C

    2013-10-15

    There is the need to re-configure current urban water systems to achieve the objective of sustainable water sensitive cities. Stormwater represents a valuable alternative urban water source to reduce pressure on fresh water resources, and to mitigate the environmental impact of urban stormwater runoff. The selection of suitable urban stormwater harvesting sites is generally based on the judgement of water planners, who are faced with the challenge of considering multiple technical and socio-economic factors that influence the site suitability. To address this challenge, the present study developed a robust GIS based screening methodology for identifying potentially suitable stormwater harvesting sites in urban areas as a first pass for then more detailed investigation. The study initially evaluated suitability based on the match between harvestable runoff and demand through a concept of accumulated catchments. Drainage outlets of these accumulated catchments were considered as potential stormwater harvesting sites. These sites were screened and ranked under screening parameters namely demand, ratio of runoff to demand and weighted demand distance. The methodology described in this paper was successfully applied to a case study in Melbourne, Australia in collaboration with the local water utility. The methodology was found to be effective in supporting the selection of priority sites for stormwater harvesting schemes, as it provided the basis to identify, short-list and rank sites for further detailed investigation. The rapid identification of suitable sites for stormwater harvesting can assist planners in prioritising schemes in areas that will have the most impact on reducing potable water demand. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Ranking Specific Sets of Objects.

    Science.gov (United States)

    Maly, Jan; Woltran, Stefan

    2017-01-01

    Ranking sets of objects based on an order between the single elements has been thoroughly studied in the literature. In particular, it has been shown that it is in general impossible to find a total ranking - jointly satisfying properties as dominance and independence - on the whole power set of objects. However, in many applications certain elements from the entire power set might not be required and can be neglected in the ranking process. For instance, certain sets might be ruled out due to hard constraints or are not satisfying some background theory. In this paper, we treat the computational problem whether an order on a given subset of the power set of elements satisfying different variants of dominance and independence can be found, given a ranking on the elements. We show that this problem is tractable for partial rankings and NP-complete for total rankings.

  11. Binding affinity toward human prion protein of some anti-prion compounds - Assessment based on QSAR modeling, molecular docking and non-parametric ranking.

    Science.gov (United States)

    Kovačević, Strahinja; Karadžić, Milica; Podunavac-Kuzmanović, Sanja; Jevrić, Lidija

    2018-01-01

    The present study is based on the quantitative structure-activity relationship (QSAR) analysis of binding affinity toward human prion protein (huPrP C ) of quinacrine, pyridine dicarbonitrile, diphenylthiazole and diphenyloxazole analogs applying different linear and non-linear chemometric regression techniques, including univariate linear regression, multiple linear regression, partial least squares regression and artificial neural networks. The QSAR analysis distinguished molecular lipophilicity as an important factor that contributes to the binding affinity. Principal component analysis was used in order to reveal similarities or dissimilarities among the studied compounds. The analysis of in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) parameters was conducted. The ranking of the studied analogs on the basis of their ADMET parameters was done applying the sum of ranking differences, as a relatively new chemometric method. The main aim of the study was to reveal the most important molecular features whose changes lead to the changes in the binding affinities of the studied compounds. Another point of view on the binding affinity of the most promising analogs was established by application of molecular docking analysis. The results of the molecular docking were proven to be in agreement with the experimental outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A Statistical Ontology-Based Approach to Ranking for Multiword Search

    Science.gov (United States)

    Kim, Jinwoo

    2013-01-01

    Keyword search is a prominent data retrieval method for the Web, largely because the simple and efficient nature of keyword processing allows a large amount of information to be searched with fast response. However, keyword search approaches do not formally capture the clear meaning of a keyword query and fail to address the semantic relationships…

  13. GOLabeler: Improving Sequence-based Large-scale Protein Function Prediction by Learning to Rank.

    Science.gov (United States)

    You, Ronghui; Zhang, Zihan; Xiong, Yi; Sun, Fengzhu; Mamitsuka, Hiroshi; Zhu, Shanfeng

    2018-03-07

    Gene Ontology (GO) has been widely used to annotate functions of proteins and understand their biological roles. Currently only advantage over state-of-the-art AFP methods. http://datamining-iip.fudan.edu.cn/golabeler. zhusf@fudan.edu.cn. Supplementary data are available at Bioinformatics online.

  14. Analysis of temporal-longitudinal-latitudinal characteristics in the global ionosphere based on tensor rank-1 decomposition

    Science.gov (United States)

    Lu, Shikun; Zhang, Hao; Li, Xihai; Li, Yihong; Niu, Chao; Yang, Xiaoyun; Liu, Daizhi

    2018-03-01

    Combining analyses of spatial and temporal characteristics of the ionosphere is of great significance for scientific research and engineering applications. Tensor decomposition is performed to explore the temporal-longitudinal-latitudinal characteristics in the ionosphere. Three-dimensional tensors are established based on the time series of ionospheric vertical total electron content maps obtained from the Centre for Orbit Determination in Europe. To obtain large-scale characteristics of the ionosphere, rank-1 decomposition is used to obtain U^{(1)}, U^{(2)}, and U^{(3)}, which are the resulting vectors for the time, longitude, and latitude modes, respectively. Our initial finding is that the correspondence between the frequency spectrum of U^{(1)} and solar variation indicates that rank-1 decomposition primarily describes large-scale temporal variations in the global ionosphere caused by the Sun. Furthermore, the time lags between the maxima of the ionospheric U^{(2)} and solar irradiation range from 1 to 3.7 h without seasonal dependence. The differences in time lags may indicate different interactions between processes in the magnetosphere-ionosphere-thermosphere system. Based on the dataset displayed in the geomagnetic coordinates, the position of the barycenter of U^{(3)} provides evidence for north-south asymmetry (NSA) in the large-scale ionospheric variations. The daily variation in such asymmetry indicates the influences of solar ionization. The diurnal geomagnetic coordinate variations in U^{(3)} show that the large-scale EIA (equatorial ionization anomaly) variations during the day and night have similar characteristics. Considering the influences of geomagnetic disturbance on ionospheric behavior, we select the geomagnetic quiet GIMs to construct the ionospheric tensor. The results indicate that the geomagnetic disturbances have little effect on large-scale ionospheric characteristics.

  15. A Survey on PageRank Computing

    OpenAIRE

    Berkhin, Pavel

    2005-01-01

    This survey reviews the research related to PageRank computing. Components of a PageRank vector serve as authority weights for web pages independent of their textual content, solely based on the hyperlink structure of the web. PageRank is typically used as a web search ranking component. This defines the importance of the model and the data structures that underly PageRank processing. Computing even a single PageRank is a difficult computational task. Computing many PageRanks is a much mor...

  16. Knowledge based ranking algorithm for comparative assessment of post-closure care needs of closed landfills

    International Nuclear Information System (INIS)

    Sizirici, Banu; Tansel, Berrin; Kumar, Vivek

    2011-01-01

    Post-closure care (PCC) activities at landfills include cap maintenance; water quality monitoring; maintenance and monitoring of the gas collection/control system, leachate collection system, groundwater monitoring wells, and surface water management system; and general site maintenance. The objective of this study was to develop an integrated data and knowledge based decision making tool for preliminary estimation of PCC needs at closed landfills. To develop the decision making tool, 11 categories of parameters were identified as critical areas which could affect future PCC needs. Each category was further analyzed by detailed questions which could be answered with limited data and knowledge about the site, its history, location, and site specific characteristics. Depending on the existing knowledge base, a score was assigned to each question (on a scale 1-10, as 1 being the best and 10 being the worst). Each category was also assigned a weight based on its relative importance on the site conditions and PCC needs. The overall landfill score was obtained from the total weighted sum attained. Based on the overall score, landfill conditions could be categorized as critical, acceptable, or good. Critical condition indicates that the landfill may be a threat to the human health and the environment and necessary steps should be taken. Acceptable condition indicates that the landfill is currently stable and the monitoring should be continued. Good condition indicates that the landfill is stable and the monitoring activities can be reduced in the future. The knowledge base algorithm was applied to two case study landfills for preliminary assessment of PCC performance.

  17. Knowledge based ranking algorithm for comparative assessment of post-closure care needs of closed landfills.

    Science.gov (United States)

    Sizirici, Banu; Tansel, Berrin; Kumar, Vivek

    2011-06-01

    Post-closure care (PCC) activities at landfills include cap maintenance; water quality monitoring; maintenance and monitoring of the gas collection/control system, leachate collection system, groundwater monitoring wells, and surface water management system; and general site maintenance. The objective of this study was to develop an integrated data and knowledge based decision making tool for preliminary estimation of PCC needs at closed landfills. To develop the decision making tool, 11 categories of parameters were identified as critical areas which could affect future PCC needs. Each category was further analyzed by detailed questions which could be answered with limited data and knowledge about the site, its history, location, and site specific characteristics. Depending on the existing knowledge base, a score was assigned to each question (on a scale 1-10, as 1 being the best and 10 being the worst). Each category was also assigned a weight based on its relative importance on the site conditions and PCC needs. The overall landfill score was obtained from the total weighted sum attained. Based on the overall score, landfill conditions could be categorized as critical, acceptable, or good. Critical condition indicates that the landfill may be a threat to the human health and the environment and necessary steps should be taken. Acceptable condition indicates that the landfill is currently stable and the monitoring should be continued. Good condition indicates that the landfill is stable and the monitoring activities can be reduced in the future. The knowledge base algorithm was applied to two case study landfills for preliminary assessment of PCC performance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Ranking nodes in growing networks: When PageRank fails

    Science.gov (United States)

    Mariani, Manuel Sebastian; Medo, Matúš; Zhang, Yi-Cheng

    2015-11-01

    PageRank is arguably the most popular ranking algorithm which is being applied in real systems ranging from information to biological and infrastructure networks. Despite its outstanding popularity and broad use in different areas of science, the relation between the algorithm’s efficacy and properties of the network on which it acts has not yet been fully understood. We study here PageRank’s performance on a network model supported by real data, and show that realistic temporal effects make PageRank fail in individuating the most valuable nodes for a broad range of model parameters. Results on real data are in qualitative agreement with our model-based findings. This failure of PageRank reveals that the static approach to information filtering is inappropriate for a broad class of growing systems, and suggest that time-dependent algorithms that are based on the temporal linking patterns of these systems are needed to better rank the nodes.

  19. Design and analysis of a ranking approach to private location-based services

    DEFF Research Database (Denmark)

    Yiu, Ma Lung; Jensen, Christian S.; Møller, Jesper

    2011-01-01

    solution that expresses the server-side functionality in a single SQL statement. In its basic form, SpaceTwist utilizes well-known incremental NN query processing on the server. When augmented with a server-side granular search technique, SpaceTwist is capable of exploiting relaxed query accuracy......Twist, aims to offer location privacy for k nearest neighbor (kNN) queries at low communication cost without requiring a trusted anonymizer. The solution can be used with a conventional DBMS as well as with a server optimized for location-based services. In particular, we believe that this is the first...

  20. Diversifying customer review rankings.

    Science.gov (United States)

    Krestel, Ralf; Dokoohaki, Nima

    2015-06-01

    E-commerce Web sites owe much of their popularity to consumer reviews accompanying product descriptions. On-line customers spend hours and hours going through heaps of textual reviews to decide which products to buy. At the same time, each popular product has thousands of user-generated reviews, making it impossible for a buyer to read everything. Current approaches to display reviews to users or recommend an individual review for a product are based on the recency or helpfulness of each review. In this paper, we present a framework to rank product reviews by optimizing the coverage of the ranking with respect to sentiment or aspects, or by summarizing all reviews with the top-K reviews in the ranking. To accomplish this, we make use of the assigned star rating for a product as an indicator for a review's sentiment polarity and compare bag-of-words (language model) with topic models (latent Dirichlet allocation) as a mean to represent aspects. Our evaluation on manually annotated review data from a commercial review Web site demonstrates the effectiveness of our approach, outperforming plain recency ranking by 30% and obtaining best results by combining language and topic model representations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Statistically based uncertainty analysis for ranking of component importance in the thermal-hydraulic safety analysis of the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    Wilson, G.E.

    1992-01-01

    The Analytic Hierarchy Process (AHP) has been used to help determine the importance of components and phenomena in thermal-hydraulic safety analyses of nuclear reactors. The AHP results are based, in part on expert opinion. Therefore, it is prudent to evaluate the uncertainty of the AHP ranks of importance. Prior applications have addressed uncertainty with experimental data comparisons and bounding sensitivity calculations. These methods work well when a sufficient experimental data base exists to justify the comparisons. However, in the case of limited or no experimental data the size of the uncertainty is normally made conservatively large. Accordingly, the author has taken another approach, that of performing a statistically based uncertainty analysis. The new work is based on prior evaluations of the importance of components and phenomena in the thermal-hydraulic safety analysis of the Advanced Neutron Source Reactor (ANSR), a new facility now in the design phase. The uncertainty during large break loss of coolant, and decay heat removal scenarios is estimated by assigning a probability distribution function (pdf) to the potential error in the initial expert estimates of pair-wise importance between the components. Using a Monte Carlo sampling technique, the error pdfs are propagated through the AHP software solutions to determine a pdf of uncertainty in the system wide importance of each component. To enhance the generality of the results, study of one other problem having different number of elements is reported, as are the effects of a larger assumed pdf error in the expert ranks. Validation of the Monte Carlo sample size and repeatability are also documented

  2. Ranking beta sheet topologies of proteins

    DEFF Research Database (Denmark)

    Fonseca, Rasmus; Helles, Glennie; Winter, Pawel

    2010-01-01

    One of the challenges of protein structure prediction is to identify long-range interactions between amino acids. To reliably predict such interactions, we enumerate, score and rank all beta-topologies (partitions of beta-strands into sheets, orderings of strands within sheets and orientations...... of paired strands) of a given protein. We show that the beta-topology corresponding to the native structure is, with high probability, among the top-ranked. Since full enumeration is very time-consuming, we also suggest a method to deal with proteins with many beta-strands. The results reported...... in this paper are highly relevant for ab initio protein structure prediction methods based on decoy generation. The top-ranked beta-topologies can be used to find initial conformations from which conformational searches can be started. They can also be used to filter decoys by removing those with poorly...

  3. General active space commutator-based coupled cluster theory of general excitation rank for electronically excited states: implementation and application to ScH.

    Science.gov (United States)

    Hubert, Mickaël; Olsen, Jeppe; Loras, Jessica; Fleig, Timo

    2013-11-21

    We present a new implementation of general excitation rank coupled cluster theory for electronically excited states based on the single-reference multi-reference formalism. The method may include active-space selected and/or general higher excitations by means of the general active space concept. It may employ molecular integrals over the four-component Lévy-Leblond Hamiltonian or the relativistic spin-orbit-free four-component Hamiltonian of Dyall. In an initial application to ground- and excited states of the scandium monohydride molecule we report spectroscopic constants using basis sets of up to quadruple-zeta quality and up to full iterative triple excitations in the cluster operators. Effects due to spin-orbit interaction are evaluated using two-component multi-reference configuration interaction for assessing the accuracy of the coupled cluster results.

  4. Risk-based ranking of dominant contributors to maritime pollution events

    International Nuclear Information System (INIS)

    Wheeler, T.A.

    1993-01-01

    This report describes a conceptual approach for identifying dominant contributors to risk from maritime shipping of hazardous materials. Maritime transportation accidents are relatively common occurrences compared to more frequently analyzed contributors to public risk. Yet research on maritime safety and pollution incidents has not been guided by a systematic, risk-based approach. Maritime shipping accidents can be analyzed using event trees to group the accidents into 'bins,' or groups, of similar characteristics such as type of cargo, location of accident (e.g., harbor, inland waterway), type of accident (e.g., fire, collision, grounding), and size of release. The importance of specific types of events to each accident bin can be quantified. Then the overall importance of accident events to risk can be estimated by weighting the events' individual bin importance measures by the risk associated with each accident bin. 4 refs., 3 figs., 6 tabs

  5. Texture Repairing by Unified Low Rank Optimization

    Institute of Scientific and Technical Information of China (English)

    Xiao Liang; Xiang Ren; Zhengdong Zhang; Yi Ma

    2016-01-01

    In this paper, we show how to harness both low-rank and sparse structures in regular or near-regular textures for image completion. Our method is based on a unified formulation for both random and contiguous corruption. In addition to the low rank property of texture, the algorithm also uses the sparse assumption of the natural image: because the natural image is piecewise smooth, it is sparse in certain transformed domain (such as Fourier or wavelet transform). We combine low-rank and sparsity properties of the texture image together in the proposed algorithm. Our algorithm based on convex optimization can automatically and correctly repair the global structure of a corrupted texture, even without precise information about the regions to be completed. This algorithm integrates texture rectification and repairing into one optimization problem. Through extensive simulations, we show our method can complete and repair textures corrupted by errors with both random and contiguous supports better than existing low-rank matrix recovery methods. Our method demonstrates significant advantage over local patch based texture synthesis techniques in dealing with large corruption, non-uniform texture, and large perspective deformation.

  6. Sparse structure regularized ranking

    KAUST Repository

    Wang, Jim Jing-Yan; Sun, Yijun; Gao, Xin

    2014-01-01

    Learning ranking scores is critical for the multimedia database retrieval problem. In this paper, we propose a novel ranking score learning algorithm by exploring the sparse structure and using it to regularize ranking scores. To explore the sparse

  7. Ranking of tree-ring based temperature reconstructions of the past millennium

    Science.gov (United States)

    Esper, Jan; Krusic, Paul J.; Ljungqvist, Fredrik C.; Luterbacher, Jürg; Carrer, Marco; Cook, Ed; Davi, Nicole K.; Hartl-Meier, Claudia; Kirdyanov, Alexander; Konter, Oliver; Myglan, Vladimir; Timonen, Mauri; Treydte, Kerstin; Trouet, Valerie; Villalba, Ricardo; Yang, Bao; Büntgen, Ulf

    2016-08-01

    Tree-ring chronologies are widely used to reconstruct high-to low-frequency variations in growing season temperatures over centuries to millennia. The relevance of these timeseries in large-scale climate reconstructions is often determined by the strength of their correlation against instrumental temperature data. However, this single criterion ignores several important quantitative and qualitative characteristics of tree-ring chronologies. Those characteristics are (i) data homogeneity, (ii) sample replication, (iii) growth coherence, (iv) chronology development, and (v) climate signal including the correlation with instrumental data. Based on these 5 characteristics, a reconstruction-scoring scheme is proposed and applied to 39 published, millennial-length temperature reconstructions from Asia, Europe, North America, and the Southern Hemisphere. Results reveal no reconstruction scores highest in every category and each has their own strengths and weaknesses. Reconstructions that perform better overall include N-Scan and Finland from Europe, E-Canada from North America, Yamal and Dzhelo from Asia. Reconstructions performing less well include W-Himalaya and Karakorum from Asia, Tatra and S-Finland from Europe, and Great Basin from North America. By providing a comprehensive set of criteria to evaluate tree-ring chronologies we hope to improve the development of large-scale temperature reconstructions spanning the past millennium. All reconstructions and their corresponding scores are provided at http://www.blogs.uni-mainz.de/fb09climatology.

  8. U.S. Natural Gas Storage Risk-Based Ranking Methodology and Results

    Energy Technology Data Exchange (ETDEWEB)

    Folga, Steve [Argonne National Lab. (ANL), Argonne, IL (United States); Portante, Edgar [Argonne National Lab. (ANL), Argonne, IL (United States); Shamsuddin, Shabbir [Argonne National Lab. (ANL), Argonne, IL (United States); Tompkins, Angeli [Argonne National Lab. (ANL), Argonne, IL (United States); Talaber, Leah [Argonne National Lab. (ANL), Argonne, IL (United States); McLamore, Mike [Argonne National Lab. (ANL), Argonne, IL (United States); Kavicky, Jim [Argonne National Lab. (ANL), Argonne, IL (United States); Conzelmann, Guenter [Argonne National Lab. (ANL), Argonne, IL (United States); Levin, Todd [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-01

    This report summarizes the methodology and models developed to assess the risk to energy delivery from the potential loss of underground gas storage (UGS) facilities located within the United States. The U.S. has a total of 418 existing storage fields, of which 390 are currently active. The models estimate the impacts of a disruption of each of the active UGS facilities on their owners/operators, including (1) local distribution companies (LDCs), (2) directly connected transporting pipelines and thus on the customers in downstream States, and (3) third-party entities and thus on contracted customers expecting the gas shipment. Impacts are measured across all natural gas customer classes. For the electric sector, impacts are quantified in terms of natural gas-fired electric generation capacity potentially affected from the loss of a UGS facility. For the purpose of calculating the overall supply risk, the overall consequence of the disruption of an UGS facility across all customer classes is expressed in terms of the number of expected equivalent residential customer outages per year, which combines the unit business interruption cost per customer class and the estimated number of affected natural gas customers with estimated probabilities of UGS disruptions. All models and analyses are based on publicly available data. The report presents a set of findings and recommendations in terms of data, further analyses, regulatory requirements and standards, and needs to improve gas/electric industry coordination for electric reliability.

  9. Feasibility study of component risk ranking for plant maintenance

    International Nuclear Information System (INIS)

    Ushijima, Koji; Yonebayashi, Kenji; Narumiya, Yoshiyuki; Sakata, Kaoru; Kumano, Tetsuji

    1999-01-01

    Nuclear power is the base load electricity source in Japan, and reduction of operation and maintenance cost maintaining or improving plant safety is one of the major issues. Recently, Risk Informed Management (RIM) is focused as a solution. In this paper, the outline regarding feasibility study of component risk ranking for plant maintenance for a typical Japanese PWR plant is described. A feasibility study of component risk raking for plant maintenance optimization is performed on check valves and motor-operated valves. Risk ranking is performed in two steps using probabilistic analysis (quantitative method) for risk ranking of components, and deterministic examination (qualitative method) for component review. In this study, plant components are ranked from the viewpoint of plant safety / reliability, and the applicability for maintenance is assessed. As a result, distribution of maintenance resources using risk ranking is considered effective. (author)

  10. PhyloPythiaS+: a self-training method for the rapid reconstruction of low-ranking taxonomic bins from metagenomes.

    Science.gov (United States)

    Gregor, Ivan; Dröge, Johannes; Schirmer, Melanie; Quince, Christopher; McHardy, Alice C

    2016-01-01

    Background. Metagenomics is an approach for characterizing environmental microbial communities in situ, it allows their functional and taxonomic characterization and to recover sequences from uncultured taxa. This is often achieved by a combination of sequence assembly and binning, where sequences are grouped into 'bins' representing taxa of the underlying microbial community. Assignment to low-ranking taxonomic bins is an important challenge for binning methods as is scalability to Gb-sized datasets generated with deep sequencing techniques. One of the best available methods for species bins recovery from deep-branching phyla is the expert-trained PhyloPythiaS package, where a human expert decides on the taxa to incorporate in the model and identifies 'training' sequences based on marker genes directly from the sample. Due to the manual effort involved, this approach does not scale to multiple metagenome samples and requires substantial expertise, which researchers who are new to the area do not have. Results. We have developed PhyloPythiaS+, a successor to our PhyloPythia(S) software. The new (+) component performs the work previously done by the human expert. PhyloPythiaS+ also includes a new k-mer counting algorithm, which accelerated the simultaneous counting of 4-6-mers used for taxonomic binning 100-fold and reduced the overall execution time of the software by a factor of three. Our software allows to analyze Gb-sized metagenomes with inexpensive hardware, and to recover species or genera-level bins with low error rates in a fully automated fashion. PhyloPythiaS+ was compared to MEGAN, taxator-tk, Kraken and the generic PhyloPythiaS model. The results showed that PhyloPythiaS+ performs especially well for samples originating from novel environments in comparison to the other methods. Availability. PhyloPythiaS+ in a virtual machine is available for installation under Windows, Unix systems or OS X on: https://github.com/algbioi/ppsp/wiki.

  11. Standard test method for ranking resistance of plastics to sliding wear using block-on-ring wear test—cumulative wear method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This test method covers laboratory procedures for determining the resistance of plastics to sliding wear. The test utilizes a block-on-ring friction and wear testing machine to rank plastics according to their sliding wear characteristics against metals or other solids. 1.2 An important attribute of this test is that it is very flexible. Any material that can be fabricated into, or applied to, blocks and rings can be tested. Thus, the potential materials combinations are endless. In addition, the test can be run with different gaseous atmospheres and elevated temperatures, as desired, to simulate service conditions. 1.3 Wear test results are reported as the volume loss in cubic millimetres for the block and ring. Materials of higher wear resistance will have lower volume loss. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with it...

  12. 1991 Acceptance priority ranking

    International Nuclear Information System (INIS)

    1991-12-01

    The Standard Contract for Disposal of Spent Nuclear Fuel and/or High- Level Radioactive Waste (10 CFR Part 961) that the Department of Energy (DOE) has executed with the owners and generators of civilian spent nuclear fuel requires annual publication of the Acceptance Priority Ranking (APR). The 1991 APR details the order in which DOE will allocate Federal waste acceptance capacity. As required by the Standard Contract, the ranking is based on the age of permanently discharged spent nuclear fuel (SNF), with the owners of the oldest SNF, on an industry-wide basis, given the highest priority. the 1991 APR will be the basis for the annual allocation of waste acceptance capacity to the Purchasers in the 1991 Annual Capacity Report (ACR), to be issued later this year. This document is based on SNF discharges as of December 31, 1990, and reflects Purchaser comments and corrections, as appropriate, to the draft APR issued on May 15, 1991

  13. Minkowski metrics in creating universal ranking algorithms

    Directory of Open Access Journals (Sweden)

    Andrzej Ameljańczyk

    2014-06-01

    Full Text Available The paper presents a general procedure for creating the rankings of a set of objects, while the relation of preference based on any ranking function. The analysis was possible to use the ranking functions began by showing the fundamental drawbacks of commonly used functions in the form of a weighted sum. As a special case of the ranking procedure in the space of a relation, the procedure based on the notion of an ideal element and generalized Minkowski distance from the element was proposed. This procedure, presented as universal ranking algorithm, eliminates most of the disadvantages of ranking functions in the form of a weighted sum.[b]Keywords[/b]: ranking functions, preference relation, ranking clusters, categories, ideal point, universal ranking algorithm

  14. Complete hazard ranking to analyze right-censored data: An ALS survival study.

    Directory of Open Access Journals (Sweden)

    Zhengnan Huang

    2017-12-01

    Full Text Available Survival analysis represents an important outcome measure in clinical research and clinical trials; further, survival ranking may offer additional advantages in clinical trials. In this study, we developed GuanRank, a non-parametric ranking-based technique to transform patients' survival data into a linear space of hazard ranks. The transformation enables the utilization of machine learning base-learners including Gaussian process regression, Lasso, and random forest on survival data. The method was submitted to the DREAM Amyotrophic Lateral Sclerosis (ALS Stratification Challenge. Ranked first place, the model gave more accurate ranking predictions on the PRO-ACT ALS dataset in comparison to Cox proportional hazard model. By utilizing right-censored data in its training process, the method demonstrated its state-of-the-art predictive power in ALS survival ranking. Its feature selection identified multiple important factors, some of which conflicts with previous studies.

  15. Complete hazard ranking to analyze right-censored data: An ALS survival study.

    Science.gov (United States)

    Huang, Zhengnan; Zhang, Hongjiu; Boss, Jonathan; Goutman, Stephen A; Mukherjee, Bhramar; Dinov, Ivo D; Guan, Yuanfang

    2017-12-01

    Survival analysis represents an important outcome measure in clinical research and clinical trials; further, survival ranking may offer additional advantages in clinical trials. In this study, we developed GuanRank, a non-parametric ranking-based technique to transform patients' survival data into a linear space of hazard ranks. The transformation enables the utilization of machine learning base-learners including Gaussian process regression, Lasso, and random forest on survival data. The method was submitted to the DREAM Amyotrophic Lateral Sclerosis (ALS) Stratification Challenge. Ranked first place, the model gave more accurate ranking predictions on the PRO-ACT ALS dataset in comparison to Cox proportional hazard model. By utilizing right-censored data in its training process, the method demonstrated its state-of-the-art predictive power in ALS survival ranking. Its feature selection identified multiple important factors, some of which conflicts with previous studies.

  16. A study on the impact of parameter uncertainty on the emission-based ranking of transportation projects.

    Science.gov (United States)

    2014-01-01

    With the growing concern with air quality levels and, hence, the livability of urban regions in the nation, it has become increasingly common to incorporate vehicular emission considerations in the ranking of transportation projects. Network assignme...

  17. Selection of suitable e-learning approach using TOPSIS technique with best ranked criteria weights

    Science.gov (United States)

    Mohammed, Husam Jasim; Kasim, Maznah Mat; Shaharanee, Izwan Nizal Mohd

    2017-11-01

    This paper compares the performances of four rank-based weighting assessment techniques, Rank Sum (RS), Rank Reciprocal (RR), Rank Exponent (RE), and Rank Order Centroid (ROC) on five identified e-learning criteria to select the best weights method. A total of 35 experts in a public university in Malaysia were asked to rank the criteria and to evaluate five e-learning approaches which include blended learning, flipped classroom, ICT supported face to face learning, synchronous learning, and asynchronous learning. The best ranked criteria weights are defined as weights that have the least total absolute differences with the geometric mean of all weights, were then used to select the most suitable e-learning approach by using TOPSIS method. The results show that RR weights are the best, while flipped classroom approach implementation is the most suitable approach. This paper has developed a decision framework to aid decision makers (DMs) in choosing the most suitable weighting method for solving MCDM problems.

  18. Hasse diagram as a green analytical metrics tool: ranking of methods for benzo[a]pyrene determination in sediments.

    Science.gov (United States)

    Bigus, Paulina; Tsakovski, Stefan; Simeonov, Vasil; Namieśnik, Jacek; Tobiszewski, Marek

    2016-05-01

    This study presents an application of the Hasse diagram technique (HDT) as the assessment tool to select the most appropriate analytical procedures according to their greenness or the best analytical performance. The dataset consists of analytical procedures for benzo[a]pyrene determination in sediment samples, which were described by 11 variables concerning their greenness and analytical performance. Two analyses with the HDT were performed-the first one with metrological variables and the second one with "green" variables as input data. Both HDT analyses ranked different analytical procedures as the most valuable, suggesting that green analytical chemistry is not in accordance with metrology when benzo[a]pyrene in sediment samples is determined. The HDT can be used as a good decision support tool to choose the proper analytical procedure concerning green analytical chemistry principles and analytical performance merits.

  19. Reduced Rank Regression

    DEFF Research Database (Denmark)

    Johansen, Søren

    2008-01-01

    The reduced rank regression model is a multivariate regression model with a coefficient matrix with reduced rank. The reduced rank regression algorithm is an estimation procedure, which estimates the reduced rank regression model. It is related to canonical correlations and involves calculating...

  20. A simple surrogate test method to rank the wear performance of prospective ceramic materials under hip prosthesis edge-loading conditions.

    Science.gov (United States)

    Sanders, Anthony P; Brannon, Rebecca M

    2014-02-01

    This research has developed a novel test method for evaluating the wear resistance of ceramic materials under severe contact stresses simulating edge loading in prosthetic hip bearings. Simply shaped test specimens - a cylinder and a spheroid - were designed as surrogates for an edge-loaded, head/liner implant pair. Equivalency of the simpler specimens was assured in the sense that their theoretical contact dimensions and pressures were identical, according to Hertzian contact theory, to those of the head/liner pair. The surrogates were fabricated in three ceramic materials: Al2 O3 , zirconia-toughened alumina (ZTA), and ZrO2 . They were mated in three different material pairs and reciprocated under a 200 N normal contact force for 1000-2000 cycles, which created small (material pairs were ranked by their wear resistance, quantified by the volume of abraded material measured using an interferometer. Similar tests were performed on edge-loaded hip implants in the same material pairs. The surrogates replicated the wear rankings of their full-scale implant counterparts and mimicked their friction force trends. The results show that a proxy test using simple test specimens can validly rank the wear performance of ceramic materials under severe, edge-loading contact stresses, while replicating the beginning stage of edge-loading wear. This simple wear test is therefore potentially useful for screening and ranking new, prospective materials early in their development, to produce optimized candidates for more complicated full-scale hip simulator wear tests. Copyright © 2013 Wiley Periodicals, Inc.

  1. PageRank tracker: from ranking to tracking.

    Science.gov (United States)

    Gong, Chen; Fu, Keren; Loza, Artur; Wu, Qiang; Liu, Jia; Yang, Jie

    2014-06-01

    Video object tracking is widely used in many real-world applications, and it has been extensively studied for over two decades. However, tracking robustness is still an issue in most existing methods, due to the difficulties with adaptation to environmental or target changes. In order to improve adaptability, this paper formulates the tracking process as a ranking problem, and the PageRank algorithm, which is a well-known webpage ranking algorithm used by Google, is applied. Labeled and unlabeled samples in tracking application are analogous to query webpages and the webpages to be ranked, respectively. Therefore, determining the target is equivalent to finding the unlabeled sample that is the most associated with existing labeled set. We modify the conventional PageRank algorithm in three aspects for tracking application, including graph construction, PageRank vector acquisition and target filtering. Our simulations with the use of various challenging public-domain video sequences reveal that the proposed PageRank tracker outperforms mean-shift tracker, co-tracker, semiboosting and beyond semiboosting trackers in terms of accuracy, robustness and stability.

  2. Bias and Stability of Single Variable Classifiers for Feature Ranking and Selection.

    Science.gov (United States)

    Fakhraei, Shobeir; Soltanian-Zadeh, Hamid; Fotouhi, Farshad

    2014-11-01

    Feature rankings are often used for supervised dimension reduction especially when discriminating power of each feature is of interest, dimensionality of dataset is extremely high, or computational power is limited to perform more complicated methods. In practice, it is recommended to start dimension reduction via simple methods such as feature rankings before applying more complex approaches. Single Variable Classifier (SVC) ranking is a feature ranking based on the predictive performance of a classifier built using only a single feature. While benefiting from capabilities of classifiers, this ranking method is not as computationally intensive as wrappers. In this paper, we report the results of an extensive study on the bias and stability of such feature ranking method. We study whether the classifiers influence the SVC rankings or the discriminative power of features themselves has a dominant impact on the final rankings. We show the common intuition of using the same classifier for feature ranking and final classification does not always result in the best prediction performance. We then study if heterogeneous classifiers ensemble approaches provide more unbiased rankings and if they improve final classification performance. Furthermore, we calculate an empirical prediction performance loss for using the same classifier in SVC feature ranking and final classification from the optimal choices.

  3. A comparison of partial order technique with three methods of multi-criteria analysis for ranking of chemical substances.

    Science.gov (United States)

    Lerche, Dorte; Brüggemann, Rainer; Sørensen, Peter; Carlsen, Lars; Nielsen, Ole John

    2002-01-01

    An alternative to the often cumbersome and time-consuming risk assessments of chemical substances could be more reliable and advanced priority setting methods. An elaboration of the simple scoring methods is provided by Hasse Diagram Technique (HDT) and/or Multi-Criteria Analysis (MCA). The present study provides an in depth evaluation of HDT relative to three MCA techniques. The new and main methodological step in the comparison is the use of probability concepts based on mathematical tools such as linear extensions of partially ordered sets and Monte Carlo simulations. A data set consisting of 12 High Production Volume Chemicals (HPVCs) is used for illustration. It is a paradigm in this investigation to claim that the need of external input (often subjective weightings of criteria) should be minimized and that the transparency should be maximized in any multicriteria prioritisation. The study illustrates that the Hasse diagram technique (HDT) needs least external input, is most transparent and is least subjective. However, HDT has some weaknesses if there are criteria which exclude each other. Then weighting is needed. Multi-Criteria Analysis (i.e. Utility Function approach, PROMETHEE and concordance analysis) can deal with such mutual exclusions because their formalisms to quantify preferences allow participation e.g. weighting of criteria. Consequently MCA include more subjectivity and loose transparency. The recommendation which arises from this study is that the first step in decision making is to run HDT and as the second step possibly is to run one of the MCA algorithms.

  4. Phenomena identification ranking table and knowledge base gaps and needs for the modular high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Tokuhiro, Akira; Potirniche, Gabriel; Rink, Karl

    2009-01-01

    The U.S. is developing a modular high-temperature gas-cooled reactor (MHTGR) under the Next Generation Nuclear Plant (NGNP); also known as the Very High Temperature Reactor (VHTR). The generic MHTGR is a graphite-moderated, gas-cooled reactor (GCR) of either a prismatic modular (block-type, PMR) or pebble-bed (PBR) core configuration. The pebble-bed design requires new attention with respect to neutronics, materials, thermal hydraulic, safety and licensing relative to the set of phenomena and engineering analyses associated with the current fleet of legacy LWRs. In fact, the relative knowledge and experiential base on gas reactors is small in comparison to the LWR. There is a dated body of knowledge from some 25+ years ago on GCRs; recently there is a renewed interest. Thus in the present design and development phase of the NGNP/VHTR, there are relevant thermohydraulic safety issues surrounding the MHTGR with issues impacting foremost the design review process. A common phenomena with respect to PMR and PBR core design, is that concerning 'graphite dust' and its interaction and transport with potential fission products (FP) that may be present within the graphite and subsequently in the primary system. The nature of the graphite and FPs, when circulated or transported in the primary, and possibly beyond, is of concern as potentially an relevant 'source term' (radionuclide inventory) of the MHTGR. Based on NUREG/CR-6944, Volumes 1-5, the author briefly describes the state-of-the art knowledge base on graphite dust and FP transport with respect to the anticipated design of the MHTGR. In addition, from the Phenomena Identification and Ranking Tables (PIRTs) developed in these reports we concurrently identify and describe 'gaps and needs' of the knowledge base. That is, we also present the knowledge base gaps and needs with respect to the following: 1) R and D needs relative to PIRTs, 2) (experimental) database needs relative to PIRTs, and 3) simulation and modeling

  5. Attribute-Based Methods

    Science.gov (United States)

    Thomas P. Holmes; Wiktor L. Adamowicz

    2003-01-01

    Stated preference methods of environmental valuation have been used by economists for decades where behavioral data have limitations. The contingent valuation method (Chapter 5) is the oldest stated preference approach, and hundreds of contingent valuation studies have been conducted. More recently, and especially over the last decade, a class of stated preference...

  6. A method for the design and development of medical or health care information websites to optimize search engine results page rankings on Google.

    Science.gov (United States)

    Dunne, Suzanne; Cummins, Niamh Maria; Hannigan, Ailish; Shannon, Bill; Dunne, Colum; Cullen, Walter

    2013-08-27

    The Internet is a widely used source of information for patients searching for medical/health care information. While many studies have assessed existing medical/health care information on the Internet, relatively few have examined methods for design and delivery of such websites, particularly those aimed at the general public. This study describes a method of evaluating material for new medical/health care websites, or for assessing those already in existence, which is correlated with higher rankings on Google's Search Engine Results Pages (SERPs). A website quality assessment (WQA) tool was developed using criteria related to the quality of the information to be contained in the website in addition to an assessment of the readability of the text. This was retrospectively applied to assess existing websites that provide information about generic medicines. The reproducibility of the WQA tool and its predictive validity were assessed in this study. The WQA tool demonstrated very high reproducibility (intraclass correlation coefficient=0.95) between 2 independent users. A moderate to strong correlation was found between WQA scores and rankings on Google SERPs. Analogous correlations were seen between rankings and readability of websites as determined by Flesch Reading Ease and Flesch-Kincaid Grade Level scores. The use of the WQA tool developed in this study is recommended as part of the design phase of a medical or health care information provision website, along with assessment of readability of the material to be used. This may ensure that the website performs better on Google searches. The tool can also be used retrospectively to make improvements to existing websites, thus, potentially enabling better Google search result positions without incurring the costs associated with Search Engine Optimization (SEO) professionals or paid promotion.

  7. Universal scaling in sports ranking

    International Nuclear Information System (INIS)

    Deng Weibing; Li Wei; Cai Xu; Bulou, Alain; Wang Qiuping A

    2012-01-01

    Ranking is a ubiquitous phenomenon in human society. On the web pages of Forbes, one may find all kinds of rankings, such as the world's most powerful people, the world's richest people, the highest-earning tennis players, and so on and so forth. Herewith, we study a specific kind—sports ranking systems in which players' scores and/or prize money are accrued based on their performances in different matches. By investigating 40 data samples which span 12 different sports, we find that the distributions of scores and/or prize money follow universal power laws, with exponents nearly identical for most sports. In order to understand the origin of this universal scaling we focus on the tennis ranking systems. By checking the data we find that, for any pair of players, the probability that the higher-ranked player tops the lower-ranked opponent is proportional to the rank difference between the pair. Such a dependence can be well fitted to a sigmoidal function. By using this feature, we propose a simple toy model which can simulate the competition of players in different matches. The simulations yield results consistent with the empirical findings. Extensive simulation studies indicate that the model is quite robust with respect to the modifications of some parameters. (paper)

  8. PhyloPythiaS+: a self-training method for the rapid reconstruction of low-ranking taxonomic bins from metagenomes

    Directory of Open Access Journals (Sweden)

    Ivan Gregor

    2016-02-01

    Full Text Available Background. Metagenomics is an approach for characterizing environmental microbial communities in situ, it allows their functional and taxonomic characterization and to recover sequences from uncultured taxa. This is often achieved by a combination of sequence assembly and binning, where sequences are grouped into ‘bins’ representing taxa of the underlying microbial community. Assignment to low-ranking taxonomic bins is an important challenge for binning methods as is scalability to Gb-sized datasets generated with deep sequencing techniques. One of the best available methods for species bins recovery from deep-branching phyla is the expert-trained PhyloPythiaS package, where a human expert decides on the taxa to incorporate in the model and identifies ‘training’ sequences based on marker genes directly from the sample. Due to the manual effort involved, this approach does not scale to multiple metagenome samples and requires substantial expertise, which researchers who are new to the area do not have. Results. We have developed PhyloPythiaS+, a successor to our PhyloPythia(S software. The new (+ component performs the work previously done by the human expert. PhyloPythiaS+ also includes a new k-mer counting algorithm, which accelerated the simultaneous counting of 4–6-mers used for taxonomic binning 100-fold and reduced the overall execution time of the software by a factor of three. Our software allows to analyze Gb-sized metagenomes with inexpensive hardware, and to recover species or genera-level bins with low error rates in a fully automated fashion. PhyloPythiaS+ was compared to MEGAN, taxator-tk, Kraken and the generic PhyloPythiaS model. The results showed that PhyloPythiaS+ performs especially well for samples originating from novel environments in comparison to the other methods. Availability. PhyloPythiaS+ in a virtual machine is available for installation under Windows, Unix systems or OS X on: https://github.com/algbioi/ppsp/wiki.

  9. Ranking Baltic States Researchers

    Directory of Open Access Journals (Sweden)

    Gyula Mester

    2017-10-01

    Full Text Available In this article, using the h-index and the total number of citations, the best 10 Lithuanian, Latvian and Estonian researchers from several disciplines are ranked. The list may be formed based on the h-index and the total number of citations, given in Web of Science, Scopus, Publish or Perish Program and Google Scholar database. Data for the first 10 researchers are presented. Google Scholar is the most complete. Therefore, to define a single indicator, h-index calculated by Google Scholar may be a good and simple one. The author chooses the Google Scholar database as it is the broadest one.

  10. Unique Nanoparticle Optical Properties Confound Fluorescent Based Assays Widely Employed in Their In Vitro Toxicity Screening and Ranking

    Science.gov (United States)

    Nanoparticles (NPs) are novel materials having at least one dimension less than 100 nm and display unique physicochemical properties due to their nanoscale size. An emphasis has been placed on developing high throughput screening (HTS) assays to characterize and rank the toxiciti...

  11. Deriving consensus rankings via multicriteria decision making methodology

    OpenAIRE

    Amy Poh Ai Ling; Mohamad Nasir Saludin; Masao Mukaidono

    2012-01-01

    Purpose - This paper seeks to take a cautionary stance to the impact of the marketing mix on customer satisfaction, via a case study deriving consensus rankings for benchmarking on selected retail stores in Malaysia. Design/methodology/approach - The ELECTRE I model is used in deriving consensus rankings via multicriteria decision making method for benchmarking base on the marketing mix model 4P's. Descriptive analysis is used to analyze best practice among the four marketing tactics. Finding...

  12. Identification of significant features by the Global Mean Rank test.

    Science.gov (United States)

    Klammer, Martin; Dybowski, J Nikolaj; Hoffmann, Daniel; Schaab, Christoph

    2014-01-01

    With the introduction of omics-technologies such as transcriptomics and proteomics, numerous methods for the reliable identification of significantly regulated features (genes, proteins, etc.) have been developed. Experimental practice requires these tests to successfully deal with conditions such as small numbers of replicates, missing values, non-normally distributed expression levels, and non-identical distributions of features. With the MeanRank test we aimed at developing a test that performs robustly under these conditions, while favorably scaling with the number of replicates. The test proposed here is a global one-sample location test, which is based on the mean ranks across replicates, and internally estimates and controls the false discovery rate. Furthermore, missing data is accounted for without the need of imputation. In extensive simulations comparing MeanRank to other frequently used methods, we found that it performs well with small and large numbers of replicates, feature dependent variance between replicates, and variable regulation across features on simulation data and a recent two-color microarray spike-in dataset. The tests were then used to identify significant changes in the phosphoproteomes of cancer cells induced by the kinase inhibitors erlotinib and 3-MB-PP1 in two independently published mass spectrometry-based studies. MeanRank outperformed the other global rank-based methods applied in this study. Compared to the popular Significance Analysis of Microarrays and Linear Models for Microarray methods, MeanRank performed similar or better. Furthermore, MeanRank exhibits more consistent behavior regarding the degree of regulation and is robust against the choice of preprocessing methods. MeanRank does not require any imputation of missing values, is easy to understand, and yields results that are easy to interpret. The software implementing the algorithm is freely available for academic and commercial use.

  13. A comprehensive physiologically based pharmacokinetic knowledgebase and web-based interface for rapid model ranking and querying

    Science.gov (United States)

    Published physiologically based pharmacokinetic (PBPK) models from peer-reviewed articles are often well-parameterized, thoroughly-vetted, and can be utilized as excellent resources for the construction of models pertaining to related chemicals. Specifically, chemical-specific pa...

  14. Tensor completion and low-n-rank tensor recovery via convex optimization

    International Nuclear Information System (INIS)

    Gandy, Silvia; Yamada, Isao; Recht, Benjamin

    2011-01-01

    In this paper we consider sparsity on a tensor level, as given by the n-rank of a tensor. In an important sparse-vector approximation problem (compressed sensing) and the low-rank matrix recovery problem, using a convex relaxation technique proved to be a valuable solution strategy. Here, we will adapt these techniques to the tensor setting. We use the n-rank of a tensor as a sparsity measure and consider the low-n-rank tensor recovery problem, i.e. the problem of finding the tensor of the lowest n-rank that fulfills some linear constraints. We introduce a tractable convex relaxation of the n-rank and propose efficient algorithms to solve the low-n-rank tensor recovery problem numerically. The algorithms are based on the Douglas–Rachford splitting technique and its dual variant, the alternating direction method of multipliers

  15. Diffusion of scientific credits and the ranking of scientists

    Science.gov (United States)

    Radicchi, Filippo; Fortunato, Santo; Markines, Benjamin; Vespignani, Alessandro

    2009-11-01

    Recently, the abundance of digital data is enabling the implementation of graph-based ranking algorithms that provide system level analysis for ranking publications and authors. Here, we take advantage of the entire Physical Review publication archive (1893-2006) to construct authors’ networks where weighted edges, as measured from opportunely normalized citation counts, define a proxy for the mechanism of scientific credit transfer. On this network, we define a ranking method based on a diffusion algorithm that mimics the spreading of scientific credits on the network. We compare the results obtained with our algorithm with those obtained by local measures such as the citation count and provide a statistical analysis of the assignment of major career awards in the area of physics. A website where the algorithm is made available to perform customized rank analysis can be found at the address http://www.physauthorsrank.org.

  16. Ranking structures and rank-rank correlations of countries: The FIFA and UEFA cases

    Science.gov (United States)

    Ausloos, Marcel; Cloots, Rudi; Gadomski, Adam; Vitanov, Nikolay K.

    2014-04-01

    Ranking of agents competing with each other in complex systems may lead to paradoxes according to the pre-chosen different measures. A discussion is presented on such rank-rank, similar or not, correlations based on the case of European countries ranked by UEFA and FIFA from different soccer competitions. The first question to be answered is whether an empirical and simple law is obtained for such (self-) organizations of complex sociological systems with such different measuring schemes. It is found that the power law form is not the best description contrary to many modern expectations. The stretched exponential is much more adequate. Moreover, it is found that the measuring rules lead to some inner structures in both cases.

  17. Sparse structure regularized ranking

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-04-17

    Learning ranking scores is critical for the multimedia database retrieval problem. In this paper, we propose a novel ranking score learning algorithm by exploring the sparse structure and using it to regularize ranking scores. To explore the sparse structure, we assume that each multimedia object could be represented as a sparse linear combination of all other objects, and combination coefficients are regarded as a similarity measure between objects and used to regularize their ranking scores. Moreover, we propose to learn the sparse combination coefficients and the ranking scores simultaneously. A unified objective function is constructed with regard to both the combination coefficients and the ranking scores, and is optimized by an iterative algorithm. Experiments on two multimedia database retrieval data sets demonstrate the significant improvements of the propose algorithm over state-of-the-art ranking score learning algorithms.

  18. Ranking Fragment Ions Based on Outlier Detection for Improved Label-Free Quantification in Data-Independent Acquisition LC-MS/MS

    Science.gov (United States)

    Bilbao, Aivett; Zhang, Ying; Varesio, Emmanuel; Luban, Jeremy; Strambio-De-Castillia, Caterina; Lisacek, Frédérique; Hopfgartner, Gérard

    2016-01-01

    Data-independent acquisition LC-MS/MS techniques complement supervised methods for peptide quantification. However, due to the wide precursor isolation windows, these techniques are prone to interference at the fragment ion level, which in turn is detrimental for accurate quantification. The “non-outlier fragment ion” (NOFI) ranking algorithm has been developed to assign low priority to fragment ions affected by interference. By using the optimal subset of high priority fragment ions these interfered fragment ions are effectively excluded from quantification. NOFI represents each fragment ion as a vector of four dimensions related to chromatographic and MS fragmentation attributes and applies multivariate outlier detection techniques. Benchmarking conducted on a well-defined quantitative dataset (i.e. the SWATH Gold Standard), indicates that NOFI on average is able to accurately quantify 11-25% more peptides than the commonly used Top-N library intensity ranking method. The sum of the area of the Top3-5 NOFIs produces similar coefficients of variation as compared to the library intensity method but with more accurate quantification results. On a biologically relevant human dendritic cell digest dataset, NOFI properly assigns low priority ranks to 85% of annotated interferences, resulting in sensitivity values between 0.92 and 0.80 against 0.76 for the Spectronaut interference detection algorithm. PMID:26412574

  19. Deviation-based spam-filtering method via stochastic approach

    Science.gov (United States)

    Lee, Daekyung; Lee, Mi Jin; Kim, Beom Jun

    2018-03-01

    In the presence of a huge number of possible purchase choices, ranks or ratings of items by others often play very important roles for a buyer to make a final purchase decision. Perfectly objective rating is an impossible task to achieve, and we often use an average rating built on how previous buyers estimated the quality of the product. The problem of using a simple average rating is that it can easily be polluted by careless users whose evaluation of products cannot be trusted, and by malicious spammers who try to bias the rating result on purpose. In this letter we suggest how trustworthiness of individual users can be systematically and quantitatively reflected to build a more reliable rating system. We compute the suitably defined reliability of each user based on the user's rating pattern for all products she evaluated. We call our proposed method as the deviation-based ranking, since the statistical significance of each user's rating pattern with respect to the average rating pattern is the key ingredient. We find that our deviation-based ranking method outperforms existing methods in filtering out careless random evaluators as well as malicious spammers.

  20. Ranked solutions to a class of combinatorial optimizations—with applications in mass spectrometry based peptide sequencing and a variant of directed paths in random media

    Science.gov (United States)

    Doerr, Timothy P.; Alves, Gelio; Yu, Yi-Kuo

    2005-08-01

    Typical combinatorial optimizations are NP-hard; however, for a particular class of cost functions the corresponding combinatorial optimizations can be solved in polynomial time using the transfer matrix technique or, equivalently, the dynamic programming approach. This suggests a way to efficiently find approximate solutions-find a transformation that makes the cost function as similar as possible to that of the solvable class. After keeping many high-ranking solutions using the approximate cost function, one may then re-assess these solutions with the full cost function to find the best approximate solution. Under this approach, it is important to be able to assess the quality of the solutions obtained, e.g., by finding the true ranking of the kth best approximate solution when all possible solutions are considered exhaustively. To tackle this statistical issue, we provide a systematic method starting with a scaling function generated from the finite number of high-ranking solutions followed by a convergent iterative mapping. This method, useful in a variant of the directed paths in random media problem proposed here, can also provide a statistical significance assessment for one of the most important proteomic tasks-peptide sequencing using tandem mass spectrometry data. For directed paths in random media, the scaling function depends on the particular realization of randomness; in the mass spectrometry case, the scaling function is spectrum-specific.

  1. A Ranking Approach on Large-Scale Graph With Multidimensional Heterogeneous Information.

    Science.gov (United States)

    Wei, Wei; Gao, Bin; Liu, Tie-Yan; Wang, Taifeng; Li, Guohui; Li, Hang

    2016-04-01

    Graph-based ranking has been extensively studied and frequently applied in many applications, such as webpage ranking. It aims at mining potentially valuable information from the raw graph-structured data. Recently, with the proliferation of rich heterogeneous information (e.g., node/edge features and prior knowledge) available in many real-world graphs, how to effectively and efficiently leverage all information to improve the ranking performance becomes a new challenging problem. Previous methods only utilize part of such information and attempt to rank graph nodes according to link-based methods, of which the ranking performances are severely affected by several well-known issues, e.g., over-fitting or high computational complexity, especially when the scale of graph is very large. In this paper, we address the large-scale graph-based ranking problem and focus on how to effectively exploit rich heterogeneous information of the graph to improve the ranking performance. Specifically, we propose an innovative and effective semi-supervised PageRank (SSP) approach to parameterize the derived information within a unified semi-supervised learning framework (SSLF-GR), then simultaneously optimize the parameters and the ranking scores of graph nodes. Experiments on the real-world large-scale graphs demonstrate that our method significantly outperforms the algorithms that consider such graph information only partially.

  2. Performance evaluation and ranking of direct sales stores using BSC approach and fuzzy multiple attribute decision-making methods

    Directory of Open Access Journals (Sweden)

    Mojtaba Soltannezhad Dizaji

    2017-07-01

    Full Text Available In an environment where markets go through a volatile process, and rapid fundamental changes occur due to technological advances, it is important to ensure and maintain a good performance measurement. Organizations, in their performance evaluation, should consider different types of financial and non-financial indicators. In systems like direct sales stores in which decision units have multiple inputs and outputs, all criteria influencing on performance must be combined and examined in a system, simultaneously. The purpose of this study is to evaluate the performance of different products through direct sales of a firm named Shirin Asal with a combination of Balanced Scorecard, fuzzy AHP and TOPSIS so that the weaknesses of subjectivity and selective consideration of evaluators in evaluating the performance indicators are reduced and evaluation integration is provided by considering the contribution of each indicator and each indicator group of balanced scorecard. The research method of this case study is applied. The data collection method is a questionnaire from the previous studies, the use of experts' opinions and the study of documents in the organization. MATLAB and SPSS were used to analyze the data. During this study, the customer and financial perspectives are of the utmost importance to assess the company branches. Among the sub-criteria, the rate of new customer acquisition in the customer dimension and the net income to sales ratio in financial dimension are of the utmost importance.

  3. Ranking species in mutualistic networks

    Science.gov (United States)

    Domínguez-García, Virginia; Muñoz, Miguel A.

    2015-02-01

    Understanding the architectural subtleties of ecological networks, believed to confer them enhanced stability and robustness, is a subject of outmost relevance. Mutualistic interactions have been profusely studied and their corresponding bipartite networks, such as plant-pollinator networks, have been reported to exhibit a characteristic ``nested'' structure. Assessing the importance of any given species in mutualistic networks is a key task when evaluating extinction risks and possible cascade effects. Inspired in a recently introduced algorithm -similar in spirit to Google's PageRank but with a built-in non-linearity- here we propose a method which -by exploiting their nested architecture- allows us to derive a sound ranking of species importance in mutualistic networks. This method clearly outperforms other existing ranking schemes and can become very useful for ecosystem management and biodiversity preservation, where decisions on what aspects of ecosystems to explicitly protect need to be made.

  4. Estimation of rank correlation for clustered data.

    Science.gov (United States)

    Rosner, Bernard; Glynn, Robert J

    2017-06-30

    It is well known that the sample correlation coefficient (R xy ) is the maximum likelihood estimator of the Pearson correlation (ρ xy ) for independent and identically distributed (i.i.d.) bivariate normal data. However, this is not true for ophthalmologic data where X (e.g., visual acuity) and Y (e.g., visual field) are available for each eye and there is positive intraclass correlation for both X and Y in fellow eyes. In this paper, we provide a regression-based approach for obtaining the maximum likelihood estimator of ρ xy for clustered data, which can be implemented using standard mixed effects model software. This method is also extended to allow for estimation of partial correlation by controlling both X and Y for a vector U_ of other covariates. In addition, these methods can be extended to allow for estimation of rank correlation for clustered data by (i) converting ranks of both X and Y to the probit scale, (ii) estimating the Pearson correlation between probit scores for X and Y, and (iii) using the relationship between Pearson and rank correlation for bivariate normally distributed data. The validity of the methods in finite-sized samples is supported by simulation studies. Finally, two examples from ophthalmology and analgesic abuse are used to illustrate the methods. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Methods in Logic Based Control

    DEFF Research Database (Denmark)

    Christensen, Georg Kronborg

    1999-01-01

    Desing and theory of Logic Based Control systems.Boolean Algebra, Karnaugh Map, Quine McClusky's algorithm. Sequential control design. Logic Based Control Method, Cascade Control Method. Implementation techniques: relay, pneumatic, TTL/CMOS,PAL and PLC- and Soft_PLC implementation. PLC...

  6. Power System Event Ranking Using a New Linear Parameter-Varying Modeling with a Wide Area Measurement System-Based Approach

    Directory of Open Access Journals (Sweden)

    Mohammad Bagher Abolhasani Jabali

    2017-07-01

    Full Text Available Detecting critical power system events for Dynamic Security Assessment (DSA is required for reliability improvement. The approach proposed in this paper investigates the effects of events on dynamic behavior during nonlinear system response while common approaches use steady-state conditions after events. This paper presents some new and enhanced indices for event ranking based on time-domain simulation and polytopic linear parameter-varying (LPV modeling of a power system. In the proposed approach, a polytopic LPV representation is generated via linearization about some points of the nonlinear dynamic behavior of power system using wide-area measurement system (WAMS concepts and then event ranking is done based on the frequency response of the system models on the vertices. Therefore, the nonlinear behaviors of the system in the time of fault occurrence are considered for events ranking. The proposed algorithm is applied to a power system using nonlinear simulation. The comparison of the results especially in different fault conditions shows the advantages of the proposed approach and indices.

  7. The ranking of negative-cost emissions reduction measures

    International Nuclear Information System (INIS)

    Taylor, Simon

    2012-01-01

    A flaw has been identified in the calculation of the cost-effectiveness in marginal abatement cost curves (MACCs). The problem affects “negative-cost” emissions reduction measures—those that produce a return on investment. The resulting ranking sometimes favours measures that produce low emissions savings and is therefore unreliable. The issue is important because incorrect ranking means a potential failure to achieve the best-value outcome. A simple mathematical analysis shows that not only is the standard cost-effectiveness calculation inadequate for ranking negative-cost measures, but there is no possible replacement that satisfies reasonable requirements. Furthermore, the concept of negative cost-effectiveness is found to be unsound and its use should be avoided. Among other things, this means that MACCs are unsuitable for ranking negative-cost measures. As a result, MACCs produced by a range of organizations including UK government departments may need to be revised. An alternative partial ranking method has been devised by making use of Pareto optimization. The outcome can be presented as a stacked bar chart that indicates both the preferred ordering and the total emissions saving available for each measure without specifying a cost-effectiveness. - Highlights: ► Marginal abatement cost curves (MACCs) are used to rank emission reduction measures. ► There is a flaw in the standard ranking method for negative-cost measures. ► Negative values of cost-effectiveness (in £/tC or equivalent) are invalid. ► There may be errors in published MACCs. ► A method based on Pareto principles provides an alternative ranking method.

  8. Activity based costing (ABC Method

    Directory of Open Access Journals (Sweden)

    Prof. Ph.D. Saveta Tudorache

    2008-05-01

    Full Text Available In the present paper the need and advantages are presented of using the Activity BasedCosting method, need arising from the need of solving the information pertinence issue. This issue has occurreddue to the limitation of classic methods in this field, limitation also reflected by the disadvantages ofsuch classic methods in establishing complete costs.

  9. Ranking stability and super-stable nodes in complex networks.

    Science.gov (United States)

    Ghoshal, Gourab; Barabási, Albert-László

    2011-07-19

    Pagerank, a network-based diffusion algorithm, has emerged as the leading method to rank web content, ecological species and even scientists. Despite its wide use, it remains unknown how the structure of the network on which it operates affects its performance. Here we show that for random networks the ranking provided by pagerank is sensitive to perturbations in the network topology, making it unreliable for incomplete or noisy systems. In contrast, in scale-free networks we predict analytically the emergence of super-stable nodes whose ranking is exceptionally stable to perturbations. We calculate the dependence of the number of super-stable nodes on network characteristics and demonstrate their presence in real networks, in agreement with the analytical predictions. These results not only deepen our understanding of the interplay between network topology and dynamical processes but also have implications in all areas where ranking has a role, from science to marketing.

  10. Multicriterial ranking approach for evaluating bank branch performance

    NARCIS (Netherlands)

    Aleskerov, F; Ersel, H; Yolalan, R

    14 ranking methods based on multiple criteria are suggested for evaluating the performance of the bank branches. The methods are explained via an illustrative example, and some of them are applied to a real-life data for 23 retail bank branches in a large-scale private Turkish commercial bank.

  11. PREFERENCE RANKING ORGANIZATION METHOD FOR ENRICHMENT EVALUATION(PROMETHEE SEBAGAI PENUNJANG KEPUTUSAN PEMILIHAN ANGGOTA BEM FMIPA UNLAM BANJARBARU

    Directory of Open Access Journals (Sweden)

    Megi Adhiyani

    2016-04-01

    Full Text Available The members election process of Student Executive Board of FMIPA UNLAM Banjarbaru is still done manually, so that the election of members require a long time and sometimes subjective. Thus, it needs a decision support system that could help ease the decision-making process using Promethee. Promethee is a method determining the sequence (priority to analyze the problems with the point is the simplicity, clarity, and stability (Arsita, 2013. From the result of the research and observation of the system has been made, can be known that Decision Support System for Member Election of Student Executive Board using Promethee get compliance 89.80 percent and the remaining 10.20 percent not in accordance with the decision of Student Executive Board of FMIPA UNLAM. Keywords : Decision Support System, Member Election of Student Executive Board, Promethee. Badan Eksekutif Mahasiswa (BEM FMIPA UNLAM Banjarbaru memiliki proses pemilihan anggota yang masih dilakukan secara manual sehingga pemilihan anggota BEM memerlukan waktu yang lama dan terkadang subjektif. Oleh karena itu, diperlukan sebuah sistem pendukung keputusan yang dapat mempermudah proses pengambilan keputusan menggunakan metode Promethee. Metode Promethee adalah suatu metode penentuan urutan (prioritas dalam analisa yang masalah pokoknya adalah kesederhanaan, kejelasan, dan kestabilan (2. Dari hasil penelitian dan pengamatan dari sistem yang telah dibuat, dapat diketahui bahwa Sistem Pendukung Keputusan Pemilihan Anggota BEM menggunakan metode Promethee ini mendapatkan nilai kesesuaian 89,80% dan sisanya 10,20% tidak sesuai dengan keputusan dari BEM FMIPA UNLAM. Kata kunci : Sistem Pendukung Keputusan, Pemilihan Anggota BEM, Metode Promethee.

  12. Use of in vitro methods to rank surfactants for irritation potential in support of new product development.

    Science.gov (United States)

    Casterton, P L; Potts, L F; Klein, B D

    1994-08-01

    11 surfactant raw materials with potential applications in light-duty liquid cleaning products were evaluated in vitro using a human skin analogue (ATS SKIN(2) Model ZK1100) for predicting cytotoxicity (MTT reduction) and inflammation [prostaglandin E(2) (PGE(2)) release]. Two of the 11 raw materials, both in the same compound family, were selected to be individually combined with each of the other nine in a 90:10 (raw:selected raw) mixture. Selection criteria were based on desired performance characteristics and low irritation potential as suggested from the individual surfactant assay data. To determine whether irritation potential was mitigated, MTT and PGE(2) scores were again determined for each of the 18 combinations with the resulting data being compared with the untreated raw material data. A plot of the data indicated that one of two selected materials may have an 'anti-irritant' effect. For raw materials with intrinsic MTT scores of less than 50 mug/ml and with the original data corrected for possible dilution effects, a statistical comparison between individual raw materials and the two sets of combinations was done using a one-sample analysis. Both cytotoxicity (MTT) and inflammation (PGE(2)) were significantly decreased by the milder of the two selected raw materials. By factoring the data into future new product decisions, this methodology has become a useful and practical tool for Amway product development.

  13. Model of Decision Making through Consensus in Ranking Case

    Science.gov (United States)

    Tarigan, Gim; Darnius, Open

    2018-01-01

    The basic problem to determine ranking consensus is a problem to combine some rankings those are decided by two or more Decision Maker (DM) into ranking consensus. DM is frequently asked to present their preferences over a group of objects in terms of ranks, for example to determine a new project, new product, a candidate in a election, and so on. The problem in ranking can be classified into two major categories; namely, cardinal and ordinal rankings. The objective of the study is to obtin the ranking consensus by appying some algorithms and methods. The algorithms and methods used in this study were partial algorithm, optimal ranking consensus, BAK (Borde-Kendal)Model. A method proposed as an alternative in ranking conssensus is a Weighted Distance Forward-Backward (WDFB) method, which gave a little difference i ranking consensus result compare to the result oethe example solved by Cook, et.al (2005).

  14. A comparison of hierarchical cluster analysis and league table rankings as methods for analysis and presentation of district health system performance data in Uganda.

    Science.gov (United States)

    Tashobya, Christine K; Dubourg, Dominique; Ssengooba, Freddie; Speybroeck, Niko; Macq, Jean; Criel, Bart

    2016-03-01

    In 2003, the Uganda Ministry of Health introduced the district league table for district health system performance assessment. The league table presents district performance against a number of input, process and output indicators and a composite index to rank districts. This study explores the use of hierarchical cluster analysis for analysing and presenting district health systems performance data and compares this approach with the use of the league table in Uganda. Ministry of Health and district plans and reports, and published documents were used to provide information on the development and utilization of the Uganda district league table. Quantitative data were accessed from the Ministry of Health databases. Statistical analysis using SPSS version 20 and hierarchical cluster analysis, utilizing Wards' method was used. The hierarchical cluster analysis was conducted on the basis of seven clusters determined for each year from 2003 to 2010, ranging from a cluster of good through moderate-to-poor performers. The characteristics and membership of clusters varied from year to year and were determined by the identity and magnitude of performance of the individual variables. Criticisms of the league table include: perceived unfairness, as it did not take into consideration district peculiarities; and being oversummarized and not adequately informative. Clustering organizes the many data points into clusters of similar entities according to an agreed set of indicators and can provide the beginning point for identifying factors behind the observed performance of districts. Although league table ranking emphasize summation and external control, clustering has the potential to encourage a formative, learning approach. More research is required to shed more light on factors behind observed performance of the different clusters. Other countries especially low-income countries that share many similarities with Uganda can learn from these experiences. © The Author 2015

  15. On Page Rank

    NARCIS (Netherlands)

    Hoede, C.

    In this paper the concept of page rank for the world wide web is discussed. The possibility of describing the distribution of page rank by an exponential law is considered. It is shown that the concept is essentially equal to that of status score, a centrality measure discussed already in 1953 by

  16. On Rank and Nullity

    Science.gov (United States)

    Dobbs, David E.

    2012-01-01

    This note explains how Emil Artin's proof that row rank equals column rank for a matrix with entries in a field leads naturally to the formula for the nullity of a matrix and also to an algorithm for solving any system of linear equations in any number of variables. This material could be used in any course on matrix theory or linear algebra.

  17. Hitting the Rankings Jackpot

    Science.gov (United States)

    Chapman, David W.

    2008-01-01

    Recently, Samford University was ranked 27th in the nation in a report released by "Forbes" magazine. In this article, the author relates how the people working at Samford University were surprised at its ranking. Although Samford is the largest privately institution in Alabama, its distinguished academic achievements aren't even…

  18. Consistent ranking of volatility models

    DEFF Research Database (Denmark)

    Hansen, Peter Reinhard; Lunde, Asger

    2006-01-01

    We show that the empirical ranking of volatility models can be inconsistent for the true ranking if the evaluation is based on a proxy for the population measure of volatility. For example, the substitution of a squared return for the conditional variance in the evaluation of ARCH-type models can...... variance in out-of-sample evaluations rather than the squared return. We derive the theoretical results in a general framework that is not specific to the comparison of volatility models. Similar problems can arise in comparisons of forecasting models whenever the predicted variable is a latent variable....

  19. Hazard Ranking System evaluation of CERCLA [Comprehensive Environmental Response, Compensation, and Liability Act] inactive waste sites at Hanford: Volume 1, Evaluation methods and results

    International Nuclear Information System (INIS)

    Stenner, R.D.; Cramer, K.H.; Higley, K.A.; Jette, S.J.; Lamar, D.A.; McLaughlin, T.J.; Sherwood, D.R.; Van Houten, N.C.

    1988-10-01

    The purpose of this report is to formally document the individual site Hazard Ranking System (HRS) evaluations conducted as part of the preliminary assessment/site inspection (PA/SI) activities at the US Department of Energy (DOE) Hanford Site. These activities were carried out pursuant to the DOE orders that describe the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Program addressing the cleanup of inactive waste sites. These orders incorporate the US Environmental Protection Agency methodology, which is based on the Superfund Amendments and Reauthorization Act of 1986 (SARA). The methodology includes six parts: PA/SI, remedial investigation/feasibility study, record of decision, design and implementation of remedial action, operation and monitoring, and verification monitoring. Volume 1 of this report discusses the CERCLA inactive waste-site evaluation process, assumptions, and results of the HRS methodology employed. Volume 2 presents the data on the individual CERCLA engineered-facility sites at Hanford, as contained in the Hanford Inactive Site Surveillance (HISS) Data Base. Volume 3 presents the data on the individual CERCLA unplanned-release sites at Hanford, as contained in the HISS Data Base. 34 refs., 43 figs., 47 tabs

  20. Hazard Ranking System evaluation of CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) inactive waste sites at Hanford: Volume 1, Evaluation methods and results

    Energy Technology Data Exchange (ETDEWEB)

    Stenner, R.D.; Cramer, K.H.; Higley, K.A.; Jette, S.J.; Lamar, D.A.; McLaughlin, T.J.; Sherwood, D.R.; Van Houten, N.C.

    1988-10-01

    The purpose of this report is to formally document the individual site Hazard Ranking System (HRS) evaluations conducted as part of the preliminary assessment/site inspection (PA/SI) activities at the US Department of Energy (DOE) Hanford Site. These activities were carried out pursuant to the DOE orders that describe the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Program addressing the cleanup of inactive waste sites. These orders incorporate the US Environmental Protection Agency methodology, which is based on the Superfund Amendments and Reauthorization Act of 1986 (SARA). The methodology includes six parts: PA/SI, remedial investigation/feasibility study, record of decision, design and implementation of remedial action, operation and monitoring, and verification monitoring. Volume 1 of this report discusses the CERCLA inactive waste-site evaluation process, assumptions, and results of the HRS methodology employed. Volume 2 presents the data on the individual CERCLA engineered-facility sites at Hanford, as contained in the Hanford Inactive Site Surveillance (HISS) Data Base. Volume 3 presents the data on the individual CERCLA unplanned-release sites at Hanford, as contained in the HISS Data Base. 34 refs., 43 figs., 47 tabs.

  1. PageRank (II): Mathematics

    African Journals Online (AJOL)

    maths/stats

    ... GAUSS SEIDEL'S. NUMERICAL ALGORITHMS IN PAGE RANK ANALYSIS. ... The convergence is guaranteed, if the absolute value of the largest eigen ... improved Gauss-Seidel iteration algorithm, based on the decomposition. U. L. D. M. +. +. = ..... This corresponds to determine the eigen vector of T with eigen value 1.

  2. A Difference-Index Based Ranking Bilinear Programming Approach to Solving Bimatrix Games with Payoffs of Trapezoidal Intuitionistic Fuzzy Numbers

    Directory of Open Access Journals (Sweden)

    Deng-Feng Li

    2013-01-01

    Full Text Available The aim of this paper is to develop a bilinear programming method for solving bimatrix games in which the payoffs are expressed with trapezoidal intuitionistic fuzzy numbers (TrIFNs, which are called TrIFN bimatrix games for short. In this method, we define the value index and ambiguity index for a TrIFN and propose a new order relation of TrIFNs based on the difference index of value index to ambiguity index, which is proven to be a total order relation. Hereby, we introduce the concepts of solutions of TrIFN bimatrix games and parametric bimatrix games. It is proven that any TrIFN bimatrix game has at least one satisfying Nash equilibrium solution, which is equivalent to the Nash equilibrium solution of corresponding parametric bimatrix game. The latter can be obtained through solving the auxiliary parametric bilinear programming model. The method proposed in this paper is demonstrated with a real example of the commerce retailers’ strategy choice problem.

  3. Using centrality to rank web snippets

    NARCIS (Netherlands)

    Jijkoun, V.; de Rijke, M.; Peters, C.; Jijkoun, V.; Mandl, T.; Müller, H.; Oard, D.W.; Peñas, A.; Petras, V.; Santos, D.

    2008-01-01

    We describe our participation in the WebCLEF 2007 task, targeted at snippet retrieval from web data. Our system ranks snippets based on a simple similarity-based centrality, inspired by the web page ranking algorithms. We experimented with retrieval units (sentences and paragraphs) and with the

  4. Feature ranking and rank aggregation for automatic sleep stage classification: a comparative study.

    Science.gov (United States)

    Najdi, Shirin; Gharbali, Ali Abdollahi; Fonseca, José Manuel

    2017-08-18

    Nowadays, sleep quality is one of the most important measures of healthy life, especially considering the huge number of sleep-related disorders. Identifying sleep stages using polysomnographic (PSG) signals is the traditional way of assessing sleep quality. However, the manual process of sleep stage classification is time-consuming, subjective and costly. Therefore, in order to improve the accuracy and efficiency of the sleep stage classification, researchers have been trying to develop automatic classification algorithms. Automatic sleep stage classification mainly consists of three steps: pre-processing, feature extraction and classification. Since classification accuracy is deeply affected by the extracted features, a poor feature vector will adversely affect the classifier and eventually lead to low classification accuracy. Therefore, special attention should be given to the feature extraction and selection process. In this paper the performance of seven feature selection methods, as well as two feature rank aggregation methods, were compared. Pz-Oz EEG, horizontal EOG and submental chin EMG recordings of 22 healthy males and females were used. A comprehensive feature set including 49 features was extracted from these recordings. The extracted features are among the most common and effective features used in sleep stage classification from temporal, spectral, entropy-based and nonlinear categories. The feature selection methods were evaluated and compared using three criteria: classification accuracy, stability, and similarity. Simulation results show that MRMR-MID achieves the highest classification performance while Fisher method provides the most stable ranking. In our simulations, the performance of the aggregation methods was in the average level, although they are known to generate more stable results and better accuracy. The Borda and RRA rank aggregation methods could not outperform significantly the conventional feature ranking methods. Among

  5. Selection of the open pit mining cut-off grade strategy under price uncertainty using a risk based multi-criteria ranking system / Wybór strategii określania warunku opłacalności wydobycia w kopalniach odkrywkowych w warunkach niepewności cen w oparciu o wielokryterialny system rankingowy z uwzględnieniem czynników ryzyka

    Science.gov (United States)

    Azimi, Yousue; Osanloo, Montza; Esfahanipour, Akbar

    2012-12-01

    Cut-off Grade Strategy (COGS) is a concept that directly influences the financial, technical, economic, environmental, and legal issues in relation to exploitation of a mineral resource. A decision making system is proposed to select the best technically feasible COGS under price uncertainty. In the proposed system both the conventional discounted cash flow and modern simulation based real option valuations are used to evaluate the alternative strategies. Then the conventional expected value criterion and a multiple criteria ranking system were used to rank the strategies based on the two valuation methods. In the multiple criteria ranking system besides the expected value other stochastic orders expressing abilities of strategies in producing extra profits, minimizing losses and achieving the predefined goals of the exploitation strategy are considered. Finally, the best strategy is selected based on the overall average rank of strategies through all ranking systems. The proposed system was examined using the data of Sungun Copper Mine. To assess the merits of the alternatives better, ranking process was done at both high (prevailing economic condition) and low price conditions. Ranking results revealed that at different price conditions and valuation methods, different results would be obtained. It is concluded that these differences are due to the different behavior of the embedded option to close the mine early, which is more likely to be exercised under low price condition rather than high price condition. The proposed system would enhance the quality of decision making process by providing a more informative and certain platform for project evaluation.

  6. Error analysis of stochastic gradient descent ranking.

    Science.gov (United States)

    Chen, Hong; Tang, Yi; Li, Luoqing; Yuan, Yuan; Li, Xuelong; Tang, Yuanyan

    2013-06-01

    Ranking is always an important task in machine learning and information retrieval, e.g., collaborative filtering, recommender systems, drug discovery, etc. A kernel-based stochastic gradient descent algorithm with the least squares loss is proposed for ranking in this paper. The implementation of this algorithm is simple, and an expression of the solution is derived via a sampling operator and an integral operator. An explicit convergence rate for leaning a ranking function is given in terms of the suitable choices of the step size and the regularization parameter. The analysis technique used here is capacity independent and is novel in error analysis of ranking learning. Experimental results on real-world data have shown the effectiveness of the proposed algorithm in ranking tasks, which verifies the theoretical analysis in ranking error.

  7. LogDet Rank Minimization with Application to Subspace Clustering

    Directory of Open Access Journals (Sweden)

    Zhao Kang

    2015-01-01

    Full Text Available Low-rank matrix is desired in many machine learning and computer vision problems. Most of the recent studies use the nuclear norm as a convex surrogate of the rank operator. However, all singular values are simply added together by the nuclear norm, and thus the rank may not be well approximated in practical problems. In this paper, we propose using a log-determinant (LogDet function as a smooth and closer, though nonconvex, approximation to rank for obtaining a low-rank representation in subspace clustering. Augmented Lagrange multipliers strategy is applied to iteratively optimize the LogDet-based nonconvex objective function on potentially large-scale data. By making use of the angular information of principal directions of the resultant low-rank representation, an affinity graph matrix is constructed for spectral clustering. Experimental results on motion segmentation and face clustering data demonstrate that the proposed method often outperforms state-of-the-art subspace clustering algorithms.

  8. Differential invariants for higher-rank tensors. A progress report

    International Nuclear Information System (INIS)

    Tapial, V.

    2004-07-01

    We outline the construction of differential invariants for higher-rank tensors. In section 2 we outline the general method for the construction of differential invariants. A first result is that the simplest tensor differential invariant contains derivatives of the same order as the rank of the tensor. In section 3 we review the construction for the first-rank tensors (vectors) and second-rank tensors (metrics). In section 4 we outline the same construction for higher-rank tensors. (author)

  9. Lerot: An Online Learning to Rank Framework

    NARCIS (Netherlands)

    Schuth, A.; Hofmann, K.; Whiteson, S.; de Rijke, M.

    2013-01-01

    Online learning to rank methods for IR allow retrieval systems to optimize their own performance directly from interactions with users via click feedback. In the software package Lerot, presented in this paper, we have bundled all ingredients needed for experimenting with online learning to rank for

  10. Ranking Music Data by Relevance and Importance

    DEFF Research Database (Denmark)

    Ruxanda, Maria Magdalena; Nanopoulos, Alexandros; Jensen, Christian Søndergaard

    2008-01-01

    Due to the rapidly increasing availability of audio files on the Web, it is relevant to augment search engines with advanced audio search functionality. In this context, the ranking of the retrieved music is an important issue. This paper proposes a music ranking method capable of flexibly fusing...

  11. Ranking as parameter estimation

    Czech Academy of Sciences Publication Activity Database

    Kárný, Miroslav; Guy, Tatiana Valentine

    2009-01-01

    Roč. 4, č. 2 (2009), s. 142-158 ISSN 1745-7645 R&D Projects: GA MŠk 2C06001; GA AV ČR 1ET100750401; GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : ranking * Bayesian estimation * negotiation * modelling Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2009/AS/karny- ranking as parameter estimation.pdf

  12. Statistical Optimality in Multipartite Ranking and Ordinal Regression.

    Science.gov (United States)

    Uematsu, Kazuki; Lee, Yoonkyung

    2015-05-01

    Statistical optimality in multipartite ranking is investigated as an extension of bipartite ranking. We consider the optimality of ranking algorithms through minimization of the theoretical risk which combines pairwise ranking errors of ordinal categories with differential ranking costs. The extension shows that for a certain class of convex loss functions including exponential loss, the optimal ranking function can be represented as a ratio of weighted conditional probability of upper categories to lower categories, where the weights are given by the misranking costs. This result also bridges traditional ranking methods such as proportional odds model in statistics with various ranking algorithms in machine learning. Further, the analysis of multipartite ranking with different costs provides a new perspective on non-smooth list-wise ranking measures such as the discounted cumulative gain and preference learning. We illustrate our findings with simulation study and real data analysis.

  13. Classification of rank 2 cluster varieties

    DEFF Research Database (Denmark)

    Mandel, Travis

    We classify rank 2 cluster varieties (those whose corresponding skew-form has rank 2) according to the deformation type of a generic fiber U of their X-spaces, as defined by Fock and Goncharov. Our approach is based on the work of Gross, Hacking, and Keel for cluster varieties and log Calabi...

  14. Dynamic collective entity representations for entity ranking

    NARCIS (Netherlands)

    Graus, D.; Tsagkias, M.; Weerkamp, W.; Meij, E.; de Rijke, M.

    2016-01-01

    Entity ranking, i.e., successfully positioning a relevant entity at the top of the ranking for a given query, is inherently difficult due to the potential mismatch between the entity's description in a knowledge base, and the way people refer to the entity when searching for it. To counter this

  15. Multimodal biometric system using rank-level fusion approach.

    Science.gov (United States)

    Monwar, Md Maruf; Gavrilova, Marina L

    2009-08-01

    In many real-world applications, unimodal biometric systems often face significant limitations due to sensitivity to noise, intraclass variability, data quality, nonuniversality, and other factors. Attempting to improve the performance of individual matchers in such situations may not prove to be highly effective. Multibiometric systems seek to alleviate some of these problems by providing multiple pieces of evidence of the same identity. These systems help achieve an increase in performance that may not be possible using a single-biometric indicator. This paper presents an effective fusion scheme that combines information presented by multiple domain experts based on the rank-level fusion integration method. The developed multimodal biometric system possesses a number of unique qualities, starting from utilizing principal component analysis and Fisher's linear discriminant methods for individual matchers (face, ear, and signature) identity authentication and utilizing the novel rank-level fusion method in order to consolidate the results obtained from different biometric matchers. The ranks of individual matchers are combined using the highest rank, Borda count, and logistic regression approaches. The results indicate that fusion of individual modalities can improve the overall performance of the biometric system, even in the presence of low quality data. Insights on multibiometric design using rank-level fusion and its performance on a variety of biometric databases are discussed in the concluding section.

  16. A new physical method to assess handle properties of fabrics made from wood-based fibers

    Science.gov (United States)

    Abu-Rous, M.; Liftinger, E.; Innerlohinger, J.; Malengier, B.; Vasile, S.

    2017-10-01

    In this work, the handfeel of fabrics made of wood-based fibers such as viscose, modal and Lyocell was investigated in relation to cotton fabrics applying the Tissue Softness Analyzer (TSA) method in comparison to other classical methods. Two different construction groups of textile were investigated. The validity of TSA in assessing textile softness of these constructions was tested. TSA results were compared to human hand evaluation as well as to classical physical measurements like drape coefficient, ring pull-through and Handle-o-meter, as well as a newer device, the Fabric Touch Tester (FTT). Physical methods as well as human hand assessments mostly agreed on the softest and smoothest range, but showed different rankings in the harder/rougher side fabrics. TSA ranking of softness and smoothness corresponded to the rankings by other physical methods as well as with human hand feel for the basic textile constructions.

  17. Entropy-based benchmarking methods

    NARCIS (Netherlands)

    Temurshoev, Umed

    2012-01-01

    We argue that benchmarking sign-volatile series should be based on the principle of movement and sign preservation, which states that a bench-marked series should reproduce the movement and signs in the original series. We show that the widely used variants of Denton (1971) method and the growth

  18. Using reduced rank regression methods to identify dietary patterns associated with obesity: a cross-country study among European and Australian adolescents.

    Science.gov (United States)

    Huybrechts, Inge; Lioret, Sandrine; Mouratidou, Theodora; Gunter, Marc J; Manios, Yannis; Kersting, Mathilde; Gottrand, Frederic; Kafatos, Anthony; De Henauw, Stefaan; Cuenca-García, Magdalena; Widhalm, Kurt; Gonzales-Gross, Marcela; Molnar, Denes; Moreno, Luis A; McNaughton, Sarah A

    2017-01-01

    This study aims to examine repeatability of reduced rank regression (RRR) methods in calculating dietary patterns (DP) and cross-sectional associations with overweight (OW)/obesity across European and Australian samples of adolescents. Data from two cross-sectional surveys in Europe (2006/2007 Healthy Lifestyle in Europe by Nutrition in Adolescence study, including 1954 adolescents, 12-17 years) and Australia (2007 National Children's Nutrition and Physical Activity Survey, including 1498 adolescents, 12-16 years) were used. Dietary intake was measured using two non-consecutive, 24-h recalls. RRR was used to identify DP using dietary energy density, fibre density and percentage of energy intake from fat as the intermediate variables. Associations between DP scores and body mass/fat were examined using multivariable linear and logistic regression as appropriate, stratified by sex. The first DP extracted (labelled 'energy dense, high fat, low fibre') explained 47 and 31 % of the response variation in Australian and European adolescents, respectively. It was similar for European and Australian adolescents and characterised by higher consumption of biscuits/cakes, chocolate/confectionery, crisps/savoury snacks, sugar-sweetened beverages, and lower consumption of yogurt, high-fibre bread, vegetables and fresh fruit. DP scores were inversely associated with BMI z-scores in Australian adolescent boys and borderline inverse in European adolescent boys (so as with %BF). Similarly, a lower likelihood for OW in boys was observed with higher DP scores in both surveys. No such relationships were observed in adolescent girls. In conclusion, the DP identified in this cross-country study was comparable for European and Australian adolescents, demonstrating robustness of the RRR method in calculating DP among populations. However, longitudinal designs are more relevant when studying diet-obesity associations, to prevent reverse causality.

  19. Demographic Ranking of the Baltic Sea States

    Directory of Open Access Journals (Sweden)

    Sluka N.

    2014-06-01

    Full Text Available The relevance of the study lies in the acute need to modernise the tools for a more accurate and comparable reflection of the demographic reality of spatial objects of different scales. This article aims to test the methods of “demographic rankings” developed by Yermakov and Shmakov. The method is based on the principles of indirect standardisation of the major demographic coefficients relative to the age structure.The article describes the first attempt to apply the method to the analysis of birth and mortality rates in 1995 and 2010 for 140 countries against the global average, and for the Baltic Sea states against the European average. The grouping of countries and the analysis of changes over the given period confirmed a number of demographic development trends and the persistence of wide territorial disparities in major indicators. The authors identify opposite trends in ranking based on the standardised birth (country consolidation at the level of averaged values and mortality (polarisation rates. The features of demographic process development in the Baltic regions states are described against the global and European background. The study confirmed the validity of the demographic ranking method, which can be instrumental in solving not only scientific but also practical tasks, including those in the field of demographic and social policy.

  20. Using Bibliographic Knowledge for Ranking in Scientific Publication Databases

    CERN Document Server

    Vesely, Martin; Le Meur, Jean-Yves

    2008-01-01

    Document ranking for scientific publications involves a variety of specialized resources (e.g. author or citation indexes) that are usually difficult to use within standard general purpose search engines that usually operate on large-scale heterogeneous document collections for which the required specialized resources are not always available for all the documents present in the collections. Integrating such resources into specialized information retrieval engines is therefore important to cope with community-specific user expectations that strongly influence the perception of relevance within the considered community. In this perspective, this paper extends the notion of ranking with various methods exploiting different types of bibliographic knowledge that represent a crucial resource for measuring the relevance of scientific publications. In our work, we experimentally evaluated the adequacy of two such ranking methods (one based on freshness, i.e. the publication date, and the other on a novel index, the ...

  1. An Improved Approach to the PageRank Problems

    Directory of Open Access Journals (Sweden)

    Yue Xie

    2013-01-01

    Full Text Available We introduce a partition of the web pages particularly suited to the PageRank problems in which the web link graph has a nested block structure. Based on the partition of the web pages, dangling nodes, common nodes, and general nodes, the hyperlink matrix can be reordered to be a more simple block structure. Then based on the parallel computation method, we propose an algorithm for the PageRank problems. In this algorithm, the dimension of the linear system becomes smaller, and the vector for general nodes in each block can be calculated separately in every iteration. Numerical experiments show that this approach speeds up the computation of PageRank.

  2. Survey of sampling-based methods for uncertainty and sensitivity analysis

    International Nuclear Information System (INIS)

    Helton, J.C.; Johnson, J.D.; Sallaberry, C.J.; Storlie, C.B.

    2006-01-01

    Sampling-based methods for uncertainty and sensitivity analysis are reviewed. The following topics are considered: (i) definition of probability distributions to characterize epistemic uncertainty in analysis inputs (ii) generation of samples from uncertain analysis inputs (iii) propagation of sampled inputs through an analysis (iv) presentation of uncertainty analysis results, and (v) determination of sensitivity analysis results. Special attention is given to the determination of sensitivity analysis results, with brief descriptions and illustrations given for the following procedures/techniques: examination of scatterplots, correlation analysis, regression analysis, partial correlation analysis, rank transformations, statistical tests for patterns based on gridding, entropy tests for patterns based on gridding, nonparametric regression analysis, squared rank differences/rank correlation coefficient test, two-dimensional Kolmogorov-Smirnov test, tests for patterns based on distance measures, top down coefficient of concordance, and variance decomposition

  3. Survey of sampling-based methods for uncertainty and sensitivity analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jay Dean; Helton, Jon Craig; Sallaberry, Cedric J. PhD. (.; .); Storlie, Curt B. (Colorado State University, Fort Collins, CO)

    2006-06-01

    Sampling-based methods for uncertainty and sensitivity analysis are reviewed. The following topics are considered: (1) Definition of probability distributions to characterize epistemic uncertainty in analysis inputs, (2) Generation of samples from uncertain analysis inputs, (3) Propagation of sampled inputs through an analysis, (4) Presentation of uncertainty analysis results, and (5) Determination of sensitivity analysis results. Special attention is given to the determination of sensitivity analysis results, with brief descriptions and illustrations given for the following procedures/techniques: examination of scatterplots, correlation analysis, regression analysis, partial correlation analysis, rank transformations, statistical tests for patterns based on gridding, entropy tests for patterns based on gridding, nonparametric regression analysis, squared rank differences/rank correlation coefficient test, two dimensional Kolmogorov-Smirnov test, tests for patterns based on distance measures, top down coefficient of concordance, and variance decomposition.

  4. Multiplex PageRank.

    Science.gov (United States)

    Halu, Arda; Mondragón, Raúl J; Panzarasa, Pietro; Bianconi, Ginestra

    2013-01-01

    Many complex systems can be described as multiplex networks in which the same nodes can interact with one another in different layers, thus forming a set of interacting and co-evolving networks. Examples of such multiplex systems are social networks where people are involved in different types of relationships and interact through various forms of communication media. The ranking of nodes in multiplex networks is one of the most pressing and challenging tasks that research on complex networks is currently facing. When pairs of nodes can be connected through multiple links and in multiple layers, the ranking of nodes should necessarily reflect the importance of nodes in one layer as well as their importance in other interdependent layers. In this paper, we draw on the idea of biased random walks to define the Multiplex PageRank centrality measure in which the effects of the interplay between networks on the centrality of nodes are directly taken into account. In particular, depending on the intensity of the interaction between layers, we define the Additive, Multiplicative, Combined, and Neutral versions of Multiplex PageRank, and show how each version reflects the extent to which the importance of a node in one layer affects the importance the node can gain in another layer. We discuss these measures and apply them to an online multiplex social network. Findings indicate that taking the multiplex nature of the network into account helps uncover the emergence of rankings of nodes that differ from the rankings obtained from one single layer. Results provide support in favor of the salience of multiplex centrality measures, like Multiplex PageRank, for assessing the prominence of nodes embedded in multiple interacting networks, and for shedding a new light on structural properties that would otherwise remain undetected if each of the interacting networks were analyzed in isolation.

  5. Multiplex PageRank.

    Directory of Open Access Journals (Sweden)

    Arda Halu

    Full Text Available Many complex systems can be described as multiplex networks in which the same nodes can interact with one another in different layers, thus forming a set of interacting and co-evolving networks. Examples of such multiplex systems are social networks where people are involved in different types of relationships and interact through various forms of communication media. The ranking of nodes in multiplex networks is one of the most pressing and challenging tasks that research on complex networks is currently facing. When pairs of nodes can be connected through multiple links and in multiple layers, the ranking of nodes should necessarily reflect the importance of nodes in one layer as well as their importance in other interdependent layers. In this paper, we draw on the idea of biased random walks to define the Multiplex PageRank centrality measure in which the effects of the interplay between networks on the centrality of nodes are directly taken into account. In particular, depending on the intensity of the interaction between layers, we define the Additive, Multiplicative, Combined, and Neutral versions of Multiplex PageRank, and show how each version reflects the extent to which the importance of a node in one layer affects the importance the node can gain in another layer. We discuss these measures and apply them to an online multiplex social network. Findings indicate that taking the multiplex nature of the network into account helps uncover the emergence of rankings of nodes that differ from the rankings obtained from one single layer. Results provide support in favor of the salience of multiplex centrality measures, like Multiplex PageRank, for assessing the prominence of nodes embedded in multiple interacting networks, and for shedding a new light on structural properties that would otherwise remain undetected if each of the interacting networks were analyzed in isolation.

  6. Block models and personalized PageRank

    OpenAIRE

    Kloumann, Isabel M.; Ugander, Johan; Kleinberg, Jon

    2016-01-01

    Methods for ranking the importance of nodes in a network have a rich history in machine learning and across domains that analyze structured data. Recent work has evaluated these methods though the seed set expansion problem: given a subset $S$ of nodes from a community of interest in an underlying graph, can we reliably identify the rest of the community? We start from the observation that the most widely used techniques for this problem, personalized PageRank and heat kernel methods, operate...

  7. Comparing classical and quantum PageRanks

    Science.gov (United States)

    Loke, T.; Tang, J. W.; Rodriguez, J.; Small, M.; Wang, J. B.

    2017-01-01

    Following recent developments in quantum PageRanking, we present a comparative analysis of discrete-time and continuous-time quantum-walk-based PageRank algorithms. Relative to classical PageRank and to different extents, the quantum measures better highlight secondary hubs and resolve ranking degeneracy among peripheral nodes for all networks we studied in this paper. For the discrete-time case, we investigated the periodic nature of the walker's probability distribution for a wide range of networks and found that the dominant period does not grow with the size of these networks. Based on this observation, we introduce a new quantum measure using the maximum probabilities of the associated walker during the first couple of periods. This is particularly important, since it leads to a quantum PageRanking scheme that is scalable with respect to network size.

  8. A full ranking for decision making units using ideal and anti-ideal points in DEA.

    Science.gov (United States)

    Barzegarinegad, A; Jahanshahloo, G; Rostamy-Malkhalifeh, M

    2014-01-01

    We propose a procedure for ranking decision making units in data envelopment analysis, based on ideal and anti-ideal points in the production possibility set. Moreover, a model has been introduced to compute the performance of a decision making unit for these two points through using common set of weights. One of the best privileges of this method is that we can make ranking for all decision making units by solving only three programs, and also solving these programs is not related to numbers of decision making units. One of the other advantages of this procedure is to rank all the extreme and nonextreme efficient decision making units. In other words, the suggested ranking method tends to seek a set of common weights for all units to make them fully ranked. Finally, it was applied for different sets holding real data, and then it can be compared with other procedures.

  9. A fuzzy logic based PROMETHEE method for material selection problems

    Directory of Open Access Journals (Sweden)

    Muhammet Gul

    2018-03-01

    Full Text Available Material selection is a complex problem in the design and development of products for diverse engineering applications. This paper presents a fuzzy PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation method based on trapezoidal fuzzy interval numbers that can be applied to the selection of materials for an automotive instrument panel. Also, it presents uniqueness in making a significant contribution to the literature in terms of the application of fuzzy decision-making approach to material selection problems. The method is illustrated, validated, and compared against three different fuzzy MCDM methods (fuzzy VIKOR, fuzzy TOPSIS, and fuzzy ELECTRE in terms of its ranking performance. Also, the relationships between the compared methods and the proposed scenarios for fuzzy PROMETHEE are evaluated via the Spearman’s correlation coefficient. Styrene Maleic Anhydride and Polypropylene are determined optionally as suitable materials for the automotive instrument panel case. We propose a generic fuzzy MCDM methodology that can be practically implemented to material selection problem. The main advantages of the methodology are consideration of the vagueness, uncertainty, and fuzziness to decision making environment.

  10. Sparse Contextual Activation for Efficient Visual Re-Ranking.

    Science.gov (United States)

    Bai, Song; Bai, Xiang

    2016-03-01

    In this paper, we propose an extremely efficient algorithm for visual re-ranking. By considering the original pairwise distance in the contextual space, we develop a feature vector called sparse contextual activation (SCA) that encodes the local distribution of an image. Hence, re-ranking task can be simply accomplished by vector comparison under the generalized Jaccard metric, which has its theoretical meaning in the fuzzy set theory. In order to improve the time efficiency of re-ranking procedure, inverted index is successfully introduced to speed up the computation of generalized Jaccard metric. As a result, the average time cost of re-ranking for a certain query can be controlled within 1 ms. Furthermore, inspired by query expansion, we also develop an additional method called local consistency enhancement on the proposed SCA to improve the retrieval performance in an unsupervised manner. On the other hand, the retrieval performance using a single feature may not be satisfactory enough, which inspires us to fuse multiple complementary features for accurate retrieval. Based on SCA, a robust feature fusion algorithm is exploited that also preserves the characteristic of high time efficiency. We assess our proposed method in various visual re-ranking tasks. Experimental results on Princeton shape benchmark (3D object), WM-SRHEC07 (3D competition), YAEL data set B (face), MPEG-7 data set (shape), and Ukbench data set (image) manifest the effectiveness and efficiency of SCA.

  11. A scoring mechanism for the rank aggregation of network robustness

    Science.gov (United States)

    Yazdani, Alireza; Dueñas-Osorio, Leonardo; Li, Qilin

    2013-10-01

    To date, a number of metrics have been proposed to quantify inherent robustness of network topology against failures. However, each single metric usually only offers a limited view of network vulnerability to different types of random failures and targeted attacks. When applied to certain network configurations, different metrics rank network topology robustness in different orders which is rather inconsistent, and no single metric fully characterizes network robustness against different modes of failure. To overcome such inconsistency, this work proposes a multi-metric approach as the basis of evaluating aggregate ranking of network topology robustness. This is based on simultaneous utilization of a minimal set of distinct robustness metrics that are standardized so to give way to a direct comparison of vulnerability across networks with different sizes and configurations, hence leading to an initial scoring of inherent topology robustness. Subsequently, based on the inputs of initial scoring a rank aggregation method is employed to allocate an overall ranking of robustness to each network topology. A discussion is presented in support of the presented multi-metric approach and its applications to more realistically assess and rank network topology robustness.

  12. Comparative Case Studies on Indonesian Higher Education Rankings

    Science.gov (United States)

    Kurniasih, Nuning; Hasyim, C.; Wulandari, A.; Setiawan, M. I.; Ahmar, A. S.

    2018-01-01

    The quality of the higher education is the result of a continuous process. There are many indicators that can be used to assess the quality of a higher education. The existence of different indicators makes the different result of university rankings. This research aims to find variables that can connect ranking indicators that are used by Indonesian Ministry of Research, Technology, and Higher Education with indicators that are used by international rankings by taking two kind of ranking systems i.e. Webometrics and 4icu. This research uses qualitative research method with comparative case studies approach. The result of the research shows that to bridge the indicators that are used by Indonesian Ministry or Research, Technology, and Higher Education with web-based ranking system like Webometrics and 4icu so that the Indonesian higher education institutions need to open access towards either scientific or non-scientific that are publicly used into web-based environment. One of the strategies that can be used to improve the openness and access towards scientific work of a university is by involving in open science and collaboration.

  13. Dynamic Matrix Rank

    DEFF Research Database (Denmark)

    Frandsen, Gudmund Skovbjerg; Frandsen, Peter Frands

    2009-01-01

    We consider maintaining information about the rank of a matrix under changes of the entries. For n×n matrices, we show an upper bound of O(n1.575) arithmetic operations and a lower bound of Ω(n) arithmetic operations per element change. The upper bound is valid when changing up to O(n0.575) entries...... in a single column of the matrix. We also give an algorithm that maintains the rank using O(n2) arithmetic operations per rank one update. These bounds appear to be the first nontrivial bounds for the problem. The upper bounds are valid for arbitrary fields, whereas the lower bound is valid for algebraically...... closed fields. The upper bound for element updates uses fast rectangular matrix multiplication, and the lower bound involves further development of an earlier technique for proving lower bounds for dynamic computation of rational functions....

  14. Investigating Environmentally Sustainable Transport Based on DALY weights and SIR Method

    Directory of Open Access Journals (Sweden)

    Hossein Nezamianpour Jahromi

    2012-09-01

    Full Text Available Accessibility is one of the main causes of well-being and growth in contemporary societies. Transportation is the backbone of accessibility systems that lead to the growth of economic and social networks and spatial dispersion of activities. Unfortunately, the adverse effects of transportation have a great impact on the natural and human environment. Since transportation is associated with fossil fuel combustion, it results in emissions of pollutants that cause damage to human health. To save the global eco-system, sustainable development has become an international priority. To deal with the sustainability of transportation systems is an important issue as testified by a growing number of initiatives framed to define and measure sustainability in transportation planning and infrastructure planning as well. The capability of environmental assessment as a sustainability instrument is well known. This study proposes a new approach to rank countries based on environmental sustainability development applying disability adjusted life year (DALY weights for transportation sector emissions. DALY weights consider actual impacts of pollutants on human health. By employing SIR method, a superiority and inferiority ranking method is presented for multiple criteria decision making, the sustainability ranking of a number of European countries is presented. Three various ranking methods extracted from SIR ranking method are discussed and the results and the correlation among them are demonstrated.

  15. Motif discovery in ranked lists of sequences

    DEFF Research Database (Denmark)

    Nielsen, Morten Muhlig; Tataru, Paula; Madsen, Tobias

    2016-01-01

    Motif analysis has long been an important method to characterize biological functionality and the current growth of sequencing-based genomics experiments further extends its potential. These diverse experiments often generate sequence lists ranked by some functional property. There is therefore...... advantage of the regular expression feature, including enrichments for combinations of different microRNA seed sites. The method is implemented and made publicly available as an R package and supports high parallelization on multi-core machinery....... a growing need for motif analysis methods that can exploit this coupled data structure and be tailored for specific biological questions. Here, we present an exploratory motif analysis tool, Regmex (REGular expression Motif EXplorer), which offers several methods to evaluate the correlation of motifs...

  16. A New Method Based on TOPSIS and Response Surface Method for MCDM Problems with Interval Numbers

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2015-01-01

    Full Text Available As the preference of design maker (DM is always ambiguous, we have to face many multiple criteria decision-making (MCDM problems with interval numbers in our daily life. Though there have been some methods applied to solve this sort of problem, it is always complex to comprehend and sometimes difficult to implement. The calculation processes are always ineffective when a new alternative is added or removed. In view of the weakness like this, this paper presents a new method based on TOPSIS and response surface method (RSM for MCDM problems with interval numbers, RSM-TOPSIS-IN for short. The key point of this approach is the application of deviation degree matrix, which ensures that the DM can get a simple response surface (RS model to rank the alternatives. In order to demonstrate the feasibility and effectiveness of the proposed method, three illustrative MCMD problems with interval numbers are analysed, including (a selection of investment program, (b selection of a right partner, and (c assessment of road transport technologies. The contrast of ranking results shows that the RSM-TOPSIS-IN method is in good agreement with those derived by earlier researchers, indicating it is suitable to solve MCDM problems with interval numbers.

  17. Selection Methods for Undergraduate Admissions in Australia. Does the Australian Predominate Entry Scheme the Australian Tertiary Admissions Rank (ATAR) Have a Future?

    Science.gov (United States)

    Blyth, Kathryn

    2014-01-01

    This article considers the Australian entry score system, the Australian Tertiary Admissions Rank (ATAR), and its usage as a selection mechanism for undergraduate places in Australian higher education institutions and asks whether its role as the main selection criterion will continue with the introduction of demand driven funding in 2012.…

  18. A Relative Ranking Approach for Nano-Enabled Applications to Improve Risk-Based Decision Making: A Case Study of Army Materiel

    Science.gov (United States)

    2014-12-24

    accidental expo- sures to carbon nanotubes and copper flakes incorporated into energy and obscurant materiel by Army workers rank highest relative to...that inhalation from accidental exposures to carbon nanotubes and copper flakes incorporated into energy and obscurant materiel by Army workers rank... copper (Cu), and titanium (Ti) flakes used in smokes and obscurants ranked the highest on the risk scale for sce- narios primarily involving accidental

  19. Ranking Decision Making Units with Stochastic Data by Using Coefficient of Variation

    OpenAIRE

    Lotfi, F.; Nematollahi, N.; Behzadi, M.H.; Mirbolouki, M.

    2010-01-01

    Data Envelopment Analysis (DEA) is a non-parametric technique which is based on mathematical programming for evaluating the efficiency of a set of Decision Making Units (DMUs). Throughout applications, managers encounter with stochastic data and the necessity of having a method that is able to evaluate efficiency and rank efficient units has been under consideration. In this paper considering the concept of coefficient of variation among efficient DMUs, two ranking methods has been proposed. ...

  20. Activity – based costing method

    Directory of Open Access Journals (Sweden)

    Èuchranová Katarína

    2001-06-01

    Full Text Available Activity based costing is a method of identifying and tracking the operating costs directly associated with processing items. It is the practice of focusing on some unit of output, such as a purchase order or an assembled automobile and attempting to determine its total as precisely as poccible based on the fixed and variable costs of the inputs.You use ABC to identify, quantify and analyze the various cost drivers (such as labor, materials, administrative overhead, rework. and to determine which ones are candidates for reduction.A processes any activity that accepts inputs, adds value to these inputs for customers and produces outputs for these customers. The customer may be either internal or external to the organization. Every activity within an organization comprimes one or more processes. Inputs, controls and resources are all supplied to the process.A process owner is the person responsible for performing and or controlling the activity.The direction of cost through their contact to partial activity and processes is a new modern theme today. Beginning of this method is connected with very important changes in the firm processes.ABC method is a instrument , that bring a competitive advantages for the firm.

  1. Ranking of lignocellulosic biomass pellets through multicriteria modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sultana, A.; Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2009-07-01

    A study was conducted in which pellets from different lignocellulosic biomass sources were ranked using a multicriteria assessment model. Five different pellet alternatives were compared based on 10 criteria. The pair-wise comparison was done in order to develop preference indices for various alternatives. The methodology used in this study was the Preference Ranking Organization Method for Enrichment and Evaluation (PROMETHEE). The biomass included wood pellets, straw pellets, switchgrass pellets, alfalfa pellets and poultry pellets. The study considered both quantitative and qualitative criteria such as energy consumption to produce the pellets, production cost, bulk density, NOx emissions, SOx emissions, deposit formation, net calorific value, moisture content, maturity of technology, and quality of material. A sensitivity analysis was performed by changing weights of criteria and threshold values of the criteria. Different scenarios were developed for ranking cost and environmental impacts. According to preliminary results, the wood pellet is the best energy source, followed by switchgrass pellets, straw pellets, alfalfa pellets and poultry pellets.

  2. Citation ranking versus peer evaluation of senior faculty research performance

    DEFF Research Database (Denmark)

    Meho, Lokman I.; Sonnenwald, Diane H.

    2000-01-01

    The purpose of this study is to analyze the relationship between citation ranking and peer evaluation in assessing senior faculty research performance. Other studies typically derive their peer evaluation data directly from referees, often in the form of ranking. This study uses two additional...... indicator of research performance of senior faculty members? Citation data, book reviews, and peer ranking were compiled and examined for faculty members specializing in Kurdish studies. Analysis shows that normalized citation ranking and citation content analysis data yield identical ranking results....... Analysis also shows that normalized citation ranking and citation content analysis, book reviews, and peer ranking perform similarly (i.e., are highly correlated) for high-ranked and low-ranked senior scholars. Additional evaluation methods and measures that take into account the context and content...

  3. Rankings of Economics Faculties and Representation on Editorial Boards of Top Journals.

    Science.gov (United States)

    Gibbons, Jean D.; Fish, Mary

    1991-01-01

    Presents rankings of U.S., university, economics departments. Explains the rankings are based upon representation of the departments on the editorial boards of leading economics journals. Reports that results are similar to rankings based upon other criteria. (DK)

  4. College Rankings. ERIC Digest.

    Science.gov (United States)

    Holub, Tamara

    The popularity of college ranking surveys published by "U.S. News and World Report" and other magazines is indisputable, but the methodologies used to measure the quality of higher education institutions have come under fire by scholars and college officials. Criticisms have focused on methodological flaws, such as failure to consider…

  5. Algebraic and computational aspects of real tensor ranks

    CERN Document Server

    Sakata, Toshio; Miyazaki, Mitsuhiro

    2016-01-01

    This book provides comprehensive summaries of theoretical (algebraic) and computational aspects of tensor ranks, maximal ranks, and typical ranks, over the real number field. Although tensor ranks have been often argued in the complex number field, it should be emphasized that this book treats real tensor ranks, which have direct applications in statistics. The book provides several interesting ideas, including determinant polynomials, determinantal ideals, absolutely nonsingular tensors, absolutely full column rank tensors, and their connection to bilinear maps and Hurwitz-Radon numbers. In addition to reviews of methods to determine real tensor ranks in details, global theories such as the Jacobian method are also reviewed in details. The book includes as well an accessible and comprehensive introduction of mathematical backgrounds, with basics of positive polynomials and calculations by using the Groebner basis. Furthermore, this book provides insights into numerical methods of finding tensor ranks through...

  6. Evaluation of the osteoclastogenic process associated with RANK / RANK-L / OPG in odontogenic myxomas

    Science.gov (United States)

    González-Galván, María del Carmen; Mosqueda-Taylor, Adalberto; Bologna-Molina, Ronell; Setien-Olarra, Amaia; Marichalar-Mendia, Xabier; Aguirre-Urizar, José-Manuel

    2018-01-01

    Background Odontogenic myxoma (OM) is a benign intraosseous neoplasm that exhibits local aggressiveness and high recurrence rates. Osteoclastogenesis is an important phenomenon in the tumor growth of maxillary neoplasms. RANK (Receptor Activator of Nuclear Factor κappa B) is the signaling receptor of RANK-L (Receptor activator of nuclear factor kappa-Β ligand) that activates the osteoclasts. OPG (osteoprotegerin) is a decoy receptor for RANK-L that inhibits pro-osteoclastogenesis. The RANK / RANKL / OPG system participates in the regulation of osteolytic activity under normal conditions, and its alteration has been associated with greater bone destruction, and also with tumor growth. Objectives To analyze the immunohistochemical expression of OPG, RANK and RANK-L proteins in odontogenic myxomas (OMs) and their relationship with the tumor size. Material and Methods Eighteen OMs, 4 small ( 3cm) and 18 dental follicles (DF) that were included as control were studied by means of standard immunohistochemical procedure with RANK, RANKL and OPG antibodies. For the evaluation, 5 fields (40x) of representative areas of OM and DF were selected where the expression of each antibody was determined. Descriptive and comparative statistical analyses were performed with the obtained data. Results There are significant differences in the expression of RANK in OM samples as compared to DF (p = 0.022) and among the OMSs and OMLs (p = 0.032). Also a strong association is recognized in the expression of RANK-L and OPG in OM samples. Conclusions Activation of the RANK / RANK-L / OPG triad seems to be involved in the mechanisms of bone balance and destruction, as well as associated with tumor growth in odontogenic myxomas. Key words:Odontogenic myxoma, dental follicle, RANK, RANK-L, OPG, osteoclastogenesis. PMID:29680857

  7. A Ranking Analysis of the Management Schools in Greater China (2000-2010): Evidence from the SSCI Database

    Science.gov (United States)

    Hou, Mingjun; Fan, Peihua; Liu, Heng

    2014-01-01

    The authors rank the management schools in Greater China (including Mainland China, Hong Kong, Taiwan, and Macau) based on their academic publications in the Social Sciences Citation Index management and business journals from 2000 to 2010. Following K. Ritzberger's (2008) and X. Yu and Z. Gao's (2010) ranking method, the authors develop six…

  8. Monte Carlo simulations guided by imaging to predict the in vitro ranking of radiosensitizing nanoparticles.

    Science.gov (United States)

    Retif, Paul; Reinhard, Aurélie; Paquot, Héna; Jouan-Hureaux, Valérie; Chateau, Alicia; Sancey, Lucie; Barberi-Heyob, Muriel; Pinel, Sophie; Bastogne, Thierry

    This article addresses the in silico-in vitro prediction issue of organometallic nanoparticles (NPs)-based radiosensitization enhancement. The goal was to carry out computational experiments to quickly identify efficient nanostructures and then to preferentially select the most promising ones for the subsequent in vivo studies. To this aim, this interdisciplinary article introduces a new theoretical Monte Carlo computational ranking method and tests it using 3 different organometallic NPs in terms of size and composition. While the ranking predicted in a classical theoretical scenario did not fit the reference results at all, in contrast, we showed for the first time how our accelerated in silico virtual screening method, based on basic in vitro experimental data (which takes into account the NPs cell biodistribution), was able to predict a relevant ranking in accordance with in vitro clonogenic efficiency. This corroborates the pertinence of such a prior ranking method that could speed up the preclinical development of NPs in radiation therapy.

  9. NONLINEAR ASSIGNMENT-BASED METHODS FOR INTERVAL-VALUED INTUITIONISTIC FUZZY MULTI-CRITERIA DECISION ANALYSIS WITH INCOMPLETE PREFERENCE INFORMATION

    OpenAIRE

    TING-YU CHEN

    2012-01-01

    In the context of interval-valued intuitionistic fuzzy sets, this paper develops nonlinear assignment-based methods to manage imprecise and uncertain subjective ratings under incomplete preference structures and thereby determines the optimal ranking order of the alternatives for multiple criteria decision analysis. By comparing each interval-valued intuitionistic fuzzy number's score function, accuracy function, membership uncertainty index, and hesitation uncertainty index, a ranking proced...

  10. Ranking of biomass pellets by integration of economic, environmental and technical factors

    International Nuclear Information System (INIS)

    Sultana, Arifa; Kumar, Amit

    2012-01-01

    Interest in biomass as a renewable energy source has increased recently in response to a need to reduce greenhouse gas (GHG) emissions. The objective of this study is to develop a multi-criteria assessment model and rank different biomass feedstock-based pellets, in terms of their suitability for use in large heat and power generation plants and show the importance of environmental, economical and technical factors in making decision about different pellets. Five pellet alternatives, each produced from a different sustainable biomass feedstock i.e., wood, straw, switchgrass, alfalfa and poultry litter, are ranked according to eleven criteria, using the Preference Ranking Organization Method for Enrichment and Evaluation (PROMETHEE). Both quantitative and qualitative criteria are considered, including environmental, technical and economic factors. Three scenarios, namely base case, environmental and economic, are developed by changing the weight assigned to different criteria. In the base case scenario, equal weights are assigned to each criterion. In the economic and environmental scenarios, more weight is given to the economic and environmental factors, respectively. Based on the PROMETHEE rankings, wood pellets are the best source of energy for all scenarios followed by switchgrass, straw, poultry litter and alfalfa pellets except economic scenario, where straw pellets held higher position than switchgrass pellets. Sensitivity analysis on weights, threshold values, preference function and production cost indicate that the ranking was stable. The ranking in all scenarios remained same when qualitative criteria were omitted from the model; this indicates the stronger influence of quantitative criteria. -- Highlights: ► This study ranks the pellets produced from different biomass feedstocks. ► The ranking of the pellets is based on technical, economical and environmental factors. ► This study uses PROMETHEE method for ranking pellets based on a range of

  11. Improving Ranking Using Quantum Probability

    OpenAIRE

    Melucci, Massimo

    2011-01-01

    The paper shows that ranking information units by quantum probability differs from ranking them by classical probability provided the same data used for parameter estimation. As probability of detection (also known as recall or power) and probability of false alarm (also known as fallout or size) measure the quality of ranking, we point out and show that ranking by quantum probability yields higher probability of detection than ranking by classical probability provided a given probability of ...

  12. Multi-dimensional Rankings, Program Termination, and Complexity Bounds of Flowchart Programs

    Science.gov (United States)

    Alias, Christophe; Darte, Alain; Feautrier, Paul; Gonnord, Laure

    Proving the termination of a flowchart program can be done by exhibiting a ranking function, i.e., a function from the program states to a well-founded set, which strictly decreases at each program step. A standard method to automatically generate such a function is to compute invariants for each program point and to search for a ranking in a restricted class of functions that can be handled with linear programming techniques. Previous algorithms based on affine rankings either are applicable only to simple loops (i.e., single-node flowcharts) and rely on enumeration, or are not complete in the sense that they are not guaranteed to find a ranking in the class of functions they consider, if one exists. Our first contribution is to propose an efficient algorithm to compute ranking functions: It can handle flowcharts of arbitrary structure, the class of candidate rankings it explores is larger, and our method, although greedy, is provably complete. Our second contribution is to show how to use the ranking functions we generate to get upper bounds for the computational complexity (number of transitions) of the source program. This estimate is a polynomial, which means that we can handle programs with more than linear complexity. We applied the method on a collection of test cases from the literature. We also show the links and differences with previous techniques based on the insertion of counters.

  13. A quantitative experimental paradigm to optimize construction of rank order lists in the National Resident Matching Program: the ROSS-MOORE approach.

    Science.gov (United States)

    Ross, David A; Moore, Edward Z

    2013-09-01

    As part of the National Resident Matching Program, programs must submit a rank order list of desired applicants. Despite the importance of this process and the numerous manifest limitations with traditional approaches, minimal research has been conducted to examine the accuracy of different ranking strategies. The authors developed the Moore Optimized Ordinal Rank Estimator (MOORE), a novel algorithm for ranking applicants that is based on college sports ranking systems. Because it is not possible to study the Match in vivo, the authors then designed the Recruitment Outcomes Simulation System (ROSS). This program was used to simulate a series of interview seasons and to compare MOORE and traditional approaches under different conditions. The accuracy of traditional ranking and the MOORE approach are equally and adversely affected with higher levels of intrarater variability. However, compared with traditional ranking methods, MOORE produces a more accurate rank order list as interrater variability increases. The present data demonstrate three key findings. First, they provide proof of concept that it is possible to scientifically test the accuracy of different rank methods used in the Match. Second, they show that small amounts of variability can have a significant adverse impact on the accuracy of rank order lists. Finally, they demonstrate that an ordinal approach may lead to a more accurate rank order list in the presence of interviewer bias. The ROSS-MOORE approach offers programs a novel way to optimize the recruitment process and, potentially, to construct a more accurate rank order list.

  14. GeneRank: Using search engine technology for the analysis of microarray experiments

    Directory of Open Access Journals (Sweden)

    Breitling Rainer

    2005-09-01

    Full Text Available Abstract Background Interpretation of simple microarray experiments is usually based on the fold-change of gene expression between a reference and a "treated" sample where the treatment can be of many types from drug exposure to genetic variation. Interpretation of the results usually combines lists of differentially expressed genes with previous knowledge about their biological function. Here we evaluate a methodbased on the PageRank algorithm employed by the popular search engine Google – that tries to automate some of this procedure to generate prioritized gene lists by exploiting biological background information. Results GeneRank is an intuitive modification of PageRank that maintains many of its mathematical properties. It combines gene expression information with a network structure derived from gene annotations (gene ontologies or expression profile correlations. Using both simulated and real data we find that the algorithm offers an improved ranking of genes compared to pure expression change rankings. Conclusion Our modification of the PageRank algorithm provides an alternative method of evaluating microarray experimental results which combines prior knowledge about the underlying network. GeneRank offers an improvement compared to assessing the importance of a gene based on its experimentally observed fold-change alone and may be used as a basis for further analytical developments.

  15. GeneRank: using search engine technology for the analysis of microarray experiments.

    Science.gov (United States)

    Morrison, Julie L; Breitling, Rainer; Higham, Desmond J; Gilbert, David R

    2005-09-21

    Interpretation of simple microarray experiments is usually based on the fold-change of gene expression between a reference and a "treated" sample where the treatment can be of many types from drug exposure to genetic variation. Interpretation of the results usually combines lists of differentially expressed genes with previous knowledge about their biological function. Here we evaluate a method--based on the PageRank algorithm employed by the popular search engine Google--that tries to automate some of this procedure to generate prioritized gene lists by exploiting biological background information. GeneRank is an intuitive modification of PageRank that maintains many of its mathematical properties. It combines gene expression information with a network structure derived from gene annotations (gene ontologies) or expression profile correlations. Using both simulated and real data we find that the algorithm offers an improved ranking of genes compared to pure expression change rankings. Our modification of the PageRank algorithm provides an alternative method of evaluating microarray experimental results which combines prior knowledge about the underlying network. GeneRank offers an improvement compared to assessing the importance of a gene based on its experimentally observed fold-change alone and may be used as a basis for further analytical developments.

  16. Low rank magnetic resonance fingerprinting.

    Science.gov (United States)

    Mazor, Gal; Weizman, Lior; Tal, Assaf; Eldar, Yonina C

    2016-08-01

    Magnetic Resonance Fingerprinting (MRF) is a relatively new approach that provides quantitative MRI using randomized acquisition. Extraction of physical quantitative tissue values is preformed off-line, based on acquisition with varying parameters and a dictionary generated according to the Bloch equations. MRF uses hundreds of radio frequency (RF) excitation pulses for acquisition, and therefore high under-sampling ratio in the sampling domain (k-space) is required. This under-sampling causes spatial artifacts that hamper the ability to accurately estimate the quantitative tissue values. In this work, we introduce a new approach for quantitative MRI using MRF, called Low Rank MRF. We exploit the low rank property of the temporal domain, on top of the well-known sparsity of the MRF signal in the generated dictionary domain. We present an iterative scheme that consists of a gradient step followed by a low rank projection using the singular value decomposition. Experiments on real MRI data demonstrate superior results compared to conventional implementation of compressed sensing for MRF at 15% sampling ratio.

  17. Traffic Speed Data Imputation Method Based on Tensor Completion

    Directory of Open Access Journals (Sweden)

    Bin Ran

    2015-01-01

    Full Text Available Traffic speed data plays a key role in Intelligent Transportation Systems (ITS; however, missing traffic data would affect the performance of ITS as well as Advanced Traveler Information Systems (ATIS. In this paper, we handle this issue by a novel tensor-based imputation approach. Specifically, tensor pattern is adopted for modeling traffic speed data and then High accurate Low Rank Tensor Completion (HaLRTC, an efficient tensor completion method, is employed to estimate the missing traffic speed data. This proposed method is able to recover missing entries from given entries, which may be noisy, considering severe fluctuation of traffic speed data compared with traffic volume. The proposed method is evaluated on Performance Measurement System (PeMS database, and the experimental results show the superiority of the proposed approach over state-of-the-art baseline approaches.

  18. Traffic speed data imputation method based on tensor completion.

    Science.gov (United States)

    Ran, Bin; Tan, Huachun; Feng, Jianshuai; Liu, Ying; Wang, Wuhong

    2015-01-01

    Traffic speed data plays a key role in Intelligent Transportation Systems (ITS); however, missing traffic data would affect the performance of ITS as well as Advanced Traveler Information Systems (ATIS). In this paper, we handle this issue by a novel tensor-based imputation approach. Specifically, tensor pattern is adopted for modeling traffic speed data and then High accurate Low Rank Tensor Completion (HaLRTC), an efficient tensor completion method, is employed to estimate the missing traffic speed data. This proposed method is able to recover missing entries from given entries, which may be noisy, considering severe fluctuation of traffic speed data compared with traffic volume. The proposed method is evaluated on Performance Measurement System (PeMS) database, and the experimental results show the superiority of the proposed approach over state-of-the-art baseline approaches.

  19. Development of a multi-criteria assessment model for ranking of renewable and non-renewable transportation fuel vehicles

    International Nuclear Information System (INIS)

    Safaei Mohamadabadi, H.; Tichkowsky, G.; Kumar, A.

    2009-01-01

    Several factors, including economical, environmental, and social factors, are involved in selection of the best fuel-based vehicles for road transportation. This leads to a multi-criteria selection problem for multi-alternatives. In this study, a multi-criteria assessment model was developed to rank different road transportation fuel-based vehicles (both renewable and non-renewable) using a method called Preference Ranking Organization Method for Enrichment and Evaluations (PROMETHEE). This method combines qualitative and quantitative criteria to rank various alternatives. In this study, vehicles based on gasoline, gasoline-electric (hybrid), E85 ethanol, diesel, B100 biodiesel, and compressed natural gas (CNG) were considered as alternatives. These alternatives were ranked based on five criteria: vehicle cost, fuel cost, distance between refueling stations, number of vehicle options available to the consumer, and greenhouse gas (GHG) emissions per unit distance traveled. In addition, sensitivity analyses were performed to study the impact of changes in various parameters on final ranking. Two base cases and several alternative scenarios were evaluated. In the base case scenario with higher weight on economical parameters, gasoline-based vehicle was ranked higher than other vehicles. In the base case scenario with higher weight on environmental parameters, hybrid vehicle was ranked first followed by biodiesel-based vehicle

  20. Development of a multi-criteria assessment model for ranking of renewable and non-renewable transportation fuel vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Safaei Mohamadabadi, H.; Tichkowsky, G.; Kumar, A. [Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta (Canada)

    2009-01-15

    Several factors, including economical, environmental, and social factors, are involved in selection of the best fuel-based vehicles for road transportation. This leads to a multi-criteria selection problem for multi-alternatives. In this study, a multi-criteria assessment model was developed to rank different road transportation fuel-based vehicles (both renewable and non-renewable) using a method called Preference Ranking Organization Method for Enrichment and Evaluations (PROMETHEE). This method combines qualitative and quantitative criteria to rank various alternatives. In this study, vehicles based on gasoline, gasoline-electric (hybrid), E85 ethanol, diesel, B100 biodiesel, and compressed natural gas (CNG) were considered as alternatives. These alternatives were ranked based on five criteria: vehicle cost, fuel cost, distance between refueling stations, number of vehicle options available to the consumer, and greenhouse gas (GHG) emissions per unit distance traveled. In addition, sensitivity analyses were performed to study the impact of changes in various parameters on final ranking. Two base cases and several alternative scenarios were evaluated. In the base case scenario with higher weight on economical parameters, gasoline-based vehicle was ranked higher than other vehicles. In the base case scenario with higher weight on environmental parameters, hybrid vehicle was ranked first followed by biodiesel-based vehicle. (author)