WorldWideScience

Sample records for rankine turbine system

  1. Optimization of organic Rankine cycle power systems considering multistage axial turbine design

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Persico, Giacomo

    2018-01-01

    Organic Rankine cycle power systems represent a viable and efficient solution for the exploitation of medium-to-low temperature heat sources. Despite the large number of commissioned units, there is limited literature on the design and optimization of organic Rankine cycle power systems considering......-butane yields the best compromise in terms of cycle net power output, turbine cost and efficiency for the considered case study. When a conservative design approach is adopted, the turbine features a two-stage configuration with supersonic converging nozzles and post-expansion. Conversely, a single...... multistage turbine design. This work presents a preliminary design methodology and working fluid selection for organic Rankine cycle units featuring multistage axial turbines. The method is then applied to the case of waste heat recovery from a large marine diesel engine. A multistage axial turbine model...

  2. Optimization of organic Rankine cycle power systems considering multistage axial turbine design

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Persico, Giacomo

    2017-01-01

    Organic Rankine cycle power systems represent a viable and efficient solution for the exploitation of medium-to-low temperature heat sources. Despite the large number of commissioned units, there is limited literature on the design and optimization of organic Rankine cycle power systems considering......-butane yields the best compromise in terms of cycle net power output, turbine cost and efficiency for the considered case study. When a conservative design approach is adopted, the turbine features a two-stage configuration with supersonic converging nozzles and post-expansion. Conversely, a single...... multistage turbine design. This work presents a preliminary design methodology and working fluid selection for organic Rankine cycle units featuring multistage axial turbines. The method is then applied to the case of waste heat recovery from a large marine diesel engine. A multistage axial turbine model...

  3. Control system to a Rankine cycle with a Tesla turbine using arduino

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Josenei G., E-mail: joseneigodoi@yahoo.com.br [Faculdade de Tecnologia Sao Francisco (FATESF), Jacarei, SP (Brazil); Guimaraes, Lamartine F.; Placco, Guilherme M., E-mail: guimarae@ieav.cta.br, E-mail: placco@ieav.cta.br [Instituto de Estudos Avancados (ENU/IEAv/DCTA), Sao Jose dos Campos, SP (Brazil). Departamento de Energia Nuclear

    2013-07-01

    The thermal Rankine cycle is a thermodynamic cycle which converts heat in energy. This cycle occurs in steady state, in other words the cycle is a closed loop circuit with continuous feedback, which guarantees the reuse process one energy transformed in the various stages of the cycle. This cycle is used to drive a turbine type TESLA designed for the system. The objective of this work is to create the control and automation of this cycle using an micro-controlled system with Arduino that will hold the collection of sensors and the system will act to maintain the balance of the cycle causing it to behave continuously and with less interference from human operation for maintenance. Data will be collected and further processed, where it will display all the sensors and the situation of the actuators involved. Using Arduino system ensures the stability and reliability with a low cost of implementation.

  4. Comparison of organic rankine cycle systems under varying conditions using turbine and twin-screw expanders

    OpenAIRE

    Read, M G; Smith, I.K.; Stosic, N.; Kovacevic, A.

    2016-01-01

    A multi-variable optimization program has been developed to investigate the performance of Organic Rankine Cycles (ORCs) for low temperature heat recovery applications using both turbine and twin-screw expanders when account is taken of performance variation due to changes in ambient conditions. The cycle simulation contains thermodynamic models of both types of expander. In the case of the twin-screw machine, the methods used to match the operation of the expander to the requirements of the ...

  5. Cogenerative Performance of a Wind − Gas Turbine − Organic Rankine Cycle Integrated System for Offshore Applications

    DEFF Research Database (Denmark)

    Bianchi, Michele; Branchini, Lisa; De Pascale, Andrea

    2016-01-01

    Gas Turbines (GT) are widely used for power generationin offshore oil and gas facilities, due to their high reliability,compactness and dynamic response capabilities. Small heavyduty and aeroderivative units in multiple arrangements aretypically used to offer larger load flexibility......, but limitedefficiency of such machines is the main drawback. A solutionto enhance the system performance, also in Combined Heat andPower (CHP) arrangement, is the implementation of OrganicRankine Cycle (ORC) systems at the bottom of the gas turbines.Moreover, the resulting GT-ORC combined cycle could befurther...... a 10MW offshorewind farm and three gas turbines rated for 16:5MW, eachone coupled with an 4:5MW ORC module. The ORC mainparameters are observed under different wind power fluctuations.Due to the non-programmable availability of wind and powerdemand, the part-load and dynamic characteristics...

  6. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part A

    DEFF Research Database (Denmark)

    Meroni, Andrea; La Seta, Angelo; Andreasen, Jesper Graa

    2016-01-01

    Rankine cycle power systems. In this two-part paper, an overall cycle model and a model of an axial turbine were combined in order to provide a comprehensive preliminary design of the organic Rankine cycle unit, taking into account both cycle and turbine optimal designs. Part A presents the preliminary......Axial-flow turbines represent a well-established technology for a wide variety of power generation systems. Compactness, flexibility, reliability and high efficiency have been key factors for the extensive use of axial turbines in conventional power plants and, in the last decades, in organic...... turbine design model, the details of the validation and a sensitivity analysis on the main parameters, in order to minimize the number of decision variables in the subsequent turbine design optimization. Part B analyzes the application of the combined turbine and cycle designs on a selected case study...

  7. Comparative Evaluation of Integrated Waste Heat Utilization Systems for Coal-Fired Power Plants Based on In-Depth Boiler-Turbine Integration and Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Shengwei Huang

    2018-01-01

    Full Text Available To maximize the system-level heat integration, three retrofit concepts of waste heat recovery via organic Rankine cycle (ORC, in-depth boiler-turbine integration, and coupling of both are proposed, analyzed and comprehensively compared in terms of thermodynamic and economic performances. For thermodynamic analysis, exergy analysis is employed with grand composite curves illustrated to identify how the systems are fundamentally and quantitatively improved, and to highlight key processes for system improvement. For economic analysis, annual revenue and investment payback period are calculated based on the estimation of capital investment of each component to identify the economic feasibility and competitiveness of each retrofit concept proposed. The results show that the in-depth boiler-turbine integration achieves a better temperature match of heat flows involved for different fluids and multi-stage air preheating, thus a significant improvement of power output (23.99 MW, which is much larger than that of the system with only ORC (6.49 MW. This is mainly due to the limitation of the ultra-low temperature (from 135 to 75 °C heat available from the flue gas for ORC. The thermodynamic improvement is mostly contributed by the reduction of exergy destruction within the boiler subsystem, which is eventually converted to mechanical power; while the exergy destruction within the turbine system is almost not changed for the three concepts. The selection of ORC working fluids is performed to maximize the power output. Due to the low-grade heat source, the cycle with R11 offers the largest additional net power generation but is not significantly better than the other preselected working fluids. Economically, the in-depth boiler-turbine integration is the most economic completive solution with a payback period of only 0.78 year. The ORC concept is less attractive for a sole application due to a long payback time (2.26 years. However, by coupling both

  8. Comparison of Organic Rankine Cycle Under Varying Conditions Using Turbine and Twin-Screw Expanders

    OpenAIRE

    Read, M G; Smith, I.K.; Stosic, N.

    2015-01-01

    A multi-variable optimization program has been developed to investigate the performance of Organic Rankine Cycles (ORCs) for low temperature heat recovery applications. This cycle model contains detailed thermodynamic models of the system components, and the methods used to match the operation of the expander to the requirements of the cycle are described. Two types of ORC system are considered; one containing a turbine to expand dry saturated or superheated vapour, and one with a twin-screw ...

  9. Organic Rankine Cycle System Analysis for Low GWP Working Fluids

    OpenAIRE

    Datla, Bala Varma; Brasz, Joost

    2012-01-01

    The last decade has seen a substantial increase in Organic Rankine Cycle system installations for low temperature waste heat power recovery. The availability of HFC245fa has played a major role in this recent surge in ORC systems since it allows the use of existing HVAC hardware (heat exchangers and compressors) to be used as ORC components (turbines, boilers and condensers) with minimal redesign. The environmental drawback of HFC245fa is its relatively high GWP value of 950. The advent of a ...

  10. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part B

    DEFF Research Database (Denmark)

    La Seta, Angelo; Meroni, Andrea; Andreasen, Jesper Graa

    2016-01-01

    due to the peculiar physical properties of the working fluid and the gas-dynamic phenomena occurring in the machine. Unlike steam Rankine and Brayton engines, organic Rankine cycle expanders combine small enthalpy drops with large expansion ratios. These features yield turbine designs with few highly-loaded...... variables affecting the turbine design. Part B of this two-part paper presents the first application of a design method where the thermodynamic cycle optimization is combined with calculations of the maximum expander performance using the mean-line design tool described in part A. The high computational...

  11. Organic Rankine Kilowatt Isotope Power System. Final phase I report

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-15

    On 1 August 1975 under Department of Energy Contract EN-77-C-02-4299, Sundstrand Energy Systems commenced development of a Kilowatt Isotope Power System (KIPS) directed toward satisfying the higher power requirements of satellites of the 1980s and beyond. The KIPS is a /sup 238/PuO/sub 2/ fueled organic Rankine cycle turbine power system which will provide design output power in the range of 500 to 2000 W/sub (e)/ with a minimum of system changes. The principal objectives of the Phase 1 development effort were to: conceptually design a flight system; design a Ground Demonstration System (GDS) that is prototypic of the flight system in order to prove the feasibility of the flight system design; fabricate and assemble the GDS; and performance and endurance test the GDS using electric heaters in lieu of the isotope heat source. Results of the work performed under the Phase 1 contract to 1 July 1978 are presented.

  12. Part-Load Performance of a Wet Indirectly Fired Gas Turbine Integrated with an Organic Rankine Cycle Turbogenerator

    OpenAIRE

    Leonardo Pierobon; Tuong-Van Nguyen; Andrea Mazzucco; Ulrik Larsen; Fredrik Haglind

    2014-01-01

    Over the last years, much attention has been paid to the development of efficient and low-cost power systems for biomass-to-electricity conversion. This paper aims at investigating the design- and part-load performance of an innovative plant based on a wet indirectly fired gas turbine (WIFGT) fueled by woodchips and an organic Rankine cycle (ORC) turbogenerator. An exergy analysis is performed to identify the sources of inefficiencies, the optimal design variables, and the most suitable worki...

  13. Part-Load Performance of aWet Indirectly Fired Gas Turbine Integrated with an Organic Rankine Cycle Turbogenerator

    Directory of Open Access Journals (Sweden)

    Leonardo Pierobon

    2014-12-01

    Full Text Available Over the last years, much attention has been paid to the development of efficient and low-cost power systems for biomass-to-electricity conversion. This paper aims at investigating the design- and part-load performance of an innovative plant based on a wet indirectly fired gas turbine (WIFGT fueled by woodchips and an organic Rankine cycle (ORC turbogenerator. An exergy analysis is performed to identify the sources of inefficiencies, the optimal design variables, and the most suitable working fluid for the organic Rankine process. This step enables to parametrize the part-load model of the plant and to estimate its performance at different power outputs. The novel plant has a nominal power of 250 kW and a thermal efficiency of 43%. The major irreversibilities take place in the burner, recuperator, compressor and in the condenser. Toluene is the optimal working fluid for the organic Rankine engine. The part-load investigation indicates that the plant can operate at high efficiencies over a wide range of power outputs (50%–100%, with a peak thermal efficiency of 45% at around 80% load. While the ORC turbogenerator is responsible for the efficiency drop at low capacities, the off-design performance is governed by the efficiency characteristics of the compressor and turbine serving the gas turbine unit.

  14. Rankine-cycle solar-cooling systems

    Science.gov (United States)

    Weathers, H. M.

    1979-01-01

    Report reviews progress made by three contractors to Marshall Space Flight Center and Department of Energy in developing Rankine-cycle machines for solar cooling and testing of commercially available equipment involved.

  15. Study of toluene stability for an Organic Rankine Cycle (ORC) space-based power system

    Science.gov (United States)

    Havens, Vance; Ragaller, Dana

    1988-01-01

    The design, fabrication, assembly, and endurance operation of a dynamic test loop, built to evaluate the thermal stability of a proposed Organic Rankine Cycle (ORC) working fluid, is discussed. The test fluid, toluene, was circulated through a heater, simulated turbine, regenerator, condenser and pump to duplicate an actual ORC system. The maximum nominal fluid temperature, 750 F, was at the turbine simulator inlet. Samples of noncondensible gases and liquid toluene were taken periodically during the test. The samples were analyzed to identify the degradation products formed and the quantity of these products. From these data it was possible to determine the degradation rate of the working fluid and the generation rate of noncondensible gases. A further goal of this work was to relate the degradation observed in the dynamic operating loop to degradation obtained in isothermal capsule tests. This relationship was the basis for estimating the power loop degradation in the Space Station Organic Rankine Cycle system.

  16. Toluene stability Space Station Rankine power system

    Science.gov (United States)

    Havens, V. N.; Ragaller, D. R.; Sibert, L.; Miller, D.

    1987-01-01

    A dynamic test loop is designed to evaluate the thermal stability of an organic Rankine cycle working fluid, toluene, for potential application to the Space Station power conversion unit. Samples of the noncondensible gases and the liquid toluene were taken periodically during the 3410 hour test at 750 F peak temperature. The results obtained from the toluene stability loop verify that toluene degradation will not lead to a loss of performance over the 30-year Space Station mission life requirement. The identity of the degradation products and the low rates of formation were as expected from toluene capsule test data.

  17. Turbine system

    Science.gov (United States)

    McMahan, Kevin Weston; Dillard, Daniel Jackson

    2016-05-03

    A turbine system is disclosed. The turbine system includes a transition duct having an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The turbine system further includes a turbine section connected to the transition duct. The turbine section includes a plurality of shroud blocks at least partially defining a hot gas path, a plurality of buckets at least partially disposed in the hot gas path, and a plurality of nozzles at least partially disposed in the hot gas path. At least one of a shroud block, a bucket, or a nozzle includes means for withstanding high temperatures.

  18. Microfabricated rankine cycle steam turbine for power generation and methods of making the same

    Science.gov (United States)

    Frechette, Luc (Inventor); Muller, Norbert (Inventor); Lee, Changgu (Inventor)

    2009-01-01

    In accordance with the present invention, an integrated micro steam turbine power plant on-a-chip has been provided. The integrated micro steam turbine power plant on-a-chip of the present invention comprises a miniature electric power generation system fabricated using silicon microfabrication technology and lithographic patterning. The present invention converts heat to electricity by implementing a thermodynamic power cycle on a chip. The steam turbine power plant on-a-chip generally comprises a turbine, a pump, an electric generator, an evaporator, and a condenser. The turbine is formed by a rotatable, disk-shaped rotor having a plurality of rotor blades disposed thereon and a plurality of stator blades. The plurality of stator blades are interdigitated with the plurality of rotor blades to form the turbine. The generator is driven by the turbine and converts mechanical energy into electrical energy.

  19. About the prediction of Organic Rankine Cycles performances integrating local high-fidelity turbines simulation and uncertainties

    Science.gov (United States)

    Congedo, Pietro; de Santis, Dante; Geraci, Gianluca

    2014-11-01

    Organic Rankine Cycles (ORCs) are of key-importance when exploiting energy systems with a high efficiency. The variability of renewable heat sources makes more complex the global performance prediction of a cycle. The thermodynamic properties of the complex fluids used in the process are another source of uncertainty. The need for a predictive and robust simulation tool of ORCs remains strong. A high-order accurate Residual Distribution scheme has been recently developed for efficiently computing a turbine stage on unstructured grids, including advanced equations of state in order to take into account the complex fluids used in ORCs. Advantages in using high-order methods have been highlighted, in terms of number of degrees of freedom and computational time used, for computing the numerical solution with a greater accuracy compared to lower-order methods, even for shocked flows. The objective of this work is to quantify the numerical error with respect to the various sources of uncertainty of the ORC turbine, thus providing a very high-fidelity prediction in the coupled physical/stochastic space.

  20. A Comparative Exergoeconomic Analysis of Waste Heat Recovery from a Gas Turbine-Modular Helium Reactor via Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Naser Shokati

    2014-04-01

    Full Text Available A comparative exergoeconomic analysis is reported for waste heat recovery from a gas turbine-modular helium reactor (GT-MHR using various configurations of organic Rankine cycles (ORCs for generating electricity. The ORC configurations studied are: a simple organic Rankine cycle (SORC, an ORC with an internal heat exchanger (HORC and a regenerative organic Rankine cycle (RORC. Exergoeconomic analyses are performed with the specific exergy costing (SPECO method. First, energy and exergy analyses are applied to the combined cycles. Then, a cost-balance, as well as auxiliary equations are developed for the components to determine the exergoeconomic parameters for the combined cycles and their components. The three combined cycles are compared considering the same operating conditions for the GT-MHR cycle, and a parametric study is done to reveal the effects on the exergoeconomic performance of the combined cycles of various significant parameters, e.g., turbine inlet and evaporator temperatures and compressor pressure ratio. The results show that the GT-MHR/RORC has the lowest unit cost of electricity generated by the ORC turbine. This value is highest for the GT-MHR/HORC. Furthermore, the GT-MHR/RORC has the highest and the GT-MHR/HORC has the lowest exergy destruction cost rate.

  1. Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system

    Energy Technology Data Exchange (ETDEWEB)

    Tchanche, B.F.; Lambrinos, Gr.; Frangoudakis, A.; Papadakis, G. [Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens (Greece)

    2010-04-15

    Exergy analysis of micro-organic Rankine heat engines is performed to identify the most suitable engine for driving a small scale reverse osmosis desalination system. Three modified engines derived from simple Rankine engine using regeneration (incorporation of regenerator or feedliquid heaters) are analyzed through a novel approach, called exergy-topological method based on the combination of exergy flow graphs, exergy loss graphs, and thermoeconomic graphs. For the investigations, three working fluids are considered: R134a, R245fa and R600. The incorporated devices produce different results with different fluids. Exergy destruction throughout the systems operating with R134a was quantified and illustrated using exergy diagrams. The sites with greater exergy destruction include turbine, evaporator and feedliquid heaters. The most critical components include evaporator, turbine and mixing units. A regenerative heat exchanger has positive effects only when the engine operates with dry fluids; feedliquid heaters improve the degree of thermodynamic perfection of the system but lead to loss in exergetic efficiency. Although, different modifications produce better energy conversion and less exergy destroyed, the improvements are not significant enough and subsequent modifications of the simple Rankine engine cannot be considered as economically profitable for heat source temperature below 100 C. As illustration, a regenerator increases the system's energy efficiency by 7%, the degree of thermodynamic perfection by 3.5% while the exergetic efficiency is unchanged in comparison with the simple Rankine cycle, with R600 as working fluid. The impacts of heat source temperature and pinch point temperature difference on engine's performance are also examined. Finally, results demonstrate that energy analysis combined with the mathematical graph theory is a powerful tool in performance assessments of Rankine based power systems and permits meaningful comparison of

  2. A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships

    Directory of Open Access Journals (Sweden)

    Jesper Graa Andreasen

    2017-04-01

    Full Text Available This paper presents a comparison of the conventional dual pressure steam Rankine cycle process and the organic Rankine cycle process for marine engine waste heat recovery. The comparison was based on a container vessel, and results are presented for a high-sulfur (3 wt % and low-sulfur (0.5 wt % fuel case. The processes were compared based on their off-design performance for diesel engine loads in the range between 25% and 100%. The fluids considered in the organic Rankine cycle process were MM(hexamethyldisiloxane, toluene, n-pentane, i-pentane and c-pentane. The results of the comparison indicate that the net power output of the steam Rankine cycle process is higher at high engine loads, while the performance of the organic Rankine cycle units is higher at lower loads. Preliminary turbine design considerations suggest that higher turbine efficiencies can be obtained for the ORC unit turbines compared to the steam turbines. When the efficiency of the c-pentane turbine was allowed to be 10% points larger than the steam turbine efficiency, the organic Rankine cycle unit reaches higher net power outputs than the steam Rankine cycle unit at all engine loads for the low-sulfur fuel case. The net power production from the waste heat recovery units is generally higher for the low-sulfur fuel case. The steam Rankine cycle unit produces 18% more power at design compared to the high-sulfur fuel case, while the organic Rankine cycle unit using MM produces 33% more power.

  3. A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Meroni, Andrea; Haglind, Fredrik

    2017-01-01

    %) fuel case. The processes were compared based on their off-design performance for diesel engine loads in the range between 25% and 100%. The fluids considered in the organic Rankine cycle process were MM(hexamethyldisiloxane), toluene, n-pentane, i-pentane and c-pentane. The results of the comparison...... indicate that the net power output of the steam Rankine cycle process is higher at high engine loads, while the performance of the organic Rankine cycle units is higher at lower loads. Preliminary turbine design considerations suggest that higher turbine efficiencies can be obtained for the ORC unit......This paper presents a comparison of the conventional dual pressure steam Rankine cycle process and the organic Rankine cycle process for marine engine waste heat recovery. The comparison was based on a container vessel, and results are presented for a high-sulfur (3 wt %) and low-sulfur (0.5 wt...

  4. Turbine system and adapter

    Energy Technology Data Exchange (ETDEWEB)

    Hogberg, Nicholas Alvin; Garcia-Crespo, Andres Jose

    2017-05-30

    A turbine system and adapter are disclosed. The adapter includes a turbine attachment portion having a first geometry arranged to receive a corresponding geometry of a wheelpost of a turbine rotor, and a bucket attachment portion having a second geometry arranged to receive a corresponding geometry of a root portion of a non-metallic turbine bucket. Another adapter includes a turbine attachment portion arranged to receive a plurality of wheelposts of a turbine rotor, and a bucket attachment portion arranged to receive a plurality of non-metallic turbine buckets having single dovetail configuration root portions. The turbine system includes a turbine rotor wheel configured to receive metal buckets, at least one adapter secured to at least one wheelpost on the turbine rotor wheel, and at least one non-metallic bucket secured to the at least one adapter.

  5. Theoretical and experimental research of organic Rankine cycle steam turbine plants

    Science.gov (United States)

    Kishkin, A. A.; Delkov, A. V.; Melkozerov, M. G.

    2017-10-01

    Currently steam power cycles using organic actuation fluid - Freon, ammonia, ethanol, isobutene, etc are becoming increasingly important. Such cycles are called Organic Rankine Cycle (ORC). With the help of such cycles it is possible to use low-grade heat sources in the production of mechanical and electrical energy.

  6. Organic Rankine kilowatt isotope power system. First annual summary report, August 1, 1975--August 1, 1976

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Sundstrand Energy Systems is developing a Kilowatt Isotope Power System (KIPS) directed toward satisfying the higher power requirements of satellites of the 1980's. The KIPS is a plutonium oxide fueled organic Rankine cycle turbine power system which will provide design output power in the range of 500 to 2000 W(e) with a minimum of system changes. Research progress is reported on Phase I comprising: (1) flight system conceptual design and ground demonstration; (2) flight system design and ground qualification; and (3) flight system production, acceptance testing and delivery. The principal objectives of Phase I are to: (1) conceptually design the flight system, (2) based on the flight system concept, design and build the ground demonstration system (GDS), (3) conduct performance and endurance testing using electric heaters to simulate the radioisotope heat source, (4) identify and initiate long lead development efforts required to achieve the initial flight qualification hardware availability date of April 1981, and (5) finalize the flight concept design and prepare the program plan for the Phase II effort.

  7. Optimisation robuste de turbines pour les cycles organiques de Rankine (ORC)

    OpenAIRE

    Bufi, Elio Antonio

    2016-01-01

    In recent years, the Organic Rankine Cycle (ORC) technology has received great interest from the scientific and technical community because of its capability to recover energy from low-grade heat sources. In some applications, as the Waste Heat Recovery (WHR), ORC plants need to be as compact as possible because of geometrical and weight constraints. Recently, these issues have been studied in order to promote the ORC technology for Internal Combustion Engine (ICE) applications. The idea to r...

  8. Radial turbine expander design for organic rankine cycle, waste heat recovery in high efficiency, off-highway vehicles

    OpenAIRE

    Alshammari, F.; Karvountzis-Kontakiotis, A; Pesiridis, A

    2016-01-01

    Although state-of-the-art, heavy duty diesel engines of today can reach peak thermal efficiencies of approximately 45%, still most of the fuel energy is transformed into wasted heat in the internal combustion process. Recovering this wasted energy could increase the overall thermal efficiency of the engine as well as reduce the exhaust gas emissions. Compared to other Waste Heat Recovery (WHR) technologies, Organic Rankine Cycle (ORC) systems are regarded favourably due to their relative simp...

  9. Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, G.L.

    2005-10-03

    This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

  10. Thermodynamic Performance Analysis of a Biogas-Fuelled Micro-Gas Turbine with a Bottoming Organic Rankine Cycle for Sewage Sludge and Food Waste Treatment Plants

    Directory of Open Access Journals (Sweden)

    Sunhee Kim

    2017-02-01

    Full Text Available In the Republic of Korea, efficient biogas-fuelled power systems are needed to use the excess biogas that is currently burned due to a lack of suitable power technology. We examined the performance of a biogas-fuelled micro-gas turbine (MGT system and a bottoming organic Rankine cycle (ORC. The MGT provides robust operation with low-grade biogas, and the exhaust can be used for heating the biodigester. Similarly, the bottoming ORC generates additional power output with the exhaust gas. We selected a 1000-kW MGT for four co-digestion plants with 28,000-m3 capacity. A 150-kW ORC system was selected for the MGT exhaust gas. We analysed the effects of the system size, methane concentration, and ORC operating conditions. Based on the system performance, we analysed the annual performance of the MGT with a combined heat and power (CHP system, bottoming ORC, or both a bottoming ORC and CHP system. The annual net power outputs for each system were 7.4, 8.5, and 9.0 MWh per year, respectively.

  11. Analysis of hot spots in boilers of organic Rankine cycle units during transient operation

    DEFF Research Database (Denmark)

    Benato, A.; Kærn, Martin Ryhl; Pierobon, Leonardo

    2015-01-01

    This paper is devoted to the investigation of critical dynamic events causing thermochemical decompositionof the working fluid in organic Rankine cycle power systems. The case study is the plant of an oiland gas platform where one of the three gas turbines is combined with an organic Rankine cycl...

  12. Thermodynamic Optimization of a Geothermal- Based Organic Rankine Cycle System Using an Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Osman Özkaraca

    2017-10-01

    Full Text Available Geothermal energy is a renewable form of energy, however due to misuse, processing and management issues, it is necessary to use the resource more efficiently. To increase energy efficiency, energy systems engineers carry out careful energy control studies and offer alternative solutions. With this aim, this study was conducted to improve the performance of a real operating air-cooled organic Rankine cycle binary geothermal power plant (GPP and its components in the aspects of thermodynamic modeling, exergy analysis and optimization processes. In-depth information is obtained about the exergy (maximum work a system can make, exergy losses and destruction at the power plant and its components. Thus the performance of the power plant may be predicted with reasonable accuracy and better understanding is gained for the physical process to be used in improving the performance of the power plant. The results of the exergy analysis show that total exergy production rate and exergy efficiency of the GPP are 21 MW and 14.52%, respectively, after removing parasitic loads. The highest amount of exergy destruction occurs, respectively, in condenser 2, vaporizer HH2, condenser 1, pumps 1 and 2 as components requiring priority performance improvement. To maximize the system exergy efficiency, the artificial bee colony (ABC is applied to the model that simulates the actual GPP. Under all the optimization conditions, the maximum exergy efficiency for the GPP and its components is obtained. Two of these conditions such as Case 4 related to the turbine and Case 12 related to the condenser have the best performance. As a result, the ABC optimization method provides better quality information than exergy analysis. Based on the guidance of this study, the performance of power plants based on geothermal energy and other energy resources may be improved.

  13. Part-Load Performance of a Wet Indirectly Fired Gas Turbine Integrated with an Organic Rankine Cycle Turbogenerator

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Nguyen, Tuong-Van; Mazzucco, Andrea

    2014-01-01

    ) fueled by woodchips and an organic Rankine cycle (ORC) turbogenerator. An exergy analysis is performed to identify the sources of inefficiencies, the optimal design variables, and the most suitable working fluid for the organic Rankine process. This step enables to parametrize the part-load model...

  14. Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system

    Science.gov (United States)

    Mehrpooya, Mehdi; Dehghani, Hossein; Ali Moosavian, S. M.

    2016-02-01

    A combined system containing solid oxide fuel cell-gas turbine power plant, Rankine steam cycle and ammonia-water absorption refrigeration system is introduced and analyzed. In this process, power, heat and cooling are produced. Energy and exergy analyses along with the economic factors are used to distinguish optimum operating point of the system. The developed electrochemical model of the fuel cell is validated with experimental results. Thermodynamic package and main parameters of the absorption refrigeration system are validated. The power output of the system is 500 kW. An optimization problem is defined in order to finding the optimal operating point. Decision variables are current density, temperature of the exhaust gases from the boiler, steam turbine pressure (high and medium), generator temperature and consumed cooling water. Results indicate that electrical efficiency of the combined system is 62.4% (LHV). Produced refrigeration (at -10 °C) and heat recovery are 101 kW and 22.1 kW respectively. Investment cost for the combined system (without absorption cycle) is about 2917 kW-1.

  15. Economic analysis of a dish-Rankine solar thermal power system

    Science.gov (United States)

    Pons, R. L.; Irwin, R. E.

    An analysis of the performance and costs of a first generation dish Rankine solar thermal power system for small community and industrial applications is presented. The system is of the point-focusing distributed receiver type, with distributed generation and employs multiple paraboloidal concentrators with organic Rankine cycle power conversion systems at the focus of each dish. Projected life cycle energy costs for a fully developed and mass produced system are shown to be competitive with costs projected in the near future for electricity generated by more conventional means. It is shown that: (1) the method of rating plant poer output has a minor influence on life cycle energy cost, (2) optimum dish size is greater than 12m, (3) energy cost is virtually independent of plant size above 1 MW sub e and (4) dish spacing and geometric arrangement can be optimized to reduce energy cost.

  16. System and method for regulating EGR cooling using a Rankine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Morris, Dave

    2017-08-29

    This disclosure relates to a waste heat recovery (WHR) system and method for regulating exhaust gas recirculation (EGR) cooling, and more particularly, to a Rankine cycle WHR system and method, including a recuperator bypass arrangement to regulate EGR exhaust gas cooling for engine efficiency improvement and thermal management. This disclosure describes other unique bypass arrangements for increased flexibility in the ability to regulate EGR exhaust gas cooling.

  17. Experimental Study of a Low-Temperature Power Generation System in an Organic Rankine Cycle

    DEFF Research Database (Denmark)

    Mu, Yongchao; Zhang, Yufeng; Deng, Na

    2015-01-01

    as the engine of the power generator. The style of the preheater was a shell and tube heat exchanger, which could provide a long path for the working fluid. A flooded heat exchanger with a high heat transfer coefficient was taken as the evaporator. R134a was used as working fluid for the Rankine cycle......This paper presents a new power generation system under the principle of organic Rankine cycle which can generate power with a low-temperature heat source. A prototype was built to investigate the proposed system. In the prototype, an air screw compressor was converted into an expander and used...... in the system. This study compared and analyzed the experimental performance of the prototype at different heat source temperatures. The results show that the preheater and flooded evaporator was used for sensible heating and latent heating of the working fluid, respectively, as expected. When the temperature...

  18. Floating wind turbine system

    Science.gov (United States)

    Viterna, Larry A. (Inventor)

    2009-01-01

    A floating wind turbine system with a tower structure that includes at least one stability arm extending therefrom and that is anchored to the sea floor with a rotatable position retention device that facilitates deep water installations. Variable buoyancy for the wind turbine system is provided by buoyancy chambers that are integral to the tower itself as well as the stability arm. Pumps are included for adjusting the buoyancy as an aid in system transport, installation, repair and removal. The wind turbine rotor is located downwind of the tower structure to allow the wind turbine to follow the wind direction without an active yaw drive system. The support tower and stability arm structure is designed to balance tension in the tether with buoyancy, gravity and wind forces in such a way that the top of the support tower leans downwind, providing a large clearance between the support tower and the rotor blade tips. This large clearance facilitates the use of articulated rotor hubs to reduced damaging structural dynamic loads. Major components of the turbine can be assembled at the shore and transported to an offshore installation site.

  19. Autonomous low-temperature solar Rankine cycle system for reverse osmosis desalination

    Energy Technology Data Exchange (ETDEWEB)

    Manolakos, D.; Makris, G.; Papadakis, G.; Kyritsis, S. [Agricultural University of Athens (Greece). Dept. of Agricultural Engineering; Bouzianas, K. [Hellas Energy K. Bouzianas P. Moschovitis and Co., Athens (Greece)

    2004-07-01

    The research regards the development, application testing and performance evaluation of a low temperature solar organic Rankine cycle system for Reverse Osmosis (RO) desalination. Below is given a technical description of the system under development: Thermal energy produced by the solar array evaporates the working fluid (HFC- 134a) in the evaporator surface. The super-heated vapour is driven to the expanders where the generated mechanical work produced by the Rankine cycle drives the RO unit pumps (high pressure pump, cooling water pump, feed water pump) and circulating pump. The saturated vapour at the expanders' outlet is directed to the condenser and condensates. On the condenser surface, seawater is pre-heated and directed to the seawater reservoir. Seawater pre-heating is applied to increase the fresh water recovery ratio. The seawater tank is insulated. The use of seawater on the condenser surface decreases the temperature of ''Low Temperature Reservoir'' of Rankine cycle thus a better cycle efficiency is achieved. For the prototype system 240 m2 of vacuum tube solar collectors will be deployed. The evaporator and condenser capacity is estimated to be about 100 kW. For these systems' characteristics and considering a water recovery ratio of seawater RO desalination unit of 30%, the average yearly fresh water production is estimated at 1450 m3 (or 4 m3 daily). Specific innovations of the system are: Low temperature thermal sources can be exploited efficiently for fresh water production; solar energy is used indirectly and does not heat the seawater; the RO unit is driven by mechanical work produced from the process; the system condenser acts as sea water pre-heater and this serves a double purpose; (1) increase of feed water temperature implies higher fresh water production (2) decrease of temperature of ''low temperature reservoir'' of Rankine cycle implies higher cycle efficiencies. (orig.)

  20. Prospects of the use of nanofluids as working fluids for organic Rankine cycle power systems

    DEFF Research Database (Denmark)

    Mondejar, Maria E.; Andreasen, Jesper G.; Regidor, Maria

    2017-01-01

    The search of novel working fluids for organic Rankine cycle power systems is driven by the recent regulations imposing additional phase-out schedules for substances with adverse environmental characteristics. Recently, nanofluids (i.e. colloidal suspensions of nanoparticles in fluids) have been...... suggested as potential working fluids for organic Rankine cycle power systems due to their enhanced thermal properties, potentially giving advantages with respect to the design of the components and the cycle performance. Nevertheless, a number of challenges concerning the use of nanofluids must...... be investigated prior to their practical use. Among other things, the trade-off between enhanced heat transfer and increased pressure drop in heat exchangers, and the impact of the nanoparticles on the working fluid thermophysical properties, must be carefully analyzed. This paper is aimed at evaluating...

  1. ADVANCED TURBINE SYSTEMS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Gaul

    2004-04-21

    Natural gas combustion turbines are rapidly becoming the primary technology of choice for generating electricity. At least half of the new generating capacity added in the US over the next twenty years will be combustion turbine systems. The Department of Energy has cosponsored with Siemens Westinghouse, a program to maintain the technology lead in gas turbine systems. The very ambitious eight year program was designed to demonstrate a highly efficient and commercially acceptable power plant, with the ability to fire a wide range of fuels. The main goal of the Advanced Turbine Systems (ATS) Program was to develop ultra-high efficiency, environmentally superior and cost effective competitive gas turbine systems for base load application in utility, independent power producer and industrial markets. Performance targets were focused on natural gas as a fuel and included: System efficiency that exceeds 60% (lower heating value basis); Less than 10 ppmv NO{sub x} emissions without the use of post combustion controls; Busbar electricity that are less than 10% of state of the art systems; Reliability-Availability-Maintainability (RAM) equivalent to current systems; Water consumption minimized to levels consistent with cost and efficiency goals; and Commercial systems by the year 2000. In a parallel effort, the program was to focus on adapting the ATS engine to coal-derived or biomass fuels. In Phase 1 of the ATS Program, preliminary investigators on different gas turbine cycles demonstrated that net plant LHV based efficiency greater than 60% was achievable. In Phase 2 the more promising cycles were evaluated in greater detail and the closed-loop steam-cooled combined cycle was selected for development because it offered the best solution with least risk for achieving the ATS Program goals for plant efficiency, emissions, cost of electricity and RAM. Phase 2 also involved conceptual ATS engine and plant design and technology developments in aerodynamics, sealing

  2. Thermodynamic Optimization of a Geothermal- Based Organic Rankine Cycle System Using an Artificial Bee Colony Algorithm

    OpenAIRE

    Osman Özkaraca; Pınar Keçebaş; Cihan Demircan; Ali Keçebaş

    2017-01-01

    Geothermal energy is a renewable form of energy, however due to misuse, processing and management issues, it is necessary to use the resource more efficiently. To increase energy efficiency, energy systems engineers carry out careful energy control studies and offer alternative solutions. With this aim, this study was conducted to improve the performance of a real operating air-cooled organic Rankine cycle binary geothermal power plant (GPP) and its components in the aspects of thermodynamic ...

  3. SORCE: A design tool for solar organic Rankine cycle systems in distributed generation applications

    OpenAIRE

    Orosz, Matthew; Quoilin, Sylvain; Hemond, Harold

    2010-01-01

    Recent interest in small-scale solar thermal combined heat and power (CHP) power systems has coincided with demand growth for distributed electricity supplies in areas poorly served by centralized power stations. One potential technical approach to meeting this demand is the parabolic trough solar thermal collector coupled with an organic Rankine cycle (ORC) heat engine. Much existing research touches on aspects of the underlying physics and mechanics of this technology, but a holistic treatm...

  4. Advanced Micro Turbine System (AMTS) -C200 Micro Turbine -Ultra-Low Emissions Micro Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Capstone Turbine Corporation

    2007-12-31

    In September 2000 Capstone Turbine Corporation commenced work on a US Department of Energy contract to develop and improve advanced microturbines for power generation with high electrical efficiency and reduced pollutants. The Advanced MicroTurbine System (AMTS) program focused on: (1) The development and implementation of technology for a 200 kWe scale high efficiency microturbine system (2) The development and implementation of a 65 kWe microturbine which meets California Air Resources Board (CARB) emissions standards effective in 2007. Both of these objectives were achieved in the course of the AMTS program. At its conclusion prototype C200 Microturbines had been designed, assembled and successfully completed field demonstration. C65 Microturbines operating on natural, digester and landfill gas were also developed and successfully tested to demonstrate compliance with CARB 2007 Fossil Fuel Emissions Standards for NOx, CO and VOC emissions. The C65 Microturbine subsequently received approval from CARB under Executive Order DG-018 and was approved for sale in California. The United Technologies Research Center worked in parallel to successfully execute a RD&D program to demonstrate the viability of a low emissions AMS which integrated a high-performing microturbine with Organic Rankine Cycle systems. These results are documented in AMS Final Report DOE/CH/11060-1 dated March 26, 2007.

  5. Conceptual design and analysis of a Dish-Rankine solar thermal power system

    Science.gov (United States)

    Pons, R. L.

    1980-08-01

    A Point Focusing Distributed Receiver (PFDR) solar thermal electric system which employs small Organic Rankine Cycle (ORC) engines is examined with reference to its projected technical/economic performance. With mass-produced power modules (about 100,000 per year), the projected life-cycle energy cost for an optimized no-storage system is estimated at 67 mills/kWh (Levelized Busbar Energy Cost) without the need for advanced development of any of its components. At moderate production rates (about 50 MWe/yr) system energy costs are competitive with conventional power generation systems in special remote-site types of applications.

  6. Overview of Westinghouse`s Advanced Turbine Systems Program

    Energy Technology Data Exchange (ETDEWEB)

    Bannister, R.L.; Bevc, F.P.; Diakunchak, I.S.; Huber, D.J. [Westinghouse Electric Corp., Orlando, FL (United States)

    1995-10-01

    Westinghouse`s experience with land based gas turbines started in 1945 with the development of a 2000 hp gas turbine-generator set that consisted of a single reduction gear, compressor, 12 combustors and turbine. A thermal efficiency of 18% was obtained. By 1954, Westinghouse had developed a 15 MW unit (with a regenerator and intercooler) that was designed for a full-load simple cycle efficiency of 29%. As the initial step in the Advanced Turbine Systems (ATS) program, Westinghouse has already developed a 230 MW gas turbine that has a simple cycle efficiency of 38.5% without the use of regeneration and intercooler concepts. In 1967, Westinghouse developed its first gas turbine combined cycle, a synergistic combination of the Brayton and the Rankine cycles. In a combined cycle the heat rejected by the higher temperature topping cycle is recovered in the lower temperature bottoming cycle to produce additional power from the energy initially released by the fuel. In this first Westinghouse combined cycle, a 1450{degrees}F burner outlet temperature gas turbine, rated at 25 MW, supplied exhaust heat which was used in a boiler to furnish steam to drive an 85 MW steam turbine. This plant achieved an annual average efficiency of 39.6%.

  7. Preliminary design package for residential heating/cooling system--Rankine air conditioner redesign

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    This report contains a summary of the preliminary redesign and development of a marketable single-family heating and cooling system. The objectives discussed are the interim design and schedule status of the Residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  8. Technical Analysis of Organic Rankine Cycle System Using Low-Temperature Source to Generate Electricity in Ship

    Directory of Open Access Journals (Sweden)

    Akram Faisal

    2017-01-01

    Full Text Available Nowadays, the shipping sector has growth rapidly as followed by the increasing of world population and the demands for public transportation via sea. This issue entails the large attention on emission, energy efficiency and fuel consumption on the ship. Waste Heat Recovery (WHR is one of the solution to overcome the mentioned issue and one of the WHR method is by installing Organic Rankine Cycle (ORC system in ship. ORC demonstrate to recover and exploit the low temperature waste heat rejected by the ship power generation plant. The main source of heat to be utilized is obtained from container ship (7900 kW BHP, DWT 10969 mt ship jacket water cooling system and use R-134a as a refrigerant. The main equipment consists of evaporator, condenser, pump and steam turbine to generate the electricity. The main objective is to quantifying the estimation of electrical power which can be generated at typical loads of the main engine. As the final result of analysis, the ORC system is able to generate the electricity power ranged from 77,5% - 100% of main engine load producing power averagely 57,69 kW.

  9. Advanced Rankine and Brayton cycle power systems: Materials needs and opportunities

    Science.gov (United States)

    Grisaffe, S. J.; Guentert, D. C.

    1974-01-01

    Conceptual advanced potassium Rankine and closed Brayton power conversion cycles offer the potential for improved efficiency over steam systems through higher operating temperatures. However, for utility service of at least 100,000 hours, materials technology advances will be needed for such high temperature systems. Improved alloys and surface protection must be developed and demonstrated to resist coal combustion gases as well as potassium corrosion or helium surface degradation at high temperatures. Extensions in fabrication technology are necessary to produce large components of high temperature alloys. Long time property data must be obtained under environments of interest to assure high component reliability.

  10. Advanced Rankine and Brayton cycle power systems - Materials needs and opportunities

    Science.gov (United States)

    Grisaffe, S. J.; Guentert, D. C.

    1974-01-01

    Conceptual advanced potassium Rankine and closed Brayton power conversion cycles offer the potential for improved efficiency over steam systems through higher operating temperatures. However, for utility service of at least 100,000 hours, materials technology advances will be needed for such high temperature systems. Improved alloys and surface protection must be developed and demonstrated to resist coal combustion gases as well as potassium corrosion or helium surface degradation at high temperatures. Extensions in fabrication technology are necessary to produce large components of high temperature alloys. Long-time property data must be obtained under environments of interest to assure high component reliability.

  11. Waste Heat Recovery of a PEMFC System by Using Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Tianqi He

    2016-04-01

    Full Text Available In this study, two systems are brought forward to recover the waste heat of a proton exchange membrane fuel cell (PEMFC, which are named the organic Rankine cycle (ORC, and heat pump (HP combined organic Rankine cycle (HPORC. The performances of both systems are simulated on the platform of MATLAB with R123, R245fa, R134a, water, and ethanol being selected as the working fluid, respectively. The results show that, for PEMFC where operating temperature is constantly kept at 60 °C, there exists an optimum working temperature for each fluid in ORC and HPORC. In ORC, the maximal net power can be achieved with R245fa being selected as the working fluid. The corresponding thermal efficiency of the recovery system is 4.03%. In HPORC, the maximal net power can be achieved with water being selected in HP and R123 in ORC. The thermal efficiency of the recovery system increases to 4.73%. Moreover, the possibility of using ORC as the cooling system of PEMFC is also studied. The heat released from PEMFC stack is assumed to be wholly recovered by the ORC or HPORC system. The results indicate that the HPORC system is much more feasible for the cooling system of a PEMFC stack, since the heat recovery ability can be promoted due to the presence of HP.

  12. Studi Numerik Dua Dimensi Labyrinth Seal Turbin Uap Organic Rankine Cycle (ORC Type Straight-Through dengan Variasi Tekanan Inlet, Kecepatan Putaran Poros, Jarak Pitch, dan Tinggi Rongga

    Directory of Open Access Journals (Sweden)

    Fungki Setyo Yulianto

    2013-03-01

    Full Text Available ORC (Organic Rankine Cycle merupakan salah satu sistem pembangkit tenaga yang mampu memanfaatkan waste energy dengan menggunakan fluida organik yang mampu menguap pada temperatur dan tekanan rendah. Salah satu komponen utama pada sistem ORC adalah Turbin. Untuk mendapatkan efisiensi yang maksimal,  kebocoran fluida pada turbin uap harus di minimalisir. Untuk itulah di perlukan penggunaan labyrinth seal untuk mengurai kebocoran fluida R123 pada turbin uap ORC. Pada dunia Industri jenis labyrinth seal sangat banyak sekali, salah satunya adalah labyrinth seal tipe Straight-Through. Penelitian ini dilakukan dengan metode numerik (CFD software Fluent. Penelitian ini menggunakan variasi tekanan inlet yaitu 5, 10 dan 15 bar, putaran poros 0, 1500 dan 3000 rpm, panjang pitch 4 mm, 6 mm, 8 mm, 10 mm, serta tinggi rongga 3,415 mm, 3,915 mm dan 5,915 mm. Simulasi menggunakan model turbulensi k-ε RNG. Pada variasi tekanan inlet laju kebocoran paling besar terjadi pada tekanan 15 bar. Pada variasi putaran poros laju kebocoran terjadi berubah secara signifikan pada setiap variasi. Pada variasi tinggi rongga laju kebocoran paling kecil terjadi pada tinggi rongga 3,415 mm. Pada variasi panjang pitch, laju kebocoran paling kecil terjadi pada panjang pitch 10 mm.

  13. Gas turbine cooling system

    Science.gov (United States)

    Bancalari, Eduardo E.

    2001-01-01

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  14. Linear Active Disturbance Rejection Control of Waste Heat Recovery Systems with Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Fang Fang

    2012-12-01

    Full Text Available In this paper, a linear active disturbance rejection controller is proposed for a waste heat recovery system using an organic Rankine cycle process, whose model is obtained by applying the system identification technique. The disturbances imposed on the waste heat recovery system are estimated through an extended linear state observer and then compensated by a linear feedback control strategy. The proposed control strategy is applied to a 100 kW waste heat recovery system to handle the power demand variations of grid and process disturbances. The effectiveness of this controller is verified via a simulation study, and the results demonstrate that the proposed strategy can provide satisfactory tracking performance and disturbance rejection.

  15. Draft report: application of organic Rankine cycle heat recovery systems to diesel powered marine vessels

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-15

    The analysis and results of an investigation of the application of organic Rankine cycle heat recovery systems to diesel-powered marine vessels are described. The program under which this study was conducted was sponsored jointly by the US Energy Research and Development Administration, the US Navy, and the US Maritime Administration. The overall objective of this study was to investigate diesel bottoming energy recovery systems, currently under development by three US concerns, to determine the potential for application to marine diesel propulsion and auxiliary systems. The study primarily focused on identifying the most promising vessel applications (considering vessel type, size, population density, operational duty cycle, etc.) so the relative economic and fuel conservation merits of energy recovery systems could be determined and assessed. Vessels in the current fleet and the projected 1985 fleet rated at 1000 BHP class and above were investigated.

  16. Turbine blade tip gap reduction system

    Science.gov (United States)

    Diakunchak, Ihor S.

    2012-09-11

    A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.

  17. Steam Turbine Assisted Cogeneration systems

    Directory of Open Access Journals (Sweden)

    Šariský Marián

    2004-09-01

    Full Text Available Searching for the best way of improving using systems of production electrical energy and heat is part of an intensive development in the field of energetic. Using steam turbines in the cogeneration system is very important step at increasing the effection not only of the whole system, but of the gas turbine as well. The advantages and the characteristic features of the system are shown in the article.

  18. Organic Rankine-cycle power systems working fluids study: Topical report No. 2, Toluene

    Energy Technology Data Exchange (ETDEWEB)

    Cole, R.L.; Demirgian, J.C.; Allen, J.W.

    1987-02-01

    The US Department of Energy initiated an investigation at Argonne National Laboratory in 1982 to experimentally determine the thermal stability limits and degradation rates of toluene as a function of maximum cycle temperature. Following the design and construction of a dynamic test loop capable of closely simulating the thermodynamic conditions of typical organic Rankine-cycle (ORC) power systems, four test runs, totaling about 3900 h of test time and covering a temperature range of 600-677(degree)F, were completed. Both liquid and noncondensable-vapor (gaseous) samples were drawn periodically and analyzed using capillary-column gas chromatography, gas chromatography/mass spectrometry, and mass spectrometry. A computer program that can predict degradation in an ORC engine was developed. Experimental results indicate that, if oxygen can be excluded from the system, toluene is a stable fluid up to the maximum test temperature; the charge of toluene could be used for several years before replacement became necessary. (Additional data provided by Sundstrand Corp. from tests sponsored by the National Aeronautics and Space Administration indicate that toluene may be used at temperatures up to 750(degree)F.) Degradation products are benign; the main liquid degradation products are bibenzyls, and the main gaseous degradation products are hydrogen and methane. A cold trap to remove gaseous degradation products from the condenser is necessary for extended operation. 21 figs., 22 tabs.

  19. Experimental and Thermoeconomic Analysis of Small-Scale Solar Organic Rankine Cycle (SORC System

    Directory of Open Access Journals (Sweden)

    Suresh Baral

    2015-04-01

    Full Text Available A small-scale solar organic Rankine cycle (ORC is a promising renewable energy-driven power generation technology that can be used in the rural areas of developing countries. A prototype was developed and tested for its performance characteristics under a range of solar source temperatures. The solar ORC system power output was calculated based on the thermal and solar collector efficiency. The maximum solar power output was observed in April. The solar ORC unit power output ranged from 0.4 kW to 1.38 kW during the year. The highest power output was obtained when the expander inlet pressure was 13 bar and the solar source temperature was 120 °C. The area of the collector for the investigation was calculated based on the meteorological conditions of Busan City (South Korea. In the second part, economic and thermoeconomic analyses were carried out to determine the cost of energy per kWh from the solar ORC. The selling price of electricity generation was found to be $0.68/kWh and $0.39/kWh for the prototype and low cost solar ORC, respectively. The sensitivity analysis was carried out in order to find the influencing economic parameters for the change in NPV. Finally, the sustainability index was calculated to assess the sustainable development of the solar ORC system.

  20. Stand-Alone Solar Organic Rankine Cycle Water Pumping System and Its Economic Viability in Nepal

    Directory of Open Access Journals (Sweden)

    Suresh Baral

    2015-12-01

    Full Text Available The current study presents the concept of a stand-alone solar organic Rankine cycle (ORC water pumping system for rural Nepalese areas. Experimental results for this technology are presented based on a prototype. The economic viability of the system was assessed based on solar radiation data of different Nepalese geographic locations. The mechanical power produced by the solar ORC is coupled with a water pumping system for various applications, such as drinking and irrigation. The thermal efficiency of the system was found to be 8% with an operating temperature of 120 °C. The hot water produced by the unit has a temperature of 40 °C. Economic assessment was done for 1-kW and 5-kW solar ORC water pumping systems. These systems use different types of solar collectors: a parabolic trough collector (PTC and an evacuated tube collector (ETC. The economic analysis showed that the costs of water are $2.47/m3 (highest and $1.86/m3 (lowest for the 1-kW system and a 150-m pumping head. In addition, the cost of water is reduced when the size of the system is increased and the pumping head is reduced. The minimum volumes of water pumped are 2190 m3 and 11,100 m3 yearly for 1 kW and 5 kW, respectively. The payback period is eight years with a profitability index of 1.6. The system is highly feasible and promising in the context of Nepal.

  1. Exergy and economic analysis of organic rankine cycle hybrid system utilizing biogas and solar energy in rural area of China

    DEFF Research Database (Denmark)

    Zhao, Chunhua; Zheng, Siyu; Zhang, Ji

    2017-01-01

    Due to the existing huge biogas resource in the rural area of China, biogas is widely used for production and living. Cogeneration system provides an opportunity to realize the balanced utilization of the renewable energy such as biogas and solar energy. This paper presented a numerical...... investigation of a hybrid energy-driven organic Rankine cycle (ORC) cogeneration system, involving a solar organic Rankine cycle and a biogas boiler. The biogas boiler with a module of solar Parabolic-Trough Collectors (PTC) is employed to provide heat source to the ORC via two distinct intermediate pressurized...... circuits. The cogeneration supplied the power to the air-condition in summer condition and hot water, which is heated in the condenser, in winter condition. The system performance under the subcritical pressures has been assessed according to the energy-exergy and economic analysis with the organic working...

  2. ADVANCED TURBINE SYSTEMS PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Sy Ali

    2002-03-01

    The market for power generation equipment is undergoing a tremendous transformation. The traditional electric utility industry is restructuring, promising new opportunities and challenges for all facilities to meet their demands for electric and thermal energy. Now more than ever, facilities have a host of options to choose from, including new distributed generation (DG) technologies that are entering the market as well as existing DG options that are improving in cost and performance. The market is beginning to recognize that some of these users have needs beyond traditional grid-based power. Together, these changes are motivating commercial and industrial facilities to re-evaluate their current mix of energy services. One of the emerging generating options is a new breed of advanced fuel cells. While there are a variety of fuel cell technologies being developed, the solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are especially promising, with their electric efficiency expected around 50-60 percent and their ability to generate either hot water or high quality steam. In addition, they both have the attractive characteristics of all fuel cells--relatively small siting footprint, rapid response to changing loads, very low emissions, quiet operation, and an inherently modular design lending itself to capacity expansion at predictable unit cost with reasonably short lead times. The objectives of this project are to:(1) Estimate the market potential for high efficiency fuel cell hybrids in the U.S.;(2) Segment market size by commercial, industrial, and other key markets;(3) Identify and evaluate potential early adopters; and(4) Develop results that will help prioritize and target future R&D investments. The study focuses on high efficiency MCFC- and SOFC-based hybrids and competing systems such as gas turbines, reciprocating engines, fuel cells and traditional grid service. Specific regions in the country have been identified where these

  3. Dual-objective optimization of organic Rankine cycle (ORC) systems using genetic algorithm: a comparison between basic and recuperative cycles

    Science.gov (United States)

    Hayat, Nasir; Ameen, Muhammad Tahir; Tariq, Muhammad Kashif; Shah, Syed Nadeem Abbas; Naveed, Ahmad

    2017-08-01

    Exploitation of low potential waste thermal energy for useful net power output can be done by manipulating organic Rankine cycle systems. In the current article dual-objectives (η_{th} and SIC) optimization of ORC systems [basic organic Rankine cycle (BORC) and recuperative organic Rankine cycle (RORC)] has been done using non-dominated sorting genetic algorithm (II). Seven organic compounds (R-123, R-1234ze, R-152a, R-21, R-236ea, R-245ca and R-601) have been employed in basic cycle and four dry compounds (R-123, R-236ea, R-245ca and R-601) have been employed in recuperative cycle to investigate the behaviour of two systems and compare their performance. Sensitivity analyses show that recuperation boosts the thermodynamic behaviour of systems but it also raises specific investment cost significantly. R-21, R-245ca and R-601 show attractive performance in BORC whereas R-601 and R-236ea in RORC. RORC, due to higher total investment cost and operation & maintenance costs, has longer payback periods as compared to BORC.

  4. Bayesian Zero-Failure (BAZE) reliability demonstration testing procedure and its application to a Rankine dynamic radioisotope power conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Martz, H.F. Jr.; Waller, R.A.

    1976-07-01

    A Bayesian Zero-Failure (BAZE) reliability demonstration testing procedure is developed. The procedure may be used to verify component failure rates associated with both real-time dependent and cycle-dependent chance failure mechanisms. A constant falure-rate model with a gamma prior distribution is assumed. The procedure is used to obtain sample test plans for components of a proposed Rankine power conversion system.

  5. Applied studies in advanced boiler technology for Rankine cycle power systems

    Energy Technology Data Exchange (ETDEWEB)

    Paul, F.W.; Negreanu, M.J.

    1978-02-01

    A study is presented on a new rotational boiler design which has improved passive dynamic response and two-phase flow stability characteristics. A survey of small boiler manufacturers in the United States indicated that currently available designs are based on steady-state operating requirements rather than for dynamic performance. Recent work by EPA and ERDA which addressed boiler designs for mobile automotive Rankine cycle power systems showed that boilers of a monotube or multipass tube configuration design could be developed which were physically compact, but still were subject to the two-phase flow instability problem when coupled within an operating power system. The objectives of this work were to evaluate alternative boiler configurations which would improve boiler dynamic response and also have good two-phase liquid-vapor interface flow stability. The major physical design limitation of any boiler is the small external hot gas heat transfer coefficient. Such a low coefficient requires considerable design enhancements to increase the rate of energy transfer to the circulation system fluid. The rotational boiler is a physical design configuration which addresses this problem. The results of an analytic study using several mathematical model formulations showed that a rotational boiler could have a passive response time constant which was approximately one-half the magnitude for an equivalent single pass monotube boiler. An experimental prototype rotational boiler was designed, manufactured and tested, with the experimental results confirming that the experimental passive response time constants were comparable to the estimates from the analytic models. The experimental boiler operating in two-phase flow was found to be stable and responsive to external inputs. A rotational boiler configuration is a good alternative design configuration for small compact vapor generator designs based on fast transient passive response and two-phase flow stability.

  6. The dish-Rankine SCSTPE program (Engineering Experiment no. 1). [systems engineering and economic analysis for a small community solar thermal electric system

    Science.gov (United States)

    Pons, R. L.; Grigsby, C. E.

    1980-01-01

    Activities planned for phase 2 Of the Small Community Solar Thermal Power Experiment (PFDR) program are summarized with emphasis on a dish-Rankine point focusing distributed receiver solar thermal electric system. Major design efforts include: (1) development of an advanced concept indirect-heated receiver;(2) development of hardware and software for a totally unmanned power plant control system; (3) implementation of a hybrid digital simulator which will validate plant operation prior to field testing; and (4) the acquisition of an efficient organic Rankine cycle power conversion unit. Preliminary performance analyses indicate that a mass-produced dish-Rankine PFDR system is potentially capable of producing electricity at a levelized busbar energy cost of 60 to 70 mills per KWh and with a capital cost of about $1300 per KW.

  7. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-04-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  8. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-02-01

    The activities of the Advanced Gas Turbine Systems Research (AGTSR) program for this reporting period are described in this quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education), Research and Miscellaneous Related Activity. Items worthy of note are presented in extended bullet format following the appropriate heading.

  9. ADVANCED GAS TURBINE SYSTEMS RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-01-01

    The activities of the Advanced Gas Turbine Systems Research (AGRSR) program are described in the quarterly report. The report is divided into discussions of Membership, Administration, Technology Transfer (Workshop/Education) and Research. Items worthy of note are presented in extended bullet format following the appropriate heading.

  10. A hybrid solar photovoltaic-wind turbine-Rankine cycle for electricity generation in Turkish Republic of Northern Cyprus

    Directory of Open Access Journals (Sweden)

    Samuel Asumadu-Sarkodie

    2016-12-01

    Full Text Available This paper presents an energy demand model by designing a hybrid solar-wind-thermal power generation system of the Turkish Republic of Northern Cyprus, a promising substitute for the expensive battery banks. The study models the future energy demand of Turkish Republic of Northern Cyprus based on the IPCC emissions scenario A1B and A2 by designing a new hybrid solar-wind-thermal power system that satisfies the current and future requirements of firm capacity during peak periods. The study suggests an improvement in a hybrid solar-wind-thermal power system performance by predicting reliable outputs that can integrate renewable energy technologies to conventional power generation. The energy consumption prediction model emphasizes the energy requirement that has a growing demand from 300 to 400 GWh in scenario A1B and 150–450 GWh in scenario A2 from 2010 to 2050. The proposed design can meet 400 GWh of electricity demand in TRNC based on IPCC scenario A1B and 450 GWh of electricity demand in TRNC based on IPCC scenario A2. The percentage contribution of solar, wind and thermal energy for 2010, 2020, 2030, 2040 and 2050 are presented along with CO2 emissions and water consumption for each of the years.

  11. A Burst Mode, Ultrahigh Temperature UF4 Vapor Core Reactor Rankine Cycle Space Power System Concept

    Science.gov (United States)

    Dugan, E. T.; Kahook, S. D.; Diaz, N. J.

    1996-01-01

    Static and dynamic neutronic analyses have been performed on an innovative burst mode (100's of MW output for a few thousand seconds) Ulvahigh Temperature Vapor Core Reactor (UTVR) space nuclear power system. The NVTR employs multiple, neutronically-coupled fissioning cores and operates on a direct, closed Rankine cycle using a disk Magnetohydrodynamic (MHD) generater for energy conversion. The UTVR includes two types of fissioning core regions: (1) the central Ultrahigh Temperature Vapor Core (UTVC) which contains a vapor mixture of highly enriched UF4 fuel and a metal fluoride working fluid and (2) the UF4 boiler column cores located in the BeO moderator/reflector region. The gaseous nature of the fuel the fact that the fuel is circulating, the multiple coupled fissioning cores, and the use of a two phase fissioning fuel lead to unique static and dynamic neutronic characteristics. Static neutronic analysis was conducted using two-dimensional S sub n, transport theory calculations and three-dimensional Monte Carlo transport theory calculations. Circulating-fuel, coupled-core point reactor kinetics equations were used for analyzing the dynamic behavior of the UTVR. In addition to including reactivity feedback phenomena associated with the individual fissioning cores, the effects of core-to-core neutronic and mass flow coupling between the UTVC and the surrounding boiler cores were also included in the dynamic model The dynamic analysis of the UTVR reveals the existence of some very effectlve inherent reactivity feedback effects that are capable of quickly stabilizing this system, within a few seconds, even when large positive reactivity insertions are imposed. If the UTVC vapor fuel density feedback is suppressed, the UTVR is still inherently stable because of the boiler core liquid-fuel volume feedback; in contrast, suppression of the vapor fuel density feedback in 'conventional" gas core cavity reactors causes them to become inherently unstable. Due to the

  12. Advanced gas turbine systems program

    Energy Technology Data Exchange (ETDEWEB)

    Zeh, C.M.

    1995-06-01

    The U.S. Department of Energy (DOE) is sponsoring a program to develop fuel-efficient gas turbine-based power systems with low emissions. DOE`s Office of Fossil Energy (DOE/FE) and Office of Energy Efficiency and Renewable Energy (DOE/EE) have initiated an 8-year program to develop high-efficiency, natural gas-fired advanced gas turbine power systems. The Advanced Turbine Systems (ATS) Program will support full-scale prototype demonstration of both industrial- and utility-scale systems that will provide commercial marketplace entries by the year 2000. When the program targets are met, power system emissions will be lower than from the best technology in use today. Efficiency of the utility-scale units will be greater than 60 percent on a lower heating value basis, and emissions of carbon dioxide will be reduced inversely with this increase. Industrial systems will also see an improvement of at least 15 percent in efficiency. Nitrogen oxides will be reduced by at least 10 percent, and carbon monoxide and hydrocarbon emissions will each be kept below 20 parts per million, for both utility and industrial systems.

  13. Organic Rankine-Cycle Power Systems Working Fluids Study: Topical report No. 3, 2-methylpyridine/water

    Energy Technology Data Exchange (ETDEWEB)

    Cole, R.L.; Demirgian, J.C.; Allen, J.W.

    1987-09-01

    A mixture of 35 mole percent (mol %) 2-methylpyridine and 65 mol % water was tested at 575, 625, and 675/degree/F in a dynamic loop. Samples of the degraded fluid were chemically analyzed to determine the identities of major degradation products and the quantity of degradation. Computed degradation rates were found to be higher than those for Fluorinol 85 or toluene. For this reason (and other reasons, related to fluid handling), other fluids are recommended as the first choice for service in organic Rankine-cycle systems in preference to 2-methylpyridine/water. 7 refs., 39 figs., 39 tabs.

  14. Design and development of an automotive propulsion system utilizing a Rankine cycle engine (water based fluid). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Demler, R.L.

    1977-09-01

    Under EPA and ERDA sponsorship, SES successfully designed, fabricated and tested the first federally sponsored steam powered automobile. The automobile - referred to as the simulator - is a 1975 Dodge Monaco standard size passenger car with the SES preprototype Rankine cycle automotive propulsion system mounted in the engine compartment. In the latter half of 1975, the simulator successfully underwent test operations at the facilities of SES in Watertown, Massachusetts and demonstrated emission levels below those of the stringent federally established automotive requirements originally set for implementation by 1976. The demonstration was accomplished during testing over the Federal Driving Cycle on a Clayton chassis dynamometer. The design and performance of the vehicle are described.

  15. Utilization of recently developed codes for high power Brayton and Rankine cycle power systems

    Science.gov (United States)

    Doherty, Michael P.

    1993-01-01

    Two recently developed FORTRAN computer codes for high power Brayton and Rankine thermodynamic cycle analysis for space power applications are presented. The codes were written in support of an effort to develop a series of subsystem models for multimegawatt Nuclear Electric Propulsion, but their use is not limited just to nuclear heat sources or to electric propulsion. Code development background, a description of the codes, some sample input/output from one of the codes, and state future plans/implications for the use of these codes by NASA's Lewis Research Center are provided.

  16. Design of Wind Turbine Vibration Monitoring System

    Directory of Open Access Journals (Sweden)

    Shoubin Wang

    2013-04-01

    Full Text Available In order to ensure safety of wind turbine operation and to reduce the occurrence of faults as well as to improve the reliability of wind turbine operation, a vibration monitoring for wind turbine is developed. In this paper, it analyses the enlargement of all the parts of the structure and the working mechanism, the research method of wind turbine operation vibration is introduced, with the focus being the use of the sensor principle. Finally the hardware design and software of this system is introduced and the main function of this system is described, which realizes condition monitoring of the work state of wind turbines.

  17. Gas turbine engine control system

    Science.gov (United States)

    Idelchik, Michael S. (Inventor)

    1991-01-01

    A control system and method of controlling a gas turbine engine. The control system receives an error signal and processes the error signal to form a primary fuel control signal. The control system also receives at least one anticipatory demand signal and processes the signal to form an anticipatory fuel control signal. The control system adjusts the value of the anticipatory fuel control signal based on the value of the error signal to form an adjusted anticipatory signal and then the adjusted anticipatory fuel control signal and the primary fuel control signal are combined to form a fuel command signal.

  18. Industrial Advanced Turbine Systems Program overview

    Energy Technology Data Exchange (ETDEWEB)

    Esbeck, D.W. [Solar Turbines Inc., San Diego, CA (United States)

    1995-10-01

    The U.S. Department of Energy (DOE), in partnership with industry, has set new performance standards for industrial gas turbines through the creation of the Industrial Advanced Turbine System Program. Their leadership will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in this size class (3-to-20 MW). The DOE has already created a positive effect by encouraging gas turbine system manufacturers to reassess their product and technology plans using the new higher standards as the benchmark. Solar Turbines has been a leader in the industrial gas turbine business, and is delighted to have joined with the DOE in developing the goals and vision for this program. We welcome the opportunity to help the national goals of energy conservation and environmental enhancement. The results of this program should lead to the U.S. based gas turbine industry maintaining its international leadership and the creation of highly paid domestic jobs.

  19. Braking System for Wind Turbines

    Science.gov (United States)

    Krysiak, J. E.; Webb, F. E.

    1987-01-01

    Operating turbine stopped smoothly by fail-safe mechanism. Windturbine braking systems improved by system consisting of two large steel-alloy disks mounted on high-speed shaft of gear box, and brakepad assembly mounted on bracket fastened to top of gear box. Lever arms (with brake pads) actuated by spring-powered, pneumatic cylinders connected to these arms. Springs give specific spring-loading constant and exert predetermined load onto brake pads through lever arms. Pneumatic cylinders actuated positively to compress springs and disengage brake pads from disks. During power failure, brakes automatically lock onto disks, producing highly reliable, fail-safe stops. System doubles as stopping brake and "parking" brake.

  20. An experimental analysis of flow boiling and pressure drop in a brazed plate heat exchanger for organic Rankine cycle power systems

    DEFF Research Database (Denmark)

    Desideri, Adriano; Zhang, Ji; Kærn, Martin Ryhl

    2017-01-01

    Organic Rankine cycle power systems for low quality waste heat recovery applications can play a major role in achieving targets of increasing industrial processes efficiency and thus reducing the emissions of greenhouse gases. Low capacity organic Rankine cycle systems are equipped with brazed...... and pressure drop during vaporization at typical temperatures for low quality waste heat recovery organic Rankine cycle systems are presented for the working fluids HFC-245fa and HFO-1233zd. The experiments were carried out at saturation temperatures of 100°C, 115°C and 130°C and inlet and outlet qualities...... plate heat exchangers which allows for efficient heat transfer with a compact design. Accurate heat transfer correlations characterizing these devices are required from the design phase to the development of model-based control strategies. In this paper, the experimental heat transfer coefficient...

  1. Water turbine system and method of operation

    Science.gov (United States)

    Costin, Daniel P.

    2010-06-15

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  2. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 6: Closed-cycle gas turbine systems. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Amos, D. J.; Fentress, W. K.; Stahl, W. F.

    1976-01-01

    Both recuperated and bottomed closed cycle gas turbine systems in electric power plants were studied. All systems used a pressurizing gas turbine coupled with a pressurized furnace to heat the helium for the closed cycle gas turbine. Steam and organic vapors are used as Rankine bottoming fluids. Although plant efficiencies of over 40% are calculated for some plants, the resultant cost of electricity was found to be 8.75 mills/MJ (31.5 mills/kWh). These plants do not appear practical for coal or oil fired plants.

  3. Magnus air turbine system

    Science.gov (United States)

    Hanson, Thomas F.

    1982-01-01

    A Magnus effect windmill for generating electrical power is disclosed. A large nacelle-hub mounted pivotally (in Azimuth) atop a support tower carries, in the example disclosed, three elongated barrels arranged in a vertical plane and extending symmetrically radially outwardly from the nacelle. The system provides spin energy to the barrels by internal mechanical coupling in the proper sense to cause, in reaction to an incident wind, a rotational torque of a predetermined sense on the hub. The rotating hub carries a set of power take-off rollers which ride on a stationary circular track in the nacelle. Shafts carry the power, given to the rollers by the wind driven hub, to a central collector or accumulator gear assembly whose output is divided to drive the spin mechanism for the Magnus barrels and the main electric generator. A planetary gear assembly is interposed between the collector gears and the spin mechanism functioning as a differential which is also connected to an auxiliary electric motor whereby power to the spin mechanism may selectively be provided by the motor. Generally, the motor provides initial spin to the barrels for start-up after which the motor is braked and the spin mechanism is driven as though by a fixed ratio coupling from the rotor hub. During high wind or other unusual conditions, the auxiliary motor may be unbraked and excess spin power may be used to operate the motor as a generator of additional electrical output. Interposed between the collector gears of the rotating hub and the main electric generator is a novel variable speed drive-fly wheel system which is driven by the variable speed of the wind driven rotor and which, in turn, drives the main electric generator at constant angular speed. Reference is made to the complete specification for disclosure of other novel aspects of the system such as, for example, the aerodynamic and structural aspects of the novel Magnus barrels as well as novel gearing and other power coupling

  4. Combustion modeling in advanced gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H. [Brigham Young Univ., Provo, UT (United States)] [and others

    1995-10-01

    The goal of the U.S. Department of Energy`s Advanced Turbine Systems (ATS) program is to help develop and commercialize ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for base-load applications in the utility, independent power producer, and industrial markets. Combustion modeling, including emission characteristics, has been identified as a needed, high-priority technology by key professionals in the gas turbine industry.

  5. Energy performance and economic evaluation of heat pump/organic rankine cycle system with sensible thermal storage

    DEFF Research Database (Denmark)

    Carmo, Carolina; Dumont, Olivier; Nielsen, Mads Pagh

    2016-01-01

    that consists of a ground-source heat pump with possibility of reversing operation as an ORC power cycle combined with solar heating in a single-family building is introduced. The ORC mode enables the use of solar energy in periods of no heat energy demand and reverses the heat pump cycle to supply electrical......-life conditions knowledge, the paper considers two different sensible energy storage (TES) configurations for the reversible heat pump/organic Rankine cycle (HP/ORC) system: a buffer tank for both space heating and domestic hot water and a hot water storage tank used exclusively for domestic hot water......The interaction between electrical and thermal energy demands represent a potential area for balancing supply and demand that could contribute to the integration of intermittent renewables in energy systems. To enable the interaction between thermal and electric energy, an innovative concept...

  6. Energy Performance and Economic Evaluation of Heat Pump/Organic Rankine Cycle System with Sensible Thermal Storage

    DEFF Research Database (Denmark)

    Carmo, C.; Dumont, O.; Nielsen, M. P.

    2016-01-01

    that consists of a ground-source heat pump with possibility of reversing operation as an ORC power cycle combined with solar heating in a single-family building is introduced. The ORC mode enables the use of solar energy in periods of no heat energy demand and reverses the heat pump cycle to supply electrical......-life conditions knowledge, the paper considers two different sensible energy storage (TES) configurations for the reversible heat pump/organic Rankine cycle (HP/ORC) system: a buffer tank for both space heating and domestic hot water and a hot water storage tank used exclusively for domestic hot water......The interaction between electrical and thermal energy demands represent a potential area for balancing supply and demand that could contribute to the integration of intermittent renewables in energy systems. To enable the interaction between thermal and electric energy, an innovative concept...

  7. 10-75-kWe-reactor-powered organic Rankine-cycle electric power systems (ORCEPS) study. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1977-03-30

    This 10-75 kW(e) Reactor-ORCEPS study was concerned with the evaluation of several organic Rankine cycle energy conversion systems which utilized a /sup 235/U-ZrH reactor as a heat source. A liquid metal (NaK) loop employing a thermoelectric converter-powered EM pump was used to transfer the reactor energy to the organic working fluid. At moderate peak cycle temperatures (750/sup 0/F), power conversion unit cycle efficiencies of up to 25% and overall efficiencies of 20% can be obtained. The required operating life of seven years should be readily achievable. The CP-25 (toluene) working fluid cycle was found to provide the highest performance levels at the lowest system weights. Specific weights varies from 100 to 50 lb/kW(e) over the power level range 10 to 75 kW(e). (DLC)

  8. Design of organic Rankine cycle power systems accounting for expander performance

    DEFF Research Database (Denmark)

    La Seta, Angelo; Andreasen, Jesper Graa; Pierobon, Leonardo

    2015-01-01

    -loaded stages in supersonic flow regimes. This paper proposes a design method where the conventional cycle analysis is combined with calculations of the maximum expander performance using a validated mean-line design tool. The high computational cost of the turbine optimization is tackled building a model which...

  9. Cascaded organic rankine cycles for waste heat utilization

    Science.gov (United States)

    Radcliff, Thomas D [Vernon, CT; Biederman, Bruce P [West Hartford, CT; Brasz, Joost J [Fayetteville, NY

    2011-05-17

    A pair of organic Rankine cycle systems (20, 25) are combined and their respective organic working fluids are chosen such that the organic working fluid of the first organic Rankine cycle is condensed at a condensation temperature that is well above the boiling point of the organic working fluid of the second organic Rankine style system, and a single common heat exchanger (23) is used for both the condenser of the first organic Rankine cycle system and the evaporator of the second organic Rankine cycle system. A preferred organic working fluid of the first system is toluene and that of the second organic working fluid is R245fa.

  10. Lightning protection system for a wind turbine

    Science.gov (United States)

    Costin, Daniel P [Chelsea, VT; Petter, Jeffrey K [Williston, VT

    2008-05-27

    In a wind turbine (104, 500, 704) having a plurality of blades (132, 404, 516, 744) and a blade rotor hub (120, 712), a lightning protection system (100, 504, 700) for conducting lightning strikes to any one of the blades and the region surrounding the blade hub along a path around the blade hub and critical components of the wind turbine, such as the generator (112, 716), gearbox (708) and main turbine bearings (176, 724).

  11. Improving the efficiency of heat supply systems on the basis of plants operating on organic Rankine cycle

    Science.gov (United States)

    Solomin, I. N.; Daminov, A. Z.; Sadykov, R. A.

    2017-11-01

    Results of experimental and analytical studies of the plant main element – plant turbomachine (turbo-expander) operating on organic Rankine cycle were obtained for facilities of the heat supply systems of small-scale power generation. At simultaneous mathematical modeling and experimental studies it was found that the best working medium to be used in the turbomachines of these plants is Freon R245fa which has the most suitable calorimetric properties to be used in the cycle. The mathematical model of gas flow in the turbomachine was developed. The main engineering dependencies to calculate the optimal design parameters of the turbomachine were obtained. The engineering problems of providing the minimum axial size of the turbomachine impeller were solved and the main design elements were unified.

  12. Performance Evaluation of a HP/ORC (Heat Pump/Organic Rankine Cycle) System with Optimal Control of Sensible Thermal Storage

    DEFF Research Database (Denmark)

    Carmo, Carolina; Nielsen, Mads P.; Elmegaard, Brian

    2016-01-01

    come to contribute to the integration of intermittent renewables.This paper describes an innovative concept that consists of the addition of an Organic Rankine Cycle (ORC) toa combined solar system coupled to a ground-source heat pump (HP) in a single-family building. The ORC enables the use of solar...

  13. NEXT GENERATION TURBINE SYSTEM STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Frank Macri

    2002-02-28

    Rolls-Royce has completed a preliminary design and marketing study under a Department of Energy (DOE) cost shared contract (DE-AC26-00NT40852) to analyze the feasibility of developing a clean, high efficiency, and flexible Next Generation Turbine (NGT) system to meet the power generation market needs of the year 2007 and beyond. Rolls-Royce evaluated the full range of its most advanced commercial aerospace and aeroderivative engines alongside the special technologies necessary to achieve the aggressive efficiency, performance, emissions, economic, and flexibility targets desired by the DOE. Heavy emphasis was placed on evaluating the technical risks and the economic viability of various concept and technology options available. This was necessary to ensure the resulting advanced NGT system would provide extensive public benefits and significant customer benefits without introducing unacceptable levels of technical and operational risk that would impair the market acceptance of the resulting product. Two advanced cycle configurations were identified as offering significant advantages over current combined cycle products available in the market. In addition, balance of plant (BOP) technologies, as well as capabilities to improve the reliability, availability, and maintainability (RAM) of industrial gas turbine engines, have been identified. A customer focused survey and economic analysis of a proposed Rolls-Royce NGT product configuration was also accomplished as a part of this research study. The proposed Rolls-Royce NGT solution could offer customers clean, flexible power generation systems with very high efficiencies, similar to combined cycle plants, but at a much lower specific cost, similar to those of simple cycle plants.

  14. Advanced coal-fueled gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  15. Mobile measurement system for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Kildemoes Moeller, T.

    1997-06-01

    The aim of this project `Udviklingsafproevning af smaa moellevinger` has been to develop a mobile measurement system for wind turbines. The following report describes the measurement system. The project has been financed by the Danish Ministry of Energy. (au)

  16. Study on Mixed Working Fluids with Different Compositions in Organic Rankine Cycle (ORC Systems for Vehicle Diesel Engines

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2014-08-01

    Full Text Available One way to increase the thermal efficiency of vehicle diesel engines is to recover waste heat by using an organic Rankine cycle (ORC system. Tests were conducted to study the running performances of diesel engines in the whole operating range. The law of variation of the exhaust energy rate under various engine operating conditions was also analyzed. A diesel engine-ORC combined system was designed, and relevant evaluation indexes proposed. The variation of the running performances of the combined system under various engine operating conditions was investigated. R245fa and R152a were selected as the components of the mixed working fluid. Thereafter, six kinds of mixed working fluids with different compositions were presented. The effects of mixed working fluids with different compositions on the running performances of the combined system were revealed. Results show that the running performances of the combined system can be improved effectively when mass fraction R152a in the mixed working fluid is high and the engine operates with high power. For the mixed working fluid M1 (R245fa/R152a, 0.1/0.9, by mass fraction, the net power output of the combined system reaches the maximum of 34.61 kW. Output energy density of working fluid (OEDWF, waste heat recovery efficiency (WHRE, and engine thermal efficiency increasing ratio (ETEIR all reach their maximum values at 42.7 kJ/kg, 10.90%, and 11.29%, respectively.

  17. Variable speed wind turbine control system

    Science.gov (United States)

    Conley, E.

    Variable speed wind turbine operation offers potential increased energy production if the turbine rotor is controlled to operate at constant blade tip speed to wind speed ratio. Two variable speed control systems are compared to a constant speed control system during field tests of a 5m Darrieus type wind turbine generator. Data indicates that a simple variable speed control scheme using wind rotor RPM as the single input signal can control the Darrieus test machine to operate at roughly constant blade tip to wind speed ratio and thus maximize energy production.

  18. Organic Rankine-cycle power systems working fluids study: Topical report No. 1: Fluorinol 85. [85 mole % trofluoroethanol in water

    Energy Technology Data Exchange (ETDEWEB)

    Jain, M.L.; Demirgian, J.C.; Cole, R.L.

    1986-09-01

    An investigation to experimentally determine the thermal stability limits and degradation rates of Fluorinol 85 as a function of maximum cycle temperatures was initiated in 1982. Following the design and construction of a dynamic test loop capable of simulating the thermodynamic conditions of possible prototypical organic Rankine-cycle (ORC) power systems, several test runs were completed. The Fluorinol 85 test loop was operated for about 3800 h, covering a temperature range of 525-600/sup 0/F. Both liquid and noncondensable vapor (gas) samples were drawn periodically and analyzed using capillary column gas chromatography, gas chromatography/mass spectrometry and mass spectrometry. Results indicate that Fluorinol 85 would not decompose significantly over an extended period of time, up to a maximum cycle temperature of 550/sup 0/F. However, 506-h data at 575/sup 0/F show initiation of significant degradation. The 770-h data at 600/sup 0/F, using a fresh charge of Fluorinol 85, indicate an annual degradation rate of more than 17.2%. The most significant degradation product observed is hydrofluoric acid, which could cause severe corrosion in an ORC system. Devices to remove the hydrofluoric acid and prevent extreme temperature excursions are necessary for any ORC system using Fluorinol 85 as a working fluid.

  19. Test Requirements and Conceptual Design for a Potassium Test Loop to Support an Advanced Potassium Rankine Cycle Power Conversion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, JR.G.L.

    2006-03-08

    Parameters for continuing the design and specification of an experimental potassium test loop are identified in this report. Design and construction of a potassium test loop is part of the Phase II effort of the project ''Technology Development Program for an Advanced Potassium Rankine Power Conversion System''. This program is supported by the National Aeronautics and Space Administration. Design features for the potassium test loop and its instrumentation system, specific test articles, and engineered barriers for ensuring worker safety and protection of the environment are described along with safety and environmental protection requirements to be used during the design process. Information presented in the first portion of this report formed the basis to initiate the design phase of the program; however, the report is a living document that can be changed as necessary during the design process, reflecting modifications as additional design details are developed. Some portions of the report have parameters identified as ''to be determined'' (TBD), reflecting the early stage of the overall process. In cases where specific design values are presently unknown, the report attempts to document the quantities that remain to be defined in order to complete the design of the potassium test loop and supporting equipment.

  20. Organic rankine cycle waste heat applications

    Science.gov (United States)

    Brasz, Joost J.; Biederman, Bruce P.

    2007-02-13

    A machine designed as a centrifugal compressor is applied as an organic rankine cycle turbine by operating the machine in reverse. In order to accommodate the higher pressures when operating as a turbine, a suitable refrigerant is chosen such that the pressures and temperatures are maintained within established limits. Such an adaptation of existing, relatively inexpensive equipment to an application that may be otherwise uneconomical, allows for the convenient and economical use of energy that would be otherwise lost by waste heat to the atmosphere.

  1. Optimization of Biomass-Fuelled Combined Cooling, Heating and Power (CCHP) Systems Integrated with Subcritical or Transcritical Organic Rankine Cycles (ORCs)

    OpenAIRE

    Daniel Maraver; Sylvain Quoilin; Javier Royo

    2014-01-01

    This work is focused on the thermodynamic optimization of Organic Rankine Cycles (ORCs), coupled with absorption or adsorption cooling units, for combined cooling heating and power (CCHP) generation from biomass combustion. Results were obtained by modelling with the main aim of providing optimization guidelines for the operating conditions of these types of systems, specifically the subcritical or transcritical ORC, when integrated in a CCHP system to supply typical heating and cooling deman...

  2. Airfoil seal system for gas turbine engine

    Science.gov (United States)

    None, None

    2013-06-25

    A turbine airfoil seal system of a turbine engine having a seal base with a plurality of seal strips extending therefrom for sealing gaps between rotational airfoils and adjacent stationary components. The seal strips may overlap each other and may be generally aligned with each other. The seal strips may flex during operation to further reduce the gap between the rotational airfoils and adjacent stationary components.

  3. Performance of a radial-inflow turbine integrated in an ORC system and designed for a WHR on truck application: An experimental comparison between R245fa and R1233zd

    OpenAIRE

    Guillaume, Ludovic; Legros, Arnaud; Desideri, Adriano; Lemort, Vincent

    2016-01-01

    The goal of this study is to experimentally compare the performance of an Organic Rankine Cycle (ORC) system equipped with a radial-inflow turbine for two working fluids: R245fa and R1233zd. The radial- inflow turbine is a small-scale prototype designed to convert the waste heat from the exhaust gases of a truck combustion engine and was developed mainly using components of truck turbochargers. It is directly connected to a high-speed synchronous generator. The bearings system of the turbine ...

  4. Dynamic Response of a 50 kW Organic Rankine Cycle System in Association with Evaporators

    Directory of Open Access Journals (Sweden)

    Yuh-Ren Lee

    2014-04-01

    Full Text Available The influences of various evaporators on the system responses of a 50 kW ORC system using R-245fa are investigated in this study. First the effect of the supplied hot water flowrate into the evaporator is examined and the exit superheat on the system performance between plate and shell-and-tube evaporator is also reported. Test results show that the effect of hot water flowrate on the evaporator imposes a negligible effect on the transient response of the ORC system. These results prevail even for a 3.5-fold increase of the hot water flowrate and the system shows barely any change subject to this drastic hot water flowrate change. The effect of exit superheat on the ORC system depends on the type of the evaporator. For the plate evaporator, an exit superheat less than 10 °C may cause ORC system instability due to considerable liquid entrainment. To maintain a stable operation, the corresponding Jakob number of the plate heat evaporator must be above 0.07. On the other hand, by employing a shell and tube heat evaporator connected to the ORC system, no unstable oscillation of the ORC system is observed for exit superheats ranging from 0 to 17 °C.

  5. On System Identification of Wind Turbines

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Perisic, Nevena; Pedersen, B.J.

    . The operational model analysis (OMA) methodology can provide accurate estimates of the natural frequencies, damping ratios and mode shapes of the systems as long as the measurements have a low noise to signal ratio. However, in order to take information about the wind turbine into account a grey......Recently several methods have been proposed for the system identification of wind turbines which can be considered as a linear time-varying system due to the operating conditions. For the identification of linear wind turbine models, either black-box or grey-box identification can be used......-box identification method can be used. This paper reviews proposed system identification methods and the durability and the limitations of the different methods are outlined....

  6. Wind Turbine Generator System Safety and Function Test Report for the Ventera VT10 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Ventera VT10 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  7. Wind Turbine Generator System Safety and Function Test Report for the Entegrity EW50 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  8. Diagnosis of wind turbine rotor system

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Mirzaei, Mahmood; Henriksen, Lars Christian

    2016-01-01

    is based on available standard sensors on wind turbines. The method can be used both on-line as well as off-line. Faults or changes in the rotor system will result in asymmetries, which can be monitored and diagnosed. This can be done by using the multi-blade coordinate transformation. Changes in the rotor......This paper describes a model free method for monitoring and fault diagnosis of the elements in a rotor system for a wind turbine. The diagnosis as well as the monitoring is done without using any model of the wind turbine and the applied controller or a description of the wind profile. The method...... system that can be diagnosed and monitored are: actuator faults, sensor faults and internal blade changes as e.g. change in mass of a blade....

  9. Development of an Organic Rankine Cycle system for exhaust energy recovery in internal combustion engines

    Science.gov (United States)

    Cipollone, Roberto; Bianchi, Giuseppe; Gualtieri, Angelo; Di Battista, Davide; Mauriello, Marco; Fatigati, Fabio

    2015-11-01

    Road transportation is currently one of the most influencing sectors for global energy consumptions and CO2 emissions. Nevertheless, more than one third of the fuel energy supplied to internal combustion engines is still rejected to the environment as thermal waste at the exhaust. Therefore, a greater fuel economy might be achieved recovering the energy from exhaust gases and converting it into useful power on board. In the current research activity, an ORC-based energy recovery system was developed and coupled with a diesel engine. The innovative feature of the recovery power unit relies upon the usage of sliding vane rotary machines as pump and expander. After a preliminary exhaust gas mapping, which allowed to assess the magnitude of the thermal power to be recovered, a thermodynamic analysis was carried out to design the ORC system and the sliding vane machines using R236fa as working fluid. An experimental campaign was eventually performed at different operating regimes according to the ESC procedure and investigated the recovery potential of the power unit at design and off-design conditions. Mechanical power recovered ranged from 0.7 kW up to 1.9 kW, with an overall cycle efficiency from 3.8% up to 4.8% respectively. These results candidate sliding vane machines as efficient and reliable devices for waste heat recovery applications.

  10. 14 CFR 23.1111 - Turbine engine bleed air system.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the...

  11. Application of unscented Kalman filter for condition monitoring of an organic Rankine cycle turbogenerator

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Schlanbusch, Rune; Kandepu, Rambabu

    2014-01-01

    emphasis on compactness and reliability. In such context, organic Rankine cycle turbogenerators are a promising technology. The implementation of an organic Rankine cycle unit is thus considered for the power system of the Draugen offshore platform in the northern sea, which is the case study......This work relates to a project focusing on energy optimization on offshore facilities. On oil and gas platforms it is common practice to employ gas turbines for power production. So as to increase the system performance and reduce emissions, a bottoming cycle unit can be designed with particular...... for this project. Considering the plant dynamics, it is of paramount importance to monitor the peak temperatures within the once-through boiler serving the bottoming unit to prevent the decomposition of the working fluid. This paper accordingly aims at applying the unscented Kalman filter to estimate...

  12. ADVANCED TURBINE SYSTEM FEDERAL ASSISTANCE PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Frank Macri

    2003-10-01

    Rolls-Royce Corporation has completed a cooperative agreement under Department of Energy (DOE) contract DE-FC21-96MC33066 in support of the Advanced Turbine Systems (ATS) program to stimulate industrial power generation markets. This DOE contract was performed during the period of October 1995 to December 2002. This final technical report, which is a program deliverable, describes all associated results obtained during Phases 3A and 3B of the contract. Rolls-Royce Corporation (formerly Allison Engine Company) initially focused on the design and development of a 10-megawatt (MW) high-efficiency industrial gas turbine engine/package concept (termed the 701-K) to meet the specific goals of the ATS program, which included single digit NOx emissions, increased plant efficiency, fuel flexibility, and reduced cost of power (i.e., $/kW). While a detailed design effort and associated component development were successfully accomplished for the 701-K engine, capable of achieving the stated ATS program goals, in 1999 Rolls-Royce changed its focus to developing advanced component technologies for product insertion that would modernize the current fleet of 501-K and 601-K industrial gas turbines. This effort would also help to establish commercial venues for suppliers and designers and assist in involving future advanced technologies in the field of gas turbine engine development. This strategy change was partly driven by the market requirements that suggested a low demand for a 10-MW aeroderivative industrial gas turbine, a change in corporate strategy for aeroderivative gas turbine engine development initiatives, and a consensus that a better return on investment (ROI) could be achieved under the ATS contract by focusing on product improvements and technology insertion for the existing Rolls-Royce small engine industrial gas turbine fleet.

  13. Effect of variable heat input on the heat transfer characteristics in an Organic Rankine Cycle system

    Directory of Open Access Journals (Sweden)

    Aboaltabooq Mahdi Hatf Kadhum

    2016-01-01

    Full Text Available This paper analyzes the heat transfer characteristics of an ORC evaporator applied on a diesel engine using measured data from experimental work such as flue gas mass flow rate and flue gas temperature. A mathematical model was developed with regard to the preheater, boiler and the superheater zones of a counter flow evaporator. Each of these zones has been subdivided into a number of cells. The hot source of the ORC cycle was modeled. The study involves the variable heat input's dependence on the ORC system's heat transfer characteristics, with especial emphasis on the evaporator. The results show that the refrigerant's heat transfer coefficient has a higher value for a 100% load from the diesel engine, and decreases with the load decrease. Also, on the exhaust gas side, the heat transfer coefficient decreases with the decrease of the load. The refrigerant's heat transfer coefficient increased normally with the evaporator's tube length in the preheater zone, and then increases rapidly in the boiler zone, followed by a decrease in the superheater zone. The exhaust gases’ heat transfer coefficient increased with the evaporator’ tube length in all zones. The results were compared with result by other authors and were found to be in agreement.

  14. Modelling of organic Rankine cycle power systems in off-design conditions: an experimentally-validated comparative study

    OpenAIRE

    Dickes, Rémi; Dumont, Olivier; Daccord, Rémi; Quoilin, Sylvain; Lemort, Vincent

    2017-01-01

    Because of environmental issues and the depletion of fossil fuels, the world energy sector is undergoing many changes toward increased sustainability. Among the many fields of research and development, power generation from low-grade heat sources is gaining interest and the organic Rankine cycle (ORC) is seen as one of the most promising technologies for such applications. In this paper, it is proposed to perform an experimentally-validated comparison of different modelling methods for the of...

  15. Wind Turbine Generator System Power Performance Test Report for the ARE442 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, J.; Jager, D.

    2010-02-01

    This report summarizes the results of a power performance test that NREL conducted on the ARE 442 wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 12: Power Performance Measurements of Electricity Producing Wind Turbines, IEC 61400-12-1 Ed.1.0, 2005-12. However, because the ARE 442 is a small turbine as defined by IEC, NREL also followed Annex H that applies to small wind turbines. In these summary results, wind speed is normalized to sea-level air density.

  16. Energy analysis of Organic Rankine Cycles for biomass applications

    Directory of Open Access Journals (Sweden)

    Algieri Angelo

    2015-01-01

    Full Text Available The present paper aims at analysing the performances of Organic Rankine Cycles (ORCs adopted for the exploitation of the biomass resulting from the pruning residues in a 3000 hectares district in Southern Italy. A parametric energy analysis has been carried out to define the influence of the main plant operating conditions. To this purpose, both subcritical and transcritical power plants have been examined and saturated and superheated conditions at the turbine inlet have been imposed. Moreover, the effect of the working fluid, condensation temperature, and internal regeneration on system performances has been investigated. The results show that ORC plants represent an interesting and sustainable solution for decentralised and small-scale power production. Furthermore, the analysis highlights the significant impact of the maximum temperature and the noticeable effect of internal regeneration on the performances of the biomass power plants.

  17. Coating-Substrate Systems for Thermomechanically Durable Turbine Airfoils

    Science.gov (United States)

    2015-06-30

    Technical Report 4. TITLE AND SUBTITLE Coating - Substrate Systems for Thermomechanically Durable Turbine Airfoils 6. AUTHOR(S) Dr. Tresa Pollock 3...Thermomechanically Durable Turbine Airfoils Final Report ONRGrant#N00014-l 1-1-0616 Technical Contact (Principal Investigator) Tresa M. Pollock Materials...Substrate Systems for Thermomechanically Durable Turbine Airfoils 1. Summary In the severe operating environments encountered in Naval ship

  18. Active system monitoring applied on wind turbines

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad; Parbo, Henrik

    2009-01-01

    A concept for active system monitoring (ASM) applied on wind turbines is presented in this paper. The concept is based on an injection of a small periodic auxiliary signal in the system. An investigation of the signature from the auxiliary input in residual (error) signals can then be applied...... for an online monitoring of central parameters/elements of the system. Statistical tests are applied on the residual signals for obtaining a correct monitoring....

  19. Modeling of wind turbines for power system studies

    Energy Technology Data Exchange (ETDEWEB)

    Petru, T.

    2001-05-01

    When wind turbines are installed into the electric grid, the power quality is affected. Today, strict installation recommendations often prevail due to a lack of knowledge on this subject. Consequently, it is important to predict the impact of wind turbines on the electric grid before the turbines are installed. The thesis describes relevant power quality issues, discusses different configurations of wind turbines with respect to power quality and draw requirements regarding wind turbine modeling. A model of a stall-regulated, fixed-speed wind turbine system is introduced and its power quality impact on the electric grid is evaluated. The model is verified with field measurements.

  20. Turbine airfoil with ambient cooling system

    Science.gov (United States)

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  1. Preliminary Design of Compact Condenser in an Organic Rankine Cycle System for the Low Grade Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Roberto Capata

    2014-11-01

    Full Text Available The aim of this paper is to present a thermodynamic cycle for the production of electrical power in the 2–5 kW range, suitable for all types of thermally propelled vehicles. The sensible heat recovered from the exhaust gases feeds the energy recovery system, which is able to produce sufficient power to sustain the air conditioning system or other auxiliaries. The working fluids R134a and R245fa have been used in the ORC system, and the systems are simulated by CAMEL-ProTM software. The cycles are generated starting from the same heat source: the exhaust gas of a typical 2.0 L Diesel engine (or from a small size turbine engine. The design of the condenser has been performed to obtain a very compact component, evaluating the heat exchanger tube and fins type design. Through empirical formulas, the area of heat exchange, the heat required to exchange and the pressure drop in the element have been calculated. A commercial software package is used to build the model of the condenser, then a thermal and mechanical analysis and a CFD analysis are realized to estimate the heat exchange. Finally the evaluations, the possible future studies and possible improvements of the system are shown.

  2. Low-power heat pump systems combining two organic Rankine cycles; Applications de pompe a chaleur. A l'exemple des systemes ORC-ORC de petite puissance

    Energy Technology Data Exchange (ETDEWEB)

    Demierre, J.

    2009-07-01

    In this basic article that includes many diagrams and equations illustrating a research project conducted at the Swiss Federal Institute of Technology (EPFL) in Lausanne, Switzerland the author describes the first part of his thesis. A new concept of thermally driven heat pump (TDHP) is presented, which could be a real alternative to today's heating systems in buildings that are mainly based on less efficient fuel-fired boilers. Nowadays, the heat pump market is dominated by two kinds of systems: the electrically driven vapor compression heat pumps, which are the most widely used in residential heating applications, and the thermally driven heat pumps that are usually based on a sorption process. In this research project, the investigated TDHP - designated by ORC-ORC - is based on the coupling of a vapor compression heat pump cycle and an organic Rankine cycle (ORC). The studied concept uses a single stage centrifugal compressor directly coupled to a single stage radial inflow turbine. The shaft is rotating on gas bearings, which allows the system to be oil-free. Like most of the other TDHP's, this system has the advantage to work with a variety of fuels or heat sources like wood pellets, natural gas, solar heat, geothermal heat or waste heat. The concept studied in this work is a gas fired system for space heating and domestic hot water production in small residential buildings (power range: 20 kW). A systematic approach has been used to theoretically evaluate, in terms of energy efficiency, the potential of ORC-ORC systems. The method is based on the optimization which allows identifying the best configurations at each design step with respect to the designer choices. This approach is divided into three steps. In the first step, a model of the complete system has been developed based on a process integration approach. This step allows to quickly determine whether the system is potentially attractive or not, for given conditions, before going deeper into

  3. Integrated working fluid-thermodynamic cycle design of organic Rankine cycle power systems for waste heat recovery

    DEFF Research Database (Denmark)

    Cignitti, Stefano; Andreasen, Jesper Graa; Haglind, Fredrik

    2017-01-01

    recovery. Inthis paper, an organic Rankine cycle process and its pure working fluid are designed simultaneously forwaste heat recovery of the exhaust gas from a marine diesel engine. This approach can overcome designissues caused by the high sensitivity between the fluid and cycle design variables...... the simultaneousdesign approach the optimum solution was found in 5.04 s, while a decomposed approach found thesame solution in 5.77 h. However, the decomposed approach provided insights on the correlationbetween the fluid and cycle design variables by analyzing all possible solutions. It was shown that thehigh...

  4. Leaf seal for transition duct in turbine system

    Science.gov (United States)

    Flanagan, James Scott; LeBegue, Jeffrey Scott; McMahan, Kevin Weston; Dillard, Daniel Jackson; Pentecost, Ronnie Ray

    2013-06-11

    A turbine system is disclosed. In one embodiment, the turbine system includes a transition duct. The transition duct includes an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The transition duct further includes an interface member for interfacing with a turbine section. The turbine system further includes a leaf seal contacting the interface member to provide a seal between the interface member and the turbine section.

  5. Flexible metallic seal for transition duct in turbine system

    Science.gov (United States)

    Flanagan, James Scott; LeBegue, Jeffrey Scott; McMahan, Kevin Weston; Dillard, Daniel Jackson; Pentecost, Ronnie Ray

    2014-04-22

    A turbine system is disclosed. In one embodiment, the turbine system includes a transition duct. The transition duct includes an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The transition duct further includes an interface member for interfacing with a turbine section. The turbine system further includes a flexible metallic seal contacting the interface member to provide a seal between the interface member and the turbine section.

  6. Convolution seal for transition duct in turbine system

    Science.gov (United States)

    Flanagan, James Scott; LeBegue, Jeffrey Scott; McMahan, Kevin Weston; Dillard, Daniel Jackson; Pentecost, Ronnie Ray

    2015-03-10

    A turbine system is disclosed. In one embodiment, the turbine system includes a transition duct. The transition duct includes an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The transition duct further includes an interface member for interfacing with a turbine section. The turbine system further includes a convolution seal contacting the interface member to provide a seal between the interface member and the turbine section.

  7. Advanced Turbine Systems Program industrial system concept development

    Energy Technology Data Exchange (ETDEWEB)

    Gates, S. [Solar Turbines Inc., San Diego, CA (United States)

    1995-10-01

    The objective of Phase II of the Advanced Turbine Systems Program is to develop conceptual designs of gas fired advanced turbine systems that can be adapted for operation on coal and biomass fuels. The technical, economic, and environmental performance operating on natural gas and in a coal fueled mode is to be assessed. Detailed designs and test work relating to critical components are to be completed and a market study is to be conducted.

  8. Performance Modelling of Steam Turbine Performance using Fuzzy ...

    African Journals Online (AJOL)

    A Fuzzy Inference System for predicting the performance of steam turbine based on Rankine cycle is developed using a 144-rule based in analyzing the generated data for different inlet and outlet conditions. The result of efficiency for different types of membership functions and defuzzification method was obtained.

  9. Fuel purging system for a turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Shekleton, J.R.; Johanson, R.K.

    1992-03-17

    This patent describes a purge system for the fuel injection system of a turbine engine having a combustor including at least one start injector and one main injector, a turbine wheel adapted to receive gases of combustion from the combustor to be driven thereby, and an exhaust conduit in fluid communication with the turbine wheel to conduct spent gases of combustion therefrom. It comprises first and second three-way valves, each having an inlet port, an outlet port and an inlet-outlet port, and valve means for alternately connecting the inlet-outlet port to the associated inlet port or associated outlet port; a purge line connected to the outlet port of each of the valves and adapted to extend into an exhaust conduit; a first line connected to the inlet-outlet port of a first of the valves and adapted to be connected to a start injector; a second line connected to the inlet-outlet port of a second of the valves and adapted to be connected to at least one main injector; separate conduits connected to respective ones of the inlet ports and adapted to be connected to respective controlled sources of fuel under pressure; and a check valve in the purge line disposed to allow fluid flow therein only toward the exhaust conduit.

  10. Integrated analysis of wind turbines - The impact of power systems on wind turbine design

    DEFF Research Database (Denmark)

    Barahona Garzón, Braulio

    Megawatt-size wind turbines nowadays operate in very complex environmental conditions, and increasingly demanding power system requirements. Pursuing a cost-effective and reliable wind turbine design is a multidisciplinary task. However nowadays, wind turbine design and research areas...... conditions that stem from disturbances in the power system. An integrated simulation environment, wind turbine models, and power system models are developed in order to take an integral perspective that considers the most important aeroelastic, structural, electrical, and control dynamics. Applications...... of the integrated simulation environment are presented. The analysis of an asynchronous machine, and numerical simulations of a fixedspeed wind turbine in the integrated simulation environment, demonstrate the effects on structural loads of including the generator rotor fluxes dynamics in aeroelastic studies. Power...

  11. Advanced coal-fueled gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    The combustion system discussed here incorporates a modular three- stage slagging combustor concept. Fuel-rich conditions inhibit NO{sub x} formation from fuel nitrogen in the first stage; also in the first stage, sulfur is captured with sorbent; coal ash and sulfated sorbent are removed from the combustion gases by inertial means in the second stage by the use of an impact separator and slagging cyclone separator in series. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The objective of this contract is to establish the technology required for subsequent commercial development and application by the private sector of utility-size direct coal-fueled gas turbines. Emissions from these units are to meet or be lower than the Environment Protection Agency's (EPA's) New Source Performance Standards (NSPS) for a pulverized coal-=fired steam turbine generator plant.

  12. Optical monitoring system for a turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, Dennis H; Smed, Jan P; Williams, James P; Jonnalagadda, Vinay

    2013-05-14

    The monitoring system for a gas turbine engine including a viewing tube assembly having an inner end and an outer end. The inner end is located adjacent to a hot gas flow path within the gas turbine engine and the outer end is located adjacent to an outer casing of the gas turbine engine. An aperture wall is located at the inner end of the viewing tube assembly and an optical element is located within the viewing tube assembly adjacent to the inner end and is spaced from the aperture wall to define a cooling and purge chamber therebetween. An aperture is defined in the aperture wall for passage of light from the hot gas flow path to the optical element. Swirl passages are defined in the viewing tube assembly between the aperture wall and the optical element for passage of cooling air from a location outside the viewing tube assembly into the chamber, wherein swirl passages effect a swirling movement of air in a circumferential direction within the chamber.

  13. Turbine gas temperature measurement and control system

    Science.gov (United States)

    Webb, W. L.

    1973-01-01

    A fluidic Turbine Inlet Gas Temperature (TIGIT) Measurement and Control System was developed for use on a Pratt and Whitney Aircraft J58 engine. Based on engine operating requirements, criteria for high temperature materials selection, system design, and system performance were established. To minimize development and operational risk, the TIGT control system was designed to interface with an existing Exhaust Gas Temperature (EGT) Trim System and thereby modulate steady-state fuel flow to maintain a desired TIGT level. Extensive component and system testing was conducted including heated (2300F) vibration tests for the fluidic sensor and gas sampling probe, temperature and vibration tests on the system electronics, burner rig testing of the TIGT measurement system, and in excess of 100 hours of system testing on a J58 engine. (Modified author abstract)

  14. Effect of Regenerative Organic Rankine Cycle (RORC on the Performance of Solar Thermal Power in Yogyakarta, Indonesia

    Directory of Open Access Journals (Sweden)

    Ghalya Pikra

    2013-07-01

    Full Text Available This paper presents effect of Regenerative Organic Rankine Cycle (RORC on the performance of solar thermal power in Yogyakarta, Indonesia. Solar thermal power is a plant that uses solar energy as heat source. Indonesia has high humidity level, so that parabolic trough is the most suitable type of solar thermal power technology to be developed, where the design is made with small focal distance. Organic Rankine Cycle (ORC is a Rankine cycle that use organic fluid as working fluid to utilize low temperature heat sources. RORC is used to increase ORC performance. The analysis was done by comparing ORC system with and without regenerator addition. Refrigerant that be used in the analysis is R123. Preliminary data was taken from the solar collector system that has been installed in Yogyakarta. The analysis shows that with 36 m total parabolic length, the resulting solar collector capacity is 63 kW, heat input/evaporator capacity is determined 26.78 kW and turbine power is 3.11 kW for ORC, and 3.38 kW for RORC. ORC thermal efficiency is 11.28% and RORC is 12.26%. Overall electricity efficiency is 4.93% for ORC, and 5.36% for RORC. With 40°C condensing temperature and evaporation at 10 bar saturated condition, efficiency of RORC is higher than ORC. Greater evaporation temperature at the same pressure (10 bar provide greater turbine power and efficiency.

  15. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Huskey, A.

    2011-11-01

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  16. Backup Mechanical Brake System of the Wind Turbine

    Science.gov (United States)

    Sirotkin, E. A.; Solomin, E. V.; Gandzha, S. A.; Kirpichnikova, I. M.

    2018-01-01

    Paper clarifies the necessity of the emergency mechanical brake systems usage for wind turbines. We made a deep analysis of the wind turbine braking methods available on the market, identifying their strengths and weaknesses. The electromechanical braking appeared the most technically reasonable and economically attractive. We described the developed combined electromechanical brake system for vertical axis wind turbine driven from electric drive with variable torque enough to brake over the turbine even on the storm wind speed up to 45 m/s. The progress was made due to the development of specific kinematic brake system diagram and intelligent control system managed by special operation algorithm.

  17. Control system on a wind turbine

    OpenAIRE

    Varpe, Steffen Andreas

    2008-01-01

    The aim for this project is to prepare a wind turbine controller and a wind turbine computer model suitable for controller development. The wind turbine is a Vestas V27, and the wind turbine drive train is modified by ChapDrive with a specified hydraulic transmission. Both the pitch and the rotor speed can be regulated for the modified wind turbine. The model is primarily based on a set of given wind turbine rotor characteristics, transmission specifications and transmission test data. The co...

  18. Advanced hydropower turbine: AHTS-Advanced Hydropower Turbine System Program; Turbinas hidraulicas avancadas: Programa AHTS-Advanced Hydropower Turbine System

    Energy Technology Data Exchange (ETDEWEB)

    Macorin, Adriano De Figueiredo; Tomisawa, Alessandra Terumi; Van Deursen, Gustavo Jose Ferreira; Bermann, Celio [Universidade de Sao Paulo (USP), SP (Brazil)], email: brunosilva@usp.br

    2010-07-01

    Due to a privileged hydrography and energy policies that remounts to the beginning of the 20th century, Brazilian's electrical grid can be considered one of the cleanest in the world regarding the emission of atmospheric pollutants. Nevertheless, as in every human large enterprise, it is well known that hydroelectric power plants also lead to harmful environmental impacts. This article presents the AHTS Program (Advanced Hydropower Turbine System) started in 1994 in USA and developed to assess and conceive new hydro turbines to mitigate two of the main negative impacts of the installation and operation of this kind of power plant: (a) turbine-passed fish mortality and (b) the low dissolved oxygen - DO - levels downstream of the dams. The criteria used to concept the turbines are also justified in this article. As well as the modifications made in each case by the following companies: Alden Research Lab e o Northern Research and Engineering Corporation (ARL/NREC) and Voith Hydro (Voith). (author)

  19. A deflection monitoring system for a wind turbine blade

    DEFF Research Database (Denmark)

    2017-01-01

    A wind turbine blade comprising a system for monitoring the deflection of a wind turbine blade is described. The system comprises a wireless range-measurement system, having at least one wireless communication device located towards the root end of the blade and at least one wireless communication...

  20. Trends in Wind Turbine Generator Systems

    DEFF Research Database (Denmark)

    Polinder, Henk; Ferreira, Jan Abraham; Jensen, Bogi Bech

    2013-01-01

    This paper reviews the trends in wind turbine generator systems. After discussing some important requirements and basic relations, it describes the currently used systems: the constant speed system with squirrel-cage induction generator, and the three variable speed systems with doubly fed...... induction generator (DFIG), with gearbox and fully rated converter, and direct drive (DD). Then, possible future generator systems are reviewed. Hydraulic transmissions are significantly lighter than gearboxes and enable continuously variable transmission, but their efficiency is lower. A brushless DFIG...... is a medium speed generator without brushes and with improved low-voltage ride-through characteristics compared with the DFIG. Magnetic pseudo DDs are smaller and lighter than DD generators, but need a sufficiently low and stable magnet price to be successful. In addition, superconducting generators can...

  1. Part A - Advanced turbine systems. Part B - Materials/manufacturing element of the Advanced Turbine Systems Program

    Energy Technology Data Exchange (ETDEWEB)

    Karnitz, M.A.

    1996-06-01

    The DOE Offices of Fossil Energy and Energy Efficiency and Renewable Energy have initiated a program to develop advanced turbine systems for power generation. The objective of the Advanced Turbine Systems (ATS) Program is to develop ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for utility and industrial applications. One of the supporting elements of the ATS Program is the Materials/Manufacturing Technologies Task. The objective of this element is to address the critical materials and manufacturing issues for both industrial and utility gas turbines.

  2. Condition monitoring system of wind turbine generators

    Science.gov (United States)

    Abdusamad, Khaled B.

    The development and implementation of the condition monitoring systems (CMS) play a significant role in overcoming the number of failures in the wind turbine generators that result from the harsh operation conditions, such as over temperature, particularly when turbines are deployed offshore. In order to increase the reliability of the wind energy industry, monitoring the operation conditions of wind generators is essential to detect the immediate faults rapidly and perform appropriate preventative maintenance. CMS helps to avoid failures, decrease the potential shutdowns while running, reduce the maintenance and operation costs and maintain wind turbines protected. The knowledge of wind turbine generators' faults, such as stator and rotor inter-turn faults, is indispensable to perform the condition monitoring accurately, and assist with maintenance decision making. Many techniques are utilized to avoid the occurrence of failures in wind turbine generators. The majority of the previous techniques that are applied to monitor the wind generator conditions are based on electrical and mechanical concepts and theories. An advanced CMS can be implemented by using a variety of different techniques and methods to confirm the validity of the obtained electrical and mechanical condition monitoring algorithms. This thesis is focused on applying CMS on wind generators due to high temperature by contributing the statistical, thermal, mathematical, and reliability analyses, and mechanical concepts with the electrical methodology, instead of analyzing the electrical signal and frequencies trends only. The newly developed algorithms can be compared with previous condition monitoring methods, which use the electrical approach in order to establish their advantages and limitations. For example, the hazard reliability techniques of wind generators based on CMS are applied to develop a proper maintenance strategy, which aims to extend the system life-time and reduce the potential

  3. Mod-2 wind turbine system development. Volume 2: Detailed report

    Science.gov (United States)

    1982-09-01

    Progress in the design, fabrication, and testing of a wind turbine system is reported. The development of the MOD-2 wind turbine through acceptance testing and initial operational evaluation is documented. The MOD-2 project intends to develop early commercialization of wind energy. The first wind turbine farm (three MOD-2 units) are now being operated at the Bonneville Power Administration site near Goldendale, Washington.

  4. System Identification for the Clipper Liberty C96 Wind Turbine

    Science.gov (United States)

    Showers, Daniel

    System identification techniques are powerful tools that help improve modeling capabilities of real world dynamic systems. These techniques are well established and have been successfully used on countless systems in many areas. However, wind turbines provide a unique challenge for system identification because of the difficulty in measuring its primary input: wind. This thesis first motivates the problem by demonstrating the challenges with wind turbine system identification using both simulations and real data. It then suggests techniques toward successfully identifying a dynamic wind turbine model including the notion of an effective wind speed and how it might be measured. Various levels of simulation complexity are explored for insights into calculating an effective wind speed. In addition, measurements taken from the University of Minnesota's Clipper Liberty C96 research wind turbine are used for a preliminary investigation into the effective wind speed calculation and system identification of a real world wind turbine.

  5. A Report on the Simulation of Steam Turbine Control System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, I.K.; Jung, C.K.; Kim, J.A.; Woo, J.H. [Korea Electric Power Research Institute, Taejon (Korea)

    2000-06-01

    This report describes the result that the simulation of steam turbine control system was realized from startup through synchronization, governor regulation, steam valve tests, limit functions, load rejection to HSS, LSS in relation to the development of steam turbine digital control system. (author). 32 figs.

  6. WIND TURBINE DRIVETRAIN TEST FACILITY DATA ACQUISITION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Mcintosh, J.

    2012-01-03

    The Wind Turbine Drivetrain Test Facility (WTDTF) is a state-of-the-art industrial facility used for testing wind turbine drivetrains and generators. Large power output wind turbines are primarily installed for off-shore wind power generation. The facility includes two test bays: one to accommodate turbine nacelles up to 7.5 MW and one for nacelles up to 15 MW. For each test bay, an independent data acquisition system (DAS) records signals from various sensors required for turbine testing. These signals include resistance temperature devices, current and voltage sensors, bridge/strain gauge transducers, charge amplifiers, and accelerometers. Each WTDTF DAS also interfaces with the drivetrain load applicator control system, electrical grid monitoring system and vibration analysis system.

  7. The HTScroll project - Innovative cogeneration system with a high-temperature turbine; Projet HTScroll. Nouveau systeme de cogeneration a turbine spirale haute temperature - Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Kane, M.; Cretegny, D.; Maquet, J. [ENEFTECH Innovation SA, Swiss Federal Institute of Technology EPFL, Laboratoire d' Energetique Industrielle LENI, EPFL Science Park PSE, Lausanne (Switzerland); Favrat, D. [Swiss Federal Institute of Technology EPFL, Lausanne (Switzerland)

    2009-10-15

    This final report for the Swiss Federal Office of Energy (SFOE) proposes an alternative for micro-cogeneration based on a scroll expander to produce electricity from relatively low-temperature heat sources (less than 250 {sup o}C), thus allowing the use of renewable energy resources such as biomass, solar thermal and geothermal energy. The authors note that such a system could produce cost-effective 'green' electricity as well as heat (near 60 {sup o}C) for space heating and domestic hot-water preparation. The design and validation of a new concept for a double-stage scroll expander ('HT-Scroll') operating at high and low pressures and high temperatures is discussed. Design, modelling and construction of a 5 kW unit have been carried out. The organic fluid Rankine Cycle concept is described, the modelling of the turbine, its construction and tests carried out are discussed. Problems encountered and future work are noted.

  8. Analyzing the Performance of a Dual Loop Organic Rankine Cycle System for Waste Heat Recovery of a Heavy-Duty Compressed Natural Gas Engine

    Directory of Open Access Journals (Sweden)

    Baofeng Yao

    2014-11-01

    Full Text Available A dual loop organic Rankine cycle (DORC system is designed to recover waste heat from a heavy-duty compressed natural gas engine (CNGE, and the performance of the DORC–CNGE combined system is simulated and discussed. The DORC system includes high-temperature (HT and low-temperature (LT cycles. The HT cycle recovers energy from the exhaust gas emitted by the engine, whereas the LT cycle recovers energy from intake air, engine coolant, and the HT cycle working fluid in the preheater. The mathematical model of the system is established based on the first and second laws of thermodynamics. The characteristics of waste heat energy from the CNGE are calculated according to engine test data under various operating conditions. Moreover, the performance of the DORC–CNGE combined system is simulated and analyzed using R245fa as the working fluid. Results show that the maximum net power output and the maximum thermal efficiency of the DORC system are 29.37 kW and 10.81%, respectively, under the rated power output condition of the engine. Compared with the original CNG engine, the maximum power output increase ratio and the maximum brake specific fuel consumption improvement ratio are 33.73% and 25%, respectively, in the DORC–CNGE combined system.

  9. Wind Turbine Converter Control Interaction with Complex Wind Farm Systems

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth

    2013-01-01

    in this study. It is shown that wind farm components, such as long high-voltage alternating current cables and park transformers, can introduce significant low-frequency series resonances seen from the wind turbine terminals that can affect wind turbine control system operation and overall wind farm stability...

  10. The role of wind turbines in smart distribution systems

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Per [Energinet.dk, Erritsoe (Denmark); Martensen, Nis; Ackermann, Thomas [Energynautics GmbH, Langen (Germany); Harrell, Jeff [Spirae Inc., Fort Collins, CO (United States)

    2011-07-01

    Wind turbines have a high share among the distributed generation resources connected to Danish distribution networks. Smart distribution system management systems like the Cell Controller make use of these resources to provide new services to grid operators and energy market participants. Among other functions, the Danish Cell Controller Pilot Project demonstrates use of wind turbines for virtual power plant operations. Using the existing Danish type wind turbines (Type I) in a pilot Cell demonstration in western Denmark, the Cell Controller remotely operates wind turbines by starting and stopping as required. Modern wind turbines (Type III and IV) would be able to improve Cell Controller operation further by actively supporting voltage control schemes and reactive power services to distribution and transmission system operators, as they can adapt their reactive power output based on external control signals. (orig.)

  11. Advanced turbine systems study system scoping and feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    United Technologies Research Center, Pratt Whitney Commercial Engine Business, And Pratt Whitney Government Engine and Space Propulsion has performed a preliminary analysis of an Advanced Turbine System (ATS) under Contract DE-AC21-92MC29247 with the Morgantown Energy Technology Center. The natural gas-fired reference system identified by the UTC team is the Humid Air Turbine (HAT) Cycle in which the gas turbine exhaust heat and heat rejected from the intercooler is used in a saturator to humidify the high pressure compressor discharge air. This results in a significant increase in flow through the turbine at no increase in compressor power. Using technology based on the PW FT4000, the industrial engine derivative of the PW4000, currently under development by PW, the system would have an output of approximately 209 MW and an efficiency of 55.3%. Through use of advanced cooling and materials technologies similar to those currently in the newest generation military aircraft engines, a growth version of this engine could attain approximately 295 MW output at an efficiency of 61.5%. There is the potential for even higher performance in the future as technology from aerospace R D programs is adapted to aero-derivative industrial engines.

  12. Inspection system for a turbine blade region of a turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Smed, Jan P. (Winter Springs, FL); Lemieux, Dennis H. (Casselberry, FL); Williams, James P. (Orlando, FL)

    2007-06-19

    An inspection system formed at least from a viewing tube for inspecting aspects of a turbine engine during operation of the turbine engine. An outer housing of the viewing tube may be positioned within a turbine engine using at least one bearing configured to fit into an indentation of a support housing to form a ball and socket joint enabling the viewing tube to move during operation as a result of vibrations and other movements. The viewing tube may also include one or more lenses positioned within the viewing tube for viewing the turbine components. The lenses may be kept free of contamination by maintaining a higher pressure in the viewing tube than a pressure outside of the viewing tube and enabling gases to pass through an aperture in a cap at a viewing end of the viewing tube.

  13. Gas turbine control for islanding operation of distribution systems

    DEFF Research Database (Denmark)

    Mahat, Pukar; Chen, Zhe; Bak-Jensen, Birgitte

    2009-01-01

    Danish distribution systems are characterized by a significant penetration of small gas turbine generators (GTGs) and fixed speed wind turbine generators (WTGs). Island operation of these distribution systems are becoming a viable option for economical and technical reasons. However, stabilizing...... frequency in an islanded system is one of the major challenges. This paper presents three different gas turbine governors for possible operation of distribution systems in an islanding mode. Simulation results are presented to show the performance of these governors in grid connected and islanding mode....

  14. Fluid-dynamic design and characterization of a mini-ORC turbine for laboratory experiments

    NARCIS (Netherlands)

    Pini, M.; de Servi, C.M.; Burigana, M.; Bahamonde Noriega, Juan S.; Rubino, A.; Vitale, S.; Colonna di Paliano, Piero; Dossena, V.; Guardone, A.; Astolfi, M.

    2017-01-01

    High temperature Organic Rankine Cycles power systems of low power capacity, i.e. 3-50 kWe, are receiving recognition for distributed and mobile energy generation applications. For this type of power plants, it is customary to adopt a radial-turbine as prime mover, essentially for

  15. Fuel Flexible Turbine System (FFTS) Program

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-12-31

    In this fuel flexible turbine system (FFTS) program, the Parker gasification system was further optimized, fuel composition of biomass gasification process was characterized and the feasibility of running Capstone MicroTurbine(TM) systems with gasification syngas fuels was evaluated. With high hydrogen content, the gaseous fuel from a gasification process of various feed stocks such as switchgrass and corn stover has high reactivity and high flashback propensity when running in the current lean premixed injectors. The research concluded that the existing C65 microturbine combustion system, which is designed for natural gas, is not able to burn the high hydrogen content syngas due to insufficient resistance to flashback (undesired flame propagation to upstream within the fuel injector). A comprehensive literature review was conducted on high-hydrogen fuel combustion and its main issues. For Capstone's lean premixed injector, the main mechanisms of flashback were identified to be boundary layer flashback and bulk flow flashback. Since the existing microturbine combustion system is not able to operate on high-hydrogen syngas fuels, new hardware needed to be developed. The new hardware developed and tested included (1) a series of injectors with a reduced propensity for boundary layer flashback and (2) two new combustion liner designs (Combustion Liner Design A and B) that lead to desired primary zone air flow split to meet the overall bulk velocity requirement to mitigate the risk of core flashback inside the injectors. The new injector designs were evaluated in both test apparatus and C65/C200 engines. While some of the new injector designs did not provide satisfactory performance in burning target syngas fuels, particularly in improving resistance to flashback. The combustion system configuration of FFTS-4 injector and Combustion Liner Design A was found promising to enable the C65 microturbine system to run on high hydrogen biomass syngas. The FFTS-4 injector

  16. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    The wind power generation has been steadily growing both for the total installed capacity and for the individual turbine size. Due to much more significant impacts to the power grid, the power electronics, which can change the behavior of wind turbines from an unregulated power source to an active...... generation unit, are becoming crucial in the wind turbine system. The objective of this project is to study the power electronics technology used for the next generation wind turbines. Some emerging challenges as well as potentials like the cost of energy and reliability are going to be addressed. First......, converter controls and grid conditions are taken into account. In order to relieve the electrical and thermal stress of the converter in wind turbine system, some new control methods and concepts are thereby proposed. In Chapter 4 a thermal control concept which utilizes the reactive power is used...

  17. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, Anca D.; Iov, Florin; Sørensen, Poul

    This report presents a collection of models and control strategies developed and implemented in the power system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second edition of Risø-R-1400(EN) and it gathers and describes a whole wind turbine model database...... built-op and developed during several national research projects, carried out at Risø DTU National Laboratory for Sustainable Energy and Aalborg University, in the period 2001-2007. The overall objective of these projects was to create a wind turbine model database able to support the analysis...... of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The report provides thus a description of the wind turbines modelling, both at a component level and at a system level. The report contains both the description of DIgSILENT built...

  18. Thermo-Economic and Heat Transfer Optimization of Working-Fluid Mixtures in a Low-Temperature Organic Rankine Cycle System

    Directory of Open Access Journals (Sweden)

    Oyeniyi A. Oyewunmi

    2016-06-01

    Full Text Available In the present paper, we consider the employment of working-fluid mixtures in organic Rankine cycle (ORC systems with respect to thermodynamic and heat-transfer performance, component sizing and capital costs. The selected working-fluid mixtures promise reduced exergy losses due to their non-isothermal phase-change behaviour, and thus improved cycle efficiencies and power outputs over their respective pure-fluid components. A multi-objective cost-power optimization of a specific low-temperature ORC system (operating with geothermal water at 98 °C reveals that the use of working-fluid-mixtures does indeed show a thermodynamic improvement over the pure-fluids. At the same time, heat transfer and cost analyses, however, suggest that it also requires larger evaporators, condensers and expanders; thus, the resulting ORC systems are also associated with higher costs. In particular, 50% n-pentane + 50% n-hexane and 60% R-245fa + 40% R-227ea mixtures lead to the thermodynamically optimal cycles, whereas pure n-pentane and pure R-245fa have lower plant costs, both estimated as having ∼14% lower costs per unit power output compared to the thermodynamically optimal mixtures. These conclusions highlight the importance of using system cost minimization as a design objective for ORC plants.

  19. Ideal Point Design and Operation of CO2-Based Transcritical Rankine Cycle (CTRC System Based on High Utilization of Engine’s Waste Heats

    Directory of Open Access Journals (Sweden)

    Lingfeng Shi

    2017-10-01

    Full Text Available This research conducted a study specially to systematically analyze combined recovery of exhaust gas and engine coolant and related influence mechanism, including a detailed theoretical study and an assistant experimental study. In this research, CO2-based transcritical Rankine cycle (CTRC was used for fully combining the wastes heats. The main objective of theoretical research was to search an ‘ideal point’ of the recovery system and related influence mechanism, which was defined as operating condition of complete recovery of two waste heats. The theoretical methodology of this study could also provide a design reference for effective combined recovery of two or multiple waste heats in other fields. Based on a kW-class preheated CTRC prototype that was designed by the ‘ideal point’ method, an experimental study was conducted to verify combined utilization degree of two engine waste heats by the CTRC system. The operating results showed that the prototype can gain 44.4–49.8 kW and 22.7–26.7 kW heat absorption from exhaust gas and engine coolant, respectively. To direct practical operation, an experimental optimization work on the operating process was conducted for complete recovery of engine coolant exactly, which avoided deficient or excessive recovery.

  20. A quantitative risk-assessment system (QR-AS) evaluating operation safety of Organic Rankine Cycle using flammable mixture working fluid.

    Science.gov (United States)

    Tian, Hua; Wang, Xueying; Shu, Gequn; Wu, Mingqiang; Yan, Nanhua; Ma, Xiaonan

    2017-09-15

    Mixture of hydrocarbon and carbon dioxide shows excellent cycle performance in Organic Rankine Cycle (ORC) used for engine waste heat recovery, but the unavoidable leakage in practical application is a threat for safety due to its flammability. In this work, a quantitative risk assessment system (QR-AS) is established aiming at providing a general method of risk assessment for flammable working fluid leakage. The QR-AS covers three main aspects: analysis of concentration distribution based on CFD simulations, explosive risk assessment based on the TNT equivalent method and risk mitigation based on evaluation results. A typical case of propane/carbon dioxide mixture leaking from ORC is investigated to illustrate the application of QR-AS. According to the assessment results, proper ventilation speed, safe mixture ratio and location of gas-detecting devices have been proposed to guarantee the security in case of leakage. The results revealed that this presented QR-AS was reliable for the practical application and the evaluation results could provide valuable guidance for the design of mitigation measures to improve the safe performance of ORC system. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Advanced Turbine Systems (ATS) program conceptual design and product development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-31

    Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NO{sub x}, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coatings and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced Ge heavy-duty machine utilizing advanced cooling and enhancement in component efficiency. Both of these activities required the identification and resolution of technical issues critical to achieving ATS goals. The emphasis for the industrial ATS was placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS was placed on developing a technology base for advanced turbine cooling, while utilizing demonstrated and planned improvements in low emission combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE Power Systems is solely responsible for offering GE products for the industrial and utility markets.

  2. An Alternative Ice Protection System for Turbine Engine Inlets Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal presents a dual approach to the development and certification of an alternative system for ice protection of turbine engine inlets. It combines a new...

  3. An Alternative Ice Protection System for Turbine Engine Inlets Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation combines a new generation low power ice protection system with a novel path to certification that is based upon requirements that turbine engines be...

  4. Preliminary Development of a Free Piston Expander–Linear Generator for Small-Scale Organic Rankine Cycle (ORC Waste Heat Recovery System

    Directory of Open Access Journals (Sweden)

    Gaosheng Li

    2016-04-01

    Full Text Available A novel free piston expander-linear generator (FPE-LG integrated unit was proposed to recover waste heat efficiently from vehicle engine. This integrated unit can be used in a small-scale Organic Rankine Cycle (ORC system and can directly convert the thermodynamic energy of working fluid into electric energy. The conceptual design of the free piston expander (FPE was introduced and discussed. A cam plate and the corresponding valve train were used to control the inlet and outlet valve timing of the FPE. The working principle of the FPE-LG was proven to be feasible using an air test rig. The indicated efficiency of the FPE was obtained from the p–V indicator diagram. The dynamic characteristics of the in-cylinder flow field during the intake and exhaust processes of the FPE were analyzed based on Fluent software and 3D numerical simulation models using a computation fluid dynamics method. Results show that the indicated efficiency of the FPE can reach 66.2% and the maximal electric power output of the FPE-LG can reach 22.7 W when the working frequency is 3 Hz and intake pressure is 0.2 MPa. Two large-scale vortices are formed during the intake process because of the non-uniform distribution of velocity and pressure. The vortex flow will convert pressure energy and kinetic energy into thermodynamic energy for the working fluid, which weakens the power capacity of the working fluid.

  5. Geometry Analysis and Effect of Turbulence Model on the Radial Rotor Turbo-Expander Design for Small Organic Rankine Cycle System

    Directory of Open Access Journals (Sweden)

    Maulana Arifin

    2015-07-01

    Full Text Available Organic Rankine Cycle (ORC is one of the most promising technology for small electric power generations. The geometry analysis and the effect of turbulence model on the radial turbo-expanders design for small ORC power generation systems were discussed in this paper. The rotor blades and performance were calculated using several working fluids such as R134a, R143a, R245fa, n-Pentane, and R123. Subsequently, a numerical study was carried out in the fluid flow area with R134a and R123 as the working fluids. Analyses were performed using Computational Fluid Dynamics (CFD ANSYS Multiphysics on two real gas models, with the k-epsilon and SST (shear stress transport turbulence models. The result shows the distribution of Mach number, pressure, velocity and temperature along the rotor blade of the radial turbo-expanders and estimation of performance at various operating conditions. The operating conditions are as follow: 250,000 grid mesh flow area, real gas model SST at steady state condition, 0.4 kg/s of mass flow rate, 15,000 rpm rotor speed, 5 bar inlet pressure, and 373K inlet temperature. By using those conditions, CFD analysis shows that the turbo-expander able to produce 6.7 kW and 5.5 kW of power when using R134a and R123, respectively.

  6. Technology Review of Modern Gas Turbine Inlet Filtration Systems

    Directory of Open Access Journals (Sweden)

    Melissa Wilcox

    2012-01-01

    Full Text Available An inlet air filtration system is essential for the successful operation of a gas turbine. The filtration system protects the gas turbine from harmful debris in the ambient air, which can lead to issues such as FOD, erosion, fouling, and corrosion. These issues if not addressed will result in a shorter operational life and reduced performance of the gas turbine. Modern day filtration systems are comprised of multiple filtration stages. Each stage is selected based on the local operating environment and the performance goals for the gas turbine. Selection of these systems can be a challenging task. This paper provides a review of the considerations for selecting an inlet filtration system by covering (1 the characteristics of filters and filter systems, (2 a review of the many types of filters, (3 a detailed look at the different environments where the gas turbine can operate, (4 a process for evaluating the site where the gas turbine will be or is installed, and (5 a method to compare various filter system options with life cycle cost analysis.

  7. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, A.; Jauch, Clemens; Soerensen, P.

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT. The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. The report...... provides a description of the wind turbine modelling, both at a component level and at a system level....

  8. Low-Concentration Solar-Power Systems based on Organic Rankine Cycles for Distributed-Scale Applications:Overview and Further Developments

    Directory of Open Access Journals (Sweden)

    Christos N. Markides

    2015-12-01

    Full Text Available This paper is concerned with the emergence and development of low- to medium-grade thermal-energy conversion systems for distributed power generation based on thermodynamic vapour-phase heat-engine cycles undergone by organic working-fluids, namely organic Rankine cycles (ORCs. ORC power systems are, to some extent, a relatively established and mature technology that is well-suited to converting low-/medium-grade heat (at temperatures up to ~ 300 – 400 °C to useful work, at an output power scale from a few kW to 10s of MW. Thermal efficiencies in excess of 25% are achievable at higher temperatures and larger scales, and efforts are currently in progress to improve the overall economic viability, and thus uptake, of ORC power systems by focusing on advanced architectures, working-fluid selection, heat exchangers and expansion machines. Solar-power systems based on ORC technology have a significant potential to be used for distributed power generation, by converting thermal energy from simple and low-cost non-concentrated or low-concentration collectors to mechanical, hydraulic or electrical energy. Current fields of use include mainly geothermal and biomass/biogas, as well as the recovery and conversion of waste heat, leading to improved energy efficiency, primary energy (i.e. fuel use and emission minimization, yet the technology is highly transferable to solar power generation as an affordable alternative to small- to medium-scale photovoltaic (PV systems. Solar-ORC systems offer naturally the advantages of providing a simultaneous thermal-energy output for hot water provision and/or space heating, and the particularly interesting possibility of relatively straightforward on-site (thermal energy storage. Key performance characteristics are presented, and important heat transfer effects that act to limit performance are identified as noteworthy directions of future research for the further development of this technology.

  9. Low pressure cooling seal system for a gas turbine engine

    Science.gov (United States)

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  10. NEXT GENERATION GAS TURBINE (NGGT) SYSTEMS STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-12-05

    Building upon the 1999 AD Little Study, an expanded market analysis was performed by GE Power Systems in 2001 to quantify the potential demand for an NGGT product. This analysis concluded that improvements to the US energy situation might be best served in the near/mid term (2002-2009) by a ''Technology-Focused'' program rather than a specific ''Product-Focused'' program. Within this new program focus, GEPS performed a parametric screening study of options in the three broad candidate categories of gas turbines: aero-derivative, heavy duty, and a potential hybrid combining components of the other two categories. GEPS's goal was to determine the best candidate systems that could achieve the DOE PRDA expectations and GEPS's internal design criteria in the period specified for initial product introduction, circa 2005. Performance feasibility studies were conducted on candidate systems selected in the screening task, and critical technology areas were identified where further development would be required to meet the program goals. DOE PRDA operating parameters were found to be achievable by 2005 through evolutionary technology. As a result, the study was re-directed toward technology enhancements for interim product introductions and advanced/revolutionary technology for potential NGGT product configurations. Candidate technologies were identified, both evolutionary and revolutionary, with a potential for possible development products via growth step improvements. Benefits were analyzed from two perspectives: (1) What would be the attributes of the top candidate system assuming the relevant technologies were developed and available for an NGGT market opportunity in 2009/2010; and (2) What would be the expected level of public benefit, assuming relevant technologies were incorporated into existing new and current field products as they became available. Candidate systems incorporating these technologies were assessed as

  11. Materials/manufacturing element of the Advanced Turbine Systems Program

    Energy Technology Data Exchange (ETDEWEB)

    Karnitz, M.A.; Holcomb, R.S.; Wright, I.G. [Oak Ridge National Lab., TN (United States)] [and others

    1995-10-01

    The technology based portion of the Advanced Turbine Systems Program (ATS) contains several subelements which address generic technology issues for land-based gas-turbine systems. One subelement is the Materials/Manufacturing Technology Program which is coordinated by DOE-Oak Ridge Operations and Oak Ridge National Laboratory (ORNL). The work in this subelement is being performed predominantly by industry with assistance from universities and the national laboratories. Projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. A materials/manufacturing plan was developed in FY 1994 with input from gas turbine manufacturers, materials suppliers, universities, and government laboratories. The plan outlines seven major subelements which focus on materials issues and manufacturing processes. Work is currently under way in four of the seven major subelements. There are now major projects on coatings and process development, scale-up of single crystal airfoil manufacturing technology, materials characterization, and technology information exchange.

  12. Vortex system studies on small wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Montgomerie, Bjoern; Dahlberg, Jan-Aake [Swedish Defence Research Agency, Stockholm (Sweden). Div. of Aeronautics, FFA

    2003-10-01

    The wind tunnel experiment reported included a small wind turbine setup and smoke to visualize the trailing tip vortices for different wind turbine configurations. Several combinations of tunnel wind speeds and tip speed ratios generated a database where the end result functions were radius and pitch, of the tip vortex spirals, versus the downstream coordinate. The Reynolds number in the experiment was very low compared to that of full size turbines. The results should therefore be seen as valid only for low Reynolds numbers. The models were 18 and 25 cm diameter turbines. This is thought to be complementary to the information obtained in similar wind tunnel investigations for much larger models. The database is meant to be a fundamental tool for the construction of practical aerodynamic induction methods. Such methods typically employ the Biot-Savart law has been shown to lead to a flow field, which deviates considerably from that of reality. E.g. concentration into tip vortices does not happen when the flow is simulated with Biot-Savart law only. Thus, a combination of the induction method and its modification, based on investigations such as the one reported, is foreseen to replace the widely used Blade Element Momentum method for wind turbine loads and performance prediction.

  13. PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    W.L. Lundberg; G.A. Israelson; R.R. Moritz(Rolls-Royce Allison); S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann (Consultant)

    2000-02-01

    Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

  14. Advanced Turbine Systems annual program review

    Energy Technology Data Exchange (ETDEWEB)

    Koop, W.E. [Air Force, Wright-Patterson Air Force Base, OH (United States)

    1995-10-01

    Integrated High Performance Turbine Engine Technology (IHPTET) is a joint Air Force, Navy, Army, NASA, ARPA, and industry program focused on developing turbine engine technologies, with the goal of doubling propulsion capability by around the turn-of-the-century, and thus providing smaller, lighter, more durable, more affordable turbine engines in the future. IHPTET`s technology development plan for increasing propulsion capability with respect to time is divided into three phases. This phased approach reduces the technological risk of taking one giant leap, and also reduces the {open_quotes}political{close_quotes} risk of not delivering a product for an extended period of time, in that the phasing allows continuous transfer of IHPTET technologies to our warfighters and continuous transfer to the commercial sector (dual-use). The IHPTET program addresses the three major classes of engines: turbofan/turbojet, turboshaft/turboprop, and expendables.

  15. Status of Boeing wind-turbine systems

    Science.gov (United States)

    Lowe, J. E.; Wiesner, W.

    1983-12-01

    The U.S. Department of Energy's MOD-2 wind turbine program has resulted in the design, fabrication and installation of five 2.5-MW units: three at Goldendale, WA, one at Medicine Bow, WY, and one in Solano County, CA which has been sold to a major utility. The five units have operated on-line for over 4200 hours, and generated over 5,000,000 kWh of energy. The follow-on MOD-5B program for the production of a third generation multimegawatt machine will incorporate the operational and test experience obtained with the MOD-2 test turbines, in order to yield an economical and highly reliable wind turbine for utility use.

  16. Thermodynamic Analysis of an Integrated Solid Oxide Fuel Cell Cycle with a Rankine Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Hybrid systems consisting of Solid Oxide Fuel Cells (SOFC) on the top of a Steam Turbine (ST) are investigated. The plants are fired by natural gas (NG). A desulfurization reactor removes the sulfur content in the fuel while a pre-reformer breaks down the heavier hydrocarbons. The pre-treated fuel...... enters then into the anode side of the SOFC. The remaining fuels after the SOFC stacks enter a burner for further burning. The off-gases are then used to produce steam for a Rankine cycle in a Heat Recovery Steam Generator (HRSG). Different system setups are suggested. Cyclic efficiencies up to 67......% are achieved which is considerably higher than the conventional Combined Cycles (CC). Both ASR (Adiabatic Steam Reformer) and CPO (Catalytic Partial Oxidation) fuel pre-reformer reactors are considered in this investigation....

  17. Preliminary design of seawater and brackish water reverse osmosis desalination systems driven by low-temperature solar organic Rankine cycles (ORC)

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Torres, Agustin M. [Dpto. Fisica Fundamental y Experimental, Electronica y Sistemas, Escuela Tecnica Superior de Ingenieria Civil e Industrial, Universidad de La Laguna (ULL), Avda. Astrofisico Francisco Sanchez s/n. 38206 La Laguna (Tenerife) (Spain); Garcia-Rodriguez, Lourdes [Dpto. Ingenieria Energetica, Universidad de Sevilla Escuela Tecnica Superior de Ingenieros, Camino de los Descubrimientos, s/n 41092 Sevilla (Spain)

    2010-12-15

    In this paper, the coupling between the low-temperature solar organic Rankine cycle (ORC) and seawater and brackish water reverse osmosis desalination units has been carried out. Four substances have been considered as working fluids of the solar cycle (butane, isopentane, R245fa and R245ca). With these four fluids the volumetric flow of fresh water produced per unit of aperture area of stationary solar collector has been calculated. The former has been made with the optimized direct vapour generation (DVG) configuration and heat transfer fluid (HTF) configuration of the solar ORC. In the first one (DVG), working fluid of the ORC is directly heated inside the absorber of the solar collector. In the second one (HTF), a fluid different than the working fluid of the ORC (water in this paper) is heated without phase change inside the absorber of the solar collector. Once this fluid has been heated it is carried towards a heat exchanger where it is cooled. Thermal energy delivered in this cooling process is transferred to the working fluid of the ORC. Influence of condensation temperature of the ORC and regeneration's process effectiveness over productivity of the system has also been analysed. Finally, parameters of several preliminary designs of the low-temperature solar thermal driven RO desalination are supplied. R245fa is chosen as working fluid of the ORC in these preliminary designs. The information of the proposed preliminary designs can also be used, i.e., for the assessment of the use of thermal energy rejected by the solar cycle. Overall analysis of the efficiency of the solar thermal driven RO desalination technology is given with the results presented in this paper and the results obtained with the medium temperature solar thermal RO desalination system presented by the authors in previous papers. This work has been carried out within the framework of the OSMOSOL and POWERSOL projects. (author)

  18. Fatigue Reliability of Offshore Wind Turbine Systems

    DEFF Research Database (Denmark)

    Marquez-Dominguez, Sergio; Sørensen, John Dalsgaard

    2012-01-01

    Optimization of the design of offshore wind turbine substructures with respect to fatigue loads is an important issue in offshore wind energy. A stochastic model is developed for assessing the fatigue failure reliability. This model can be used for direct probabilistic design and for calibration...... of appropriate partial safety factors / fatigue design factors (FDF) for steel substructures of offshore wind turbines (OWTs). The fatigue life is modeled by the SN approach. Design and limit state equations are established based on the accumulated fatigue damage. The acceptable reliability level for optimal...

  19. Power Electronics Converters for Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Liserre, Marco; Ma, Ke

    2012-01-01

    The steady growth of installed wind power together with the upscaling of the single wind turbine power capability has pushed the research and development of power converters toward full-scale power conversion, lowered cost pr kW, increased power density, and also the need for higher reliability......, in the latter case with attention to series connection and parallel connection either electrical or magnetic ones (multiphase/windings machines/transformers). It is concluded that as the power level increases in wind turbines, medium-voltage power converters will be a dominant power converter configuration...

  20. A global condition monitoring system for wind turbines

    DEFF Research Database (Denmark)

    Schlechtingen, Meik

    The cost of energy generated from wind power plants (particular if located offshore) is challenging societies in terms of desiring cheaper and more environmentally friendly generated electrical energy. The high cost reduction targets can be aided by broad application of condition monitoring syste...... type and brand. In total, operational data from 39 turbines were available for this research project......., which bear the potential to support plant owners reducing turbine downtime and lowering costs. In this research a global condition monitoring system is proposed, which provides a platform to take advantage of the different information sources available to operators. One of the most common sources....... Higher prediction accuracy and thus earlier anomaly detection in case of turbine performance deviations is achieved. Another information sourcepotentially available to operators is vibration measurements from the wind turbine drive train. With respect to the condition of gearbox bearings, a recently...

  1. Method and system to facilitate sealing in gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Victor John; Foster, Gregory Thomas; Sarawate, Neelesh Nandkumar

    2017-09-12

    A method and system for sealing between components within a gas turbine is provided. A first recess defined in a first component receives a seal member. A second recess defined in a second component adjacent the first component also receives the seal member. The first and second recesses are located proximate a hot gas path defined through the gas turbine, and define circumferential paths about the turbine axis. The seal member includes a sealing face that extends in a direction substantially parallel to the turbine axis. The seal member also includes a plurality of seal layers, wherein at least one of the seal layers includes at least one stress relief region for facilitating flexing of the first seal member.

  2. Off-Design Performances of Subcritical and Supercritical Organic Rankine Cycles in Geothermal Power Systems under an Optimal Control Strategy

    National Research Council Canada - National Science Library

    Tieyu Gao; Changwei Liu

    2017-01-01

    .... In this study, an off-design performance prediction model for geothermal ORC systems is developed according to special designs of critical components, and an optimal control strategy which regards...

  3. Plasma-sprayed dual density ceramic turbine seal system

    Science.gov (United States)

    Clingman, D. L.; Schechter, B.; Cross, K. R.; Cavanagh, J. R.

    1979-01-01

    Dual density, plasma sprayed ceramic coating systems were investigated for possible application as abradable turbine tip seal systems in small gas turbine engines. Abradability, erosion resistance, internal leakage, and microstructural characterization were investigated for polyester and cenosphere filled zirconium oxide composites. Results indicate the polyester system is more abradable but displays significantly less erosion resistance than the cenosphere system. It is also stated that the absence of significant blade tip damage during abradability testing of both systems suggests additional effort may result in a more nearly optimum balance of abradability and erosion resistance.

  4. UNIVERSITY TURBINE SYSTEMS RESEARCH PROGRAM SUMMARY AND DIRECTORY

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence P. Golan; Richard A. Wenglarz

    2004-07-01

    The South Carolina Institute for Energy Studies (SCIES), administratively housed at Clemson University, has participated in the advancement of combustion turbine technology for over a decade. The University Turbine Systems Research Program, previously referred to as the Advanced Gas Turbine Systems Research (AGTSR) program, has been administered by SCIES for the U.S. DOE during the 1992-2003 timeframe. The structure of the program is based on a concept presented to the DOE by Clemson University. Under the supervision of the DOE National Energy Technology Laboratory (NETL), the UTSR consortium brings together the engineering departments at leading U.S. universities and U.S. combustion turbine developers to provide a solid base of knowledge for the future generations of land-based gas turbines. In the UTSR program, an Industrial Review Board (IRB) (Appendix C) of gas turbine companies and related organizations defines needed gas turbine research. SCIES prepares yearly requests for university proposals to address the research needs identified by the IRB organizations. IRB technical representatives evaluate the university proposals and review progress reports from the awarded university projects. To accelerate technology transfer technical workshops are held to provide opportunities for university, industry and government officials to share comments and improve quality and relevancy of the research. To provide educational growth at the Universities, in addition to sponsored research, the UTSR provides faculty and student fellowships. The basis for all activities--research, technology transfer, and education--is the DOE Turbine Program Plan and identification, through UTSR consortium group processes, technology needed to meet Program Goals that can be appropriately researched at Performing Member Universities.

  5. The system design and performance test of hybrid vertical axis wind turbine

    Science.gov (United States)

    Dwiyantoro, Bambang Arip; Suphandani, Vivien

    2017-04-01

    Vertical axis wind turbine is a tool that is being developed to generate energy from wind. One cause is still little use of wind energy is the design of wind turbines that are less precise. Therefore in this study will be developed the system design of hybrid vertical axis wind turbine and tested performance with experimental methods. The design of hybrid turbine based on a straight bladed Darrieus turbine along with a double step Savonius turbine. The method used to design wind turbines is by studying literature, analyzing the critical parts of a wind turbine and the structure of the optimal design. Wind turbine prototype of the optimal design characteristic tests in the wind tunnel experimentally by varying the speed of the wind. From the experimental results show that the greater the wind speed, the greater the wind turbine rotation and torque is raised. The hybrid vertical axis wind turbine has much better self-starting and better conversion efficiency.

  6. Coupled Dynamic Modeling of Floating Wind Turbine Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wayman, E. N.; Sclavounos, P. D.; Butterfield, S.; Jonkman, J.; Musial, W.

    2006-03-01

    This article presents a collaborative research program that the Massachusetts Institute of Technology (MIT) and the National Renewable Energy Laboratory (NREL) have undertaken to develop innovative and cost-effective floating and mooring systems for offshore wind turbines in water depths of 10-200 m. Methods for the coupled structural, hydrodynamic, and aerodynamic analysis of floating wind turbine systems are presented in the frequency domain. This analysis was conducted by coupling the aerodynamics and structural dynamics code FAST [4] developed at NREL with the wave load and response simulation code WAMIT (Wave Analysis at MIT) [15] developed at MIT. Analysis tools were developed to consider coupled interactions between the wind turbine and the floating system. These include the gyroscopic loads of the wind turbine rotor on the tower and floater, the aerodynamic damping introduced by the wind turbine rotor, the hydrodynamic damping introduced by wave-body interactions, and the hydrodynamic forces caused by wave excitation. Analyses were conducted for two floater concepts coupled with the NREL 5-MW Offshore Baseline wind turbine in water depths of 10-200 m: the MIT/NREL Shallow Drafted Barge (SDB) and the MIT/NREL Tension Leg Platform (TLP). These concepts were chosen to represent two different methods of achieving stability to identify differences in performance and cost of the different stability methods. The static and dynamic analyses of these structures evaluate the systems' responses to wave excitation at a range of frequencies, the systems' natural frequencies, and the standard deviations of the systems' motions in each degree of freedom in various wind and wave environments. This article in various wind and wave environments. This article explores the effects of coupling the wind turbine with the floating platform, the effects of water depth, and the effects of wind speed on the systems' performance. An economic feasibility analysis of

  7. Power electronics converters for wind turbine systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Liserre, Marco; Ma, Ke

    2011-01-01

    The steady growth of installed wind power which reached 200 GW capacity in 2010, together with the up-scaling of the single wind turbine power capability - 7 MW’s has been announced by manufacturers - has pushed the research and development of power converters towards full scale power conversion,...

  8. Performance Evaluation of HP/ORC (Heat Pump/Organic Rankine Cycle) System with Optimal Control of Sensible Thermal Storage

    DEFF Research Database (Denmark)

    Do Carmo, Carolina Madeira Ramos; Dumont, Olivier; Nielsen, Mads Pagh

    2016-01-01

    energy in periods of no thermal energy demand and reverses the heat pump cycle to supply electrical power. A dynamic model based on empirical data of this system is used to determine the annual performance. Furthermore, this work assesses the benefits of different control strategies that address...... of the users. Results show that real load control logic can lessen the adverse effects of cycling in the compressor of the system as well as increase the thermal demand (up to 33%) and the electrical demand (max. 8.4%) covered by renewable energy (solar). However, the extension of these improvements is highly...

  9. The dish-Rankine SCSTPE program (Engineering Experiment no. 1)

    Science.gov (United States)

    Pons, R. L.; Grigsby, C. E.

    1980-05-01

    Activities planned for phase 2 Of the Small Community Solar Thermal Power Experiment (PFDR) program are summarized with emphasis on a dish-Rankine point focusing distributed receiver solar thermal electric system. Major design efforts include: (1) development of an advanced concept indirect-heated receiver;(2) development of hardware and software for a totally unmanned power plant control system; (3) implementation of a hybrid digital simulator which will validate plant operation prior to field testing; and (4) the acquisition of an efficient organic Rankine cycle power conversion unit. Preliminary performance analyses indicate that a mass-produced dish-Rankine PFDR system is potentially capable of producing electricity at a levelized busbar energy cost of 60 to 70 mills per KWh and with a capital cost of about $1300 per KW.

  10. Emissions-critical charge cooling using an organic rankine cycle

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-07-15

    The disclosure provides a system including a Rankine power cycle cooling subsystem providing emissions-critical charge cooling of an input charge flow. The system includes a boiler fluidly coupled to the input charge flow, an energy conversion device fluidly coupled to the boiler, a condenser fluidly coupled to the energy conversion device, a pump fluidly coupled to the condenser and the boiler, an adjuster that adjusts at least one parameter of the Rankine power cycle subsystem to change a temperature of the input charge exiting the boiler, and a sensor adapted to sense a temperature characteristic of the vaporized input charge. The system includes a controller that can determine a target temperature of the input charge sufficient to meet or exceed predetermined target emissions and cause the adjuster to adjust at least one parameter of the Rankine power cycle to achieve the predetermined target emissions.

  11. Performance Analysis of an Evaporator for a Diesel Engine–Organic Rankine Cycle (ORC Combined System and Influence of Pressure Drop on the Diesel Engine Operating Characteristics

    Directory of Open Access Journals (Sweden)

    Chen Bei

    2015-06-01

    Full Text Available The main purpose of this research is to analyze the performance of an evaporator for the organic Rankine cycle (ORC system and discuss the influence of the evaporator on the operating characteristics of diesel engine. A simulation model of fin-and-tube evaporator of the ORC system is established by using Fluent software. Then, the flow and heat transfer characteristics of the exhaust at the evaporator shell side are obtained, and then the performance of the fin-and-tube evaporator of the ORC system is analyzed based on the field synergy principle. The field synergy angle (β is the intersection angle between the velocity vector and the temperature gradient. When the absolute values of velocity and temperature gradient are constant and β < 90°, heat transfer enhancement can be achieved with the decrease of the β. When the absolute values of velocity and temperature gradient are constant and β >90°, heat transfer enhancement can be achieved with the increase of the β. Subsequently, the influence of the evaporator of the ORC system on diesel engine performance is studied. A simulation model of the diesel engine is built by using GT–Power software under various operating conditions, and the variation tendency of engine power, torque, and brake specific fuel consumption (BSFC are obtained. The variation tendency of the power output and BSFC of diesel engine–ORC combined system are obtained when the evaporation pressure ranges from 1.0 MPa to 3.5 MPa. Results show that the field synergy effect for the areas among the tube bundles of the evaporator main body and the field synergy effect for the areas among the fins on the windward side are satisfactory. However, the field synergy effect in the areas among the fins on the leeward side is weak. As a result of the pressure drop caused by the evaporator of the ORC system, the diesel engine power and torque decreases slightly, whereas the BSFC increases slightly with the increase of exhaust back

  12. Method of optimizing performance of Rankine cycle power plants. [US DOE Patent

    Science.gov (United States)

    Pope, W.L.; Pines, H.S.; Doyle, P.A.; Silvester, L.F.

    1980-06-23

    A method is described for efficiently operating a Rankine cycle power plant to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine fluid inlet state which is substantially on the area adjacent and including the transposed critical temperature line.

  13. Turbine airfoil with laterally extending snubber having internal cooling system

    Science.gov (United States)

    Scribner, Carmen Andrew; Messmann, Stephen John; Marsh, Jan H.

    2016-09-06

    A turbine airfoil usable in a turbine engine and having at least one snubber with a snubber cooling system positioned therein and in communication with an airfoil cooling system is disclosed. The snubber may extend from the outer housing of the airfoil toward an adjacent turbine airfoil positioned within a row of airfoils. The snubber cooling system may include an inner cooling channel separated from an outer cooling channel by an inner wall. The inner wall may include a plurality of impingement cooling orifices that direct impingement fluid against an outer wall defining the outer cooling channel. In one embodiment, the cooling fluids may be exhausted from the snubber, and in another embodiment, the cooling fluids may be returned to the airfoil cooling system. Flow guides may be positioned in the outer cooling channel, which may reduce cross-flow by the impingement orifices, thereby increasing effectiveness.

  14. Advanced coal-fueled industrial cogeneration gas turbine system

    Energy Technology Data Exchange (ETDEWEB)

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  15. Dynamic Model of Kaplan Turbine Regulating System Suitable for Power System Analysis

    Directory of Open Access Journals (Sweden)

    Jie Zhao

    2015-01-01

    Full Text Available Accurate modeling of Kaplan turbine regulating system is of great significance for grid security and stability analysis. In this paper, Kaplan turbine regulating system model is divided into the governor system model, the blade control system model, and the turbine and water diversion system model. The Kaplan turbine has its particularity, and the on-cam relationship between the wicket gate opening and the runner blade angle under a certain water head on the whole range was obtained by high-order curve fitting method. Progressively the linearized Kaplan turbine model, improved ideal Kaplan turbine model, and nonlinear Kaplan turbine model were developed. The nonlinear Kaplan turbine model considered the correction function of the blade angle on the turbine power, thereby improving the model simulation accuracy. The model parameters were calculated or obtained by the improved particle swarm optimization (IPSO algorithm. For the blade control system model, the default blade servomotor time constant given by value of one simplified the modeling and experimental work. Further studies combined with measured test data verified the established model accuracy and laid a foundation for further research into the influence of Kaplan turbine connecting to the grid.

  16. Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system

    Science.gov (United States)

    Tomlinson, Leroy Omar; Smith, Raub Warfield

    2002-01-01

    In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

  17. Wind Turbine Generator System Safety and Function Test Report for the Southwest Windpower H40 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    van Dam, J.; Link, H.; Meadors, M.; Bianchi, J.

    2002-06-01

    The objective of this test was to evaluate the safety and function characteristics of the Whisper H40 wind turbine. The general requirements of wind turbine safety and function tests are defined in the IEC standard WT01. The testing was conducted in accordance with the National Wind Technology Center (NWTC) Quality Assurance System, including the NWTC Certification Team Certification Quality Manual and the NWTC Certification Team General Quality Manual for the Testing of Wind Turbines, as well as subordinate documents. This safety and function test was performed as part of the U.S. Department of Energy's Field Verification Program for small wind turbines.

  18. Stability improvement of induction generator-based wind turbine systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Hu, Y.; Blaabjerg, Frede

    2007-01-01

    The stability improvement of induction-generator-based wind turbine systems under power system fault conditions has been studied. Two types of generators are considered, namely rotor short-circuited induction generators and dynamic slip-controlled wound rotor induction generators. The factors...... affecting the stability are analysed. The characteristics of the induction-generator-based wind turbines are described, and possible methods of improving stability of the wind generators are discussed. The system modelling is presented, and then the discussed methods of improving stability are investigated...

  19. SUPERCHARGED ENGINE USING TURBINE STANDALONE EXHAUST GAS RECUPERATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Nikola Matulić

    2017-01-01

    Full Text Available This paper presents a new hybrid concept that increases the overall efficiency of the propulsion system on ships. The hybrid concept of the marine propulsion system was examined in 1D CFD internal combustion engine model where the turbine and compressor are not mechanically connected. Such a configuration makes possible different turbine designs than needed in the conventional turbocharger. The advantage is an increased recuperation of energy from exhaust gases. By means of computer simulation and optimization, this study proves that the hybrid concept significantly increases the propulsion system efficiency and lower emissions in maritime environment.

  20. Alkali Metal Rankine Cycle Boiler Technology Challenges and Some Potential Solutions for Space Nuclear Power and Propulsion Applications

    Science.gov (United States)

    Stone, James R.

    1994-01-01

    Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently. This report is aimed at evaluating alkali metal boiler

  1. Compressive stress system for a gas turbine engine

    Science.gov (United States)

    Hogberg, Nicholas Alvin

    2015-03-24

    The present application provides a compressive stress system for a gas turbine engine. The compressive stress system may include a first bucket attached to a rotor, a second bucket attached to the rotor, the first and the second buckets defining a shank pocket therebetween, and a compressive stress spring positioned within the shank pocket.

  2. ADVANCED TURBINE SYSTEM CONCEPTUAL DESIGN AND PRODUCT DEVELOPMENT - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht H. Mayer

    2000-07-15

    Asea Brown Boveri (ABB) has completed its technology based program. The results developed under Work Breakdown Structure (WBS) 8, concentrated on technology development and demonstration have been partially implemented in newer turbine designs. A significant improvement in heat rate and power output has been demonstrated. ABB will use the knowledge gained to further improve the efficiency of its Advanced Cycle System, which has been developed and introduced into the marked out side ABB's Advanced Turbine System (ATS) activities. The technology will lead to a power plant design that meets the ATS performance goals of over 60% plant efficiency, decreased electricity costs to consumers and lowest emissions.

  3. The Optimal Operation Criteria for a Gas Turbine Cogeneration System

    Directory of Open Access Journals (Sweden)

    Atsushi Akisawa

    2009-04-01

    Full Text Available The study demonstrated the optimal operation criteria of a gas turbine cogeneration system based on the analytical solution of a linear programming model. The optimal operation criteria gave the combination of equipment to supply electricity and steam with the minimum energy cost using the energy prices and the performance of equipment. By the comparison with a detailed optimization result of an existing cogeneration plant, it was shown that the optimal operation criteria successfully provided a direction for the system operation under the condition where the electric power output of the gas turbine was less than the capacity

  4. Adaptive Controller for Drive System PMSG in Wind Turbine

    Directory of Open Access Journals (Sweden)

    Gnanambal

    2014-07-01

    Full Text Available This paper proposes adaptive Maximum Power Point Tracking (MPPT controller for Permanent Magnet Synchronous Generator (PMSG wind turbine and direct power control for grid side inverter for transformer less integration of wind energy. PMSG wind turbine with two back to back voltage source converters are considered more efficient, used to make real and reactive power control. The optimal control strategy has introduced for integrated control of PMSG Maximum Power Extraction, DC link voltage control and grid voltage support controls. Simulation model using MATLAB Simulink has developed to investigate the performance of proposed control techniques for PMSG wind turbine steady and variable wind conditions. This paper shows that the direct driven grid connected PMSG system has excellent performances and confirms the feasibility of the proposed techniques. While the wind turbine market continues to be dominated by conventional gear-driven wind turbine systems, the direct drive is attracting attention. PM machines are more attractive and superior with higher efficiency and energy yield, higher reliability, and power-to-weight ratio compared with electricity-excited machines.

  5. Wind Turbine Blade Nondestructive Testing with a Transportable Radiography System

    Directory of Open Access Journals (Sweden)

    J. G. Fantidis

    2011-01-01

    Full Text Available Wind turbines are becoming widely used as they are an environmentally friendly way for energy production without emissions; however, they are exposed to a corrosive environment. In addition, as wind turbines typically are the tallest structures in the surrounding area of a wind farm, it is expected that they will attract direct lightning strikes several times during their operating life. The purpose of this paper is to show that the radiography with a transportable unit is a solution to find defects in the wind turbine blade and reduce the cost of inspection. A transportable neutron radiography system, incorporating an Sb–Be source, has been simulated using the MCNPX code. The simulated system has a wide range of radiography parameters.

  6. Design of gear systems for moving wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesh, C.; Bhuvanesh, N.; Kumar, V.S.; Aravindh, M. [Jansons Institute of Technology, Coimbatore, Tamilnadu (India)

    2012-07-01

    Power generation from renewable energy resources has been a widespread approach in today's technology fields. One of the cheapest energies from which power can be generated may be through wind energy resource. Very known method of power generation from wind energy is wind turbine. The constraints experienced in power generation from wind turbine is inconsistent power generation according to blow of wind. In this study, to overcome the constraints, a small wind turbine can be equipped on the top of the moving vehicle through which the velocity of the wind can be enhanced. This paper describes the design of gear system which is required for the moving wind mill. Also the paper focuses on modeling of the entire setup. (Author)

  7. Development turbine blade for ultramicro hydro power generation by 3D printer system

    Science.gov (United States)

    Kamimura, T.; Itoh, H.; Sugiura, K.

    2017-11-01

    We have developed micro generation system for effective use of unutilized energy and the spread of a self-controlled dispersion energy supply system. The turbine blade was designed for achieving high performance by special shape. The turbine type was called quasi-Peace turbine type. Turbine with a diameter of 30cm is made of metal, it was created by the 5-axis milling machine. The experimental apparatus was fabricated by the 3D printer. An experiment was carried out in the scale down model. The specific speed of this turbine was much lower than that of existing turbines.

  8. Dynamic wind turbine models in power system simulation tool DIgSILENT

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Iov, F.; Sørensen, Poul Ejnar

    , mechanical model). The initialisation issues on the wind turbine models into the power system simulation are also presented. The main attention in the report is drawn to the modelling at the system level of the following wind turbine concepts: 1. Fixed speed active stall wind turbine concept 2. Variable...... speed doubly-fed induction generator wind turbine concept 3. Variable speed multi-pole permanent magnet synchronous generator wind turbine concept These wind turbine concept models can be used and even extended for the study of different aspects, e.g. the assessment of power quality, control strategies...

  9. Hydrogen-air energy storage gas-turbine system

    Science.gov (United States)

    Schastlivtsev, A. I.; Nazarova, O. V.

    2016-02-01

    A hydrogen-air energy storage gas-turbine unit is considered that can be used in both nuclear and centralized power industries. However, it is the most promising when used for power-generating plants based on renewable energy sources (RES). The basic feature of the energy storage system in question is combination of storing the energy in compressed air and hydrogen and oxygen produced by the water electrolysis. Such a process makes the energy storage more flexible, in particular, when applied to RES-based power-generating plants whose generation of power may considerably vary during the course of a day, and also reduces the specific cost of the system by decreasing the required volume of the reservoir. This will allow construction of such systems in any areas independent of the local topography in contrast to the compressed-air energy storage gas-turbine plants, which require large-sized underground reservoirs. It should be noted that, during the energy recovery, the air that arrives from the reservoir is heated by combustion of hydrogen in oxygen, which results in the gas-turbine exhaust gases practically free of substances hazardous to the health and the environment. The results of analysis of a hydrogen-air energy storage gas-turbine system are presented. Its layout and the principle of its operation are described and the basic parameters are computed. The units of the system are analyzed and their costs are assessed; the recovery factor is estimated at more than 60%. According to the obtained results, almost all main components of the hydrogen-air energy storage gas-turbine system are well known at present; therefore, no considerable R&D costs are required. A new component of the system is the H2-O2 combustion chamber; a difficulty in manufacturing it is the necessity of ensuring the combustion of hydrogen in oxygen as complete as possible and preventing formation of nitric oxides.

  10. Organic Rankine Cycle with Solar Heat Storage in Paraffin Way

    Directory of Open Access Journals (Sweden)

    Constantin LUCA

    2015-06-01

    Full Text Available The paper presents an electricity generation system based on an Organic Rankine Cycle and proposed storing the amount of the heat produced by the solar panels using large volume of paraffin wax. The proposed working fluid is R-134a refrigerant. The cycle operates at very low temperatures. A efficiency of 6,55% was obtained.

  11. System definition and analysis gas-fired industrial advanced turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, G.M.

    1997-05-01

    The objective is to define and analyze an engine system based on the gas fuel Advanced Turbine from Task 3. Using the cycle results of Task 3, a technical effort was started for Task 6 which would establish the definition of the engine flowpath and the key engine component systems. The key engine systems are: gas turbine engine overall flowpath; booster (low pressure compressor); intercooler; high pressure compressor; combustor; high pressure turbine; low pressure turbine and materials; engine system packaging; and power plant configurations. The design objective is to use the GE90 engine as the platform for the GE Industrial Advanced Turbine System. This objective sets the bounds for the engine flowpath and component systems.

  12. Preliminary Design and Simulation of a Turbo Expander for Small Rated Power Organic Rankine Cycle (ORC

    Directory of Open Access Journals (Sweden)

    Roberto Capata

    2014-11-01

    Full Text Available Nowadays, the Organic Rankine Cycle (ORC system, which operates with organic fluids, is one of the leading technologies for “waste energy recovery”. It works as a conventional Rankine Cycle but, as mentioned, instead of steam/water, an organic fluid is used. This change allows it to convert low temperature heat into electric energy where required. Large numbers of studies have been carried out to identify the most suitable fluids, system parameters and the various configurations. In the present market, most ORC systems are designed and manufactured for the recovery of thermal energy from various sources operating at “large power rating” (exhaust gas turbines, internal combustion engines, geothermal sources, large melting furnaces, biomass, solar, etc.; from which it is possible to produce a large amount of electric energy (30 kW ÷ 300 kW. Such applications for small nominal power sources, as well as the exhaust gases of internal combustion engines (car sedan or town, ships, etc. or small heat exchangers, are very limited. The few systems that have been designed and built for small scale applications, have, on the other hand, different types of expander (screw, scroll, etc.. These devices are not adapted for placement in small and restricted places like the interior of a conventional car. The aim of this work is to perform the preliminary design of a turbo-expander that meets diverse system requirements such as low pressure, small size and low mass flow rates. The expander must be adaptable to a small ORC system utilizing gas of a diesel engine or small gas turbine as thermal source to produce 2–10 kW of electricity. The temperature and pressure of the exhaust gases, in this case study (400–600 °C and a pressure of 2 bar, imposes a limit on the use of an organic fluid and on the net power that can be produced. In addition to water, fluids such as CO2, R134a and R245fa have been considered. Once the operating fluids has been chosen

  13. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Science.gov (United States)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  14. Proposed Wind Turbine Aeroelasticity Studies Using Helicopter Systems Analysis

    Science.gov (United States)

    Ladkany, Samaan G.

    1998-01-01

    Advanced systems for the analysis of rotary wing aeroelastic structures (helicopters) are being developed at NASA Ames by the Rotorcraft Aeromechanics Branch, ARA. The research has recently been extended to the study of wind turbines, used for electric power generation Wind turbines play an important role in Europe, Japan & many other countries because they are non polluting & use a renewable source of energy. European countries such as Holland, Norway & France have been the world leaders in the design & manufacture of wind turbines due to their historical experience of several centuries, in building complex wind mill structures, which were used in water pumping, grain grinding & for lumbering. Fossil fuel cost in Japan & in Europe is two to three times higher than in the USA due to very high import taxes. High fuel cost combined with substantial governmental subsidies, allow wind generated power to be competitive with the more traditional sources of power generation. In the USA, the use of wind energy has been limited mainly because power production from wind is twice as expensive as from other traditional sources. Studies conducted at the National Renewable Energy Laboratories (NREL) indicate that the main cost in the production of wind turbines is due to the materials & the labor intensive processes used in the construction of turbine structures. Thus, for the US to assume world leadership in wind power generation, new lightweight & consequently very flexible wind turbines, that could be economically mass produced, would have to be developed [4,5]. This effort, if successful, would result in great benefit to the US & the developing nations that suffer from overpopulation & a very high cost of energy.

  15. Research and Development of Mixed and Standard Type Biomass Gas Turbine System with Enhanced Fuel Applicability

    National Research Council Canada - National Science Library

    MATSUBARA, Koji; TAMAI, Hiroki; TANUMA, Hayato; MATSUDAIRA, Yusaku; DAS, Piyali; ACHARJEE, Paltu; MORIMOTO, Sousuke

    2015-01-01

    .... This paper describes a mixed and standard type gas turbine system for this purpose. The mixed type gas turbine employs a regenerated Brayton cycle with a secondary combustor to burn various fuels...

  16. A High Efficiency PSOFC/ATS-Gas Turbine Power System

    Energy Technology Data Exchange (ETDEWEB)

    W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2001-02-01

    A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

  17. Reduced Noise Gas Turbine Engine System and Supersonic Exhaust Nozzle System Using Elector to Entrain Ambient Air

    Science.gov (United States)

    Sokhey, Jagdish S. (Inventor); Pierluissi, Anthony F. (Inventor)

    2017-01-01

    One embodiment of the present invention is a unique gas turbine engine system. Another embodiment is a unique exhaust nozzle system for a gas turbine engine. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for gas turbine engine systems and exhaust nozzle systems for gas turbine engines. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  18. Wind Turbine Blade Deflection Sensing System Based on UWB Technology

    DEFF Research Database (Denmark)

    Franek, Ondrej; Zhang, Shuai; Jensen, Tobias Lindstrøm

    2016-01-01

    A microwave sensing system for estimating deflection of a wind turbine blade is presented. The system measures distances at two ultrawideband (UWB) wireless links between one antenna at the tip and two antennas at the root of the blade, which allows for determination of the tip position by triang......A microwave sensing system for estimating deflection of a wind turbine blade is presented. The system measures distances at two ultrawideband (UWB) wireless links between one antenna at the tip and two antennas at the root of the blade, which allows for determination of the tip position...... by the blade. It is demonstrated that despite the adverse effects of the multipath propagation the ranging accuracy of the system amounts to 1.5 cm, leading to maximum error of deflection 4.5 %....

  19. Wind or water turbine power augmentation using the system of guiding surfaces

    Science.gov (United States)

    Bashurin, V. P.; Budnikov, I. N.; Hatunkin, V. Yu; Klevtsov, V. A.; Ktitorov, L. V.; Lazareva, A. S.; Meshkov, E. E.; Novikova, I. A.; Pletenev, F. A.; Yanbaev, G. M.

    2016-04-01

    As fluid flows through a conventional wind or hydro turbine, it slows from losing energy to extraction from a turbine and spreads out to a wider area. This results in a loss of turbine efficiency. In order to exploit wind or water flow power more effectively, it was suggested to place the turbine inside a system of specially designed airfoils (‘a flow booster’). One part of the booster (‘a nozzle’) improves the turbine performance by speeding up the flow acting on the turbine blades. The other part of the accelerating system (‘a diffuser’) creates a field of low pressure behind the turbine which helps to draw more mass flow to the turbine and avoid the loss of efficiency due to flow deceleration. The flow booster accumulates the kinetic energy of the flow (e.g. river flow or wind) in a small volume where the smaller turbine can be installed. Another possible application of the booster could be the improvement of wind turbine efficiency during low wind period. The present paper also discusses the possibility of kinetic energy accumulation by the use of several accelerating systems of different sizes—the smaller one can be installed inside the bigger one. It helps to accumulate even more kinetic energy on the turbine blades. We call this method the kinetic energy cumulation. Lab and field experiments and CFD simulations of shrouded turbine demonstrate significant increase in velocity in comparison of those for conventional (bare) turbines.

  20. Wind turbine control systems: Dynamic model development using system identification and the fast structural dynamics code

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, J.G.; Wright, A.D.; Butterfield, C.P.

    1996-10-01

    Mitigating the effects of damaging wind turbine loads and responses extends the lifetime of the turbine and, consequently, reduces the associated Cost of Energy (COE). Active control of aerodynamic devices is one option for achieving wind turbine load mitigation. Generally speaking, control system design and analysis requires a reasonable dynamic model of {open_quotes}plant,{close_quotes} (i.e., the system being controlled). This paper extends the wind turbine aileron control research, previously conducted at the National Wind Technology Center (NWTC), by presenting a more detailed development of the wind turbine dynamic model. In prior research, active aileron control designs were implemented in an existing wind turbine structural dynamics code, FAST (Fatigue, Aerodynamics, Structures, and Turbulence). In this paper, the FAST code is used, in conjunction with system identification, to generate a wind turbine dynamic model for use in active aileron control system design. The FAST code is described and an overview of the system identification technique is presented. An aileron control case study is used to demonstrate this modeling technique. The results of the case study are then used to propose ideas for generalizing this technique for creating dynamic models for other wind turbine control applications.

  1. Hydraulic Soft Yaw System for Multi MW Wind Turbines

    DEFF Research Database (Denmark)

    Stubkier, Søren

    energy and an increase in the loading of the wind turbine structure and components. This dissertation examines the hypothesis that there are advantages of basing a yaw system on hydraulic components instead of normal electrical components. This is done through a state of the art analysis followed...... in the wind turbine yaw system along with minor reductions in the blades and main shaft. Optimization of the damping and stiffness of the hydraulic soft yaw system have been conducted and an optimum found for load reduction. Linear control algorithms for control of damping pressure peaks have been developed...... and tested in simulations with success. To verify the results of the new hydraulic soft yaw concept a novel friction model for including coulomb in the yaw system is developed and implemented in the FAST aeroelastic code from NREL in order to include friction phenomena. A cosimulation interface between...

  2. Advanced tools for modeling, design and optimization of wind turbine systems

    DEFF Research Database (Denmark)

    Iov, F.; Hansen, A.D.; Jauch, C.

    2005-01-01

    As wind turbine technology and control has advanced over the last decade, this has led to a high penetration of wind turbines into the power system. Whether it be for a large wind turbine or an offshore wind farm with hundreds of MW power capacity, the electrical system has become more and more...... important in controlling the interaction between the mechanical system of the wind turbine and the main power system. The presence of power electronics in wind turbines improves their controllability with respect not only to its mechanical loads but also to its power quality [1]. This paper presents...

  3. Advanced Turbine System Program: Phase 2 cycle selection

    Energy Technology Data Exchange (ETDEWEB)

    Latcovich, J.A. Jr. [ABB Power Generation, Inc., Midlothian, VA (United States)

    1995-10-01

    The objectives of the Advanced Turbine System (ATS) Phase 2 Program were to define a commercially attractive ATS cycle and to develop the necessary technologies required to meet the ATS Program goals with this cycle. This program is part of an eight-year Department of Energy, Fossil Energy sponsored ATS Program to make a significant improvement in natural gas-fired power generation plant efficiency while providing an environmentally superior and cost-effective system.

  4. Steam cooling system for a gas turbine

    Science.gov (United States)

    Wilson, Ian David; Barb, Kevin Joseph; Li, Ming Cheng; Hyde, Susan Marie; Mashey, Thomas Charles; Wesorick, Ronald Richard; Glynn, Christopher Charles; Hemsworth, Martin C.

    2002-01-01

    The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows.

  5. Control of wind turbine generators connected to power systems

    Science.gov (United States)

    Hwang, H. H.; Mozeico, H. V.; Gilbert, L. J.

    1978-01-01

    A unique simulation model based on a Mode-O wind turbine is developed for simulating both speed and power control. An analytical representation for a wind turbine that employs blade pitch angle feedback control is presented, and a mathematical model is formulated. For Mode-O serving as a practical case study, results of a computer simulation of the model as applied to the problems of synchronization and dynamic stability are provided. It is shown that the speed and output of a wind turbine can be satisfactorily controlled within reasonable limits by employing the existing blade pitch control system under specified conditions. For power control, an additional excitation control is required so that the terminal voltage, output power factor, and armature current can be held within narrow limits. As a result, the variation of torque angle is limited even if speed control is not implemented simultaneously with power control. Design features of the ERDA/NASA 100-kW Mode-O wind turbine are included.

  6. UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth A. Yackly

    2001-06-01

    The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every

  7. Structural health monitoring systems in difficult environments. Offshore wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Faulkner, P.; Cutter, P.; Owens, A. [Strainstall Monitoring, Midsomer Norton (United Kingdom)

    2012-07-01

    The paper discusses the design and capability of Structural Health Monitoring Systems (SHMS) deployed on Offshore Wind Turbines together with the management of the tasks and risks in the offshore environment. The application of SHMS in difficult environments is a particularly challenging task, where ease of installation, ruggedness and reliability of equipment is essential in providing the key information of the structural integrity of Offshore Wind Turbine Towers. This information is required to evaluate the structural response, status and remaining operational life of the structure. The installation and commissioning of such systems have a significant focus on safety and access to the structures where onsite retrofitting of sensors and instrumentation are carried out in the field. Experience has been gained during the installation and commissioning of over 30 systems that have been deployed in the field in the UK offshore sector over the last two year period. (orig.)

  8. Wind Turbine Control Impact on Stability of Wind Farms Based on Real-Life Systems Analysis

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth

    2012-01-01

    that wind farm components such as long HVAC cables and park transformers can introduce significant low-frequency series resonances seen form the wind turbine terminals which can affect wind turbine control system operation and overall wind farm stability. The same wind turbine converter control strategy...

  9. Design for the turbine of solar chimney power plant system with vertical collector

    Science.gov (United States)

    Zhou, Y.; Gao, B.; Dong, H. R.; Hao, K.

    2016-08-01

    Based on the design theory of the wind turbine, a turbine applied to solar chimney power plant with a vertical collector is designed, and the performance of the wind turbine is conducted by wind tunnel test. The results point out that the experimental performance is consistent with the designed performance. Then the number of blades and tip speed ratio are conducted, as well as we obtained the optimum blade number and tip speed ratio of turbine for the system.

  10. Technical review of Westinghouse`s Advanced Turbine Systems Program

    Energy Technology Data Exchange (ETDEWEB)

    Diakunchak, I.S.; Bannister, R.L. [Westinghouse Electric Corp., Orlando, FL (United States)

    1995-10-01

    U.S. Department of Energy, Office of Fossil Energy Advanced Turbine Systems (ATS) Program is an ambitious program to develop the necessary technologies, which will result in a significant increase in natural gas-fired power generation plant efficiency, a decrease in cost of electricity and a decrease in harmful emissions. In Phase 1 of the ATS Program, preliminary investigations on different gas turbine cycles demonstrated that net plant efficiency greater than 60% could be achieved. The more promising cycles were evaluated in more detail in Phase 2 in order to select the one that would achieve all of the program goals. The closed-loop cooled combined cycle was selected because it offered the best solution with the least risk for exceeding the ATS Program goals of net plant efficiency, emissions, cost of electricity, reliability, availability, and maintainability (RAM), and commercialization in the year 2000. The Westinghouse ATS plant is based on an advanced gas turbine design combined with an advanced steam. turbine and a high efficiency generator. To enhance achievement of the challenging performance, emissions, and RAM goals, current technologies are being extended and new technologies developed. The attainment of ATS performance goal necessitates advancements in aerodynamics, sealing, cooling, coatings, and materials technologies. To reduce emissions to the required levels, demands a development effort in the following combustion technology areas: premixed ultra low NOx combustion, catalytic combustion, combustion instabilities, and optical diagnostics. To achieve the RAM targets, requires the utilization of proven design features, with quantified risk analysis, and advanced materials, coatings, and cooling technologies. Phase 2 research and development projects currently in progress, as well as those planned for Phase 3, will result in advances in gas turbine technology and greatly contribute to ATS Program success.

  11. The Tremblay-Turbiner-Winternitz system as extended Hamiltonian

    Science.gov (United States)

    Chanu, Claudia Maria; Degiovanni, Luca; Rastelli, Giovanni

    2014-12-01

    We generalize the idea of "extension of Hamiltonian systems"—developed in a series of previous articles—which allows the explicit construction of Hamiltonian systems with additional non-trivial polynomial first integrals of arbitrarily high degree, as well as the determination of new superintegrable systems from old ones. The present generalization, that we call "modified extension of Hamiltonian systems," produces the third independent first integral for the (complete) Tremblay-Turbiner-Winternitz system, as well as for the caged anisotropic oscillator in dimension two.

  12. UNIVERSITY TURBINE SYSTEMS RESEARCH-HIGH EFFICIENCY ENGINES AND TURBINES (UTSR-HEET)

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence P. Golan; Richard A. Wenglarz; William H. Day

    2003-03-01

    In 2002, the U S Department of Energy established a cooperative agreement for a program now designated as the University Turbine Systems (UTSR) Program. As stated in the cooperative agreement, the objective of the program is to support and facilitate development of advanced energy systems incorporating turbines through a university research environment. This document is the first annual, technical progress report for the UTSR Program. The Executive Summary describes activities for the year of the South Carolina Institute for Energy Studies (SCIES), which administers the UTSR Program. Included are descriptions of: Outline of program administrative activities; Award of the first 10 university research projects resulting from a year 2001 RFP; Year 2002 solicitation and proposal selection for awards in 2003; Three UTSR Workshops in Combustion, Aero/Heat Transfer, and Materials; SCIES participation in workshops and meetings to provide input on technical direction for the DOE HEET Program; Eight Industrial Internships awarded to higher level university students; Increased membership of Performing Member Universities to 105 institutions in 40 states; Summary of outreach activities; and a Summary table describing the ten newly awarded UTSR research projects. Attachment A gives more detail on SCIES activities by providing the monthly exceptions reports sent to the DOE during the year. Attachment B provides additional information on outreach activities for 2002. The remainder of this report describes in detail the technical approach, results, and conclusions to date for the UTSR university projects.

  13. Proceedings of the Advanced Turbine Systems annual program review meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Goals of the 8-year program are to develop cleaner, more efficient, and less expensive gas turbine systems for utility and industrial electric power generation, cogeneration, and mechanical drive units. During this Nov. 9-11, 1994, meeting, presentations on energy policy issues were delivered by representatives of regulatory, industry, and research institutions; program overviews and technical reviews were given by contractors; and ongoing and proposed future projects sponsored by university and industry were presented and displayed at the poster session. Panel discussions on distributed power and Advanced Gas Systems Research education provided a forum for interactive dialog and exchange of ideas. Exhibitors included US DOE, Solar Turbines, Westinghouse, Allison Engine Co., and GE.

  14. Power Electronics and Controls for Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Iov, Florin; Chen, Zhe

    2010-01-01

    term) based energy sources to renewable energy sources. Another is to use power electronics to achieve high efficiency in power generation, transmission/distribution and utilization. This paper discuss trends of the most promising renewable energy sources, wind energy, which ,integrated with power...... electronics, is changing the future electrical infrastructure and also contributes steadily to non-carbon based electricity production. The paper’s focus is on the power electronics technologies used in wind turbine systems....

  15. Hydraulic Motor Driving Variable-Pitch System for Wind Turbine

    OpenAIRE

    Ye HUANG; JiBao QI

    2013-01-01

    The present hydraulic variable-pitch mechanism of wind turbine uses three hydraulic cylinders to drive three crank and connecting rod mechanisms respectively; the blades are moved with the cranks. The hydraulic variable-pitch mechanism has complex structure, occupies a lot of space and its maintenance is trouble. In order to make up for the shortcomings of hydraulic cylinder variable-pitch system, the present hydraulic variable-pitch mechanism should be changed as follows: hydraulic motors ar...

  16. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    This book presents recent studies on the power electronics used for the next generation wind turbine system. Some criteria and tools for evaluating and improving the critical performances of the wind power converters have been proposed and established. The book addresses some emerging problems...... as well as possibilities for the wind power conversion, and may be useful as an inspiring reference for the researchers in this field....

  17. A Fault Recognition System for Gearboxes of Wind Turbines

    Science.gov (United States)

    Yang, Zhiling; Huang, Haiyue; Yin, Zidong

    2017-12-01

    Costs of maintenance and loss of power generation caused by the faults of wind turbines gearboxes are the main components of operation costs for a wind farm. Therefore, the technology of condition monitoring and fault recognition for wind turbines gearboxes is becoming a hot topic. A condition monitoring and fault recognition system (CMFRS) is presented for CBM of wind turbines gearboxes in this paper. The vibration signals from acceleration sensors at different locations of gearbox and the data from supervisory control and data acquisition (SCADA) system are collected to CMFRS. Then the feature extraction and optimization algorithm is applied to these operational data. Furthermore, to recognize the fault of gearboxes, the GSO-LSSVR algorithm is proposed, combining the least squares support vector regression machine (LSSVR) with the Glowworm Swarm Optimization (GSO) algorithm. Finally, the results show that the fault recognition system used in this paper has a high rate for identifying three states of wind turbines’ gears; besides, the combination of date features can affect the identifying rate and the selection optimization algorithm presented in this paper can get a pretty good date feature subset for the fault recognition.

  18. Modelling and control of variable speed wind turbines for power system studies

    DEFF Research Database (Denmark)

    Michalke, Gabriele; Hansen, Anca Daniela

    2010-01-01

    and implemented in the power system simulation tool DIgSILENT. Important issues like the fault ride-through and grid support capabilities of these wind turbine concepts are addressed. The paper reveals that advanced control of variable speed wind turbines can improve power system stability. Finally......Modern wind turbines are predominantly variable speed wind turbines with power electronic interface. Emphasis in this paper is therefore on the modelling and control issues of these wind turbine concepts and especially on their impact on the power system. The models and control are developed......, it will be shown in the paper that wind parks consisting of variable speed wind turbines can help nearby connected fixed speed wind turbines to ride-through grid faults. Copyright © 2009 John Wiley & Sons, Ltd....

  19. IMIS: Integrated Marine Installation System for offshore turbines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The report describes a feasibility study on the Integrated Marine Installation System for offshore wind turbines. The aspects covered are (1) Background and why the study is required; (2) Aims and objectives of the project; (3) Summary of methods adopted; (4) Design criteria according to the area for deployment; (5) Conclusions and recommendations. The ultimate goal will be to install and secure the wind turbine in position using an integrated approach to avoid using lifting vessels. To date, an initial feasibility study has been carried out where four different concepts were considered. The next phase of the project will be to address a number of possible risks and constraints before the chosen concept can be demonstrated to be viable. The work is being carried out by Setech Ltd, Armstrong Technology Associates Ltd and Smith Rea Energy Ltd for the DTI.

  20. Performance analysis of wind turbine systems under different parameters effect

    Energy Technology Data Exchange (ETDEWEB)

    Salih, Salih Mohammed; Taha, Mohammed Qasim; Alawsaj, Mohammed K. [College of Engineering, University of Anbar (Iraq)

    2012-07-01

    In this paper, simulation models are used to study the performance of small power systems based on different weather parameters. The results are extracted using Matlab software program for analyzing the performance of two wind turbines: Whisper-500 3.2KW and NY-WSR1204 600W which have the same type of permanent magnetic alternators (three phase and 16 poles). Different parameters can affect on the performance of wind turbines which are: the wind speed air density, air pressure, temperature and the length of blades for wind generators. The mathematical results related the previous mentioned parameters are analyzed in order to determine the sensitivity of input power on the output of wind generators.

  1. Vibration-based SHM System: Application to Wind Turbine Blades

    DEFF Research Database (Denmark)

    Tcherniak, D.; Mølgaard, Lasse Lohilahti

    2015-01-01

    This study presents an vibration-based system designed for structural health monitoring of wind turbine blades. Mechanical energy is introduced by means of an electromechanical actuator mounted inside the blade. The actuator's plunger periodically hits the blade structure; the induced vibrations...... signal-to-noise ratio. Simultaneously, the frequencies are low enough to be able to propagate the entire blade length, so good results can be obtained even using only one actuator. The system is demonstrated on a real 34m blade mounted on a test rig. Using the suggested approach, the system enables...

  2. Computer-Aided System of Virtual Testing of Gas Turbine Engines

    Directory of Open Access Journals (Sweden)

    Rybakov Viktor N.

    2016-01-01

    Full Text Available The article describes the concept of a virtual lab that includes subsystem of gas turbine engine simulation, subsystem of experiment planning, subsystem of measurement errors simulation, subsystem of simulator identification and others. The basis for virtual lab development is the computer-aided system of thermogasdynamic research and analysis “ASTRA”. The features of gas turbine engine transient modes simulator are described. The principal difference between the simulators of transient and stationary modes of gas turbine engines is that the energy balance of the compressor and turbine becomes not applicable. The computer-aided system of virtual gas turbine engine testing was created using the developed transient modes simulator. This system solves the tasks of operational (throttling, speed, climatic, altitude characteristics calculation, analysis of transient dynamics and selection of optimal control laws. Besides, the system of virtual gas turbine engine testing is a clear demonstration of gas turbine engine working process and the regularities of engine elements collaboration. The interface of the system of virtual gas turbine engine testing is described in the article and some screenshots of the interface elements are provided. The developed system of virtual gas turbine engine testing provides means for reducing the laboriousness of gas turbine engines testing. Besides, the implementation of this system in the learning process allows the diversification of lab works and therefore improve the quality of training.

  3. Wind Turbine Generator System Duration Test Report for the Gaia-Wind 11 kW Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Huskey, A.; Bowen, A.; Jager, D.

    2010-09-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Renewable Energy Laboratory's (NRELs) National Wind Technology Center (NWTC) as a part of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11 kW wind turbine mounted on an 18 m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark, although the company is based in Scotland. The system was installed by the NWTC Site Operations group with guidance and assistance from Gaia-Wind.

  4. Optimization of Cycle and Expander Design of an Organic Rankine Cycle Unit using Multi-Component Working Fluids

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Pierobon, Leonardo

    2016-01-01

    for an organic Rankine cycle unit utilizing waste heat from low temperature heat sources. The study addresses a case where the minimum temperature of the heat source is constrained and a case where no constraint is imposed. The former case is the wasteheat recovery from jacket cooling water of a marine diesel...... engine onboard a large ship, and the latter is representative of a low-temperature geothermal, solar or waste heat recovery application. Multi-component working fluids are investigated, as they allow improving the match between the temperature pro-files in the heat exchangers and, consequently, reducing...... the irreversibility in the ORC system. This work considers mixtures of R245fa/pentane and propane/isobutane. The use of multi-component working fluids typically results in increased heat transfer areas and different expander designs compared to purefluids. In order to properly account for turbine performance...

  5. System reliability effects in wind turbine blades

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Friis-Hansen, Peter; Berggreen, Christian

    2012-01-01

    from reliability point of view. The present paper discusses the specifics of system reliability behavior of laminated composite sandwich panels, and solves an example system reliability problem for a glass fiber-reinforced composite sandwich structure subjected to in-plane compression.......Laminated composite sandwich panels have a layered structure, where individual layers have randomly varying stiffness and strength properties. The presence of multiple failure modes and load redistribution following partial failures are the reason for laminated composites to exhibit system behavior...

  6. Performance Analysis of Organic Rankine-vapor Compression Ice Maker Utilizing Food Industry Waste Heat

    OpenAIRE

    Bing Hu; Yuanshu Cao; Weibin Ma

    2015-01-01

    To develop the organic Rankine-vapor compression ice maker driven by food industry exhaust gases and engine cooling water, an organic Rankine-vapor compression cycle system was employed for ice making and a thermodynamic model was developed and the effects of working fluid types, hot water temperature and condensation temperature on the system performance were analyzed and the ice making capacity from unit mass hot water and unit power waste heat were evaluated. The calculated results show th...

  7. Cycle analysis of MCFC/gas turbine system

    Science.gov (United States)

    Musa, Abdullatif; Alaktiwi, Abdulsalam; Talbi, Mosbah

    2017-11-01

    High temperature fuel cells such as the solid oxide fuel cell (SOFC) and the molten carbonate fuel cell (MCFC) are considered extremely suitable for electrical power plant application. The molten carbonate fuel cell (MCFC) performances is evaluated using validated model for the internally reformed (IR) fuel cell. This model is integrated in Aspen Plus™. Therefore, several MCFC/Gas Turbine systems are introduced and investigated. One of this a new cycle is called a heat recovery (HR) cycle. In the HR cycle, a regenerator is used to preheat water by outlet air compressor. So the waste heat of the outlet air compressor and the exhaust gases of turbine are recovered and used to produce steam. This steam is injected in the gas turbine, resulting in a high specific power and a high thermal efficiency. The cycles are simulated in order to evaluate and compare their performances. Moreover, the effects of an important parameters such as the ambient air temperature on the cycle performance are evaluated. The simulation results show that the HR cycle has high efficiency.

  8. Cycle analysis of MCFC/gas turbine system

    Directory of Open Access Journals (Sweden)

    Musa Abdullatif

    2017-01-01

    Full Text Available High temperature fuel cells such as the solid oxide fuel cell (SOFC and the molten carbonate fuel cell (MCFC are considered extremely suitable for electrical power plant application. The molten carbonate fuel cell (MCFC performances is evaluated using validated model for the internally reformed (IR fuel cell. This model is integrated in Aspen Plus™. Therefore, several MCFC/Gas Turbine systems are introduced and investigated. One of this a new cycle is called a heat recovery (HR cycle. In the HR cycle, a regenerator is used to preheat water by outlet air compressor. So the waste heat of the outlet air compressor and the exhaust gases of turbine are recovered and used to produce steam. This steam is injected in the gas turbine, resulting in a high specific power and a high thermal efficiency. The cycles are simulated in order to evaluate and compare their performances. Moreover, the effects of an important parameters such as the ambient air temperature on the cycle performance are evaluated. The simulation results show that the HR cycle has high efficiency.

  9. Power Electronics in Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Chen, Zhe; Teodorescu, Remus

    2006-01-01

    the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficient power electronics in power systems, power production and end-user application. This paper discuss the most emerging renewable energy source, wind energy, which by means of power...... electronics is changing from being a minor energy source to be acting as an important power source in the energy system. By that wind power is also getting an added value in the power system operation....

  10. Dynamic simulation of carbonate fuel cell-gas turbine hybrid systems

    OpenAIRE

    Roberts, RA; Brouwer, J; Liese, E; Gemmen, RS

    2016-01-01

    Hybrid fuel cell/gas turbine systems provide an efficient means of producing electricity from fossil fuels with ultra low emissions. However, there are many significant challenges involved in integrating the fuel cell with the gas turbine and other components of this type of system. The fuel cell and the gas turbine must maintain efficient operation and electricity production while protecting equipment during perturbations that may occur when the system is connected to the utility grid or in ...

  11. Exergetic Analysis of an Integrated Tri-Generation Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Ratha Z. Mathkor

    2015-08-01

    Full Text Available This paper reports on a study of the modelling, validation and analysis of an integrated 1 MW (electrical output tri-generation system energized by solar energy. The impact of local climatic conditions in the Mediterranean region on the system performance was considered. The output of the system that comprised a parabolic trough collector (PTC, an organic Rankine cycle (ORC, single-effect desalination (SED, and single effect LiBr-H2O absorption chiller (ACH was electrical power, distilled water, and refrigerant load. The electrical power was produced by the ORC which used cyclopentane as working fluid and Therminol VP-1 was specified as the heat transfer oil (HTO in the collectors with thermal storage. The absorption chiller and the desalination unit were utilize the waste heat exiting from the steam turbine in the ORC to provide the necessary cooling energy and drinking water respectively. The modelling, which includes an exergetic analysis, focuses on the performance of the solar tri-generation system. The simulation results of the tri-generation system and its subsystems were produced using IPSEpro software and were validated against experimental data which showed good agreement. The tri-generation system was able to produce about 194 Ton of refrigeration, and 234 t/day distilled water.

  12. Future on Power Electronics for Wind Turbine Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2013-01-01

    generators, power electronic systems, and control solutions have to be introduced to improve the characteristics of the wind power plant and make it more suitable to be integrated into the power grid. Meanwhile, there are also some emerging technology challenges, which need to be further clarified...... and investigated. This paper gives an overview and discusses some development trends in the technologies used for wind power systems. First, the developments of technology and market are generally discussed. Next, several state-of-the-art wind turbine concepts, as well as the corresponding power electronic...

  13. Kongiganak Wind Turbine Replacement and System Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Boonstra, Patrick [Intelligent Energy Systems, Anchorage, AK (United States)

    2016-12-13

    The Native Village of Kongiganak, Alaska was awarded a grant to upgrade the braking systems on five wind turbines and upgrade the monitoring and data collection unit to insure that enough energy is available to power the utility. The project manager for this award is Intelligent Energy Systems, LLC located in Anchorage, Alaska. In addition to accomplishing these upgrades, it was the intent for a local wind tech crew to be trained in Kongiganak so that routine maintenance and future repairs will be made by local workers.

  14. System Reliability for Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Marquez-Dominguez, Sergio; Sørensen, John Dalsgaard

    2013-01-01

    E). In consequence, a rational treatment of uncertainties is done in order to assess the reliability of critical details in OWTs. Limit state equations are formulated for fatigue critical details which are not influenced by wake effects generated in offshore wind farms. Furthermore, typical bi-linear S-N curves...... are considered for reliability verification according to international design standards of OWTs. System effects become important for each substructure with many potential fatigue hot spots. Therefore, in this paper a framework for system effects is presented. This information can be e.g. no detection of cracks...

  15. State of the art-hydraulic yaw systems for wind turbines

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2011-01-01

    This paper addresses the yawing systems of Horizontal Axis Wind Turbines (HAWT’s). HAWT’s represents close to all of the commercial large wind turbines sold today and must be considered state-of-the art within wind turbine technology. Two choices exists when considering components for the active...... mounted with a reduction gear. This paper presents state-of-the art within; hydraulic yaw system design and control of yaw systems in general. Primary focus on the advantages and disadvantages of using a hydraulic system for controlling the yaw of a wind turbine with a soft yaw concept....

  16. Development of a cooling system for superconducting wind turbine generator

    Science.gov (United States)

    Furuse, Mitsuho; Fuchino, Shuichiro; Okano, Makoto; Natori, Naotake; Yamasaki, Hirofumi

    2016-12-01

    This paper deals with the cooling system for high-Tc superconducting (HTS) generators for large capacity wind turbines. We have proposed a cooling system with a heat exchanger and circulation pumps to cool HTS field windings designed for 10 MW-class superconducting generators. In the cooling system, the refrigerants in the stationary and rotational systems are completely separated; heat between the two systems exchanges using a rotational-stationary heat exchanger. The refrigerant in rotational system is circulated by highly reliable pumps. We designed the rotational-stationary heat exchanger based on a conventional shell-and tube type heat exchanger. We also demonstrated that heat exchange in cryogenic temperature is possible with a commercially available heat exchanger. We devised a novel and highly reliable cryogenic helium circulation pump with magnetic reciprocating rotation system and verified its underlying principle with a small-scale model.

  17. Dynamic wind turbine models in power system simulation tool DIgSILENT

    DEFF Research Database (Denmark)

    Hansen, A.D.; Jauch, C.; Sørensen, Poul Ejnar

    2004-01-01

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT (Version 12.0). The developed models are a part of the results of a national research project, whose overall objective is to create amodel database in different simulation tools......-electrical components of the wind turbine (wind model, aerodynamic model, mechanical model). Theinitialisation issues on the wind turbine models into the power system simulation are also presented. However, the main attention in this report is drawn to the modelling at the system level of two wind turbine concepts: 1....... This model database should be able to support the analysis of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The reportprovides a description of the wind turbines modelling, both at a component level and at a system level...

  18. Wind Turbine Generator System Duration Test Report for the Mariah Power Windspire Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Huskey, A.; Bowen, A.; Jager, D.

    2010-05-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of the first round of this project. Duration testing is one of up to five tests that may be performed on the turbines. Other tests include power performance, safety and function, noise, and power quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. This duration test report focuses on the Mariah Power Windspire wind turbine.

  19. Evaluation of a solar-powered organic Rankine cycle using dry organic working fluids

    Directory of Open Access Journals (Sweden)

    Emily Spayde

    2015-12-01

    Full Text Available This paper presents a model to evaluate the performance of a solar-powered organic Rankine cycle (ORC. The system was evaluated in Jackson, MS, using five dry organic working fluids, R218, R227ea, R236ea, R236fa, and RC318. The purpose of this study is to investigate how hourly temperature change affects the electricity production and exergy destruction rates of the solar ORC, and to determine the effect of the working fluid on the proposed system. The system was also evaluated in Tucson, AZ, to investigate the effect of average hourly outdoor temperatures on its performance. The potential of the system to reduce primary energy consumption and carbon dioxide emissions is also investigated. A parametric analysis to determine how temperature and pressure of the organic working fluid, the solar collector area, and the turbine efficiency affect the electricity production is performed. Results show that the ORC produces the most electricity during the middle of the day, when the temperatures are the highest and when the solar collectors have the highest efficiency. Also, R-236ea is the working fluid that shows the best performance of the evaluated fluids. An economic analysis was performed to determine the capital cost available for the proposed system.

  20. Organic Rankine Cycles. Old wine in new bottles; Organic Rankine Cycles. Oude wijn in nieuwe zakken

    Energy Technology Data Exchange (ETDEWEB)

    Den Hartog, T.L.B. [Cumae, Arnhem (Netherlands)

    2007-05-15

    An overview is given of the renewed interest for the Organic Rankine Cycle technology and new developments with regard to this power generating technology. [Dutch] Een overzicht wordt gegeven van de hernieuwde belangstelling voor de Organic Rankine Cycle (ORC) technologie en nieuwe ontwikkeling m.b.t. deze vorm van elektriciteitopwekking.

  1. Basic Principles for Elaboration of Technical Requirements to Control and Protective TRB Turbine Systems

    Directory of Open Access Journals (Sweden)

    N. V. Panteley

    2007-01-01

    Full Text Available The paper considers and provides methodology for calculation of maximum over speeding value of a turbine rotor in the case when we face the failure of all its protective systems. It is presented a derivation of main equations required for making the calculation and the paper also cites results of their practical application at an industrial TRB (Turbine of the Republic of Belarus turbine while constructing its protective control systems.

  2. Performance analysis a of solar driven organic Rankine cycle using multi-component working fluids

    DEFF Research Database (Denmark)

    Baldasso, E.; Andreasen, J. G.; Modi, A.

    2015-01-01

    Among the different renewable sources of energy, solar power could play a primary role in the development of a more sustainable electricity generation system. While large scale concentrated solar power plants based on the steam Rankine cycle have already been proved to be cost effective, research...... is still under progress for small scale low temperature solar-driven power plants. The steam Rankine cycle is suitable for high temperature applications, but its efficiency drastically decreases as the heat source temperature drops. In these cases a much more promising configuration is the organic Rankine...... field made of parabolic trough collectors and a recuperative organic Rankine cycle. Pressurized water is selected as heat transfer fluid and its maximum temperature is fixed to 150°C. The target power output for the plant is 100 kWel. A part load analysis is carried out in order to define the most...

  3. A Semi-active Control System for Wind Turbines

    DEFF Research Database (Denmark)

    Caterino, N.; Georgakis, Christos T.; Trinchillo, F.

    2014-01-01

    A semi-active (SA) control system based on the use of smart magnetorheological (MR) dampers to control the structural response of a wind turbine is proposed herein. The innovative approach is based on the implementation and use of a variable-properties base restraint. This is able to modify in real...... time its mechanical properties according to the instantaneous decision of a given control logic, the latter addressed to control one or more structural response parameters. The smart base restraint is thought to be a combination of a smooth hinge, elastic springs, large-scale adjustable MR dampers...

  4. Advanced Control of Photovoltaic and Wind Turbines Power Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Chen, Wenjie; Blaabjerg, Frede

    2014-01-01

    Much more efforts have been made on the integration of renewable energies into the grid in order to meet the imperative demand of a clean and reliable electricity generation. In this case, the grid stability and robustness may be violated due to the intermittency and interaction of the solar...... and wind renewables. Thus, in this chapter, advanced control strategies, which can enable the power conversion efficiently and reliably, for both photovoltaic (PV) and wind turbines power systems are addressed in order to enhance the integration of those technologies. Related grid demands have been...

  5. Advanced Materials for Mercury 50 Gas Turbine Combustion System

    Energy Technology Data Exchange (ETDEWEB)

    Price, Jeffrey

    2008-09-30

    Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed to achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and

  6. A morphing trailing edge flap system for wind turbine blades

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Barlas, Athanasios; Løgstrup Andersen, Tom

    2015-01-01

    system has been further developed in corporation with the industrial partners Hydratech Industries (DK) and Rehau (DE). A new trailing edge flap design with spanwise voids (channels) and with a chord of 15cm suitable for a 1m chord blade section was developed. It was then manufactured by extrusion...... and glued together with a load carrying part with a connector part that allows an easy attachment on the blade section. After tests in the laboratory the flap was mounted on a 2m long blade section mounted on a newly developed test rig. A 10m long boom with the blade section was installed on a 100kW turbine...

  7. Design of a wind turbine pitch angle controller for power system stabilisation

    DEFF Research Database (Denmark)

    Jauch, Clemens; Islam, S.M.; Sørensen, Poul Ejnar

    2007-01-01

    of the North European power system. A short circuit fault on a busbar close to the wind turbine generator is simulated, and the dynamic responses of the system with and without the power system stabilisation of the wind turbines are presented. Simulations show that in most operating points the pitch controller...

  8. Analysis methods for wind turbine control and electrical system dynamics

    Science.gov (United States)

    Hinrichsen, E. N.

    1995-01-01

    The integration of new energy technologies into electric power systems requires methods which recognize the full range of dynamic events in both the new generating unit and the power system. Since new energy technologies are initially perceived as small contributors to large systems, little attention is generally paid to system integration, i.e. dynamic events in the power system are ignored. As a result, most new energy sources are only capable of base-load operation, i.e. they have no load following or cycling capability. Wind turbines are no exception. Greater awareness of this implicit (and often unnecessary) limitation is needed. Analysis methods are recommended which include very low penetration (infinite bus) as well as very high penetration (stand-alone) scenarios.

  9. Wind Turbine Generator System Acoustic Noise Test Report for the ARE 442 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Huskey, A.; van Dam, J.

    2010-11-01

    This test was conducted on the ARE 442 as part of the U.S. Department of Energy's (DOE's) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of this project. Acoustic noise testing is one of up to five tests that may be performed on the turbines, including duration, safety and function, power performance, and power quality tests. The acoustic noise test was conducted to the IEC 61400-11 Edition 2.1.

  10. Utility Advanced Turbine Systems (ATS) technology readiness testing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted horn DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include fill speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  11. Utility Advanced Turbine Systems (ATS) Technology Readiness Testing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-29

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. This report summarizes work accomplished in 2Q98. The most significant accomplishments are listed in the report.

  12. Utility advanced turbine systems (ATS) technology readiness testing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-15

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

  13. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1998-10-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between Ge and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially be GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished from 4Q97 through 3Q98.

  14. Development and industrial tests of the first LNG hydraulic turbine system in China

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2016-10-01

    Full Text Available The cryogenic hydraulic turbine can be used to replace the conventional J–T valve for LNG or mixed refrigerant throttling and depressurization in a natural gas liquefaction plant. This advanced technology is not only to enhance the efficiency of the liquefaction plant, but to usher a new trend in the development of global liquefaction technologies. China has over 136 liquefaction plants, but the cryogenic hydraulic turbines have not been deployed in industrial utilization. In addition, these turbines cannot be manufactured domestically. In this circumstance, through working on the key technologies for LNG hydraulic turbine process & control system development, hydraulic model optimization design, structure design and manufacturing, the first domestic cryogenic hydraulic turbine with a flow rate of 40 m3/h was developed to recover the pressure energy from the LNG of cold box. The turbine was installed in the CNOOC Zhuhai Natural Gas Liquefaction Plant for industrial tests under multiple working conditions, including start-stop, variable flow rates and variable rotation speeds. Test results show that the domestic LNG cryogenic hydraulic turbine has satisfactory mechanical and operational performances at low temperatures as specified in design. In addition, the process & control system and frequency-conversion power-generation system of the turbine system are designed properly to automatically and smoothly replace the existing LNG J–T valve. As a result, the domestic LNG cryogenic hydraulic turbine system can improve LNG production by an average of 2% and generate power of 8.3 kW.

  15. Cooling system with compressor bleed and ambient air for gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, Jan H.; Marra, John J.

    2017-11-21

    A cooling system for a turbine engine for directing cooling fluids from a compressor to a turbine blade cooling fluid supply and from an ambient air source to the turbine blade cooling fluid supply to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The cooling system may include a compressor bleed conduit extending from a compressor to the turbine blade cooling fluid supply that provides cooling fluid to at least one turbine blade. The compressor bleed conduit may include an upstream section and a downstream section whereby the upstream section exhausts compressed bleed air through an outlet into the downstream section through which ambient air passes. The outlet of the upstream section may be generally aligned with a flow of ambient air flowing in the downstream section. As such, the compressed air increases the flow of ambient air to the turbine blade cooling fluid supply.

  16. Integrating Systems Health Management with Adaptive Controls for a Utility-Scale Wind Turbine

    Science.gov (United States)

    Frost, Susan A.; Goebel, Kai; Trinh, Khanh V.; Balas, Mark J.; Frost, Alan M.

    2011-01-01

    Increasing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. Systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage. Advanced adaptive controls can provide the mechanism to enable optimized operations that also provide the enabling technology for Systems Health Management goals. The work reported herein explores the integration of condition monitoring of wind turbine blades with contingency management and adaptive controls. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  17. Numerical analysis of flow interaction of turbine system in two-stage turbocharger of internal combustion engine

    Science.gov (United States)

    Liu, Y. B.; Zhuge, W. L.; Zhang, Y. J.; Zhang, S. Y.

    2016-05-01

    To reach the goal of energy conservation and emission reduction, high intake pressure is needed to meet the demand of high power density and high EGR rate for internal combustion engine. Present power density of diesel engine has reached 90KW/L and intake pressure ratio needed is over 5. Two-stage turbocharging system is an effective way to realize high compression ratio. Because turbocharging system compression work derives from exhaust gas energy. Efficiency of exhaust gas energy influenced by design and matching of turbine system is important to performance of high supercharging engine. Conventional turbine system is assembled by single-stage turbocharger turbines and turbine matching is based on turbine MAP measured on test rig. Flow between turbine system is assumed uniform and value of outlet physical quantities of turbine are regarded as the same as ambient value. However, there are three-dimension flow field distortion and outlet physical quantities value change which will influence performance of turbine system as were demonstrated by some studies. For engine equipped with two-stage turbocharging system, optimization of turbine system design will increase efficiency of exhaust gas energy and thereby increase engine power density. However flow interaction of turbine system will change flow in turbine and influence turbine performance. To recognize the interaction characteristics between high pressure turbine and low pressure turbine, flow in turbine system is modeled and simulated numerically. The calculation results suggested that static pressure field at inlet to low pressure turbine increases back pressure of high pressure turbine, however efficiency of high pressure turbine changes little; distorted velocity field at outlet to high pressure turbine results in swirl at inlet to low pressure turbine. Clockwise swirl results in large negative angle of attack at inlet to rotor which causes flow loss in turbine impeller passages and decreases turbine

  18. Detecting and mitigating wind turbine clutter for airspace radar systems.

    Science.gov (United States)

    Wang, Wen-Qin

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.

  19. Gas turbines: gas cleaning requirements for biomass-fired systems

    Directory of Open Access Journals (Sweden)

    Oakey John

    2004-01-01

    Full Text Available Increased interest in the development of renewable energy technologies has been hencouraged by the introduction of legislative measures in Europe to reduce CO2 emissions from power generation in response to the potential threat of global warming. Of these technologies, biomass-firing represents a high priority because of the modest risk involved and the availability of waste biomass in many countries. Options based on farmed biomass are also under development. This paper reviews the challenges facing these technologies if they are to be cost competitive while delivering the supposed environmental benefits. In particular, it focuses on the use of biomass in gasification-based systems using gas turbines to deliver increased efficiencies. Results from recent studies in a European programme are presented. For these technologies to be successful, an optimal balance has to be achieved between the high cost of cleaning fuel gases, the reliability of the gas turbine and the fuel flexibility of the overall system. Such optimisation is necessary on a case-by-case basis, as local considerations can play a significant part.

  20. Detecting and Mitigating Wind Turbine Clutter for Airspace Radar Systems

    Science.gov (United States)

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results. PMID:24385880

  1. Remediation Optimization and Sustainability: Wind Turbine on Cape Cod to Power Groundwater Remediation Systems

    Science.gov (United States)

    2009-05-04

    1 Mr. Jon Davis, P.E. Program Manager May 4, 2009 Remediation Optimization and Sustainability: Wind Turbine on Cape Cod to Power Groundwater...Sustainability: Wind Turbine on Cape Cod to Power Groundwater Remediation Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...Std Z39-18 2 Outline  Brief Background  Program Consumption/Emissions  Small Scale Initiatives  Wind Turbine 3 Massachusetts Vineyard Sound Cape

  2. Novel lubrication system to improve the excessive wear in wind turbine yaw and pitch gears

    OpenAIRE

    Farré Lladós, Josep

    2015-01-01

    Manufacturers of wind turbines have observed a new phenomenon that appears in high power wind turbines: excessive wear in the teeth located at 0º in the pitch bearing. In order to design more efficient wind turbines, manufacturers are increasing the rotor diameter to capture more kinetic energy from the wind to generate more energy, therefore the stress in the joints/unions is increased, which leads to the elastic deformation of the system. These stresses and deformations increase in all p...

  3. Doubly fed induction generator based wind turbine systems subject to recurring grid faults

    DEFF Research Database (Denmark)

    Chen, Wenjie; Blaabjerg, Frede; Zhu, Nan

    2014-01-01

    New grid codes demand the wind turbine systems to ride through recurring grid faults. In this paper, the performance of the Doubly Fed Induction Generator wind turbine system under recurring grid faults is analyzed. The stator natural flux produced by the voltage recovery after the first grid fault...

  4. Understanding IEC standard wind turbine models using SimPowerSystems

    DEFF Research Database (Denmark)

    Das, Kaushik; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2016-01-01

    This article describes and exemplifies the IEC 61400-27 generic wind turbine models through an interactive multimedia learning environment - Matlab SimPowerSystems. The article aims help engineers with different backgrounds to get a better understanding of wind turbine dynamics and control...... by easily conducting different study simulations in the SimPowerSystems platform ....

  5. Wind turbine control and model predictive control for uncertain systems

    DEFF Research Database (Denmark)

    Thomsen, Sven Creutz

    This thesis presents both an applied study and a theoretical study within the field of control theory. Control theory is an interdisciplinary branch between mathematics and engineering dealing with the manipulation of systems to produce a desired output. The applied study deals with wind turbine...... as disturbance models for controller design. The theoretical study deals with Model Predictive Control (MPC). MPC is an optimal control method which is characterized by the use of a receding prediction horizon. MPC has risen in popularity due to its inherent ability to systematically account for time......-domain constraints on signals. During the last decades several theoretical advances have been made, so that it can handle a wide variety of system structures. In this thesis, the focus is on handling uncertain linear system description. To this end the so-called Youla parameterizations have been used. Two methods...

  6. Economic analysis of condition monitoring systems for offshore wind turbine sub-systems

    DEFF Research Database (Denmark)

    May, Allan; MacMillan, David; Thöns, Sebastian

    2015-01-01

    The use of condition monitoring systems on offshore wind turbines has increased dramatically in recent times. However, their use is mostly restricted to vibration based monitoring systems for the gearbox, generator and drive train. A survey of commercially available condition monitoring systems a...

  7. Study on Unified Chaotic System-Based Wind Turbine Blade Fault Diagnostic System

    Science.gov (United States)

    Kuo, Ying-Che; Hsieh, Chin-Tsung; Yau, Her-Terng; Li, Yu-Chung

    At present, vibration signals are processed and analyzed mostly in the frequency domain. The spectrum clearly shows the signal structure and the specific characteristic frequency band is analyzed, but the number of calculations required is huge, resulting in delays. Therefore, this study uses the characteristics of a nonlinear system to load the complete vibration signal to the unified chaotic system, applying the dynamic error to analyze the wind turbine vibration signal, and adopting extenics theory for artificial intelligent fault diagnosis of the analysis signal. Hence, a fault diagnostor has been developed for wind turbine rotating blades. This study simulates three wind turbine blade states, namely stress rupture, screw loosening and blade loss, and validates the methods. The experimental results prove that the unified chaotic system used in this paper has a significant effect on vibration signal analysis. Thus, the operating conditions of wind turbines can be quickly known from this fault diagnostic system, and the maintenance schedule can be arranged before the faults worsen, making the management and implementation of wind turbines smoother, so as to reduce many unnecessary costs.

  8. Variable speed and constant frequency control of hydraulic wind turbine with energy storage system

    National Research Council Canada - National Science Library

    Liu, Zengguang; Yang, Guolai; Wei, Liejiang; Yue, Daling

    2017-01-01

    ... hydraulic system of hydraulic wind turbine for the first time. The whole hydraulic system consists of a fixed displacement pump, a variable displacement motor, two proportional control valves and an energy storage system...

  9. System Reduction in Nonlinear Multibody Dynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Kristian; Nielsen, Søren R.K.; Rubak, Rune

    2007-01-01

    In this paper the system reduction in nonlinear multibody dynamics of wind turbines is investigated for various updating schemes of the moving frame of reference. In one case, the moving frame of reference is updated to a stiff body, relative to which the elastic deformations are fixed at one end....... In the other case, the stiff body motion is defined as the chord line connecting the end points of the beam, and the elastic deformations are simply supported at the end points. The system reduction is performed by discretizing the spatial motion into a set of rigid body modes and linear elastic eigenmodes...... determined from an FE-beam model complying to the definitions of the stiff bodymotions. Moreover, certain nonlinear effects have been included. These encompass the non-conservative rotation of the aerodynamic load during large elastic deformations and application of the aerodynamic and inertial loads...

  10. Apparatus and method for gas turbine active combustion control system

    Science.gov (United States)

    Umeh, Chukwueloka (Inventor); Kammer, Leonardo C. (Inventor); Shah, Minesh (Inventor); Fortin, Jeffrey B. (Inventor); Knobloch, Aaron (Inventor); Myers, William J. (Inventor); Mancini, Alfred Albert (Inventor)

    2011-01-01

    An Active Combustion Control System and method provides for monitoring combustor pressure and modulating fuel to a gas turbine combustor to prevent combustion dynamics and/or flame extinguishments. The system includes an actuator, wherein the actuator periodically injects pulsed fuel into the combustor. The apparatus also includes a sensor connected to the combustion chamber down stream from an inlet, where the sensor generates a signal detecting the pressure oscillations in the combustor. The apparatus controls the actuator in response to the sensor. The apparatus prompts the actuator to periodically inject pulsed fuel into the combustor at a predetermined sympathetic frequency and magnitude, thereby controlling the amplitude of the pressure oscillations in the combustor by modulating the natural oscillations.

  11. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-04-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer conflation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. The objective of this task is to design 7H and 9H compressor rotor and stator structures with the goal of achieving high efficiency at lower cost and greater durability by applying proven GE Power Systems (GEPS) heavy-duty use design practices. The designs will be based on the GE Aircraft Engines (GEAE) CF6-80C2 compressor. Transient and steady-state thermo-mechanical stress analyses will be run to ensure compliance with GEPS life standards. Drawings will be prepared for forgings, castings, machining, and instrumentation for full speed, no load (FSNL) tests of the first unit on both 9H and 7H applications.

  12. Dynamic wind turbine models in power system simulation tool DIgSILENT

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Iov, F.; Soerensen, Poul.; Cutululis, N.; Jauch, C.; Blaabjerg, F.

    2007-08-15

    This report presents a collection of models and control strategies developed and implemented in the power system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second edition of Risoe-R-1400(EN) and it gathers and describes a whole wind turbine model database built-op and developed during several national research projects, carried out at Risoe DTU National Laboratory for Sustainable Energy and Aalborg University, in the period 2001-2007. The overall objective of these projects was to create a wind turbine model database able to support the analysis of the interaction between the mechanical structure of the wind turbine and the electrical grid during different operational modes. The report provides thus a description of the wind turbines modelling, both at a component level and at a system level. The report contains both the description of DIgSILENT built-in models for the electrical components of a grid connected wind turbine (e.g. induction generators, power converters, transformers) and the models developed by the user, in the dynamic simulation language DSL of DIgSILENT, for the non-electrical components of the wind turbine (wind model, aerodynamic model, mechanical model). The initialisation issues on the wind turbine models into the power system simulation are also presented. The main attention in the report is drawn to the modelling at the system level of the following wind turbine concepts: (1) Fixed speed active stall wind turbine concept (2) Variable speed doubly-fed induction generator wind turbine concept (3) Variable speed multi-pole permanent magnet synchronous generator wind turbine concept These wind turbine concept models can be used and even extended for the study of different aspects, e.g. the assessment of power quality, control strategies, connection of the wind turbine at different types of grid and storage systems. Different control strategies have been developed and implemented for these wind turbine

  13. Evaluation of Electromechanical Systems Dynamically Emulating a Candidate Hydrokinetic Turbine

    OpenAIRE

    Cavagnaro, R.J.; Neely, J.C.; Faÿ, F.-X.; Lopez-Mendia, J.; Rea, J.A.

    2016-01-01

    Implications of conducting hardware-in-the-loop testing of a specific hydrokinetic turbine on controllable motor-generator sets or electromechanical emulation machines (EEMs)are explored. The emulator control dynamic equations are presented, methods for scaling turbine parameters are developed and evaluated, and experimental results are presented from three EEMs programmed to emulate the same vertical-axis fixed-pitch turbine. Although hardware platforms and control implementations varied, re...

  14. UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-10-01

    The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

  15. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated

  16. Analysis of a rotating spool expander for Organic Rankine Cycle applications

    Science.gov (United States)

    Krishna, Abhinav

    Increasing interest in recovering or utilizing low-grade heat for power generation has prompted a search for ways in which the power conversion process may be enhanced. Amongst the conversion systems, the Organic Rankine Cycle (ORC) has generated an enormous amount of interest amongst researchers and system designers. Nevertheless, component level technologies need to be developed and match the range of potential applications. In particular, technical challenges associated with scaling expansion machines (turbines) from utility scale to commercial scale have prevented widespread adoption of the technology. In this regard, this work focuses on a novel rotating spool expansion machine at the heart of an Organic Rankine Cycle. A comprehensive, deterministic simulation model of the rotating spool expander is developed. The comprehensive model includes a detailed geometry model of the spool expander and the suction valve mechanism. Sub-models for mass flow, leakage, heat transfer and friction within the expander are also developed. Apart from providing the ability to characterize the expander in a particular system, the model provides a valuable tool to study the impact of various design variables on the performance of the machine. The investigative approach also involved an experimental program to assess the performance of a working prototype. In general, the experimental data showed that the expander performance was sub-par, largely due to the mismatch of prevailing operating conditions and the expander design criteria. Operating challenges during the shakedown tests and subsequent sub-optimal design changes also detracted from performance. Nevertheless, the results of the experimental program were sufficient for a proof-of-concept assessment of the expander and for model validation over a wide range of operating conditions. The results of the validated model reveal several interesting details concerning the expander design and performance. For example, the match

  17. Megawatt Class Nuclear Space Power Systems (MCNSPS) conceptual design and evaluation report. Volume 3, technologies 2: Power conversion

    Science.gov (United States)

    Wetch, J. R.

    1988-01-01

    The major power conversion concepts considered for the Megawatt Class Nuclear Space Power System (MCNSPS) are discussed. These concepts include: (1) Rankine alkali-metal-vapor turbine alternators; (2) in-core thermionic conversion; (3) Brayton gas turbine alternators; and (4) free piston Stirling engine linear alternators. Considerations important to the coupling of these four conversion alternatives to an appropriate nuclear reactor heat source are examined along with the comparative performance characteristics of the combined systems meeting MCNSPS requirements.

  18. Comparative investigation of working fluids for an organic Rankine cycle with geothermal water

    Science.gov (United States)

    Liu, Yan-Na; Xiao, Song

    2015-06-01

    In this paper, the thermodynamic investigation on the use of geothermal water (130 °C as maximum) for power generation through a basic Rankine has been presented together with obtained main results. Six typical organic working fluids (i.e., R245fa, R141b, R290, R600, R152a, and 134a) were studied with modifying the input pressure and temperature to the turbine. The results show that there are no significant changes taking place in the efficiency for these working fluids with overheating the inlet fluid to the turbine, i.e., efficiency is a weak function of temperature. However, with the increasing of pressure ratio in the turbine, the efficiency rises more sharply. The technical viability is shown of implementing this type of process for recovering low temperature heat resource.

  19. Fault Diagnosis System of Wind Turbine Generator Based on Petri Net

    Science.gov (United States)

    Zhang, Han

    Petri net is an important tool for discrete event dynamic systems modeling and analysis. And it has great ability to handle concurrent phenomena and non-deterministic phenomena. Currently Petri nets used in wind turbine fault diagnosis have not participated in the actual system. This article will combine the existing fuzzy Petri net algorithms; build wind turbine control system simulation based on Siemens S7-1200 PLC, while making matlab gui interface for migration of the system to different platforms.

  20. Lifting system and apparatus for constructing wind turbine towers

    Science.gov (United States)

    Livingston, Tracy; Schrader, Terry; Goldhardt, James; Lott, James

    2011-02-01

    The disclosed invention is utilized for mounting a wind turbine and blade assembly on the upper end of a wind turbine tower. The invention generally includes a frame or truss that is pivotally secured to the top bay assembly of the tower. A transverse beam is connected to the frame or truss and extends fore of the tower when the frame or truss is in a first position and generally above the tower when in a second position. When in the first position, a wind turbine or blade assembly can be hoisted to the top of the tower. The wind turbine or blade assembly is then moved into position for mounting to the tower as the frame or truss is pivoted to a second position. When the turbine and blade assembly are secured to the tower, the frame or truss is disconnected from the tower and lowered to the ground.

  1. Fuel flexibility via real-time Raman fuel-gas analysis for turbine system control

    Science.gov (United States)

    Buric, M.; Woodruff, S.; Chorpening, B.; Tucker, D.

    2015-06-01

    The modern energy production base in the U.S. is increasingly incorporating opportunity fuels such as biogas, coalbed methane, coal syngas, solar-derived hydrogen, and others. In many cases, suppliers operate turbine-based generation systems to efficiently utilize these diverse fuels. Unfortunately, turbine engines are difficult to control given the varying energy content of these fuels, combined with the need for a backup natural gas supply to provide continuous operation. Here, we study the use of a specially designed Raman Gas Analyzer based on capillary waveguide technology with sub-second response time for turbine control applications. The NETL Raman Gas Analyzer utilizes a low-power visible pump laser, and a capillary waveguide gas-cell to integrate large spontaneous Raman signals, and fast gas-transfer piping to facilitate quick measurements of fuel-gas components. A U.S. Department of Energy turbine facility known as HYPER (hybrid performance system) serves as a platform for apriori fuel composition measurements for turbine speed or power control. A fuel-dilution system is used to simulate a compositional upset while simultaneously measuring the resultant fuel composition and turbine response functions in real-time. The feasibility and efficacy of system control using the spontaneous Raman-based measurement system is then explored with the goal of illustrating the ability to control a turbine system using available fuel composition as an input process variable.

  2. IEA Wind Task 37: Systems Modeling Framework and Ontology for Wind Turbines and Plants

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, Katherine L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zahle, Frederik [Technical University of Denmark; Merz, Karl [SINTEF Energy Research; McWilliam, Mike [Technical University of Denmark; Bortolotti, Pietro [Technical University Munich

    2017-08-14

    This presentation will provide an overview of progress to date in the development of a system modeling framework and ontology for wind turbines and plants as part of the larger IEA Wind Task 37 on wind energy systems engineering. The goals of the effort are to create a set of guidelines for a common conceptual architecture for wind turbines and plants so that practitioners can more easily share descriptions of wind turbines and plants across multiple parties and reduce the effort for translating descriptions between models; integrate different models together and collaborate on model development; and translate models among different levels of fidelity in the system.

  3. Aerothermal Analysis of a Turbine Casing Impingement Cooling System

    Directory of Open Access Journals (Sweden)

    Riccardo Da Soghe

    2012-01-01

    Full Text Available Heat transfer and pressure drop for a representative part of a turbine active cooling system were numerically investigated by means of an in-house code. This code has been developed in the framework of an internal research program and has been validated by experiments and CFD. The analysed system represents the classical open bird cage arrangement that consists of an air supply pipe with a control valve and the present system with a collector box and pipes, which distribute cooling air in circumferential direction of the casing. The cooling air leaves the ACC system through small holes at the bottom of the tubes. These tubes extend at about 180° around the casing and may involve a huge number of impinging holes; as a consequence, the impinging jets mass flow rate may vary considerably along the feeding manifold with a direct impact on the achievable heat transfer levels. This study focuses on the performance, in terms of heat transfer coefficient and pressure drop, of several impinging tube geometries. As a result of this analysis, several design solutions have been compared and discussed.

  4. Internal combustion engine system having a power turbine with a broad efficiency range

    Science.gov (United States)

    Whiting, Todd Mathew; Vuk, Carl Thomas

    2010-04-13

    An engine system incorporating an air breathing, reciprocating internal combustion engine having an inlet for air and an exhaust for products of combustion. A centripetal turbine receives products of the combustion and has a housing in which a turbine wheel is rotatable. The housing has first and second passages leading from the inlet to discrete, approximately 180.degree., portions of the circumference of the turbine wheel. The passages have fixed vanes adjacent the periphery of the turbine wheel and the angle of the vanes in one of the passages is different than those in the other so as to accommodate different power levels providing optimum approach angles between the gases passing the vanes and the blades of the turbine wheel. Flow through the passages is controlled by a flapper valve to direct it to one or the other or both passages depending upon the load factor for the engine.

  5. Doubly Fed Induction Generator Wind Turbine Systems Subject to Recurring Symmetrical Grid Faults

    DEFF Research Database (Denmark)

    Chen, Wenjie; Blaabjerg, Frede; Zhu, Nan

    2016-01-01

    New grid codes demand the wind turbine systems to ride through recurring grid faults. In this paper, the performance of the doubly Ffed induction generator (DFIG) wind turbine system under recurring symmetrical grid faults is analyzed. The mathematical model of the DFIG under recurring symmetrical...... grid faults is established. The analysis is based on the DFIG wind turbine system with the typical low-voltage ride-through strategy-with rotor-side crowbar. The stator natural flux produced by the voltage recovery after the first grid fault may be superposed on the stator natural flux produced...... model of the DFIG under recurring grid faults is verified by simulations on a 1.5-MW DFIG wind turbine system model and experiments on a 30-kW reduced scale DFIG test system....

  6. Advanced turbine systems study system scoping and feasibility study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    United Technologies Research Center, Pratt & Whitney Commercial Engine Business, And Pratt & Whitney Government Engine and Space Propulsion has performed a preliminary analysis of an Advanced Turbine System (ATS) under Contract DE-AC21-92MC29247 with the Morgantown Energy Technology Center. The natural gas-fired reference system identified by the UTC team is the Humid Air Turbine (HAT) Cycle in which the gas turbine exhaust heat and heat rejected from the intercooler is used in a saturator to humidify the high pressure compressor discharge air. This results in a significant increase in flow through the turbine at no increase in compressor power. Using technology based on the PW FT4000, the industrial engine derivative of the PW4000, currently under development by PW, the system would have an output of approximately 209 MW and an efficiency of 55.3%. Through use of advanced cooling and materials technologies similar to those currently in the newest generation military aircraft engines, a growth version of this engine could attain approximately 295 MW output at an efficiency of 61.5%. There is the potential for even higher performance in the future as technology from aerospace R&D programs is adapted to aero-derivative industrial engines.

  7. An expert system for diagnostics and estimation of steam turbine components condition

    Science.gov (United States)

    Murmansky, B. E.; Aronson, K. E.; Brodov, Yu. M.

    2017-11-01

    The report describes an expert system of probability type for diagnostics and state estimation of steam turbine technological subsystems components. The expert system is based on Bayes’ theorem and permits to troubleshoot the equipment components, using expert experience, when there is a lack of baseline information on the indicators of turbine operation. Within a unified approach the expert system solves the problems of diagnosing the flow steam path of the turbine, bearings, thermal expansion system, regulatory system, condensing unit, the systems of regenerative feed-water and hot water heating. The knowledge base of the expert system for turbine unit rotors and bearings contains a description of 34 defects and of 104 related diagnostic features that cause a change in its vibration state. The knowledge base for the condensing unit contains 12 hypotheses and 15 evidence (indications); the procedures are also designated for 20 state parameters estimation. Similar knowledge base containing the diagnostic features and faults hypotheses are formulated for other technological subsystems of turbine unit. With the necessary initial information available a number of problems can be solved within the expert system for various technological subsystems of steam turbine unit: for steam flow path it is the correlation and regression analysis of multifactor relationship between the vibration parameters variations and the regime parameters; for system of thermal expansions it is the evaluation of force acting on the longitudinal keys depending on the temperature state of the turbine cylinder; for condensing unit it is the evaluation of separate effect of the heat exchange surface contamination and of the presence of air in condenser steam space on condenser thermal efficiency performance, as well as the evaluation of term for condenser cleaning and for tube system replacement and so forth. With a lack of initial information the expert system enables to formulate a diagnosis

  8. Turbines, generators and associated plant incorporating modern power system practice

    CERN Document Server

    Littler, DJ

    1992-01-01

    The introduction of new 500 MW and 660 MW turbine generator plant in nuclear, coal- and oil-fired power stations has been partly responsible for the increase in generating capacity of the CEGB over the last 30 years. This volume provides a detailed account of experience gained in the development, design, manufacture, operation and testing of large turbine-generators in the last 20 years. With the advance in analytical and computational techniques, the application of this experience to future design and operation of large turbine-generator plant will be of great value to engineers in the indust

  9. Modeling of wind turbines with doubly fed generator system

    CERN Document Server

    Fortmann, Jens

    2014-01-01

    Jens Fortmann describes the deduction of models for the grid integration of variable speed wind turbines and the reactive power control design of wind plants. The modeling part is intended as background to understand the theory, capabilities and limitations of the generic doubly fed generator and full converter wind turbine models described in the IEC 61400-27-1 and as 2nd generation WECC models that are used as standard library models of wind turbines for grid simulation software. Focus of the reactive power control part is a deduction of the origin and theory behind the reactive current requ

  10. Turbine airfoil with an internal cooling system having vortex forming turbulators

    Science.gov (United States)

    Lee, Ching-Pang

    2014-12-30

    A turbine airfoil usable in a turbine engine and having at least one cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels having a plurality of turbulators protruding from an inner surface and positioned generally nonorthogonal and nonparallel to a longitudinal axis of the airfoil cooling channel. The configuration of turbulators may create a higher internal convective cooling potential for the blade cooling passage, thereby generating a high rate of internal convective heat transfer and attendant improvement in overall cooling performance. This translates into a reduction in cooling fluid demand and better turbine performance.

  11. Operating experience feedback report -- turbine-generator overspeed protection systems: Commercial power reactors. Volume 11

    Energy Technology Data Exchange (ETDEWEB)

    Ornstein, H.L.

    1995-04-01

    This report presents the results of the US Nuclear Regulatory Commission`s Office for Analysis and Evaluation of Operational Data (AEOD) review of operating experience of main turbine-generator overspeed and overspeed protection systems. It includes an indepth examination of the turbine overspeed event which occurred on November 9, 1991, at the Salem Unit 2 Nuclear Power Plant. It also provides information concerning actions taken by other utilities and the turbine manufacturers as a result of the Salem overspeed event. AEOD`s study reviewed operating procedures and plant practices. It noted differences between turbine manufacturer designs and recommendations for operations, maintenance, and testing, and also identified significant variations in the manner that individual plants maintain and test their turbine overspeed protection systems. AEOD`s study provides insight into the shortcomings in the design, operation, maintenance, testing, and human factors associated with turbine overspeed protection systems. Operating experience indicates that the frequency of turbine overspeed events is higher than previously thought and that the bases for demonstrating compliance with NRC`s General Design Criterion (GDC) 4, Environmental and dynamic effects design bases, may be nonconservative with respect to the assumed frequency.

  12. Self Adaptive Air Turbine for Wave Energy Conversion Using Shutter Valve and OWC Heoght Control System

    Energy Technology Data Exchange (ETDEWEB)

    Di Bella, Francis A

    2014-09-29

    An oscillating water column (OWC) is one of the most technically viable options for converting wave energy into useful electric power. The OWC system uses the wave energy to “push or pull” air through a high-speed turbine, as illustrated in Figure 1. The turbine is typically a bi-directional turbine, such as a Wells turbine or an advanced Dennis-Auld turbine, as developed by Oceanlinx Ltd. (Oceanlinx), a major developer of OWC systems and a major collaborator with Concepts NREC (CN) in Phase II of this STTR effort. Prior to awarding the STTR to CN, work was underway by CN and Oceanlinx to produce a mechanical linkage mechanism that can be cost-effectively manufactured, and can articulate turbine blades to improve wave energy capture. The articulation is controlled by monitoring the chamber pressure. Funding has been made available from the U.S. Department of Energy (DOE) to CN (DOE DE-FG-08GO18171) to co-share the development of a blade articulation mechanism for the purpose of increasing energy recovery. However, articulating the blades is only one of the many effective design improvements that can be made to the composite subsystems that constitute the turbine generator system.

  13. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 7: Metal vapor Rankine topping-steam bottoming cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Deegan, P. B.

    1976-01-01

    Adding a metal vapor Rankine topper to a steam cycle was studied as a way to increase the mean temperature at which heat is added to the cycle to raise the efficiency of an electric power plant. Potassium and cesium topping fluids were considered. Pressurized fluidized bed or pressurized (with an integrated low-Btu gasifier) boilers were assumed. Included in the cycles was a pressurizing gas turbine with its associated recuperator, and a gas economizer and feedwater heater. One of the ternary systems studied shows plant efficiency of 42.3% with a plant capitalization of $66.7/kW and a cost of electricity of 8.19 mills/MJ (29.5 mills/kWh).

  14. A Closed-Form Technique for the Reliability and Risk Assessment of Wind Turbine Systems

    Directory of Open Access Journals (Sweden)

    Leonardo Dueñas-Osorio

    2012-06-01

    Full Text Available This paper proposes a closed-form method to evaluate wind turbine system reliability and associated failure consequences. Monte Carlo simulation, a widely used approach for system reliability assessment, usually requires large numbers of computational experiments, while existing analytical methods are limited to simple system event configurations with a focus on average values of reliability metrics. By analyzing a wind turbine system and its components in a combinatorial yet computationally efficient form, the proposed approach provides an entire probability distribution of system failure that contains all possible configurations of component failure and survival events. The approach is also capable of handling unique component attributes such as downtime and repair cost needed for risk estimations, and enables sensitivity analysis for quantifying the criticality of individual components to wind turbine system reliability. Applications of the technique are illustrated by assessing the reliability of a 12-subassembly turbine system. In addition, component downtimes and repair costs of components are embedded in the formulation to compute expected annual wind turbine unavailability and repair cost probabilities, and component importance metrics useful for maintenance planning and research prioritization. Furthermore, this paper introduces a recursive solution to closed-form method and applies this to a 45-component turbine system. The proposed approach proves to be computationally efficient and yields vital reliability information that could be readily used by wind farm stakeholders for decision making and risk management.

  15. Reduced models of doubly fed induction generator system for wind turbine simulations

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Hansen, Anca Daniela; Lund, Torsten

    2005-01-01

    This article compares three reduced models with a detailed model of a doubly fed induction generator system for wind turbine applications. The comparisons are based on simulations only. The main idea is to provide reduced generator models which are appropriate to simulate normal wind turbine...... operation in aeroelastic wind turbine models, e.g. for control system design or structural design of the wind turbine. The electrical behaviour such as grid influence will therefore not be considered. The work presented in this article shows that with an ideal, undisturbed grid the dynamics of the doubly...... fed induction generator system is very well represented by the dynamics due to the generator inertia and the generator control system, whereas the electromagnetic characteristics of the generator can be represented by the steady state relations. The parameters for the proposed models are derived from...

  16. Advanced coal fueled industrial cogeneration gas turbine system. Final report, June 1986--April 1994

    Energy Technology Data Exchange (ETDEWEB)

    LeCren, R.T.

    1994-05-01

    Demonstration of a direct coal-fueled gas turbine system that is environmentally, technically, and economically viable depends on the satisfactory resolution of several key issues. Solar Turbines, Incorporates technical approach to these issues was to advance a complete direct coal-fueled gas turbine system that incorporated near-term technology solutions to both historically demonstrated problem areas such as deposition, erosion, and hot end corrosion, and to the emergent environmental constraints based on NO{sub x}, SO{sub x}, and particulates. Solar`s program approach was keyed to the full commercialization of the coal-fueled cogeneration gas turbine which would occur after extended field verification demonstrations conducted by the private sector. The program was structured in three phases plus an optional fourth phase: Phase 1 -- system description; Phase 2 -- component development; Phase 3 -- prototype system verification; and Phase 4 -- field evaluation.

  17. Development of environmentally advanced hydropower turbine system design concepts

    Energy Technology Data Exchange (ETDEWEB)

    Franke, G.F.; Webb, D.R.; Fisher, R.K. Jr. [Voith Hydro, Inc. (United States)] [and others

    1997-08-01

    A team worked together on the development of environmentally advanced hydro turbine design concepts to reduce hydropower`s impact on the environment, and to improve the understanding of the technical and environmental issues involved, in particular, with fish survival as a result of their passage through hydro power sites. This approach brought together a turbine design and manufacturing company, biologists, a utility, a consulting engineering firm and a university research facility, in order to benefit from the synergy of diverse disciplines. Through a combination of advanced technology and engineering analyses, innovative design concepts adaptable to both new and existing hydro facilities were developed and are presented. The project was divided into 4 tasks. Task 1 investigated a broad range of environmental issues and how the issues differed throughout the country. Task 2 addressed fish physiology and turbine physics. Task 3 investigated individual design elements needed for the refinement of the three concept families defined in Task 1. Advanced numerical tools for flow simulation in turbines are used to quantify characteristics of flow and pressure fields within turbine water passageways. The issues associated with dissolved oxygen enhancement using turbine aeration are presented. The state of the art and recent advancements of this technology are reviewed. Key elements for applying turbine aeration to improve aquatic habitat are discussed and a review of the procedures for testing of aerating turbines is presented. In Task 4, the results of the Tasks were assembled into three families of design concepts to address the most significant issues defined in Task 1. The results of the work conclude that significant improvements in fish passage survival are achievable.

  18. Theoretical study of thermally driven heat pumps based on double organic rankine cycle

    OpenAIRE

    Demierre, Jonathan; Favrat, Daniel

    2013-01-01

    Part of: Thermally driven heat pumps for heating and cooling. – Ed.: Annett Kühn – Berlin: Universitätsverlag der TU Berlin, 2013 ISBN 978-3-7983-2686-6 (print) ISBN 978-3-7983-2596-8 (online) urn:nbn:de:kobv:83-opus4-39458 [http://nbn-resolving.de/urn:nbn:de:kobv:83-opus4-39458] This study deals with a type of thermally driven heat pumps that consists of a reverse Rankine heat pump cycle, the compressor of which is driven by the turbine of a supercritical Organi...

  19. A baseline expert control system for marine gas turbine compressor surge

    OpenAIRE

    Davitt, James A.

    1989-01-01

    Approved for public release; distribution is unlimited United States Navy gas turbine ships are in need of casualty control system updating to reduce demanding conditions on engineering watch standers, to increase equipment longevity, and reduce operating costs. This thesis presents a baseline computer-based expert system controller concept developed for the critical casualty control problem of gas turbine compressor surge. The controller design rests on the building-block components of re...

  20. Real-time monitoring, prognosis, and resilient control for wind turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhiwei; Sheng, Shuangwen

    2018-02-01

    This special issue aims to provide a platform for academic and industrial communities to report recent results and emerging research in real-time monitoring, fault diagnosis, prognosis, and resilient control and design of wind turbine systems. After a strict peer-review process, 20 papers were selected, which represent the most recent progress of the real-time monitoring, diagnosis, prognosis, and resilient control methods/techniques in wind turbine systems.

  1. Advanced turbine systems program conceptual design and product development. Annual report, August 1994--July 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This report summarizes the tasks completed under this project during the period from August 1, 1994 through July 31, 1994. The objective of the study is to provide the conceptual design and product development plan for an ultra high efficiency, environmentally superior and cost-competitive industrial gas turbine system to be commercialized by the year 2000. The tasks completed include a market study for the advanced turbine system; definition of an optimized recuperated gas turbine as the prime mover meeting the requirements of the market study and whose characteristics were, in turn, used for forecasting the total advanced turbine system (ATS) future demand; development of a program plan for bringing the ATS to a state of readiness for field test; and demonstration of the primary surface recuperator ability to provide the high thermal effectiveness and low pressure loss required to support the proposed ATS cycle.

  2. A Survey of Control Issues in PMSG-Based Small Wind-Turbine Systems

    DEFF Research Database (Denmark)

    Orlando, Natalia Angela; Liserre, Marco; Mastromauro, Rosa Anna

    2013-01-01

    In the field of wind energy generation particular interest has been focused in recent years on distributed generation through small wind-turbines (power unit 200 kW) because of their limited size and lower environmental impact. The field of small generation was dominated by the use of asynchronous....../position estimation, pitch control, braking chopper control, dc/dc converter control, and grid converter control. Specific issues for small wind-turbines arise in the wind energy extraction optimization and limitation and in the innovative concept of “universal” wind-turbine operation, that leads these system...

  3. Model-based fault detection for generator cooling system in wind turbines using SCADA data

    DEFF Research Database (Denmark)

    Borchersen, Anders Bech; Kinnaert, Michel

    2016-01-01

    was issued. This is an improvement compared with the current system that gives 15 detections and more than 10 false alarms. In some cases, the method detects the fault a long time before the turbine reports an alarm. A further advantage of the method is that it is based on supervisory control and data...... acquisition data that are available for the operator of all modern turbines. Thereby, the method can be implemented without the need to modify or install additional components in the turbines. Copyright © 2015 John Wiley & Sons, Ltd....

  4. Advanced Gas Turbine (AGT) powertrain system development for automotive applications report

    Science.gov (United States)

    1984-01-01

    This report describes progress and work performed during January through June 1984 to develop technology for an Advanced Gas Turbine (AGT) engine for automotive applications. Work performed during the first eight periods initiated design and analysis, ceramic development, component testing, and test bed evaluation. Project effort conducted under this contract is part of the DOE Gas Turbine Highway Vehicle System Program. This program is oriented at providing the United States automotive industry the high-risk long-range techology necessary to produce gas turbine engines for automobiles with reduced fuel consumption and reduced environmental impact. Technology resulting from this program is intended to reach the marketplace by the early 1990s.

  5. Organic Rankine cycle - review and research directions in engine applications

    Science.gov (United States)

    Panesar, Angad

    2017-11-01

    Waste heat to power conversion using Organic Rankine Cycles (ORC) is expected to play an important role in CO2 reductions from diesel engines. Firstly, a review of automotive ORCs is presented focusing on the pure working fluids, thermal architectures and expanders. The discussion includes, but is not limited to: R245fa, ethanol and water as fluids; series, parallel and cascade as architectures; dry saturated, superheated and supercritical as expansion conditions; and scroll, radial turbine and piston as expansion machines. Secondly, research direction in versatile expander and holistic architecture (NOx + CO2) are proposed. Benefits of using the proposed unconventional approaches are quantified using Ricardo Wave and Aspen HYSYS for diesel engine and ORC modelling. Results indicate that, the implementation of versatile piston expander tolerant to two-phase and using cyclopentane can potentially increase the highway drive cycle power by 8%. Furthermore, holistic architecture offering complete utilisation of charge air and exhaust recirculation heat increased the performance noticeably to 5% of engine power at the design point condition.

  6. Thermodynamic analysis of a Rankine cycle powered vapor compression ice maker using solar energy.

    Science.gov (United States)

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m(-2) and 7.61 kg m(-2) day(-1) at the generation temperature of 140 °C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker.

  7. The Performance and Wind Tunnel Test of Aerofoils for Small Wind Turbine Generating Systems

    Science.gov (United States)

    Tokuyama, Hideki; Ushiyama, Izumi; Seki, Kazuichi

    The small scale wind turbines have been used as the stand alone power source for years. Particularly these days, there is an increasing demand for the small wind turbines, of the output below 1kW, as monuments and educational materials. It is recommended that wind turbines of a diameter under 1.0m must be the low blade tip speed ratio type, owing to problems of both safety and blade noise. In these circumstances, it would be necessary to develop the system characteristics of the micro wind turbines for the purpose of much higher performance in spite of having the low Reynolds number regions. Therefore, in this work, in order to clarify the optimum aerofoil cross section for the micro wind turbine, we carried out a wind tunnel test of the two dimensional aerofoils in the low Reynolds number regions. Furthermore, we conducted the calculation of the turbine's performance based on the result of this wind tunnel tests. The model blades are manufactured with the blade chord of 0.15m, the blade span of 0.6m, and the maximum thickness of aerofoil cross sections from 8% to 32%. The experimental Reynolds number is around 150, 000. From this work, we have clarified the performance of the aerofoil cross sections in the low Reynolds number regions. Our work further proves that the turbine outputs were strongly influenced by the performance of the aerofoil cross section.

  8. Comparison of Standard Wind Turbine Models with Vendor Models for Power System Stability Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Honrubia-Escribano, A.; Gomez Lazaro, E.; Jimenez-Buendia, F.; Muljadi, Eduard

    2016-11-01

    The International Electrotechnical Commission Standard 61400-27-1 was published in February 2015. This standard deals with the development of generic terms and parameters to specify the electrical characteristics of wind turbines. Generic models of very complex technological systems, such as wind turbines, are thus defined based on the four common configurations available in the market. Due to its recent publication, the comparison of the response of generic models with specific vendor models plays a key role in ensuring the widespread use of this standard. This paper compares the response of a specific Gamesa dynamic wind turbine model to the corresponding generic IEC Type III wind turbine model response when the wind turbine is subjected to a three-phase voltage dip. This Type III model represents the doubly-fed induction generator wind turbine, which is not only one of the most commonly sold and installed technologies in the current market but also a complex variable-speed operation implementation. In fact, active and reactive power transients are observed due to the voltage reduction. Special attention is given to the reactive power injection provided by the wind turbine models because it is a requirement of current grid codes. Further, the boundaries of the generic models associated with transient events that cannot be represented exactly are included in the paper.

  9. Modeling and Simulation of Hybrid Solar Photovoltaic, Wind turbine and Hydraulic Power System

    OpenAIRE

    Sami, S; D. Icaza

    2015-01-01

    This paper presents the modeling and simulation of the energy conversion equations describing the total power generated by a hybrid system of solar photovoltaic, wind turbine and hydraulic turbine. To validate this simulation model, the aforementioned equations were coded with MATLAB V13.2, compared to experimental data. The model is intended to be used as an optimization and design tool. A block diagram approach was used during the simulation with MATLAB. The model predicted results compared...

  10. Survey of gas tubine control for application to marine gas turbine propulsion system control

    OpenAIRE

    Smith, David L.; Metz Stephen D.

    1989-01-01

    Approved for public release; distribution is unlimited. The Marine Gas Turbine control systems in present use in the US Navy are significant technological age that new design techniques and micro-processing abilities could lead to more optimal performance and increased plant efficiency. This paper reviews current design theory approaches for aviation gas turbine control advances in digital control. This review shows that todays technology presents the opportunity to redesign control syst...

  11. Computer-Aided System of Virtual Testing of Gas Turbine Engines

    OpenAIRE

    Rybakov Viktor N.; Tkachenko Andrey Y.; Kuz’michev Venedikt S.; Krupenich Ilia N.

    2016-01-01

    The article describes the concept of a virtual lab that includes subsystem of gas turbine engine simulation, subsystem of experiment planning, subsystem of measurement errors simulation, subsystem of simulator identification and others. The basis for virtual lab development is the computer-aided system of thermogasdynamic research and analysis “ASTRA”. The features of gas turbine engine transient modes simulator are described. The principal difference between the simulators of transient and s...

  12. Performance Analysis of a Hybrid Generation System of Wind Turbines, Photovoltaic Modules, and a Fuel Cell

    Directory of Open Access Journals (Sweden)

    Bartosz Ceran

    2015-06-01

    Full Text Available This paper presents the results of energy analysis of a generation system consisting of wind turbines, photovoltaic modules, a fuel cell with a polymer membrane, and an electrolyser. The analysis was carried out for three configurations of generating devices’ connections with consumer: I – wind turbines and photovoltaic modules supply electrolyser, II – paralel co-operation of fuel cell with renewables, III – renewables supply electrolyser, with the option of direct supply of the consumer.

  13. Performance Analysis of a Hybrid Generation System of Wind Turbines, Photovoltaic Modules, and a Fuel Cell

    OpenAIRE

    Bartosz Ceran; Krzysztof Sroka

    2015-01-01

    This paper presents the results of energy analysis of a generation system consisting of wind turbines, photovoltaic modules, a fuel cell with a polymer membrane, and an electrolyser. The analysis was carried out for three configurations of generating devices’ connections with consumer: I – wind turbines and photovoltaic modules supply electrolyser, II – paralel co-operation of fuel cell with renewables, III – renewables supply electrolyser, with the option of direct supply of the consumer....

  14. Frequency Regulation Control of Wind Turbine Incorporating Stepper Motor in Pitch System

    OpenAIRE

    Syed Zikriya Shah; Muhammad Naeem Arbab

    2016-01-01

    This paper describes the presentation of a stepper motor in the pitch control system to regulate frequency. The controller sense the frequency deviation. If the frequency deviation is positive the stepper motor will recommend the motor to pitch the turbine blade slightly away from wind pressure. Similarly if the frequency deviation is negative the stepper motor will recommend the motor to pitch the turbine blade slightly towards wind pressure. The blade pitching is performed by another motor....

  15. Exhaust system for use with a turbine and method of assembling same

    Energy Technology Data Exchange (ETDEWEB)

    Dalsania, Prakash Bavanjibhai; Sadhu, Antanu

    2015-08-18

    An exhaust system for use with a steam turbine is provided. An exhaust hood includes an input and an output, the input receiving fluid from the steam turbine. The exhaust hood includes a first side wall that extends between the input and the output. The first side wall includes an aperture. An ejector is coupled to the exhaust hood. The ejector includes inlets and an outlet. At least one of the inlets receives fluid from the exhaust hood via the aperture.

  16. Experimental study of air delivery into water-conveyance system of the radial-axial turbine

    Science.gov (United States)

    Maslennikova, Alexandra; Platonov, Dmitry; Minakov, Andrey; Dekterev, Dmitry

    2017-10-01

    The paper presents an experimental study of oscillatory response in the Francis turbine of hydraulic unit. The experiment was performed on large-scale hydrodynamic test-bench with impeller diameter of 0.3 m. The effect of air injection on the intensity of pressure pulsations was studied at the maximum pressure pulsations in the hydraulic unit. It was revealed that air delivery into the water-conveyance system of the turbine results in almost two-fold reduction of pressure pulsations.

  17. Air cooled turbine component having an internal filtration system

    Science.gov (United States)

    Beeck, Alexander R [Orlando, FL

    2012-05-15

    A centrifugal particle separator is provided for removing particles such as microscopic dirt or dust particles from the compressed cooling air prior to reaching and cooling the turbine blades or turbine vanes of a turbine engine. The centrifugal particle separator structure has a substantially cylindrical body with an inlet arranged on a periphery of the substantially cylindrical body. Cooling air enters centrifugal particle separator through the separator inlet port having a linear velocity. When the cooling air impinges the substantially cylindrical body, the linear velocity is transformed into a rotational velocity, separating microscopic particles from the cooling air. Microscopic dust particles exit the centrifugal particle separator through a conical outlet and returned to a working medium.

  18. Advanced control of direct-driven PMSG generator in wind turbine system

    Directory of Open Access Journals (Sweden)

    Gajewski Piotr

    2016-12-01

    Full Text Available The paper presents the advanced control system of the wind energy conversion with a variable speed wind turbine. The considered system consists of a wind turbine with the permanent magnet synchronous generator (PMSG, machine side converter (MSC, grid side converter (GSC and control circuits. The mathematical models of a wind turbine system, the PMSG generator and converters have been described. The control algorithms of the converter systems based on the methods of vector control have been applied. In the advanced control system of the machine side converter the optimal MPPT control method has been used. Additionally the pitch control scheme is included in order to achieve the limitation of maximum power and to prevent mechanical damage of the wind turbine. In the control system of the grid side converter the control of active and reactive power has been applied with the application of Voltage Oriented Control (VOC. The performance of the considered wind energy system has been studied by digital simulation. The results of simulation studies confirmed the good effectiveness of the considered wind turbine system and very good performance of the proposed methods of vector control and control systems.

  19. Optimization of testing system and experiment research for pump turbine model

    Science.gov (United States)

    Y Li, D.; Wang, H. J.; Zhao, J. L.; Gong, R. Z.; Wei, X. Z.; Qin, D. Q.

    2013-12-01

    The pump turbine is key component of Pump Storage Power Plants. Moreover, the model testing proves significant guidance on design of pump turbine. Since pump turbine model testing is different from turbine model resulting from four quadrant experiment, point acquisition for transient operation conditions and special data processing, the optimization is made for these technological difficulties. In order to obtain a higher efficiency, a higher precision and a high degree of automation, the system of data acquisition is designed, in which the PXI platform was adopted, and the virtual instrument software LabVIEW was employed. And this system was successfully applied for the testing platform of Harbin Institute of Large Electric Machinery which achieves functions of transient conditions acquisition, measurement for positive and negative flow and speed, data processing, generating report, analysis for pressure fluctuation and so on. Finally four quadrant experiment was carried out in this test platform, results show that steady for the experiment operation conditions and repeatability for data which can better reflect the characteristic for "S-shaped" and reverse pump conditions. The system of pump turbine model test is significant for the research of pump turbine and has some guiding significance for the application of engineering.

  20. Optimisation of the calculation system of the drive systems of a wind turbine

    OpenAIRE

    Mercadé Molné, Jordi

    2010-01-01

    The calculation and dimensioning of the drive systems of a wind turbine (blade pitch and nacelle yaw), from the definition of the wind loads to the concretion of design, great quantities of data must be handled. Here is presented a software based on Microsoft Excel Visual Basic for Applications Macros (2003 version) which extracts the equivalent values and load distribution diagrams, inputs required by the international machinery standards, from simulated load time series. This...

  1. Optimal Power Flow Management Control for Grid Connected Photovoltaic/Wind turbine/Diesel generator (GCPWD) Hybrid System with Batteries

    OpenAIRE

    Murugan, Bala; S., Manoharan

    2016-01-01

    This paper proposes a Optimal Power Flow Management control for Grid Connected Photovoltaic/Wind turbine/ Diesel generator (GCPWD) Hybrid System with hybrid storage system. The energy system having a photo voltaic (PV) panel, wind turbine (WT) and diesel generator (DG) for continuous power flow management. A diesel generator is added to ensure uninterrupted power supply due to the discontinuous nature of solar and wind resources. The developed Grid Connected Photovoltaic/Wind turbine/ Diesel ...

  2. Experimental Investigation of A Twin Shaft Micro Gas-Turbine System

    Science.gov (United States)

    Sadig, Hussain; Sulaiman, Shaharin Anwar; Ibrahim, Idris

    2013-06-01

    Due to the fast depletion of fossil fuels and its negative impact on the environment, more attention has been concentrated to find new resources, policies and technologies, which meet the global needs with regard to fuel sustainability and emissions. In this paper, as a step to study the effect of burning low calorific value fuels on gas-turbine performance; a 50 kW slightly pressurized non-premixed tubular combustor along with turbocharger based twin shaft micro gas-turbine was designed and fabricated. A series of tests were conducted to characterize the system using LPG fuel. The tests include the analysis of the temperature profile, pressure and combustor efficiency as well as air fuel ratio and speed of the second turbine. The tests showed a stable operation with acceptable efficiency, air fuel ratio, and temperature gradient for the single and twin shaft turbines.

  3. Affordable Rankine Cycle Waste Heat Recovery for Heavy Duty Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Swami Nathan [Eaton Corporation

    2017-06-30

    Nearly 30% of fuel energy is not utilized and wasted in the engine exhaust. Organic Rankine Cycle (ORC) based waste heat recovery (WHR) systems offer a promising approach on waste energy recovery and improving the efficiency of Heavy-Duty diesel engines. Major barriers in the ORC WHR system are the system cost and controversial waste heat recovery working fluids. More than 40% of the system cost is from the additional heat exchangers (recuperator, condenser and tail pipe boiler). The secondary working fluid loop designed in ORC system is either flammable or environmentally sensitive. The Eaton team investigated a novel approach to reduce the cost of implementing ORC based WHR systems to Heavy-Duty (HD) Diesel engines while utilizing safest working fluids. Affordable Rankine Cycle (ARC) concept aimed to define the next generation of waste energy recuperation with a cost optimized WHR system. ARC project used engine coolant as the working fluid. This approach reduced the need for a secondary working fluid circuit and subsequent complexity. A portion of the liquid phase engine coolant has been pressurized through a set of working fluid pumps and used to recover waste heat from the exhaust gas recirculation (EGR) and exhaust tail pipe exhaust energy. While absorbing heat, the mixture is partially vaporized but remains a wet binary mixture. The pressurized mixed-phase engine coolant mixture is then expanded through a fixed-volume ratio expander that is compatible with two-phase conditions. Heat rejection is accomplished through the engine radiator, avoiding the need for a separate condenser. The ARC system has been investigated for PACCAR’s MX-13 HD diesel engine.

  4. Design, Optimization and Analysis of Hydraulic Soft Yaw System for 5 MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.

    2011-01-01

    presents work previous done on this subject with focus on hydraulic yaw systems. By utilizing the HAWC2 aeroelastic code and an extended model of the NREL 5MW turbine combined with a simplified linear model of the turbine, the parameters of the soft yaw system are optimized. Results show that a significant...... reduction in fatigue and extreme loads to the yaw system and rotor shaft are possible, when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. The duty cycles, based...... on the extrapolated loads, show that it is possible to construct a hydraulic soft yaw system, which is able to reduce the loads on the wind turbine significantly....

  5. Compressor and Turbine Models of Brayton Units for Space Nuclear Power Systems

    Science.gov (United States)

    Gallo, Bruno M.; El-Genk, Mohamed S.; Tournier, Jean-Michel

    2007-01-01

    Closed Brayton Cycles with centrifugal flow, single-shaft turbo-machines are being considered, with gas cooled nuclear reactors, to provide 10's to 100's of electrical power to support future space exploration missions and Lunar and Mars outposts. Such power system analysis is typically based on the cycle thermodynamics, for given operating pressures and temperatures and assumed polytropic efficiencies of the compressor and turbine of the Brayton energy conversion units. Thus the analysis results not suitable for modeling operation transients such as startup and changes in the electric load. To simulate these transients, accurate models of the turbine and compressor in the Brayton rotating unit, which calculate the changes in the compressor and turbine efficiencies with system operation are needed. This paper presents flow models that account for the design and dimensions of the compressor impeller and diffuser, and the turbine stator and rotor blades. These models calculate the various enthalpy losses and the polytropic efficiencies along with the pressure ratios of the turbine and compressor. The predictions of these models compare well with reported performance data of actual hardware. In addition, the results of a parametric analysis to map the operations of the compressor and turbine, as functions of the rotating shaft speed and inlet Mach number of the gas working fluid, are presented and discussed. The analysis used a binary mixture of He-Xe with a molecular weight of 40 g/mole as the working fluid.

  6. Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling, heating and power production

    Energy Technology Data Exchange (ETDEWEB)

    Al-Sulaiman, Fahad A. [Mechanical and Aerospace Engineering Department, Carleton University 1125 Colonel By Drive, Ottawa, Ontario (Canada); Dincer, Ibrahim [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology 2000 Simcoe Street North, Oshawa, Ontario (Canada); Hamdullahpur, Feridun [Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario (Canada)

    2010-04-15

    The study examines a novel system that combined a solid oxide fuel cell (SOFC) and an organic Rankine cycle (ORC) for cooling, heating and power production (trigeneration) through exergy analysis. The system consists of an SOFC, an ORC, a heat exchanger and a single-effect absorption chiller. The system is modeled to produce a net electricity of around 500 kW. The study reveals that there is 3-25% gain on exergy efficiency when trigeneration is used compared with the power cycle only. Also, the study shows that as the current density of the SOFC increases, the exergy efficiencies of power cycle, cooling cogeneration, heating cogeneration and trigeneration decreases. In addition, it was shown that the effect of changing the turbine inlet pressure and ORC pump inlet temperature are insignificant on the exergy efficiencies of the power cycle, cooling cogeneration, heating cogeneration and trigeneration. Also, the study reveals that the significant sources of exergy destruction are the ORC evaporator, air heat exchanger at the SOFC inlet and heating process heat exchanger. (author)

  7. Solar-powered Rankine heat pump for heating and cooling

    Science.gov (United States)

    Rousseau, J.

    1978-01-01

    The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.

  8. Algebraic aspects of Tremblay-Turbiner-Winternitz Hamiltonian systems

    Science.gov (United States)

    Calzada, J. A.; Celeghini, E.; del Olmo, M. A.; Velasco, M. A.

    2012-02-01

    Using the factorization method we find a hierarchy of Tremblay-Turbiner-Winternitz Hamiltonians labeled by discrete indices. The shift operators (those connecting eigenfunctions of different Hamiltonians of the hierarchy) as well the ladder operators (they connect eigenstates of a determined Hamiltonian) obtained in this way close different algebraic structures that are presented here.

  9. Maintenance management of gas turbine power plant systems ...

    African Journals Online (AJOL)

    following maintenance procedures and bottlenecks as some of the serious constraints affecting maintenance of Gas Turbine Power Plants in Nigeria. Maintenance models that could be considered in Afam power station are highlighted and analyzed in the context of these constraints. Also necessary recommendations that ...

  10. Estimating Health Condition of the Wind Turbine Drivetrain System

    Directory of Open Access Journals (Sweden)

    Peng Qian

    2017-10-01

    Full Text Available Condition Monitoring (CM has been considered as an effective method to enhance the reliability of wind turbines and implement cost-effective maintenance. Thus, adopting an efficient approach for condition monitoring of wind turbines is desirable. This paper presents a data-driven model-based CM approach for wind turbines based on the online sequential extreme learning machine (OS-ELM algorithm. A physical kinetic energy correction model is employed to normalize the temperature change to the value at the rated power output to eliminate the effect of variable speed operation of the turbines. The residual signal, obtained by comparing the predicted values and practical measurements, is processed by the physical correction model and then assessed with a Bonferroni interval method for fault diagnosis. Models have been validated using supervisory control and data acquisition (SCADA data acquired from an operational wind farm, which contains various types of temperature data of the gearbox. The results show that the proposed method can detect more efficiently both the long-term aging characteristics and the short-term faults of the gearbox.

  11. System Identification of Wind Turbines for Structural Health Monitoring

    DEFF Research Database (Denmark)

    Perisic, Nevena

    cases are considered, two practical problems from the wind industry are studied, i.e. monitoring of the gearbox shaft torque and the tower root bending moments. The second part of the thesis is focused on the influence of friction on the health of the wind turbine and on the nonlinear identification...

  12. Flow Simulation of Modified Duct System Wind Turbines Installed on Vehicle

    Science.gov (United States)

    Rosly, N.; Mohd, S.; Zulkafli, M. F.; Ghafir, M. F. Abdul; Shamsudin, S. S.; Muhammad, W. N. A. Wan

    2017-10-01

    This study investigates the characteristics of airflow with a flow guide installed and output power generated by wind turbine system being installed on a pickup truck. The wind turbine models were modelled by using SolidWorks 2015 software. In order to investigate the characteristic of air flow inside the wind turbine system, a computer simulation (by using ANSYS Fluent software) is used. There were few models being designed and simulated, one without the rotor installed and another two with rotor installed in the wind turbine system. Three velocities being used for the simulation which are 16.7 m/s (60 km/h), 25 m/s (90 km/h) and 33.33 m/s (120 km/h). The study proved that the flow guide did give an impact to the output power produced by the wind turbine system. The predicted result from this study is the velocity of the air inside the ducting system of the present model is better that reference model. Besides, the flow guide implemented in the ducting system gives a big impact on the characteristics of the air flow.

  13. Heat shield manifold system for a midframe case of a gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Clinton A.; Eng, Jesse; Schopf, Cheryl A.

    2017-07-25

    A heat shield manifold system for an inner casing between a compressor and turbine assembly is disclosed. The heat shield manifold system protects the outer case from high temperature compressor discharge air, thereby enabling the outer case extending between a compressor and a turbine assembly to be formed from less expensive materials than otherwise would be required. In addition, the heat shield manifold system may be configured such that compressor bleed air is passed from the compressor into the heat shield manifold system without passing through a conventional flange to flange joint that is susceptible to leakage.

  14. Cooling system having reduced mass pin fins for components in a gas turbine engine

    Science.gov (United States)

    Lee, Ching-Pang; Jiang, Nan; Marra, John J

    2014-03-11

    A cooling system having one or more pin fins with reduced mass for a gas turbine engine is disclosed. The cooling system may include one or more first surfaces defining at least a portion of the cooling system. The pin fin may extend from the surface defining the cooling system and may have a noncircular cross-section taken generally parallel to the surface and at least part of an outer surface of the cross-section forms at least a quartercircle. A downstream side of the pin fin may have a cavity to reduce mass, thereby creating a more efficient turbine airfoil.

  15. Kinetic Energy Recovery from the Chimney Flue Gases Using Ducted Turbine System

    Science.gov (United States)

    Mann, Harjeet S.; Singh, Pradeep K.

    2017-03-01

    An innovative idea of extracting kinetic energy from man-made wind resources using ducted turbine system for on-site power generation is introduced in this paper. A horizontal axis ducted turbine is attached to the top of the chimney to harness the kinetic energy of flue gases for producing electricity. The turbine system is positioned beyond the chimney outlet, to avoid any negative impact on the chimney performance. The convergent-divergent duct causes increase in the flue gas velocity and hence enhances the performance of the turbine. It also acts as a safety cover to the energy recovery system. The results from the CFD based simulation analysis indicate that significant power 34 kW can be harnessed from the chimney exhaust. The effect of airfoils NACA4412 and NACA4416 and the diffuser angle on the power extraction by the energy recovery system using a 6-bladed ducted turbine has been studied with the CFD simulation. It is observed that the average flue gas velocity in the duct section at the throat is approximately twice that of the inlet velocity, whereas maximum velocity achieved is 2.6 times the inlet velocity. The simulated results show that about power may be extracted from the chimney flue gases of 660 MW power plant. The system can be retrofitted to existing chimneys of thermal power plants, refineries and other industries.

  16. Advanced turbine systems sensors and controls needs assessment study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.L.; Fry, D.N.; McEvers, J.A.

    1997-02-01

    The Instrumentation and Controls Division of the Oak Ridge National Laboratory performed an assessment of the sensors and controls needs for land-based advanced gas turbines being designed as a part of the Department of Energy`s (DOE`s) Advanced Turbine Systems (ATS) Program for both utility and industrial applications. The assessment included visits to five turbine manufacturers. During these visits, in-depth discussions were held with design and manufacturing staff to obtain their views regarding the need for new sensors and controls for their advanced turbine designs. The Unsteady Combustion Facilities at the Morgantown Energy Technology Center was visited to assess the need for new sensors for gas turbine combustion research. Finally, a workshop was conducted at the South Carolina Energy Research and Development Center which provided a forum for industry, laboratory, and university engineers to discuss and prioritize sensor and control needs. The assessment identified more than 50 different measurement, control, and monitoring needs for advanced turbines that cannot currently be met from commercial sources. While all the identified needs are important, some are absolutely critical to the success of the ATS Program.

  17. Combining Droop Curve Concepts with Control Systems for Wind Turbine Active Power Control: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Buckspan, A.; Aho, J.; Pao, L.; Fleming, P.; Jeong, Y.

    2012-06-01

    Wind energy is becoming a larger portion of the global energy portfolio and wind penetration has increased dramatically in certain regions of the world. This increasing wind penetration has driven the need for wind turbines to provide active power control (APC) services to the local utility grid, as wind turbines do not intrinsically provide frequency regulation services that are common with traditional generators. It is common for large scale wind turbines to be decoupled from the utility grid via power electronics, which allows the turbine to synthesize APC commands via control of the generator torque and blade pitch commands. Consequently, the APC services provided by a wind turbine can be more flexible than those provided by conventional generators. This paper focuses on the development and implementation of both static and dynamic droop curves to measure grid frequency and output delta power reference signals to a novel power set point tracking control system. The combined droop curve and power tracking controller is simulated and comparisons are made between simulations using various droop curve parameters and stochastic wind conditions. The tradeoffs involved with aggressive response to frequency events are analyzed. At the turbine level, simulations are performed to analyze induced structural loads. At the grid level, simulations test a wind plant's response to a dip in grid frequency.

  18. Aero-hydro-elastic simulation platform for wave energy systems and floating wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Kallesoee, B.S.

    2011-01-15

    This report present results from the PSO project 2008-1-10092 entitled Aero-Hydro-Elastic Simulation Platform for Wave Energy Systems and floating Wind Turbines that deals with measurements, modelling and simulations of the world's first combined wave and wind energy platform. The floating energy conversion platform, Poseidon, is owned and operated by Floating Power Plant A/S. The platform has been operating for two test periods; one period where it was operating as a wave energy conversion platform only and one period where the three turbines was mounted and the platform operated as a combined wind and wave energy platform. The PSO project has equipped the platform with comprehensive measurements equipment for measuring platform motion, wave and wind conditions and turbine loads. Data from the first test period has been used for determine if the turbine could be mounted on the platform. Preliminary analysis of data from the second test period indicates that the platform is suitable as wind turbine foundation and that the turbines reduce the platform motion. (Author)

  19. Overview of Modelling and Advanced Control Strategies for Wind Turbine Systems

    Directory of Open Access Journals (Sweden)

    Silvio Simani

    2015-11-01

    Full Text Available The motivation for this paper comes from a real need to have an overview of the challenges of modelling and control for very demanding systems, such as wind turbine systems, which require reliability, availability, maintainability, and safety over power conversion efficiency. These issues have begun to stimulate research and development in the wide control community particularly for these installations that need a high degree of “sustainability”. Note that this represents a key point for offshore wind turbines, since they are characterised by expensive and/or safety critical maintenance work. In this case, a clear conflict exists between ensuring a high degree of availability and reducing maintenance times, which affect the final energy cost. On the other hand, wind turbines have highly nonlinear dynamics, with a stochastic and uncontrollable driving force as input in the form of wind speed, thus representing an interesting challenge also from the modelling point of view. Suitable control methods can provide a sustainable optimisation of the energy conversion efficiency over wider than normally expected working conditions. Moreover, a proper mathematical description of the wind turbine system should be able to capture the complete behaviour of the process under monitoring, thus providing an important impact on the control design itself. In this way, the control scheme could guarantee prescribed performance, whilst also giving a degree of “tolerance” to possible deviation of characteristic properties or system parameters from standard conditions, if properly included in the wind turbine model itself. The most important developments in advanced controllers for wind turbines are also briefly referenced, and open problems in the areas of modelling of wind turbines are finally outlined.

  20. Analysis and optimization of three main organic Rankine cycle configurations using a set of working fluids with different thermodynamic behaviors

    Science.gov (United States)

    Hamdi, Basma; Mabrouk, Mohamed Tahar; Kairouani, Lakdar; Kheiri, Abdelhamid

    2017-06-01

    Different configurations of organic Rankine cycle (ORC) systems are potential thermodynamic concepts for power generation from low grade heat. The aim of this work is to investigate and optimize the performances of the three main ORC systems configurations: basic ORC, ORC with internal heat exchange (IHE) and regenerative ORC. The evaluation for those configurations was performed using seven working fluids with typical different thermodynamic behaviours (R245fa, R601a, R600a, R227ea, R134a, R1234ze and R1234yf). The optimization has been performed using a genetic algorithm under a comprehensive set of operative parameters such as the fluid evaporating temperature, the fraction of flow rate or the pressure at the steam extracting point in the turbine. Results show that there is no general best ORC configuration for all those fluids. However, there is a suitable configuration for each fluid. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  1. Thermo-Economic Analysis of Zeotropic Mixtures and Pure Working Fluids in Organic Rankine Cycles for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Florian Heberle

    2016-03-01

    Full Text Available We present a thermo-economic analysis of an Organic Rankine Cycle (ORC for waste heat recovery. A case study for a heat source temperature of 150 °C and a subcritical, saturated cycle is performed. As working fluids R245fa, isobutane, isopentane, and the mixture of isobutane and isopentane are considered. The minimal temperature difference in the evaporator and the condenser, as well as the mixture composition are chosen as variables in order to identify the most suitable working fluid in combination with optimal process parameters under thermo-economic criteria. In general, the results show that cost-effective systems have a high minimal temperature difference ΔTPP,C at the pinch-point of the condenser and a low minimal temperature difference ΔTPP,E at the pinch-point of the evaporator. Choosing isobutane as the working fluid leads to the lowest costs per unit exergy with 52.0 €/GJ (ΔTPP,E = 1.2 K; ΔTPP,C = 14 K. Considering the major components of the ORC, specific costs range between 1150 €/kW and 2250 €/kW. For the zeotropic mixture, a mole fraction of 90% isobutane leads to the lowest specific costs per unit exergy. A further analysis of the ORC system using isobutane shows high sensitivity of the costs per unit exergy for the selected cost estimation methods and for the isentropic efficiency of the turbine.

  2. Analysis of Energy Storage System with Distributed Hydrogen Production and Gas Turbine

    Science.gov (United States)

    Kotowicz, Janusz; Bartela, Łukasz; Dubiel-Jurgaś, Klaudia

    2017-12-01

    Paper presents the concept of energy storage system based on power-to-gas-to-power (P2G2P) technology. The system consists of a gas turbine co-firing hydrogen, which is supplied from a distributed electrolysis installations, powered by the wind farms located a short distance from the potential construction site of the gas turbine. In the paper the location of this type of investment was selected. As part of the analyses, the area of wind farms covered by the storage system and the share of the electricity production which is subjected storage has been changed. The dependence of the changed quantities on the potential of the hydrogen production and the operating time of the gas turbine was analyzed. Additionally, preliminary economic analyses of the proposed energy storage system were carried out.

  3. Analysis of Energy Storage System with Distributed Hydrogen Production and Gas Turbine

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2017-12-01

    Full Text Available Paper presents the concept of energy storage system based on power-to-gas-to-power (P2G2P technology. The system consists of a gas turbine co-firing hydrogen, which is supplied from a distributed electrolysis installations, powered by the wind farms located a short distance from the potential construction site of the gas turbine. In the paper the location of this type of investment was selected. As part of the analyses, the area of wind farms covered by the storage system and the share of the electricity production which is subjected storage has been changed. The dependence of the changed quantities on the potential of the hydrogen production and the operating time of the gas turbine was analyzed. Additionally, preliminary economic analyses of the proposed energy storage system were carried out.

  4. A Plan for Revolutionary Change in Gas Turbine Engine Control System Architecture

    Science.gov (United States)

    Culley, Dennis E.

    2011-01-01

    The implementation of Distributed Engine Control technology on the gas turbine engine has been a vexing challenge for the controls community. A successful implementation requires the resolution of multiple technical issues in areas such as network communications, power distribution, and system integration, but especially in the area of high temperature electronics. Impeding the achievement has been the lack of a clearly articulated message about the importance of the distributed control technology to future turbine engine system goals and objectives. To resolve these issues and bring the technology to fruition has, and will continue to require, a broad coalition of resources from government, industry, and academia. This presentation will describe the broad challenges facing the next generation of advanced control systems and the plan which is being put into action to successfully implement the technology on the next generation of gas turbine engine systems.

  5. Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1990--June 1991

    Energy Technology Data Exchange (ETDEWEB)

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  6. Small-Signal Stability of Wind Power System With Full-Load Converter Interfaced Wind Turbines

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Nielsen, Jørgen Nygaard; Jensen, Kim Høj

    2012-01-01

    . The WT is, furthermore, equipped with a park level WPP voltage controller and comparisons are presented. The WT model for this work is a validated dynamic model of the 3.6 MW Siemens Wind Power WT. The study is based on modal analysis which is complemented with time domain simulations on the nonlinear......Small-signal stability analysis of power system oscillations is a well established field within power system analysis, but not much attention has yet been paid to systems with a high penetration of wind turbines and with large wind power plants (WPP). In this paper a comprehensive analysis...... is presented which assesses the impact of full-load converter interfaced wind turbines on power system small-signal stability. The study is based on a 7 generator network with lightly damped inter-area modes. A detailed wind turbine (WT) model with all grid relevant control functions is used in the study...

  7. Turbine main engines

    CERN Document Server

    Main, John B; Herbert, C W; Bennett, A J S

    1965-01-01

    Turbine Main Engines deals with the principle of operation of turbine main engines. Topics covered include practical considerations that affect turbine design and efficiency; steam turbine rotors, blades, nozzles, and diaphragms; lubricating oil systems; and gas turbines for use with nuclear reactors. Gas turbines for naval boost propulsion, merchant ship propulsion, and naval main propulsion are also considered. This book is divided into three parts and begins with an overview of the basic mode of operation of the steam turbine engine and how it converts the pressure energy of the ingoing ste

  8. Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources

    Energy Technology Data Exchange (ETDEWEB)

    Hays, Lance G

    2014-07-07

    A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator – on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapor leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.

  9. A fiber-optic ice detection system for large-scale wind turbine blades

    Science.gov (United States)

    Kim, Dae-gil; Sampath, Umesh; Kim, Hyunjin; Song, Minho

    2017-09-01

    Icing causes substantial problems in the integrity of large-scale wind turbines. In this work, a fiber-optic sensor system for detection of icing with an arrayed waveguide grating is presented. The sensor system detects Fresnel reflections from the ends of the fibers. The transition in Fresnel reflection due to icing gives peculiar intensity variations, which categorizes the ice, the water, and the air medium on the wind turbine blades. From the experimental results, with the proposed sensor system, the formation of icing conditions and thickness of ice were identified successfully in real time.

  10. Parameter Identification of Steam Turbine Speed Governing System Using an Improved Gravitational Search Algorithm

    Science.gov (United States)

    Zhong, Jing-liang; Deng, Tong-tian; Wang, Jia-sheng

    2017-05-01

    Since most of the traditional parameter identification methods used in the steam turbine speed governing system (STSGS) have the shortages of great work load, poor fitness and long period by hand, a novel improved gravitational search algorithm (VGSA) method, whose gravitational parameter can be dynamically adjusted according to the current fitness and search space will keep being more and more narrow during the iteration process, is proposed in this paper based on an improved gravitational search algorithm (IGSA). The performance of this new method was identified through the comparisons of the steam turbine speed governing system identification results with IGSA using the measured data from a 600MW and a 300MW thermal power unit. The results show that the new method VGSA has the features of higher precision and higher speed during the identification process, and it brings a new scheme for steam turbine speed governing system identification.

  11. Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Yeoman, J.C. Jr.

    1978-12-01

    This evaluation of wind turbines is part of a series of Technology Evaluations of possible components and subsystems of community energy systems. Wind turbines, ranging in size from 200 W to 10 MW, are discussed as candidates for prime movers in community systems. Estimates of performance characteristics and cost as a function of rated capacity and rated wind speed are presented. Data concerning material requirements, environmental effects, and operating procedures also are given and are represented empirically to aid computer simulation.

  12. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to

  13. Active vibration-based SHM system: demonstration on an operating Vestas V27 wind turbine

    DEFF Research Database (Denmark)

    Tcherniak, Dmitri; Mølgaard, Lasse Lohilahti

    2016-01-01

    This study presents a system that is able to detect defects like cracks, leading/trailing edge opening or delamination of at least 15 cm size, remotely, without stopping the wind turbine. The system is vibration-based: mechanical energy is artificially introduced by means of an electromechanical ...

  14. A Low-Power Floating-Turbine Generation System for Small Rural ...

    African Journals Online (AJOL)

    ... generation system, shows the system simulation in MatlabTM/simulink environment and illustrates the feasibilities of the proposed ideas by presenting experimental results on a scaled-down prototype. Keywords: Floating turbine, rectifier, DC/DC converter, permanent magnet synchronous generator (PMSG), and inverter

  15. IEA Wind Task 37 System Modeling Framework and Ontology for Wind Turbines and Plants

    NARCIS (Netherlands)

    Dykes, K; Sanchez Perez Moreno, S.; Zahle, Frederik; Ning, A; McWilliam, M.; Zaayer, M.B.

    2017-01-01

    This presentation will provide an overview of progress to date in the development of a system modeling framework and ontology for wind turbines and plants as part of the larger IEA Wind Task 37 on wind energy systems engineering. The goals of the effort are to create a set of guidelines for a common

  16. Design, analysis and control of hydraulic soft yaw system for 5MW wind turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2012-01-01

    by active control of a hydraulic yaw system. The control is based on a non-linear and linear model derived based on a concept yaw system for the NREL 5MW wind turbine. The control strategies show a reduction in pressure pulsations under load and it is concluded that the strategie including high...

  17. Analysis of off-grid hybrid wind turbine/solar PV water pumping systems

    Science.gov (United States)

    While many remote water pumping systems exist (e.g. mechanical windmills, solar photovoltaic , wind-electric, diesel powered), very few combine both the wind and solar energy resources to possibly improve the reliability and the performance of the system. In this paper, off-grid wind turbine (WT) a...

  18. Design of water pumping system by wind turbine for using in coastal areas of Bangladesh

    Science.gov (United States)

    Alam, Muhammad Mahbubul; Tasnim, Tamanna; Doha, Umnia

    2017-06-01

    In this work, a theoretical analysis has been carried out to analyze the prospect of Wind Pumping System (WPS) for using in coastal areas of Bangladesh. Wind speed data of three coastal areas of Bangladesh-Kutubdia, Patenga and Sathkhira has been analyzed and an optimal wind turbine viable for this wind speed range has been designed using the simulation software Q-blade. The simulated turbine is then coupled with a rotodynamic pump. The output of the Wind Pumping System (WPS) for the three coastal areas has been studied.

  19. A comparative assessment of alternative combustion turbine inlet air cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.R.; Katipamula, S.; Konynenbelt, J.H.

    1996-02-01

    Interest in combustion turbine inlet air cooling (CTAC) has increased during the last few years as electric utilities face increasing demand for peak power. Inlet air cooling increases the generating capacity and decreases the heat rate of a combustion turbine during hot weather when the demand for electricity is generally the greatest. Several CTAC systems have been installed, but the general applicability of the concept and the preference for specific concepts is still being debated. Concurrently, Rocky Research of Boulder City, Nevada has been funded by the U.S. Department of Energy to conduct research on complex compound (ammoniated salt) chiller systems for low-temperature refrigeration applications.

  20. Proceedings of the Advanced Turbine Systems Annual Program Review meeting. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Goal of the 8-year program is to develop cleaner, more efficient, and less expensive gas turbine systems for utility and industrial electric power generation, cogeneration, and mechanical drive units. The conference is held annually for energy executives, engineers, scientists, and other interested parties industry, academia, and Government. Advanced turbine systems topics discussed during five technical sessions included policy and strategic issues, program element overviews and technical reviews, related activities, university/industry consortium interactions, and supportive projects. Twenty-one papers presented during the technical sessions are contained in this volume; they are processed separately for the data base.

  1. A Study on Structural Design and Analysis of Blade and Tower for Small Wind Turbine System

    Directory of Open Access Journals (Sweden)

    Park Hyunbum

    2016-01-01

    Full Text Available This paper performed aerodynamic, structural design and analysis of the horizontal axis blade of low noise 1kW class small wind turbine system that can be operated at homes and designed to display excellent performances in low wind velocity regions such as Korea. In terms of the material applied, glass/epoxy that is both economical and excellent in its performance was applied. Structural test was conducted to verify whether the actual movement of the blade designed is consistent with the theoretical analysis result. In addition, structural safety review was performed through the structural analysis of a tower for installing the wind turbine system developed.

  2. Systems and methods for detecting a flame in a fuel nozzle of a gas turbine

    Science.gov (United States)

    Kraemer, Gilbert Otto; Storey, James Michael; Lipinski, John; Mestroni, Julio Enrique; Williamson, David Lee; Marshall, Jason Randolph; Krull, Anthony

    2013-05-07

    A system may detect a flame about a fuel nozzle of a gas turbine. The gas turbine may have a compressor and a combustor. The system may include a first pressure sensor, a second pressure sensor, and a transducer. The first pressure sensor may detect a first pressure upstream of the fuel nozzle. The second pressure sensor may detect a second pressure downstream of the fuel nozzle. The transducer may be operable to detect a pressure difference between the first pressure sensor and the second pressure sensor.

  3. Modal analysis of a grid-connected direct-drive permanent magnet synchronous generator wind turbine system

    DEFF Research Database (Denmark)

    Tan, Jin; Wang, Xiao Ru; Chen, Zhe

    2013-01-01

    In order to study the stability of a grid-connected direct-drive permanent magnet synchronous generator (PMSG) wind turbine systems, this paper presents the modal analysis of a PMSG wind turbine system. A PMSG model suitable for small signal stability analysis is presented. The modal properties...

  4. Probabilistic approach: back pressure turbine for geothermal vapor-dominated system

    Science.gov (United States)

    Alfandi Ahmad, Angga; Xaverius Guwowijoyo, Fransiscus; Pratama, Heru Berian

    2017-12-01

    Geothermal bussiness nowadays needs to be accelerated in a way that profit can be obtained as soon as reasonable possible. One of the many ways to do this is by using one of geothermal wellhead generating unit (GWGU), called backpressure turbine. Backpressure turbine can be used in producing electricity as soon as there is productive or rather small-scale productive well existed after finished drilling. In a vapor dominated system, steam fraction in the wellhead capable to produce electricity based on each well productivity immediately. The advantage for using vapor dominated system is reduce brine disposal in the wellhead so it will be a cost benefit in operation. The design and calculation for backpressure turbine will use probablistic approach with Monte Carlo simulation. The parameter that will be evaluated in sensitivity would be steam flow rate, turbine inlet pressure, and turbine exhaust pressure/atmospheric pressure. The result are probability for P10, P50, and P90 of gross power output which are 1.78 MWe, 2.22 MWe and 2.66 Mwe respectively. Whereas the P10, P50, and P90 of SSC are 4.67 kg/s/MWe, 5.19 kg/s/MWe and 5.78 kg/s/MWe respectively.

  5. Active vibration-based structural health monitoring system for wind turbine blade: Demonstration on an operating Vestas V27 wind turbine

    DEFF Research Database (Denmark)

    Tcherniak, Dmitri; Mølgaard, Lasse Lohilahti

    2017-01-01

    enough to be able to propagate the entire blade length. This article demonstrates the system on a Vestas V27 wind turbine. One blade of the wind turbine was equipped with the system, and a 3.5-month monitoring campaign was conducted while the turbine was operating normally. During the campaign, a defect......—a trailing-edge opening—was artificially introduced into the blade and its size was gradually increased from the original 15 to 45 cm. Using a semi-supervised learning algorithm, the system was able to detect even the smallest amount of damage while the wind turbine was operating under different weather......This study presents a structural health monitoring system that is able to detect structural defects of wind turbine blade such as cracks, leading/trailing-edge opening, or delamination. It is shown that even small defects of at least 15 cm size can be detected remotely without stopping the wind...

  6. Robust H(infinity) tracking control of boiler-turbine systems.

    Science.gov (United States)

    Wu, J; Nguang, S K; Shen, J; Liu, G; Li, Y G

    2010-07-01

    In this paper, the problem of designing a fuzzy H(infinity) state feedback tracking control of a boiler-turbine is solved. First, the Takagi and Sugeno fuzzy model is used to model a boiler-turbine system. Next, based on the Takagi and Sugeno fuzzy model, sufficient conditions for the existence of a fuzzy H(infinity) nonlinear state feedback tracking control are derived in terms of linear matrix inequalities. The advantage of the proposed tracking control design is that it does not involve feedback linearization technique and complicated adaptive scheme. An industrial boiler-turbine system is used to illustrate the effectiveness of the proposed design as compared with a linearized approach. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Experimental Design and Analysis of Pump as Turbine for Microhydro System

    Science.gov (United States)

    Ismail, M. A.; Muzammil, W. K.; Rahman, M.; Ibrahim, M. W. K.; Misran, S.

    2017-07-01

    Pump as Turbine (PAT) is typically used as electromechanical components in microhydro systems, especially by rural communities in developing countries to reduce initial capital cost. The technology is readily available and easily accessible compared to commercially available turbines. The aim of this paper is to present the experimental design and analysis of PAT for microhydro systems over a range of rotational speeds. An end suction centrifugal pump was tested by inversing the flow across the pump. The rotational speed of the impeller was controlled by manipulating the braking force applied to the output shaft. The corresponding flow rate, pressure, and torque were recorded and presented. The experiment results show that the centrifugal pump can operate in turbine modes without any modification on mechanical components with the highest efficiency of 65.04%; however, at off-design operation, the efficiency decreases significantly due to unmatched flow velocity with the wall boundaries inside the pump.

  8. Fiber-Optic Defect and Damage Locator System for Wind Turbine Blades

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Vahid Sotoudeh; Dr. Richard J. Black; Dr. Behzad Moslehi; Mr. Aleks Plavsic

    2010-10-30

    IFOS in collaboration with Auburn University demonstrated the feasibility of a Fiber Bragg Grating (FBG) integrated sensor system capable of providing real time in-situ defect detection, localization and quantification of damage. In addition, the system is capable of validating wind turbine blade structural models, using recent advances in non-contact, non-destructive dynamic testing of composite structures. This new generation method makes it possible to analyze wind turbine blades not only non-destructively, but also without physically contacting or implanting intrusive electrical elements and transducers into the structure. Phase I successfully demonstrated the feasibility of the technology with the construction of a 1.5 kHz sensor interrogator and preliminary instrumentation and testing of both composite material coupons and a wind turbine blade.

  9. Device to lower NOx in a gas turbine engine combustion system

    Science.gov (United States)

    Laster, Walter R; Schilp, Reinhard; Wiebe, David J

    2015-02-24

    An emissions control system for a gas turbine engine including a flow-directing structure (24) that delivers combustion gases (22) from a burner (32) to a turbine. The emissions control system includes: a conduit (48) configured to establish fluid communication between compressed air (22) and the combustion gases within the flow-directing structure (24). The compressed air (22) is disposed at a location upstream of a combustor head-end and exhibits an intermediate static pressure less than a static pressure of the combustion gases within the combustor (14). During operation of the gas turbine engine a pressure difference between the intermediate static pressure and a static pressure of the combustion gases within the flow-directing structure (24) is effective to generate a fluid flow through the conduit (48).

  10. Optimal controller design of a doubly fed induction generator wind turbine system for small signal stability enhancement

    DEFF Research Database (Denmark)

    Yang, Lihui; Yang, Guang-Ya; Xu, Zhao

    2010-01-01

    Multi-objective optimal controller design of a doubly-fed induction generator (DFIG) wind turbine system using differential evolution (DE) is presented. A detailed mathematical model of DFIG wind turbine with a closed-loop vector control system is developed. Based on this, objective functions...... parameters. The electric energy productions of the studied DFIG wind turbine system with and without optimised controller parameters under turbulent wind speed are also demonstrated....... and the constraint with DE, respectively. Eigenvalue analysis and time-domain simulations are performed on a single machine infinite bus system as well as a nine-bus multi-machine system with two DFIG wind turbines to illustrate the control performance of the DFIG wind turbine with the optimised controller...

  11. Wind turbine generator interaction with diesel generators on an isolated power system

    Energy Technology Data Exchange (ETDEWEB)

    Scott, G.W.; Wilreker, V.F.

    1984-05-01

    The Block Island Power Company (BIPCO), on Block Island, Rhode Island, operates an isolated electric power system consisting of diesel generation and an experimental wind turbine. The 150-kW wind turbine, designated MOD-OA by the U.S. Department of Energy is typically operated in parallel with two diesel generators to serve an average winter load of 350 kW. As part of an experimental program to evaluate wind turbine generator performance on the isolated diesel power system, the recordings from an extensive data measurement effort were reviewed and analyzed to define the nature of the dynamic interaction effects. The data were collected over a three-month period on the system to which the DOE/NASA experimental wind turbine was connected. During this time, the diesel units were lightly loaded resulting in up to 60% of the total load demand being supplied by the MOD-OA in periods of severely gusting winds. In three of the modes of normal MOD-OA operation -- startup synchronization, shutdown/cutout, and continuous fixed pitch running -power, frequency and voltage transients were comparable with those produced by typical load changes on the diesel system alone. In the fourth mode, variable pitch (constant power) control, a significant reduction in system damping sometimes occurred which gave rise to increased frequency and voltage perturbations under gusty wind conditions. Based on a linear model of the system it is shown that changes in control system settings could be made to improve damping. The main study conclusion is that wind turbine generation, even when providing a large portion of the power required by an isolated utility, can be a practical option resulting in system disturbances no greater than those found in conventional diesel systems.

  12. Advanced turbine systems program conceptual design and product development. Quarterly report, February 1995--April 1995

    Energy Technology Data Exchange (ETDEWEB)

    Karstensen, K.W.

    1995-07-01

    This Quarterly Technical Progress Report covers the period February 1, 1995, through April 30, 1995, for Phase II of the Advanced Turbine Systems (ATS) Program by Solar Turbines Incorporated under DOE contract No. DE-AC21-93MC30246. The objective of Phase II of the ATS Program is to provide the conceptual design and product development plan for an ultra high efficiency, environmentally superior and cost competitive industrial gas turbine system to be commercialized by the year 2000. A secondary objective is to begin early development of technologies critical to the success of ATS. Tasks 1, 2, 3, 5, 6 and 7 of Phase II have been completed in prior quarters. Their results have been discussed in the applicable quarterly reports and in their respective topical reports. With the exception of Task 7, final editions of these topical reports have been submitted to the DOE. This quarterly report, then, addresses only Task 4 and the nine subtasks included in Task 8, {open_quotes}Design and Test of Critical Components.{close_quotes} These nine subtasks address six ATS technologies as follows: (1) Catalytic Combustion - Subtasks 8.2 and 8.5, (2) Recuperator - Subtasks 8.1 and 8.7, (3) Autothermal Fuel Reformer - Subtask 8.3, (4) High Temperature Turbine Disc - Subtask 8.4, (5) Advanced Control System (MMI) - Subtask 8.6, and (6) Ceramic Materials - Subtasks 8.8 and 8.9. Major technological achievements from Task 8 efforts during the quarter are as follows: (1) The subscale catalytic combustion rig in Subtask 8.2 is operating consistently at 3 ppmv of NO{sub x} over a range of ATS operating conditions. (2) The spray cast process used to produce the rim section of the high temperature turbine disc of Subtask 8.4 offers additional and unplanned spin-off opportunities for low cost manufacture of certain gas turbine parts.

  13. Exergetic Analysis of an Integrated Tri-Generation Organic Rankine Cycle

    OpenAIRE

    Ratha Z. Mathkor; Brian Agnew; Mohammed A. Al-Weshahi; Fathi Latrsh

    2015-01-01

    This paper reports on a study of the modelling, validation and analysis of an integrated 1 MW (electrical output) tri-generation system energized by solar energy. The impact of local climatic conditions in the Mediterranean region on the system performance was considered. The output of the system that comprised a parabolic trough collector (PTC), an organic Rankine cycle (ORC), single-effect desalination (SED), and single effect LiBr-H2O absorption chiller (ACH) was electrical power, distille...

  14. Working fluids selection for fishing boats waste heat powered organic Rankine-vapor compression ice maker

    Science.gov (United States)

    Bu, Xianbiao; Wang, Lingbao; Li, Huashan

    2014-10-01

    To utilize waste heat from fishing boats, an organic Rankine cycle/vapor compression cycle system was employed for ice making and a thermodynamic model was developed. Six working fluids were selected and compared in order to identify suitable working fluids which may yield high system efficiencies. The calculated results show that R600a is most suitable working fluid through comprehensive comparison of efficiency, size parameter, pressure ratio, coefficient of performance, system pressure and safety.

  15. Design of LPV fault-tolerant controller for pitch system of wind turbine

    Science.gov (United States)

    Wu, Dinghui; Zhang, Xiaolin

    2017-07-01

    To address failures of wind turbine pitch-angle sensors, traditional wind turbine linear parameter varying (LPV) model is transformed into a double-layer convex polyhedron LPV model. On the basis of this model, when the plurality of the sensor undergoes failure and details of the failure are inconvenient to obtain, each sub-controller is designed using distributed thought and gain scheduling method. The final controller is obtained using all of the sub-controllers by a convex combination. The design method corrects the errors of the linear model, improves the linear degree of the system, and solves the problem of multiple pitch angle faults to ensure stable operation of the wind turbine.

  16. The UTRC wind energy conversion system performance analysis for horizontal axis wind turbines (WECSPER)

    Science.gov (United States)

    Egolf, T. A.; Landgrebe, A. J.

    1981-01-01

    The theory for the UTRC Energy Conversion System Performance Analysis (WECSPER) for the prediction of horizontal axis wind turbine performance is presented. Major features of the analysis are the ability to: (1) treat the wind turbine blades as lifting lines with a prescribed wake model; (2) solve for the wake-induced inflow and blade circulation using real nonlinear airfoil data; and (3) iterate internally to obtain a compatible wake transport velocity and blade loading solution. This analysis also provides an approximate treatment of wake distortions due to tower shadow or wind shear profiles. Finally, selected results of internal UTRC application of the analysis to existing wind turbines and correlation with limited test data are described.

  17. Anomaly Detection in Gas Turbine Fuel Systems Using a Sequential Symbolic Method

    Directory of Open Access Journals (Sweden)

    Fei Li

    2017-05-01

    Full Text Available Anomaly detection plays a significant role in helping gas turbines run reliably and economically. Considering the collective anomalous data and both sensitivity and robustness of the anomaly detection model, a sequential symbolic anomaly detection method is proposed and applied to the gas turbine fuel system. A structural Finite State Machine is used to evaluate posterior probabilities of observing symbolic sequences and the most probable state sequences they may locate. Hence an estimation-based model and a decoding-based model are used to identify anomalies in two different ways. Experimental results indicate that both models have both ideal performance overall, but the estimation-based model has a strong robustness ability, whereas the decoding-based model has a strong accuracy ability, particularly in a certain range of sequence lengths. Therefore, the proposed method can facilitate well existing symbolic dynamic analysis- based anomaly detection methods, especially in the gas turbine domain.

  18. Model of the Correlation between Lidar Systems and Wind Turbines for Lidar-Assisted Control

    DEFF Research Database (Denmark)

    Schlipf, David; Cheng, Po Wen; Mann, Jakob

    2013-01-01

    Investigations of lidar-assisted control to optimize the energy yield and to reduce loads of wind turbines have increased significantly in recent years. For this kind of control, it is crucial to know the correlation between the rotor effective wind speed and the wind preview provided by a nacelle......, different rotor sizes, and wind evolution. The method is compared to real measurement data with promising results. In addition, examples depict how this model can be used to design an optimal controller and how the configuration of a lidar system is optimized for a given turbine to improve the correlation....

  19. Computational Analysis of Supercritical Carbon Dioxide Gas Turbine for Liquid Metal Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Wi S.; Suh, Kune Y. [Seoul National University, Seoul (Korea, Republic of)

    2008-10-15

    Energy demands at a remote site are increased as the world energy requirement diversifies so that they should generate power on their own site. A Small Modular Reactor (SMR) becomes a viable option for these sites. Generally, the economic feasibility of a high power reactor is greater than that for SMR. As a result the supercritical fluid driven Brayton cycle is being considered for a power conversion system to increase economic competitiveness of SMR. The Brayton cycle efficiency is much higher than that for the Rankine cycle. Moreover, the components of the Brayton cycle are smaller than Rankine cycle's due to high heat capacity when a supercritical fluid is adopted. A lead (Pb) cooled SMR, BORIS, and a supercritical fluid driven Brayton cycle, MOBIS, are being developed at the Seoul National University (SNU). Dostal et al. have compared some advanced power cycles and proposed the use of a supercritical carbon dioxide (SCO{sub 2}) driven Brayton cycle. According to their suggestion SCO{sub 2} is adopted as a working fluid for MOBIS. The turbo machineries are most important components for the Brayton cycle. The turbo machineries of Brayton cycle consists of a turbine to convert kinetic energy of the fluid into mechanical energy of the shaft, and a compressor to recompress and recover the driving force of the working fluid. Therefore, turbine performance is one of the pivotal factors in increasing the cycle efficiency. In MOBIS a supercritical gas turbine is designed in the Gas Advanced Turbine Operation (GATO) and analyzed in the Turbine Integrated Numerical Analysis (TINA). A three-dimensional (3D) numerical analysis is employed for more detailed design to account for the partial flow which the one-dimensional (1D) analysis cannot consider.

  20. Experimental investigation into a packed bed thermal storage solution for solar gas turbine systems

    CSIR Research Space (South Africa)

    Klein, P

    2013-09-01

    Full Text Available High temperature thermal storage in randomly packed beds of ceramic particles is proposed as an effective storage solution for Solar Gas Turbine (SGT) cycles in the near term. Numerical modelling of these systems allows for optimised thermal storage...

  1. Implementation of a Wind Farm Turbine Control System with Short-Term Grid Faults Management

    DEFF Research Database (Denmark)

    Marra, Francesco; Rasmussen, Tonny Wederberg; Garcia-Valle, Rodrigo

    2010-01-01

    with the implementation of a control strategy in order to stay connected under grid faults. The method aimed to ensure that a wind farm turbine remains connected and no electric power is delivered to the grid during the fault period. The overall system was modelled and simulated by using the software Matlab/Simulink....

  2. Fuzzy Logic Based MPPT Controller for a Small Wind Turbine System

    DEFF Research Database (Denmark)

    Petrila, Diana; Blaabjerg, Frede; Muntean, Nicolae

    2012-01-01

    This paper describes the design of a maximum power point tracking (MPPT) strategy for a variable speed, small scale, wind turbine systems based on a fuzzy logic controller (FLC). The FLC has as input variables the change in mechanical power (ΔPm), the change in rotor speed (Δω), and the sign of ΔPm...

  3. Failure Mode and Effect Analysis for Wind Turbine Systems in China

    DEFF Research Database (Denmark)

    Zhu, Jiangsheng; Ma, Kuichao; N. Soltani, Mohsen

    2017-01-01

    This paper discusses a cost based Failure Mode and Effect Analysis (FMEA) approch for the Wind Turbine (WT) with condition monitoring system in China. Normally, the traditional FMEA uses the Risk Priority Number (RPN) to rank failure modes. But the RPN can be changed with the Condition Monitoring...

  4. Multipath Suppression with an Absorber for UWB Wind Turbine Blade Deflection Sensing Systems

    DEFF Research Database (Denmark)

    Zhang, Shuai; Franek, Ondrej; Eggers, Patrick Claus F.

    2017-01-01

    The deflection of a wind turbine blade can be monitored with an ultra-wideband (UWB) deflection sensing system which consists of one transmitting antenna at the blade tip and two receiving antennas at the blade root. The blade deflection is calculated by two estimated tip-root antenna distances...

  5. A Review of Methods to Increase the Availability of Wind Turbine Generator Systems

    NARCIS (Netherlands)

    Shipurkar, U.; Polinder, H.; Ferreira, J.A.

    2016-01-01

    Availability is an important factor to be considered when designing wind turbine generator systems. The quest for increasing availability is based on the following five design approaches - design for component reliability, active control for reliability, design for fault tolerance, prognostics, and

  6. Variable Speed (DFIG) Wind Turbines: Rapid Frequency Response to Power System Disturbances

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Hansen, Anca Daniela; Sørensen, Poul Ejnar

    2009-01-01

    This paper examines the effect of integrating large number of wind turbines particularly the double fed induction generator (DFIG) on the virtual inertia of the Danish power system network. The virtual inertia refers to the kinetic energy stored in the rotating masses which can be released initia...

  7. Prediction of limit cycle pressure oscillations in gas turbine combustion systems using the flame describing function

    NARCIS (Netherlands)

    Krediet, H.J.

    2012-01-01

    Thermo-acoustic analysis is crucial for a successful development of new gas turbine combustion systems. In this context, it becomes more and more necessary to predict the limit cycle pressure amplitude of thermo-acoustic combustion instabilities to figure out if they are within the critical design

  8. Reduced models of doubly fed induction generator system for wind turbine simulations

    Science.gov (United States)

    Sørensen, P.; Hansen, A. D.; Lund, T.; Bindner, H.

    2006-07-01

    This article compares three reduced models with a detailed model of a doubly fed induction generator system for wind turbine applications. The comparisons are based on simulations only. The main idea is to provide reduced generator models which are appropriate to simulate normal wind turbine operation in aeroelastic wind turbine models, e.g. for control system design or structural design of the wind turbine. The electrical behaviour such as grid influence will therefore not be considered. The work presented in this article shows that with an ideal, undisturbed grid the dynamics of the doubly fed induction generator system is very well represented by the dynamics due to the generator inertia and the generator control system, whereas the electromagnetic characteristics of the generator can be represented by the steady state relations. The parameters for the proposed models are derived from parameters typically available from the generator data sheet and from the controller settings. Thus the models are simple to apply in any case where the generator data sheet is available. Copyright

  9. 77 FR 32497 - Grant of Authority for Subzone Status; Mitsubishi Power Systems Americas, Inc. (Wind Turbine...

    Science.gov (United States)

    2012-06-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Grant of Authority for Subzone Status; Mitsubishi Power Systems Americas, Inc. (Wind Turbine Nacelles and Generating Sets) Fort Smith, AR Pursuant to its authority under the Foreign-Trade Zones Act of June 18, 1934, as amended ...

  10. Pelton turbines

    CERN Document Server

    Zhang, Zhengji

    2016-01-01

    This book concerns the theoretical foundations of hydromechanics of Pelton turbines from the engineering viewpoint. For reference purposes, all relevant flow processes and hydraulic aspects in a Pelton turbine have been analyzed completely and systematically. The analyses especially include the quantification of all possible losses existing in the Pelton turbine and the indication of most available potential for further enhancing the system efficiency. As a guideline the book therefore supports further developments of Pelton turbines with regard to their hydraulic designs and optimizations. It is thus suitable for the development and design engineers as well as those working in the field of turbo machinery. Many laws described in the book can also be directly used to simplify aspects of computational fluid dynamics (CFD) or to develop new computational methods. The well-executed examples help better understand the related flow mechanics.

  11. Advanced Turbine Systems (ATS) program conceptual design and product development. Quarterly progress report, December 1, 1995--February 29, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This report describes the overall program status of the General Electric Advanced Gas Turbine Development program, and reports progress on three main task areas. The program is focused on two specific products: (1) a 70-MW class industrial gas turbine based on the GE90 core technology, utilizing a new air cooling methodology; and (2) a 200-MW class utility gas turbine based on an advanced GE heavy-duty machine, utilizing advanced cooling and enhancement in component efficiency. The emphasis for the industrial system is placed on cycle design and low emission combustion. For the utility system, the focus is on developing a technology base for advanced turbine cooling while achieving low emission combustion. The three tasks included in this progress report are on: conversion to a coal-fueled advanced turbine system, integrated program plan, and design and test of critical components. 13 figs., 1 tab.

  12. Dynamics analysis of the fast-slow hydro-turbine governing system with different time-scale coupling

    Science.gov (United States)

    Zhang, Hao; Chen, Diyi; Wu, Changzhi; Wang, Xiangyu

    2018-01-01

    Multi-time scales modeling of hydro-turbine governing system is crucial in precise modeling of hydropower plant and provides support for the stability analysis of the system. Considering the inertia and response time of the hydraulic servo system, the hydro-turbine governing system is transformed into the fast-slow hydro-turbine governing system. The effects of the time-scale on the dynamical behavior of the system are analyzed and the fast-slow dynamical behaviors of the system are investigated with different time-scale. Furthermore, the theoretical analysis of the stable regions is presented. The influences of the time-scale on the stable region are analyzed by simulation. The simulation results prove the correctness of the theoretical analysis. More importantly, the methods and results of this paper provide a perspective to multi-time scales modeling of hydro-turbine governing system and contribute to the optimization analysis and control of the system.

  13. Comparative performance of combined gas turbine systems under three different blade cooling schemes

    Energy Technology Data Exchange (ETDEWEB)

    Najjar, Y.S.H. [Jordan University of Science and Technology, Irbid (Jordan). Dept. of Mechanical Engineering; Alghamdi, A.S.; Al-Beirutty, M.H. [King Abdulaziz University, Jeddah (Saudi Arabia). Dept. of Mechanical Engineering

    2004-09-01

    Recent advances in gas turbine development have led to wider usage of combined power plant for electrical power generation, and made it possible to reach a thermal efficiency of 55-60%. This was a result of introducing higher turbine inlet temperature (TIT) and other factors. However, this temperature is restricted by the metallurgical limit of turbine blades of about 800{sup o}C. Thus, need arises to design efficient cooling systems to cool the turbine components subjected to such high temperatures. The performance of a combined system with different cooling techniques in the high temperature section of the turbine is evaluated. A general model of the combined system is developed and used to compare the performance relevant to the three main schemes of blade cooling, namely air-cooling, open-circuit steam cooling (OCSC) and closed-loop steam cooling (CLSC). The performance results of the combined system are expressed in terms of overall efficiency and specific power as functions of three primary variables and some other secondary variables, which depend on the considered type of cooling. The primary variables are the TIT, compressor pressure ratio (R{sub c}), and the cooling mass ratio ({phi}{sub c}). The secondary variables are related to the geometry, aerothermodynamics, and heat transfer parameters of the gas turbine blades. The specific power and efficiency of the gas turbine are found to be sensitive to the type of cooling technique used. The combined system with CLSC is found to outperform the OCSC system in specific power and overall efficiency. Thus, it is clear that more power is created when the cooling steam in the closed-loop is not thrown away. Under the given conditions the power of the lower steam cycle with CLSC is increased by 6%, accompanied by 19% rise in cycle efficiency relative to OCSC at similar conditions. The CLSC results in 11% enhancement in power and 3.2% in efficiency relative to air-cooling. The CLSC is less sensitive to variations of

  14. A high-speed photographic system for flow visualization in a steam turbine

    Science.gov (United States)

    Barna, G. J.

    1973-01-01

    A photographic system was designed to visualize the moisture flow in a steam turbine. Good performance of the system was verified using dry turbine mockups in which an aerosol spray simulated, in a rough way, the moisture flow in the turbine. Borescopes and fiber-optic light tubes were selected as the general instrumentation approach. High speed motion-picture photographs of the liquid flow over the stator blade surfaces were taken using stroboscopic lighting. Good visualization of the liquid flow was obtained. Still photographs of drops in flight were made using short duration flash sources. Drops with diameters as small as 30 micrometers (0.0012 in.) could be resolved. In addition, motion pictures of a spray of water simulating the spray off the rotor blades and shrouds were taken at normal framing rates. Specially constructed light tubes containing small tungsten-halogen lamps were used. Sixteen millimeter photography was used in all cases. Two potential problems resulting from the two-phase turbine flow (attenuation and scattering of light by the fog present and liquid accumulation on the borescope mirrors) were taken into account in the photographic system design but not evaluated experimentally.

  15. Wind turbine blade testing system using base excitation

    Science.gov (United States)

    Cotrell, Jason; Thresher, Robert; Lambert, Scott; Hughes, Scott; Johnson, Jay

    2014-03-25

    An apparatus (500) for fatigue testing elongate test articles (404) including wind turbine blades through forced or resonant excitation of the base (406) of the test articles (404). The apparatus (500) includes a testing platform or foundation (402). A blade support (410) is provided for retaining or supporting a base (406) of an elongate test article (404), and the blade support (410) is pivotally mounted on the testing platform (402) with at least two degrees of freedom of motion relative to the testing platform (402). An excitation input assembly (540) is interconnected with the blade support (410) and includes first and second actuators (444, 446, 541) that act to concurrently apply forces or loads to the blade support (410). The actuator forces are cyclically applied in first and second transverse directions. The test article (404) responds to shaking of its base (406) by oscillating in two, transverse directions (505, 507).

  16. Exergetic and environmental impact assessments of an integrated organic Rankine cycle with a biomass combustor for combined cooling, heating and power production

    Energy Technology Data Exchange (ETDEWEB)

    Al-Sulaiman, F.A. [Carleton Univ., Ottawa, ON (Canada). Dept. of Mechanical and Aerospace Engineering; Hamdullahpur, F. [Waterloo Univ., ON (Canada). Dept. of Mechanical and Mechatronics Engineering; Dincer, I. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada). Faculty of Engineering and Applied Science

    2010-07-01

    A trigeneration thermal system produces cooling, heating and power from the same source. In trigeneration plants, waste heat is used for heating and cooling. In this paper, exergetic and environmental impact analyses of a trigeneration system based on an integrated organic Rankine cycle (ORC) with a biomass combustor were conducted. The analyses were extended to include electrical-power, cooling-cogeneration and heating-cogeneration cases. The objective was to understand the working phenomena of the proposed system, and identify and quantify the sources of the irreversibilities in the system associated with each component. The environmental impact of the proposed system was also quantified. The exergy efficiency, exergy destruction rate and carbon dioxide (CO{sub 2}) emissions were examined under the variations of pump inlet temperature and turbine inlet pressure. The results showed that exergy efficiency increased to 27 per cent when trigeneration was used as compared 11 per cent when the electrical power system was used. The main two sources of exergy destruction were the biomass combustor and the ORC evaporator. Emissions of CO{sub 2} were much higher in the case of the the electrical-power system compared to the trigeneration system. 11 refs., 1 tab., 8 figs.

  17. Integrated operation of a pressurized fixed-bed gasifier, hot gas desulfurization system, and turbine simulator

    Energy Technology Data Exchange (ETDEWEB)

    Bevan, S.; Ayala, R.E.; Feitelberg, A.; Furman, A.

    1995-11-01

    The overall objective of the General Electric Hot Gas Cleanup (HGCU) Program is to develop a commercially viable technology to remove sulfur, particulates, and halogens from a high-temperature fuel gas stream using a moving bed, regenerable mixed metal oxide sorbent based process. The HGCU Program is based on the design and demonstration of the HGCU system in a test facility made up of a pilot-scale fixed bed gasifier, a HGCU system, and a turbine simulator in Schenectady, NY, at the General Electric Research and Development Center. The objectives of the turbine simulator testing are (1) to demonstrate the suitability of fuel gas processed by the HGCU system for use in state-of-the-art gas turbines firing at 2,350 F rotor inlet temperature and (2) to quantify the combustion characteristics and emissions on low-Btu fuel gas. The turbine simulator program also includes the development and operation of experimental combustors based on the rich-quench-lean concept (RQL) to minimize the conversion of ammonia and other fuel-bound nitrogen species to NO{sub x} during combustion. The HGCU system and turbine simulator have been designed to process approximately 8,000 lb/hr of low heating value fuel gas produced by the GE fixed bed gasifier. The HGCU system has utilized several mixed metal oxide sorbents, including zinc ferrite, zinc titanate, and Z-Sorb, with the objective of demonstrating good sulfur removal and mechanical attrition resistance as well as economic cost characteristics. Demonstration of halogen removal and the characterization of alkali and trace metal concentrations in the fuel gas are subordinate objectives of the overall program. This report describes the results of several long-duration pilot tests.

  18. Numerical analysis of radial inward flow turbine for CO2 based closed loop Brayton cycle

    Science.gov (United States)

    Kisan, Jadhav Amit; Govardhan, M.

    2017-06-01

    Last few decades have witnessed a phenomenal growth in the demand for power, which has driven the suppliers to find new sources of energy and increase the efficiency of power generation process. Power generation cycles are either steam based Rankine cycle or closed loop Brayton cycles providing an efficiency of 30 to 40%. An upcoming technology in this regard is the CO2 based Brayton cycle operating near the critical region which has applications in vast areas. Power generation of CO2 based Brayton cycle can vary from few kilowatts for waste heat recovery to hundreds of megawatts in sodium cooled fast reactors. A CO2 based Brayton cycle is being studied for power generation especially in mid-sized concentrated solar power plants by numerous research groups around the world. One of the main components of such a setting is its turbine. Simulating the flow conditions inside the turbine becomes very crucial in order to accurately predict the performance of the system. The flow inside radial inflow turbine is studied at various inlet temperatures and mass flow rates in order to predict the behavior of the turbine under various boundary conditions. The performance investigation of the turbine system is done on the basis of parameters such as total efficiency, pressure ratio, and power coefficient. Effect of different inlet stagnation temperature and exit mass flow rates on these parameters is also studied. Results obtained are encouraging for the use of CO2 as working fluid in Brayton cycle.

  19. Advanced turbine systems program -- Conceptual design and product development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-26

    This Final Technical Report presents the accomplishments on Phase 2 of the Advanced Turbine Systems (ATS). The ATS is an advanced, natural gas fired gas turbine system that will represent a major advance on currently available industrial gas turbines in the size range of 1--20 MW. This report covers a market-driven development. The Market Survey reported in Section 5 identified the customer`s performance needs. This market survey used analyses performed by Solar turbine Incorporated backed up by the analyses done by two consultants, Research Decision Consultants (RDC) and Onsite Energy Corporation (Onsite). This back-up was important because it is the belief of all parties that growth of the ATS will depend both on continued participation in Solar`s traditional oil and gas market but to a major extent on a new market. This new market is distributed electrical power generation. Difficult decisions have had to be made to meet the different demands of the two markets. Available resources, reasonable development schedules, avoidance of schedule or technology failures, probable acceptance by the marketplace, plus product cost, performance and environmental friendliness are a few of the complex factors influencing the selection of the Gas Fired Advanced Turbine System described in Section 3. Section 4 entitled ``Conversion to Coal`` was a task which addresses the possibility of a future interruption to an economic supply of natural gas. System definition and analysis is covered in Section 6. Two major objectives were met by this work. The first was identification of those critical technologies that can support overall attainment of the program goals. Separate technology or component programs were begun to identify and parameterize these technologies and are described in Section 7. The second objective was to prepare parametric analyses to assess performance sensitivity to operating variables and to select design approaches to meet the overall program goals.

  20. Energy recuperation in solid oxide fuel cell (SOFC) and gas turbine (GT) combined system

    Science.gov (United States)

    Kuchonthara, Prapan; Bhattacharya, Sankar; Tsutsumi, Atsushi

    A combined power generation system consisting of a solid oxide fuel cell (SOFC) and a gas turbine (GT) with steam and heat recuperation (HR) was evaluated using a commercial process simulation tool, ASPEN Plus. The effect of steam recuperation (SR) on the overall efficiency of the combined system was investigated by comparing the SOFC-GT during heat and steam recuperation (HSR) against the system during only heat recuperation. At low turbine inlet temperatures (TITs), the overall efficiency of the SOFC-GT combined system with heat and steam recuperation improved by showing an increase in TIT and a reduction in pressure ratio (PR). On the other hand, at high TITs, the opposite trend was observed. The integration of steam recuperation was found to improve the overall efficiency and specific power of SOFC-GT combined systems with a relatively compact SOFC component.

  1. Sensitivity Analysis of Wind Plant Performance to Key Turbine Design Parameters: A Systems Engineering Approach; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.; Ning, A.; King, R.; Graf, P.; Scott, G.; Veers, P.

    2014-02-01

    This paper introduces the development of a new software framework for research, design, and development of wind energy systems which is meant to 1) represent a full wind plant including all physical and nonphysical assets and associated costs up to the point of grid interconnection, 2) allow use of interchangeable models of varying fidelity for different aspects of the system, and 3) support system level multidisciplinary analyses and optimizations. This paper describes the design of the overall software capability and applies it to a global sensitivity analysis of wind turbine and plant performance and cost. The analysis was performed using three different model configurations involving different levels of fidelity, which illustrate how increasing fidelity can preserve important system interactions that build up to overall system performance and cost. Analyses were performed for a reference wind plant based on the National Renewable Energy Laboratory's 5-MW reference turbine at a mid-Atlantic offshore location within the United States.

  2. Transition in Gas Turbine Control System Architecture: Modular, Distributed, and Embedded

    Science.gov (United States)

    Culley, Dennis

    2010-01-01

    Controls systems are an increasingly important component of turbine-engine system technology. However, as engines become more capable, the control system itself becomes ever more constrained by the inherent environmental conditions of the engine; a relationship forced by the continued reliance on commercial electronics technology. A revolutionary change in the architecture of turbine-engine control systems will change this paradigm and result in fully distributed engine control systems. Initially, the revolution will begin with the physical decoupling of the control law processor from the hostile engine environment using a digital communications network and engine-mounted high temperature electronics requiring little or no thermal control. The vision for the evolution of distributed control capability from this initial implementation to fully distributed and embedded control is described in a roadmap and implementation plan. The development of this plan is the result of discussions with government and industry stakeholders

  3. Advanced Turbine Systems (ATS) program conceptual design and product development. Quarterly report, August 25--November 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    GE has achieved a leadership position in the worldwide gas turbine industry in both industrial/utility markets and in aircraft engines. This design and manufacturing base plus our close contact with the users provides the technology for creation of the next generation advanced power generation systems for both the industrial and utility industries. GE has been active in the definition of advanced turbine systems for several years. These systems will leverage the technology from the latest developments in the entire GE gas turbine product line. These products will be USA based in engineering and manufacturing and are marketed through the GE Industrial and Power Systems. Achieving the advanced turbine system goals of 60% efficiency, 8 ppmvd NOx and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NOx emission. Improved coating and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal.

  4. Advanced Turbine Systems (ATS) program conceptual design and product development. Quarterly report, December 1, 1993--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    GE has achieved a leadership position in the worldwide gas turbine industry in both industrial/utility markets and in aircraft engines. This design and manufacturing base plus our close contact with the users provides the technology for creation of the next generation advanced power generation systems for both the industrial and utility industries. GE has been active in the definition of advanced turbine systems for several years. These systems will leverage the technology from the latest developments in the entire GE gas turbine product line. These products will be USA based in engineering and manufacturing and are marketed through the GE Industrial and Power Systems. Achieving the advanced turbine system goals of 60% efficiency, 8 ppmvd NOx and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NOx emission. Improved coating and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal.

  5. Fast-Valving of Large Steam Turbine Units as a Means of Power System Security Enhancement

    Directory of Open Access Journals (Sweden)

    Bogdan Sobczak

    2014-03-01

    Full Text Available Fast-valving assists in maintaining system stability following a severe transmission system fault by reducing the turbine mechanical power. Fast-valving consists in rapid closing and opening of steam valves in an adequate manner to reduce the generator accelerating power following the recognition of a severe fault. FV can be an effective and economical method of meeting the performance requirements of a power system in the presence of an increase in wind and solar generation in the power system, newly connected large thermal units and delaying of building new transmission lines. The principle of fast-valving and advantages of applying this technique in large steam turbine units was presented in the paper. Effectiveness of fast-valving in enhancing the stability of the Polish Power Grid was analyzed. The feasibility study of fast-valving application in the 560 MW unit in Kozienice Power Station (EW SA was discussed.

  6. Wind Turbine and Wind Power Plant Modelling Aspects for Power System Stability Studies

    DEFF Research Database (Denmark)

    Altin, Müfit; Hansen, Anca Daniela; Göksu, Ömer

    2014-01-01

    Large amount of wind power installations introduce modeling challenges for power system operators at both the planning and operational stages of power systems. Depending on the scope of the study, the modeling details of the wind turbine or the wind power plant are required to be different. A wind...... turbine model which is developed for the short-term voltage stability studies can be inaccurate and sufficient for the frequency stability studies. Accordingly, a complete and detailed wind power plant model for every kind of study is not feasible in terms of the computational time and also...... and wind power plants are reviewed for power system stability studies. Important remarks of the models are presented by means of simulations to emphasize the impact of these modelling details on the power system....

  7. Modeling the effects of control systems of wind turbine fatigue life

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, K.G.; Laino, D.J. [Univ. of Utah, Salt Lake City, UT (United States)

    1996-12-31

    In this study we look at the effect on fatigue life of two types of control systems. First, we investigate the Micon 65, an upwind, three bladed turbine with a simple yaw control system. Results indicate that increased fatigue damage to the blade root can be attributed to continuous operation at significant yaw error allowed by the control system. Next, we model a two-bladed teetered rotor turbine using three different control systems to adjust flap deflections. The first two limit peak power output, the third limits peak power and cyclic power output over the entire range of operation. Results for simulations conducted both with and without active control are compared to determine how active control affects fatigue life. Improvement in fatigue lifetimes were seen for all control schemes, with increasing fatigue lifetime corresponding to increased flap deflection activity. 13 refs., 6 figs., 2 tabs.

  8. Analysis of load reduction possibilities using a hydraulic soft yaw system for a 5-MW turbine and its sensitivity to yaw-bearing friction

    DEFF Research Database (Denmark)

    Stubkier, S.; Pedersen, H. C.; Jonkman, J. M.

    2014-01-01

    With the increasing size of wind turbines and with increasing lifetime demands, new methods for load reduction in the turbines need to be examined. One method is to make the yaw system of the turbine flexible, thereby dampening the loads to the system. This paper presents a hydraulic soft yaw...... concept and investigates the effect this has on critical loads in the turbine. To analyze the system, a novel friction model is developed and implemented for the yaw system using the NREL 5-MW turbine in the aerodynamic code FAST. Based on this model, the influence of friction is investigated...

  9. Specific features of the control systems of new-modification 310-330-MW steam turbines manufactured by PAO turboatom

    Science.gov (United States)

    Shvetsov, V. L.; Babaev, I. N.

    2017-07-01

    Principal engineering solutions taken by PAO Turboatom when developing the control systems of the 310-325-MW turbines for thermal power stations are set forth. A schematic diagram of the control system is presented and the designs of the retrofitted basic mechanisms, viz., high-pressure steam-distribution unit and the cutoff valve, are described. It is noted that the accepted principles of designing the control systems allow retaining the following advantages of the latter: use of the condensate as a cheap nonflammable working fluid, valveless switches to control the locking servomotors, a mechanical ring-type turbine trip mechanism (TTM) in combination with an actuator fitted with two double-seated actuator valves to control the pressure in the pulse security lines, and a rotary valve to block the triggering of the actuator valves during successive testing of the TTM rings by filling the oil during the operation of the turbine and the subsequent raising of the above valves. The control systems of the new-modification turbines are based on microprocessor hardware using electromechanical converters to drive every cutoff valve as a universal solution that is not oriented towards a particular manufacturer of the control system electronics. Application of a mechanical turbine trip mechanism is acknowledged as indispensable for unconditional guarantee of the safe operation of the turbines irrespective of the presence of the electronic turbine trip mechanism.

  10. Electric Generators Fitted to Wind Turbine Systems: An Up-to-Date Comparative Study

    OpenAIRE

    Lebsir, A; Bentounsi, A; Benbouzid, Mohamed; Mangel, H

    2015-01-01

    International audience; This paper describes a comparative study allowing the selection of the most appropriate innovative structures for electrical machines for a wind turbine system. This study is based on an exhaustive review of the state of the art and on an effective comparison of the performances of the three main conventional electric generator in wind energy application system that are the Doubly-Fed Induction Generator (DFIG), the Squirrel-Cage Induction Generator (SCIG), the Permane...

  11. Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gleeson, Brian [Univ. of Pittsburgh, PA (United States)

    2014-09-30

    Air plasma sprayed (APS) thermal barrier coatings (TBCs) are used to provide thermal insulation for the hottest components in gas turbines. Zirconia stabilized with 7wt% yttria (7YSZ) is the most common ceramic top coat used for turbine blades. The 7YSZ coating can be degraded from the buildup of fly-ash deposits created in the power-generation process. Fly ash from an integrated gasification combined cycle (IGCC) system can result from coal-based syngas. TBCs are also exposed to harsh gas environments containing CO2, SO2, and steam. Degradation from the combined effects of fly ash and harsh gas atmospheres has the potential to severely limit TBC lifetimes. The main objective of this study was to use lab-scale testing to systematically elucidate the interplay between prototypical deposit chemistries (i.e., ash and its constituents, K2SO4, and FeS) and environmental oxidants (i.e., O2, H2O and CO2) on the degradation behavior of advanced TBC systems. Several mechanisms of early TBC failure were identified, as were the specific fly-ash constituents responsible for degradation. The reactivity of MCrAlY bondcoats used in TBC systems was also investigated. The specific roles of oxide and sulfate components were assessed, together with the complex interplay between gas composition, deposit chemistry and alloy reactivity. Bondcoat composition design strategies to mitigate corrosion were established, particularly with regard to controlling phase constitution and the amount of reactive elements the bondcoat contains in order to achieve optimal corrosion resistance.

  12. Sliding vane geometry turbines

    Science.gov (United States)

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  13. Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

    OpenAIRE

    Bing Hu; Xianbiao Bu; Weibin Ma

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with incr...

  14. Integrating Systems Health Management with Adaptive Controls for a Utility-scale Wind Turbine

    Data.gov (United States)

    National Aeronautics and Space Administration — Increasing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to...

  15. Fuel cell-gas turbine hybrid system design part II: Dynamics and control

    Science.gov (United States)

    McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott

    2014-05-01

    Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.

  16. Reactive power control and optimisation of hybrid off shore tidal turbine with system uncertainties

    Directory of Open Access Journals (Sweden)

    Asit Mohanty

    2016-12-01

    Full Text Available This paper projects an isolated hybrid model of Offshore wind-diesel-tidal turbine and discusses the stability and reactive power management issue of the whole system. The hybrid system often loses its stability as it becomes prone to uncertain load and input parameters and therefore the necessity of Reactive power management becomes necessary. The overall stability of the hybrid offshore wind-diesel-tidal turbine is made possible by the management of reactive power in the hybrid system through the application of FACTS devices. And therefore the dynamic hybrid model of the DFIG and DDPMSG based offshore wind-diesel-tidal turbine is analysed for stability with different input parameters like wind and tidal energies. For detailed modelling and simulation, a small signal model of the whole hybrid system is designed and reactive power management of the system is achieved by the incorporation of a STATCOM controller. For improvement of stability and reactive power compensation of the hybrid system, GA and PSO optimised STATCOM controller is used.

  17. Modeling of a Cogeneration System with a Micro Gas Turbine Operating at Partial Load Conditions

    Directory of Open Access Journals (Sweden)

    José Carlos Dutra

    2017-06-01

    Full Text Available The integration of absorption chillers in micro-cogeneration systems based on micro-gas turbines can be useful as an appropriate strategy to increase the total system energy efficiency. Since it is an area intensive in technology, it is necessary to develop and use models of simulation, which can predict the behavior of the whole system and of each component individually, at different operating conditions. This work is part of a research project in high efficiency cogeneration systems, whose purpose at this stage is to model a micro-cogeneration system, which is composed of a micro gas turbine, Capstone C30, a compact cross flow finned tube heat exchanger and an absorption chiller. The entire model is composed of specifically interconnected models, developed and validated for each component. The simulation of the microturbine used a thermodynamic analytic model, which contains a procedure used to obtain the micro turbine characteristic performance curves, which is closed with the thermodynamic Brayton cycle model. In the cogeneration system discussed in this paper, the compact heat exchanger was used to heat thermal oil, which drives an absorption chiller. It was designed, characterized and installed in a cogeneration system installed at the Centre d'Innovació Tecnològica en Revalorització Energètica i Refrigeració, Universtat Rovira i Virgili. Its design led to the heat exchanger model, which was coupled with the micro turbine model. Presented in this work is a comparison between the data from the model and the experiments, demonstrating good agreement between both results.

  18. On Small-Signal Stability of Wind Power System with Full-Load Converter Interfaced Wind Turbines

    DEFF Research Database (Denmark)

    Knüppel, Thyge; Akhmatov, Vladislav; Nielsen, Jørgen Nygård

    2010-01-01

    Small-signal stability analysis of power system oscillations is a well established field within power system analysis, but not much attention has yet been paid to systems with a high penetration of wind turbines and with large wind power plants. In this paper an analysis is presented which assess...... the impact of full-load converter interfaced wind turbines on power system small-signal stability. The study is based on a 7 generator network with lightly damped inter-area modes. A detailed wind turbine model with all grid relevant control functions is used in the study. Furthermore is the wind power plant...... (WPP) equipped with a WPP voltage controller and comparisons are presented. The models of wind turbine and WPP voltage controller are kindly provided by Siemens Wind Power A/S for this work. The study is based on modal analysis which are complemented with simulations on the nonlinear system....

  19. Oscillatory Stability and Eigenvalue Sensitivity Analysis of A DFIG Wind Turbine System

    DEFF Research Database (Denmark)

    Yang, Lihui; Xu, Zhao; Østergaard, Jacob

    2011-01-01

    This paper focuses on modeling and oscillatory stability analysis of a wind turbine with doubly fed induction generator (DFIG). A detailed mathematical model of DFIG wind turbine with vector-control loops is developed, based on which the loci of the system Jacobian's eigenvalues have been analyzed......, showing that, without appropriate controller tuning a Hopf bifurcation can occur in such a system due to various factors, such as wind speed. Subsequently, eigenvalue sensitivity with respect to machine and control parameters is performed to assess their impacts on system stability. Moreover, the Hopf...... bifurcation boundaries of the key parameters are also given. They can be used to guide the tuning of those DFIG parameters to ensure stable operation in practice. The computer simulations are conducted to validate the developed model and to verify the theoretical analysis....

  20. Performance of a reversible heat pump/organic Rankine cycle unit coupled with a passive house to get a positive energy building

    DEFF Research Database (Denmark)

    Dumont, Olivier; Carmo, Carolina; Fontaine, Valentin

    2016-01-01

    and generate electricity, coupled to a solar thermal collector roof. This reversible HP/organic Rankine cycle unit presents three operating modes: direct heating, HP and organic Rankine cycle. This work focuses on describing the dynamic model of the multi-component system followed by a techno-economic analysis......Wh/year and total electrical consumption of 2318 kWh/year) with a 138.8 m2 solar roof in Denmark....

  1. Modeling the Control Systems of Gas-Turbines to Ensure Their Reliable Parallel Operation in the UPS of Russia

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, A. Yu., E-mail: vinogradov-a@ntcees.ru; Gerasimov, A. S.; Kozlov, A. V.; Smirnov, A. N. [JSC “STC UPS” (Russian Federation)

    2016-05-15

    Consideration is given to different approaches to modeling the control systems of gas turbines as a component of CCPP and GTPP to ensure their reliable parallel operation in the UPS of Russia. The disadvantages of the approaches to the modeling of combined-cycle units in studying long-term electromechanical transients accompanied by power imbalance are pointed out. Examples are presented to support the use of more detailed models of gas turbines in electromechanical transient calculations. It is shown that the modern speed control systems of gas turbines in combination with relatively low equivalent inertia have a considerable effect on electromechanical transients, including those caused by disturbances not related to power imbalance.

  2. Parametric Studies of the Ejector Process within a Turbine-Based Combined-Cycle Propulsion System

    Science.gov (United States)

    Georgiadis, Nicholas J.; Walker, James F.; Trefny, Charles J.

    1999-01-01

    Performance characteristics of the ejector process within a turbine-based combined-cycle (TBCC) propulsion system are investigated using the NPARC Navier-Stokes code. The TBCC concept integrates a turbine engine with a ramjet into a single propulsion system that may efficiently operate from takeoff to high Mach number cruise. At the operating point considered, corresponding to a flight Mach number of 2.0, an ejector serves to mix flow from the ramjet duct with flow from the turbine engine. The combined flow then passes through a diffuser where it is mixed with hydrogen fuel and burned. Three sets of fully turbulent Navier-Stokes calculations are compared with predictions from a cycle code developed specifically for the TBCC propulsion system. A baseline ejector system is investigated first. The Navier-Stokes calculations indicate that the flow leaving the ejector is not completely mixed, which may adversely affect the overall system performance. Two additional sets of calculations are presented; one set that investigated a longer ejector region (to enhance mixing) and a second set which also utilized the longer ejector but replaced the no-slip surfaces of the ejector with slip (inviscid) walls in order to resolve discrepancies with the cycle code. The three sets of Navier-Stokes calculations and the TBCC cycle code predictions are compared to determine the validity of each of the modeling approaches.

  3. Development of a stereo-optical camera system for monitoring tidal turbines

    Science.gov (United States)

    Joslin, James; Polagye, Brian; Parker-Stetter, Sandra

    2014-01-01

    The development, implementation, and testing of a stereo-optical imaging system suitable for environmental monitoring of a tidal turbine is described. This monitoring system is intended to provide real-time stereographic imagery in the near-field (animals and the turbine. A method for optimizing the stereo camera arrangement is given, along with a quantitative assessment of the system's ability to measure and track targets in three-dimensional space. Optical camera effectiveness is qualitatively evaluated under realistic field conditions to determine the range within which detection, discrimination, and classification of targets is possible. These field evaluations inform optimal system placement relative to the turbine rotor. Tests suggest that the stereographic cameras will likely be able to discriminate and classify targets at ranges up to 3.5 m and detect targets at ranges up to, and potentially beyond, 4.5 m. Future system testing will include the use of an imaging sonar ("acoustical camera") to evaluate behavioral disturbances associated with artificial lighting.

  4. Smart Sensor System for Structural Condition Monitoring of Wind Turbines: 30 May 2002--30 April 2006

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, M. J.; Sundaresan, M. J.

    2006-08-01

    This report describes the efforts of the University of Cincinnati, North Carolina A&T State University, and NREL to develop a structural neural system for structural health monitoring of wind turbine blades.

  5. A probability evaluation method of early deterioration condition for the critical components of wind turbine generator systems

    DEFF Research Database (Denmark)

    Hu, Y.; Li, H.; Liao, X

    2016-01-01

    This study determines the early deterioration condition of critical components for a wind turbine generator system (WTGS). Due to the uncertainty nature of the fluctuation and intermittence of wind, early deterioration condition evaluation poses a challenge to the traditional vibration...

  6. Linear Modeling and Regulation Quality Analysis for Hydro-Turbine Governing System with an Open Tailrace Channel

    National Research Council Canada - National Science Library

    Yang, Jiandong; Wang, Mingjiang; Wang, Chao; Guo, Wencheng

    2015-01-01

    .... Then, the complete mathematical model for the hydro-turbine governing system of hydropower station with an open tailrace channel, which is used for simulating the transient process of the hydro...

  7. Solid Oxide Fuel Cell/Turbine Hybrid Power System for Advanced Aero-propulsion and Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Solid oxide fuel cell (SOFC)/ gas turbine hybrid power systems (HPSs) have been recognized by federal agencies and other entities as having the potential to operate...

  8. Recovery of work from exothermic chemical reaction systems by means of turbine expansion

    Energy Technology Data Exchange (ETDEWEB)

    Greeff, I.L.

    2003-12-08

    It is evident that a unique design approach or methodology is needed to develop flow sheet configurations for chemical reaction systems that use turbine expanders to recover reaction heat. It is the aim of this work to address this need by finding a methodology that will lend structure to the development and analysis of the flow sheets for the mentioned systems. Many factors have to be taken into consideration, both relating to the requirements of the chemical process and the requirements of the power cycle created using the process gas. For example, a reasonable pressure ratio is required over compression equipment in the case of a power cycle to produce power efficiently. The physical properties of the process gas, which becomes a working fluid, are also important. Furthermore, a thorough understanding of the role and behaviour of the expander within the chemical process is needed. Consequently, in this work the parameters that impact on the integrated systems will be identified and their roles investigated. Suitable criteria of performance for the integrated systems in question are also needed. In this regard the exergy method is particularly suited since it enables designs that will use energy resources more efficiently. The application of exergy analysis is illustrated and the strengths and limitations are discussed. The purpose of this research is achieved by conducting a number of case studies on different chemical reaction processes. These processes all comprise exothermic, high-pressure reactions, but otherwise differ significantly in terms of aspects such as reactor operation, separation techniques, reactant conversion, etc. The chemicals are also produced on a global scale using well-known processes. This makes realistic modelling of the processes possible. Process data are generated using simulations. The level of modelling and simulation is of a conceptual nature to investigate and illustrate fundamental principles, relations and trends. In Chapter 2

  9. Phase 1 of the First Small Power System Experiment (engineering Experiment No. 1). Volume 1: Executive Summary. [development and testing of a solar thermal power plant

    Science.gov (United States)

    Holl, R. J.

    1979-01-01

    The development of a modular solar thermal power system for application in the 1 to 10 MWe range is presented. The system is used in remote utility applications, small communities, rural areas, and for industrial uses. Investigations are performed on the energy storage requirements and type of energy storage, concentrator design and field optimization, energy transport, and power conversion subsystems. The system utilizes a Rankine cycle, an axial flow steam turbine for power conversion, and heat transfer sodium for collector fluid.

  10. Design and Experimental Validation of Hydraulic Yaw System for Multi MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    market. A hydraulic yaw system is such a new technology, and so a mathematical model of the full scale system and test rig system is derived and compared to measurements from the system. This is done in order to have a validated model, which wind turbine manufacturers may use for test in their simulation...... environment. The model and the test rig are tested up against different design load cases and the results are compared. The experiments show that the model is valid for comparing the overall dynamics of the hydraulic yaw system. Based on the results it is concluded that the model derived is suitable...

  11. Study on Performance Improvement and Economical Aspect of Gas Turbine Power Plant Using Evaporative Cooling System

    Directory of Open Access Journals (Sweden)

    Hilman Syaeful Alam

    2015-12-01

    Full Text Available The study is intended to improve the performance of gas turbine engines in order to meet both electrical power demand and peak load in the power plant. In this paper, evaporative cooling system had been applied to improve the performance of gas turbine in Pesanggaran power plant in southern Bali Island, Indonesia. Moreover, the economic analysis was conducted to determine the capacity cost, operating cost and payback period due to the investment cost of the system. Based on the evaluation results, the power improvement for the three gas turbine units (GT1, GT2 and GT3 are 2.09%, 1.38%, and 1.28%, respectively. These results were not very significant when compared to the previous studies as well as on the aspects of SFC (Specific Fuel Consumption, heat rate and thermal efficiency. Based on the evaluation of the economic aspects, the reduction of production costs due to the application of evaporative cooling system was not economical, because it could not compensate the investment cost of the system and it resulted a very long payback period. These unsatisfactory results could be caused by the high relative humidity. Therefore, further studies are needed to investigate the other alternative technologies which are more suitable to the climate conditions in Indonesia.

  12. Wind turbine blade fatigue tests: lessons learned and application to SHM system development

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Stuart G. [Los Alamos National Laboratory; Farinholt, Kevin M. [Los Alamos National Laboratory; Jeong, Hyomi [Chonbuk National University, Korea; Jang, JaeKyung [Chonbuk National University, Korea; Park, Gyu Hae [Los Alamos National Laboratory; Todd, Michael D. [Los Alamos National Laboratory; Farrar, Charles R. [Los Alamos National Laboratory; Ammerman, Curtt N. [Los Alamos National Laboratory

    2012-06-28

    This paper presents experimental results of several structural health monitoring (SHM) methods applied to a 9-meter CX-100 wind turbine blade that underwent fatigue loading. The blade was instrumented with piezoelectric transducers, accelerometers, acoustic emission sensors, and foil strain gauges. It underwent harmonic excitation at its first natural frequency using a hydraulically actuated resonant excitation system. The blade was initially excited at 25% of its design load, and then with steadily increasing loads until it failed. Various data were collected between and during fatigue loading sessions. The data were measured over multiple frequency ranges using a variety of acquisition equipment, including off-the-shelf systems and specially designed hardware developed by the authors. Modal response, diffuse wave-field transfer functions, and ultrasonic guided wave methods were applied to assess the condition of the wind turbine blade. The piezoelectric sensors themselves were also monitored using a sensor diagnostics procedure. This paper summarizes experimental procedures and results, focusing particularly on fatigue crack detection, and concludes with considerations for implementing such damage identification systems, which will be used as a guideline for future SHM system development for operating wind turbine blades.

  13. TOPICAL REVIEW: Structural health monitoring for a wind turbine system: a review of damage detection methods

    Science.gov (United States)

    Ciang, Chia Chen; Lee, Jung-Ryul; Bang, Hyung-Joon

    2008-12-01

    Renewable energy sources have gained much attention due to the recent energy crisis and the urge to get clean energy. Among the main options being studied, wind energy is a strong contender because of its reliability due to the maturity of the technology, good infrastructure and relative cost competitiveness. In order to harvest wind energy more efficiently, the size of wind turbines has become physically larger, making maintenance and repair works difficult. In order to improve safety considerations, to minimize down time, to lower the frequency of sudden breakdowns and associated huge maintenance and logistic costs and to provide reliable power generation, the wind turbines must be monitored from time to time to ensure that they are in good condition. Among all the monitoring systems, the structural health monitoring (SHM) system is of primary importance because it is the structure that provides the integrity of the system. SHM systems and the related non-destructive test and evaluation methods are discussed in this review. As many of the methods function on local damage, the types of damage that occur commonly in relation to wind turbines, as well as the damage hot spots, are also included in this review.

  14. Design of Linear Control System for Wind Turbine Blade Fatigue Testing

    DEFF Research Database (Denmark)

    Toft, Anders; Roe-Poulsen, Bjarke Nørskov; Christiansen, Rasmus

    2016-01-01

    This paper proposes a linear method for wind turbine blade fatigue testing at Siemens Wind Power. The setup consists of a blade, an actuator (motor and load mass) that acts on the blade with a sinusoidal moment, and a distribution of strain gauges to measure the blade flexure. Based on the freque......This paper proposes a linear method for wind turbine blade fatigue testing at Siemens Wind Power. The setup consists of a blade, an actuator (motor and load mass) that acts on the blade with a sinusoidal moment, and a distribution of strain gauges to measure the blade flexure. Based...... on the frequency of the sinusoidal input, the blade will start oscillating with a given gain, hence the objective of the fatigue test is to make the blade oscillate with a controlled amplitude. The system currently in use is based on frequency control, which involves some non-linearities that make the system...

  15. Wind turbines and transmission systems for offshore wind projects in planning stage

    Energy Technology Data Exchange (ETDEWEB)

    Madariaga, Ander; Martin, Jose Luis; Martinez de Alegria, Inigo; Zamora, Inmaculada [University of the Basque Country (UPV/EHU), Bilbao (Spain). Engineering Faculty; Ceballos, Salvador [Parque Tecnologico de Bizkaia, Derio (Spain). Tecnalia Research and Innovation

    2012-07-01

    This paper reviews the current situation of the offshore wind turbines (OWTs) and the transmission systems (TSs) for offshore wind projects in the planning stage. Bearing in mind that offshore wind projects can last between seven and ten years from the first environmental studies to the commissioning, research engineers from companies and academia consider the solutions already available, but also to the new proposals expected to be ready in time for the project under consideration. Regarding the wind energy conversion systems (WECSs) installed in the OWTs, their main characteristics are reviewed considering turbines in the 4.1 to 10.0 MW range. Regarding the TSs, the current situation of point-to-point HVAC and HVDC links is presented, as well as some ideas related to future DC grids currently under study. (orig.)

  16. Generic dynamic wind turbine models for power system stability analysis: A comprehensive review

    DEFF Research Database (Denmark)

    Honrubia-Escribano, A.; Gómez-Lázaro, E.; Fortmann, J.

    2018-01-01

    obtained by IEC and WECC working groups in the course of their research, which have motivated the publication of the IEC 61400-27 in February 2015. The final published versions of the generic models developed according to the existing four wind turbine technology types are detailed, highlighting...... the subsequent changes made during the development phase. The main differences between IEC and WECC generic models are also analyzed. Not only is the final model structure presented but we also provide a complete description of the physical behavior of wind turbines facing power system stability problems....... Results are thus of great interest to grid operators, software developers, wind farm owners and researchers focused on the integration of wind energy into power systems....

  17. Neuron-Adaptive PID Based Speed Control of SCSG Wind Turbine System

    Directory of Open Access Journals (Sweden)

    Shan Zuo

    2014-01-01

    Full Text Available In searching for methods to increase the power capacity of wind power generation system, superconducting synchronous generator (SCSG has appeared to be an attractive candidate to develop large-scale wind turbine due to its high energy density and unprecedented advantages in weight and size. In this paper, a high-temperature superconducting technology based large-scale wind turbine is considered and its physical structure and characteristics are analyzed. A simple yet effective single neuron-adaptive PID control scheme with Delta learning mechanism is proposed for the speed control of SCSG based wind power system, in which the RBF neural network (NN is employed to estimate the uncertain but continuous functions. Compared with the conventional PID control method, the simulation results of the proposed approach show a better performance in tracking the wind speed and maintaining a stable tip-speed ratio, therefore, achieving the maximum wind energy utilization.

  18. Conceptual Design of a Floating Support Structure and Mooring System for a Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Berthelsen, Petter Andreas; Fylling, Ivar; Vita, Luca

    2012-01-01

    This paper deals with the conceptual design of a floating support structure and mooring system for a 5MW vertical axis offshore wind turbine. The work is carried out as part of the DeepWind project, where the main objective is to investigate the feasibility of a floating vertical axis offshore wind...... turbine. The DeepWind concept consists of a Darrieus rotor mounted on a spar buoy support structure. The conceptual design is carried out in an iterative process, involving the different subcomponents. The present work is part of the first design iteration and the objective is to find a feasible floating...... support structure and mooring system for the DeepWind concept. The conceptual design is formulated as an optimization problem: Starting with an initial configuration, the optimization procedure tries to find a cheaper solution while satisfying a set of design requirements. This approach utilizes available...

  19. Optimal PID Controller Design Based on PSO-RBFNN for Wind Turbine Systems

    Directory of Open Access Journals (Sweden)

    Jau-Woei Perng

    2014-01-01

    Full Text Available A strategy was proposed to determine the optimal operating point for the proportional-integral-derivative (PID controller of a wind turbine, and identify the stability regions in the parameter space. The proposed approach combined particle swarm optimization (PSO and radial basis function neural network (RBFNN algorithms. These intelligent algorithms are artificial learning mechanisms that can determine the optimal operating points, and were used to generate the function representing the most favorable operating  parameters from each parameter of  for the stability region of the PID controller. A graphical method was used to determine the 2D or 3D vision boundaries of the PID-type controller space in closed-loop wind turbine systems. The proposed techniques were demonstrated using simulations of a drive train model without time delay and a pitch control model with time delay. Finally, the 3D stability boundaries were determined the proposed graphical approach with and without time delay systems.

  20. Optimal control for wind turbine system via state-space method

    Science.gov (United States)

    Shanoob, Mudhafar L.

    Renewable energy is becoming a fascinating research interest in future energy production because it is green and does not pollute nature. Wind energy is an excellent example of renewable resources that are evolving. Throughout the history of humanity, wind energy has been used. In ancient time, it was used to grind seeds, sailing etc. Nowadays, wind energy has been used to generate electrical power. Researchers have done a lot of research about using a wind source to generate electricity. As wind flow is not reliable, there is a challenge to get stable electricity out of this varying wind. This problem leads to the use of different control methods and the optimization of these methods to get a stable and reliable electrical energy. In this research, a wind turbine system is considered to study the transient and the steady-state stability; consisting of the aerodynamic system, drive train and generator. The Doubly Feed Induction Generator (DFIG) type generator is used in this thesis. The wind turbine system is connected to power system network. The grid is an infinite bus bar connected to a short transmission line and transformer. The generator is attached to the grid from the stator side. State-space method is used to model the wind turbine parts. The system is modeled and controlled using MATLAB/Simulation software. First, the current-mode control method (PVdq) with (PI) regulator is operated as a reference to find how the system reacts to an unexpected disturbance on the grid side or turbine side. The controller is operated with three scenarios of disruption: Disturbance-mechanical torque input, Step disturbance in the electrical torque reference and Fault Ride-through. In the simulation results, the time response and the transient stability of the system is a product of the disturbances that take a long time to settle. So, for this reason, Linear Quadratic Regulation (LQR) optimal control is utilized to solve this problem. The LQR method is designed based on

  1. The Tremblay-Turbiner-Winternitz system on spherical and hyperbolic spaces: superintegrability, curvature-dependent formalism and complex factorization

    Science.gov (United States)

    Rañada, Manuel F.

    2014-04-01

    The higher order superintegrability of the Tremblay-Turbiner-Winternitz system (related to the harmonic oscillator) is studied on the two-dimensional spherical and hyperbolic spaces, S_\\kappa ^2 (κ > 0) and H_{\\kappa }^2 (κ Tremblay-Turbiner-Winternitz system on S_\\kappa ^2 (κ > 0) and H_{\\kappa }^2 (κ < 0), and to the explicit expression of the constants of motion.

  2. Advanced gas turbine systems research. Quarterly report, January--March, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The Department of Energy is sponsoring a series of studies related to advanced gas turbine systems. Ten universities participated in the first round studies, and an additional 13 studies have been funded this year. The five areas being covered are heat transfer, aerodynamics, materials, combustion, and dynamics. Summaries are given for the 6-month progress on the 1993 subcontract studies and on the planned research for the new subcontract studies.

  3. Application of synthetic fire-resistant oils in oil systems of turbine equipment for NPPs

    Science.gov (United States)

    Galimova, L. A.

    2017-10-01

    Results of the investigation of the synthetic fire-resistant turbine oil Fyrquel-L state in oil systems of turbosets under their operation in the equipment and oil supply facilities of nuclear power plants (NPPs) are presented. On the basis of the analysis of the operating experience, it is established that, for reliable and safe operation of the turbine equipment, at which oil systems synthetic fire-resistant oils on the phosphoric acid esters basis are used, special attention should be paid to two main factors, namely, both the guarantee of the normalized oil water content under the operation and storage and temperature regime of the operation. Methods of the acid number maintenance and reduction are shown. Results of the analysis and investigation of influence of temperature and of the variation of the qualitative state of the synthetic fair-resistant oil on its water content are reported. It is shown that the fire-resistant turbine oils are characterized by high hydrophilicity, and, in distinction to the mineral turbine oils, are capable to contain a significant amount of dissolved water, which is not extracted under the use of separation technologies. It is shown that the more degradation products are contained in oil and higher acid number, the more amount of dissolved water it is capable to retain. It is demonstrated that the organization of chemical control of the total water content of fireresistant oils with the use of the coulometric method is an important element to support the reliable operation of oil systems. It is recommended to use automatic controls of water content for organization of daily monitoring of oil state in the oil system. Recommendations and measures for improvement of oil operation on the NPP, the water content control, the use of oil cleaning plants, and the oil transfer for storage during repair works are developed.

  4. Demonstration and Verification of a Turbine Power Generation System Utilizing Renewable Fuel: Landfill Gas

    Science.gov (United States)

    2013-09-01

    diluted gas stream - downstream of where the LFG feed gas and dilution air are mixed before entering the FP250 compressor. However, due to the...worldwide, including landfill and biogas , coal mines, associated petroleum gas , and mainstream power generation markets. Ener-Core is hopeful that the...FINAL REPORT Demonstration and Verification of a Turbine Power Generation System Utilizing Renewable Fuel: Landfill Gas ESTCP Project EW

  5. Off-grid hybrid electric power supply system, using a combination of solar cells, small scale wind turbine and batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schroeter, W.

    1994-03-01

    The design of an off-grid electric power supply system consisting of a small scale wind turbine, a combination of solar cells and batteries is described. The robust, small scale FC 4000 wind turbine, which needs little maintenance, can be used under varying climatic conditions. It is equipped with a permanent-magnet generator with an output of 1.5 kW. The generator`s rotor is directly coupled with the wind turbine`s rotor and is without a gearbox, so the frequency and output varies according to wind speed. The 12 m{sup 2} solar cell system consists of round modules embedded in glass and with an efficiency of 13%. The lead acid batteries are used when power consumption exceeds production and store energy for future use. Further adjustments are necessary in order to optimize the performance of this hybrid system. (AB)

  6. Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems

    Science.gov (United States)

    Bohna, Nathaniel Allan

    Plasma sprayed (PS) thermal barrier coatings (TBCs) are used to provide thermal insulation for the hottest components in gas turbines. Zirconia stabilized with 7wt% yttria (7YSZ) is the most common ceramic top coat used for turbine blades. The 7YSZ coating can be degraded by the buildup of fly-ash deposits which can arise from the fuel source (coal/biomass) used in the combustion process in gas turbines. Fly-ash from the integrated gasification combined cycle (IGCC) process can result from coal-based syngas and also from ambient air which passes through the system. TBCs are also exposed to harsh gas environments containing CO2, SO2, and steam. As presented in this thesis, degradation from the combined effects of fly-ash and harsh gas atmosphere can severely limit TBC lifetimes. It is well established that degradation at very high temperatures (≥1250°C) from deposits consisting of the oxides CaO-MgO-Al2O3-SiO 2 results from extensive liquid silicate infiltration into the porous top coat of the YSZ. This infiltration causes early failure resulting from chemical and/or mechanical damage to the ceramic layer. Damage resulting from liquid infiltration, however, is not typically considered at relatively lower temperatures around 1100°C because liquid silicates would not be expected to form from the oxides in the deposit. A key focus of this study is to assess the mode and extent of TBC degradation at 1100°C in cases when some amount of liquid forms owing to the presence of K2SO4 as a minor ash constituent. Two types of liquid infiltrations are observed depending on the principal oxide (i.e., CaO or SiO2) in the deposit. The degradation is primarily the result of mechanical damage, which results from infiltration caused by the interaction of liquid K2SO4 with either the CaO or SiO2. The TBCs used in this work are representative of commonly used coatings used in the hottest sections of land-based gas turbines. The specimens consist of 7YSZ top coats deposited on

  7. Counter-rotating type axial flow pump unit in turbine mode for micro grid system

    Science.gov (United States)

    Kasahara, R.; Takano, G.; Murakami, T.; Kanemoto, T.; Komaki, K.

    2012-11-01

    Traditional type pumped storage system contributes to adjust the electric power unbalance between day and night, in general. This serial research proposes the hybrid power system combined the wind power unit with the pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind. In the pumping mode, the pump should operate unsteadily at not only the normal but also the partial discharge. The operation may be unstable in the rising portion of the head characteristics at the lower discharge, and/or bring the cavitation at the low suction head. To simultaneously overcome both weak points, the authors have proposed a superior pump unit that is composed of counter-rotating type impellers and a peculiar motor with double rotational armatures. This paper discusses the operation at the turbine mode of the above unit. It is concluded with the numerical simulations that this type unit can be also operated acceptably at the turbine mode, because the unit works so as to coincide the angular momentum change through the front runners/impellers with that thorough the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet without the guide vanes.

  8. Variable speed wind turbine generator system with current controlled voltage source inverter

    Energy Technology Data Exchange (ETDEWEB)

    Muyeen, S.M., E-mail: muyeen0809@yahoo.co [Dept. of Electrical Engineering, Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Al-Durra, Ahmed [Dept. of Electrical Engineering, The Petroleum Institute, P.O. Box 2533, Abu Dhabi (United Arab Emirates); Tamura, J. [Dept. of EEE, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507 (Japan)

    2011-07-15

    highlights: {yields} Current controlled voltage source inverter scheme for wind power application. {yields} Low voltage ride through of wind farm. {yields} Variable speed wind turbine driven permanent magnet synchronous generator-operation and control. -- Abstract: The present popular trend of wind power generation is to use variable speed wind turbine (VSWT) driving a doubly fed induction generator (DFIG), wound field synchronous generator (WFSG) or permanent magnet synchronous generator (PMSG). Among them, stability analyses of DFIG type of VSWT have already been reported in many literatures. However, transient stability and low voltage ride through (LVRT) characteristics analyses for synchronous generator type of VSWT is not sufficient enough. This paper focuses on detailed LVRT characteristic analysis of variable speed wind turbine driving a PMSG (VSWT-PMSG) with current controlled voltage source inverter (CC-VSI). Modeling and suitable control strategies for overall system are developed to augment the low voltage ride through capability of variable speed wind generator, considering recent wind farm grid code. Both symmetrical and unsymmetrical faults are analyzed as network disturbances in this paper. The permanent fault due to unsuccessful reclosing of circuit breakers is taken into consideration, which is a salient feature of this study. Moreover, the dynamic characteristic is analyzed using real wind speed data measured in Hokkaido Island, Japan. The proposed control scheme is simulated by using the standard power system simulation package PSCAD/EMTDC and results are verified by comparing that of voltage controlled voltage source inverter scheme available in power system literature.

  9. A new approach to the higher order superintegrability of the Tremblay-Turbiner-Winternitz system

    Science.gov (United States)

    Rañada, Manuel F.

    2012-11-01

    The higher order superintegrability of systems separable in polar coordinates is studied using an approach that was previously applied for the study of the superintegrability of a generalized Smorodinsky-Winternitz system. The idea is that the additional constant of motion can be factorized as the product of powers of two particular rather simple complex functions (here denoted by M and N). This technique leads to a proof of the superintegrability of the Tremblay-Turbiner-Winternitz system and to the explicit expression of the constants of motion. A second family (related with the first one) of superintegrable systems is also studied.

  10. Rankine cycle load limiting through use of a recuperator bypass

    Science.gov (United States)

    Ernst, Timothy C.

    2011-08-16

    A system for converting heat from an engine into work includes a boiler coupled to a heat source for transferring heat to a working fluid, a turbine that transforms the heat into work, a condenser that transforms the working fluid into liquid, a recuperator with one flow path that routes working fluid from the turbine to the condenser, and another flow path that routes liquid working fluid from the condenser to the boiler, the recuperator being configured to transfer heat to the liquid working fluid, and a bypass valve in parallel with the second flow path. The bypass valve is movable between a closed position, permitting flow through the second flow path and an opened position, under high engine load conditions, bypassing the second flow path.

  11. Hybrid lean premixing catalytic combustion system for gas turbines

    Science.gov (United States)

    Critchley, Ian L.

    2003-12-09

    A system and method of combusting a hydrocarbon fuel is disclosed. The system combines the accuracy and controllability of an air staging system with the ultra-low emissions achieved by catalytic combustion systems without the need for a pre-heater. The result is a system and method that is mechanically simple and offers ultra-low emissions over a wide range of power levels, fuel properties and ambient operating conditions.

  12. Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

    Directory of Open Access Journals (Sweden)

    Bing Hu

    2014-01-01

    Full Text Available To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m−2 and 7.61 kg m−2 day−1 at the generation temperature of 140°C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker.

  13. Analysis of Low Temperature Organic Rankine Cycles for Solar Applications

    Science.gov (United States)

    Li, Yunfei

    The present work focuses on Organic Rankine Cycle (ORC) systems and their application to low temperature waste heat recovery, combined heat and power as well as off-grid solar power generation applications. As CO_2 issues come to the fore front and fossil fuels become more expensive, interest in low grade heat recovery has grown dramatically in the past few years. Solar energy, as a clean, renewable, pollution-free and sustainable energy has great potential for the use of ORC systems. Several ORC solutions have been proposed to generate electricity from low temperature sources. The ORC systems discussed here can be applied to fields such as solar thermal, biological waste heat, engine exhaust gases, small-scale cogeneration, domestic boilers, etc. The current work presents a thermodynamic and economic analysis for the use of ORC systems to convert solar energy or low exergy energy to generate electrical power. The organic working fluids investigated here were selected to investigate the effect of the fluid saturation temperature on the performance of ORCs. The working fluids under investigation are R113, R245fa, R123, with boiling points between 40°C and 200°C at pressures from 10 kPa to 10 MPa. Ambient temperature air at 20oC to 30oC is utilized as cooling resource, and allowing for a temperature difference 10°C for effective heat transfer. Consequently, the working fluids are condensed at 40°C. A combined first- and second-law analysis is performed by varying some system independent parameters at various reference temperatures. The present work shows that ORC systems can be viable and economical for the applications such as waste heat use and off-grid power generation even though they are likely to be more expensive than grid power.

  14. Thermodynamic analysis of an integrated gasification solid oxide fuel cell plant combined with an organic Rankine cycle

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Rokni, Masoud; Larsen, Ulrik

    2013-01-01

    into a fixed bed gasification plant to produce syngas which fuels the combined solid oxide fuel cells e organic Rankine cycle system to produce electricity. More than a hundred fluids are considered as possible alternative for the organic cycle using non-ideal equations of state (or state-of-the-art equations...

  15. System and method for optical fiber based image acquisition suitable for use in turbine engines

    Science.gov (United States)

    Baleine, Erwan; A V, Varun; Zombo, Paul J.; Varghese, Zubin

    2017-05-16

    A system and a method for image acquisition suitable for use in a turbine engine are disclosed. Light received from a field of view in an object plane is projected onto an image plane through an optical modulation device and is transferred through an image conduit to a sensor array. The sensor array generates a set of sampled image signals in a sensing basis based on light received from the image conduit. Finally, the sampled image signals are transformed from the sensing basis to a representation basis and a set of estimated image signals are generated therefrom. The estimated image signals are used for reconstructing an image and/or a motion-video of a region of interest within a turbine engine.

  16. Selection of an industrial natural-gas-fired advanced turbine system - Task 3A

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, G.M.

    1997-05-01

    TASK OBJECTIVES: Identify a gas-fueled turbine and steam system which will meet the program goals for efficiency - and emissions. TECHNICAL GOALS AND REQUIREMENTS: Goals for the Advanced Turbine System Program (ATS) where outlined in the statement of work for five basic categories: Cycle Efficiency - System heat rate to have a 15% improvement over 1991 vintage systems being offered to the market. Environmental No post-combustion devices while meeting the following parameter targets: (1) Nitrous Oxide (NO{sub x}) emissions to equal 8 parts per million dry (ppmd) with 15% oxygen. (2) Carbon monoxide (CO) and unburned hydrocarbon (UHC) emissions to equal 20 parts per million(ppmd) each. Cost of electricity to be 10 percent less when compared to similar 1991 systems. Fuel Flexibility Have to ability to burn coal or coal derived fuels without extensive redesign. Reliability, Availability, Maintainability Reliability, availability and maintainability must be comparable to modern advanced power generation systems. For all cycle and system studies, analyses were done for the following engine system ambient conditions: Temperature - 59F; Altitude - Sea Level; Humidity - 60%. For the 1991 reference system, GE Aircraft Engines used its LM6OOO engine product offering for comparison of the Industrial System parameters developed under this program.

  17. An FMEA-Based Risk Assessment Approach for Wind Turbine Systems: A Comparative Study of Onshore and Offshore

    Directory of Open Access Journals (Sweden)

    Mahmood Shafiee

    2014-02-01

    Full Text Available Failure mode and effects analysis (FMEA has been extensively used by wind turbine assembly manufacturers for analyzing, evaluating and prioritizing potential/known failure modes. However, several limitations are associated with its practical implementation in wind farms. First, the Risk-Priority-Number (RPN of a wind turbine system is not informative enough for wind farm managers from the perspective of criticality; second, there are variety of wind turbines with different structures and hence, it is not correct to compare the RPN values of different wind turbines with each other for prioritization purposes; and lastly, some important economical aspects such as power production losses, and the costs of logistics and transportation are not taken into account in the RPN value. In order to overcome these drawbacks, we develop a mathematical tool for risk and failure mode analysis of wind turbine systems (both onshore and offshore by integrating the aspects of traditional FMEA and some economic considerations. Then, a quantitative comparative study is carried out using the traditional and the proposed FMEA methodologies on two same type of onshore and offshore wind turbine systems. The results show that the both systems face many of the same risks, however there are some main differences worth considering.

  18. FAST Modularization Framework for Wind Turbine Simulation: Full-System Linearization: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, Jason; Jonkman, Bonnie

    2016-11-01

    The wind engineering community relies on multiphysics engineering software to run nonlinear time-domain simulations e.g. for design-standards-based loads analysis. Although most physics involved in wind energy are nonlinear, linearization of the underlying nonlinear system equations is often advantageous to understand the system response and exploit well-established methods and tools for analyzing linear systems. This paper presents the development and verification of the new linearization functionality of the open-source engineering tool FAST v8 for land-based wind turbines, as well as the concepts and mathematical background needed to understand and apply it correctly.

  19. L-180 Poseidon: A system concept in vertical axis turbine technology, part 2

    Science.gov (United States)

    Ljungstroem, O.

    1980-10-01

    An offshore 20MW L blade system with 180 m dia troposkien shaped blades was studied. The L-blade system uses two vertical, curved blades mounted on a cantilever tower at a 90 deg angle relative to each other (in plane of rotation), thus forming an L, looking from the top. Considerable reduction of the oscillating wind loads on the rotor-lower structure is realized in comparison with conventional two bladed Darrieus turbines resulting in reduced system weight and cost. Parking loads in extreme winds are also reduced favorably. Weight and cost estimates for farms of 10 or more offshore units are given.

  20. A Proposal of Implementation of Ducted Wind Turbine Integrated With Solar System for Reliable Power Generation in Bangladesh

    OpenAIRE

    Ehsan, Mohammad Monjurul; Ovy, Enaiyat Ghani; Chowdhury, H.A.; Ferdous, S.M.

    2016-01-01

    Exploiting the wind energy at low wind velocities is a major predicament in creating a sustainable energy resource for a country with inauspicious forthcoming energy crisis. Thus researching new and innovative systems to improve the efficiency of the wind turbines is an indispensable prerequisite. The scope of this paper concentrates on an approach to harness wind power by installing a conical shaped duct in front of the conventional turbine which is coupled with a generator. A solar panel ha...

  1. Milestone Report #2: Direct Evaporator Leak and Flammability Analysis Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna Post [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-09-01

    The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammable hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.

  2. Converging flow joint insert system at an intersection between adjacent transitions extending between a combustor and a turbine assembly in a gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Robert T.

    2017-09-26

    A transition duct system (100) for routing a gas flow from a combustor (102) to the first stage (104) of a turbine section (106) in a combustion turbine engine (108), wherein the transition duct system (100) includes one or more converging flow joint inserts (120) forming a trailing edge (122) at an intersection (124) between adjacent transition ducts (126, 128) is disclosed. The transition duct system (100) may include a transition duct (126, 128) having an internal passage (130) extending between an inlet (132, 184) to an outlet (134, 186) and may expel gases into the first stage turbine (104) with a tangential component. The converging flow joint insert (120) may be contained within a converging flow joint insert receiver (136) and disconnected from the transition duct bodies (126, 128) by which the converging flow joint insert (120) is positioned. Being disconnected eliminates stress formation within the converging flow joint insert (120), thereby enhancing the life of the insert. The converging flow joint insert (120) may be removable such that the insert (120) can be replaced once worn beyond design limits.

  3. The simulation of organic rankine cycle power plant with n-pentane working fluid

    Science.gov (United States)

    Nurhilal, Otong; Mulyana, Cukup; Suhendi, Nendi; Sapdiana, Didi

    2016-02-01

    In the steam power plant in Indonesia the dry steam from separator directly used to drive the turbin. Meanwhile, brine from the separator with low grade temperature reinjected to the earth. The brine with low grade temperature can be converted indirectly to electrical power by organic Rankine cycle (ORC) methods. In ORC power plant the steam are released from vaporization of organic working fluid by brine. The steam released are used to drive an turbine which in connected to generator to convert the mechanical energy into electric energy. The objective of this research is the simulation ORC power plant with n-pentane as organic working fluid. The result of the simulation for brine temperature around 165°C and the pressure 8.001 bar optained the net electric power around 1173 kW with the cycle thermal efficiency 14.61% and the flow rate of n-pentane around 15.51 kg/s. This result enable to applied in any geothermal source in Indonesia.

  4. Analysis of the Effect of Construction and Operation of Thermal Expansion System Compounds on Steam Turbines Reliability

    Science.gov (United States)

    Murmansky, B. E.; Sosnovsky, A. Yu.; Brodov, Yu. M.

    2017-11-01

    The inspection results are presented of turbines of different types and capacity, showing the influence of various factors (such as increased frictional forces on the mating surfaces, clearance changes in the joints elements, TES elements design, state of the thermal expansions compensation system of pipelines) on the operation both of thermal expansion system and of the turbine as a whole. The data are presented on the effectiveness of various measures aimed to eliminate the causes of the turbine thermal expansion system deviations from its normal operation. The results are shown of the influence simulation of various factors (such as flanges and piping warming, ratio of clearance changes in the elements) on the probability of turbine TES hindrance. It is shown that clearance ratios employed in most turbines do not provide the stability of turbine TES against the external action of connected pipes. The simulation results permit to explain the bearing housings turns observed during inspections, resulting in a jam on the longitudinal keys, in temperature distribution changes on the thrust bearing pads, and in some cases in false readings of instruments rotor axial displacement.

  5. Advanced coal-fueled gas turbine systems. Annual report, July 1990--June 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    The combustion system discussed here incorporates a modular three- stage slagging combustor concept. Fuel-rich conditions inhibit NO{sub x} formation from fuel nitrogen in the first stage; also in the first stage, sulfur is captured with sorbent; coal ash and sulfated sorbent are removed from the combustion gases by inertial means in the second stage by the use of an impact separator and slagging cyclone separator in series. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The objective of this contract is to establish the technology required for subsequent commercial development and application by the private sector of utility-size direct coal-fueled gas turbines. Emissions from these units are to meet or be lower than the Environment Protection Agency`s (EPA`s) New Source Performance Standards (NSPS) for a pulverized coal-=fired steam turbine generator plant.

  6. Frequency domain modeling and dynamic characteristics evaluation of existing wind turbine systems

    Science.gov (United States)

    Chiang, Chih-Hung; Yu, Chih-Peng

    2016-04-01

    It is quite well accepted that frequency domain procedures are suitable for the design and dynamic analysis of wind turbine structures, especially for floating offshore wind turbines, since random wind loads and wave induced motions are most likely simulated in the frequency domain. This paper presents specific applications of an effective frequency domain scheme to the linear analysis of wind turbine structures in which a 1-D spectral element was developed based on the axially-loaded member. The solution schemes are summarized for the spectral analyses of the tower, the blades, and the combined system with selected frequency-dependent coupling effect from foundation-structure interactions. Numerical examples demonstrate that the modal frequencies obtained using spectral-element models are in good agreement with those found in the literature. A 5-element mono-pile model results in less than 0.3% deviation from an existing 160-element model. It is preliminarily concluded that the proposed scheme is relatively efficient in performing quick verification for test data obtained from the on-site vibration measurement using the microwave interferometer.

  7. Industrial Advanced Turbine Systems: Development and Demonstration. Annual report, September 14, 1995--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The U.S. Department of Energy (DOE) has initiated a program for advanced turbine systems (ATS) that will serve industrial power generation markets. The objective of the cooperative agreements granted under the program is to join the DOE with industry in research and development that will lead to commercial offerings in the private sector. The ATS will provide ultra-high efficiency, environmental superiority, and cost competitiveness. The ATS will foster (1) early market penetration that enhances the global competitiveness of U.S. industry, (2) public health benefits resulting from reduced exhaust gas emissions of target pollutants, (3) reduced cost of power used in the energy-intensive industrial marketplace and (4) the retention and expansion of the skilled U.S. technology base required for the design, development and maintenance of state-of-the-art advanced turbine products. The Industrial ATS Development and Demonstration program is a multi-phased effort. Solar Turbines Incorporated (Solar) has participated in Phases 1 and 2 of the program. On September 14, 1995 Solar was awarded a Cooperative Agreement for Phases 3 and 4 of the program (DE-FC21-95MC31173) by the DOE`s Office of Energy Efficiency and Renewable Energy (EE). Technical administration of the Cooperative Agreement will be provided from EE`s Chicago Operations Office. Contract administration of the Cooperative Agreement will be provided from DOE`s Office of Fossil Energy, Morgantown Energy Technology Center (METC).

  8. Wind turbine generator interaction with diesel generators on an isolated power system

    Science.gov (United States)

    Scott, G. W.; Wilreker, V. F.; Shaltens, R. K.

    1983-01-01

    The results of a dynamic interaction investigation to characterize any disturbances caused by interfacing the Mod 0A wind turbine (150 kW configuration) with the Block Island utility diesel generator grid are reported. The tests were run when only two diesel generators were on line, and attention was given to power, frequency, and voltage time profiles. The interconnected system was examined in the start-up and synchronization phase, normal shutdown and cut-out of the wind turbine, during fixed pitch generation, and during variable pitch operation. Governors were installed on the diesel generators to accommodate the presence of wind-derived electricity. The blade pitch control was set to maintain power at 150 kW or below. Power and voltage transients were insignificant during start-up and shutdown, and frequency aberrations were within the range caused by load fluctuations. It is concluded that wind turbine generation can be successfully implemented by an isolated utility, even with a significant penetration to the total grid output.

  9. Development of Gas Turbine Output Enhancement System Using Thermal Ice Storage (I)

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byun Youn; Joo, Yong Jin; Lee, Kyoung Ho; Lee, Jae Bong; Kang, Myung Soo [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Kim, Kyung Soon [Korea Electric Power Corp. (Korea, Republic of)

    1997-12-31

    The objective of this study is to develop a system which enhances gas turbine output using ice storage in summer peak days for power supply stability in domestic power system. This study represents conceptual design, system optimization, basic design and economic analysis of system. General equations which represents capacity of chiller and storage tank were drive. Pyungtaek power plant was selected as one suitable for system application due to its space availability. The system was optimized on the basis of economic analysis and power supply situation by determination of optimal inlet cooling hour. TRNSYS simulation program was used for optimal operating factor of ice harvester under partial load operating conditions. Basic design includes capacity calculation of component, cost survey, system flow diagram, plot plan, and system guide. The system has been evaluated on the basis of economic analysis which calculates NPV, payback period and levelized generation cost. (author). 34 refs., figs., tabs.

  10. Enhancing efficiency and power output of gas turbines using either renewable energy or heat recovery cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Nasser, A.E.M. [Higher Technological Inst., Tenth of Ramadan (Egypt). Dept. of Mechanical Engineering

    2006-07-01

    An absorption system to cool intake air to the compressor of an air conditioning system was presented. The system used both solar energy and the waste heat of the exhaust gases to obtain higher temperatures during the summer months. The lithium bromide-water absorption system increased power output by more than 20 per cent during the summer months without consuming more fuel. The system was designed to conserve energy and output power in gas turbine power stations. The system operated by using hot effluent gases leaving the turbine and entered the flue stacks, where heat exchangers recovered the heat energy. Excess electricity produced by the turbine was then used to cool the ambient air before it entered the compressor. Studies have confirmed that the system is financially viable and suited for use in Arabian Gulf countries where temperatures regularly exceed 40 degrees C. 6 refs., 6 figs.

  11. System Integration of the Horizontal-Axis Wind Turbine: The Design of Turbine Blades with an Axial-Flux Permanent Magnet Generator

    Directory of Open Access Journals (Sweden)

    Chi-Jeng Bai

    2014-11-01

    Full Text Available In designing a horizontal-axis wind turbine (HAWT blade, system integration between the blade design and the performance test of the generator is important. This study shows the aerodynamic design of a HAWT blade operating with an axial-flux permanent magnet (AFPM generator. An experimental platform was built to measure the performance curves of the AFPM generator for the purpose of designing the turbine blade. An in-house simulation code was developed based on the blade element momentum (BEM theory and was used to lay out the geometric shape of the turbine blade, including the pitch angle and chord length at each section. This simulation code was combined with the two-dimensional (2D airfoil data for predicting the aerodynamic performance of the designed blades. In addition, wind tunnel experiments were performed to verify the simulation results for the various operating conditions. By varying the rotational speeds at four wind speeds, the experimental and simulation results for the mechanical torques and powers presented good agreement. The mechanical power of the system, which maximizes at the best operating region, provided significant information for designing the HAWT blade.

  12. Experimental Study of Turbine Fuel Thermal Stability in an Aircraft Fuel System Simulator

    Science.gov (United States)

    Vranos, A.; Marteney, P. J.

    1980-01-01

    The thermal stability of aircraft gas turbines fuels was investigated. The objectives were: (1) to design and build an aircraft fuel system simulator; (2) to establish criteria for quantitative assessment of fuel thermal degradation; and (3) to measure the thermal degradation of Jet A and an alternative fuel. Accordingly, an aircraft fuel system simulator was built and the coking tendencies of Jet A and a model alternative fuel (No. 2 heating oil) were measured over a range of temperatures, pressures, flows, and fuel inlet conditions.

  13. Microprocessor control system for 200-kilowatt Mod-OA wind turbines

    Science.gov (United States)

    Nyland, T. W.; Birchenough, A. G.

    1982-01-01

    The microprocessor system and program used to control the operation of the 200-kW Mod-OA wind turbines is described. The system is programmed to begin startup and shutdown sequences automatically and to control yaw motion. Rotor speed and power output are controlled with integral and proportional control of the blade pitch angle. Included in the report are a description of the hardware and a discussion of the software programming technique. A listing of the PL/M software program is given.

  14. Accelerated Degradation for Hardware in the Loop Simulation of Fuel Cell-Gas Turbine Hybrid System

    DEFF Research Database (Denmark)

    Abreu-Sepulveda, Maria A.; Harun, Nor Farida; Hackett, Gregory

    2015-01-01

    The U.S. Department of Energy (DOE)-National Energy Technology Laboratory (NETL) in Morgantown, WV has developed the hybrid performance (HyPer) project in which a solid oxide fuel cell (SOFC) one-dimensional (1D), real-time operating model is coupled to a gas turbine hardware system by utilizing...... hardware-in-the-loop simulation. To assess the long-term stability of the SOFC part of the system, electrochemical degradation due to operating conditions such as current density and fuel utilization have been incorporated into the SOFC model and successfully recreated in real time. The mathematical...

  15. Economic evaluation of small wind turbines and hybrid systems for residential use

    Directory of Open Access Journals (Sweden)

    Predescu Mihail

    2016-01-01

    Full Text Available Renewable electricity generating systems are gaining ground in residential sector for the purpose of diminishing the electricity bills or to reaching some degree of energy independence. The decision to invest in small wind turbines or hybrid energy generation technologies should be based on an economic estimation of money invested in such systems. Levelized Cost of Energy (LCOE calculation for local technologies of choice for residential energy generation is a very meaningful figure for deciding whether the investment can bring financial satisfaction and for selecting which type of technology is the best suited for a specific location.

  16. Gas Turbine Heavy Hybrid Powertrain Variants. Opportunities and Potential for Systems Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chambon, Paul H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-07-01

    Widespread use of alternative hybrid powertrains is currently inevitable, and many opportunities for substantial progress remain. Hybrid electric vehicles (HEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas emissions in the transportation sector. This capability is mainly attributed to (a) the potential for downsizing the engine, (b) the potential for recovering energy during braking and thus recharging the energy storage unit, and (c) the ability to minimize the operation of the engine outside of its most efficient brake specific fuel consumption (BSFC) regime. Hybridization of the Class 8, heavy-duty (HD) powertrain is inherently challenging due to the expected long-haul driving requirements and limited opportunities for regenerative braking. The objective of this project is to develop control strategies aiming at optimizing the operation of a Class 8 HEV that features a micro-turbine as the heat engine. The micro-turbine application shows promise in fuel efficiency, even when compared to current diesel engines, and can meet regulated exhaust emissions levels with no exhaust after-treatment system. Both parallel and series HEV variants will be examined to understand the merits of each approach of the micro-turbine to MD advanced powertrain applications. These powertrain configurations enable new paradigms in operational efficiency, particularly in the Class 8 truck fleet. The successful development of these HEV variants will require a thorough technical understanding of the complex interactions between various energy sources and energy consumption components, for various operating modes. PACCAR will be integrating the first generation of their series HEV powertrain with a Brayton Energy micro-turbine into a Class 8 HD truck tractor that has both regional haul and local pick-up and delivery (P&D) components to its drive cycle. The vehicle will be deployed into fleet operation for a demonstration

  17. Digital system for dynamic turbine engine blade displacement measurements

    Science.gov (United States)

    Kiraly, L. J.

    1980-01-01

    The paper presents a technique for measuring blade tip displacements which employs optical probes and an array of microcomputers. A system directly digitizing a minimum of a 2048-point time-deflection history for each of the three measurement locations on each blade is described.

  18. Part-load performance characteristics of a lean burn catalytic combustion gas turbine system

    Science.gov (United States)

    Yin, Juan; Li, Ming; Zhu, Jun-qiang

    2013-04-01

    The purpose of this study is to compare the part-load performance of a lean burn catalytic combustion gas turbine (LBCCGT) system in three different control modes: varying fuel, bleeding off the fuel mixture flow after the compressor and varying rotational speed. The conversions of methane species for chemical process are considered. A 1D heterogeneous plug flow model was utilized to analyze the system performance. The actual turbomachinery components were designed and predicted performance maps were applied to system performance research. The part-load characteristics under three control strategies were numerically investigated. The main results show that: the combustor inlet temperature is a significant factor that can significantly affect the part-load characteristics of the LBCCGT system; the rotational speed control mode can provide the best performance characteristics for part-load operations; the operation range of the bleed off mode is narrower than that of the speed control mode and wider than that of the fuel only mode; with reduced power, methane does not achieve full conversion over the reactor at the fuel only control mode, which will not warrant stable operation of the turbine system; the thermal efficiency of the LBCCGT system at fuel only control strategy is higher than that at bleed off control strategy within the operation range.

  19. Investigation of Self Yaw and its Potential using a Hydraulic Soft Yaw System for 5 MW Wind Turbine

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.

    2013-01-01

    The focus of the current paper is on a hydraulic soft yaw system, designed to reduce the loading of the turbine structure, by absorbing wind guest via the hydraulic system, but which also enables the system to be used as a self-aligning yaw system. The system is analyzed with basis in the NREL 5-...... the behavior of the hydraulic system is analyzed and it is concluded that the hydraulic yaw system allows selfyaw under normal operating conditions for the turbine. Self-yaw control is possible in wind speeds above 12 m/s when yaw friction is kept below 1 MNm.......The focus of the current paper is on a hydraulic soft yaw system, designed to reduce the loading of the turbine structure, by absorbing wind guest via the hydraulic system, but which also enables the system to be used as a self-aligning yaw system. The system is analyzed with basis in the NREL 5-MW...... turbine, modeled in FAST, in which a new robust method for implementing Coulomb friction is utilized. Based on this model and a model of the hydraulic system, the influence of friction and wind speed is investigated in relation to the possibility to use the system as a self-aligning yaw system. Similarly...

  20. System for injecting fuel in a gas turbine combustor

    Science.gov (United States)

    Berry, Jonathan Dwight

    2016-10-25

    A combustion system uses a fuel nozzle with an inner wall having a fuel inlet in fluid communication with a fuel outlet in a fuel cartridge. The inner wall defines a mounting location for inserting the fuel cartridge. A pair of annular lip seals around the cartridge outer wall on both sides of the fuel outlet seals the fuel passage between the fuel inlet and the fuel outlet.