WorldWideScience

Sample records for rankine-cycle solar water

  1. Rankine-cycle solar-cooling systems

    Science.gov (United States)

    Weathers, H. M.

    1979-01-01

    Report reviews progress made by three contractors to Marshall Space Flight Center and Department of Energy in developing Rankine-cycle machines for solar cooling and testing of commercially available equipment involved.

  2. Stand-Alone Solar Organic Rankine Cycle Water Pumping System and Its Economic Viability in Nepal

    Directory of Open Access Journals (Sweden)

    Suresh Baral

    2015-12-01

    Full Text Available The current study presents the concept of a stand-alone solar organic Rankine cycle (ORC water pumping system for rural Nepalese areas. Experimental results for this technology are presented based on a prototype. The economic viability of the system was assessed based on solar radiation data of different Nepalese geographic locations. The mechanical power produced by the solar ORC is coupled with a water pumping system for various applications, such as drinking and irrigation. The thermal efficiency of the system was found to be 8% with an operating temperature of 120 °C. The hot water produced by the unit has a temperature of 40 °C. Economic assessment was done for 1-kW and 5-kW solar ORC water pumping systems. These systems use different types of solar collectors: a parabolic trough collector (PTC and an evacuated tube collector (ETC. The economic analysis showed that the costs of water are $2.47/m3 (highest and $1.86/m3 (lowest for the 1-kW system and a 150-m pumping head. In addition, the cost of water is reduced when the size of the system is increased and the pumping head is reduced. The minimum volumes of water pumped are 2190 m3 and 11,100 m3 yearly for 1 kW and 5 kW, respectively. The payback period is eight years with a profitability index of 1.6. The system is highly feasible and promising in the context of Nepal.

  3. Optimal design of compact organic Rankine cycle units for domestic solar applications

    DEFF Research Database (Denmark)

    Barbazza, Luca; Pierobon, Leonardo; Mirandola, Alberto

    2014-01-01

    Organic Rankine cycle turbogenerators are a promising technology to transform the solar radiation harvested by solar collectors into electric power. The present work aims at sizing a small-scale organic Rankine cycle unit by tailoring its design for domestic solar applications. Stringent design...... solar collectors (hot water temperature equal to 75 degrees C), R1234yf is the optimal solution. The heat exchanger volume ranges between 6.0 and 23.0 dm(3), whereas the thermal efficiency is around 4.5%. R1234ze is the best working fluid employing parabolic solar collectors (hot water temperature equal...

  4. Organic Rankine Cycle with Solar Heat Storage in Paraffin Way

    Directory of Open Access Journals (Sweden)

    Constantin LUCA

    2015-06-01

    Full Text Available The paper presents an electricity generation system based on an Organic Rankine Cycle and proposed storing the amount of the heat produced by the solar panels using large volume of paraffin wax. The proposed working fluid is R-134a refrigerant. The cycle operates at very low temperatures. A efficiency of 6,55% was obtained.

  5. Performance analysis a of solar driven organic Rankine cycle using multi-component working fluids

    DEFF Research Database (Denmark)

    Baldasso, E.; Andreasen, J. G.; Modi, A.

    2015-01-01

    Among the different renewable sources of energy, solar power could play a primary role in the development of a more sustainable electricity generation system. While large scale concentrated solar power plants based on the steam Rankine cycle have already been proved to be cost effective, research...... is still under progress for small scale low temperature solar-driven power plants. The steam Rankine cycle is suitable for high temperature applications, but its efficiency drastically decreases as the heat source temperature drops. In these cases a much more promising configuration is the organic Rankine...... field made of parabolic trough collectors and a recuperative organic Rankine cycle. Pressurized water is selected as heat transfer fluid and its maximum temperature is fixed to 150°C. The target power output for the plant is 100 kWel. A part load analysis is carried out in order to define the most...

  6. Preliminary design of seawater and brackish water reverse osmosis desalination systems driven by low-temperature solar organic Rankine cycles (ORC)

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Torres, Agustin M. [Dpto. Fisica Fundamental y Experimental, Electronica y Sistemas, Escuela Tecnica Superior de Ingenieria Civil e Industrial, Universidad de La Laguna (ULL), Avda. Astrofisico Francisco Sanchez s/n. 38206 La Laguna (Tenerife) (Spain); Garcia-Rodriguez, Lourdes [Dpto. Ingenieria Energetica, Universidad de Sevilla Escuela Tecnica Superior de Ingenieros, Camino de los Descubrimientos, s/n 41092 Sevilla (Spain)

    2010-12-15

    In this paper, the coupling between the low-temperature solar organic Rankine cycle (ORC) and seawater and brackish water reverse osmosis desalination units has been carried out. Four substances have been considered as working fluids of the solar cycle (butane, isopentane, R245fa and R245ca). With these four fluids the volumetric flow of fresh water produced per unit of aperture area of stationary solar collector has been calculated. The former has been made with the optimized direct vapour generation (DVG) configuration and heat transfer fluid (HTF) configuration of the solar ORC. In the first one (DVG), working fluid of the ORC is directly heated inside the absorber of the solar collector. In the second one (HTF), a fluid different than the working fluid of the ORC (water in this paper) is heated without phase change inside the absorber of the solar collector. Once this fluid has been heated it is carried towards a heat exchanger where it is cooled. Thermal energy delivered in this cooling process is transferred to the working fluid of the ORC. Influence of condensation temperature of the ORC and regeneration's process effectiveness over productivity of the system has also been analysed. Finally, parameters of several preliminary designs of the low-temperature solar thermal driven RO desalination are supplied. R245fa is chosen as working fluid of the ORC in these preliminary designs. The information of the proposed preliminary designs can also be used, i.e., for the assessment of the use of thermal energy rejected by the solar cycle. Overall analysis of the efficiency of the solar thermal driven RO desalination technology is given with the results presented in this paper and the results obtained with the medium temperature solar thermal RO desalination system presented by the authors in previous papers. This work has been carried out within the framework of the OSMOSOL and POWERSOL projects. (author)

  7. Autonomous low-temperature solar Rankine cycle system for reverse osmosis desalination

    Energy Technology Data Exchange (ETDEWEB)

    Manolakos, D.; Makris, G.; Papadakis, G.; Kyritsis, S. [Agricultural University of Athens (Greece). Dept. of Agricultural Engineering; Bouzianas, K. [Hellas Energy K. Bouzianas P. Moschovitis and Co., Athens (Greece)

    2004-07-01

    The research regards the development, application testing and performance evaluation of a low temperature solar organic Rankine cycle system for Reverse Osmosis (RO) desalination. Below is given a technical description of the system under development: Thermal energy produced by the solar array evaporates the working fluid (HFC- 134a) in the evaporator surface. The super-heated vapour is driven to the expanders where the generated mechanical work produced by the Rankine cycle drives the RO unit pumps (high pressure pump, cooling water pump, feed water pump) and circulating pump. The saturated vapour at the expanders' outlet is directed to the condenser and condensates. On the condenser surface, seawater is pre-heated and directed to the seawater reservoir. Seawater pre-heating is applied to increase the fresh water recovery ratio. The seawater tank is insulated. The use of seawater on the condenser surface decreases the temperature of ''Low Temperature Reservoir'' of Rankine cycle thus a better cycle efficiency is achieved. For the prototype system 240 m2 of vacuum tube solar collectors will be deployed. The evaporator and condenser capacity is estimated to be about 100 kW. For these systems' characteristics and considering a water recovery ratio of seawater RO desalination unit of 30%, the average yearly fresh water production is estimated at 1450 m3 (or 4 m3 daily). Specific innovations of the system are: Low temperature thermal sources can be exploited efficiently for fresh water production; solar energy is used indirectly and does not heat the seawater; the RO unit is driven by mechanical work produced from the process; the system condenser acts as sea water pre-heater and this serves a double purpose; (1) increase of feed water temperature implies higher fresh water production (2) decrease of temperature of ''low temperature reservoir'' of Rankine cycle implies higher cycle efficiencies. (orig.)

  8. Analysis of Low Temperature Organic Rankine Cycles for Solar Applications

    Science.gov (United States)

    Li, Yunfei

    The present work focuses on Organic Rankine Cycle (ORC) systems and their application to low temperature waste heat recovery, combined heat and power as well as off-grid solar power generation applications. As CO_2 issues come to the fore front and fossil fuels become more expensive, interest in low grade heat recovery has grown dramatically in the past few years. Solar energy, as a clean, renewable, pollution-free and sustainable energy has great potential for the use of ORC systems. Several ORC solutions have been proposed to generate electricity from low temperature sources. The ORC systems discussed here can be applied to fields such as solar thermal, biological waste heat, engine exhaust gases, small-scale cogeneration, domestic boilers, etc. The current work presents a thermodynamic and economic analysis for the use of ORC systems to convert solar energy or low exergy energy to generate electrical power. The organic working fluids investigated here were selected to investigate the effect of the fluid saturation temperature on the performance of ORCs. The working fluids under investigation are R113, R245fa, R123, with boiling points between 40°C and 200°C at pressures from 10 kPa to 10 MPa. Ambient temperature air at 20oC to 30oC is utilized as cooling resource, and allowing for a temperature difference 10°C for effective heat transfer. Consequently, the working fluids are condensed at 40°C. A combined first- and second-law analysis is performed by varying some system independent parameters at various reference temperatures. The present work shows that ORC systems can be viable and economical for the applications such as waste heat use and off-grid power generation even though they are likely to be more expensive than grid power.

  9. Analysis and optimization of the low-temperature solar organic Rankine cycle (ORC)

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Torres, Agustin M. [Dpto. Fisica Fundamental y Experimental, Electronica y Sistemas, Escuela Tecnica Superior de Ingenieria Civil e Industrial, Universidad de La Laguna (ULL), Avda, Astrofisico Francisco Sanchez s/n, 38206 La Laguna, Tenerife (Spain); Garcia-Rodriguez, Lourdes [Dpto. Ingenieria Energetica, Escuela Tecnica Superior de Ingenieros, Universidad de Sevilla, Camino de los Descubrimientos, s/n 41092 Sevilla (Spain)

    2010-12-15

    Solar thermal driven reverse osmosis desalination is a promising renewable energy-driven desalination technology. A joint use of the solar thermal powered organic Rankine cycle (ORC) and the desalination technology of less energy consumption, reverse osmosis (RO), makes this combination interesting in some scarce water resource scenarios. However, prior to any practical experience with any new process, a comprehensive and rigorous theoretical study must be done in order to assess the performance of the new technology or combination of existing technologies. The main objective of the present paper is the expansion of the theoretical analysis done by the authors in previous works to the case in which the thermal energy required by a solar ORC is supplied by means of stationary solar collectors. Twelve substances are considered as working fluids of the ORC and four different models of stationary solar collectors (flat plate collectors, compound parabolic collectors and evacuated tube collectors) are also taken into account. Operating conditions of the solar ORC that minimizes the aperture area needed per unit of mechanical power output of the solar cycle are determined for every working fluid and every solar collector. The former is done considering a direct vapour generation configuration of the solar cycle and also the configuration with water as heat transfer fluid flowing inside the solar collector. This work is part of the theoretical analysis of the solar thermal driven seawater and brackish water reverse osmosis desalination technology. Nevertheless, the supplied information can be also used for the assessment of different applications of the solar ORC. In that case, results presented in this paper can be useful in techno-economic analysis, selection of working fluids of the Rankine cycle, sizing of systems and assessment of solar power cycle configuration. (author)

  10. Optimal design of compact organic Rankine cycle units for domestic solar applications

    Directory of Open Access Journals (Sweden)

    Barbazza Luca

    2014-01-01

    Full Text Available Organic Rankine cycle turbogenerators are a promising technology to transform the solar radiation harvested by solar collectors into electric power. The present work aims at sizing a small-scale organic Rankine cycle unit by tailoring its design for domestic solar applications. Stringent design criteria, i. e., compactness, high performance and safe operation, are targeted by adopting a multi-objective optimization approach modeled with the genetic algorithm. Design-point thermodynamic variables, e. g., evaporating pressure, the working fluid, minimum allowable temperature differences, and the equipment geometry, are the decision variables. Flat plate heat exchangers with herringbone corrugations are selected as heat transfer equipment for the preheater, the evaporator and the condenser. The results unveil the hyperbolic trend binding the net power output to the heat exchanger compactness. Findings also suggest that the evaporator and condenser minimum allowable temperature differences have the largest impact on the system volume and on the cycle performances. Among the fluids considered, the results indicate that R1234yf and R1234ze are the best working fluid candidates. Using flat plate solar collectors (hot water temperature equal to 75 °C, R1234yf is the optimal solution. The heat exchanger volume ranges between 6.0 and 23.0 dm3, whereas the thermal efficiency is around 4.5%. R1234ze is the best working fluid employing parabolic solar collectors (hot water temperature equal to 120 °C. In such case the thermal efficiency is around 6.9%, and the heat exchanger volume varies from 6.0 to 18.0 dm3.

  11. Exergy and economic analysis of organic rankine cycle hybrid system utilizing biogas and solar energy in rural area of China

    DEFF Research Database (Denmark)

    Zhao, Chunhua; Zheng, Siyu; Zhang, Ji

    2017-01-01

    Due to the existing huge biogas resource in the rural area of China, biogas is widely used for production and living. Cogeneration system provides an opportunity to realize the balanced utilization of the renewable energy such as biogas and solar energy. This paper presented a numerical...... investigation of a hybrid energy-driven organic Rankine cycle (ORC) cogeneration system, involving a solar organic Rankine cycle and a biogas boiler. The biogas boiler with a module of solar Parabolic-Trough Collectors (PTC) is employed to provide heat source to the ORC via two distinct intermediate pressurized...... circuits. The cogeneration supplied the power to the air-condition in summer condition and hot water, which is heated in the condenser, in winter condition. The system performance under the subcritical pressures has been assessed according to the energy-exergy and economic analysis with the organic working...

  12. Parametric theoretical study of a two-stage solar organic Rankine cycle for RO desalination

    Energy Technology Data Exchange (ETDEWEB)

    Kosmadakis, G.; Manolakos, D.; Papadakis, G. [Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens (Greece)

    2010-05-15

    The present work concerns the parametric study of an autonomous, two-stage solar organic Rankine cycle for RO desalination. The main goal of the current simulation is to estimate the efficiency, as well as to calculate the annual mechanical energy available for desalination in the considered cases, in order to evaluate the influence of various parameters on the performance of the system. The parametric study concerns the variation of different parameters, without changing actually the baseline case. The effect of the collectors' slope and the total number of evacuated tube collectors used, have been extensively examined. The total cost is also taken into consideration and is calculated for the different cases examined, along with the specific fresh water cost (EUR/m{sup 3}). (author)

  13. SORCE: A design tool for solar organic Rankine cycle systems in distributed generation applications

    OpenAIRE

    Orosz, Matthew; Quoilin, Sylvain; Hemond, Harold

    2010-01-01

    Recent interest in small-scale solar thermal combined heat and power (CHP) power systems has coincided with demand growth for distributed electricity supplies in areas poorly served by centralized power stations. One potential technical approach to meeting this demand is the parabolic trough solar thermal collector coupled with an organic Rankine cycle (ORC) heat engine. Much existing research touches on aspects of the underlying physics and mechanics of this technology, but a holistic treatm...

  14. Experimental and Thermoeconomic Analysis of Small-Scale Solar Organic Rankine Cycle (SORC System

    Directory of Open Access Journals (Sweden)

    Suresh Baral

    2015-04-01

    Full Text Available A small-scale solar organic Rankine cycle (ORC is a promising renewable energy-driven power generation technology that can be used in the rural areas of developing countries. A prototype was developed and tested for its performance characteristics under a range of solar source temperatures. The solar ORC system power output was calculated based on the thermal and solar collector efficiency. The maximum solar power output was observed in April. The solar ORC unit power output ranged from 0.4 kW to 1.38 kW during the year. The highest power output was obtained when the expander inlet pressure was 13 bar and the solar source temperature was 120 °C. The area of the collector for the investigation was calculated based on the meteorological conditions of Busan City (South Korea. In the second part, economic and thermoeconomic analyses were carried out to determine the cost of energy per kWh from the solar ORC. The selling price of electricity generation was found to be $0.68/kWh and $0.39/kWh for the prototype and low cost solar ORC, respectively. The sensitivity analysis was carried out in order to find the influencing economic parameters for the change in NPV. Finally, the sustainability index was calculated to assess the sustainable development of the solar ORC system.

  15. Thermodynamic analysis of a Rankine cycle powered vapor compression ice maker using solar energy.

    Science.gov (United States)

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m(-2) and 7.61 kg m(-2) day(-1) at the generation temperature of 140 °C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker.

  16. Thermal analysis of a Phase Change Material for a Solar Organic Rankine Cycle

    Science.gov (United States)

    Iasiello, M.; Braimakis, K.; Andreozzi, A.; Karellas, S.

    2017-11-01

    Organic Rankine Cycle (ORC) is a promising technology for low temperature power generation, for example for the utilization of medium temperature solar energy. Since heat generated from solar source is variable throughout the day, the implementation of Thermal Energy Storage (TES) systems to guarantee the continuous operation of solar ORCs is a critical task, and Phase Change Materials (PCM) rely on latent heat to store large amounts of energy. In the present study, a thermal analysis of a PCM for a solar ORC is carried out. Three different types of PCMs are analyzed. The energy equation for the PCM is modeled by using the heat capacity method, and it is solved by employing a 1Dexplicit finite difference scheme. The solar source is modeled with a time-variable temperature boundary condition, with experimental data taken from the literature for two different solar collectors. Results are presented in terms of temperature profiles and stored energy. It has been shown that the stored energy depends on the heat source temperature, on the employed PCM and on the boundary conditions. It has been demonstrated that the use of a metal foam can drastically enhance the stored energy due to the higher overall thermal conductivity.

  17. Evaluation of a solar-powered organic Rankine cycle using dry organic working fluids

    Directory of Open Access Journals (Sweden)

    Emily Spayde

    2015-12-01

    Full Text Available This paper presents a model to evaluate the performance of a solar-powered organic Rankine cycle (ORC. The system was evaluated in Jackson, MS, using five dry organic working fluids, R218, R227ea, R236ea, R236fa, and RC318. The purpose of this study is to investigate how hourly temperature change affects the electricity production and exergy destruction rates of the solar ORC, and to determine the effect of the working fluid on the proposed system. The system was also evaluated in Tucson, AZ, to investigate the effect of average hourly outdoor temperatures on its performance. The potential of the system to reduce primary energy consumption and carbon dioxide emissions is also investigated. A parametric analysis to determine how temperature and pressure of the organic working fluid, the solar collector area, and the turbine efficiency affect the electricity production is performed. Results show that the ORC produces the most electricity during the middle of the day, when the temperatures are the highest and when the solar collectors have the highest efficiency. Also, R-236ea is the working fluid that shows the best performance of the evaluated fluids. An economic analysis was performed to determine the capital cost available for the proposed system.

  18. Effect of Regenerative Organic Rankine Cycle (RORC on the Performance of Solar Thermal Power in Yogyakarta, Indonesia

    Directory of Open Access Journals (Sweden)

    Ghalya Pikra

    2013-07-01

    Full Text Available This paper presents effect of Regenerative Organic Rankine Cycle (RORC on the performance of solar thermal power in Yogyakarta, Indonesia. Solar thermal power is a plant that uses solar energy as heat source. Indonesia has high humidity level, so that parabolic trough is the most suitable type of solar thermal power technology to be developed, where the design is made with small focal distance. Organic Rankine Cycle (ORC is a Rankine cycle that use organic fluid as working fluid to utilize low temperature heat sources. RORC is used to increase ORC performance. The analysis was done by comparing ORC system with and without regenerator addition. Refrigerant that be used in the analysis is R123. Preliminary data was taken from the solar collector system that has been installed in Yogyakarta. The analysis shows that with 36 m total parabolic length, the resulting solar collector capacity is 63 kW, heat input/evaporator capacity is determined 26.78 kW and turbine power is 3.11 kW for ORC, and 3.38 kW for RORC. ORC thermal efficiency is 11.28% and RORC is 12.26%. Overall electricity efficiency is 4.93% for ORC, and 5.36% for RORC. With 40°C condensing temperature and evaporation at 10 bar saturated condition, efficiency of RORC is higher than ORC. Greater evaporation temperature at the same pressure (10 bar provide greater turbine power and efficiency.

  19. Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

    Directory of Open Access Journals (Sweden)

    Bing Hu

    2014-01-01

    Full Text Available To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m−2 and 7.61 kg m−2 day−1 at the generation temperature of 140°C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker.

  20. Development of an Organic Rankine-Cycle power module for a small community solar thermal power experiment

    Science.gov (United States)

    Kiceniuk, T.

    1985-01-01

    An organic Rankine-cycle (ORC) power module was developed for use in a multimodule solar power plant to be built and operated in a small community. Many successful components and subsystems, including the reciever, power conversion subsystem, energy transport subsystem, and control subsystem, were tested. Tests were performed on a complete power module using a test bed concentrator in place of the proposed concentrator. All major single-module program functional objectives were met and the multimodule operation presented no apparent problems. The hermetically sealed, self-contained, ORC power conversion unit subsequently successfully completed a 300-hour endurance run with no evidence of wear or operating problems.

  1. A Co-Powered Biomass and Concentrated Solar Power Rankine Cycle Concept for Small Size Combined Heat and Power Generation

    Directory of Open Access Journals (Sweden)

    Eileen Tortora

    2013-03-01

    Full Text Available The present work investigates the matching of an advanced small scale Combined Heat and Power (CHP Rankine cycle plant with end-user thermal and electric load. The power plant consists of a concentrated solar power field co-powered by a biomass furnace to produce steam in a Rankine cycle, with a CHP configuration. A hotel was selected as the end user due to its high thermal to electric consumption ratio. The power plant design and its operation were modelled and investigated by adopting transient simulations with an hourly distribution. The study of the load matching of the proposed renewable power technology and the final user has been carried out by comparing two different load tracking scenarios, i.e., the thermal and the electric demands. As a result, the power output follows fairly well the given load curves, supplying, on a selected winter day, about 50 GJ/d of thermal energy and the 6 GJ/d of electric energy, with reduced energy dumps when matching the load.

  2. Organic Rankine-Cycle Power Systems Working Fluids Study: Topical report No. 3, 2-methylpyridine/water

    Energy Technology Data Exchange (ETDEWEB)

    Cole, R.L.; Demirgian, J.C.; Allen, J.W.

    1987-09-01

    A mixture of 35 mole percent (mol %) 2-methylpyridine and 65 mol % water was tested at 575, 625, and 675/degree/F in a dynamic loop. Samples of the degraded fluid were chemically analyzed to determine the identities of major degradation products and the quantity of degradation. Computed degradation rates were found to be higher than those for Fluorinol 85 or toluene. For this reason (and other reasons, related to fluid handling), other fluids are recommended as the first choice for service in organic Rankine-cycle systems in preference to 2-methylpyridine/water. 7 refs., 39 figs., 39 tabs.

  3. An Innovative Application of a Solar Storage Wall Combined with the Low-Temperature Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Tzu-Chen Hung

    2014-01-01

    Full Text Available The objective of this study is to collect energy on the waste heat from air produced by solar ventilation systems. This heat used for electricity generation by an organic Rankine cycle (ORC system was implemented. The advantages of this method include the use of existing building’s wall, and it also provides the region of energy scarcity for reference. This is also an innovative method, and the results will contribute to the efforts made toward improving the design of solar ventilation in the field of solar thermal engineering. In addition, ORC system would help generate electricity and build a low-carbon building. This study considered several critical parameters such as length of the airflow channel, intensity of solar radiation, pattern of the absorber plate, stagnant air layer, and operating conditions. The simulation results show that the highest outlet temperature and heat collecting efficiency of solar ventilation system are about 120°C and 60%, respectively. The measured ORC efficiency of the system was 6.2%. The proposed method is feasible for the waste heat from air produced by ventilation systems.

  4. Economic, Energetic, and Environmental Performance of a Solar Powered Organic Rankine Cycle with Electric Energy Storage in Different Commercial Buildings

    Directory of Open Access Journals (Sweden)

    Emily Spayde

    2018-01-01

    Full Text Available This paper presents an analysis to determine the economic, energetic, and environmental benefits that could be obtained from the implementation of a combined solar-power organic Rankine cycle (ORC with electric energy storage (EES to supply electricity to several commercial buildings including a large office, a small office, and a full service restaurant. The operational strategy for the ORC-EES system consists in the ORC charging the EES when the irradiation level is sufficient to generate power, and the EES providing electricity to the building when there is not irradiation (i.e., during night time. Electricity is purchased from the utility grid unless it is provided by the EES. The potential of the proposed system to reduce primary energy consumption (PEC, carbon dioxide emission (CDE, and cost was evaluated. Furthermore, the available capital cost for a variable payback period for the ORC-EES system was determined for each of the evaluated buildings. The effect of the number of solar collectors on the performance of the ORC-EES is also studied. Results indicate that the proposed ORC-EES system is able to satisfy 11%, 13%, and 18% of the electrical demand for the large office, the small office and the restaurant, respectively.

  5. Performance Evaluation of a Helical Coil Heat Exchanger Working under Supercritical Conditions in a Solar Organic Rankine Cycle Installation

    Directory of Open Access Journals (Sweden)

    Marija Lazova

    2016-06-01

    Full Text Available Worldwide interest in low grade heat valorization using organic Rankine cycle (ORC technologies has increased significantly. A new small-scale ORC with a net capacity of 3 kW was efficiently integrated with a concentrated solar power technology for electricity generation. The excess heat source from Photovoltaic (PV collectors with a maximum temperature of 100 °C was utilized through a supercritical heat exchanger that uses R-404A as working medium. By ensuring supercritical heat transfer leads to a better thermal match in the heat exchanger and improved overall cycle efficiency. A helical coil heat exchanger was designed by using heat transfer correlations from the literature. These heat transfer correlations were derived for different conditions than ORCs and their estimated uncertainty is ~20%. In order to account for the heat transfer correlation uncertainties this component was oversized by 20%. Next, a prototype was built and installed in an integrated concentrated photovoltaic/thermal (CPV/T/Rankine system. The results from the measurements show that for better estimation of the sizing of the heat exchanger a more accurate correlation is required in order to design an optimal configuration and thus employ cheaper components.

  6. Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

    National Research Council Canada - National Science Library

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

      To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working...

  7. Thermodynamic analysis of a Rankine cycle powered vapor compression ice maker using solar energy

    National Research Council Canada - National Science Library

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working...

  8. Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

    OpenAIRE

    Bing Hu; Xianbiao Bu; Weibin Ma

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with incr...

  9. Experimental Assessment of a Helical Coil Heat Exchanger Operating at Subcritical and Supercritical Conditions in a Small-Scale Solar Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Marija Lazova

    2017-05-01

    Full Text Available In this study, the performance of a helical coil heat exchanger operating at subcritical and supercritical conditions is analysed. The counter-current heat exchanger was specially designed to operate at a maximal pressure and temperature of 42 bar and 200 °C, respectively. The small-scale solar organic Rankine cycle (ORC installation has a net power output of 3 kWe. The first tests were done in a laboratory where an electrical heater was used instead of the concentrated photovoltaic/thermal (CPV/T collectors. The inlet heating fluid temperature of the water was 95 °C. The effects of different parameters on the heat transfer rate in the heat exchanger were investigated. Particularly, the performance analysis was elaborated considering the changes of the mass flow rate of the working fluid (R-404A in the range of 0.20–0.33 kg/s and the inlet pressure varying from 18 bar up to 41 bar. Hence, the variation of the heat flux was in the range of 5–9 kW/m2. The results show that the working fluid’s mass flow rate has significant influence on the heat transfer rate rather than the operational pressure. Furthermore, from the comparison between the experimental results with the heat transfer correlations from the literature, the experimental results fall within the uncertainty range for the supercritical analysis but there is a deviation of the investigated subcritical correlations.

  10. Test results of an organic Rankine-cycle power module for a small community solar thermal power experiment

    Science.gov (United States)

    Clark, T. B.

    1985-01-01

    The organic Rankine-cycle (ORC) power conversion assembly was tested. Qualification testing of the electrical transport subsystem was also completed. Test objectives were to verify compatibility of all system elements with emphasis on control of the power conversion assembly, to evaluate the performance and efficiency of the components, and to validate operating procedures. After 34 hours of power generation under a wide range of conditions, the net module efficiency exceeded 18% after accounting for all parasitic losses.

  11. A Mathematical Model of Hourly Solar Radiation in Varying Weather Conditions for a Dynamic Simulation of the Solar Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Taehong Sung

    2015-07-01

    Full Text Available A mathematical model of hourly solar radiation with weather variability is proposed based on the simple sky model. The model uses a superposition of trigonometric functions with short and long periods. We investigate the effects of the model variables on the clearness (kD and the probability of persistence (POPD indices and also evaluate the proposed model for all of the kD-POPD weather classes. A simple solar organic Rankine cycle (SORC system with thermal storage is simulated using the actual weather conditions, and then, the results are compared with the simulation results using the proposed model and the simple sky model. The simulation results show that the proposed model provides more accurate system operation characteristics than the simple sky model.

  12. Low-Concentration Solar-Power Systems based on Organic Rankine Cycles for Distributed-Scale Applications:Overview and Further Developments

    Directory of Open Access Journals (Sweden)

    Christos N. Markides

    2015-12-01

    Full Text Available This paper is concerned with the emergence and development of low- to medium-grade thermal-energy conversion systems for distributed power generation based on thermodynamic vapour-phase heat-engine cycles undergone by organic working-fluids, namely organic Rankine cycles (ORCs. ORC power systems are, to some extent, a relatively established and mature technology that is well-suited to converting low-/medium-grade heat (at temperatures up to ~ 300 – 400 °C to useful work, at an output power scale from a few kW to 10s of MW. Thermal efficiencies in excess of 25% are achievable at higher temperatures and larger scales, and efforts are currently in progress to improve the overall economic viability, and thus uptake, of ORC power systems by focusing on advanced architectures, working-fluid selection, heat exchangers and expansion machines. Solar-power systems based on ORC technology have a significant potential to be used for distributed power generation, by converting thermal energy from simple and low-cost non-concentrated or low-concentration collectors to mechanical, hydraulic or electrical energy. Current fields of use include mainly geothermal and biomass/biogas, as well as the recovery and conversion of waste heat, leading to improved energy efficiency, primary energy (i.e. fuel use and emission minimization, yet the technology is highly transferable to solar power generation as an affordable alternative to small- to medium-scale photovoltaic (PV systems. Solar-ORC systems offer naturally the advantages of providing a simultaneous thermal-energy output for hot water provision and/or space heating, and the particularly interesting possibility of relatively straightforward on-site (thermal energy storage. Key performance characteristics are presented, and important heat transfer effects that act to limit performance are identified as noteworthy directions of future research for the further development of this technology.

  13. Comparative investigation of working fluids for an organic Rankine cycle with geothermal water

    Science.gov (United States)

    Liu, Yan-Na; Xiao, Song

    2015-06-01

    In this paper, the thermodynamic investigation on the use of geothermal water (130 °C as maximum) for power generation through a basic Rankine has been presented together with obtained main results. Six typical organic working fluids (i.e., R245fa, R141b, R290, R600, R152a, and 134a) were studied with modifying the input pressure and temperature to the turbine. The results show that there are no significant changes taking place in the efficiency for these working fluids with overheating the inlet fluid to the turbine, i.e., efficiency is a weak function of temperature. However, with the increasing of pressure ratio in the turbine, the efficiency rises more sharply. The technical viability is shown of implementing this type of process for recovering low temperature heat resource.

  14. Design and development of an automotive propulsion system utilizing a Rankine cycle engine (water based fluid). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Demler, R.L.

    1977-09-01

    Under EPA and ERDA sponsorship, SES successfully designed, fabricated and tested the first federally sponsored steam powered automobile. The automobile - referred to as the simulator - is a 1975 Dodge Monaco standard size passenger car with the SES preprototype Rankine cycle automotive propulsion system mounted in the engine compartment. In the latter half of 1975, the simulator successfully underwent test operations at the facilities of SES in Watertown, Massachusetts and demonstrated emission levels below those of the stringent federally established automotive requirements originally set for implementation by 1976. The demonstration was accomplished during testing over the Federal Driving Cycle on a Clayton chassis dynamometer. The design and performance of the vehicle are described.

  15. Energetic and exergetic analysis of Rankine cycles for solar power plants with parabolic trough and thermal storage

    Directory of Open Access Journals (Sweden)

    Cenuşă Victor-Eduard

    2016-01-01

    Full Text Available The paper analyzes the “secondary” circuit (for thermodynamic conversion of a Concentrated Solar Power (CSP plant with thermodynamic cycle, whose mirrors field supplies a thermal power, averaged over a sunny day, of about 100 MW heat. We study the case of parabolic trough solar collector using silicone oil in the “primary” circuit, which limits the peak temperature below 400 °C. The “primary” circuit uses thermal storage, allowing a delay between the power generation in rapport with the solar energy capture. We choose a water-steam cycle, type Hirn. For increasing its efficiency, it has regenerative feed water preheating and steam reheating. We compared, energetic and exergetic, two types of cycles, using a numerical model with iterative structure, developed by the authors. The results showed that the simplified design achieves practically the same thermodynamic performances with the advanced one.

  16. A hybrid solar photovoltaic-wind turbine-Rankine cycle for electricity generation in Turkish Republic of Northern Cyprus

    Directory of Open Access Journals (Sweden)

    Samuel Asumadu-Sarkodie

    2016-12-01

    Full Text Available This paper presents an energy demand model by designing a hybrid solar-wind-thermal power generation system of the Turkish Republic of Northern Cyprus, a promising substitute for the expensive battery banks. The study models the future energy demand of Turkish Republic of Northern Cyprus based on the IPCC emissions scenario A1B and A2 by designing a new hybrid solar-wind-thermal power system that satisfies the current and future requirements of firm capacity during peak periods. The study suggests an improvement in a hybrid solar-wind-thermal power system performance by predicting reliable outputs that can integrate renewable energy technologies to conventional power generation. The energy consumption prediction model emphasizes the energy requirement that has a growing demand from 300 to 400 GWh in scenario A1B and 150–450 GWh in scenario A2 from 2010 to 2050. The proposed design can meet 400 GWh of electricity demand in TRNC based on IPCC scenario A1B and 450 GWh of electricity demand in TRNC based on IPCC scenario A2. The percentage contribution of solar, wind and thermal energy for 2010, 2020, 2030, 2040 and 2050 are presented along with CO2 emissions and water consumption for each of the years.

  17. Organic Rankine-cycle power systems working fluids study: Topical report No. 1: Fluorinol 85. [85 mole % trofluoroethanol in water

    Energy Technology Data Exchange (ETDEWEB)

    Jain, M.L.; Demirgian, J.C.; Cole, R.L.

    1986-09-01

    An investigation to experimentally determine the thermal stability limits and degradation rates of Fluorinol 85 as a function of maximum cycle temperatures was initiated in 1982. Following the design and construction of a dynamic test loop capable of simulating the thermodynamic conditions of possible prototypical organic Rankine-cycle (ORC) power systems, several test runs were completed. The Fluorinol 85 test loop was operated for about 3800 h, covering a temperature range of 525-600/sup 0/F. Both liquid and noncondensable vapor (gas) samples were drawn periodically and analyzed using capillary column gas chromatography, gas chromatography/mass spectrometry and mass spectrometry. Results indicate that Fluorinol 85 would not decompose significantly over an extended period of time, up to a maximum cycle temperature of 550/sup 0/F. However, 506-h data at 575/sup 0/F show initiation of significant degradation. The 770-h data at 600/sup 0/F, using a fresh charge of Fluorinol 85, indicate an annual degradation rate of more than 17.2%. The most significant degradation product observed is hydrofluoric acid, which could cause severe corrosion in an ORC system. Devices to remove the hydrofluoric acid and prevent extreme temperature excursions are necessary for any ORC system using Fluorinol 85 as a working fluid.

  18. Organic Rankine Cycles. Old wine in new bottles; Organic Rankine Cycles. Oude wijn in nieuwe zakken

    Energy Technology Data Exchange (ETDEWEB)

    Den Hartog, T.L.B. [Cumae, Arnhem (Netherlands)

    2007-05-15

    An overview is given of the renewed interest for the Organic Rankine Cycle technology and new developments with regard to this power generating technology. [Dutch] Een overzicht wordt gegeven van de hernieuwde belangstelling voor de Organic Rankine Cycle (ORC) technologie en nieuwe ontwikkeling m.b.t. deze vorm van elektriciteitopwekking.

  19. Organic rankine cycle waste heat applications

    Science.gov (United States)

    Brasz, Joost J.; Biederman, Bruce P.

    2007-02-13

    A machine designed as a centrifugal compressor is applied as an organic rankine cycle turbine by operating the machine in reverse. In order to accommodate the higher pressures when operating as a turbine, a suitable refrigerant is chosen such that the pressures and temperatures are maintained within established limits. Such an adaptation of existing, relatively inexpensive equipment to an application that may be otherwise uneconomical, allows for the convenient and economical use of energy that would be otherwise lost by waste heat to the atmosphere.

  20. Cascaded organic rankine cycles for waste heat utilization

    Science.gov (United States)

    Radcliff, Thomas D [Vernon, CT; Biederman, Bruce P [West Hartford, CT; Brasz, Joost J [Fayetteville, NY

    2011-05-17

    A pair of organic Rankine cycle systems (20, 25) are combined and their respective organic working fluids are chosen such that the organic working fluid of the first organic Rankine cycle is condensed at a condensation temperature that is well above the boiling point of the organic working fluid of the second organic Rankine style system, and a single common heat exchanger (23) is used for both the condenser of the first organic Rankine cycle system and the evaporator of the second organic Rankine cycle system. A preferred organic working fluid of the first system is toluene and that of the second organic working fluid is R245fa.

  1. Energy performance and economic evaluation of heat pump/organic rankine cycle system with sensible thermal storage

    DEFF Research Database (Denmark)

    Carmo, Carolina; Dumont, Olivier; Nielsen, Mads Pagh

    2016-01-01

    that consists of a ground-source heat pump with possibility of reversing operation as an ORC power cycle combined with solar heating in a single-family building is introduced. The ORC mode enables the use of solar energy in periods of no heat energy demand and reverses the heat pump cycle to supply electrical......-life conditions knowledge, the paper considers two different sensible energy storage (TES) configurations for the reversible heat pump/organic Rankine cycle (HP/ORC) system: a buffer tank for both space heating and domestic hot water and a hot water storage tank used exclusively for domestic hot water......The interaction between electrical and thermal energy demands represent a potential area for balancing supply and demand that could contribute to the integration of intermittent renewables in energy systems. To enable the interaction between thermal and electric energy, an innovative concept...

  2. Energy Performance and Economic Evaluation of Heat Pump/Organic Rankine Cycle System with Sensible Thermal Storage

    DEFF Research Database (Denmark)

    Carmo, C.; Dumont, O.; Nielsen, M. P.

    2016-01-01

    that consists of a ground-source heat pump with possibility of reversing operation as an ORC power cycle combined with solar heating in a single-family building is introduced. The ORC mode enables the use of solar energy in periods of no heat energy demand and reverses the heat pump cycle to supply electrical......-life conditions knowledge, the paper considers two different sensible energy storage (TES) configurations for the reversible heat pump/organic Rankine cycle (HP/ORC) system: a buffer tank for both space heating and domestic hot water and a hot water storage tank used exclusively for domestic hot water......The interaction between electrical and thermal energy demands represent a potential area for balancing supply and demand that could contribute to the integration of intermittent renewables in energy systems. To enable the interaction between thermal and electric energy, an innovative concept...

  3. Performance of a reversible heat pump/organic Rankine cycle unit coupled with a passive house to get a positive energy building

    DEFF Research Database (Denmark)

    Dumont, Olivier; Carmo, Carolina; Fontaine, Valentin

    2016-01-01

    and generate electricity, coupled to a solar thermal collector roof. This reversible HP/organic Rankine cycle unit presents three operating modes: direct heating, HP and organic Rankine cycle. This work focuses on describing the dynamic model of the multi-component system followed by a techno-economic analysis......Wh/year and total electrical consumption of 2318 kWh/year) with a 138.8 m2 solar roof in Denmark....

  4. Exergetic Analysis of an Integrated Tri-Generation Organic Rankine Cycle

    OpenAIRE

    Ratha Z. Mathkor; Brian Agnew; Mohammed A. Al-Weshahi; Fathi Latrsh

    2015-01-01

    This paper reports on a study of the modelling, validation and analysis of an integrated 1 MW (electrical output) tri-generation system energized by solar energy. The impact of local climatic conditions in the Mediterranean region on the system performance was considered. The output of the system that comprised a parabolic trough collector (PTC), an organic Rankine cycle (ORC), single-effect desalination (SED), and single effect LiBr-H2O absorption chiller (ACH) was electrical power, distille...

  5. Exergetic Analysis of an Integrated Tri-Generation Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Ratha Z. Mathkor

    2015-08-01

    Full Text Available This paper reports on a study of the modelling, validation and analysis of an integrated 1 MW (electrical output tri-generation system energized by solar energy. The impact of local climatic conditions in the Mediterranean region on the system performance was considered. The output of the system that comprised a parabolic trough collector (PTC, an organic Rankine cycle (ORC, single-effect desalination (SED, and single effect LiBr-H2O absorption chiller (ACH was electrical power, distilled water, and refrigerant load. The electrical power was produced by the ORC which used cyclopentane as working fluid and Therminol VP-1 was specified as the heat transfer oil (HTO in the collectors with thermal storage. The absorption chiller and the desalination unit were utilize the waste heat exiting from the steam turbine in the ORC to provide the necessary cooling energy and drinking water respectively. The modelling, which includes an exergetic analysis, focuses on the performance of the solar tri-generation system. The simulation results of the tri-generation system and its subsystems were produced using IPSEpro software and were validated against experimental data which showed good agreement. The tri-generation system was able to produce about 194 Ton of refrigeration, and 234 t/day distilled water.

  6. Investigations on the application of zeotropic fluid mixtures in the organic rankine cycle for the geothermal power generation; Untersuchung zum Einsatz von zeotropen Fluidgemischen im Organic Rankine Cycle fuer die geothermische Stromerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Heberle, Florian

    2013-04-01

    The organic rankine cycle is a thermodynamic cycle process which uses an organic fluid working fluid instead of water in comparison to the commercial rankine process. The organic rankine cycle facilitates sufficiently high pressures at moderate temperatures. The organic rankine cycle significantly expands the technically possible and economically feasible ranges of application of such heat and power processes. The geothermal power is a very attractive field of application. Thermal water with a temperature of nearly 100 Celsius can be used for the power generation by means of the organic rankine cycle. Especially zeotropic mixtures are interesting as a working fluid. This is due to a non-isothermal phase change to a temperature glide which adapts very well to the temperature progress of the heat source. The author of the book under consideration reports on the application of different mixtures in the organic rankine cycle. The evaluation is based on a thermodynamic analysis and considers also toxicological, ecologic, technical as well as economic aspects.

  7. Equation of State Selection for Organic Rankine Cycle Modeling Under Uncertainty

    DEFF Research Database (Denmark)

    Frutiger, Jerome; O'Connell, John; Abildskov, Jens

    combustion, geothermal and solar heat sources. The working fluid is essential to the performance of the cycle. In order to evaluate and test promising fluid candidates, an appropriate Equation of State (EoS) [1] is necessary. For ORC applications, an EoS is commonly selected based on goodness-of-fits to data......In recent years there has been a great interest in the design and selection of working fluids for low-temperature Organic Rankine Cycles (ORC), to efficiently produce electrical power from waste heat from chemical engineering applications, as well as from renewable energy sources such as biomass...... cycle, all influence the model output uncertainty. The procedure is highlighted for an ORC for with a low-temperature heat source from exhaust gas from a marine diesel engine.[1] Saleh B, Koglbauer G, Wendland M, Fischer J. Working fluids for lowtemperature organic Rankine cycles. Energy 2007...

  8. Organic Rankine cycle - review and research directions in engine applications

    Science.gov (United States)

    Panesar, Angad

    2017-11-01

    Waste heat to power conversion using Organic Rankine Cycles (ORC) is expected to play an important role in CO2 reductions from diesel engines. Firstly, a review of automotive ORCs is presented focusing on the pure working fluids, thermal architectures and expanders. The discussion includes, but is not limited to: R245fa, ethanol and water as fluids; series, parallel and cascade as architectures; dry saturated, superheated and supercritical as expansion conditions; and scroll, radial turbine and piston as expansion machines. Secondly, research direction in versatile expander and holistic architecture (NOx + CO2) are proposed. Benefits of using the proposed unconventional approaches are quantified using Ricardo Wave and Aspen HYSYS for diesel engine and ORC modelling. Results indicate that, the implementation of versatile piston expander tolerant to two-phase and using cyclopentane can potentially increase the highway drive cycle power by 8%. Furthermore, holistic architecture offering complete utilisation of charge air and exhaust recirculation heat increased the performance noticeably to 5% of engine power at the design point condition.

  9. Optimization of Cycle and Expander Design of an Organic Rankine Cycle Unit using Multi-Component Working Fluids

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Pierobon, Leonardo

    2016-01-01

    for an organic Rankine cycle unit utilizing waste heat from low temperature heat sources. The study addresses a case where the minimum temperature of the heat source is constrained and a case where no constraint is imposed. The former case is the wasteheat recovery from jacket cooling water of a marine diesel...... engine onboard a large ship, and the latter is representative of a low-temperature geothermal, solar or waste heat recovery application. Multi-component working fluids are investigated, as they allow improving the match between the temperature pro-files in the heat exchangers and, consequently, reducing...... the irreversibility in the ORC system. This work considers mixtures of R245fa/pentane and propane/isobutane. The use of multi-component working fluids typically results in increased heat transfer areas and different expander designs compared to purefluids. In order to properly account for turbine performance...

  10. Preliminary Design and Simulation of a Turbo Expander for Small Rated Power Organic Rankine Cycle (ORC

    Directory of Open Access Journals (Sweden)

    Roberto Capata

    2014-11-01

    Full Text Available Nowadays, the Organic Rankine Cycle (ORC system, which operates with organic fluids, is one of the leading technologies for “waste energy recovery”. It works as a conventional Rankine Cycle but, as mentioned, instead of steam/water, an organic fluid is used. This change allows it to convert low temperature heat into electric energy where required. Large numbers of studies have been carried out to identify the most suitable fluids, system parameters and the various configurations. In the present market, most ORC systems are designed and manufactured for the recovery of thermal energy from various sources operating at “large power rating” (exhaust gas turbines, internal combustion engines, geothermal sources, large melting furnaces, biomass, solar, etc.; from which it is possible to produce a large amount of electric energy (30 kW ÷ 300 kW. Such applications for small nominal power sources, as well as the exhaust gases of internal combustion engines (car sedan or town, ships, etc. or small heat exchangers, are very limited. The few systems that have been designed and built for small scale applications, have, on the other hand, different types of expander (screw, scroll, etc.. These devices are not adapted for placement in small and restricted places like the interior of a conventional car. The aim of this work is to perform the preliminary design of a turbo-expander that meets diverse system requirements such as low pressure, small size and low mass flow rates. The expander must be adaptable to a small ORC system utilizing gas of a diesel engine or small gas turbine as thermal source to produce 2–10 kW of electricity. The temperature and pressure of the exhaust gases, in this case study (400–600 °C and a pressure of 2 bar, imposes a limit on the use of an organic fluid and on the net power that can be produced. In addition to water, fluids such as CO2, R134a and R245fa have been considered. Once the operating fluids has been chosen

  11. Numerical Optimization of an Organic Rankine Cycle Scheme for Co-generation

    OpenAIRE

    Potenza, Marco; Naccarato, Fabrizio; Stigliano, Gianbattista; Risi, Arturo de

    2016-01-01

    The aim of the present work was the optimization of a small size Organic Rankine Cycle (ORC) system powered by a linear Parabolic Trough Collector (PTC) solar field by means of numerical model code developed on purpose. In the proposed scheme the solar energy is collected by a newly designed low cost PTC of 20m2 with a single tracking axis and it is concentrated on an opaque pipe collector in which flows as thermal fluid the Therminol® 66 oil. An oil-free scroll expander coupled with a 2 kW e...

  12. Comparative performance of twenty-three types of flat plate solar energy collectors

    Science.gov (United States)

    Simon, F. F.

    1975-01-01

    Report compares efficiencies of 23 solar collectors for four different purposes: operating a Rankine-cycle engine, heating or absorption air conditioning, heating hot water, and heating a swimming pool.

  13. Performance Evaluation of a HP/ORC (Heat Pump/Organic Rankine Cycle) System with Optimal Control of Sensible Thermal Storage

    DEFF Research Database (Denmark)

    Carmo, Carolina; Nielsen, Mads P.; Elmegaard, Brian

    2016-01-01

    come to contribute to the integration of intermittent renewables.This paper describes an innovative concept that consists of the addition of an Organic Rankine Cycle (ORC) toa combined solar system coupled to a ground-source heat pump (HP) in a single-family building. The ORC enables the use of solar...

  14. Organic Rankine Cycle System Analysis for Low GWP Working Fluids

    OpenAIRE

    Datla, Bala Varma; Brasz, Joost

    2012-01-01

    The last decade has seen a substantial increase in Organic Rankine Cycle system installations for low temperature waste heat power recovery. The availability of HFC245fa has played a major role in this recent surge in ORC systems since it allows the use of existing HVAC hardware (heat exchangers and compressors) to be used as ORC components (turbines, boilers and condensers) with minimal redesign. The environmental drawback of HFC245fa is its relatively high GWP value of 950. The advent of a ...

  15. Waste Heat Recovery of a PEMFC System by Using Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Tianqi He

    2016-04-01

    Full Text Available In this study, two systems are brought forward to recover the waste heat of a proton exchange membrane fuel cell (PEMFC, which are named the organic Rankine cycle (ORC, and heat pump (HP combined organic Rankine cycle (HPORC. The performances of both systems are simulated on the platform of MATLAB with R123, R245fa, R134a, water, and ethanol being selected as the working fluid, respectively. The results show that, for PEMFC where operating temperature is constantly kept at 60 °C, there exists an optimum working temperature for each fluid in ORC and HPORC. In ORC, the maximal net power can be achieved with R245fa being selected as the working fluid. The corresponding thermal efficiency of the recovery system is 4.03%. In HPORC, the maximal net power can be achieved with water being selected in HP and R123 in ORC. The thermal efficiency of the recovery system increases to 4.73%. Moreover, the possibility of using ORC as the cooling system of PEMFC is also studied. The heat released from PEMFC stack is assumed to be wholly recovered by the ORC or HPORC system. The results indicate that the HPORC system is much more feasible for the cooling system of a PEMFC stack, since the heat recovery ability can be promoted due to the presence of HP.

  16. Energy analysis of Organic Rankine Cycles for biomass applications

    Directory of Open Access Journals (Sweden)

    Algieri Angelo

    2015-01-01

    Full Text Available The present paper aims at analysing the performances of Organic Rankine Cycles (ORCs adopted for the exploitation of the biomass resulting from the pruning residues in a 3000 hectares district in Southern Italy. A parametric energy analysis has been carried out to define the influence of the main plant operating conditions. To this purpose, both subcritical and transcritical power plants have been examined and saturated and superheated conditions at the turbine inlet have been imposed. Moreover, the effect of the working fluid, condensation temperature, and internal regeneration on system performances has been investigated. The results show that ORC plants represent an interesting and sustainable solution for decentralised and small-scale power production. Furthermore, the analysis highlights the significant impact of the maximum temperature and the noticeable effect of internal regeneration on the performances of the biomass power plants.

  17. Affordable Rankine Cycle Waste Heat Recovery for Heavy Duty Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Swami Nathan [Eaton Corporation

    2017-06-30

    Nearly 30% of fuel energy is not utilized and wasted in the engine exhaust. Organic Rankine Cycle (ORC) based waste heat recovery (WHR) systems offer a promising approach on waste energy recovery and improving the efficiency of Heavy-Duty diesel engines. Major barriers in the ORC WHR system are the system cost and controversial waste heat recovery working fluids. More than 40% of the system cost is from the additional heat exchangers (recuperator, condenser and tail pipe boiler). The secondary working fluid loop designed in ORC system is either flammable or environmentally sensitive. The Eaton team investigated a novel approach to reduce the cost of implementing ORC based WHR systems to Heavy-Duty (HD) Diesel engines while utilizing safest working fluids. Affordable Rankine Cycle (ARC) concept aimed to define the next generation of waste energy recuperation with a cost optimized WHR system. ARC project used engine coolant as the working fluid. This approach reduced the need for a secondary working fluid circuit and subsequent complexity. A portion of the liquid phase engine coolant has been pressurized through a set of working fluid pumps and used to recover waste heat from the exhaust gas recirculation (EGR) and exhaust tail pipe exhaust energy. While absorbing heat, the mixture is partially vaporized but remains a wet binary mixture. The pressurized mixed-phase engine coolant mixture is then expanded through a fixed-volume ratio expander that is compatible with two-phase conditions. Heat rejection is accomplished through the engine radiator, avoiding the need for a separate condenser. The ARC system has been investigated for PACCAR’s MX-13 HD diesel engine.

  18. Analysis of hot spots in boilers of organic Rankine cycle units during transient operation

    DEFF Research Database (Denmark)

    Benato, A.; Kærn, Martin Ryhl; Pierobon, Leonardo

    2015-01-01

    This paper is devoted to the investigation of critical dynamic events causing thermochemical decompositionof the working fluid in organic Rankine cycle power systems. The case study is the plant of an oiland gas platform where one of the three gas turbines is combined with an organic Rankine cycl...

  19. Performance analysis of organic Rankine cycles using different working fluids

    Directory of Open Access Journals (Sweden)

    Zhu Qidi

    2015-01-01

    Full Text Available Low-grade heat from renewable or waste energy sources can be effectively recovered to generate power by an organic Rankine cycle (ORC in which the working fluid has an important impact on its performance. The thermodynamic processes of ORCs using different types of organic fluids were analyzed in this paper. The relationships between the ORC’s performance parameters (including evaporation pressure, condensing pressure, outlet temperature of hot fluid, net power, thermal efficiency, exergy efficiency, total cycle irreversible loss, and total heat-recovery efficiency and the critical temperatures of organic fluids were established based on the property of the hot fluid through the evaporator in a specific working condition, and then were verified at varied evaporation temperatures and inlet temperatures of the hot fluid. Here we find that the performance parameters vary monotonically with the critical temperatures of organic fluids. The values of the performance parameters of the ORC using wet fluids are distributed more dispersedly with the critical temperatures, compared with those of using dry/isentropic fluids. The inlet temperature of the hot fluid affects the relative distribution of the exergy efficiency, whereas the evaporation temperature only has an impact on the performance parameters using wet fluid.

  20. Biogas Engine Waste Heat Recovery Using Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Alberto Benato

    2017-03-01

    Full Text Available Italy is a leading country in the biogas sector. Energy crops and manure are converted into biogas using anaerobic digestion and, then, into electricity using internal combustion engines (ICEs. Therefore, there is an urgent need for improving the efficiency of these engines taking the real operation into account. To this purpose, in the present work, the organic Rankine cycle (ORC technology is used to recover the waste heat contained in the exhaust gases of a 1 MWel biogas engine. The ICE behavior being affected by the biogas characteristics, the ORC unit is designed, firstly, using the ICE nameplate data and, then, with data measured during a one-year monitoring activity. The optimum fluid and the plant configuration are selected in both cases using an “in-house” optimization tool. The optimization goal is the maximization of the net electric power while the working fluid is selected among 115 pure fluids and their mixtures. Results show that a recuperative ORC designed using real data guarantees a 30% higher net electric power than the one designed with ICE nameplate conditions.

  1. FLUOROETHERS AS A WORKING FLUIDS FOR LOW TEMPERATURE ORGANIC RANKINE CYCLE

    Directory of Open Access Journals (Sweden)

    Artemenko S.V

    2014-12-01

    Full Text Available Hydrofluoroethers as a new class of working fluids for the organic Rankine cycle have been considered to utilize the low-potential waste heat. Temperature range 300…400 K was chosen to provide energy conversion of waste heat from fuel cells. The direct assessment of the efficiency criteria for the Rankine cycle via artificial neural networks (ANN was used. To create ANN the critical parameters of substance and normal boiling temperature as input were chosen. The forecast of efficiency criteria for the Rankine cycle as output parameter which reproduces the coefficient of performance with high accuracy and without thermodynamic property calculations was presented.

  2. Simulation of a passive house coupled with a heat pump/organic Rankine cycle reversible unit

    DEFF Research Database (Denmark)

    Dumont, Olivier; Carmo, Carolina; Randaxhe, François

    2014-01-01

    This paper presents a dynamic model of a passive house located in Denmark with a large solar absorber, a horizontal ground heat exchanger coupled with a HP/ORC unit. The HP/ORC reversible unit is a module able to work as an Organic Rankine Cycle (ORC) or as a heat pump (HP). There are 3 possible...... modes that need to be chosen optimally depending on the weather conditions, the heat demand and the temperature level of the storage. The ORC mode is activated, as long as the heat demand of the house is covered by the storage to produce electricity based upon the heat generated by the solar roof...... of the year in the Modelica language. A peak of 3.28 kW of power is reached in ORC mode with a heat input of 59.5 kW from the solar roof (23.9 kWh are produced during a typical summer day). In a representative winter day, 17.28 kWh are consumed by the heat pump with a daily average COP of 4.1. Conclusions...

  3. Design of organic Rankine cycles using a non-conventional optimization approach

    DEFF Research Database (Denmark)

    Andreasen, J. G.; Larsen, Ulrik; Haglind, F.

    2015-01-01

    The organic Rankine cycle is a suitable technology for utilizing low grade heat for electricity production. Compared to the traditional steam Rankine cycle, the organic Rankine cycle is beneficial, since it enables the choice of a working fluid which performs better than steam at low heat input...... temperatures and at lowpower outputs. Selecting the process layout of the organic Rankine cycle and the working fluid are two key design decisions which are critical for the thermodynamic and economic performance of the cycle. The prevailing approach used in the design and optimization of organic Rankine...... product of the overall heat transfer coefficient and the heat transfer area) is assigned to the cycle, while the distribution of this total UA-value to each of the heat exchangers is optimized. Optimizations are carried out for three different marine engine waste heatsources at temperatures ranging from...

  4. Altheim geothermal plant. Power generation by means of an ORC turbogenerator; Geothermieanlagen Altheim. Stromerzeugung mittels Organic-Rankine-Cycle Turbogenerator

    Energy Technology Data Exchange (ETDEWEB)

    Pernecker, G. [Marktgemeindeamt Altheim (Austria)

    1997-12-01

    The report describes the project of the Austrian market town of Altheim to generate electricity by means of an ORC turbogenerator using low-temperature thermal water. The project is to improve the technical and economic situation of the existing industrial-scale geothermal project. (orig.) [Deutsch] Der Bericht beschreibt das Vorhaben der Marktgemeinde Altheim in Oberoesterreich, Strom mittels eines Organic-Rankine-Cycle-Turbogenerators unter Verwendung niedrig temperierten Thermalwassers zu produzieren. Ziel bzw. der Zweck des Projektes ist es, die technische und wirtschaftliche Situation der bestehenden Grossthermieanlage zu verbessern. (orig.)

  5. Solar-powered air-conditioning

    Science.gov (United States)

    Clark, D. C.; Rousseau, J.

    1977-01-01

    Report focuses on recent study on development of solar-powered residential air conditioners and is based on selected literature through 1975. Its purposes are to characterize thermal and mechanical systems that might be useful in development of Rankine-cycle approach to solar cooling and assessment of a Lithium Bromide/Water absorption cycle system.

  6. Optimization of organic Rankine cycle power systems considering multistage axial turbine design

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Persico, Giacomo

    2018-01-01

    Organic Rankine cycle power systems represent a viable and efficient solution for the exploitation of medium-to-low temperature heat sources. Despite the large number of commissioned units, there is limited literature on the design and optimization of organic Rankine cycle power systems considering......-butane yields the best compromise in terms of cycle net power output, turbine cost and efficiency for the considered case study. When a conservative design approach is adopted, the turbine features a two-stage configuration with supersonic converging nozzles and post-expansion. Conversely, a single...... multistage turbine design. This work presents a preliminary design methodology and working fluid selection for organic Rankine cycle units featuring multistage axial turbines. The method is then applied to the case of waste heat recovery from a large marine diesel engine. A multistage axial turbine model...

  7. Optimization of organic Rankine cycle power systems considering multistage axial turbine design

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Persico, Giacomo

    2017-01-01

    Organic Rankine cycle power systems represent a viable and efficient solution for the exploitation of medium-to-low temperature heat sources. Despite the large number of commissioned units, there is limited literature on the design and optimization of organic Rankine cycle power systems considering......-butane yields the best compromise in terms of cycle net power output, turbine cost and efficiency for the considered case study. When a conservative design approach is adopted, the turbine features a two-stage configuration with supersonic converging nozzles and post-expansion. Conversely, a single...... multistage turbine design. This work presents a preliminary design methodology and working fluid selection for organic Rankine cycle units featuring multistage axial turbines. The method is then applied to the case of waste heat recovery from a large marine diesel engine. A multistage axial turbine model...

  8. Organic Rankine cycle – review and research directions in engine applications

    Directory of Open Access Journals (Sweden)

    Panesar Angad

    2017-01-01

    Full Text Available Waste heat to power conversion using Organic Rankine Cycles (ORC is expected to play an important role in CO2 reductions from diesel engines. Firstly, a review of automotive ORCs is presented focusing on the pure working fluids, thermal architectures and expanders. The discussion includes, but is not limited to: R245fa, ethanol and water as fluids; series, parallel and cascade as architectures; dry saturated, superheated and supercritical as expansion conditions; and scroll, radial turbine and piston as expansion machines. Secondly, research direction in versatile expander and holistic architecture (NOx + CO2 are proposed. Benefits of using the proposed unconventional approaches are quantified using Ricardo Wave and Aspen HYSYS for diesel engine and ORC modelling. Results indicate that, the implementation of versatile piston expander tolerant to two-phase and using cyclopentane can potentially increase the highway drive cycle power by 8%. Furthermore, holistic architecture offering complete utilisation of charge air and exhaust recirculation heat increased the performance noticeably to 5% of engine power at the design point condition.

  9. Organic Rankine Cycle Analysis: Finding the Best Way to Utilize Waste Heat

    Directory of Open Access Journals (Sweden)

    Nadim Chakroun

    2012-01-01

    Full Text Available An Organic Rankine Cycle (ORC is a type of power cyclethat uses organic substances such as hydrocarbons orrefrigerants as the working fluid. ORC technology is usedto generate electricity in waste heat recovery applications,because the available heat is not at a high enoughtemperature to operate with other types of cycles. Theoptimum amount of working fluid required for the cycle(i.e., optimum charge level was investigated. Three chargelevels (13, 15, and 18 lbm were tested, and their effect onefficiency and performance of the system was analyzed.The heat source for the fluid was waste steam from thePurdue Power Plant, which had an average temperatureof 120oC. Regular city tap water at a temperature of 15oCwas used as the heat sink. For each charge level, multipletests were performed by measuring the temperaturesand pressures at all state points in the cycle, in order tounderstand any overarching patterns within the data.An important parameter that was analyzed is the 2nd lawefficiency. This efficiency is a measure of the effectivenessof the energy utilization compared to that of an idealcase. The peak efficiency increased from 24% to 27% asthe charge in the system decreased. Therefore, movingforward, this research suggests that a lower charge levelin the system will increase efficiency. However, testingbelow 13 lbm might cause mechanical complications inthe equipment as there may not be enough fluid to flowaround; thus, a compromise had to be made.

  10. Final Report. Conversion of Low Temperature Waste Heat Utilizing Hermetic Organic Rankine Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Robert L.

    2005-04-20

    The design of waste heat recovery using the organic Rankine cycle (ORC) engine is updated. Advances in power electronics with lower cost enable the use of a single shaft, high-speed generator eliminating wear items and allowing hermetic sealing of the working fluid. This allows maintenance free operation and a compact configuration that lowers cost, enabling new market opportunities.

  11. Method of optimizing performance of Rankine cycle power plants. [US DOE Patent

    Science.gov (United States)

    Pope, W.L.; Pines, H.S.; Doyle, P.A.; Silvester, L.F.

    1980-06-23

    A method is described for efficiently operating a Rankine cycle power plant to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine fluid inlet state which is substantially on the area adjacent and including the transposed critical temperature line.

  12. Theoretical and experimental research of organic Rankine cycle steam turbine plants

    Science.gov (United States)

    Kishkin, A. A.; Delkov, A. V.; Melkozerov, M. G.

    2017-10-01

    Currently steam power cycles using organic actuation fluid - Freon, ammonia, ethanol, isobutene, etc are becoming increasingly important. Such cycles are called Organic Rankine Cycle (ORC). With the help of such cycles it is possible to use low-grade heat sources in the production of mechanical and electrical energy.

  13. A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Meroni, Andrea; Haglind, Fredrik

    2017-01-01

    %) fuel case. The processes were compared based on their off-design performance for diesel engine loads in the range between 25% and 100%. The fluids considered in the organic Rankine cycle process were MM(hexamethyldisiloxane), toluene, n-pentane, i-pentane and c-pentane. The results of the comparison...... indicate that the net power output of the steam Rankine cycle process is higher at high engine loads, while the performance of the organic Rankine cycle units is higher at lower loads. Preliminary turbine design considerations suggest that higher turbine efficiencies can be obtained for the ORC unit......This paper presents a comparison of the conventional dual pressure steam Rankine cycle process and the organic Rankine cycle process for marine engine waste heat recovery. The comparison was based on a container vessel, and results are presented for a high-sulfur (3 wt %) and low-sulfur (0.5 wt...

  14. Experimental study on Rankine cycle evaporator efficiency intended for exhaust waste heat recovery of a diesel engine

    Directory of Open Access Journals (Sweden)

    Milkov Nikolay

    2017-01-01

    Full Text Available The paper pressents an experimental study of Rankine cycle evaporator efficiency. Water was chosen as the working fluid in the system. The experimental test was conducted on a test bench equipped with a burner charged by compressed fresh air. Generated exhaust gases parameters were previously determined over the diesel engine operating range (28 engine operating points were studied. For each test point the working fluid parameters (flow rate and evaporating pressure were varied. Thus, the enthalpy flow through the heat exchanger was determined. Heat exchanger was designed as 23 helical tubes are inserted. On the basis of the results, it was found out that efficiency varies from 25 % to 51,9 %. The optimal working fluid pressure is 20 bar at most of the operating points while the optimum fluid mass flow rate varies from 2 g/s to 10 g/s.

  15. A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships

    Directory of Open Access Journals (Sweden)

    Jesper Graa Andreasen

    2017-04-01

    Full Text Available This paper presents a comparison of the conventional dual pressure steam Rankine cycle process and the organic Rankine cycle process for marine engine waste heat recovery. The comparison was based on a container vessel, and results are presented for a high-sulfur (3 wt % and low-sulfur (0.5 wt % fuel case. The processes were compared based on their off-design performance for diesel engine loads in the range between 25% and 100%. The fluids considered in the organic Rankine cycle process were MM(hexamethyldisiloxane, toluene, n-pentane, i-pentane and c-pentane. The results of the comparison indicate that the net power output of the steam Rankine cycle process is higher at high engine loads, while the performance of the organic Rankine cycle units is higher at lower loads. Preliminary turbine design considerations suggest that higher turbine efficiencies can be obtained for the ORC unit turbines compared to the steam turbines. When the efficiency of the c-pentane turbine was allowed to be 10% points larger than the steam turbine efficiency, the organic Rankine cycle unit reaches higher net power outputs than the steam Rankine cycle unit at all engine loads for the low-sulfur fuel case. The net power production from the waste heat recovery units is generally higher for the low-sulfur fuel case. The steam Rankine cycle unit produces 18% more power at design compared to the high-sulfur fuel case, while the organic Rankine cycle unit using MM produces 33% more power.

  16. Selected aspects of operation of supercritical (transcritical organic Rankine cycle

    Directory of Open Access Journals (Sweden)

    Mocarsk Szymon

    2015-06-01

    Full Text Available The paper presents a literature review on the topic of vapour power plants working according to the two-phase thermodynamic cycle with supercritical parameters. The main attention was focused on a review of articles and papers on the vapour power plants working using organic circulation fluids powered with low- and medium-temperature heat sources. Power plants with water-steam cycle supplied with a high-temperature sources have also been shown, however, it has been done mainly to show fundamental differences in the efficiency of the power plant and applications of organic and water-steam cycles. Based on a review of available literature references a comparative analysis of the parameters generated by power plants was conducted, depending on the working fluid used, the type and parameters of the heat source, with particular attention to the needs of power plant internal load.

  17. Multi-Objective Optimization of Organic Rankine Cycle Power Plants Using Pure and Mixed Working Fluids

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Kærn, Martin Ryhl; Pierobon, Leonardo

    2016-01-01

    For zeotropic mixtures, the temperature varies during phase change, which is opposed to the isothermal phase change of pure fluids. The use of such mixtures as working fluids in organic Rankine cycle power plants enables a minimization of the mean temperature difference of the heat exchangers......, which is beneficial for cycle performance. On the other hand, larger heat transfer surface areas are typically required for evaporation and condensation when zeotropic mixtures are used as working fluids. In order to assess the feasibility of using zeotropic mixtures, it is, therefore, important...... to consider the additional costs of the heat exchangers. In this study, we aim at evaluating the economic feasibility of zeotropic mixtures compared to pure fluids. We carry out a multi-objective optimization of the net power output and the component costs for organic Rankine cycle power plants using low...

  18. Prospects of the use of nanofluids as working fluids for organic Rankine cycle power systems

    DEFF Research Database (Denmark)

    Mondejar, Maria E.; Andreasen, Jesper G.; Regidor, Maria

    2017-01-01

    The search of novel working fluids for organic Rankine cycle power systems is driven by the recent regulations imposing additional phase-out schedules for substances with adverse environmental characteristics. Recently, nanofluids (i.e. colloidal suspensions of nanoparticles in fluids) have been...... suggested as potential working fluids for organic Rankine cycle power systems due to their enhanced thermal properties, potentially giving advantages with respect to the design of the components and the cycle performance. Nevertheless, a number of challenges concerning the use of nanofluids must...... be investigated prior to their practical use. Among other things, the trade-off between enhanced heat transfer and increased pressure drop in heat exchangers, and the impact of the nanoparticles on the working fluid thermophysical properties, must be carefully analyzed. This paper is aimed at evaluating...

  19. Experimental Study of a Low-Temperature Power Generation System in an Organic Rankine Cycle

    DEFF Research Database (Denmark)

    Mu, Yongchao; Zhang, Yufeng; Deng, Na

    2015-01-01

    as the engine of the power generator. The style of the preheater was a shell and tube heat exchanger, which could provide a long path for the working fluid. A flooded heat exchanger with a high heat transfer coefficient was taken as the evaporator. R134a was used as working fluid for the Rankine cycle......This paper presents a new power generation system under the principle of organic Rankine cycle which can generate power with a low-temperature heat source. A prototype was built to investigate the proposed system. In the prototype, an air screw compressor was converted into an expander and used...... in the system. This study compared and analyzed the experimental performance of the prototype at different heat source temperatures. The results show that the preheater and flooded evaporator was used for sensible heating and latent heating of the working fluid, respectively, as expected. When the temperature...

  20. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part A

    DEFF Research Database (Denmark)

    Meroni, Andrea; La Seta, Angelo; Andreasen, Jesper Graa

    2016-01-01

    Rankine cycle power systems. In this two-part paper, an overall cycle model and a model of an axial turbine were combined in order to provide a comprehensive preliminary design of the organic Rankine cycle unit, taking into account both cycle and turbine optimal designs. Part A presents the preliminary......Axial-flow turbines represent a well-established technology for a wide variety of power generation systems. Compactness, flexibility, reliability and high efficiency have been key factors for the extensive use of axial turbines in conventional power plants and, in the last decades, in organic...... turbine design model, the details of the validation and a sensitivity analysis on the main parameters, in order to minimize the number of decision variables in the subsequent turbine design optimization. Part B analyzes the application of the combined turbine and cycle designs on a selected case study...

  1. Study of toluene stability for an Organic Rankine Cycle (ORC) space-based power system

    Science.gov (United States)

    Havens, Vance; Ragaller, Dana

    1988-01-01

    The design, fabrication, assembly, and endurance operation of a dynamic test loop, built to evaluate the thermal stability of a proposed Organic Rankine Cycle (ORC) working fluid, is discussed. The test fluid, toluene, was circulated through a heater, simulated turbine, regenerator, condenser and pump to duplicate an actual ORC system. The maximum nominal fluid temperature, 750 F, was at the turbine simulator inlet. Samples of noncondensible gases and liquid toluene were taken periodically during the test. The samples were analyzed to identify the degradation products formed and the quantity of these products. From these data it was possible to determine the degradation rate of the working fluid and the generation rate of noncondensible gases. A further goal of this work was to relate the degradation observed in the dynamic operating loop to degradation obtained in isothermal capsule tests. This relationship was the basis for estimating the power loop degradation in the Space Station Organic Rankine Cycle system.

  2. Application of unscented Kalman filter for condition monitoring of an organic Rankine cycle turbogenerator

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Schlanbusch, Rune; Kandepu, Rambabu

    2014-01-01

    emphasis on compactness and reliability. In such context, organic Rankine cycle turbogenerators are a promising technology. The implementation of an organic Rankine cycle unit is thus considered for the power system of the Draugen offshore platform in the northern sea, which is the case study......This work relates to a project focusing on energy optimization on offshore facilities. On oil and gas platforms it is common practice to employ gas turbines for power production. So as to increase the system performance and reduce emissions, a bottoming cycle unit can be designed with particular...... for this project. Considering the plant dynamics, it is of paramount importance to monitor the peak temperatures within the once-through boiler serving the bottoming unit to prevent the decomposition of the working fluid. This paper accordingly aims at applying the unscented Kalman filter to estimate...

  3. System and method for regulating EGR cooling using a Rankine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Morris, Dave

    2017-08-29

    This disclosure relates to a waste heat recovery (WHR) system and method for regulating exhaust gas recirculation (EGR) cooling, and more particularly, to a Rankine cycle WHR system and method, including a recuperator bypass arrangement to regulate EGR exhaust gas cooling for engine efficiency improvement and thermal management. This disclosure describes other unique bypass arrangements for increased flexibility in the ability to regulate EGR exhaust gas cooling.

  4. Comparison of Organic Rankine Cycle Under Varying Conditions Using Turbine and Twin-Screw Expanders

    OpenAIRE

    Read, M G; Smith, I.K.; Stosic, N.

    2015-01-01

    A multi-variable optimization program has been developed to investigate the performance of Organic Rankine Cycles (ORCs) for low temperature heat recovery applications. This cycle model contains detailed thermodynamic models of the system components, and the methods used to match the operation of the expander to the requirements of the cycle are described. Two types of ORC system are considered; one containing a turbine to expand dry saturated or superheated vapour, and one with a twin-screw ...

  5. Comparison of organic rankine cycle systems under varying conditions using turbine and twin-screw expanders

    OpenAIRE

    Read, M G; Smith, I.K.; Stosic, N.; Kovacevic, A.

    2016-01-01

    A multi-variable optimization program has been developed to investigate the performance of Organic Rankine Cycles (ORCs) for low temperature heat recovery applications using both turbine and twin-screw expanders when account is taken of performance variation due to changes in ambient conditions. The cycle simulation contains thermodynamic models of both types of expander. In the case of the twin-screw machine, the methods used to match the operation of the expander to the requirements of the ...

  6. Thermodynamic Optimization of a Geothermal- Based Organic Rankine Cycle System Using an Artificial Bee Colony Algorithm

    OpenAIRE

    Osman Özkaraca; Pınar Keçebaş; Cihan Demircan; Ali Keçebaş

    2017-01-01

    Geothermal energy is a renewable form of energy, however due to misuse, processing and management issues, it is necessary to use the resource more efficiently. To increase energy efficiency, energy systems engineers carry out careful energy control studies and offer alternative solutions. With this aim, this study was conducted to improve the performance of a real operating air-cooled organic Rankine cycle binary geothermal power plant (GPP) and its components in the aspects of thermodynamic ...

  7. Organic Rankine Cycle and its application in renewable power engineering

    Directory of Open Access Journals (Sweden)

    G. V. Belov

    2014-01-01

    Full Text Available A considerable part of energy consumed in the world is thermal power that is produced due to burning of hydrocarbon fuels and as a result of controlled course of nuclear reactions. Thus rather large part of thermal power is used ultrainefficiently, often simply dissipates in environment. The rise in prices for energy compels to use low-grade one to be released in large quantities in environment. To utilize the low-grade energy Renkin's cycle with with alternative working bodies is often applied. The corresponding cycle was called Renkin's organic cycle (ROC. A substance with lower boiling temperature, than that of water is used in ROC as a working body to utilize low-grade energy.The review of literature shows that thrust on power sector related to utilization of residual heat (thermal waste and use of alternative energy sources, recently, intensively develops. However there is, essentially, a lack of publications on this subject in Russian. The objective of given article is to analyse modern sources of information (mainly, foreign ones which consider various aspects of ROC and its application potential in alternative power engineering. The article focuses much attention on the choice of ROC working body. It presents a list of main requirements for a working body. The article studies the matters of ROC simulation.It is shown that ROC application enables using the low-grade power of exhaust gases, geothermal sources, other thermal streams with rather low temperature. Integration of ROC with ICE (internal combustion engine is in position to increase an efficiency of used fuel energy and to reduce amount of toxic impurity in exhaust gases. Essential influence of working body properties on its characteristics of ROC is noted.

  8. Working fluid selection for the Organic Rankine Cycle (ORC) exhaust heat recovery of an internal combustion engine power plant

    Science.gov (United States)

    Douvartzides, S.; Karmalis, I.

    2016-11-01

    Organic Rankine cycle technology is capable to efficiently convert low-grade heat into useful mechanical power. In the present investigation such a cycle is used for the recovery of heat from the exhaust gases of a four stroke V18 MAN 51/60DF internal combustion engine power plant operating with natural gas. Design is focused on the selection of the appropriate working fluid of the Rankine cycle in terms of thermodynamic, environmental and safety criteria. 37 candidate fluids have been considered and all Rankine cycles examined were subcritical. The thermodynamic analysis of all fluids has been comparatively undertaken and the effect of key operation conditions such as the evaporation pressure and the superheating temperature was taken into account. By appropriately selecting the working fluid and the Rankine cycle operation conditions the overall plant efficiency was improved by 5.52% and fuel consumption was reduced by 12.69%.

  9. Experimental Comparison Of Working Fluids For Organic Rankine Cycle With Single-Screw Expander

    OpenAIRE

    Gusev, Sergei; Ziviani, Davide; Bell, Ian; De Paepe, Michel; van den Broek, Martijn

    2014-01-01

    This paper describes the behavior of an Organic Rankine Cycle (ORC) fed by a heat source with adaptable temperature and mass flow. For a suitable choice of working fluid, the setting of its evaporation pressure is crucial for the performance of an ORC installation. The higher the evaporation pressure, the higher the cycle efficiency on the one hand, but the lower the energy recovered from the heat source due to a higher outlet temperature on the other hand. An optimum has to be found to achie...

  10. Uncertainty assessment of equations of state with application to an organic Rankine cycle

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Bell, Ian; O’Connell, John P.

    2017-01-01

    Evaluations of equations of state (EoS) should include uncertainty. This study presents a genericmethod to analyse EoS from a detailed uncertainty analysis of the mathematical form and the dataused to obtain EoS parameter values. The method is illustrated by comparison of Soave–Redlich–Kwong (SRK......) cubic EoS with perturbed-chain statistical associating fluid theory (PC-SAFT) EoS for anorganic Rankine cycle (ORC) for heat recovery to power fromthe exhaust gas of a marine diesel engineusing cyclopentane as working fluid. Uncertainties of the EoS input parameters including...

  11. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part B

    DEFF Research Database (Denmark)

    La Seta, Angelo; Meroni, Andrea; Andreasen, Jesper Graa

    2016-01-01

    due to the peculiar physical properties of the working fluid and the gas-dynamic phenomena occurring in the machine. Unlike steam Rankine and Brayton engines, organic Rankine cycle expanders combine small enthalpy drops with large expansion ratios. These features yield turbine designs with few highly-loaded...... variables affecting the turbine design. Part B of this two-part paper presents the first application of a design method where the thermodynamic cycle optimization is combined with calculations of the maximum expander performance using the mean-line design tool described in part A. The high computational...

  12. Design and optimization of a novel organic Rankine cycle with improved boiling process

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Larsen, U.; Knudsen, Thomas

    2015-01-01

    to improve the boiling process. Optimizations are carried out for eight hydrocarbon mixtures for hot fluid inlet temperatures at 120 °C and 90 °C, using a genetic algorithm to determine the cycle conditions for which the net power output is maximized. The most promising mixture is an isobutane....../pentane mixture which, for the 90 °C hot fluid inlet temperature case, achieves a 14.5% higher net power output than an optimized organic Rankine cycle using the same mixture. Two parameter studies suggest that optimum conditions for the organic split-cycle are when the temperature profile allows the minimum...

  13. Performance analysis of different organic Rankine cycle configurations on board liquefied natural gas-fuelled vessels

    DEFF Research Database (Denmark)

    Baldasso, Enrico; Andreasen, Jesper Graa; Meroni, Andrea

    2017-01-01

    natural gas (LNG). The study compares the performance of six different ORC configurations both in design and off-design operation, and provides guidelines with respect to the most promising heat sources and sinks to be utilized by an ORC unit in order to maximize the annual fuel savings. In addition......Gas-fuelled shipping is expected to increase significantly in the coming years. Similarly, much effort is devoted to the study of waste heat recovery systems to be implemented on board ships. In this context, the organic Rankine cycle (ORC) technology is considered one of the most promising...

  14. Research of efficiency of the organic Rankine cycle on a mathematical model

    Directory of Open Access Journals (Sweden)

    Galashov N.

    2017-01-01

    Full Text Available The object of the study are the organic Rankine cycle. The purpose of research is to evaluate the impact on the net efficiency of the initial and final properties of the cycle at work on a saturated and superheated steam. Investigations were carried out on the basis of a mathematical model, in which the thermodynamic properties of materials are determined on the basis of “REFPROP”. On the basis of the available scientific publications on the use of working fluids in an organic Rankine cycle analysis was selected ozone-safe pentane. A mathematical model has been developed on condition that condenser is used as air cooler which allows the substance to condense at a temperature below 0 °С. Numerical study on the mathematical model shown that net efficiency at work on pentane linearly depends on the condensation temperature and parabolically depends on the initial temperature with the saturated steam. During work at the superheated steam efficiency strongly depends on both the initial temperature and of the initial pressure. With rising initial temperature is necessary to gradually increase the initial pressure under certain conditions.

  15. Multi-Objective Optimization of Organic Rankine Cycle Power Plants Using Pure and Mixed Working Fluids

    Directory of Open Access Journals (Sweden)

    Jesper G. Andreasen

    2016-04-01

    Full Text Available For zeotropic mixtures, the temperature varies during phase change, which is opposed to the isothermal phase change of pure fluids. The use of such mixtures as working fluids in organic Rankine cycle power plants enables a minimization of the mean temperature difference of the heat exchangers, which is beneficial for cycle performance. On the other hand, larger heat transfer surface areas are typically required for evaporation and condensation when zeotropic mixtures are used as working fluids. In order to assess the feasibility of using zeotropic mixtures, it is, therefore, important to consider the additional costs of the heat exchangers. In this study, we aim at evaluating the economic feasibility of zeotropic mixtures compared to pure fluids. We carry out a multi-objective optimization of the net power output and the component costs for organic Rankine cycle power plants using low-temperature heat at 90 ∘ C to produce electrical power at around 500 kW. The primary outcomes of the study are Pareto fronts, illustrating the power/cost relations for R32, R134a and R32/R134a (0.65/0.35 mole . The results indicate that R32/R134a is the best of these fluids, with 3.4 % higher net power than R32 at the same total cost of 1200 k$.

  16. Economic assessment of greenhouse gas reduction through low-grade waste heat recovery using organic Rankine cycle (ORC)

    Energy Technology Data Exchange (ETDEWEB)

    Imran, Muhammad; Park, Byung Sik; Kim, Hyouck Ju; Usman, Muhammad [University of Science and Technology, Daejeon (Korea, Republic of); Lee, Dong Hyun [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2015-02-15

    Low-grade waste heat recovery technologies reduce the environmental impact of fossil fuels and improve overall efficiency. This paper presents the economic assessment of greenhouse gas (GHG) reduction through waste heat recovery using organic Rankine cycle (ORC). The ORC engine is one of the mature low temperature heat engines. The low boiling temperature of organic working fluid enables ORC to recover low-temperature waste heat. The recovered waste heat is utilized to produce electricity and hot water. The GHG emissions for equivalent power and hot water from three fossil fuels-coal, natural gas, and diesel oil-are estimated using the fuel analysis approach and corresponding emission factors. The relative decrease in GHG emission is calculated using fossil fuels as the base case. The total cost of the ORC system is used to analyze the GHG reduction cost for each of the considered fossil fuels. A sensitivity analysis is also conducted to investigate the effect of the key parameter of the ORC system on the cost of GHG reduction. Throughout the 20-year life cycle of the ORC plant, the GHG reduction cost for R245fa is 0.02 $/kg to 0.04 $/kg and that for pentane is 0.04 $/kg to 0.05 $/kg. The working fluid, evaporation pressure, and pinch point temperature difference considerably affect the GHG emission.

  17. Technical Analysis of Organic Rankine Cycle System Using Low-Temperature Source to Generate Electricity in Ship

    Directory of Open Access Journals (Sweden)

    Akram Faisal

    2017-01-01

    Full Text Available Nowadays, the shipping sector has growth rapidly as followed by the increasing of world population and the demands for public transportation via sea. This issue entails the large attention on emission, energy efficiency and fuel consumption on the ship. Waste Heat Recovery (WHR is one of the solution to overcome the mentioned issue and one of the WHR method is by installing Organic Rankine Cycle (ORC system in ship. ORC demonstrate to recover and exploit the low temperature waste heat rejected by the ship power generation plant. The main source of heat to be utilized is obtained from container ship (7900 kW BHP, DWT 10969 mt ship jacket water cooling system and use R-134a as a refrigerant. The main equipment consists of evaporator, condenser, pump and steam turbine to generate the electricity. The main objective is to quantifying the estimation of electrical power which can be generated at typical loads of the main engine. As the final result of analysis, the ORC system is able to generate the electricity power ranged from 77,5% - 100% of main engine load producing power averagely 57,69 kW.

  18. Working fluid selection for organic Rankine cycles - Impact of uncertainty of fluid properties

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Andreasen, Jesper Graa; Liu, Wei

    2016-01-01

    This study presents a generic methodology to select working fluids for ORC (Organic Rankine Cycles)taking into account property uncertainties of the working fluids. A Monte Carlo procedure is described as a tool to propagate the influence of the input uncertainty of the fluid parameters on the ORC...... modeloutput, and provides the 95%-confidence interval of the net power output with respect to the fluid property uncertainties. The methodology has been applied to a molecular design problem for an ORCusing a low-temperature heat source and consisted of the following four parts: 1) formulation...... of processmodels and constraints 2) selection of property models, i.e. Penge Robinson equation of state 3)screening of 1965 possible working fluid candidates including identification of optimal process parametersbased on Monte Carlo sampling 4) propagating uncertainty of fluid parameters to the ORC netpower output...

  19. Effectiveness of Operation of Organic Rankine Cycle Installation Applied in the Liquid Natural Gas Regasification Plant

    Science.gov (United States)

    Kaczmarek, R.; Stachel, A. A.

    2017-05-01

    An analysis of the operation of an Organic Rankine Cycle (ORC) installation heated by a low-temperature heat source is presented for the case where a condenser of a working fluid is cooled by a liquid of ultralow temperature. For this purpose, the process of regasification of liquid natural gas (LNG) is considered. In the process, the condensation heat of the working fluid in ORC is taken by the LNG evaporating subsequently (i.e., undergoing regasification). The paper presents the schematic of this installation and its application, as well as the results of calculations on the basis of the analysis in terms of the power and efficiency. In the analysis, organic fluids used in the ORC as working ones have been selected.

  20. Linear Active Disturbance Rejection Control of Waste Heat Recovery Systems with Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Fang Fang

    2012-12-01

    Full Text Available In this paper, a linear active disturbance rejection controller is proposed for a waste heat recovery system using an organic Rankine cycle process, whose model is obtained by applying the system identification technique. The disturbances imposed on the waste heat recovery system are estimated through an extended linear state observer and then compensated by a linear feedback control strategy. The proposed control strategy is applied to a 100 kW waste heat recovery system to handle the power demand variations of grid and process disturbances. The effectiveness of this controller is verified via a simulation study, and the results demonstrate that the proposed strategy can provide satisfactory tracking performance and disturbance rejection.

  1. Draft report: application of organic Rankine cycle heat recovery systems to diesel powered marine vessels

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-15

    The analysis and results of an investigation of the application of organic Rankine cycle heat recovery systems to diesel-powered marine vessels are described. The program under which this study was conducted was sponsored jointly by the US Energy Research and Development Administration, the US Navy, and the US Maritime Administration. The overall objective of this study was to investigate diesel bottoming energy recovery systems, currently under development by three US concerns, to determine the potential for application to marine diesel propulsion and auxiliary systems. The study primarily focused on identifying the most promising vessel applications (considering vessel type, size, population density, operational duty cycle, etc.) so the relative economic and fuel conservation merits of energy recovery systems could be determined and assessed. Vessels in the current fleet and the projected 1985 fleet rated at 1000 BHP class and above were investigated.

  2. Thermal Stability of Hexamethyldisiloxane (MM for High-Temperature Organic Rankine Cycle (ORC

    Directory of Open Access Journals (Sweden)

    Markus Preißinger

    2016-03-01

    Full Text Available The design of efficient Organic Rankine Cycle (ORC units for the usage of industrial waste heat at high temperatures requires direct contact evaporators without intermediate thermal oil circuits. Therefore, the thermal stability of high-temperature working fluids gains importance. In this study, the thermal degradation of hexamethyldisiloxane (MM is investigated in an electrically heated tube. Qualitative results concerning remarks on degradation products as well as quantitative results like the annual degradation rate are presented. It is shown that MM is stable up to a temperature of 300 °C with annual degradation rates of less than 3.5%. Furthermore, the break of a silicon–carbon bond can be a main chemical reaction that influences the thermal degradation. Finally, it is discussed how the results may impact the future design of ORC units.

  3. Rankine cycle condenser pressure control using an energy conversion device bypass valve

    Science.gov (United States)

    Ernst, Timothy C; Nelson, Christopher R; Zigan, James A

    2014-04-01

    The disclosure provides a waste heat recovery system and method in which pressure in a Rankine cycle (RC) system of the WHR system is regulated by diverting working fluid from entering an inlet of an energy conversion device of the RC system. In the system, an inlet of a controllable bypass valve is fluidly coupled to a working fluid path upstream of an energy conversion device of the RC system, and an outlet of the bypass valve is fluidly coupled to the working fluid path upstream of the condenser of the RC system such that working fluid passing through the bypass valve bypasses the energy conversion device and increases the pressure in a condenser. A controller determines the temperature and pressure of the working fluid and controls the bypass valve to regulate pressure in the condenser.

  4. Organic Rankine cycle unit for waste heat recovery on ships (PilotORC)

    DEFF Research Database (Denmark)

    Haglind, Fredrik; Montagud, Maria E. Mondejar; Andreasen, Jesper Graa

    The project PilotORC was aimed at evaluating the technical and economic feasibility of the use of organic Rankine cycle (ORC) units to recover low-temperature waste heat sources (i.e. exhaust gases, scavenge air, engine cooling system, and lubricant oil system) on container vessels. The project...... included numerical simulations and experimental tests on a 125 kW demonstration ORC unit that utilizes the waste heat of the main engine cooling system on board one of Mærsk's container vessels. During the design of the demonstration ORC unit, different alternatives for the condenser were analyzed in order...... to minimize the size of the heat exchanger area. Later on the ORC unit was successfully installed on board, and it has been working uninterruptedly since, demonstrating the matureness of the ORC technology for maritime applications. During the onboard testing, additional measuring devices were installed...

  5. Recent research trends in organic Rankine cycle technology: A bibliometric approach

    DEFF Research Database (Denmark)

    Imran, Muhammad; Haglind, Fredrik; Asim, Muhammad

    2018-01-01

    Expanded. Different aspects of the publications were analyzed, such as publication type, major research areas, journals, citations, authorship pattern, affiliations as well as the keyword occurrence frequency. The impact factor, h-index and number of citations were used to investigate the strength...... of active countries, institutes, authors, and journals in the organic Rankine cycle technology field. From 2000 to 2016, there were 2120 articles published by 3443 authors from 997 research institutes scattered over 71 countries. The total number of citations and impact factor are 36,739 and 4597......, respectively, corresponding to 17 citations per paper and an impact factor of 2.168 per publication. The research articles originate primarily from China, the USA, and European countries. Results indicate that China, the United States, Italy, Greece, Belgium, Spain, Germany and the United Kingdom...

  6. Control system to a Rankine cycle with a Tesla turbine using arduino

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Josenei G., E-mail: joseneigodoi@yahoo.com.br [Faculdade de Tecnologia Sao Francisco (FATESF), Jacarei, SP (Brazil); Guimaraes, Lamartine F.; Placco, Guilherme M., E-mail: guimarae@ieav.cta.br, E-mail: placco@ieav.cta.br [Instituto de Estudos Avancados (ENU/IEAv/DCTA), Sao Jose dos Campos, SP (Brazil). Departamento de Energia Nuclear

    2013-07-01

    The thermal Rankine cycle is a thermodynamic cycle which converts heat in energy. This cycle occurs in steady state, in other words the cycle is a closed loop circuit with continuous feedback, which guarantees the reuse process one energy transformed in the various stages of the cycle. This cycle is used to drive a turbine type TESLA designed for the system. The objective of this work is to create the control and automation of this cycle using an micro-controlled system with Arduino that will hold the collection of sensors and the system will act to maintain the balance of the cycle causing it to behave continuously and with less interference from human operation for maintenance. Data will be collected and further processed, where it will display all the sensors and the situation of the actuators involved. Using Arduino system ensures the stability and reliability with a low cost of implementation.

  7. Thermodynamic Analysis of an Integrated Solid Oxide Fuel Cell Cycle with a Rankine Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Hybrid systems consisting of Solid Oxide Fuel Cells (SOFC) on the top of a Steam Turbine (ST) are investigated. The plants are fired by natural gas (NG). A desulfurization reactor removes the sulfur content in the fuel while a pre-reformer breaks down the heavier hydrocarbons. The pre-treated fuel...... enters then into the anode side of the SOFC. The remaining fuels after the SOFC stacks enter a burner for further burning. The off-gases are then used to produce steam for a Rankine cycle in a Heat Recovery Steam Generator (HRSG). Different system setups are suggested. Cyclic efficiencies up to 67......% are achieved which is considerably higher than the conventional Combined Cycles (CC). Both ASR (Adiabatic Steam Reformer) and CPO (Catalytic Partial Oxidation) fuel pre-reformer reactors are considered in this investigation....

  8. Selection and optimization of pure and mixed working fluids for low grade heat utilization using organic Rankine cycles

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Larsen, Ulrik; Knudsen, Thomas

    2014-01-01

    We present a generic methodology for organic Rankine cycle optimization, where the working fluid is included as an optimization parameter, in order to maximize the net power output of the cycle. The method is applied on two optimization cases with hot fluid inlet temperatures at 120°C and 90°C. P...

  9. Part-Load Performance of a Wet Indirectly Fired Gas Turbine Integrated with an Organic Rankine Cycle Turbogenerator

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Nguyen, Tuong-Van; Mazzucco, Andrea

    2014-01-01

    ) fueled by woodchips and an organic Rankine cycle (ORC) turbogenerator. An exergy analysis is performed to identify the sources of inefficiencies, the optimal design variables, and the most suitable working fluid for the organic Rankine process. This step enables to parametrize the part-load model...

  10. Thermodynamic analysis of an integrated gasification solid oxide fuel cell plant combined with an organic Rankine cycle

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Rokni, Masoud; Larsen, Ulrik

    2013-01-01

    into a fixed bed gasification plant to produce syngas which fuels the combined solid oxide fuel cells e organic Rankine cycle system to produce electricity. More than a hundred fluids are considered as possible alternative for the organic cycle using non-ideal equations of state (or state-of-the-art equations...

  11. Analysis of a rotating spool expander for Organic Rankine Cycle applications

    Science.gov (United States)

    Krishna, Abhinav

    Increasing interest in recovering or utilizing low-grade heat for power generation has prompted a search for ways in which the power conversion process may be enhanced. Amongst the conversion systems, the Organic Rankine Cycle (ORC) has generated an enormous amount of interest amongst researchers and system designers. Nevertheless, component level technologies need to be developed and match the range of potential applications. In particular, technical challenges associated with scaling expansion machines (turbines) from utility scale to commercial scale have prevented widespread adoption of the technology. In this regard, this work focuses on a novel rotating spool expansion machine at the heart of an Organic Rankine Cycle. A comprehensive, deterministic simulation model of the rotating spool expander is developed. The comprehensive model includes a detailed geometry model of the spool expander and the suction valve mechanism. Sub-models for mass flow, leakage, heat transfer and friction within the expander are also developed. Apart from providing the ability to characterize the expander in a particular system, the model provides a valuable tool to study the impact of various design variables on the performance of the machine. The investigative approach also involved an experimental program to assess the performance of a working prototype. In general, the experimental data showed that the expander performance was sub-par, largely due to the mismatch of prevailing operating conditions and the expander design criteria. Operating challenges during the shakedown tests and subsequent sub-optimal design changes also detracted from performance. Nevertheless, the results of the experimental program were sufficient for a proof-of-concept assessment of the expander and for model validation over a wide range of operating conditions. The results of the validated model reveal several interesting details concerning the expander design and performance. For example, the match

  12. Energy analysis of a trigeneration plant based on solid oxide fuel cell and organic Rankine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Al-Sulaiman, Fahad A. [Mechanical and Aerospace Engineering Department, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario (Canada); Dincer, Ibrahim [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada); Hamdullahpur, Feridun [Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario (Canada)

    2010-05-15

    In this study, energy analysis of a trigeneration plant based on solid oxide fuel cell (SOFC) and organic Rankine cycle (ORC) is conducted. The physical and thermodynamic elements of the plant include an SOFC, an ORC, a heat exchanger for the heating process and a single-effect absorption chiller for cooling. The results obtained from this study show that there is at least a 22% gain in efficiency using the trigeneration plant compared with the power cycle (SOFC and ORC). The study also shows that the maximum efficiency of the trigeneration plant is 74%, heating cogeneration is 71%, cooling cogeneration is 57% and net electricity is 46%. Furthermore, it is found that the highest net power output that can be provided by the trigeneration plant considered in this study is 540 kW and, the highest SOFC-AC power is 520 kW. The study reveals that the inlet pressure of the turbine has an insignificant effect on the efficiency. The study also examines the effect of both the SOFC current density and the SOFC inlet flow temperature on the cell voltage and voltage loss. (author)

  13. Performance analysis of an organic Rankine cycle with internal heat exchanger having zeotropic working fluid

    Directory of Open Access Journals (Sweden)

    Thoranis Deethayat

    2015-09-01

    Full Text Available In this study, performance of a 50 kW organic Rankine cycle (ORC with internal heat exchanger (IHE having R245fa/R152a zeotropic refrigerant with various compositions was investigated. The IHE could reduce heat rate at the ORC evaporator and better cycle efficiency could be obtained. The zeotropic mixture could reduce the irreversibilities during the heat exchanges at the ORC evaporator and the ORC condenser due to its gliding temperature; thus the cycle working temperatures came closer to the temperatures of the heat source and the heat sink. In this paper, effects of evaporating temperature, mass fraction of R152a and effectiveness of internal heat exchanger on the ORC performances for the first law and the second law of thermodynamics were considered. The simulated results showed that reduction of R245fa composition could reduce the irreversibilities at the evaporator and the condenser. The suitable composition of R245fa was around 80% mass fraction and below this the irreversibilities were nearly steady. Higher evaporating temperature and higher internal heat exchanger effectiveness also increased the first law and second law efficiencies. A set of correlations to estimate the first and the second law efficiencies with the mass fraction of R245fa, the internal heat exchanger effectiveness and the evaporating temperature were also developed.

  14. Organic Rankine-cycle power systems working fluids study: Topical report No. 2, Toluene

    Energy Technology Data Exchange (ETDEWEB)

    Cole, R.L.; Demirgian, J.C.; Allen, J.W.

    1987-02-01

    The US Department of Energy initiated an investigation at Argonne National Laboratory in 1982 to experimentally determine the thermal stability limits and degradation rates of toluene as a function of maximum cycle temperature. Following the design and construction of a dynamic test loop capable of closely simulating the thermodynamic conditions of typical organic Rankine-cycle (ORC) power systems, four test runs, totaling about 3900 h of test time and covering a temperature range of 600-677(degree)F, were completed. Both liquid and noncondensable-vapor (gaseous) samples were drawn periodically and analyzed using capillary-column gas chromatography, gas chromatography/mass spectrometry, and mass spectrometry. A computer program that can predict degradation in an ORC engine was developed. Experimental results indicate that, if oxygen can be excluded from the system, toluene is a stable fluid up to the maximum test temperature; the charge of toluene could be used for several years before replacement became necessary. (Additional data provided by Sundstrand Corp. from tests sponsored by the National Aeronautics and Space Administration indicate that toluene may be used at temperatures up to 750(degree)F.) Degradation products are benign; the main liquid degradation products are bibenzyls, and the main gaseous degradation products are hydrogen and methane. A cold trap to remove gaseous degradation products from the condenser is necessary for extended operation. 21 figs., 22 tabs.

  15. The simulation of organic rankine cycle power plant with n-pentane working fluid

    Science.gov (United States)

    Nurhilal, Otong; Mulyana, Cukup; Suhendi, Nendi; Sapdiana, Didi

    2016-02-01

    In the steam power plant in Indonesia the dry steam from separator directly used to drive the turbin. Meanwhile, brine from the separator with low grade temperature reinjected to the earth. The brine with low grade temperature can be converted indirectly to electrical power by organic Rankine cycle (ORC) methods. In ORC power plant the steam are released from vaporization of organic working fluid by brine. The steam released are used to drive an turbine which in connected to generator to convert the mechanical energy into electric energy. The objective of this research is the simulation ORC power plant with n-pentane as organic working fluid. The result of the simulation for brine temperature around 165°C and the pressure 8.001 bar optained the net electric power around 1173 kW with the cycle thermal efficiency 14.61% and the flow rate of n-pentane around 15.51 kg/s. This result enable to applied in any geothermal source in Indonesia.

  16. Thermo-Economic Evaluation of Organic Rankine Cycles for Geothermal Power Generation Using Zeotropic Mixtures

    Directory of Open Access Journals (Sweden)

    Florian Heberle

    2015-03-01

    Full Text Available We present a thermo-economic evaluation of binary power plants based on the Organic Rankine Cycle (ORC for geothermal power generation. The focus of this study is to analyse if an efficiency increase by using zeotropic mixtures as working fluid overcompensates additional requirements regarding the major power plant components. The optimization approach is compared to systems with pure media. Based on process simulations, heat exchange equipment is designed and cost estimations are performed. For heat source temperatures between 100 and 180 °C selected zeotropic mixtures lead to an increase in second law efficiency of up to 20.6% compared to pure fluids. Especially for temperatures about 160 °C, mixtures like propane/isobutane, isobutane/isopentane, or R227ea/R245fa show lower electricity generation costs compared to the most efficient pure fluid. In case of a geothermal fluid temperature of 120 °C, R227ea and propane/isobutane are cost-efficient working fluids. The uncertainties regarding fluid properties of zeotropic mixtures, mainly affect the heat exchange surface. However, the influence on the determined economic parameter is marginal. In general, zeotropic mixtures are a promising approach to improve the economics of geothermal ORC systems. Additionally, the use of mixtures increases the spectrum of potential working fluids, which is important in context of present and future legal requirements considering fluorinated refrigerants.

  17. Reciprocating Expander for an Exhaust Heat Recovery Rankine Cycle for a Passenger Car Application

    Directory of Open Access Journals (Sweden)

    Osoko Shonda

    2012-06-01

    Full Text Available Nowadays, on average, two thirds of the fuel energy consumed by an engine is wasted through the exhaust gases and the cooling liquid. The recovery of this energy would enable a substantial reduction in fuel consumption. One solution is to integrate a heat recovery system based on a steam Rankine cycle. The key component in such a system is the expander, which has a strong impact on the system’s performance. A survey of different expander technologies leads us to select the reciprocating expander as the most promising one for an automotive application. This paper therefore proposes a steady-state semi-empirical model of the expander device developed under the Engineering Equation Solver (EES environment. The ambient and mechanical losses as well as internal leakage were taken into account by the model. By exploiting the expander manufacturer’s data, all the parameters of the expander model were identified. The model computes the mass flow rate, the power output delivered and the exhaust enthalpy of the steam. The maximum deviation between predictions and measurement data is 4.7%. A performance study of the expander is carried out and shows that the isentropic efficiency is quite high and increases with the expander rotary speed. The mechanical efficiency depends on mechanical losses which are quite high, approximately 90%. The volumetric efficiency was also evaluated.

  18. Economic optimization of a Kalina cycle for a parabolic trough solar thermal power plant

    DEFF Research Database (Denmark)

    Modi, Anish; Kærn, Martin Ryhl; Andreasen, J. G.

    2015-01-01

    technology for the conversion of solar thermal energy into electricity. In this paper, a Kalina cycle and a steam Rankine cycle are compared in terms of the total capital investment cost for use in a parabolic trough solar thermal power plant without storage. In order to minimize the total capital investment...... cost of the Kalina cycle power plant (the solar field plus the power cycle), an optimization was performed by varying the turbine outlet pressure, the separator inlet temperature and the separator inlet ammonia mass fraction. All the heat exchangers were modelled as shell and tube type using suitable......The Kalina cycle has recently seen increased interest as a replacement for the more traditional steam Rankine cycle for geothermal, solar, ocean thermal energy conversion and waste heat recovery applications. The Kalina cycle uses a mixture of ammonia and water as the working fluid. The ammonia...

  19. Radial turbine expander design for organic rankine cycle, waste heat recovery in high efficiency, off-highway vehicles

    OpenAIRE

    Alshammari, F.; Karvountzis-Kontakiotis, A; Pesiridis, A

    2016-01-01

    Although state-of-the-art, heavy duty diesel engines of today can reach peak thermal efficiencies of approximately 45%, still most of the fuel energy is transformed into wasted heat in the internal combustion process. Recovering this wasted energy could increase the overall thermal efficiency of the engine as well as reduce the exhaust gas emissions. Compared to other Waste Heat Recovery (WHR) technologies, Organic Rankine Cycle (ORC) systems are regarded favourably due to their relative simp...

  20. Part-Load Performance of a Wet Indirectly Fired Gas Turbine Integrated with an Organic Rankine Cycle Turbogenerator

    OpenAIRE

    Leonardo Pierobon; Tuong-Van Nguyen; Andrea Mazzucco; Ulrik Larsen; Fredrik Haglind

    2014-01-01

    Over the last years, much attention has been paid to the development of efficient and low-cost power systems for biomass-to-electricity conversion. This paper aims at investigating the design- and part-load performance of an innovative plant based on a wet indirectly fired gas turbine (WIFGT) fueled by woodchips and an organic Rankine cycle (ORC) turbogenerator. An exergy analysis is performed to identify the sources of inefficiencies, the optimal design variables, and the most suitable worki...

  1. Modelling of organic Rankine cycle power systems in off-design conditions: an experimentally-validated comparative study

    OpenAIRE

    Dickes, Rémi; Dumont, Olivier; Daccord, Rémi; Quoilin, Sylvain; Lemort, Vincent

    2017-01-01

    Because of environmental issues and the depletion of fossil fuels, the world energy sector is undergoing many changes toward increased sustainability. Among the many fields of research and development, power generation from low-grade heat sources is gaining interest and the organic Rankine cycle (ORC) is seen as one of the most promising technologies for such applications. In this paper, it is proposed to perform an experimentally-validated comparison of different modelling methods for the of...

  2. Performance of Siloxane Mixtures in a High-Temperature Organic Rankine Cycle Considering the Heat Transfer Characteristics during Evaporation

    OpenAIRE

    Theresa Weith; Florian Heberle; Markus Preißinger; Dieter Brüggemann

    2014-01-01

    The application of the Organic Rankine Cycle to high temperature heat sources is investigated on the case study of waste heat recovery from a selected biogas plant. Two different modes of operation are distinguished: pure electric power and combined heat and power generation. The siloxanes hexamethyldisiloxane (MM) and octamethyltrisiloxane (MDM) are chosen as working fluids. Moreover, the effect of using mixtures of these components is analysed. Regarding pure electricity generation, process...

  3. Dual-objective optimization of organic Rankine cycle (ORC) systems using genetic algorithm: a comparison between basic and recuperative cycles

    Science.gov (United States)

    Hayat, Nasir; Ameen, Muhammad Tahir; Tariq, Muhammad Kashif; Shah, Syed Nadeem Abbas; Naveed, Ahmad

    2017-08-01

    Exploitation of low potential waste thermal energy for useful net power output can be done by manipulating organic Rankine cycle systems. In the current article dual-objectives (η_{th} and SIC) optimization of ORC systems [basic organic Rankine cycle (BORC) and recuperative organic Rankine cycle (RORC)] has been done using non-dominated sorting genetic algorithm (II). Seven organic compounds (R-123, R-1234ze, R-152a, R-21, R-236ea, R-245ca and R-601) have been employed in basic cycle and four dry compounds (R-123, R-236ea, R-245ca and R-601) have been employed in recuperative cycle to investigate the behaviour of two systems and compare their performance. Sensitivity analyses show that recuperation boosts the thermodynamic behaviour of systems but it also raises specific investment cost significantly. R-21, R-245ca and R-601 show attractive performance in BORC whereas R-601 and R-236ea in RORC. RORC, due to higher total investment cost and operation & maintenance costs, has longer payback periods as compared to BORC.

  4. A Comparative Exergoeconomic Analysis of Waste Heat Recovery from a Gas Turbine-Modular Helium Reactor via Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Naser Shokati

    2014-04-01

    Full Text Available A comparative exergoeconomic analysis is reported for waste heat recovery from a gas turbine-modular helium reactor (GT-MHR using various configurations of organic Rankine cycles (ORCs for generating electricity. The ORC configurations studied are: a simple organic Rankine cycle (SORC, an ORC with an internal heat exchanger (HORC and a regenerative organic Rankine cycle (RORC. Exergoeconomic analyses are performed with the specific exergy costing (SPECO method. First, energy and exergy analyses are applied to the combined cycles. Then, a cost-balance, as well as auxiliary equations are developed for the components to determine the exergoeconomic parameters for the combined cycles and their components. The three combined cycles are compared considering the same operating conditions for the GT-MHR cycle, and a parametric study is done to reveal the effects on the exergoeconomic performance of the combined cycles of various significant parameters, e.g., turbine inlet and evaporator temperatures and compressor pressure ratio. The results show that the GT-MHR/RORC has the lowest unit cost of electricity generated by the ORC turbine. This value is highest for the GT-MHR/HORC. Furthermore, the GT-MHR/RORC has the highest and the GT-MHR/HORC has the lowest exergy destruction cost rate.

  5. Development and a Validation of a Charge Sensitive Organic Rankine Cycle (ORC Simulation Tool

    Directory of Open Access Journals (Sweden)

    Davide Ziviani

    2016-05-01

    Full Text Available Despite the increasing interest in organic Rankine cycle (ORC systems and the large number of cycle models proposed in the literature, charge-based ORC models are still almost absent. In this paper, a detailed overall ORC simulation model is presented based on two solution strategies: condenser subcooling and total working fluid charge of the system. The latter allows the subcooling level to be predicted rather than specified as an input. The overall cycle model is composed of independent models for pump, expander, line sets, liquid receiver and heat exchangers. Empirical and semi-empirical models are adopted for the pump and expander, respectively. A generalized steady-state moving boundary method is used to model the heat exchangers. The line sets and liquid receiver are used to better estimate the total charge of the system and pressure drops. Finally, the individual components are connected to form a cycle model in an object-oriented fashion. The solution algorithm includes a preconditioner to guess reasonable values for the evaporating and condensing temperatures and a main cycle solver loop which drives to zero a set of residuals to ensure the convergence of the solution. The model has been developed in the Python programming language. A thorough validation is then carried out against experimental data obtained from two test setups having different nominal size, working fluids and individual components: (i a regenerative ORC with a 5 kW scroll expander and an oil flooding loop; (ii a regenerative ORC with a 11 kW single-screw expander. The computer code is made available through open-source dissemination.

  6. Thermo-Economic Performance Analysis of a Regenerative Superheating Organic Rankine Cycle for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Zhonghe Han

    2017-10-01

    Full Text Available The Organic Rankine Cycle (ORC is a promising form of technology for recovering low-grade waste heat. In this study, a regenerative ORC system is established to recover the waste flue gas of 160 °C. Focusing on thermodynamic and economic performance while simultaneously considering the limitations of volume flow ratio (VFR and the effect of superheat, working fluid selection and parameter optimization have been investigated. The optimization of the evaporation temperature is carried out by analyzing the variation of net power output and specific investment cost (SIC. Then, the net power output, specific net power output, total exergy destruction rate, VFR, total capital cost, and levelized electricity cost (LEC are selected as criteria, and a fuzzy multi-criteria evaluation method is adopted to select a more suitable working fluid and determine the optimal degree of superheat. In addition, the preheating coefficient, latent heat coefficient, superheating coefficient, and internal heat coefficient were proposed to explore the effect of working fluid critical temperature on thermal efficiency. Research studies demonstrate that there is an optimal evaporation temperature, maximizing net power output and minimizing the SIC. Isohexane and butane have greater specific net power output due to greater latent heat. A suitable degree of superheat is not only conducive to improving the working capacity of working fluids, but also reduces the VFR, total capital cost, SIC, and LEC for different working fluids. Thus, the system’s thermodynamic and economic performance—as well as the operational stability—are improved. Among the six working fluids, butane exhibits the best comprehensive performance, and its optimal evaporation temperature and degree of superheat are 100 °C and 5 °C, respectively.

  7. Applied studies in advanced boiler technology for Rankine cycle power systems

    Energy Technology Data Exchange (ETDEWEB)

    Paul, F.W.; Negreanu, M.J.

    1978-02-01

    A study is presented on a new rotational boiler design which has improved passive dynamic response and two-phase flow stability characteristics. A survey of small boiler manufacturers in the United States indicated that currently available designs are based on steady-state operating requirements rather than for dynamic performance. Recent work by EPA and ERDA which addressed boiler designs for mobile automotive Rankine cycle power systems showed that boilers of a monotube or multipass tube configuration design could be developed which were physically compact, but still were subject to the two-phase flow instability problem when coupled within an operating power system. The objectives of this work were to evaluate alternative boiler configurations which would improve boiler dynamic response and also have good two-phase liquid-vapor interface flow stability. The major physical design limitation of any boiler is the small external hot gas heat transfer coefficient. Such a low coefficient requires considerable design enhancements to increase the rate of energy transfer to the circulation system fluid. The rotational boiler is a physical design configuration which addresses this problem. The results of an analytic study using several mathematical model formulations showed that a rotational boiler could have a passive response time constant which was approximately one-half the magnitude for an equivalent single pass monotube boiler. An experimental prototype rotational boiler was designed, manufactured and tested, with the experimental results confirming that the experimental passive response time constants were comparable to the estimates from the analytic models. The experimental boiler operating in two-phase flow was found to be stable and responsive to external inputs. A rotational boiler configuration is a good alternative design configuration for small compact vapor generator designs based on fast transient passive response and two-phase flow stability.

  8. Thermodynamic Optimization of a Geothermal- Based Organic Rankine Cycle System Using an Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Osman Özkaraca

    2017-10-01

    Full Text Available Geothermal energy is a renewable form of energy, however due to misuse, processing and management issues, it is necessary to use the resource more efficiently. To increase energy efficiency, energy systems engineers carry out careful energy control studies and offer alternative solutions. With this aim, this study was conducted to improve the performance of a real operating air-cooled organic Rankine cycle binary geothermal power plant (GPP and its components in the aspects of thermodynamic modeling, exergy analysis and optimization processes. In-depth information is obtained about the exergy (maximum work a system can make, exergy losses and destruction at the power plant and its components. Thus the performance of the power plant may be predicted with reasonable accuracy and better understanding is gained for the physical process to be used in improving the performance of the power plant. The results of the exergy analysis show that total exergy production rate and exergy efficiency of the GPP are 21 MW and 14.52%, respectively, after removing parasitic loads. The highest amount of exergy destruction occurs, respectively, in condenser 2, vaporizer HH2, condenser 1, pumps 1 and 2 as components requiring priority performance improvement. To maximize the system exergy efficiency, the artificial bee colony (ABC is applied to the model that simulates the actual GPP. Under all the optimization conditions, the maximum exergy efficiency for the GPP and its components is obtained. Two of these conditions such as Case 4 related to the turbine and Case 12 related to the condenser have the best performance. As a result, the ABC optimization method provides better quality information than exergy analysis. Based on the guidance of this study, the performance of power plants based on geothermal energy and other energy resources may be improved.

  9. Thermal energy storage for low grade heat in the organic Rankine cycle

    Science.gov (United States)

    Soda, Michael John

    Limits of efficiencies cause immense amounts of thermal energy in the form of waste heat to be vented to the atmosphere. Up to 60% of unrecovered waste heat is classified as low or ultra-low quality, making recovery difficult or inefficient. The organic Rankine cycle can be used to generate mechanical power and electricity from these low temperatures where other thermal cycles are impractical. A variety of organic working fluids are available to optimize the ORC for any target temperature range. San Diego State University has one such experimental ORC using R245fa, and has been experimenting with multiple expanders. One limitation of recovering waste heat is the sporadic or cyclical nature common to its production. This inconsistency makes sizing heat recovery ORC systems difficult for a variety of reasons including off-design-point efficiency loss, increased attrition from varying loads, unreliable outputs, and overall system costs. Thermal energy storage systems can address all of these issues by smoothing the thermal input to a constant and reliable level and providing back-up capacity for times when the thermal input is deactivated. Multiple types of thermal energy storage have been explored including sensible, latent, and thermochemical. Latent heat storage involves storing thermal energy in the reversible phase change of a phase change material, or PCM, and can have several advantages over other modalities including energy storage density, cost, simplicity, reliability, relatively constant temperature output, and temperature customizability. The largest obstacles to using latent heat storage include heat transfer rates, thermal cycling stability, and potentially corrosive PCMs. Targeting 86°C, the operating temperature of SDSU's experimental ORC, multiple potential materials were explored and tested as potential PCMs including Magnesium Chloride Hexahydrate (MgCl2˙6H2O), Magnesium Nitrate Hexahydrate (Mg(NO3)2˙6H 2O), montan wax, and carnauba wax. The

  10. A Burst Mode, Ultrahigh Temperature UF4 Vapor Core Reactor Rankine Cycle Space Power System Concept

    Science.gov (United States)

    Dugan, E. T.; Kahook, S. D.; Diaz, N. J.

    1996-01-01

    Static and dynamic neutronic analyses have been performed on an innovative burst mode (100's of MW output for a few thousand seconds) Ulvahigh Temperature Vapor Core Reactor (UTVR) space nuclear power system. The NVTR employs multiple, neutronically-coupled fissioning cores and operates on a direct, closed Rankine cycle using a disk Magnetohydrodynamic (MHD) generater for energy conversion. The UTVR includes two types of fissioning core regions: (1) the central Ultrahigh Temperature Vapor Core (UTVC) which contains a vapor mixture of highly enriched UF4 fuel and a metal fluoride working fluid and (2) the UF4 boiler column cores located in the BeO moderator/reflector region. The gaseous nature of the fuel the fact that the fuel is circulating, the multiple coupled fissioning cores, and the use of a two phase fissioning fuel lead to unique static and dynamic neutronic characteristics. Static neutronic analysis was conducted using two-dimensional S sub n, transport theory calculations and three-dimensional Monte Carlo transport theory calculations. Circulating-fuel, coupled-core point reactor kinetics equations were used for analyzing the dynamic behavior of the UTVR. In addition to including reactivity feedback phenomena associated with the individual fissioning cores, the effects of core-to-core neutronic and mass flow coupling between the UTVC and the surrounding boiler cores were also included in the dynamic model The dynamic analysis of the UTVR reveals the existence of some very effectlve inherent reactivity feedback effects that are capable of quickly stabilizing this system, within a few seconds, even when large positive reactivity insertions are imposed. If the UTVC vapor fuel density feedback is suppressed, the UTVR is still inherently stable because of the boiler core liquid-fuel volume feedback; in contrast, suppression of the vapor fuel density feedback in 'conventional" gas core cavity reactors causes them to become inherently unstable. Due to the

  11. Integrated working fluid-thermodynamic cycle design of organic Rankine cycle power systems for waste heat recovery

    DEFF Research Database (Denmark)

    Cignitti, Stefano; Andreasen, Jesper Graa; Haglind, Fredrik

    2017-01-01

    recovery. Inthis paper, an organic Rankine cycle process and its pure working fluid are designed simultaneously forwaste heat recovery of the exhaust gas from a marine diesel engine. This approach can overcome designissues caused by the high sensitivity between the fluid and cycle design variables...... the simultaneousdesign approach the optimum solution was found in 5.04 s, while a decomposed approach found thesame solution in 5.77 h. However, the decomposed approach provided insights on the correlationbetween the fluid and cycle design variables by analyzing all possible solutions. It was shown that thehigh...

  12. Alkali Metal Rankine Cycle Boiler Technology Challenges and Some Potential Solutions for Space Nuclear Power and Propulsion Applications

    Science.gov (United States)

    Stone, James R.

    1994-01-01

    Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently. This report is aimed at evaluating alkali metal boiler

  13. Experimental and thermodynamic analysis of a bottoming Organic Rankine Cycle (ORC) of gasoline engine using swash-plate expander

    OpenAIRE

    Galindo, José,; Ruiz Rosales, Santiago; Dolz Ruiz, Vicente; ROYO PASCUAL, LUCÍA; Haller, R.; Nicolas, B.; Glavatskaya, Y.

    2015-01-01

    This paper deals with the experimental testing of an Organic Rankine Cycle (ORC) integrate in a 2 liter turbocharged gasoline engine using ethanol as working fluid. The main components of the cycle are a boiler, a condenser, a pump and a swash-plate expander. Five engine operating points have been tested, they correspond to a nominal heat input into the boiler of 5, 12, 20, 25 and 30 kW. With the available bill of material based on prototypes, power balances and cycles efficiencies were estim...

  14. Evaluation of ORC processes and their implementation in solar thermal DSG plants

    OpenAIRE

    Degli Esposti, Dalma

    2014-01-01

    Abstract In recent years Direct Steam Generation (DSG) systems using water have been developed as an alternative to state-of-the-art parabolic trough plants with thermal oil. After a comprehensive research, first commercial DSG plants have already been realized. Organic Rankine Cycles (ORC) that have been widely used for electricity production with low-temperature heat (e.g. geothermal energy) are also suited for the implementation in solar thermal power plants. To the knowledge of t...

  15. Energy, Exergy and Economic Evaluation Comparison of Small-Scale Single and Dual Pressure Organic Rankine Cycles Integrated with Low-Grade Heat Sources

    Directory of Open Access Journals (Sweden)

    Armando Fontalvo

    2017-09-01

    Full Text Available Low-grade heat sources such as solar thermal, geothermal, exhaust gases and industrial waste heat are suitable alternatives for power generation which can be exploited by means of small-scale Organic Rankine Cycle (ORC. This paper combines thermodynamic optimization and economic analysis to assess the performance of single and dual pressure ORC operating with different organic fluids and targeting small-scale applications. Maximum power output is lower than 45 KW while the temperature of the heat source varies in the range 100–200 °C. The studied working fluids, namely R1234yf, R1234ze(E and R1234ze(Z, are selected based on environmental, safety and thermal performance criteria. Levelized Cost of Electricity (LCOE and Specific Investment Cost (SIC for two operation conditions are presented: maximum power output and maximum thermal efficiency. Results showed that R1234ze(Z achieves the highest net power output (up to 44 kW when net power output is optimized. Regenerative ORC achieves the highest performance when thermal efficiency is optimized (up to 18%. Simple ORC is the most cost-effective among the studied cycle configurations, requiring a selling price of energy of 0.3 USD/kWh to obtain a payback period of 8 years. According to SIC results, the working fluid R1234ze(Z exhibits great potential for simple ORC when compared to conventional R245fa.

  16. An experimental analysis of flow boiling and pressure drop in a brazed plate heat exchanger for organic Rankine cycle power systems

    DEFF Research Database (Denmark)

    Desideri, Adriano; Zhang, Ji; Kærn, Martin Ryhl

    2017-01-01

    Organic Rankine cycle power systems for low quality waste heat recovery applications can play a major role in achieving targets of increasing industrial processes efficiency and thus reducing the emissions of greenhouse gases. Low capacity organic Rankine cycle systems are equipped with brazed...... and pressure drop during vaporization at typical temperatures for low quality waste heat recovery organic Rankine cycle systems are presented for the working fluids HFC-245fa and HFO-1233zd. The experiments were carried out at saturation temperatures of 100°C, 115°C and 130°C and inlet and outlet qualities...... plate heat exchangers which allows for efficient heat transfer with a compact design. Accurate heat transfer correlations characterizing these devices are required from the design phase to the development of model-based control strategies. In this paper, the experimental heat transfer coefficient...

  17. Thermo-Economic and Heat Transfer Optimization of Working-Fluid Mixtures in a Low-Temperature Organic Rankine Cycle System

    Directory of Open Access Journals (Sweden)

    Oyeniyi A. Oyewunmi

    2016-06-01

    Full Text Available In the present paper, we consider the employment of working-fluid mixtures in organic Rankine cycle (ORC systems with respect to thermodynamic and heat-transfer performance, component sizing and capital costs. The selected working-fluid mixtures promise reduced exergy losses due to their non-isothermal phase-change behaviour, and thus improved cycle efficiencies and power outputs over their respective pure-fluid components. A multi-objective cost-power optimization of a specific low-temperature ORC system (operating with geothermal water at 98 °C reveals that the use of working-fluid-mixtures does indeed show a thermodynamic improvement over the pure-fluids. At the same time, heat transfer and cost analyses, however, suggest that it also requires larger evaporators, condensers and expanders; thus, the resulting ORC systems are also associated with higher costs. In particular, 50% n-pentane + 50% n-hexane and 60% R-245fa + 40% R-227ea mixtures lead to the thermodynamically optimal cycles, whereas pure n-pentane and pure R-245fa have lower plant costs, both estimated as having ∼14% lower costs per unit power output compared to the thermodynamically optimal mixtures. These conclusions highlight the importance of using system cost minimization as a design objective for ORC plants.

  18. Application of Biomass from Palm Oil Mill for Organic Rankine Cycle to Generate Power in North Sumatera Indonesia

    Science.gov (United States)

    Nur, T. B.; Pane, Z.; Amin, M. N.

    2017-03-01

    Due to increasing oil and gas demand with the depletion of fossil resources in the current situation make efficient energy systems and alternative energy conversion processes are urgently needed. With the great potential of resources in Indonesia, make biomass has been considered as one of major potential fuel and renewable resource for the near future. In this paper, the potential of palm oil mill waste as a bioenergy source has been investigated. An organic Rankine cycle (ORC) small scale power plant has been preliminary designed to generate electricity. The working fluid candidates for the ORC plant based on the heat source temperature domains have been investigated. The ORC system with a regenerator has higher thermal efficiency than the basic ORC system. The study demonstrates the technical feasibility of ORC solutions in terms of resources optimizations and reducing of greenhouse gas emissions.

  19. Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Pierobon, Leonardo; Haglind, Fredrik

    2013-01-01

    , boundary conditions, hazard levels and environmental concerns. A generally applicable methodology, based on the principles of natural selection, is presented and used to determine the optimum working fluid, boiler pressure and Rankine cycle process layout for scenarios related to marine engine heat......Power cycles using alternative working fluids are currently receiving significant attention. Selection of working fluid among many candidates is a key topic and guidelines have been presented. A general problem is that the selection is based on numerous criteria, such as thermodynamic performance...... recovery. Included in the solution domain are 109 fluids in sub and supercritical processes, and the process is adapted to the properties of the individual fluid. The efficiency losses caused by imposing process constraints are investigated to help propose a suitable process layout. Hydrocarbon dry type...

  20. Improving the efficiency of heat supply systems on the basis of plants operating on organic Rankine cycle

    Science.gov (United States)

    Solomin, I. N.; Daminov, A. Z.; Sadykov, R. A.

    2017-11-01

    Results of experimental and analytical studies of the plant main element – plant turbomachine (turbo-expander) operating on organic Rankine cycle were obtained for facilities of the heat supply systems of small-scale power generation. At simultaneous mathematical modeling and experimental studies it was found that the best working medium to be used in the turbomachines of these plants is Freon R245fa which has the most suitable calorimetric properties to be used in the cycle. The mathematical model of gas flow in the turbomachine was developed. The main engineering dependencies to calculate the optimal design parameters of the turbomachine were obtained. The engineering problems of providing the minimum axial size of the turbomachine impeller were solved and the main design elements were unified.

  1. Thermal-Economic Modularization of Small, Organic Rankine Cycle Power Plants for Mid-Enthalpy Geothermal Fields

    Directory of Open Access Journals (Sweden)

    Yodha Y. Nusiaputra

    2014-07-01

    Full Text Available The costs of the surface infrastructure in mid-enthalpy geothermal power systems, especially in remote areas, could be reduced by using small, modular Organic Rankine Cycle (ORC power plants. Thermal-economic criteria have been devised to standardize ORC plant dimensions for such applications. We designed a modular ORC to utilize various wellhead temperatures (120–170 °C, mass flow rates and ambient temperatures (−10–40 °C. A control strategy was developed using steady-state optimization, in order to maximize net power production at off-design conditions. Optimum component sizes were determined using specific investment cost (SIC minimization and mean cashflow (MCF maximization for three different climate scenarios. Minimizing SIC did not yield significant benefits, but MCF proved to be a much better optimization function.

  2. Cogenerative Performance of a Wind − Gas Turbine − Organic Rankine Cycle Integrated System for Offshore Applications

    DEFF Research Database (Denmark)

    Bianchi, Michele; Branchini, Lisa; De Pascale, Andrea

    2016-01-01

    Gas Turbines (GT) are widely used for power generationin offshore oil and gas facilities, due to their high reliability,compactness and dynamic response capabilities. Small heavyduty and aeroderivative units in multiple arrangements aretypically used to offer larger load flexibility......, but limitedefficiency of such machines is the main drawback. A solutionto enhance the system performance, also in Combined Heat andPower (CHP) arrangement, is the implementation of OrganicRankine Cycle (ORC) systems at the bottom of the gas turbines.Moreover, the resulting GT-ORC combined cycle could befurther...... a 10MW offshorewind farm and three gas turbines rated for 16:5MW, eachone coupled with an 4:5MW ORC module. The ORC mainparameters are observed under different wind power fluctuations.Due to the non-programmable availability of wind and powerdemand, the part-load and dynamic characteristics...

  3. Study on the Characteristics of Expander Power Output Used for Offsetting Pumping Work Consumption in Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Yu-Ting Wu

    2014-07-01

    Full Text Available The circulation pump in an organic Rankine cycle (ORC increases the pressure of the liquid working fluid from low condensing pressure to high evaporating pressure, and the expander utilizes the pressure difference to generate work. A portion of the expander output power is used to offset the consumed pumping work, and the rest of the expander power is exactly the net work produced by the ORC system. Because of the relatively great theoretical pumping work and very low efficiency of the circulation pump reported in previous papers, the characteristics of the expander power used for offsetting the pumping work need serious consideration. In particular, the present work examines those characteristics. It is found that the characteristics of the expander power used for offsetting the pumping work are satisfactory only under the condition that the working fluid absorbs sufficient heat in the evaporator and its specific volume at the evaporator outlet is larger than or equal to a threshold value.

  4. 10-75-kWe-reactor-powered organic Rankine-cycle electric power systems (ORCEPS) study. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1977-03-30

    This 10-75 kW(e) Reactor-ORCEPS study was concerned with the evaluation of several organic Rankine cycle energy conversion systems which utilized a /sup 235/U-ZrH reactor as a heat source. A liquid metal (NaK) loop employing a thermoelectric converter-powered EM pump was used to transfer the reactor energy to the organic working fluid. At moderate peak cycle temperatures (750/sup 0/F), power conversion unit cycle efficiencies of up to 25% and overall efficiencies of 20% can be obtained. The required operating life of seven years should be readily achievable. The CP-25 (toluene) working fluid cycle was found to provide the highest performance levels at the lowest system weights. Specific weights varies from 100 to 50 lb/kW(e) over the power level range 10 to 75 kW(e). (DLC)

  5. Structural optimisation of a high speed Organic Rankine Cycle generator using a genetic algorithm and a finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Palko, S. [Machines Division, ABB industry Oy, Helsinki (Finland)

    1997-12-31

    The aim in this work is to design a 250 kW high speed asynchronous generator using a genetic algorithm and a finite element method for Organic Rankine Cycle. The characteristics of the induction motors are evaluated using two-dimensional finite element method (FEM) The movement of the rotor and the non-linearity of the iron is included. In numerical field problems it is possible to find several local extreme for an optimisation problem, and therefore the algorithm has to be capable of determining relevant changes, and to avoid trapping to a local minimum. In this work the electromagnetic (EM) losses at the rated point are minimised. The optimisation includes the air gap region. Parallel computing is applied to speed up optimisation. (orig.) 2 refs.

  6. Selection of cooling fluid for an organic Rankine cycle unit recovering heat on a container ship sailing in the Arctic region

    DEFF Research Database (Denmark)

    Suárez de la Fuente, Santiago; Larsen, Ulrik; Pierobon, Leonardo

    2017-01-01

    air as coolant. This paper explores the use of two different coolants, air and seawater, for an organic Rankine cycle (ORC) unit using the available waste heat in the scavenge air system of a container ship navigating in Arctic Circle. Using a two-step single objective optimisation process, detailed...

  7. Application Guide for Waste Heat Recovery with Organic Rankine Cycle Equipment.

    Science.gov (United States)

    1983-01-15

    Cycle Development and Its Application to Solar Energy Utilization," Ishikawajima - Harima Heavy Industries Co., Ltd. (AFI), International Congress of...20 , LU z 600 FOR ESTIMATING S800 "PURPOSES ’. Uj100 C 40000 DATA FROM SPS INC. ~t DATA FROM AFI -, 6000 0 DATA FROM ISHIKAWAJIMA - HARIMA 3. Figure 3-6...literature search and industry survey. Engineering criteria for applying ORC tech- nology are established, and a set of nomograms to enable the rapid

  8. Solar Hot Water Heater

    Science.gov (United States)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  9. Performance Analysis and Working Fluid Selection of a Supercritical Organic Rankine Cycle for Low Grade Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Yourong Li

    2012-08-01

    Full Text Available The performance analysis of a supercritical organic Rankine cycle system driven by exhaust heat using 18 organic working fluids is presented. Several parameters, such as the net power output, exergy efficiency, expander size parameter (SP, and heat exchanger requirement of evaporator and the condenser, were used to evaluate the performance of this recovery cycle and screen the working fluids. The results reveal that in most cases, raising the expander inlet temperature is helpful to improve the net power output and the exergy efficiency. However, the effect of the expander inlet pressure on those parameters is related to the expander inlet temperature and working fluid used. Either lower expander inlet temperature and pressure, or higher expander inlet temperature and pressure, generally makes the net power output more. Lower expander inlet temperature results in larger total heat transfer requirement and expander size. According to the screening criteria of both the higher output and the lower investment, the following working fluids for the supercritical ORC system are recommended: R152a and R143a.

  10. Part-Load Performance of aWet Indirectly Fired Gas Turbine Integrated with an Organic Rankine Cycle Turbogenerator

    Directory of Open Access Journals (Sweden)

    Leonardo Pierobon

    2014-12-01

    Full Text Available Over the last years, much attention has been paid to the development of efficient and low-cost power systems for biomass-to-electricity conversion. This paper aims at investigating the design- and part-load performance of an innovative plant based on a wet indirectly fired gas turbine (WIFGT fueled by woodchips and an organic Rankine cycle (ORC turbogenerator. An exergy analysis is performed to identify the sources of inefficiencies, the optimal design variables, and the most suitable working fluid for the organic Rankine process. This step enables to parametrize the part-load model of the plant and to estimate its performance at different power outputs. The novel plant has a nominal power of 250 kW and a thermal efficiency of 43%. The major irreversibilities take place in the burner, recuperator, compressor and in the condenser. Toluene is the optimal working fluid for the organic Rankine engine. The part-load investigation indicates that the plant can operate at high efficiencies over a wide range of power outputs (50%–100%, with a peak thermal efficiency of 45% at around 80% load. While the ORC turbogenerator is responsible for the efficiency drop at low capacities, the off-design performance is governed by the efficiency characteristics of the compressor and turbine serving the gas turbine unit.

  11. Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling, heating and power production

    Energy Technology Data Exchange (ETDEWEB)

    Al-Sulaiman, Fahad A. [Mechanical and Aerospace Engineering Department, Carleton University 1125 Colonel By Drive, Ottawa, Ontario (Canada); Dincer, Ibrahim [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology 2000 Simcoe Street North, Oshawa, Ontario (Canada); Hamdullahpur, Feridun [Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario (Canada)

    2010-04-15

    The study examines a novel system that combined a solid oxide fuel cell (SOFC) and an organic Rankine cycle (ORC) for cooling, heating and power production (trigeneration) through exergy analysis. The system consists of an SOFC, an ORC, a heat exchanger and a single-effect absorption chiller. The system is modeled to produce a net electricity of around 500 kW. The study reveals that there is 3-25% gain on exergy efficiency when trigeneration is used compared with the power cycle only. Also, the study shows that as the current density of the SOFC increases, the exergy efficiencies of power cycle, cooling cogeneration, heating cogeneration and trigeneration decreases. In addition, it was shown that the effect of changing the turbine inlet pressure and ORC pump inlet temperature are insignificant on the exergy efficiencies of the power cycle, cooling cogeneration, heating cogeneration and trigeneration. Also, the study reveals that the significant sources of exergy destruction are the ORC evaporator, air heat exchanger at the SOFC inlet and heating process heat exchanger. (author)

  12. Analysis and optimization of three main organic Rankine cycle configurations using a set of working fluids with different thermodynamic behaviors

    Science.gov (United States)

    Hamdi, Basma; Mabrouk, Mohamed Tahar; Kairouani, Lakdar; Kheiri, Abdelhamid

    2017-06-01

    Different configurations of organic Rankine cycle (ORC) systems are potential thermodynamic concepts for power generation from low grade heat. The aim of this work is to investigate and optimize the performances of the three main ORC systems configurations: basic ORC, ORC with internal heat exchange (IHE) and regenerative ORC. The evaluation for those configurations was performed using seven working fluids with typical different thermodynamic behaviours (R245fa, R601a, R600a, R227ea, R134a, R1234ze and R1234yf). The optimization has been performed using a genetic algorithm under a comprehensive set of operative parameters such as the fluid evaporating temperature, the fraction of flow rate or the pressure at the steam extracting point in the turbine. Results show that there is no general best ORC configuration for all those fluids. However, there is a suitable configuration for each fluid. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  13. Study on Mixed Working Fluids with Different Compositions in Organic Rankine Cycle (ORC Systems for Vehicle Diesel Engines

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2014-08-01

    Full Text Available One way to increase the thermal efficiency of vehicle diesel engines is to recover waste heat by using an organic Rankine cycle (ORC system. Tests were conducted to study the running performances of diesel engines in the whole operating range. The law of variation of the exhaust energy rate under various engine operating conditions was also analyzed. A diesel engine-ORC combined system was designed, and relevant evaluation indexes proposed. The variation of the running performances of the combined system under various engine operating conditions was investigated. R245fa and R152a were selected as the components of the mixed working fluid. Thereafter, six kinds of mixed working fluids with different compositions were presented. The effects of mixed working fluids with different compositions on the running performances of the combined system were revealed. Results show that the running performances of the combined system can be improved effectively when mass fraction R152a in the mixed working fluid is high and the engine operates with high power. For the mixed working fluid M1 (R245fa/R152a, 0.1/0.9, by mass fraction, the net power output of the combined system reaches the maximum of 34.61 kW. Output energy density of working fluid (OEDWF, waste heat recovery efficiency (WHRE, and engine thermal efficiency increasing ratio (ETEIR all reach their maximum values at 42.7 kJ/kg, 10.90%, and 11.29%, respectively.

  14. About the prediction of Organic Rankine Cycles performances integrating local high-fidelity turbines simulation and uncertainties

    Science.gov (United States)

    Congedo, Pietro; de Santis, Dante; Geraci, Gianluca

    2014-11-01

    Organic Rankine Cycles (ORCs) are of key-importance when exploiting energy systems with a high efficiency. The variability of renewable heat sources makes more complex the global performance prediction of a cycle. The thermodynamic properties of the complex fluids used in the process are another source of uncertainty. The need for a predictive and robust simulation tool of ORCs remains strong. A high-order accurate Residual Distribution scheme has been recently developed for efficiently computing a turbine stage on unstructured grids, including advanced equations of state in order to take into account the complex fluids used in ORCs. Advantages in using high-order methods have been highlighted, in terms of number of degrees of freedom and computational time used, for computing the numerical solution with a greater accuracy compared to lower-order methods, even for shocked flows. The objective of this work is to quantify the numerical error with respect to the various sources of uncertainty of the ORC turbine, thus providing a very high-fidelity prediction in the coupled physical/stochastic space.

  15. Modelling the Influence of Climate on the Performance of the Organic Rankine Cycle for Industrial Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Ivan Korolija

    2016-05-01

    Full Text Available This paper describes a study of the relative influences of different system design decisions upon the performance of an organic Rankine cycle (ORC used to generate electricity from foundry waste heat. The design choices included concern the working fluid, whether to use a regenerator and the type of condenser. The novelty of the research lies in its inclusion of the influence of both the ORC location and the auxiliary electricity used by the pumps and fans in the ORC power system. Working fluids suitable for high temperature applications are compared, including three cyclic siloxanes, four linear siloxanes and three aromatic fluids. The ORC is modelled from first principles and simulation runs carried out using weather data for 106 European locations and a heat input profile that was derived from empirical data. The impact of design decisions upon ORC nominal efficiency is reported followed by the impact upon annual system efficiency in which variations in heat input and the condition of outdoor air over a year are considered. The main conclusion is that the location can have a significant impact upon the efficiency of ORC systems due to the influence of climate upon the condenser and auxiliary electricity requirements.

  16. Performance analysis of exhaust heat recovery using organic Rankine cycle in a passenger car with a compression ignition engine

    Science.gov (United States)

    Ghilvacs, M.; Prisecaru, T.; Pop, H.; Apostol, V.; Prisecaru, M.; Pop, E.; Popescu, Gh; Ciobanu, C.; Mohanad, A.; Alexandru, A.

    2016-08-01

    Compression ignition engines transform approximately 40% of the fuel energy into power available at the crankshaft, while the rest part of the fuel energy is lost as coolant, exhaust gases and other waste heat. An organic Rankine cycle (ORC) can be used to recover this waste heat. In this paper, the characteristics of a system combining a compression ignition engine with an ORC which recover the waste heat from the exhaust gases are analyzed. The performance map of the diesel engine is measured on an engine test bench and the heat quantities wasted by the exhaust gases are calculated over the engine's entire operating region. Based on this data, the working parameters of ORC are defined, and the performance of a combined engine-ORC system is evaluated across this entire region. The results show that the net power of ORC is 6.304kW at rated power point and a maximum of 10% reduction in brake specific fuel consumption can be achieved.

  17. Thermo-Economic Analysis of Zeotropic Mixtures and Pure Working Fluids in Organic Rankine Cycles for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Florian Heberle

    2016-03-01

    Full Text Available We present a thermo-economic analysis of an Organic Rankine Cycle (ORC for waste heat recovery. A case study for a heat source temperature of 150 °C and a subcritical, saturated cycle is performed. As working fluids R245fa, isobutane, isopentane, and the mixture of isobutane and isopentane are considered. The minimal temperature difference in the evaporator and the condenser, as well as the mixture composition are chosen as variables in order to identify the most suitable working fluid in combination with optimal process parameters under thermo-economic criteria. In general, the results show that cost-effective systems have a high minimal temperature difference ΔTPP,C at the pinch-point of the condenser and a low minimal temperature difference ΔTPP,E at the pinch-point of the evaporator. Choosing isobutane as the working fluid leads to the lowest costs per unit exergy with 52.0 €/GJ (ΔTPP,E = 1.2 K; ΔTPP,C = 14 K. Considering the major components of the ORC, specific costs range between 1150 €/kW and 2250 €/kW. For the zeotropic mixture, a mole fraction of 90% isobutane leads to the lowest specific costs per unit exergy. A further analysis of the ORC system using isobutane shows high sensitivity of the costs per unit exergy for the selected cost estimation methods and for the isentropic efficiency of the turbine.

  18. Performance of Siloxane Mixtures in a High-Temperature Organic Rankine Cycle Considering the Heat Transfer Characteristics during Evaporation

    Directory of Open Access Journals (Sweden)

    Theresa Weith

    2014-08-01

    Full Text Available The application of the Organic Rankine Cycle to high temperature heat sources is investigated on the case study of waste heat recovery from a selected biogas plant. Two different modes of operation are distinguished: pure electric power and combined heat and power generation. The siloxanes hexamethyldisiloxane (MM and octamethyltrisiloxane (MDM are chosen as working fluids. Moreover, the effect of using mixtures of these components is analysed. Regarding pure electricity generation, process simulations using the simulation tool Aspen Plus show an increase in second law efficiency of 1.3% in case of 97/03 wt % MM/MDM-mixture, whereas for the combined heat and power mode a 60/40 wt % MM/MDM-mixture yields the highest efficiency with an increase of nearly 3% compared to most efficient pure fluid. Next to thermodynamic analysis, measurements of heat transfer coefficients of these siloxanes as well as their mixtures are conducted and Kandlikar’s correlation is chosen to describe the results. Based on that, heat exchanger areas for preheater and evaporator are calculated in order to check whether the poorer heat transfer characteristics of mixtures devalue their efficiency benefit due to increased heat transfer areas. Results show higher heat transfer areas of 0.9% and 14%, respectively, compared to MM.

  19. Dynamic Response of a 50 kW Organic Rankine Cycle System in Association with Evaporators

    Directory of Open Access Journals (Sweden)

    Yuh-Ren Lee

    2014-04-01

    Full Text Available The influences of various evaporators on the system responses of a 50 kW ORC system using R-245fa are investigated in this study. First the effect of the supplied hot water flowrate into the evaporator is examined and the exit superheat on the system performance between plate and shell-and-tube evaporator is also reported. Test results show that the effect of hot water flowrate on the evaporator imposes a negligible effect on the transient response of the ORC system. These results prevail even for a 3.5-fold increase of the hot water flowrate and the system shows barely any change subject to this drastic hot water flowrate change. The effect of exit superheat on the ORC system depends on the type of the evaporator. For the plate evaporator, an exit superheat less than 10 °C may cause ORC system instability due to considerable liquid entrainment. To maintain a stable operation, the corresponding Jakob number of the plate heat evaporator must be above 0.07. On the other hand, by employing a shell and tube heat evaporator connected to the ORC system, no unstable oscillation of the ORC system is observed for exit superheats ranging from 0 to 17 °C.

  20. Dynamic Modeling of the Solar Field in Parabolic Trough Solar Power Plants

    Directory of Open Access Journals (Sweden)

    Lourdes A. Barcia

    2015-11-01

    Full Text Available Parabolic trough solar power plants use a thermal fluid to transfer thermal energy from solar radiation to a water-steam Rankine cycle in order to drive a turbine that, coupled to an electrical generator, produces electricity. These plants have a heat transfer fluid (HTF system with the necessary elements to transform solar radiation into heat and to transfer that thermal energy to the water-steam exchangers. In order to get the best possible performance in the Rankine cycle and, hence, in the thermal plant, it is necessary that the thermal fluid reach its maximum temperature when leaving the solar field (SF. Also, it is mandatory that the thermal fluid does not exceed the maximum operating temperature of the HTF, above which it degrades. It must be noted that the optimal temperature of the thermal fluid is difficult to obtain, since solar radiation can change abruptly from one moment to another. The aim of this document is to provide a model of an HTF system that can be used to optimize the control of the temperature of the fluid without interfering with the normal operation of the plant. The results obtained with this model will be contrasted with those obtained in a real plant.

  1. Coupling of Modular High-Temperature Gas-Cooled Reactor with Supercritical Rankine Cycle

    OpenAIRE

    Shutang Zhu; Ying Tang; Kun Xiao; Zuoyi Zhang

    2008-01-01

    This paper presents investigations on the possible combination of modular high-temperature gas-cooled reactor (MHTGR) technology with the supercritical (SC) steam turbine technology and the prospective deployments of the MHTGR SC power plant. Energy conversion efficiency of steam turbine cycle can be improved by increasing the main steam pressure and temperature. Investigations on SC water reactor (SCWR) reveal that the development of SCWR power plants still needs further research and develop...

  2. Solar water disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R. [Universal Recycled Water Systems, Orlando, FL (United States); Collier, R. [Enerscope, Inc., Merritt Island, FL (United States)

    1996-11-01

    Non-potable drinking water is a major problem for much of the world`s population. It has been estimated that from 15 to 20 million children under the age of 5 die from diarrheal conditions brought on by infected drinking water every year. This is equivalent to a fully-loaded DC-10 crashing every ten minutes of every day, 365 days a year. Heat is one of the most effective methods of disinfecting drinking water. Using conventional means of heating water (heating on an open-flamed stove) results in an extremely energy-intensive process. The main obstacle is that for areas of the world where potable water is a problem, fuel supplies are either too expensive, not available, or the source of devastating environmental problems (deforestation). The apparatus described is a solar-powered water disinfection device that can overcome most if not all of the barriers that presently limit technological solutions to drinking water problems. It uses a parabolic trough solar concentrator with a receiver tube that is also a counterflow heat exchanger. The system is totally self-contained utilizing a photovoltaic-powered water pump, and a standard automotive thermostat for water flow control. The system is designed for simplicity, reliability and the incorporation of technology readily accessible in most areas of the world. Experiments at the Florida Solar Energy Center have demonstrated up to 2,500 liters of safe drinking water per day with 28 square meters of solar concentrator.

  3. Optimization of Biomass-Fuelled Combined Cooling, Heating and Power (CCHP) Systems Integrated with Subcritical or Transcritical Organic Rankine Cycles (ORCs)

    OpenAIRE

    Daniel Maraver; Sylvain Quoilin; Javier Royo

    2014-01-01

    This work is focused on the thermodynamic optimization of Organic Rankine Cycles (ORCs), coupled with absorption or adsorption cooling units, for combined cooling heating and power (CCHP) generation from biomass combustion. Results were obtained by modelling with the main aim of providing optimization guidelines for the operating conditions of these types of systems, specifically the subcritical or transcritical ORC, when integrated in a CCHP system to supply typical heating and cooling deman...

  4. Conversion of Low Quality Waste Heat to Electric Power with Small-Scale Organic Rankine Cycle (ORC) Engine/Generator Technology

    Science.gov (United States)

    2016-08-01

    Small-Scale W912H0-12-C-0059 Organic Rankine Cycle (ORC) Engine /Generator Technology 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( SI 5d...same fuel input. This value is used for calculation of Greenhouse Gas (GHG) reductions and economic results. Life cycle economics of the system are...associated with engine and other electric generator systems , waste heat from steam or heat distribution, waste heat from boiler exhausts, and heat

  5. Comparative Modeling of a Parabolic Trough Collectors Solar Power Plant with MARS Models

    Directory of Open Access Journals (Sweden)

    Jose Ramón Rogada

    2017-12-01

    Full Text Available Power plants producing energy through solar fields use a heat transfer fluid that lends itself to be influenced and changed by different variables. In solar power plants, a heat transfer fluid (HTF is used to transfer the thermal energy of solar radiation through parabolic collectors to a water vapor Rankine cycle. In this way, a turbine is driven that produces electricity when coupled to an electric generator. These plants have a heat transfer system that converts the solar radiation into heat through a HTF, and transfers that thermal energy to the water vapor heat exchangers. The best possible performance in the Rankine cycle, and therefore in the thermal plant, is obtained when the HTF reaches its maximum temperature when leaving the solar field (SF. In addition, it is necessary that the HTF does not exceed its own maximum operating temperature, above which it degrades. The optimum temperature of the HTF is difficult to obtain, since the working conditions of the plant can change abruptly from moment to moment. Guaranteeing that this HTF operates at its optimal temperature to produce electricity through a Rankine cycle is a priority. The oil flowing through the solar field has the disadvantage of having a thermal limit. Therefore, this research focuses on trying to make sure that this fluid comes out of the solar field with the highest possible temperature. Modeling using data mining is revealed as an important tool for forecasting the performance of this kind of power plant. The purpose of this document is to provide a model that can be used to optimize the temperature control of the fluid without interfering with the normal operation of the plant. The results obtained with this model should be necessarily contrasted with those obtained in a real plant. Initially, we compare the PID (proportional–integral–derivative models used in previous studies for the optimization of this type of plant with modeling using the multivariate adaptive

  6. Coupling of Modular High-Temperature Gas-Cooled Reactor with Supercritical Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Shutang Zhu

    2008-01-01

    Full Text Available This paper presents investigations on the possible combination of modular high-temperature gas-cooled reactor (MHTGR technology with the supercritical (SC steam turbine technology and the prospective deployments of the MHTGR SC power plant. Energy conversion efficiency of steam turbine cycle can be improved by increasing the main steam pressure and temperature. Investigations on SC water reactor (SCWR reveal that the development of SCWR power plants still needs further research and development. The MHTGR SC plant coupling the existing technologies of current MHTGR module design with operation experiences of SC FPP will achieve high cycle efficiency in addition to its inherent safety. The standard once-reheat SC steam turbine cycle and the once-reheat steam cycle with life-steam have been studied and corresponding parameters were computed. Efficiencies of thermodynamic processes of MHTGR SC plants were analyzed, while comparisons were made between an MHTGR SC plant and a designed advanced passive PWR - AP1000. It was shown that the net plant efficiency of an MHTGR SC plant can reach 45% or above, 30% higher than that of AP1000 (35% net efficiency. Furthermore, an MHTGR SC plant has higher environmental competitiveness without emission of greenhouse gases and other pollutants.

  7. Final Report: Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna Post [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zia, Jalal [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-09-01

    This research and development (R&D) project exemplifies a shared public private commitment to advance the development of energy efficient industrial technologies that will reduce the U.S. dependence upon foreign oil, provide energy savings and reduce greenhouse gas emissions. The purpose of this project was to develop and demonstrate a Direct Evaporator for the Organic Rankine Cycle (ORC) for the conversion of waste heat from gas turbine exhaust to electricity. In conventional ORCs, the heat from the exhaust stream is transferred indirectly to a hydrocarbon based working fluid by means of an intermediate thermal oil loop. The Direct Evaporator accomplishes preheating, evaporation and superheating of the working fluid by a heat exchanger placed within the exhaust gas stream. Direct Evaporation is simpler and up to 15% less expensive than conventional ORCs, since the secondary oil loop and associated equipment can be eliminated. However, in the past, Direct Evaporation has been avoided due to technical challenges imposed by decomposition and flammability of the working fluid. The purpose of this project was to retire key risks and overcome the technical barriers to implementing an ORC with Direct Evaporation. R&D was conducted through a partnership between the Idaho National Laboratory (INL) and General Electric (GE) Global Research Center (GRC). The project consisted of four research tasks: (1) Detailed Design & Modeling of the ORC Direct Evaporator, (2) Design and Construction of Partial Prototype Direct Evaporator Test Facility, (3) Working Fluid Decomposition Chemical Analyses, and (4) Prototype Evaluation. Issues pertinent to the selection of an ORC working fluid, along with thermodynamic and design considerations of the direct evaporator, were identified. The FMEA (Failure modes and effects analysis) and HAZOP (Hazards and operability analysis) safety studies performed to mitigate risks are described, followed by a discussion of the flammability analysis of the

  8. Comparison of a Novel Organic-Fluid Thermofluidic Heat Converter and an Organic Rankine Cycle Heat Engine

    Directory of Open Access Journals (Sweden)

    Christoph J.W. Kirmse

    2016-06-01

    Full Text Available The Up-THERM heat converter is an unsteady, two-phase thermofluidic oscillator that employs an organic working fluid, which is currently being considered as a prime-mover in small- to medium-scale combined heat and power (CHP applications. In this paper, the Up-THERM heat converter is compared to a basic (sub-critical, non-regenerative organic Rankine cycle (ORC heat engine with respect to their power outputs, thermal efficiencies and exergy efficiencies, as well as their capital and specific costs. The study focuses on a pre-specified Up-THERM design in a selected application, a heat-source temperature range from 210 °C to 500 °C and five different working fluids (three n-alkanes and two refrigerants. A modeling methodology is developed that allows the above thermo-economic performance indicators to be estimated for the two power-generation systems. For the chosen applications, the power output of the ORC engine is generally higher than that of the Up-THERM heat converter. However, the capital costs of the Up-THERM heat converter are lower than those of the ORC engine. Although the specific costs (£/kW of the ORC engine are lower than those of the Up-THERM converter at low heat-source temperatures, the two systems become progressively comparable at higher temperatures, with the Up-THERM heat converter attaining a considerably lower specific cost at the highest heat-source temperatures considered.

  9. Flow boiling heat transfer and pressure drop characteristics of R134a, R1234yf and R1234ze in a plate heat exchanger for organic Rankine cycle units

    DEFF Research Database (Denmark)

    Zhang, Ji; Desideri, Adriano; Kærn, Martin Ryhl

    2017-01-01

    . This paper is aimed at obtaining flow boiling heat transfer and pressure drop characteristics in a plate heat exchanger under the working conditions prevailing in the evaporator of organic Rankine cycle units. Two hydrofluoroolefins R1234yf and R1234ze, and one hydrofluorocarbon R134a, were selected......The optimal design of the evaporator is one of the key issues to improve the efficiency and economics of organic Rankine cycle units. The first step in studying the evaporator design is to understand the thermal-hydraulic performance of the working fluid in the evaporator of organic Rankine cycles......, respectively. The working conditions covered relatively high saturation temperatures (corresponding reduced pressures of 0.35-0.74), which are prevailing in organic Rankine cycles yet absent in the open literature. The experimental data were compared with existing correlations, and new correlations were...

  10. Experimental Analysis of Thermoelectric Heat Exchanger for Power Generation from Salinity Gradient Solar Pond Using Low-Grade Heat

    Science.gov (United States)

    Singh, Baljit; Baharin, Nuraida `Aadilia; Remeli, Muhammad Fairuz; Oberoi, Amandeep; Date, Abhijit; Akbarzadeh, Aliakbar

    2017-05-01

    Salinity gradient solar ponds act as an integrated thermal solar energy collector and storage system. The temperature difference between the upper convective zone and the lower convective zone of a salinity gradient solar pond can be in the range of 40-60°C. The temperature at the bottom of the pond can reach up to 90°C. Low-grade heat (solar ponds is currently converted into electricity by organic Rankine cycle engines. Thermoelectric generators can operate at very low temperature differences and can be a good candidate to replace organic Rankine cycle engines for power generation from salinity gradient solar ponds. The temperature difference in a solar pond can be used to power thermoelectric generators for electricity production. This paper presents an experimental investigation of a thermoelectric generators heat exchanger system designed to be powered by the hot water from the lower convective zone of a solar pond, and cold water from the upper convective zone of a solar pond. The results obtained have indicated significant prospects of such a system to generate power from low-grade heat for remote area power supply systems.

  11. Assessment of solar-powered cooling of buildings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Curran, H.M.

    1975-04-01

    Three solar-powered cooling concepts are analyzed and evaluated. These are: (1) the solar Rankine concept in which a Rankine cycle driven by solar energy is used to drive a vapor compression refrigeration machine, (2) the solar-assisted Rankine concept in which a Rankine cycle driven by both solar energy and fuel combustion is used to drive a vapor compression refrigeration machine, and (3) the solar absorption concept in which solar energy is used to drive an absorption refrigeration machine. These concepts are compared on the bases of coefficient of performance, requirements for primary fuel input, and economic considerations. Conclusions and recommendations are presented. (WHK)

  12. Low-power heat pump systems combining two organic Rankine cycles; Applications de pompe a chaleur. A l'exemple des systemes ORC-ORC de petite puissance

    Energy Technology Data Exchange (ETDEWEB)

    Demierre, J.

    2009-07-01

    In this basic article that includes many diagrams and equations illustrating a research project conducted at the Swiss Federal Institute of Technology (EPFL) in Lausanne, Switzerland the author describes the first part of his thesis. A new concept of thermally driven heat pump (TDHP) is presented, which could be a real alternative to today's heating systems in buildings that are mainly based on less efficient fuel-fired boilers. Nowadays, the heat pump market is dominated by two kinds of systems: the electrically driven vapor compression heat pumps, which are the most widely used in residential heating applications, and the thermally driven heat pumps that are usually based on a sorption process. In this research project, the investigated TDHP - designated by ORC-ORC - is based on the coupling of a vapor compression heat pump cycle and an organic Rankine cycle (ORC). The studied concept uses a single stage centrifugal compressor directly coupled to a single stage radial inflow turbine. The shaft is rotating on gas bearings, which allows the system to be oil-free. Like most of the other TDHP's, this system has the advantage to work with a variety of fuels or heat sources like wood pellets, natural gas, solar heat, geothermal heat or waste heat. The concept studied in this work is a gas fired system for space heating and domestic hot water production in small residential buildings (power range: 20 kW). A systematic approach has been used to theoretically evaluate, in terms of energy efficiency, the potential of ORC-ORC systems. The method is based on the optimization which allows identifying the best configurations at each design step with respect to the designer choices. This approach is divided into three steps. In the first step, a model of the complete system has been developed based on a process integration approach. This step allows to quickly determine whether the system is potentially attractive or not, for given conditions, before going deeper into

  13. Conceptual design of the Truscott brine lake solar-pond system, volume 1: Utility-independent scenario

    Science.gov (United States)

    1981-06-01

    A conceptual design was performed for a series of solar pond systems to provide pumping power for chloride control in the Red River Basin. In the chloride control project, briny waters are diverted so as not to pollute portable water. The diverted brine is stored in a dammed natural basin where, with the aid of natural evaporation, the brine is concentrated to the salinities required for the solar ponds. The brine is transferred to the ponds and injected at the proper levels to establish the gradients and storage layers. The solar ponds are to be located within the Truscott, Texas brine impoundment lake. Heat will be extracted from the ponds and used to drive organic Rankine-cycle turbine generators. The electricity produced will serve the pumping needs of the chloride control project, pump brine from the natural source to the evaporation ponds, pump concentrated brine from the evaporation ponds to the solar ponds, maintain the solar ponds, and supply all system parasitic loads. It was found that five solar ponds with eight organic Rankine-cycle turbine-generators would serve both the average and peaking power requirements of the pumping stations in the Truscott area as they come on-line.

  14. Design and development of an automotive organic Rankine-cycle powerplant with a reciprocating expander. Final report. Volume II. Detailed discussion

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-01

    Work performed for the design and development of an organic Rankine-cycle engine for automobile propulsion is reported. An automotive power plant using an organic Rankine-cycle system with a reciprocating expander has been designed, built, and tested on an engine dynamometer in a preprototype configuration. The system is designed to provide performance approximately equivalent to that of a 351-CID internal combustion engine in the reference car, a 1972 Ford Galaxie 500. A description of the preprototype system, major components, and results from component and system testing are presented. The fuel economy based on steady-state measurements is estimated to be 10.2 mpg over the federal driving cycle with a maximum of 16 mpg at 30 mph. Projections of steady-state emission measurements show compliance with the 1970 Clean Air Act standards for 1978 vehicle emissions. The levels for unburned hydrocarbons, carbon monoxide, and oxides of nitrogen were 41 percent, 6 percent, and 69 percent of the standards, respectively. At the conclusion of the preprototype phase of the program, a prototype design effort was initiated to upgrade and improve the performance of the preprototype system. The reference vehicle for this prototype design is a compact car in the weight class of a 1974 Ford Pinto. The results of this design study, including performance projections, are also presented.

  15. Preliminary operational results from the Willard solar power system

    Science.gov (United States)

    Fenton, D. L.; Abernathy, G. H.; Krivokapich, G.; Ellibee, D. E.; Chilton, V.

    1980-01-01

    The solar powered system located near Willard, New Mexico, generates mechanical or electrical power at a capacity of 19 kW (25 HP). The solar collection system incorporates east/west tracking parabolic trough collectors with a total aperture area of 1275 sq m (13,720 sq ft). The hot oil type thermal energy storage is sufficient for approximately 20 hours of power system operation. The system utilizes a reaction type turbine in conjunction with an organic Rankine cycle engine. Total collector field efficiency reaches a maximum of 20 percent near the winter solstice and about 50 percent during the summer. During the month of July, 1979, the system pumped 60 percent of the 35,300 cu m (28.6 acre-feet) of water delivered. Operating efficiencies for the turbine component, organic Rankine cycle engine and the complete power system are respectively 65 to 75 percent, 12 to 15 percent and 5 to 6 percent. Significant maintenance time was expended on both the collector and power systems throughout the operational period.

  16. Solar water splitting: efficiency discussion

    CERN Document Server

    Juodkazyte, Jurga; Sebeka, Benjaminas; Savickaja, Irena; Malinauskas, Tadas; Badokas, Kazimieras; Juodkazis, Kestutis; Juodkazis, Saulius

    2016-01-01

    The current state of the art in direct water splitting in photo-electrochemical cells (PECs) is presented together with: (i) a case study of water splitting using a simple solar cell with the most efficient water splitting electrodes and (ii) a detailed mechanism analysis. Detailed analysis of the energy balance and efficiency of solar hydrogen production are presented. The role of hydrogen peroxide formation as an intermediate in oxygen evolution reaction is newly revealed and explains why an oxygen evolution is not taking place at the thermodynamically expected 1.23 V potential. Solar hydrogen production with electrical-to-hydrogen conversion efficiency of 52% is demonstrated using a simple ~0.7%-efficient n-Si/Ni Schottky solar cell connected to a water electrolysis cell. This case study shows that separation of the processes of solar harvesting and electrolysis avoids photo-electrode corrosion and utilizes optimal electrodes for hydrogen and oxygen evolution reactions and achieves ~10% efficiency in light...

  17. Early developments in solar cooling equipment

    Science.gov (United States)

    Price, J. M.

    1978-01-01

    A brief description of a development program to design, fabricate and field test a series of solar operated or driven cooling devices, undertaken by the Marshall Space Flight Center in the context of the Solar Heating and Cooling Demonstration Act of 1974, is presented. Attention is given to two basic design concepts: the Rankine cycle principle and the use of a dessicant for cooling.

  18. Performance Evaluation of HP/ORC (Heat Pump/Organic Rankine Cycle) System with Optimal Control of Sensible Thermal Storage

    DEFF Research Database (Denmark)

    Do Carmo, Carolina Madeira Ramos; Dumont, Olivier; Nielsen, Mads Pagh

    2016-01-01

    energy in periods of no thermal energy demand and reverses the heat pump cycle to supply electrical power. A dynamic model based on empirical data of this system is used to determine the annual performance. Furthermore, this work assesses the benefits of different control strategies that address...... of the users. Results show that real load control logic can lessen the adverse effects of cycling in the compressor of the system as well as increase the thermal demand (up to 33%) and the electrical demand (max. 8.4%) covered by renewable energy (solar). However, the extension of these improvements is highly...

  19. Exergetic and environmental impact assessments of an integrated organic Rankine cycle with a biomass combustor for combined cooling, heating and power production

    Energy Technology Data Exchange (ETDEWEB)

    Al-Sulaiman, F.A. [Carleton Univ., Ottawa, ON (Canada). Dept. of Mechanical and Aerospace Engineering; Hamdullahpur, F. [Waterloo Univ., ON (Canada). Dept. of Mechanical and Mechatronics Engineering; Dincer, I. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada). Faculty of Engineering and Applied Science

    2010-07-01

    A trigeneration thermal system produces cooling, heating and power from the same source. In trigeneration plants, waste heat is used for heating and cooling. In this paper, exergetic and environmental impact analyses of a trigeneration system based on an integrated organic Rankine cycle (ORC) with a biomass combustor were conducted. The analyses were extended to include electrical-power, cooling-cogeneration and heating-cogeneration cases. The objective was to understand the working phenomena of the proposed system, and identify and quantify the sources of the irreversibilities in the system associated with each component. The environmental impact of the proposed system was also quantified. The exergy efficiency, exergy destruction rate and carbon dioxide (CO{sub 2}) emissions were examined under the variations of pump inlet temperature and turbine inlet pressure. The results showed that exergy efficiency increased to 27 per cent when trigeneration was used as compared 11 per cent when the electrical power system was used. The main two sources of exergy destruction were the biomass combustor and the ORC evaporator. Emissions of CO{sub 2} were much higher in the case of the the electrical-power system compared to the trigeneration system. 11 refs., 1 tab., 8 figs.

  20. Preliminary Development of a Free Piston Expander–Linear Generator for Small-Scale Organic Rankine Cycle (ORC Waste Heat Recovery System

    Directory of Open Access Journals (Sweden)

    Gaosheng Li

    2016-04-01

    Full Text Available A novel free piston expander-linear generator (FPE-LG integrated unit was proposed to recover waste heat efficiently from vehicle engine. This integrated unit can be used in a small-scale Organic Rankine Cycle (ORC system and can directly convert the thermodynamic energy of working fluid into electric energy. The conceptual design of the free piston expander (FPE was introduced and discussed. A cam plate and the corresponding valve train were used to control the inlet and outlet valve timing of the FPE. The working principle of the FPE-LG was proven to be feasible using an air test rig. The indicated efficiency of the FPE was obtained from the p–V indicator diagram. The dynamic characteristics of the in-cylinder flow field during the intake and exhaust processes of the FPE were analyzed based on Fluent software and 3D numerical simulation models using a computation fluid dynamics method. Results show that the indicated efficiency of the FPE can reach 66.2% and the maximal electric power output of the FPE-LG can reach 22.7 W when the working frequency is 3 Hz and intake pressure is 0.2 MPa. Two large-scale vortices are formed during the intake process because of the non-uniform distribution of velocity and pressure. The vortex flow will convert pressure energy and kinetic energy into thermodynamic energy for the working fluid, which weakens the power capacity of the working fluid.

  1. Ideal Point Design and Operation of CO2-Based Transcritical Rankine Cycle (CTRC System Based on High Utilization of Engine’s Waste Heats

    Directory of Open Access Journals (Sweden)

    Lingfeng Shi

    2017-10-01

    Full Text Available This research conducted a study specially to systematically analyze combined recovery of exhaust gas and engine coolant and related influence mechanism, including a detailed theoretical study and an assistant experimental study. In this research, CO2-based transcritical Rankine cycle (CTRC was used for fully combining the wastes heats. The main objective of theoretical research was to search an ‘ideal point’ of the recovery system and related influence mechanism, which was defined as operating condition of complete recovery of two waste heats. The theoretical methodology of this study could also provide a design reference for effective combined recovery of two or multiple waste heats in other fields. Based on a kW-class preheated CTRC prototype that was designed by the ‘ideal point’ method, an experimental study was conducted to verify combined utilization degree of two engine waste heats by the CTRC system. The operating results showed that the prototype can gain 44.4–49.8 kW and 22.7–26.7 kW heat absorption from exhaust gas and engine coolant, respectively. To direct practical operation, an experimental optimization work on the operating process was conducted for complete recovery of engine coolant exactly, which avoided deficient or excessive recovery.

  2. Thermodynamic Performance Analysis of a Biogas-Fuelled Micro-Gas Turbine with a Bottoming Organic Rankine Cycle for Sewage Sludge and Food Waste Treatment Plants

    Directory of Open Access Journals (Sweden)

    Sunhee Kim

    2017-02-01

    Full Text Available In the Republic of Korea, efficient biogas-fuelled power systems are needed to use the excess biogas that is currently burned due to a lack of suitable power technology. We examined the performance of a biogas-fuelled micro-gas turbine (MGT system and a bottoming organic Rankine cycle (ORC. The MGT provides robust operation with low-grade biogas, and the exhaust can be used for heating the biodigester. Similarly, the bottoming ORC generates additional power output with the exhaust gas. We selected a 1000-kW MGT for four co-digestion plants with 28,000-m3 capacity. A 150-kW ORC system was selected for the MGT exhaust gas. We analysed the effects of the system size, methane concentration, and ORC operating conditions. Based on the system performance, we analysed the annual performance of the MGT with a combined heat and power (CHP system, bottoming ORC, or both a bottoming ORC and CHP system. The annual net power outputs for each system were 7.4, 8.5, and 9.0 MWh per year, respectively.

  3. Analyzing the Performance of a Dual Loop Organic Rankine Cycle System for Waste Heat Recovery of a Heavy-Duty Compressed Natural Gas Engine

    Directory of Open Access Journals (Sweden)

    Baofeng Yao

    2014-11-01

    Full Text Available A dual loop organic Rankine cycle (DORC system is designed to recover waste heat from a heavy-duty compressed natural gas engine (CNGE, and the performance of the DORC–CNGE combined system is simulated and discussed. The DORC system includes high-temperature (HT and low-temperature (LT cycles. The HT cycle recovers energy from the exhaust gas emitted by the engine, whereas the LT cycle recovers energy from intake air, engine coolant, and the HT cycle working fluid in the preheater. The mathematical model of the system is established based on the first and second laws of thermodynamics. The characteristics of waste heat energy from the CNGE are calculated according to engine test data under various operating conditions. Moreover, the performance of the DORC–CNGE combined system is simulated and analyzed using R245fa as the working fluid. Results show that the maximum net power output and the maximum thermal efficiency of the DORC system are 29.37 kW and 10.81%, respectively, under the rated power output condition of the engine. Compared with the original CNG engine, the maximum power output increase ratio and the maximum brake specific fuel consumption improvement ratio are 33.73% and 25%, respectively, in the DORC–CNGE combined system.

  4. Studi Numerik Dua Dimensi Labyrinth Seal Turbin Uap Organic Rankine Cycle (ORC Type Straight-Through dengan Variasi Tekanan Inlet, Kecepatan Putaran Poros, Jarak Pitch, dan Tinggi Rongga

    Directory of Open Access Journals (Sweden)

    Fungki Setyo Yulianto

    2013-03-01

    Full Text Available ORC (Organic Rankine Cycle merupakan salah satu sistem pembangkit tenaga yang mampu memanfaatkan waste energy dengan menggunakan fluida organik yang mampu menguap pada temperatur dan tekanan rendah. Salah satu komponen utama pada sistem ORC adalah Turbin. Untuk mendapatkan efisiensi yang maksimal,  kebocoran fluida pada turbin uap harus di minimalisir. Untuk itulah di perlukan penggunaan labyrinth seal untuk mengurai kebocoran fluida R123 pada turbin uap ORC. Pada dunia Industri jenis labyrinth seal sangat banyak sekali, salah satunya adalah labyrinth seal tipe Straight-Through. Penelitian ini dilakukan dengan metode numerik (CFD software Fluent. Penelitian ini menggunakan variasi tekanan inlet yaitu 5, 10 dan 15 bar, putaran poros 0, 1500 dan 3000 rpm, panjang pitch 4 mm, 6 mm, 8 mm, 10 mm, serta tinggi rongga 3,415 mm, 3,915 mm dan 5,915 mm. Simulasi menggunakan model turbulensi k-ε RNG. Pada variasi tekanan inlet laju kebocoran paling besar terjadi pada tekanan 15 bar. Pada variasi putaran poros laju kebocoran terjadi berubah secara signifikan pada setiap variasi. Pada variasi tinggi rongga laju kebocoran paling kecil terjadi pada tinggi rongga 3,415 mm. Pada variasi panjang pitch, laju kebocoran paling kecil terjadi pada panjang pitch 10 mm.

  5. Geometry Analysis and Effect of Turbulence Model on the Radial Rotor Turbo-Expander Design for Small Organic Rankine Cycle System

    Directory of Open Access Journals (Sweden)

    Maulana Arifin

    2015-07-01

    Full Text Available Organic Rankine Cycle (ORC is one of the most promising technology for small electric power generations. The geometry analysis and the effect of turbulence model on the radial turbo-expanders design for small ORC power generation systems were discussed in this paper. The rotor blades and performance were calculated using several working fluids such as R134a, R143a, R245fa, n-Pentane, and R123. Subsequently, a numerical study was carried out in the fluid flow area with R134a and R123 as the working fluids. Analyses were performed using Computational Fluid Dynamics (CFD ANSYS Multiphysics on two real gas models, with the k-epsilon and SST (shear stress transport turbulence models. The result shows the distribution of Mach number, pressure, velocity and temperature along the rotor blade of the radial turbo-expanders and estimation of performance at various operating conditions. The operating conditions are as follow: 250,000 grid mesh flow area, real gas model SST at steady state condition, 0.4 kg/s of mass flow rate, 15,000 rpm rotor speed, 5 bar inlet pressure, and 373K inlet temperature. By using those conditions, CFD analysis shows that the turbo-expander able to produce 6.7 kW and 5.5 kW of power when using R134a and R123, respectively.

  6. Milestone Report #2: Direct Evaporator Leak and Flammability Analysis Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna Post [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-09-01

    The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammable hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.

  7. Modeling and Experimental Validation of a Volumetric Expander Suitable for Waste Heat Recovery from an Automotive Internal Combustion Engine Using an Organic Rankine Cycle with Ethanol

    Directory of Open Access Journals (Sweden)

    José Galindo

    2016-04-01

    Full Text Available Waste heat recovery (WHR in exhaust gas flow of automotive engines has proved to be a useful path to increase the overall efficiency of internal combustion engines (ICE. Recovery potentials of up to 7% are shown in several works in the literature. However, most of them are theoretical estimations. Some present results from prototypes fed by steady flows generated in an auxiliary gas tank and not with actual engine exhaust gases. This paper deals with the modeling and experimental validation of an organic Rankine cycle (ORC with a swash-plate expander integrated in a 2 L turbocharged petrol engine using ethanol as working fluid. A global simulation model of the ORC was developed with a maximum difference of 5%, validated with experimental results. Considering the swash-plate as the main limiting factor, an additional specific submodel was implemented to model the physical phenomena in this element. This model allows simulating the fluid dynamic behavior of the swash-plate expander using a 0D model (Amesim. Differences up to 10.5% between tests and model results were found.

  8. Thermoeconomic Evaluation of Modular Organic Rankine Cycles for Waste Heat Recovery over a Broad Range of Heat Source Temperatures and Capacities

    Directory of Open Access Journals (Sweden)

    Markus Preißinger

    2017-02-01

    Full Text Available Industrial waste heat recovery by means of an Organic Rankine Cycle (ORC can contribute to the reduction of CO2 emissions from industries. Before market penetration, high efficiency modular concepts have to be developed to achieve appropriate economic value for industrial decision makers. This paper aims to investigate modularly designed ORC systems from a thermoeconomic point of view. The main goal is a recommendation for a suitable chemical class of working fluids, preferable ORC design and a range of heat source temperatures and thermal capacities in which modular ORCs can be economically feasible. For this purpose, a thermoeconomic model has been developed which is based on size and complexity parameters of the ORC components. Special emphasis has been laid on the turbine model. The paper reveals that alkylbenzenes lead to higher exergetic efficiencies compared to alkanes and siloxanes. However, based on the thermoeconomic model, the payback periods of the chemical classes are almost identical. With the ORC design, the developed model and the boundary conditions of this study, hexamethyldisiloxane is a suitable working fluid and leads to a payback period of less than 5 years for a heat source temperature of 400 to 600 °C and a mass flow rate of the gaseous waste heat stream of more than 4 kg/s.

  9. A quantitative risk-assessment system (QR-AS) evaluating operation safety of Organic Rankine Cycle using flammable mixture working fluid.

    Science.gov (United States)

    Tian, Hua; Wang, Xueying; Shu, Gequn; Wu, Mingqiang; Yan, Nanhua; Ma, Xiaonan

    2017-09-15

    Mixture of hydrocarbon and carbon dioxide shows excellent cycle performance in Organic Rankine Cycle (ORC) used for engine waste heat recovery, but the unavoidable leakage in practical application is a threat for safety due to its flammability. In this work, a quantitative risk assessment system (QR-AS) is established aiming at providing a general method of risk assessment for flammable working fluid leakage. The QR-AS covers three main aspects: analysis of concentration distribution based on CFD simulations, explosive risk assessment based on the TNT equivalent method and risk mitigation based on evaluation results. A typical case of propane/carbon dioxide mixture leaking from ORC is investigated to illustrate the application of QR-AS. According to the assessment results, proper ventilation speed, safe mixture ratio and location of gas-detecting devices have been proposed to guarantee the security in case of leakage. The results revealed that this presented QR-AS was reliable for the practical application and the evaluation results could provide valuable guidance for the design of mitigation measures to improve the safe performance of ORC system. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. closed cycle solar refrigeration with the calcium chloride system

    African Journals Online (AJOL)

    user

    1986-09-01

    Sep 1, 1986 ... gives an option tree of the alternative schemes. When the energy of the vapour compression machine is solar, the electrical power for driving the compressor can be provided by photovoltaic panels. Alternatively, a concentrating or flat plate solar collector may be used to replace the boiler in a rankine cycle.

  11. Moteurs composites à allumage par compression et cycle de Rankine Dual Fuel Compression Ignition Engines Operating on the Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Daugas C.

    2006-11-01

    Full Text Available Sur les 60 % de l'énergie introduite dans un groupe électrogène et perdue sous forme de chaleur, une bonne partie peut être utilisée pour fabriquer à nouveau de l'électricité à partir d'une turbine à vapeur. Les moteurs dual fuel brûlant essentiellement du gaz naturel sont remarquablement placés pour une telle récupération, dont le rendement est meilleur aux charges partielles que celui des moteurs diesel classiques. Les différents types de fluides utilisés pour la récupération sont examinés : avantages des fluides organiques sur l'eau. Études d'une réalisation concrète. Fonctionnement aux charges partielles. Influence des différents paramètres pour obtenir le meilleur rapport prix/puissance. Of the 60% of input energy lost in the form of heat in a generating set, a sizeable part can be used to generate electricity again by means of a steam turbine. Dual fuel engines which mainly burn natural gas are outstandingly suitable for such a recovery process, the efficiency under partial loads being better than that of conventional diesel engines. The author considers the different types of fluids used for the recovery process superiority of organic fluids over water. Study of a concrete example. Operation with partial loads. Influence of the different parameters in the quest for the best cost-power ratio.

  12. Heat exchanger modelling in central receiver solar power plant using dense particle suspension

    Science.gov (United States)

    Reyes-Belmonte, Miguel A.; Gómez-García, Fabrisio; González-Aguilar, José; Romero, Manuel; Benoit, Hadrien; Flamant, Gilles

    2017-06-01

    In this paper, a detailed thermodynamic model for a heat exchanger (HX) working with a dense particle suspension (DPS) as heat transfer fluid (HTF) in the solar loop and water-steam as working fluid is presented. HX modelling is based on fluidized bed (FB) technology and its design has been conceived to couple solar plant using DPS as HTF and storage media with Rankine cycle for power generation. Using DPS as heat transfer fluid allows extending operating temperature range what will help to reduce thermal energy storage costs favoring higher energy densities but will also allow running power cycle at higher temperature what will increase its efficiency. Besides HX modelling description, this model will be used to reproduce solar plant performance under steady state and transient conditions.

  13. Thermoeconomic optimization of a Kalina cycle for a central receiver concentrating solar power plant

    DEFF Research Database (Denmark)

    Modi, Anish; Kærn, Martin Ryhl; Andreasen, Jesper Graa

    2016-01-01

    with direct vapour generation and without storage. The use of the ammonia-water mixture as the power cycle working fluid with non-isothermal evaporation and condensation presents the potential to improve the overall performance of the plant. This however comes at a price of requiring larger heat exchangers......Concentrating solar power plants use a number of reflecting mirrors to focus and convert the incident solar energy to heat, and a power cycle to convert this heat into electricity. This paper evaluates the use of a high temperature Kalina cycle for a central receiver concentrating solar power plant...... because of lower thermal pinch and heat transfer degradation for mixtures as compared with using a pure fluid in a conventional steam Rankine cycle, and the necessity to use a complex cycle arrangement. Most of the previous studies on the Kalina cycle focused solely on the thermodynamic aspects...

  14. Working Fluid Stability in Large-Scale Organic Rankine Cycle-Units Using Siloxanes—Long-Term Experiences and Fluid Recycling

    Directory of Open Access Journals (Sweden)

    Tobias G. Erhart

    2016-05-01

    Full Text Available The results in this work show the influence of long-term operation on the decomposition of working fluids in eight different organic rankine cycle (ORC power plants (both heat-led and electricity-led in a range of 900 kW el to 2 MW el . All case study plants are using octamethyltrisiloxane (MDM as a working fluid; the facilities are between six to 12 years old. Detailed analyses, including the fluid distribution throughout the cycle, are conducted on one system. All presented fluid samples are analyzed via head space gas chromatography mass spectrometry (HS-GC-MS. Besides the siloxane composition, the influence of contaminants, such as mineral oil-based lubricants (and their components, is examined. In most cases, the original working fluid degrades to fractions of siloxanes with a lower boiling point (low boilers and fractions with a higher boiling point (high boilers. As a consequence of the analyses, a new fluid recycling and management system was designed and tested in one case study plant (Case Study #8. Pre-post comparisons of fluid samples prove the effectiveness of the applied methods. The results show that the recovery of used working fluid offers an alternative to the purchase of fresh fluid, since operating costs can be significantly reduced. For large facilities, the prices for new fluid range from € 15 per liter (in 2006 to € 22 per liter (in 2013, which is a large reinvestment, especially in light of filling volumes of 4000 liters to 7000 liters per unit. Using the aforementioned method, a price of € 8 per liter of recovered MDM can be achieved.

  15. A High Rated Solar Water Distillation Unit for Solar Homes

    Directory of Open Access Journals (Sweden)

    Abhishek Saxena

    2016-01-01

    Full Text Available India is presently focusing on complete utilization of solar energy and saving fossil fuels, which are limited. Various solar energy systems like solar cookers, solar water heaters, solar lanterns, solar PV lights, and solar lamps are continuously availing by the people of India at a low cost and on good subsidies. Apart from this, India is a solar energy promising country with a good number of solar homes (carrying solar energy systems in its various locations. The present paper focuses on a unique combination of solar dish cooker (SDC and solar water heater (SWH to produce distilled water with a high distillate and a high daily productivity. The procedure has been discussed on the basis of experimental testing to produce distilled water by combining an evacuated type SWH and a SDC. Experimentation has been carried out in MIT, Moradabad (longitude, 28.83°N, and latitude, 78.78°E by developing the same experimental setup on behalf of solar homes. The daily productivity of distilled water was found around 3.66 litres per day in full sunshine hours for an approximated pH value of 7.7 and a ppm value of 21. The payback period (PBP has been estimated around 1.16 years of the present system.

  16. Performance Analysis of an Evaporator for a Diesel Engine–Organic Rankine Cycle (ORC Combined System and Influence of Pressure Drop on the Diesel Engine Operating Characteristics

    Directory of Open Access Journals (Sweden)

    Chen Bei

    2015-06-01

    Full Text Available The main purpose of this research is to analyze the performance of an evaporator for the organic Rankine cycle (ORC system and discuss the influence of the evaporator on the operating characteristics of diesel engine. A simulation model of fin-and-tube evaporator of the ORC system is established by using Fluent software. Then, the flow and heat transfer characteristics of the exhaust at the evaporator shell side are obtained, and then the performance of the fin-and-tube evaporator of the ORC system is analyzed based on the field synergy principle. The field synergy angle (β is the intersection angle between the velocity vector and the temperature gradient. When the absolute values of velocity and temperature gradient are constant and β < 90°, heat transfer enhancement can be achieved with the decrease of the β. When the absolute values of velocity and temperature gradient are constant and β >90°, heat transfer enhancement can be achieved with the increase of the β. Subsequently, the influence of the evaporator of the ORC system on diesel engine performance is studied. A simulation model of the diesel engine is built by using GT–Power software under various operating conditions, and the variation tendency of engine power, torque, and brake specific fuel consumption (BSFC are obtained. The variation tendency of the power output and BSFC of diesel engine–ORC combined system are obtained when the evaporation pressure ranges from 1.0 MPa to 3.5 MPa. Results show that the field synergy effect for the areas among the tube bundles of the evaporator main body and the field synergy effect for the areas among the fins on the windward side are satisfactory. However, the field synergy effect in the areas among the fins on the leeward side is weak. As a result of the pressure drop caused by the evaporator of the ORC system, the diesel engine power and torque decreases slightly, whereas the BSFC increases slightly with the increase of exhaust back

  17. Comparative Evaluation of Integrated Waste Heat Utilization Systems for Coal-Fired Power Plants Based on In-Depth Boiler-Turbine Integration and Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Shengwei Huang

    2018-01-01

    Full Text Available To maximize the system-level heat integration, three retrofit concepts of waste heat recovery via organic Rankine cycle (ORC, in-depth boiler-turbine integration, and coupling of both are proposed, analyzed and comprehensively compared in terms of thermodynamic and economic performances. For thermodynamic analysis, exergy analysis is employed with grand composite curves illustrated to identify how the systems are fundamentally and quantitatively improved, and to highlight key processes for system improvement. For economic analysis, annual revenue and investment payback period are calculated based on the estimation of capital investment of each component to identify the economic feasibility and competitiveness of each retrofit concept proposed. The results show that the in-depth boiler-turbine integration achieves a better temperature match of heat flows involved for different fluids and multi-stage air preheating, thus a significant improvement of power output (23.99 MW, which is much larger than that of the system with only ORC (6.49 MW. This is mainly due to the limitation of the ultra-low temperature (from 135 to 75 °C heat available from the flue gas for ORC. The thermodynamic improvement is mostly contributed by the reduction of exergy destruction within the boiler subsystem, which is eventually converted to mechanical power; while the exergy destruction within the turbine system is almost not changed for the three concepts. The selection of ORC working fluids is performed to maximize the power output. Due to the low-grade heat source, the cycle with R11 offers the largest additional net power generation but is not significantly better than the other preselected working fluids. Economically, the in-depth boiler-turbine integration is the most economic completive solution with a payback period of only 0.78 year. The ORC concept is less attractive for a sole application due to a long payback time (2.26 years. However, by coupling both

  18. Solar-powered hot-water system

    Science.gov (United States)

    Collins, E. R.

    1979-01-01

    Hot-water system requires no external power except solar energy. System is completely self-controlling. It includes solar-powered pump, solar-thermally and hydrothermally operated valves, and storage tank filled with open-celled foam, to maintain thermal stratification in stored water.

  19. Basics of Solar Heating & Hot Water Systems.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  20. Optimisation of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    DEFF Research Database (Denmark)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    Central receiver solar thermal power plants are regarded as one of the promising ways to generate electricity in near future. They offer the possibility of using high temperatures and pressures to achieve high efficiencies with standard power cycles. A direct steam generation approach can be used...... for a central receiver solar thermal power plant with direct steam generation. The variation in the cycle performance with respect to the turbine inlet ammonia mass fraction and pressure and a comparison of the initial investment with that of the basic Rankine cycle are also presented. Only high live steam...... for such plants for improved performance. This approach can also be combined with using advanced power cycles like the Kalina cycle, which uses a zeotropic mixture of ammonia and water instead of pure water as the working fluid. This paper presents the optimisation of a particular Kalina cycle layout...

  1. Development of a solar-powered residential air conditioner

    Science.gov (United States)

    1975-01-01

    An extensive review of the literature was conducted which was concerned with the characterization of systems and equipment that could be applicable to the development of solar-powered air conditioners based on the Rankine cycle approach, and the establishment of baseline data defining the performance, physical characteristics, and cost of systems using the LiBr/H2O absorption cycle.

  2. Innovative solar thermochemical water splitting.

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Roy E. Jr.; Siegel, Nathan P.; Evans, Lindsey R.; Moss, Timothy A.; Stuecker, John Nicholas (Robocasting Enterprises, Albuquerque, NM); Diver, Richard B., Jr.; Miller, James Edward; Allendorf, Mark D. (Sandia National Laboratories, Livermore, CA); James, Darryl L. (Texas Tech University, Lubbock, TX)

    2008-02-01

    Sandia National Laboratories (SNL) is evaluating the potential of an innovative approach for splitting water into hydrogen and oxygen using two-step thermochemical cycles. Thermochemical cycles are heat engines that utilize high-temperature heat to produce chemical work. Like their mechanical work-producing counterparts, their efficiency depends on operating temperature and on the irreversibility of their internal processes. With this in mind, we have invented innovative design concepts for two-step solar-driven thermochemical heat engines based on iron oxide and iron oxide mixed with other metal oxides (ferrites). The design concepts utilize two sets of moving beds of ferrite reactant material in close proximity and moving in opposite directions to overcome a major impediment to achieving high efficiency--thermal recuperation between solids in efficient counter-current arrangements. They also provide inherent separation of the product hydrogen and oxygen and are an excellent match with high-concentration solar flux. However, they also impose unique requirements on the ferrite reactants and materials of construction as well as an understanding of the chemical and cycle thermodynamics. In this report the Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5) solar thermochemical heat engine and its basic operating principals are described. Preliminary thermal efficiency estimates are presented and discussed. Our ferrite reactant material development activities, thermodynamic studies, test results, and prototype hardware development are also presented.

  3. Smart solar tanks for small solar domestic hot water systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa; Knudsen, Søren

    2005-01-01

    the hot-water tank from the top and the water volume heated by the auxiliary energy supply system is fitted to the hot-water consumption and consumption pattern. In periods with a large hot-water demand, the volume is large; in periods with a small hot-water demand, the volume is small. Two small SDHW......Investigation of small SDHW systems based on smart solar tanks are presented. The domestic water in a smart solar tank can be heated both by solar collectors and by means of an auxiliary energy supply system. The auxiliary energy supply system – in this study electric heating elements – heats up...... or small hot-water consumption and the risk of oversized solar heating systems and oversized tank volumes is reduced by using smart solar tanks. Based on the investigations it is recommended to start development of smart solar tank units with an oil-fired boiler or a natural gas burner as auxiliary energy...

  4. Solar Energy for Space Heating & Hot Water.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet reviews the direct transfer of solar energy into heat, particularly for the purpose of providing space and hot water heating needs. Owners of buildings and homes are provided with a basic understanding of solar heating and hot water systems: what they are, how they perform, the energy savings possible, and the cost factors involved.…

  5. OUT Success Stories: Solar Hot Water Technology

    Energy Technology Data Exchange (ETDEWEB)

    Clyne, R.

    2000-08-31

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building.

  6. OUT Success Stories: Solar Hot Water Technology

    Science.gov (United States)

    Clyne, R.

    2000-08-01

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building.

  7. Intracellular mechanisms of solar water disinfection

    Science.gov (United States)

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-12-01

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection.

  8. Application of Solar Energy to Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    M, Nash J; J, Harstad A

    1976-11-01

    The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/ Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.

  9. Application of solar energy to air conditioning systems

    Science.gov (United States)

    Nash, J. M.; Harstad, A. J.

    1976-01-01

    The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.

  10. Study on solar sea water desalination; Studie ueber solare Meerwasserentsalzung

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, G.K.

    1995-09-01

    The state of the art of solar sea water desalination is discussed based on the example of simple solar distillation. Reasons are given for the relatively reserved use of this technique in the past. The increasing shortage of fresh water (drinking water) due to increasing water consumption, the deforestation of (rain) forests, and increasing environmental pollution reveals the urgency of sea water desalination. However, the fossil energy sources that are needed for desalination cause a further increase in carbon dioxide emissions and aggravate the global-warming problem. This study suggests to multiply the relatively low economic efficiency and low cost efficiency of simple solar distillers by vacuum-controlled ground cooling and to operate pumps that convey sea water and distilled water by means of solar energy or solar cogeneration. Model calculations and a pilot project are recommended for a closer quantification of the data. General intercultural and socioeconomic aspects that must be considered when installing solar sea water (waste water) distillation plants, e.g. in Africa, are discussed. (orig.) [Deutsch] In dieser Studie wird der Stand der Technik der solaren Wasserentsalzung, basierend auf der einfachen solaren Destillation, untersucht sowie die Gruende fuer den bisher relativ geringen Einsatz dieser Technik erlaeutert. Die zunehmende Verknappung von Suesswasser (Trinkwasser), durch steigenden Wasserverbrauch, durch die Abholzung von (Regen)-Waeldern und durch die zunehmende Umweltverschmutzung ruecken aber die Notwendigkeit der Meerwasserentsalzung immer staerker in den Vordergrund. Der hohe Energiebedarf dafuer traegt aber bei der Verwendung von fossiler Primaerenergie zu einer weiteren Verstaerkung des CO{sub 2}-Ausstosses und damit zur weiteren Verschaerfung der Klimaproblematik bei. Deshalb wird hier nicht nur vorgeschlagen, den relativ geringen Wirkungsgrad und die relativ geringe Kosteneffizienz einfacher solarer Destillatoren durch

  11. Report on Solar Water Heating Quantitative Survey

    Energy Technology Data Exchange (ETDEWEB)

    Focus Marketing Services

    1999-05-06

    This report details the results of a quantitative research study undertaken to better understand the marketplace for solar water-heating systems from the perspective of home builders, architects, and home buyers.

  12. Basic principles of solar water heating

    CSIR Research Space (South Africa)

    Page-Shipp, RJ

    1980-09-10

    Full Text Available This article correctly reflects the principles of Solar Water Heating as they pertain to South African conditions. However, it was written in 1980 and the global energy situation has changed considerably. Furthermore, modern commercial units...

  13. Solar-energy-system performance evaluation: Honeywell OTS 44, Ocmulgee, Georgia

    Science.gov (United States)

    Mathur, A. K.; Pederson, S.

    1982-01-01

    The operation and technical performance of the solar operational test site (OTS 44) are described, based on data collected between April, 1981 and August, 1981. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 44 is a hydronic heating and cooling system consisting of 5040 square feet of liquid cooled flat plate collectors; a 4000 gallon thermal storage tank; one 25 ton capacity organic Rankine cycle engine assisted water chillers; a forced draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes for providing space conditioning and hot water to the building. Data monitored during the 4 months of the operational test period found that the solar system collected 285 MMBtu of thermal energy of the total incident solar energy of 1040 MMBtu and provided 210 MMBtu for cooling and 10 MMBtu for heating and hot water. The net electrical energy saving due to the solar system was approximately 2600 kWh(e), and fossil energy saving was about 20 million Btu (MMBtu).

  14. Numerical evaluation of the Kalina cycle for concentrating solar power plants

    DEFF Research Database (Denmark)

    Modi, Anish

    of using a Kalina cycle is evaluated with a thermoeconomic optimization with a turbine inlet temperature of 500 C for a central receiver solar power plant with direct vapour generation, and 370 C for a parabolic trough solar power plant with Therminol VP-1 as the solar field heat transfer fluid. No thermal...... a higher specific capital investment cost and a higher levelized cost of electricity than the state-of-the-art steam Rankine cycle for both the central receiver and the parabolic trough plants. This is mainly because of worse power cycle design point efficiency than the corresponding steam Rankine cycle......Concentrating solar power plants use a number of reflecting mirrors to focus and convert the incident solar energy to heat, and a power cycle to convert this heat into electricity. One of the key challenges currently faced by the solar industry is the high cost of electricity production...

  15. Coolidge solar powered irrigation pumping project

    Science.gov (United States)

    Larson, D. L.

    1980-01-01

    A 150 kW solar thermal electric power plant which includes over 2100 square meters of parabolic trough type collectors and an organic Rankine cycle turbine engine was constructed on an irrigated farm. The plant is interconnected with the electrical utility grid. Operation is providing an evaluation of equipment performance and operating and maintenance requirements as well as the desirability of an on farm location.

  16. A handbook for solar central receiver design

    Energy Technology Data Exchange (ETDEWEB)

    Falcone, P.K.

    1986-12-01

    This Handbook describes central receiver technology for solar thermal power plants. It contains a description and assessment of the major components in a central receiver system configured for utility scale production of electricity using Rankine-cycle steam turbines. It also describes procedures to size and optimize a plant and discussed examples from recent system analyses. Information concerning site selection criteria, cost estimation, construction, and operation and maintenance is also included, which should enable readers to perform design analyses for specific applications.

  17. The solar cyclone: A solar chimney for harvesting atmospheric water

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwa, B.A. [Los Alamos National Laboratory, MS B216, Los Alamos, NM 87545 (United States); Kashiwa, Corey B. [191 University Blvd PMB 876, Denver, CO 80206 (United States)

    2008-02-15

    The Solar Cyclone has been introduced as a means of extracting fresh water from Earth's atmosphere. The conceptual device operates in the fashion of a Solar Chimney; it is composed of a greenhouse for collecting and storing solar energy as heat, with a central chimney that channels an updraft of surface air heated in the greenhouse. An expansion cyclone separator for condensing and removing atmospheric water is placed at the base of the chimney. The separator consists of a strongly rotating vortex in which the central temperature is well below the dew point for the greenhouse air. Power consumed in the expansion and separation is furnished by the motive potential of the chimney updraft. Turbulent flow conditions are established in the expansion cyclone separator to enhance the centrifugal separation. Excess updraft power is used to generate electricity, as is done in the Solar Chimney. The article furnishes a theoretical basis for the feasibility of the Solar Cyclone, suggesting that an experimental study of the separation device would be worthwhile. (author)

  18. Water Desalination Systems Powered by Solar Energy

    Science.gov (United States)

    Barseghyan, A.

    2015-12-01

    The supply of potable water from polluted rivers, lakes, unsafe wells, etc. is a problem of high priority. One of the most effective methods to obtain low cost drinking water is desalination. Advanced water treatment system powered by Solar Energy and based on electrodialysis for water desalination and purification, is suggested. Technological and economic evaluations and the benefits of the suggested system are discussed. The Advanced Water Treatment System proposed clears water not only from different salts, but also from some infections, thus decreasing the count of diseases which are caused by the usage of non-clear water. Using Solar Energy makes the system stand alone which is convenient to use in places where power supply is problem.

  19. Potential for solar water heating in Zimbabwe

    NARCIS (Netherlands)

    Batidzirai, B.|info:eu-repo/dai/nl/341355909; Lysen, E.H.|info:eu-repo/dai/nl/071394923; van Egmond, S.; van Sark, W.G.J.H.M.|info:eu-repo/dai/nl/074628526

    2009-01-01

    This paper discusses the economic, social and environmental benefits from using solar water heating (SWH) in Zimbabwe. By comparing different water heating technology usage in three sectors over a 25-year period, the potential of SWH is demonstrated in alleviating energy and economic problems that

  20. Large Bandgap Semiconductors for Solar Water Splitting

    DEFF Research Database (Denmark)

    Malizia, Mauro

    Photoelectrochemical water splitting represents an eco-friendly technology that could enable the production of hydrogen using water as reactant and solar energy as primary energy source. The exploitation of solar energy for the production of hydrogen would help modern society to reduce the reliance...... water splitting devices having tandem design. The increase of the photovoltage produced by GaP under illumination was the main goal of this work. GaP has a bandgap of 2.25 eV and could in theory produce a photovoltage of approximately 1.7 V. Instead, the photovoltage produced by the semiconductor...... (bismuth vanadate) was investigated in view of combining this 2.4 eV large bandgap semiconductor with a Si back-illuminated photocathode. A device obtained by mechanical stacking of BiVO4 photoanode and standard Si photocathode performs non-assisted water splitting under illumination with Solar...

  1. Solar Water Splitting Using Semiconductor Photocatalyst Powders

    KAUST Repository

    Takanabe, Kazuhiro

    2015-07-01

    Solar energy conversion is essential to address the gap between energy production and increasing demand. Large scale energy generation from solar energy can only be achieved through equally large scale collection of the solar spectrum. Overall water splitting using heterogeneous photocatalysts with a single semiconductor enables the direct generation of H from photoreactors and is one of the most economical technologies for large-scale production of solar fuels. Efficient photocatalyst materials are essential to make this process feasible for future technologies. To achieve efficient photocatalysis for overall water splitting, all of the parameters involved at different time scales should be improved because the overall efficiency is obtained by the multiplication of all these fundamental efficiencies. Accumulation of knowledge ranging from solid-state physics to electrochemistry and a multidisciplinary approach to conduct various measurements are inevitable to be able to understand photocatalysis fully and to improve its efficiency.

  2. Low Cost Solar Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    William Bostic

    2005-12-16

    This project was directed by NREL to pursue development of an all polymer solar thermal collector. The proposed design utilized a dual sheet thermoform process to coincidentally form the absorber as well as the containment structure to support the glazing. It utilized ventilation to overcome stagnation degradation of the polymer materials.

  3. Further testing of solar water heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C.; Watson, M.

    2002-07-01

    In a study for the DTI, the Energy Monitoring Company compared the amount of energy which eight solar water heaters could generate. The systems were operated side by side over about six months. In one series of tests the systems were operated entirely as solar systems, and in another, auxiliary top-up heating was applied. The two systems were evaluated and the relative advantages/disadvantages discussed.

  4. Energy comparison between solar thermal power plant and photovoltaic power plant

    Science.gov (United States)

    Novosel, Urška; Avsec, Jurij

    2017-07-01

    The combined use of renewable energy and alternative energy systems and better efficiency of energy devices is a promising approach to reduce effects due to global warming in the world. On the basis of first and second law of thermodynamics we could optimize the processes in the energy sector. The presented paper shows the comparison between solar thermal power plant and photovoltaic power plant in terms of energy, exergy and life cycle analysis. Solar thermal power plant produces electricity with basic Rankine cycle, using solar tower and solar mirrors to produce high fluid temperature. Heat from the solar system is transferred by using a heat exchanger to Rankine cycle. Both power plants produce hydrogen via electrolysis. The paper shows the global efficiency of the system, regarding production of the energy system.

  5. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W. [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1997-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  6. Fiscal 1974 Sunshine Project result report. R and D on solar cooling/heating and hot water supply system (R and D on the system for existing detached houses); 1974 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Kison kojin jutakuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-05-28

    This report describes the fiscal 1974 research result on solar cooling/heating and hot water supply systems for existing detached houses. The program for calculating heat collection rates was prepared by integrating peripheral conditions and every calculation step of heat collection rate, mean value, accumulated value and changes caused by disturbance. The cooling/heating load calculation program was also prepared for unsteady dynamic thermal analysis of houses. Another program was prepared for hot water supply load because of a large difference in life pattern. The profitability and energy conservation of 644 systems different in heat source, heat discharge, heat collection, heat storage, auxiliary heat source and equipment were evaluated by heat balance calculation program. Survey and study were also made on various heat engines such as heat pump, absorption refrigerator and Rankine cycle engine. Based on the survey result on existing technology for plane collectors, the optimum design method of collectors were established through various characteristic tests. Some kinds of suitable fusion latent heat type heat media were selected, and their operation stabilities were studied. (NEDO)

  7. Possible emissions from electricity and heat generation from geothermal energy by the use of F-gases in the energy conversion process by an Organic Rankine Cycle (ORC); Moegliche Emissionen bei der Strom- und Waermeerzeugung aus Geothermie durch den Einsatz von F-Gasen im Energiewandlungsprozess mittels ORC

    Energy Technology Data Exchange (ETDEWEB)

    Heberle, Florian; Obermeier, Andreas; Brueggemann, Dieter [Steinbeis-Transferzentrum - Angewandte Thermodynamik, Energie- und Verbrennungstechnik (ATEV), Bayreuth (Germany)

    2012-11-15

    . Regarding actual discussion and positions of the EU-Commission an inclusion of the ORC in the ChemKlimaSchutzV and EU Regulation 842/2006 because of the use of fluorinated hydrocarbons seems to be possible. For a sustainable expansion of geothermal power generation the conflict of objectives, highlighted by this study, between efficiency increase and additional emissions has to be discussed in more detail. Therefore, reliable data for rates of emissions by ORC systems are important. Furthermore, the performed calculations will be extended by selecting working fluids according to the geothermal water temperature. In addition general approaches for the reduction of emissions and the increase in efficiency have to be intensified. In this context alternative thermodynamic cycles, steady improvement of ORC systems or the use of refrigerants with low global warming potential are examples. [German] Der Organic Rankine Cycle (ORC) ist neben dem Kalina Cycle einer der wenigen Kreisprozesse, der fuer eine Stromerzeugung auf Niedertemperaturniveau geeignet ist. Durch Optimierungsansaetze, die auf eine gute Anpassung der Temperaturprofile von Waermequelle bzw. -senke mit dem ORC abzielen, koennen Effizienzsteigerungen im Bereich von 15 % bis 25 % erreicht wer-den. Optimierungsmassmahmen sind z.B. die Auswahl geeigneter Arbeitsmedien, die zweistufige Entspannung, die ueberkritische Fahrweise oder der Einsatz zeotroper Gemische als Arbeitsmedien.

  8. Solar energy system performance evaluation - final report for Honeywell OTS 45, Salt River Project, Phoenix, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, A K

    1983-09-01

    This report describes the operation and technical performance of the Solar Operational Test Site (OTS 45) at Salt River Project in Phoenix, Arizona, based on the analysis of data collected between April 1981 and March 31, 1982. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 45 is a hydronic heating and cooling system consisting of 8208 square feet of liquid-cooled flat-plate collectors; a 2500-gallon thermal storage tank; two 25-ton capacity organic Rankine-cycle-engine-assisted water chillers; a forced-draft cooling tower; and associated piping, pumps, valves, controls and heat rejection equipment. The solar system has eight basic modes of operation and several combination modes. The system operation is controlled automatically by a Honeywell-designed microprocessor-based control system, which also provides diagnostics. Based on the instrumented test data monitored and collected during the 8 months of the Operational Test Period, the solar system collected 1143 MMBtu of thermal energy of the total incident solar energy of 3440 MMBtu and provided 241 MMBtu for cooling and 64 MMBtu for heating. The projected net annual electrical energy savings due to the solar system was approximately 40,000 kWh(e).

  9. Entrance Effects in Solar Hot Water Stores

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    2003-01-01

    A theoretical and experimental analysis of water jets entering a solar storage tank is performed. CFD calculations of three inlet designs with different inlet flow rates were carried out to illustrate the varying behaviour of the thermal conditions in a solar store. The results showed the impact...... of the inlet design on the flow patterns in the tank and thus how the energy quality in a hot water tank is reduced with a poor inlet design. The numerical investigations were followed by experiments. A test solar store, similar to the store investigated by numerical modelling was constructed with cylindrical...... transparent walls so that the flow structures due to the inlet jets could be visualized. With the three inlets, nine draw-off tests with different inlet flow rates were carried out and the temperature stratification in the tank was measured during the draw-offs. The experimental results were used...

  10. Solar Hot Water Heating by Natural Convection.

    Science.gov (United States)

    Noble, Richard D.

    1983-01-01

    Presents an undergraduate laboratory experiment in which a solar collector is used to heat water for domestic use. The working fluid is moved by natural convection so no pumps are required. Experimental apparatus is simple in design and operation so that data can be collected quickly and easily. (Author/JN)

  11. Energy Primer: Solar, Water, Wind, and Biofuels.

    Science.gov (United States)

    Portola Inst., Inc., Menlo Park, CA.

    This is a comprehensive, fairly technical book about renewable forms of energy--solar, water, wind, and biofuels. The biofuels section covers biomass energy, agriculture, aquaculture, alcohol, methane, and wood. The focus is on small-scale systems which can be applied to the needs of the individual, small group, or community. More than one-fourth…

  12. Obtaining drinking water using solar electrodialysis

    Directory of Open Access Journals (Sweden)

    Sandro César Silveira Jucá

    2010-05-01

    Full Text Available This paper shows the main worldwide experiments in PV powered electrodialysis plants and analyses possible applications of such systems in the Brazilian Northeast region. The use of PV arrays to power electrodialysis plants for desalination of brackish water from deep wells makes sense in arid and semiarid regions. In such areas there is often an inadequate water and energy supply infrastructure along with favorable levels of solar radiation for electric generation, as is the case of the Brazilian Northeast region.

  13. The origin of inner Solar System water.

    Science.gov (United States)

    Alexander, Conel M O'D

    2017-05-28

    Of the potential volatile sources for the terrestrial planets, the CI and CM carbonaceous chondrites are closest to the planets' bulk H and N isotopic compositions. For the Earth, the addition of approximately 2-4 wt% of CI/CM material to a volatile-depleted proto-Earth can explain the abundances of many of the most volatile elements, although some solar-like material is also required. Two dynamical models of terrestrial planet formation predict that the carbonaceous chondrites formed either in the asteroid belt ('classical' model) or in the outer Solar System (5-15 AU in the Grand Tack model). To test these models, at present the H isotopes of water are the most promising indicators of formation location because they should have become increasingly D-rich with distance from the Sun. The estimated initial H isotopic compositions of water accreted by the CI, CM, CR and Tagish Lake carbonaceous chondrites were much more D-poor than measured outer Solar System objects. A similar pattern is seen for N isotopes. The D-poor compositions reflect incomplete re-equilibration with H2 in the inner Solar System, which is also consistent with the O isotopes of chondritic water. On balance, it seems that the carbonaceous chondrites and their water did not form very far out in the disc, almost certainly not beyond the orbit of Saturn when its moons formed (approx. 3-7 AU in the Grand Tack model) and possibly close to where they are found today.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  14. Solar Water Heating with Low-Cost Plastic Systems (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-01-01

    Newly developed solar water heating technology can help Federal agencies cost effectively meet the EISA requirements for solar water heating in new construction and major renovations. This document provides design considerations, application, economics, and maintenance information and resources.

  15. Artificial photosynthesis for solar water-splitting

    Science.gov (United States)

    Tachibana, Yasuhiro; Vayssieres, Lionel; Durrant, James R.

    2012-08-01

    Hydrogen generated from solar-driven water-splitting has the potential to be a clean, sustainable and abundant energy source. Inspired by natural photosynthesis, artificial solar water-splitting devices are now being designed and tested. Recent developments based on molecular and/or nanostructure designs have led to advances in our understanding of light-induced charge separation and subsequent catalytic water oxidation and reduction reactions. Here we review some of the recent progress towards developing artificial photosynthetic devices, together with their analogies to biological photosynthesis, including technologies that focus on the development of visible-light active hetero-nanostructures and require an understanding of the underlying interfacial carrier dynamics. Finally, we propose a vision for a future sustainable hydrogen fuel community based on artificial photosynthesis.

  16. Modelling heterogeneous interfaces for solar water splitting

    Science.gov (United States)

    Pham, Tuan Anh; Ping, Yuan; Galli, Giulia

    2017-04-01

    The generation of hydrogen from water and sunlight offers a promising approach for producing scalable and sustainable carbon-free energy. The key of a successful solar-to-fuel technology is the design of efficient, long-lasting and low-cost photoelectrochemical cells, which are responsible for absorbing sunlight and driving water splitting reactions. To this end, a detailed understanding and control of heterogeneous interfaces between photoabsorbers, electrolytes and catalysts present in photoelectrochemical cells is essential. Here we review recent progress and open challenges in predicting physicochemical properties of heterogeneous interfaces for solar water splitting applications using first-principles-based approaches, and highlights the key role of these calculations in interpreting increasingly complex experiments.

  17. Development of a solar-powered residential air conditioner

    Science.gov (United States)

    1975-01-01

    The initial objective of the program was the optimization (in terms of cost and performance) of a Rankine cycle mechanical refrigeration system which utilizes thermal energy from a flat solar collector for air conditioning residential buildings. However, feasibility investigations of the adsorption process revealed that a dessicant-type air conditioner offers many significant advantages. As a result, limited efforts were expended toward the optimization of such a system.

  18. Large scale water lens for solar concentration.

    Science.gov (United States)

    Mondol, A S; Vogel, B; Bastian, G

    2015-06-01

    Properties of large scale water lenses for solar concentration were investigated. These lenses were built from readily available materials, normal tap water and hyper-elastic linear low density polyethylene foil. Exposed to sunlight, the focal lengths and light intensities in the focal spot were measured and calculated. Their optical properties were modeled with a raytracing software based on the lens shape. We have achieved a good match of experimental and theoretical data by considering wavelength dependent concentration factor, absorption and focal length. The change in light concentration as a function of water volume was examined via the resulting load on the foil and the corresponding change of shape. The latter was extracted from images and modeled by a finite element simulation.

  19. Nexant Parabolic Trough Solar Power Plant Systems Analysis; Task 1: Preferred Plant Size, 20 January 2005 - 31 December 2005

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, B.

    2006-07-01

    The Rankine cycles for commercial parabolic trough solar projects range in capacity from 13.5 MWe at the Solar Electric Generating Station I (SEGS I) plant, to a maximum of 89 MWe at the SEGS VIII/IX plants. The series of SEGS projects showed a consistent reduction in the levelized energy cost due to a combination of improvements in collector field technology and economies of scale in both the Rankine cycle and the operation and maintenance costs. Nonetheless, the question of the optimum Rankine cycle capacity remains an open issue. The capacities of the SEGS VIII/IX plants were limited by Federal Energy Regulatory Commission and Public Utility Regulatory Policy Act requirements to a maximum net output of 80 MWe. Further improvements in the Rankine cycle efficiency, and economies of scale in both the capital and the operating cost, should be available at larger plant sizes. An analysis was conducted to determine the effect of Rankine cycle capacities greater than 80 MWe on the levelized energy cost. The study was conducted through the following steps: (1) Three gross cycle capacities of 88 MWe, 165 MWe, and 220 MWe were selected. (2) Three Rankine cycle models were developed using the GateCycle program. The models were based on single reheat turbine cycles, with main steam conditions of 1,450 lb{sub f}/in{sup 2} and 703 F, and reheat steam conditions of 239 lb{sub f}/in{sup 2} and 703 F. The feedwater heater system consisted of 5 closed heaters and 1 open deaerating heater. The design condenser pressure was 2.5 in. HgA. (3) The optimization function within Excelergy was used to determine the preferred solar multiple for each plant. Two cases were considered for each plant: (a) a solar-only project without thermal storage, and (b) a solar-fossil hybrid project, with 3 hours of thermal storage and a heat transport fluid heater fired by natural gas. (4) For each of the 6 cases, collector field geometries, heat transport fluid pressure losses, and heat transport pump

  20. Solar energy system performance evaluation: final report for Honeywell OTS 41, Shenandoah (Newnan), Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, A K; Pederson, S

    1982-08-01

    The operation and technical performance of the Solar Operational Test Site (OTS 41) located at Shenandoah, Georgia, are described, based on the analysis of data collected between January and August 1981. The following topics are discussed: system description, performance assessment, operating energy, energy savings, system maintenance, and conclusions. The solar energy system at OTS 41 is a hydronic heating and cooling system consisting of 702 square feet of liquid-cooled flat-plate collectors; a 1000-gallon thermal storage tank; a 3-ton capacity organic Rankine-cycle-engine-assisted air conditioner; a water-to-air heat exchanger for solar space heating; a finned-tube coil immersed in the storage tank to preheat water for a gas-fired hot water heater; and associated piping, pumps, valves, and controls. The solar system has six basic modes of operation and several combination modes. The system operation is controlled automatically by a Honeywell-designed microprocessor-based control system, which also provides diagnostics. Based on the instrumented test data monitored and collected during the 7 months of the Operational Test Period, the solar system collected 53 MMBtu of thermal energy of the total incident solar energy of 219 MMBtu and provided 11.4 MMBtu for cooling, 8.6 MMBtu for heating, and 8.1 MMBtu for domestic hot water. The projected net annual energy savings due to the solar system were approximately 50 MMBtu of fossil energy (49,300 cubic feet of natural gas) and a loss of 280 kWh(e) of electrical energy.

  1. Installation package for a Sunspot Cascade Solar Water Heating System

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    Elcam, Incorporated of Santa Barbara, California, has developed two solar water heating systems. The systems have been installed at Tempe, Arizona and San Diego, California. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank and controls. General guidelines are provided which may be utilized in development of detailed instalation plans and specifications. In addition, it provides instruction on operation, maintenance and installation of solar hot water systems.

  2. Thermo-economic performance of inclined solar water distillation systems

    Directory of Open Access Journals (Sweden)

    Agboola Phillips O.

    2015-01-01

    Full Text Available This study investigates the thermo-economic performance of different configurations of inclined solar water desalination for parameters such as daily production, efficiency, system cost and distilled water production cost. The four different configurations considered for this study are as follows; 1. Inclined solar water distillation with bare absorber plate (IISWD with daily production of 5.46 kg/m2 day and daily efficiency of 48.3%. 2. Inclined solar water distillation with wick on absorber plate (IISWDW with daily production of 6.41kg/m2 day and daily efficiency 50.3%. 3. Inclined solar water distillation with wire mesh on absorber plate (IISWDWM with daily production n of 3.03 kg/m2 day and daily efficiency 32.6%. 4. Inclined solar water distillation with bare absorber plate (ISWD. (Control System with daily production of 3.25 kg/m2 day and daily efficiency of 40.1%. The systems potable water cost price ranges from 0.03 $/L for IISWDW to 0.06$/L for IISWDWM System. All the systems are economically and technically feasible as a solar distillation system for potable water in Northern Cyprus. The price of potable water from water vendors/hawkers ranges from 0.11-0.16 $/L. It is more economically viable to have the rooftop inclined solar water desalination system than procuring potable water from vendors.`

  3. Disinfection of contaminated water by using solar irradiation.

    Science.gov (United States)

    Caslake, Laurie F; Connolly, Daniel J; Menon, Vilas; Duncanson, Catriona M; Rojas, Ricardo; Tavakoli, Javad

    2004-02-01

    Contaminated water causes an estimated 6 to 60 billion cases of gastrointestinal illness annually. The majority of these cases occur in rural areas of developing nations where the water supply remains polluted and adequate sanitation is unavailable. A portable, low-cost, and low-maintenance solar unit to disinfect unpotable water has been designed and tested. The solar disinfection unit was tested with both river water and partially processed water from two wastewater treatment plants. In less than 30 min in midday sunlight, the unit eradicated more than 4 log10 U (99.99%) of bacteria contained in highly contaminated water samples. The solar disinfection unit has been field tested by Centro Panamericano de Ingenieria Sanitaria y Ciencias del Ambiente in Lima, Peru. At moderate light intensity, the solar disinfection unit was capable of reducing the bacterial load in a controlled contaminated water sample by 4 log10 U and disinfected approximately 1 liter of water in 30 min.

  4. Prototype solar heating and hot water systems

    Science.gov (United States)

    1977-01-01

    Alternative approaches to solar heating and hot water system configurations were studied, parametrizing the number and location of the dampers, the number and location of the fans, the interface locations with the furnace, the size and type of subsystems, and operating modes. A two-pass air-heating collector was selected based on efficiency and ease of installation. Also, an energy transport module was designed to compactly contain all the mechanical and electrical control components. System performance calculations were carried out over a heating season for the tentative site location at Tunkhnana, Pa. Results illustrate the effect of collector size, storage capacity, and use of a reflector. Factors which affected system performance include site location, insulative quality of the house, and of the system components. A preliminary system performance specification is given.

  5. Towards Highly Efficient Bias-Free Solar Water Splitting

    NARCIS (Netherlands)

    Abdi, F.F.

    2013-01-01

    Solar water splitting has attracted significant attention due to its potential of converting solar to chemical energy. It uses semiconductor to convert sunlight into electron-hole pairs, which then split water into hydrogen and oxygen. The hydrogen can be used as a renewable fuel, or it can serve as

  6. Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting

    NARCIS (Netherlands)

    Valenti, M.; Jonsson, M.P.; Biskos, G.; Schmidt-Ott, A.; Smith, W.A.

    2016-01-01

    Photoelectrochemical (PEC) water splitting is a promising technology that uses light absorbing semiconductors to convert solar energy directly into a chemical fuel (i.e., hydrogen). PEC water splitting has the potential to become a key technology in achieving a sustainable society, if high solar

  7. Performance of solar photovoltaic array fed water pumping system ...

    African Journals Online (AJOL)

    DR OKE

    technologies make solar power a quite attractive solution for standalone power generation and applications like water pumping. SPV array fed water pumping system is fitted with manual or with auto-trackers for synchronizing with the shifting direction of the sun. In this way, solar panel captures sun rays continuously and ...

  8. Novel configurations of solar distillation system for potable water production

    Science.gov (United States)

    Riahi, A.; Yusof, K. W.; Sapari, N.; Singh, B. S.; Hashim, A. M.

    2013-06-01

    More and more surface water are polluted with toxic chemicals. Alternatively brackish and saline water are used as feed water to water treatment plants. Expensive desalination process via reverse osmosis or distillation is used in the plants. Thus, this conventional desalination is not suitable for low and medium income countries. A cheaper method is by solar distillation. However the rate of water production by this method is generally considered low. This research attempts to enhance water production of solar distillation by optimizing solar capture, evaporation and condensation processes. Solar radiation data was captured in several days in Perak, Malaysia. Three kinds of experiments were done by fabricating triangular solar distillation systems. First type was conventional solar still, second type was combined with 50 Watt solar photovoltaic panel and 40 Watt Dc heater, while third type was integrated with 12 Volt Solar battery and 40 Watt Dc heater. The present investigation showed that the productivity of second and third systems were 150% and 480% of the conventional still type, respectively. The finding of this research can be expected to have wide application in water supply particularly in areas where fresh surface water is limited.

  9. development of an automated batch-process solar water disinfection

    African Journals Online (AJOL)

    user

    (Joules) preset at the beginning of the experiment/disinfection process. Fig. 2: Schematic diagram of the automated batch- process solar water disinfection system. Fig. 3: Pictorial view of the automated batch-process solar water disinfection system. Figure 4: Circuitry of Arduino® microcontroller with the different sensors ...

  10. Solar heating of the produced water of petroleum; Aquecimento solar da agua produzida de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Rogerio Pitanga; Chiavone-Filho, Osvaldo; Bezerra, Magna A. Santos; Melo, Josette Lourdes Sousa de; Oliveira, Jackson Araujo de; Ramos, Rafael E. Moura [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Schuhli, Juliana Bregenski; Andrade, Vivian Tavares de [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    In this work, experimental data of solar heating for common water and saline solution were measured. The solar heater is formed by a flat-plane collector and a thermal reservoir ('boiler'). The objective is to quantify the variation of fluids' temperature, and correlate it to environment variables, especially solar irradiation. Thereby, it is possible to estimate the solar heating of produced water of petroleum. The solar heater is part of a system of treatment of produced water, and its function is to pre-heat the fluid that enters into the solar distiller, increasing the productivity of distilled water. A saline solution that represents produced water was used in the experiments, using sodium chloride (1000 ppm). The experimental data demonstrates that the solar heater is capable to heat the fluid to temperatures close to 70 deg C, reaching temperatures close to 50 deg C even during cloudy days with low solar radiation. Furthermore, the solar collector energy system provides a higher rate of heating and trough of the thermal reservoir the temperature can remain longer. These are important aspects to the integration with solar distillation. (author)

  11. Integral-type solar water heater using loop heat pipe

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.J.; Yang, P.E.; Wang, J.H.; Wu, J.H. [New Energy Center, Taiwan Univ., Taipei (China)

    2008-07-01

    Taiwan University has been devoted to the development of low-cost LHP (loop hat pipe). A new manufacturing process for low-cost LHP has been developed that leads to a cost down to less than 10 USD for a 100W LHP. The present study utilizes the low-cost LHP to develop a new type of solar water heater. A thermosyphon which is thermally bonded with a solar absorber plate is used to absorb solar energy and transfer the heat upward to the evaporator of the LHP. From that, the heat is conducted downward to the condenser of the LHP which is immersed in a hot water tank beneath the solar collector. The solar water heater thus can be designed in integral type with streamline shape which is easy to install and has a good outlook as well as high efficiency. A prototype was designed and fabricated in the present study. A preliminary heat transfer test for a single unit of thermosyphon-LHP combination shows that it is capable of transferring the absorbed energy downward to the LHP condenser immersed in a hot water tank. The overall thermal resistance from the absorber plate to water is 0.34 C/W. and the thermal resistance of the LHP is 0.16 C/W. Two prototypes of the solar water heaters with 50 liters and 80 liters hot water tanks were designed according to the results of the feasibility test. In addition, an automatic monitoring system was designed and set up for the performance test of these two solar water heaters based on the test standard CNS B7277. The measured overall thermal resistance from solar absorber plate to water is 0.369 C/W. The daily solar water heater efficiency is 0.503. The present study has shown that the application of low-cost LHP in solar water heater is feasible and cost competitive. (orig.)

  12. Effect of Installation of Solar Collector on Performance of Balcony Split Type Solar Water Heaters

    Directory of Open Access Journals (Sweden)

    Xu Ji

    2015-01-01

    Full Text Available The influences of surface orientation and slope of solar collectors on solar radiation collection of balcony split type solar water heaters for six cities in China were analyzed by employing software TRNSYS. The surface azimuth had greater effect on solar radiation collection in high latitude regions. For deviation of the surface slope angle within ±20° around the optimized angle, the variation of the total annual collecting solar radiation was less than 5%. However, with deviation of 70° to 90°, the variation was up to 20%. The effects of water cycle mode, reverse slope placement of solar collector, and water tank installation height on system efficiency were experimentally studied. The thermal efficiencies of solar water heater with single row horizontal arrangement all-glass evacuated tubular collector were higher than those with vertical arrangement at the fixed surface slope angle of 90°. Compared with solar water heaters with flat-plate collector under natural circulation, the system thermal efficiency was raised up to 63% under forced circulation. For collector at reverse slope placement, the temperature-based water stratification in water tank deteriorated, and thus the thermal efficiency became low. For improving the system efficiency, an appropriate installation height of the water tank was suggested.

  13. Hybrid power plants consisting of geothermal power plants and cogeneration plants for the combined heat and power generation on the basis of an Organic Rankine Cycle; Geothermie-BHKW-Hybridkraftwerke zur Kraft-Waerme-Kopplung auf Basis des Organic Rankine Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Heberle, F.; Hartmann, A.; Brueggemann, D. [Bayreuth Univ. (DE). Lehrstuhl fuer Technische Thermodynamik und Transportprozesse (LTTT)

    2011-10-24

    The combined use of renewable energy sources in hybrid power plants has a significant potential to increase energy efficiency under energetic and economic issues. The indirect heat supply by heating thermal water via a waste heat source is a promising variant of coupling. Due to an additional heat generation more interconnection options and regulation technical degrees of freedom are resulting which must be considered in the design and dimensioning. The authors of the contribution under consideration report on a thermodynamic and economic analysis of a hybrid geothermal cogeneration power plant for combined heat and power generation using selected examples. An all-the-year coverage of the heat demand can be guaranteed for all hybrid concepts.

  14. Solar UV reduces Cryptosporidium parvum oocyst infectivity in environmental waters.

    Science.gov (United States)

    King, B J; Hoefel, D; Daminato, D P; Fanok, S; Monis, P T

    2008-05-01

    To determine the effect of solar radiation on Cryptosporidium parvum in tap and environmental waters. Outdoor tank experiments and a cell culture infectivity assay were used to measure solar inactivation of C. parvum oocysts in different waters. Experiments conducted on days with different levels of solar insolation identified rapid inactivation of oocysts in tap water (up to 90% inactivation within the first hour). Increased dissolved organic carbon content in environmental waters decreased solar inactivation. The role of solar ultraviolet (UV) in inactivation was confirmed by long-pass filter experiments, where UV-B was identified as the most germicidal wavelength. Reductions in oocyst infectivity following solar radiation were not related to a loss of excystation capacity. Solar UV can rapidly inactivate C. parvum in environmental waters. This is the first study to assess natural sunlight inactivation of C. parvum oocysts in surface waters and drinking water using an infectivity measure and determines the wavelengths of light responsible for the inactivation. The findings presented here provide valuable information for determining the relative risks associated with Cryptosporidium oocysts in aquatic environments and identify solar radiation as a critical process affecting the oocyst survival in the environment.

  15. Methods of increasing net work output of organic Rankine cycles for low-grade waste heat recovery with a detailed analysis using a zeotropic working fluid mixture and scroll expander

    Science.gov (United States)

    Woodland, Brandon Jay

    An organic Rankine cycle (ORC) is a thermodynamic cycle that is well-suited for waste heat recovery. It is generally employed for waste heat with temperatures in the range of 80 °C -- 300 °C. When the application is strictly to convert waste heat into work, thermal efficiency is not recommended as a key performance metric. In such an application, maximization of the net power output should be the objective rather than maximization of the thermal efficiency. Two alternative cycle configurations that can increase the net power produced from a heat source with a given temperature and flow rate are proposed and analyzed. These cycle configurations are 1) an ORC with two-phase flash expansion and 2) an ORC with a zeotropic working fluid mixture (ZRC). A design-stage ORC model is presented for consistent comparison of multiple ORC configurations. The finite capacity of the heat source and heat sink fluids is a key consideration in this model. Of all working fluids studied for the baseline ORC, R134a and R245fa yield the highest net power output from a given heat source. Results of the design-stage model indicate that the ORC with two-phase flash expansion offers the most improvement over the baseline ORC. However, the level of improvement that could be achieved in practice is highly uncertain due to the requirement of highly efficient two-phase expansion. The ZRC shows improvement over the baseline as long as the condenser fan power requirement is not negligible. At the highest estimated condenser fan power, the ZRC shows the most improvement, while the ORC with flash expansion is no longer beneficial. The ZRC was selected for detailed study because it does not require two-phase expansion. An experimental test rig was used to evaluate baseline ORC performance with R134a and with R245fa. The ZRC was tested on the same rig with a mixture of 62.5% R134a and 37.5% R245fa. The tested expander is a minimally-modified, of-the-shelf automotive scroll compressor. The high

  16. Research programme 'Active Solar Energy Use - Solar Heating and Heat Storage'. Activities and projects 2003; Programme 'Solaire actif - Chaleur et Stockage de chaleur'. Activites et projets en 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hadorn, J.-C. [Base Consultants, Geneva (Switzerland); Renaud, P. [Planair SA, La Sagne (Switzerland)

    2003-07-01

    In this report by the research, development and demonstration (RD+D) programme coordinators the objectives, activities and main results in the area of solar heating and heat storage in Switzerland are presented for 2003. In a stagnating market environment the strategy of the Swiss Federal Office of Energy mainly consists in improving the quality and durability of solar collectors and materials, optimizing combisystems for space heating and domestic hot water preparation, searching for storage systems with a higher energy storage density than in the case of sensible heat storage in water, developing coloured solar collectors for more architectonic freedom, and finalizing a seasonal heat storage project for 100 dwellings to demonstrate the feasibility of solar fractions larger than 50% in apartment houses. Support was granted to the Swiss Testing Facility SPF in Rapperswil as in previous years; SPF was the first European testing institute to perform solar collector labeling according to the new rules of the 'Solar Keymark', introduced in cooperation with the European Committee for Standardization CEN. Several 2003 projects were conducted within the framework of the Solar Heating and Cooling Programme of the International Energy Agency IEA. Computerized simulation tools were improved. With the aim of jointly producing high-temperature heat and electric power a solar installation including a concentrating collector and a thermodynamic machine based on a Rankine cycle is still being developed. Seasonal underground heat storage was studied in detail by means of a validated computer simulation programme. Design guidelines were obtained for such a storage used in the summer time for cooling and in the winter time for space heating via a heat pump: depending on the ratio 'summer cooling / winter heating', cooling requires a cooling machine, or direct cooling without such a machine is possible. The report ends up with the list of all supported RD

  17. Solar power satellites - Heat engine or solar cells

    Science.gov (United States)

    Oman, H.; Gregory, D. L.

    1978-01-01

    A solar power satellite is the energy-converting element of a system that can deliver some 10 GW of power to utilities on the earth's surface. We evaluated heat engines and solar cells for converting sunshine to electric power at the satellite. A potassium Rankine cycle was the best of the heat engines, and 50 microns thick single-crystal silicon cells were the best of the photovoltaic converters. Neither solar cells nor heat engines had a clear advantage when all factors were considered. The potassium-turbine power plant, however, was more difficult to assemble and required a more expensive orbital assembly base. We therefore based our cost analyses on solar-cell energy conversion, concluding that satellite-generated power could be delivered to utilities for around 4 to 5 cents a kWh.

  18. Design package for solar domestic hot water system

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    Information used to evaluate the initial design of the Elcam, Inc., Solar Domestic Hot Water System is presented. Included are such items as the system performance specification, detailed design drawings and other information. Elcam, Inc., has developed two solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished Site Data Acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

  19. Development of a solar-powered residential air conditioner: Screening analysis

    Science.gov (United States)

    1975-01-01

    Screening analysis aimed at the definition of an optimum configuration of a Rankine cycle solar-powered air conditioner designed for residential application were conducted. Initial studies revealed that system performance and cost were extremely sensitive to condensing temperature and to the type of condenser used in the system. Consequently, the screening analyses were concerned with the generation of parametric design data for different condenser approaches; i. e., (1) an ambient air condenser, (2) a humidified ambient air condenser (3) an evaporative condenser, and (4) a water condenser (with a cooling tower). All systems feature a high performance turbocompressor and a single refrigerant (R-11) for the power and refrigeration loops. Data were obtained by computerized methods developed to permit system characterization over a broad range of operating and design conditions. The criteria used for comparison of the candidate system approaches were (1) overall system COP (refrigeration effect/solar heat input), (2) auxiliary electric power for fans and pumps, and (3) system installed cost or cost to the user.

  20. Water Impacts of High Solar PV Electricity Penetration

    Energy Technology Data Exchange (ETDEWEB)

    Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cohen, Stuart [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    This analysis provides a detailed national and regional description of the water-related impacts and constraints of high solar electricity penetration scenarios in the U.S. in 2030 and 2050. A modified version of the Regional Energy Deployment System (ReEDS) model that incorporates water resource availability and costs as a constraint in each of its 134 Balancing Area (BA) regions was utilized to explore national and regional differences in water use impacts and solar deployment locations under different solar energy cost and water availability scenarios (Macknick et al. 2015). Water resource availability and cost data are from recently completed research at Sandia National Laboratories (Tidwell et al. 2013a). Scenarios analyzed include two business-as-usual solar energy cost cases, one with and one without considering available water resources, and four solar energy cost cases that meet the SunShot cost goals (i.e., $1/watt for utility-scale PV systems), with varying levels of water availability restrictions. This analysis provides insight into the role solar energy technologies have in the broader electricity sector under scenarios of water constraints.

  1. Simple Continuous-Flow Device for Combined Solar Thermal Pasteurization and Solar Disinfection for Water Sterilization

    Directory of Open Access Journals (Sweden)

    Anthony Amsberry

    2015-02-01

    Full Text Available A collection unit and reflective concentrators were used to thermally preheat water to at least 70 °C for thermal pasteurization prior to a solar disinfection stage. The device is offered as a novel combined cycle to be used for either solar thermal pasteurization, during seasonalpeaks in solar irradiation, or as a solar preheat for UV solar disinfection which would occur in a flow-through solar disinfection trough. Inexpensive materials were used in order to simulate in field functionality and applicability to rural regions with low solar input. Solar incidence at Oregon State University, with latitude 45.5°, was recorded during trials conducted during May 1 to June 10 for the purpose of directly scaling the water treatment volumetric flowrate of the device for any future tests in other locations. This scaling by solar irradiation makes this dataset useful for other locations with higher or lower solar input and needing more or less treated water. The simple gravity-fed continuous system presented in this article makes use of a large cold water reservoir, a shell-and-tube heat exchanger, and a solar collector. The system, operating at flowrates of 100-150 mL/min is able to reach outlet temperatures of 74°C.  The system is projected to produce 55 L of purified water daily when operating on a sunny day with peak UV radiation above 700 W/m2. System cost was $55 with an added optional $15 for the shell-and-tube heat exchanger.

  2. Design and installation package for solar hot water system

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    This report contains the design and installation procedure for the Solar Engineering and Manufacturing Company's solar hot water system. Included are the system performance specifications, system design drawings, hazard analysis and other information necessary to evaluate the design and instal the system.

  3. Solar water heaters in China: A new day dawning

    NARCIS (Netherlands)

    Han, Jingyi; Mol, A.P.J.; Lu, Y.

    2010-01-01

    Solar thermal utilization, especially the application of solar water heater technology, has developed rapidly in China in recent decades. Manufacturing and marketing developments have been especially strong in provinces such as Zhejiang, Shandong and Jiangsu. This paper takes Zhejiang, a relatively

  4. Phase 1 of the First Small Power System Experiment (engineering Experiment No. 1). Volume 1: Executive Summary. [development and testing of a solar thermal power plant

    Science.gov (United States)

    Holl, R. J.

    1979-01-01

    The development of a modular solar thermal power system for application in the 1 to 10 MWe range is presented. The system is used in remote utility applications, small communities, rural areas, and for industrial uses. Investigations are performed on the energy storage requirements and type of energy storage, concentrator design and field optimization, energy transport, and power conversion subsystems. The system utilizes a Rankine cycle, an axial flow steam turbine for power conversion, and heat transfer sodium for collector fluid.

  5. Energy and exergy analysis of the Kalina cycle for use in concentrated solar power plants with direct steam generation

    DEFF Research Database (Denmark)

    Knudsen, Thomas; Clausen, Lasse Røngaard; Haglind, Fredrik

    2014-01-01

    In concentrated solar power plants using direct steam generation, the usage of a thermal storage unit based only on sensible heat may lead to large exergetic losses during charging and discharging, due to a poor matching of the temperature profiles. By the use of the Kalina cycle, in which...... with direct steam generation. The following two scenarios were addressed using energy and exergy analysis: generating power using heat from only the receiver and using only stored heat. For each of these scenarios comparisons were made for mixture concentrations ranging from 0.1 mole fraction of ammonia to 0.......9, and compared to the conventional Rankine cycle. This comparison was then also carried out for various turbine inlet pressures (100 bar to critical pressures). The results suggest that there would be no benefit from using a Kalina cycle instead of a Rankine cycle when generating power from heat taken directly...

  6. The ancient heritage of water ice in the solar system.

    Science.gov (United States)

    Cleeves, L Ilsedore; Bergin, Edwin A; Alexander, Conel M O'D; Du, Fujun; Graninger, Dawn; Öberg, Karin I; Harries, Tim J

    2014-09-26

    Identifying the source of Earth's water is central to understanding the origins of life-fostering environments and to assessing the prevalence of such environments in space. Water throughout the solar system exhibits deuterium-to-hydrogen enrichments, a fossil relic of low-temperature, ion-derived chemistry within either (i) the parent molecular cloud or (ii) the solar nebula protoplanetary disk. Using a comprehensive treatment of disk ionization, we find that ion-driven deuterium pathways are inefficient, which curtails the disk's deuterated water formation and its viability as the sole source for the solar system's water. This finding implies that, if the solar system's formation was typical, abundant interstellar ices are available to all nascent planetary systems. Copyright © 2014, American Association for the Advancement of Science.

  7. Creating a Comprehensive Solar Water Heating Deployment Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Focus Marketing Services

    1999-08-18

    This report details the results of a research conducted in 1998 and 1999 and outlines a marketing deployment plan designed for businesses interested in marketing solar water heaters in the new home industry.

  8. Solar earth‑water distillation for wet sand

    OpenAIRE

    Peralta, R. C.; Skergan, Timothy M.; Marx, David B.

    1984-01-01

    Solar earth-water distillation is a means of extracting moisture from an earth medium. Three designs of the hot-box type of solar earth-water still were tested using wet or saturated sand. The designs included: low height with reflective interior siding, tall height with reflective siding and tall height with absorptive siding. The daily volume of distillate from different designs was compared. A twenty-centimeter-tall still with reflective siding produced significantly greater yields than on...

  9. Prototype solar heating and cooling systems, including potable hot water

    Science.gov (United States)

    Bloomquist, D.; Oonk, R. L.

    1977-01-01

    Progress made in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water is reported. The system consists of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition. A comparison of the proposed Solaron Heat Pump and Solar Desiccant Heating and Cooling Systems, installation drawings, data on the Akron House at Akron, Ohio, and other program activities are included.

  10. Solar hot water system installed at Las Vegas, Nevada

    Science.gov (United States)

    1981-01-01

    A solar energy hot water system installed in a motor inn at Las Vegas, Nevada is described. The inn is a three story building with a flat roof for installation of the solar panels. The system consists of 1,200 square feet of liquid flat plate collectors, a 2,500 gallon insulated vertical steel storage tank, two heat exchangers, and pumps and controls. The system was designed to supply approximately 74 percent of the total hot water load.

  11. Solar space and water heating system installed at Charlottesville, Virginia

    Science.gov (United States)

    1980-09-01

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, is described. The solar energy system consists of 88 single glazed, Sunworks 'Solector' copper base plate collector modules, hot water coils in the hot air ducts, a Domestic Hot Water (DHW) preheat tank, a 3,000 gallon concrete urethane insulated storage tank and other miscellaneous components. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  12. Tantalum-based semiconductors for solar water splitting.

    Science.gov (United States)

    Zhang, Peng; Zhang, Jijie; Gong, Jinlong

    2014-07-07

    Solar energy utilization is one of the most promising solutions for the energy crises. Among all the possible means to make use of solar energy, solar water splitting is remarkable since it can accomplish the conversion of solar energy into chemical energy. The produced hydrogen is clean and sustainable which could be used in various areas. For the past decades, numerous efforts have been put into this research area with many important achievements. Improving the overall efficiency and stability of semiconductor photocatalysts are the research focuses for the solar water splitting. Tantalum-based semiconductors, including tantalum oxide, tantalate and tantalum (oxy)nitride, are among the most important photocatalysts. Tantalum oxide has the band gap energy that is suitable for the overall solar water splitting. The more negative conduction band minimum of tantalum oxide provides photogenerated electrons with higher potential for the hydrogen generation reaction. Tantalates, with tunable compositions, show high activities owning to their layered perovskite structure. (Oxy)nitrides, especially TaON and Ta3N5, have small band gaps to respond to visible-light, whereas they can still realize overall solar water splitting with the proper positions of conduction band minimum and valence band maximum. This review describes recent progress regarding the improvement of photocatalytic activities of tantalum-based semiconductors. Basic concepts and principles of solar water splitting will be discussed in the introduction section, followed by the three main categories regarding to the different types of tantalum-based semiconductors. In each category, synthetic methodologies, influencing factors on the photocatalytic activities, strategies to enhance the efficiencies of photocatalysts and morphology control of tantalum-based materials will be discussed in detail. Future directions to further explore the research area of tantalum-based semiconductors for solar water splitting

  13. Towards solar fuels from water and CO2.

    Science.gov (United States)

    Centi, Gabriele; Perathoner, Siglinda

    2010-02-22

    Solar fuels from water and CO2 are a topic of current large scientific and industrial interest. Research advances on bioroutes, concentrated solar thermal and low-temperature conversion using semiconductors and a photoelectrocatalytic (PEC) approach, are critically discussed and compared in an attempt to define challenges and current limits and to identify the priorities on which focus research and development (R&D). The need to produce fuels that are easy to transport and store, which can be integrated into the existing energy infrastructure, is emphasized. The role of solar fuels produced from CO2 in comparison with solar H2 is analyzed. Solar fuels are complementary to solar to electrical energy conversion, but they still need intensified R&D before possible commercialization.

  14. Energy efficiency of a solar domestic hot water system

    Science.gov (United States)

    Zukowski, Miroslaw

    2017-11-01

    The solar domestic hot water (SDHW) system located on the campus of Bialystok University of Technology is the object of the research described in the current paper. The solar thermal system is composed of 35 flat plate collectors, 21 evacuated tube collectors and eight hot water tanks with the capacity of 1 m3 of each. Solar facility is equipped with hardware for automatic data collection. Additionally, the weather station located on the roof of the building provides measurements of basic parameters of ambient air and solar radiation. The main objective of Regional Operational Program was the assessment of the effectiveness of this solar energy technology in the climatic conditions of the north-eastern Poland. Energy efficiency of SDHW system was defined in this research as the ratio between the useful heat energy supplied to the domestic hot water system and solar energy incident on the surface of solar panels. Heat loss from water storage tanks, and from the pipe network to the surrounding air, as well as the electrical energy consumed by the pumps have been included in the calculations. The paper presents the detailed results and conclusions obtained from this energy analysis.

  15. Energy efficiency of a solar domestic hot water system

    Directory of Open Access Journals (Sweden)

    Zukowski Miroslaw

    2017-01-01

    Full Text Available The solar domestic hot water (SDHW system located on the campus of Bialystok University of Technology is the object of the research described in the current paper. The solar thermal system is composed of 35 flat plate collectors, 21 evacuated tube collectors and eight hot water tanks with the capacity of 1 m3 of each. Solar facility is equipped with hardware for automatic data collection. Additionally, the weather station located on the roof of the building provides measurements of basic parameters of ambient air and solar radiation. The main objective of Regional Operational Program was the assessment of the effectiveness of this solar energy technology in the climatic conditions of the north-eastern Poland. Energy efficiency of SDHW system was defined in this research as the ratio between the useful heat energy supplied to the domestic hot water system and solar energy incident on the surface of solar panels. Heat loss from water storage tanks, and from the pipe network to the surrounding air, as well as the electrical energy consumed by the pumps have been included in the calculations. The paper presents the detailed results and conclusions obtained from this energy analysis.

  16. 24 CFR 200.950 - Building product standards and certification program for solar water heating system.

    Science.gov (United States)

    2010-04-01

    ... certification program for solar water heating system. 200.950 Section 200.950 Housing and Urban Development... solar water heating system. (a) Applicable standards. (1) All solar water heating systems shall be...) Document OG-300-93, Operating Guidelines and Minimum Standards for Certifying Solar Water Heating Systems...

  17. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas

    Science.gov (United States)

    1980-06-01

    A solar heating on cooling system is described which is designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 solargenics, series 76, flat plate collectors with a total area of 1,596 square feet. The solar loop circulates an ethylene glyco water solution through the collectors into a hot water system exchanger. The water storage subsystem consists of a heat exchanger, two 2,300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water water fixtures. The building cold water system provides make up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described.

  18. Nant-De-Chatillon: electric power generation by ORC (organic Rankine cycle) using waste heat from the Chatillon biogas plant; Nant-de-Chatillon: Production d'electricite par ORC a partir des rejets de chaleur du site de methanisation de Chatillon. Resume

    Energy Technology Data Exchange (ETDEWEB)

    Kane, M.; Gay, B.

    2005-07-01

    This report prepared for the Swiss Federal Office of Energy (SFOE) describes the practical realisation and testing of a heat recovery system based on a one-stage organic Rankine cycle with R134a as the working fluid. The waste heat has a temperature of 95 {sup o}C and originates from a gas engine that powers a small co-generation plant fuelled with biogas produced on-site. Two similar cycles have been built, ORC1 with one and ORC2 with two turbines. Only ORC1 has been tested so far. The maximum efficiency measured in these tests was 6.64% (theoretical Carnot-efficiency: 17 %) and the electric power output was 5.0 kW. The problems encountered during commissioning are described and recommendations for further improvements are given.

  19. Recent developments in solar H 2 generation from water splitting

    Indian Academy of Sciences (India)

    Hydrogen production from water and sunlight through photocatalysis could become one of the channels, in the not-so-distant future, to meet a part of ever growing energy demands. However, accomplishing solar water splitting through semiconductor particulate photocatalysis seems to be the 'Holy Grail' problem of science.

  20. Performance of solar photovoltaic array fed water pumping system ...

    African Journals Online (AJOL)

    This paper discusses the design and performance analysis of a solar photovoltaic (SPV) array fed water pumping system utilizing a special class of highly rugged machine with simple drive system called switched reluctance motor (SRM) drive. The proposed method of water pumping system also provides the cost effective ...

  1. Solar Hot Water for Motor Inn--Texas City, Texas

    Science.gov (United States)

    1982-01-01

    Final report describes solar domestic-hot-water heater installation at LaQuinta Motor Inn, Texas City, Texas which furnished 63% of total hot-water load of new 98-unit inn. Report presents a description of system, drawings and photographs of collectors, operations and maintenance instructions, manufacturers' specifications for pumps, and an engineer's report on performance.

  2. Solar Space and Water Heating for Hospital --Charlottesville, Virginia

    Science.gov (United States)

    1982-01-01

    Solar heating system described in an 86-page report consists of 88 single-glazed selectively-coated baseplate collector modules, hot-water coils in air ducts, domestic-hot-water preheat tank, 3,000 Gallon (11,350-1) concrete urethane-insulated storage tank and other components.

  3. Prototype solar heating and cooling systems including potable hot water

    Science.gov (United States)

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  4. Two different sources of water for the early solar nebula.

    Science.gov (United States)

    Kupper, Stefan; Tornow, Carmen; Gast, Philipp

    2012-06-01

    Water is essential for life. This is a trivial fact but has profound implications since the forming of life on the early Earth required water. The sources of water and the related amount of delivery depend not only on the conditions on the early Earth itself but also on the evolutionary history of the solar system. Thus we ask where and when water formed in the solar nebula-the precursor of the solar system. In this paper we explore the chemical mechanics for water formation and its expected abundance. This is achieved by studying the parental cloud core of the solar nebula and its gravitational collapse. We have identified two different sources of water for the region of Earth's accretion. The first being the sublimation of the icy mantles of dust grains formed in the parental cloud. The second source is located in the inner region of the collapsing cloud core - the so-called hot corino with a temperature of several hundred Kelvin. There, water is produced efficiently in the gas phase by reactions between neutral molecules. Additionally, we analyse the dependence of the production of water on the initial abundance ratio between carbon and oxygen.

  5. The Character of the Solar Wind, Surface Interactions, and Water

    Science.gov (United States)

    Farrell, William M.

    2011-01-01

    We discuss the key characteristics of the proton-rich solar wind and describe how it may interact with the lunar surface. We suggest that solar wind can be both a source and loss of water/OH related volatiles, and review models showing both possibilities. Energy from the Sun in the form of radiation and solar wind plasma are in constant interaction with the lunar surface. As such, there is a solar-lunar energy connection, where solar energy and matter are continually bombarding the lunar surface, acting at the largest scale to erode the surface at 0.2 Angstroms per year via ion sputtering [1]. Figure 1 illustrates this dynamically Sun-Moon system.

  6. Engineering solutions for polymer composites solar water heaters production

    Science.gov (United States)

    Frid, S. E.; Arsatov, A. V.; Oshchepkov, M. Yu.

    2016-06-01

    Analysis of engineering solutions aimed at a considerable decrease of solar water heaters cost via the use of polymer composites in heaters construction and solar collector and heat storage integration into a single device representing an integrated unit results are considered. Possibilities of creating solar water heaters of only three components and changing welding, soldering, mechanical treatment, and assembly of a complicate construction for large components molding of polymer composites and their gluing are demonstrated. Materials of unit components and engineering solutions for their manufacturing are analyzed with consideration for construction requirements of solar water heaters. Optimal materials are fiber glass and carbon-filled plastics based on hot-cure thermosets, and an optimal molding technology is hot molding. It is necessary to manufacture the absorbing panel as corrugated and to use a special paint as its selective coating. Parameters of the unit have been optimized by calculation. Developed two-dimensional numerical model of the unit demonstrates good agreement with the experiment. Optimal ratio of daily load to receiving surface area of a solar water heater operating on a clear summer day in the midland of Russia is 130‒150 L/m2. Storage tank volume and load schedule have a slight effect on solar water heater output. A thermal insulation layer of 35‒40 mm is sufficient to provide an efficient thermal insulation of the back and side walls. An experimental model layout representing a solar water heater prototype of a prime cost of 70‒90/(m2 receiving surface) has been developed for a manufacturing volume of no less than 5000 pieces per year.

  7. Solar hot water space heating system. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Van Dam, T

    1979-08-13

    A retrofit solar heating system was installed on Madison Hall at Jordan College, Cedar Springs, Michigan. The system provides heating and domestic water preheating for a campus dormitory. Freeze protection is provided by a draindown system. The building and solar system, construction progress, and design changes are described. Included in appendices are: condensate trap design, structural analysis, pictures of installation, operating instructions, maintenance instructions, and as-built drawings. (MHR)

  8. Solar hot water systems for the southeastern United States: principles and construction of breadbox water heaters

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-02-01

    The use of solar energy to provide hot water is among the easier solar technologies for homeowners to utilize. In the Southeastern United States, because of the mild climate and abundant sunshine, solar energy can be harnessed to provide a household's hot water needs during the non-freezing weather period mid-April and mid-October. This workbook contains detailed plans for building breadbox solar water heaters that can provide up to 65% of your hot water needs during warm weather. If fuel costs continue to rise, the annual savings obtained from a solar water heater will grow dramatically. The designs in this workbook use readily available materials and the construction costs are low. Although these designs may not be as efficient as some commercially available systems, most of a household's hot water needs can be met with them. The description of the breadbox water heater and other types of solar systems will help you make an informed decision between constructing a solar water heater or purchasing one. This workbook is intended for use in the southeastern United States and the designs may not be suitable for use in colder climates.

  9. 1980 annual report of the Coolidge Solar Irrigation Project

    Energy Technology Data Exchange (ETDEWEB)

    Torkelson, L.; Larson, D. L.

    1981-02-01

    The Coolidge Solar Irrigation Facility at Coolidge, Arizona, consists of a 2136.8-m/sup 2/ (23,000-ft/sup 2/) line-focus parabolic trough collector subsystem, a 113.55-m/sup 3/ (30,000-gallon) thermal storage subsystem, and a 150-kW/sub e/ (142.2-Btu/s) organic Rankine cycle power generation unit. The performance of the facility and its operational and maintenance requirements are reported. The period from the the facility's initial operation in October 1979 to 31 August 1980 is covered.

  10. Design data brochure: solar hot water system

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-01

    This Design Data Brochure is general in nature. The intent is to provide a preliminary, not too technical, approach to a subject that can be technically demanding. The example used for the design calculation has been for a single-family residence housing a family of four in a nonspecific geographical area. Drain-down freeze protection is used with the flat plate collectors. Drawing and specifications for the solar collectors, valves, pump, and flow regulators are included.

  11. Photocatalytic Enhancement for Solar Disinfection of Water: A Review

    Directory of Open Access Journals (Sweden)

    J. Anthony Byrne

    2011-01-01

    Full Text Available It is estimated that 884 million people lack access to improved water supplies. Many more are forced to rely on supplies that are microbiologically unsafe, resulting in a higher risk of waterborne diseases, including typhoid, hepatitis, polio, and cholera. Due to poor sanitation and lack of clean drinking water, there are around 4 billion cases of diarrhea each year resulting in 2.2 million deaths, most of these are children under five. While conventional interventions to improve water supplies are effective, there is increasing interest in household-based interventions to produce safe drinking water at an affordable cost for developing regions. Solar disinfection (SODIS is a simple and low cost technique used to disinfect drinking water, where water is placed in transparent containers and exposed to sunlight for 6 hours. There are a number of parameters which affect the efficacy of SODIS, including the solar irradiance, the quality of the water, and the nature of the contamination. One approach to SODIS enhancement is the use of semiconductor photocatalysis to produce highly reactive species that can destroy organic pollutants and inactivate water pathogens. This paper presents a critical review concerning semiconductor photocatalysis as a potential enhancement technology for solar disinfection of water.

  12. Potential of Using Solar Energy for Drinking Water Treatment Plant

    Science.gov (United States)

    Bukhary, S. S.; Batista, J.; Ahmad, S.

    2016-12-01

    Where water is essential to energy generation, energy usage is integral to life cycle processes of water extraction, treatment, distribution and disposal. Increasing population, climate change and greenhouse gas production challenges the water industry for energy conservation of the various water-related operations as well as limiting the associated carbon emissions. One of the ways to accomplish this is by incorporating renewable energy into the water sector. Treatment of drinking water, an important part of water life cycle processes, is vital for the health of any community. This study explores the feasibility of using solar energy for a drinking water treatment plant (DWTP) with the long-term goal of energy independence and sustainability. A 10 MGD groundwater DWTP in southwestern US was selected, using the treatment processes of coagulation, filtration and chlorination. Energy consumption in units of kWh/day and kWh/MG for each unit process was separately determined using industry accepted design criteria. Associated carbon emissions were evaluated in units of CO2 eq/MG. Based on the energy consumption and the existing real estate holdings, the DWTP was sized for distributed solar. Results showed that overall the motors used to operate the pumps including the groundwater intake pumps were the largest consumers of energy. Enough land was available around DWTP to deploy distributed solar. Results also showed that solar photovoltaics could potentially be used to meet the energy demands of the selected DWTP, but warrant the use of a large storage capacity, and thus increased costs. Carbon emissions related to solar based design were negligible compared to the original case. For future, this study can be used to analyze unit processes of other DWTP based on energy consumption, as well as for incorporating sustainability into the DWTP design.

  13. Low-Cost Solar Water Heating Research and Development Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Hudon, K.; Merrigan, T.; Burch, J.; Maguire, J.

    2012-08-01

    The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

  14. Innovative Sustainable Water Management Practices in Solar Residential Design

    Directory of Open Access Journals (Sweden)

    C. Jason Mabry

    2012-11-01

    Full Text Available This paper communicates the results of an architectural research project which sought innovative design strategies for achieving energy and resource efficiencies in water management systems traditionally used in single-family housing. It describes the engineering of an efficient, multifaceted, and fully integrated water management system for a domesticenvironment of 800 sq. ft., entirely powered by solar energy. The four innovations whose details are conveyed include the use of alternate materials for piping distribution and collection, the use of water in solar energy generation, the design of a building skin which capitalizes on water’s capacity to store heat as well as the design of a ecological groundscape which re-usesand filters waste water and rain water.Keywords: energy, plumbing, home design

  15. Analysis of a solar collector field water flow network

    Science.gov (United States)

    Rohde, J. E.; Knoll, R. H.

    1976-01-01

    A number of methods are presented for minimizing the water flow variation in the solar collector field for the Solar Building Test Facility at the Langley Research Center. The solar collector field investigated consisted of collector panels connected in parallel between inlet and exit collector manifolds to form 12 rows. The rows were in turn connected in parallel between the main inlet and exit field manifolds to complete the field. The various solutions considered included various size manifolds, manifold area change, different locations for the inlets and exits to the manifolds, and orifices or flow control valves. Calculations showed that flow variations of less than 5 percent were obtainable both inside a row between solar collector panels and between various rows.

  16. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%

    Science.gov (United States)

    Jia, Jieyang; Seitz, Linsey C.; Benck, Jesse D.; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S.; Jaramillo, Thomas F.

    2016-01-01

    Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage. PMID:27796309

  17. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%

    Science.gov (United States)

    Jia, Jieyang; Seitz, Linsey C.; Benck, Jesse D.; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S.; Jaramillo, Thomas F.

    2016-10-01

    Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage.

  18. the viability of solar energy for domestic water heating in etidopian ...

    African Journals Online (AJOL)

    inexhaustible and freely available solar radiation. The conversion of solar energy in efficient :way to thermal energy incuts intial cost. If solar energy has to be used for this purpose, it has to bring economic benefit to the potential user by reducing the cost of water h~ting. The viability of solar water heating system to.

  19. Federal technology alert. Parabolic-trough solar water heating

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

  20. Numerical study of a water distillation system using solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Zarzoum, K.; Zhani, K. [Sfax University, (Turkey); Bacha, H. Ben [Prince Sattam Bin Abdulaziz University, Alkharj (Saudi Arabia)

    2016-02-15

    This paper tackles an optimization approach in order to boost the fresh water production of a new design of a solar still which is located at Sfax engineering national school in Tunisia. This optimization approach is based upon the above mentioned design's improvement by coupling the conventional solar still into at a condenser, solar air and water collector and humidifier. This new concept of a distiller solar still using humidification- dehumidification processes (HD) is exploited for the desalination purpose. As a result of this work, the humidification- dehumidification processes have an essential effect in improving the solar still performance. Performance has been predicted theoretically in terms of water and inner glass cover temperatures, the inlet temperature of air and water of the new concept of distiller on water condensation rate and fresh water production. A general model based on heat and mass transfers in each component of the unit has been developed in steady dynamic regime. The developed model is used, simulating the HD system, to investigate the influence of the meteorological and operating parameters on the system productivity. The obtained set of ordinary differential equations has been converted to a set of algebraic system of equations by the functional approximation method of orthogonal collocation. The developed model is used to simulate the HD system in order to investigate the steady state behavior of each component of the unit and the entire system exposed to a variation of the entrance parameters and meteorological conditions. The obtained results were compared with those of other studies and the comparison gives a good validity of the present results.

  1. Livestock water pumping with wind and solar power

    Science.gov (United States)

    Recent developments in pumping technologies have allowed for efficient use of renewable energies like wind and solar to power new pumps for remote water pumping. A helical type, positive displacement pump was developed a few years ago and recently modified to accept input from a variable power sourc...

  2. Marketing and promoting solar water heaters to home builders

    Energy Technology Data Exchange (ETDEWEB)

    Keller, C.; Ghent, P.

    1999-12-06

    This is the final report of a four-task project to develop a marketing plan designed for businesses interested in marketing solar water heaters in the new home industry. This report outlines suggested marketing communication materials and other promotional tools focused on selling products to the new home builder. Information relevant to promoting products to the new home buyer is also included.

  3. Solar-Powered Groundwater Pumping Systems for Nigerian Water Sheds

    OpenAIRE

    SODIKI, John; Sodiki, J. I.

    2016-01-01

    The paper presents an overview of the occurrence of different groundwater sheds, water quality, and availability in Nigeria. it also discussed the viability of solar-powered groundwater pumping systems in Nigeria. Applicable methods for system design and economic analysis are further outlined.

  4. Solar Heating of Buildings and Domestic Hot Water. Revision.

    Science.gov (United States)

    1980-05-01

    double (80%-100%) the selling price. 120 3. 10 Additional Costs - Worksheet G Worksheet G is a convenient checklist to collect costs associated with...Washington, D .C., Oct 1975. Energy Research and Development Administration (1976). An economic analysis of solar water and space heating. DSE -2322-1

  5. The Viability of Solar Energy for Domestic Water Heating in ...

    African Journals Online (AJOL)

    Investigation of the possible use of solar energy for domestic water heating is conducted for seven representative Ethiopian cities. In this study, the transient performance of the system is computed using a numerical heat transfer model of a flat-plate collector from the input of average annual climatic data and collector ...

  6. Solar Energy in China: Development Trends for Solar Water Heaters and Photovoltaics in the Urban Environment

    Science.gov (United States)

    Wallace, William; Wang, Zhongying

    2006-01-01

    China is the world's largest market for solar water heating systems, installing 13 million square meters of new systems in 2004, mostly in large cities. Municipal authorities, however, are sensitive to quality and visual impact issues created by this technology deployment. Therefore, there is currently a trend toward developing building integrated…

  7. An overview of water disinfection in developing countries and the potential for solar thermal water pasteurization

    Energy Technology Data Exchange (ETDEWEB)

    Burch, J.; Thomas, K.E.

    1998-01-01

    This study originated within the Solar Buildings Program at the U.S. Department of Energy. Its goal is to assess the potential for solar thermal water disinfection in developing countries. In order to assess solar thermal potential, the alternatives must be clearly understood and compared. The objectives of the study are to: (a) characterize the developing world disinfection needs and market; (b) identify competing technologies, both traditional and emerging; (c) analyze and characterize solar thermal pasteurization; (d) compare technologies on cost-effectiveness and appropriateness; and (e) identify research opportunities. Natural consequences of the study beyond these objectives include a broad knowledge of water disinfection problems and technologies, introduction of solar thermal pasteurization technologies to a broad audience, and general identification of disinfection opportunities for renewable technologies.

  8. Flat plate solar collector for water pre-heating using concentrated solar power (CSP)

    Science.gov (United States)

    Peris, Leonard Sunny; Shekh, Md. Al Amin; Sarker, Imran

    2017-12-01

    Numerous attempt and experimental conduction on different methods to harness energy from renewable sources are being conducted. This study is a contribution to the purpose of harnessing solar energy as a renewable source by using flat plate solar collector medium to preheat water. Basic theory of solar radiation and heat convection in water (working fluid) has been combined with heat conduction process by using copper tubes and aluminum absorber plate in a closed conduit, covered with a glazed through glass medium. By this experimental conduction, a temperature elevation of 35°C in 10 minutes duration which is of 61.58% efficiency range (maximum) has been achieved. The obtained data and experimental findings are validated with the theoretical formulation and an experimental demonstration model. A cost effective and simple form of heat energy extraction method for space heating/power generation has been thoroughly discussed with possible industrial implementation possibilities. Under-developed and developing countries can take this work as an illustration for renewable energy utilization for sustainable energy prospect. Also a full structure based data to derive concentrated solar energy in any geographical location of Bangladesh has been outlined in this study. These research findings can contribute to a large extent for setting up any solar based power plant in Bangladesh irrespective of its installation type.

  9. Water heating solar system for popular houses; Sistema solar de aquecimento de agua para residencias populares

    Energy Technology Data Exchange (ETDEWEB)

    Mogawer, Tamer; Souza, Teofilo Miguel de [Universidade Estadual Paulista (UNESP), Guaratingueta, SP (Brazil). Centro de Energias Renovaveis], e-mail: teofilo@feg.unesp.br

    2004-07-01

    In this paper we present a case study for the design of a low cost solar heating system for a popular residence in an isolated rural community in the state of Rio Grande do Norte. This scaling can be extended to several rural communities that are in the same situation in Brazil as well as the wider use of solar power between the low-income people who do not have the benefits of electricity in their homes or want to have a lower cost of electricity. In this context, there are very interesting alternatives, among which is the replacement of electric heating bath water by heating by solar energy. According to several sources the electric shower, as it is now simple and extremely cheap, is the villain of the national electrical system. It is used in peak hours of consumption, something like 10% of electric generating capacity installed in Brazil, forcing many industries to switch off the machines because of the high cost of electricity during this period. Using the heating by solar energy, we can reduce consumption of electric shower and also increase the use of clean energy in popular homes and in isolated rural communities. This paper will address the use of solar energy with the basic purpose of heating water for bathing in popular residences and in isolated rural areas, using low cost systems, built with easily materials that is found in any area of the country. (author)

  10. Establishing Solar Water Disinfection as a water treatment method at ...

    African Journals Online (AJOL)

    1.1 billion People worldwide do not have access to safe drinking water and therefore are exposed to a high risk for diarrhoeal diseases. As a consequence, about 6,000 children die each day of dehydration due to diarrhoea. Adequate water treatment methods and safe storage of drinking water, combined with hygiene ...

  11. All inorganic semiconductor nanowire mesh for direct solar water splitting.

    Science.gov (United States)

    Liu, Bin; Wu, Cheng-Hao; Miao, Jianwei; Yang, Peidong

    2014-11-25

    The generation of chemical fuels via direct solar-to-fuel conversion from a fully integrated artificial photosynthetic system is an attractive approach for clean and sustainable energy, but so far there has yet to be a system that would have the acceptable efficiency, durability and can be manufactured at a reasonable cost. Here, we show that a semiconductor mesh made from all inorganic nanowires can achieve unassisted solar-driven, overall water-splitting without using any electron mediators. Free-standing nanowire mesh networks could be made in large scales using solution synthesis and vacuum filtration, making this approach attractive for low cost implementation.

  12. Solar water heating for aquaculture : optimizing design for sustainability

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, M.; Thwaites, J. [Taylor Munro Energy Systems Inc., Delta, BC (Canada)

    2003-08-01

    This paper presents the results of a solar water heating project at Redfish Ranch, the first Tilapia tropical fish farm in British Columbia. The fish are raised in land-based tanks, eliminating the risk of contamination of local ecosystems. As a tropical species, they requires warm water. Natural gas or propane boilers are typically used to maintain tank temperatures at 26 to 28 degrees C. Redfish Ranch uses solar energy to add heat to the fish tanks, thereby reducing fossil-fuel combustion and greenhouse gas emissions. This unique building-integrated solar system is improving the environmental status of of this progressive industrial operation by offsetting fossil-fuel consumption. The system was relatively low cost, although substantial changes had to be made to the roof of the main building. The building-integrated design of the solar water heating system has reduced operating costs, generated local employment, and shows promise of future activity. As such, it satisfies the main criteria for sustainability. 7 refs.

  13. Solar energy conversion by photocatalytic overall water splitting

    KAUST Repository

    Takanabe, Kazuhiro

    2015-07-04

    Summary: Solar energy is abundant and renewable energy: however, extensive conversion of the solar energy can only be achieved by large-scale collection of solar flux. The technology that satisfies this requirement must be as simple as possible to reduce capital cost. Overall water splitting (OWS) by powder-form photocatalysts directly produces H2 as a chemical energy in a single reactor, which does not require any complicated parabolic mirrors and electronic devices. Because of its simplicity and low capital cost, it has tremendous potential to become the major technology of solar energy conversion. To achieve the OWS efficiently, the development of efficient photocatalysts is mandatory. The OWS hotocatalysis involves the electrocatalys is for both water reduction and oxidation on the surafce of photocatalysts, which is driven by particular semiconductors that absorb photons to generate excited carriers. Such photocatalysts must be designed to maximize the charge separation efficiency at the catalyst-semiconductor and semiconductor-electrolyte interface. In addition the low-overpotential electrocatalyts towards water redox reactions should be insensitive to the back-reaction of the produced H2 and O2 that produces H2O. In this presentation, some recent progress on the topic of the OWS in our group will be discussed.

  14. Roadmap on solar water splitting: current status and future prospects

    Science.gov (United States)

    Chu, Sheng; Li, Wei; Yan, Yanfa; Hamann, Thomas; Shih, Ishiang; Wang, Dunwei; Mi, Zetian

    2017-09-01

    Artificial photosynthesis via solar water splitting provides a promising approach to storing solar energy in the form of hydrogen on a global scale. However, an efficient and cost-effective solar hydrogen production system that can compete with traditional methods using fossil fuels is yet to be developed. A photoelectrochemical (PEC) tandem cell consisting of a p-type photocathode and an n-type photoanode, with the photovoltage provided by the two photoelectrodes, is an attractive route to achieve highly efficient unassisted water splitting at a low cost. In this article, we provide an overview of recent developments of semiconductor materials, including metal oxides, nitrides, chalcogenides, Si, III-V compounds and organics, either as photocathodes or photoanodes for water reduction and oxidation, respectively. In addition, recent efforts in constructing a PEC tandem system for unassisted water splitting are outlined. The importance of developing a single-photon photocathode and photoanode that can deliver high photocurrent in the low bias region for efficient PEC tandem system is highlighted. Finally, we discuss the future development of photoelectrode materials, and viable solutions to realize highly efficient PEC water splitting device for practical applications.

  15. Efficient solar water heating system for a public building

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, P.E.; Lange, M.

    1986-01-01

    In the municipality of Roedovre, West of Copenhagen, an 18 m/sup 2/ solar water heating system has been installed at a building for municipal employers working with maintenance of roads, snow clearing etc. The hot water system for the building originally consisted of a 1500 l domestic hot water (DHW) tank, heated from an oilfired boiler serving both space heating and DHW production. The performance of the system has been monitored for almost one year. The results of the measurements indicates an output from the solar system at app. 375 kWh/m/sup 2/ pr. year (total app. 6760 kWh). In adition to this a considerably reduction in the oil consumption has been obtained by turning off the oilfired boiler in the summer period. The total reduction in oilconsumption in the first year is measured to app. 38,700 kWh and the extra use of electricity has been 4486 kWh.

  16. Doping-Promoted Solar Water Oxidation on Hematite Photoanodes.

    Science.gov (United States)

    Zhang, Yuchao; Ji, Hongwei; Ma, Wanhong; Chen, Chuncheng; Song, Wenjing; Zhao, Jincai

    2016-07-01

    As one of the most promising materials for solar water oxidation, hematite has attracted intense research interest for four decades. Despite their desirable optical band gap, stability and other attractive features, there are great challenges for the implementation of hematite-based photoelectrochemical cells. In particular, the extremely low electron mobility leads to severe energy loss by electron hole recombination. Elemental doping, i.e., replacing lattice iron with foreign atoms, has been shown to be a practical solution. Here we review the significant progresses in metal and non-metal element doping-promoted hematite solar water oxidation, focusing on the role of dopants in adjusting carrier density, charge collection efficiency and surface water oxidation kinetics. The advantages and salient features of the different doping categories are compared and discussed.

  17. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  18. High Cooling Water Temperature Effects on Design and Operational Safety of NPPs in the Gulf Region

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Koo [Khalifa Univ., Abu Dhabi (United Arab Emirates); Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-12-15

    The Arabian Gulf region has one of the highest ocean temperatures, reaching above 35 degrees and ambient temperatures over 50 degrees in the summer. Two nuclear power plants (NPP) are being introduced in the region for the first time, one at Bushehr (1,000 MWe PWR plant from Russia), and a much larger one at Barakah (4Χ1,400 MWe PWR from Korea). Both plants take seawater from the Gulf for condenser cooling, having to modify the secondary/tertiary side cooling systems design by increasing the heat transfer surface area from the country of origin. This paper analyses the secondary side of a typical PWR plant operating under the Rankine cycle with a simplified thermal-hydraulic model. Parametric study of ocean cooling temperatures is conducted to estimate thermal efficiency variations and its associated design changes for the secondary side. Operational safety is reviewed to deliver rated power output with acceptable safety margins in line with technical specifications, mainly in the auxiliary systems together with the cooling water temperature. Impact on the Gulf seawater as the ultimate heat sink is considered negligible, affecting only the adjacent water near the NPP site, when compared to the solar radiation on the sea surface.

  19. HIGH COOLING WATER TEMPERATURE EFFECTS ON DESIGN AND OPERATIONAL SAFETY OF NPPS IN THE GULF REGION

    Directory of Open Access Journals (Sweden)

    BYUNG KOO KIM

    2013-12-01

    Full Text Available The Arabian Gulf region has one of the highest ocean temperatures, reaching above 35 degrees and ambient temperatures over 50 degrees in the summer. Two nuclear power plants (NPP are being introduced in the region for the first time, one at Bushehr (1,000 MWe PWR plant from Russia, and a much larger one at Barakah (4X1,400 MWe PWR from Korea. Both plants take seawater from the Gulf for condenser cooling, having to modify the secondary/tertiary side cooling systems design by increasing the heat transfer surface area from the country of origin. This paper analyses the secondary side of a typical PWR plant operating under the Rankine cycle with a simplified thermal-hydraulic model. Parametric study of ocean cooling temperatures is conducted to estimate thermal efficiency variations and its associated design changes for the secondary side. Operational safety is reviewed to deliver rated power output with acceptable safety margins in line with technical specifications, mainly in the auxiliary systems together with the cooling water temperature. Impact on the Gulf seawater as the ultimate heat sink is considered negligible, affecting only the adjacent water near the NPP site, when compared to the solar radiation on the sea surface.

  20. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    This document is the Final Report of the Solar Energy System Installed at the First Solar Heated Office Building, One Solar Place, Dallas, Texas. The Solar System was designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 Solargenics, series 76, flat plate collectors with a total area of 1596 square feet. The solar loop circulates an ethylene glycol-water solution through the collectors into a hot water system heat exchanger. The hot water storage subsystem consists of a heat exchanger, two 2300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water fixtures. The building cold water system provides make-up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described. The system became operational July 11, 1979.

  1. Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume III. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    The overall, long term objective of the Solar Central Receiver Hybrid Power System is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumpton, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume contains appendices to the conceptual design and systems analysis studies gien in Volume II, Books 1 and 2. (WHK)

  2. Heat Transfer Fluid Temperature Control in a Thermoelectric Solar Power Plant

    Directory of Open Access Journals (Sweden)

    Lourdes A. Barcia

    2017-07-01

    Full Text Available Thermoelectric solar plants transform solar energy into electricity. Unlike photovoltaic plants, the sun’s energy heats a fluid (heat transfer fluid (HTF and this, in turn, exchanges its energy, generating steam. Finally, the steam generates electricity in a Rankine cycle. One of the main advantages of this double conversion (sun energy to heat in the HTF-Rankine cycle is the fact that it facilitates energy storage without using batteries. It is possible to store the heat energy in melted salts in such a way that this energy will be recovered when necessary, i.e., during the night. These molten salts are stored in containers in a liquid state at high temperature. The HTF comes into the solar field at a given temperature and increases its energy thanks to the solar collectors. In order to optimize the sun to HTF energy transference, it is necessary to keep an adequate temperature control of the fluid at the output of the solar fields. This paper describes three different algorithms to control the HTF output temperature.

  3. Renewable Water: Direct Contact Membrane Distillation Coupled With Solar Ponds

    Science.gov (United States)

    Suarez, F. I.; Tyler, S. W.; Childress, A. E.

    2010-12-01

    The exponential population growth and the accelerated increase in the standard of living have increased significantly the global consumption of two precious resources: water and energy. These resources are intrinsically linked and are required to allow a high quality of human life. With sufficient energy, water may be harvested from aquifers, treated for potable reuse, or desalinated from brackish and seawater supplies. Even though the costs of desalination have declined significantly, traditional desalination systems still require large quantities of energy, typically from fossil fuels that will not allow these systems to produce water in a sustainable way. Recent advances in direct contact membrane distillation can take advantage of low-quality or renewable heat to desalinate brackish water, seawater or wastewater. Direct contact membrane distillation operates at low pressures and can use small temperature differences between the feed and permeate water to achieve a significant freshwater production. Therefore, a much broader selection of energy sources can be considered to drive thermal desalination. A promising method for providing renewable source of heat for direct contact membrane distillation is a solar pond, which is an artificially stratified water body that captures solar radiation and stores it as thermal energy at the bottom of the pond. In this work, a direct contact membrane distillation/solar pond coupled system is modeled and tested using a laboratory-scale system. Freshwater production rates on the order of 2 L day-1 per m2 of solar pond (1 L hr-1 per m2 of membrane area) can easily be achieved with minimal operating costs and under low pressures. While these rates are modest, they are six times larger than those produced by other solar pond-powered desalination systems - and they are likely to be increased if heat losses in the laboratory-scale system are reduced. Even more, this system operates at much lower costs than traditional desalination

  4. Atmospheric solar heating rate in the water vapor bands

    Science.gov (United States)

    Chou, Ming-Dah

    1986-01-01

    The total absorption of solar radiation by water vapor in clear atmospheres is parameterized as a simple function of the scaled water vapor amount. For applications to cloudy and hazy atmospheres, the flux-weighted k-distribution functions are computed for individual absorption bands and for the total near-infrared region. The parameterization is based upon monochromatic calculations and follows essentially the scaling approximation of Chou and Arking, but the effect of temperature variation with height is taken into account in order to enhance the accuracy. Furthermore, the spectral range is extended to cover the two weak bands centered at 0.72 and 0.82 micron. Comparisons with monochromatic calculations show that the atmospheric heating rate and the surface radiation can be accurately computed from the parameterization. Comparisons are also made with other parameterizations. It is found that the absorption of solar radiation can be computed reasonably well using the Goody band model and the Curtis-Godson approximation.

  5. Why Do People Stop Treating Contaminated Drinking Water with Solar Water Disinfection (SODIS)?

    Science.gov (United States)

    Tamas, Andrea; Mosler, Hans-Joachim

    2011-01-01

    Solar Water Disinfection (SODIS) is a simple method designed to treat microbiologically contaminated drinking water at household level. This article characterizes relapse behavior in comparison with continued SODIS use after a 7-month nonpromotion period. In addition, different subtypes among relapsers and continuers were assumed to diverge mainly…

  6. Use of solar energy for disinfection of polluted water

    Directory of Open Access Journals (Sweden)

    Y. Jamil

    2009-05-01

    Full Text Available Polluted water is causing serious health problems especially in the rural areas of Pakistan. People have limited access to safe water supply and many diseases like diarrhea and gastrointestinal diseases are transmitted by consumption of polluted water. We have investigated the potential of using solar energy to pasteurize water. Low cost indigenously available materials have been utilized to design and fabricate a solar box type pasteurizer having a capacity of three liters. The performance study of the pasteurizer was performed during the month of May 2008. The designed pasteurizer maintained water temperature in the range of60 oC to 70 oC continuously for more than an hour which is enough for deactivation of coliform bacteria. The maximum water temperature on a clear sunny day was found to be 67 oC, corresponding to an ambient temperature of40 oC. With the pasteurizer facing south, a very little repositioning was required. The low cost and operational simplicity of the pasteurizer make it affordable and usable. It is more useful in rural areas where other sources of energy like electricity and gas are not easily available

  7. Decontamination of drinking water by direct heating in solar panels.

    Science.gov (United States)

    Fjendbo Jørgensen, A J; Nøhr, K; Sørensen, H; Boisen, F

    1998-09-01

    A device was developed for direct heating of water by solar radiation in a flow-through system of copper pipes. An adjustable thermostat valve prevents water below the chosen temperature from being withdrawn. The results show that it is possible to eliminate coliform and thermotolerant coliform bacteria from naturally contaminated river water by heating to temperatures of 65 degrees C or above. Artificial additions of Salmonella typhimurium, Streptococcus faecalis and Escherichia coli to contaminated river water were also inactivated after heating to 65 degrees C and above. The total viable count could be reduced by a factor of 1000. The heat-resistant bacteria isolated from the Mlalakuva River (Tanzania) were spore-forming bacteria which exhibited greater heat resistance than commonly used test bacteria originating from countries with colder climates. To provide a good safety margin it is recommended that an outlet water temperature of 75 degrees C be used. At that temperature the daily production was about 501 of decontaminated water per m2 of solar panel, an amount that could be doubled by using a heat exchanger to recycle the heat.

  8. Solar or UVA-Visible Photocatalytic Ozonation of Water Contaminants.

    Science.gov (United States)

    Beltrán, Fernando J; Rey, Ana

    2017-07-14

    An incipient advanced oxidation process, solar photocatalytic ozonation (SPO), is reviewed in this paper with the aim of clarifying the importance of this process as a more sustainable water technology to remove priority or emerging contaminants from water. The synergism between ozonation and photocatalytic oxidation is well known to increase the oxidation rate of water contaminants, but this has mainly been studied in photocatalytic ozonation systems with lamps of different radiation wavelength, especially of ultraviolet nature (UVC, UVB, UVA). Nowadays, process sustainability is critical in environmental technologies including water treatment and reuse; the application of SPO systems falls into this category, and contributes to saving energy and water. In this review, we summarized works published on photocatalytic ozonation where the radiation source is the Sun or simulated solar light, specifically, lamps emitting radiation to cover the UVA and visible light spectra. The main aspects of the review include photoreactors used and radiation sources applied, synthesis and characterization of catalysts applied, influence of main process variables (ozone, catalyst, and pollutant concentrations, light intensity), type of water, biodegradability and ecotoxicity, mechanism and kinetics, and finally catalyst activity and stability.

  9. Solar disinfection of drinking water and oral rehydration solutions

    Energy Technology Data Exchange (ETDEWEB)

    Acra, A.; Raffoul, Z.; Karahagopian, Y.

    1984-01-01

    This document provides concise information on oral rehydration therapy for the control of diarrheal diseases in developing countries; however, the main emphasis has been placed on the disinfection of oral rehydration solutions, or the water used in their preparation, as achieved by exposure to sunlight in transparent containers. The fundamental principles of solar energy are presented as well as studies which demonstrate the efficacy of the method. 2 figures, 6 tables.

  10. Carbon nanoparticles for solar disinfection of water.

    Science.gov (United States)

    Maddigpu, Pratap Reddy; Sawant, Bhairavi; Wanjari, Snehal; Goel, M D; Vione, Davide; Dhodapkar, Rita S; Rayalu, S

    2018-02-05

    The present manuscript deals with the application of carbon nano particles (CNP) and chitosan (CHIT) in the form of CHIT-CNP composite for the disinfection of water. The CHIT-CNP composite was prepared by the solution casting method and characterized by TEM, XRD and elemental analysis. In the present investigation we study the disinfection efficiency towards E. coli bacteria of both CNP and CHIT-CNP, under sunlight (SODIS) in identical experimental conditions. Both CNP and CHIT-CNP enhanced disinfection as compared to SODIS alone, and comparable performance was achieved when the same dose of CNP in the two materials was applied. However, the CHIT-CNP composite is in the form of a fabric and it is easier to use and handle as compared to the CNP powder, especially in rural and resource-constrained areas. Moreover the SODIS-CHIT-CNP setup, when used in a compound parabolic collector (CPC) reactor showed high bactericidal efficiency compared to SODIS alone, which is promising for practical applications. The disinfection potential of the CNP powder was compared with that of the well-known material TiO 2 Degussa P25 (DP 25 ): DP 25 gave 6-log kill of bacteria in 180min, whereas CNP produced 6-log kill in 150min. Copyright © 2017. Published by Elsevier B.V.

  11. Solar Water disinfection for human consumption; Desinfeccao Solar de Agua para consumo humano

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, A.; Vilar, V.; Boaventura, R.

    2008-07-01

    In this work a pilot plant with 0.59 m{sup 2} of solar collectors has been used for studying the disinfection by solar photo catalysis of waters contaminated with Escherichia coli, Enterococcus faecal or humic acids. the results obtained showed a higher resistance of Enterococcus to the photo catalytic treatment ([TiO{sub 2}] =50 mg/L) compared with E. coli, being necessary a higher amount of UV energy for killing them, using an initial bacteria concentration of 1x10{sup 5} CFU/mL. For the treatment of water contaminated with humic acids was applied 20 kJ UV/L to reduce the TOC concentration from 6.9 mg/L to 1 mg/L. (Author)

  12. Photoelectrochemical devices for solar water splitting - materials and challenges.

    Science.gov (United States)

    Jiang, Chaoran; Moniz, Savio J A; Wang, Aiqin; Zhang, Tao; Tang, Junwang

    2017-07-31

    It is widely accepted within the community that to achieve a sustainable society with an energy mix primarily based on solar energy we need an efficient strategy to convert and store sunlight into chemical fuels. A photoelectrochemical (PEC) device would therefore play a key role in offering the possibility of carbon-neutral solar fuel production through artificial photosynthesis. The past five years have seen a surge in the development of promising semiconductor materials. In addition, low-cost earth-abundant co-catalysts are ubiquitous in their employment in water splitting cells due to the sluggish kinetics of the oxygen evolution reaction (OER). This review commences with a fundamental understanding of semiconductor properties and charge transfer processes in a PEC device. We then describe various configurations of PEC devices, including single light-absorber cells and multi light-absorber devices (PEC, PV-PEC and PV/electrolyser tandem cell). Recent progress on both photoelectrode materials (light absorbers) and electrocatalysts is summarized, and important factors which dominate photoelectrode performance, including light absorption, charge separation and transport, surface chemical reaction rate and the stability of the photoanode, are discussed. Controlling semiconductor properties is the primary concern in developing materials for solar water splitting. Accordingly, strategies to address the challenges for materials development in this area, such as the adoption of smart architectures, innovative device configuration design, co-catalyst loading, and surface protection layer deposition, are outlined throughout the text, to deliver a highly efficient and stable PEC device for water splitting.

  13. Hybrid solar cells from water-soluble polymers

    Directory of Open Access Journals (Sweden)

    James T. McLeskey

    2006-01-01

    Full Text Available We report on the use of a water-soluble, light-absorbing polythiophene polymer to fabricate novel photovoltaic devices. The polymer is a water-soluble thiophene known as sodium poly[2-(3-thienyl-ethoxy-4-butylsulfonate] or PTEBS. The intention is to take advantage of the properties of conjugated polymers (flexible, tunable, and easy to process and incorporate the additional benefits of water solubility (easily controlled evaporation rates and environmentally friendly. The PTEBS polythiophene has shown significant photovoltaic response and has been found to be effective for making solar cells. To date, solar cells in three different configurations have been produced: titanium dioxide (TiO2 bilayer cells, TiO2 bulk heterojunction solar cells, and carbon nanotubes (CNTs in bulk heterojunctions. The best performance thus far has been achieved with TiO2 bilayer devices. These devices have an open circuit voltage (Voc of 0.84V, a short circuit current (Jsc of 0.15 mA/cm2, a fill factor (ff of 0.91, and an efficiency (η of 0.15 %.

  14. Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides.

    Science.gov (United States)

    Li, Jie; Li, Hao; Zhan, Guangming; Zhang, Lizhi

    2017-01-17

    Hydrogen and ammonia are the chemical molecules that are vital to Earth's energy, environmental, and biological processes. Hydrogen with renewable, carbon-free, and high combustion-enthalpy hallmarks lays the foundation of next-generation energy source, while ammonia furnishes the building blocks of fertilizers and proteins to sustain the lives of plants and organisms. Such merits fascinate worldwide scientists in developing viable strategies to produce hydrogen and ammonia. Currently, at the forefronts of hydrogen and ammonia syntheses are solar water splitting and nitrogen fixation, because they go beyond the high temperature and pressure requirements of methane stream reforming and Haber-Bosch reaction, respectively, as the commercialized hydrogen and ammonia production routes, and inherit the natural photosynthesis virtues that are green and sustainable and operate at room temperature and atmospheric pressure. The key to propelling such photochemical reactions lies in searching photocatalysts that enable water splitting into hydrogen and nitrogen fixation to make ammonia efficiently. Although the past 40 years have witnessed significant breakthroughs using the most widely studied TiO2, SrTiO3, (Ga1-xZnx)(N1-xOx), CdS, and g-C3N4 for solar chemical synthesis, two crucial yet still unsolved issues challenge their further progress toward robust solar water splitting and nitrogen fixation, including the inefficient steering of electron transportation from the bulk to the surface and the difficulty of activating the N≡N triple bond of N2. This Account details our endeavors that leverage layered bismuth oxyhalides as photocatalysts for efficient solar water splitting and nitrogen fixation, with a focus on addressing the above two problems. We first demonstrate that the layered structures of bismuth oxyhalides can stimulate an internal electric field (IEF) that is capable of efficiently separating electrons and holes after their formation and of precisely channeling

  15. Building America Case Study: Addressing Multifamily Piping Losses with Solar Hot Water, Davis, California

    Energy Technology Data Exchange (ETDEWEB)

    2016-12-01

    Solar thermal water heating is most cost effective when applied to multifamily buildings and some states offer incentives or other inducements to install them. However, typical solar water heating designs do not allow the solar generated heat to be applied to recirculation losses, only to reduce the amount of gas or electric energy needed for hot water that is delivered to the fixtures. For good reasons, hot water that is recirculated through the building is returned to the water heater, not to the solar storage tank. The project described in this report investigated the effectiveness of using automatic valves to divert water that is normally returned through the recirculation piping to the gas or electric water heater instead to the solar storage tank. The valves can be controlled so that the flow is only diverted when the returning water is cooler than the water in the solar storage tank.

  16. Using Solar Hot Water to Address Piping Heat Losses in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Springer, David [Alliance for Residential Building Innovation, Davis, CA (United States); Seitzler, Matt [Alliance for Residential Building Innovation, Davis, CA (United States); Backman, Christine [Alliance for Residential Building Innovation, Davis, CA (United States); Weitzel, Elizabeth [Alliance for Residential Building Innovation, Davis, CA (United States)

    2015-10-01

    Solar thermal water heating is most cost effective when applied to multifamily buildings and some states offer incentives or other inducements to install them. However, typical solar water heating designs do not allow the solar generated heat to be applied to recirculation losses, only to reduce the amount of gas or electric energy needed for hot water that is delivered to the fixtures. For good reasons, hot water that is recirculated through the building is returned to the water heater, not to the solar storage tank. The project described in this report investigated the effectiveness of using automatic valves to divert water that is normally returned through the recirculation piping to the gas or electric water heater instead to the solar storage tank. The valves can be controlled so that the flow is only diverted when the returning water is cooler than the water in the solar storage tank.

  17. Solar Water Heating with Low-Cost Plastic Systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    Federal buildings consumed over 392,000 billion Btu of site delivered energy for buildings during FY 2007 at a total cost of $6.5 billion. Earlier data indicate that about 10% of this is used to heat water.[2] Targeting energy consumption in Federal buildings, the Energy Independence and Security Act of 2007 (EISA) requires new Federal buildings and major renovations to meet 30% of their hot water demand with solar energy, provided it is cost-effective over the life of the system. In October 2009, President Obama expanded the energy reduction and performance requirements of EISA and its subsequent regulations with his Executive Order 13514.

  18. Solar Photocatalytic decomposition of pentachlorophenol in water; Descomposicion de pentaclorofenol en agua mediante fotocatalisis solar

    Energy Technology Data Exchange (ETDEWEB)

    Malato Rodriguez, S.

    1997-09-01

    In recent years, research in new water purification methods has focused on processes that chemically destroy the pollutants. During the last two decades, several laboratories have been using heterogeneous photocatalysis for the decomposition of very persistent organic substances dissolved in water using different kinds of lamps as the source of illumination and reactors designed to be illuminated by them. Since 1990, several research programs in the United States and the European Union have addressed the technological development necessary to use solar energy as the light source. The Plataforma Solar de Almeria (PSA) in the co-ordinator of several of the European programs, which has enabled it to install the facility used for the work presented here. This thesis focuses on :(i) the design, installation and start-up of the first pilot plant that allowed these projects to be undertaken at the PSA, (ii) the preliminary characterisation studies necessary to evaluate the data from experiments carried out in the plant and (iii) tests with a known pollutant in order to find out the pilot plant response to variation of different parameters selected as determinants in laboratory experimentation. The photocatalytic system used for this was: pentachlorophenol (CAS 87-86-5) as typical contaminant, ultraviolet made up to twelve parabolic-trough solar collectors (384 m``2), modified for photochemical use, 2500 L of water with tens of mg L``-1 of pollutant were treated (maximum). (Author)

  19. Conceptual design and analysis of a Dish-Rankine solar thermal power system

    Science.gov (United States)

    Pons, R. L.

    1980-08-01

    A Point Focusing Distributed Receiver (PFDR) solar thermal electric system which employs small Organic Rankine Cycle (ORC) engines is examined with reference to its projected technical/economic performance. With mass-produced power modules (about 100,000 per year), the projected life-cycle energy cost for an optimized no-storage system is estimated at 67 mills/kWh (Levelized Busbar Energy Cost) without the need for advanced development of any of its components. At moderate production rates (about 50 MWe/yr) system energy costs are competitive with conventional power generation systems in special remote-site types of applications.

  20. Rural Electrification through Decentralized Concentrating Solar Power: Technological and Socio-Economic Aspects

    Directory of Open Access Journals (Sweden)

    Sylvain Quoilin

    2013-09-01

    Full Text Available This paper presents the development of small-scale solar Organic Rankine Cycles for rural electrification in remote areas of Lesotho. It is subdivided in two parts. The first part deals with the success conditions of decentralized rural electrification projects. Through a literature survey, relevant guiding principles and recommendations are formulated. The second part of the paper describes the proposed system, which is designed in agreement with the formulated recommendations. A framework for benchmarking the performance and cost of various micro-utility platforms and rural electrification distribution models is proposed.

  1. Role of Solar Water Heating in Multifamily Zero Energy Homes

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Williamson, James [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-04-08

    Solar domestic hot water (SDHW) systems have been installed on buildings for decades, but because of relatively high costs they have not achieved significant market penetration in most of the country. As more buildings move towards zero net energy consumption, however, many designers and developers are looking more closely at SDHW. In multifamily buildings especially, SDHW may be more practical for several reasons: 1) When designing for zero net energy consumption, solar water heating may be part of the lowest cost approach to meet water heating loads; 2) Because of better scale, SDHW systems in multifamily buildings cost significantly less per dwelling than in single-family homes; 3) Many low-load buildings are moving away from fossil fuels entirely. SDHW savings are substantially greater when displacing electric resistance water heating; and 4) In addition to federal tax incentives, some states have substantial financial incentives that dramatically reduce the costs (or increase the benefits) of SDHW systems in multifamily buildings. With support from the U.S. DOE Building America program, the Consortium for Advanced Residential Buildings (CARB) worked with a developer in western Massachusetts to evaluate a SDHW system on a 12-unit apartment building. Olive Street Development completed construction in spring of 2014, and CARB has been monitoring performance of the water heating systems since May 2014.

  2. Building America Case Study: Solar Water Heating in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    R. Aldrich and J. Williamson

    2016-05-01

    Solar domestic hot water (SDHW) systems have been installed on buildings for decades, but because of relatively high costs they have not achieved significant market penetration in most of the country. As more buildings move towards zero net energy consumption, however, many designers and developers are looking more closely at SDHW. In multifamily buildings especially, SDHW may be more practical for several reasons: (1) When designing for zero net energy consumption, solar water heating may be part of the lowest cost approach to meet water heating loads. (2.) Because of better scale, SDHW systems in multifamily buildings cost significantly less per dwelling than in single-family homes. (3) Many low-load buildings are moving away from fossil fuels entirely. SDHW savings are substantially greater when displacing electric resistance water heating. (4) In addition to federal tax incentives, some states have substantial financial incentives that dramatically reduce the costs (or increase the benefits) of SDHW systems in multifamily buildings. With support form the U.S. DOE Building America program, the Consortium for Advanced Residential Buildings (CARB) worked with a developer in western Massachusetts to evaluate a SDHW system on a 12-unit apartment building. Olive Street Development completed construction in spring of 2014, and CARB has been monitoring performance of the water heating systems since May 2014.

  3. Forced-circulation solar water heater using a solar battery; Taiyo denchi wo mochiita kyosei junkanshiki taiyonetsu onsuiki

    Energy Technology Data Exchange (ETDEWEB)

    Asai, S.; Mizuno, T. [Yazaki Resources Co. Ltd., Shizuoka (Japan)

    1996-10-27

    For the purpose of satisfying demands for qualitative improvement on tapwater temperature and pressure, an indirect-type solar water heater using solar cells, in which a closed type hot water storage tank connected directly to the water supply is integrated with a solar collector, was examined for its characteristics and performance. The heat collecting medium is a water solution of polypropylene glycol, which circulates through the solar collector pump, cistern, solar collector, and heat exchanger (hot water storage tank). The results of the test are summarized below. When comparison is made between the two solar collector pump control methods, the solar cells direct connection method and the differential thermo method utilizing temperature difference between the solar collector and the hot water storage tank, they are alike in collecting heat on clear days, but on cloudy days the latter collects 5% more than the former. In winter, when the heat exchanger heat transfer area is 0.4m{sup 2} large, a further increase in the area improves but a little the heat collecting efficiency. An increase in the medium flow rate and temperature, or in the Reynolds number, enhances the heat collecting efficiency. 13 figs., 6 tabs.

  4. Application analysis of solar total energy systems to the residential sector. Volume III, conceptual design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    The objective of the work described in this volume was to conceptualize suitable designs for solar total energy systems for the following residential market segments: single-family detached homes, single-family attached units (townhouses), low-rise apartments, and high-rise apartments. Conceptual designs for the total energy systems are based on parabolic trough collectors in conjunction with a 100 kWe organic Rankine cycle heat engine or a flat-plate, water-cooled photovoltaic array. The ORC-based systems are designed to operate as either independent (stand alone) systems that burn fossil fuel for backup electricity or as systems that purchase electricity from a utility grid for electrical backup. The ORC designs are classified as (1) a high temperature system designed to operate at 600/sup 0/F and (2) a low temperature system designed to operate at 300/sup 0/F. The 600/sup 0/F ORC system that purchases grid electricity as backup utilizes the thermal tracking principle and the 300/sup 0/F ORC system tracks the combined thermal and electrical loads. Reject heat from the condenser supplies thermal energy for heating and cooling. All of the ORC systems utilize fossil fuel boilers to supply backup thermal energy to both the primary (electrical generating) cycle and the secondary (thermal) cycle. Space heating is supplied by a central hot water (hydronic) system and a central absorption chiller supplies the space cooling loads. A central hot water system supplies domestic hot water. The photovoltaic system uses a central electrical vapor compression air conditioning system for space cooling, with space heating and domestic hot water provided by reject heat from the water-cooled array. All of the systems incorporate low temperature thermal storage (based on water as the storage medium) and lead--acid battery storage for electricity; in addition, the 600/sup 0/F ORC system uses a therminol-rock high temperature storage for the primary cycle. (WHK)

  5. CFD Study of Fluid Flow in an All-glass Evacuated Tube Solar Water Heater

    DEFF Research Database (Denmark)

    Ai, Ning; Fan, Jianhua; Li, Yumin

    2008-01-01

    Abstract: The all-glass evacuated tube solar water heater is one of the most widely used solar thermal technologies. The aim of the paper is to investigate fluid flow in the solar water heater by means of computational fluid dynamics (CFD). The investigation was carried out with a focus...

  6. Realistic Hot Water Draw Specification for Rating Solar Water Heaters: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Burch, J.

    2012-06-01

    In the United States, annual performance ratings for solar water heaters are simulated, using TMY weather and specified water draw. A more-realistic ratings draw is proposed that eliminates most bias by improving mains inlet temperature and by specifying realistic hot water use. This paper outlines the current and the proposed draws and estimates typical ratings changes from draw specification changes for typical systems in four cities.

  7. Solar-Based Fuzzy Intelligent Water Sprinkle System

    Directory of Open Access Journals (Sweden)

    Riza Muhida

    2012-03-01

    Full Text Available A solar-based intelligent water sprinkler system project that has been developed to ensure the effectiveness in watering the plant is improved by making the system automated. The control system consists of an electrical capacitance soil moisture sensor installed into the ground which is interfaced to a controller unit of Motorola 68HC11 Handy board microcontroller. The microcontroller was programmed based on the decision rules made using fuzzy logic approach on when to water the lawn. The whole system is powered up by the solar energy which is then interfaced to a particular type of irrigation timer for plant fertilizing schedule and rain detector through a simple design of rain dual-collector tipping bucket. The controller unit automatically disrupted voltage signals sent to the control valves whenever irrigation was not needed. Using this system we combined the logic implementation in the area of irrigation and weather sensing equipment, and more efficient water delivery can be made possible. 

  8. Evaluation of Solar Photosensitised River Water Treatment in the Caribbean

    Directory of Open Access Journals (Sweden)

    K. Tota-Maharaj

    2013-01-01

    Full Text Available An economical supply of hygienic potable water is one of the most pressing public health issues facing developing countries in the Caribbean region today. This project investigates the performance of a novel solar photochemical reactor for disinfecting river water. The prototype photochemical reactor was designed, constructed, and tested for the microbiological degradation of faecal coliform present in River Water. The experiments evaluated the efficacy of two photosensitive dyes (malachite green and methylene blue as agents for detoxification with concentrations ranging from 0.5 to 3.0 mg/L. The photochemical reactor operated in a single-pass mode and compared the disinfection rates with direct photolysis. The photosensitizers showed a high efficacy rate using natural sunlight with microbial reduction ranging from 97 to 99% for concentrations as low as 0.5 mg/L of dye. The sensitizers were found to be photobleaching and were very effective at lower concentrations (0.01. Post-solar disinfection included the use of a coconut fiber filter which polished the water removing residual dye concentrations and bacterial contaminants.

  9. Spectral variations of UV-A and PAR solar radiation in estuarine waters of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Talaulikar, M.; Suresh, T.; Silveira, N.; Desa, E.; Matondkar, S.G.P.; Lotlikar, A.

    The spectral solar radiation measurements in the range 350-800 nm were carried out in the estuarine waters of Goa using hyperspectral radiometer. The results of the analysis of solar light in the spectral range of photosynthetically available...

  10. Solar water heating system for Northern Europe. Solar system case study

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, P.E.

    1983-09-01

    This report outlines the findings of a system optimisation study for a solar water heater. The study was carried out under given constraints such as climate and local HVAC regulations. The prime objective was to develop a solar heating system with a maximum output per invested ECU. Secondary objectives were to produce: 1. a system that could operate without any interference on the user's part, 2. a high degree of reliability; since owing to the back-up heating system it would not always be possible to determine decreases in performance. The work was carried out in 3 different stages. The first stage, referred to as ''sketch design'' represents a primary attempt based on conclusions drawn from previous experience.

  11. Solar water and space heating system for Northern Europe. Solar system case study

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, P.E.

    1983-09-01

    This report outlines the findings of a system optimisation study for a combined solar heating system for domestic hot water and space heating. The study was carried out under given constraints such as climate and local HVAC regulations. The prime objective was to develope a solar heating system with a maximum output per invested ECU. Secondary objectives were to produce: 1. a system that would operate without any interference on the user's part, 2. a high degree of reliability; since owing to the back-up heating system it would not always be possible to determine decreases in performance. The work was carried out in 3 different stages. The first stage, referred to as ''sketch design'' represents a primary attempt based on conclusions drawn from previous experience.

  12. Analysis of a solar water thermosyphon system; Analise do aquecimento solar de agua por sistema a termosifao

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Abner Barzola

    1992-07-01

    A design methodology and to perform the simulation of flat plate solar collectors coupled with a water storage tank and operating by natural convection circulation is presented. For a given site the incident solar radiation on a tilted and previously oriented surface is determined from solar astronomy and the dally average of the monthly data of the horizontal total solar radiation. Huancayo situated in Peru (at 12.05 deg S, long. 76.18 deg W, altitude 3,312 m), is chosen as the site to be installed the solar water system, as a mean to improve the peasant's standard of life. An optimum tilt angle for a north oriented collector surface is obtained in order to have a maximum solar capture during the water. The theoretical methodology use here is based upon the ONG's paper (1976), and in attrition is considered the hot water drainage due to the dally consumption. For the sake of comparison, the calculated flowrate values are confronted with the experimental data obtained by FERNANDEZ, for a same site location (Rio de Janeiro) and are used identical dimensions for the water thermosyphon heater. Finally, the economic feasibility of the solar water system is demonstrated when it is compared with the usual immersion electric resistance boiler. For the Peruvian conditions the more adequate solar water system for a rural or domestic usage is a 1.4 m{sup 2} area solar collector (6 parallel, 15,875 mm copper tubes), 100 l capacity for the water storage tank, 33.5 mm for the connecting tubes, being of 300 mm. The height between the collector top and the bottom of the tank. (author)

  13. Assessing solar energy and water use efficiencies in winter wheat

    Science.gov (United States)

    Asrar, G.; Hipps, L. E.; Kanemasu, E. T.

    1982-01-01

    The water use and solar energy conversion efficiencies of two cultivars of winter wheat (Triticum aestivum L., vars, Centurk and Newton) planted at three densities, were examined during a growing season. Water use, based on soil moisture depletion, was the lowest under the light, and the highest under the heavy planting densities of both cultivars. Water use efficiency of medium and heavy planting densities were greater than the light planting densities in both cultivars. The canopy radiation extinction coefficients of both cultivars increased with increases in planting density. Efficiency of operation interception of photosynthetically active radiation by both cultivars improved from the time of jointing until anthesis, and then decreased during senescence. The efficiency of the conversion of intercepted radiation to dry matter (biochemical efficiency) decreased throughout the growing season both cultivars. The interception, biochemical, and photosynthetic efficiencies improved as planting density increased.

  14. Solar High Temperature Water-Splitting Cycle with Quantum Boost

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Robin [SAIC; Davenport, Roger [SAIC; Talbot, Jan [UCSD; Herz, Richard [UCSD; Genders, David [Electrosynthesis Co.; Symons, Peter [Electrosynthesis Co.; Brown, Lloyd [TChemE

    2014-04-25

    A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle for reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are

  15. Water disinfection with solar radiation; Desinfeccion del agua con radiacion solar

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Alejandra; Cortes, Juana E; Rodriguez, Miriam; Mundo, Alfredo; Vazquez, Sandra [Instituto Mexicano de Tecnologia del Agua, Jiutepec, Morelos (Mexico); Estrada, Claudio A [Centro de Investigacion en Energia, Temixco, Morelos (Mexico)

    2000-07-01

    Water disinfection by exposure to solar radiation is a low cost and easy application option to rural communities. The treatment of water can be done using plastic bags or plastic bottles of two litters setting on a reflective material. The efficient of the plastic bottles is lower than the one plastic bags, but the plastic bottles have a much better control of the treated water avoiding its recontamination. In order to increase the efficiency of disinfection using plastic bottles, two solar concentrators, using flat mirrors, were designed and built. Effluent water from a treatment plant of residual waters was used for the testing. Several comparison were carried out taking into account the position of the concentrators, the transparency of the bottles and the bags. The results show that using the concentrator that adjust its position to the sun every hour, a 100% disinfection is obtained in 4 hours of direct exposure to the sun rays in a sunny day. The period of time can be reduced up to 2 hours, if instead using transparent bottles, the bottles are black painted at their bottom half. With these results, the basis to design a cheap concentrator of easy construction to be used in rural communities have been settle. [Spanish] La desinfeccion del agua por exposicion a la luz solar fotodesinfeccion es una opcion de bajo costo y facil aplicacion para las comunidades rurales. El tratamiento puede llevarse a cabo utilizando bolsas o botellas de plastico transparente de dos litros de capacidad colocadas sobre un material reflejante. Las botellas son menos eficientes que las bolsas, pero permiten un mejor control del agua tratada evitando su recontaminacion. Para aumentar la eficiencia de la desinfeccion utilizando las botellas, se disenaron y construyeron dos concentradores solares de espejos planos que permitieron disminuir el tiempo de exposicion requerido cuando se utilizan estas. Para las pruebas de desinfeccion se utilizo agua del efluente de una planta de tratamiento

  16. Photoanodic Hybrid Semiconductor–Molecular Heterojunction for Solar Water Oxidation

    KAUST Repository

    Joya, Khurram Saleem

    2015-06-29

    Inorganic photo-responsive semiconducting materials have been employed in photoelectrochemical(PEC) water oxidation devicesin pursuit of solar to fuel conversion.[1]The reaction kinetics in semiconductors is limited by poor contact at the interfaces, and charge transfer is impeded by surface defects and the grain boundaries.[2]It has shown that successful surface functionalization of the photo-responsive semiconducting materials with co-catalysts can maximize the charge separation, hole delivery and its effective consumption, and enhances the efficiency and performane of the PEC based water oxidation assembly.[3]We present here unique modification of photoanodic hematite (α-Fe2O3) and bismuth vanadate (BiVO4) with molecular co-catalysts for enhanced photoelectrochemical water oxidation (Figure 1). These hybrid inorganic–organometallic heterojunctions manifest impressive cathodic shifts in the onset potentials, and the photocurrent densities have been enhanced by > 90% at all potentials relative to uncatalyzed α-Fe2O3 or BiVO4, and other catalyst-semiconductor based heterojunctions.This is a novel development in the solar to fuel conversion field, and is crucially important for designing a tandem device where light interfere very little with the catalyst layer on top of semiconducting light absorber.

  17. Discovery of water ice nearly everywhere in the solar system

    Energy Technology Data Exchange (ETDEWEB)

    Zuppero, A.

    1995-10-01

    During the last decade we have discovered sources of accessible water in some form nearly everywhere in the solar system. Water ice has been found on the planet Mercury; probably on the Earth`s Moon; on Mars; on near Earth objects; on comets whose orbits frequently come close to that of Earth`s orbit; probably on Ceres, the largest inner asteroid; and on comets previously and incorrectly considered to be out of practical reach. The comets also provide massive quantities of hydrocarbons, similar to oil shale. The masses of either water or hydrocarbons are measured in units of cubic kilometers. The water is key to space transportation because it can be used as a rocket propellant directly, and because thermal process alone can be used to convert it and hydrocarbons into hydrogen, the highest performing rocket propellant. This presentation outlines what is currently known about the locations of the water ice, and sketches the requirements and environments of missions to prospect for and assay the water sources.

  18. Combined Active and Passive Solar Space Heating and Solar Hot Water Systems for an Elementary School in Boise, Idaho.

    Science.gov (United States)

    Smull, Neil A.; Armstrong, Gerald L.

    1979-01-01

    Amity Elementary School in Boise, Idaho, features a solar space heating and domestic hot water system along with an earth covering to accommodate the passive aspects of energy conservation. (Author/MLF)

  19. Nanocrystalline semiconductor materials for solar water-splitting

    Energy Technology Data Exchange (ETDEWEB)

    Indrea, E., E-mail: eindrea@yahoo.co [National Institute for Research and Development of Isotopic and Molecular Technologies, 71-103 Donath, 400293 Cluj-Napoca (Romania); Dreve, Simina; Silipas, T.D.; Mihailescu, G. [National Institute for Research and Development of Isotopic and Molecular Technologies, 71-103 Donath, 400293 Cluj-Napoca (Romania); Danciu, Virginia; Cosoveanu, Veronica; Nicoara, A. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 1M. Kogalniceanu, 400028 Cluj-Napoca (Romania); Muresan, Laura Elena; Popovici, Elisabeth Jeanne [Raluca Ripan Institute for Research in Chemistry, 30 Fantanele, 400294 Cluj-Napoca (Romania); Popescu, Violeta; Nascu, H.I. [Technical University of Cluj-Napoca, 15C. Daicoviciu, 400020 Cluj-Napoca (Romania); Tetean, R. [Babes-Bolyai University, Physics Faculty, 1M. Kogalniceanu, 400028 Cluj-Napoca (Romania)

    2009-08-26

    The production of hydrogen from water using solar light is very promising for generation of an ecologically pure energy carrier. Semiconductor photocatalysts are used to harvest the light energy and induce the hydrogen and oxygen redox reactions. Different types of TiO{sub 2} aerogels have been successfully synthesized and the sample with the highest BET surface area was morphologically characterized with the help of SEM measurements. To improve the photoelectrochemical (PEC) efficiency of the material, it is desirable to red-shift the PEC onset to also include the less energetic but more intense visible part of the solar spectrum. The most efficient and commonly used dyes in dye-sensitized TiO{sub 2} solar cells are based on ruthenium complexes. A series of ZnO/TiO{sub 2} aerogels were prepared by the sol-gel method followed by supercritical drying. By varying the ZnO quantity (1-10%) and the nature of Zn precursors-zinc(II) nitrate hexahydrate and zinc(II) acetylacetonate, an extensive study has been performed.

  20. Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume II, Book 2. Conceptual design, Sections 5 and 6

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    The overall, long-term objective of the Solar Central Receiver Hybrid Power System program is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumption, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume contains the detailed conceptual design and cost/performance estimates and an assessment of the commercial scale solar central receiver hybrid power system. (WHK)

  1. Formulation of a mathematical model to predict solar water disinfection.

    Science.gov (United States)

    Salih, Fadhil M

    2003-09-01

    A mathematical model was formulated that will facilitate the prediction of solar disinfection by analyzing the effect of sunlight exposure (x(1)) and the load of bacterial contamination (x(2)), as predictor variables, on the efficiency of solar disinfection (y). Aliquots of 0.1 ml containing average numbers of E. coli, ranging between 1 and 5 x 10(3)cells/ml raw water, were introduced into each of the 96 wells of polystyrene microtitre plates. Plates, with the lid on, were exposed to sunlight for varying exposures ranging between 1.04 x 10(3) and 8.40 x 10(3)kJ m(-2). Double strength nutrient broth was then added. After 48 h incubation wells containing visible contamination were considered as containing one cell or more that survived the exposure. Data showed that disinfection is dependent both on the load of bacterial contamination and sunlight exposure. This relationship is characterized by curves having shoulders followed by a steep decline and then tailing off in an asymptotic fashion. The shoulder size increased with the increase of the contamination load, however, the slope remains the same. Statistical analysis indicates a positive correlation among the variables (R(2) = 0.893); the mathematical model, y=1-(1-e(-kx(1)))(x(2)), represents the relationship, with k being the solar inactivation constant. The exposure required to produce a given decontamination level can be predicted using the equation: x(1)=-1/kln[1-(1-y)(-1/x(2))]e(-micro/rho.m/A), where micro is the linear attenuation coefficient (m(-1)), rho is the density, m is the mass and A is the area of the exposed part of the sample. The predictor variables (x(1), x(2)) strongly influence the efficiency of solar disinfection, which can be predicted using the suggested mathematical model. The present data provides a means to predict the efficiency of solar disinfection as an approach to improve the quality of drinking water mainly in developing countries with adequate sunshine all year-round.

  2. Advanced power cycles and configurations for solar towers: Modeling and optimization of the decoupled solar combined cycle concept

    Science.gov (United States)

    García-Barberena, Javier; Olcoz, Asier; Sorbet, Fco. Javier

    2017-06-01

    CSP technologies are essential to allow large shares of renewables into the grid due to their unique ability to cope with the large variability of the energy resource by means of technically and economically feasible thermal energy storage (TES) systems. However, there is still the need and sought to achieve technological breakthroughs towards cost reductions and increased efficiencies. For this, research on advanced power cycles, like the Decoupled Solar Combined Cycle (DSCC) is, are regarded as a key objective. The DSCC concept is, basically, a Combined Brayton-Rankine cycle in which the bottoming cycle is decoupled from the operation of the topping cycle by means of an intermediate storage system. According to this concept, one or several solar towers driving a solar air receiver and a Gas Turbine (Brayton cycle) feed through their exhaust gasses a single storage system and bottoming cycle. This general concept benefits from a large flexibility in its design. On the one hand, different possible schemes related to number and configuration of solar towers, storage systems media and configuration, bottoming cycles, etc. are possible. On the other, within a specific scheme a large number of design parameters can be optimized, including the solar field size, the operating temperatures and pressures of the receiver, the power of the Brayton and Rankine cycles, the storage capacity and others. Heretofore, DSCC plants have been analyzed by means of simple steady-state models with pre-stablished operating parameters in the power cycles. In this work, a detailed transient simulation model for DSCC plants has been developed and is used to analyze different DSCC plant schemes. For each of the analyzed plant schemes, a sensitivity analysis and selection of the main design parameters is carried out. Results show that an increase in annual solar to electric efficiency of 30% (from 12.91 to 16.78) can be achieved by using two bottoming Rankine cycles at two different

  3. Optimum hot water temperature for absorption solar cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R. [Dpto. Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganes, Madrid (Spain); Zacarias, A. [ESIME UPA, IPN, Av. de las Granjas 682, Col. Santa Catarina, 02550, D.F. Mexico (Mexico)

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  4. Structure of Water Ice in the Solar System

    Science.gov (United States)

    Blake, David; Jenniskens, Peter; Chang, Sherwood (Technical Monitor)

    1996-01-01

    Nearly all of the properties of solar system ices (chemical reaction rates, volatile retention and release, vaporization behavior, thermal conductivity, infrared spectral characteristics and the like) are a direct consequence of ice structure. However, the characterization of astrophysical ices and their laboratory analogs has typically utilized indirect measurements which yield phenomenological interpretations. When water ice is vapor-deposited at 14 K and warmed until it volatilizes in moderate vacuum, the ice undergoes a series of amorphous to amorphous and amorphous to crystalline structural transitions which we have characterized by diffraction methods. These structural transitions correlate with and underlie many phenomena observed in laboratory infrared and gas release experiments. The elucidation of the dynamic structural changes which occur in vapor-deposited water ice as a function of time, temperature and radiation history allows for the more complete interpretation of remote observations of astrophysical ices and their laboratory analogs.

  5. Comparative analysis of DG and solar PV water pumping system

    Science.gov (United States)

    Tharani, Kusum; Dahiya, Ratna

    2016-03-01

    Looking at present day electricity scenario, there is a major electricity crisis in rural areas. The farmers are still dependant on the monsoon rains for their irrigation needs and livestock maintenance. Some of the agrarian population has opted to use Diesel Generators for pumping water in their fields. But taking into consideration the economics and environmental conditions, the above choice is not suitable for longer run. An effort to shift from non-renewable sources such as diesel to renewable energy source such as solar has been highlighted. An approximate comparative analysis showing the life cycle costs of a PV pumping system with Diesel Generator powered water pumping is done using MATLAB/STMULTNK.

  6. Promising freeze protection alternatives in solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, David E. [Univ. of Wisconsin, Madison, WI (United States)

    1997-01-01

    Since the gains associated with solar thermal energy technologies are comparatively small in relation to the required capital investment, it is vital to maximize conversion efficiency. While providing the necessary function of freeze protection, the heat exchanger commonly included in solar domestic water heating systems represents a system inefficiency. This thesis explores two alternate methods of providing freeze protection without resorting to a heat exchanger. Commonly, collectors are made of rigid copper tubes separated by copper or aluminum fins. Cracking damage can occur when water is allowed to freeze and expand inside the non compliant tubes. The possibility of making collectors out of an elastic material was investigated and shown to be effective. Since unlike copper, elastomers typically have low thermal conductivities, the standard collector performance prediction equations do not apply. Modified thermal performance prediction equations were developed which can be used for both low and high thermal conductivity materials to provide accurate predictions within a limited range of plate geometries. An elastomeric collector plate was then designed and shown to have comparable performance to a copper plate collector whose aperture area is approximately 33% smaller. Another options for providing freeze protection to an SDHW system is to turn it off during the winter. Choosing a three-season operating period means two things. First, the system will have different optimums such as slope and collector area. Second, the wintertime solar energy incident on the collector is unavailable for meeting a heating load. However, the system`s heat exchanger becomes unnecessary and removing it increases the amount of energy that arrives at the storage tank during those periods in which the system is operating.

  7. Water and Volatiles in the Outer Solar System

    Science.gov (United States)

    Grasset, O.; Castillo-Rogez, J.; Guillot, T.; Fletcher, L. N.; Tosi, F.

    2017-10-01

    Space exploration and ground-based observations have provided outstanding evidence of the diversity and the complexity of the outer solar system. This work presents our current understanding of the nature and distribution of water and water-rich materials from the water snow line to the Kuiper Belt. This synthesis is timely, since a thorough exploration of at least one object in each region of the outer solar system has now been achieved. Next steps, starting with the Juno mission now in orbit around Jupiter, will be more focused on understanding the processes at work than on describing the general characteristics of each giant planet systems. This review is organized in three parts. First, the nature and the distribution of water and volatiles in giant and intermediary planets are described from their inner core to their outer envelopes. A special focus is given to Jupiter and Saturn, which are much better understood than the two ice giants (Uranus and Neptune) thanks to the Galileo and Cassini missions. Second, the icy moons will be discussed. Space missions and ground-based observations have revealed the variety of icy surfaces in the outer system. While Europa, Enceladus, and maybe Titan present past or even active tectonic and volcanic activities, many other moons have been dead worlds for more than 3 billion years. Ice compositions found at these bodies are also complex and it is now commonly admitted that icy surfaces are never composed of pure ices. A detailed review of the distribution of non-ice materials on the surfaces and in the tenuous atmospheres of the moons is proposed, followed by a more focused discussion on the nature and the characteristics of the liquid layers trapped below the cold icy crusts that have been suggested in the icy Galilean moons, and in Enceladus, Dione, and Titan at Saturn. Finally, the recent observations collected by Dawn at Ceres and New Horizons at Pluto, as well as the state of knowledge of other transneptunian objects

  8. Solar production of industrial-process hot water. Phase 3: Operation and evaluation of the York Building Products Co., Inc. solar facility

    Science.gov (United States)

    Bollinger, J. M.; Kaplan, N.; Wilkening, H. A., Jr.

    1981-10-01

    A solar heating system to provide hot water for curing concrete blocks is discussed. The objective is to operate, collect data, and evaluate the solar system for a 3 year period. The solar facility utilizes 35 collectors. The system is designed to deliver a water/ethylene glycol solution at 2000 F to a heat exchanger, which, in turn, supplies water at 1800 F to a rotorclave (underground tank) for the concrete block curing process. A fossil fuel boiler system also supplies the rotorclave with processed hot water to supplement the solar system. The program demonstrates the technical feasibility of generating industrial process hot water with solar energy.

  9. Solar central receiver systems comparative economics

    Science.gov (United States)

    Eicker, P. J.

    1980-04-01

    Several major conceptual design studies of solar central receiver systems and components were completed in the last year. The results of these studies were used to compare the projected cost of electric power generation using central receiver systems with that of more conventional power generation. The cost estimate for a molten salt central receiver system is given. Levelized busbar energy cost is shown as a function of annual capacity factor indicating the fraction of the cost due to each of the subsystems. The estimated levelized busbar energy cost for a central receiver (70 to 90 mills per kilowatt hour) is compared with the levelized busbar energy cost for a new coal fired Rankine cycle plant. Sensitivities to the initial cost of coal and the delta fuel escalation are shown.

  10. Parabolic dish collectors - A solar option

    Science.gov (United States)

    Truscello, V. C.

    1981-01-01

    A description is given of several parabolic-dish high temperature solar thermal systems currently undergoing performance trials. A single parabolic dish has the potential for generating 20 to 30 kW of electricity with fluid temperatures from 300 to 1650 C. Each dish is a complete power-producing unit, and may function either independently or as part of a group of linked modules. The two dish designs under consideration are of 11 and 12 meter diameters, yielding receiver operating temperatures of 925 and 815 C, respectively. The receiver designs described include (1) an organic working fluid (toluene) Rankine cycle engine; (2) a Brayton open cycle unit incorporating a hybrid combustion chamber and nozzle and a shaft-coupled permanent magnet alternator; and (3) a modified Stirling cycle device originally designed for automotive use. Also considered are thermal buffer energy storage and thermochemical transport and storage.

  11. Rankine cycle load limiting through use of a recuperator bypass

    Science.gov (United States)

    Ernst, Timothy C.

    2011-08-16

    A system for converting heat from an engine into work includes a boiler coupled to a heat source for transferring heat to a working fluid, a turbine that transforms the heat into work, a condenser that transforms the working fluid into liquid, a recuperator with one flow path that routes working fluid from the turbine to the condenser, and another flow path that routes liquid working fluid from the condenser to the boiler, the recuperator being configured to transfer heat to the liquid working fluid, and a bypass valve in parallel with the second flow path. The bypass valve is movable between a closed position, permitting flow through the second flow path and an opened position, under high engine load conditions, bypassing the second flow path.

  12. Emissions-critical charge cooling using an organic rankine cycle

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-07-15

    The disclosure provides a system including a Rankine power cycle cooling subsystem providing emissions-critical charge cooling of an input charge flow. The system includes a boiler fluidly coupled to the input charge flow, an energy conversion device fluidly coupled to the boiler, a condenser fluidly coupled to the energy conversion device, a pump fluidly coupled to the condenser and the boiler, an adjuster that adjusts at least one parameter of the Rankine power cycle subsystem to change a temperature of the input charge exiting the boiler, and a sensor adapted to sense a temperature characteristic of the vaporized input charge. The system includes a controller that can determine a target temperature of the input charge sufficient to meet or exceed predetermined target emissions and cause the adjuster to adjust at least one parameter of the Rankine power cycle to achieve the predetermined target emissions.

  13. Optimization of Organic Rankine Cycles for Off-Shore Applications

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Larsen, Ulrik; Nguyen, Tuong-Van

    2013-01-01

    the optimal working fluid is identified by removing the restriction on the maximum pressure. Different limits on hazards and global warming potential (GWP) are also set. The study is focused on the SGT-500 gas turbine installed on the Draugen platform in the Norwegian Sea. The simulations suggest that, when...... characteristics of the fluids, e.g. stability, environmental and human health impacts, and safety issues. Both supercritical and subcritical ORCs are included in the analysis. The optimization procedure is first applied to a conservative ORC where the maximum pressure is limited to 20 bar. Subsequently...

  14. Staging Rankine Cycles Using Ammonia for OTEC Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Bharathan, D.

    2011-03-01

    Recent focus on renewable power production has renewed interest in looking into ocean thermal energy conversion (OTEC) systems. Early studies in OTEC applicability indicate that the island of Hawaii offers a potential market for a nominal 40-MWe system. a 40-MWe system represents a large leap in the current state of OTEC technology. Lockheed Martin Inc. is currently pursuing a more realistic goal of developing a 10-MWe system under U.S. Navy funding (Lockheed 2009). It is essential that the potential risks associated with the first-of-its-kind plant should be minimized for the project's success. Every means for reducing costs must also be pursued without increasing risks. With this in mind, the potential for increasing return on the investment is assessed both in terms of effective use of the seawater resource and of reducing equipment costs.

  15. Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume II, Book 1. Conceptual design, Sections 1 through 4

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    The overall, long-term objective of the Solar Central Receiver Hybrid Power System program is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumption, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume presents in detail the market analysis, parametric analysis, and the selection process for the preferred system. (WHK)

  16. Utilization of solar thermal energy in the mining industry: applied case solar thermal systems for hot water heating - Mining camps

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez Mena, Horacio [Portal Sustentable and Enerficaz (Chile)

    2010-07-01

    The paper gives an overview of how solar thermal energy can be used in the mining industry. This is done through a case study of solar thermal systems (STS) for hot water heating in mining camps in Chile. Solar thermal energy has various applications, such as heating and air conditioning. Solar radiation between 600 to 800w/m2 only can be used for solar thermal systems. Solar collectors can be of two types, flat plate or vacuum tube. Various techniques can be used to model solar thermal systems: Transol, RET screen, T-sol, Static model and F-chart. Chile has the great advantage of being one of the countries with the highest levels of solar radiation. Technical data for the solar collector and the heat pump used for the study are given. The collector performance was evaluated throughout the year and the actual results achieved were compared with those projected. The paper concludes that STS are a good source of renewable energy. They are efficient, cheap, and they have a small carbon footprint.

  17. Producing propellants from water in lunar soil using solar lasers

    Science.gov (United States)

    de Morais Mendonca Teles, Antonio

    The exploration of the Solar System is directly related to the efficiency of engines designed to explore it, and consequently, to the propulsion techniques, materials and propellants for those engines. With the present day propulsion techniques it is necessary great quantities of propellants to impulse a manned spacecraft to Mars and beyond in the Solar System, which makes these operations financially very expensive because of the costs involved in launching it from planet Earth, due to its high gravity field strength. To solve this problem, it is needed a planetary place with smaller gravity field strength, near to the Earth and with great quantities of substances at the surface necessary for the in-situ production of propellants for spacecrafts. The only place available is Earth's natural satellite the Moon. So, here in this paper, I propose the creation of a Lunar Propellant Manufacturer. It is a robot-spacecraft which can be launched from Earth using an Energia Rocket, and to land on the Moon in an area (principally near to the north pole where it was discovered water molecules ice recently) with great quantities of oxygen and hydrogen (propellants) in the silicate soil, previously observed and mapped by spacecrafts in lunar orbit, for the extraction of those molecules from the soil and the in-situ production of the necessary propellants. The Lunar Propellant Manufacturer (LPM) spacecraft consists of: 1) a landing system with four legs (extendable) and rovers -when the spacecraft touches down, the legs retract in order that two apparatuses, analogue to tractor's wheeled belts parallel sided and below the spacecraft, can touch firmly the ground -it will be necessary for the displacement of the spacecraft to new areas with richer propellants content, when the early place has already exhausted in propellants; 2) a digging machine -a long, resistant extendable arm with an excavator hand, in the outer part of the spacecraft -it will extend itself to the ground

  18. Final report : testing and evaluation for solar hot water reliability.

    Energy Technology Data Exchange (ETDEWEB)

    Caudell, Thomas P. (University of New Mexico, Albuquerque, NM); He, Hongbo (University of New Mexico, Albuquerque, NM); Menicucci, David F. (Building Specialists, Inc., Albuquerque, NM); Mammoli, Andrea A. (University of New Mexico, Albuquerque, NM); Burch, Jay (National Renewable Energy Laboratory, Golden CO)

    2011-07-01

    Solar hot water (SHW) systems are being installed by the thousands. Tax credits and utility rebate programs are spurring this burgeoning market. However, the reliability of these systems is virtually unknown. Recent work by Sandia National Laboratories (SNL) has shown that few data exist to quantify the mean time to failure of these systems. However, there is keen interest in developing new techniques to measure SHW reliability, particularly among utilities that use ratepayer money to pay the rebates. This document reports on an effort to develop and test new, simplified techniques to directly measure the state of health of fielded SHW systems. One approach was developed by the National Renewable Energy Laboratory (NREL) and is based on the idea that the performance of the solar storage tank can reliably indicate the operational status of the SHW systems. Another approach, developed by the University of New Mexico (UNM), uses adaptive resonance theory, a type of neural network, to detect and predict failures. This method uses the same sensors that are normally used to control the SHW system. The NREL method uses two additional temperature sensors on the solar tank. The theories, development, application, and testing of both methods are described in the report. Testing was performed on the SHW Reliability Testbed at UNM, a highly instrumented SHW system developed jointly by SNL and UNM. The two methods were tested against a number of simulated failures. The results show that both methods show promise for inclusion in conventional SHW controllers, giving them advanced capability in detecting and predicting component failures.

  19. Water use and supply concerns for utility-scale solar projects in the Southwestern United States.

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor; Tidwell, Vincent Carroll; Reno, Marissa Devan; Moreland, Barbara Denise.; Zemlick, Katie M.; Macknick, Jordan

    2013-07-01

    As large utility-scale solar photovoltaic (PV) and concentrating solar power (CSP) facilities are currently being built and planned for locations in the U.S. with the greatest solar resource potential, an understanding of water use for construction and operations is needed as siting tends to target locations with low natural rainfall and where most existing freshwater is already appropriated. Using methods outlined by the Bureau of Land Management (BLM) to determine water used in designated solar energy zones (SEZs) for construction and operations & maintenance, an estimate of water used over the lifetime at the solar power plant is determined and applied to each watershed in six Southwestern states. Results indicate that that PV systems overall use little water, though construction usage is high compared to O&M water use over the lifetime of the facility. Also noted is a transition being made from wet cooled to dry cooled CSP facilities that will significantly reduce operational water use at these facilities. Using these water use factors, estimates of future water demand for current and planned solar development was made. In efforts to determine where water could be a limiting factor in solar energy development, water availability, cost, and projected future competing demands were mapped for the six Southwestern states. Ten watersheds, 9 in California, and one in New Mexico were identified as being of particular concern because of limited water availability.

  20. Optimizing the solar water disinfection (SODIS) method by decreasing turbidity with NaCl

    OpenAIRE

    Dawney, Brittney; Pearce, Joshua

    2012-01-01

    International audience; Solar water disinfection (SODIS) has proven to be effective at reducing diarrheal incidence in epidemiological intervention studies. However, the SODIS method is limited to waters of low turbidity (

  1. Solar disinfection of water for low income communities; Desinfeccao solar de agua para comunidades de baixa renda

    Energy Technology Data Exchange (ETDEWEB)

    Felix, Lorna Falcao

    2010-03-15

    The use of solar energy for water disinfection, and is accessible to disadvantaged communities because of its low cost, has the advantage of using disposable materials such as bottles of polyethylene terephthalate (PET). We present a study that used two methods of disinfection: the methodology proposed by the project Solar Water Disinfection (SODIS), which consisted of water disinfection by solar radiation and temperature and the methodology which the temperature of the water for disinfection. In both, we seek to eliminate microorganisms that cause serious diseases such as dysentery, typhoid, cholera, etc. Water samples were collected in the community of Bass, where the population has low income and the incidence of waterborne diseases is high. The experiments were divided into two stages. In step 1 we studied the feasibility of disinfection and in step 2 the feasibility of the pilot plant to obtain adequate levels of disinfection temperatures desired. The results showed the efficiency of the disinfection process, reaching an average of 80 to 100% death of microorganisms, but regrowth was observed in some samples. Finally on the good results of stage 1, is designed and built and tested in an experimental pilot plant, which has shown to be feasible to promote water disinfection through the use of solar energy. The water after treatment is in accordance with the limits established by Brazilian legislation for clean water, maintaining a positive performance for the disinfection and acceptable levels of bacterial regrowth. (author)

  2. Factors influencing the performance and efficiency of solar water pumping systems:  a review

    OpenAIRE

    Gouws, Rupert; Lukhwareni, Thendo

    2012-01-01

    The world is having an energy crisis and currently there is a strong drive towards renewable energy. A renewable energy option is solar energy, where by means of photovoltaic (PV) modules electrical energy can be produced. A residential as well as industrial application for these PV modules is solar water pumping systems. Disadvantages of solar water pumping systems are low performance and low energy efficiency. This paper provides a review on the factors that influence the performance and ef...

  3. An investigation of the Performance of a Conical Solar Water Heater in the Kingdom of Bahrain

    Directory of Open Access Journals (Sweden)

    Gaaliche Nessreen

    2017-01-01

    Full Text Available Domestic water heater corresponds to 25% of the house energy consumption and can play an important role to reduce energy house expenses. Solar energy offers a preferred renewable energy resource because of its economic and environmental advantages. It is considered the best alternative to reduce domestic water heater energy consumption cost. Converting solar energy into heat can be considered among the simplest used systems. Solar thermal conversion is more efficient than solar electrical direct conversion method. Solar water heater systems are particularly easy to use and to repair. The integrated conical solar collector water heater (ICSCWH is so far the easiest among water heating systems. The ICSCWH converts directly and efficiently the solar flux into heat. In order to expand the utilization of ICSCWH systems, many design modifications have been examined and analyzed. This study provides an experimental investigation and mathematical simulation of an ICSCWH system equipped with a glass cover resulting in the increase of the maximum absorption. Integrating the cone-shaped heat collector with an aluminum spiral pipe flow system may enhance the efficiency of the proposed system. In order to maximize the solar radiation of the system, the solar water heater has been designed in a conical shape, which removes the need to change its orientation toward the sun to receive the maximum sun radiation during the day. In this system, the heating of water has been obtained using the spiral pipe flow without the use of the solar cells and mirrors in order to reduce the total cost. The storage water tank of this system is coupled with a conical solar collector. Based on the above design, the solar water heater has been fabricated and tested. In addition, an analytical modeling approach aiming to predict the flow rate within the conical integrated collector storage solar water heater (ICSSWH and its efficiency, was developed. Modeling through a numerical

  4. An investigation of the Performance of a Conical Solar Water Heater in the Kingdom of Bahrain

    Science.gov (United States)

    Gaaliche, Nessreen; Ayhan, Teoman; Fathallah, Raouf

    2017-11-01

    Domestic water heater corresponds to 25% of the house energy consumption and can play an important role to reduce energy house expenses. Solar energy offers a preferred renewable energy resource because of its economic and environmental advantages. It is considered the best alternative to reduce domestic water heater energy consumption cost. Converting solar energy into heat can be considered among the simplest used systems. Solar thermal conversion is more efficient than solar electrical direct conversion method. Solar water heater systems are particularly easy to use and to repair. The integrated conical solar collector water heater (ICSCWH) is so far the easiest among water heating systems. The ICSCWH converts directly and efficiently the solar flux into heat. In order to expand the utilization of ICSCWH systems, many design modifications have been examined and analyzed. This study provides an experimental investigation and mathematical simulation of an ICSCWH system equipped with a glass cover resulting in the increase of the maximum absorption. Integrating the cone-shaped heat collector with an aluminum spiral pipe flow system may enhance the efficiency of the proposed system. In order to maximize the solar radiation of the system, the solar water heater has been designed in a conical shape, which removes the need to change its orientation toward the sun to receive the maximum sun radiation during the day. In this system, the heating of water has been obtained using the spiral pipe flow without the use of the solar cells and mirrors in order to reduce the total cost. The storage water tank of this system is coupled with a conical solar collector. Based on the above design, the solar water heater has been fabricated and tested. In addition, an analytical modeling approach aiming to predict the flow rate within the conical integrated collector storage solar water heater (ICSSWH) and its efficiency, was developed. Modeling through a numerical simulation approach

  5. Feasibility study of a solar photovoltaic water pumping system for rural Ethiopia

    Directory of Open Access Journals (Sweden)

    Misrak Girma

    2015-06-01

    Full Text Available Solar Photovoltaic (SPV water pumping system is one of the best technologies that utilize the solar energy to pump water from deep well underground water sources and to provide clean drinking water worldwide. The availability of abundant solar radiation and enough underground water sources in Ethiopia can be combined together to make clean drinking water available to rural communities. The software PVsyst 5.56 was used to study the feasibility of solar photovoltaic water pumping system in the selected sites. The designed system is capable of providing a daily average of 10.5, 7 and 6.5 m3/day for 700, 467 and 433 people in Siadberand Wayu, Wolmera and Enderta sites respectively, with average daily water consumption of 15 liters per day per person and the costs of water without any subsidy, are approximately 0.1, 0.14 and 0.16 $/m3for each site respectively. If diesel generator is used instead of solar photovoltaic water pumping system, to provide the same average daily water for the selected community, the costs of water without any subsidy are approximately 0.2, 0.23 and 0.27 $/m3 for each site respectively. A life cycle cost analysis method was also carried out for economic comparison between solar PV and the diesel pumping system. The results of this study are encouraging the use of the PV system for drinking water supply in the remote areas of the country.

  6. Hematite modified tungsten trioxide nanoparticle photoanode for solar water oxidation

    Science.gov (United States)

    Mao, Aiming; Kim, Jung Kyu; Shin, Kahee; Wang, Dong Hwan; Yoo, Pil J.; Han, Gui Young; Park, Jong Hyeok

    2012-07-01

    Hematite (α-Fe2O3) film is electrochemically deposited onto the surface of tungsten trioxide (WO3) nanoparticulate film. The synthesis of the WO3 nanostructure is directed by surfactants for control of its morphology. The resulting composite shows visible light harvesting and is tested as photoanodes in heterojunction photoelectrochemical cells for the possibility of direct water splitting under visible illumination. The composite's structural and optical properties are characterized by FESEM, EDS, XRD, XPS, and UV-vis spectrometry; its photocurrent responses are also investigated under simulated solar illumination. Coupling WO3 with hematite results in over 9 times greater photocurrent density than that shown by pure WO3 in sodium sulfate electrolyte. This simple modification can significantly improve the performance of WO3.

  7. Business Opportunity Prospectus for Utilities in Solar Water Heating

    Energy Technology Data Exchange (ETDEWEB)

    Energy Alliance Group

    1999-06-30

    Faced with deregulation and increasingly aggressive competition, utilities are looking for new products and services to increase revenues, improve customer loyalty and retention, and establish barriers to market erosion. With open access now a reality, and retail wheeling just around the corner, business expansion via new products and services is now the central goal for most utilities in the United States. It may seem surprising that solar thermal energy as applied to heating domestic hot water - an idea that has been around for a long time - offers what utilities and their residential customers want most in a new product/service. This document not only explains how and why, it shows how to get into the business and succeed on a commercial scale.

  8. Design of a Solar Water Heating System for Kuti Hall, University of ...

    African Journals Online (AJOL)

    This work presents an energy audit to determine daily heating load and energy eliminated by Solar Water Heating (SWH) system. Monthly average daily irradiance in plane of solar collector and Cold water temperature calculated from weather data collated to determine heating load. Mathematical model was developed ...

  9. Application of the genetic algorithm for optimisation of large solar hot water systems

    NARCIS (Netherlands)

    Loomans, M.G.L.C.; Visser, H.

    2002-01-01

    An implementation of the genetic algorithm in a design support tool for (large) solar hot water systems is described. The tool calculates the yield and the costs of solar hot water systems based on technical and financial data of the system components. The genetic algorithm allows for optimisation

  10. Phase 1 of the First Small Power System Experiment (engineering Experiment No. 1). Volume 2: System Concept Selection. [development and testing of a solar thermal power plant

    Science.gov (United States)

    Holl, R. J.

    1979-01-01

    The development of a modular solar thermal power system for application in the 1 to 10 MWe range is presented. The system is used in remote utility applications, small communities, rural areas, and for industrial uses. Systems design and systems optimization studies are conducted which consider plant size, annual capacity factors, and startup time as variables. Investigations are performed on the energy storage requirements and type of energy storage, concentrator design and field optimization, energy transport, and power conversion subsystems. The system utilizes a Rankine cycle, an axial flow steam turbine for power conversion, and heat transfer sodium for collector fluid.

  11. Thermal energy storage for a space solar dynamic power system

    Science.gov (United States)

    Faget, N. M.; Fraser, W. M., Jr.; Simon, W. E.

    1985-01-01

    In the past, NASA has employed solar photovoltaic devices for long-duration missions. Thus, the Skylab system has operated with a silicon photovoltaic array and a nickel-cadmium electrochemical system energy storage system. Difficulties regarding the employment of such a system for the larger power requirements of the Space Station are related to a low orbit system efficiency and the large weight of the battery. For this reason the employment of a solar dynamic power system (SDPS) has been considered. The primary components of an SDPS include a concentrating mirror, a heat receiver, a thermal energy storage (TES) system, a thermodynamic heat engine, an alternator, and a heat rejection system. The heat-engine types under consideration are a Brayton cycle engine, an organic Rankine cycle engine, and a free-piston/linear-alternator Stirling cycle engine. Attention is given to a system description, TES integration concepts, and a TES technology assessment.

  12. A case study of electric utility demand reduction with commerical solar water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Ewert, M.; Hoffner, J.E.; Panico, D. (City of Austin Electric Utility Dept., Austin, TX (US))

    1991-05-01

    The City of Austin, is studying the impact of solar water heaters on summer peak electric demand. One passive and two active solar water heating systems were installed on city owned commercial buildings which had electric water heaters in 1985 and have been monitored for two years. This paper reports on a method that has been developed to determine the peak demand reduction attributable to the solar systems. Results show that solar water heating systems are capable of large demand reductions as long as there is a large hot water demand to displace. The average noncoincident demand reduction (during the water heater's peak output) ranged from 0.8 to 5.8 kilowatts per system, however, the coincident demand reduction during the utility peak demand period was 0.3 to 0.8 kilowatts per system. Thus, a critical factor when assessing the benefit to the electric utility is the time of hot water demand.

  13. Understanding the Ecological Adoption of Solar Water Heaters Among Customers of Island Economies

    Directory of Open Access Journals (Sweden)

    Pudaruth Sharmila

    2017-04-01

    Full Text Available This paper explores the major factors impacting upon the ecological adoption of solar water heaters in Mauritius. The paper applies data reduction technique by using exploratory factor analysis on a sample of 228 respondents and condenses a set of 32 attributes into a list of 8 comprehensible factors impacting upon the sustained adoption of solar water heater in Mauritius. Multiple regression analysis was also conducted to investigate upon the most predictive factor influencing the adoption of solar water heaters in Mauritius. The empirical estimates of the regression analysis have also depicted that the most determining factor pertaining to the ‘government incentives for solar water heaters’ impacts upon the adoption of solar water heaters. These results can be related to sustainable adoption of green energy whereby targeted incentive mechanisms can be formulated with the aim to accelerate and cascade solar energy adoption in emerging economies. A novel conceptual model was also proposed in this paper, whereby, ecological stakeholders in the sustainable arena could use the model as a reference to pave the way to encourage adoption of solar water heating energy. This research represents a different way of understanding ecological customers by developing an expanding on an original scale development for the survey on the ecological adoption of solar water heaters.

  14. Glycol/water evacuated-tube solar collector

    Science.gov (United States)

    1980-01-01

    Report describes performance of 8 tube and 10 tube commercially produced solar collectors. Tests include thermal efficiency, time constant for temperature drop after solar flux is cut, change in efficiency with Sun angle, and temperature rise if circulation is stopped.

  15. An Economic Analysis of Solar Water & Space Heating.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    Solar system designs for 13 cities were optimized so as to minimize the life cycle cost over the assumed 20-year lifetime of the solar energy systems. A number of major assumptions were made regarding the solar system, type and use of building, financial considerations, and economic environment used in the design optimization. Seven optimum…

  16. Water Purification and Disinfection by using Solar Energy: Towards Green Energy Challenge

    Directory of Open Access Journals (Sweden)

    Md Z.H. Khan

    2015-12-01

    Full Text Available The aim of this work was to design a solar water treatment plant for household purpose. Water purification is the process of eradicating detrimental chemicals, biological poisons, suspended solids and gases from contaminated water. In this work we have reported an investigation of compact filter which is cost effective for developing countries and ease of maintenance. We have arranged a solar water disinfection system that improves the microbiological quality of drinking water at household level. We get 14 L pure water and 16 ml water vapour within 240 min by using filtration method. From our work we get hot water up to 49°C. The efficiency of the system at sunny days and cloudy days are 18.23% and 18.13% respectively. This simple solar hybrid system helps to remove turbidity as well as chemical and pathogenic contaminants from water sources in the most affordable, and expedient manner possibly.

  17. Solar heating and hot water system installed at Saint Louis, Missouri

    Science.gov (United States)

    1980-01-01

    The solar heating and hot water system installed at the William Tao & Associates, Inc., office building in St. Louis, Missouri is described, including maintenance and construction problems, final drawings, system requirements, and manufacturer's component data. The solar system was designed to provide 50 percent of the hot water requirements and 45 percent of the space heating needs for a 900 sq ft office space and drafting room. The solar facility has 252 sq ft of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  18. Solar heating and hot water system installed at Saint Louis, Missouri

    Science.gov (United States)

    1980-04-01

    The solar heating and hot water system installed at the William Tao & Associates, Inc., office building in St. Louis, Missouri is described, including maintenance and construction problems, final drawings, system requirements, and manufacturer's component data. The solar system was designed to provide 50 percent of the hot water requirements and 45 percent of the space heating needs for a 900 sq ft office space and drafting room. The solar facility has 252 sq ft of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  19. Solar heating and hot water system installed at St. Louis, Missouri. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-04-01

    Information is provided on the solar heating and hot water system installed at the William Tao and Associates, Inc., office building in St. Louis, Missouri. The information consists of description, photos, maintenance and construction problems, final drawing, system requirements and manufacturer's component data. The solar system was designed to provide 50% of the hot water requirements and 45% of the space heating needs for a 900 square foot office space and drafting room. The solar facility has 252 square foot of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  20. Solar Energy Supported Desalination Processes for Desalting of Sea Water

    OpenAIRE

    , M.E. Argun

    2010-01-01

    This study is a review of solar energy supported desalination processes. Although the sun light captured by earth excessively meets of world’s need, we can use a few amount of this source. Solar energy supported desalination is one of the method developed for desalination. Solar energy usage will also decrease CO2 emission which is responsible of global warming. A lot of studies to improve the efficiency of solar energy systems have been carried out during last years. Solar energy can be used...

  1. Low-flow-storage solar system for domestic hot water; Low-flow Speicherkonzept fuer die solare Trinkwassererwaermung

    Energy Technology Data Exchange (ETDEWEB)

    Leibfried, U. [CONSOLAR Energiespeicher- und Regelungssysteme GmbH, Frankfurt am Main (Germany)

    2004-09-01

    Solar domestic hot water treatment relies on effective and insulated reservoirs to maximize solar efficiency. The article describes a newly developed low flow stratification tank. Key feature of this system is the spiral flow of the coolant in countermovement to the drinking water being heated. (orig.) [German] Bei der Solaren Trinkwassererwaermung ist der Einsatz effektiver Speichersysteme notwendig, um den solaren Ertrag zu maximieren. Im Bericht wird ein low-flow Speicherkonzept vorgestellt. Bei diesem System stroemt der vom Solarkollektor kommende Waermetraeger spiralfoermig von oben nach unten im Gegenstrom zu sich erwaermenden Trinkwasser. (orig.)

  2. Influence of solar water disinfection on immunity against cholera: a review

    CSIR Research Space (South Africa)

    Ssemakalu, CC

    2014-09-01

    Full Text Available on the spread of waterborne diseases 115 The consumption of SODIS water in sub-Saharan African and various East Asian countries 116 has reduced the percentage of individuals acquiring water borne diseases such as dysentery 117 typhoid and cholera (Conroy, et... review, the possible influence that solar water disinfection may have on the immunity 35 against cholera is discussed. 36 Keywords: Cholera, SODIS, Solar Ultraviolet Radiation, Vaccine, V. cholerae, Waterborne 37 disease 38 39 40 3...

  3. Dimensioning of a solar water heater made from PET bottles; Dimensionamento de um aquecedor solar de agua feito com garrafas PET

    Energy Technology Data Exchange (ETDEWEB)

    Bertoleti, Pedro Henrique Fonseca; Souza, Teofilo Miguel de [Universidade Estadual Paulista (UNESP), Guaratingueta, SP (Brazil). Centro de Energias Renovaveis

    2008-07-01

    This document show the solar water heater made of PET bottles, a simple-construction solar water heater that try to give us two important solutions, water heating using solar energy and reutilization of the PET bottles left in the nature. Also, it will be showed how to do the dimensioning of it. Based on the showed dimensioning a application / software is developed and after that simulations are made using the application to provide how is the economy if it's used this kind of solar water heater and their environmental contribution by reutilization of the PET bottles abandoned in the nature. For example, in a common home the economy is about 45% of the electricity bill considering that the warmed water is used just to take a shower. So, the conclusion is: the solar water heater made by PET bottles is a very relevant equipment to the use of the solar energy, to useful applications and environmental contribution. (author)

  4. High-temperature solar receiver integrated with a short-term storage system

    Science.gov (United States)

    Giovannelli, Ambra; Bashir, Muhammad Anser; Archilei, Erika Maria

    2017-06-01

    Small-Scale Concentrated Solar Power Plants could have a potential market for off-grid applications in rural contexts with limited access to the electrical grid and favorable environmental characteristics. Some Small-Scale plants have already been developed, like the 25-30 kWe Dish-Stirling engine. Other ones are under development as, for example, plants based on Parabolic Trough Collectors coupled with Organic Rankine Cycles. Furthermore, the technological progress achieved in the development of new small high-temperature solar receiver, makes possible the development of interesting systems based on Micro Gas Turbines coupled with Dish collectors. Such systems could have several advantages in terms of costs, reliability and availability if compared with Dish-Stirling plants. In addition, Dish-Micro Gas Turbine systems are expected to have higher performance than Solar Organic Rankine Cycle plants. The present work focuses the attention on some challenging aspects related to the design of small high-temperature solar receivers for Dish-Micro Gas Turbine systems. Natural fluctuations in the solar radiation can reduce system performance and damage seriously the Micro Gas Turbine. To stabilize the system operation, the solar receiver has to assure a proper thermal inertia. Therefore, a solar receiver integrated with a short-term storage system based on high-temperature phase-change materials is proposed in this paper. Steady-state and transient analyses (for thermal storage charge and discharge phases) have been carried out using the commercial CFD code Ansys-Fluent. Results are presented and discussed.

  5. Economical judge possibility uses solar collectors to warm service water and heating

    Directory of Open Access Journals (Sweden)

    Lívia Bodonská

    2006-09-01

    Full Text Available The sun-heated water has been used from before fossil fuels started to determine the direction of our power consumption. This article is focused on the assessing of the use of solar energy as one of inexhaustible resources that has multiple uses, including hot water service systems. Heating is rendered through solar collectors that permit to transform solar energy to warm water. We divide solar collectors into various groups but in principle they are medium temperature collectors and low temperature collectors. The work is directed also on the solar collector market. In our case the market is just at its initial stage as this technology is little known and costs of collectors are rather high, compared to our conditions, on average, they may grow up to 100,000 Slovac crowns per a family house. Because it is the only investment and the costs of operation are minimum throughout the entire collectors lifetime, from the economic point of view, it is a rather advantageous investment. Solar collectors are used in heating and also in hot service water systems in family houses, where they permit to lower costs for the consumption of many kinds of energies. In the hot service water system, solar collectors permit to lower the consumption by almost 70 %. This way of using the solar energy is very prospective and in future it will be used in various sectors

  6. Design, Fabrication, and Efficiency Study of a Novel Solar Thermal Water Heating System: Towards Sustainable Development

    Directory of Open Access Journals (Sweden)

    M. Z. H. Khan

    2016-01-01

    Full Text Available This paper investigated a novel loop-heat-pipe based solar thermal heat-pump system for small scale hot water production for household purposes. The effective use of solar energy is hindered by the intermittent nature of its availability, limiting its use and effectiveness in domestic and industrial applications especially in water heating. The easiest and the most used method is the conversion of solar energy into thermal energy. We developed a prototype solar water heating system for experimental test. We reported the investigation of solar thermal conversion efficiency in different seasons which is 29.24% in summer, 14.75% in winter, and 15.53% in rainy season. This paper also discusses the DC heater for backup system and the current by using thermoelectric generator which are 3.20 V in summer, 2.120 V in winter, and 1.843 V in rainy season. This solar water heating system is mostly suited for its ease of operation and simple maintenance. It is expected that such novel solar thermal technology would further contribute to the development of the renewable energy (solar driven heating/hot water service and therefore lead to significant environmental benefits.

  7. Automatic control of plants of direct steam generation with cylinder-parabolic solar collectors; Control automatico de plantas de generacion directa de vapor con colectores solares cilindro-parabolicos

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela Gutierrez, L.

    2008-07-01

    The main objective of this dissertation has been the contributions to the operation in automatic mode of a new generation of direct steam generation solar plants with parabolic-trough collectors. The dissertation starts introducing the parabolic-trough collectors solar thermal technology for the generation of process steam or steam for a Rankine cycle in the case of power generation generation, which is currently the most developed and commercialized technology. Presently, the parabolic-trough collectors technology is based on the configuration known as heat-exchanger system, based in the use of a heat transfer fluid in the solar field which is heated during the recirculation through the absorber tubes of the solar collectors, transferring later on the that thermal energy to a heat-exchanger for steam generation. Direct steam generation in the absorber tubes has always been shown as an ideal pathway to reduce generation cost by 15% and increase conversion efficiency by 20% (DISS, 1999). (Author)

  8. Recent advances in the PV-CSP hybrid solar power technology

    Science.gov (United States)

    Ju, Xing; Xu, Chao; Han, Xue; Zhang, Hui; Wei, Gaosheng; Chen, Lin

    2017-06-01

    Photovoltaic - Concentrated Solar Power (PV-CSP) hybrid technology is considered to be an important future research trend in solar energy engineering. The development of the PV-CSP hybrid technology accelerates in recent years with the rapid maturation of photovoltaics (PV) and concentrated solar power (CSP). This paper presents the recent advances on PV-CSP technology, including different technologies based on new dispatch strategies, Organic Rankine Cycles, spectral beam filters and so on. The research status and the hybrid system performance of the recent researches are summarized, aimed to provide an extended recognition on the PV-CSP hybrid technology. The advantages and limitations of the hybrid system are concluded according to the researches reviewed.

  9. DEVELOPMENT AND PRELIMINARY TESTING OF A PARABOLIC TROUGH SOLAR WATER HEATER

    Directory of Open Access Journals (Sweden)

    O. A. Lasode

    2011-06-01

    Full Text Available Solar energy is a high-temperature, high-energy radiant energy source, with tremendous advantages over other alternative energy sources. It is a reliable, robust renewable resource which is largely undeveloped. The design and fabrication of parabolic trough solar water heater for water heating was executed. The procedure employed includes the design, construction and testing stages. The equipment which is made up of the reflector surface (curved mirror, reflector support, absorber pipe and a stand was fabricated using locally sourced materials. The results obtained. compared favourably with other research works in the literature. It depicts that employing a suitable design, selection of time of heating and proper focusing of the reflected rays to the focal spot region, solar radiation can efficiently be utilized for water heating in a tropical environment. This work presents a parabolic trough solar water heater as a suitable renewable energy technology for reducing water-heating costs.

  10. Early solar system. Early accretion of water in the inner solar system from a carbonaceous chondrite-like source.

    Science.gov (United States)

    Sarafian, Adam R; Nielsen, Sune G; Marschall, Horst R; McCubbin, Francis M; Monteleone, Brian D

    2014-10-31

    Determining the origin of water and the timing of its accretion within the inner solar system is important for understanding the dynamics of planet formation. The timing of water accretion to the inner solar system also has implications for how and when life emerged on Earth. We report in situ measurements of the hydrogen isotopic composition of the mineral apatite in eucrite meteorites, whose parent body is the main-belt asteroid 4 Vesta. These measurements sample one of the oldest hydrogen reservoirs in the solar system and show that Vesta contains the same hydrogen isotopic composition as that of carbonaceous chondrites. Taking into account the old ages of eucrite meteorites and their similarity to Earth's isotopic ratios of hydrogen, carbon, and nitrogen, we demonstrate that these volatiles could have been added early to Earth, rather than gained during a late accretion event. Copyright © 2014, American Association for the Advancement of Science.

  11. Procedures of water desalination with solar energy and f-chart method

    Directory of Open Access Journals (Sweden)

    Petrović Andrija A.

    2015-01-01

    Full Text Available Due to rapid population growth, and climate change caused by environmental pollution needs for drinking water are increasing while amount of freshwater are decreasing. However possible solution for freshwater scarcity can be found in water desalination procedures. In this article three representative water desalination solar powered plants are described. Except explanation of processes it is also mentioned basic advantages and disadvantages of humidification, reverse osmosis and desalination evaporation by using solar energy. Simulation of the solar desalination system is analyzed with f-chart method monthly, located on located 42 degrees north latitude.

  12. Solar hot water system installed at Day's Inn Motel, Dallas, Texas (Valley View)

    Science.gov (United States)

    1980-01-01

    The solar system was designed to provide 65 percent of the total domestic hot water (DHW) demand. A liquid (water) flat plate collector (1,000 square feet) system automatically drains into the 1,000 gallon steel storage tank when the solar pump is not running. Heat is transferred from the DHW tanks through a shell and tube heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up standby losses. All pumps are controlled by differential temperature controllers.

  13. The Utilisation of Solar System in Combined Heating System of Water

    Directory of Open Access Journals (Sweden)

    Ján Jobbágy

    2017-01-01

    Full Text Available The paper assessed the topicality and returns of solar system utilization to heating of water. Practical measurements were conducted after reconstruction of the family house. (in Nesvady, Slovak republic, on which the solar system were assembled. The system consists of the gas heater, solar panels, distributions and circulation pump. The solar system was assembled due to decreasing of operation costs and connected with conventional already used gas heating system by boiler Quantum (V = 115 L. The conventional system was used for 21 days to gather basic values for evaluation. At this point it was observed that 11.93 m3 of gas is needed to heat up 1 m3 of water. Used water in this case was heated from initial 16.14 °C to 52.04 °C of output temperature. Stand by regime of boiler was characterized by 0.012 m3.h-1 consumption of gas. The rest of the measurements represent the annual (from 03/2013 to 02/2014 operation process of boiler Tatramat VTS 200L (trivalent with 200 litres of volume (as a part of Thermosolar solar system. The solar collectors TS 300 are also part of the solar system. An input and output temperatures of heating water we observed along with water and gas consumption, intensity of solar radiation and actual weather conditions. The amount of heat produced by solar system was then calculated. Total investment on solar system were 2,187.7 € (1,475.7 € with subsidy. Therefore, return on investment for the construction of the solar system was set at 23 years even with subsidy.

  14. Solar energy water desalination in the United States and Saudi Arabia

    Science.gov (United States)

    Luft, W.; William, J.

    1981-01-01

    Five solar energy water desalination systems were designed to deliver 6000 cubic m/day of desalted water from either seawater or brackish water. Two systems will be selected for pilot plant construction. The pilot plants will have capacities in the range of 100 to 400 m/day. Goals of the Project Agreement for Cooperation in the Field of Solar Energy, under the auspices of the United States-Saudi Arabian Joint Commission on Economic Cooperation, are to: (1) cooperate in the field of solar energy technology for the mutual benefit of the two countries, including the development and stimulation of solar industries within the two countries; (2) advance the development of solar energy technology in the two countries; and (3) facilitate the transfer between the two countries of technology developed under this agreement.

  15. Bactericidal Effect of Solar Water Disinfection under Real Sunlight Conditions▿

    Science.gov (United States)

    Boyle, M.; Sichel, C.; Fernández-Ibáñez, P.; Arias-Quiroz, G. B.; Iriarte-Puña, M.; Mercado, A.; Ubomba-Jaswa, E.; McGuigan, K. G.

    2008-01-01

    Batch solar disinfection (SODIS) inactivation kinetics are reported for suspensions in water of Campylobacter jejuni, Yersinia enterocolitica, enteropathogenic Escherichia coli, Staphylococcus epidermidis, and endospores of Bacillus subtilis, exposed to strong natural sunlight in Spain and Bolivia. The exposure time required for complete inactivation (at least 4-log-unit reduction and below the limit of detection, 17 CFU/ml) under conditions of strong natural sunlight (maximum global irradiance, ∼1,050 W m−2 ± 10 W m−2) was as follows: C. jejuni, 20 min; S. epidermidis, 45 min; enteropathogenic E. coli, 90 min; Y. enterocolitica, 150 min. Following incomplete inactivation of B. subtilis endospores after the first day, reexposure of these samples on the following day found that 4% (standard error, 3%) of the endospores remained viable after a cumulative exposure time of 16 h of strong natural sunlight. SODIS is shown to be effective against the vegetative cells of a number of emerging waterborne pathogens; however, bacterial species which are spore forming may survive this intervention process. PMID:18359829

  16. Bactericidal effect of solar water disinfection under real sunlight conditions.

    Science.gov (United States)

    Boyle, M; Sichel, C; Fernández-Ibáñez, P; Arias-Quiroz, G B; Iriarte-Puña, M; Mercado, A; Ubomba-Jaswa, E; McGuigan, K G

    2008-05-01

    Batch solar disinfection (SODIS) inactivation kinetics are reported for suspensions in water of Campylobacter jejuni, Yersinia enterocolitica, enteropathogenic Escherichia coli, Staphylococcus epidermidis, and endospores of Bacillus subtilis, exposed to strong natural sunlight in Spain and Bolivia. The exposure time required for complete inactivation (at least 4-log-unit reduction and below the limit of detection, 17 CFU/ml) under conditions of strong natural sunlight (maximum global irradiance, approximately 1,050 W m(-2) +/- 10 W m(-2)) was as follows: C. jejuni, 20 min; S. epidermidis, 45 min; enteropathogenic E. coli, 90 min; Y. enterocolitica, 150 min. Following incomplete inactivation of B. subtilis endospores after the first day, reexposure of these samples on the following day found that 4% (standard error, 3%) of the endospores remained viable after a cumulative exposure time of 16 h of strong natural sunlight. SODIS is shown to be effective against the vegetative cells of a number of emerging waterborne pathogens; however, bacterial species which are spore forming may survive this intervention process.

  17. The Development of a Roof Integrated Solar Hot Water System

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, David F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energy Infrastructure and DER Dept.; Moss, Timothy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Solar Technologies Dept.; Palomino, G. Ernest [Salt River Project (SRP), Tempe, AZ (United States)

    2006-09-01

    The Salt River Project (SRP), in conjunction with Sandia National Laboratories (SNL) and Energy Laboratories, Inc. (ELI), collaborated to develop, test, and evaluate an advanced solar water-heating product for new homes. SRP and SNL collaborated under a Department of Energy Cooperative Research and Development Agreement (CRADA), with ELI as SRP's industry partner. The project has resulted in the design and development of the Roof Integrated Thermal Siphon (RITH) system, an innovative product that features complete roof integration, a storage tank in the back of the collector and below the roofline, easy installation by homebuilders, and a low installed cost. SRP's market research guided the design, and the laboratory tests conducted at SNL provided information used to refine the design of field test units and indicated that the RITH concept is viable. ELI provided design and construction expertise and is currently configured to manufacture the units. This final report for the project provides all of the pertinent and available materials connected to the project including market research studies, the design features and development of the system, and the testing and evaluation conducted at SNL and at a model home test site in Phoenix, Arizona.

  18. Design and Development of Prototype Cylindrical Parabolic Solar Collector for Water Heating Application

    Directory of Open Access Journals (Sweden)

    Hrushikesh Bhujangrao Kulkarni

    2016-02-01

    Full Text Available Concentrating collectors absorbs solar energy and convert it into heat for generating hot water, steam at required temperature, which can be further used for solar thermal applications. The developing countries like India where solar energy is abundantly available; there is need to develop technology for harnessing solar energy for power production, but the main problem associated with concentrating solar power technology is the high cost of installation and low output efficiency. To solve this problem, a prototype cylindrical parabolic solar collector having aperture area of 1.89 m2 is designed and developed using low cost highly reflecting and absorbing material to reduce initial cost of project and improve thermal efficiency. ASHRAE Standard 93, 1986 was used to evaluate the thermal performance and it was observed that this system can generate hot water at an average temperature of 500C per day with an average efficiency of 49% which is considerable higher than flat plate solar collectors. Hot water produced by this system can be useful for domestic, agricultural, industrial process heat applications.Article History: Received Sept 19, 2015; Received in revised form Dec 23, 2015; Accepted February 2, 2016; Available online How to Cite This Article: Bhujangrao, K.H. (2016. Design and Development of Prototype Cylindrical Parabolic Solar Collector for Water Heating Application. International Journal of Renewable Energy Development, 5(1, 49-55 http://dx.doi.org/10.14710/ijred.5.1.49-55 

  19. Analysis of off-grid hybrid wind turbine/solar PV water pumping systems

    Science.gov (United States)

    While many remote water pumping systems exist (e.g. mechanical windmills, solar photovoltaic , wind-electric, diesel powered), very few combine both the wind and solar energy resources to possibly improve the reliability and the performance of the system. In this paper, off-grid wind turbine (WT) a...

  20. Retrofitting Domestic Hot Water Heaters for Solar Water Heating Systems in Single-Family Houses in a Cold Climate: A Theoretical Analysis

    OpenAIRE

    Björn Karlsson; Henrik Davidsson; Bernardo, Luis R.

    2012-01-01

    One of the biggest obstacles to economic profitability of solar water heating systems is the investment cost. Retrofitting existing domestic hot water heaters when a new solar hot water system is installed can reduce both the installation and material costs. In this study, retrofitting existing water heaters for solar water heating systems in Swedish single-family houses was theoretically investigated using the TRNSYS software. Four simulation models using forced circulation flow with differe...

  1. Solar frigorific machine by zeolite 13 X/water adsorption. Part 2: solar and thermic performance coefficient; Maquina frigorifica solar a adsorcao zeolita 13X/agua. Parte 2: coeficientes de performance termico e solar

    Energy Technology Data Exchange (ETDEWEB)

    Escobedo, Joao Francisco; Saglietti, Jose Roberto Correa [UNESP, Botucatu, SP (Brazil). Dept. de Fisica e Biofisica. Faculdade de Medicina Veterinaria e Zootecnia; Passos, Evandro Ferreira [Vicosa Univ., MG (Brazil). Dept. de Fisica; Mello, Jose Mario Domingos de [UNESP, Botucatu, SP (Brazil). Faculdade de Medicina Veterinaria e Zootecnia

    1995-12-31

    The present work shows experimental results from zeolite 13/X water solar refrigerator in field condition described on article Part 1. Operating temperatures from several components on the machine are presented and the experimental cycle is analysed by an isobaric diagram. the solar and thermic performance are presented, discussed and compared with the literature. (author) 8 refs., 7 figs., 3 tabs.

  2. Optimal design of solar water heating systems | Alemu | Zede Journal

    African Journals Online (AJOL)

    The pe1formance of the preliminary design is predicted by using either/chart method or by translate it simulation of solar heating system. Often, optimization is done off-line after correlating the annual contribution of solar energy to the heating load and collector area using simulation resu!ts by analytical methods. In this work ...

  3. Graphene-Based Standalone Solar Energy Converter for Water Desalination and Purification.

    Science.gov (United States)

    Yang, Yang; Zhao, Ruiqi; Zhang, Tengfei; Zhao, Kai; Xiao, Peishuang; Ma, Yanfeng; Ajayan, Pulickel M; Shi, Gaoquan; Chen, Yongsheng

    2018-01-23

    Harvesting solar energy for desalination and sewage treatment has been considered as a promising solution to produce clean water. However, state-of-the-art technologies often require optical concentrators and complicated systems with multiple components, leading to poor efficiency and high cost. Here, we demonstrate an extremely simple and standalone solar energy converter consisting of only an as-prepared 3D cross-linked honeycomb graphene foam material without any other supporting components. This simple all-in-one material can act as an ideal solar thermal converter capable of capturing and converting sunlight into heat, which in turn can distill water from various water sources into steam and produce purified water under ambient conditions and low solar flux with very high efficiency. High specific water production rate of 2.6 kg h-1 m-2 g-1 was achieved with near ∼87% under 1 sun intensity and >80% efficiency even under ambient sunlight (<1 sun). This scalable sheet-like material was used to obtain pure drinkable water from both seawater and sewage water under ambient conditions. Our results demonstrate a competent monolithic material platform providing a paradigm change in water purification by using a simple, point of use, reusable, and low-cost solar thermal water purification system for a variety of environmental conditions.

  4. Single effect green house type solar still for portable water supply ...

    African Journals Online (AJOL)

    A Single Effect Symmetrical Green House Type Solar Still which can be used as a model for the supply of portable water in rural communities was constructed from locally available materials. Water quality profile tests performed on a brackish water sample before and after purification in the still indicate that the Total ...

  5. Primitive Liquid Water of the Solar System in an Aqueous Altered Carbonaceous Chondrite

    Science.gov (United States)

    Tsuchiyama, A.; Miyake, A.; Kitayama, A.; Matsuno, J.; Takeuchi, A.; Uesugi, K.; Suzuki, Y.; Nakano, T.; Zolensky, M. E.

    2016-01-01

    Non-destructive 3D observations of the aqueous altered CM chondrite Sutter's Mill using scanning imaging x-ray microscopy (SIXM) showed that some of calcite and enstatite grains contain two-phase inclusion, which is most probably composed of liquid water and bubbles. This water should be primitive water responsible for aqueous alteration in an asteroid in the early solar system.

  6. Attitudinal and Relational Factors Predicting the Use of Solar Water Disinfection: A Field Study in Nicaragua

    Science.gov (United States)

    Altherr, Anne-Marie; Mosler, Hans-Joachim; Tobias, Robert; Butera, Fabrizio

    2008-01-01

    Solar water disinfection (SODIS) is an uncomplicated and cheap technology providing individuals with safe drinking water by exposing water-filled plastic bottles to sunlight for 6 hours to kill waterborne pathogens. Two communities were visited, and 81 families (40 SODIS users and 41 nonusers) were interviewed. The relationship between several…

  7. Solar domestic hot water system installed at Texas City, Texas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-12-01

    The Solar Energy System located at LaQuinta Motor Inn, Texas City, Texas was designed to supply 63% of the total hot water load. The Solar Energy System consists of a 2100 square foot Raypack Liquid Flat Plate Collector Subsystem and a 2500 gallon storage subsystem circulating hot water producing 3.67 x 10/sup 8/ Btu/y. Abstracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  8. The Use of Solar Energy for Preparing Domestic Hot Water in a Multi-Storey Building

    OpenAIRE

    Giedrius Šiupšinskas; Solveiga Adomėnaitė

    2012-01-01

    The article analyses the possibilities of solar collectors used for a domestic hot water system and installed on the roofs of modernized multi-storey buildings under the existing climate conditions. A number of combinations of flat plate and vacuum solar collectors with accumulation tank systems of various sizes have been examined. Heat from the district heating system is used as an additional heat source for preparing domestic hot water. The paper compares calculation results of energy and e...

  9. Solar building

    OpenAIRE

    Zhang, Luxin

    2014-01-01

    In my thesis I describe the utilization of solar energy and solar energy with building integration. In introduction it is also mentioned how the solar building works, trying to make more people understand and accept the solar building. The thesis introduces different types of solar heat collectors. I compared the difference two operation modes of solar water heating system and created examples of solar water system selection. I also introduced other solar building applications. It is conv...

  10. Solar Energy for Domestic Hot Water: Case Studies in Sisimiut 1999-2005

    DEFF Research Database (Denmark)

    Reimann, Gregers Peter

    2005-01-01

    Two pioneer solar domestic hot water systems were installed at Bygge- og Anlægsskolen in Sisimiut in 1999 and 2000. Detailed measurements of energy flows and solar radiation incl. snow reflectance has been undertaken for both plants. Since August 2004 data logging of the measurements was made...... available online on the website www.arcticsolar.com. Measurements show that solar plant 1 and 2 cover 22% and 23%, respectively, of the energy spent for domestic hot water heating. This paper summarises the findings from the past 5 years....

  11. Economic Investigation of Different Configurations of Inclined Solar Water Desalination Systems

    Directory of Open Access Journals (Sweden)

    O. Phillips Agboola

    2014-02-01

    Full Text Available This study empirically investigated the performance of four configurations of inclined solar water desalination (ISWD system for parameters such as daily production, efficiency, system cost, and distilled water production cost. The empirical findings show that in terms of daily productivity improved inclined solar water desalination (IISWD performed best with 6.41 kg/m2/day while improved inclined solar water desalination with wire mesh (IISWDWM produced the least with 3.0 kg/m2/day. In terms of cost price of the systems, the control system inclined solar water desalination (ISWD is the cheapest while IISWDWM is the most expensive system. Distilled water cost price ranges from 0.059 TL/kg, for IISWDW, to 0.134 TL/kg, for IISWDWM system. All the systems are economically and technically feasible as a solar desalination system for potable water in northern Cyprus. Potable water from vendors/hawkers ranges from 0.2 to 0.3 TL/kg.

  12. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    Science.gov (United States)

    Andrews, J.W.

    1980-06-25

    A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  13. Solar Water Heating as a Potential Source for Inland Norway Energy Mix

    Directory of Open Access Journals (Sweden)

    Dejene Assefa Hagos

    2014-01-01

    Full Text Available The aim of this paper is to assess solar potential and investigate the possibility of using solar water heating for residential application in Inland Norway. Solar potential based on observation and satellite-derived data for four typical populous locations has been assessed and used to estimate energy yield using two types of solar collectors for a technoeconomic performance comparison. Based on the results, solar energy use for water heating is competitive and viable even in low solar potential areas. In this study it was shown that a typical tubular collector in Inland Norway could supply 62% of annual water heating energy demand for a single residential household, while glazed flat plates of the same size were able to supply 48%. For a given energy demand in Inland Norway, tubular collectors are preferred to flat plate collectors for performance and cost reasons. This was shown by break-even capital cost for a series of collector specifications. Deployment of solar water heating in all detached dwellings in Inland could have the potential to save 182 GWh of electrical energy, equivalent to a reduction of 15,690 tonnes of oil energy and 48.6 ktCO2 emissions, and contributes greatly to Norway 67.5% renewable share target by 2020.

  14. An economic evaluation comparison of solar water pumping system with engine pumping system for rice cultivation

    Science.gov (United States)

    Treephak, Kasem; Thongpron, Jutturit; Somsak, Dhirasak; Saelao, Jeerawan; Patcharaprakiti, Nopporn

    2015-08-01

    In this paper we propose the design and economic evaluation of the water pumping systems for rice cultivation using solar energy, gasoline fuel and compare both systems. The design of the water and gasoline engine pumping system were evaluated. The gasoline fuel cost used in rice cultivation in an area of 1.6 acres. Under same conditions of water pumping system is replaced by the photovoltaic system which is composed of a solar panel, a converter and an electric motor pump which is compose of a direct current (DC) motor or an alternating current (AC) motor with an inverter. In addition, the battery is installed to increase the efficiency and productivity of rice cultivation. In order to verify, the simulation and economic evaluation of the storage energy battery system with batteries and without batteries are carried out. Finally the cost of four solar pumping systems was evaluated and compared with that of the gasoline pump. The results showed that the solar pumping system can be used to replace the gasoline water pumping system and DC solar pump has a payback less than 10 years. The systems that can payback the fastest is the DC solar pumping system without batteries storage system. The system the can payback the slowest is AC solar pumping system with batteries storage system. However, VAC motor pump of 220 V can be more easily maintained than the motor pump of 24 VDC and batteries back up system can supply a more stable power to the pump system.

  15. Solar hot water system installed at Days Inn Motel, Jacksonville, Florida

    Science.gov (United States)

    1980-01-01

    The solar system was designed to provide 65 percent of the hot water demand. Water in the liquid flat plate collector (900 square feet) system automatically drains into the 1000 gallon lined and vented steel storage tank when the pump is not running. Heat is transferred from storage to Domestic Hot Water (DHW) tanks through a tube and shell heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up DHW standby losses. All pumps are controlled by differential temperature.

  16. Parametric studies of an active solar water heating system with ...

    Indian Academy of Sciences (India)

    ... storage tank volume between 200 and 300 L has been used. The climate parameters used were solar radiation levels range of 4–4.9 kWh/m2, the mean ambient temperature in the range of 25–28°C. The results of the simulation indicated that there was an increase in solar fraction and electrical power output of the active ...

  17. Solar photolysis versus TiO2-mediated solar photocatalysis: a kinetic study of the degradation of naproxen and diclofenac in various water matrices.

    Science.gov (United States)

    Kanakaraju, Devagi; Motti, Cherie A; Glass, Beverley D; Oelgemöller, Michael

    2016-09-01

    Given that drugs and their degradation products are likely to occur as concoctions in wastewater, the degradation of a mixture of two nonsteroidal anti-inflammatory drugs (NSAIDs), diclofenac (DCF) and naproxen (NPX), was investigated by solar photolysis and titanium dioxide (TiO2)-mediated solar photocatalysis using an immersion-well photoreactor. An equimolar ratio (1:1) of both NSAIDs in distilled water, drinking water, and river water was subjected to solar degradation. Solar photolysis of the DCF and NPX mixture was competitive particularly in drinking water and river water, as both drugs have the ability to undergo photolysis. However, the addition of TiO2 in the mixture significantly enhanced the degradation rate of both APIs compared to solar photolysis alone. Mineralization, as measured by chemical oxygen demand (COD), was incomplete under all conditions investigated. TiO2-mediated solar photocatalytic degradation of DCF and NPX mixtures produced 15 identifiable degradants corresponding to degradation of the individual NSAIDs, while two degradation products with much higher molecular weight than the parent NSAIDs were identified by liquid chromatography mass spectrometry (LC-MS) and Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS). This study showed that the solar light intensity and the water matrix appear to be the main factors influencing the overall performance of the solar photolysis and TiO2-mediated solar photocatalysis for degradation of DCF and NPX mixtures.

  18. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path

    National Research Council Canada - National Science Library

    Li, Xiuqiang; Xu, Weichao; Tang, Mingyao; Zhou, Lin; Zhu, Bin; Zhu, Shining; Zhu, Jia

    2016-01-01

      Because it is able to produce desalinated water directly using solar energy with minimum carbon footprint, solar steam generation and desalination is considered one of the most important technologies...

  19. Solar-assisted gas-energy water-heating feasibility for apartments

    Science.gov (United States)

    Davis, E. S.

    1975-01-01

    Studies of residential energy use, solar-energy technology for buildings, and the requirements for implementing technology in the housing industry led to a project to develop a solar water heater for apartments. A design study for a specific apartment was used to establish a solar water-heater cost model which is based on plumbing contractor bids and manufacturer estimates. The cost model was used to size the system to minimize the annualized cost of hot water. The annualized cost of solar-assisted gas-energy water heating is found to be less expensive than electric water heating but more expensive than gas water heating. The feasibility of a natural gas utility supplying the auxiliary fuel is evaluated. It is estimated that gas-utilizing companies will find it profitable to offer solar water heating as part of a total energy service option or on a lease basis when the price of new base-load supplies of natural gas reaches $2.50-$3.00 per million Btu.

  20. Solar water disinfection (SODIS); Traitement de l'eau par l'energie solaire

    Energy Technology Data Exchange (ETDEWEB)

    Wegelin, M. [Water Treatment, EAWAG/SANDEC, Duebendorf (Switzerland)

    1998-07-01

    Solar water disinfection uses solar energy to inactivate and destroy pathogenic microorganisms present in the water. The use of solar energy, which is universally available and free of charge. is the basis of this low-cost technology to be applied on household level for the treatment of small quantifies of drinking water. The treatment basically consists in filling transparent containers with water and expose them to full sunlight for several hours. Extensive laboratory and field tests carried out by EAWAG and its partners revealed that synergies induced by the combined application of radiation and thermal treatment have a significant effect on the die-off rate of the microorganisms. For example, field tests demonstrated that the concentration of Vibrio cholerae is reduced by a factor of 1000 during an exposure time of 30 minutes and a water temperature of 50 deg.C. The use of half-side blackened bottles or of plastic bags is a simple application of the batch process which. however, limits the daily capacity to the volume of water stored in the containers. Continuous-flow systems consist of solar collectors and heat exchangers which significantly increase the use of the available solar energy and, thereby, also the output of treated water. (author)

  1. Solar water disinfection (SODIS): A review from bench-top to roof-top

    Energy Technology Data Exchange (ETDEWEB)

    McGuigan, Kevin G., E-mail: kmcguigan@rcsi.ie [Royal College of Surgeons in Ireland, Dublin 2 (Ireland); Conroy, Ronan M. [Royal College of Surgeons in Ireland, Dublin 2 (Ireland); Mosler, Hans-Joachim [EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133: CH-8600 Duebendorf (Switzerland); Preez, Martella du; Ubomba-Jaswa, Eunice [CSIR, Natural Resources and the Environment, Pretoria, Gauteng (South Africa); Fernandez-Ibanez, Pilar [Plataforma Solar de Almeria - CIEMAT, P.O. Box 22, 07200 Tabernas, Almeria (Spain)

    2012-10-15

    Graphical abstract: . Water being treated by solar disinfection outside a primary school classroom in Southern Uganda. Students fill their bottles at home and expose them to the sun while they are at school. Highlights: Black-Right-Pointing-Pointer A thorough review of current state of play of solar water disinfection. Black-Right-Pointing-Pointer An examination of both laboratory and field studies. Black-Right-Pointing-Pointer Description of the economic and behaviour change aspects of this technology. - Abstract: Solar water disinfection (SODIS) has been known for more than 30 years. The technique consists of placing water into transparent plastic or glass containers (normally 2 L PET beverage bottles) which are then exposed to the sun. Exposure times vary from 6 to 48 h depending on the intensity of sunlight and sensitivity of the pathogens. Its germicidal effect is based on the combined effect of thermal heating of solar light and UV radiation. It has been repeatedly shown to be effective for eliminating microbial pathogens and reduce diarrhoeal morbidity including cholera. Since 1980 much research has been carried out to investigate the mechanisms of solar radiation induced cell death in water and possible enhancement technologies to make it faster and safer. Since SODIS is simple to use and inexpensive, the method has spread throughout the developing world and is in daily use in more than 50 countries in Asia, Latin America, and Africa. More than 5 million people disinfect their drinking water with the solar disinfection (SODIS) technique. This review attempts to revise all relevant knowledge about solar disinfection from microbiological issues, laboratory research, solar testing, up to and including real application studies, limitations, factors influencing adoption of the technique and health impact.

  2. Efficiency in the disinfection of water for human consumption in rural communities using solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Dominguez, A. [Instituto de Investigaciones Electricas, Mor (Mexico); Alarcon-Herrera, M.T.; Martin-Dominguez, I.R. [Centtro de Investigacion en Materiales Avanzados, Chih (Mexico); Gonzalez-Herrera, A. [Instituto Mexicano de Tecnologia del Agua, Mor (Mexico)

    2005-01-01

    The efficiency of solar disinfection for the inactivation of Total Coliforms (TC) and Escherichia coli (EC) in drinking water was tested in rural communities of the Guachochi Municipality, in the Tarahumara Sierra, State of Chihuahua, Mexico. The study zone was selected mostly because it lacks formal water supply systems and the population is forced to consume untreated water directly from rivers and shallow or artesian wells without treatment. To determine the bacteriological quality of the water consumed by the population, the amount of TC and EC in the water supplies of 23 communities in the studied municipality was determined. The efficiency of the solar energy based water disinfection process was determined for several months of the humid and dry seasons with water from the most contaminated sources of the study zone. The performed tests consisted in studying the effect of disinfecting water by direct exposure to sunlight during the whole day, with and without solar concentrators, in plastic bottles of commercial beverages. The three types of bottles used were transparent, partially painted black (one half of the bottle, along the longitudinal axis), and totally black. The study shows that, in this geographic zone, the available water must be disinfected before consumption and disinfection efficiency can reach 100% through the use of solar radiation. It was found that, since more than 6 h of daily solar radiation are available during most of the year in this zone, no solar concentrators are really necessary to ensure the complete elimination of bacteria. A complete disinfection takes place by simply placing water bottles in the sunlight during the whole day. Nevertheless, the use of solar concentrators and bottles partially painted black increases the TC and EC inactivation efficiency, reducing the solar exposure time required for a total disinfection to just 2 h. With the use of solar concentrators and partially blackened bottles, the water temperature

  3. Integrating a Semitransparent, Fullerene-Free Organic Solar Cell in Tandem with a BiVO4Photoanode for Unassisted Solar Water Splitting.

    Science.gov (United States)

    Peng, Yuelin; Govindaraju, Gokul V; Lee, Dong Ki; Choi, Kyoung-Shin; Andrew, Trisha L

    2017-07-12

    We report an unassisted solar water splitting system powered by a diketopyrrolopyrrole (DPP)-containing semitransparent organic solar cell. Two major merits of this fullerene-free solar cell enable its integration with a BiVO 4 photoanode. First is the high open circuit voltage and high fill factor displayed by this single junction solar cell, which yields sufficient power to effect water splitting when serially connected to an appropriate electrode/catalyst. Second, the wavelength-resolved photoaction spectrum of the DPP-based solar cell has minimal overlap with that of the BiVO 4 photoanode, thus ensuring that light collection across these two components can be optimized. The latter feature enables a new water splitting device configuration wherein the solar cell is placed first in the path of incident light, before the BiVO 4 photoanode, although BiVO 4 has a wider bandgap. This configuration is accessed by replacing the reflective top electrode of the standard DPP-based solar cell with a thin metal film and an antireflection layer, thus rendering the solar cell semitransparent. In this configuration, incident light does not travel through the aqueous electrolyte to reach the solar cell or photoanode, and therefore, photon losses due to the scattering of water are reduced. Moreover, this new configuration allows the BiVO 4 photoanode to be back-illuminated, i.e., through the BiVO 4 /back contact interface, which leads to higher photocurrents compared to front illumination. The combination of a semitransparent single-junction solar cell and a BiVO 4 photoanode coated with oxygen evolution catalysts in a new device configuration yielded an unassisted solar water splitting system with a solar-to-hydrogen conversion efficiency of 2.2% in water.

  4. A miniature solar device for overall water splitting consisting of series-connected spherical silicon solar cells

    KAUST Repository

    Kageshima, Yosuke

    2016-04-18

    A novel “photovoltaics (PV) + electrolyzer” concept is presented using a simple, small, and completely stand-alone non-biased device for solar-driven overall water splitting. Three or four spherical-shaped p-n junction silicon balls were successfully connected in series, named “SPHELAR.” SPHELAR possessed small projected areas of 0.20 (3PVs) and 0.26 cm2 (4PVs) and exhibited working voltages sufficient for water electrolysis. Impacts of the configuration on the PV module performance were carefully analyzed, revealing that a drastic increase in the photocurrent (≈20%) was attained by the effective utilization of a reflective sheet. Separate investigations on the electrocatalyst performance showed that non-noble metal based materials with reasonably small sizes (<0.80 cm2) exhibited substantial currents at the PV working voltage. By combining the observations of the PV characteristics, light management and electrocatalyst performance, solar-driven overall water splitting was readily achieved, reaching solar-to-hydrogen efficiencies of 7.4% (3PVs) and 6.4% (4PVs).

  5. Solar water disinfection (SODIS): a review from bench-top to roof-top.

    Science.gov (United States)

    McGuigan, Kevin G; Conroy, Ronán M; Mosler, Hans-Joachim; du Preez, Martella; Ubomba-Jaswa, Eunice; Fernandez-Ibañez, Pilar

    2012-10-15

    Solar water disinfection (SODIS) has been known for more than 30 years. The technique consists of placing water into transparent plastic or glass containers (normally 2L PET beverage bottles) which are then exposed to the sun. Exposure times vary from 6 to depending on the intensity of sunlight and sensitivity of the pathogens. Its germicidal effect is based on the combined effect of thermal heating of solar light and UV radiation. It has been repeatedly shown to be effective for eliminating microbial pathogens and reduce diarrhoeal morbidity including cholera. Since 1980 much research has been carried out to investigate the mechanisms of solar radiation induced cell death in water and possible enhancement technologies to make it faster and safer. Since SODIS is simple to use and inexpensive, the method has spread throughout the developing world and is in daily use in more than 50 countries in Asia, Latin America, and Africa. More than 5 million people disinfect their drinking water with the solar disinfection (SODIS) technique. This review attempts to revise all relevant knowledge about solar disinfection from microbiological issues, laboratory research, solar testing, up to and including real application studies, limitations, factors influencing adoption of the technique and health impact. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Solar hot water system installed at Days Inn Motel, Dallas, Texas (Forrest Lane)

    Science.gov (United States)

    1980-01-01

    The solar system was designed to provide 65 percent of the total Domestic Hot Water (DHW) demand. The liquid flat plate (water) collector (1,000 square feet) system automatically drains into the 1,000 gallon steel storage tank located in the mechanical room when the pump is not running. Heat is transferred from the storage tank to DHW tanks through a tube and shell heat exchanger. A circulating pump between the DHW tanks and the heat exchanger enables solar heated water to help make DHW tank standby losses. All pumps are controlled by differential temperature.

  7. Solar Energy and Other Appropriate Technologies for Small Potable Water Systems in Puerto Rico

    Science.gov (United States)

    This Region 2 research demonstration project presentation studied the efficacy of sustainable solar-powered water delivery and monitoring systems to reduce the economic burden of operating and maintaining Non-PRASA drinking water systems and to reduce the impact of climate change...

  8. Solar energy meets 50 pecent of motel hot water needs--Key West, Florida

    Science.gov (United States)

    1981-01-01

    Final report describes domestic water preheat installed in 148 room motel. Equipment meets 50 percent of needs when motel is 100 percent occupied; equivalently, it supplies 100 percent of hot water when occupancy is 50 percent. System consists of 1,400 square feet of flat plate liquid solar collectors, storage tanks, pump, controller, and hardware.

  9. Optimization of hybrid system (wind-solar energy) for pumping water

    African Journals Online (AJOL)

    DR OKE

    Southern countries, Tunisia is also suffering from water scarcity due to the global warming and climate change. To meet water needs, several strategies .... where TSV is the true solar time, which is equal to time legal corrected by a due gap aside between the longitude of the place and the longitude references (Perrin 1963).

  10. Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies.

    Science.gov (United States)

    Otanicar, Todd P; Golden, Jay S

    2009-08-01

    This study compares environmental and economic impacts of using nanofluids to enhance solar collector efficiency as compared to conventional solar collectors for domestic hotwater systems. Results show that for the current cost of nanoparticles the nanofluid based solar collector has a slightly longer payback period but at the end of its useful life has the same economic savings as a conventional solar collector. The nanofluid based collector has a lower embodied energy (approximately 9%) and approximately 3% higher levels of pollution offsets than a conventional collector. In addition if 50% penetration of residential nanofluid based solar collector systems for hot water heating could be achieved in Phoenix, Arizona over 1 million metric tons of CO2 would be offset per year.

  11. Simulation of the solar thermal power plant of 5 MW based in the technology of Parabolic Trough Collector with the simulation program TRANSYS; Simulacion de una central electrica termosolar de 5MWe basada en la tecnologia de colector solar cilindro parabolico, con el programa de simulacion TRANSYS

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M. L.; Sautullo, C. S.

    2004-07-01

    Solar Thermal Power Plants (STPP) have raised an increasing interest in the last years. Within the scope of Concentrating Solar Power technologies, Parabolic Trough is at the forefront stage of development. The improved process of Direct Steam Generation technology (DSG) could increase even further the efficiency of Parabolic Trough Power Plants. An essential tool for STPP design is the development of a computational model of a complete power plant. The modular program TRNSYS has been used for this purpose. The model presented in this work simulates the thermal and hydraulic behavior of a complete 5 MW STPP in the south of Spain, with no back-up fuel. The model represents the DSG solar field coupled to the power block. Superheated steam is produced in the solar field, and used in a conventional Rankine cycle to produce electricity in the electric generator. (Author)

  12. Solar disinfection of drinking water and diarrhoea in Maasai children: a controlled field trial.

    Science.gov (United States)

    Conroy, R M; Elmore-Meegan, M; Joyce, T; McGuigan, K G; Barnes, J

    Solar radiation reduces the bacterial content of water, and may therefore offer a method for disinfection of drinking water that requires few resources and no expertise. We distributed plastic water bottles to 206 Maasai children aged 5-16 years whose drinking water was contaminated with faecal coliform bacteria. Children were instructed to fill the bottle with water and leave it in full sunlight on the roof of the hut (solar group), or to keep their filled bottles indoors in the shade (control group). A Maasai-speaking fieldworker who lived in the community interviewed the mother of each child once every 2 weeks for 12 weeks. Occurrence and severity of diarrhoea was recorded at each follow-up visit. Among the 108 children in households allocated solar treatment, diarrhoea was reported in 439 of the 2-week reporting periods during the 12-week trial (average 4.1 [SD 1.2] per child). By comparison, the 98 children in the control households reported diarrhoea during 444 2-week reporting periods (average 4.5 [1.2] per child). Diarrhoea severe enough to prevent performance of duties occurred during 186 reporting periods in the solar group and during 222 periods in the control group (average 1.7 [1.2] vs 2.3 [1.4]). After adjustment for age, solar treatment of drinking water was associated with a reduction in all diarrhoea episodes (odds ratio 0.66 [0.50-0.87]) and in episodes of severe diarrhoea (0.65 [0.50-0.86]). Our findings suggest that solar disinfection of water may significantly reduce morbidity in communities with no other means of disinfection of drinking water, because of lack of resources or in the event of a disaster.

  13. Solar hot water system installed at Quality Inn, Key West, Florida

    Science.gov (United States)

    1980-01-01

    The solar energy hot water system installed in the Quality Inn, Key West, Florida, which consists of four buildings is described. Three buildings are low-rise, two-story buildings containing 100 rooms. The fourth is a four-story building with 48 rooms. The solar system was designed to provide approximately 50 percent of the energy required for the domestic hot water system. The solar system consists of approximately 1400 square feet of flat plate collector, two 500 gallon storage tanks, a circulating pump, and a controller. Operation of the system was begun in April 1978, and has continued to date with only three minor interruptions for pump repair. In the first year of operation, it was determined that the use of the solar facility resulted in forty percent fuel savings.

  14. Directing solar photons to sustainably meet food, energy, and water needs.

    Science.gov (United States)

    Gençer, Emre; Miskin, Caleb; Sun, Xingshu; Khan, M Ryyan; Bermel, Peter; Alam, M Ashraf; Agrawal, Rakesh

    2017-06-09

    As we approach a "Full Earth" of over ten billion people within the next century, unprecedented demands will be placed on food, energy and water (FEW) supplies. The grand challenge before us is to sustainably meet humanity's FEW needs using scarcer resources. To overcome this challenge, we propose the utilization of the entire solar spectrum by redirecting solar photons to maximize FEW production from a given land area. We present novel solar spectrum unbundling FEW systems (SUFEWS), which can meet FEW needs locally while reducing the overall environmental impact of meeting these needs. The ability to meet FEW needs locally is critical, as significant population growth is expected in less-developed areas of the world. The proposed system presents a solution to harness the same amount of solar products (crops, electricity, and purified water) that could otherwise require ~60% more land if SUFEWS were not used-a major step for Full Earth preparedness.

  15. Parametric studies of an active solar water heating system with ...

    Indian Academy of Sciences (India)

    The climate parameters used were solar radiation levels range of 4–4.9 kWh/m2, the mean ambient temperature in the ... Increased utilisation of renewable energy resources is strategically important in the long term as it will contribute to the sustainability .... a conventional non-integrated PV module that gave the percentage ...

  16. Solar light irradiation significantly reduced cytotoxicity and disinfection byproducts in chlorinated reclaimed water.

    Science.gov (United States)

    Lv, Xiao-Tong; Zhang, Xue; Du, Ye; Wu, Qian-Yuan; Lu, Yun; Hu, Hong-Ying

    2017-11-15

    Chlorinated reclaimed water is widely used for landscaping and recreational purposes, resulting in human exposure to toxic disinfection byproducts. Although the quality of chlorinated reclaimed water might be affected by sunlight during storage, the effects of solar light irradiation on the toxicity remain unknown. This study investigated the changes in cytotoxicity and total organic halogen (TOX) of chlorinated reclaimed water exposed to solar light. Irradiation with solar light for 12 h was found to significantly reduce the cytotoxicity of chlorinated reclaimed water by about 75%, with ultraviolet light being responsible for the majority of this reduction. Chlorine residual in reclaimed water tended to increase the cytotoxicity, and the synergy between solar light and free chlorine could not enhance the reduction of cytotoxicity. Adding hydroxyl radical scavengers revealed that the contribution of hydroxyl radical to cytotoxicity reduction was limited. Solar light irradiation concurrently reduced TOX. The low molecular weight (1 kDa) fraction was probably caused by photoconversion from high toxic TOX to low toxic TOX. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Influence of solar water disinfection on immunity against cholera - a review.

    Science.gov (United States)

    Ssemakalu, Cornelius Cano; Ubomba-Jaswa, Eunice; Motaung, Keolebogile Shirley; Pillay, Michael

    2014-09-01

    Cholera remains a problem in developing countries. This is attributed to the unavailability of proper water treatment, sanitary infrastructure and poor hygiene. As a consequence, countries facing cholera outbreaks rely on interventions such as the use of oral rehydration therapy and antibiotics to save lives. In addition to vaccination, the provision of chlorine tablets and hygiene sensitization drives have been used to prevent new cholera infections. The implementation of these interventions remains a challenge due to constraints associated with the cost, ease of use and technical knowhow. These challenges have been reduced through the use of solar water disinfection (SODIS). The success of SODIS in mitigating the risk associated with the consumption of waterborne pathogens has been associated with solar irradiation. This has prompted a lot of focus on the solar component for enhanced disinfection. However, the role played by the host immune system following the consumption of solar-irradiated water pathogens has not received any significant attention. The mode of inactivation resulting from the exposure of microbiologically contaminated water results in immunologically important microbial states as well as components. In this review, the possible influence that solar water disinfection may have on the immunity against cholera is discussed.

  18. Promotion of solar energy use for water heating in the residential sector

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Omar Campos [Secretaria de Ciencia, Tecnologia e Ensino Superior (SCT), Belo Horizonte, MG (Brazil). Gestao em Ciencia e Tecnologia

    2004-12-15

    The use of solar energy reduces both the cost of water heating at low temperature and the investment in electricity generation and distribution and therefore it is advantageous for the user as well as the electric energy utility. However, the initial investment in the solar equipment is larger than that corresponding to other heating modalities, inhibiting the initiative of the user to substitute the electric shower by solar heating. The apparent solution would be to combine the investment capacity of the utilities with the user's willingness to pay. (author)

  19. Solar heating and hot water system installed at James Hurst Elementary School, Portsmouth, Virginia

    Science.gov (United States)

    1981-01-01

    Solar heating and a hot water system installed in an elementary school in Portsmouth, Virginia are examined. The building is zoned into four heating/cooling areas. Each area is equipped with an air handling unit that is monitored and controlled by central control and monitoring system. The solar system for the building uses a collector area of 3,630 sq. ft. of flat plate liquid collectors, and a 6,000 gallon storage tank. System descriptions, maintenance reports, detailed component specifications, and design drawings to evaluate this solar system are reported.

  20. Solar hot water system installed at Day's Lodge, Atlanta, Georgia

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    The solar energy hot water system installed in the Days Inns of America, Inc., Day's Lodge I-85 and Shallowford Road, NE Atlanta, Georgia is described. This system is one of eleven systems planned under this grant and was designed to provide for 81% of the total hot water demand. There are two separate systems, each serving one building of the lodge (total of 65 suites). The entire system contains only potable city water. The 1024 square feet of Grumman Sunstream Model 332 liquid flat plate collectors and the outside piping drains whenever the collector plates approach freezing or when power is interrupted. Solar heated water from the two above ground cement lined steel tanks (1000 gallon tank) is drawn into the electric domestic hot water (DHW) tanks as hot water is drawn. Electric resistance units in the DHW tanks top off the solar heated water, if needed, to reach thermostat setting. Operation of this system was begun in August, 1979. The solar components were partly funded ($18,042 of $36,084 cost) by the Department of Energy.

  1. Productivity Amelioration of Solar Water Distillator Linked with Salt Gradient Pond

    Directory of Open Access Journals (Sweden)

    Miqdam Miqdam Tariq Chaichan

    2013-04-01

    Full Text Available There is a great need for fresh water in many developing countries. Water sources from, e.g., lakes; rivers and groundwater are often brackish or contain harmful bacteria and should therefore not be used for drinking or irrigation.In this work a simple solar double sloped basin type still was connected to a solar salt gradient pond. The salinity-gradient solar pond is constructed in such a manner that the convective circulation in the pond is prohibited by making the bottom water much denser than the surface water. In doing so, the solar radiation absorbed in the deep water can be stored; the hot water from the salt pond was used to heat salt water in the stiller, at daylight and night.The tests were conducted in September and October in autumn season in Baghdad city-Iraq in 2009. The results show development in stiller productivity at daylight and larger productivity increase at night. The stiller productivity increased also with cooling the glass cover from the still outside. 

  2. ANNEALING OF POLYCRYSTALLINE THIN FILM SILICON SOLAR CELLS IN WATER VAPOUR AT SUB-ATMOSPHERIC PRESSURES

    Directory of Open Access Journals (Sweden)

    Peter Pikna

    2014-10-01

    Full Text Available Thin film polycrystalline silicon (poly-Si solar cells were annealed in water vapour at pressures below atmospheric pressure. PN junction of the sample was contacted by measuring probes directly in the pressure chamber filled with steam during passivation. Suns-VOC method and a Lock-in detector were used to monitor an effect of water vapour to VOC of the solar cell during whole passivation process (in-situ. Tested temperature of the sample (55°C – 110°C was constant during the procedure. Open-circuit voltage of a solar cell at these temperatures is lower than at room temperature. Nevertheless, voltage response of the solar cell to the light flash used during Suns-VOC measurements was good observable. Temperature dependences for multicrystalline wafer-based and polycrystalline thin film solar cells were measured and compared. While no significant improvement of thin film poly-Si solar cell parameters by annealing in water vapour at under-atmospheric pressures was observed up to now, in-situ observation proved required sensitivity to changing VOC at elevated temperatures during the process.

  3. Water Footprint and Land Requirement of Solar Thermochemical Jet-Fuel Production.

    Science.gov (United States)

    Falter, Christoph; Pitz-Paal, Robert

    2017-11-07

    The production of alternative fuels via the solar thermochemical pathway has the potential to provide supply security and to significantly reduce greenhouse gas emissions. H2O and CO2 are converted to liquid hydrocarbon fuels using concentrated solar energy mediated by redox reactions of a metal oxide. Because attractive production locations are in arid regions, the water footprint and the land requirement of this fuel production pathway are analyzed. The water footprint consists of 7.4 liters per liter of jet fuel of direct demand on-site and 42.4 liters per liter of jet fuel of indirect demand, where the dominant contributions are the mining of the rare earth oxide ceria, the manufacturing of the solar concentration infrastructure, and the cleaning of the mirrors. The area-specific productivity is found to be 33 362 liters per hectare per year of jet fuel equivalents, where the land coverage is mainly due to the concentration of solar energy for heat and electricity. The water footprint and the land requirement of the solar thermochemical fuel pathway are larger than the best power-to-liquid pathways but an order of magnitude lower than the best biomass-to-liquid pathways. For the production of solar thermochemical fuels arid regions are best-suited, and for biofuels regions of a moderate and humid climate.

  4. Solar water disinfection (SODIS): Impact on hepatitis A virus and on a human Norovirus surrogate under natural solar conditions.

    Science.gov (United States)

    Polo, David; García-Fernández, Irene; Fernández-Ibáñez, Pilar; Romalde, Jesús L

    2015-03-01

    This study evaluates the effectiveness of solar water disinfection (SODIS) in the reduction and inactivation of hepatitis A virus (HAV) and of the human Norovirus surrogate, murine Norovirus (MNV-1), under natural solar conditions. Experiments were performed in 330 ml polyethylene terephthalate (PET) bottles containing HAV or MNV-1 contaminated waters (10(3) PFU/ml) that were exposed to natural sunlight for 2 to 8 h. Parallel experiments under controlled temperature and/or in darkness conditions were also included. Samples were concentrated by electropositive charged filters and analysed by RT-real time PCR (RT-qPCR) and infectivity assays. Temperature reached in bottles throughout the exposure period ranged from 22 to 40ºC. After 8 h of solar exposure (cumulative UV dose of ~828 kJ/m2 and UV irradiance of ~20 kJ/l), the results showed significant (PSODIS conditions induced a loss of infectivity between 33.4% and 83.4% after 4 to 8 h in HAV trials, and between 33.4% and 66.7% after 6 h to 8 h in MNV-1 trials. The results obtained indicated a greater importance of sunlight radiation over the temperature as the main factor for viral reduction. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  5. Solar production of industrial process hot water. Phase 3: Operation and evaluation of the York Building Products Company, Incorporated. Solar Facility

    Science.gov (United States)

    Bollinger, J. M.; Kaplan, N.; Wilkening, H. A., Jr.

    1981-10-01

    The solar facility utilizes 35 collectors with a total aperture area of 8960 sq ft. The system is designed to deliver a water/ethylene glycol solution at 200 F to a heat exchanger, which, in turn, supplies water at 180 F to a rotoclave (underground tank) for the concrete block curing process. A fossil fuel boiler system also supplies the rotoclave with processed hot water to supplement the solar system. The system was operational 92.5% of the days during which the data acquisition system was functional. Sufficient solar heating was available to deliver hot water to the heat exchanger on 448 days, or 81.8% of the days on which reliable data was recorded. Total fuel saved during the three year period was 10,284 gallons. Thus, this program successfully demonstrated the technical feasibility of generating industrial process hot water with solar energy.

  6. Solar heating and hot water system installed at Cherry Hill, New Jersey

    Science.gov (United States)

    1979-01-01

    The solar heating and hot water system installed in existing buildings at the Cherry Hill Inn in Cherry Hill, New Jersey is described in detail. The system is expected to furnish 31.5% of the overall heating load and 29.8% of the hot water load. The collectors are liquid evacuated tube type. The storage system is an above ground insulated steel water tank with a capacity of 7,500 gallons.

  7. Solar Water Disinfection in Household Settings: Hype or Hope?

    OpenAIRE

    M?usezahl, Daniel; Christen, Andri; Pacheco, Gonzalo Duran; Tellez, Fidel Alvarez; Iriarte, Mercedes; Zapata, Maria E.; Cevallos, Myriam; Hattendorf, Jan; Cattaneo, Monica Daigl; Arnold, Benjamin; Smith, Thomas A.; Colford, John M.

    2009-01-01

    Editors' Summary Background Thirsty? Well, turn on the tap and have a drink of refreshing, clean, safe water. Unfortunately, more than one billion people around the world don't have this option. Instead of the endless supply of safe drinking water that people living in affluent, developed countries take for granted, more than a third of people living in developing countries only have contaminated water from rivers, lakes, or wells to drink. Because of limited access to safe drinking water, po...

  8. One-Dimensional Metal-Oxide Nanostructures for Solar Photocatalytic Water-Splitting

    Science.gov (United States)

    Wang, Fengyun; Song, Longfei; Zhang, Hongchao; Luo, Linqu; Wang, Dong; Tang, Jie

    2017-08-01

    Because of their unique physical and chemical properties, one-dimensional (1-D) metal-oxide nanostructures have been extensively applied in the areas of gas sensors, electrochromic devices, nanogenerators, and so on. Solar water-splitting has attracted extensive research interest because hydrogen generated from solar-driven water splitting is a clean, sustainable, and abundant energy source that not only solves the energy crisis, but also protects the environment. In this comprehensive review, the main synthesis methods, properties, and especially prominent applications in solar water splitting of 1-D metal-oxides, including titanium dioxide (TiO2), zinc oxide (ZnO), tungsten trioxide (WO3), iron oxide (Fe2O3), and copper oxide (CuO) are fully discussed.

  9. INWARD RADIAL MIXING OF INTERSTELLAR WATER ICES IN THE SOLAR PROTOPLANETARY DISK

    Energy Technology Data Exchange (ETDEWEB)

    Vacher, Lionel G.; Marrocchi, Yves; Villeneuve, Johan [CRPG, CNRS, Université de Lorraine, UMR 7358, Vandoeuvre-lés-Nancy, F-54501 (France); Verdier-Paoletti, Maximilien J.; Gounelle, Matthieu, E-mail: lvacher@crpg.cnrs-nancy.fr [IMPMC, MNHN, UPMC, UMR CNRS 7590, 61 rue Buffon, F-75005 Paris (France)

    2016-08-10

    The very wide diversity of asteroid compositions in the main belt suggests significant material transport in the solar protoplanetary disk and hints at the presence of interstellar ices in hydrated bodies. However, only a few quantitative estimations of the contribution of interstellar ice in the inner solar system have been reported, leading to considerable uncertainty about the extent of radial inward mixing in the solar protoplanetary disk 4.56 Ga ago. We show that the pristine CM chondrite Paris contains primary Ca-carbonates whose O-isotopic compositions require an 8%–35% contribution from interstellar water. The presence of interstellar water in Paris is confirmed by its bulk D/H isotopic composition that shows significant D enrichment (D/H = (167 ± 0.2) × 10{sup −6}) relative to the mean D/H of CM chondrites ((145 ± 3) × 10{sup −6}) and the putative D/H of local CM water ((82 ± 1.5) × 10{sup −6}). These results imply that (i) efficient radial mixing of interstellar ices occurred from the outer zone of the solar protoplanetary disk inward and that (ii) chondrites accreted water ice grains from increasing heliocentric distances in the solar protoplanetary disk.

  10. Experimental Investigation on Modified Solar Still Using Nano Particles and Water Sprinkler Attachment

    Science.gov (United States)

    Gupta, Bhupendra; Kumar, Anil; Baredar, Prashant V.

    2017-08-01

    The experimental investigation has been done in the month of April 2015 for climate condition of Jabalpur, Madhya Pradesh, India (latitude 23o18ˈN; Longitude 79o 95ˈE) during full day, 06.00 AM to 06:00 PM. The performance of the solar still with modification of water flow over the glass cover (sprinkler attachment) and nano particles (cuprous oxide) in basin water has been observed, recorded and compared with conventional still. It has been found that the collection of pure water in modified solar sill was 4000 ml/(m2-day) as compared to 2900 ml/(m2-day) in conventional solar still. The efficiency of 34% and 22% has been obtained for modified solar still and conventional still respectively. With design amendments, increase in overall effectiveness was found to be 54.54 %. The computed cost of pure water produced in modified still is expected to (INR) Rs.0.98/liter, in view of 12 yrs life of the solar still.

  11. Experimental study on a prototype solar water heater using refrigerant R141b as a transfer fluid

    Science.gov (United States)

    Ambarita, Himsar; Sitepu, Tekad

    2017-09-01

    A prototype of a heat pipe type solar water heater by using refrigerant as a heat transfer fluid is investigated experimentally. The objective is to explore the performance and characteristics of the prototype when it is filled with R141b. A prototype of the solar water heater with flat plate collector is designed and fabricated. In the experiments, two different refrigerants, R141b and R718, are employed, respectively. The initial pressure of transfer fluid is varied from 10 psi to 55 psi. The prototype is exposed to solar irradiation in a location in Medan city. Solar collector temperatures, solar irradiation, water temperature, and ambient temperature are measured. The efficiency of the system is analyzed. The results show that at the same initial pressure, the solar water heater filled with R141b is better than R718. The optimum initial pressure of the solar water heater filled with R141b is 30 psi. Thermal efficiency of the solar water heater at pressure 30 psi can be up to 34%. The main conclusion can be drawn here is that the solar water heater using refrigerant R141b as a transfer fluid results in a better performance in comparison with conventional water heater.

  12. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path.

    Science.gov (United States)

    Li, Xiuqiang; Xu, Weichao; Tang, Mingyao; Zhou, Lin; Zhu, Bin; Zhu, Shining; Zhu, Jia

    2016-12-06

    Because it is able to produce desalinated water directly using solar energy with minimum carbon footprint, solar steam generation and desalination is considered one of the most important technologies to address the increasingly pressing global water scarcity. Despite tremendous progress in the past few years, efficient solar steam generation and desalination can only be achieved for rather limited water quantity with the assistance of concentrators and thermal insulation, not feasible for large-scale applications. The fundamental paradox is that the conventional design of direct absorber-bulk water contact ensures efficient energy transfer and water supply but also has intrinsic thermal loss through bulk water. Here, enabled by a confined 2D water path, we report an efficient (80% under one-sun illumination) and effective (four orders salinity decrement) solar desalination device. More strikingly, because of minimized heat loss, high efficiency of solar desalination is independent of the water quantity and can be maintained without thermal insulation of the container. A foldable graphene oxide film, fabricated by a scalable process, serves as efficient solar absorbers (>94%), vapor channels, and thermal insulators. With unique structure designs fabricated by scalable processes and high and stable efficiency achieved under normal solar illumination independent of water quantity without any supporting systems, our device represents a concrete step for solar desalination to emerge as a complementary portable and personalized clean water solution.

  13. Solar process water heat for the IRIS images custom color photo lab

    Science.gov (United States)

    1980-01-01

    The solar facility located at a custom photo laboratory in Mill Valley, California is described. It was designed to provide 59 percent of the hot water requirements for developing photographic film and domestic hot water use. The design load is to provide 6 gallons of hot water per minute for 8 hours per working day at 100 F. It has 640 square feet of flat plate collectors and 360 gallons of hot water storage. The auxillary back up system is a conventional gas-fired water heater. Site and building description, subsystem description, as-built drawings, cost breakdown and analysis, performance analysis, lessons learned, and the operation and maintenance manual are presented.

  14. Analysis, Modeling and Optimum Design of Solar Domestic Hot Water Systems

    DEFF Research Database (Denmark)

    Qin, Lin

    1999-01-01

    This study focus on the analysis, modeling and simulation of solar domestic hot water(DHW) systems. Problems related to the system operation such as input weather data and hot water load conditions are also investigated.In order to investigate the heat loss as part of the total heat load, dynamic...... model of distribution network is developed and simulations are carried out for typical designed circulation type of distribution networks. For dynamic simulation of thermosyphon and drain-back solar DHW systems, thermosyphon loop model and drain-back tank model are put forward. Based on the simulations...

  15. Silicon nanostructures-induced photoelectrochemical solar water splitting for energy applications

    Science.gov (United States)

    Dadwal, U.; Ranjan, Neha; Singh, R.

    2016-05-01

    We study the photoelectrochemical (PEC) solar water splitting assisted with synthesized nanostructures. Si nanowires decorated with silver dendrite nanostructures have been synthesized using metal assisted wet chemical etching of (100) Si wafer. Etching has been carried out in an aqueous solution consisting of 5M HF and 0.02M AgNO3. Investigations showed that such type of semiconductor nanostructures act as efficient working electrodes for the splitting of normal water in PEC method. An enhancement in the photon-to-current conversion efficiency and solar-to-hydrogen evolution was observed for obtaining a practical source of clean and renewable fuel.

  16. Techno-economic appraisal of an integrated collector-storage solar water heater

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, M.; Eames, P.C.; Norton, B. [University of Ulster, Newtownabbey (United Kingdom). School of the Built Environment

    2004-07-01

    Integrated collector/storage solar water heaters, due to their simple compact structure and inherent freeze protection, offer a promising approach for solar water heating in colder climates. Such a system, designed specifically for application at a Northern latitude, has been developed incorporating a heat retaining storage vessel mounted within a concentrating cusp reflector supported by a novel exo-skeleton framework. The performance was determined experimentally under real operational conditions in the Northern Irish climate. A detailed cost analysis is presented and payback periods, substituting different local fuel/power sources, determined. (author)

  17. Thermal Performance of Solar Hot Water Systems Using a Flat Plate Collector of Accelerated Risers

    Directory of Open Access Journals (Sweden)

    KE Amori

    2012-06-01

    Full Text Available This study focuses on a comparison of the performance of two similar locally-fabricated solar water heaters. One of the collectors features a new design for accelerated absorber; its risers are made of converging ducts whose exit area is half that of the entrance. The other collector is a conventional absorber, with risers of the same cross sectional area along its length. Each collector is the primary part of an indirect thermosyphon circulation solar hot water system. Both collectors face south with a fixed tilt angle of 33.3

  18. Current progress and challenges in engineering viable artificial leaf for solar water splitting

    Directory of Open Access Journals (Sweden)

    Phuc D. Nguyen

    2017-12-01

    Full Text Available Large scale production of H2, a clean fuel, can be realized with just water and solar light energy by employing a viable energy conversion device called artificial leaf. In this tutorial review, we discuss on advances achieved recently and technical challenges remained toward the creation of such a leaf. Development of key components like catalysts for water electrolysis process and light harvester for harvesting solar energy as well as strategies being developed for assembling these components to create a complete artificial leaf will be highlighted.

  19. High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water

    Energy Technology Data Exchange (ETDEWEB)

    Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

    2011-09-29

    The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector

  20. Solar heating, cooling, and hot water systems installed at Richland, Washington. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    Project Sunburst is a demonstration system for solar space heating and cooling and solar hot water heating for a 14,400 square foot office building in Richland, Washington. The project is part of the US Department of Energy's solar demonstration program, and became operational in April 1978. The solar system uses 6,000 square feet of flat-plate liquid collectors in a closed loop to deliver solar energy through a liquid--liquid heat exchanger to the building heat-pump duct work or 9,000-gallon thermal energy storage tank. A 25-ton Arkla solar-driven absorption chiller provides the cooling, in conjunction with a 2,000 gallon chilled water storage tank and reflective ponds on three sides of the building to reject surplus heat. A near-by building is essentially identical except for having conventional heat-pump heating and cooling, and can serve as an experimental control. An on-going public relations program has been provided from the beginning of the program and has resulted in numerous visitors and tour groups.

  1. Technology Solutions for New and Existing Homes Case Study: Addressing Multifamily Piping Losses with Solar Hot Water

    Energy Technology Data Exchange (ETDEWEB)

    D. Springer, M. Seitzler, and C. Backman

    2016-12-01

    Sun Light & Power, a San Francisco Bay Area solar design-build contractor, teamed with the U.S. Department of Energy’s Building America partner the Alliance for Residential Building Innovation (ARBI) to study this heat-loss issue. The team added three-way valves to the solar water heating systems for two 40-unit multifamily buildings. In these systems, when the stored solar hot water is warmer than the recirculated hot water returning from the buildings, the valves divert the returning water to the solar storage tank instead of the water heater. This strategy allows solar-generated heat to be applied to recirculation heat loss in addition to heating water that is consumed by fixtures and appliances.

  2. Calibrating an optimal condition model for solar water disinfection in peri-urban household water treatment in Kampala, Uganda.

    Science.gov (United States)

    Okurut, Kenan; Wozei, Eleanor; Kulabako, Robinah; Nabasirye, Lillian; Kinobe, Joel

    2013-03-01

    In low income settlements where the quality of drinking water is highly contaminated due to poor hygienic practices at community and household levels, there is need for appropriate, simple, affordable and environmentally sustainable household water treatment technology. Solar water disinfection (SODIS) that utilizes both the thermal and ultra-violet effect of solar radiation to disinfect water can be used to treat small quantities of water at household level to improve its bacteriological quality for drinking purposes. This study investigated the efficacy of the SODIS treatment method in Uganda and determined the optimal condition for effective disinfection. Results of raw water samples from the study area showed deterioration in bacteriological quality of water moved from source to the household; from 3 to 36 cfu/100 mL for tap water and 75 to 126 cfu/100 mL for spring water, using thermotolerant coliforms (TTCs) as indicator microorganisms. SODIS experiments showed over 99.9% inactivation of TTCs in 6 h of exposure, with a threshold temperature of 39.5 ± 0.7°C at about 12:00 noon, in the sun during a clear sunny day. A mathematical optimal condition model for effective disinfection has been calibrated to predict the decline of the number of viable microorganisms over time.

  3. Early accretion of water and volatile elements to the inner Solar System: evidence from angrites.

    Science.gov (United States)

    Sarafian, Adam R; Hauri, Erik H; McCubbin, Francis M; Lapen, Thomas J; Berger, Eve L; Nielsen, Sune G; Marschall, Horst R; Gaetani, Glenn A; Righter, Kevin; Sarafian, Emily

    2017-05-28

    Inner Solar System bodies are depleted in volatile elements relative to chondrite meteorites, yet the source(s) and mechanism(s) of volatile-element depletion and/or enrichment are poorly constrained. The timing, mechanisms and quantities of volatile elements present in the early inner Solar System have vast implications for diverse processes, from planetary differentiation to the emergence of life. We report major, trace and volatile-element contents of a glass bead derived from the D'Orbigny angrite, the hydrogen isotopic composition of this glass bead and that of coexisting olivine and silicophosphates, and the 207Pb-206Pb age of the silicophosphates, 4568 ± 20 Ma. We use volatile saturation models to demonstrate that the angrite parent body must have been a major body in the early inner Solar System. We further show via mixing calculations that all inner Solar System bodies accreted volatile elements with carbonaceous chondrite H and N isotope signatures extremely early in Solar System history. Only a small portion (if any) of comets and gaseous nebular H species contributed to the volatile content of the inner Solar System bodies.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  4. Water quality assessment of solar-assisted adsorption desalination cycle

    KAUST Repository

    Kim, Youngdeuk

    2014-07-01

    This study focuses on the water quality assessment (feed, product and brine) of the pilot adsorption desalination (AD) plant. Seawater from the Red Sea is used as feed to the AD plant. Water quality tests are evaluated by complying the Environmental Protection Agency (EPA) standards with major primary and secondary inorganic drinking water pollutants and other commonly tested water quality parameters. Chemical testing of desalinated water at the post desalination stage confirms the high quality of produced fresh water. Test results have shown that the adsorption desalination process is very effective in eliminating all forms of salts, as evidenced by the significant reduction of the TDS levels from approximately 40,000. ppm in feed seawater to less than 10. ppm. Test results exhibit extremely low levels of parameters which are generally abundant in feed seawater. The compositions of seawater and process related parameters such as chloride, sodium, bromide, sulfate, calcium, magnesium, and silicate in desalinated water exhibit values of less than 0.1. ppm. Reported conductivity measurements of desalinated water are comparable to distilled water conductivity levels and ranged between 2 and 6. μS/cm while TOC and TIC levels are also extremely low and its value is less than 0.5. ppm. © 2014 Elsevier B.V.

  5. Analysis of solar water heater with parabolic dish concentrator and conical absorber

    Science.gov (United States)

    Rajamohan, G.; Kumar, P.; Anwar, M.; Mohanraj, T.

    2017-06-01

    This research focuses on developing novel technique for a solar water heating system. The novel solar system comprises a parabolic dish concentrator, conical absorber and water heater. In this system, the conical absorber tube directly absorbs solar radiation from the sun and the parabolic dish concentrator reflects the solar radiations towards the conical absorber tube from all directions, therefore both radiations would significantly improve the thermal collector efficiency. The working fluid water is stored at the bottom of the absorber tubes. The absorber tubes get heated and increases the temperature of the working fluid inside of the absorber tube and causes the working fluid to partially evaporate. The partially vaporized working fluid moves in the upward direction due to buoyancy effect and enters the heat exchanger. When fresh water passes through the heat exchanger, temperature of the vapour decreases through heat exchange. This leads to condensation of the vapour and forms liquid phase. The working fluid returns to the bottom of the collector absorber tube by gravity. Hence, this will continue as a cyclic process inside the system. The proposed investigation shows an improvement of collector efficiency, enhanced heat transfer and a quality water heating system.

  6. An experimental investigation with artificial sunlight of a solar hot-water heater

    Science.gov (United States)

    Simon, F. F.

    1976-01-01

    Thermal performance measurements were made of a commercial solar hot water heater in a solar simulator to determine basic performance characteristics of a traditional type of flat plate collector, with and without side reflectors (to increase the solar flux). Information on each of the following was obtained; (1) the effect of flow and incidence angle on the efficiency of a flat plate collector (but only without side reflectors); (2) transient performance under flow and nonflow conditions; (3) the effectiveness of reflectors to increase collector efficiency for a zero radiation angle at fluid temperatures required for solar air conditioning; and (4) the limits of applicability of a collector efficiency correlation based on the Hottel Whillier equation.

  7. Development and construction of the novel solar thermal desiccant cooling system incorporating hot water production

    Energy Technology Data Exchange (ETDEWEB)

    Enteria, Napoleon; Yoshino, Hiroshi; Mochida, Akashi; Takaki, Rie [Faculty of Engineering, Tohoku University, Sendai 980-8579 (Japan); Satake, Akira [Technical Research Institute, Maeda Corporation, Tokyo 179-8914 (Japan); Yoshie, Ryuichiro [Faculty of Engineering, Tokyo Polytechnic University, Atsugi 243-0297 (Japan); Baba, Seizo [Earth Clean Tohoku Co. Ltd., Sendai 984-0038 (Japan)

    2010-02-15

    This paper reports the development and construction of the novel solar cooling and heating system. The system consists of the thermal energy subsystem and the desiccant cooling subsystem. The system utilizes both the cheaper nighttime electric energy and the free daytime solar energy. The system is conceptualized to produce both cooling during summer daytime and hot water production during winter. Testing and evaluation of the system had been done to determine its operational procedure and performance. Based on the results, the thermal energy subsystem functioned to its expected performance in solar energy collection and thermal storage. The desiccant cooling subsystem reduced both the temperature and the humidity content of the air using solar energy with a minimal amount of back-up electric energy. The system however, needs further investigation under real conditions. (author)

  8. Solar heating, cooling, and hot water systems installed at Richland, Washington

    Science.gov (United States)

    1979-01-01

    The project described is part of the U. S. Department of Energy's solar demonstration program, and became operational in April 1978. The solar system uses 6,000 square feet of flat-plate liquid collectors in a closed loop to deliver solar energy through a liquid-liquid heat exchanger to the building heat-pump duct work or 9,000-gallon thermal energy storage tank. A 25-ton Arkla solar-driven absorption chiller provides the cooling, in conjunction with a 2,000 gallon chilled water storage tank and reflective ponds on three sides of the building surplus heat. A near-by building is essentially identical except for having conventional heat-pump heating and cooling, and can serve as an experimental control. An on-going public relations program was provided from the beginning of the program, and resulted in numerous visitors and tour groups.

  9. Solar heating and hot water system installed at Municipal Building complex, Abbeville, South Carolina

    Science.gov (United States)

    1979-01-01

    Information on the solar energy system installed at the new municipal building for the City of Abbeville, SC is presented, including a description of solar energy system and buildings, lessons learned, and recommendations. The solar space heating system is a direct air heating system. The flat roof collector panel was sized to provide 75% of the heating requirement based on an average day in January. The collectors used are job-built with two layers of filon corrugated fiberglass FRP panels cross lapped make up the cover. The storage consists of a pit filled with washed 3/4 in - 1 1/2 in diameter crushed granite stone. The air handler includes the air handling mechanism, motorized dampers, air circulating blower, sensors, control relays and mode control unit. Solar heating of water is provided only those times when the hot air in the collector is exhausted to the outside.

  10. Inclusive analysis and performance evaluation of solar domestic hot water system (a case study

    Directory of Open Access Journals (Sweden)

    Mohamed Ghorab

    2017-06-01

    Full Text Available In recent years Solar Domestic Hot Water systems have increased significantly their market share. In order to better understand the real-life performance of SDHW systems, a single detached house was selected for extensive monitoring. Two solar panels were installed on the house roof to provide thermal energy to the Domestic Hot Water (DHW system. The house was equipped with data logging system and remotely monitored with performance data collected and analyzed over one year. The paper presents the inclusive analysis and performance evaluation of SDHW system, including DHW recirculation loop, under Canadian weather conditions for average family occupancy (two adults and two kids with daily average DHW, draws of 246 L. Moreover, the study is carried out a significant recommendation to improve the SDHW performance, decrease the gas energy consumption and reduce greenhouse gas (GHG emissions. The SDHW performance depends mainly on DHW flow rate, draw time and duration, city water temperature, DHW recirculation loop control strategy and system layout. The performance analysis results show that 91.5% of the collected solar energy is transferred to the DHW heating load through the solar tank. The contribution to DHW heating load is about 69.4% from natural gas and 30.6% from solar. The recirculation loop is responsible for close to 34.9%, of DHW total energy.

  11. Self-propagating solar light reduction of graphite oxide in water

    Energy Technology Data Exchange (ETDEWEB)

    Todorova, N.; Giannakopoulou, T.; Boukos, N.; Vermisoglou, E. [Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 153 41 Attikis (Greece); Lekakou, C. [Division of Mechanical, Medical, and Aerospace Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford (United Kingdom); Trapalis, C., E-mail: c.trapalis@inn.demokritos.gr [Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 153 41 Attikis (Greece)

    2017-01-01

    Highlights: • Graphite oxide was partially reduced by solar light irradiation in water media. • No addition of catalysts nor reductive agent were used for the reduction. • Specific capacitance increased stepwise with increase of irradiation time. • Self-propagating reduction of graphene oxide by solar light is suggested. - Abstract: Graphite Oxide (GtO) is commonly used as an intermediate material for preparation of graphene in the form of reduced graphene oxide (rGO). Being a semiconductor with tunable band gap rGO is often coupled with various photocatalysts to enhance their visible light activity. The behavior of such rGO-based composites could be affected after prolonged exposure to solar light. In the present work, the alteration of the GtO properties under solar light irradiation is investigated. Water dispersions of GtO manufactured by oxidation of natural graphite via Hummers method were irradiated into solar light simulator for different periods of time without addition of catalysts or reductive agent. The FT-IR analysis of the treated dispersions revealed gradual reduction of the GtO with the increase of the irradiation time. The XRD, FT-IR and XPS analyses of the obtained solid materials confirmed the transition of GtO to rGO under solar light irradiation. The reduction of the GtO was also manifested by the CV measurements that revealed stepwise increase of the specific capacitance connected with the restoration of the sp{sup 2} domains. Photothermal self-propagating reduction of graphene oxide in aqueous media under solar light irradiation is suggested as a possible mechanism. The self-photoreduction of GtO utilizing solar light provides a green, sustainable route towards preparation of reduced graphene oxide. However, the instability of the GtO and partially reduced GO under irradiation should be considered when choosing the field of its application.

  12. Strategic market approach for entering the Indian solar water pump market : plan the marketing strategy for solar off-grid applications

    OpenAIRE

    Almanasreh, Khalil

    2011-01-01

    This study examines the strategic market approach for investing in solar water pumps market (SWP) in India, and Punjab state as a business case. The main research question is: What is an appropriate strategic market approach to invest in solar water pump market in India? The study focuses on the marketing strategy and strategic planning to enter the Indian market. The thesis follows the qualitative study design where the data was collected by observing the market and interviewing main sta...

  13. Simulation Programs for Ph.D. Study of Analysis, Modeling and Optimum Design of Solar Domestic Hot Water Systems

    DEFF Research Database (Denmark)

    Qin, Lin

    1999-01-01

    The design of solar domestic hot water system is a complex process, due to characteristics inherent in solar heating technology. Recently, computer simulation has become a widely used technique to improve the understanding of the thermal processes in such systems. This report presents the detailed...... programs or units that were developed in the Ph.D study of " Analysis, Modeling and Optimum Design of Solar Domestic Hot Water Systems"....

  14. Solar UV Photooxidation as Pretreatment for Stripping Voltammetric Trace Metal Analysis in River Water

    Directory of Open Access Journals (Sweden)

    Gelaneh Woldemichael

    2011-01-01

    Full Text Available The application of solar ultraviolet radiation as sample pretreatment or preparation step in stripping voltammetric analysis of trace metals in presence of low levels of dissolved organic carbon (DOC natural water samples (river water was studied. River water samples were collected from downstream of Warnow river (Germany and acidified to pH of 2±0.2 (by addition of 1 mL of ultrapure 65% HNO3 per liter sample. Furthermore, 100 μL/L of hydrogen peroxide solution (ultrapure, 30% H2O2 was added to the samples as photochemical reaction initiator. The samples were transferred to polyethylene terephthalate (PET bottles and irradiated with solar radiation of UV-A intensity of 3.6 mW/m2 for six hours, and the concentrations of Zn, Cd, Pb, and Cu were determined by differential pulse anodic stripping voltammetry (DPASV. The comparison of the values with the results obtained for the original untreated sample and artificial UV-treated one proved that solar UV radiation can be applied to the digestion of dissolved organic carbon in trace metal analysis in natural waters like river water, lake waters, well waters, and so forth.

  15. Design, construction and evaluation of a system of forced solar water heating.

    Science.gov (United States)

    Hernández, E.; Bautista, G. A.; Ortiz, I. L.

    2016-07-01

    The main purpose of this project was to design, construct and evaluate a system of forced solar water heating for domestic consumption, at the Universidad Pontificia Bolivariana-Bucaramanga, Colombia; using solar energy. This is a totally system independent of the electrical grid and an important characteristic is the heating water doesn't mix with the consumption water. The system receives the solar radiation through a flat-plate collector, which it transmits the heat to the water that it flow with impulse from the centrifugal pump of 12VDC, the water circulates toward helical serpentine it is inside of the tank of the storage whose capacity is 100 liters of water. The temperature of the tank is regulated with a controller in such a way that de-energized the pump when it gets the temperature required. The performance thermal or efficiency of the system was evaluated like a relationship between the delivered energy to the water in storage tank and the incident energy in the flat-plate collector.

  16. Investigation af a solar heating system for space heating and domestic hot water supply with a high degree of coverage

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1999-01-01

    A solar storage tank for space heating and domestic hot water supply was designed and testet in af laboratory test facility.......A solar storage tank for space heating and domestic hot water supply was designed and testet in af laboratory test facility....

  17. EVALUATION OF A SOLAR DESALINATION SYSTEM, TYPE CYLINDRICAL PARABOLIC CONCENTRATOR FOR SEA WATER

    Directory of Open Access Journals (Sweden)

    Carolina Mercado

    2015-12-01

    Full Text Available In this work, the methodology for the design, construction and commissioning of a solar desalinator, based on a parabolic trough collector and a solar still occurs, is presented. The energy is supplied through the solar collector, which is connected to the distiller. The equipment was set up on the premises of the Universidad Católica del Norte. It is compact, modular, low cost, easy maintenance and long life, with an average production capacity of distilled water of 2.37 l / d, however, it has to be considered that this rate is directly related with weather conditions and sea water flow entering the system, generating an average percentage of 34.04% efficiency. The results obtained with the respective findings, conclusions and recommendations for future projects associated to renewable energy equipment designed analyzed.

  18. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts.

    Science.gov (United States)

    Reece, Steven Y; Hamel, Jonathan A; Sung, Kimberly; Jarvi, Thomas D; Esswein, Arthur J; Pijpers, Joep J H; Nocera, Daniel G

    2011-11-04

    We describe the development of solar water-splitting cells comprising earth-abundant elements that operate in near-neutral pH conditions, both with and without connecting wires. The cells consist of a triple junction, amorphous silicon photovoltaic interfaced to hydrogen- and oxygen-evolving catalysts made from an alloy of earth-abundant metals and a cobalt|borate catalyst, respectively. The devices described here carry out the solar-driven water-splitting reaction at efficiencies of 4.7% for a wired configuration and 2.5% for a wireless configuration when illuminated with 1 sun (100 milliwatts per square centimeter) of air mass 1.5 simulated sunlight. Fuel-forming catalysts interfaced with light-harvesting semiconductors afford a pathway to direct solar-to-fuels conversion that captures many of the basic functional elements of a leaf.

  19. Solar heating and domestic hot water system installed at Kansas City, Fire Stations, Kansas City, Missouri

    Science.gov (United States)

    1980-01-01

    The solar system was designed to provide 47 percent of the space heating, 8,800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2,808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1,428 cubic feet of 0.5 inch diameter pebbles weighing 71.5 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120 gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30 kilowatt electric unit heaters. There are six modes of system operation.

  20. Solar heating and domestic hot water system installed at Kansas City, Fire Stations, Kansas City, Missouri

    Science.gov (United States)

    1980-07-01

    The solar system was designed to provide 47 percent of the space heating, 8,800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2,808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1,428 cubic feet of 0.5 inch diameter pebbles weighing 71.5 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120 gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30 kilowatt electric unit heaters. There are six modes of system operation.