WorldWideScience

Sample records for rankine cycle technology

  1. Organic Rankine Cycles. Old wine in new bottles; Organic Rankine Cycles. Oude wijn in nieuwe zakken

    Energy Technology Data Exchange (ETDEWEB)

    Den Hartog, T.L.B. [Cumae, Arnhem (Netherlands)

    2007-05-15

    An overview is given of the renewed interest for the Organic Rankine Cycle technology and new developments with regard to this power generating technology. [Dutch] Een overzicht wordt gegeven van de hernieuwde belangstelling voor de Organic Rankine Cycle (ORC) technologie en nieuwe ontwikkeling m.b.t. deze vorm van elektriciteitopwekking.

  2. Recent research trends in organic Rankine cycle technology: A bibliometric approach

    DEFF Research Database (Denmark)

    Imran, Muhammad; Haglind, Fredrik; Asim, Muhammad

    2018-01-01

    Expanded. Different aspects of the publications were analyzed, such as publication type, major research areas, journals, citations, authorship pattern, affiliations as well as the keyword occurrence frequency. The impact factor, h-index and number of citations were used to investigate the strength...... of active countries, institutes, authors, and journals in the organic Rankine cycle technology field. From 2000 to 2016, there were 2120 articles published by 3443 authors from 997 research institutes scattered over 71 countries. The total number of citations and impact factor are 36,739 and 4597......, respectively, corresponding to 17 citations per paper and an impact factor of 2.168 per publication. The research articles originate primarily from China, the USA, and European countries. Results indicate that China, the United States, Italy, Greece, Belgium, Spain, Germany and the United Kingdom...

  3. Alkali Metal Rankine Cycle Boiler Technology Challenges and Some Potential Solutions for Space Nuclear Power and Propulsion Applications

    Science.gov (United States)

    Stone, James R.

    1994-01-01

    Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently. This report is aimed at evaluating alkali metal boiler

  4. Applied studies in advanced boiler technology for Rankine cycle power systems

    Energy Technology Data Exchange (ETDEWEB)

    Paul, F.W.; Negreanu, M.J.

    1978-02-01

    A study is presented on a new rotational boiler design which has improved passive dynamic response and two-phase flow stability characteristics. A survey of small boiler manufacturers in the United States indicated that currently available designs are based on steady-state operating requirements rather than for dynamic performance. Recent work by EPA and ERDA which addressed boiler designs for mobile automotive Rankine cycle power systems showed that boilers of a monotube or multipass tube configuration design could be developed which were physically compact, but still were subject to the two-phase flow instability problem when coupled within an operating power system. The objectives of this work were to evaluate alternative boiler configurations which would improve boiler dynamic response and also have good two-phase liquid-vapor interface flow stability. The major physical design limitation of any boiler is the small external hot gas heat transfer coefficient. Such a low coefficient requires considerable design enhancements to increase the rate of energy transfer to the circulation system fluid. The rotational boiler is a physical design configuration which addresses this problem. The results of an analytic study using several mathematical model formulations showed that a rotational boiler could have a passive response time constant which was approximately one-half the magnitude for an equivalent single pass monotube boiler. An experimental prototype rotational boiler was designed, manufactured and tested, with the experimental results confirming that the experimental passive response time constants were comparable to the estimates from the analytic models. The experimental boiler operating in two-phase flow was found to be stable and responsive to external inputs. A rotational boiler configuration is a good alternative design configuration for small compact vapor generator designs based on fast transient passive response and two-phase flow stability.

  5. Rankine-cycle solar-cooling systems

    Science.gov (United States)

    Weathers, H. M.

    1979-01-01

    Report reviews progress made by three contractors to Marshall Space Flight Center and Department of Energy in developing Rankine-cycle machines for solar cooling and testing of commercially available equipment involved.

  6. Conversion of Low Quality Waste Heat to Electric Power with Small-Scale Organic Rankine Cycle (ORC) Engine/Generator Technology

    Science.gov (United States)

    2016-08-01

    Small-Scale W912H0-12-C-0059 Organic Rankine Cycle (ORC) Engine /Generator Technology 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( SI 5d...same fuel input. This value is used for calculation of Greenhouse Gas (GHG) reductions and economic results. Life cycle economics of the system are...associated with engine and other electric generator systems , waste heat from steam or heat distribution, waste heat from boiler exhausts, and heat

  7. Cascaded organic rankine cycles for waste heat utilization

    Science.gov (United States)

    Radcliff, Thomas D [Vernon, CT; Biederman, Bruce P [West Hartford, CT; Brasz, Joost J [Fayetteville, NY

    2011-05-17

    A pair of organic Rankine cycle systems (20, 25) are combined and their respective organic working fluids are chosen such that the organic working fluid of the first organic Rankine cycle is condensed at a condensation temperature that is well above the boiling point of the organic working fluid of the second organic Rankine style system, and a single common heat exchanger (23) is used for both the condenser of the first organic Rankine cycle system and the evaporator of the second organic Rankine cycle system. A preferred organic working fluid of the first system is toluene and that of the second organic working fluid is R245fa.

  8. Organic rankine cycle waste heat applications

    Science.gov (United States)

    Brasz, Joost J.; Biederman, Bruce P.

    2007-02-13

    A machine designed as a centrifugal compressor is applied as an organic rankine cycle turbine by operating the machine in reverse. In order to accommodate the higher pressures when operating as a turbine, a suitable refrigerant is chosen such that the pressures and temperatures are maintained within established limits. Such an adaptation of existing, relatively inexpensive equipment to an application that may be otherwise uneconomical, allows for the convenient and economical use of energy that would be otherwise lost by waste heat to the atmosphere.

  9. Design of organic Rankine cycles using a non-conventional optimization approach

    DEFF Research Database (Denmark)

    Andreasen, J. G.; Larsen, Ulrik; Haglind, F.

    2015-01-01

    The organic Rankine cycle is a suitable technology for utilizing low grade heat for electricity production. Compared to the traditional steam Rankine cycle, the organic Rankine cycle is beneficial, since it enables the choice of a working fluid which performs better than steam at low heat input...... temperatures and at lowpower outputs. Selecting the process layout of the organic Rankine cycle and the working fluid are two key design decisions which are critical for the thermodynamic and economic performance of the cycle. The prevailing approach used in the design and optimization of organic Rankine...... product of the overall heat transfer coefficient and the heat transfer area) is assigned to the cycle, while the distribution of this total UA-value to each of the heat exchangers is optimized. Optimizations are carried out for three different marine engine waste heatsources at temperatures ranging from...

  10. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part A

    DEFF Research Database (Denmark)

    Meroni, Andrea; La Seta, Angelo; Andreasen, Jesper Graa

    2016-01-01

    Rankine cycle power systems. In this two-part paper, an overall cycle model and a model of an axial turbine were combined in order to provide a comprehensive preliminary design of the organic Rankine cycle unit, taking into account both cycle and turbine optimal designs. Part A presents the preliminary......Axial-flow turbines represent a well-established technology for a wide variety of power generation systems. Compactness, flexibility, reliability and high efficiency have been key factors for the extensive use of axial turbines in conventional power plants and, in the last decades, in organic...... turbine design model, the details of the validation and a sensitivity analysis on the main parameters, in order to minimize the number of decision variables in the subsequent turbine design optimization. Part B analyzes the application of the combined turbine and cycle designs on a selected case study...

  11. Organic Rankine Cycle with Solar Heat Storage in Paraffin Way

    Directory of Open Access Journals (Sweden)

    Constantin LUCA

    2015-06-01

    Full Text Available The paper presents an electricity generation system based on an Organic Rankine Cycle and proposed storing the amount of the heat produced by the solar panels using large volume of paraffin wax. The proposed working fluid is R-134a refrigerant. The cycle operates at very low temperatures. A efficiency of 6,55% was obtained.

  12. Emissions-critical charge cooling using an organic rankine cycle

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-07-15

    The disclosure provides a system including a Rankine power cycle cooling subsystem providing emissions-critical charge cooling of an input charge flow. The system includes a boiler fluidly coupled to the input charge flow, an energy conversion device fluidly coupled to the boiler, a condenser fluidly coupled to the energy conversion device, a pump fluidly coupled to the condenser and the boiler, an adjuster that adjusts at least one parameter of the Rankine power cycle subsystem to change a temperature of the input charge exiting the boiler, and a sensor adapted to sense a temperature characteristic of the vaporized input charge. The system includes a controller that can determine a target temperature of the input charge sufficient to meet or exceed predetermined target emissions and cause the adjuster to adjust at least one parameter of the Rankine power cycle to achieve the predetermined target emissions.

  13. Optimal design of compact organic Rankine cycle units for domestic solar applications

    DEFF Research Database (Denmark)

    Barbazza, Luca; Pierobon, Leonardo; Mirandola, Alberto

    2014-01-01

    Organic Rankine cycle turbogenerators are a promising technology to transform the solar radiation harvested by solar collectors into electric power. The present work aims at sizing a small-scale organic Rankine cycle unit by tailoring its design for domestic solar applications. Stringent design...... solar collectors (hot water temperature equal to 75 degrees C), R1234yf is the optimal solution. The heat exchanger volume ranges between 6.0 and 23.0 dm(3), whereas the thermal efficiency is around 4.5%. R1234ze is the best working fluid employing parabolic solar collectors (hot water temperature equal...

  14. Working fluid selection for the Organic Rankine Cycle (ORC) exhaust heat recovery of an internal combustion engine power plant

    Science.gov (United States)

    Douvartzides, S.; Karmalis, I.

    2016-11-01

    Organic Rankine cycle technology is capable to efficiently convert low-grade heat into useful mechanical power. In the present investigation such a cycle is used for the recovery of heat from the exhaust gases of a four stroke V18 MAN 51/60DF internal combustion engine power plant operating with natural gas. Design is focused on the selection of the appropriate working fluid of the Rankine cycle in terms of thermodynamic, environmental and safety criteria. 37 candidate fluids have been considered and all Rankine cycles examined were subcritical. The thermodynamic analysis of all fluids has been comparatively undertaken and the effect of key operation conditions such as the evaporation pressure and the superheating temperature was taken into account. By appropriately selecting the working fluid and the Rankine cycle operation conditions the overall plant efficiency was improved by 5.52% and fuel consumption was reduced by 12.69%.

  15. Biogas Engine Waste Heat Recovery Using Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Alberto Benato

    2017-03-01

    Full Text Available Italy is a leading country in the biogas sector. Energy crops and manure are converted into biogas using anaerobic digestion and, then, into electricity using internal combustion engines (ICEs. Therefore, there is an urgent need for improving the efficiency of these engines taking the real operation into account. To this purpose, in the present work, the organic Rankine cycle (ORC technology is used to recover the waste heat contained in the exhaust gases of a 1 MWel biogas engine. The ICE behavior being affected by the biogas characteristics, the ORC unit is designed, firstly, using the ICE nameplate data and, then, with data measured during a one-year monitoring activity. The optimum fluid and the plant configuration are selected in both cases using an “in-house” optimization tool. The optimization goal is the maximization of the net electric power while the working fluid is selected among 115 pure fluids and their mixtures. Results show that a recuperative ORC designed using real data guarantees a 30% higher net electric power than the one designed with ICE nameplate conditions.

  16. Optimisation robuste de turbines pour les cycles organiques de Rankine (ORC)

    OpenAIRE

    Bufi, Elio Antonio

    2016-01-01

    In recent years, the Organic Rankine Cycle (ORC) technology has received great interest from the scientific and technical community because of its capability to recover energy from low-grade heat sources. In some applications, as the Waste Heat Recovery (WHR), ORC plants need to be as compact as possible because of geometrical and weight constraints. Recently, these issues have been studied in order to promote the ORC technology for Internal Combustion Engine (ICE) applications. The idea to r...

  17. Organic Rankine Cycle System Analysis for Low GWP Working Fluids

    OpenAIRE

    Datla, Bala Varma; Brasz, Joost

    2012-01-01

    The last decade has seen a substantial increase in Organic Rankine Cycle system installations for low temperature waste heat power recovery. The availability of HFC245fa has played a major role in this recent surge in ORC systems since it allows the use of existing HVAC hardware (heat exchangers and compressors) to be used as ORC components (turbines, boilers and condensers) with minimal redesign. The environmental drawback of HFC245fa is its relatively high GWP value of 950. The advent of a ...

  18. Application of unscented Kalman filter for condition monitoring of an organic Rankine cycle turbogenerator

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Schlanbusch, Rune; Kandepu, Rambabu

    2014-01-01

    emphasis on compactness and reliability. In such context, organic Rankine cycle turbogenerators are a promising technology. The implementation of an organic Rankine cycle unit is thus considered for the power system of the Draugen offshore platform in the northern sea, which is the case study......This work relates to a project focusing on energy optimization on offshore facilities. On oil and gas platforms it is common practice to employ gas turbines for power production. So as to increase the system performance and reduce emissions, a bottoming cycle unit can be designed with particular...... for this project. Considering the plant dynamics, it is of paramount importance to monitor the peak temperatures within the once-through boiler serving the bottoming unit to prevent the decomposition of the working fluid. This paper accordingly aims at applying the unscented Kalman filter to estimate...

  19. SORCE: A design tool for solar organic Rankine cycle systems in distributed generation applications

    OpenAIRE

    Orosz, Matthew; Quoilin, Sylvain; Hemond, Harold

    2010-01-01

    Recent interest in small-scale solar thermal combined heat and power (CHP) power systems has coincided with demand growth for distributed electricity supplies in areas poorly served by centralized power stations. One potential technical approach to meeting this demand is the parabolic trough solar thermal collector coupled with an organic Rankine cycle (ORC) heat engine. Much existing research touches on aspects of the underlying physics and mechanics of this technology, but a holistic treatm...

  20. Energy analysis of Organic Rankine Cycles for biomass applications

    Directory of Open Access Journals (Sweden)

    Algieri Angelo

    2015-01-01

    Full Text Available The present paper aims at analysing the performances of Organic Rankine Cycles (ORCs adopted for the exploitation of the biomass resulting from the pruning residues in a 3000 hectares district in Southern Italy. A parametric energy analysis has been carried out to define the influence of the main plant operating conditions. To this purpose, both subcritical and transcritical power plants have been examined and saturated and superheated conditions at the turbine inlet have been imposed. Moreover, the effect of the working fluid, condensation temperature, and internal regeneration on system performances has been investigated. The results show that ORC plants represent an interesting and sustainable solution for decentralised and small-scale power production. Furthermore, the analysis highlights the significant impact of the maximum temperature and the noticeable effect of internal regeneration on the performances of the biomass power plants.

  1. Analysis of hot spots in boilers of organic Rankine cycle units during transient operation

    DEFF Research Database (Denmark)

    Benato, A.; Kærn, Martin Ryhl; Pierobon, Leonardo

    2015-01-01

    This paper is devoted to the investigation of critical dynamic events causing thermochemical decompositionof the working fluid in organic Rankine cycle power systems. The case study is the plant of an oiland gas platform where one of the three gas turbines is combined with an organic Rankine cycl...

  2. Affordable Rankine Cycle Waste Heat Recovery for Heavy Duty Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Swami Nathan [Eaton Corporation

    2017-06-30

    Nearly 30% of fuel energy is not utilized and wasted in the engine exhaust. Organic Rankine Cycle (ORC) based waste heat recovery (WHR) systems offer a promising approach on waste energy recovery and improving the efficiency of Heavy-Duty diesel engines. Major barriers in the ORC WHR system are the system cost and controversial waste heat recovery working fluids. More than 40% of the system cost is from the additional heat exchangers (recuperator, condenser and tail pipe boiler). The secondary working fluid loop designed in ORC system is either flammable or environmentally sensitive. The Eaton team investigated a novel approach to reduce the cost of implementing ORC based WHR systems to Heavy-Duty (HD) Diesel engines while utilizing safest working fluids. Affordable Rankine Cycle (ARC) concept aimed to define the next generation of waste energy recuperation with a cost optimized WHR system. ARC project used engine coolant as the working fluid. This approach reduced the need for a secondary working fluid circuit and subsequent complexity. A portion of the liquid phase engine coolant has been pressurized through a set of working fluid pumps and used to recover waste heat from the exhaust gas recirculation (EGR) and exhaust tail pipe exhaust energy. While absorbing heat, the mixture is partially vaporized but remains a wet binary mixture. The pressurized mixed-phase engine coolant mixture is then expanded through a fixed-volume ratio expander that is compatible with two-phase conditions. Heat rejection is accomplished through the engine radiator, avoiding the need for a separate condenser. The ARC system has been investigated for PACCAR’s MX-13 HD diesel engine.

  3. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part B

    DEFF Research Database (Denmark)

    La Seta, Angelo; Meroni, Andrea; Andreasen, Jesper Graa

    2016-01-01

    due to the peculiar physical properties of the working fluid and the gas-dynamic phenomena occurring in the machine. Unlike steam Rankine and Brayton engines, organic Rankine cycle expanders combine small enthalpy drops with large expansion ratios. These features yield turbine designs with few highly-loaded...... variables affecting the turbine design. Part B of this two-part paper presents the first application of a design method where the thermodynamic cycle optimization is combined with calculations of the maximum expander performance using the mean-line design tool described in part A. The high computational...

  4. Advanced Rankine and Brayton cycle power systems: Materials needs and opportunities

    Science.gov (United States)

    Grisaffe, S. J.; Guentert, D. C.

    1974-01-01

    Conceptual advanced potassium Rankine and closed Brayton power conversion cycles offer the potential for improved efficiency over steam systems through higher operating temperatures. However, for utility service of at least 100,000 hours, materials technology advances will be needed for such high temperature systems. Improved alloys and surface protection must be developed and demonstrated to resist coal combustion gases as well as potassium corrosion or helium surface degradation at high temperatures. Extensions in fabrication technology are necessary to produce large components of high temperature alloys. Long time property data must be obtained under environments of interest to assure high component reliability.

  5. Advanced Rankine and Brayton cycle power systems - Materials needs and opportunities

    Science.gov (United States)

    Grisaffe, S. J.; Guentert, D. C.

    1974-01-01

    Conceptual advanced potassium Rankine and closed Brayton power conversion cycles offer the potential for improved efficiency over steam systems through higher operating temperatures. However, for utility service of at least 100,000 hours, materials technology advances will be needed for such high temperature systems. Improved alloys and surface protection must be developed and demonstrated to resist coal combustion gases as well as potassium corrosion or helium surface degradation at high temperatures. Extensions in fabrication technology are necessary to produce large components of high temperature alloys. Long-time property data must be obtained under environments of interest to assure high component reliability.

  6. Performance analysis of organic Rankine cycles using different working fluids

    Directory of Open Access Journals (Sweden)

    Zhu Qidi

    2015-01-01

    Full Text Available Low-grade heat from renewable or waste energy sources can be effectively recovered to generate power by an organic Rankine cycle (ORC in which the working fluid has an important impact on its performance. The thermodynamic processes of ORCs using different types of organic fluids were analyzed in this paper. The relationships between the ORC’s performance parameters (including evaporation pressure, condensing pressure, outlet temperature of hot fluid, net power, thermal efficiency, exergy efficiency, total cycle irreversible loss, and total heat-recovery efficiency and the critical temperatures of organic fluids were established based on the property of the hot fluid through the evaporator in a specific working condition, and then were verified at varied evaporation temperatures and inlet temperatures of the hot fluid. Here we find that the performance parameters vary monotonically with the critical temperatures of organic fluids. The values of the performance parameters of the ORC using wet fluids are distributed more dispersedly with the critical temperatures, compared with those of using dry/isentropic fluids. The inlet temperature of the hot fluid affects the relative distribution of the exergy efficiency, whereas the evaporation temperature only has an impact on the performance parameters using wet fluid.

  7. Organic Rankine cycle - review and research directions in engine applications

    Science.gov (United States)

    Panesar, Angad

    2017-11-01

    Waste heat to power conversion using Organic Rankine Cycles (ORC) is expected to play an important role in CO2 reductions from diesel engines. Firstly, a review of automotive ORCs is presented focusing on the pure working fluids, thermal architectures and expanders. The discussion includes, but is not limited to: R245fa, ethanol and water as fluids; series, parallel and cascade as architectures; dry saturated, superheated and supercritical as expansion conditions; and scroll, radial turbine and piston as expansion machines. Secondly, research direction in versatile expander and holistic architecture (NOx + CO2) are proposed. Benefits of using the proposed unconventional approaches are quantified using Ricardo Wave and Aspen HYSYS for diesel engine and ORC modelling. Results indicate that, the implementation of versatile piston expander tolerant to two-phase and using cyclopentane can potentially increase the highway drive cycle power by 8%. Furthermore, holistic architecture offering complete utilisation of charge air and exhaust recirculation heat increased the performance noticeably to 5% of engine power at the design point condition.

  8. FLUOROETHERS AS A WORKING FLUIDS FOR LOW TEMPERATURE ORGANIC RANKINE CYCLE

    Directory of Open Access Journals (Sweden)

    Artemenko S.V

    2014-12-01

    Full Text Available Hydrofluoroethers as a new class of working fluids for the organic Rankine cycle have been considered to utilize the low-potential waste heat. Temperature range 300…400 K was chosen to provide energy conversion of waste heat from fuel cells. The direct assessment of the efficiency criteria for the Rankine cycle via artificial neural networks (ANN was used. To create ANN the critical parameters of substance and normal boiling temperature as input were chosen. The forecast of efficiency criteria for the Rankine cycle as output parameter which reproduces the coefficient of performance with high accuracy and without thermodynamic property calculations was presented.

  9. Performance analysis of different organic Rankine cycle configurations on board liquefied natural gas-fuelled vessels

    DEFF Research Database (Denmark)

    Baldasso, Enrico; Andreasen, Jesper Graa; Meroni, Andrea

    2017-01-01

    natural gas (LNG). The study compares the performance of six different ORC configurations both in design and off-design operation, and provides guidelines with respect to the most promising heat sources and sinks to be utilized by an ORC unit in order to maximize the annual fuel savings. In addition......Gas-fuelled shipping is expected to increase significantly in the coming years. Similarly, much effort is devoted to the study of waste heat recovery systems to be implemented on board ships. In this context, the organic Rankine cycle (ORC) technology is considered one of the most promising...

  10. Analysis and optimization of the low-temperature solar organic Rankine cycle (ORC)

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Torres, Agustin M. [Dpto. Fisica Fundamental y Experimental, Electronica y Sistemas, Escuela Tecnica Superior de Ingenieria Civil e Industrial, Universidad de La Laguna (ULL), Avda, Astrofisico Francisco Sanchez s/n, 38206 La Laguna, Tenerife (Spain); Garcia-Rodriguez, Lourdes [Dpto. Ingenieria Energetica, Escuela Tecnica Superior de Ingenieros, Universidad de Sevilla, Camino de los Descubrimientos, s/n 41092 Sevilla (Spain)

    2010-12-15

    Solar thermal driven reverse osmosis desalination is a promising renewable energy-driven desalination technology. A joint use of the solar thermal powered organic Rankine cycle (ORC) and the desalination technology of less energy consumption, reverse osmosis (RO), makes this combination interesting in some scarce water resource scenarios. However, prior to any practical experience with any new process, a comprehensive and rigorous theoretical study must be done in order to assess the performance of the new technology or combination of existing technologies. The main objective of the present paper is the expansion of the theoretical analysis done by the authors in previous works to the case in which the thermal energy required by a solar ORC is supplied by means of stationary solar collectors. Twelve substances are considered as working fluids of the ORC and four different models of stationary solar collectors (flat plate collectors, compound parabolic collectors and evacuated tube collectors) are also taken into account. Operating conditions of the solar ORC that minimizes the aperture area needed per unit of mechanical power output of the solar cycle are determined for every working fluid and every solar collector. The former is done considering a direct vapour generation configuration of the solar cycle and also the configuration with water as heat transfer fluid flowing inside the solar collector. This work is part of the theoretical analysis of the solar thermal driven seawater and brackish water reverse osmosis desalination technology. Nevertheless, the supplied information can be also used for the assessment of different applications of the solar ORC. In that case, results presented in this paper can be useful in techno-economic analysis, selection of working fluids of the Rankine cycle, sizing of systems and assessment of solar power cycle configuration. (author)

  11. Analysis of Low Temperature Organic Rankine Cycles for Solar Applications

    Science.gov (United States)

    Li, Yunfei

    The present work focuses on Organic Rankine Cycle (ORC) systems and their application to low temperature waste heat recovery, combined heat and power as well as off-grid solar power generation applications. As CO_2 issues come to the fore front and fossil fuels become more expensive, interest in low grade heat recovery has grown dramatically in the past few years. Solar energy, as a clean, renewable, pollution-free and sustainable energy has great potential for the use of ORC systems. Several ORC solutions have been proposed to generate electricity from low temperature sources. The ORC systems discussed here can be applied to fields such as solar thermal, biological waste heat, engine exhaust gases, small-scale cogeneration, domestic boilers, etc. The current work presents a thermodynamic and economic analysis for the use of ORC systems to convert solar energy or low exergy energy to generate electrical power. The organic working fluids investigated here were selected to investigate the effect of the fluid saturation temperature on the performance of ORCs. The working fluids under investigation are R113, R245fa, R123, with boiling points between 40°C and 200°C at pressures from 10 kPa to 10 MPa. Ambient temperature air at 20oC to 30oC is utilized as cooling resource, and allowing for a temperature difference 10°C for effective heat transfer. Consequently, the working fluids are condensed at 40°C. A combined first- and second-law analysis is performed by varying some system independent parameters at various reference temperatures. The present work shows that ORC systems can be viable and economical for the applications such as waste heat use and off-grid power generation even though they are likely to be more expensive than grid power.

  12. Performance analysis a of solar driven organic Rankine cycle using multi-component working fluids

    DEFF Research Database (Denmark)

    Baldasso, E.; Andreasen, J. G.; Modi, A.

    2015-01-01

    Among the different renewable sources of energy, solar power could play a primary role in the development of a more sustainable electricity generation system. While large scale concentrated solar power plants based on the steam Rankine cycle have already been proved to be cost effective, research...... is still under progress for small scale low temperature solar-driven power plants. The steam Rankine cycle is suitable for high temperature applications, but its efficiency drastically decreases as the heat source temperature drops. In these cases a much more promising configuration is the organic Rankine...... field made of parabolic trough collectors and a recuperative organic Rankine cycle. Pressurized water is selected as heat transfer fluid and its maximum temperature is fixed to 150°C. The target power output for the plant is 100 kWel. A part load analysis is carried out in order to define the most...

  13. Theoretical and experimental research of organic Rankine cycle steam turbine plants

    Science.gov (United States)

    Kishkin, A. A.; Delkov, A. V.; Melkozerov, M. G.

    2017-10-01

    Currently steam power cycles using organic actuation fluid - Freon, ammonia, ethanol, isobutene, etc are becoming increasingly important. Such cycles are called Organic Rankine Cycle (ORC). With the help of such cycles it is possible to use low-grade heat sources in the production of mechanical and electrical energy.

  14. Optimization of organic Rankine cycle power systems considering multistage axial turbine design

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Persico, Giacomo

    2018-01-01

    Organic Rankine cycle power systems represent a viable and efficient solution for the exploitation of medium-to-low temperature heat sources. Despite the large number of commissioned units, there is limited literature on the design and optimization of organic Rankine cycle power systems considering......-butane yields the best compromise in terms of cycle net power output, turbine cost and efficiency for the considered case study. When a conservative design approach is adopted, the turbine features a two-stage configuration with supersonic converging nozzles and post-expansion. Conversely, a single...... multistage turbine design. This work presents a preliminary design methodology and working fluid selection for organic Rankine cycle units featuring multistage axial turbines. The method is then applied to the case of waste heat recovery from a large marine diesel engine. A multistage axial turbine model...

  15. Optimization of organic Rankine cycle power systems considering multistage axial turbine design

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Persico, Giacomo

    2017-01-01

    Organic Rankine cycle power systems represent a viable and efficient solution for the exploitation of medium-to-low temperature heat sources. Despite the large number of commissioned units, there is limited literature on the design and optimization of organic Rankine cycle power systems considering......-butane yields the best compromise in terms of cycle net power output, turbine cost and efficiency for the considered case study. When a conservative design approach is adopted, the turbine features a two-stage configuration with supersonic converging nozzles and post-expansion. Conversely, a single...... multistage turbine design. This work presents a preliminary design methodology and working fluid selection for organic Rankine cycle units featuring multistage axial turbines. The method is then applied to the case of waste heat recovery from a large marine diesel engine. A multistage axial turbine model...

  16. Radial turbine expander design for organic rankine cycle, waste heat recovery in high efficiency, off-highway vehicles

    OpenAIRE

    Alshammari, F.; Karvountzis-Kontakiotis, A; Pesiridis, A

    2016-01-01

    Although state-of-the-art, heavy duty diesel engines of today can reach peak thermal efficiencies of approximately 45%, still most of the fuel energy is transformed into wasted heat in the internal combustion process. Recovering this wasted energy could increase the overall thermal efficiency of the engine as well as reduce the exhaust gas emissions. Compared to other Waste Heat Recovery (WHR) technologies, Organic Rankine Cycle (ORC) systems are regarded favourably due to their relative simp...

  17. Modelling of organic Rankine cycle power systems in off-design conditions: an experimentally-validated comparative study

    OpenAIRE

    Dickes, Rémi; Dumont, Olivier; Daccord, Rémi; Quoilin, Sylvain; Lemort, Vincent

    2017-01-01

    Because of environmental issues and the depletion of fossil fuels, the world energy sector is undergoing many changes toward increased sustainability. Among the many fields of research and development, power generation from low-grade heat sources is gaining interest and the organic Rankine cycle (ORC) is seen as one of the most promising technologies for such applications. In this paper, it is proposed to perform an experimentally-validated comparison of different modelling methods for the of...

  18. Organic Rankine cycle unit for waste heat recovery on ships (PilotORC)

    DEFF Research Database (Denmark)

    Haglind, Fredrik; Montagud, Maria E. Mondejar; Andreasen, Jesper Graa

    The project PilotORC was aimed at evaluating the technical and economic feasibility of the use of organic Rankine cycle (ORC) units to recover low-temperature waste heat sources (i.e. exhaust gases, scavenge air, engine cooling system, and lubricant oil system) on container vessels. The project...... included numerical simulations and experimental tests on a 125 kW demonstration ORC unit that utilizes the waste heat of the main engine cooling system on board one of Mærsk's container vessels. During the design of the demonstration ORC unit, different alternatives for the condenser were analyzed in order...... to minimize the size of the heat exchanger area. Later on the ORC unit was successfully installed on board, and it has been working uninterruptedly since, demonstrating the matureness of the ORC technology for maritime applications. During the onboard testing, additional measuring devices were installed...

  19. Optimal design of compact organic Rankine cycle units for domestic solar applications

    Directory of Open Access Journals (Sweden)

    Barbazza Luca

    2014-01-01

    Full Text Available Organic Rankine cycle turbogenerators are a promising technology to transform the solar radiation harvested by solar collectors into electric power. The present work aims at sizing a small-scale organic Rankine cycle unit by tailoring its design for domestic solar applications. Stringent design criteria, i. e., compactness, high performance and safe operation, are targeted by adopting a multi-objective optimization approach modeled with the genetic algorithm. Design-point thermodynamic variables, e. g., evaporating pressure, the working fluid, minimum allowable temperature differences, and the equipment geometry, are the decision variables. Flat plate heat exchangers with herringbone corrugations are selected as heat transfer equipment for the preheater, the evaporator and the condenser. The results unveil the hyperbolic trend binding the net power output to the heat exchanger compactness. Findings also suggest that the evaporator and condenser minimum allowable temperature differences have the largest impact on the system volume and on the cycle performances. Among the fluids considered, the results indicate that R1234yf and R1234ze are the best working fluid candidates. Using flat plate solar collectors (hot water temperature equal to 75 °C, R1234yf is the optimal solution. The heat exchanger volume ranges between 6.0 and 23.0 dm3, whereas the thermal efficiency is around 4.5%. R1234ze is the best working fluid employing parabolic solar collectors (hot water temperature equal to 120 °C. In such case the thermal efficiency is around 6.9%, and the heat exchanger volume varies from 6.0 to 18.0 dm3.

  20. Thermodynamic Analysis of an Integrated Solid Oxide Fuel Cell Cycle with a Rankine Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Hybrid systems consisting of Solid Oxide Fuel Cells (SOFC) on the top of a Steam Turbine (ST) are investigated. The plants are fired by natural gas (NG). A desulfurization reactor removes the sulfur content in the fuel while a pre-reformer breaks down the heavier hydrocarbons. The pre-treated fuel...... enters then into the anode side of the SOFC. The remaining fuels after the SOFC stacks enter a burner for further burning. The off-gases are then used to produce steam for a Rankine cycle in a Heat Recovery Steam Generator (HRSG). Different system setups are suggested. Cyclic efficiencies up to 67......% are achieved which is considerably higher than the conventional Combined Cycles (CC). Both ASR (Adiabatic Steam Reformer) and CPO (Catalytic Partial Oxidation) fuel pre-reformer reactors are considered in this investigation....

  1. Organic Rankine Cycle Analysis: Finding the Best Way to Utilize Waste Heat

    Directory of Open Access Journals (Sweden)

    Nadim Chakroun

    2012-01-01

    Full Text Available An Organic Rankine Cycle (ORC is a type of power cyclethat uses organic substances such as hydrocarbons orrefrigerants as the working fluid. ORC technology is usedto generate electricity in waste heat recovery applications,because the available heat is not at a high enoughtemperature to operate with other types of cycles. Theoptimum amount of working fluid required for the cycle(i.e., optimum charge level was investigated. Three chargelevels (13, 15, and 18 lbm were tested, and their effect onefficiency and performance of the system was analyzed.The heat source for the fluid was waste steam from thePurdue Power Plant, which had an average temperatureof 120oC. Regular city tap water at a temperature of 15oCwas used as the heat sink. For each charge level, multipletests were performed by measuring the temperaturesand pressures at all state points in the cycle, in order tounderstand any overarching patterns within the data.An important parameter that was analyzed is the 2nd lawefficiency. This efficiency is a measure of the effectivenessof the energy utilization compared to that of an idealcase. The peak efficiency increased from 24% to 27% asthe charge in the system decreased. Therefore, movingforward, this research suggests that a lower charge levelin the system will increase efficiency. However, testingbelow 13 lbm might cause mechanical complications inthe equipment as there may not be enough fluid to flowaround; thus, a compromise had to be made.

  2. Effect of Regenerative Organic Rankine Cycle (RORC on the Performance of Solar Thermal Power in Yogyakarta, Indonesia

    Directory of Open Access Journals (Sweden)

    Ghalya Pikra

    2013-07-01

    Full Text Available This paper presents effect of Regenerative Organic Rankine Cycle (RORC on the performance of solar thermal power in Yogyakarta, Indonesia. Solar thermal power is a plant that uses solar energy as heat source. Indonesia has high humidity level, so that parabolic trough is the most suitable type of solar thermal power technology to be developed, where the design is made with small focal distance. Organic Rankine Cycle (ORC is a Rankine cycle that use organic fluid as working fluid to utilize low temperature heat sources. RORC is used to increase ORC performance. The analysis was done by comparing ORC system with and without regenerator addition. Refrigerant that be used in the analysis is R123. Preliminary data was taken from the solar collector system that has been installed in Yogyakarta. The analysis shows that with 36 m total parabolic length, the resulting solar collector capacity is 63 kW, heat input/evaporator capacity is determined 26.78 kW and turbine power is 3.11 kW for ORC, and 3.38 kW for RORC. ORC thermal efficiency is 11.28% and RORC is 12.26%. Overall electricity efficiency is 4.93% for ORC, and 5.36% for RORC. With 40°C condensing temperature and evaporation at 10 bar saturated condition, efficiency of RORC is higher than ORC. Greater evaporation temperature at the same pressure (10 bar provide greater turbine power and efficiency.

  3. Comparison of Organic Rankine Cycle Under Varying Conditions Using Turbine and Twin-Screw Expanders

    OpenAIRE

    Read, M G; Smith, I.K.; Stosic, N.

    2015-01-01

    A multi-variable optimization program has been developed to investigate the performance of Organic Rankine Cycles (ORCs) for low temperature heat recovery applications. This cycle model contains detailed thermodynamic models of the system components, and the methods used to match the operation of the expander to the requirements of the cycle are described. Two types of ORC system are considered; one containing a turbine to expand dry saturated or superheated vapour, and one with a twin-screw ...

  4. A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Meroni, Andrea; Haglind, Fredrik

    2017-01-01

    %) fuel case. The processes were compared based on their off-design performance for diesel engine loads in the range between 25% and 100%. The fluids considered in the organic Rankine cycle process were MM(hexamethyldisiloxane), toluene, n-pentane, i-pentane and c-pentane. The results of the comparison...... indicate that the net power output of the steam Rankine cycle process is higher at high engine loads, while the performance of the organic Rankine cycle units is higher at lower loads. Preliminary turbine design considerations suggest that higher turbine efficiencies can be obtained for the ORC unit......This paper presents a comparison of the conventional dual pressure steam Rankine cycle process and the organic Rankine cycle process for marine engine waste heat recovery. The comparison was based on a container vessel, and results are presented for a high-sulfur (3 wt %) and low-sulfur (0.5 wt...

  5. Final Report. Conversion of Low Temperature Waste Heat Utilizing Hermetic Organic Rankine Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Robert L.

    2005-04-20

    The design of waste heat recovery using the organic Rankine cycle (ORC) engine is updated. Advances in power electronics with lower cost enable the use of a single shaft, high-speed generator eliminating wear items and allowing hermetic sealing of the working fluid. This allows maintenance free operation and a compact configuration that lowers cost, enabling new market opportunities.

  6. Method of optimizing performance of Rankine cycle power plants. [US DOE Patent

    Science.gov (United States)

    Pope, W.L.; Pines, H.S.; Doyle, P.A.; Silvester, L.F.

    1980-06-23

    A method is described for efficiently operating a Rankine cycle power plant to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine fluid inlet state which is substantially on the area adjacent and including the transposed critical temperature line.

  7. Thermodynamic analysis of a Rankine cycle powered vapor compression ice maker using solar energy.

    Science.gov (United States)

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m(-2) and 7.61 kg m(-2) day(-1) at the generation temperature of 140 °C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker.

  8. Equation of State Selection for Organic Rankine Cycle Modeling Under Uncertainty

    DEFF Research Database (Denmark)

    Frutiger, Jerome; O'Connell, John; Abildskov, Jens

    combustion, geothermal and solar heat sources. The working fluid is essential to the performance of the cycle. In order to evaluate and test promising fluid candidates, an appropriate Equation of State (EoS) [1] is necessary. For ORC applications, an EoS is commonly selected based on goodness-of-fits to data......In recent years there has been a great interest in the design and selection of working fluids for low-temperature Organic Rankine Cycles (ORC), to efficiently produce electrical power from waste heat from chemical engineering applications, as well as from renewable energy sources such as biomass...... cycle, all influence the model output uncertainty. The procedure is highlighted for an ORC for with a low-temperature heat source from exhaust gas from a marine diesel engine.[1] Saleh B, Koglbauer G, Wendland M, Fischer J. Working fluids for lowtemperature organic Rankine cycles. Energy 2007...

  9. Comparison of organic rankine cycle systems under varying conditions using turbine and twin-screw expanders

    OpenAIRE

    Read, M G; Smith, I.K.; Stosic, N.; Kovacevic, A.

    2016-01-01

    A multi-variable optimization program has been developed to investigate the performance of Organic Rankine Cycles (ORCs) for low temperature heat recovery applications using both turbine and twin-screw expanders when account is taken of performance variation due to changes in ambient conditions. The cycle simulation contains thermodynamic models of both types of expander. In the case of the twin-screw machine, the methods used to match the operation of the expander to the requirements of the ...

  10. Part-Load Performance of a Wet Indirectly Fired Gas Turbine Integrated with an Organic Rankine Cycle Turbogenerator

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Nguyen, Tuong-Van; Mazzucco, Andrea

    2014-01-01

    ) fueled by woodchips and an organic Rankine cycle (ORC) turbogenerator. An exergy analysis is performed to identify the sources of inefficiencies, the optimal design variables, and the most suitable working fluid for the organic Rankine process. This step enables to parametrize the part-load model...

  11. Multi-Objective Optimization of Organic Rankine Cycle Power Plants Using Pure and Mixed Working Fluids

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Kærn, Martin Ryhl; Pierobon, Leonardo

    2016-01-01

    For zeotropic mixtures, the temperature varies during phase change, which is opposed to the isothermal phase change of pure fluids. The use of such mixtures as working fluids in organic Rankine cycle power plants enables a minimization of the mean temperature difference of the heat exchangers......, which is beneficial for cycle performance. On the other hand, larger heat transfer surface areas are typically required for evaporation and condensation when zeotropic mixtures are used as working fluids. In order to assess the feasibility of using zeotropic mixtures, it is, therefore, important...... to consider the additional costs of the heat exchangers. In this study, we aim at evaluating the economic feasibility of zeotropic mixtures compared to pure fluids. We carry out a multi-objective optimization of the net power output and the component costs for organic Rankine cycle power plants using low...

  12. Prospects of the use of nanofluids as working fluids for organic Rankine cycle power systems

    DEFF Research Database (Denmark)

    Mondejar, Maria E.; Andreasen, Jesper G.; Regidor, Maria

    2017-01-01

    The search of novel working fluids for organic Rankine cycle power systems is driven by the recent regulations imposing additional phase-out schedules for substances with adverse environmental characteristics. Recently, nanofluids (i.e. colloidal suspensions of nanoparticles in fluids) have been...... suggested as potential working fluids for organic Rankine cycle power systems due to their enhanced thermal properties, potentially giving advantages with respect to the design of the components and the cycle performance. Nevertheless, a number of challenges concerning the use of nanofluids must...... be investigated prior to their practical use. Among other things, the trade-off between enhanced heat transfer and increased pressure drop in heat exchangers, and the impact of the nanoparticles on the working fluid thermophysical properties, must be carefully analyzed. This paper is aimed at evaluating...

  13. Analysis of a rotating spool expander for Organic Rankine Cycle applications

    Science.gov (United States)

    Krishna, Abhinav

    Increasing interest in recovering or utilizing low-grade heat for power generation has prompted a search for ways in which the power conversion process may be enhanced. Amongst the conversion systems, the Organic Rankine Cycle (ORC) has generated an enormous amount of interest amongst researchers and system designers. Nevertheless, component level technologies need to be developed and match the range of potential applications. In particular, technical challenges associated with scaling expansion machines (turbines) from utility scale to commercial scale have prevented widespread adoption of the technology. In this regard, this work focuses on a novel rotating spool expansion machine at the heart of an Organic Rankine Cycle. A comprehensive, deterministic simulation model of the rotating spool expander is developed. The comprehensive model includes a detailed geometry model of the spool expander and the suction valve mechanism. Sub-models for mass flow, leakage, heat transfer and friction within the expander are also developed. Apart from providing the ability to characterize the expander in a particular system, the model provides a valuable tool to study the impact of various design variables on the performance of the machine. The investigative approach also involved an experimental program to assess the performance of a working prototype. In general, the experimental data showed that the expander performance was sub-par, largely due to the mismatch of prevailing operating conditions and the expander design criteria. Operating challenges during the shakedown tests and subsequent sub-optimal design changes also detracted from performance. Nevertheless, the results of the experimental program were sufficient for a proof-of-concept assessment of the expander and for model validation over a wide range of operating conditions. The results of the validated model reveal several interesting details concerning the expander design and performance. For example, the match

  14. Autonomous low-temperature solar Rankine cycle system for reverse osmosis desalination

    Energy Technology Data Exchange (ETDEWEB)

    Manolakos, D.; Makris, G.; Papadakis, G.; Kyritsis, S. [Agricultural University of Athens (Greece). Dept. of Agricultural Engineering; Bouzianas, K. [Hellas Energy K. Bouzianas P. Moschovitis and Co., Athens (Greece)

    2004-07-01

    The research regards the development, application testing and performance evaluation of a low temperature solar organic Rankine cycle system for Reverse Osmosis (RO) desalination. Below is given a technical description of the system under development: Thermal energy produced by the solar array evaporates the working fluid (HFC- 134a) in the evaporator surface. The super-heated vapour is driven to the expanders where the generated mechanical work produced by the Rankine cycle drives the RO unit pumps (high pressure pump, cooling water pump, feed water pump) and circulating pump. The saturated vapour at the expanders' outlet is directed to the condenser and condensates. On the condenser surface, seawater is pre-heated and directed to the seawater reservoir. Seawater pre-heating is applied to increase the fresh water recovery ratio. The seawater tank is insulated. The use of seawater on the condenser surface decreases the temperature of ''Low Temperature Reservoir'' of Rankine cycle thus a better cycle efficiency is achieved. For the prototype system 240 m2 of vacuum tube solar collectors will be deployed. The evaporator and condenser capacity is estimated to be about 100 kW. For these systems' characteristics and considering a water recovery ratio of seawater RO desalination unit of 30%, the average yearly fresh water production is estimated at 1450 m3 (or 4 m3 daily). Specific innovations of the system are: Low temperature thermal sources can be exploited efficiently for fresh water production; solar energy is used indirectly and does not heat the seawater; the RO unit is driven by mechanical work produced from the process; the system condenser acts as sea water pre-heater and this serves a double purpose; (1) increase of feed water temperature implies higher fresh water production (2) decrease of temperature of ''low temperature reservoir'' of Rankine cycle implies higher cycle efficiencies. (orig.)

  15. A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships

    Directory of Open Access Journals (Sweden)

    Jesper Graa Andreasen

    2017-04-01

    Full Text Available This paper presents a comparison of the conventional dual pressure steam Rankine cycle process and the organic Rankine cycle process for marine engine waste heat recovery. The comparison was based on a container vessel, and results are presented for a high-sulfur (3 wt % and low-sulfur (0.5 wt % fuel case. The processes were compared based on their off-design performance for diesel engine loads in the range between 25% and 100%. The fluids considered in the organic Rankine cycle process were MM(hexamethyldisiloxane, toluene, n-pentane, i-pentane and c-pentane. The results of the comparison indicate that the net power output of the steam Rankine cycle process is higher at high engine loads, while the performance of the organic Rankine cycle units is higher at lower loads. Preliminary turbine design considerations suggest that higher turbine efficiencies can be obtained for the ORC unit turbines compared to the steam turbines. When the efficiency of the c-pentane turbine was allowed to be 10% points larger than the steam turbine efficiency, the organic Rankine cycle unit reaches higher net power outputs than the steam Rankine cycle unit at all engine loads for the low-sulfur fuel case. The net power production from the waste heat recovery units is generally higher for the low-sulfur fuel case. The steam Rankine cycle unit produces 18% more power at design compared to the high-sulfur fuel case, while the organic Rankine cycle unit using MM produces 33% more power.

  16. Selected aspects of operation of supercritical (transcritical organic Rankine cycle

    Directory of Open Access Journals (Sweden)

    Mocarsk Szymon

    2015-06-01

    Full Text Available The paper presents a literature review on the topic of vapour power plants working according to the two-phase thermodynamic cycle with supercritical parameters. The main attention was focused on a review of articles and papers on the vapour power plants working using organic circulation fluids powered with low- and medium-temperature heat sources. Power plants with water-steam cycle supplied with a high-temperature sources have also been shown, however, it has been done mainly to show fundamental differences in the efficiency of the power plant and applications of organic and water-steam cycles. Based on a review of available literature references a comparative analysis of the parameters generated by power plants was conducted, depending on the working fluid used, the type and parameters of the heat source, with particular attention to the needs of power plant internal load.

  17. Experimental Study of a Low-Temperature Power Generation System in an Organic Rankine Cycle

    DEFF Research Database (Denmark)

    Mu, Yongchao; Zhang, Yufeng; Deng, Na

    2015-01-01

    as the engine of the power generator. The style of the preheater was a shell and tube heat exchanger, which could provide a long path for the working fluid. A flooded heat exchanger with a high heat transfer coefficient was taken as the evaporator. R134a was used as working fluid for the Rankine cycle......This paper presents a new power generation system under the principle of organic Rankine cycle which can generate power with a low-temperature heat source. A prototype was built to investigate the proposed system. In the prototype, an air screw compressor was converted into an expander and used...... in the system. This study compared and analyzed the experimental performance of the prototype at different heat source temperatures. The results show that the preheater and flooded evaporator was used for sensible heating and latent heating of the working fluid, respectively, as expected. When the temperature...

  18. Study of toluene stability for an Organic Rankine Cycle (ORC) space-based power system

    Science.gov (United States)

    Havens, Vance; Ragaller, Dana

    1988-01-01

    The design, fabrication, assembly, and endurance operation of a dynamic test loop, built to evaluate the thermal stability of a proposed Organic Rankine Cycle (ORC) working fluid, is discussed. The test fluid, toluene, was circulated through a heater, simulated turbine, regenerator, condenser and pump to duplicate an actual ORC system. The maximum nominal fluid temperature, 750 F, was at the turbine simulator inlet. Samples of noncondensible gases and liquid toluene were taken periodically during the test. The samples were analyzed to identify the degradation products formed and the quantity of these products. From these data it was possible to determine the degradation rate of the working fluid and the generation rate of noncondensible gases. A further goal of this work was to relate the degradation observed in the dynamic operating loop to degradation obtained in isothermal capsule tests. This relationship was the basis for estimating the power loop degradation in the Space Station Organic Rankine Cycle system.

  19. Preliminary Design and Simulation of a Turbo Expander for Small Rated Power Organic Rankine Cycle (ORC

    Directory of Open Access Journals (Sweden)

    Roberto Capata

    2014-11-01

    Full Text Available Nowadays, the Organic Rankine Cycle (ORC system, which operates with organic fluids, is one of the leading technologies for “waste energy recovery”. It works as a conventional Rankine Cycle but, as mentioned, instead of steam/water, an organic fluid is used. This change allows it to convert low temperature heat into electric energy where required. Large numbers of studies have been carried out to identify the most suitable fluids, system parameters and the various configurations. In the present market, most ORC systems are designed and manufactured for the recovery of thermal energy from various sources operating at “large power rating” (exhaust gas turbines, internal combustion engines, geothermal sources, large melting furnaces, biomass, solar, etc.; from which it is possible to produce a large amount of electric energy (30 kW ÷ 300 kW. Such applications for small nominal power sources, as well as the exhaust gases of internal combustion engines (car sedan or town, ships, etc. or small heat exchangers, are very limited. The few systems that have been designed and built for small scale applications, have, on the other hand, different types of expander (screw, scroll, etc.. These devices are not adapted for placement in small and restricted places like the interior of a conventional car. The aim of this work is to perform the preliminary design of a turbo-expander that meets diverse system requirements such as low pressure, small size and low mass flow rates. The expander must be adaptable to a small ORC system utilizing gas of a diesel engine or small gas turbine as thermal source to produce 2–10 kW of electricity. The temperature and pressure of the exhaust gases, in this case study (400–600 °C and a pressure of 2 bar, imposes a limit on the use of an organic fluid and on the net power that can be produced. In addition to water, fluids such as CO2, R134a and R245fa have been considered. Once the operating fluids has been chosen

  20. System and method for regulating EGR cooling using a Rankine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Morris, Dave

    2017-08-29

    This disclosure relates to a waste heat recovery (WHR) system and method for regulating exhaust gas recirculation (EGR) cooling, and more particularly, to a Rankine cycle WHR system and method, including a recuperator bypass arrangement to regulate EGR exhaust gas cooling for engine efficiency improvement and thermal management. This disclosure describes other unique bypass arrangements for increased flexibility in the ability to regulate EGR exhaust gas cooling.

  1. Exergetic Analysis of an Integrated Tri-Generation Organic Rankine Cycle

    OpenAIRE

    Ratha Z. Mathkor; Brian Agnew; Mohammed A. Al-Weshahi; Fathi Latrsh

    2015-01-01

    This paper reports on a study of the modelling, validation and analysis of an integrated 1 MW (electrical output) tri-generation system energized by solar energy. The impact of local climatic conditions in the Mediterranean region on the system performance was considered. The output of the system that comprised a parabolic trough collector (PTC), an organic Rankine cycle (ORC), single-effect desalination (SED), and single effect LiBr-H2O absorption chiller (ACH) was electrical power, distille...

  2. Thermodynamic Optimization of a Geothermal- Based Organic Rankine Cycle System Using an Artificial Bee Colony Algorithm

    OpenAIRE

    Osman Özkaraca; Pınar Keçebaş; Cihan Demircan; Ali Keçebaş

    2017-01-01

    Geothermal energy is a renewable form of energy, however due to misuse, processing and management issues, it is necessary to use the resource more efficiently. To increase energy efficiency, energy systems engineers carry out careful energy control studies and offer alternative solutions. With this aim, this study was conducted to improve the performance of a real operating air-cooled organic Rankine cycle binary geothermal power plant (GPP) and its components in the aspects of thermodynamic ...

  3. Organic Rankine Cycle and its application in renewable power engineering

    Directory of Open Access Journals (Sweden)

    G. V. Belov

    2014-01-01

    Full Text Available A considerable part of energy consumed in the world is thermal power that is produced due to burning of hydrocarbon fuels and as a result of controlled course of nuclear reactions. Thus rather large part of thermal power is used ultrainefficiently, often simply dissipates in environment. The rise in prices for energy compels to use low-grade one to be released in large quantities in environment. To utilize the low-grade energy Renkin's cycle with with alternative working bodies is often applied. The corresponding cycle was called Renkin's organic cycle (ROC. A substance with lower boiling temperature, than that of water is used in ROC as a working body to utilize low-grade energy.The review of literature shows that thrust on power sector related to utilization of residual heat (thermal waste and use of alternative energy sources, recently, intensively develops. However there is, essentially, a lack of publications on this subject in Russian. The objective of given article is to analyse modern sources of information (mainly, foreign ones which consider various aspects of ROC and its application potential in alternative power engineering. The article focuses much attention on the choice of ROC working body. It presents a list of main requirements for a working body. The article studies the matters of ROC simulation.It is shown that ROC application enables using the low-grade power of exhaust gases, geothermal sources, other thermal streams with rather low temperature. Integration of ROC with ICE (internal combustion engine is in position to increase an efficiency of used fuel energy and to reduce amount of toxic impurity in exhaust gases. Essential influence of working body properties on its characteristics of ROC is noted.

  4. Thermal analysis of a Phase Change Material for a Solar Organic Rankine Cycle

    Science.gov (United States)

    Iasiello, M.; Braimakis, K.; Andreozzi, A.; Karellas, S.

    2017-11-01

    Organic Rankine Cycle (ORC) is a promising technology for low temperature power generation, for example for the utilization of medium temperature solar energy. Since heat generated from solar source is variable throughout the day, the implementation of Thermal Energy Storage (TES) systems to guarantee the continuous operation of solar ORCs is a critical task, and Phase Change Materials (PCM) rely on latent heat to store large amounts of energy. In the present study, a thermal analysis of a PCM for a solar ORC is carried out. Three different types of PCMs are analyzed. The energy equation for the PCM is modeled by using the heat capacity method, and it is solved by employing a 1Dexplicit finite difference scheme. The solar source is modeled with a time-variable temperature boundary condition, with experimental data taken from the literature for two different solar collectors. Results are presented in terms of temperature profiles and stored energy. It has been shown that the stored energy depends on the heat source temperature, on the employed PCM and on the boundary conditions. It has been demonstrated that the use of a metal foam can drastically enhance the stored energy due to the higher overall thermal conductivity.

  5. Experimental and Thermoeconomic Analysis of Small-Scale Solar Organic Rankine Cycle (SORC System

    Directory of Open Access Journals (Sweden)

    Suresh Baral

    2015-04-01

    Full Text Available A small-scale solar organic Rankine cycle (ORC is a promising renewable energy-driven power generation technology that can be used in the rural areas of developing countries. A prototype was developed and tested for its performance characteristics under a range of solar source temperatures. The solar ORC system power output was calculated based on the thermal and solar collector efficiency. The maximum solar power output was observed in April. The solar ORC unit power output ranged from 0.4 kW to 1.38 kW during the year. The highest power output was obtained when the expander inlet pressure was 13 bar and the solar source temperature was 120 °C. The area of the collector for the investigation was calculated based on the meteorological conditions of Busan City (South Korea. In the second part, economic and thermoeconomic analyses were carried out to determine the cost of energy per kWh from the solar ORC. The selling price of electricity generation was found to be $0.68/kWh and $0.39/kWh for the prototype and low cost solar ORC, respectively. The sensitivity analysis was carried out in order to find the influencing economic parameters for the change in NPV. Finally, the sustainability index was calculated to assess the sustainable development of the solar ORC system.

  6. Reciprocating Expander for an Exhaust Heat Recovery Rankine Cycle for a Passenger Car Application

    Directory of Open Access Journals (Sweden)

    Osoko Shonda

    2012-06-01

    Full Text Available Nowadays, on average, two thirds of the fuel energy consumed by an engine is wasted through the exhaust gases and the cooling liquid. The recovery of this energy would enable a substantial reduction in fuel consumption. One solution is to integrate a heat recovery system based on a steam Rankine cycle. The key component in such a system is the expander, which has a strong impact on the system’s performance. A survey of different expander technologies leads us to select the reciprocating expander as the most promising one for an automotive application. This paper therefore proposes a steady-state semi-empirical model of the expander device developed under the Engineering Equation Solver (EES environment. The ambient and mechanical losses as well as internal leakage were taken into account by the model. By exploiting the expander manufacturer’s data, all the parameters of the expander model were identified. The model computes the mass flow rate, the power output delivered and the exhaust enthalpy of the steam. The maximum deviation between predictions and measurement data is 4.7%. A performance study of the expander is carried out and shows that the isentropic efficiency is quite high and increases with the expander rotary speed. The mechanical efficiency depends on mechanical losses which are quite high, approximately 90%. The volumetric efficiency was also evaluated.

  7. Design and optimization of a novel organic Rankine cycle with improved boiling process

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Larsen, U.; Knudsen, Thomas

    2015-01-01

    to improve the boiling process. Optimizations are carried out for eight hydrocarbon mixtures for hot fluid inlet temperatures at 120 °C and 90 °C, using a genetic algorithm to determine the cycle conditions for which the net power output is maximized. The most promising mixture is an isobutane....../pentane mixture which, for the 90 °C hot fluid inlet temperature case, achieves a 14.5% higher net power output than an optimized organic Rankine cycle using the same mixture. Two parameter studies suggest that optimum conditions for the organic split-cycle are when the temperature profile allows the minimum...

  8. Control system to a Rankine cycle with a Tesla turbine using arduino

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Josenei G., E-mail: joseneigodoi@yahoo.com.br [Faculdade de Tecnologia Sao Francisco (FATESF), Jacarei, SP (Brazil); Guimaraes, Lamartine F.; Placco, Guilherme M., E-mail: guimarae@ieav.cta.br, E-mail: placco@ieav.cta.br [Instituto de Estudos Avancados (ENU/IEAv/DCTA), Sao Jose dos Campos, SP (Brazil). Departamento de Energia Nuclear

    2013-07-01

    The thermal Rankine cycle is a thermodynamic cycle which converts heat in energy. This cycle occurs in steady state, in other words the cycle is a closed loop circuit with continuous feedback, which guarantees the reuse process one energy transformed in the various stages of the cycle. This cycle is used to drive a turbine type TESLA designed for the system. The objective of this work is to create the control and automation of this cycle using an micro-controlled system with Arduino that will hold the collection of sensors and the system will act to maintain the balance of the cycle causing it to behave continuously and with less interference from human operation for maintenance. Data will be collected and further processed, where it will display all the sensors and the situation of the actuators involved. Using Arduino system ensures the stability and reliability with a low cost of implementation.

  9. Investigations on the application of zeotropic fluid mixtures in the organic rankine cycle for the geothermal power generation; Untersuchung zum Einsatz von zeotropen Fluidgemischen im Organic Rankine Cycle fuer die geothermische Stromerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Heberle, Florian

    2013-04-01

    The organic rankine cycle is a thermodynamic cycle process which uses an organic fluid working fluid instead of water in comparison to the commercial rankine process. The organic rankine cycle facilitates sufficiently high pressures at moderate temperatures. The organic rankine cycle significantly expands the technically possible and economically feasible ranges of application of such heat and power processes. The geothermal power is a very attractive field of application. Thermal water with a temperature of nearly 100 Celsius can be used for the power generation by means of the organic rankine cycle. Especially zeotropic mixtures are interesting as a working fluid. This is due to a non-isothermal phase change to a temperature glide which adapts very well to the temperature progress of the heat source. The author of the book under consideration reports on the application of different mixtures in the organic rankine cycle. The evaluation is based on a thermodynamic analysis and considers also toxicological, ecologic, technical as well as economic aspects.

  10. Staging Rankine Cycles Using Ammonia for OTEC Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Bharathan, D.

    2011-03-01

    Recent focus on renewable power production has renewed interest in looking into ocean thermal energy conversion (OTEC) systems. Early studies in OTEC applicability indicate that the island of Hawaii offers a potential market for a nominal 40-MWe system. a 40-MWe system represents a large leap in the current state of OTEC technology. Lockheed Martin Inc. is currently pursuing a more realistic goal of developing a 10-MWe system under U.S. Navy funding (Lockheed 2009). It is essential that the potential risks associated with the first-of-its-kind plant should be minimized for the project's success. Every means for reducing costs must also be pursued without increasing risks. With this in mind, the potential for increasing return on the investment is assessed both in terms of effective use of the seawater resource and of reducing equipment costs.

  11. Waste Heat-to-Power Using Scroll Expander for Organic Rankine Bottoming Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, John [TIAX LLC, Lexington, MA (United States); Smutzer, Chad [TIAX LLC, Lexington, MA (United States); Sinha, Jayanti [TIAX LLC, Lexington, MA (United States)

    2017-05-30

    The objective of this program was to develop a novel, scalable scroll expander for conversion of waste heat to power; this was accomplished and demonstrated in both a bench-scale system as well as a full-scale system. The expander is a key component in Organic Rankine Cycle (ORC) waste heat recovery systems which are used to convert medium-grade waste heat to electric power in a wide range of industries. These types of waste heat recovery systems allow for the capture of energy that would otherwise just be exhausted to the atmosphere. A scroll expander has the benefit over other technologies of having high efficiency over a broad range of operating conditions. The speed range of the TIAX expander (1,200 to 3,600 RPM) enables the shaft power output to directly drive an electric generator and produce 60 Hz electric power without incurring the equipment costs or losses of electronic power conversion. This greatly simplifies integration with the plant electric infrastructure. The TIAX scroll expander will reduce the size, cost, and complexity of a small-scale waste heat recovery system, while increasing the system efficiency compared to the prevailing ORC technologies at similar scale. During this project, TIAX demonstrated the scroll expander in a bench-scale test setup to have isentropic efficiency of 70-75% and operated it successfully for ~200 hours with minimal wear. This same expander was then installed in a complete ORC system driven by a medium grade waste heat source to generate 5-7 kW of electrical power. Due to funding constraints, TIAX was unable to complete this phase of testing, although the initial results were promising and demonstrated the potential of the technology.

  12. Performance Evaluation of a Helical Coil Heat Exchanger Working under Supercritical Conditions in a Solar Organic Rankine Cycle Installation

    Directory of Open Access Journals (Sweden)

    Marija Lazova

    2016-06-01

    Full Text Available Worldwide interest in low grade heat valorization using organic Rankine cycle (ORC technologies has increased significantly. A new small-scale ORC with a net capacity of 3 kW was efficiently integrated with a concentrated solar power technology for electricity generation. The excess heat source from Photovoltaic (PV collectors with a maximum temperature of 100 °C was utilized through a supercritical heat exchanger that uses R-404A as working medium. By ensuring supercritical heat transfer leads to a better thermal match in the heat exchanger and improved overall cycle efficiency. A helical coil heat exchanger was designed by using heat transfer correlations from the literature. These heat transfer correlations were derived for different conditions than ORCs and their estimated uncertainty is ~20%. In order to account for the heat transfer correlation uncertainties this component was oversized by 20%. Next, a prototype was built and installed in an integrated concentrated photovoltaic/thermal (CPV/T/Rankine system. The results from the measurements show that for better estimation of the sizing of the heat exchanger a more accurate correlation is required in order to design an optimal configuration and thus employ cheaper components.

  13. Dual-objective optimization of organic Rankine cycle (ORC) systems using genetic algorithm: a comparison between basic and recuperative cycles

    Science.gov (United States)

    Hayat, Nasir; Ameen, Muhammad Tahir; Tariq, Muhammad Kashif; Shah, Syed Nadeem Abbas; Naveed, Ahmad

    2017-08-01

    Exploitation of low potential waste thermal energy for useful net power output can be done by manipulating organic Rankine cycle systems. In the current article dual-objectives (η_{th} and SIC) optimization of ORC systems [basic organic Rankine cycle (BORC) and recuperative organic Rankine cycle (RORC)] has been done using non-dominated sorting genetic algorithm (II). Seven organic compounds (R-123, R-1234ze, R-152a, R-21, R-236ea, R-245ca and R-601) have been employed in basic cycle and four dry compounds (R-123, R-236ea, R-245ca and R-601) have been employed in recuperative cycle to investigate the behaviour of two systems and compare their performance. Sensitivity analyses show that recuperation boosts the thermodynamic behaviour of systems but it also raises specific investment cost significantly. R-21, R-245ca and R-601 show attractive performance in BORC whereas R-601 and R-236ea in RORC. RORC, due to higher total investment cost and operation & maintenance costs, has longer payback periods as compared to BORC.

  14. Experimental Comparison Of Working Fluids For Organic Rankine Cycle With Single-Screw Expander

    OpenAIRE

    Gusev, Sergei; Ziviani, Davide; Bell, Ian; De Paepe, Michel; van den Broek, Martijn

    2014-01-01

    This paper describes the behavior of an Organic Rankine Cycle (ORC) fed by a heat source with adaptable temperature and mass flow. For a suitable choice of working fluid, the setting of its evaporation pressure is crucial for the performance of an ORC installation. The higher the evaporation pressure, the higher the cycle efficiency on the one hand, but the lower the energy recovered from the heat source due to a higher outlet temperature on the other hand. An optimum has to be found to achie...

  15. Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

    Directory of Open Access Journals (Sweden)

    Bing Hu

    2014-01-01

    Full Text Available To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m−2 and 7.61 kg m−2 day−1 at the generation temperature of 140°C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker.

  16. A Co-Powered Biomass and Concentrated Solar Power Rankine Cycle Concept for Small Size Combined Heat and Power Generation

    Directory of Open Access Journals (Sweden)

    Eileen Tortora

    2013-03-01

    Full Text Available The present work investigates the matching of an advanced small scale Combined Heat and Power (CHP Rankine cycle plant with end-user thermal and electric load. The power plant consists of a concentrated solar power field co-powered by a biomass furnace to produce steam in a Rankine cycle, with a CHP configuration. A hotel was selected as the end user due to its high thermal to electric consumption ratio. The power plant design and its operation were modelled and investigated by adopting transient simulations with an hourly distribution. The study of the load matching of the proposed renewable power technology and the final user has been carried out by comparing two different load tracking scenarios, i.e., the thermal and the electric demands. As a result, the power output follows fairly well the given load curves, supplying, on a selected winter day, about 50 GJ/d of thermal energy and the 6 GJ/d of electric energy, with reduced energy dumps when matching the load.

  17. Integrated working fluid-thermodynamic cycle design of organic Rankine cycle power systems for waste heat recovery

    DEFF Research Database (Denmark)

    Cignitti, Stefano; Andreasen, Jesper Graa; Haglind, Fredrik

    2017-01-01

    recovery. Inthis paper, an organic Rankine cycle process and its pure working fluid are designed simultaneously forwaste heat recovery of the exhaust gas from a marine diesel engine. This approach can overcome designissues caused by the high sensitivity between the fluid and cycle design variables...... the simultaneousdesign approach the optimum solution was found in 5.04 s, while a decomposed approach found thesame solution in 5.77 h. However, the decomposed approach provided insights on the correlationbetween the fluid and cycle design variables by analyzing all possible solutions. It was shown that thehigh...

  18. Stand-Alone Solar Organic Rankine Cycle Water Pumping System and Its Economic Viability in Nepal

    Directory of Open Access Journals (Sweden)

    Suresh Baral

    2015-12-01

    Full Text Available The current study presents the concept of a stand-alone solar organic Rankine cycle (ORC water pumping system for rural Nepalese areas. Experimental results for this technology are presented based on a prototype. The economic viability of the system was assessed based on solar radiation data of different Nepalese geographic locations. The mechanical power produced by the solar ORC is coupled with a water pumping system for various applications, such as drinking and irrigation. The thermal efficiency of the system was found to be 8% with an operating temperature of 120 °C. The hot water produced by the unit has a temperature of 40 °C. Economic assessment was done for 1-kW and 5-kW solar ORC water pumping systems. These systems use different types of solar collectors: a parabolic trough collector (PTC and an evacuated tube collector (ETC. The economic analysis showed that the costs of water are $2.47/m3 (highest and $1.86/m3 (lowest for the 1-kW system and a 150-m pumping head. In addition, the cost of water is reduced when the size of the system is increased and the pumping head is reduced. The minimum volumes of water pumped are 2190 m3 and 11,100 m3 yearly for 1 kW and 5 kW, respectively. The payback period is eight years with a profitability index of 1.6. The system is highly feasible and promising in the context of Nepal.

  19. Thermo-Economic Performance Analysis of a Regenerative Superheating Organic Rankine Cycle for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Zhonghe Han

    2017-10-01

    Full Text Available The Organic Rankine Cycle (ORC is a promising form of technology for recovering low-grade waste heat. In this study, a regenerative ORC system is established to recover the waste flue gas of 160 °C. Focusing on thermodynamic and economic performance while simultaneously considering the limitations of volume flow ratio (VFR and the effect of superheat, working fluid selection and parameter optimization have been investigated. The optimization of the evaporation temperature is carried out by analyzing the variation of net power output and specific investment cost (SIC. Then, the net power output, specific net power output, total exergy destruction rate, VFR, total capital cost, and levelized electricity cost (LEC are selected as criteria, and a fuzzy multi-criteria evaluation method is adopted to select a more suitable working fluid and determine the optimal degree of superheat. In addition, the preheating coefficient, latent heat coefficient, superheating coefficient, and internal heat coefficient were proposed to explore the effect of working fluid critical temperature on thermal efficiency. Research studies demonstrate that there is an optimal evaporation temperature, maximizing net power output and minimizing the SIC. Isohexane and butane have greater specific net power output due to greater latent heat. A suitable degree of superheat is not only conducive to improving the working capacity of working fluids, but also reduces the VFR, total capital cost, SIC, and LEC for different working fluids. Thus, the system’s thermodynamic and economic performance—as well as the operational stability—are improved. Among the six working fluids, butane exhibits the best comprehensive performance, and its optimal evaporation temperature and degree of superheat are 100 °C and 5 °C, respectively.

  20. Numerical Optimization of an Organic Rankine Cycle Scheme for Co-generation

    OpenAIRE

    Potenza, Marco; Naccarato, Fabrizio; Stigliano, Gianbattista; Risi, Arturo de

    2016-01-01

    The aim of the present work was the optimization of a small size Organic Rankine Cycle (ORC) system powered by a linear Parabolic Trough Collector (PTC) solar field by means of numerical model code developed on purpose. In the proposed scheme the solar energy is collected by a newly designed low cost PTC of 20m2 with a single tracking axis and it is concentrated on an opaque pipe collector in which flows as thermal fluid the Therminol® 66 oil. An oil-free scroll expander coupled with a 2 kW e...

  1. Theoretical study of thermally driven heat pumps based on double organic rankine cycle

    OpenAIRE

    Demierre, Jonathan; Favrat, Daniel

    2013-01-01

    Part of: Thermally driven heat pumps for heating and cooling. – Ed.: Annett Kühn – Berlin: Universitätsverlag der TU Berlin, 2013 ISBN 978-3-7983-2686-6 (print) ISBN 978-3-7983-2596-8 (online) urn:nbn:de:kobv:83-opus4-39458 [http://nbn-resolving.de/urn:nbn:de:kobv:83-opus4-39458] This study deals with a type of thermally driven heat pumps that consists of a reverse Rankine heat pump cycle, the compressor of which is driven by the turbine of a supercritical Organi...

  2. Uncertainty assessment of equations of state with application to an organic Rankine cycle

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Bell, Ian; O’Connell, John P.

    2017-01-01

    Evaluations of equations of state (EoS) should include uncertainty. This study presents a genericmethod to analyse EoS from a detailed uncertainty analysis of the mathematical form and the dataused to obtain EoS parameter values. The method is illustrated by comparison of Soave–Redlich–Kwong (SRK......) cubic EoS with perturbed-chain statistical associating fluid theory (PC-SAFT) EoS for anorganic Rankine cycle (ORC) for heat recovery to power fromthe exhaust gas of a marine diesel engineusing cyclopentane as working fluid. Uncertainties of the EoS input parameters including...

  3. Utilization of recently developed codes for high power Brayton and Rankine cycle power systems

    Science.gov (United States)

    Doherty, Michael P.

    1993-01-01

    Two recently developed FORTRAN computer codes for high power Brayton and Rankine thermodynamic cycle analysis for space power applications are presented. The codes were written in support of an effort to develop a series of subsystem models for multimegawatt Nuclear Electric Propulsion, but their use is not limited just to nuclear heat sources or to electric propulsion. Code development background, a description of the codes, some sample input/output from one of the codes, and state future plans/implications for the use of these codes by NASA's Lewis Research Center are provided.

  4. Research of efficiency of the organic Rankine cycle on a mathematical model

    Directory of Open Access Journals (Sweden)

    Galashov N.

    2017-01-01

    Full Text Available The object of the study are the organic Rankine cycle. The purpose of research is to evaluate the impact on the net efficiency of the initial and final properties of the cycle at work on a saturated and superheated steam. Investigations were carried out on the basis of a mathematical model, in which the thermodynamic properties of materials are determined on the basis of “REFPROP”. On the basis of the available scientific publications on the use of working fluids in an organic Rankine cycle analysis was selected ozone-safe pentane. A mathematical model has been developed on condition that condenser is used as air cooler which allows the substance to condense at a temperature below 0 °С. Numerical study on the mathematical model shown that net efficiency at work on pentane linearly depends on the condensation temperature and parabolically depends on the initial temperature with the saturated steam. During work at the superheated steam efficiency strongly depends on both the initial temperature and of the initial pressure. With rising initial temperature is necessary to gradually increase the initial pressure under certain conditions.

  5. Multi-Objective Optimization of Organic Rankine Cycle Power Plants Using Pure and Mixed Working Fluids

    Directory of Open Access Journals (Sweden)

    Jesper G. Andreasen

    2016-04-01

    Full Text Available For zeotropic mixtures, the temperature varies during phase change, which is opposed to the isothermal phase change of pure fluids. The use of such mixtures as working fluids in organic Rankine cycle power plants enables a minimization of the mean temperature difference of the heat exchangers, which is beneficial for cycle performance. On the other hand, larger heat transfer surface areas are typically required for evaporation and condensation when zeotropic mixtures are used as working fluids. In order to assess the feasibility of using zeotropic mixtures, it is, therefore, important to consider the additional costs of the heat exchangers. In this study, we aim at evaluating the economic feasibility of zeotropic mixtures compared to pure fluids. We carry out a multi-objective optimization of the net power output and the component costs for organic Rankine cycle power plants using low-temperature heat at 90 ∘ C to produce electrical power at around 500 kW. The primary outcomes of the study are Pareto fronts, illustrating the power/cost relations for R32, R134a and R32/R134a (0.65/0.35 mole . The results indicate that R32/R134a is the best of these fluids, with 3.4 % higher net power than R32 at the same total cost of 1200 k$.

  6. Computer modeling of a regenerative solar-assisted Rankine power cycle

    Science.gov (United States)

    Lansing, F. L.

    1977-01-01

    A detailed interpretation of the computer program that describes the performance of one of these cycles; namely, a regenerative Rankine power cycle is presented. Water is used as the working medium throughout the cycle. The solar energy collected at relatively low temperature level presents 75 to 80% of the total heat demand and provides mainly the latent heat of vaporization. Another energy source at high temperature level superheats the steam and supplements the solar energy share. A program summary and a numerical example showing the sequency of computations are included. The outcome from the model comprises line temperatures, component heat rates, specific steam consumption, percentage of solar energy contribution, and the overall thermal efficiency.

  7. Waste Heat Recovery of a PEMFC System by Using Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Tianqi He

    2016-04-01

    Full Text Available In this study, two systems are brought forward to recover the waste heat of a proton exchange membrane fuel cell (PEMFC, which are named the organic Rankine cycle (ORC, and heat pump (HP combined organic Rankine cycle (HPORC. The performances of both systems are simulated on the platform of MATLAB with R123, R245fa, R134a, water, and ethanol being selected as the working fluid, respectively. The results show that, for PEMFC where operating temperature is constantly kept at 60 °C, there exists an optimum working temperature for each fluid in ORC and HPORC. In ORC, the maximal net power can be achieved with R245fa being selected as the working fluid. The corresponding thermal efficiency of the recovery system is 4.03%. In HPORC, the maximal net power can be achieved with water being selected in HP and R123 in ORC. The thermal efficiency of the recovery system increases to 4.73%. Moreover, the possibility of using ORC as the cooling system of PEMFC is also studied. The heat released from PEMFC stack is assumed to be wholly recovered by the ORC or HPORC system. The results indicate that the HPORC system is much more feasible for the cooling system of a PEMFC stack, since the heat recovery ability can be promoted due to the presence of HP.

  8. Selection and optimization of pure and mixed working fluids for low grade heat utilization using organic Rankine cycles

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Larsen, Ulrik; Knudsen, Thomas

    2014-01-01

    We present a generic methodology for organic Rankine cycle optimization, where the working fluid is included as an optimization parameter, in order to maximize the net power output of the cycle. The method is applied on two optimization cases with hot fluid inlet temperatures at 120°C and 90°C. P...

  9. Thermodynamic analysis of an integrated gasification solid oxide fuel cell plant combined with an organic Rankine cycle

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Rokni, Masoud; Larsen, Ulrik

    2013-01-01

    into a fixed bed gasification plant to produce syngas which fuels the combined solid oxide fuel cells e organic Rankine cycle system to produce electricity. More than a hundred fluids are considered as possible alternative for the organic cycle using non-ideal equations of state (or state-of-the-art equations...

  10. Draft report: application of organic Rankine cycle heat recovery systems to diesel powered marine vessels

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-15

    The analysis and results of an investigation of the application of organic Rankine cycle heat recovery systems to diesel-powered marine vessels are described. The program under which this study was conducted was sponsored jointly by the US Energy Research and Development Administration, the US Navy, and the US Maritime Administration. The overall objective of this study was to investigate diesel bottoming energy recovery systems, currently under development by three US concerns, to determine the potential for application to marine diesel propulsion and auxiliary systems. The study primarily focused on identifying the most promising vessel applications (considering vessel type, size, population density, operational duty cycle, etc.) so the relative economic and fuel conservation merits of energy recovery systems could be determined and assessed. Vessels in the current fleet and the projected 1985 fleet rated at 1000 BHP class and above were investigated.

  11. Working fluid selection for organic Rankine cycles - Impact of uncertainty of fluid properties

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Andreasen, Jesper Graa; Liu, Wei

    2016-01-01

    This study presents a generic methodology to select working fluids for ORC (Organic Rankine Cycles)taking into account property uncertainties of the working fluids. A Monte Carlo procedure is described as a tool to propagate the influence of the input uncertainty of the fluid parameters on the ORC...... modeloutput, and provides the 95%-confidence interval of the net power output with respect to the fluid property uncertainties. The methodology has been applied to a molecular design problem for an ORCusing a low-temperature heat source and consisted of the following four parts: 1) formulation...... of processmodels and constraints 2) selection of property models, i.e. Penge Robinson equation of state 3)screening of 1965 possible working fluid candidates including identification of optimal process parametersbased on Monte Carlo sampling 4) propagating uncertainty of fluid parameters to the ORC netpower output...

  12. Parametric theoretical study of a two-stage solar organic Rankine cycle for RO desalination

    Energy Technology Data Exchange (ETDEWEB)

    Kosmadakis, G.; Manolakos, D.; Papadakis, G. [Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens (Greece)

    2010-05-15

    The present work concerns the parametric study of an autonomous, two-stage solar organic Rankine cycle for RO desalination. The main goal of the current simulation is to estimate the efficiency, as well as to calculate the annual mechanical energy available for desalination in the considered cases, in order to evaluate the influence of various parameters on the performance of the system. The parametric study concerns the variation of different parameters, without changing actually the baseline case. The effect of the collectors' slope and the total number of evacuated tube collectors used, have been extensively examined. The total cost is also taken into consideration and is calculated for the different cases examined, along with the specific fresh water cost (EUR/m{sup 3}). (author)

  13. Effectiveness of Operation of Organic Rankine Cycle Installation Applied in the Liquid Natural Gas Regasification Plant

    Science.gov (United States)

    Kaczmarek, R.; Stachel, A. A.

    2017-05-01

    An analysis of the operation of an Organic Rankine Cycle (ORC) installation heated by a low-temperature heat source is presented for the case where a condenser of a working fluid is cooled by a liquid of ultralow temperature. For this purpose, the process of regasification of liquid natural gas (LNG) is considered. In the process, the condensation heat of the working fluid in ORC is taken by the LNG evaporating subsequently (i.e., undergoing regasification). The paper presents the schematic of this installation and its application, as well as the results of calculations on the basis of the analysis in terms of the power and efficiency. In the analysis, organic fluids used in the ORC as working ones have been selected.

  14. Linear Active Disturbance Rejection Control of Waste Heat Recovery Systems with Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Fang Fang

    2012-12-01

    Full Text Available In this paper, a linear active disturbance rejection controller is proposed for a waste heat recovery system using an organic Rankine cycle process, whose model is obtained by applying the system identification technique. The disturbances imposed on the waste heat recovery system are estimated through an extended linear state observer and then compensated by a linear feedback control strategy. The proposed control strategy is applied to a 100 kW waste heat recovery system to handle the power demand variations of grid and process disturbances. The effectiveness of this controller is verified via a simulation study, and the results demonstrate that the proposed strategy can provide satisfactory tracking performance and disturbance rejection.

  15. Thermal Stability of Hexamethyldisiloxane (MM for High-Temperature Organic Rankine Cycle (ORC

    Directory of Open Access Journals (Sweden)

    Markus Preißinger

    2016-03-01

    Full Text Available The design of efficient Organic Rankine Cycle (ORC units for the usage of industrial waste heat at high temperatures requires direct contact evaporators without intermediate thermal oil circuits. Therefore, the thermal stability of high-temperature working fluids gains importance. In this study, the thermal degradation of hexamethyldisiloxane (MM is investigated in an electrically heated tube. Qualitative results concerning remarks on degradation products as well as quantitative results like the annual degradation rate are presented. It is shown that MM is stable up to a temperature of 300 °C with annual degradation rates of less than 3.5%. Furthermore, the break of a silicon–carbon bond can be a main chemical reaction that influences the thermal degradation. Finally, it is discussed how the results may impact the future design of ORC units.

  16. Rankine cycle condenser pressure control using an energy conversion device bypass valve

    Science.gov (United States)

    Ernst, Timothy C; Nelson, Christopher R; Zigan, James A

    2014-04-01

    The disclosure provides a waste heat recovery system and method in which pressure in a Rankine cycle (RC) system of the WHR system is regulated by diverting working fluid from entering an inlet of an energy conversion device of the RC system. In the system, an inlet of a controllable bypass valve is fluidly coupled to a working fluid path upstream of an energy conversion device of the RC system, and an outlet of the bypass valve is fluidly coupled to the working fluid path upstream of the condenser of the RC system such that working fluid passing through the bypass valve bypasses the energy conversion device and increases the pressure in a condenser. A controller determines the temperature and pressure of the working fluid and controls the bypass valve to regulate pressure in the condenser.

  17. Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, G.L.

    2005-10-03

    This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

  18. A Comparative Exergoeconomic Analysis of Waste Heat Recovery from a Gas Turbine-Modular Helium Reactor via Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Naser Shokati

    2014-04-01

    Full Text Available A comparative exergoeconomic analysis is reported for waste heat recovery from a gas turbine-modular helium reactor (GT-MHR using various configurations of organic Rankine cycles (ORCs for generating electricity. The ORC configurations studied are: a simple organic Rankine cycle (SORC, an ORC with an internal heat exchanger (HORC and a regenerative organic Rankine cycle (RORC. Exergoeconomic analyses are performed with the specific exergy costing (SPECO method. First, energy and exergy analyses are applied to the combined cycles. Then, a cost-balance, as well as auxiliary equations are developed for the components to determine the exergoeconomic parameters for the combined cycles and their components. The three combined cycles are compared considering the same operating conditions for the GT-MHR cycle, and a parametric study is done to reveal the effects on the exergoeconomic performance of the combined cycles of various significant parameters, e.g., turbine inlet and evaporator temperatures and compressor pressure ratio. The results show that the GT-MHR/RORC has the lowest unit cost of electricity generated by the ORC turbine. This value is highest for the GT-MHR/HORC. Furthermore, the GT-MHR/RORC has the highest and the GT-MHR/HORC has the lowest exergy destruction cost rate.

  19. Performance analysis of an organic Rankine cycle with internal heat exchanger having zeotropic working fluid

    Directory of Open Access Journals (Sweden)

    Thoranis Deethayat

    2015-09-01

    Full Text Available In this study, performance of a 50 kW organic Rankine cycle (ORC with internal heat exchanger (IHE having R245fa/R152a zeotropic refrigerant with various compositions was investigated. The IHE could reduce heat rate at the ORC evaporator and better cycle efficiency could be obtained. The zeotropic mixture could reduce the irreversibilities during the heat exchanges at the ORC evaporator and the ORC condenser due to its gliding temperature; thus the cycle working temperatures came closer to the temperatures of the heat source and the heat sink. In this paper, effects of evaporating temperature, mass fraction of R152a and effectiveness of internal heat exchanger on the ORC performances for the first law and the second law of thermodynamics were considered. The simulated results showed that reduction of R245fa composition could reduce the irreversibilities at the evaporator and the condenser. The suitable composition of R245fa was around 80% mass fraction and below this the irreversibilities were nearly steady. Higher evaporating temperature and higher internal heat exchanger effectiveness also increased the first law and second law efficiencies. A set of correlations to estimate the first and the second law efficiencies with the mass fraction of R245fa, the internal heat exchanger effectiveness and the evaporating temperature were also developed.

  20. Development and a Validation of a Charge Sensitive Organic Rankine Cycle (ORC Simulation Tool

    Directory of Open Access Journals (Sweden)

    Davide Ziviani

    2016-05-01

    Full Text Available Despite the increasing interest in organic Rankine cycle (ORC systems and the large number of cycle models proposed in the literature, charge-based ORC models are still almost absent. In this paper, a detailed overall ORC simulation model is presented based on two solution strategies: condenser subcooling and total working fluid charge of the system. The latter allows the subcooling level to be predicted rather than specified as an input. The overall cycle model is composed of independent models for pump, expander, line sets, liquid receiver and heat exchangers. Empirical and semi-empirical models are adopted for the pump and expander, respectively. A generalized steady-state moving boundary method is used to model the heat exchangers. The line sets and liquid receiver are used to better estimate the total charge of the system and pressure drops. Finally, the individual components are connected to form a cycle model in an object-oriented fashion. The solution algorithm includes a preconditioner to guess reasonable values for the evaporating and condensing temperatures and a main cycle solver loop which drives to zero a set of residuals to ensure the convergence of the solution. The model has been developed in the Python programming language. A thorough validation is then carried out against experimental data obtained from two test setups having different nominal size, working fluids and individual components: (i a regenerative ORC with a 5 kW scroll expander and an oil flooding loop; (ii a regenerative ORC with a 11 kW single-screw expander. The computer code is made available through open-source dissemination.

  1. Organic Rankine cycle – review and research directions in engine applications

    Directory of Open Access Journals (Sweden)

    Panesar Angad

    2017-01-01

    Full Text Available Waste heat to power conversion using Organic Rankine Cycles (ORC is expected to play an important role in CO2 reductions from diesel engines. Firstly, a review of automotive ORCs is presented focusing on the pure working fluids, thermal architectures and expanders. The discussion includes, but is not limited to: R245fa, ethanol and water as fluids; series, parallel and cascade as architectures; dry saturated, superheated and supercritical as expansion conditions; and scroll, radial turbine and piston as expansion machines. Secondly, research direction in versatile expander and holistic architecture (NOx + CO2 are proposed. Benefits of using the proposed unconventional approaches are quantified using Ricardo Wave and Aspen HYSYS for diesel engine and ORC modelling. Results indicate that, the implementation of versatile piston expander tolerant to two-phase and using cyclopentane can potentially increase the highway drive cycle power by 8%. Furthermore, holistic architecture offering complete utilisation of charge air and exhaust recirculation heat increased the performance noticeably to 5% of engine power at the design point condition.

  2. Energy analysis of a trigeneration plant based on solid oxide fuel cell and organic Rankine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Al-Sulaiman, Fahad A. [Mechanical and Aerospace Engineering Department, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario (Canada); Dincer, Ibrahim [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada); Hamdullahpur, Feridun [Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario (Canada)

    2010-05-15

    In this study, energy analysis of a trigeneration plant based on solid oxide fuel cell (SOFC) and organic Rankine cycle (ORC) is conducted. The physical and thermodynamic elements of the plant include an SOFC, an ORC, a heat exchanger for the heating process and a single-effect absorption chiller for cooling. The results obtained from this study show that there is at least a 22% gain in efficiency using the trigeneration plant compared with the power cycle (SOFC and ORC). The study also shows that the maximum efficiency of the trigeneration plant is 74%, heating cogeneration is 71%, cooling cogeneration is 57% and net electricity is 46%. Furthermore, it is found that the highest net power output that can be provided by the trigeneration plant considered in this study is 540 kW and, the highest SOFC-AC power is 520 kW. The study reveals that the inlet pressure of the turbine has an insignificant effect on the efficiency. The study also examines the effect of both the SOFC current density and the SOFC inlet flow temperature on the cell voltage and voltage loss. (author)

  3. Organic Rankine-cycle power systems working fluids study: Topical report No. 2, Toluene

    Energy Technology Data Exchange (ETDEWEB)

    Cole, R.L.; Demirgian, J.C.; Allen, J.W.

    1987-02-01

    The US Department of Energy initiated an investigation at Argonne National Laboratory in 1982 to experimentally determine the thermal stability limits and degradation rates of toluene as a function of maximum cycle temperature. Following the design and construction of a dynamic test loop capable of closely simulating the thermodynamic conditions of typical organic Rankine-cycle (ORC) power systems, four test runs, totaling about 3900 h of test time and covering a temperature range of 600-677(degree)F, were completed. Both liquid and noncondensable-vapor (gaseous) samples were drawn periodically and analyzed using capillary-column gas chromatography, gas chromatography/mass spectrometry, and mass spectrometry. A computer program that can predict degradation in an ORC engine was developed. Experimental results indicate that, if oxygen can be excluded from the system, toluene is a stable fluid up to the maximum test temperature; the charge of toluene could be used for several years before replacement became necessary. (Additional data provided by Sundstrand Corp. from tests sponsored by the National Aeronautics and Space Administration indicate that toluene may be used at temperatures up to 750(degree)F.) Degradation products are benign; the main liquid degradation products are bibenzyls, and the main gaseous degradation products are hydrogen and methane. A cold trap to remove gaseous degradation products from the condenser is necessary for extended operation. 21 figs., 22 tabs.

  4. The simulation of organic rankine cycle power plant with n-pentane working fluid

    Science.gov (United States)

    Nurhilal, Otong; Mulyana, Cukup; Suhendi, Nendi; Sapdiana, Didi

    2016-02-01

    In the steam power plant in Indonesia the dry steam from separator directly used to drive the turbin. Meanwhile, brine from the separator with low grade temperature reinjected to the earth. The brine with low grade temperature can be converted indirectly to electrical power by organic Rankine cycle (ORC) methods. In ORC power plant the steam are released from vaporization of organic working fluid by brine. The steam released are used to drive an turbine which in connected to generator to convert the mechanical energy into electric energy. The objective of this research is the simulation ORC power plant with n-pentane as organic working fluid. The result of the simulation for brine temperature around 165°C and the pressure 8.001 bar optained the net electric power around 1173 kW with the cycle thermal efficiency 14.61% and the flow rate of n-pentane around 15.51 kg/s. This result enable to applied in any geothermal source in Indonesia.

  5. Economic assessment of greenhouse gas reduction through low-grade waste heat recovery using organic Rankine cycle (ORC)

    Energy Technology Data Exchange (ETDEWEB)

    Imran, Muhammad; Park, Byung Sik; Kim, Hyouck Ju; Usman, Muhammad [University of Science and Technology, Daejeon (Korea, Republic of); Lee, Dong Hyun [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2015-02-15

    Low-grade waste heat recovery technologies reduce the environmental impact of fossil fuels and improve overall efficiency. This paper presents the economic assessment of greenhouse gas (GHG) reduction through waste heat recovery using organic Rankine cycle (ORC). The ORC engine is one of the mature low temperature heat engines. The low boiling temperature of organic working fluid enables ORC to recover low-temperature waste heat. The recovered waste heat is utilized to produce electricity and hot water. The GHG emissions for equivalent power and hot water from three fossil fuels-coal, natural gas, and diesel oil-are estimated using the fuel analysis approach and corresponding emission factors. The relative decrease in GHG emission is calculated using fossil fuels as the base case. The total cost of the ORC system is used to analyze the GHG reduction cost for each of the considered fossil fuels. A sensitivity analysis is also conducted to investigate the effect of the key parameter of the ORC system on the cost of GHG reduction. Throughout the 20-year life cycle of the ORC plant, the GHG reduction cost for R245fa is 0.02 $/kg to 0.04 $/kg and that for pentane is 0.04 $/kg to 0.05 $/kg. The working fluid, evaporation pressure, and pinch point temperature difference considerably affect the GHG emission.

  6. Optimization of Cycle and Expander Design of an Organic Rankine Cycle Unit using Multi-Component Working Fluids

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Pierobon, Leonardo

    2016-01-01

    for an organic Rankine cycle unit utilizing waste heat from low temperature heat sources. The study addresses a case where the minimum temperature of the heat source is constrained and a case where no constraint is imposed. The former case is the wasteheat recovery from jacket cooling water of a marine diesel...... engine onboard a large ship, and the latter is representative of a low-temperature geothermal, solar or waste heat recovery application. Multi-component working fluids are investigated, as they allow improving the match between the temperature pro-files in the heat exchangers and, consequently, reducing...... the irreversibility in the ORC system. This work considers mixtures of R245fa/pentane and propane/isobutane. The use of multi-component working fluids typically results in increased heat transfer areas and different expander designs compared to purefluids. In order to properly account for turbine performance...

  7. Exergetic Analysis of an Integrated Tri-Generation Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Ratha Z. Mathkor

    2015-08-01

    Full Text Available This paper reports on a study of the modelling, validation and analysis of an integrated 1 MW (electrical output tri-generation system energized by solar energy. The impact of local climatic conditions in the Mediterranean region on the system performance was considered. The output of the system that comprised a parabolic trough collector (PTC, an organic Rankine cycle (ORC, single-effect desalination (SED, and single effect LiBr-H2O absorption chiller (ACH was electrical power, distilled water, and refrigerant load. The electrical power was produced by the ORC which used cyclopentane as working fluid and Therminol VP-1 was specified as the heat transfer oil (HTO in the collectors with thermal storage. The absorption chiller and the desalination unit were utilize the waste heat exiting from the steam turbine in the ORC to provide the necessary cooling energy and drinking water respectively. The modelling, which includes an exergetic analysis, focuses on the performance of the solar tri-generation system. The simulation results of the tri-generation system and its subsystems were produced using IPSEpro software and were validated against experimental data which showed good agreement. The tri-generation system was able to produce about 194 Ton of refrigeration, and 234 t/day distilled water.

  8. Simulation of a passive house coupled with a heat pump/organic Rankine cycle reversible unit

    DEFF Research Database (Denmark)

    Dumont, Olivier; Carmo, Carolina; Randaxhe, François

    2014-01-01

    This paper presents a dynamic model of a passive house located in Denmark with a large solar absorber, a horizontal ground heat exchanger coupled with a HP/ORC unit. The HP/ORC reversible unit is a module able to work as an Organic Rankine Cycle (ORC) or as a heat pump (HP). There are 3 possible...... modes that need to be chosen optimally depending on the weather conditions, the heat demand and the temperature level of the storage. The ORC mode is activated, as long as the heat demand of the house is covered by the storage to produce electricity based upon the heat generated by the solar roof...... of the year in the Modelica language. A peak of 3.28 kW of power is reached in ORC mode with a heat input of 59.5 kW from the solar roof (23.9 kWh are produced during a typical summer day). In a representative winter day, 17.28 kWh are consumed by the heat pump with a daily average COP of 4.1. Conclusions...

  9. Thermo-Economic Evaluation of Organic Rankine Cycles for Geothermal Power Generation Using Zeotropic Mixtures

    Directory of Open Access Journals (Sweden)

    Florian Heberle

    2015-03-01

    Full Text Available We present a thermo-economic evaluation of binary power plants based on the Organic Rankine Cycle (ORC for geothermal power generation. The focus of this study is to analyse if an efficiency increase by using zeotropic mixtures as working fluid overcompensates additional requirements regarding the major power plant components. The optimization approach is compared to systems with pure media. Based on process simulations, heat exchange equipment is designed and cost estimations are performed. For heat source temperatures between 100 and 180 °C selected zeotropic mixtures lead to an increase in second law efficiency of up to 20.6% compared to pure fluids. Especially for temperatures about 160 °C, mixtures like propane/isobutane, isobutane/isopentane, or R227ea/R245fa show lower electricity generation costs compared to the most efficient pure fluid. In case of a geothermal fluid temperature of 120 °C, R227ea and propane/isobutane are cost-efficient working fluids. The uncertainties regarding fluid properties of zeotropic mixtures, mainly affect the heat exchange surface. However, the influence on the determined economic parameter is marginal. In general, zeotropic mixtures are a promising approach to improve the economics of geothermal ORC systems. Additionally, the use of mixtures increases the spectrum of potential working fluids, which is important in context of present and future legal requirements considering fluorinated refrigerants.

  10. Evaluation of a solar-powered organic Rankine cycle using dry organic working fluids

    Directory of Open Access Journals (Sweden)

    Emily Spayde

    2015-12-01

    Full Text Available This paper presents a model to evaluate the performance of a solar-powered organic Rankine cycle (ORC. The system was evaluated in Jackson, MS, using five dry organic working fluids, R218, R227ea, R236ea, R236fa, and RC318. The purpose of this study is to investigate how hourly temperature change affects the electricity production and exergy destruction rates of the solar ORC, and to determine the effect of the working fluid on the proposed system. The system was also evaluated in Tucson, AZ, to investigate the effect of average hourly outdoor temperatures on its performance. The potential of the system to reduce primary energy consumption and carbon dioxide emissions is also investigated. A parametric analysis to determine how temperature and pressure of the organic working fluid, the solar collector area, and the turbine efficiency affect the electricity production is performed. Results show that the ORC produces the most electricity during the middle of the day, when the temperatures are the highest and when the solar collectors have the highest efficiency. Also, R-236ea is the working fluid that shows the best performance of the evaluated fluids. An economic analysis was performed to determine the capital cost available for the proposed system.

  11. Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

    National Research Council Canada - National Science Library

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

      To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working...

  12. Thermodynamic analysis of a Rankine cycle powered vapor compression ice maker using solar energy

    National Research Council Canada - National Science Library

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working...

  13. Exergy and economic analysis of organic rankine cycle hybrid system utilizing biogas and solar energy in rural area of China

    DEFF Research Database (Denmark)

    Zhao, Chunhua; Zheng, Siyu; Zhang, Ji

    2017-01-01

    Due to the existing huge biogas resource in the rural area of China, biogas is widely used for production and living. Cogeneration system provides an opportunity to realize the balanced utilization of the renewable energy such as biogas and solar energy. This paper presented a numerical...... investigation of a hybrid energy-driven organic Rankine cycle (ORC) cogeneration system, involving a solar organic Rankine cycle and a biogas boiler. The biogas boiler with a module of solar Parabolic-Trough Collectors (PTC) is employed to provide heat source to the ORC via two distinct intermediate pressurized...... circuits. The cogeneration supplied the power to the air-condition in summer condition and hot water, which is heated in the condenser, in winter condition. The system performance under the subcritical pressures has been assessed according to the energy-exergy and economic analysis with the organic working...

  14. Part-Load Performance of a Wet Indirectly Fired Gas Turbine Integrated with an Organic Rankine Cycle Turbogenerator

    OpenAIRE

    Leonardo Pierobon; Tuong-Van Nguyen; Andrea Mazzucco; Ulrik Larsen; Fredrik Haglind

    2014-01-01

    Over the last years, much attention has been paid to the development of efficient and low-cost power systems for biomass-to-electricity conversion. This paper aims at investigating the design- and part-load performance of an innovative plant based on a wet indirectly fired gas turbine (WIFGT) fueled by woodchips and an organic Rankine cycle (ORC) turbogenerator. An exergy analysis is performed to identify the sources of inefficiencies, the optimal design variables, and the most suitable worki...

  15. Test results of an organic Rankine-cycle power module for a small community solar thermal power experiment

    Science.gov (United States)

    Clark, T. B.

    1985-01-01

    The organic Rankine-cycle (ORC) power conversion assembly was tested. Qualification testing of the electrical transport subsystem was also completed. Test objectives were to verify compatibility of all system elements with emphasis on control of the power conversion assembly, to evaluate the performance and efficiency of the components, and to validate operating procedures. After 34 hours of power generation under a wide range of conditions, the net module efficiency exceeded 18% after accounting for all parasitic losses.

  16. Performance of Siloxane Mixtures in a High-Temperature Organic Rankine Cycle Considering the Heat Transfer Characteristics during Evaporation

    OpenAIRE

    Theresa Weith; Florian Heberle; Markus Preißinger; Dieter Brüggemann

    2014-01-01

    The application of the Organic Rankine Cycle to high temperature heat sources is investigated on the case study of waste heat recovery from a selected biogas plant. Two different modes of operation are distinguished: pure electric power and combined heat and power generation. The siloxanes hexamethyldisiloxane (MM) and octamethyltrisiloxane (MDM) are chosen as working fluids. Moreover, the effect of using mixtures of these components is analysed. Regarding pure electricity generation, process...

  17. Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system

    Energy Technology Data Exchange (ETDEWEB)

    Tchanche, B.F.; Lambrinos, Gr.; Frangoudakis, A.; Papadakis, G. [Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens (Greece)

    2010-04-15

    Exergy analysis of micro-organic Rankine heat engines is performed to identify the most suitable engine for driving a small scale reverse osmosis desalination system. Three modified engines derived from simple Rankine engine using regeneration (incorporation of regenerator or feedliquid heaters) are analyzed through a novel approach, called exergy-topological method based on the combination of exergy flow graphs, exergy loss graphs, and thermoeconomic graphs. For the investigations, three working fluids are considered: R134a, R245fa and R600. The incorporated devices produce different results with different fluids. Exergy destruction throughout the systems operating with R134a was quantified and illustrated using exergy diagrams. The sites with greater exergy destruction include turbine, evaporator and feedliquid heaters. The most critical components include evaporator, turbine and mixing units. A regenerative heat exchanger has positive effects only when the engine operates with dry fluids; feedliquid heaters improve the degree of thermodynamic perfection of the system but lead to loss in exergetic efficiency. Although, different modifications produce better energy conversion and less exergy destroyed, the improvements are not significant enough and subsequent modifications of the simple Rankine engine cannot be considered as economically profitable for heat source temperature below 100 C. As illustration, a regenerator increases the system's energy efficiency by 7%, the degree of thermodynamic perfection by 3.5% while the exergetic efficiency is unchanged in comparison with the simple Rankine cycle, with R600 as working fluid. The impacts of heat source temperature and pinch point temperature difference on engine's performance are also examined. Finally, results demonstrate that energy analysis combined with the mathematical graph theory is a powerful tool in performance assessments of Rankine based power systems and permits meaningful comparison of

  18. Experimental and thermodynamic analysis of a bottoming Organic Rankine Cycle (ORC) of gasoline engine using swash-plate expander

    OpenAIRE

    Galindo, José,; Ruiz Rosales, Santiago; Dolz Ruiz, Vicente; ROYO PASCUAL, LUCÍA; Haller, R.; Nicolas, B.; Glavatskaya, Y.

    2015-01-01

    This paper deals with the experimental testing of an Organic Rankine Cycle (ORC) integrate in a 2 liter turbocharged gasoline engine using ethanol as working fluid. The main components of the cycle are a boiler, a condenser, a pump and a swash-plate expander. Five engine operating points have been tested, they correspond to a nominal heat input into the boiler of 5, 12, 20, 25 and 30 kW. With the available bill of material based on prototypes, power balances and cycles efficiencies were estim...

  19. Thermal energy storage for low grade heat in the organic Rankine cycle

    Science.gov (United States)

    Soda, Michael John

    Limits of efficiencies cause immense amounts of thermal energy in the form of waste heat to be vented to the atmosphere. Up to 60% of unrecovered waste heat is classified as low or ultra-low quality, making recovery difficult or inefficient. The organic Rankine cycle can be used to generate mechanical power and electricity from these low temperatures where other thermal cycles are impractical. A variety of organic working fluids are available to optimize the ORC for any target temperature range. San Diego State University has one such experimental ORC using R245fa, and has been experimenting with multiple expanders. One limitation of recovering waste heat is the sporadic or cyclical nature common to its production. This inconsistency makes sizing heat recovery ORC systems difficult for a variety of reasons including off-design-point efficiency loss, increased attrition from varying loads, unreliable outputs, and overall system costs. Thermal energy storage systems can address all of these issues by smoothing the thermal input to a constant and reliable level and providing back-up capacity for times when the thermal input is deactivated. Multiple types of thermal energy storage have been explored including sensible, latent, and thermochemical. Latent heat storage involves storing thermal energy in the reversible phase change of a phase change material, or PCM, and can have several advantages over other modalities including energy storage density, cost, simplicity, reliability, relatively constant temperature output, and temperature customizability. The largest obstacles to using latent heat storage include heat transfer rates, thermal cycling stability, and potentially corrosive PCMs. Targeting 86°C, the operating temperature of SDSU's experimental ORC, multiple potential materials were explored and tested as potential PCMs including Magnesium Chloride Hexahydrate (MgCl2˙6H2O), Magnesium Nitrate Hexahydrate (Mg(NO3)2˙6H 2O), montan wax, and carnauba wax. The

  20. Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system

    Science.gov (United States)

    Mehrpooya, Mehdi; Dehghani, Hossein; Ali Moosavian, S. M.

    2016-02-01

    A combined system containing solid oxide fuel cell-gas turbine power plant, Rankine steam cycle and ammonia-water absorption refrigeration system is introduced and analyzed. In this process, power, heat and cooling are produced. Energy and exergy analyses along with the economic factors are used to distinguish optimum operating point of the system. The developed electrochemical model of the fuel cell is validated with experimental results. Thermodynamic package and main parameters of the absorption refrigeration system are validated. The power output of the system is 500 kW. An optimization problem is defined in order to finding the optimal operating point. Decision variables are current density, temperature of the exhaust gases from the boiler, steam turbine pressure (high and medium), generator temperature and consumed cooling water. Results indicate that electrical efficiency of the combined system is 62.4% (LHV). Produced refrigeration (at -10 °C) and heat recovery are 101 kW and 22.1 kW respectively. Investment cost for the combined system (without absorption cycle) is about 2917 kW-1.

  1. Performance of a reversible heat pump/organic Rankine cycle unit coupled with a passive house to get a positive energy building

    DEFF Research Database (Denmark)

    Dumont, Olivier; Carmo, Carolina; Fontaine, Valentin

    2016-01-01

    and generate electricity, coupled to a solar thermal collector roof. This reversible HP/organic Rankine cycle unit presents three operating modes: direct heating, HP and organic Rankine cycle. This work focuses on describing the dynamic model of the multi-component system followed by a techno-economic analysis......Wh/year and total electrical consumption of 2318 kWh/year) with a 138.8 m2 solar roof in Denmark....

  2. Thermodynamic Optimization of a Geothermal- Based Organic Rankine Cycle System Using an Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Osman Özkaraca

    2017-10-01

    Full Text Available Geothermal energy is a renewable form of energy, however due to misuse, processing and management issues, it is necessary to use the resource more efficiently. To increase energy efficiency, energy systems engineers carry out careful energy control studies and offer alternative solutions. With this aim, this study was conducted to improve the performance of a real operating air-cooled organic Rankine cycle binary geothermal power plant (GPP and its components in the aspects of thermodynamic modeling, exergy analysis and optimization processes. In-depth information is obtained about the exergy (maximum work a system can make, exergy losses and destruction at the power plant and its components. Thus the performance of the power plant may be predicted with reasonable accuracy and better understanding is gained for the physical process to be used in improving the performance of the power plant. The results of the exergy analysis show that total exergy production rate and exergy efficiency of the GPP are 21 MW and 14.52%, respectively, after removing parasitic loads. The highest amount of exergy destruction occurs, respectively, in condenser 2, vaporizer HH2, condenser 1, pumps 1 and 2 as components requiring priority performance improvement. To maximize the system exergy efficiency, the artificial bee colony (ABC is applied to the model that simulates the actual GPP. Under all the optimization conditions, the maximum exergy efficiency for the GPP and its components is obtained. Two of these conditions such as Case 4 related to the turbine and Case 12 related to the condenser have the best performance. As a result, the ABC optimization method provides better quality information than exergy analysis. Based on the guidance of this study, the performance of power plants based on geothermal energy and other energy resources may be improved.

  3. Design and development of an automotive propulsion system utilizing a Rankine cycle engine (water based fluid). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Demler, R.L.

    1977-09-01

    Under EPA and ERDA sponsorship, SES successfully designed, fabricated and tested the first federally sponsored steam powered automobile. The automobile - referred to as the simulator - is a 1975 Dodge Monaco standard size passenger car with the SES preprototype Rankine cycle automotive propulsion system mounted in the engine compartment. In the latter half of 1975, the simulator successfully underwent test operations at the facilities of SES in Watertown, Massachusetts and demonstrated emission levels below those of the stringent federally established automotive requirements originally set for implementation by 1976. The demonstration was accomplished during testing over the Federal Driving Cycle on a Clayton chassis dynamometer. The design and performance of the vehicle are described.

  4. Part-Load Performance of aWet Indirectly Fired Gas Turbine Integrated with an Organic Rankine Cycle Turbogenerator

    Directory of Open Access Journals (Sweden)

    Leonardo Pierobon

    2014-12-01

    Full Text Available Over the last years, much attention has been paid to the development of efficient and low-cost power systems for biomass-to-electricity conversion. This paper aims at investigating the design- and part-load performance of an innovative plant based on a wet indirectly fired gas turbine (WIFGT fueled by woodchips and an organic Rankine cycle (ORC turbogenerator. An exergy analysis is performed to identify the sources of inefficiencies, the optimal design variables, and the most suitable working fluid for the organic Rankine process. This step enables to parametrize the part-load model of the plant and to estimate its performance at different power outputs. The novel plant has a nominal power of 250 kW and a thermal efficiency of 43%. The major irreversibilities take place in the burner, recuperator, compressor and in the condenser. Toluene is the optimal working fluid for the organic Rankine engine. The part-load investigation indicates that the plant can operate at high efficiencies over a wide range of power outputs (50%–100%, with a peak thermal efficiency of 45% at around 80% load. While the ORC turbogenerator is responsible for the efficiency drop at low capacities, the off-design performance is governed by the efficiency characteristics of the compressor and turbine serving the gas turbine unit.

  5. A Burst Mode, Ultrahigh Temperature UF4 Vapor Core Reactor Rankine Cycle Space Power System Concept

    Science.gov (United States)

    Dugan, E. T.; Kahook, S. D.; Diaz, N. J.

    1996-01-01

    Static and dynamic neutronic analyses have been performed on an innovative burst mode (100's of MW output for a few thousand seconds) Ulvahigh Temperature Vapor Core Reactor (UTVR) space nuclear power system. The NVTR employs multiple, neutronically-coupled fissioning cores and operates on a direct, closed Rankine cycle using a disk Magnetohydrodynamic (MHD) generater for energy conversion. The UTVR includes two types of fissioning core regions: (1) the central Ultrahigh Temperature Vapor Core (UTVC) which contains a vapor mixture of highly enriched UF4 fuel and a metal fluoride working fluid and (2) the UF4 boiler column cores located in the BeO moderator/reflector region. The gaseous nature of the fuel the fact that the fuel is circulating, the multiple coupled fissioning cores, and the use of a two phase fissioning fuel lead to unique static and dynamic neutronic characteristics. Static neutronic analysis was conducted using two-dimensional S sub n, transport theory calculations and three-dimensional Monte Carlo transport theory calculations. Circulating-fuel, coupled-core point reactor kinetics equations were used for analyzing the dynamic behavior of the UTVR. In addition to including reactivity feedback phenomena associated with the individual fissioning cores, the effects of core-to-core neutronic and mass flow coupling between the UTVC and the surrounding boiler cores were also included in the dynamic model The dynamic analysis of the UTVR reveals the existence of some very effectlve inherent reactivity feedback effects that are capable of quickly stabilizing this system, within a few seconds, even when large positive reactivity insertions are imposed. If the UTVC vapor fuel density feedback is suppressed, the UTVR is still inherently stable because of the boiler core liquid-fuel volume feedback; in contrast, suppression of the vapor fuel density feedback in 'conventional" gas core cavity reactors causes them to become inherently unstable. Due to the

  6. Coupling of Modular High-Temperature Gas-Cooled Reactor with Supercritical Rankine Cycle

    OpenAIRE

    Shutang Zhu; Ying Tang; Kun Xiao; Zuoyi Zhang

    2008-01-01

    This paper presents investigations on the possible combination of modular high-temperature gas-cooled reactor (MHTGR) technology with the supercritical (SC) steam turbine technology and the prospective deployments of the MHTGR SC power plant. Energy conversion efficiency of steam turbine cycle can be improved by increasing the main steam pressure and temperature. Investigations on SC water reactor (SCWR) reveal that the development of SCWR power plants still needs further research and develop...

  7. Final Report: Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna Post [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zia, Jalal [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-09-01

    This research and development (R&D) project exemplifies a shared public private commitment to advance the development of energy efficient industrial technologies that will reduce the U.S. dependence upon foreign oil, provide energy savings and reduce greenhouse gas emissions. The purpose of this project was to develop and demonstrate a Direct Evaporator for the Organic Rankine Cycle (ORC) for the conversion of waste heat from gas turbine exhaust to electricity. In conventional ORCs, the heat from the exhaust stream is transferred indirectly to a hydrocarbon based working fluid by means of an intermediate thermal oil loop. The Direct Evaporator accomplishes preheating, evaporation and superheating of the working fluid by a heat exchanger placed within the exhaust gas stream. Direct Evaporation is simpler and up to 15% less expensive than conventional ORCs, since the secondary oil loop and associated equipment can be eliminated. However, in the past, Direct Evaporation has been avoided due to technical challenges imposed by decomposition and flammability of the working fluid. The purpose of this project was to retire key risks and overcome the technical barriers to implementing an ORC with Direct Evaporation. R&D was conducted through a partnership between the Idaho National Laboratory (INL) and General Electric (GE) Global Research Center (GRC). The project consisted of four research tasks: (1) Detailed Design & Modeling of the ORC Direct Evaporator, (2) Design and Construction of Partial Prototype Direct Evaporator Test Facility, (3) Working Fluid Decomposition Chemical Analyses, and (4) Prototype Evaluation. Issues pertinent to the selection of an ORC working fluid, along with thermodynamic and design considerations of the direct evaporator, were identified. The FMEA (Failure modes and effects analysis) and HAZOP (Hazards and operability analysis) safety studies performed to mitigate risks are described, followed by a discussion of the flammability analysis of the

  8. 10-75-kWe-reactor-powered organic Rankine-cycle electric power systems (ORCEPS) study. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1977-03-30

    This 10-75 kW(e) Reactor-ORCEPS study was concerned with the evaluation of several organic Rankine cycle energy conversion systems which utilized a /sup 235/U-ZrH reactor as a heat source. A liquid metal (NaK) loop employing a thermoelectric converter-powered EM pump was used to transfer the reactor energy to the organic working fluid. At moderate peak cycle temperatures (750/sup 0/F), power conversion unit cycle efficiencies of up to 25% and overall efficiencies of 20% can be obtained. The required operating life of seven years should be readily achievable. The CP-25 (toluene) working fluid cycle was found to provide the highest performance levels at the lowest system weights. Specific weights varies from 100 to 50 lb/kW(e) over the power level range 10 to 75 kW(e). (DLC)

  9. Altheim geothermal plant. Power generation by means of an ORC turbogenerator; Geothermieanlagen Altheim. Stromerzeugung mittels Organic-Rankine-Cycle Turbogenerator

    Energy Technology Data Exchange (ETDEWEB)

    Pernecker, G. [Marktgemeindeamt Altheim (Austria)

    1997-12-01

    The report describes the project of the Austrian market town of Altheim to generate electricity by means of an ORC turbogenerator using low-temperature thermal water. The project is to improve the technical and economic situation of the existing industrial-scale geothermal project. (orig.) [Deutsch] Der Bericht beschreibt das Vorhaben der Marktgemeinde Altheim in Oberoesterreich, Strom mittels eines Organic-Rankine-Cycle-Turbogenerators unter Verwendung niedrig temperierten Thermalwassers zu produzieren. Ziel bzw. der Zweck des Projektes ist es, die technische und wirtschaftliche Situation der bestehenden Grossthermieanlage zu verbessern. (orig.)

  10. Organic Rankine-Cycle Power Systems Working Fluids Study: Topical report No. 3, 2-methylpyridine/water

    Energy Technology Data Exchange (ETDEWEB)

    Cole, R.L.; Demirgian, J.C.; Allen, J.W.

    1987-09-01

    A mixture of 35 mole percent (mol %) 2-methylpyridine and 65 mol % water was tested at 575, 625, and 675/degree/F in a dynamic loop. Samples of the degraded fluid were chemically analyzed to determine the identities of major degradation products and the quantity of degradation. Computed degradation rates were found to be higher than those for Fluorinol 85 or toluene. For this reason (and other reasons, related to fluid handling), other fluids are recommended as the first choice for service in organic Rankine-cycle systems in preference to 2-methylpyridine/water. 7 refs., 39 figs., 39 tabs.

  11. Development of an Organic Rankine-Cycle power module for a small community solar thermal power experiment

    Science.gov (United States)

    Kiceniuk, T.

    1985-01-01

    An organic Rankine-cycle (ORC) power module was developed for use in a multimodule solar power plant to be built and operated in a small community. Many successful components and subsystems, including the reciever, power conversion subsystem, energy transport subsystem, and control subsystem, were tested. Tests were performed on a complete power module using a test bed concentrator in place of the proposed concentrator. All major single-module program functional objectives were met and the multimodule operation presented no apparent problems. The hermetically sealed, self-contained, ORC power conversion unit subsequently successfully completed a 300-hour endurance run with no evidence of wear or operating problems.

  12. Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

    OpenAIRE

    Bing Hu; Xianbiao Bu; Weibin Ma

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with incr...

  13. Coupling of Modular High-Temperature Gas-Cooled Reactor with Supercritical Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Shutang Zhu

    2008-01-01

    Full Text Available This paper presents investigations on the possible combination of modular high-temperature gas-cooled reactor (MHTGR technology with the supercritical (SC steam turbine technology and the prospective deployments of the MHTGR SC power plant. Energy conversion efficiency of steam turbine cycle can be improved by increasing the main steam pressure and temperature. Investigations on SC water reactor (SCWR reveal that the development of SCWR power plants still needs further research and development. The MHTGR SC plant coupling the existing technologies of current MHTGR module design with operation experiences of SC FPP will achieve high cycle efficiency in addition to its inherent safety. The standard once-reheat SC steam turbine cycle and the once-reheat steam cycle with life-steam have been studied and corresponding parameters were computed. Efficiencies of thermodynamic processes of MHTGR SC plants were analyzed, while comparisons were made between an MHTGR SC plant and a designed advanced passive PWR - AP1000. It was shown that the net plant efficiency of an MHTGR SC plant can reach 45% or above, 30% higher than that of AP1000 (35% net efficiency. Furthermore, an MHTGR SC plant has higher environmental competitiveness without emission of greenhouse gases and other pollutants.

  14. Energy performance and economic evaluation of heat pump/organic rankine cycle system with sensible thermal storage

    DEFF Research Database (Denmark)

    Carmo, Carolina; Dumont, Olivier; Nielsen, Mads Pagh

    2016-01-01

    that consists of a ground-source heat pump with possibility of reversing operation as an ORC power cycle combined with solar heating in a single-family building is introduced. The ORC mode enables the use of solar energy in periods of no heat energy demand and reverses the heat pump cycle to supply electrical......-life conditions knowledge, the paper considers two different sensible energy storage (TES) configurations for the reversible heat pump/organic Rankine cycle (HP/ORC) system: a buffer tank for both space heating and domestic hot water and a hot water storage tank used exclusively for domestic hot water......The interaction between electrical and thermal energy demands represent a potential area for balancing supply and demand that could contribute to the integration of intermittent renewables in energy systems. To enable the interaction between thermal and electric energy, an innovative concept...

  15. Energy Performance and Economic Evaluation of Heat Pump/Organic Rankine Cycle System with Sensible Thermal Storage

    DEFF Research Database (Denmark)

    Carmo, C.; Dumont, O.; Nielsen, M. P.

    2016-01-01

    that consists of a ground-source heat pump with possibility of reversing operation as an ORC power cycle combined with solar heating in a single-family building is introduced. The ORC mode enables the use of solar energy in periods of no heat energy demand and reverses the heat pump cycle to supply electrical......-life conditions knowledge, the paper considers two different sensible energy storage (TES) configurations for the reversible heat pump/organic Rankine cycle (HP/ORC) system: a buffer tank for both space heating and domestic hot water and a hot water storage tank used exclusively for domestic hot water......The interaction between electrical and thermal energy demands represent a potential area for balancing supply and demand that could contribute to the integration of intermittent renewables in energy systems. To enable the interaction between thermal and electric energy, an innovative concept...

  16. An experimental analysis of flow boiling and pressure drop in a brazed plate heat exchanger for organic Rankine cycle power systems

    DEFF Research Database (Denmark)

    Desideri, Adriano; Zhang, Ji; Kærn, Martin Ryhl

    2017-01-01

    Organic Rankine cycle power systems for low quality waste heat recovery applications can play a major role in achieving targets of increasing industrial processes efficiency and thus reducing the emissions of greenhouse gases. Low capacity organic Rankine cycle systems are equipped with brazed...... and pressure drop during vaporization at typical temperatures for low quality waste heat recovery organic Rankine cycle systems are presented for the working fluids HFC-245fa and HFO-1233zd. The experiments were carried out at saturation temperatures of 100°C, 115°C and 130°C and inlet and outlet qualities...... plate heat exchangers which allows for efficient heat transfer with a compact design. Accurate heat transfer correlations characterizing these devices are required from the design phase to the development of model-based control strategies. In this paper, the experimental heat transfer coefficient...

  17. Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Pierobon, Leonardo; Haglind, Fredrik

    2013-01-01

    , boundary conditions, hazard levels and environmental concerns. A generally applicable methodology, based on the principles of natural selection, is presented and used to determine the optimum working fluid, boiler pressure and Rankine cycle process layout for scenarios related to marine engine heat......Power cycles using alternative working fluids are currently receiving significant attention. Selection of working fluid among many candidates is a key topic and guidelines have been presented. A general problem is that the selection is based on numerous criteria, such as thermodynamic performance...... recovery. Included in the solution domain are 109 fluids in sub and supercritical processes, and the process is adapted to the properties of the individual fluid. The efficiency losses caused by imposing process constraints are investigated to help propose a suitable process layout. Hydrocarbon dry type...

  18. Improving the efficiency of heat supply systems on the basis of plants operating on organic Rankine cycle

    Science.gov (United States)

    Solomin, I. N.; Daminov, A. Z.; Sadykov, R. A.

    2017-11-01

    Results of experimental and analytical studies of the plant main element – plant turbomachine (turbo-expander) operating on organic Rankine cycle were obtained for facilities of the heat supply systems of small-scale power generation. At simultaneous mathematical modeling and experimental studies it was found that the best working medium to be used in the turbomachines of these plants is Freon R245fa which has the most suitable calorimetric properties to be used in the cycle. The mathematical model of gas flow in the turbomachine was developed. The main engineering dependencies to calculate the optimal design parameters of the turbomachine were obtained. The engineering problems of providing the minimum axial size of the turbomachine impeller were solved and the main design elements were unified.

  19. Cogenerative Performance of a Wind − Gas Turbine − Organic Rankine Cycle Integrated System for Offshore Applications

    DEFF Research Database (Denmark)

    Bianchi, Michele; Branchini, Lisa; De Pascale, Andrea

    2016-01-01

    Gas Turbines (GT) are widely used for power generationin offshore oil and gas facilities, due to their high reliability,compactness and dynamic response capabilities. Small heavyduty and aeroderivative units in multiple arrangements aretypically used to offer larger load flexibility......, but limitedefficiency of such machines is the main drawback. A solutionto enhance the system performance, also in Combined Heat andPower (CHP) arrangement, is the implementation of OrganicRankine Cycle (ORC) systems at the bottom of the gas turbines.Moreover, the resulting GT-ORC combined cycle could befurther...... a 10MW offshorewind farm and three gas turbines rated for 16:5MW, eachone coupled with an 4:5MW ORC module. The ORC mainparameters are observed under different wind power fluctuations.Due to the non-programmable availability of wind and powerdemand, the part-load and dynamic characteristics...

  20. Selecting working fluids in an organic Rankine cycle for power generation from low temperature heat sources

    Directory of Open Access Journals (Sweden)

    Fredy Vélez

    2014-01-01

    Full Text Available Este trabajo presenta un estudio termodinámico realizado sobre el uso de fuentes de calor de baja temperatura para la generaci ón de energía a través de un ciclo Rankin e subcrítico con fluidos de trabajo orgánicos. Un análisis d el estado del arte de esta tecn ología muestra como línea de investigación abierta, la selección del fluido de trabajo, pues hasta ahora, no existe un fluido que satisfaga t odos los aspectos medioambientales y técnicos a tener en cuenta en estos ciclos. Por ello, se ha desarrollado una serie de simulaciones que permiten estudiar el comportamiento del ciclo Rankine con difer entes configuraciones y fluidos (húmedo, seco e isoentrópico, permitiendo con ello observar de qué manera influyen cambios ta nto en esos tipos de fluidos utilizados (refrigerantes, hidroca rburos y agua, como de condiciones de temperatura, presión, flujo, etc. , sobre la eficiencia total del ciclo. Con el trabajo realizado se demuestra la viabilidad de este tipo de proceso en la recuperación de calore s en la industria y/o aprovechamiento de fuentes renovables de baja y media temperatura para la producción de energía eléctrica.

  1. Multi-objective optimization of organic Rankine cycle power plants using pure and mixed working fluids

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Kærn, Martin Ryhl; Pierobon, Leonardo

    2015-01-01

    For zeotropic mixtures, the temperature varies during phase change, which is opposed to the isothermalphase change of pure fluids. The use of such mixtures as working fluids in organic Rankine cyclepower plants enables a minimization of the mean temperature difference of the heat exchangers whenthe...... mixturesare usually degraded compared to an ideal mixture heat transfer coefficient linearly interpolatedbetween the pure fluid values. This entails a need for larger and more expensive heat exchangers. Previousstudies primarily focus on the thermodynamic benefits of zeotropic mixtures by employing firstand...... second law analyses. In order to assess the feasibility of using zeotropic mixtures, it is, however,important to consider the additional costs of the heat exchangers. In this study, we aim at evaluatingthe economic feasibility of zeotropic mixtures compared to pure fluids. We carry out a multi...

  2. Comparative investigation of working fluids for an organic Rankine cycle with geothermal water

    Science.gov (United States)

    Liu, Yan-Na; Xiao, Song

    2015-06-01

    In this paper, the thermodynamic investigation on the use of geothermal water (130 °C as maximum) for power generation through a basic Rankine has been presented together with obtained main results. Six typical organic working fluids (i.e., R245fa, R141b, R290, R600, R152a, and 134a) were studied with modifying the input pressure and temperature to the turbine. The results show that there are no significant changes taking place in the efficiency for these working fluids with overheating the inlet fluid to the turbine, i.e., efficiency is a weak function of temperature. However, with the increasing of pressure ratio in the turbine, the efficiency rises more sharply. The technical viability is shown of implementing this type of process for recovering low temperature heat resource.

  3. Application of Biomass from Palm Oil Mill for Organic Rankine Cycle to Generate Power in North Sumatera Indonesia

    Science.gov (United States)

    Nur, T. B.; Pane, Z.; Amin, M. N.

    2017-03-01

    Due to increasing oil and gas demand with the depletion of fossil resources in the current situation make efficient energy systems and alternative energy conversion processes are urgently needed. With the great potential of resources in Indonesia, make biomass has been considered as one of major potential fuel and renewable resource for the near future. In this paper, the potential of palm oil mill waste as a bioenergy source has been investigated. An organic Rankine cycle (ORC) small scale power plant has been preliminary designed to generate electricity. The working fluid candidates for the ORC plant based on the heat source temperature domains have been investigated. The ORC system with a regenerator has higher thermal efficiency than the basic ORC system. The study demonstrates the technical feasibility of ORC solutions in terms of resources optimizations and reducing of greenhouse gas emissions.

  4. Thermal-Economic Modularization of Small, Organic Rankine Cycle Power Plants for Mid-Enthalpy Geothermal Fields

    Directory of Open Access Journals (Sweden)

    Yodha Y. Nusiaputra

    2014-07-01

    Full Text Available The costs of the surface infrastructure in mid-enthalpy geothermal power systems, especially in remote areas, could be reduced by using small, modular Organic Rankine Cycle (ORC power plants. Thermal-economic criteria have been devised to standardize ORC plant dimensions for such applications. We designed a modular ORC to utilize various wellhead temperatures (120–170 °C, mass flow rates and ambient temperatures (−10–40 °C. A control strategy was developed using steady-state optimization, in order to maximize net power production at off-design conditions. Optimum component sizes were determined using specific investment cost (SIC minimization and mean cashflow (MCF maximization for three different climate scenarios. Minimizing SIC did not yield significant benefits, but MCF proved to be a much better optimization function.

  5. Experimental study on Rankine cycle evaporator efficiency intended for exhaust waste heat recovery of a diesel engine

    Directory of Open Access Journals (Sweden)

    Milkov Nikolay

    2017-01-01

    Full Text Available The paper pressents an experimental study of Rankine cycle evaporator efficiency. Water was chosen as the working fluid in the system. The experimental test was conducted on a test bench equipped with a burner charged by compressed fresh air. Generated exhaust gases parameters were previously determined over the diesel engine operating range (28 engine operating points were studied. For each test point the working fluid parameters (flow rate and evaporating pressure were varied. Thus, the enthalpy flow through the heat exchanger was determined. Heat exchanger was designed as 23 helical tubes are inserted. On the basis of the results, it was found out that efficiency varies from 25 % to 51,9 %. The optimal working fluid pressure is 20 bar at most of the operating points while the optimum fluid mass flow rate varies from 2 g/s to 10 g/s.

  6. Study on the Characteristics of Expander Power Output Used for Offsetting Pumping Work Consumption in Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Yu-Ting Wu

    2014-07-01

    Full Text Available The circulation pump in an organic Rankine cycle (ORC increases the pressure of the liquid working fluid from low condensing pressure to high evaporating pressure, and the expander utilizes the pressure difference to generate work. A portion of the expander output power is used to offset the consumed pumping work, and the rest of the expander power is exactly the net work produced by the ORC system. Because of the relatively great theoretical pumping work and very low efficiency of the circulation pump reported in previous papers, the characteristics of the expander power used for offsetting the pumping work need serious consideration. In particular, the present work examines those characteristics. It is found that the characteristics of the expander power used for offsetting the pumping work are satisfactory only under the condition that the working fluid absorbs sufficient heat in the evaporator and its specific volume at the evaporator outlet is larger than or equal to a threshold value.

  7. Structural optimisation of a high speed Organic Rankine Cycle generator using a genetic algorithm and a finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Palko, S. [Machines Division, ABB industry Oy, Helsinki (Finland)

    1997-12-31

    The aim in this work is to design a 250 kW high speed asynchronous generator using a genetic algorithm and a finite element method for Organic Rankine Cycle. The characteristics of the induction motors are evaluated using two-dimensional finite element method (FEM) The movement of the rotor and the non-linearity of the iron is included. In numerical field problems it is possible to find several local extreme for an optimisation problem, and therefore the algorithm has to be capable of determining relevant changes, and to avoid trapping to a local minimum. In this work the electromagnetic (EM) losses at the rated point are minimised. The optimisation includes the air gap region. Parallel computing is applied to speed up optimisation. (orig.) 2 refs.

  8. Microfabricated rankine cycle steam turbine for power generation and methods of making the same

    Science.gov (United States)

    Frechette, Luc (Inventor); Muller, Norbert (Inventor); Lee, Changgu (Inventor)

    2009-01-01

    In accordance with the present invention, an integrated micro steam turbine power plant on-a-chip has been provided. The integrated micro steam turbine power plant on-a-chip of the present invention comprises a miniature electric power generation system fabricated using silicon microfabrication technology and lithographic patterning. The present invention converts heat to electricity by implementing a thermodynamic power cycle on a chip. The steam turbine power plant on-a-chip generally comprises a turbine, a pump, an electric generator, an evaporator, and a condenser. The turbine is formed by a rotatable, disk-shaped rotor having a plurality of rotor blades disposed thereon and a plurality of stator blades. The plurality of stator blades are interdigitated with the plurality of rotor blades to form the turbine. The generator is driven by the turbine and converts mechanical energy into electrical energy.

  9. Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling, heating and power production

    Energy Technology Data Exchange (ETDEWEB)

    Al-Sulaiman, Fahad A. [Mechanical and Aerospace Engineering Department, Carleton University 1125 Colonel By Drive, Ottawa, Ontario (Canada); Dincer, Ibrahim [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology 2000 Simcoe Street North, Oshawa, Ontario (Canada); Hamdullahpur, Feridun [Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario (Canada)

    2010-04-15

    The study examines a novel system that combined a solid oxide fuel cell (SOFC) and an organic Rankine cycle (ORC) for cooling, heating and power production (trigeneration) through exergy analysis. The system consists of an SOFC, an ORC, a heat exchanger and a single-effect absorption chiller. The system is modeled to produce a net electricity of around 500 kW. The study reveals that there is 3-25% gain on exergy efficiency when trigeneration is used compared with the power cycle only. Also, the study shows that as the current density of the SOFC increases, the exergy efficiencies of power cycle, cooling cogeneration, heating cogeneration and trigeneration decreases. In addition, it was shown that the effect of changing the turbine inlet pressure and ORC pump inlet temperature are insignificant on the exergy efficiencies of the power cycle, cooling cogeneration, heating cogeneration and trigeneration. Also, the study reveals that the significant sources of exergy destruction are the ORC evaporator, air heat exchanger at the SOFC inlet and heating process heat exchanger. (author)

  10. Selection of cooling fluid for an organic Rankine cycle unit recovering heat on a container ship sailing in the Arctic region

    DEFF Research Database (Denmark)

    Suárez de la Fuente, Santiago; Larsen, Ulrik; Pierobon, Leonardo

    2017-01-01

    air as coolant. This paper explores the use of two different coolants, air and seawater, for an organic Rankine cycle (ORC) unit using the available waste heat in the scavenge air system of a container ship navigating in Arctic Circle. Using a two-step single objective optimisation process, detailed...

  11. Performance Evaluation of a HP/ORC (Heat Pump/Organic Rankine Cycle) System with Optimal Control of Sensible Thermal Storage

    DEFF Research Database (Denmark)

    Carmo, Carolina; Nielsen, Mads P.; Elmegaard, Brian

    2016-01-01

    come to contribute to the integration of intermittent renewables.This paper describes an innovative concept that consists of the addition of an Organic Rankine Cycle (ORC) toa combined solar system coupled to a ground-source heat pump (HP) in a single-family building. The ORC enables the use of solar...

  12. Organic Rankine-cycle power systems working fluids study: Topical report No. 1: Fluorinol 85. [85 mole % trofluoroethanol in water

    Energy Technology Data Exchange (ETDEWEB)

    Jain, M.L.; Demirgian, J.C.; Cole, R.L.

    1986-09-01

    An investigation to experimentally determine the thermal stability limits and degradation rates of Fluorinol 85 as a function of maximum cycle temperatures was initiated in 1982. Following the design and construction of a dynamic test loop capable of simulating the thermodynamic conditions of possible prototypical organic Rankine-cycle (ORC) power systems, several test runs were completed. The Fluorinol 85 test loop was operated for about 3800 h, covering a temperature range of 525-600/sup 0/F. Both liquid and noncondensable vapor (gas) samples were drawn periodically and analyzed using capillary column gas chromatography, gas chromatography/mass spectrometry and mass spectrometry. Results indicate that Fluorinol 85 would not decompose significantly over an extended period of time, up to a maximum cycle temperature of 550/sup 0/F. However, 506-h data at 575/sup 0/F show initiation of significant degradation. The 770-h data at 600/sup 0/F, using a fresh charge of Fluorinol 85, indicate an annual degradation rate of more than 17.2%. The most significant degradation product observed is hydrofluoric acid, which could cause severe corrosion in an ORC system. Devices to remove the hydrofluoric acid and prevent extreme temperature excursions are necessary for any ORC system using Fluorinol 85 as a working fluid.

  13. Performance Analysis and Working Fluid Selection of a Supercritical Organic Rankine Cycle for Low Grade Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Yourong Li

    2012-08-01

    Full Text Available The performance analysis of a supercritical organic Rankine cycle system driven by exhaust heat using 18 organic working fluids is presented. Several parameters, such as the net power output, exergy efficiency, expander size parameter (SP, and heat exchanger requirement of evaporator and the condenser, were used to evaluate the performance of this recovery cycle and screen the working fluids. The results reveal that in most cases, raising the expander inlet temperature is helpful to improve the net power output and the exergy efficiency. However, the effect of the expander inlet pressure on those parameters is related to the expander inlet temperature and working fluid used. Either lower expander inlet temperature and pressure, or higher expander inlet temperature and pressure, generally makes the net power output more. Lower expander inlet temperature results in larger total heat transfer requirement and expander size. According to the screening criteria of both the higher output and the lower investment, the following working fluids for the supercritical ORC system are recommended: R152a and R143a.

  14. About the prediction of Organic Rankine Cycles performances integrating local high-fidelity turbines simulation and uncertainties

    Science.gov (United States)

    Congedo, Pietro; de Santis, Dante; Geraci, Gianluca

    2014-11-01

    Organic Rankine Cycles (ORCs) are of key-importance when exploiting energy systems with a high efficiency. The variability of renewable heat sources makes more complex the global performance prediction of a cycle. The thermodynamic properties of the complex fluids used in the process are another source of uncertainty. The need for a predictive and robust simulation tool of ORCs remains strong. A high-order accurate Residual Distribution scheme has been recently developed for efficiently computing a turbine stage on unstructured grids, including advanced equations of state in order to take into account the complex fluids used in ORCs. Advantages in using high-order methods have been highlighted, in terms of number of degrees of freedom and computational time used, for computing the numerical solution with a greater accuracy compared to lower-order methods, even for shocked flows. The objective of this work is to quantify the numerical error with respect to the various sources of uncertainty of the ORC turbine, thus providing a very high-fidelity prediction in the coupled physical/stochastic space.

  15. Thermo-Economic Analysis of Zeotropic Mixtures and Pure Working Fluids in Organic Rankine Cycles for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Florian Heberle

    2016-03-01

    Full Text Available We present a thermo-economic analysis of an Organic Rankine Cycle (ORC for waste heat recovery. A case study for a heat source temperature of 150 °C and a subcritical, saturated cycle is performed. As working fluids R245fa, isobutane, isopentane, and the mixture of isobutane and isopentane are considered. The minimal temperature difference in the evaporator and the condenser, as well as the mixture composition are chosen as variables in order to identify the most suitable working fluid in combination with optimal process parameters under thermo-economic criteria. In general, the results show that cost-effective systems have a high minimal temperature difference ΔTPP,C at the pinch-point of the condenser and a low minimal temperature difference ΔTPP,E at the pinch-point of the evaporator. Choosing isobutane as the working fluid leads to the lowest costs per unit exergy with 52.0 €/GJ (ΔTPP,E = 1.2 K; ΔTPP,C = 14 K. Considering the major components of the ORC, specific costs range between 1150 €/kW and 2250 €/kW. For the zeotropic mixture, a mole fraction of 90% isobutane leads to the lowest specific costs per unit exergy. A further analysis of the ORC system using isobutane shows high sensitivity of the costs per unit exergy for the selected cost estimation methods and for the isentropic efficiency of the turbine.

  16. Low-Concentration Solar-Power Systems based on Organic Rankine Cycles for Distributed-Scale Applications:Overview and Further Developments

    Directory of Open Access Journals (Sweden)

    Christos N. Markides

    2015-12-01

    Full Text Available This paper is concerned with the emergence and development of low- to medium-grade thermal-energy conversion systems for distributed power generation based on thermodynamic vapour-phase heat-engine cycles undergone by organic working-fluids, namely organic Rankine cycles (ORCs. ORC power systems are, to some extent, a relatively established and mature technology that is well-suited to converting low-/medium-grade heat (at temperatures up to ~ 300 – 400 °C to useful work, at an output power scale from a few kW to 10s of MW. Thermal efficiencies in excess of 25% are achievable at higher temperatures and larger scales, and efforts are currently in progress to improve the overall economic viability, and thus uptake, of ORC power systems by focusing on advanced architectures, working-fluid selection, heat exchangers and expansion machines. Solar-power systems based on ORC technology have a significant potential to be used for distributed power generation, by converting thermal energy from simple and low-cost non-concentrated or low-concentration collectors to mechanical, hydraulic or electrical energy. Current fields of use include mainly geothermal and biomass/biogas, as well as the recovery and conversion of waste heat, leading to improved energy efficiency, primary energy (i.e. fuel use and emission minimization, yet the technology is highly transferable to solar power generation as an affordable alternative to small- to medium-scale photovoltaic (PV systems. Solar-ORC systems offer naturally the advantages of providing a simultaneous thermal-energy output for hot water provision and/or space heating, and the particularly interesting possibility of relatively straightforward on-site (thermal energy storage. Key performance characteristics are presented, and important heat transfer effects that act to limit performance are identified as noteworthy directions of future research for the further development of this technology.

  17. Technology cycles and technology revolutions

    Energy Technology Data Exchange (ETDEWEB)

    Paganetto, Luigi; Scandizzo, Pasquale Lucio

    2010-09-15

    Technological cycles have been characterized as the basis of long and continuous periods economic growth through sustained changes in total factor productivity. While this hypothesis is in part consistent with several theories of growth, the sheer magnitude and length of the economic revolutions experienced by humankind seems to indicate surmise that more attention should be given to the origin of major technological and economic changes, with reference to one crucial question: role of production and use of energy in economic development.

  18. Modeling and analysis of a transcritical rankine power cycle with a low grade heat source

    DEFF Research Database (Denmark)

    Nguyen, Chan; Veje, Christian

    efficiency, exergetic efficiency and specific net power output. A generic cycle configuration has been used for analysis of a geothermal energy heat source. This model has been validated against similar calculations using industrial waste heat as the energy source. Calculations are done with fixed...

  19. Design of organic Rankine cycle power systems accounting for expander performance

    DEFF Research Database (Denmark)

    La Seta, Angelo; Andreasen, Jesper Graa; Pierobon, Leonardo

    2015-01-01

    -loaded stages in supersonic flow regimes. This paper proposes a design method where the conventional cycle analysis is combined with calculations of the maximum expander performance using a validated mean-line design tool. The high computational cost of the turbine optimization is tackled building a model which...

  20. An Innovative Application of a Solar Storage Wall Combined with the Low-Temperature Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Tzu-Chen Hung

    2014-01-01

    Full Text Available The objective of this study is to collect energy on the waste heat from air produced by solar ventilation systems. This heat used for electricity generation by an organic Rankine cycle (ORC system was implemented. The advantages of this method include the use of existing building’s wall, and it also provides the region of energy scarcity for reference. This is also an innovative method, and the results will contribute to the efforts made toward improving the design of solar ventilation in the field of solar thermal engineering. In addition, ORC system would help generate electricity and build a low-carbon building. This study considered several critical parameters such as length of the airflow channel, intensity of solar radiation, pattern of the absorber plate, stagnant air layer, and operating conditions. The simulation results show that the highest outlet temperature and heat collecting efficiency of solar ventilation system are about 120°C and 60%, respectively. The measured ORC efficiency of the system was 6.2%. The proposed method is feasible for the waste heat from air produced by ventilation systems.

  1. Analysis and optimization of three main organic Rankine cycle configurations using a set of working fluids with different thermodynamic behaviors

    Science.gov (United States)

    Hamdi, Basma; Mabrouk, Mohamed Tahar; Kairouani, Lakdar; Kheiri, Abdelhamid

    2017-06-01

    Different configurations of organic Rankine cycle (ORC) systems are potential thermodynamic concepts for power generation from low grade heat. The aim of this work is to investigate and optimize the performances of the three main ORC systems configurations: basic ORC, ORC with internal heat exchange (IHE) and regenerative ORC. The evaluation for those configurations was performed using seven working fluids with typical different thermodynamic behaviours (R245fa, R601a, R600a, R227ea, R134a, R1234ze and R1234yf). The optimization has been performed using a genetic algorithm under a comprehensive set of operative parameters such as the fluid evaporating temperature, the fraction of flow rate or the pressure at the steam extracting point in the turbine. Results show that there is no general best ORC configuration for all those fluids. However, there is a suitable configuration for each fluid. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  2. Technical Analysis of Organic Rankine Cycle System Using Low-Temperature Source to Generate Electricity in Ship

    Directory of Open Access Journals (Sweden)

    Akram Faisal

    2017-01-01

    Full Text Available Nowadays, the shipping sector has growth rapidly as followed by the increasing of world population and the demands for public transportation via sea. This issue entails the large attention on emission, energy efficiency and fuel consumption on the ship. Waste Heat Recovery (WHR is one of the solution to overcome the mentioned issue and one of the WHR method is by installing Organic Rankine Cycle (ORC system in ship. ORC demonstrate to recover and exploit the low temperature waste heat rejected by the ship power generation plant. The main source of heat to be utilized is obtained from container ship (7900 kW BHP, DWT 10969 mt ship jacket water cooling system and use R-134a as a refrigerant. The main equipment consists of evaporator, condenser, pump and steam turbine to generate the electricity. The main objective is to quantifying the estimation of electrical power which can be generated at typical loads of the main engine. As the final result of analysis, the ORC system is able to generate the electricity power ranged from 77,5% - 100% of main engine load producing power averagely 57,69 kW.

  3. Study on Mixed Working Fluids with Different Compositions in Organic Rankine Cycle (ORC Systems for Vehicle Diesel Engines

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2014-08-01

    Full Text Available One way to increase the thermal efficiency of vehicle diesel engines is to recover waste heat by using an organic Rankine cycle (ORC system. Tests were conducted to study the running performances of diesel engines in the whole operating range. The law of variation of the exhaust energy rate under various engine operating conditions was also analyzed. A diesel engine-ORC combined system was designed, and relevant evaluation indexes proposed. The variation of the running performances of the combined system under various engine operating conditions was investigated. R245fa and R152a were selected as the components of the mixed working fluid. Thereafter, six kinds of mixed working fluids with different compositions were presented. The effects of mixed working fluids with different compositions on the running performances of the combined system were revealed. Results show that the running performances of the combined system can be improved effectively when mass fraction R152a in the mixed working fluid is high and the engine operates with high power. For the mixed working fluid M1 (R245fa/R152a, 0.1/0.9, by mass fraction, the net power output of the combined system reaches the maximum of 34.61 kW. Output energy density of working fluid (OEDWF, waste heat recovery efficiency (WHRE, and engine thermal efficiency increasing ratio (ETEIR all reach their maximum values at 42.7 kJ/kg, 10.90%, and 11.29%, respectively.

  4. Modelling the Influence of Climate on the Performance of the Organic Rankine Cycle for Industrial Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Ivan Korolija

    2016-05-01

    Full Text Available This paper describes a study of the relative influences of different system design decisions upon the performance of an organic Rankine cycle (ORC used to generate electricity from foundry waste heat. The design choices included concern the working fluid, whether to use a regenerator and the type of condenser. The novelty of the research lies in its inclusion of the influence of both the ORC location and the auxiliary electricity used by the pumps and fans in the ORC power system. Working fluids suitable for high temperature applications are compared, including three cyclic siloxanes, four linear siloxanes and three aromatic fluids. The ORC is modelled from first principles and simulation runs carried out using weather data for 106 European locations and a heat input profile that was derived from empirical data. The impact of design decisions upon ORC nominal efficiency is reported followed by the impact upon annual system efficiency in which variations in heat input and the condition of outdoor air over a year are considered. The main conclusion is that the location can have a significant impact upon the efficiency of ORC systems due to the influence of climate upon the condenser and auxiliary electricity requirements.

  5. Performance analysis of exhaust heat recovery using organic Rankine cycle in a passenger car with a compression ignition engine

    Science.gov (United States)

    Ghilvacs, M.; Prisecaru, T.; Pop, H.; Apostol, V.; Prisecaru, M.; Pop, E.; Popescu, Gh; Ciobanu, C.; Mohanad, A.; Alexandru, A.

    2016-08-01

    Compression ignition engines transform approximately 40% of the fuel energy into power available at the crankshaft, while the rest part of the fuel energy is lost as coolant, exhaust gases and other waste heat. An organic Rankine cycle (ORC) can be used to recover this waste heat. In this paper, the characteristics of a system combining a compression ignition engine with an ORC which recover the waste heat from the exhaust gases are analyzed. The performance map of the diesel engine is measured on an engine test bench and the heat quantities wasted by the exhaust gases are calculated over the engine's entire operating region. Based on this data, the working parameters of ORC are defined, and the performance of a combined engine-ORC system is evaluated across this entire region. The results show that the net power of ORC is 6.304kW at rated power point and a maximum of 10% reduction in brake specific fuel consumption can be achieved.

  6. Performance of Siloxane Mixtures in a High-Temperature Organic Rankine Cycle Considering the Heat Transfer Characteristics during Evaporation

    Directory of Open Access Journals (Sweden)

    Theresa Weith

    2014-08-01

    Full Text Available The application of the Organic Rankine Cycle to high temperature heat sources is investigated on the case study of waste heat recovery from a selected biogas plant. Two different modes of operation are distinguished: pure electric power and combined heat and power generation. The siloxanes hexamethyldisiloxane (MM and octamethyltrisiloxane (MDM are chosen as working fluids. Moreover, the effect of using mixtures of these components is analysed. Regarding pure electricity generation, process simulations using the simulation tool Aspen Plus show an increase in second law efficiency of 1.3% in case of 97/03 wt % MM/MDM-mixture, whereas for the combined heat and power mode a 60/40 wt % MM/MDM-mixture yields the highest efficiency with an increase of nearly 3% compared to most efficient pure fluid. Next to thermodynamic analysis, measurements of heat transfer coefficients of these siloxanes as well as their mixtures are conducted and Kandlikar’s correlation is chosen to describe the results. Based on that, heat exchanger areas for preheater and evaporator are calculated in order to check whether the poorer heat transfer characteristics of mixtures devalue their efficiency benefit due to increased heat transfer areas. Results show higher heat transfer areas of 0.9% and 14%, respectively, compared to MM.

  7. Economic, Energetic, and Environmental Performance of a Solar Powered Organic Rankine Cycle with Electric Energy Storage in Different Commercial Buildings

    Directory of Open Access Journals (Sweden)

    Emily Spayde

    2018-01-01

    Full Text Available This paper presents an analysis to determine the economic, energetic, and environmental benefits that could be obtained from the implementation of a combined solar-power organic Rankine cycle (ORC with electric energy storage (EES to supply electricity to several commercial buildings including a large office, a small office, and a full service restaurant. The operational strategy for the ORC-EES system consists in the ORC charging the EES when the irradiation level is sufficient to generate power, and the EES providing electricity to the building when there is not irradiation (i.e., during night time. Electricity is purchased from the utility grid unless it is provided by the EES. The potential of the proposed system to reduce primary energy consumption (PEC, carbon dioxide emission (CDE, and cost was evaluated. Furthermore, the available capital cost for a variable payback period for the ORC-EES system was determined for each of the evaluated buildings. The effect of the number of solar collectors on the performance of the ORC-EES is also studied. Results indicate that the proposed ORC-EES system is able to satisfy 11%, 13%, and 18% of the electrical demand for the large office, the small office and the restaurant, respectively.

  8. Application Guide for Waste Heat Recovery with Organic Rankine Cycle Equipment.

    Science.gov (United States)

    1983-01-15

    Cycle Development and Its Application to Solar Energy Utilization," Ishikawajima - Harima Heavy Industries Co., Ltd. (AFI), International Congress of...20 , LU z 600 FOR ESTIMATING S800 "PURPOSES ’. Uj100 C 40000 DATA FROM SPS INC. ~t DATA FROM AFI -, 6000 0 DATA FROM ISHIKAWAJIMA - HARIMA 3. Figure 3-6...literature search and industry survey. Engineering criteria for applying ORC tech- nology are established, and a set of nomograms to enable the rapid

  9. Optimization of Biomass-Fuelled Combined Cooling, Heating and Power (CCHP) Systems Integrated with Subcritical or Transcritical Organic Rankine Cycles (ORCs)

    OpenAIRE

    Daniel Maraver; Sylvain Quoilin; Javier Royo

    2014-01-01

    This work is focused on the thermodynamic optimization of Organic Rankine Cycles (ORCs), coupled with absorption or adsorption cooling units, for combined cooling heating and power (CCHP) generation from biomass combustion. Results were obtained by modelling with the main aim of providing optimization guidelines for the operating conditions of these types of systems, specifically the subcritical or transcritical ORC, when integrated in a CCHP system to supply typical heating and cooling deman...

  10. Test Requirements and Conceptual Design for a Potassium Test Loop to Support an Advanced Potassium Rankine Cycle Power Conversion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, JR.G.L.

    2006-03-08

    Parameters for continuing the design and specification of an experimental potassium test loop are identified in this report. Design and construction of a potassium test loop is part of the Phase II effort of the project ''Technology Development Program for an Advanced Potassium Rankine Power Conversion System''. This program is supported by the National Aeronautics and Space Administration. Design features for the potassium test loop and its instrumentation system, specific test articles, and engineered barriers for ensuring worker safety and protection of the environment are described along with safety and environmental protection requirements to be used during the design process. Information presented in the first portion of this report formed the basis to initiate the design phase of the program; however, the report is a living document that can be changed as necessary during the design process, reflecting modifications as additional design details are developed. Some portions of the report have parameters identified as ''to be determined'' (TBD), reflecting the early stage of the overall process. In cases where specific design values are presently unknown, the report attempts to document the quantities that remain to be defined in order to complete the design of the potassium test loop and supporting equipment.

  11. Thermodynamic Performance Analysis of a Biogas-Fuelled Micro-Gas Turbine with a Bottoming Organic Rankine Cycle for Sewage Sludge and Food Waste Treatment Plants

    Directory of Open Access Journals (Sweden)

    Sunhee Kim

    2017-02-01

    Full Text Available In the Republic of Korea, efficient biogas-fuelled power systems are needed to use the excess biogas that is currently burned due to a lack of suitable power technology. We examined the performance of a biogas-fuelled micro-gas turbine (MGT system and a bottoming organic Rankine cycle (ORC. The MGT provides robust operation with low-grade biogas, and the exhaust can be used for heating the biodigester. Similarly, the bottoming ORC generates additional power output with the exhaust gas. We selected a 1000-kW MGT for four co-digestion plants with 28,000-m3 capacity. A 150-kW ORC system was selected for the MGT exhaust gas. We analysed the effects of the system size, methane concentration, and ORC operating conditions. Based on the system performance, we analysed the annual performance of the MGT with a combined heat and power (CHP system, bottoming ORC, or both a bottoming ORC and CHP system. The annual net power outputs for each system were 7.4, 8.5, and 9.0 MWh per year, respectively.

  12. Geometry Analysis and Effect of Turbulence Model on the Radial Rotor Turbo-Expander Design for Small Organic Rankine Cycle System

    Directory of Open Access Journals (Sweden)

    Maulana Arifin

    2015-07-01

    Full Text Available Organic Rankine Cycle (ORC is one of the most promising technology for small electric power generations. The geometry analysis and the effect of turbulence model on the radial turbo-expanders design for small ORC power generation systems were discussed in this paper. The rotor blades and performance were calculated using several working fluids such as R134a, R143a, R245fa, n-Pentane, and R123. Subsequently, a numerical study was carried out in the fluid flow area with R134a and R123 as the working fluids. Analyses were performed using Computational Fluid Dynamics (CFD ANSYS Multiphysics on two real gas models, with the k-epsilon and SST (shear stress transport turbulence models. The result shows the distribution of Mach number, pressure, velocity and temperature along the rotor blade of the radial turbo-expanders and estimation of performance at various operating conditions. The operating conditions are as follow: 250,000 grid mesh flow area, real gas model SST at steady state condition, 0.4 kg/s of mass flow rate, 15,000 rpm rotor speed, 5 bar inlet pressure, and 373K inlet temperature. By using those conditions, CFD analysis shows that the turbo-expander able to produce 6.7 kW and 5.5 kW of power when using R134a and R123, respectively.

  13. Preliminary design of seawater and brackish water reverse osmosis desalination systems driven by low-temperature solar organic Rankine cycles (ORC)

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Torres, Agustin M. [Dpto. Fisica Fundamental y Experimental, Electronica y Sistemas, Escuela Tecnica Superior de Ingenieria Civil e Industrial, Universidad de La Laguna (ULL), Avda. Astrofisico Francisco Sanchez s/n. 38206 La Laguna (Tenerife) (Spain); Garcia-Rodriguez, Lourdes [Dpto. Ingenieria Energetica, Universidad de Sevilla Escuela Tecnica Superior de Ingenieros, Camino de los Descubrimientos, s/n 41092 Sevilla (Spain)

    2010-12-15

    In this paper, the coupling between the low-temperature solar organic Rankine cycle (ORC) and seawater and brackish water reverse osmosis desalination units has been carried out. Four substances have been considered as working fluids of the solar cycle (butane, isopentane, R245fa and R245ca). With these four fluids the volumetric flow of fresh water produced per unit of aperture area of stationary solar collector has been calculated. The former has been made with the optimized direct vapour generation (DVG) configuration and heat transfer fluid (HTF) configuration of the solar ORC. In the first one (DVG), working fluid of the ORC is directly heated inside the absorber of the solar collector. In the second one (HTF), a fluid different than the working fluid of the ORC (water in this paper) is heated without phase change inside the absorber of the solar collector. Once this fluid has been heated it is carried towards a heat exchanger where it is cooled. Thermal energy delivered in this cooling process is transferred to the working fluid of the ORC. Influence of condensation temperature of the ORC and regeneration's process effectiveness over productivity of the system has also been analysed. Finally, parameters of several preliminary designs of the low-temperature solar thermal driven RO desalination are supplied. R245fa is chosen as working fluid of the ORC in these preliminary designs. The information of the proposed preliminary designs can also be used, i.e., for the assessment of the use of thermal energy rejected by the solar cycle. Overall analysis of the efficiency of the solar thermal driven RO desalination technology is given with the results presented in this paper and the results obtained with the medium temperature solar thermal RO desalination system presented by the authors in previous papers. This work has been carried out within the framework of the OSMOSOL and POWERSOL projects. (author)

  14. Flow boiling heat transfer and pressure drop characteristics of R134a, R1234yf and R1234ze in a plate heat exchanger for organic Rankine cycle units

    DEFF Research Database (Denmark)

    Zhang, Ji; Desideri, Adriano; Kærn, Martin Ryhl

    2017-01-01

    . This paper is aimed at obtaining flow boiling heat transfer and pressure drop characteristics in a plate heat exchanger under the working conditions prevailing in the evaporator of organic Rankine cycle units. Two hydrofluoroolefins R1234yf and R1234ze, and one hydrofluorocarbon R134a, were selected......The optimal design of the evaporator is one of the key issues to improve the efficiency and economics of organic Rankine cycle units. The first step in studying the evaporator design is to understand the thermal-hydraulic performance of the working fluid in the evaporator of organic Rankine cycles......, respectively. The working conditions covered relatively high saturation temperatures (corresponding reduced pressures of 0.35-0.74), which are prevailing in organic Rankine cycles yet absent in the open literature. The experimental data were compared with existing correlations, and new correlations were...

  15. Effect of variable heat input on the heat transfer characteristics in an Organic Rankine Cycle system

    Directory of Open Access Journals (Sweden)

    Aboaltabooq Mahdi Hatf Kadhum

    2016-01-01

    Full Text Available This paper analyzes the heat transfer characteristics of an ORC evaporator applied on a diesel engine using measured data from experimental work such as flue gas mass flow rate and flue gas temperature. A mathematical model was developed with regard to the preheater, boiler and the superheater zones of a counter flow evaporator. Each of these zones has been subdivided into a number of cells. The hot source of the ORC cycle was modeled. The study involves the variable heat input's dependence on the ORC system's heat transfer characteristics, with especial emphasis on the evaporator. The results show that the refrigerant's heat transfer coefficient has a higher value for a 100% load from the diesel engine, and decreases with the load decrease. Also, on the exhaust gas side, the heat transfer coefficient decreases with the decrease of the load. The refrigerant's heat transfer coefficient increased normally with the evaporator's tube length in the preheater zone, and then increases rapidly in the boiler zone, followed by a decrease in the superheater zone. The exhaust gases’ heat transfer coefficient increased with the evaporator’ tube length in all zones. The results were compared with result by other authors and were found to be in agreement.

  16. Development of an Organic Rankine Cycle system for exhaust energy recovery in internal combustion engines

    Science.gov (United States)

    Cipollone, Roberto; Bianchi, Giuseppe; Gualtieri, Angelo; Di Battista, Davide; Mauriello, Marco; Fatigati, Fabio

    2015-11-01

    Road transportation is currently one of the most influencing sectors for global energy consumptions and CO2 emissions. Nevertheless, more than one third of the fuel energy supplied to internal combustion engines is still rejected to the environment as thermal waste at the exhaust. Therefore, a greater fuel economy might be achieved recovering the energy from exhaust gases and converting it into useful power on board. In the current research activity, an ORC-based energy recovery system was developed and coupled with a diesel engine. The innovative feature of the recovery power unit relies upon the usage of sliding vane rotary machines as pump and expander. After a preliminary exhaust gas mapping, which allowed to assess the magnitude of the thermal power to be recovered, a thermodynamic analysis was carried out to design the ORC system and the sliding vane machines using R236fa as working fluid. An experimental campaign was eventually performed at different operating regimes according to the ESC procedure and investigated the recovery potential of the power unit at design and off-design conditions. Mechanical power recovered ranged from 0.7 kW up to 1.9 kW, with an overall cycle efficiency from 3.8% up to 4.8% respectively. These results candidate sliding vane machines as efficient and reliable devices for waste heat recovery applications.

  17. Comparison of a Novel Organic-Fluid Thermofluidic Heat Converter and an Organic Rankine Cycle Heat Engine

    Directory of Open Access Journals (Sweden)

    Christoph J.W. Kirmse

    2016-06-01

    Full Text Available The Up-THERM heat converter is an unsteady, two-phase thermofluidic oscillator that employs an organic working fluid, which is currently being considered as a prime-mover in small- to medium-scale combined heat and power (CHP applications. In this paper, the Up-THERM heat converter is compared to a basic (sub-critical, non-regenerative organic Rankine cycle (ORC heat engine with respect to their power outputs, thermal efficiencies and exergy efficiencies, as well as their capital and specific costs. The study focuses on a pre-specified Up-THERM design in a selected application, a heat-source temperature range from 210 °C to 500 °C and five different working fluids (three n-alkanes and two refrigerants. A modeling methodology is developed that allows the above thermo-economic performance indicators to be estimated for the two power-generation systems. For the chosen applications, the power output of the ORC engine is generally higher than that of the Up-THERM heat converter. However, the capital costs of the Up-THERM heat converter are lower than those of the ORC engine. Although the specific costs (£/kW of the ORC engine are lower than those of the Up-THERM converter at low heat-source temperatures, the two systems become progressively comparable at higher temperatures, with the Up-THERM heat converter attaining a considerably lower specific cost at the highest heat-source temperatures considered.

  18. Design and development of an automotive organic Rankine-cycle powerplant with a reciprocating expander. Final report. Volume II. Detailed discussion

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-01

    Work performed for the design and development of an organic Rankine-cycle engine for automobile propulsion is reported. An automotive power plant using an organic Rankine-cycle system with a reciprocating expander has been designed, built, and tested on an engine dynamometer in a preprototype configuration. The system is designed to provide performance approximately equivalent to that of a 351-CID internal combustion engine in the reference car, a 1972 Ford Galaxie 500. A description of the preprototype system, major components, and results from component and system testing are presented. The fuel economy based on steady-state measurements is estimated to be 10.2 mpg over the federal driving cycle with a maximum of 16 mpg at 30 mph. Projections of steady-state emission measurements show compliance with the 1970 Clean Air Act standards for 1978 vehicle emissions. The levels for unburned hydrocarbons, carbon monoxide, and oxides of nitrogen were 41 percent, 6 percent, and 69 percent of the standards, respectively. At the conclusion of the preprototype phase of the program, a prototype design effort was initiated to upgrade and improve the performance of the preprototype system. The reference vehicle for this prototype design is a compact car in the weight class of a 1974 Ford Pinto. The results of this design study, including performance projections, are also presented.

  19. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 7: Metal vapor Rankine topping-steam bottoming cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Deegan, P. B.

    1976-01-01

    Adding a metal vapor Rankine topper to a steam cycle was studied as a way to increase the mean temperature at which heat is added to the cycle to raise the efficiency of an electric power plant. Potassium and cesium topping fluids were considered. Pressurized fluidized bed or pressurized (with an integrated low-Btu gasifier) boilers were assumed. Included in the cycles was a pressurizing gas turbine with its associated recuperator, and a gas economizer and feedwater heater. One of the ternary systems studied shows plant efficiency of 42.3% with a plant capitalization of $66.7/kW and a cost of electricity of 8.19 mills/MJ (29.5 mills/kWh).

  20. Analyzing the Performance of a Dual Loop Organic Rankine Cycle System for Waste Heat Recovery of a Heavy-Duty Compressed Natural Gas Engine

    Directory of Open Access Journals (Sweden)

    Baofeng Yao

    2014-11-01

    Full Text Available A dual loop organic Rankine cycle (DORC system is designed to recover waste heat from a heavy-duty compressed natural gas engine (CNGE, and the performance of the DORC–CNGE combined system is simulated and discussed. The DORC system includes high-temperature (HT and low-temperature (LT cycles. The HT cycle recovers energy from the exhaust gas emitted by the engine, whereas the LT cycle recovers energy from intake air, engine coolant, and the HT cycle working fluid in the preheater. The mathematical model of the system is established based on the first and second laws of thermodynamics. The characteristics of waste heat energy from the CNGE are calculated according to engine test data under various operating conditions. Moreover, the performance of the DORC–CNGE combined system is simulated and analyzed using R245fa as the working fluid. Results show that the maximum net power output and the maximum thermal efficiency of the DORC system are 29.37 kW and 10.81%, respectively, under the rated power output condition of the engine. Compared with the original CNG engine, the maximum power output increase ratio and the maximum brake specific fuel consumption improvement ratio are 33.73% and 25%, respectively, in the DORC–CNGE combined system.

  1. A Mathematical Model of Hourly Solar Radiation in Varying Weather Conditions for a Dynamic Simulation of the Solar Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Taehong Sung

    2015-07-01

    Full Text Available A mathematical model of hourly solar radiation with weather variability is proposed based on the simple sky model. The model uses a superposition of trigonometric functions with short and long periods. We investigate the effects of the model variables on the clearness (kD and the probability of persistence (POPD indices and also evaluate the proposed model for all of the kD-POPD weather classes. A simple solar organic Rankine cycle (SORC system with thermal storage is simulated using the actual weather conditions, and then, the results are compared with the simulation results using the proposed model and the simple sky model. The simulation results show that the proposed model provides more accurate system operation characteristics than the simple sky model.

  2. Thermo-Economic and Heat Transfer Optimization of Working-Fluid Mixtures in a Low-Temperature Organic Rankine Cycle System

    Directory of Open Access Journals (Sweden)

    Oyeniyi A. Oyewunmi

    2016-06-01

    Full Text Available In the present paper, we consider the employment of working-fluid mixtures in organic Rankine cycle (ORC systems with respect to thermodynamic and heat-transfer performance, component sizing and capital costs. The selected working-fluid mixtures promise reduced exergy losses due to their non-isothermal phase-change behaviour, and thus improved cycle efficiencies and power outputs over their respective pure-fluid components. A multi-objective cost-power optimization of a specific low-temperature ORC system (operating with geothermal water at 98 °C reveals that the use of working-fluid-mixtures does indeed show a thermodynamic improvement over the pure-fluids. At the same time, heat transfer and cost analyses, however, suggest that it also requires larger evaporators, condensers and expanders; thus, the resulting ORC systems are also associated with higher costs. In particular, 50% n-pentane + 50% n-hexane and 60% R-245fa + 40% R-227ea mixtures lead to the thermodynamically optimal cycles, whereas pure n-pentane and pure R-245fa have lower plant costs, both estimated as having ∼14% lower costs per unit power output compared to the thermodynamically optimal mixtures. These conclusions highlight the importance of using system cost minimization as a design objective for ORC plants.

  3. A quantitative risk-assessment system (QR-AS) evaluating operation safety of Organic Rankine Cycle using flammable mixture working fluid.

    Science.gov (United States)

    Tian, Hua; Wang, Xueying; Shu, Gequn; Wu, Mingqiang; Yan, Nanhua; Ma, Xiaonan

    2017-09-15

    Mixture of hydrocarbon and carbon dioxide shows excellent cycle performance in Organic Rankine Cycle (ORC) used for engine waste heat recovery, but the unavoidable leakage in practical application is a threat for safety due to its flammability. In this work, a quantitative risk assessment system (QR-AS) is established aiming at providing a general method of risk assessment for flammable working fluid leakage. The QR-AS covers three main aspects: analysis of concentration distribution based on CFD simulations, explosive risk assessment based on the TNT equivalent method and risk mitigation based on evaluation results. A typical case of propane/carbon dioxide mixture leaking from ORC is investigated to illustrate the application of QR-AS. According to the assessment results, proper ventilation speed, safe mixture ratio and location of gas-detecting devices have been proposed to guarantee the security in case of leakage. The results revealed that this presented QR-AS was reliable for the practical application and the evaluation results could provide valuable guidance for the design of mitigation measures to improve the safe performance of ORC system. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Energy, Exergy and Economic Evaluation Comparison of Small-Scale Single and Dual Pressure Organic Rankine Cycles Integrated with Low-Grade Heat Sources

    Directory of Open Access Journals (Sweden)

    Armando Fontalvo

    2017-09-01

    Full Text Available Low-grade heat sources such as solar thermal, geothermal, exhaust gases and industrial waste heat are suitable alternatives for power generation which can be exploited by means of small-scale Organic Rankine Cycle (ORC. This paper combines thermodynamic optimization and economic analysis to assess the performance of single and dual pressure ORC operating with different organic fluids and targeting small-scale applications. Maximum power output is lower than 45 KW while the temperature of the heat source varies in the range 100–200 °C. The studied working fluids, namely R1234yf, R1234ze(E and R1234ze(Z, are selected based on environmental, safety and thermal performance criteria. Levelized Cost of Electricity (LCOE and Specific Investment Cost (SIC for two operation conditions are presented: maximum power output and maximum thermal efficiency. Results showed that R1234ze(Z achieves the highest net power output (up to 44 kW when net power output is optimized. Regenerative ORC achieves the highest performance when thermal efficiency is optimized (up to 18%. Simple ORC is the most cost-effective among the studied cycle configurations, requiring a selling price of energy of 0.3 USD/kWh to obtain a payback period of 8 years. According to SIC results, the working fluid R1234ze(Z exhibits great potential for simple ORC when compared to conventional R245fa.

  5. Energetic and exergetic analysis of Rankine cycles for solar power plants with parabolic trough and thermal storage

    Directory of Open Access Journals (Sweden)

    Cenuşă Victor-Eduard

    2016-01-01

    Full Text Available The paper analyzes the “secondary” circuit (for thermodynamic conversion of a Concentrated Solar Power (CSP plant with thermodynamic cycle, whose mirrors field supplies a thermal power, averaged over a sunny day, of about 100 MW heat. We study the case of parabolic trough solar collector using silicone oil in the “primary” circuit, which limits the peak temperature below 400 °C. The “primary” circuit uses thermal storage, allowing a delay between the power generation in rapport with the solar energy capture. We choose a water-steam cycle, type Hirn. For increasing its efficiency, it has regenerative feed water preheating and steam reheating. We compared, energetic and exergetic, two types of cycles, using a numerical model with iterative structure, developed by the authors. The results showed that the simplified design achieves practically the same thermodynamic performances with the advanced one.

  6. Performance Evaluation of HP/ORC (Heat Pump/Organic Rankine Cycle) System with Optimal Control of Sensible Thermal Storage

    DEFF Research Database (Denmark)

    Do Carmo, Carolina Madeira Ramos; Dumont, Olivier; Nielsen, Mads Pagh

    2016-01-01

    energy in periods of no thermal energy demand and reverses the heat pump cycle to supply electrical power. A dynamic model based on empirical data of this system is used to determine the annual performance. Furthermore, this work assesses the benefits of different control strategies that address...... of the users. Results show that real load control logic can lessen the adverse effects of cycling in the compressor of the system as well as increase the thermal demand (up to 33%) and the electrical demand (max. 8.4%) covered by renewable energy (solar). However, the extension of these improvements is highly...

  7. Experimental Assessment of a Helical Coil Heat Exchanger Operating at Subcritical and Supercritical Conditions in a Small-Scale Solar Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Marija Lazova

    2017-05-01

    Full Text Available In this study, the performance of a helical coil heat exchanger operating at subcritical and supercritical conditions is analysed. The counter-current heat exchanger was specially designed to operate at a maximal pressure and temperature of 42 bar and 200 °C, respectively. The small-scale solar organic Rankine cycle (ORC installation has a net power output of 3 kWe. The first tests were done in a laboratory where an electrical heater was used instead of the concentrated photovoltaic/thermal (CPV/T collectors. The inlet heating fluid temperature of the water was 95 °C. The effects of different parameters on the heat transfer rate in the heat exchanger were investigated. Particularly, the performance analysis was elaborated considering the changes of the mass flow rate of the working fluid (R-404A in the range of 0.20–0.33 kg/s and the inlet pressure varying from 18 bar up to 41 bar. Hence, the variation of the heat flux was in the range of 5–9 kW/m2. The results show that the working fluid’s mass flow rate has significant influence on the heat transfer rate rather than the operational pressure. Furthermore, from the comparison between the experimental results with the heat transfer correlations from the literature, the experimental results fall within the uncertainty range for the supercritical analysis but there is a deviation of the investigated subcritical correlations.

  8. Exergetic and environmental impact assessments of an integrated organic Rankine cycle with a biomass combustor for combined cooling, heating and power production

    Energy Technology Data Exchange (ETDEWEB)

    Al-Sulaiman, F.A. [Carleton Univ., Ottawa, ON (Canada). Dept. of Mechanical and Aerospace Engineering; Hamdullahpur, F. [Waterloo Univ., ON (Canada). Dept. of Mechanical and Mechatronics Engineering; Dincer, I. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada). Faculty of Engineering and Applied Science

    2010-07-01

    A trigeneration thermal system produces cooling, heating and power from the same source. In trigeneration plants, waste heat is used for heating and cooling. In this paper, exergetic and environmental impact analyses of a trigeneration system based on an integrated organic Rankine cycle (ORC) with a biomass combustor were conducted. The analyses were extended to include electrical-power, cooling-cogeneration and heating-cogeneration cases. The objective was to understand the working phenomena of the proposed system, and identify and quantify the sources of the irreversibilities in the system associated with each component. The environmental impact of the proposed system was also quantified. The exergy efficiency, exergy destruction rate and carbon dioxide (CO{sub 2}) emissions were examined under the variations of pump inlet temperature and turbine inlet pressure. The results showed that exergy efficiency increased to 27 per cent when trigeneration was used as compared 11 per cent when the electrical power system was used. The main two sources of exergy destruction were the biomass combustor and the ORC evaporator. Emissions of CO{sub 2} were much higher in the case of the the electrical-power system compared to the trigeneration system. 11 refs., 1 tab., 8 figs.

  9. Preliminary Development of a Free Piston Expander–Linear Generator for Small-Scale Organic Rankine Cycle (ORC Waste Heat Recovery System

    Directory of Open Access Journals (Sweden)

    Gaosheng Li

    2016-04-01

    Full Text Available A novel free piston expander-linear generator (FPE-LG integrated unit was proposed to recover waste heat efficiently from vehicle engine. This integrated unit can be used in a small-scale Organic Rankine Cycle (ORC system and can directly convert the thermodynamic energy of working fluid into electric energy. The conceptual design of the free piston expander (FPE was introduced and discussed. A cam plate and the corresponding valve train were used to control the inlet and outlet valve timing of the FPE. The working principle of the FPE-LG was proven to be feasible using an air test rig. The indicated efficiency of the FPE was obtained from the p–V indicator diagram. The dynamic characteristics of the in-cylinder flow field during the intake and exhaust processes of the FPE were analyzed based on Fluent software and 3D numerical simulation models using a computation fluid dynamics method. Results show that the indicated efficiency of the FPE can reach 66.2% and the maximal electric power output of the FPE-LG can reach 22.7 W when the working frequency is 3 Hz and intake pressure is 0.2 MPa. Two large-scale vortices are formed during the intake process because of the non-uniform distribution of velocity and pressure. The vortex flow will convert pressure energy and kinetic energy into thermodynamic energy for the working fluid, which weakens the power capacity of the working fluid.

  10. Ideal Point Design and Operation of CO2-Based Transcritical Rankine Cycle (CTRC System Based on High Utilization of Engine’s Waste Heats

    Directory of Open Access Journals (Sweden)

    Lingfeng Shi

    2017-10-01

    Full Text Available This research conducted a study specially to systematically analyze combined recovery of exhaust gas and engine coolant and related influence mechanism, including a detailed theoretical study and an assistant experimental study. In this research, CO2-based transcritical Rankine cycle (CTRC was used for fully combining the wastes heats. The main objective of theoretical research was to search an ‘ideal point’ of the recovery system and related influence mechanism, which was defined as operating condition of complete recovery of two waste heats. The theoretical methodology of this study could also provide a design reference for effective combined recovery of two or multiple waste heats in other fields. Based on a kW-class preheated CTRC prototype that was designed by the ‘ideal point’ method, an experimental study was conducted to verify combined utilization degree of two engine waste heats by the CTRC system. The operating results showed that the prototype can gain 44.4–49.8 kW and 22.7–26.7 kW heat absorption from exhaust gas and engine coolant, respectively. To direct practical operation, an experimental optimization work on the operating process was conducted for complete recovery of engine coolant exactly, which avoided deficient or excessive recovery.

  11. Studi Numerik Dua Dimensi Labyrinth Seal Turbin Uap Organic Rankine Cycle (ORC Type Straight-Through dengan Variasi Tekanan Inlet, Kecepatan Putaran Poros, Jarak Pitch, dan Tinggi Rongga

    Directory of Open Access Journals (Sweden)

    Fungki Setyo Yulianto

    2013-03-01

    Full Text Available ORC (Organic Rankine Cycle merupakan salah satu sistem pembangkit tenaga yang mampu memanfaatkan waste energy dengan menggunakan fluida organik yang mampu menguap pada temperatur dan tekanan rendah. Salah satu komponen utama pada sistem ORC adalah Turbin. Untuk mendapatkan efisiensi yang maksimal,  kebocoran fluida pada turbin uap harus di minimalisir. Untuk itulah di perlukan penggunaan labyrinth seal untuk mengurai kebocoran fluida R123 pada turbin uap ORC. Pada dunia Industri jenis labyrinth seal sangat banyak sekali, salah satunya adalah labyrinth seal tipe Straight-Through. Penelitian ini dilakukan dengan metode numerik (CFD software Fluent. Penelitian ini menggunakan variasi tekanan inlet yaitu 5, 10 dan 15 bar, putaran poros 0, 1500 dan 3000 rpm, panjang pitch 4 mm, 6 mm, 8 mm, 10 mm, serta tinggi rongga 3,415 mm, 3,915 mm dan 5,915 mm. Simulasi menggunakan model turbulensi k-ε RNG. Pada variasi tekanan inlet laju kebocoran paling besar terjadi pada tekanan 15 bar. Pada variasi putaran poros laju kebocoran terjadi berubah secara signifikan pada setiap variasi. Pada variasi tinggi rongga laju kebocoran paling kecil terjadi pada tinggi rongga 3,415 mm. Pada variasi panjang pitch, laju kebocoran paling kecil terjadi pada panjang pitch 10 mm.

  12. Milestone Report #2: Direct Evaporator Leak and Flammability Analysis Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna Post [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-09-01

    The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammable hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.

  13. Modeling and Experimental Validation of a Volumetric Expander Suitable for Waste Heat Recovery from an Automotive Internal Combustion Engine Using an Organic Rankine Cycle with Ethanol

    Directory of Open Access Journals (Sweden)

    José Galindo

    2016-04-01

    Full Text Available Waste heat recovery (WHR in exhaust gas flow of automotive engines has proved to be a useful path to increase the overall efficiency of internal combustion engines (ICE. Recovery potentials of up to 7% are shown in several works in the literature. However, most of them are theoretical estimations. Some present results from prototypes fed by steady flows generated in an auxiliary gas tank and not with actual engine exhaust gases. This paper deals with the modeling and experimental validation of an organic Rankine cycle (ORC with a swash-plate expander integrated in a 2 L turbocharged petrol engine using ethanol as working fluid. A global simulation model of the ORC was developed with a maximum difference of 5%, validated with experimental results. Considering the swash-plate as the main limiting factor, an additional specific submodel was implemented to model the physical phenomena in this element. This model allows simulating the fluid dynamic behavior of the swash-plate expander using a 0D model (Amesim. Differences up to 10.5% between tests and model results were found.

  14. Thermoeconomic Evaluation of Modular Organic Rankine Cycles for Waste Heat Recovery over a Broad Range of Heat Source Temperatures and Capacities

    Directory of Open Access Journals (Sweden)

    Markus Preißinger

    2017-02-01

    Full Text Available Industrial waste heat recovery by means of an Organic Rankine Cycle (ORC can contribute to the reduction of CO2 emissions from industries. Before market penetration, high efficiency modular concepts have to be developed to achieve appropriate economic value for industrial decision makers. This paper aims to investigate modularly designed ORC systems from a thermoeconomic point of view. The main goal is a recommendation for a suitable chemical class of working fluids, preferable ORC design and a range of heat source temperatures and thermal capacities in which modular ORCs can be economically feasible. For this purpose, a thermoeconomic model has been developed which is based on size and complexity parameters of the ORC components. Special emphasis has been laid on the turbine model. The paper reveals that alkylbenzenes lead to higher exergetic efficiencies compared to alkanes and siloxanes. However, based on the thermoeconomic model, the payback periods of the chemical classes are almost identical. With the ORC design, the developed model and the boundary conditions of this study, hexamethyldisiloxane is a suitable working fluid and leads to a payback period of less than 5 years for a heat source temperature of 400 to 600 °C and a mass flow rate of the gaseous waste heat stream of more than 4 kg/s.

  15. Working Fluid Stability in Large-Scale Organic Rankine Cycle-Units Using Siloxanes—Long-Term Experiences and Fluid Recycling

    Directory of Open Access Journals (Sweden)

    Tobias G. Erhart

    2016-05-01

    Full Text Available The results in this work show the influence of long-term operation on the decomposition of working fluids in eight different organic rankine cycle (ORC power plants (both heat-led and electricity-led in a range of 900 kW el to 2 MW el . All case study plants are using octamethyltrisiloxane (MDM as a working fluid; the facilities are between six to 12 years old. Detailed analyses, including the fluid distribution throughout the cycle, are conducted on one system. All presented fluid samples are analyzed via head space gas chromatography mass spectrometry (HS-GC-MS. Besides the siloxane composition, the influence of contaminants, such as mineral oil-based lubricants (and their components, is examined. In most cases, the original working fluid degrades to fractions of siloxanes with a lower boiling point (low boilers and fractions with a higher boiling point (high boilers. As a consequence of the analyses, a new fluid recycling and management system was designed and tested in one case study plant (Case Study #8. Pre-post comparisons of fluid samples prove the effectiveness of the applied methods. The results show that the recovery of used working fluid offers an alternative to the purchase of fresh fluid, since operating costs can be significantly reduced. For large facilities, the prices for new fluid range from € 15 per liter (in 2006 to € 22 per liter (in 2013, which is a large reinvestment, especially in light of filling volumes of 4000 liters to 7000 liters per unit. Using the aforementioned method, a price of € 8 per liter of recovered MDM can be achieved.

  16. Preliminary Design of Compact Condenser in an Organic Rankine Cycle System for the Low Grade Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Roberto Capata

    2014-11-01

    Full Text Available The aim of this paper is to present a thermodynamic cycle for the production of electrical power in the 2–5 kW range, suitable for all types of thermally propelled vehicles. The sensible heat recovered from the exhaust gases feeds the energy recovery system, which is able to produce sufficient power to sustain the air conditioning system or other auxiliaries. The working fluids R134a and R245fa have been used in the ORC system, and the systems are simulated by CAMEL-ProTM software. The cycles are generated starting from the same heat source: the exhaust gas of a typical 2.0 L Diesel engine (or from a small size turbine engine. The design of the condenser has been performed to obtain a very compact component, evaluating the heat exchanger tube and fins type design. Through empirical formulas, the area of heat exchange, the heat required to exchange and the pressure drop in the element have been calculated. A commercial software package is used to build the model of the condenser, then a thermal and mechanical analysis and a CFD analysis are realized to estimate the heat exchange. Finally the evaluations, the possible future studies and possible improvements of the system are shown.

  17. Proliferation resistance fuel cycle technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. S.; Ko, W. I

    1999-02-01

    The issues of dual use in nuclear technology are analysed for nuclear fuel cycle with special focus on uranium enrichment and spent fuel reprocessing which are considered as the most sensitive components in terms of vulnerability to diversion. Technical alternatives to mitigrate the vulnerability, as has been analysed in depth during the NASAP and INFCE era in the late seventies, are reviewed to characterize the DUPIC fuel cycle alternative. On the other hand, the new realities in nuclear energy including the disposition of weapon materials as a legacy of cold war are recast in an angle of nuclear proliferation resistance and safeguards with a discussion on the concept of spent fuel standard concept and its compliance with the DUPIC fuel cycle technology. (author)

  18. A hybrid solar photovoltaic-wind turbine-Rankine cycle for electricity generation in Turkish Republic of Northern Cyprus

    Directory of Open Access Journals (Sweden)

    Samuel Asumadu-Sarkodie

    2016-12-01

    Full Text Available This paper presents an energy demand model by designing a hybrid solar-wind-thermal power generation system of the Turkish Republic of Northern Cyprus, a promising substitute for the expensive battery banks. The study models the future energy demand of Turkish Republic of Northern Cyprus based on the IPCC emissions scenario A1B and A2 by designing a new hybrid solar-wind-thermal power system that satisfies the current and future requirements of firm capacity during peak periods. The study suggests an improvement in a hybrid solar-wind-thermal power system performance by predicting reliable outputs that can integrate renewable energy technologies to conventional power generation. The energy consumption prediction model emphasizes the energy requirement that has a growing demand from 300 to 400 GWh in scenario A1B and 150–450 GWh in scenario A2 from 2010 to 2050. The proposed design can meet 400 GWh of electricity demand in TRNC based on IPCC scenario A1B and 450 GWh of electricity demand in TRNC based on IPCC scenario A2. The percentage contribution of solar, wind and thermal energy for 2010, 2020, 2030, 2040 and 2050 are presented along with CO2 emissions and water consumption for each of the years.

  19. Comparative Evaluation of Integrated Waste Heat Utilization Systems for Coal-Fired Power Plants Based on In-Depth Boiler-Turbine Integration and Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Shengwei Huang

    2018-01-01

    Full Text Available To maximize the system-level heat integration, three retrofit concepts of waste heat recovery via organic Rankine cycle (ORC, in-depth boiler-turbine integration, and coupling of both are proposed, analyzed and comprehensively compared in terms of thermodynamic and economic performances. For thermodynamic analysis, exergy analysis is employed with grand composite curves illustrated to identify how the systems are fundamentally and quantitatively improved, and to highlight key processes for system improvement. For economic analysis, annual revenue and investment payback period are calculated based on the estimation of capital investment of each component to identify the economic feasibility and competitiveness of each retrofit concept proposed. The results show that the in-depth boiler-turbine integration achieves a better temperature match of heat flows involved for different fluids and multi-stage air preheating, thus a significant improvement of power output (23.99 MW, which is much larger than that of the system with only ORC (6.49 MW. This is mainly due to the limitation of the ultra-low temperature (from 135 to 75 °C heat available from the flue gas for ORC. The thermodynamic improvement is mostly contributed by the reduction of exergy destruction within the boiler subsystem, which is eventually converted to mechanical power; while the exergy destruction within the turbine system is almost not changed for the three concepts. The selection of ORC working fluids is performed to maximize the power output. Due to the low-grade heat source, the cycle with R11 offers the largest additional net power generation but is not significantly better than the other preselected working fluids. Economically, the in-depth boiler-turbine integration is the most economic completive solution with a payback period of only 0.78 year. The ORC concept is less attractive for a sole application due to a long payback time (2.26 years. However, by coupling both

  20. Technology development life cycle processes.

    Energy Technology Data Exchange (ETDEWEB)

    Beck, David Franklin

    2013-05-01

    This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

  1. A proposal for the modular integration of the renewable energy sources, via hydrogen, and the Rankine power cycle; Una propuesta de integracion modular de las fuentes de energia renovables, via hidrogeno, y el ciclo de potencia Rankine

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Dirzo, Rafael

    2004-07-01

    This thesis synthesizes the state-of-the-art of the modular integration of the renewable energy sources and the Ranking power cycle. This is possible to obtain due to the development of the hydrogen production technologies and with it the chemical storage of the energies solar, Aeolian (wind) and tidal, among others. The purpose of this thesis is the assessment of hydrogen as fuel, its obtaining through the breaking of the water molecule using the renewable energies and the thermodynamic analysis of two prototypes for its energy conversion into electricity and power, voltage and fixed frequency: the first one at laboratory scale of 800 W and the second one, on industrial scale of 1 GW of power. Included here is the synthesis of the increasing bibliography on the development of the hydrogen technologies and the renewable energies, passing through the mass and energy balance in the power cycles until proposing, at the level of Process Flow Charts of the results of the proposed prototypes. The products show the possibility of constructing and operating the experimental prototype, whereas the thermodynamic analysis suggests that the industrial prototype is viable. The economic analysis of both proposals is part of a doctorate project in process. [Spanish] Esta tesis sintetiza el estado del arte de la integracion modular de las fuentes de energia renovables y el ciclo de potencia Ranking. Esto es posible lograrlo debido al desarrollo de las tecnologias de produccion de hidrogeno y con ello el almacenamiento quimico de las energias solar, eolica y maremotriz, entre otras. Es objetivo de esta tesis la valoracion del hidrogeno como combustible, su obtencion a traves del rompimiento de la molecula del agua utilizando las energias renovables y el analisis termodinamico de dos prototipo para su conversion energetica en electricidad a potencia, voltaje y frecuencia fijos: el primero a escala de laboratorio de 800 W y el segundo, a escala industrial de 1 GW de potencia. Se

  2. Performance Analysis of an Evaporator for a Diesel Engine–Organic Rankine Cycle (ORC Combined System and Influence of Pressure Drop on the Diesel Engine Operating Characteristics

    Directory of Open Access Journals (Sweden)

    Chen Bei

    2015-06-01

    Full Text Available The main purpose of this research is to analyze the performance of an evaporator for the organic Rankine cycle (ORC system and discuss the influence of the evaporator on the operating characteristics of diesel engine. A simulation model of fin-and-tube evaporator of the ORC system is established by using Fluent software. Then, the flow and heat transfer characteristics of the exhaust at the evaporator shell side are obtained, and then the performance of the fin-and-tube evaporator of the ORC system is analyzed based on the field synergy principle. The field synergy angle (β is the intersection angle between the velocity vector and the temperature gradient. When the absolute values of velocity and temperature gradient are constant and β < 90°, heat transfer enhancement can be achieved with the decrease of the β. When the absolute values of velocity and temperature gradient are constant and β >90°, heat transfer enhancement can be achieved with the increase of the β. Subsequently, the influence of the evaporator of the ORC system on diesel engine performance is studied. A simulation model of the diesel engine is built by using GT–Power software under various operating conditions, and the variation tendency of engine power, torque, and brake specific fuel consumption (BSFC are obtained. The variation tendency of the power output and BSFC of diesel engine–ORC combined system are obtained when the evaporation pressure ranges from 1.0 MPa to 3.5 MPa. Results show that the field synergy effect for the areas among the tube bundles of the evaporator main body and the field synergy effect for the areas among the fins on the windward side are satisfactory. However, the field synergy effect in the areas among the fins on the leeward side is weak. As a result of the pressure drop caused by the evaporator of the ORC system, the diesel engine power and torque decreases slightly, whereas the BSFC increases slightly with the increase of exhaust back

  3. Thorium nuclear fuel cycle technology

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Tae Yoon; Do, Jae Bum; Choi, Yoon Dong; Park, Kyoung Kyum; Choi, In Kyu; Lee, Jae Won; Song, Woong Sup; Kim, Heong Woo

    1998-03-01

    Since thorium produces relatively small amount of TRU elements after irradiation in the reactor, it is considered one of possible media to mix with the elements to be transmuted. Both solid and molten-salt thorium fuel cycles were investigated. Transmutation concepts being studied involved fast breeder reactor, accelerator-driven subcritical reactor, and energy amplifier with thorium. Long-lived radionuclides, especially TRU elements, could be separated from spent fuel by a pyrochemical process which is evaluated to be proliferation resistance. Pyrochemical processes of IFR, MSRE and ATW were reviewed and evaluated in detail, regarding technological feasibility, compatibility of thorium with TRU, proliferation resistance, their economy and safety. (author). 26 refs., 22 figs

  4. Performance of a reversible heat pump/organic Rankine cycle unit coupled with a passive house to get a positive energy building

    DEFF Research Database (Denmark)

    Dumont, Olivier; Carmo, Carolina; Fontaine, Valentin

    2016-01-01

    of the system under different operational conditions. Sensitivity studies include: building envelope, climate, appliances, lighting and heat demand profiles. It is concluded that the HP/ORC unit can turn a single-family house into a PEB under certain weather conditions (electrical production of 3012 k......This paper presents an innovative technology that can be used to deliver more renewable electricity production than the total electrical consumption of a building while covering the heat demand on a yearly basis. The technology concept uses a heat pump (HP), slightly modified to revert its cycle...

  5. Life Cycle Assessment of Slurry Management Technologies

    DEFF Research Database (Denmark)

    Wesnæs, Marianne; Wenzel, Henrik; Petersen, Bjørn Molt

    Cycle perspective. Through this the companies can evaluate the environmental benefits and disadvantages of introducing a specific technology for slurry management. From a societal perspective the results can contribute to a clarification of which slurry management technologies (or combination......This report contains the results of Life Cycle Assessments of two slurry management technologies - acidification and decentred incineration. The LCA foundation can be used by the contributing companies for evaluating the environmental sustainability of a specific technology from a holistic Life...... of technologies) having the largest potential for reducing the overall environmental impacts....

  6. Comparing technological hype cycles: Towards a theory

    NARCIS (Netherlands)

    Lente, H. van; Spitters, C.; Peine, A.

    2013-01-01

    The notion of ‘hype’ iswidely used and represents a temptingway to characterize developments in technological fields. The term appears in business as well as in academic domains. Consultancy firms offer technological hype cycle models to determine the state of development of technological fields

  7. Low-power heat pump systems combining two organic Rankine cycles; Applications de pompe a chaleur. A l'exemple des systemes ORC-ORC de petite puissance

    Energy Technology Data Exchange (ETDEWEB)

    Demierre, J.

    2009-07-01

    In this basic article that includes many diagrams and equations illustrating a research project conducted at the Swiss Federal Institute of Technology (EPFL) in Lausanne, Switzerland the author describes the first part of his thesis. A new concept of thermally driven heat pump (TDHP) is presented, which could be a real alternative to today's heating systems in buildings that are mainly based on less efficient fuel-fired boilers. Nowadays, the heat pump market is dominated by two kinds of systems: the electrically driven vapor compression heat pumps, which are the most widely used in residential heating applications, and the thermally driven heat pumps that are usually based on a sorption process. In this research project, the investigated TDHP - designated by ORC-ORC - is based on the coupling of a vapor compression heat pump cycle and an organic Rankine cycle (ORC). The studied concept uses a single stage centrifugal compressor directly coupled to a single stage radial inflow turbine. The shaft is rotating on gas bearings, which allows the system to be oil-free. Like most of the other TDHP's, this system has the advantage to work with a variety of fuels or heat sources like wood pellets, natural gas, solar heat, geothermal heat or waste heat. The concept studied in this work is a gas fired system for space heating and domestic hot water production in small residential buildings (power range: 20 kW). A systematic approach has been used to theoretically evaluate, in terms of energy efficiency, the potential of ORC-ORC systems. The method is based on the optimization which allows identifying the best configurations at each design step with respect to the designer choices. This approach is divided into three steps. In the first step, a model of the complete system has been developed based on a process integration approach. This step allows to quickly determine whether the system is potentially attractive or not, for given conditions, before going deeper into

  8. Fuel Cycle Technologies 2014 Achievement Report

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bonnie C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    The Fuel Cycle Technologies (FCT) program supports the Department of Energy’s (DOE’s) mission to: “Enhance U.S. security and economic growth through transformative science, technology innovation, and market solutions to meet our energy, nuclear security, and environmental challenges.” Goal 1 of DOE’s Strategic Plan is to innovate energy technologies that enhance U.S. economic growth and job creation, energy security, and environmental quality. FCT does this by investing in advanced technologies that could transform the nuclear fuel cycle in the decades to come. Goal 2 of DOE’s Strategic Plan is to strengthen national security by strengthening key science, technology, and engineering capabilities. FCT does this by working closely with the National Nuclear Security Administration and the U.S Department of State to develop advanced technologies that support the Nation’s nuclear nonproliferation goals.

  9. Toluene stability Space Station Rankine power system

    Science.gov (United States)

    Havens, V. N.; Ragaller, D. R.; Sibert, L.; Miller, D.

    1987-01-01

    A dynamic test loop is designed to evaluate the thermal stability of an organic Rankine cycle working fluid, toluene, for potential application to the Space Station power conversion unit. Samples of the noncondensible gases and the liquid toluene were taken periodically during the 3410 hour test at 750 F peak temperature. The results obtained from the toluene stability loop verify that toluene degradation will not lead to a loss of performance over the 30-year Space Station mission life requirement. The identity of the degradation products and the low rates of formation were as expected from toluene capsule test data.

  10. HUMID AIR TURBINE CYCLE TECHNOLOGY DEVELOPMENT PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Richard Tuthill

    2002-07-18

    The Humid Air Turbine (HAT) Cycle Technology Development Program focused on obtaining HAT cycle combustor technology that will be the foundation of future products. The work carried out under the auspices of the HAT Program built on the extensive low emissions stationary gas turbine work performed in the past by Pratt & Whitney (P&W). This Program is an integral part of technology base development within the Advanced Turbine Systems Program at the Department of Energy (DOE) and its experiments stretched over 5 years. The goal of the project was to fill in technological data gaps in the development of the HAT cycle and identify a combustor configuration that would efficiently burn high moisture, high-pressure gaseous fuels with low emissions. The major emphasis will be on the development of kinetic data, computer modeling, and evaluations of combustor configurations. The Program commenced during the 4th Quarter of 1996 and closed in the 4th Quarter of 2001. It teamed the National Energy Technology Laboratory (NETL) with P&W, the United Technologies Research Center (UTRC), and a subcontractor on-site at UTRC, kraftWork Systems Inc. The execution of the program started with bench-top experiments that were conducted at UTRC for extending kinetic mechanisms to HAT cycle temperature, pressure, and moisture conditions. The fundamental data generated in the bench-top experiments was incorporated into the analytical tools available at P&W to design the fuel injectors and combustors. The NETL then used the hardware to conduct combustion rig experiments to evaluate the performance of the combustion systems at elevated pressure and temperature conditions representative of the HAT cycle. The results were integrated into systems analysis done by kraftWork to verify that sufficient understanding of the technology had been achieved and that large-scale technological application and demonstration could be undertaken as follow-on activity. An optional program extended the

  11. Liquid-metal binary cycles for stationary power

    Science.gov (United States)

    Gutstein, M.; Furman, E. R.; Kaplan, G. M.

    1975-01-01

    The use of topping cycles to increase electric power plant efficiency is discussed, with particular attention to mercury and alkali metal Rankine cycle systems that could be considered for topping cycle applications. An overview of this technology, possible system applications, the required development, and possible problem areas is presented.

  12. The dish-Rankine SCSTPE program (Engineering Experiment no. 1)

    Science.gov (United States)

    Pons, R. L.; Grigsby, C. E.

    1980-05-01

    Activities planned for phase 2 Of the Small Community Solar Thermal Power Experiment (PFDR) program are summarized with emphasis on a dish-Rankine point focusing distributed receiver solar thermal electric system. Major design efforts include: (1) development of an advanced concept indirect-heated receiver;(2) development of hardware and software for a totally unmanned power plant control system; (3) implementation of a hybrid digital simulator which will validate plant operation prior to field testing; and (4) the acquisition of an efficient organic Rankine cycle power conversion unit. Preliminary performance analyses indicate that a mass-produced dish-Rankine PFDR system is potentially capable of producing electricity at a levelized busbar energy cost of 60 to 70 mills per KWh and with a capital cost of about $1300 per KW.

  13. Hackers against technology: Critique and recuperation in technological cycles.

    Science.gov (United States)

    Maxigas

    2017-12-01

    I offer an interpretation of hackers' technological choices through a theoretical framework of critique and recuperation in technological cycles, building on prior research that brings the pragmatic sociology of Boltanski and Chiapello to bear on matters in Science and Technology Studies. I argue that contextualizing technology choices in the development of capitalism through innovation illuminates their political significance. I start with the counterintuitive observation that some browser extensions popular with hackers, like RequestPolicy, make it considerably harder for them to look at websites. This observation showcases the Luddite aspects of hackerdom, in that they are willing to 'break' popular websites that would otherwise cheat on the user. In line with an undercurrent of hacker studies, in this case study I find hackers fighting technological progress they see as social decline.

  14. Selecting technology to rev up your revenue cycle.

    Science.gov (United States)

    Pillittere, Scott A

    2006-02-01

    Five steps can help you select the right technology to boost your revenue cycle: Identify opportunities for a tech solution. Define your revenue cycle's business needs. Review all available technologies. Evaluate choices. Select a system.

  15. Technology sourcing over the technology life cycle : A study about the moderating effect of the technology life cycle on the relation between technology sourcing and firm performance

    NARCIS (Netherlands)

    Stolwijk, C.C.M.

    2012-01-01

    How do external and internal technology sourcing influence the innovative and market performance of firms over the technology life-cycle? The impact of technology sourcing on firm performance during different phases of the technology life cycle represents a gap in academic literature. Practically,

  16. Methods of increasing net work output of organic Rankine cycles for low-grade waste heat recovery with a detailed analysis using a zeotropic working fluid mixture and scroll expander

    Science.gov (United States)

    Woodland, Brandon Jay

    An organic Rankine cycle (ORC) is a thermodynamic cycle that is well-suited for waste heat recovery. It is generally employed for waste heat with temperatures in the range of 80 °C -- 300 °C. When the application is strictly to convert waste heat into work, thermal efficiency is not recommended as a key performance metric. In such an application, maximization of the net power output should be the objective rather than maximization of the thermal efficiency. Two alternative cycle configurations that can increase the net power produced from a heat source with a given temperature and flow rate are proposed and analyzed. These cycle configurations are 1) an ORC with two-phase flash expansion and 2) an ORC with a zeotropic working fluid mixture (ZRC). A design-stage ORC model is presented for consistent comparison of multiple ORC configurations. The finite capacity of the heat source and heat sink fluids is a key consideration in this model. Of all working fluids studied for the baseline ORC, R134a and R245fa yield the highest net power output from a given heat source. Results of the design-stage model indicate that the ORC with two-phase flash expansion offers the most improvement over the baseline ORC. However, the level of improvement that could be achieved in practice is highly uncertain due to the requirement of highly efficient two-phase expansion. The ZRC shows improvement over the baseline as long as the condenser fan power requirement is not negligible. At the highest estimated condenser fan power, the ZRC shows the most improvement, while the ORC with flash expansion is no longer beneficial. The ZRC was selected for detailed study because it does not require two-phase expansion. An experimental test rig was used to evaluate baseline ORC performance with R134a and with R245fa. The ZRC was tested on the same rig with a mixture of 62.5% R134a and 37.5% R245fa. The tested expander is a minimally-modified, of-the-shelf automotive scroll compressor. The high

  17. Waste heat recovery technologies for offshore platforms

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Benato, Alberto; Scolari, E.

    2014-01-01

    This article aims at finding the most suitable waste heat recovery technology for existing and future offshore facilities. The technologies considered in this work are the steam Rankine cycle, the air bottoming cycle and the organic Rankine cycle. A multi-objective optimization approach is employed...... to attain optimal designs for each bottoming unit by selecting specific functions tailored to the oil and gas sector, i.e. yearly CO2 emissions, weight and economic revenue. The test case is the gas turbine-based power system serving an offshore platform in the North Sea. Results indicate that the organic...

  18. Performance Analysis of Organic Rankine-vapor Compression Ice Maker Utilizing Food Industry Waste Heat

    OpenAIRE

    Bing Hu; Yuanshu Cao; Weibin Ma

    2015-01-01

    To develop the organic Rankine-vapor compression ice maker driven by food industry exhaust gases and engine cooling water, an organic Rankine-vapor compression cycle system was employed for ice making and a thermodynamic model was developed and the effects of working fluid types, hot water temperature and condensation temperature on the system performance were analyzed and the ice making capacity from unit mass hot water and unit power waste heat were evaluated. The calculated results show th...

  19. Rankine-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  20. Nant-De-Chatillon: electric power generation by ORC (organic Rankine cycle) using waste heat from the Chatillon biogas plant; Nant-de-Chatillon: Production d'electricite par ORC a partir des rejets de chaleur du site de methanisation de Chatillon. Resume

    Energy Technology Data Exchange (ETDEWEB)

    Kane, M.; Gay, B.

    2005-07-01

    This report prepared for the Swiss Federal Office of Energy (SFOE) describes the practical realisation and testing of a heat recovery system based on a one-stage organic Rankine cycle with R134a as the working fluid. The waste heat has a temperature of 95 {sup o}C and originates from a gas engine that powers a small co-generation plant fuelled with biogas produced on-site. Two similar cycles have been built, ORC1 with one and ORC2 with two turbines. Only ORC1 has been tested so far. The maximum efficiency measured in these tests was 6.64% (theoretical Carnot-efficiency: 17 %) and the electric power output was 5.0 kW. The problems encountered during commissioning are described and recommendations for further improvements are given.

  1. Identifying and Assessing Life-Cycle-Related Critical Technology Elements (CTEs) for Technology Readiness Assessments (TRAs)

    National Research Council Canada - National Science Library

    Mandelbaum, Jay

    2006-01-01

    .... Because these technologies are not emphasized in the current Technology Readiness Assessment (TRA) process this document is intended to improve the focus on life-cycle-related technologies in TRAs...

  2. Brayton-cycle heat exchanger technology program

    Science.gov (United States)

    Killackey, J. J.; Coombs, M. G.; Graves, R. F.; Morse, C. J.

    1976-01-01

    The following five tasks designed to advance this development of heat exchanger systems for close loop Brayton cycle power systems are presented: (1) heat transfer and pressure drop data for a finned tubular heat transfer matrix. The tubes are arranged in a triangular array with copper stainless steel laminate strips helically wound on the tubes to form a disk fin geometry; (2) the development of a modularized waste heat exchanger. Means to provide verified double containment are described; (3) the design, fabrication, and test of compact plate fin heat exchangers representative of full scale Brayton cycle recuperators; (4) the analysis and design of bellows suitable for operation at 1600 F and 200 psia for 1,000 cycles and 50,000 hours creep life; and (5) screening tests used to select a low cost braze alloy with the desirable attributes of a gold base alloy. A total of 22 different alloys were investigated; the final selection was Nicrobraz 30.

  3. The optimization of working cycles for HPDC technology

    OpenAIRE

    A. Herman; P. Zikmund

    2010-01-01

    The paper deals with problem of optimal used workplace for HPDC technology - mainly from aspects of operations sequence efficient of work cycle and planning of using and servicing of HPDC casting machine.

  4. The optimization of working cycles for HPDC technology

    Directory of Open Access Journals (Sweden)

    A. Herman

    2010-01-01

    Full Text Available The paper deals with problem of optimal used workplace for HPDC technology - mainly from aspects of operations sequence efficient of work cycle and planning of using and servicing of HPDC casting machine.

  5. Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review

    Directory of Open Access Journals (Sweden)

    Patrick Linke

    2015-05-01

    Full Text Available Efficient power generation from low to medium grade heat is an important challenge to be addressed to ensure a sustainable energy future. Organic Rankine Cycles (ORCs constitute an important enabling technology and their research and development has emerged as a very active research field over the past decade. Particular focus areas include working fluid selection and cycle design to achieve efficient heat to power conversions for diverse hot fluid streams associated with geothermal, solar or waste heat sources. Recently, a number of approaches have been developed that address the systematic selection of efficient working fluids as well as the design, integration and control of ORCs. This paper presents a review of emerging approaches with a particular emphasis on computer-aided design methods.

  6. Investment Specific Technology Shocks and Emerging Market Business Cycle Dynamics

    OpenAIRE

    Dogan, Aydan

    2017-01-01

    [eng] This article explores the role of investment specific technology shocks for emerging market business cycle fluctuations. The analysis is motivated by two key empirical facts; the presence of investment specific technical change in the post-war US economy together with the importance of investment goods for the emerging market imports. The goal of this paper is to quantify the contribution of the investment specific technical change in the US for the business cycles of an emerging countr...

  7. Technology Insights and Perspectives for Nuclear Fuel Cycle Concepts

    Energy Technology Data Exchange (ETDEWEB)

    S. Bays; S. Piet; N. Soelberg; M. Lineberry; B. Dixon

    2010-09-01

    The following report provides a rich resource of information for exploring fuel cycle characteristics. The most noteworthy trends can be traced back to the utilization efficiency of natural uranium resources. By definition, complete uranium utilization occurs only when all of the natural uranium resource can be introduced into the nuclear reactor long enough for all of it to undergo fission. Achieving near complete uranium utilization requires technologies that can achieve full recycle or at least nearly full recycle of the initial natural uranium consumed from the Earth. Greater than 99% of all natural uranium is fertile, and thus is not conducive to fission. This fact requires the fuel cycle to convert large quantities of non-fissile material into fissile transuranics. Step increases in waste benefits are closely related to the step increase in uranium utilization going from non-breeding fuel cycles to breeding fuel cycles. The amount of mass requiring a disposal path is tightly coupled to the quantity of actinides in the waste stream. Complete uranium utilization by definition means that zero (practically, near zero) actinide mass is present in the waste stream. Therefore, fuel cycles with complete (uranium and transuranic) recycle discharge predominately fission products with some actinide process losses. Fuel cycles without complete recycle discharge a much more massive waste stream because only a fraction of the initial actinide mass is burned prior to disposal. In a nuclear growth scenario, the relevant acceptable frequency for core damage events in nuclear reactors is inversely proportional to the number of reactors deployed in a fuel cycle. For ten times the reactors in a fleet, it should be expected that the fleet-average core damage frequency be decreased by a factor of ten. The relevant proliferation resistance of a fuel cycle system is enhanced with: decreasing reliance on domestic fuel cycle services, decreasing adaptability for technology misuse

  8. A Little TLC (Technology Learning Cycle) as a Means to Technology Integration.

    Science.gov (United States)

    Marra, Rose M.; Howland, Jane; Wedman, Judy; Diggs, Laura

    2003-01-01

    Discusses the need for elementary and secondary school teachers to integrate technology into the classroom and explains the University of Missouri's (Columbia, MO) technology-focused development program, the Technology Learning Cycle (TLC), for faculty who teach undergraduate teacher methods courses. Examines the application of the TLC to two…

  9. Illustrating anticipatory life cycle assessment for emerging photovoltaic technologies.

    Science.gov (United States)

    Wender, Ben A; Foley, Rider W; Prado-Lopez, Valentina; Ravikumar, Dwarakanath; Eisenberg, Daniel A; Hottle, Troy A; Sadowski, Jathan; Flanagan, William P; Fisher, Angela; Laurin, Lise; Bates, Matthew E; Linkov, Igor; Seager, Thomas P; Fraser, Matthew P; Guston, David H

    2014-09-16

    Current research policy and strategy documents recommend applying life cycle assessment (LCA) early in research and development (R&D) to guide emerging technologies toward decreased environmental burden. However, existing LCA practices are ill-suited to support these recommendations. Barriers related to data availability, rapid technology change, and isolation of environmental from technical research inhibit application of LCA to developing technologies. Overcoming these challenges requires methodological advances that help identify environmental opportunities prior to large R&D investments. Such an anticipatory approach to LCA requires synthesis of social, environmental, and technical knowledge beyond the capabilities of current practices. This paper introduces a novel framework for anticipatory LCA that incorporates technology forecasting, risk research, social engagement, and comparative impact assessment, then applies this framework to photovoltaic (PV) technologies. These examples illustrate the potential for anticipatory LCA to prioritize research questions and help guide environmentally responsible innovation of emerging technologies.

  10. Working fluids selection for fishing boats waste heat powered organic Rankine-vapor compression ice maker

    Science.gov (United States)

    Bu, Xianbiao; Wang, Lingbao; Li, Huashan

    2014-10-01

    To utilize waste heat from fishing boats, an organic Rankine cycle/vapor compression cycle system was employed for ice making and a thermodynamic model was developed. Six working fluids were selected and compared in order to identify suitable working fluids which may yield high system efficiencies. The calculated results show that R600a is most suitable working fluid through comprehensive comparison of efficiency, size parameter, pressure ratio, coefficient of performance, system pressure and safety.

  11. Vicious cycles: digital technologies and determinants of health in Australia.

    Science.gov (United States)

    Baum, Fran; Newman, Lareen; Biedrzycki, Katherine

    2014-06-01

    Digital technologies are increasingly important as ways to gain access to most of the important social determinants of health including employment, housing, education and social networks. However, little is known about the impact of the new technologies on opportunities for health and well-being. This paper reports on a focus group study of the impact of these technologies on people from low socio-economic backgrounds. We use Bourdieu's theories of social inequities and the ways in which social, cultural and economic capitals interact to reinforce and reproduce inequities to examine the ways in which digital technologies are contributing to these processes. Six focus group discussions with 55 people were held to examine their access to and views about using digital technologies. These data are analysed in light of Bourdieu's theory to determine how people's existing capitals shape their access to and use of digital technologies and what the implications of exclusion from the technologies are likely to be for the social determinants of health. The paper concludes that some people are being caught in a vicious cycle whereby lack of digital access or the inability to make beneficial use reinforces and amplifies existing disadvantage including low levels of reading and writing literacy. The paper concludes with a consideration of actions health promoters could take to interrupt this cycle and so contribute to reducing health inequities.

  12. Conversion of Low Quality Waste Heat to Electric Power with Small-Scale Organic Rankine Cycle (ORC) Engine/Generator Technology

    Science.gov (United States)

    2016-06-01

    simplified’ in the sense that it does not account for costs associated with financing (other than cost of money or discount rate) or taxes, or for...was completed in constant dollars (excluding inflation) per recommendations for non- financed projects in the BLCC model documentation and Handbook... startup costs. Labor & materials required to install (actual and projected for ‘typical’ installation) ElectraTherm, MUSE and deployment site

  13. Possible emissions from electricity and heat generation from geothermal energy by the use of F-gases in the energy conversion process by an Organic Rankine Cycle (ORC); Moegliche Emissionen bei der Strom- und Waermeerzeugung aus Geothermie durch den Einsatz von F-Gasen im Energiewandlungsprozess mittels ORC

    Energy Technology Data Exchange (ETDEWEB)

    Heberle, Florian; Obermeier, Andreas; Brueggemann, Dieter [Steinbeis-Transferzentrum - Angewandte Thermodynamik, Energie- und Verbrennungstechnik (ATEV), Bayreuth (Germany)

    2012-11-15

    In case of low temperature heat sources Organic Rankine Cycle (ORC) is next to Kalina Cycle one of the few thermodynamic cycles suitable for power generation. Optimization strategies provide a better glide matching of the temperature profiles of heat source or sink to the ORC compared to the standard cycle. This leads to an increase in efficiencies in the range of 15 % to 25 %. In this context, selection of suitable working fluids, two-stage expansion, supercritical cycles or the usage of zeotropic mixtures as working fluids has to be mentioned. Due to the use of fluorinated hydrocarbons, the number of potential fluids as well as the efficiency increase significantly. However, an increase in emissions due to leakages during operation, filling and disposal is associated with fluorinated fluids compared to natural hydrocarbons. Such emissions cannot be completely avoided and according to information of manufacturers and operators they are annually in the range of 1 % to 3 % of the capacity. Based on legal regulations recording of the use levels of fluorinated hydrocarbons in ORC systems according to UStatG and EU Regulation 842/2006 is obligatory. The recording obligation exists regarding the national emission inventory based on the framework convention on climate change. To evaluate potential greenhouse gas emissions by geothermal power plants, in this study different scenarios depending on rate of emission and number of power plants are calculated. If a development in geothermal power generation as predicted takes place, the emissions until the year 2030 are to be classified as low. In case of the technical-ecological potential with 2120 power plants and a rate of emission of 3 % the emissions are between 0.24 Million t/a and 3.02 Million t/a depending on the considered scenario. A comparison to the greenhouse gases by fluorinated hydrocarbons in the year 2009 with 15.6 Million t/a shows that the emissions for this number of power plants are definitely relevant

  14. Economic optimization of a Kalina cycle for a parabolic trough solar thermal power plant

    DEFF Research Database (Denmark)

    Modi, Anish; Kærn, Martin Ryhl; Andreasen, J. G.

    2015-01-01

    technology for the conversion of solar thermal energy into electricity. In this paper, a Kalina cycle and a steam Rankine cycle are compared in terms of the total capital investment cost for use in a parabolic trough solar thermal power plant without storage. In order to minimize the total capital investment...... cost of the Kalina cycle power plant (the solar field plus the power cycle), an optimization was performed by varying the turbine outlet pressure, the separator inlet temperature and the separator inlet ammonia mass fraction. All the heat exchangers were modelled as shell and tube type using suitable......The Kalina cycle has recently seen increased interest as a replacement for the more traditional steam Rankine cycle for geothermal, solar, ocean thermal energy conversion and waste heat recovery applications. The Kalina cycle uses a mixture of ammonia and water as the working fluid. The ammonia...

  15. Strategic research of advanced fuel cycle technologies in JNC

    Energy Technology Data Exchange (ETDEWEB)

    Kawata, T.; Fukushima, M.; Nomura, S. [Japan Nuclear Cycle Development Institute, Tokai Works (Japan)

    2000-07-01

    Key technologies for the future nuclear fuel cycle have been proposed and are being reviewed in JNC as a part of the Feasibility Study for an Advanced Fuel Cycle, which is to achieve a more flexible energy choice to satisfy a sustainable energy security and global environmental protection. The candidate reprocessing technologies are: 1) aqueous simplified PUREX process, 2) oxide or metallic electrowinning, and 3) fluoride volatilization for oxide, metal, or nitride fuels. The fuel fabrication methods being investigated are: 1) simplified pellet process, 2) sphere/vibro-packed process for MOX/MN fuel, and 3) casting for metal fuel. These candidate technologies are currently being compared based on past experiences, technical issues to be solved, industrial applicability for future plants, feasible options for MA/LLFP separation, and nonproliferation aspects. Alter two years of the present reviewing process, selected key technologies will be developed over the next five years to evaluate industrial applicability of reprocessing and fuel manufacturing processes for the advanced fuel cycle. (authors)

  16. Modular Trough Power Plant Cycle and Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Price, H.; Hassani, V.

    2002-01-01

    This report summarizes an analysis to reduce the cost of power production from modular concentrating solar power plants through a relatively new and exciting concept that merges two mature technologies to produce distributed modular electric power in the range of 500 to 1,500 kWe. These are the organic Rankine cycle (ORC) power plant and the concentrating solar parabolic (CSP) trough technologies that have been developed independent of each other over many years.

  17. Technologies for waste heat recovery in off-shore applications

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Haglind, Fredrik; Kandepu, Rambabu

    2013-01-01

    pressure level steam Rankine cycle employing the once-through heat recovery steam generator without bypass stack. We compare the three technologies considering the combined cycle thermal efficiency, the weight, the net present value, the profitability index and payback time. Both incomes related to CO2...... taxes and natural gas savings are considered. The results indicate that the Turboden 65-HRS unit is the optimal technology, resulting in a combined cycle thermal efficiency of 41.5% and a net present value of around 15 M$, corresponding to a payback time of approximately 4.5 years. The total weight...... that the once-trough single pressure steam cycle has a combined cycle thermal efficiency of 40.8% and net present value of 13.5 M$. The total weight of the steam Rankine cycle is estimated to be around 170 ton....

  18. Economic analysis of a dish-Rankine solar thermal power system

    Science.gov (United States)

    Pons, R. L.; Irwin, R. E.

    An analysis of the performance and costs of a first generation dish Rankine solar thermal power system for small community and industrial applications is presented. The system is of the point-focusing distributed receiver type, with distributed generation and employs multiple paraboloidal concentrators with organic Rankine cycle power conversion systems at the focus of each dish. Projected life cycle energy costs for a fully developed and mass produced system are shown to be competitive with costs projected in the near future for electricity generated by more conventional means. It is shown that: (1) the method of rating plant poer output has a minor influence on life cycle energy cost, (2) optimum dish size is greater than 12m, (3) energy cost is virtually independent of plant size above 1 MW sub e and (4) dish spacing and geometric arrangement can be optimized to reduce energy cost.

  19. Organic Rankine Kilowatt Isotope Power System. Final phase I report

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-15

    On 1 August 1975 under Department of Energy Contract EN-77-C-02-4299, Sundstrand Energy Systems commenced development of a Kilowatt Isotope Power System (KIPS) directed toward satisfying the higher power requirements of satellites of the 1980s and beyond. The KIPS is a /sup 238/PuO/sub 2/ fueled organic Rankine cycle turbine power system which will provide design output power in the range of 500 to 2000 W/sub (e)/ with a minimum of system changes. The principal objectives of the Phase 1 development effort were to: conceptually design a flight system; design a Ground Demonstration System (GDS) that is prototypic of the flight system in order to prove the feasibility of the flight system design; fabricate and assemble the GDS; and performance and endurance test the GDS using electric heaters in lieu of the isotope heat source. Results of the work performed under the Phase 1 contract to 1 July 1978 are presented.

  20. Solar-powered Rankine heat pump for heating and cooling

    Science.gov (United States)

    Rousseau, J.

    1978-01-01

    The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.

  1. Gas Foil Bearing Technology Advancements for Closed Brayton Cycle Turbines

    Science.gov (United States)

    Howard, Samuel A.; Bruckner, Robert J.; DellaCorte, Christopher; Radil, Kevin C.

    2007-01-01

    Closed Brayton Cycle (CBC) turbine systems are under consideration for future space electric power generation. CBC turbines convert thermal energy from a nuclear reactor, or other heat source, to electrical power using a closed-loop cycle. The operating fluid in the closed-loop is commonly a high pressure inert gas mixture that cannot tolerate contamination. One source of potential contamination in a system such as this is the lubricant used in the turbomachine bearings. Gas Foil Bearings (GFB) represent a bearing technology that eliminates the possibility of contamination by using the working fluid as the lubricant. Thus, foil bearings are well suited to application in space power CBC turbine systems. NASA Glenn Research Center is actively researching GFB technology for use in these CBC power turbines. A power loss model has been developed, and the effects of a very high ambient pressure, start-up torque, and misalignment, have been observed and are reported here.

  2. Cycle update : advanced fuels and technologies for emissions reduction

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, G. [National Research Council of Canada, Ottawa, ON (Canada)

    2009-07-01

    This paper provided a summary of key achievements of the Program of Energy Research and Development advanced fuels and technologies for emissions reduction (AFTER) program over the funding cycle from fiscal year 2005/2006 to 2008/2009. The purpose of the paper was to inform interested parties of recent advances in knowledge and in science and technology capacities in a concise manner. The paper discussed the high level research and development themes of the AFTER program through the following 4 overarching questions: how could advanced fuels and internal combustion engine designs influence emissions; how could emissions be reduced through the use of engine hardware including aftertreatment devices; how do real-world duty cycles and advanced technology vehicles operating on Canadian fuels compare with existing technologies, models and estimates; and what are the health risks associated with transportation-related emissions. It was concluded that the main issues regarding the use of biodiesel blends in current technology diesel engines are the lack of consistency in product quality; shorter shelf life of biodiesel due to poorer oxidative stability; and a need to develop characterization methods for the final oxygenated product because most standard methods are developed for hydrocarbons and are therefore inadequate. 2 tabs., 13 figs.

  3. Advanced Electrochemical Technologies for Hydrogen Production by Alternative Thermochemical Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lvov, Serguei; Chung, Mike; Fedkin, Mark; Lewis, Michele; Balashov, Victor; Chalkova, Elena; Akinfiev, Nikolay; Stork, Carol; Davis, Thomas; Gadala-Maria, Francis; Stanford, Thomas; Weidner, John; Law, Victor; Prindle, John

    2011-01-06

    Hydrogen fuel is a potentially major solution to the problem of climate change, as well as addressing urban air pollution issues. But a key future challenge for hydrogen as a clean energy carrier is a sustainable, low-cost method of producing it in large capacities. Most of the world's hydrogen is currently derived from fossil fuels through some type of reforming processes. Nuclear hydrogen production is an emerging and promising alternative to the reforming processes for carbon-free hydrogen production in the future. This report presents the main results of a research program carried out by a NERI Consortium, which consisted of Penn State University (PSU) (lead), University of South Carolina (USC), Tulane University (TU), and Argonne National Laboratory (ANL). Thermochemical water decomposition is an emerging technology for large-scale production of hydrogen. Typically using two or more intermediate compounds, a sequence of chemical and physical processes split water into hydrogen and oxygen, without releasing any pollutants externally to the atmosphere. These intermediate compounds are recycled internally within a closed loop. While previous studies have identified over 200 possible thermochemical cycles, only a few have progressed beyond theoretical calculations to working experimental demonstrations that establish scientific and practical feasibility of the thermochemical processes. The Cu-Cl cycle has a significant advantage over other cycles due to lower temperature requirements – around 530 °C and below. As a result, it can be eventually linked with the Generation IV thermal power stations. Advantages of the Cu-Cl cycle over others include lower operating temperatures, ability to utilize low-grade waste heat to improve energy efficiency, and potentially lower cost materials. Another significant advantage is a relatively low voltage required for the electrochemical step (thus low electricity input). Other advantages include common chemical agents and

  4. Technology and manufacturing process selection the product life cycle perspective

    CERN Document Server

    Pecas, Paulo; Silva, Arlindo

    2014-01-01

    This book provides specific topics intending to contribute to an improved knowledge on Technology Evaluation and Selection in a Life Cycle Perspectives. Although each chapter will present possible approaches and solutions, there are no recipes for success. Each reader will find his/her balance in applying the different topics to his/her own specific situation. Case studies presented throughout will help in deciding what fits best to each situation, but most of all any ultimate success will come out of the interplay between the available solutions and the specific problem or opportunity the reader is faced with.

  5. 75 FR 61139 - Blue Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technology Subcommittee

    Science.gov (United States)

    2010-10-04

    ... advantages and disadvantages of adopting new fuel cycle technologies and the associated waste management... Ribbon Commission on America's Nuclear Future, Reactor and Fuel Cycle Technology Subcommittee AGENCY... announces an open meeting of the Reactor and Fuel Cycle Technology (RFCT) Subcommittee. The RFCT...

  6. Dynamic Simulation of an Organic Rankine Cycle—Detailed Model of a Kettle Boiler

    Directory of Open Access Journals (Sweden)

    Roberto Pili

    2017-04-01

    Full Text Available Organic Rankine Cycles (ORCs are nowadays a valuable technology to produce electricity from low and medium temperature heat sources, e.g., in geothermal, biomass and waste heat recovery applications. Dynamic simulations can help improve the flexibility and operation of such plants, and guarantee a better economic performance. In this work, a dynamic model for a multi-pass kettle evaporator of a geothermal ORC power plant has been developed and its dynamics have been validated against measured data. The model combines the finite volume approach on the tube side and a two-volume cavity on the shell side. To validate the dynamic model, a positive and a negative step function in heat source flow rate is applied. The simulation model performed well in both cases. The liquid level appeared the most challenging quantity to simulate. A better agreement in temperature was achieved by increasing the volume flow rate of the geothermal brine by 2% over the entire simulation. Measurement errors, discrepancies in working fluid and thermal brine properties and uncertainties in heat transfer correlations can account for this. In the future, the entire geothermal power plant will be simulated, and suggestions to improve its dynamics and control by means of simulations will be provided.

  7. Stochastic Technology Choice Model for Consequential Life Cycle Assessment.

    Science.gov (United States)

    Kätelhön, Arne; Bardow, André; Suh, Sangwon

    2016-12-06

    Discussions on Consequential Life Cycle Assessment (CLCA) have relied largely on partial or general equilibrium models. Such models are useful for integrating market effects into CLCA, but also have well-recognized limitations such as the poor granularity of the sectoral definition and the assumption of perfect oversight by all economic agents. Building on the Rectangular-Choice-of-Technology (RCOT) model, this study proposes a new modeling approach for CLCA, the Technology Choice Model (TCM). In this approach, the RCOT model is adapted for its use in CLCA and extended to incorporate parameter uncertainties and suboptimal decisions due to market imperfections and information asymmetry in a stochastic setting. In a case study on rice production, we demonstrate that the proposed approach allows modeling of complex production technology mixes and their expected environmental outcomes under uncertainty, at a high level of detail. Incorporating the effect of production constraints, uncertainty, and suboptimal decisions by economic agents significantly affects technology mixes and associated greenhouse gas (GHG) emissions of the system under study. The case study also shows the model's ability to determine both the average and marginal environmental impacts of a product in response to changes in the quantity of final demand.

  8. Technological and life cycle assessment of organics processing odour control technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bindra, Navin [School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 (Canada); Dubey, Brajesh, E-mail: bkdubey@civil.iitkgp.ernet.in [School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 (Canada); Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302 (India); Dutta, Animesh [School of Engineering, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 (Canada)

    2015-09-15

    As more municipalities and communities across developed world look towards implementing organic waste management programmes or upgrading existing ones, composting facilities are emerging as a popular choice. However, odour from these facilities continues to be one of the most important concerns in terms of cost & effective mitigation. This paper provides a technological and life cycle assessment of some of the different odour control technologies and treatment methods that can be implemented in organics processing facilities. The technological assessment compared biofilters, packed tower wet scrubbers, fine mist wet scrubbers, activated carbon adsorption, thermal oxidization, oxidization chemicals and masking agents. The technologies/treatment methods were evaluated and compared based on a variety of operational, usage and cost parameters. Based on the technological assessment it was found that, biofilters and packed bed wet scrubbers are the most applicable odour control technologies for use in organics processing faculties. A life cycle assessment was then done to compare the environmental impacts of the packed-bed wet scrubber system, organic (wood-chip media) bio-filter and inorganic (synthetic media) bio-filter systems. Twelve impact categories were assessed; cumulative energy demand (CED), climate change, human toxicity, photochemical oxidant formation, metal depletion, fossil depletion, terrestrial acidification, freshwater eutrophication, marine eutrophication, terrestrial eco-toxicity, freshwater eco-toxicity and marine eco-toxicity. The results showed that for all impact categories the synthetic media biofilter had the highest environmental impact, followed by the wood chip media bio-filter system. The packed-bed system had the lowest environmental impact for all categories. - Highlights: • Assessment of odour control technologies for organics processing facilities. • Comparative life cycle assessment of three odour control technologies was conducted

  9. Life cycle assessment of nanoadsorbents at early stage technological development

    DEFF Research Database (Denmark)

    Kazemi, Ali; Bahramifar, Nader; Heydari, Akbar

    2018-01-01

    the process of the functionalization of nanoadsorbents leads to the increase of the adsorption capacity of nanoadsorbents, it is also paired with a significant enhancement of negative environmental impacts. The results of t-test comparing the cradle-to-use life cycle impacts of studied impact categories for 1......Increasing pressure to the environment due to human activities manifests the necessity of applying new approaches to determine the environmental impact of a new product before scale-up. Nanoadsorbents as an emerging product and a special application of nanomaterial play an important role...... in the control and removal of environmental pollutants. This application is still an emerging technology at the early stages of development. Hence, the heart of this study enables an environmental assessment of nanoadsorbents as an emerging product. In addition, the environmental impacts of synthesized...

  10. Conceptual design and analysis of a Dish-Rankine solar thermal power system

    Science.gov (United States)

    Pons, R. L.

    1980-08-01

    A Point Focusing Distributed Receiver (PFDR) solar thermal electric system which employs small Organic Rankine Cycle (ORC) engines is examined with reference to its projected technical/economic performance. With mass-produced power modules (about 100,000 per year), the projected life-cycle energy cost for an optimized no-storage system is estimated at 67 mills/kWh (Levelized Busbar Energy Cost) without the need for advanced development of any of its components. At moderate production rates (about 50 MWe/yr) system energy costs are competitive with conventional power generation systems in special remote-site types of applications.

  11. Rankine cycle load limiting through use of a recuperator bypass

    Science.gov (United States)

    Ernst, Timothy C.

    2011-08-16

    A system for converting heat from an engine into work includes a boiler coupled to a heat source for transferring heat to a working fluid, a turbine that transforms the heat into work, a condenser that transforms the working fluid into liquid, a recuperator with one flow path that routes working fluid from the turbine to the condenser, and another flow path that routes liquid working fluid from the condenser to the boiler, the recuperator being configured to transfer heat to the liquid working fluid, and a bypass valve in parallel with the second flow path. The bypass valve is movable between a closed position, permitting flow through the second flow path and an opened position, under high engine load conditions, bypassing the second flow path.

  12. Optimization of Organic Rankine Cycles for Off-Shore Applications

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Larsen, Ulrik; Nguyen, Tuong-Van

    2013-01-01

    the optimal working fluid is identified by removing the restriction on the maximum pressure. Different limits on hazards and global warming potential (GWP) are also set. The study is focused on the SGT-500 gas turbine installed on the Draugen platform in the Norwegian Sea. The simulations suggest that, when...... characteristics of the fluids, e.g. stability, environmental and human health impacts, and safety issues. Both supercritical and subcritical ORCs are included in the analysis. The optimization procedure is first applied to a conservative ORC where the maximum pressure is limited to 20 bar. Subsequently...

  13. Moteurs composites à allumage par compression et cycle de Rankine Dual Fuel Compression Ignition Engines Operating on the Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Daugas C.

    2006-11-01

    Full Text Available Sur les 60 % de l'énergie introduite dans un groupe électrogène et perdue sous forme de chaleur, une bonne partie peut être utilisée pour fabriquer à nouveau de l'électricité à partir d'une turbine à vapeur. Les moteurs dual fuel brûlant essentiellement du gaz naturel sont remarquablement placés pour une telle récupération, dont le rendement est meilleur aux charges partielles que celui des moteurs diesel classiques. Les différents types de fluides utilisés pour la récupération sont examinés : avantages des fluides organiques sur l'eau. Études d'une réalisation concrète. Fonctionnement aux charges partielles. Influence des différents paramètres pour obtenir le meilleur rapport prix/puissance. Of the 60% of input energy lost in the form of heat in a generating set, a sizeable part can be used to generate electricity again by means of a steam turbine. Dual fuel engines which mainly burn natural gas are outstandingly suitable for such a recovery process, the efficiency under partial loads being better than that of conventional diesel engines. The author considers the different types of fluids used for the recovery process superiority of organic fluids over water. Study of a concrete example. Operation with partial loads. Influence of the different parameters in the quest for the best cost-power ratio.

  14. Biogas from Marine Macroalgae: a New Environmental Technology — Life Cycle Inventory for a Further LCA

    National Research Council Canada - National Science Library

    Romagnoli, Francesco; Blumberga, Dagnija; Gigli, Emanuele

    2010-01-01

    ... _________________________________________________________________________________________________ Volume 4 97 Biogas from Marine Macroalgae: a New Environmental Technology – Life Cycle Inventory for a Further LCA Francesco Romagnoli, Institute of Energy Systems...

  15. Uncertainties related to the identification of the marginal energy technology in consequential life cycle assessments

    DEFF Research Database (Denmark)

    Mathiesen, B.V.; Münster, Marie; Fruergaard, Thilde

    2009-01-01

    When performing life cycle assessment (LCA) assumptions regarding the energy use are often decisive for the outcome. In this paper, current approaches of identifying marginal electricity and heat technologies for consequential LCAs are challenged. The identification of marginal energy technologies...

  16. Optimizing the Environmental Performance of In Situ Thermal Remediation Technologies Using Life Cycle Assessment

    DEFF Research Database (Denmark)

    Lemming, Gitte; Nielsen, Steffen G.; Weber, Klaus

    2013-01-01

    in situ thermal remediation technologies (steam enhanced extraction, thermal conduction heating, electrical resistance heating, and radio frequency heating) in order to (1) compare the life-cycle environmental impacts and resource consumption associated with each thermal technology, and (2) identify...

  17. Air bottoming cycle, an alternative to combined cycles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kaikko, J. [Royal Inst. of Techn., Stockholm (Sweden). Dept. of Energy Technology

    2001-10-01

    In this work, the idea of Air Bottoming Cycle (ABC) has been studied. The objectives for the work have been to establish an understanding of the concept for power and heat generation as well as to find - if possible - feasible concepts for future use in the Swedish energy system. Combined cycle in power generation is an established technology. In the conventional combined cycle, a gas turbine works as a topping cycle together with the steam (Rankine) bottoming cycle. In the ABC the steam bottoming cycle is replaced with a gas turbine (Brayton) bottoming cycle having air as a working fluid. The two gas turbines are thermally connected over a gas-to-gas heat exchanger. This concept promises savings in weight and cost, as well as operating benefits, compared to the Rankine bottoming technology. The ABC has been modelled using a heat balance program, and a parametric study for the concept optimisation as well as for off-design analysis has been performed. Performance of the ABC has been compared to other, established technologies. A preliminary economic evaluation has been made. As a result of the study, it is clarified that the Rankine bottoming cycle with steam remains superior to the ABC as regards electrical efficiency in the medium and large power scale. For small-scale applications (<10 MW{sub e}) where the thermodynamic advantage of the Rankine cycle is not dominating any longer and its economy is burdened by the heavy investment structure, the ABC becomes the better alternative for energy utilisation. A preliminary economic evaluation shows that (at energy prices autumn 2000) the ABC is at the same level as the comparable small-scale cogeneration installations. Due to high power-to-heat ratio however, higher electricity prices will favour the ABC. One interesting feature of the ABC is that about 50% of the dissipated low-value heat from the cycle is carried by clean (sterile) air at the temperature around 200 deg C. This air can be utilised for space heating or

  18. Air bottoming cycle, an alternative to combined cycles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kaikko, J. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Energy Technology

    2002-02-01

    In this work, the idea of Air Bottoming Cycle (ABC) has been studied. The objectives for the work have been to establish an understanding of the concept for power and heat generation as well as to find - if possible - feasible concepts for future use in the Swedish energy system. Combined cycle in power generation is an established technology. In the conventional combined cycle, a gas turbine works as a topping cycle together with the steam (Rankine) bottoming cycle. In the ABC the steam bottoming cycle is replaced with a gas turbine (Brayton) bottoming cycle having air as a working fluid. The two gas turbines are thermally connected over a gas-to-gas heat exchanger. This concept promises savings in weight and cost, as well as operating benefits, compared to the Rankine bottoming technology. The ABC has been modelled using a heat balance program, and a parametric study for the concept optimisation as well as for off-design analysis has been performed. Performance of the ABC has been compared to other, established technologies. A preliminary economic evaluation has been made. As a result of the study, it is clarified that the Rankine bottoming cycle with steam remains superior to the ABC as regards electrical efficiency in the medium and large power scale. For small-scale applications (<10 MW{sub e}) where the thermodynamic advantage of the Rankine cycle is not dominating any longer and its economy is burdened by the heavy investment structure, the ABC becomes the better alternative for energy utilisation. A preliminary economic evaluation shows that (at energy prices autumn 2000) the ABC is at the same level as the comparable small-scale cogeneration installations. Due to high power-to-heat ratio however, higher electricity prices will favour the ABC. One interesting feature of the ABC is that about 50% of the dissipated low-value heat from the cycle is carried by clean (sterile) air at the temperature around 200 deg C. This air can be utilised for space heating or

  19. EASEWASTE-life cycle modeling capabilities for waste management technologies

    DEFF Research Database (Denmark)

    Bhander, Gurbakhash Singh; Christensen, Thomas Højlund; Hauschild, Michael Zwicky

    2010-01-01

    and methods The EASEWASTE model supports a full life cycle assessment of any user defined residential, bulky waste or garden waste management system. The model focuses on the major components of the waste and reviews each component in terms of the available waste management options, including bio...... waste management systems applying a life-cycle perspective requires readily understandable tools for modelling the life cycle impacts of waste management systems. The aim of the paper is to demonstrate the structure, functionalities and LCA modelling capabilities of the PC-based life cycle oriented......-gasification and composting, thermal treatment incineration, use-on-land, material sorting and recycling, bottom and fly ash handling, material and energy utilization and landfilling. In order to allow the use of the model in an early stage where local data may be limited, default data sets are provided for waste composition...

  20. Secure Software Development Life Cycle Processes: A Technology Scouting Report

    National Research Council Canada - National Science Library

    Davis, Noopur

    2005-01-01

    .... The purpose of this technical note is to present overview information about existing processes, standards, life cycle models, frameworks, and methodologies that support or could support secure software development...

  1. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    OpenAIRE

    Ho, Tony

    2012-01-01

    The Organic Flash Cycle (OFC) is proposed as a vapor power cycle that could potentially increase power generation and improve the utilization efficiency of renewable energy and waste heat recovery systems. A brief review of current advanced vapor power cycles including the Organic Rankine Cycle (ORC), the zeotropic Rankine cycle, the Kalina cycle, the transcritical cycle, and the trilateral flash cycle is presented. The premise and motivation for the OFC concept is that essentially by impro...

  2. Bayesian Zero-Failure (BAZE) reliability demonstration testing procedure and its application to a Rankine dynamic radioisotope power conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Martz, H.F. Jr.; Waller, R.A.

    1976-07-01

    A Bayesian Zero-Failure (BAZE) reliability demonstration testing procedure is developed. The procedure may be used to verify component failure rates associated with both real-time dependent and cycle-dependent chance failure mechanisms. A constant falure-rate model with a gamma prior distribution is assumed. The procedure is used to obtain sample test plans for components of a proposed Rankine power conversion system.

  3. Absorptive capacity, technological innovation, and product life cycle: a system dynamics model

    National Research Council Canada - National Science Library

    Zou, Bo; Guo, Feng; Guo, Jinyu

    2016-01-01

    .... Based on interviews with 24 Chinese firms, this study develops a system-dynamics model that incorporates an important feedback loop among absorptive capacity, technological innovation, and product life cycle (PLC...

  4. The dish-Rankine SCSTPE program (Engineering Experiment no. 1). [systems engineering and economic analysis for a small community solar thermal electric system

    Science.gov (United States)

    Pons, R. L.; Grigsby, C. E.

    1980-01-01

    Activities planned for phase 2 Of the Small Community Solar Thermal Power Experiment (PFDR) program are summarized with emphasis on a dish-Rankine point focusing distributed receiver solar thermal electric system. Major design efforts include: (1) development of an advanced concept indirect-heated receiver;(2) development of hardware and software for a totally unmanned power plant control system; (3) implementation of a hybrid digital simulator which will validate plant operation prior to field testing; and (4) the acquisition of an efficient organic Rankine cycle power conversion unit. Preliminary performance analyses indicate that a mass-produced dish-Rankine PFDR system is potentially capable of producing electricity at a levelized busbar energy cost of 60 to 70 mills per KWh and with a capital cost of about $1300 per KW.

  5. Frameworks and technologies for exchanging and sharing product life cycle knowledge

    NARCIS (Netherlands)

    Gerritsen, B.; Gielingh, W.; Dankwort, W.; Anderl, R.

    2011-01-01

    Frameworks and technologies for exchanging and sharing product life cycle knowledge (PLK) are discussed. A life cycle-centric knowledge management approach with stakeholders-in-the-loop allows for a life-long evaluation of the instantaneous performance and the consequential decision making about the

  6. Aviation Technology Life Cycle Management: Importance for Aviation Companies, Aerospace Industry Organizations and Relevant Stakeholders

    Directory of Open Access Journals (Sweden)

    Stanislav Szabo

    2017-04-01

    Full Text Available The paper in the introductory part underlines some aspects concerning the importance of Aviation Technology Life Cycle Management and informs on basic international standards for the processes and stages of life cycle. The second part is focused on definition and main objectives of system life cycle management. The authors subsequently inform on system life cycle stages (in general and system life cycle processes according to ISO/IEC/IEEE 15288:2015 standard. Following the fact, that life cycle cost (LCC is inseparable part and has direct connection to the life cycle management, the paper contains brief information regarding to LCC (cost categories, cost breakdown structure, cost estimation a.o.. Recently was issued the first part of Aviation Technology Life Cycle Management monograph (in Slovak: ”Manažment životného cyklu leteckej techniky I”, written by I.Koblen and S.Szabo. Following this fact and direct relation to the topic of article it is a part of article briefly introduced the content of two parts of this monograph (the 2nd part of monograph it has been prepared for the print. The last part of article is focused on issue concerning main assumptions and conditions for successful application of aviation technology life cycle management in aviation companies, aerospace industry organizations as well as from the relevant stakeholders side.

  7. Technology of the light water reactor fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Wymer, R. G.

    1979-01-01

    This essay presents elements of the processes used in the fuel cycle steps and gives an indication of the types of equipment used. The amounts of radioactivity released in normal operation of the processes are indicated and related to radiation doses. Types and costs of equipment or processes required to lower these radioactivity releases are in some cases suggested. Mining and milling, conversion of uranium concentrate to UF/sub 6/, uranium isotope separation, LWR fuel fabrication, fuel reprocessing, transportation, and waste management are covered in this essay. 40 figures, 34 tables. (DLC)

  8. Pressurized fluidized bed - A technology for combined cycle power generation

    Science.gov (United States)

    Moskowitz, S.; Geffken, J.

    1981-01-01

    The production of electric power using high sulfur coal in an environmentally clean and efficient manner is a major element in this country's goal for energy independence. One coal combustion technique which has had demonstrable progress toward accomplishing this goal is the pressurized fluidized bed process. A pilot plant program sponsored by the Department of Energy to design a power generation system of 13 MWe size has been instrumental in developing the PFB technology. The paper describes the technology test programs that have been conducted to establish the design criteria and to select the design configurations and materials for the pilot plant. Over 10,000 hours of tests have demonstrated adequate fluid bed combustion characteristics, gaseous emissions levels at one-third the level permitted by EPA for NO(x) and SO2, and durability for the in-bed heat exchanger and the turbine blade materials.

  9. Technology development of nuclear material safeguards for DUPIC fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jong Sook; Kim, Ho Dong; Kang, Hee Young; Lee, Young Gil; Byeon, Kee Ho; Park, Young Soo; Cha, Hong Ryul; Park, Ho Joon; Lee, Byung Doo; Chung, Sang Tae; Choi, Hyung Rae; Park, Hyun Soo

    1997-07-01

    During the second phase of research and development program conducted from 1993 to 1996, nuclear material safeguards studies system were performed on the technology development of DUPIC safeguards system such as nuclear material measurement in bulk form and product form, DUPIC fuel reactivity measurement, near-real-time accountancy, and containment and surveillance system for effective and efficient implementation of domestic and international safeguards obligation. By securing in advance a optimized safeguards system with domestically developed hardware and software, it will contribute not only to the effective implementation of DUPIC safeguards, but also to enhance the international confidence build-up in peaceful use of spent fuel material. (author). 27 refs., 13 tabs., 89 figs.

  10. Development of nuclear fuel cycle remote handling technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. H.; Park, B. S.; Kim, S. H.; and others

    2012-04-15

    This report presents the development of remote handling systems and remote equipment for use in the pyprocessing verification at the PRIDE (PyRoprocess Integrated inactive Demonstration facility). There are four areas conducted in this work. In first area, the prototypes of an engineering-scale high-throughput decladding voloxidizer which is capable of separating spent fuel rod-cuts into hulls and powder and collecting them separately, and an automatic equipment which is capable of collecting residual powder remaining on separated hulls were developed. In second area, a servo-manipulator system was developed to operate and maintain pyroprocess equipment located at the argon cell of the PRIDE in a remote manner. A servo-manipulator with dual arm that is mounted on the lower part of a bridge transporter will be installed on the ceiling of the in-cell and can travel the length of the ceiling. In third area, a digital mock-up and a remote handling evaluation mock-up were constructed to evaluate the pyroprocess equipments from the in-cell arrangements, remote operability and maintainability viewpoint before they are installed in the PRIDE. In last area, a base technology for remote automation of integrated pyroprocess was developed. The developed decladding voloxidizer and automatic equipment will be utilized in the development of a head-end process for pyroprocessing. In addition, the developed servo-manipulator will be used for remote operation and maintenance of the pyroprocess equipments in the PRIDE. The constructed digital mock-up and remote handling evaluation mock-up will be also used to verify and improve the pyroprocess equipments for the PRIDE application. Moreover, these remote technologies described above can be directly used in the PRIDE and applied for the KAPF (Korea Advanced Pyroprocess Facility) development.

  11. Technology for Bayton-cycle powerplants using solar and nuclear energy

    Science.gov (United States)

    English, R. E.

    1986-01-01

    Brayton cycle gas turbines have the potential to use either solar heat or nuclear reactors for generating from tens of kilowatts to tens of megawatts of power in space, all this from a single technology for the power generating system. Their development for solar energy dynamic power generation for the space station could be the first step in an evolution of such powerplants for a very wide range of applications. At the low power level of only 10 kWe, a power generating system has already demonstrated overall efficiency of 0.29 and operated 38 000 hr. Tests of improved components show that these components would raise that efficiency to 0.32, a value twice that demonstrated by any alternate concept. Because of this high efficiency, solar Brayton cycle power generators offer the potential to increase power per unit of solar collector area to levels exceeding four times that from photovoltaic powerplants using present technology for silicon solar cells. The technologies for solar mirrors and heat receivers are reviewed and assessed. This Brayton technology for solar powerplants is equally suitable for use with the nuclear reactors. The available long time creep data on the tantalum alloy ASTAR-811C show that such Brayton cycles can evolve to cycle peak temperatures of 1500 K (2240 F). And this same technology can be extended to generate 10 to 100 MW in space by exploiting existing technology for terrestrial gas turbines in the fields of both aircraft propulsion and stationary power generation.

  12. Development of nuclear fuel cycle remote handling technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. H.; Park, B. S.; Kim, S. H.

    2010-04-15

    This report presents the development of remote handling systems and remote equipment for use in the pyprocessing verification at the PRIDE (PyRoprocess Integrated inactive Demonstration facility). There are three areas conducted in this work. In first area, developed were the prototypes of an engineering-scale high-throughput decladding voloxidizer which is capable of separating spent fuel rod-cuts into hulls and powder and collecting them separately and an automatic equipment which is capable of collecting residual powder remaining on separated hulls. In second area, a servo-manipulator prototype was developed to operate and maintain pyroprocess equipment located at the argon cell of the PRIDE in a remote manner. A servo-manipulator with dual arm that is mounted on the lower part of a bridge transporter will be installed on the ceiling of the in-cell and can travel the length of the ceiling. In last area, a simulator was developed to simulate and evaluate the design developments of the pyroprocess equipment from the in-cell arrangements, remote operability and maintainability viewpoint in a virtual process environment in advance before they are constructed. The developed decladding voloxidizer and automatic equipment will be utilized in the development of a head-end process for pyroprocessing. In addition, the developed servo-manipulator will be installed in the PRIDE and used for remote operation and maintenance of the pyroprocess equipment. The developed simulator will be also used to verify and improve the design of the pyroprocess equipment for the PRIDE application. Moreover, these remote technologies described above can be directly used in the PRIDE and applied for the ESPF (Engineering Scale Pyroprocess Facility) and KAPF (Korea Advanced Pyroprocess Facility) development

  13. A Methodology for Integrated, Multiregional Life Cycle Assessment Scenarios under Large-Scale Technological Change.

    Science.gov (United States)

    Gibon, Thomas; Wood, Richard; Arvesen, Anders; Bergesen, Joseph D; Suh, Sangwon; Hertwich, Edgar G

    2015-09-15

    Climate change mitigation demands large-scale technological change on a global level and, if successfully implemented, will significantly affect how products and services are produced and consumed. In order to anticipate the life cycle environmental impacts of products under climate mitigation scenarios, we present the modeling framework of an integrated hybrid life cycle assessment model covering nine world regions. Life cycle assessment databases and multiregional input-output tables are adapted using forecasted changes in technology and resources up to 2050 under a 2 °C scenario. We call the result of this modeling "technology hybridized environmental-economic model with integrated scenarios" (THEMIS). As a case study, we apply THEMIS in an integrated environmental assessment of concentrating solar power. Life-cycle greenhouse gas emissions for this plant range from 33 to 95 g CO2 eq./kWh across different world regions in 2010, falling to 30-87 g CO2 eq./kWh in 2050. Using regional life cycle data yields insightful results. More generally, these results also highlight the need for systematic life cycle frameworks that capture the actual consequences and feedback effects of large-scale policies in the long term.

  14. Life Cycle Assessment of pretreatment technologies for anaerobic digestion of source-separated organic household waste

    DEFF Research Database (Denmark)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2013-01-01

    The environmental performance of two pretreatment technologies for source-separated organic waste was compared using life cycle assessment (LCA). An innovative pulping process where source-separated organic waste is pulped with cold water forming a volatile solid rich biopulp was compared to a more...... including a number of non-toxic and toxic impact categories were assessed. No big difference in the overall performance of the two technologies was observed. The difference for the separate life cycle steps was, however, more pronounced. More efficient material transfer in the scenario with waste pulping...

  15. Towards better monitoring of technology critical elements in Europe: Coupling of natural and anthropogenic cycles.

    Science.gov (United States)

    Nuss, Philip; Blengini, Gian Andrea

    2018-02-01

    The characterization of elemental cycles has a rich history in biogeochemistry. Well known examples include the global carbon cycle, or the cycles of the 'grand nutrients' nitrogen, phosphorus, and sulfur. More recently, efforts have increased to better understand the natural cycling of technology critical elements (TCEs), i.e. elements with a high supply risk and economic importance in the EU. On the other hand, tools such as material-flow analysis (MFA) can help to understand how substances and goods are transported and accumulated in man-made technological systems ('anthroposphere'). However, to date both biogeochemical cycles and MFA studies suffer from narrow system boundaries, failing to fully illustrate relative anthropogenic and natural flow magnitude and the degree to which human activity has perturbed the natural cycling of elements. We discuss important interconnections between natural and anthropogenic cycles and relevant EU raw material dossiers. Increased integration of both cycles could help to better capture the transport and fate of elements in nature including their environmental/human health impacts, highlight potential future material stocks in the anthroposphere (in-use stocks) and in nature (e.g., in soils, tailings, or mining wastes), and estimate anticipated emissions of TCEs to nature in the future (based on dynamic stock modeling). A preliminary assessment of natural versus anthropogenic element fluxes indicates that anthropogenic fluxes induced by the EU-28 of palladium, platinum, and antimony (as a result of materials uses) might be greater than the respective global natural fluxes. Increased combination of MFA and natural cycle data at EU level could help to derive more complete material cycles and initiate a discussion between the research communities of biogeochemists and material flow analysts to more holistically address the issues of sustainable resource management. Copyright © 2017 The Authors. Published by Elsevier B.V. All

  16. Cycle 1 as predictor of assisted reproductive technology treatment outcome over multiple cycles: an analysis of linked cycles from the Society for Assisted Reproductive Technology Clinic Outcomes Reporting System online database.

    Science.gov (United States)

    Stern, Judy E; Brown, Morton B; Luke, Barbara; Wantman, Ethan; Lederman, Avi; Hornstein, Mark D

    2011-02-01

    To determine whether the first cycle of assisted reproductive technology (ART) predicts treatment course and outcome. Retrospective study of linked cycles. Society for Assisted Reproductive Technology Clinic Outcome Reporting System database. A total of 6,352 ART patients residing or treated in Massachusetts with first treatment cycle in 2004-2005 using fresh, autologous oocytes and no prior ART. Women were categorized by first cycle as follows: Group I, no retrieval; Group II, retrieval, no transfer; Group III, transfer, no embryo cryopreservation; Group IV, transfer plus cryopreservation; and Group V, all embryos cryopreserved. None. Cumulative live-birth delivery per woman, use of donor eggs, intracytoplasmic sperm injection (ICSI), or frozen embryo transfers (FET). Groups differed in age, baseline FSH level, prior gravidity, diagnosis, and failure to return for Cycle 2. Live-birth delivery per woman for groups I through V for women with no delivery in Cycle I were 32.1%, 35.9%, 40.1%, 53.4%, and 51.3%, respectively. Groups I and II were more likely to subsequently use donor eggs (14.5% and 10.9%). Group II had the highest use of ICSI (73.3%); Group III had the lowest use of FET (8.9%). Course of treatment in the first ART cycle is related to different cumulative live-birth delivery rates and eventual use of donor egg, ICSI, and FET. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  17. Advanced power cycles and configurations for solar towers: Modeling and optimization of the decoupled solar combined cycle concept

    Science.gov (United States)

    García-Barberena, Javier; Olcoz, Asier; Sorbet, Fco. Javier

    2017-06-01

    CSP technologies are essential to allow large shares of renewables into the grid due to their unique ability to cope with the large variability of the energy resource by means of technically and economically feasible thermal energy storage (TES) systems. However, there is still the need and sought to achieve technological breakthroughs towards cost reductions and increased efficiencies. For this, research on advanced power cycles, like the Decoupled Solar Combined Cycle (DSCC) is, are regarded as a key objective. The DSCC concept is, basically, a Combined Brayton-Rankine cycle in which the bottoming cycle is decoupled from the operation of the topping cycle by means of an intermediate storage system. According to this concept, one or several solar towers driving a solar air receiver and a Gas Turbine (Brayton cycle) feed through their exhaust gasses a single storage system and bottoming cycle. This general concept benefits from a large flexibility in its design. On the one hand, different possible schemes related to number and configuration of solar towers, storage systems media and configuration, bottoming cycles, etc. are possible. On the other, within a specific scheme a large number of design parameters can be optimized, including the solar field size, the operating temperatures and pressures of the receiver, the power of the Brayton and Rankine cycles, the storage capacity and others. Heretofore, DSCC plants have been analyzed by means of simple steady-state models with pre-stablished operating parameters in the power cycles. In this work, a detailed transient simulation model for DSCC plants has been developed and is used to analyze different DSCC plant schemes. For each of the analyzed plant schemes, a sensitivity analysis and selection of the main design parameters is carried out. Results show that an increase in annual solar to electric efficiency of 30% (from 12.91 to 16.78) can be achieved by using two bottoming Rankine cycles at two different

  18. Technologies for High-Energy and Long Cycle Life Lithium-Sulfur Pouch-Cell Batteries

    Science.gov (United States)

    Bruckner, Jan; Thieme, Soren; Bauer, Ingolf; Thummler, Philipp; Althues, Holger; Kaskel, Stefan

    2014-08-01

    The current lithium-ion battery technology is limited to about 250 Wh kg-1. In contrast the lithium-sulfur battery is expected to achieve more than 400 Wh kg-1 on cell level.[1,2] To date the biggest drawback of lithium- sulfur is its limited cycle stability of less than 200 cycles. Further, high energy densities can only be achieved if no excess of lithium and electrolyte is used and the areal loading of sulfur is high.[3]Here we demonstrate how the cycle stability can be extended to 1000 cycles using alternative silicon-carbon and all-carbon anodes instead of metallic lithium.[4] We also present a dry-processing technology for the sulfur cathode preparation. Besides no drying step and no toxic solvents, our process enables also twice the areal capacity (4-5 mAh cm-2) of slurry based technologies.[5] In addition we give results on the cycle stability and energy density of our lithium-sulfur pouch- cells (2.5+ Ah).

  19. The virtuous technology cycle concept and its application in next-generation sequencing.

    Science.gov (United States)

    Pluess-Li, Ying; Bongiovanni, Sandrine; Oakeley, Edward J; Johnson, Keith J; Staedtler, Frank

    2012-09-01

    External access to scientific technology plays an increasingly important part in pharmaceutical R&D. One advantage of accessing technology externally is the avoidance of costs associated with purchase and the reduced time required for developing new methods; in addition, access to external scientific expertise can be beneficial. However, few conceptual frameworks exist for achieving an optimal mix of internal and external technology access. In this review, we describe the virtuous technology cycle (VTC) concept and exemplify its application to next-generation sequencing (NGS). Based on selected examples, we show that the VTC concept can greatly enhance the number of technologies accessed and thus significantly increase flexibility and efficiency in drug discovery. We also discuss the challenges of externally accessing NGS technologies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Number theory and modular forms papers in memory of Robert A Rankin

    CERN Document Server

    Ono, Ken

    2003-01-01

    Robert A. Rankin, one of the world's foremost authorities on modular forms and a founding editor of The Ramanujan Journal, died on January 27, 2001, at the age of 85. Rankin had broad interests and contributed fundamental papers in a wide variety of areas within number theory, geometry, analysis, and algebra. To commemorate Rankin's life and work, the editors have collected together 25 papers by several eminent mathematicians reflecting Rankin's extensive range of interests within number theory. Many of these papers reflect Rankin's primary focus in modular forms. It is the editors' fervent hope that mathematicians will be stimulated by these papers and gain a greater appreciation for Rankin's contributions to mathematics. This volume would be an inspiration to students and researchers in the areas of number theory and modular forms.

  1. Venous thromboembolism in assisted reproductive technologies: comparison between unsuccessful versus successful cycles in an Italian cohort.

    Science.gov (United States)

    Villani, Michela; Favuzzi, Giovanni; Totaro, Pasquale; Chinni, Elena; Vecchione, Gennaro; Vergura, Patrizia; Fischetti, Lucia; Margaglione, Maurizio; Grandone, Elvira

    2017-11-23

    Pregnancies after assisted reproductive technologies (ART) have been associated with an increased risk of venous thromboembolism (VTE). On the contrary, the magnitude of this risk in unsuccessful ART cycles (not resulting in a clinical pregnancy) has not yet been clearly defined. In this study, we evaluated the incidence of VTE in unsuccessful cycles and compared it with that recorded in successful cycles in the same study population. From a cohort of 998 women consecutively referred by local Fertility Clinics to our Atherosclerosis and Thrombosis Unit (April 2002-July 2011), we identified and included women with at least one cycle of ovarian stimulation and a negative history for VTE. Overall, 661 women undergone 1518 unsuccessful and 318 successful cycles of ovarian stimulation, respectively, were analysed. VTE events occurred in 2/1518 (1.3‰) unsuccessful cycles compared with 3/318 (9.4‰) successful cycles, (Two-tailed Fisher exact test, p = 0.04, OR 0.14, 95% CI 0.02-1.02). Both cases observed in unsuccessful cycles were isolated pulmonary embolism occurred after OHSS; no antithrombotic prophylaxis had been prescribed. At logistic regression analysis, the occurrence of successful cycle and BMI were significantly and independently associated with the occurrence of VTE with an OR of 13.94 (95% CI 1.41-137.45) and 1.23 (95% CI 1.01-1.49), respectively. VTE incidence is significantly lower in unsuccessful cycles as compared to that of successful ones. However, although rare, thrombotic risk during ovarian stimulation cannot be excluded and, when it occurs, can be life-threatening. Therefore, particular attention should be paid to these women, independently of ART outcome.

  2. Generating power at high efficiency combined cycle technology for sustainable energy production

    CERN Document Server

    Jeffs, E

    2008-01-01

    Combined cycle technology is used to generate power at one of the highest levels of efficiency of conventional power plants. It does this through primary generation from a gas turbine coupled with secondary generation from a steam turbine powered by primary exhaust heat. Generating power at high efficiency thoroughly charts the development and implementation of this technology in power plants and looks to the future of the technology, noting the advantages of the most important technical features - including gas turbines, steam generator, combined heat and power and integrated gasification com

  3. Energy utilization and environmental control technologies in the coal-electric cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, G.C.

    1977-10-01

    This report presents an overview and assessment of the currently commercial and possible future technologies in the United States that are a part of the coal-electric cycle. From coal production to residual emissions control at the power plant stack, this report includes a brief history, current status and future assessment of each technology. It also includes a discussion, helpful for policy making decisions, of the process operation, environmental emission characteristics, market constraints and detailed cost estimates for each of these technologies, with primary emphasis on coal preparation, coal-electric generation and emissions control systems.

  4. Carbon footprint of forest and tree utilization technologies in life cycle approach

    Science.gov (United States)

    Polgár, András; Pécsinger, Judit

    2017-04-01

    In our research project a suitable method has been developed related the technological aspect of the environmental assessment of land use changes caused by climate change. We have prepared an eco-balance (environmental inventory) to the environmental effects classification in life-cycle approach in connection with the typical agricultural / forest and tree utilization technologies. The use of balances and environmental classification makes possible to compare land-use technologies and their environmental effects per common functional unit. In order to test our environmental analysis model, we carried out surveys in sample of forest stands. We set up an eco-balance of the working systems of intermediate cutting and final harvest in the stands of beech, oak, spruce, acacia, poplar and short rotation energy plantations (willow, poplar). We set up the life-cycle plan of the surveyed working systems by using the GaBi 6.0 Professional software and carried out midpoint and endpoint impact assessment. Out of the results, we applied the values of CML 2001 - Global Warming Potential (GWP 100 years) [kg CO2-Equiv.] and Eco-Indicator 99 - Human health, Climate Change [DALY]. On the basis of the values we set up a ranking of technology. By this, we received the environmental impact classification of the technologies based on carbon footprint. The working systems had the greatest impact on global warming (GWP 100 years) throughout their whole life cycle. This is explained by the amount of carbon dioxide releasing to the atmosphere resulting from the fuel of the technologies. Abiotic depletion (ADP foss) and marine aquatic ecotoxicity (MAETP) emerged also as significant impact categories. These impact categories can be explained by the share of input of fuel and lube. On the basis of the most significant environmental impact category (carbon footprint), we perform the relative life cycle contribution and ranking of each technologies. The technological life cycle stages examined

  5. Biogas from Marine Macroalgae: a New Environmental Technology — Life Cycle Inventory for a Further LCA

    Science.gov (United States)

    Romagnoli, Francesco; Blumberga, Dagnija; Gigli, Emanuele

    2010-01-01

    The main goal of this paper is to analyze the innovative process of production of biogas (via fermentation processes) using marine macroalgae as feedstock in a pilot project plant in Augusta (Sicily, Italy). Algae, during their growth, have the capacity to assimilate nutrients and thus subsequent harvesting of the algal biomass recovers the nutrients from biowaste sources giving the possibility to transform negative environmental externalities in positive mainly in terms of eutrophication and climate change impact categories. The paper presents a novel environmental technology for the production of biogas and 2nd generation biofuel (liquid biomethane) after an upgrading process through the use of a cryogenic technology. The paper would also like to make the first attempt at understanding the possibility to implement this innovative technology in the Latvian context. The first calculations and assumptions for the Life Cycle Inventory for a further Life Cycle Assessment are presented.

  6. Rethinking Racism in Claudia Rankine's Citizen: An American Lyric

    OpenAIRE

    Hersi, Asli

    2016-01-01

    The issue of race in America in the twenty-first century is still a turbulent matter. The end of segregation in schools, politics, marriages and workplaces created a mask that hid racial inequalities and injustices (Whitmarsh 1). In a time where police brutalities have frequently surfaced in the media in a supposed “post-racial America”, Claudia Rankine writes a thought-provoking 160 page long “book-length poem” about everyday racism arguing that the overlooking of microaggressions (brief dai...

  7. Rethinking Racism in Claudia Rankine's Citizen: An American Lyric

    OpenAIRE

    Hersi, Asli

    2016-01-01

    Master's thesis in Literacy studies The issue of race in America in the twenty-first century is still a turbulent matter. The end of segregation in schools, politics, marriages and workplaces created a mask that hid racial inequalities and injustices (Whitmarsh 1). In a time where police brutalities have frequently surfaced in the media in a supposed “post-racial America”, Claudia Rankine writes a thought-provoking 160 page long “book-length poem” about everyday racism arguing that the ove...

  8. Business cycle and innovation activity in medium-high and high technology industry in Poland

    Directory of Open Access Journals (Sweden)

    Dzikowski Piotr

    2015-12-01

    Full Text Available This article examines differences in an impact of business cycle phases on innovation activity in medium-high and high technology industry in Poland. It is assumed that each business cycle phase influences innovation activity in the same fashion, but its impact varies and it depends on the firm’s innovation activity. The higher innovation activity the less impact of business cycle. The scope of the survey relates to innovation in MHT and HT industry in Poland. The data concerns the innovation at the firm level and the diffusion “new for the company”. Innovation activity is defined by the following activities: (1 expenditure on research and development and investments in fixed assets not used so far such as: abuildings, premises and land; b machinery and equipment, c computer software; (2 implementation of new products and technological processes and (3 innovation cooperation. The methodological part of the analysis includes a logit modeling. The survey includes 1355 companies. Business cycle has a great influence on innovation activity in MTH and HT industry in Poland. The influence of recovery phase is positive whereas both stagnation and recession phases decrease the probability of innovation activity. The character of influence depends on the propensity to take innovation activity. The higher level of innovation activity the enterprises present the less influence of business cycle they get.

  9. Research and Technology Activities Supporting Closed-Brayton-Cycle Power Conversion System Development

    Science.gov (United States)

    Barrett, Michael J.

    2004-01-01

    The elements of Brayton technology development emphasize power conversion system risk mitigation. Risk mitigation is achieved by demonstrating system integration feasibility, subsystem/component life capability (particularly in the context of material creep) and overall spacecraft mass reduction. Closed-Brayton-cycle (CBC) power conversion technology is viewed as relatively mature. At the 2-kWe power level, a CBC conversion system Technology Readiness Level (TRL) of six (6) was achieved during the Solar Dynamic Ground Test Demonstration (SD-GTD) in 1998. A TRL 5 was demonstrated for 10 kWe-class CBC components during the development of the Brayton Rotating Unit (BRU) from 1968 to 1976. Components currently in terrestrial (open cycle) Brayton machines represent TRL 4 for similar uses in 100 kWe-class CBC space systems. Because of the baseline component and subsystem technology maturity, much of the Brayton technology task is focused on issues related to systems integration. A brief description of ongoing technology activities is given.

  10. Carbon dioxide emission in hydrogen production technology from coke oven gas with life cycle approach

    Directory of Open Access Journals (Sweden)

    Burmistrz Piotr

    2016-01-01

    Full Text Available The analysis of Carbon Footprint (CF for technology of hydrogen production from cleaned coke oven gas was performed. On the basis of real data and simulation calculations of the production process of hydrogen from coke gas, emission indicators of carbon dioxide (CF were calculated. These indicators are associated with net production of electricity and thermal energy and direct emission of carbon dioxide throughout a whole product life cycle. Product life cycle includes: coal extraction and its transportation to a coking plant, the process of coking coal, purification and reforming of coke oven gas, carbon capture and storage. The values were related to 1 Mg of coking blend and to 1 Mg of the hydrogen produced. The calculation is based on the configuration of hydrogen production from coke oven gas for coking technology available on a commercial scale that uses a technology of coke dry quenching (CDQ. The calculations were made using ChemCAD v.6.0.2 simulator for a steady state of technological process. The analysis of carbon footprint was conducted in accordance with the Life Cycle Assessment (LCA.

  11. Time domain Rankine-Green panel method for offshore structures

    Science.gov (United States)

    Li, Zhifu; Ren, Huilong; Liu, Riming; Li, Hui

    2017-02-01

    To solve the numerical divergence problem of the direct time domain Green function method for the motion simulation of floating bodies with large flare, a time domain hybrid Rankine-Green boundary element method is proposed. In this numerical method, the fluid domain is decomposed by an imaginary control surface, at which the continuous condition should be satisfied. Then the Rankine Green function is adopted in the inner domain. The transient free surface Green function is applied in the outer domain, which is used to find the relationship between the velocity potential and its normal derivative for the inner domain. Besides, the velocity potential at the mean free surface between body surface and control surface is directly solved by the integration scheme. The wave exciting force is computed through the convolution integration with wave elevation, by introducing the impulse response function. Additionally, the nonlinear Froude-Krylov force and hydrostatic force, which is computed under the instantaneous incident wave free surface, are taken into account by the direct pressure integration scheme. The corresponding numerical computer code is developed and first used to compute the hydrodynamic coefficients of the hemisphere, as well as the time history of a ship with large flare; good agreement is obtained with the analytical solutions as well as the available numerical results. Then the hydrodynamic properties of a FPSO are studied. The hydrodynamic coefficients agree well with the results computed by the frequency method; the influence of the time interval and the truncated time is investigated in detail.

  12. Nano-Launcher Technologies, Approaches, and Life Cycle Assessment. Phase II

    Science.gov (United States)

    Zapata, Edgar

    2014-01-01

    Assist in understanding NASA technology and investment approaches, and other driving factors, necessary for enabling dedicated nano-launchers by industry at a cost and flight rate that (1) could support and be supported by an emerging nano-satellite market and (2) would benefit NASAs needs. Develop life-cycle cost, performance and other NASA analysis tools or models required to understand issues, drivers and challenges.

  13. HTGR Technology Family Assessment for a Range of Fuel Cycle Missions

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Piet; Samuel E. Bays; Nick Soelberg

    2010-08-01

    This report examines how the HTGR technology family can provide options for the once through, modified open cycle (MOC), or full recycle fuel cycle strategies. The HTGR can serve all the fuel cycle missions that an LWR can; both are thermal reactors. Additional analyses are warranted to determine if HTGR “full recycle” service could provide improved consumption of transuranic (TRU) material than LWRs (as expected), to analyze the unique proliferation resistance issues associated with the “pebble bed” approach, and to further test and analyze methods to separate TRISO-coated fuel particles from graphite and/or to separate used HTGR fuel meat from its TRISO coating. The feasibility of these two separation issues is not in doubt, but further R&D could clarify and reduce the cost and enable options not adequately explored at present. The analyses here and the now-demonstrated higher fuel burnup tests (after the illustrative designs studied here) should enable future MOC and full recycle HTGR concepts to more rapidly consume TRU, thereby offering waste management advantages. Interest in “limited separation” or “minimum fuel treatment” separation approaches motivates study of impurity-tolerant fuel fabrication. Several issues are outside the scope of this report, including the following: thorium fuel cycles, gas-cooled fast reactors, the reliability of TRISO-coated particles (billions in a reactor), and how soon any new reactor or fuel type could be licensed and then deployed and therefore impact fuel cycle performance measures.

  14. Life Cycle Assessment of Flat Roof Technologies for Office Buildings in Israel

    Directory of Open Access Journals (Sweden)

    Svetlana Pushkar

    2016-01-01

    Full Text Available The goal of the current study was to evaluate the environmental damage from three flat roof technologies typically used in Israel: (i concrete, (ii ribbed slab with concrete blocks, and (iii ribbed slab with autoclaved aerated blocks. The roofs were evaluated using the Life Cycle Assessment (LCA methodology. The Production and Construction (P and C, Operational Energy (OE, and Maintenance to Demolition (MtoD stages were considered. The roofs were modeled based on an office building module located in the four climate zones of Israel, and the hierarchical ReCiPe2008 Life Cycle Impact Assessment (LCIA method was applied. The percent difference of one, which is the default methodological option of ReCiPe2008, and an ANOVA of the six methodological options of ReCiPe2008 were used. The results revealed that (i in a hot climate, the best roof technology can be selected by considering only the OE stage, whereas in a mild climate, both the OE and P and C stages must be considered; (ii in a hot climate, the best roof technology is a concrete roof, but in a mild climate, the best options are ribbed slab roofs with concrete blocks and autoclaved aerated blocks; and (iii the conjugation of ReCiPe2008 with a two-stage nested ANOVA is the appropriate approach to evaluate the differences in environmental damage in order to compare flat roof technologies.

  15. Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations

    DEFF Research Database (Denmark)

    Turconi, Roberto; Boldrin, Alessio; Astrup, Thomas Fruergaard

    2013-01-01

    Electricity generation is a key contributor to global emissions of greenhouse gases (GHG), NOx and SO2 and their related environmental impact. A critical review of 167 case studies involving the life cycle assessment (LCA) of electricity generation based on hard coal, lignite, natural gas, oil...... identified as follows: the energy recovery efficiency and the flue gas cleaning system for fossil fuel technologies; the electricity mix used during both the manufacturing and the construction phases for nuclear and renewable technologies; and the type, quality and origin of feedstock, as well as the amount...... and type of co-products, for biomass-based systems. This review demonstrates that the variability of existing LCA results for electricity generation can give rise to conflicting decisions regarding the environmental consequences of implementing new technologies....

  16. Life cycle assessment of thermal Waste-to-Energy technologies: Review and recommendations

    DEFF Research Database (Denmark)

    Astrup, Thomas Fruergaard; Tonini, Davide; Turconi, Roberto

    2015-01-01

    -studies published in 136 peer-reviewed journal articles within 1995 and 2013. The studies were evaluated with respect to critical aspects such as: (i) goal and scope definitions (e.g. functional units, system boundaries, temporal and geographic scopes), (ii) detailed technology parameters (e.g. related to waste...... composition, technology, gas cleaning, energy recovery, residue management, and inventory data), and (iii) modeling principles (e.g. energy/mass calculation principles, energy substitution, inclusion of capital goods and uncertainty evaluation). Very few of the published studies provided full and transparent......Life cycle assessment (LCA) has been used extensively within the recent decade to evaluate the environmental performance of thermal Waste-to-Energy (WtE) technologies: incineration, co-combustion, pyrolysis and gasification. A critical review was carried out involving 250 individual case...

  17. Dataset of working conditions and thermo-economic performances for hybrid organic Rankine plants fed by solar and low-grade energy sources.

    Science.gov (United States)

    Scardigno, Domenico; Fanelli, Emanuele; Viggiano, Annarita; Braccio, Giacobbe; Magi, Vinicio

    2016-06-01

    This article provides the dataset of operating conditions of a hybrid organic Rankine plant generated by the optimization procedure employed in the research article "A genetic optimization of a hybrid organic Rankine plant for solar and low-grade energy sources" (Scardigno et al., 2015) [1]. The methodology used to obtain the data is described. The operating conditions are subdivided into two separate groups: feasible and unfeasible solutions. In both groups, the values of the design variables are given. Besides, the subset of feasible solutions is described in details, by providing the thermodynamic and economic performances, the temperatures at some characteristic sections of the thermodynamic cycle, the net power, the absorbed powers and the area of the heat exchange surfaces.

  18. Potential for Integrating Diffusion of Innovation Principles into Life Cycle Assessment of Emerging Technologies.

    Science.gov (United States)

    Sharp, Benjamin E; Miller, Shelie A

    2016-03-15

    Life cycle assessment (LCA) measures cradle-to-grave environmental impacts of a product. To assess impacts of an emerging technology, LCA should be coupled with additional methods that estimate how that technology might be deployed. The extent and manner that an emerging technology diffuses throughout a region shapes the magnitude and type of environmental impacts. Diffusion of innovation is an established field of research that analyzes the adoption of new innovations, and its principles can be used to construct scenario models that enhance LCA of emerging technologies. Integrating diffusion modeling techniques with an LCA of emerging technology can provide estimates for the extent of market penetration, the displacement of existing systems, and the rate of adoption. Two general perspectives of application are macro-level diffusion models that use a function of time to represent adoption, and microlevel diffusion models that simulate adoption through interactions of individuals. Incorporating diffusion of innovation concepts complement existing methods within LCA to inform proactive environmental management of emerging technologies.

  19. A consistent conceptual framework for applying climate metrics in technology life cycle assessment

    Science.gov (United States)

    Mallapragada, Dharik; Mignone, Bryan K.

    2017-07-01

    Comparing the potential climate impacts of different technologies is challenging for several reasons, including the fact that any given technology may be associated with emissions of multiple greenhouse gases when evaluated on a life cycle basis. In general, analysts must decide how to aggregate the climatic effects of different technologies, taking into account differences in the properties of the gases (differences in atmospheric lifetimes and instantaneous radiative efficiencies) as well as different technology characteristics (differences in emission factors and technology lifetimes). Available metrics proposed in the literature have incorporated these features in different ways and have arrived at different conclusions. In this paper, we develop a general framework for classifying metrics based on whether they measure: (a) cumulative or end point impacts, (b) impacts over a fixed time horizon or up to a fixed end year, and (c) impacts from a single emissions pulse or from a stream of pulses over multiple years. We then use the comparison between compressed natural gas and gasoline-fueled vehicles to illustrate how the choice of metric can affect conclusions about technologies. Finally, we consider tradeoffs involved in selecting a metric, show how the choice of metric depends on the framework that is assumed for climate change mitigation, and suggest which subset of metrics are likely to be most analytically self-consistent.

  20. Life Cycle Assessment and Water Footprint of Hydrogen Production Methods: From Conventional to Emerging Technologies

    Directory of Open Access Journals (Sweden)

    Andi Mehmeti

    2018-02-01

    Full Text Available A common sustainability issue, arising in production systems, is the efficient use of resources for providing goods or services. With the increased interest in a hydrogen (H2 economy, the life-cycle environmental performance of H2 production has special significance for assisting in identifying opportunities to improve environmental performance and to guide challenging decisions and select between technology paths. Life cycle impact assessment methods are rapidly evolving to analyze multiple environmental impacts of the production of products or processes. This study marks the first step in developing process-based streamlined life cycle analysis (LCA of several H2 production pathways combining life cycle impacts at the midpoint (17 problem-oriented and endpoint (3 damage-oriented levels using the state-of-the-art impact assessment method ReCiPe 2016. Steam reforming of natural gas, coal gasification, water electrolysis via proton exchange membrane fuel cell (PEM, solid oxide electrolyzer cell (SOEC, biomass gasification and reforming, and dark fermentation of lignocellulosic biomass were analyzed. An innovative aspect is developed in this study is an analysis of water consumption associated with H2 production pathways by life-cycle stage to provide a better understanding of the life cycle water-related impacts on human health and natural environment. For water-related scope, Water scarcity footprint (WSF quantified using Available WAter REmaining (AWARE method was applied as a stand-alone indicator. The paper discusses the strengths and weaknesses of each production pathway, identify the drivers of environmental impact, quantify midpoint environmental impact and its influence on the endpoint environmental performance. The findings of this study could serve as a useful theoretical reference and practical basis to decision-makers of potential environmental impacts of H2 production systems.

  1. Functional unit, technological dynamics, and scaling properties for the life cycle energy of residences.

    Science.gov (United States)

    Frijia, Stephane; Guhathakurta, Subhrajit; Williams, Eric

    2012-02-07

    Prior LCA studies take the operational phase to include all energy use within a residence, implying a functional unit of all household activities, but then exclude related supply chains such as production of food, appliances, and household chemicals. We argue that bounding the functional unit to provision of a climate controlled space better focuses the LCA on the building, rather than activities that occur within a building. The second issue explored in this article is how technological change in the operational phase affects life cycle energy. Heating and cooling equipment is replaced at least several times over the lifetime of a residence; improved efficiency of newer equipment affects life cycle energy use. The third objective is to construct parametric models to describe LCA results for a family of related products. We explore these three issues through a case study of energy use of residences: one-story and two-story detached homes, 1,500-3,500 square feet in area, located in Phoenix, Arizona, built in 2002 and retired in 2051. With a restricted functional unit and accounting for technological progress, approximately 30% of a building's life cycle energy can be attributed to materials and construction, compared to 0.4-11% in previous studies.

  2. Analysis of energetic and exergetic efficiency, and environmental benefits of biomass integrated gasification combined cycle technology.

    Science.gov (United States)

    Mínguez, María; Jiménez, Angel; Rodríguez, Javier; González, Celina; López, Ignacio; Nieto, Rafael

    2013-04-01

    The problem of the high carbon dioxide emissions linked to power generation makes necessary active research on the use of biofuels in gas turbine systems as a promising alternative to fossil fuels. Gasification of biomass waste is particularly of interest in obtaining a fuel to be run in gas turbines, as it is an efficient biomass-to-biofuel conversion process, and an integration into a combined cycle power plant leads to a high performance with regard to energetic efficiency. The goal of this study was to carry out an energetic, exergetic and environmental analysis of the behaviour of an integrated gasification combined cycle (IGCC) plant fuelled with different kinds of biomass waste by means of simulations. A preliminary economic study is also included. Although a technological development in gasification technology is necessary, the results of simulations indicate a high technical and environmental interest in the use of biomass integrated gasification combined cycle (BioIGCC) systems for large-scale power generation from biomass waste.

  3. Technology Concept for a Near-Term Closed Brayton Cycle Power Conversion Unit

    Science.gov (United States)

    Foti, John; Halsey, Dave; Bauch, Tim; Smith, Glen

    2003-01-01

    There is a need in the space science community for nuclear-powered electric propulsion systems to enable high-value, deep space and planetary exploration. Certain missions are driven by once-in-a-lifetime or highly infrequent occurrences that require the near-term development of a flight-capable nuclear space power and electric propulsion system in order to take advantage of the scientific opportunity. The broader applicability of Brayton power systems to the commercial and military aircraft markets has provided fertile ground for the continued development and implementation of new technologies applicable to a closed Brayton cycle space Power Conversion Unit (PCU). One concept for effectively achieving a near-term Brayton space power capability is based on the development work associated with the Integrated Power Unit (IPU). This unit embodies the state of the art in turbomachinery, generators, bearing systems and electric power management and distribution capability that can readily be evolved into a closed Brayton cycle PCU. This paper provides an overview of aircraft-based Brayton power system technologies, their implementation into the IPU and one approach for leveraging this capability into a near-term closed Brayton cycle space power conversion unit.

  4. Effect of storage and LEO cycling on manufacturing technology IPV nickel-hydrogen cells

    Science.gov (United States)

    Smithrick, John J.

    1987-01-01

    Yardney Manufacturing Technology (MANTECH) 50 A-hr space weight individual pressure vessel nickel-hydrogen cells were evaluated. This consisted of investigating: the effect of storage and charge/discharge cycling on cell performance. For the storage test the cells were precharged with hydrogen, by the manufacturer, to a pressure of 14.5 psia. After undergoing activation and acceptance tests, the cells were discharged at C/10 rate (5A) to 0.1 V or less. The terminals were then shorted. The cells were shipped to NASA Lewis Research Center where they were stored at room temperature in the shorted condition for 1 year. After storage, the acceptance tests were repeated at NASA Lewis. A comparison of test results indicate no significant degradation in electrical performance due to 1 year storage. For the cycle life test the regime was a 90 minute low earth orbit at deep depths of discharge (80 and 60 percent). At the 80 percent DOD the three cells failed on the average at cycle 741. Failure for this test was defined to occur when the cell voltage degraded to 1 V prior to completion of the 35 min discharge. The DOD was reduced to 60 percent. The cycle life test was continued.

  5. Isolation of Mitochondrial DNA from Single, Short Hairs without Roots Using Pressure Cycling Technology.

    Science.gov (United States)

    Harper, Kathryn A; Meiklejohn, Kelly A; Merritt, Richard T; Walker, Jessica; Fisher, Constance L; Robertson, James M

    2017-10-01

    Hairs are commonly submitted as evidence to forensic laboratories, but standard nuclear DNA analysis is not always possible. Mitochondria (mt) provide another source of genetic material; however, manual isolation is laborious. In a proof-of-concept study, we assessed pressure cycling technology (PCT; an automated approach that subjects samples to varying cycles of high and low pressure) for extracting mtDNA from single, short hairs without roots. Using three microscopically similar donors, we determined the ideal PCT conditions and compared those yields to those obtained using the traditional manual micro-tissue grinder method. Higher yields were recovered from grinder extracts, but yields from PCT extracts exceeded the requirements for forensic analysis, with the DNA quality confirmed through sequencing. Automated extraction of mtDNA from hairs without roots using PCT could be useful for forensic laboratories processing numerous samples.

  6. Environmental Impacts of Renewable Electricity Generation Technologies: A Life Cycle Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Heath, Garvin

    2016-01-13

    All energy systems impact the environment. Much has been learned about these environmental impacts from decades of research. Through systematic reviews, meta-analysis and original research, the National Renewable Energy Laboratory has been building knowledge about environmental impacts of both renewable and conventional electricity generation technologies. Evidence for greenhouse gas emissions, water and land use will be reviewed mostly from the perspective of life cycle assessment. Impacts from oil and natural gas systems will be highlighted. Areas of uncertainty and challenge will be discussed as suggestions for future research, as well as career opportunities in this field.

  7. Life cycle inventory and risk assessment of genetic modified perennial ryegrass in a technology foresight perspective

    DEFF Research Database (Denmark)

    Borch, K.; Rasmussen, B.; Schleisner, L.

    2000-01-01

    , a methodological approach is suggested to analyse the uncertainties that the biotech industry and the authorities face when implementing genetically modified (GM) crops. These uncertainties embracescientific rationality regarding technological development and risk assessments, as well as ethic political and social......Due to the complexity and advanced nature of modern biotechnology and to its content of risk and ethic matters it is necessary to face the challenge of making the prospect comprehensible and transparent to society. Using life cycle inven-tory (LCI),expert panels and weighted expert questionnaires...

  8. Energy system analyses of the marginal energy technology in life cycle assessments

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Münster, Marie; Fruergaard, Thilde

    2007-01-01

    In life cycle assessments consequential LCA is used as the “state-of-the-art” methodology, which focuses on the consequences of decisions made in terms of system boundaries, allocation and selection of data, simple and dynamic marginal technology, etc.(Ekvall & Weidema 2004). In many LCA studies......, the energy demand applied is decisive for the results. In this extended abstract, consequential LCA methodology is examined with electricity as the case. The aim is to answer three questions: Which are the expected vs. the actual marginal electricity production technologies and what may be the future...... in historical and potential future energy systems. Subsequently, key LCA studies of products and different waste flows are analysed in relation to the recom- mendations in consequential LCA. Finally, a case of increased waste used for incineration is examined using an energy system analysis model...

  9. Energy-Saving Optimization of Water Supply Pumping Station Life Cycle Based on BIM Technology

    Science.gov (United States)

    Qun, Miao; Wang, Jiayuan; Liu, Chao

    2017-12-01

    In the urban water supply system, pump station is the main unit of energy consumption. In the background of pushing forward the informatization in China, using BIM technology in design, construction and operations of water supply pumping station, can break through the limitations of the traditional model and effectively achieve the goal of energy conservation and emissions reduction. This work researches the way to solve energy-saving optimization problems in the process of whole life cycle of water supply pumping station based on BIM technology, and put forward the feasible strategies of BIM application in order to realize the healthy and sustainable development goals by establishing the BIM model of water supply pumping station of Qingdao Guzhenkou water supply project.

  10. Marginal Generation Technology in the Chinese Power Market towards 2030 Based on Consequential Life Cycle Assessment

    DEFF Research Database (Denmark)

    Zhao, Guangling; Guerrero, Josep M.; Pei, Yingying

    2016-01-01

    and regional power grids. Marginal electricity generation technology is pivotal in assessing impacts related to additional consumption of electricity. China covers a large geographical area with regional supply grids; these are arguably equally or less integrated. Meanwhile, it is also a country with internal......Electricity consumption is often the hotspot of life cycle assessment (LCA) of products, industrial activities, or services. The objective of this paper is to provide a consistent, scientific, region-specific electricity-supply-based inventory of electricity generation technology for national...... imbalances in regional energy supply and demand. Therefore, we suggest an approach to achieve a geographical subdivision of the Chinese electricity grid, corresponding to the interprovincial regional power grids, namely the North, the Northeast, the East, the Central, the Northwest, and the Southwest China...

  11. Life cycle assessment of pig slurry treatment technologies for nutrient redistribution in Denmark

    DEFF Research Database (Denmark)

    ten Hoeve, Marieke; Hutchings, Nicholas John; Peters, Gregory

    2014-01-01

    on a combination of values derived from the literature and simulations with the Farm-N model for Danish agricultural and climatic conditions. The environmental impact categories assessed were climate change, freshwater eutrophication, marine eutrophication, terrestrial acidification, natural resource use, and soil......Animal slurry management is associated with a range of impacts on fossil resource use and the environment. The impacts are greatest when large amounts of nutrient-rich slurry from livestock production cannot be adequately utilised on adjacent land. To facilitate nutrient redistribution, a range...... of different technologies are available. This study comprised a life cycle assessment of the environmental impacts from handling 1000. kg of pig slurry ex-animal. Application of untreated pig slurry onto adjacent land was compared with using four different treatment technologies to enable nutrient...

  12. Análise teórica da recuperação de calor para geração de energia em indústrias de cimento e cal utilizando o ciclo de Rankine orgânico

    Directory of Open Access Journals (Sweden)

    Ricardo Carrasco Carpio

    2015-06-01

    Full Text Available O presente trabalho consiste em uma apresentação do estado da arte do Ciclo Rankine Orgânico, um ciclo termodinâmico que usa um fluido orgânico como fluido de trabalho e que pode ser usado para recuperação de calor rejeitado em processos industriais, gerando assim energia elétrica para abastecer a própria indústria, o que consequentemente causa uma redução no custo de produção da empresa. São apresentados alguns fluidos orgânicos e alguns de seus parâmetros termodinâmicos.Palavras-chave: Cogeração. Ciclo Rankine Orgânico. Fluidos de Trabalho.ABSTRACTTheoretical analysis of heat recovery for power generation in cement and lime industries using the organic Rankine cycleThis work aims to present the state of the art of the Organic Rankine Cycle, a thermodynamic cycle that uses an organic fluid as a working fluid that can be used to recover the rejected heat in industrial processes, thus generating electricity to supply industry itself, which causes a reduction in the production cost of the company. It also presents some organic fluids and some of their thermodynamic parameters.Keywords: Cogeneration. Organic Rankine Cycle. Working Fluids.

  13. The Need for Technology Maturity of Any Advanced Capability to Achieve Better Life Cycle Cost (LCC)

    Science.gov (United States)

    Robinson, John W.; Levack, Daniel J. H.; Rhodes, Russel E.; Chen, Timothy T.

    2009-01-01

    Programs such as space transportation systems are developed and deployed only rarely, and they have long development schedules and large development and life cycle costs (LCC). They have not historically had their LCC predicted well and have only had an effort to control the DDT&E phase of the programs. One of the factors driving the predictability, and thus control, of the LCC of a program is the maturity of the technologies incorporated in the program. If the technologies incorporated are less mature (as measured by their Technology Readiness Level - TRL), then the LCC not only increases but the degree of increase is difficult to predict. Consequently, new programs avoid incorporating technologies unless they are quite mature, generally TRL greater than or equal to 7 (system prototype demonstrated in a space environment) to allow better predictability of the DDT&E phase costs unless there is no alternative. On the other hand, technology development programs rarely develop technologies beyond TRL 6 (system/subsystem model or prototype demonstrated in a relevant environment). Currently the lack of development funds beyond TRL 6 and the major funding required for full scale development leave little or no funding available to prototype TRL 6 concepts so that hardware would be in the ready mode for safe, reliable and cost effective incorporation. The net effect is that each new program either incorporates little new technology or has longer development schedules and costs, and higher LCC, than planned. This paper presents methods to ensure that advanced technologies are incorporated into future programs while providing a greater accuracy of predicting their LCC. One method is having a dedicated organization to develop X-series vehicles or separate prototypes carried on other vehicles. The question of whether such an organization should be independent of NASA and/or have an independent funding source is discussed. Other methods are also discussed. How to make the

  14. Absorptive capacity, technological innovation, and product life cycle: a system dynamics model.

    Science.gov (United States)

    Zou, Bo; Guo, Feng; Guo, Jinyu

    2016-01-01

    While past research has recognized the importance of the dynamic nature of absorptive capacity, there is limited knowledge on how to generate a fair and comprehensive analytical framework. Based on interviews with 24 Chinese firms, this study develops a system-dynamics model that incorporates an important feedback loop among absorptive capacity, technological innovation, and product life cycle (PLC). The simulation results reveal that (1) PLC affects the dynamic process of absorptive capacity; (2) the absorptive capacity of a firm peaks in the growth stage of PLC, and (3) the market demand at different PLC stages is the main driving force in firms' technological innovations. This study also explores a sensitivity simulation using the variables of (1) time spent in founding an external knowledge network, (2) research and development period, and (3) knowledge diversity. The sensitivity simulation results show that the changes of these three variables have a greater impact on absorptive capacity and technological innovation during growth and maturity stages than in the introduction and declining stages of PLC. We provide suggestions on how firms can adjust management policies to improve their absorptive capacity and technological innovation performance during different PLC stages.

  15. Life cycle assessment of a novel closed-containment salmon aquaculture technology.

    Science.gov (United States)

    McGrath, Keegan P; Pelletier, Nathan L; Tyedmers, Peter H

    2015-05-05

    In salmonid aquaculture, a variety of technologies have been deployed that attempt to limit a range of environmental impacts associated with net-pen culture. One such technology employs a floating, solid-walled enclosure as the primary culture environment, providing greater potential control over negative interactions with surroundings waters while limiting energy use required for water circulation, thermo-regulation and supplemental oxygen provision. Here, we utilize life cycle assessment to model contributions to a suite of global-scale resource depletion and environmental concerns (including global warming potential, acidification potential, marine eutrophication potential, cumulative energy use, and biotic resource use) of such a technology deployed commercially to rear Chinook salmon in coastal British Columbia, Canada. Results indicate that at full grow-out, feed provisioning and on-site energy use dominate contributions across four of five impact categories assessed. For example, per tonne of salmon harvested, feed contributed approximately 72% to global warming potential, 72% to acidification potential, and accounted for 100% of biotic resource use. However, for both feed and on-site energy use, impacts are heavily influenced by specific sources of inputs; therefore efforts to improve the environmental performance of this technology should focus on reducing these in favor of less impactful alternatives.

  16. Life cycle assessment of thermal waste-to-energy technologies: review and recommendations.

    Science.gov (United States)

    Astrup, Thomas Fruergaard; Tonini, Davide; Turconi, Roberto; Boldrin, Alessio

    2015-03-01

    Life cycle assessment (LCA) has been used extensively within the recent decade to evaluate the environmental performance of thermal Waste-to-Energy (WtE) technologies: incineration, co-combustion, pyrolysis and gasification. A critical review was carried out involving 250 individual case-studies published in 136 peer-reviewed journal articles within 1995 and 2013. The studies were evaluated with respect to critical aspects such as: (i) goal and scope definitions (e.g. functional units, system boundaries, temporal and geographic scopes), (ii) detailed technology parameters (e.g. related to waste composition, technology, gas cleaning, energy recovery, residue management, and inventory data), and (iii) modeling principles (e.g. energy/mass calculation principles, energy substitution, inclusion of capital goods and uncertainty evaluation). Very few of the published studies provided full and transparent descriptions of all these aspects, in many cases preventing an evaluation of the validity of results, and limiting applicability of data and results in other contexts. The review clearly suggests that the quality of LCA studies of WtE technologies and systems including energy recovery can be significantly improved. Based on the review, a detailed overview of assumptions and modeling choices in existing literature is provided in conjunction with practical recommendations for state-of-the-art LCA of Waste-to-Energy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The Chicago Center for Green Technology: life-cycle assessment of a brownfield redevelopment project

    Science.gov (United States)

    Brecheisen, Thomas; Theis, Thomas

    2013-03-01

    The sustainable development of brownfields reflects a fundamental, yet logical, shift in thinking and policymaking regarding pollution prevention. Life-cycle assessment (LCA) is a tool that can be used to assist in determining the conformity of brownfield development projects to the sustainability paradigm. LCA was applied to the process of a real brownfield redevelopment project, now known as the Chicago Center for Green Technology, to determine the cumulative energy required to complete the following redevelopment stages: (1) brownfield assessment and remediation, (2) building rehabilitation and site development and (3) ten years of operation. The results of the LCA have shown that operational energy is the dominant life-cycle stage after ten years of operation. The preservation and rehabilitation of the existing building, the installation of renewable energy systems (geothermal and photovoltaic) on-site and the use of more sustainable building products resulted in 72 terajoules (TJ) of avoided energy impacts, which would provide 14 years of operational energy for the site. Methodological note: data for this life-cycle assessment were obtained from project reports, construction blueprints and utility bills.

  18. HTGR Technology Family Assessment for a Range of Fuel Cycle Missions

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Piet; Samuel E. Bays; Nick R. Soelberg

    2010-11-01

    This report examines how the HTGR technology family can provide options for the once through, modified open cycle (MOC), or full recycle fuel cycle strategies. The HTGR can serve all the fuel cycle missions that an LWR can; both are thermal reactors. Additional analyses are warranted to determine if HTGR “full recycle” service could provide improved consumption of transuranic (TRU) material than LWRs (as expected), to analyze the unique proliferation resistance issues associated with the “pebble bed” approach, and to further test and analyze methods to separate TRISO-coated fuel particles from graphite and/or to separate used HTGR fuel meat from its TRISO coating. The feasibility of these two separation issues is not in doubt, but further R&D could clarify and reduce the cost and enable options not adequately explored at present. The analyses here and the now-demonstrated higher fuel burnup tests (after the illustrative designs studied here) should enable future MOC and full recycle HTGR concepts to more rapidly consume TRU, thereby offering waste management advantages. Interest in “limited separation” or “minimum fuel treatment” separation approaches motivates study of impurity-tolerant fuel fabrication.

  19. Organic Rankine kilowatt isotope power system. First annual summary report, August 1, 1975--August 1, 1976

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Sundstrand Energy Systems is developing a Kilowatt Isotope Power System (KIPS) directed toward satisfying the higher power requirements of satellites of the 1980's. The KIPS is a plutonium oxide fueled organic Rankine cycle turbine power system which will provide design output power in the range of 500 to 2000 W(e) with a minimum of system changes. Research progress is reported on Phase I comprising: (1) flight system conceptual design and ground demonstration; (2) flight system design and ground qualification; and (3) flight system production, acceptance testing and delivery. The principal objectives of Phase I are to: (1) conceptually design the flight system, (2) based on the flight system concept, design and build the ground demonstration system (GDS), (3) conduct performance and endurance testing using electric heaters to simulate the radioisotope heat source, (4) identify and initiate long lead development efforts required to achieve the initial flight qualification hardware availability date of April 1981, and (5) finalize the flight concept design and prepare the program plan for the Phase II effort.

  20. Life cycle Greenhouse gas emissions of current Oil Sands Technologies: surface mining and in situ applications.

    Science.gov (United States)

    Bergerson, Joule A; Kofoworola, Oyeshola; Charpentier, Alex D; Sleep, Sylvia; Maclean, Heather L

    2012-07-17

    Life cycle greenhouse gas (GHG) emissions associated with two major recovery and extraction processes currently utilized in Alberta's oil sands, surface mining and in situ, are quantified. Process modules are developed and integrated into a life cycle model-GHOST (GreenHouse gas emissions of current Oil Sands Technologies) developed in prior work. Recovery and extraction of bitumen through surface mining and in situ processes result in 3-9 and 9-16 g CO(2)eq/MJ bitumen, respectively; upgrading emissions are an additional 6-17 g CO(2)eq/MJ synthetic crude oil (SCO) (all results are on a HHV basis). Although a high degree of variability exists in well-to-wheel emissions due to differences in technologies employed, operating conditions, and product characteristics, the surface mining dilbit and the in situ SCO pathways have the lowest and highest emissions, 88 and 120 g CO(2)eq/MJ reformulated gasoline. Through the use of improved data obtained from operating oil sands projects, we present ranges of emissions that overlap with emissions in literature for conventional crude oil. An increased focus is recommended in policy discussions on understanding interproject variability of emissions of both oil sands and conventional crudes, as this has not been adequately represented in previous studies.

  1. Life Cycle Assessment of Titania Perovskite Solar Cell Technology for Sustainable Design and Manufacturing.

    Science.gov (United States)

    Zhang, Jingyi; Gao, Xianfeng; Deng, Yelin; Li, Bingbing; Yuan, Chris

    2015-11-01

    Perovskite solar cells have attracted enormous attention in recent years due to their low cost and superior technical performance. However, the use of toxic metals, such as lead, in the perovskite dye and toxic chemicals in perovskite solar cell manufacturing causes grave concerns for its environmental performance. To understand and facilitate the sustainable development of perovskite solar cell technology from its design to manufacturing, a comprehensive environmental impact assessment has been conducted on titanium dioxide nanotube based perovskite solar cells by using an attributional life cycle assessment approach, from cradle to gate, with manufacturing data from our laboratory-scale experiments and upstream data collected from professional databases and the literature. The results indicate that the perovskite dye is the primary source of environmental impact, associated with 64.77% total embodied energy and 31.38% embodied materials consumption, contributing to more than 50% of the life cycle impact in almost all impact categories, although lead used in the perovskite dye only contributes to about 1.14% of the human toxicity potential. A comparison of perovskite solar cells with commercial silicon and cadmium-tellurium solar cells reveals that perovskite solar cells could be a promising alternative technology for future large-scale industrial applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Healthy competition: A qualitative study investigating persuasive technologies and the gamification of cycling.

    Science.gov (United States)

    Barratt, Paul

    2017-07-01

    Changing socio-technical practices occurring within cycling are leading the pursuit, and its participants, to become ever more embedded into the networked digital world. GPS enabled mobile-technologies have introduced a new element of competition into recreational riding, whether on the road, competing over timed virtual segments, or online dissecting and comparing the data that has been logged and shared via dedicated ride-logging applications. In order to understand these technologies qualitative study using reflective diaries and semi-structured interviews has been conducted with experienced club cyclists who had fully experienced the effects of their arrival. These riders claim that the applications influence their route choice and motivate them to cycle more frequently, and at a greater intensity although the engagement changes over time. This paper explores how this increased motivation to exercise and compete is instigated, manifested and maintained in the everyday practices of cyclists, as well as the negative consequences of gamification. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Life cycle costing as a decision making tool for technology acquisition in radio-diagnosis.

    Science.gov (United States)

    Chakravarty, Abhijit; Debnath, Jyotindu

    2015-01-01

    Life cycle costing analysis is an emerging conceptual tool to validate capital investment in healthcare. A preliminary study was done to analyze the long-term cost impact of acquiring a new 3 T MRI system when compared to technological upgradation of the existing 1.5 T MRI system with a view to evolve a decision matrix for correct investment planning and technology management. Operating costing method was utilized to estimate cost per unit MRI scan, costing inputs were considered for the existing 1.5 T and the proposed 3 T machine. Cost for each expected year in the life span of both 1.5 T and 3 T MRI scan options were then discounted to its Net Present Value. Net Present Value thus calculated for both the alternative options of 1.5 T and 3 T MRI machine was charted along with various intangible but critical Figures of Merit (FOM) to create a decision matrix for capital investment planning. Considering all fixed and variable costs contributing towards assumed operation, unit cost per MRI procedure was found to be Rs. 4244.58 for the 1.5 T upgrade and Rs. 6059.37 for the new 3 T MRI machine. Life Cycle Cost Analysis of the proposed 1.5 T upgrade and new 3 T machine showed a Net Present Value of Rs. 42,148,587.80 and Rs. 27,587,842.38 respectively. The utility of life cycle costing as a strategic decision making tool towards evaluating alternative options for capital investment planning in health care environment is reiterated.

  4. Rankin-Selberg methods for closed string amplitudes

    CERN Document Server

    Pioline, Boris

    2014-01-01

    After integrating over supermoduli and vertex operator positions, scattering amplitudes in superstring theory at genus $h\\leq 3$ are reduced to an integral of a Siegel modular function of degree $h$ on a fundamental domain of the Siegel upper half plane. A direct computation is in general unwieldy, but becomes feasible if the integrand can be expressed as a sum over images under a suitable subgroup of the Siegel modular group: if so, the integration domain can be extended to a simpler domain at the expense of keeping a single term in each orbit -- a technique known as the Rankin-Selberg method. Motivated by applications to BPS-saturated amplitudes, Angelantonj, Florakis and I have applied this technique to one-loop modular integrals where the integrand is the product of a Siegel-Narain theta function times a weakly, almost holomorphic modular form. I survey our main results, and take some steps in extending this method to genus greater than one.

  5. Deriving modified Rankin scores from medical case-records.

    Science.gov (United States)

    Quinn, Terence J; Ray, Gautamananda; Atula, Sari; Walters, Matthew R; Dawson, Jesse; Lees, Kennedy R

    2008-12-01

    Modified Rankin score (mRS) is traditionally graded using a face-to-face or telephone interview. Certain stroke assessment scales can be derived from a review of a patient's case-record alone. We hypothesized that mRS could be successfully derived from the narrative within patient case-records. Sequential patients attending our cerebrovascular outpatient clinic were included. Two independent, blinded clinicians, trained in mRS, assessed case-records to derive mRS. They scored "certainty" of their grading on a 5-point Likert scale. Agreement between derived and traditional face-to-face mRS was calculated using attribute agreement analysis. Fifty patients with a range of disabilities were included. Case-record appraisers were poor at deriving mRS (k=0.34 against standard). Derived mRS grades showed poor agreement between observers (k=0.33). There was no relationship between certainty of derived mRS and proportion of correct grades (P=0.727). Accurate mRS cannot be derived from standard hospital records. Direct mRS interview is still required for clinical trials.

  6. Part-load performance of a high temperature Kalina cycle

    DEFF Research Database (Denmark)

    Modi, Anish; Andreasen, Jesper Graa; Kærn, Martin Ryhl

    2015-01-01

    The Kalina cycle has recently seen increased interest as an alternative to the conventional steam Rankine cycle. The cycle has been studied for use with both low and high temperature applications such as geothermal power plants, ocean thermal energy conversion, waste heat recovery, gas turbine...

  7. Technological and chemical assessment of various thermochemical cycles: From the UT3 cycle up to the two steps iron oxide cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lemort, F.; Lafon, C.; Romnicianu, M. [Commissariat a l' Energie Atomique (CEA), Rhone Valley Research Center BP17171, 30207 Bagnols-sur-Ceze Cedex (France); Charvin, P. [PROMES-CNRS-UPR 8521 BP5 - Odeillo, 66120 FONT ROMEU Cedex (France)

    2006-11-15

    The studies carried out on the UT-3 cycle lead to propose an operating mode that was tested with the Mascot Mockup. Additional investigations, partially presented in the present paper point out that the physicochemical properties of the solid and gaseous reactants will make the running of an industrial process very difficult. For instance, the sintering of the solid, the possible reactivity of the embedding matrix, ...induce additional operation and then lower very sensibly the efficiency of the cycle. Furthermore, if the toxicity of the reactants is taken into consideration, the attractivity of this cycle decreases. If other considerations than the efficiency of the cycle are taken into consideration, it is possible to investigate other cycles. The present paper shows the first results of the studies carried out on alternative cycles having either low efficiency but involving inoffensive reactants or high efficiency but without using bromine. In the first case illustrated by the iron oxide cycle, it seems that the low efficiency can be partially offset by using abundant and inexpensive energy source. In the second one illustrated by the cerium chloride cycle, the significant industrial experience regarding the chemical engineering of the chloride could make the industrial development easier. (author)

  8. Life Cycle Environmental Impacts of Disinfection Technologies Used in Small Drinking Water Systems.

    Science.gov (United States)

    Jones, Christopher Holladay; Shilling, Elizabeth G; Linden, Karl G; Cook, Sherri Michelle

    2018-02-05

    Small drinking water systems serve a fifth of the U.S. population and rely heavily on disinfection. While chlorine disinfection is common, there is interest in minimizing chemical addition, especially due to carcinogenic disinfection byproducts and chlorine-resistant pathogens, by using ultraviolet technologies; however, the relative, broader environmental impacts of these technologies are not well established, especially in the context of small (water systems. The objective of this study was to identify environmental trade-offs between chlorine and ultraviolet disinfection via comparative life cycle assessment. The functional unit was the production of 1 m3 of drinking water to U.S. Treatment included cartridge filtration followed by either chlorine disinfection or ultraviolet disinfection with chlorine residual addition. Environmental performance was evaluated for various chlorine contact zone materials (plastic, concrete, steel), ultraviolet validation factors (1.2 to 4.4), and electricity sources (renewable; U.S. average, high, and low impact grids). Performance was also evaluated when filtration and chlorine residual were not required. From an LCA perspective, replacing chlorine with UV was preferred only in a limited number of cases (i.e., high pumping pressure but filtration is not required). In all others, chlorine was environmentally preferred, although some contact zone materials and energy sources had an impact on the comparison. Utilities can use these data to inform their disinfection technology selection and operation to minimize environmental and human health impacts.

  9. Life cycle assessment of soil and groundwater remediation technologies: literature review

    DEFF Research Database (Denmark)

    Lemming, Gitte; Hauschild, Michael Zwicky; Bjerg, Poul Løgstrup

    2010-01-01

    Background, aim, and scope Life cycle assessment (LCA) is becoming an increasingly widespread tool in support systems for environmental decision-making regarding the cleanup of contaminated sites. In this study, the use of LCA to compare the environmental impacts of different remediation...... and scope definition and the applied impact assessment. The studies differ in their basic approach since some are prospective with focus on decision support while others are retrospective aiming at a more detailed assessment of a completed remediation project. Literature review The literature review showed...... scenarios in terms of their associated environmental burden. Main features An overview of the assessed remediation technologies and contaminant types covered in the literature is presented. The LCA methodologies of the 12 reviewed studies were compared and discussed with special focus on their goal...

  10. Analyzing the Life Cycle Energy Savings of DOE Supported Buildings Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Cort, Katherine A.; Hostick, Donna J.; Dirks, James A.; Elliott, Douglas B.

    2009-08-31

    This report examines the factors that would potentially help determine an appropriate analytical timeframe for measuring the U.S. Department of Energy's Building Technology (BT) benefits and presents a summary-level analysis of the life cycle savings for BT’s Commercial Buildings Integration (CBI) R&D program. The energy savings for three hypothetical building designs are projected over a 100-year period using Building Energy Analysis and Modeling System (BEAMS) to illustrate the resulting energy and carbon savings associated with the hypothetical aging buildings. The report identifies the tasks required to develop a long-term analytical and modeling framework, and discusses the potential analytical gains and losses by extending an analysis into the “long-term.”

  11. Development of Advanced Life Cycle Costing Methods for Technology Benefit/Cost/Risk Assessment

    Science.gov (United States)

    Yackovetsky, Robert (Technical Monitor)

    2002-01-01

    The overall objective of this three-year grant is to provide NASA Langley's System Analysis Branch with improved affordability tools and methods based on probabilistic cost assessment techniques. In order to accomplish this objective, the Aerospace Systems Design Laboratory (ASDL) needs to pursue more detailed affordability, technology impact, and risk prediction methods and to demonstrate them on variety of advanced commercial transports. The affordability assessment, which is a cornerstone of ASDL methods, relies on the Aircraft Life Cycle Cost Analysis (ALCCA) program originally developed by NASA Ames Research Center and enhanced by ASDL. This grant proposed to improve ALCCA in support of the project objective by updating the research, design, test, and evaluation cost module, as well as the engine development cost module. Investigations into enhancements to ALCCA include improved engine development cost, process based costing, supportability cost, and system reliability with airline loss of revenue for system downtime. A probabilistic, stand-alone version of ALCCA/FLOPS will also be developed under this grant in order to capture the uncertainty involved in technology assessments. FLOPS (FLight Optimization System program) is an aircraft synthesis and sizing code developed by NASA Langley Research Center. This probabilistic version of the coupled program will be used within a Technology Impact Forecasting (TIF) method to determine what types of technologies would have to be infused in a system in order to meet customer requirements. A probabilistic analysis of the CER's (cost estimating relationships) within ALCCA will also be carried out under this contract in order to gain some insight as to the most influential costs and the impact that code fidelity could have on future RDS (Robust Design Simulation) studies.

  12. Environmental life-cycle comparisons of two polychlorinated biphenyl remediation technologies: incineration and base catalyzed decomposition.

    Science.gov (United States)

    Hu, Xintao; Zhu, Jianxin; Ding, Qiong

    2011-07-15

    Remediation action is critical for the management of polychlorinated biphenyl (PCB) contaminated sites. Dozens of remediation technologies developed internationally could be divided in two general categories incineration and non-incineration. In this paper, life cycle assessment (LCA) was carried out to study the environmental impacts of these two kinds of remediation technologies in selected PCB contaminated sites, where Infrared High Temperature Incineration (IHTI) and Base Catalyzed Decomposition (BCD) were selected as representatives of incineration and non-incineration. A combined midpoint/damage approach was adopted by using SimaPro 7.2 and IMPACTA2002+ to assess the human toxicity, ecotoxicity, climate change impact, and resource consumption from the five subsystems of IHTI and BCD technologies, respectively. It was found that the major environmental impacts through the whole lifecycle arose from energy consumption in both IHTI and BCD processes. For IHTI, primary and secondary combustion subsystem contributes more than 50% of midpoint impacts concerning with carcinogens, respiratory inorganics, respiratory organics, terrestrial ecotoxity, terrestrial acidification/eutrophication and global warming. In BCD process, the rotary kiln reactor subsystem presents the highest contribution to almost all the midpoint impacts including global warming, non-renewable energy, non-carcinogens, terrestrial ecotoxity and respiratory inorganics. In the view of midpoint impacts, the characterization values for global warming from IHTI and BCD were about 432.35 and 38.5 kg CO(2)-eq per ton PCB-containing soils, respectively. LCA results showed that the single score of BCD environmental impact was 1468.97 Pt while IHTI's score is 2785.15 Pt, which indicates BCD potentially has a lower environmental impact than IHTI technology in the PCB contaminated soil remediation process. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Energy life cycle assessment of rice straw bio-energy derived from potential gasification technologies.

    Science.gov (United States)

    Shie, Je-Lueng; Chang, Ching-Yuan; Chen, Ci-Syuan; Shaw, Dai-Gee; Chen, Yi-Hung; Kuan, Wen-Hui; Ma, Hsiao-Kan

    2011-06-01

    To be a viable alternative, a biofuel should provide a net energy gain and be capable of being produced in large quantities without reducing food supplies. Amounts of agricultural waste are produced and require treatment, with rice straw contributing the greatest source of such potential bio-fuel in Taiwan. Through life-cycle accounting, several energy indicators and four potential gasification technologies (PGT) were evaluated. The input energy steps for the energy life cycle assessment (ELCA) include collection, generator, torrefaction, crushing, briquetting, transportation, energy production, condensation, air pollution control and distribution of biofuels to the point of end use. Every PGT has a positive energy benefit. The input of energy required for the transportation and pre-treatment are major steps in the ELCA. On-site briquetting of refused-derived fuel (RDF) provides an alternative means of reducing transportation energy requirements. Bio-energy sources, such as waste rice straw, provide an ideal material for the bio-fuel plant. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Life cycle assessment of innovative technology for energy production from automotive shredder residue.

    Science.gov (United States)

    Rinaldi, Caterina; Masoni, Paolo; Salvati, Fabio; Tolve, Pietro

    2015-07-01

    Automotive Shredder Residue (ASR) is a problematic waste material remaining after shredding and recovery processes of end-of-life vehicles (ELVs). Its heterogeneous grain size and composition make difficult its recovery or disposal. Although ASR accounts for approximately 20% to 25% of the weight of an ELV, the European Union (EU)'s ELV Directive (2000/53/EC) requires that by 2015 a minimum 95% of the weight of an ELV must be reused or recovered, including a 10% weight energy recovery. The quantity of ASR is relevant: Approximately 2.4 million tons are generated in the EU each year and most of it is sent to landfills. This article describes a life cycle model of the "TEKNE-Fluff" process designed to make beneficial use of ASR that is based on the results of an experimental pilot plant for pyro-gasification, combustion, cogeneration, and emissions treatment of ASR. The goal of the research was the application of life cycle assessment (LCA) methodology to identify the environmental hot spots of the "TEKNE system" and use scenario analysis to check solutions to improve its environmental profile, supporting the design and industrialization process. The LCA was conducted based on data modeled from the experimental campaign. Moreover, different scenarios on shares of electricity and thermal energy produced by the cogeneration system and alternative treatment processes for the waste produced by the technology were compared. Despite the limitation of the research (results based on scaling up experimental data by modeling), impact assessment results are promising and sufficiently robust, as shown by Monte Carlo analysis. The TEKNE technology may become an interesting solution for the problem of ASR management: Besides representing an alternative to landfill disposal, the energy produced could avoid significant impacts on fossil resources depletion (a plant of 40,000 tons/y capacity could produce ∼ 147,000 GJ/yr, covering the annual need of ∼ 13,500 households). © 2015

  15. Environmental life cycle assessment of methanol and electricity co-production system based on coal gasification technology.

    Science.gov (United States)

    Śliwińska, Anna; Burchart-Korol, Dorota; Smoliński, Adam

    2017-01-01

    This paper presents a life cycle assessment (LCA) of greenhouse gas emissions generated through methanol and electricity co-production system based on coal gasification technology. The analysis focuses on polygeneration technologies from which two products are produced, and thus, issues related to an allocation procedure for LCA are addressed in this paper. In the LCA, two methods were used: a 'system expansion' method based on two approaches, the 'avoided burdens approach' and 'direct system enlargement' methods and an 'allocation' method involving proportional partitioning based on physical relationships in a technological process. Cause-effect relationships in the analysed production process were identified, allowing for the identification of allocation factors. The 'system expansion' method involved expanding the analysis to include five additional variants of electricity production technologies in Poland (alternative technologies). This method revealed environmental consequences of implementation for the analysed technologies. It was found that the LCA of polygeneration technologies based on the 'system expansion' method generated a more complete source of information on environmental consequences than the 'allocation' method. The analysis shows that alternative technologies chosen for generating LCA results are crucial. Life cycle assessment was performed for the analysed, reference and variant alternative technologies. Comparative analysis was performed between the analysed technologies of methanol and electricity co-production from coal gasification as well as a reference technology of methanol production from the natural gas reforming process. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Industry-Cost-Curve Approach for Modeling the Environmental Impact of Introducing New Technologies in Life Cycle Assessment.

    Science.gov (United States)

    Kätelhön, Arne; von der Assen, Niklas; Suh, Sangwon; Jung, Johannes; Bardow, André

    2015-07-07

    The environmental costs and benefits of introducing a new technology depend not only on the technology itself, but also on the responses of the market where substitution or displacement of competing technologies may occur. An internationally accepted method taking both technological and market-mediated effects into account, however, is still lacking in life cycle assessment (LCA). For the introduction of a new technology, we here present a new approach for modeling the environmental impacts within the framework of LCA. Our approach is motivated by consequential life cycle assessment (CLCA) and aims to contribute to the discussion on how to operationalize consequential thinking in LCA practice. In our approach, we focus on new technologies producing homogeneous products such as chemicals or raw materials. We employ the industry cost-curve (ICC) for modeling market-mediated effects. Thereby, we can determine substitution effects at a level of granularity sufficient to distinguish between competing technologies. In our approach, a new technology alters the ICC potentially replacing the highest-cost producer(s). The technologies that remain competitive after the new technology's introduction determine the new environmental impact profile of the product. We apply our approach in a case study on a new technology for chlor-alkali electrolysis to be introduced in Germany.

  17. Life-cycle assessment (EASEWASTE) of two municipal solid waste incineration technologies in China.

    Science.gov (United States)

    Chen, Dezhen; Christensen, Thomas H

    2010-06-01

    The environmental profile of two municipal solid waste incineration (MSWI) technologies with semi-dry flue gas cleaning, namely grated firing incinerators (GFI) and fluidised bed incinerators (FBI) that are commonly used in China were evaluated and compared by life-cycle assessment (LCA) using the EASEWASTE model. All emissions of key pollutants as well as energy, resource and material inputs and outputs associated with the two MSWI technologies were determined and the corresponding environmental impact potentials were modelled. Incineration of MSW with a lower heating value (LHV) around 4.5 MJ kg(-1) demands that auxiliary fuel is used, and both GFI and FBI caused environmental loads by contributing with environmental impact potentials in most categories except for some saving in global warming (GW100) and hazardous waste (HW). Coal combustion in FBI is a main contributor to the environmental impact potentials and thus should always be limited to a minimum. Auxiliary fuels can be avoided when the LHV of MSW is higher than 5-6 MJ kg(- 1). For all scenarios, GFI saves more global warming potentials than FBI due to its higher net power generation from combustion of MSW itself. Leachate from the bunker could be sprayed into the furnace for evaporation under high temperature, as an alternative to waste-water treatment, without major changes in the environmental profile of the incinerator. The presented evaluations may contribute to a more balanced environmental assessment of the two incineration technologies with respect to incineration of MSW with low heating values as often found in Asia and China.

  18. Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies.

    Science.gov (United States)

    Mills, N; Pearce, P; Farrow, J; Thorpe, R B; Kirkby, N F

    2014-01-01

    The UK Water Industry currently generates approximately 800GWh pa of electrical energy from sewage sludge. Traditionally energy recovery from sewage sludge features Anaerobic Digestion (AD) with biogas utilisation in combined heat and power (CHP) systems. However, the industry is evolving and a number of developments that extract more energy from sludge are either being implemented or are nearing full scale demonstration. This study compared five technology configurations: 1 - conventional AD with CHP, 2 - Thermal Hydrolysis Process (THP) AD with CHP, 3 - THP AD with bio-methane grid injection, 4 - THP AD with CHP followed by drying of digested sludge for solid fuel production, 5 - THP AD followed by drying, pyrolysis of the digested sludge and use of the both the biogas and the pyrolysis gas in a CHP. The economic and environmental Life Cycle Assessment (LCA) found that both the post AD drying options performed well but the option used to create a solid fuel to displace coal (configuration 4) was the most sustainable solution economically and environmentally, closely followed by the pyrolysis configuration (5). Application of THP improves the financial and environmental performance compared with conventional AD. Producing bio-methane for grid injection (configuration 3) is attractive financially but has the worst environmental impact of all the scenarios, suggesting that the current UK financial incentive policy for bio-methane is not driving best environmental practice. It is clear that new and improving processes and technologies are enabling significant opportunities for further energy recovery from sludge; LCA provides tools for determining the best overall options for particular situations and allows innovation resources and investment to be focused accordingly. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. The Adoption of Advanced Fuel Cycle Technology Under a Single Repository Policy

    Energy Technology Data Exchange (ETDEWEB)

    Paul Wilson

    2009-11-02

    Develops the tools to investiage the hypothesis that the savings in repository space associated with the implementation of advanced nuclear fuel cycles can result in sufficient cost savings to offset the higher costs of those fuel cycles.

  20. Life cycle assessment of biochar application in Vietnam using two pyrolysis technologies

    Science.gov (United States)

    Mohammadi, Ali; Cowie, Annette; Mai, Thi Lan Anh; Anaya de la Rosa, Ruy; Kristiansen, Paul; Brandão, Miguel; Joseph, Stephen

    2016-04-01

    This study presents a comparative analysis of the environmental impacts of biochar systems in Vietnam using household scale and district scale pyrolysis technologies. At the household scale, pyrolytic cook-stoves were assumed to be used by households to produce biochar. The pyrolytic cook-stoves burn pyrolysis gases and use the heat for cooking. At the district scale, the BIGchar 2200 unit, a continuous operation system, is utilised to convert rice husk to biochar. This unit allows for easy capture of produced gases, which can be used to generate energy products, adding value to biochar production and decreasing environmental costs through the displacement of fossil fuels. The biochar produced from each system was assumed to be applied to paddy rice fields. Results from Life Cycle Assessment showed that biochar production at the both scales for application to the soil significantly improved environmental performance of 1 Mg of rice husk relative to the reference scenario (open burning of husk) across a range of impacts including climate change (CC), particulate matter and non-renewable energy (NRE) use. Net carbon abatement of biochar systems ranged from 355 to 427 kg CO2-eq Mg-1 of spring rice husk at the household scale and district scale, respectively. The district scale offered greater carbon abatement primarily due to the higher rate of LPG displaced by this unit.

  1. Estimation of sweat rates during cycling exercise by means of the closed chamber condenser technology.

    Science.gov (United States)

    Clarys, P; Clijsen, R; Barel, A O; Schouteden, R; van Olst, B; Aerenhouts, D

    2017-02-01

    Knowledge of local sweating patterns is of importance in occupational and exercise physiology settings. The recently developed closed chamber condenser technology (Biox Aquaflux ® ) allows the measurement of evaporative skin water loss with a greater measurement capacity (up to 1325 g/h/m 2 ) compared to traditional evaporimeters. The aim of this study was to evaluate the applicability of the Biox Aquaflux ® to estimate sweat production during exercise. Fourteen healthy subjects performed a 20-min cycle ergometer trial at respectively 55% heart rate (HR reserve and 75% HR reserve . Sweat production was estimated by measuring body weight before and after exercise, by calculating the amount of sweat collected in a patch, and by measuring the water flux (in g/h/m 2 ) with the Biox Aquaflux ® instrument. The Biox Aquaflux ® instrument allowed the follow up of sweat kinetics at both intensities. Correlations between the measurement methods were all significant for the 75% HR reserve trial (with r ranging from 0.68 to 0.76) whilst for the 55% HR reserve a significant relation was detected between the patch method and the Biox Aquaflux ® only (with r ranging from 0.41 to 0.79). The Biox Aquaflux ® instrument is a practical and direct method for the estimation of local sweat rates under field conditions. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. The Effect of Intercourse around Embryo Transfer on Pregnancy Rate in Assisted Reproductive Technology Cycles

    Directory of Open Access Journals (Sweden)

    Nasim Tabibnejad

    2009-01-01

    Full Text Available Background: Implantation failure is the most important cause of recurrent in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI failure. Several reports suggest that intercourse during theperitransfer period might improve pregnancy rates. This study is designed to determine whetherintercourse during the peritransfer period will improve pregnancy and implantation rates in patientsundergoing IVF or ICSI.Materials and Methods: In a randomized control trial study, 390 women with at least five yearsinfertility were evaluated. In the study group, 195 patients had intercourse at least once 12 hours afterembryo transfer. Implantation and clinical pregnancy rates were compared with 195 patients in thecontrol group who had no intercourse for the entire assisted reproductive technology (ART cycle.Results: Implantation rate in the study group was 6.5% in comparison with 5.5% for the controlgroup. Clinical pregnancy rates were not significantly higher in study patients when compared tothe control group (14.2% and 11.7% respectively.Conclusion: The results showed that intercourse during the peritransfer period can not increasepregnancy outcome.

  3. Wabash River Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    The proposed project would result in a combined-cycle power plant with lower emissions and higher efficiency than most existing coal-fired power plants of comparable size. The net plant heat rate (energy content of the fuel input per useable electrical generation output; i.e., Btu/kilowatt hour) for the new repowered unit would be a 21% improvement over the existing unit, while reducing SO{sub 2} emissions by greater than 90% and limiting NO{sub x} emissions by greater than 85% over that produced by conventional coal-fired boilers. The technology, which relies on gasified coal, is capable of producing as much as 25% more electricity from a given amount of coal than today`s conventional coal-burning methods. Besides having the positive environmental benefit of producing less pollutants per unit of power generated, the higher overall efficiency of the proposed CGCC project encourages greater utilization to meet base load requirements in order to realize the associated economic benefits. This greater utilization (i.e., increased capacity factor) of a cleaner operating plant has global environmental benefits in that it is likely that such power would replace power currently being produced by less efficient plants emitting a greater volume of pollutants per unit of power generated.

  4. Equivalent Mass versus Life Cycle Cost for Life Support Technology Selection

    Science.gov (United States)

    Jones, Harry

    2003-01-01

    The decision to develop a particular life support technology or to select it for flight usually depends on the cost to develop and fly it. Other criteria such as performance, safety, reliability, crew time, and technical and schedule risk are considered, but cost is always an important factor. Because launch cost would account for much of the cost of a future planetary mission, and because launch cost is directly proportional to the mass launched, equivalent mass has been used instead of cost to select advanced life support technology. The equivalent mass of a life support system includes the estimated mass of the hardware and of the spacecraft pressurized volume, power supply, and cooling system that the hardware requires. The equivalent mass of a system is defined as the total payload launch mass needed to provide and support the system. An extension of equivalent mass, Equivalent System Mass (ESM), has been established for use in the Advanced Life Support project. ESM adds a mass-equivalent of crew time and possibly other cost factors to equivalent mass. Traditional equivalent mass is strictly based on flown mass and reflects only the launch cost. ESM includes other important cost factors, but it complicates the simple flown mass definition of equivalent mass by adding a non-physical mass penalty for crew time that may exceed the actual flown mass. Equivalent mass is used only in life support analysis. Life Cycle Cost (LCC) is much more commonly used. LCC includes DDT&E, launch, and operations costs. For Earth orbit rather than planetary missions, the launch cost is less than the cost of Design, Development, Test, and Evaluation (DDTBE). LCC is a more inclusive cost estimator than equivalent mass. The relative costs of development, launch, and operations vary depending on the mission destination and duration. Since DDTBE or operations may cost more than launch, LCC gives a more accurate relative cost ranking than equivalent mass. To select the lowest cost

  5. Supporting Sustainable Markets Through Life Cycle Assessment: Evaluating emerging technologies, incorporating uncertainty and the consumer perspective

    Science.gov (United States)

    Merugula, Laura

    As civilization's collective knowledge grows, we are met with the realization that human-induced physical and biological transformations influenced by exogenous psychosocial and economic factors affect virtually every ecosystem on the planet. Despite improvements in energy generation and efficiencies, demand of material goods and energy services increases with no sign of a slowing pace. Sustainable development requires a multi-prong approach that involves reshaping demand, consumer education, sustainability-oriented policy, and supply chain management that does not serve the expansionist mentality. Thus, decision support tools are needed that inform developers, consumers, and policy-makers for short-term and long-term planning. These tools should incorporate uncertainty through quantitative methods as well as qualitatively informing the nature of the model as imperfect but necessary and adequate. A case study is presented of the manufacture and deployment of utility-scale wind turbines evaluated for a proposed change in blade manufacturing. It provides the first life cycle assessment (LCA) evaluating impact of carbon nanofibers, an emerging material, proposed for integration to wind power generation systems as blade reinforcement. Few LCAs of nanoproducts are available in scientific literature due to research and development (R&D) for applications that continues to outpace R&D for environmental, health, and safety (EHS) and life cycle impacts. LCAs of emerging technologies are crucial for informing developers of potential impacts, especially where market growth is swift and dissipative. A second case study is presented that evaluates consumer choice between disposable and reusable beverage cups. While there are a few studies that attempt to make the comparison using LCA, none adequately address uncertainty, nor are they representative for the typical American consumer. By disaggregating U.S. power generation into 26 subregional grid production mixes and evaluating

  6. Multiple regression models for the prediction of the maximum obtainable thermal efficiency of organic Rankine cycles

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Pierobon, Leonardo; Wronski, Jorrit

    2014-01-01

    to power. In this study we propose four linear regression models to predict the maximum obtainable thermal efficiency for simple and recuperated ORCs. A previously derived methodology is able to determine the maximum thermal efficiency among many combinations of fluids and processes, given the boundary...... conditions of the process. Hundreds of optimised cases with varied design parameters are used as observations in four multiple regression analyses. We analyse the model assumptions, prediction abilities and extrapolations, and compare the results with recent studies in the literature. The models...

  7. Dynamic Response of a 50 kW Organic Rankine Cycle System in Association with Evaporators

    Directory of Open Access Journals (Sweden)

    Yuh-Ren Lee

    2014-04-01

    Full Text Available The influences of various evaporators on the system responses of a 50 kW ORC system using R-245fa are investigated in this study. First the effect of the supplied hot water flowrate into the evaporator is examined and the exit superheat on the system performance between plate and shell-and-tube evaporator is also reported. Test results show that the effect of hot water flowrate on the evaporator imposes a negligible effect on the transient response of the ORC system. These results prevail even for a 3.5-fold increase of the hot water flowrate and the system shows barely any change subject to this drastic hot water flowrate change. The effect of exit superheat on the ORC system depends on the type of the evaporator. For the plate evaporator, an exit superheat less than 10 °C may cause ORC system instability due to considerable liquid entrainment. To maintain a stable operation, the corresponding Jakob number of the plate heat evaporator must be above 0.07. On the other hand, by employing a shell and tube heat evaporator connected to the ORC system, no unstable oscillation of the ORC system is observed for exit superheats ranging from 0 to 17 °C.

  8. Uncertainty Assessment of Equations of State with Application to an Organic Rankine Cycle

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Bell, Ian; O’Connell, John P.

    2017-01-01

    Evaluations of equations of state (EoS) with application to process systems should include uncertainty analysis. A generic method is presented for determining such uncertainties from both the mathematical formand the data for obtaining EoS parameter values. The method is implemented for the Soave...

  9. Culture media for human pre-implantation embryos in assisted reproductive technology cycles.

    Science.gov (United States)

    Youssef, Mohamed M A; Mantikou, Eleni; van Wely, Madelon; Van der Veen, Fulco; Al-Inany, Hesham G; Repping, Sjoerd; Mastenbroek, Sebastiaan

    2015-11-20

    Many media are commercially available for culturing pre-implantation human embryos in assisted reproductive technology (ART) cycles. It is unknown which culture medium leads to the best success rates after ART. To evaluate the safety and effectiveness of different human pre-implantation embryo culture media in used for in vitro fertilisation (IVF) and intracytoplasmic sperm injection (ICSI) cycles. We searched the Cochrane Menstrual Disorders and Subfertility Group's Trials Register, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, the National Research Register, the Medical Research Council's Clinical Trials Register and the NHS Center for Reviews and Dissemination databases from January 1985 to March 2015. We also examined the reference lists of all known primary studies, review articles, citation lists of relevant publications and abstracts of major scientific meetings. We included all randomised controlled trials which randomised women, oocytes or embryos and compared any two commercially available culture media for human pre-implantation embryos in an IVF or ICSI programme. Two review authors independently selected the studies, assessed their risk of bias and extracted data. We sought additional information from the authors if necessary. We assessed the quality of the evidence using Grades of Recommendation, Assessment, Development and Evaluation (GRADE) methods. The primary review outcome was live birth or ongoing pregnancy. We included 32 studies in this review. Seventeen studies randomised women (total 3666), three randomised cycles (total 1018) and twelve randomised oocytes (over 15,230). It was not possible to pool any of the data because each study compared different culture media.Only seven studies reported live birth or ongoing pregnancy. Four of these studies found no evidence of a difference between the media compared, for either day three or day five embryo transfer. The data from the fifth study did not appear reliable

  10. Supporting high-technology systems during periods of extended life-cycles by means of integrated logistics support

    Directory of Open Access Journals (Sweden)

    Lambert, K. R.

    2017-05-01

    Full Text Available The business environment is constantly changing. For organisations to gain competitive advantage, they require innovative methods to achieve future business goals. The capital assets of an organisation, such as its high-technology, complex systems, typically have long life-cycles, and are susceptible to obsolescence, requiring multifaceted support. Implementing integrated logistic support principles in supporting such systems improves the organisation’s bottom line and reduces the total ownership and life-cycle costs. The research consists of a literature review, a case study analysis, and a questionnaire.

  11. The governance of major innovation in the water cycle : Examining three prominent technologies

    NARCIS (Netherlands)

    Lulofs, Kris R.D.; Bressers, Hans

    The growing absolute and relative water scarcity requires drastic change in the water cycle in order to target an efficient and robust water supply. The water cycle consists of the production of water, water use, collection of wastewater and its treatment. This article addresses whether the market

  12. Review of supercritical CO2 power cycle technology and current status of research and development

    Directory of Open Access Journals (Sweden)

    Yoonhan Ahn

    2015-10-01

    Full Text Available The supercritical CO2 (S-CO2 Brayton cycle has recently been gaining a lot of attention for application to next generation nuclear reactors. The advantages of the S-CO2 cycle are high efficiency in the mild turbine inlet temperature region and a small physical footprint with a simple layout, compact turbomachinery, and heat exchangers. Several heat sources including nuclear, fossil fuel, waste heat, and renewable heat sources such as solar thermal or fuel cells are potential application areas of the S-CO2 cycle. In this paper, the current development progress of the S-CO2 cycle is introduced. Moreover, a quick comparison of various S-CO2 layouts is presented in terms of cycle performance.

  13. Development and Application of a Life Cycle-Based Model to Evaluate Greenhouse Gas Emissions of Oil Sands Upgrading Technologies.

    Science.gov (United States)

    Pacheco, Diana M; Bergerson, Joule A; Alvarez-Majmutov, Anton; Chen, Jinwen; MacLean, Heather L

    2016-12-20

    A life cycle-based model, OSTUM (Oil Sands Technologies for Upgrading Model), which evaluates the energy intensity and greenhouse gas (GHG) emissions of current oil sands upgrading technologies, is developed. Upgrading converts oil sands bitumen into high quality synthetic crude oil (SCO), a refinery feedstock. OSTUM's novel attributes include the following: the breadth of technologies and upgrading operations options that can be analyzed, energy intensity and GHG emissions being estimated at the process unit level, it not being dependent on a proprietary process simulator, and use of publicly available data. OSTUM is applied to a hypothetical, but realistic, upgrading operation based on delayed coking, the most common upgrading technology, resulting in emissions of 328 kg CO2e/m(3) SCO. The primary contributor to upgrading emissions (45%) is the use of natural gas for hydrogen production through steam methane reforming, followed by the use of natural gas as fuel in the rest of the process units' heaters (39%). OSTUM's results are in agreement with those of a process simulation model developed by CanmetENERGY, other literature, and confidential data of a commercial upgrading operation. For the application of the model, emissions are found to be most sensitive to the amount of natural gas utilized as feedstock by the steam methane reformer. OSTUM is capable of evaluating the impact of different technologies, feedstock qualities, operating conditions, and fuel mixes on upgrading emissions, and its life cycle perspective allows easy incorporation of results into well-to-wheel analyses.

  14. Direct generation of steam and electricity in a open cycle Rankine; Generacion directa de vapor y electricidad en un ciclo Rankine abierto

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Alvaro; Almanza, Rafael; Flores, Vicente [UNAM, Mexico, D.F. (Mexico)

    2000-07-01

    In this work the results of the experimental tests about steam and electricity generation are presented. This work carried out in the solar thermal power plant of the Institute of Engineering with direct steam generation in parabolic through. The global efficiency of the system is studied as for the conversion solar-electricity. The efficiency is determined and it describes the obtaining process of the main plant components, like they are, the solar steam generator, the steam motor and the electric generator. [Spanish] En este trabajo se presentan los resultados de las pruebas experimentales de la generacion de vapor y electricidad realizadas en la planta solar del Instituto de Ingenieria con generacion directa de vapor en concentradores de canal parabolico. Se estudia la eficiencia global del sistema en cuanto a la conversion de energia solar-electricidad. Se determina la eficiencia y describe el proceso de obtencion de la misma y de los principales componentes de la planta como son, el generador de vapor solar, el motor de pistones de vapor y el alternador electrico.

  15. Life cycle assessment as development and decision support tool for wastewater resource recovery technology.

    Science.gov (United States)

    Fang, Linda L; Valverde-Pérez, Borja; Damgaard, Anders; Plósz, Benedek Gy; Rygaard, Martin

    2016-01-01

    Life cycle assessment (LCA) has been increasingly used in the field of wastewater treatment where the focus has been to identify environmental trade-offs of current technologies. In a novel approach, we use LCA to support early stage research and development of a biochemical system for wastewater resource recovery. The freshwater and nutrient content of wastewater are recognized as potential valuable resources that can be recovered for beneficial reuse. Both recovery and reuse are intended to address existing environmental concerns, for example, water scarcity and use of non-renewable phosphorus. However, the resource recovery may come at the cost of unintended environmental impacts. One promising recovery system, referred to as TRENS, consists of an enhanced biological phosphorus removal and recovery system (EBP2R) connected to a photobioreactor. Based on a simulation of a full-scale nutrient and water recovery system in its potential operating environment, we assess the potential environmental impacts of such a system using the EASETECH model. In the simulation, recovered water and nutrients are used in scenarios of agricultural irrigation-fertilization and aquifer recharge. In these scenarios, TRENS reduces global warming up to 15% and marine eutrophication impacts up to 9% compared to conventional treatment. This is due to the recovery and reuse of nutrient resources, primarily nitrogen. The key environmental concerns obtained through the LCA are linked to increased human toxicity impacts from the chosen end use of wastewater recovery products. The toxicity impacts are from both heavy metals release associated with land application of recovered nutrients and production of AlCl3, which is required for advanced wastewater treatment prior to aquifer recharge. Perturbation analysis of the LCA pinpointed nutrient substitution and heavy metals content of algae biofertilizer as critical areas for further research if the performance of nutrient recovery systems such as

  16. Performance of Different Experimental Absorber Designs in Absorption Heat Pump Cycle Technologies: A Review

    Directory of Open Access Journals (Sweden)

    Jonathan Ibarra-Bahena

    2014-02-01

    Full Text Available The absorber is a major component of absorption cycle systems, and its performance directly impacts the overall size and energy supplies of these devices. Absorption cooling and heating cycles have different absorber design requirements: in absorption cooling systems, the absorber works close to ambient temperature, therefore, the mass transfer is the most important phenomenon in order to reduce the generator size; on the other hand, in heat transformer absorption systems, is important to recover the heat delivered by exothermic reactions produced in the absorber. In this paper a review of the main experimental results of different absorber designs reported in absorption heat pump cycles is presented.

  17. DESCRIPTION OF THE ORGANIZATIONAL AND TECHNOLOGICAL PROCESSES ON THE GROUND OF THE BASIC MODEL OF THE CYCLE OF REORGANIZATION

    Directory of Open Access Journals (Sweden)

    Gazaryan Robert Kamoevich

    2012-12-01

    Full Text Available The objective of this scientific research is application of the basic model of interaction between phases of a cycle of reorganization of organizational and technological processes underway at industrial enterprises. The authors describe interactions between all six phases of the process of reorganization within the framework of the basic model of a cycle that contemplates organizational and technological processes. Engineering studies are necessary to check for the feasibility of reorganization of industrial enterprises and application of results extracted from the design documentation with a view to reorganization of production activities and construction operations. Upon completion of the decision-making process concerning the need for reorganization in accordance with the basic model of interaction between phases, there occurs restructuring that incorporates processes of design and construction. The authors have demonstrated that reorganization of the basic model cycle should be used in the design of organizational and technological processes with a view to the integrated consideration of reorganization of enterprises in order to comprehend and improve the efficiency of reorganization at each stage, as well as the control over the reorganization of a construction facility.

  18. Recent advances in the PV-CSP hybrid solar power technology

    Science.gov (United States)

    Ju, Xing; Xu, Chao; Han, Xue; Zhang, Hui; Wei, Gaosheng; Chen, Lin

    2017-06-01

    Photovoltaic - Concentrated Solar Power (PV-CSP) hybrid technology is considered to be an important future research trend in solar energy engineering. The development of the PV-CSP hybrid technology accelerates in recent years with the rapid maturation of photovoltaics (PV) and concentrated solar power (CSP). This paper presents the recent advances on PV-CSP technology, including different technologies based on new dispatch strategies, Organic Rankine Cycles, spectral beam filters and so on. The research status and the hybrid system performance of the recent researches are summarized, aimed to provide an extended recognition on the PV-CSP hybrid technology. The advantages and limitations of the hybrid system are concluded according to the researches reviewed.

  19. An assessment of the effectiveness of fuel cycle technologies for the national energy security enhancement in the electricity sector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jun [Department of Nuclear and Quantum Engineering, KAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)], E-mail: hjkim@kaeri.re.kr; Jun, Eunju; Chang, Soon Heung [Department of Nuclear and Quantum Engineering, KAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Won Joon [Business Economics Program and Center for Science-based Entrepreneurship, KAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2009-05-15

    Energy security, in the 21st century, draws significant attention in most countries worldwide, because the national security and sustainable development depend largely on energy security. The anticipated fossil energy depletion and the instability of their supply drive many countries to consider nuclear energy as their alternative energy source for the enhancement of their national energy security. In this study, indicators measuring the level of energy security in the electric power sector are developed and applied for the assessment of the effectiveness of four electric power system schemes which deploy different nuclear fuel cycle technologies, with consideration for the diversification of the energy markets and the vulnerability to economic disruption. Results show that the contribution of the closed fuel cycle scheme is larger than the once-through fuel cycle scheme in the perspective of energy security. In addition, the completely closed fuel cycle with the spent fuel recycling enhances the national energy security to the maximum extent compared to all other fuel cycle schemes. Since a completely closed fuel cycle is hardly affected by the uranium price changes, this scheme is found to be the most favorable scheme, ensuring the stable profit of utilities and stabilizing the electricity tariff. In addition, the completely closed fuel cycle scheme provides the best enhancement of national energy security with respect to energy supply, under reasonable price conditions. The indicators developed in this study can be utilized as a useful instrument for the measurement of the level of the energy security, especially by the countries importing energy resources for the generation of electric power.

  20. A life cycle assessment of environmental performances of two combustion- and gasification-based waste-to-energy technologies.

    Science.gov (United States)

    Arena, Umberto; Ardolino, Filomena; Di Gregorio, Fabrizio

    2015-07-01

    An attributional life cycle analysis (LCA) was developed to compare the environmental performances of two waste-to-energy (WtE) units, which utilize the predominant technologies among those available for combustion and gasification processes: a moving grate combustor and a vertical shaft gasifier coupled with direct melting. The two units were assumed to be fed with the same unsorted residual municipal waste, having a composition estimated as a European average. Data from several plants in operation were processed by means of mass and energy balances, and on the basis of the flows and stocks of materials and elements inside and throughout the two units, as provided by a specific substance flow analysis. The potential life cycle environmental impacts related to the operations of the two WtE units were estimated by means of the Impact 2002+ methodology. They indicate that both the technologies have sustainable environmental performances, but those of the moving grate combustion unit are better for most of the selected impact categories. The analysis of the contributions from all the stages of each specific technology suggests where improvements in technological solutions and management criteria should be focused to obtain further and remarkable environmental improvements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Linking Data Choices and Context Specificity in Life Cycle Assessment of Waste Treatment Technologies: A Landfill Case Study

    DEFF Research Database (Denmark)

    Henriksen, Trine; Astrup, Thomas Fruergaard; Damgaard, Anders

    2017-01-01

    To generate meaningful results, life cycle assessments (LCAs) require accurate technology data that are consistent with the goal and scope of the analysis. While literature data are available for many products and processes, finding representative data for highly site-specific technologies...... as a function of the specificity of the study, and to illustrate the necessity of iteratively refining the goal and scope of the study as data are developed. A landfill case study was performed where 52 discrete landfill data sets were built and grouped to represent different technology options and geographical...... sites, potential impacts were calculated, and minimum/maximum (min-max) intervals were generated for each group. The results showed decreasing min-max intervals with increasing specificity of the scope of study, which indicates that compatibility between the scope of study and LCI model is critical...

  2. The dual cycle bridge detection of piezoresistive triaxial accelerometer based on MEMS technology

    Science.gov (United States)

    Juanting, Zhang; Changde, He; Hui, Zhang; Yuping, Li; Yongping, Zhang; Chunhui, Du; Wendong, Zhang

    2014-06-01

    A cycle bridge detection method, which uses a piezoresistive triaxial accelerometer, has been described innovatively. This method just uses eight resistors to form a cycle detection bridge, which can detect the signal of the three directions for real time. It breaks the law of the ordinary independent Wheatstone bridge detection method, which uses at least 12 resistors and each four resistors connected as a Wheatstone bridge to detect the output signal from a specific direction. In order to verify the feasibility of this method, the modeling and simulating of the sensor structure have been conducted by ANSYS, then the dual cycle bridge detection method and independent Wheatstone bridge detection method are compared, the result shows that the former method can improve the sensitivity of the sensor effectively. The sensitivity of the x, y-axis used in the former method is two times that of the sensor used in the latter method, and the sensitivity of the z-axis is four times. At the same time, it can also reduce the cross-axis coupling degree of the sensor used in the dual cycle bridge detection method. In addition, a signal amplifier circuit and adder circuit have been provided. Finally, the test result of the “eight-beams/mass” triaxial accelerometer, which is based on the dual cycle bridge detection method and the related circuits, have been provided. The results of the test and the theoretical analysis are consistent, on the whole.

  3. Prolaris Cell Cycle Progression Test for Localized Prostate Cancer: A Health Technology Assessment

    Science.gov (United States)

    Schaink, Alexis; Li, Chunmei; Wells, David; Holubowich, Corinne

    2017-01-01

    Background Prostate cancer is very common and many localized tumours are non-aggressive. Determining which cancers are aggressive is important for choosing the most appropriate treatment (e.g., surgery, radiation, active surveillance). Current clinical risk stratification is reliable in forecasting the prognosis of groups of men with similar clinical and pathologic characteristics, but there is residual uncertainty at the individual level. The Prolaris cell cycle progression (CCP) test, a genomic test that estimates how fast tumour cells are proliferating, could potentially be used to improve the accuracy of individual risk assessment. This health technology assessment sought to determine the clinical utility, economic impact, and patients' perceptions of the value of the CCP test in low- and intermediate-risk localized prostate cancer. Methods We conducted a systematic review of the clinical and economic evidence of the CCP test in low-and intermediate-risk, localized prostate cancer. Medical and health economic databases were searched from 2010 to June or July 2016. The critical appraisal of the clinical evidence included risk of bias and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria. We also analyzed the potential budget impact of adding the CCP test into current practice, from the perspective the Ontario Ministry of Health and Long-Term Care. Finally, we conducted qualitative interviews with men with prostate cancer, on the factors that influenced their treatment decision-making. Results For the review of clinical effectiveness, we screened 3,021 citations, and two before–after studies met our inclusion criteria. In one study, the results of the CCP test appeared to change the treatment plan (from initial to final plan) in 64.9% of cases overall (GRADE rating of the quality of evidence: Very low). In the other study, the CCP test changed the treatment received in nearly half of cases overall, compared

  4. Development of nuclear fuel cycle technologies - bases of long-term provision of fuel and environmental safety of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Solonin, M.I.; Polyakov, A.S.; Zakharkin, B.S.; Smelov, V.S.; Nenarokomov, E.A.; Mukhin, I.V. [SSC, RF, A.A. Bochvar ALL-Russia Research Institute of Inorganic Materials, Moscow (Russian Federation)

    2000-07-01

    To-day nuclear power is one of the options, however, to-morrow it may become the main source of the energy, thus, providing for the stable economic development for the long time to come. The availability of the large-scale nuclear power in the foreseeable future is governed by not only the safe operation of nuclear power plants (NPP) but also by the environmentally safe management of spent nuclear fuel, radioactive waste conditioning and long-term storage. More emphasis is to be placed to the closing of the fuel cycle in view of substantial quantities of spent nuclear fuel arisings. The once-through fuel cycle that is cost effective at the moment cannot be considered to be environmentally safe even for the middle term since the substantial build-up of spent nuclear fuel containing thousands of tons Pu will require the resolution of the safe management problem in the nearest future and is absolutely unjustified in terms of moral ethics as a transfer of the responsibility to future generations. The minimization of radioactive waste arisings and its radioactivity is only feasible with the closed fuel cycle put into practice and some actinides and long-lived fission radionuclides burnt out. The key issues in providing the environmentally safe fuel cycle are efficient processes of producing fuel for NPP, radionuclide after-burning included, a long-term spent nuclear fuel storage and reprocessing as well as radioactive waste management. The paper deals with the problems inherent in producing fuel for NPP with a view for the closed fuel cycle. Also discussed are options of the fuel cycle, its effectiveness and environmental safety with improvements in technologies of spent nuclear fuel reprocessing and long-lived radionuclide partitioning. (authors)

  5. Numerical analysis of radial inward flow turbine for CO2 based closed loop Brayton cycle

    Science.gov (United States)

    Kisan, Jadhav Amit; Govardhan, M.

    2017-06-01

    Last few decades have witnessed a phenomenal growth in the demand for power, which has driven the suppliers to find new sources of energy and increase the efficiency of power generation process. Power generation cycles are either steam based Rankine cycle or closed loop Brayton cycles providing an efficiency of 30 to 40%. An upcoming technology in this regard is the CO2 based Brayton cycle operating near the critical region which has applications in vast areas. Power generation of CO2 based Brayton cycle can vary from few kilowatts for waste heat recovery to hundreds of megawatts in sodium cooled fast reactors. A CO2 based Brayton cycle is being studied for power generation especially in mid-sized concentrated solar power plants by numerous research groups around the world. One of the main components of such a setting is its turbine. Simulating the flow conditions inside the turbine becomes very crucial in order to accurately predict the performance of the system. The flow inside radial inflow turbine is studied at various inlet temperatures and mass flow rates in order to predict the behavior of the turbine under various boundary conditions. The performance investigation of the turbine system is done on the basis of parameters such as total efficiency, pressure ratio, and power coefficient. Effect of different inlet stagnation temperature and exit mass flow rates on these parameters is also studied. Results obtained are encouraging for the use of CO2 as working fluid in Brayton cycle.

  6. Preliminary Test of Friction disk type turbine for S-CO{sub 2} cycle application

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Seungjoon; Kim, Hyeon Tae; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Due to the relatively mild sodium-CO{sub 2} interaction, the S-CO{sub 2} Brayton cycle can reduce the accident consequence compared to the steam Rankine cycle. Also the S-CO{sub 2} power conversion cycle can achieve high efficiency for SFR core thermal condition. Moreover, the S-CO{sub 2} power cycle can reduce the total cycle footprint due to high density of the working fluid. However, the high pressure operating condition and low viscosity of the fluid cause difficulties in designing appropriate seals and multi-stage turbo machineries. To solve the problem for designing turbo machineries in a creative way, KAIST research team tested a friction disk type turbine concept for the S-CO{sub 2} cycle application. In this paper, the investigation of the Tesla turbine and preliminary test results with compressed air are covered. The KAIST research team investigated a friction disk type turbine, named as Tesla turbine, for the S-CO{sub 2} power cycle applications. Due to the robust design of the fiction disk type, the Tesla turbine technology can be utilized not only for S-CO{sub 2} turbo machinery but also for the multi-phase or sludge flow turbo machinery. The preliminary test of lab-scale Tesla turbine with compressed air was conducted. The high pressure vessel was manufactured for the S-CO{sub 2} operating condition. The test will be concentrated on the turbine efficiency measurement under various conditions and development of the design methodology.

  7. New and Advanced Conversion Technologies: Analysis of Cogeneration, Combined and Integrated Cycles

    NARCIS (Netherlands)

    Korobitsyn, M.A.; Korobitsyn, Mikhail Aleksandrovich

    1998-01-01

    Identification and development of new energy conversion technologies and systems for distributed power generation applications are the objectives of the New Energy Conversion Technologies (NECT) programme, being realized by the Netherlands Agency for Energy and Environment (Novem). The part of the

  8. Life Cycle Analysis on Fossil Energy Ratio of Algal Biodiesel: Effects of Nitrogen Deficiency and Oil Extraction Technology

    Science.gov (United States)

    Jian, Hou; Jing, Yang; Peidong, Zhang

    2015-01-01

    Life cycle assessment (LCA) has been widely used to analyze various pathways of biofuel preparation from “cradle to grave.” Effects of nitrogen supply for algae cultivation and technology of algal oil extraction on life cycle fossil energy ratio of biodiesel are assessed in this study. Life cycle fossil energy ratio of Chlorella vulgaris based biodiesel is improved by growing algae under nitrogen-limited conditions, while the life cycle fossil energy ratio of biodiesel production from Phaeodactylum tricornutum grown with nitrogen deprivation decreases. Compared to extraction of oil from dried algae, extraction of lipid from wet algae with subcritical cosolvents achieves a 43.83% improvement in fossil energy ratio of algal biodiesel when oilcake drying is not considered. The outcome for sensitivity analysis indicates that the algal oil conversion rate and energy content of algae are found to have the greatest effects on the LCA results of algal biodiesel production, followed by utilization ratio of algal residue, energy demand for algae drying, capacity of water mixing, and productivity of algae. PMID:26000338

  9. Life Cycle Analysis on Fossil Energy Ratio of Algal Biodiesel: Effects of Nitrogen Deficiency and Oil Extraction Technology

    Directory of Open Access Journals (Sweden)

    Hou Jian

    2015-01-01

    Full Text Available Life cycle assessment (LCA has been widely used to analyze various pathways of biofuel preparation from “cradle to grave.” Effects of nitrogen supply for algae cultivation and technology of algal oil extraction on life cycle fossil energy ratio of biodiesel are assessed in this study. Life cycle fossil energy ratio of Chlorella vulgaris based biodiesel is improved by growing algae under nitrogen-limited conditions, while the life cycle fossil energy ratio of biodiesel production from Phaeodactylum tricornutum grown with nitrogen deprivation decreases. Compared to extraction of oil from dried algae, extraction of lipid from wet algae with subcritical cosolvents achieves a 43.83% improvement in fossil energy ratio of algal biodiesel when oilcake drying is not considered. The outcome for sensitivity analysis indicates that the algal oil conversion rate and energy content of algae are found to have the greatest effects on the LCA results of algal biodiesel production, followed by utilization ratio of algal residue, energy demand for algae drying, capacity of water mixing, and productivity of algae.

  10. Life cycle analysis on fossil energy ratio of algal biodiesel: effects of nitrogen deficiency and oil extraction technology.

    Science.gov (United States)

    Jian, Hou; Jing, Yang; Peidong, Zhang

    2015-01-01

    Life cycle assessment (LCA) has been widely used to analyze various pathways of biofuel preparation from "cradle to grave." Effects of nitrogen supply for algae cultivation and technology of algal oil extraction on life cycle fossil energy ratio of biodiesel are assessed in this study. Life cycle fossil energy ratio of Chlorella vulgaris based biodiesel is improved by growing algae under nitrogen-limited conditions, while the life cycle fossil energy ratio of biodiesel production from Phaeodactylum tricornutum grown with nitrogen deprivation decreases. Compared to extraction of oil from dried algae, extraction of lipid from wet algae with subcritical cosolvents achieves a 43.83% improvement in fossil energy ratio of algal biodiesel when oilcake drying is not considered. The outcome for sensitivity analysis indicates that the algal oil conversion rate and energy content of algae are found to have the greatest effects on the LCA results of algal biodiesel production, followed by utilization ratio of algal residue, energy demand for algae drying, capacity of water mixing, and productivity of algae.

  11. Integration of photovoltaic and concentrated solar thermal technologies for H2 production by the hybrid sulfur cycle

    Science.gov (United States)

    Liberatore, Raffaele; Ferrara, Mariarosaria; Lanchi, Michela; Turchetti, Luca

    2017-06-01

    It is widely agreed that hydrogen used as energy carrier and/or storage media may significantly contribute in the reduction of emissions, especially if produced by renewable energy sources. The Hybrid Sulfur (HyS) cycle is considered as one of the most promising processes to produce hydrogen through the water-splitting process. The FP7 project SOL2HY2 (Solar to Hydrogen Hybrid Cycles) investigates innovative material and process solutions for the use of solar heat and power in the HyS process. A significant part of the SOL2HY2 project is devoted to the analysis and optimization of the integration of the solar and chemical (hydrogen production) plants. In this context, this work investigates the possibility to integrate different solar technologies, namely photovoltaic, solar central receiver and solar troughs, to optimize their use in the HyS cycle for a green hydrogen production, both in the open and closed process configurations. The analysis carried out accounts for different combinations of geographical location and plant sizing criteria. The use of a sulfur burner, which can serve both as thermal backup and SO2 source for the open cycle, is also considered.

  12. Development of a methodological framework for social life-cycle assessment of novel technologies

    NARCIS (Netherlands)

    van Haaster, Berthe|info:eu-repo/dai/nl/370550153; Ciroth, Andreas; Fontes, João; Wood, Richard; Ramirez, Andrea|info:eu-repo/dai/nl/284852414

    Purpose: Environmental life-cycle assessment (LCA) is broadly applied and recently social and economic LCA have emerged. However, the development of a general framework for social LCA is still at an early stage of development. The aims of this paper are to systematically discuss general

  13. An analysis of the thermodynamic cycles with high-temperature nuclear reactor for power generation and hydrogen co-production

    Directory of Open Access Journals (Sweden)

    Dudek Michał

    2017-01-01

    Full Text Available In the present paper, numerical analysis of the thermodynamic cycle with the high-temperature nuclear gas reactor (HTGR for electricity and hydrogen production have been done. The analysed system consists of two independent loops. The first loop is for HTGR and consists of a nuclear reactor, heat exchangers, and blower. The second loop (Rankine cycle consist of up-to four steam turbines, that operate in heat recovery system. The analysis of the system shows that it is possible to achieve significantly higher efficiency than could be offered by traditional nuclear reactor technology (PWR and BWR. It is shown that the thermal efficiency about 52.5% it is possible to achieve when reactor works at standard conditions and steam is superheated up to 530oC. For the cases when the steam has supercritical conditions the value of thermal efficiency is still very high and equal about 50%.

  14. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    Energy Technology Data Exchange (ETDEWEB)

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  15. On the Rankin-Selberg method for higher genus string amplitudes

    CERN Document Server

    Florakis, Ioannis

    2017-01-01

    Closed string amplitudes at genus $h\\leq 3$ are given by integrals of Siegel modular functions on a fundamental domain of the Siegel upper half-plane. When the integrand is of rapid decay near the cusps, the integral can be computed by the Rankin-Selberg method, which consists of inserting an Eisenstein series $E_h(s)$ in the integrand, computing the integral by the orbit method, and finally extracting the residue at a suitable value of $s$. String amplitudes, however, typically involve integrands with polynomial or even exponential growth at the cusps, and a renormalization scheme is required to treat infrared divergences. Generalizing Zagier's extension of the Rankin-Selberg method at genus one, we develop the Rankin-Selberg method for Siegel modular functions of degree 2 and 3 with polynomial growth near the cusps. In particular, we show that the renormalized modular integral of the Siegel-Narain partition function of an even self-dual lattice of signature $(d,d)$ is proportional to a residue of the Langla...

  16. Life cycle cost assessment and performance evaluation of sediment control technologies.

    Science.gov (United States)

    2015-10-01

    This study was performed for the Georgia Department of Transportation (GDOT) : to better understand the environmental impacts associated with sediment control : technology currently employed on transportation projects. In this study, a review of : cu...

  17. Lithic technological responses to Late Pleistocene glacial cycling at Pinnacle Point Site 5-6, South Africa.

    Directory of Open Access Journals (Sweden)

    Jayne Wilkins

    Full Text Available There are multiple hypotheses for human responses to glacial cycling in the Late Pleistocene, including changes in population size, interconnectedness, and mobility. Lithic technological analysis informs us of human responses to environmental change because lithic assemblage characteristics are a reflection of raw material transport, reduction, and discard behaviors that depend on hunter-gatherer social and economic decisions. Pinnacle Point Site 5-6 (PP5-6, Western Cape, South Africa is an ideal locality for examining the influence of glacial cycling on early modern human behaviors because it preserves a long sequence spanning marine isotope stages (MIS 5, 4, and 3 and is associated with robust records of paleoenvironmental change. The analysis presented here addresses the question, what, if any, lithic assemblage traits at PP5-6 represent changing behavioral responses to the MIS 5-4-3 interglacial-glacial cycle? It statistically evaluates changes in 93 traits with no a priori assumptions about which traits may significantly associate with MIS. In contrast to other studies that claim that there is little relationship between broad-scale patterns of climate change and lithic technology, we identified the following characteristics that are associated with MIS 4: increased use of quartz, increased evidence for outcrop sources of quartzite and silcrete, increased evidence for earlier stages of reduction in silcrete, evidence for increased flaking efficiency in all raw material types, and changes in tool types and function for silcrete. Based on these results, we suggest that foragers responded to MIS 4 glacial environmental conditions at PP5-6 with increased population or group sizes, 'place provisioning', longer and/or more intense site occupations, and decreased residential mobility. Several other traits, including silcrete frequency, do not exhibit an association with MIS. Backed pieces, once they appear in the PP5-6 record during MIS 4, persist

  18. Lithic technological responses to Late Pleistocene glacial cycling at Pinnacle Point Site 5-6, South Africa.

    Science.gov (United States)

    Wilkins, Jayne; Brown, Kyle S; Oestmo, Simen; Pereira, Telmo; Ranhorn, Kathryn L; Schoville, Benjamin J; Marean, Curtis W

    2017-01-01

    There are multiple hypotheses for human responses to glacial cycling in the Late Pleistocene, including changes in population size, interconnectedness, and mobility. Lithic technological analysis informs us of human responses to environmental change because lithic assemblage characteristics are a reflection of raw material transport, reduction, and discard behaviors that depend on hunter-gatherer social and economic decisions. Pinnacle Point Site 5-6 (PP5-6), Western Cape, South Africa is an ideal locality for examining the influence of glacial cycling on early modern human behaviors because it preserves a long sequence spanning marine isotope stages (MIS) 5, 4, and 3 and is associated with robust records of paleoenvironmental change. The analysis presented here addresses the question, what, if any, lithic assemblage traits at PP5-6 represent changing behavioral responses to the MIS 5-4-3 interglacial-glacial cycle? It statistically evaluates changes in 93 traits with no a priori assumptions about which traits may significantly associate with MIS. In contrast to other studies that claim that there is little relationship between broad-scale patterns of climate change and lithic technology, we identified the following characteristics that are associated with MIS 4: increased use of quartz, increased evidence for outcrop sources of quartzite and silcrete, increased evidence for earlier stages of reduction in silcrete, evidence for increased flaking efficiency in all raw material types, and changes in tool types and function for silcrete. Based on these results, we suggest that foragers responded to MIS 4 glacial environmental conditions at PP5-6 with increased population or group sizes, 'place provisioning', longer and/or more intense site occupations, and decreased residential mobility. Several other traits, including silcrete frequency, do not exhibit an association with MIS. Backed pieces, once they appear in the PP5-6 record during MIS 4, persist through MIS 3

  19. Lithic technological responses to Late Pleistocene glacial cycling at Pinnacle Point Site 5-6, South Africa

    Science.gov (United States)

    Brown, Kyle S.; Oestmo, Simen; Pereira, Telmo; Ranhorn, Kathryn L.; Schoville, Benjamin J.; Marean, Curtis W.

    2017-01-01

    There are multiple hypotheses for human responses to glacial cycling in the Late Pleistocene, including changes in population size, interconnectedness, and mobility. Lithic technological analysis informs us of human responses to environmental change because lithic assemblage characteristics are a reflection of raw material transport, reduction, and discard behaviors that depend on hunter-gatherer social and economic decisions. Pinnacle Point Site 5–6 (PP5-6), Western Cape, South Africa is an ideal locality for examining the influence of glacial cycling on early modern human behaviors because it preserves a long sequence spanning marine isotope stages (MIS) 5, 4, and 3 and is associated with robust records of paleoenvironmental change. The analysis presented here addresses the question, what, if any, lithic assemblage traits at PP5-6 represent changing behavioral responses to the MIS 5-4-3 interglacial-glacial cycle? It statistically evaluates changes in 93 traits with no a priori assumptions about which traits may significantly associate with MIS. In contrast to other studies that claim that there is little relationship between broad-scale patterns of climate change and lithic technology, we identified the following characteristics that are associated with MIS 4: increased use of quartz, increased evidence for outcrop sources of quartzite and silcrete, increased evidence for earlier stages of reduction in silcrete, evidence for increased flaking efficiency in all raw material types, and changes in tool types and function for silcrete. Based on these results, we suggest that foragers responded to MIS 4 glacial environmental conditions at PP5-6 with increased population or group sizes, ‘place provisioning’, longer and/or more intense site occupations, and decreased residential mobility. Several other traits, including silcrete frequency, do not exhibit an association with MIS. Backed pieces, once they appear in the PP5-6 record during MIS 4, persist through MIS

  20. Technology Assessment of Gasses Useful as Coolants in Open Cycle Joule-Thomson Cyrostat Coolers

    Science.gov (United States)

    1989-09-30

    Institute of Technology, Department of Mechanical Engineering, Cryogenic Engineering Lab., Cambridge, Massachusetts 01239, "Survey of the State-of- the- Art ...Barbara Research Center - Art Cockrum - 805-562-2352 * New England Research Center - Ralph Rotolante - 508-443- 9561 * Carlton Technology - Danny...refrigerators can be had at pressures as low as ich manufactures microminiature refrigrators 700 ps. At these low pressurei the gas flow is r

  1. 2007 Armaments Technology Seminar and Exhibition - Joint Munitions and Lethality Life Cycle Management Command

    Science.gov (United States)

    2007-06-13

    Launcher Grenades Non Lethal Ammo - MCCM - 40 mm - 12 gauge - NL Grenades - Mk19 Munitions Special Projects - RAMS - MI RAMS - GDS - TD -SYDET - SOF Demo Kit...M303) MI RAMS Transmitter XM27 Type “A” Receiver XM39 MI RAMS Transmitter w/ Auxiliary Battery Pack (M6) Type “B” Receiver XM40 GDS TD SYDET...Precision Armaments Technology Directorate AMSRD -AAR- AEP W. Smith Explosive Ordnance Disposal Technology Directorate AMSRD-AAR-AEX J. Wu

  2. closed cycle solar refrigeration with the calcium chloride system

    African Journals Online (AJOL)

    user

    1986-09-01

    Sep 1, 1986 ... gives an option tree of the alternative schemes. When the energy of the vapour compression machine is solar, the electrical power for driving the compressor can be provided by photovoltaic panels. Alternatively, a concentrating or flat plate solar collector may be used to replace the boiler in a rankine cycle.

  3. Rapid Solid-Phase Immunoassay for Detection of Methicillin-Resistant Staphylococcus aureus Using Cycling Probe Technology

    OpenAIRE

    Fong, Whalley K.; Modrusan, Zora; McNevin, John P.; Marostenmaki, Johanna; Zin, Ben; Bekkaoui, Faouzi

    2000-01-01

    A Cycling Probe Technology (CPT) assay with a lateral-flow device (strip) was developed for the detection of the mecA gene from methicillin-resistant Staphylococcus aureus (MRSA) cultures. The assay uses a mecA probe (DNA-RNA-DNA) labeled with fluorescein at the 5′ terminus and biotin at the 3′ terminus. The CPT reaction occurs at a constant temperature, which allows the probe to anneal to the target DNA. RNase H cuts the RNA portion of the probe, allowing the cleaved fragments to dissociate ...

  4. Reporting in vitro fertilization cycles to the Society for Assisted Reproductive Technology database: where have all the cycles gone?

    Science.gov (United States)

    Kulak, David; Jindal, Sangita K; Oh, Cheongeun; Morelli, Sara S; Kratka, Scott; McGovern, Peter G

    2016-04-01

    To assess the relationship between live birth rates (LBRs) and the incidence of under-reported cycles by IVF clinics. Cohort study. Not applicable. All patients undergoing IVF cycles in the aforementioned clinics. Not applicable. The reporting percentage (RP), defined as number of cycles with reported pregnancy rates divided by total cycles performed. Results from cryopreservation cycles are only presented by SART if an embryo transfer occurs. Thus, RP decreases as incidence of embryo or oocyte banking cycles increases. The LBRs in women aged Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  5. USAF advanced terrestrial energy study. Volume 2: Technology handbook

    Science.gov (United States)

    Daniels, E. J.; Yudow, B. D.; Donakowski, T. D.

    1983-04-01

    This report presents the results of the USAF Advanced Terrestrial Energy Study. The objective of that study was to develop a data base of key parameters of selected energy conversion and energy storage technologies. The data base includes present and expected (through 2000) performance goals of the systems. The data base was established through an extensive literature search, surveys of manufacturers and researchers, and statistical and qualitative analyses of the available input data. The results of the study are reported in four documents: (1) Project Summary; (2) Technology Handbook; (3) Parameter Survey; (4) Analysis, Data, Bibliography. Contents (Volume II): Diesels, Gas Turbines, Stirlings, Organic Rankine Cycle, Fuel Cells, Photovoltaic Energy Conversion System, Wind Turbines, Batteries, Thermal Energy Storage System.

  6. Life Cycle Assessment of Thermal Treatment Technologies. An environmental and financial systems analysis of gasification, incineration and landfilling of waste

    Energy Technology Data Exchange (ETDEWEB)

    Assefa, Getachew; Eriksson, Ola [Royal Inst. of Tech., Stockholm (Sweden). Industrial Ecology; Jaeraas, Sven; Kusar, Henrik [Royal Inst. of Tech., Stockholm (Sweden). Chemical Technology

    2003-05-01

    A technology which is currently developed by researchers at KTH is catalytic combustion. which is one component of a gasification system. Instead of performing the combustion in the gas turbine by a flame, a catalyst is used. When the development of a new technology (as catalytic combustion) reaches a certain step where it is possible to quantify material-, energy- and capital flows, the prerequisites for performing a systems analysis is at hand. The systems analysis can be used to expand the know-how about the potential advantages of the catalytic combustion technology by highlighting its function as a component of a larger system. In this way it may be possible to point out weak points which have to be investigated more, but also strong points to emphasise the importance of further development. The aim of this project was to assess the energy turnover as well as the potential environmental impacts and economic costs of thermal treatment technologies in general and catalytic combustion in particular. By using a holistic assessment of the advantages and disadvantages of catalytic combustion of waste it was possible to identify the strengths and weaknesses of the technology under different conditions. Following different treatment scenarios have been studied: (1) Gasification with catalytic combustion, (2) Gasification with flame combustion, (3) Incineration with energy recovery and (4) Landfilling with gas collection. In the study compensatory district heating is produced by combustion. of biofuel. The power used for running the processes in the scenarios is supplied by the waste-to-energy technologies themselves while compensatory power is assumed to be produced. from natural gas. The emissions from the system studied were classified and characterised using methodology from Life Cycle Assessment into the following environmental impact categories: Global Warming Potential, Acidification Potential, Eutrophication Potential and finally Formation of Photochemical

  7. A Range-Based Vehicle Life Cycle Assessment Incorporating Variability in the Environmental Assessment of Different Vehicle Technologies and Fuels

    Directory of Open Access Journals (Sweden)

    Maarten Messagie

    2014-03-01

    Full Text Available How to compare the environmental performance of different vehicle technologies? Vehicles with lower tailpipe emissions are perceived as cleaner. However, does it make sense to look only to tailpipe emissions? Limiting the comparison only to these emissions denies the fact that there are emissions involved during the production of a fuel and this approach gives too much advantage to zero-tailpipe vehicles like battery electric vehicles (BEV and fuel cell electric vehicle (FCEV. Would it be enough to combine fuel production and tailpipe emissions? Especially when comparing the environmental performance of alternative vehicle technologies, the emissions during production of the specific components and their appropriate end-of-life treatment processes should also be taken into account. Therefore, the complete life cycle of the vehicle should be included in order to avoid problem shifting from one life stage to another. In this article, a full life cycle assessment (LCA of petrol, diesel, fuel cell electric (FCEV, compressed natural gas (CNG, liquefied petroleum gas (LPG, hybrid electric, battery electric (BEV, bio-diesel and bio-ethanol vehicles has been performed. The aim of the manuscript is to investigate the impact of the different vehicle technologies on the environment and to develop a range-based modeling system that enables a more robust interpretation of the LCA results for a group of vehicles. Results are shown for climate change, respiratory effects, acidification and mineral extraction damage of the different vehicle technologies. A broad range of results is obtained due to the variability within the car market. It is concluded that it is essential to take into account the influence of all the vehicle parameters on the LCA results.

  8. Life Cycle Assessment of an Advanced Bioethanol Technology in the Perspective of Constrained Biomass Availability

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Thyø, Katrine; Wenzel, Henrik

    fermentation based bioethanol for transport, when held up against the consequence of losing alternative biomass utilizations. The biomass feedstock considered is an energy whole-crop in the form of whole-crop maize and the bioethanol technology considered includes fermentation of lignocellulosic biomass. We......, regardless of whether a global or European perspective is applied, the amount of biomass, which can become available for bioethanol or other energy uses, will be physically and economically constrained. This implies that use of biomass or land for bioethanol production will most likely happen at the expense...... show that for the case of this advanced bioethanol technology, in terms of reducing greenhouse emissions and fossil fuel dependency, more is lost than gained when prioritizing biomass or land for bioethanol. Technology pathways involving heat and power production and/or biogas, natural gas...

  9. Life Cycle Assessment of an Advanced Bioethanol Technology in the Perspective of Constrained Biomass Availability

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Thyø, Kathrine Anker; Wenzel, Henrik

    2008-01-01

    of alternative uses. In this perspective, we show that for the case of a new advanced bioethanol technology, in terms of reducing greenhouse emissions and fossil fuel dependency, more is lost than gained when prioritizing biomass or land for bioethanol. Technology pathways involving heat and power production and...... of whether a global or European perspective is applied, the amount of biomass, which can become available for bioethanol or other energy uses, will be physically and economically constrained. This implies that use of biomass or land for bioethanol production will most likely happen at the expense...

  10. An Assessment Of The Life Cycle Costs And GHG Emissions For Alternative Generation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, C. Richard; Carias, Anibal; Ali, Mohammad; Wood, Nicholas; Morgenroth, Michael; Bridgeman, Andrew

    2010-09-15

    The best choices for supplying energy in a manner that can reduce emissions at a reasonable cost while still ensuring grid stability and reliability of supply is a matter of some debate. In this paper, a first principles analysis is performed to look at life-cycle costs and emissions as well as the amount of energy that is provided to the system from various low-emission alternatives, including wind, water, solar and nuclear power. These low-emission sources are then benchmarked against coal-fired energy production to establish a normalized assessment of the clean energy alternatives currently available.

  11. Survey of technology for decommissioning of nuclear fuel cycle facilities. 8. Remote handling and cutting techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Ryuichiro; Ishijima, Noboru [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1999-03-01

    In nuclear fuel cycle facility decommissioning and refurbishment, the remote handling techniques such as dismantling, waste handling and decontamination are needed to reduce personnel radiation exposure. The survey research for the status of R and D activities on remote handling tools suitable for nuclear facilities in the world and domestic existing commercial cutting tools applicable to decommissioning of the facilities was conducted. In addition, the drive mechanism, sensing element and control system applicable to the remote handling devices were also surveyed. This report presents brief surveyed summaries. (H. Itami)

  12. Analysis and integration of fuel cell combined cycles for development of low-carbon energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Varbanov, Petar [Marie Curie ERG ESCHAINS, Research Institute of Chemical and Process Engineering, University of Pannonia, Egyetem u. 10, Veszprem H-8200 (Hungary); Klemes, Jiri [EC Marie Curie Chair (EXC) ' ' INEMAGLOW' ' , Research Institute of Chemical Technology and Process Engineering, FIT, University of Pannonia, Egyetem u. 10, Veszprem H-8200 (Hungary)

    2008-10-15

    Integrated and combined cycles (ICC, CC) traditionally involve gas and steam turbines only. The paper analyses the further integration of high-temperature fuel cells (FC) having high electrical efficiency reaching up to 60% compared with 30-35% for most gas turbines. The previous research on FC hybrids indicates achieving high efficiencies and economic viability is possible. The ICC of various FC types - their performance and the potential for utilisation of renewables - are analysed considering also power generation capacity and site heat integration context. Further research and development with industrial relevance are outlined focusing on CO{sub 2} emissions reduction. (author)

  13. Moving beyond Technology with Strategic Teaching: Jamie McKenzie's Research Cycle.

    Science.gov (United States)

    Milam, Peggy

    2002-01-01

    Describes a research model developed by Jamie McKenzie that integrates technology and information literacy skills through a research project. Highlights include the need to teach information literacy skills in schools; research questions; planning research; evaluation of the research; and reporting, or creating a final product. (LRW)

  14. Pedagogy of boys Dictionary of Technology as phenomenology of cycles without a history

    Directory of Open Access Journals (Sweden)

    Stojanović-Đorđević Tamara

    2015-01-01

    Full Text Available The author examines the pedagogical interpretation and contribution of the Dictionary of Technology (published in 1981 and critical revolutionary pedagogy of Paulo Freire and his followers, Henry Giroux and Peter McLaren. A comparative ref lection on the Dictionary of Technology and Pedagogy of the Oppressed, Paulo Freire most renowned book, is possible due to the clear effort of both works directed against the dehumanization and conversion of the pedagogical process into technology. Freire educational process sees as a simulacrum of the banking system while the Dictionary of Technology very closely, but more generally sees it as the predominance of illusion, no matter who is oppressed by whom. The illusion would exist even in a world without a relationship of dominance, because the dismissal of oppression will not liberate us from the history. [Projekat Ministarstva nauke Republike Srbije, br. 178018: Društvene krize i savremena srpska književnost i kultura: nacionalni, regionalni, evropski i globalni okvir

  15. Technology and Cognition Merge with Challenge-Based Learning Cycles Online

    Science.gov (United States)

    Cobbett, Shelley L.

    2013-01-01

    Teaching and learning in Web-based courses has become a global phenomenon. Educators are grappling with merging cognition and technology to offer students quality, relevant online courses. The development of social presence in the online environment is of paramount importance and requires individuals to engage in meaningful interactions about, and…

  16. Combined cycles, impacts of technological requirements; Ciclos combinados, impactos de requerimientos tecnologicos

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Santalo, Jose Miguel [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    1999-07-01

    The fundamental growth of the Mexican electrical sector for the next ten years is planned on base of the installation of 20 thousand Mw plants of combined cycle. This article presents an analysis of the impact of these power stations finding out that the power stations of combined cycle are at the moment cheaper - from 600 to 700 dollars by installed kW- than the alternative coal options or fuel oil, that are in the range of 900 to 1200 dollars per kW, in addition to which the time required for their construction is shorter. [Spanish] El crecimiento fundamental del sector electrico mexicano para los proximos diez anos esta planeado con base en la instalacion de 20 mil Mw de plantas de ciclo combinado. Este articulo presenta un analisis del impacto de dichas centrales encontrando que las centrales de ciclo combinado actualmente resultan mas baratas - de 600 a 700 dolares por kW instalado - que las opciones alternativas de carbon o combustoleo que estan en el rango de 900 a 1200 dolares por kW, ademas de que los tiempos requeridos para su construccion son menores.

  17. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 1

    Science.gov (United States)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. The test engine delivered 78kW indicated power from 1007cc displacement, operating at 3500 RPM on Schnuerle loop scavenged two-stroke cycle. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude, in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit design of a multicylinder engine for eventual flight applications; including injection system requirement, turbocharging, heat rejection, breathing, scavenging, and structural requirements. The multicylinder engine concept is configured to operate with an augmented turbocharger, but with no primary scavenge blower. The test program is oriented to provide a balanced turbocharger compressor to turbine power balance without an auxiliary scavenging system. Engine cylinder heat rejection to the ambient air has been significantly reduced and the minimum overall turbocharger efficiency required is within the range of commercially available turbochargers. Analytical studies and finite element modeling is made of insulated configurations of the engines - including both ceramic and metallic versions. A second generation test engine is designed based on current test results.

  18. Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Technology for Auxiliary Aerospace Power

    Science.gov (United States)

    Steffen, Christopher J., Jr.; Freeh, Joshua E.; Larosiliere, Louis M.

    2005-01-01

    A notional 440 kW auxiliary power unit has been developed for 300 passenger commercial transport aircraft in 2015AD. A hybrid engine using solid-oxide fuel cell stacks and a gas turbine bottoming cycle has been considered. Steady-state performance analysis during cruise operation has been presented. Trades between performance efficiency and system mass were conducted with system specific energy as the discriminator. Fuel cell performance was examined with an area specific resistance. The ratio of fuel cell versus turbine power was explored through variable fuel utilization. Area specific resistance, fuel utilization, and mission length had interacting effects upon system specific energy. During cruise operation, the simple cycle fuel cell/gas turbine hybrid was not able to outperform current turbine-driven generators for system specific energy, despite a significant improvement in system efficiency. This was due in part to the increased mass of the hybrid engine, and the increased water flow required for on-board fuel reformation. Two planar, anode-supported cell design concepts were considered. Designs that seek to minimize the metallic interconnect layer mass were seen to have a large effect upon the system mass estimates.

  19. STATE-OF-THE-ART AND EMERGING TRUCK ENGINE TECHNOLOGIES FOR OPTIMIZED PERFORMANCE, EMISSIONS AND LIFE CYCLE COSTS

    Energy Technology Data Exchange (ETDEWEB)

    Schittler, M

    2003-08-24

    The challenge for truck engine product engineering is not only to fulfill increasingly stringent emission requirements, but also to improve the engine's economical viability in its role as the backbone of our global economy. While societal impact and therefore emission limit values are to be reduced in big steps, continuous improvement is not enough but technological quantum leaps are necessary. The introduction and refinement of electronic control of all major engine systems has already been a quantum leap forward. Maximizing the benefits of these technologies to customers and society requires full use of parameter optimization and other enabling technologies. The next big step forward will be widespread use of exhaust aftertreatment on all transportation related diesel engines. While exhaust gas aftertreatment has been successfully established on gasoline (Otto cycle) engines, the introduction of exhaust aftertreatment especially for heavy-duty diesel engines will be much mo re demanding. Implementing exhaust gas aftertreatment into commercial vehicle applications is a challenging task but the emission requirements to be met starting in Europe, the USA and Japan in the 2005-2007 timeframe require this step. The engine industry will be able to implement the new technology if all stakeholders support the necessary decisions. One decision has already been taken: the reduction of sulfur in diesel fuel being comparable with the elimination of lead in gasoline as a prerequisite for the three-way catalyst. Now we have the chance to optimize ecology and economy of the Diesel engine simultaneously by taking the decision to provide an additional infrastructure for a NOx reduction agent needed for the introduction of the Selective Catalytic Reduction (SCR) technology that is already implemented in the electric power generation industry. This requires some effort, but the resulting societal benefits, fuel economy and vehicle life cycle costs are significantly better

  20. Life cycle assessment of an advanced bioethanol technology in the perspective of constrained biomass availability.

    Science.gov (United States)

    Hedegaard, Karsten; Thyø, Kathrine A; Wenzel, Henrik

    2008-11-01

    Among the existing environmental assessments of bioethanol, the studies suggesting an environmental benefit of bioethanol all ignore the constraints on the availability of biomass resources and the implications competition for biomass has on the assessment We show that toward 2030, regardless of whether a global or European perspective is applied, the amount of biomass, which can become available for bioethanol or other energy uses, will be physically and economically constrained. This implies that use of biomass or land for bioethanol production will most likely happen at the expense of alternative uses. In this perspective, we show that for the case of a new advanced bioethanol technology, in terms of reducing greenhouse emissions and fossil fuel dependency, more is lost than gained when prioritizing biomass or land for bioethanol. Technology pathways involving heat and power production and/or biogas, natural gas or electricity for transport are advantageous.

  1. Marginal Generation Technology in the Chinese Power Market towards 2030 Based on Consequential Life Cycle Assessment

    DEFF Research Database (Denmark)

    Zhao, Guangling; Guerrero, Josep M.; Pei, Yingying

    2016-01-01

    and regional power grids. Marginal electricity generation technology is pivotal in assessing impacts related to additional consumption of electricity. China covers a large geographical area with regional supply grids; these are arguably equally or less integrated. Meanwhile, it is also a country with internal...... imbalances in regional energy supply and demand. Therefore, we suggest an approach to achieve a geographical subdivision of the Chinese electricity grid, corresponding to the interprovincial regional power grids, namely the North, the Northeast, the East, the Central, the Northwest, and the Southwest China...... Grids, and the China Southern Power Grid. The approach combines information from the Chinese national plans on for capacity changes in both production and distribution grids, and knowledge of resource availability. The results show that nationally, marginal technology is coal-fired electricity...

  2. Determination of the Levels of Elementary Student Teachers in Putting the Stages of Technological Design Cycle into Practice: A Model Parachute Race Activity

    Science.gov (United States)

    Aydin, Mirac; Bakirci, Hasan; Artun, Huseyin; Cepni, Salih

    2011-01-01

    In this study, within the scope of Science and Technology Laboratory Applications-II Course, elementary student teachers were made to design a model parachute that can stay in the air for a time by using technological design cycle and to race these parachutes. In this regard, we introduced an activity what we call "MODEL PARACHUTE RACE"…

  3. ``White Land``...new Russian closed-cycle nuclear technology for global deployment

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, C.D.

    1996-07-01

    A Russian technology called ``White Land`` is being pursued which is based on their heavy-metal-cooled fast spectrum reactor technology developed to power their super-fast Alpha Class submarines. These reactors have important safety advantages over the more conventional sodium-cooled fast breeder reactors but preserve some of the attractive operational features of the fast spectrum systems. Perhaps chief among these advantages in the current political milieu is their ability to generate energy from any nuclide heavier than thorium including HEU, weapons plutonium, commercial plutonium, neptunium, americium, and curium. While there are several scenarios for deployment of these systems, the most attractive perhaps is containment in submarine-like enclosures to be placed underwater near a coastal population center. A Russian organization named the Alphabet Company would build the reactors and maintain title to them. The company would be paid on the basis of kilowatt-hours delivered. The reactors would not require refueling for 10--15 years and no maintenance violating the radiation containment would be required or would be carried out at the deployment site. The host country need not develop any nuclear technology or accept any nuclear waste. When the fuel load has been burned, the entire unit would be towed to Archangel, Russia for refueling. The fission product would be removed from the fuel by ``dry`` molten salt technology to minimize the waste stream and the fissile material would be returned to the reactor for further burning. The fission product waste would be stored at New Land Island, their current nuclear test site in the Arctic. If concerns over fission product justify it, the long-lived species will be transmuted in an accelerator-driven system. Apparently this project is backed at the highest levels of MINATOM and the Alphabet Company has the funding to proceed.

  4. Life cycle environmental performance of miscanthus gasification versus other technologies for electricity production

    DEFF Research Database (Denmark)

    Nguyen, T Lan T; Hermansen, John Erik

    2015-01-01

    In this paper, the life cycle environmental performance of miscanthus gasification for electricity production in Denmark is evaluated and compared with that of direct combustion and anaerobic digestion. Furthermore, the results obtained are compared to those of natural gas to assess the potential...... of miscanthus as an energy source. Our results indicate that production of 1 kWh electricity from miscanthus via gasification leads to a global warming potential (100-year GWP) of 26 g and 296 g CO2e, without and with consideration of CO2 emissions from indirect land use change respectively. For other impact...... categories, the production results in non-renewable energy use of 0.6 MJ primary, acidification of 1.6 g SO2e, eutrophication of 7.8 g NO3e and respiratory inorganics of 0.1 g PM2.5e. Of the three alternatives, gasification is found to have the best performance in all impact categories considered...

  5. Life-cycle and freshwater withdrawal impact assessment of water supply technologies

    DEFF Research Database (Denmark)

    Godskesen, Berit; Hauschild, Michael Zwicky; Rygaard, Martin

    2013-01-01

    Four alternative cases for water supply were environmentally evaluated and compared based on the standard environmental impact categories from the life-cycle assessment (LCA) methodology extended with a freshwater withdrawal category (FWI). The cases were designed for Copenhagen, a part of Denmark...... with high population density and relatively low available water resources. FWI was applied at local groundwater catchments based on data from the national implementation of the EU Water Framework Directive. The base case of the study was the current practice of groundwater abstraction from well fields...... situated near Copenhagen. The 4 cases studied were: Rain & stormwater harvesting from several blocks in the city; Today's groundwater abstraction with compensating actions applied in the affected freshwater environments to ensure sufficient water flow in water courses; Establishment of well fields further...

  6. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    Science.gov (United States)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  7. Performance, Applications, and Analysis of Rotating Detonation Engine Technologies (Preprint)

    Science.gov (United States)

    2015-12-01

    Scott W. Theuerkauf, and Frederick R. Schauer Combustion Branch Turbine Engine Division Matthew L. Fotia, Andrew G. Naples, Christopher A...5c. PROGRAM ELEMENT NUMBER 62203F 6. AUTHOR(S) Brent A. Rankin, Scott W. Theuerkauf, and Frederick R. Schauer (AFRL/RQTC) Matthew L. Fotia, Andrew...unlimited. Performance, Application, and Analysis of Rotating Detonation Engine Technologies Brent A. Rankin1, Scott W. Theuerkauf2, and Frederick R

  8. Comparative evaluation of three alternative power cycles for waste heat recovery from the exhaust of adiabatic diesel engines

    Science.gov (United States)

    Bailey, M. M.

    1985-01-01

    Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced adiabatic diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum imporvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.

  9. Cost-Benefit Analysis for Investment Decisions: Chapter 19 (An Integrated Appraisal of Combined Cycle Versus Single Cycle Electricity Generations Technologies)

    OpenAIRE

    Glenn Jenkins; Chun-Yan Kuo; Arnold C. Harberger

    2011-01-01

    This study undertakes an integrated financial, economic and distributive appraisal of an Independent Power Producer (IPP) project to generate electricity. The critical issue is that the private sponsors of the IPP have proposed to build a single cycle electricity generation plant that is expected to start operating with an 80 percent load factor. A comparative analysis is undertaken a single cycle oil fuel plant to compared to a combined cycle oil fuel plant that would produce the same amount...

  10. Application of hybrid life cycle approaches to emerging energy technologies--the case of wind power in the UK.

    Science.gov (United States)

    Wiedmann, Thomas O; Suh, Sangwon; Feng, Kuishuang; Lenzen, Manfred; Acquaye, Adolf; Scott, Kate; Barrett, John R

    2011-07-01

    Future energy technologies will be key for a successful reduction of man-made greenhouse gas emissions. With demand for electricity projected to increase significantly in the future, climate policy goals of limiting the effects of global atmospheric warming can only be achieved if power generation processes are profoundly decarbonized. Energy models, however, have ignored the fact that upstream emissions are associated with any energy technology. In this work we explore methodological options for hybrid life cycle assessment (hybrid LCA) to account for the indirect greenhouse gas (GHG) emissions of energy technologies using wind power generation in the UK as a case study. We develop and compare two different approaches using a multiregion input-output modeling framework - Input-Output-based Hybrid LCA and Integrated Hybrid LCA. The latter utilizes the full-sized Ecoinvent process database. We discuss significance and reliability of the results and suggest ways to improve the accuracy of the calculations. The comparison of hybrid LCA methodologies provides valuable insight into the availability and robustness of approaches for informing energy and environmental policy.

  11. Panel cutting method: new approach to generate panels on a hull in Rankine source potential approximation

    Directory of Open Access Journals (Sweden)

    Hee-Jong Choi

    2011-12-01

    Full Text Available In the present study, a new hull panel generation algorithm, namely panel cutting method, was developed to predict flow phenomena around a ship using the Rankine source potential based panel method, where the iterative method was used to satisfy the nonlinear free surface condition and the trim and sinkage of the ship was taken into account. Numerical computations were performed to investigate the validity of the proposed hull panel generation algorithm for Series 60 (CB=0.60 hull and KRISO container ship (KCS, a container ship designed by Maritime and Ocean Engineering Research Institute (MOERI. The computational results were validated by comparing with the existing experimental data.

  12. Preliminary design package for residential heating/cooling system--Rankine air conditioner redesign

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    This report contains a summary of the preliminary redesign and development of a marketable single-family heating and cooling system. The objectives discussed are the interim design and schedule status of the Residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  13. ORC technology for waste-wood to energy conversion in the furniture manufacturing industry

    Directory of Open Access Journals (Sweden)

    Moro Riccardo

    2008-01-01

    Full Text Available Exploitation of low and medium temperature thermal sources, in particular those based on biomass combustion and on industrial residual heat recovery, has been increasingly investigated in the last decades, accordingly to the growing interest towards reduction in primary energy consumption and environmental issues. Organic Rankine cycle technology allows designing power plants that are less demanding in terms of auxiliaries, safety systems, maintenance and operating costs when compared to conventional water steam power plants. To support the preliminary technical and economic design of this kind of plants in different contexts, a simulation code of part load and off-design operation of an organic Rankine cycle unit for combined heat and power has been developed. In the paper, taking the real situation of a furniture manufacturing factory as a starting point, it is shown how all energy flows occurring all year long inside the combined heat and power plant, can be estimated on the basis of the thermal user duty time profile, the available biomass flow rate and the adopted operation strategy. This information is the basis in order to correctly evaluate the energetic, economic and environmental advantages of the proposed technical solution, with respect to a particular context, as it is shown in the concluding part of the paper.

  14. Modelling the impact of Water Sensitive Urban Design technologies on the urban water cycle

    DEFF Research Database (Denmark)

    Locatelli, Luca

    . The models must be able to simulate both the response of single WSUDs and many coupled WSUDs in an urban catchment. This thesis aims to develop new models of two WSUD technologies: green roofs and infiltration trenches/soakaways. In particular the thesis has the following objectives: 1. To identify...... and develop new models of green roofs and infiltration devices relevant for urban drainage applications, and integrate them into urban hydrological models. 2. To quantify the long term hydrological performance of green roofs and infiltration devices using a statistical analysis of WSUD performance. 3...... observed data describing the performance of single WSUD units, and the performance of multiple systems at a catchment scale. To address these aims, new models of green roofs and soakaways are developed and tested using observations from several urban catchments. The models are used to quantify...

  15. Current Status of World Nuclear Fuel Cycle Technology (I): Canada and Latin America

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok; Ko, Won Il

    2007-05-15

    Canada produces about one third of the world's uranium mine output, most of it from two new mines. After 2007 Canadian production is expected to increase further as more new mines come into production. About 15% of Canada's electricity comes from nuclear power, using indigenous technology, and 18 reactors provide over 12,500 MWe of power. Mexico has two nuclear reactors generating almost 5% of its electricity. Its first commercial nuclear power reactor began operating in 1989. There is some government support for expanding nuclear energy to reduce reliance on natural gas. Argentina has two nuclear reactors generating nearly one tenth of its electricity. Its first commercial nuclear power reactor began operating in 1974. Brazil has two nuclear reactors generating 4% of its electricity. Its first commercial nuclear power reactor began operating in 1982.

  16. Thermodynamical and technological assessment for short thermodynamical cycle for hydrogen production. Examples of the high temperature iron oxide and cerium chloride cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lemort, F.; Lafon, C. [Commissariat a l' energie atomique (CEA), Rhone Valley Research Center BP17171, 30207 Bagnols-sur-Ceze Cedex (France); Charvin, P.; Abanades, S. [PROMES-CNRS-UPR 8521 BP5 Odeillo 66120 Font Romeu Cedex (France)

    2006-07-01

    Some investigations have pointed out that the physicochemical properties of the reactants involved in a thermodynamical cycle could make the running of an industrial process very difficult. For instance, the sintering of the solid, the possible reactivity of the embedding matrix,... induce additional operation and then lower very sensibly the efficiency of the cycle. Furthermore, if the toxicity of the reactants is taken into consideration, the attractiveness of this cycle decreases. If other considerations than the efficiency are taken into consideration, it is possible to investigate short cycles involving no more than three chemical steps. The present paper shows the first results obtained from the studies carried out on this kind of cycle that has either medium efficiency but involving inoffensive reactants or higher efficiency but involving more toxic reactants such as chlorides but even so acceptable. In the first case illustrated by the iron oxide cycle, it seems that the medium efficiency can be partially offset by using abundant and inexpensive energy source. Furthermore the experimental investigations have demonstrated the possibility to find a way making the running of the cycle easier. In the second one illustrated by the cerium chloride cycle, the significant industrial experience regarding the chemical engineering of the chloride could make the industrial development easier. In this case, a primary flow sheet has been proposed. (authors)

  17. Assessment Report Sandia National Laboratories Fuel Cycle Technologies Quality Assurance Evaluation of FY15 SNL FCT M2 Milestone Deliverables

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Gordon John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-01

    Sandia National Laboratories (SNL) Fuel Cycle Technologies (FCT) program activities are conducted in accordance with FCT Quality Assurance Program Document (FCT-QAPD) requirements. The FCT-QAPD interfaces with SNL approved Quality Assurance Program Description (SNL-QAPD) as explained in the Sandia National Laboratories QA Program Interface Document for FCT Activities (Interface Document). This plan describes SNL's FY16 assessment of SNL's FY15 FCT M2 milestone deliverable's compliance with program QA requirements, including SNL R&A requirements. The assessment is intended to confirm that SNL's FY15 milestone deliverables contain the appropriate authenticated review documentation and that there is a copy marked with SNL R&A numbers.

  18. Performance Predictions for a Room Temperature, Ericsson Cycle, Magnetic Heat Pump.

    Science.gov (United States)

    1982-05-01

    system should be small and thus high reliability is expected. For a ferromagnetic material like Gadolinium, an Ericsson or Stirling cycle are similar... refrigeration systems which generally operate on a Rankine type cycle . In this study, a magnetic heat pump operating on an Ericsson cycle was evaluated...REFERENCES 1. Giauque, W. F. and 0. P. MacDougall, Phys. Rev. 43, 768, 1933 2. Steyert, W.A., "Sterling- Cycle Rotating Magnetic Refrigerators and Heat

  19. Design and modelling of a novel compact power cycle for low temperature heat sources

    DEFF Research Database (Denmark)

    Wronski, Jorrit; Skovrup, Morten Juel; Elmegaard, Brian

    2012-01-01

    Power cycles for the efficient use of low temperature heat sources experience increasing attention. This paper describes an alternative cycle design that offers potential advantages in terms of heat source exploitation. A concept for a reciprocating expander is presented that performs both, work...... calculation results for use with a steady state cycle evaluation. An organic Rankine cycle model is developed and used for a comparison. The performance of the expander itself and the different requirements regarding heat source and temperature levels are studied....

  20. Use of manometric temperature measurement (MTM) and SMART freeze dryer technology for development of an optimized freeze-drying cycle.

    Science.gov (United States)

    Gieseler, Henning; Kramer, Tony; Pikal, Michael J

    2007-12-01

    This report provides, for the first time, a summary of experiments using SMART Freeze Dryer technology during a 9 month testing period. A minimum ice sublimation area of about 300 cm(2) for the laboratory freeze dryer, with a chamber volume 107.5 L, was found consistent with data obtained during previous experiments with a smaller freeze dryer (52 L). Good reproducibility was found for cycle design with different type of excipients, formulations, and vials used. SMART primary drying end point estimates were accurate in the majority of the experiments, but showed an over prediction of primary cycle time when the product did not fully achieve steady state conditions before the first MTM measurement was performed. Product resistance data for 5% sucrose mixtures at varying fill depths were very reproducible. Product temperature determined by SMART was typically in good agreement with thermocouple data through about 50% of primary drying time, with significant deviations occurring near the end of primary drying, as expected, but showing a bias much earlier in primary drying for high solid content formulations (16.6% Pfizer product) and polyvinylpyrrolidone (40 kDa) likely due to water "re-adsorption" by the amorphous product during the MTM test. (c) 2007 Wiley-Liss, Inc.

  1. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    Directory of Open Access Journals (Sweden)

    Fic Adam

    2015-03-01

    Full Text Available Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle, which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle. The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  2. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    Science.gov (United States)

    Fic, Adam; Składzień, Jan; Gabriel, Michał

    2015-03-01

    Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle), which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle). The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  3. Life-cycle and freshwater withdrawal impact assessment of water supply technologies.

    Science.gov (United States)

    Godskesen, B; Hauschild, M; Rygaard, M; Zambrano, K; Albrechtsen, H-J

    2013-05-01

    Four alternative cases for water supply were environmentally evaluated and compared based on the standard environmental impact categories from the life-cycle assessment (LCA) methodology extended with a freshwater withdrawal category (FWI). The cases were designed for Copenhagen, a part of Denmark with high population density and relatively low available water resources. FWI was applied at local groundwater catchments based on data from the national implementation of the EU Water Framework Directive. The base case of the study was the current practice of groundwater abstraction from well fields situated near Copenhagen. The 4 cases studied were: Rain & stormwater harvesting from several blocks in the city; Today's groundwater abstraction with compensating actions applied in the affected freshwater environments to ensure sufficient water flow in water courses; Establishment of well fields further away from the city; And seawater desalination. The standard LCA showed that the Rain & stormwater harvesting case had the lowest overall environmental impact (81.9 μPET/m(3)) followed by the cases relying on groundwater abstraction (123.5-137.8 μPET/m(3)), and that desalination had a relatively small but still important increase in environmental impact (204.8 μPET/m(3)). Rain & stormwater harvesting and desalination had a markedly lower environmental impact compared to the base case, due to the reduced water hardness leading to e.g. a decrease in electricity consumption in households. For a relevant comparison, it is therefore essential to include the effects of water hardness when comparing the environmental impacts of water systems of different hardness. This study also emphasizes the necessity of including freshwater withdrawal respecting the relevant affected geographical scale, i.e. by focusing the assessment on the local groundwater catchments rather than on the regional catchments. Our work shows that freshwater withdrawal methods previously used on a regional

  4. Dry Air Cooler Modeling for Supercritical Carbon Dioxide Brayton Cycle Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lv, Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-07-28

    Modeling for commercially available and cost effective dry air coolers such as those manufactured by Harsco Industries has been implemented in the Argonne National Laboratory Plant Dynamics Code for system level dynamic analysis of supercritical carbon dioxide (sCO2) Brayton cycles. The modeling can now be utilized to optimize and simulate sCO2 Brayton cycles with dry air cooling whereby heat is rejected directly to the atmospheric heat sink without the need for cooling towers that require makeup water for evaporative losses. It has sometimes been stated that a benefit of the sCO2 Brayton cycle is that it enables dry air cooling implying that the Rankine steam cycle does not. A preliminary and simple examination of a Rankine superheated steam cycle and an air-cooled condenser indicates that dry air cooling can be utilized with both cycles provided that the cycle conditions are selected appropriately

  5. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies.

    Science.gov (United States)

    Hertwich, Edgar G; Gibon, Thomas; Bouman, Evert A; Arvesen, Anders; Suh, Sangwon; Heath, Garvin A; Bergesen, Joseph D; Ramirez, Andrea; Vega, Mabel I; Shi, Lei

    2015-05-19

    Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11-40 times more copper for photovoltaic systems and 6-14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050.

  6. The state of the art on the dry decontamination technologies applicable to highly radioactive contaminants and their needs for the national nuclear fuel cycle developent

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Lee, K.W.; Won, H.J.; Jung, C.H.; Chol, W.K.; Kim, G.N.; Moon, J.K

    2000-12-01

    This report is intended to establish their needs to support the dry decontamination activities applicable to highly radioactive contaminants based on the requirement of technologies development suggested from the national nuclear fuel cycle projects, such as DUPIC, advanced spent fuel management and long-lived radionuclides conversion. The technology needs associated with decontamination addressed the requirements associated with the efficiency of decontamination technology, the reduction of secondary wastes, applicabilities and the remote operation. And also, Characterization and decontamination technologies for various contaminants are reviewed and analysed. Based on the assessment, Unit dry decontamination processes are selected and the schematic flow diagram for decontamination of highly radioactive contaminants.

  7. Plant Characteristics of an Integrated Solid Oxide Fuel Cell Cycle and a Steam Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Plant characteristics of a system containing a solid oxide fuel cell (SOFC) cycle on the top of a Rankine cycle were investigated. Natural gas (NG) was used as the fuel for the plant. A desulfurization reactor removes the sulfur content in the fuel, while a pre-reformer broke down the heavier...... recovery steam generator (HRSG). The remaining energy of the off-gases was recycled back to the topping cycle for further utilization. Several parameter studies were carried out to investigate the sensitivity of the suggested plant. It was shown that the operation temperature of the desulfurization unit...

  8. Technology selection for offshore underwater small modular reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shivan, Koroush; Ballinger, Ronald; Buongiorno, Jacopo; Forsberg, Charles; Kazimi, Mujid; Todreas, Neil [Dept. of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge (United States)

    2016-12-15

    This work examines the most viable nuclear technology options for future underwater designs that would meet high safety standards as well as good economic potential, for construction in the 2030-2040 time frame. The top five concepts selected from a survey of 13 nuclear technologies were compared to a small modular pressurized water reactor (PWR) designed with a conventional layout. In order of smallest to largest primary system size where the reactor and all safety systems are contained, the top five designs were: (1) a lead-bismuth fast reactor based on the Russian SVBR-100; (2) a novel organic cooled reactor; (3) an innovative superheated water reactor; (4) a boiling water reactor based on Toshiba's LSBWR; and (5) an integral PWR featuring compact steam generators. A similar study on potential attractive power cycles was also performed. A condensing and recompression supercritical CO{sub 2} cycle and a compact steam Rankine cycle were designed. It was found that the hull size required by the reactor, safety systems and power cycle can be significantly reduced (50-80%) with the top five designs compared to the conventional PWR. Based on the qualitative economic consideration, the organic cooled reactor and boiling water reactor designs are expected to be the most cost effective options.

  9. Technology Selection for Offshore Underwater Small Modular Reactors

    Directory of Open Access Journals (Sweden)

    Koroush Shirvan

    2016-12-01

    Full Text Available This work examines the most viable nuclear technology options for future underwater designs that would meet high safety standards as well as good economic potential, for construction in the 2030–2040 timeframe. The top five concepts selected from a survey of 13 nuclear technologies were compared to a small modular pressurized water reactor (PWR designed with a conventional layout. In order of smallest to largest primary system size where the reactor and all safety systems are contained, the top five designs were: (1 a lead–bismuth fast reactor based on the Russian SVBR-100; (2 a novel organic cooled reactor; (3 an innovative superheated water reactor; (4 a boiling water reactor based on Toshiba's LSBWR; and (5 an integral PWR featuring compact steam generators. A similar study on potential attractive power cycles was also performed. A condensing and recompression supercritical CO2 cycle and a compact steam Rankine cycle were designed. It was found that the hull size required by the reactor, safety systems and power cycle can be significantly reduced (50–80% with the top five designs compared to the conventional PWR. Based on the qualitative economic consideration, the organic cooled reactor and boiling water reactor designs are expected to be the most cost effective options.

  10. Power conversion cycles study for He-cooled reactor concepts for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Medrano, M. [EURATOM-CIEMAT Association for Fusion, Avda. Complutense, 22, Madrid 28040 (Spain)], E-mail: mercedes.medrano@ciemat.es; Puente, D.; Arenaza, E.; Herrazti, B.; Paule, A. [IBERTEF Magallanes 22, Madrid 28015 (Spain); Branas, B. [EURATOM-CIEMAT Association for Fusion, Avda. Complutense, 22, Madrid 28040 (Spain); Orden, A.; Dominguez, M. [IBERTEF Magallanes 22, Madrid 28015 (Spain); Stainsby, R. [AMEC-NNC, Booths Hall, Chelford Road, Knutsford, Cheshire WA16 8QZ (United Kingdom); Maisonnier, D.; Sardain, P. [EFDA-Close Support Unit Garching, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2007-10-15

    The study of different power conversion cycles have been performed in the framework of the DEMO scoping studies to provide technical information focused on the selection of DEMO parameters. The purpose of this study has been the investigation of 'advanced cycles' in order to get an improvement on the thermodynamic efficiency. Starting from the 'near term' He-cooled blanket concepts (HCLL, HCPB), developed within the Power Plant Conceptual Studies (PPCS) and currently considered for DEMO, conversion cycles based on a standard Rankine cycle were shown to yield net efficiencies (net power/thermal power) of approximately 28%. Two main features limit these efficiencies. Firstly, the heat sources in the reactor: the blanket which provides over 80% of the total thermal power, only produces moderate coolant temperatures (300-500 deg. C). The remaining thermal power is deposited in the divertor with a more respectable coolant temperature (540-717 deg. C). Secondly, the low inlet temperature of blanket coolant limits the possibilities to achieve efficient heat exchange with cycle. The parameters of HCLL model AB have been used for the analysis of the following cycles: (a) supercritical steam Rankine, (b) supercritical CO{sub 2} indirect Brayton and (c) separate cycles: independent cycles for the blanket and divertor. A comparison of the gross and net efficiencies obtained from these alternative cycles alongside the standard superheated Rankine cycle will be discussed in the paper.

  11. Remifentanil versus Fentanyl for Assisted Reproductive Technologies:Effect on Hemodynamic Recovery from Anesthesia and Outcome of ART Cycles

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Jarahzadeh

    2011-01-01

    Full Text Available Background: We conducted this study to compare the outcome of assisted reproductive technology(ART procedures and recovery from anesthesia in women who received opioid analgesia withremifentanil versus fentanyl.Materials and Methods: This double-blind, randomized clinical trial was carried out inthe Yazd Research and Clinical Center for Infertility, Yazd, Iran. We studied 145 womenwho were participants in an ART program. During the first phase of the study, all patientsunderwent induction of anesthesia with thiopental and received analgesia with remifentanilor fentanyl. The primary endpoint was pregnancy rate per transfer. The numbers of oocytescollected, fertilized and cleaved were recorded, as was the number of oocytes transferredand recovery profile. In the second phase of the study, all patients were followed foroutcome of ART cycle.Results: This study suggested that in women undergoing transvaginal ultrasound-guided oocyteretrieval procedures, the likelihood of a successful pregnancy was higher with a remifentanil-basedmonitored anesthesia care (MAC technique than with a fentanyl-based MAC technique. Therecovery from anesthesia was significantly better in the remifentanil group versus fentanyl group.Conclusion: The results of this study suggest that remifentanil in clinical practice is superior tofentanyl (Registeration Number: IRCT201009283468N3.

  12. Numerical evaluation of the Kalina cycle for concentrating solar power plants

    DEFF Research Database (Denmark)

    Modi, Anish

    of using a Kalina cycle is evaluated with a thermoeconomic optimization with a turbine inlet temperature of 500 C for a central receiver solar power plant with direct vapour generation, and 370 C for a parabolic trough solar power plant with Therminol VP-1 as the solar field heat transfer fluid. No thermal...... a higher specific capital investment cost and a higher levelized cost of electricity than the state-of-the-art steam Rankine cycle for both the central receiver and the parabolic trough plants. This is mainly because of worse power cycle design point efficiency than the corresponding steam Rankine cycle......Concentrating solar power plants use a number of reflecting mirrors to focus and convert the incident solar energy to heat, and a power cycle to convert this heat into electricity. One of the key challenges currently faced by the solar industry is the high cost of electricity production...

  13. Development of Cesium and Strontium Separation and Immobilization Technologies in Support of an Advanced Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Jack D. Law; Troy G. Garn; R. Scott Herbst; David H. Meikrantz; Dean R. Peterman; Catherine L. Riddle; Terry A. Todd; Julie L. Tripp

    2006-02-01

    As part of the Advanced Fuel Cycle Initiative, two solvent extraction technologies are being developed at the Idaho National Laboratory to simultaneously separate cesium and strontium from dissolved spent nuclear fuel. The chlorinated cobalt dicarbollide/polyethylene glycol (CCD/PEG) process utilizes a solvent consisting of chlorinated cobalt dicarbollide for the extraction of Cs and polyethylene glycol for the synergistic extraction of Sr in a phenyltrifluoromethyl sulfone diluent. Countercurrent flowsheets have been designed and tested on simulated and actual spent nuclear fuel feed streams with both cesium and strontium removal efficiencies of greater than 99%. The Fission Product Extraction (FPEX) process is based on two highly-specific extractants: 4,4',(5')-Di-(t-butyldicyclo-hexano)-18-crown-6 (DtBuCH18C6) for the extraction of Sr and Calix[4]arene-bis-(tert-octylbenzo-crown-6) (BOBCalixC6) for the extraction of Cs. Laboratory test results of the FPEX process, using simulated feed solution spiked with radiotracers, indicate good Cs and Sr extraction and stripping performance. A preliminary solvent extraction flowsheet for the treatment of spent nuclear fuel with the FPEX process has been developed, and testing of the flowsheet with simulated spent nuclear fuel solutions is planned in the near future. Steam reforming is currently being developed for stabilization of the Cs/Sr product stream because it can produce a solid waste form while retaining the Cs and Sr in the solid, destroy the nitrates and organics present in these aqueous solutions, and convert the Cs and Sr into leach resistant aluminosilicate minerals. A bench-scale steam reforming pilot plant has been operated with several potential feed compositions and steam reformed product has been generated and analyzed.

  14. Off-Design Performances of Subcritical and Supercritical Organic Rankine Cycles in Geothermal Power Systems under an Optimal Control Strategy

    National Research Council Canada - National Science Library

    Tieyu Gao; Changwei Liu

    2017-01-01

    .... In this study, an off-design performance prediction model for geothermal ORC systems is developed according to special designs of critical components, and an optimal control strategy which regards...

  15. A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships

    National Research Council Canada - National Science Library

    Jesper Graa Andreasen; Andrea Meroni; Fredrik Haglind

    2017-01-01

    .... The comparison was based on a container vessel, and results are presented for a high-sulfur (3 wt %) and low-sulfur (0.5 wt %) fuel case. The processes were compared based on their off-design performance for diesel engine loads in the range between 25...

  16. Multi-objective optimization of organic Rankine cycles for waste heat recovery: Application in an offshore platform

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Nguyen, Tuong-Van; Larsen, Ulrik

    2013-01-01

    . The methodology is applied to recover the waste heat from the SGT-500 gas turbine installed on the Draugen off-shore oil and gas platform in the North Sea. Results suggest two optimal working fluids, i.e. acetone and cyclopentane. Thermal efficiency and net present value are higher for cyclopentane than...... for acetone. Other promising working fluids are cyclohexane, hexane and isohexane. The present methodology can be utilized in waste heat recovery applications where a compromise between performance, compactness and economic revenue is required. © 2013 Elsevier Ltd. All rights reserved....

  17. Unsteady simulation of quasi-periodic flows in Organic Rankine Cycle cascades using a Harmonic Balance method

    NARCIS (Netherlands)

    Rubino, A.; Pini, M.; Colonna di Paliano, Piero; Dossena, V.; Guardone, A.; Astolfi, M.

    2017-01-01

    Currently, turbomachinery design optimization methodologies are mainly restricted to steady state approaches, due to the high computational cost associated with time-accurate shape optimization algorithms. However, the possibility to include unsteady effects in turbomachinery optimization can

  18. Implementation of 7e learning cycle model using technology based constructivist teaching (TBCT) approach to improve students' understanding achievment in mechanical wave material

    Science.gov (United States)

    Warliani, Resti; Muslim, Setiawan, Wawan

    2017-05-01

    This study aims to determine the increase in the understanding achievement in senior high school students through the Learning Cycle 7E with technology based constructivist teaching approach (TBCT). This study uses a pretest-posttest control group design. The participants were 67 high school students of eleventh grade in Garut city with two class in control and experiment class. Experiment class applying the Learning Cycle 7E through TBCT approach and control class applying the 7E Learning Cycle through Constructivist Teaching approach (CT). Data collection tools from mechanical wave concept test with totally 22 questions with reability coefficient was found 0,86. The findings show the increase of the understanding achievement of the experiment class is in the amount of 0.51 was higher than the control class that is in the amount of 0.33.

  19. Future electricity generation: An economic and environmental life cycle perspective on near-, mid- and long-term technology options and policy implications

    Science.gov (United States)

    Bergerson, Joule Andrea

    This thesis evaluates the cost and environmental tradeoffs of current and future electricity generation options from a life cycle perspective. Policy and technology options are considered for each critical time horizon (near-, mid-, and long-term). The framework developed for this analysis is a hybrid life cycle analysis which integrates several models and frameworks including process and input-output life cycle analysis, an integrated environmental control model, social costing, forecasting and future energy scenario analysis. The near-term analysis shows that several recent LCA studies of electricity options have contributed to our understanding of the technologies available and their relative environmental impacts. Several promising options could satisfy our electricity demands. Other options remain unproven or too costly to encourage investment in the near term but show promise for future use (e.g. photovoltaic, fuel cells). Public concerns could impede the use of some desirable technologies (e.g. hydro, nuclear). Finally, less tangible issues such as intermittency of some renewable technologies, social equity and visual and land use impacts, while difficult to quantify, must be considered in the investment decision process. In the mid-term analysis, this thesis explores alternative methods for transport of coal energy. A hybrid life cycle analysis is critical for evaluating the cost, efficiency and environmental tradeoffs of the entire system. If a small amount of additional coal is to be shipped, current rail infrastructure should be used where possible. If entirely new infrastructure is required, the mine mouth generation options are cheaper but have increased environmental impact due to the increased generation required to compensate for transmission line losses. Gasifying the coal to produce methane also shows promise in terms of lowering environmental emissions. The long-term analysis focuses on the implications of a high coal use future. This scenario

  20. Influence of the type of working fluid in the lower cycle and superheated steam parameters in the upper cycle on effectiveness of operation of binary power plant

    OpenAIRE

    Stachel Aleksander A.; Wiśniewski Sławomir

    2015-01-01

    In the paper presented have been the results of the analysis of effectiveness of operation of binary power plant consisting of combined two Clausius-Rankine cycles, namely the binary cycle with water as a working fluid in the upper cycle and organic substance as a working fluid in the lower cycle, as well as a single fluid component power plant operating also in line with the C-R cycle for superheated steam, with water as a working fluid. The influence of the parameters of superheated steam i...

  1. Numerical computation of motions and structural loads for large containership using 3D Rankine panel method

    Science.gov (United States)

    Kim, Jung-Hyun; Kim, Yonghwan

    2017-12-01

    In this paper, we present the results of our numerical seakeeping analyses of a 6750-TEU containership, which were subjected to the benchmark test of the 2nd ITTC-ISSC Joint Workshop held in 2014. We performed the seakeeping analyses using three different methods based on a 3D Rankine panel method, including 1) a rigid-body solver, 2) a flexible-body solver using a beam model, and 3) a flexible-body solver using the eigenvectors of a 3D Finite Element Model (FEM). The flexible-body solvers adopt a fully coupled approach between the fluid and structure. We consider the nonlinear Froude-Krylov and restoring forces using a weakly nonlinear approach. In addition, we calculate the slamming loads on the bow flare and stern using a 2D generalized Wagner model. We compare the numerical and experimental results in terms of the linear response, the time series of the nonlinear response, and the longitudinal distribution of the sagging and hogging moments. The flexible-body solvers show good agreement with the experimental model with respect to both the linear and nonlinear results, including the high-frequency oscillations due to springing and whipping vibrations. The rigid-body solver gives similar results except for the springing and whipping.

  2. Comparison of different iterative schemes for ISPH based on Rankine source solution

    Directory of Open Access Journals (Sweden)

    Xing Zheng

    2017-07-01

    Full Text Available Smoothed Particle Hydrodynamics (SPH method has a good adaptability for the simulation of free surface flow problems. There are two forms of SPH. One is weak compressible SPH and the other one is incompressible SPH (ISPH. Compared with the former one, ISPH method performs better in many cases. ISPH based on Rankine source solution can perform better than traditional ISPH, as it can use larger stepping length by avoiding the second order derivative in pressure Poisson equation. However, ISPH_R method needs to solve the sparse linear matrix for pressure Poisson equation, which is one of the most expensive parts during one time stepping calculation. Iterative methods are normally used for solving Poisson equation with large particle numbers. However, there are many iterative methods available and the question for using which one is still open. In this paper, three iterative methods, CGS, Bi-CGstab and GMRES are compared, which are suitable and typical for large unsymmetrical sparse matrix solutions. According to the numerical tests on different cases, still water test, dam breaking, violent tank sloshing, solitary wave slamming, the GMRES method is more efficient than CGS and Bi-CGstab for ISPH method.

  3. Corrections to the Rankine-Hugoniot conditions for curved shock waves

    Science.gov (United States)

    Lancellotti, Carlo; Yue, Yubei

    2014-12-01

    Several years ago, Carlo Cercignani and one of the authors in a paper (C. Cercignani, 2991) performed a mathe-matical analysis of the corrections to the Rankine-Hugoniot conditions due to the curvature of a shock front, using singular perturbation methods in order to "connect" the solutions to the the Boltzmann equation inside and outside the shock layer. It turned out that these corrections can be obtained at leading order by integrating appropriately the Boltzmann shock profile for a planar (one-dimensional in space) shock wave. However, they are entirely due to the spatially asymmetry of the shock, and they vanish if the shock is described using a simple bi-modal ansatz like the well-know Mott-Smith model. In the present work we extend and simplify the previous results, and then use a recently-developed deterministic (spectral) Boltzmann solver for a gas of hard-spheres in order to obtain accurate numerical values for the curvature corrections.

  4. Inventory of future power and heat production technologies. Partial report Small-scale technology; Inventering av framtidens el- och vaermeproduktionstekniker. Delrapport Smaaskalig teknik

    Energy Technology Data Exchange (ETDEWEB)

    Ridell, Bengt (Grontmij AB (Sweden))

    2008-12-15

    The following techniques for small-scale production have been selected to be studied more carefully, Fuel cells, Photovoltaics, Organic Rankine Cycle (ORC), and Wave power. Of the four selected technologies, fuel cells, solar cells, ORC are appropriate for use in so-called distributed generation, to be used close to a consumer, and possibly also for the production of electricity. Wave power is more like the wind in nature and is probably better suited to be used by power companies for direct input to the transmission grid. None of these technologies are now competitive against buying electricity from the Swedish grid. However, there are opportunities for all to reduce production costs so that they can become competitive alternatives in the future, depending largely on the general development of electricity prices, taxes, delivery reliability, etc. The four different technologies have different development stages and requirements that affect their possibility for a commercial breakthrough. These technologies will probably not all get a breakthrough in Sweden. Small-scale technologies will in the time period up to 2030 not be able to compete with the large-scale technologies that exist in today's power grid. In the longer term the situation may be different. The power system might be reduced in importance if the small scale technologies become cheap, reliable and easy to use. Electricity can then be produced locally, directly related to user needs

  5. The model for the strategic management of technology. The improvement cycle and matrixes deployment QFD; Un modelo para gestion estrategica de los recursos tecnologicos. El ciclo de mejora y despliegue de matrices QFD

    Energy Technology Data Exchange (ETDEWEB)

    Benavides Velasco, C. A.; Quintana Garcia, C.

    2007-07-01

    In spite of the importance of innovative firms, few contributions study in depth the strategic management of their technological resources. After describing the process of strategic management of technology, we propose a model that enables the application of that process and guarantees organizational flexibility in technological companies. For it, such a process has been adapted to She wart cycle (Deeming wheel) and combined with the quality function deployment (QFD). As a result, we propose the improvement cycle of technology. It contains two matrixes that allow identifying and prioritizing with greater clarity the activities related to the management of technological resources. (Authors)

  6. Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants.

    Science.gov (United States)

    Dong, Jun; Tang, Yuanjun; Nzihou, Ange; Chi, Yong; Weiss-Hortala, Elsa; Ni, Mingjiang

    2018-01-19

    Municipal solid waste (MSW) pyrolysis and gasification are in development, stimulated by a more sustainable waste-to-energy (WtE) option. Since comprehensive comparisons of the existing WtE technologies are fairly rare, this study aims to conduct a life cycle assessment (LCA) using two sets of data: theoretical analysis, and case studies of large-scale commercial plants. Seven systems involving thermal conversion (pyrolysis, gasification, incineration) and energy utilization (steam cycle, gas turbine/combined cycle, internal combustion engine) are modeled. Theoretical analysis results show that pyrolysis and gasification, in particular coupled with a gas turbine/combined cycle, have the potential to lessen the environmental loadings. The benefits derive from an improved energy efficiency leading to less fossil-based energy consumption, and the reduced process emissions by syngas combustion. Comparison among the four operating plants (incineration, pyrolysis, gasification, gasification-melting) confirms a preferable performance of the gasification plant attributed to syngas cleaning. The modern incineration is superior over pyrolysis and gasification-melting at present, due to the effectiveness of modern flue gas cleaning, use of combined heat and power (CHP) cycle, and ash recycling. The sensitivity analysis highlights a crucial role of the plant efficiency and pyrolysis char land utilization. The study indicates that the heterogeneity of MSW and syngas purification technologies are the most relevant impediments for the current pyrolysis/gasification-based WtE. Potential development should incorporate into all process aspects to boost the energy efficiency, improve incoming waste quality, and achieve efficient residues management. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. HTR-Based Power Plants’ Performance Analysis Applied on Conventional Combined Cycles

    OpenAIRE

    José Carbia Carril; Álvaro Baaliña Insua; Javier Romero Gómez; Manuel Romero Gómez

    2015-01-01

    In high temperature reactors including gas cooled fast reactors and gas turbine modular helium reactors (GT-MHR) specifically designed to operate as power plant heat sources, efficiency enhancement at effective cost under safe conditions can be achieved. Mentioned improvements concern the implementation of two cycle structures: (a), a stand alone Brayton operating with helium and a stand alone Rankine cycle (RC) with regeneration, operating with carbon dioxide at ultrasupercritical pressure a...

  8. Long- vs. short-term energy storage technologies analysis : a life-cycle cost study : a study for the DOE energy storage systems program.

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan M.; Hassenzahl, William V. (, - Advanced Energy Analysis, Piedmont, CA)

    2003-08-01

    This report extends an earlier characterization of long-duration and short-duration energy storage technologies to include life-cycle cost analysis. Energy storage technologies were examined for three application categories--bulk energy storage, distributed generation, and power quality--with significant variations in discharge time and storage capacity. More than 20 different technologies were considered and figures of merit were investigated including capital cost, operation and maintenance, efficiency, parasitic losses, and replacement costs. Results are presented in terms of levelized annual cost, $/kW-yr. The cost of delivered energy, cents/kWh, is also presented for some cases. The major study variable was the duration of storage available for discharge.

  9. Power cycling test of a 650 V discrete GaN-on-Si power device with a laminated packaging embedding technology

    DEFF Research Database (Denmark)

    Song, Sungyoung; Munk-Nielsen, Stig; Uhrenfeldt, Christian

    2017-01-01

    A GaN-on-Si power device is a strong candidate to replace power components based on silicon in high-end market for low-voltage applications, thanks to its electrical characteristics. To maximize opportunities of the GaN device in field applications, a package technology plays an important role...... in a discrete GaN power device. A few specialized package technologies having very lower stray inductance and higher thermal conductivity have been proposed for discrete GaN-on-Si power devices. Despite their superior performance, there has been little discussion of their reliability. The paper presents a power...... cycling test of a discrete GaN power device employing a laminated embedded packaging technology subjected to 125 degrees Celsius junction temperature swing. Failure modes are described with collected electrical characteristics and measured temperature data under the test. In conclusion, physical...

  10. Application of next-generation sequencing technology for comprehensive aneuploidy screening of blastocysts in clinical preimplantation genetic screening cycles.

    Science.gov (United States)

    Fiorentino, Francesco; Bono, Sara; Biricik, Anil; Nuccitelli, Andrea; Cotroneo, Ettore; Cottone, Giuliano; Kokocinski, Felix; Michel, Claude-Edouard; Minasi, Maria Giulia; Greco, Ermanno

    2014-12-01

    Can next-generation sequencing (NGS) techniques be used reliably for comprehensive aneuploidy screening of human embryos from patients undergoing IVF treatments, with the purpose of identifying and selecting chromosomally normal embryos for transfer? Extensive application of NGS in clinical preimplantation genetic screening (PGS) cycles demonstrates that this methodology is reliable, allowing identification and transfer of euploid embryos resulting in ongoing pregnancies. The effectiveness of PGS is dependent upon the biology of the early embryo and the limitations of the technology. Fluorescence in situ hybridization, used to test for a few chromosomes, has largely been superseded by microarray techniques that test all 24 chromosomes. Array comparative genomic hybridization (array-CGH) has been demonstrated to be an accurate PGS method and has become the de facto gold standard, but new techniques, such as NGS, continue to emerge. The study consisted of a prospective trial involving a double blind parallel evaluation, with both NGS and array-CGH techniques, of 192 blastocysts obtained from 55 consecutive clinical PGS cycles undertaken during the period of September to October 2013. Consistency of NGS-based aneuploidy detection was assessed by matching the results obtained with array-CGH-based diagnoses. Primary outcome measure was accuracy of the chromosomal analysis; secondary outcome measures were clinical outcomes. Fifty-five patients (median age 39.3 years, range 32-46) undergoing PGS were enrolled in the study. All embryos were cultured to blastocyst stage; trophectoderm biopsy was performed on Day 5 of development or Day 6/7 for slower growing embryos. The method involved whole genome amplification followed by both NGS and array-CGH. The MiSeq control software, real-time analysis and reporter performed on-board primary and secondary bioinformatics analysis. Copy number variation analysis was accomplished with BlueFuse Multi software. A total of 192

  11. A state-of-the-art report on the evaluation technology of the environmental compatibility of nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Gyu; Oh, Won Zin; Cho, Il Hoon; Ahn, Ki Jung; Kim Young Min

    1997-09-01

    In order to evaluate the environmental compatibility of nuclear fuel cycle, the methodologies for quantifying evaluation factors and the global trend of the back-end nuclear fuel cycle is reviewed. The evaluation methods of monetary values of radiation dose are demonstrate. There are Human Capital, Legal Compensation Principles, Insurance Premium Analogies, and Willingness to Pay. It can be considered that the estimation of public acceptance cost is the estimation problem of economic value of environmental property. In this report, contingent valuation method is discussed, which is one of the estimation methods of economic value. The recent research on residual radiation detection system is analyzed. (author). 7 refs., 10 tabs., 11 figs

  12. Finite time thermodynamics of power and refrigeration cycles

    CERN Document Server

    Kaushik, Shubhash C; Kumar, Pramod

    2017-01-01

    This book addresses the concept and applications of Finite Time Thermodynamics to various thermal energy conversion systems including heat engines, heat pumps, and refrigeration and air-conditioning systems. The book is the first of its kind, presenting detailed analytical formulations for the design and optimisation of various power producing and cooling cycles including but not limited to: • Vapour power cycles • Gas power cycles • Vapour compression cycles • Vapour absorption cyclesRankine cycle coupled refrigeration systems Further, the book addresses the thermoeconomic analysis for the optimisation of thermal cycles, an important field of study in the present age and which is characterised by multi-objective optimization regarding energy, ecology, the environment and economics. Lastly, the book provides the readers with key techniques associated with Finite Time Thermodynamics, allowing them to understand the relevance of irreversibilitie s associated with real processes and the scientific r...

  13. The Impact of Experiencing 5E Learning Cycle on Developing Science Teachers' Technological Pedagogical Content Knowledge (TPACK)

    Science.gov (United States)

    Mustafa, Mohamed Elfatih I.

    2016-01-01

    This study investigated the conditions and situations offered by Experiencing Inquiry Model (EIM) for developing science teacher's Technological Pedagogical Content Knowledge (TPACK). Also, the study explored the opportunities offered by EIM strategy in enhancing science teacher's abilities to design technology-based inquiry activities for science…

  14. Pregnancy outcomes decline in recipients over age 44: an analysis of 27,959 fresh donor oocyte in vitro fertilization cycles from the Society for Assisted Reproductive Technology.

    Science.gov (United States)

    Yeh, Jason S; Steward, Ryan G; Dude, Annie M; Shah, Anish A; Goldfarb, James M; Muasher, Suheil J

    2014-05-01

    To use a large and recent national registry to provide an updated report on the effect of recipient age on the outcome of donor oocyte in vitro fertilization (IVF) cycles. Retrospective cohort study. United States national registry for assisted reproductive technology. Recipients of donor oocyte treatment cycles between 2008 and 2010, with cycles segregated into five age cohorts: ≤34, 35 to 39, 40 to 44, 45 to 49, and ≥50 years. None. Implantation, clinical pregnancy, live-birth, and miscarriage rates. In donor oocyte IVF cycles, all age cohorts ≤39 years had similar rates of implantation, clinical pregnancy, and live birth when compared with the 40- to 44-year-old reference group. Patients in the two oldest age groups (45 to 49, ≥50 years) experienced statistically significantly lower rates of implantation, clinical pregnancy, and live birth compared with the reference group. Additionally, all outcomes in the ≥50-year-old group were statistically significantly worse than the 45- to 49-year-old group, demonstrating progressive decline with advancing age. Recent national registry data suggest that donor oocyte recipients have stable rates of pregnancy outcomes before age 45, after which there is a small but steady and significant decline. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  15. Full environmental life cycle cost analysis of concentrating solar power technology: contribution of externalities to overall energy costs

    NARCIS (Netherlands)

    Corona, B.; Cerrajero, E.; San Miguel, G.

    2016-01-01

    The aim of this work is to investigate the use of Full Environmental Life Cycle Costing (FeLCC) methodology to evaluate the economic performance of a 50 MW parabolic trough Concentrated Solar Power (CSP) plant operating in hybrid mode with different natural gas inputs (between 0% and 30%). The

  16. User manual for GEOCOST: a computer model for geothermal cost analysis. Volume 2. Binary cycle version

    Energy Technology Data Exchange (ETDEWEB)

    Huber, H.D.; Walter, R.A.; Bloomster, C.H.

    1976-03-01

    A computer model called GEOCOST has been developed to simulate the production of electricity from geothermal resources and calculate the potential costs of geothermal power. GEOCOST combines resource characteristics, power recovery technology, tax rates, and financial factors into one systematic model and provides the flexibility to individually or collectively evaluate their impacts on the cost of geothermal power. Both the geothermal reservoir and power plant are simulated to model the complete energy production system. In the version of GEOCOST in this report, geothermal fluid is supplied from wells distributed throughout a hydrothermal reservoir through insulated pipelines to a binary power plant. The power plant is simulated using a binary fluid cycle in which the geothermal fluid is passed through a series of heat exchangers. The thermodynamic state points in basic subcritical and supercritical Rankine cycles are calculated for a variety of working fluids. Working fluids which are now in the model include isobutane, n-butane, R-11, R-12, R-22, R-113, R-114, and ammonia. Thermodynamic properties of the working fluids at the state points are calculated using empirical equations of state. The Starling equation of state is used for hydrocarbons and the Martin-Hou equation of state is used for fluorocarbons and ammonia. Physical properties of working fluids at the state points are calculated.

  17. Promising Direction of Perfection of the Utilization Combine Cycle Gas Turbine Units

    Directory of Open Access Journals (Sweden)

    Gabdullina Albina I.

    2017-01-01

    Full Text Available Issues of improving the efficiency of combined cycle gas turbines (CCGT recovery type have been presented. Efficiency gas turbine plant reaches values of 45 % due to rise in temperature to a gas turbine to 1700 °C. Modern technologies for improving the cooling gas turbine components and reducing the excess air ratio leads to a further increase of the efficiency by 1-2 %. Based on research conducted at the Tomsk Polytechnic University, it shows that the CCGT efficiency can be increased by 2-3 % in the winter time due to the use of organic Rankine cycle, low-boiling substances, and air-cooled condensers (ACC. It is necessary to apply the waste heat recovery with condensation of water vapor from the flue gas, it will enhance the efficiency of the CCGT by 2-3 % to increase the efficiency of the heat recovery steam boiler (HRSB to 10-12 %. Replacing electric pumps gas turbine engine (GTE helps to reduce electricity consumption for auxiliary needs CCGT by 0.5-1.5 %. At the same time the heat of flue gas turbine engine may be useful used in HRSB, thus will increase the capacity and efficiency of the steam turbine.

  18. Proceedings of the 2nd NUCEF international symposium NUCEF`98. Safety research and development of base technology on nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This volume contains 68 papers presented at the 2nd NUCEF International Symposium NUCEF`98 held on 16-17 November 1998, in Hitachinaka, Japan, following the 1st symposium NUCEF`95 (Proceeding: JAERI-Conf 96-003). The theme of this symposium was `Safety Research and Development of Base Technology on Nuclear Fuel Cycle`. The papers were presented in oral and poster sessions on following research fields: (1) Criticality Safety, (2) Reprocessing and Partitioning, (3) Radioactive Waste Management. The 68 papers are indexed individually. (J.P.N.)

  19. News coverage of controversial emerging technologies. Evidence for the issue attention cycle in print and online media.

    Science.gov (United States)

    Anderson, Ashley A; Brossard, Dominique; Scheufele, Dietram A

    2012-01-01

    This study analyzes the issue attention cycle for print and online media coverage of a scientific publication examining the deaths of Chinese factory workers due to lung damage from chronic exposure to nanoparticles. The results of the nanoparticle study, published in 2009, embody news values that would make the study a prime candidate for press coverage, namely, novelty, negativity, controversy, and potential widespread impact. Nevertheless, mentions of the event in traditional English-language print media were nearly nonexistent. Online media, on the other hand, gave the story greater coverage. This case study exemplifies why online media may not be bound to the same issue attention cycle that print media are for controversial scientific events.

  20. The Misselhorn Cycle: Batch-Evaporation Process for Efficient Low-Temperature Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Moritz Gleinser

    2016-05-01

    Full Text Available The concept of the Misselhorn cycle is introduced as a power cycle that aims for efficient waste heat recovery of temperature sources below 100 °C. The basic idea shows advantages over a standard Organic Rankine Cycle (ORC in overall efficiency and utilization of the heat source. The main characteristic of this cycle is the use of at least three parallel batch evaporators instead of continuous heat exchangers. The operational phases of the evaporators are shifted so that there is always one vaporizer in discharge mode. A transient MATLAB® model (The MathWorks: Natick, MA, USA is used to simulate the achievable performance of the Misselhorn cycle. The calculations of the thermodynamic states of the system are based on the heat flux, the equations for energy conservation and the equations of state found in the NIST Standard Reference Database 23 (Reference Fluid Thermodynamic and Transport Properties - REFPROP, National Institute of Standards and Technology: Gaithersburg, MD, USA. In the isochoric batch evaporation, the pressure and the corresponding boiling temperature rise over time. With a gradually increasing boiling temperature, no pinch point limitation occurs. Furthermore, the heat source medium is passed through the evaporators in serial order to obtain a quasi-counter flow setup. It could be shown that these features offer the possibility to gain both high thermal efficiencies and an enhanced utilization of the heat source at the same time. A basic model with a fixed estimated heat transfer coefficient promises a possible system exergy efficiency of 44.4%, which is an increase of over 60% compared to a basic ORC with a system exergy efficiency of only 26.8%.

  1. Cycling To Awareness.

    Science.gov (United States)

    Kozak, Stan

    1999-01-01

    Encourages environmental and outdoor educators to promote bicycling. In the community and the curriculum, cycling connects environmental issues, health and fitness, law and citizenship, appropriate technology, and the joy of being outdoors. Describes the Ontario Cycling Association's cycling strategy and its four components: school cycling…

  2. Association between Cerebral Performance Category, Modified Rankin Scale, and discharge disposition after cardiac arrest.

    Science.gov (United States)

    Rittenberger, Jon C; Raina, Ketki; Holm, Margo B; Kim, Young Joo; Callaway, Clifton W

    2011-08-01

    Cerebral Performance Category (CPC), Modified Rankin Scale (mRS) and discharge disposition are commonly used to determine outcomes following cardiac arrest. This study tested the association between these outcome measures. Retrospective chart review of subjects who survived to hospital discharge between 1/1/2006 and 12/31/2009 was conducted. Charts were reviewed for outcomes (CPC, mRS, and discharge disposition). Discharge disposition was classified in 6 categories: home with no services, home with home healthcare, acute rehabilitation facility, skilled nursing facility, long term acute care facility, and hospice. Intra-and inter-rater reliabilities were calculated for outcome measures. Rates of "good outcome" (defined as a CPC of 1-2, mRS of 0-3, or discharge disposition to home or acute rehabilitation facility) were also determined. Kendall's tau correlation coefficients explored relationships among measures. A total of 211 charts were reviewed. Mean age was 60 years (SD 16), the majority (75%) were white males, in- and out-of hospital cardiac arrests were equally prevalent, and ventricular dysrhythmia was most common (N=109, 52%). Half of the subjects were comatose following resuscitation and 75 (35%) received therapeutic hypothermia. Inter-rater percentage agreement for CPC and mRS abstraction was 95.24% (kappa 0.89, pdefinition, 47 subjects (22%) using the mRS definition, and 129 subjects (61%) subjects using discharge disposition definition. There was fair relationship between the CPC and mRS (tau 0.43) and poor relationships between CPC and discharge disposition (tau 0.23) and between mRS and discharge disposition (tau 0.25). Determination of the CPC, mRS and discharge disposition at hospital discharge is reliable from chart review. These instruments provide widely differing estimates of "good outcome". Agreement between these measures ranges from poor to fair. A more nuanced outcome measure designed for the post-cardiac arrest population is needed

  3. System analysis of central receiver concepts with high temperature thermal energy storages: Receiver technologies and storage cycles

    Science.gov (United States)

    Steiner, Peter; Schwaiger, Karl; Haider, Markus; Walter, Heimo

    2017-06-01

    Reducing the levelized cost of electricity for solar thermal electricity (STE) plants is the most important challenge of this technology. A bottleneck at state of the art STE plants is the heat storage medium (HSM) with its temperature limits. To replace the commonly used molten salt, particles like quartz sand or corundum, enabling temperatures up to 1000 °C, are proposed as new HSM. The temperature raise leads to economical challenges, which have to be analyzed more in detail. In this work two STE plant concepts based on particles as HSM are introduced and discussed to outline advantages and issues concerning this technology.

  4. Diminished ovarian reserve in the United States assisted reproductive technology population: diagnostic trends among 181,536 cycles from the Society for Assisted Reproductive Technology Clinic Outcomes Reporting System.

    Science.gov (United States)

    Devine, Kate; Mumford, Sunni L; Wu, Mae; DeCherney, Alan H; Hill, Micah J; Propst, Anthony

    2015-09-01

    To evaluate trends in diminished ovarian reserve (DOR) assignment in the Society for Assisted Reproductive Technology (SART) Clinic Outcomes Reporting System database and to evaluate its accuracy in predicting poor ovarian response (POR) as defined in European Society of Human Reproduction and Embryology's Bologna criteria (2011). Retrospective cohort study. Not applicable. A total of 181,536 fresh, autologous ART cycles reported to SART by U.S. clinics in 2004 and 2011 (earliest and most recent available reporting years). None. DOR assignment was the primary exposure. POR, defined as cycle cancellation for poor response or less than 4 oocytes retrieved after conventional gonadotropin stimulation (>149 IU FSH daily), was the primary outcome. Secondary outcomes were live birth and number of oocytes retrieved. DOR prevalence, power of DOR and FSH (Society for Reproductive Medicine. All rights reserved.

  5. Energy and exergy analysis of the Kalina cycle for use in concentrated solar power plants with direct steam generation

    DEFF Research Database (Denmark)

    Knudsen, Thomas; Clausen, Lasse Røngaard; Haglind, Fredrik

    2014-01-01

    In concentrated solar power plants using direct steam generation, the usage of a thermal storage unit based only on sensible heat may lead to large exergetic losses during charging and discharging, due to a poor matching of the temperature profiles. By the use of the Kalina cycle, in which...... with direct steam generation. The following two scenarios were addressed using energy and exergy analysis: generating power using heat from only the receiver and using only stored heat. For each of these scenarios comparisons were made for mixture concentrations ranging from 0.1 mole fraction of ammonia to 0.......9, and compared to the conventional Rankine cycle. This comparison was then also carried out for various turbine inlet pressures (100 bar to critical pressures). The results suggest that there would be no benefit from using a Kalina cycle instead of a Rankine cycle when generating power from heat taken directly...

  6. A Range-Based Vehicle Life Cycle Assessment Incorporating Variability in the Environmental Assessment of Different Vehicle Technologies and Fuels

    OpenAIRE

    Maarten Messagie; Faycal-Siddikou Boureima; Thierry Coosemans; Cathy Macharis; Joeri van Mierlo

    2014-01-01

    How to compare the environmental performance of different vehicle technologies? Vehicles with lower tailpipe emissions are perceived as cleaner. However, does it make sense to look only to tailpipe emissions? Limiting the comparison only to these emissions denies the fact that there are emissions involved during the production of a fuel and this approach gives too much advantage to zero-tailpipe vehicles like battery electric vehicles (BEV) and fuel cell electric vehicle (FCEV). Would it be ...

  7. ARIA 2016: Care pathways implementing emerging technologies for predictive medicine in rhinitis and asthma across the life cycle.

    Science.gov (United States)

    Bousquet, J; Hellings, P W; Agache, I; Bedbrook, A; Bachert, C; Bergmann, K C; Bewick, M; Bindslev-Jensen, C; Bosnic-Anticevitch, S; Bucca, C; Caimmi, D P; Camargos, P A M; Canonica, G W; Casale, T; Chavannes, N H; Cruz, A A; De Carlo, G; Dahl, R; Demoly, P; Devillier, P; Fonseca, J; Fokkens, W J; Guldemond, N A; Haahtela, T; Illario, M; Just, J; Keil, T; Klimek, L; Kuna, P; Larenas-Linnemann, D; Morais-Almeida, M; Mullol, J; Murray, R; Naclerio, R; O'Hehir, R E; Papadopoulos, N G; Pawankar, R; Potter, P; Ryan, D; Samolinski, B; Schunemann, H J; Sheikh, A; Simons, F E R; Stellato, C; Todo-Bom, A; Tomazic, P V; Valiulis, A; Valovirta, E; Ventura, M T; Wickman, M; Young, I; Yorgancioglu, A; Zuberbier, T; Aberer, W; Akdis, C A; Akdis, M; Annesi-Maesano, I; Ankri, J; Ansotegui, I J; Anto, J M; Arnavielhe, S; Asarnoj, A; Arshad, H; Avolio, F; Baiardini, I; Barbara, C; Barbagallo, M; Bateman, E D; Beghé, B; Bel, E H; Bennoor, K S; Benson, M; Białoszewski, A Z; Bieber, T; Bjermer, L; Blain, H; Blasi, F; Boner, A L; Bonini, M; Bonini, S; Bosse, I; Bouchard, J; Boulet, L P; Bourret, R; Bousquet, P J; Braido, F; Briggs, A H; Brightling, C E; Brozek, J; Buhl, R; Bunu, C; Burte, E; Bush, A; Caballero-Fonseca, F; Calderon, M A; Camuzat, T; Cardona, V; Carreiro-Martins, P; Carriazo, A M; Carlsen, K H; Carr, W; Cepeda Sarabia, A M; Cesari, M; Chatzi, L; Chiron, R; Chivato, T; Chkhartishvili, E; Chuchalin, A G; Chung, K F; Ciprandi, G; de Sousa, J Correia; Cox, L; Crooks, G; Custovic, A; Dahlen, S E; Darsow, U; Dedeu, T; Deleanu, D; Denburg, J A; De Vries, G; Didier, A; Dinh-Xuan, A T; Dokic, D; Douagui, H; Dray, G; Dubakiene, R; Durham, S R; Du Toit, G; Dykewicz, M S; Eklund, P; El-Gamal, Y; Ellers, E; Emuzyte, R; Farrell, J; Fink Wagner, A; Fiocchi, A; Fletcher, M; Forastiere, F; Gaga, M; Gamkrelidze, A; Gemicioğlu, B; Gereda, J E; van Wick, R Gerth; González Diaz, S; Grisle, I; Grouse, L; Gutter, Z; Guzmán, M A; Hellquist-Dahl, B; Heinrich, J; Horak, F; Hourihane, J O' B; Humbert, M; Hyland, M; Iaccarino, G; Jares, E J; Jeandel, C; Johnston, S L; Joos, G; Jonquet, O; Jung, K S; Jutel, M; Kaidashev, I; Khaitov, M; Kalayci, O; Kalyoncu, A F; Kardas, P; Keith, P K; Kerkhof, M; Kerstjens, H A M; Khaltaev, N; Kogevinas, M; Kolek, V; Koppelman, G H; Kowalski, M L; Kuitunen, M; Kull, I; Kvedariene, V; Lambrecht, B; Lau, S; Laune, D; Le, L T T; Lieberman, P; Lipworth, B; Li, J; Lodrup Carlsen, K C; Louis, R; Lupinek, C; MacNee, W; Magar, Y; Magnan, A; Mahboub, B; Maier, D; Majer, I; Malva, J; Manning, P; De Manuel Keenoy, E; Marshall, G D; Masjedi, M R; Mathieu-Dupas, E; Maurer, M; Mavale-Manuel, S; Melén, E; Melo-Gomes, E; Meltzer, E O; Mercier, J; Merk, H; Miculinic, N; Mihaltan, F; Milenkovic, B; Millot-Keurinck, J; Mohammad, Y; Momas, I; Mösges, R; Muraro, A; Namazova-Baranova, L; Nadif, R; Neffen, H; Nekam, K; Nieto, A; Niggemann, B; Nogueira-Silva, L; Nogues, M; Nyembue, T D; Ohta, K; Okamoto, Y; Okubo, K; Olive-Elias, M; Ouedraogo, S; Paggiaro, P; Pali-Schöll, I; Palkonen, S; Panzner, P; Papi, A; Park, H S; Passalacqua, G; Pedersen, S; Pereira, A M; Pfaar, O; Picard, R; Pigearias, B; Pin, I; Plavec, D; Pohl, W; Popov, T A; Portejoie, F; Postma, D; Poulsen, L K; Price, D; Rabe, K F; Raciborski, F; Roberts, G; Robalo-Cordeiro, C; Rodenas, F; Rodriguez-Mañas, L; Rolland, C; Roman Rodriguez, M; Romano, A; Rosado-Pinto, J; Rosario, N; Rottem, M; Sanchez-Borges, M; Sastre-Dominguez, J; Scadding, G K; Scichilone, N; Schmid-Grendelmeier, P; Serrano, E; Shields, M; Siroux, V; Sisul, J C; Skrindo, I; Smit, H A; Solé, D; Sooronbaev, T; Spranger, O; Stelmach, R; Sterk, P J; Strandberg, T; Sunyer, J; Thijs, C; Triggiani, M; Valenta, R; Valero, A; van Eerd, M; van Ganse, E; van Hague, M; Vandenplas, O; Varona, L L; Vellas, B; Vezzani, G; Vazankari, T; Viegi, G; Vontetsianos, T; Wagenmann, M; Walker, S; Wang, D Y; Wahn, U; Werfel, T; Whalley, B; Williams, D M; Williams, S; Wilson, N; Wright, J; Yawn, B P; Yiallouros, P K; Yusuf, O M; Zaidi, A; Zar, H J; Zernotti, M E; Zhang, L; Zhong, N; Zidarn, M

    2016-01-01

    The Allergic Rhinitis and its Impact on Asthma (ARIA) initiative commenced during a World Health Organization workshop in 1999. The initial goals were (1) to propose a new allergic rhinitis classification, (2) to promote the concept of multi-morbidity in asthma and rhinitis and (3) to develop guidelines with all stakeholders that could be used globally for all countries and populations. ARIA-disseminated and implemented in over 70 countries globally-is now focusing on the implementation of emerging technologies for individualized and predictive medicine. MASK [MACVIA ( Contre les Maladies Chroniques pour un Vieillissement Actif )-ARIA Sentinel NetworK] uses mobile technology to develop care pathways for the management of rhinitis and asthma by a multi-disciplinary group and by patients themselves. An app (Android and iOS) is available in 20 countries and 15 languages. It uses a visual analogue scale to assess symptom control and work productivity as well as a clinical decision support system. It is associated with an inter-operable tablet for physicians and other health care professionals. The scaling up strategy uses the recommendations of the European Innovation Partnership on Active and Healthy Ageing. The aim of the novel ARIA approach is to provide an active and healthy life to rhinitis sufferers, whatever their age, sex or socio-economic status, in order to reduce health and social inequalities incurred by the disease.

  8. Antimüllerian hormone as a predictor of live birth following assisted reproduction: an analysis of 85,062 fresh and thawed cycles from the Society for Assisted Reproductive Technology Clinic Outcome Reporting System database for 2012-2013.

    Science.gov (United States)

    Tal, Reshef; Seifer, David B; Wantman, Ethan; Baker, Valerie; Tal, Oded

    2018-02-01

    To determine if serum antimüllerian hormone (AMH) is associated with and/or predictive of live birth assisted reproductive technology (ART) outcomes. Retrospective analysis of Society for Assisted Reproductive Technology Clinic Outcome Reporting System database from 2012 to 2013. Not applicable. A total of 69,336 (81.8%) fresh and 15,458 (18.2%) frozen embryo transfer (FET) cycles with AMH values. None. Live birth. A total of 85,062 out of 259,499 (32.7%) fresh and frozen-thawed autologous non-preimplantation genetic diagnosis cycles had AMH reported for cycles over this 2-year period. Of those, 70,565 cycles which had embryo transfers were included in the analysis. Serum AMH was significantly associated with live birth outcome per transfer in both fresh and FET cycles. Multiple logistic regression demonstrated that AMH is an independent predictor of live birth in fresh transfer cycles and FET cycles when controlling for age, body mass index, race, day of transfer, and number of embryos transferred. Receiver operating characteristic (ROC) curves demonstrated that the areas under the curve (AUC) for AMH as predictors of live birth in fresh cycles and thawed cycles were 0.631 and 0.540, respectively, suggesting that AMH alone is a weak independent predictor of live birth after ART. Similar ROC curves were obtained also when elective single-embryo transfer (eSET) cycles were analyzed separately in either fresh (AUC 0.655) or FET (AUC 0.533) cycles, although AMH was not found to be an independent predictor in eSET cycles. AMH is a poor independent predictor of live birth outcome in either fresh or frozen embryo transfer for both eSET and non-SET transfers. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  9. A life cycle cost analysis of large-scale thermal energy storage technologies for buildings using combined heat and power

    Energy Technology Data Exchange (ETDEWEB)

    Gaine, K.; Duffy, A.

    2010-07-01

    Full text: Buildings account for approximately 40% of energy consumption and greenhouse gas (GHG) emissions in developed economies, of which approximately 55% of building energy is used for heating and cooling. The reduction of building-related GHG emissions is a high international policy priority. For this reason and because there are many technical solutions for this, these polices should involve significant improvements in the uptake of small-scale energy efficient (EE) systems. However the widespread deployment of many technologies, must overcome a number of barriers, one of which is a temporal (diurnal or seasonal) mismatch between supply and demand. For example, in office applications, peak combined heat and power (CHP) thermal output may coincide with peak electrical demand in the late morning or afternoon, whereas heating may be required early in the morning. For this reason, cost-effective thermal storage solutions have the potential to improve financial performance, while simultaneously reducing associated GHG emissions. The aim of this paper is to identify existing thermal energy storage (TES) technologies and to present and asses the economic and technical performance of each for a typical large scale mixed development. Technologies identified include: Borehole Thermal Energy Storage (BTES); Aquifer Thermal Energy Storage (ATES); Pitt Thermal Energy Storage (PTES) and Energy Piles. Of these the most appropriate for large scale storage in buildings were BTES and ATES because of they are relatively cheap and are installed under a building and do not use valuable floor area A Heat transfer analyses and system simulations of a variety of BTES systems are carried out using a Finite Element Analysis package (ANSYS) and energy balance simulation software (TRNSYS) is to determine the optimal system design. Financial models for each system are developed, including capital, installation, running and maintenance costs. Using this information the unit costs of

  10. Implications of social media use on health information technology engagement: Data from HINTS 4 cycle 3.

    Science.gov (United States)

    Jackson, Devlon N; Chou, Wen-Ying Sylvia; Coa, Kisha I; Oh, April; Hesse, Bradford

    2016-12-01

    Little is known about the association between Internet/social media use and health information technology (HIT) engagement. This study examines patterns of social media use and HIT engagement in the U.S.A. using data from the 2013 Health Information National Trends Survey (N = 3,164). Specifically, predictors of two HIT activities (i.e., communicating with a healthcare provider using the Internet or email and tracking personal health information electronically) are examined. Persons who were females, higher education, non-Hispanic others, having a regular healthcare provider, and ages 35-44 were more likely to participate in HIT activities. After controlling for sociodemographics and health correlates, social media use was significantly associated with HIT engagement. To our knowledge, this is one of the first studies to systematically examine the use and relationships across multiple types of health-related online media.

  11. Treatment of the Cuban infantile literature in the second cycle of the primary school from the perspective the new technologies

    Directory of Open Access Journals (Sweden)

    Cristina Rodríguez-Rodríguez

    2016-05-01

    Full Text Available Toward the ends of the XX century, the society is impacted by the Computer Technologies of the Communications (TIC. Its advantages become palpable in the different spheres of the society. Cuba is not unaware of this reality and it includes as an indispensable factor in its Third Educational Revolution, the incorporation of these. Nevertheless, in the second decade of the XXI century difficulties remain so much in the access, readiness of resources, like in the use form. It is in the solution this last aspect, where the primary teacher plays a fundamental list. This work offers some considerations about the competent use of the Educational Digital Means (MDE in the treatment of texts of the Cuban Infantile Literature (LIC in the sixth degree of the Primary Education and demands of a didactic alternative to carry out an use different from those (MDE in a systematic and renovating way.

  12. Technological tendencies for the improvement of the performance of combined cycle power stations; Tendencias tecnologicas para el mejoramiento del desempeno de centrales de cilco combinado

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez P, Marino; Garduno R, Raul; Chavez T, Rafael [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2001-07-01

    In this article are dealt some the aspects that have turned the combined cycle generating power stations (CCGPS) into the dominant way for the electrical generation in the world. In the first part it is presented the plan of expansion of the national electrical generation and similar information that the U.S.A. has for the CCGPS, which will give an idea of the importance and the impact that has this technology at the moment. The basic characteristics that are necessary to specify in order to satisfy the environmental and operation requirements, and the available technologies to increase the global efficiency of the CCGPS are also exposed. Finally it describes the evolution of the technology of control for CCGPS developed in the Gerencia de Control e Instrumentacion (GCI), as well as the capacities available to support the electrical sector in this technological discipline. [Spanish] En este articulo se tratan algunos de los aspectos que han convertido a las centrales de generacion de ciclo combinado (CGCC) en el modo dominante para la generacion electrica en el mundo. En la primera parte se presenta el plan de expansion de la generacion electrica nacional e informacion similar que los EE.UU. tienen para las CGCC, lo que dara una idea de la importancia y del impacto que tiene actualmente esta tecnologia. Se exponen tambien las caracteristicas principales que es necesario especificar a fin de satisfacer los requerimientos ambientales y de operacion, y las tecnologias disponibles para incrementar la eficiencia global de las CGCC. Finalmente se describe la evolucion de la tecnologia de control para CGCC desarrollada en la Gerencia de Control e Instrumentacion (GCI), asi como las capacidades disponibles para apoyar al sector electrico en esta disciplina tecnologica.

  13. Technology to accelerate pangenomic scanning for unknown point mutations in exonic sequences: cycling temperature capillary electrophoresis (CTCE

    Directory of Open Access Journals (Sweden)

    Bjørheim Jens

    2007-08-01

    Full Text Available Abstract Background Rapid means to discover and enumerate unknown mutations in the exons of human genes on a pangenomic scale are needed to discover the genes carrying inherited risk for common diseases or the genes in which somatic mutations are required for clonal diseases such as atherosclerosis and cancers. The method of constant denaturing capillary electrophoresis (CDCE permitted sensitive detection and enumeration of unknown point mutations but labor-intensive optimization procedures for each exonic sequence made it impractical for application at a pangenomic scale. Results A variant denaturing capillary electrophoresis protocol, cycling temperature capillary electrophoresis (CTCE, has eliminated the need for the laboratory optimization of separation conditions for each target sequence. Here are reported the separation of wild type mutant homoduplexes from wild type/mutant heteroduplexes for 27 randomly chosen target sequences without any laboratory optimization steps. Calculation of the equilibrium melting map of each target sequence attached to a high melting domain (clamp was sufficient to design the analyte sequence and predict the expected degree of resolution. Conclusion CTCE provides practical means for economical pangenomic detection and enumeration of point mutations in large-scale human case/control cohort studies. We estimate that the combined reagent, instrumentation and labor costs for scanning the ~250,000 exons and splice sites of the ~25,000 human protein-coding genes using automated CTCE instruments in 100 case cohorts of 10,000 individuals each are now less than U.S. $500 million, less than U.S. $500 per person.

  14. Thermo-Economic Comparison and Parametric Optimizations among Two Compressed Air Energy Storage System Based on Kalina Cycle and ORC

    Directory of Open Access Journals (Sweden)

    Ruixiong Li

    2016-12-01

    Full Text Available The compressed air energy storage (CAES system, considered as one method for peaking shaving and load-levelling of the electricity system, has excellent characteristics of energy storage and utilization. However, due to the waste heat existing in compressed air during the charge stage and exhaust gas during the discharge stage, the efficient operation of the conventional CAES system has been greatly restricted. The Kalina cycle (KC and organic Rankine cycle (ORC have been proven to be two worthwhile technologies to fulfill the different residual heat recovery for energy systems. To capture and reuse the waste heat from the CAES system, two systems (the CAES system combined with KC and ORC, respectively are proposed in this paper. The sensitivity analysis shows the effect of the compression ratio and the temperature of the exhaust on the system performance: the KC-CAES system can achieve more efficient operation than the ORC-CAES system under the same temperature of exhaust gas; meanwhile, the larger compression ratio can lead to the higher efficiency for the KC-CAES system than that of ORC-CAES with the constant temperature of the exhaust gas. In addition, the evolutionary multi-objective algorithm is conducted between the thermodynamic and economic performances to find the optimal parameters of the two systems. The optimum results indicate that the solutions with an exergy efficiency of around 59.74% and 53.56% are promising for KC-CAES and ORC-CAES system practical designs, respectively.

  15. Simulation of the solar thermal power plant of 5 MW based in the technology of Parabolic Trough Collector with the simulation program TRANSYS; Simulacion de una central electrica termosolar de 5MWe basada en la tecnologia de colector solar cilindro parabolico, con el programa de simulacion TRANSYS

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M. L.; Sautullo, C. S.

    2004-07-01

    Solar Thermal Power Plants (STPP) have raised an increasing interest in the last years. Within the scope of Concentrating Solar Power technologies, Parabolic Trough is at the forefront stage of development. The improved process of Direct Steam Generation technology (DSG) could increase even further the efficiency of Parabolic Trough Power Plants. An essential tool for STPP design is the development of a computational model of a complete power plant. The modular program TRNSYS has been used for this purpose. The model presented in this work simulates the thermal and hydraulic behavior of a complete 5 MW STPP in the south of Spain, with no back-up fuel. The model represents the DSG solar field coupled to the power block. Superheated steam is produced in the solar field, and used in a conventional Rankine cycle to produce electricity in the electric generator. (Author)

  16. A unified approach to reheat in gas and steam turbine cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lewins, J. [University of Cambridge (United Kingdom). Magdalene College

    2005-06-15

    A model of fluid behaviour is proposed for both air and steam in Joule, Brayton, and Rankine cycles by assuming that enthalpy is a function of temperature only. This enables reheat to be treated in a unified manner for both gas and steam turbines. Theorems for maximum power and maximum thermal efficiency are presented, with extensions to inter-cooling in gas turbines and afterburners in turbo-jet craft. (author)

  17. Energy Conversion Advanced Heat Transport Loop and Power Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Oh, C. H.

    2006-08-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various

  18. A life-cycle approach to technology, infrastructure, and climate policy decision making: Transitioning to plug-in hybrid electric vehicles and low-carbon electricity

    Science.gov (United States)

    Samaras, Constantine

    In order to mitigate the most severe effects of climate change, large global reductions in the current levels of anthropogenic greenhouse gas (GHG) emissions are required in this century to stabilize atmospheric carbon dioxide (CO2) concentrations at less than double pre-industrial levels. The Intergovernmental Panel on Climate Change (IPCC) fourth assessment report states that GHG emissions should be reduced to 50-80% of 2000 levels by 2050 to increase the likelihood of stabilizing atmospheric CO2 concentrations. In order to achieve the large GHG reductions by 2050 recommended by the IPCC, a fundamental shift and evolution will be required in the energy system. Because the electric power and transportation sectors represent the largest GHG emissions sources in the United States, a unique opportunity for coupling these systems via electrified transportation could achieve synergistic environmental (GHG emissions reductions) and energy security (petroleum displacement) benefits. Plug-in hybrid electric vehicles (PHEVs), which use electricity from the grid to power a portion of travel, could play a major role in reducing greenhouse gas emissions from the transport sector. However, this thesis finds that life cycle GHG emissions from PHEVs depend on the electricity source that is used to charge the battery, so meaningful GHG emissions reductions with PHEVs are conditional on low-carbon electricity sources. Power plants and their associated GHGs are long-lived, and this work argues that decisions made regarding new electricity supplies within the next ten years will affect the potential of PHEVs to play a role in a low-carbon future in the coming decades. This thesis investigates the life cycle engineering, economic, and policy decisions involved in transitioning to PHEVs and low-carbon electricity. The government has a vast array of policy options to promote low-carbon technologies, some of which have proven to be more successful than others. This thesis uses life

  19. The United States of America and the People`s Republic of China experts report on integrated gasification combined-cycle technology (IGCC)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    A report written by the leading US and Chinese experts in Integrated Gasification Combined Cycle (IGCC) power plants, intended for high level decision makers, may greatly accelerate the development of an IGCC demonstration project in the People`s Republic of China (PRC). The potential market for IGCC systems in China and the competitiveness of IGCC technology with other clean coal options for China have been analyzed in the report. Such information will be useful not only to the Chinese government but also to US vendors and companies. The goal of this report is to analyze the energy supply structure of China, China`s energy and environmental protection demand, and the potential market in China in order to make a justified and reasonable assessment on feasibility of the transfer of US Clean Coal Technologies to China. The Expert Report was developed and written by the joint US/PRC IGCC experts and will be presented to the State Planning Commission (SPC) by the President of the CAS to ensure consideration of the importance of IGCC for future PRC power production.

  20. Full Step Cycle Kinematic and Kinetic Comparison of Barefoot Walking and a Traditional Shoe Walking in Healthy Youth: Insights for Barefoot Technology

    Directory of Open Access Journals (Sweden)

    Yi Xu

    2017-01-01

    Full Text Available Objective. Barefoot technology shoes are becoming increasingly popular, yet modifications are still needed. The present study aims to gain valuable insights by comparing barefoot walking to neutral shoe walking in a healthy youth population. Methods. 28 healthy university students (22 females and 6 males were recruited to walk on a 10-meter walkway both barefoot and in neutral running shoes at their comfortable walking speed. Full step cycle kinematic and kinetic data were collected using an 8-camera motion capture system. Results. In the early stance phase, the knee extension moment (MK1, the first peak absorbed joint power at the knee joint (PK1, and the flexion angle of knee/dorsiflexion angle of the ankle were significantly reduced when walking in neutral running shoes. However, in the late stance, barefoot walking resulted in decreased hip joint flexion moment (MH2, second peak extension knee moment (MK3, hip flexors absorbed power (PH2, hip flexors generated power (PH3, second peak absorbed power by knee flexors (PK2, and second peak anterior-posterior component of joint force at the hip (APFH2, knee (APFK2, and ankle (APFA2. Conclusions. These results indicate that it should be cautious to discard conventional elements from future running shoe designs and rush to embrace the barefoot technology fashion.

  1. Thermodynamic optimisation and analysis of four Kalina cycle layouts for high temperature applications

    DEFF Research Database (Denmark)

    Modi, Anish; Haglind, Fredrik

    2015-01-01

    The Kalina cycle has seen increased interest in the last few years as an efficient alternative to the conventional steam Rankine cycle. However, the available literature gives little information on the algorithms to solve or optimise this inherently complex cycle. This paper presents a detailed...... approach to solve and optimise a Kalina cycle for high temperature (a turbine inlet temperature of 500°C) and high pressure (over 100bar) applications using a computationally efficient solution algorithm. A central receiver solar thermal power plant with direct steam generation was considered as a case...... study. Four different layouts for the Kalina cycle based on the number and/or placement of the recuperators in the cycle were optimised and compared based on performance parameters such as the cycle efficiency and the cooling water requirement. The cycles were modelled in steady state and optimised...

  2. Control system development for an organic Ranking cycle engine

    Science.gov (United States)

    Bergthold, F. M., Jr.; Fulton, D. G.; Haskins, H. J.

    1981-01-01

    An organic Rankine cycle engine is used as part of a solar thermal power conversion assembly (PCA). The PCA, including a direct-heated cavity receiver and a shaft-mounted alternator, is mounted at the focal point of a parabolic dish concentrator. The engine controls are required to maintain approximately constant values of turbine inlet temperature and shaft speed, despite variation in the concentrated solar power input to the receiver. The controls design approach, system models, and initial stability and performance analysis results are presented herein.

  3. Technical evaluation of biomass gasification technology integrated with combined cycle using bagasse as fuel; Avaliacao tecnica da tecnologia de gaseificacao de biomassa integrada a ciclos combinados utilizando bagaco como combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Pablo Silva; Venturini, Osvaldo Jose; Lora, Electo Silva [Universidade Federal de Itajuba (NEST/UNIFEI), MG (Brazil). Nucleo de Excelencia em Geracao Termeletrica e Distribuida], email: pablo.silvaortiz@gmail.com; Campo, Andres Perez [Universidade Automona de Bucaramanga (UNAB) (Colombia). Fac. de Engenharia Fisico- Mecanica, Engenharia em Energia

    2010-07-01

    Biomass Integrated Gasification Combined Cycle (BIGCC) was identified as an advanced technology with potential to be competitive for electricity generation. The BIGCC technology uses biomass and the sub products of some industrial sectors processing, like sugar cane, as feedstock. The current Brazilian energy matrix is mainly based on renewable generation sources, making it important to assess these gasification technologies in the production of sugar, ethanol and electricity. In this work, a technical evaluation of the technologies incorporated in BIGCC power plants is done: the gasification process and the combined cycle power plant. On the other hand, the generated costs of these systems are analyzed, and the potential for implementation in Brazil plants from sugar cane bagasse is studied, in which a 10% increase in efficiency is obtained. (author)

  4. Not-In-Kind Technologies for Residential and Commercial Unitary Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, S.K.

    2001-01-11

    This project was initiated by the Department of Energy in response to a request from the HVAC industry for consolidated information about alternative heating and cooling cycles and for objective comparisons of those cycles in space conditioning applications. Twenty-seven different heat pumping technologies are compared on energy use and operating costs using consistent operating conditions and assumptions about component efficiencies for all of them. This report provides a concise summary of the underlying principals of each technology, its advantages and disadvantages, obstacles to commercial development, and economic feasibility. Both positive and negative results in this study are valuable; the fact that many of the cycles investigated are not attractive for space conditioning avoids any additional investment of time or resources in evaluating them for this application. In other cases, negative results in terms of the cost of materials or in cycle efficiencies identify where significant progress needs to be made in order for a cycle to become commercially attractive. Specific conclusions are listed for many of the technologies being promoted as alternatives to electrically-driven vapor compression heat pumps using fluorocarbon refrigerants. Although reverse Rankine cycle heat pumps using hydrocarbons have similar energy use to conventional electric-driven heat pumps, there are no significant energy savings due to the minor differences in estimated steady-state performance; higher costs would be required to accommodate the use of a flammable refrigerant. Magnetic and compressor-driven metal hydride heat pumps may be able to achieve efficiencies comparable to reverse Rankine cycle heat pumps, but they are likely to have much higher life cycle costs because of high costs for materials and peripheral equipment. Both thermoacoustic and thermionic heat pumps could have lower life cycle costs than conventional electric heat pumps because of reduced equipment and

  5. Technology

    Directory of Open Access Journals (Sweden)

    Xu Jing

    2016-01-01

    Full Text Available The traditional answer card reading method using OMR (Optical Mark Reader, most commonly, OMR special card special use, less versatile, high cost, aiming at the existing problems proposed a method based on pattern recognition of the answer card identification method. Using the method based on Line Segment Detector to detect the tilt of the image, the existence of tilt image rotation correction, and eventually achieve positioning and detection of answers to the answer sheet .Pattern recognition technology for automatic reading, high accuracy, detect faster

  6. Development of Technologies for the Simultaneous Separation of Cesium and Strontium from Spent Nuclear Fuel as Part of an Advanced Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Jack D. Law; R. Scott HErbst; David H. Meikrantz; Dean R. Peterman; Catherine L. Riddle; Richard D. Tillotson; Terry A. Todd

    2005-04-01

    As part of the Advanced Fuel Cycle Initiative, two solvent extraction technologies are being developed to simultaneously separate cesium and strontium from dissolved spent nuclear fuel. The first process utilizes a solvent consisting of chlorinated cobalt dicarbollide and polyethylene glycol extractants in a phenyltrifluoromethyl sulfone diluent. Recent improvements to the process include development of a new, non-nitroaromatic diluent and development of new stripping reagents, including a regenerable strip reagent that can be recovered and recycled. Countercurrent flowsheets have been designed and tested on simulated and actual spent nuclear fuel feed streams with both cesium and strontium removal efficiencies of greater than 99 %. The second process developed to simultaneously separate cesium and strontium from spent nuclear fuel is based on two highly-specific extractants: 4,4',(5')-Di-(t-butyldicyclo-hexano)-18-crown-6 (DtBuCH18C6) and Calix[4]arene-bis-(tert-octylbenzo-crown-6) (BOBCalixC6). The DtBuCH18C6 extractant is selective for strontium and the BOBCalixC6 extractant is selective for cesium. A solvent composition has been developed that enables both elements to be removed together and, in fact, a synergistic effect was observed with strontium distributions in the combined solvent that are much higher that in the strontium extraction (SREX) process. Initial laboratory test results of the new combined cesium and strontium extraction process indicate good extraction and stripping performance. A flowsheet for treatment of spent nuclear fuel is currently being developed.

  7. Green technology effect of injection pressure, timing and compression ratio in constant pressure heat addition cycle by an eco-friendly material.

    Science.gov (United States)

    Karthikayan, S; Sankaranarayanan, G; Karthikeyan, R

    2015-11-01

    Present energy strategies focus on environmental issues, especially environmental pollution prevention and control by eco-friendly green technologies. This includes, increase in the energy supplies, encouraging cleaner and more efficient energy management, addressing air pollution, greenhouse effect, global warming, and climate change. Biofuels provide the panorama of new fiscal opportunities for people in rural area for meeting their need and also the demand of the local market. Biofuels concern protection of the environment and job creation. Renewable energy sources are self-reliance resources, have the potential in energy management with less emissions of air pollutants. Biofuels are expected to reduce dependability on imported crude oil with connected economic susceptibility, reduce greenhouse gases, other pollutants and invigorate the economy by increasing demand and prices for agricultural products. The use of neat paradise tree oil and induction of eco-friendly material Hydrogen through inlet manifold in a constant pressure heat addition cycle engine (diesel engine) with optimized engine operating parameters such as injection timing, injection pressure and compression ratio. The results shows the heat utilization efficiency for neat vegetable oil is 29% and neat oil with 15% Hydrogen as 33%. The exhaust gas temperature (EGT) for 15% of H2 share as 450°C at full load and the heat release of 80J/deg. crank angle for 15% Hydrogen energy share. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Pregnancy outcomes decline with increasing body mass index: analysis of 239,127 fresh autologous in vitro fertilization cycles from the 2008-2010 Society for Assisted Reproductive Technology registry.

    Science.gov (United States)

    Provost, Meredith P; Acharya, Kelly S; Acharya, Chaitanya R; Yeh, Jason S; Steward, Ryan G; Eaton, Jennifer L; Goldfarb, James M; Muasher, Suheil J

    2016-03-01

    To examine the effect of body mass index (BMI) on IVF outcomes in fresh autologous cycles. Retrospective cohort study. Not applicable. A total of 239,127 fresh IVF cycles from the 2008-2010 Society for Assisted Reproductive Technology registry were stratified into cohorts based on World Health Organization BMI guidelines. Cycles reporting normal BMI (18.5-24.9 kg/m(2)) were used as the reference group (REF). Subanalyses were performed on cycles reporting purely polycystic ovary syndrome (PCOS)-related infertility and those with purely male-factor infertility (34,137 and 89,354 cycles, respectively). None. Implantation rate, clinical pregnancy rate, pregnancy loss rate, and live birth rate. Success rates and adjusted odds ratios (ORs) with 95% confidence intervals (CIs) for all pregnancy outcomes were most favorable in cohorts with low and normal BMIs and progressively worsened as BMI increased. Obesity also had a negative impact on IVF outcomes in cycles performed for PCOS and male-factor infertility, although it did not always reach statistical significance. Success rates in fresh autologous cycles, including those done for specifically PCOS or male-factor infertility, are highest in those with low and normal BMIs. Furthermore, there is a progressive and statistically significant worsening of outcomes in groups with higher BMIs. More research is needed to determine the causes and extent of the influence of BMI on IVF success rates in other patient populations. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  9. Technology verification phase. Dynamic isotope power system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Halsey, D.G.

    1982-03-10

    The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight system design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)

  10. Concept Design for a High Temperature Helium Brayton Cycle with Interstage Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vernon, Milton E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pickard, Paul S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    The primary metric for the viability of these next generation nuclear power plants will be the cost of generated electricity. One important component in achieving these objectives is the development of power conversion technologies that maximize the electrical power output of these advanced reactors for a given thermal power. More efficient power conversion systems can directly reduce the cost of nuclear generated electricity and therefore advanced power conversion cycle research is an important area of investigation for the Generation IV Program. Brayton cycles using inert or other gas working fluids, have the potential to take advantage of the higher outlet temperature range of Generation IV systems and allow substantial increases in nuclear power conversion efficiency, and potentially reductions in power conversion system capital costs compared to the steam Rankine cycle used in current light water reactors. For the Very High Temperature Reactor (VHTR), Helium Brayton cycles which can operate in the 900 to 950 C range have been the focus of power conversion research. Previous Generation IV studies examined several options for He Brayton cycles that could increase efficiency with acceptable capital cost implications. At these high outlet temperatures, Interstage Heating and Cooling (IHC) was shown to provide significant efficiency improvement (a few to 12%) but required increased system complexity and therefore had potential for increased costs. These scoping studies identified the potential for increased efficiency, but a more detailed analysis of the turbomachinery and heat exchanger sizes and costs was needed to determine whether this approach could be cost effective. The purpose of this study is to examine the turbomachinery and heat exchanger implications of interstage heating and cooling configurations. In general, this analysis illustrates that these engineering considerations introduce new constraints to the design of IHC systems that may require

  11. Thermoeconomic optimization of a Kalina cycle for a central receiver concentrating solar power plant

    DEFF Research Database (Denmark)

    Modi, Anish; Kærn, Martin Ryhl; Andreasen, Jesper Graa

    2016-01-01

    with direct vapour generation and without storage. The use of the ammonia-water mixture as the power cycle working fluid with non-isothermal evaporation and condensation presents the potential to improve the overall performance of the plant. This however comes at a price of requiring larger heat exchangers......Concentrating solar power plants use a number of reflecting mirrors to focus and convert the incident solar energy to heat, and a power cycle to convert this heat into electricity. This paper evaluates the use of a high temperature Kalina cycle for a central receiver concentrating solar power plant...... because of lower thermal pinch and heat transfer degradation for mixtures as compared with using a pure fluid in a conventional steam Rankine cycle, and the necessity to use a complex cycle arrangement. Most of the previous studies on the Kalina cycle focused solely on the thermodynamic aspects...

  12. Does duration of abstinence affect the live-birth rate after assisted reproductive technology? A retrospective analysis of 1,030 cycles.

    Science.gov (United States)

    Periyasamy, Anurekha J; Mahasampath, Gowri; Karthikeyan, Muthukumar; Mangalaraj, Ann M; Kunjummen, Aleyamma T; Kamath, Mohan S

    2017-12-01

    To study influence of abstinence period on the live-birth rate after assisted reproductive technology (ART). Retrospective cohort study. Reproductive medicine unit, university-level hospital. A total 1,030 ART cycles evaluated from 2011 to 2015. Group I, abstinence period 2-7 days, and group II, abstinence period >7 days, were compared. Two subgroups Ia (2-4 days) and Ib (5-7 days) were also compared with group II. Primary outcome was live birth per ET. Secondary outcomes included implantation, clinical pregnancy, and miscarriage rates. The live-birth rate (34.1 % vs. 24.1%; odds ratio [OR], 1.6; 95% confidence interval [CI], 1.1-2.4), clinical pregnancy rate (44.4 % vs. 32.7%; OR, 1.6; 95% CI, 1.1-2.3), and implantation rate (26.4% vs. 18.2%) were significantly higher in group I compared with group II. Other secondary outcomes of fertilization rate and miscarriage rate did not differ between groups I and II. The adjusted odds ratio (aOR) for live birth (aOR, 1.6; 95% CI, 1.1-2.5) and clinical pregnancy rates (aOR, 1.7; 95% CI, 1.2-2.5) were significantly higher for group I compared with group II. The live-birth rate was significantly higher in group Ia (36.1% vs. 24.1%) compared with group II. An abstinence period of more than 7 days may impact ART outcomes adversely when compared with an abstinence period of 2-7 days. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  13. The application of alkaline lysis and pressure cycling technology in the differential extraction of DNA from sperm and epithelial cells recovered from cotton swabs.

    Science.gov (United States)

    Nori, Deepthi V; McCord, Bruce R

    2015-09-01

    This study reports the development of a two-step protocol using pressure cycling technology (PCT) and alkaline lysis for differential extraction of DNA from mixtures of sperm and vaginal epithelial cells recovered from cotton swabs. In controlled experiments, in which equal quantities of sperm and female epithelial cells were added to cotton swabs, 5 min of pressure pulsing in the presence of 0.4 M NaOH resulted in 104 ± 6% recovery of female epithelial DNA present on the swab. Following the pressure treatment, exposing the swabs to a second 5-min alkaline treatment at 95 °C without pressure resulted in the selective recovery of 69 ± 6% of the sperm DNA. The recovery of the vaginal epithelia and sperm DNA was optimized by examining the effect of sodium hydroxide concentration, incubation temperature, and time. Following the alkaline lysis steps, the samples were neutralized with 2 M Tris (pH 7.5) and purified with phenol-chloroform-isoamyl alcohol to permit downstream analysis. The total processing time to remove both fractions from the swab was less than 20 min. Short tandem repeat (STR) analysis of these fractions obtained from PCT treatment and alkaline lysis generated clean profiles of female epithelial DNA and male sperm DNA for 1:1 mixtures of female and male cells and predominant male profiles for mixtures up to 5:1 female to male cells. By reducing the time and increasing the recovery of DNA from cotton swabs, this new method presents a novel and potentially useful procedure for forensic differential extractions.

  14. Modeling and analysis of advanced binary cycles

    Energy Technology Data Exchange (ETDEWEB)

    Gawlik, K.

    1997-12-31

    A computer model (Cycle Analysis Simulation Tool, CAST) and a methodology have been developed to perform value analysis for small, low- to moderate-temperature binary geothermal power plants. The value analysis method allows for incremental changes in the levelized electricity cost (LEC) to be determined between a baseline plant and a modified plant. Thermodynamic cycle analyses and component sizing are carried out in the model followed by economic analysis which provides LEC results. The emphasis of the present work is on evaluating the effect of mixed working fluids instead of pure fluids on the LEC of a geothermal binary plant that uses a simple Organic Rankine Cycle. Four resources were studied spanning the range of 265{degrees}F to 375{degrees}F. A variety of isobutane and propane based mixtures, in addition to pure fluids, were used as working fluids. This study shows that the use of propane mixtures at a 265{degrees}F resource can reduce the LEC by 24% when compared to a base case value that utilizes commercial isobutane as its working fluid. The cost savings drop to 6% for a 375{degrees}F resource, where an isobutane mixture is favored. Supercritical cycles were found to have the lowest cost at all resources.

  15. Biomass fired small-scale CHP technologies - Present status and possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Konttinen, J. (Univ. of Jyvaeskylae, Jyvaeskylae (Finland), Renewable energy programme), e-mail: jukontti@jyu.fi; Linna, V. (VTT Technical Research Centre of Finland, Jyvaeskylae (Finland)), e-mail: veli.linna@vtt.fi; Uusi-Maahi, I. (Keulink Oy, Keuruu (Finland)), e-mail: ilkka.uusi-maahi@keulink.fi

    2010-07-01

    The competitiveness of biomass-fuelled CHP (Combined Heat and Power) production technologies is rising. Small-scale (or micro-CHP) means power and heat production in the scale of 10...1000 kW{sub e} by combustion or gasification of biomass. A survey about the commercial potential and technologies in Europe of micro-CHP was made by the University of Jyvaeskylae and VTT (Technical Research Centre of Finland). The survey was funded by Keulink Oy and Jyvaeskylae Innovation Oy. According to the results of the literature survey, the most promising technologies for power production are based on so called ORC (Organic Rankine Cycle) and Stirling engines. Woody-type of biomass is the best raw material for these applications. With the small-scale technologies, the power production efficiency can vary in the range of 15...30 % of the biomass thermal input. New innovative technologies for small-scale CHP application of woody biomass are being developed by private companies in Central and Northern Finland. Some of these are presented in more detail. The technologies are either based on combustion or gasification of wood-based biomass. Using the product gas in combustion engines requires cleaning, which can be carried out with innovative dry or wet clearing processes. Dry cleaning is possible with catalysts and wet cleaning with scrubbers. The small-scale CHP technologies offer significant potential in local consumption sites of power and heat, such as greenhouses and farms. So called 'eco-villages' are also being built to demonstrate this potential. The possibilities for producing liquid transport fuels, such as biodiesel, are also discussed in this paper. (orig.)

  16. Biogeochemical Cycling

    Science.gov (United States)

    Bebout, Brad; Fonda, Mark (Technical Monitor)

    2002-01-01

    This lecture will introduce the concept of biogeochemical cycling. The roles of microbes in the cycling of nutrients, production and consumption of trace gases, and mineralization will be briefly introduced.

  17. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    Energy Technology Data Exchange (ETDEWEB)

    Axelbaum, Richard [Washington Univ., St. Louis, MO (United States); Kumfer, Benjamin [Washington Univ., St. Louis, MO (United States); Gopan, Akshay [Washington Univ., St. Louis, MO (United States); Yang, Zhiwei [Washington Univ., St. Louis, MO (United States); Phillips, Jeff [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Pint, Bruce [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-12-29

    The immediate need for a high efficiency, low cost carbon capture process has prompted the recent development of pressurized oxy-combustion. With a greater combustion pressure the dew point of the flue gas is increased, allowing for effective integration of the latent heat of flue gas moisture into the Rankine cycle. This increases the net plant efficiency and reduces costs. A novel, transformational process, named Staged, Pressurized Oxy-Combustion (SPOC), achieves additional step changes in efficiency and cost reduction by significantly reducing the recycle of flue gas. The research and development activities conducted under Phases I and II of this project (FE0009702) include: SPOC power plant cost and performance modeling, CFD-assisted design of pressurized SPOC boilers, theoretical analysis of radiant heat transfer and ash deposition, boiler materials corrosion testing, construction of a 100 kWth POC test facility, and experimental testing. The results of this project have advanced the technology readiness level (TRL) of the SPOC technology from 1 to 5.

  18. HTR-Based Power Plants’ Performance Analysis Applied on Conventional Combined Cycles

    Directory of Open Access Journals (Sweden)

    José Carbia Carril

    2015-01-01

    Full Text Available In high temperature reactors including gas cooled fast reactors and gas turbine modular helium reactors (GT-MHR specifically designed to operate as power plant heat sources, efficiency enhancement at effective cost under safe conditions can be achieved. Mentioned improvements concern the implementation of two cycle structures: (a, a stand alone Brayton operating with helium and a stand alone Rankine cycle (RC with regeneration, operating with carbon dioxide at ultrasupercritical pressure as working fluid (WF, where condensation is carried out at quasicritical conditions, and (b, a combined cycle (CC, in which the topping closed Brayton cycle (CBC operates with helium as WF, while the bottoming RC is operated with one of the following WFs: carbon dioxide, xenon, ethane, ammonia, or water. In both cases, an intermediate heat exchanger (IHE is proposed to provide thermal energy to the closed Brayton or to the Rankine cycles. The results of the case study show that the thermal efficiency, through the use of a CC, is slightly improved (from 45.79% for BC and from 50.17% for RC to 53.63 for the proposed CC with He-H2O operating under safety standards.

  19. Prediction of two month modified Rankin Scale with an ordinal prediction model in patients with aneurysmal subarachnoid haemorrhage

    Directory of Open Access Journals (Sweden)

    Sneade Mary

    2010-09-01

    Full Text Available Abstract Background Aneurysmal subarachnoid haemorrhage (aSAH is a devastating event with a frequently disabling outcome. Our aim was to develop a prognostic model to predict an ordinal clinical outcome at two months in patients with aSAH. Methods We studied patients enrolled in the International Subarachnoid Aneurysm Trial (ISAT, a randomized multicentre trial to compare coiling and clipping in aSAH patients. Several models were explored to estimate a patient's outcome according to the modified Rankin Scale (mRS at two months after aSAH. Our final model was validated internally with bootstrapping techniques. Results The study population comprised of 2,128 patients of whom 159 patients died within 2 months (8%. Multivariable proportional odds analysis identified World Federation of Neurosurgical Societies (WFNS grade as the most important predictor, followed by age, sex, lumen size of the aneurysm, Fisher grade, vasospasm on angiography, and treatment modality. The model discriminated moderately between those with poor and good mRS scores (c statistic = 0.65, with minor optimism according to bootstrap re-sampling (optimism corrected c statistic = 0.64. Conclusion We presented a calibrated and internally validated ordinal prognostic model to predict two month mRS in aSAH patients who survived the early stage up till a treatment decision. Although generalizability of the model is limited due to the selected population in which it was developed, this model could eventually be used to support clinical decision making after external validation. Trial Registration International Standard Randomised Controlled Trial, Number ISRCTN49866681

  20. Two-scale evaluation of remediation technologies for a contaminated site by applying economic input-output life cycle assessment: risk-cost, risk-energy consumption and risk-CO2 emission.

    Science.gov (United States)

    Inoue, Yasushi; Katayama, Arata

    2011-09-15

    A two-scale evaluation concept of remediation technologies for a contaminated site was expanded by introducing life cycle costing (LCC) and economic input-output life cycle assessment (EIO-LCA). The expanded evaluation index, the rescue number for soil (RN(SOIL)) with LCC and EIO-LCA, comprises two scales, such as risk-cost, risk-energy consumption or risk-CO(2) emission of a remediation. The effectiveness of RN(SOIL) with LCC and EIO-LCA was examined in a typical contamination and remediation scenario in which dieldrin contaminated an agricultural field. Remediation was simulated using four technologies: disposal, high temperature thermal desorption, biopile and landfarming. Energy consumption and CO(2) emission were determined from a life cycle inventory analysis using monetary-based intensity based on an input-output table. The values of RN(SOIL) based on risk-cost, risk-energy consumption and risk-CO(2) emission were calculated, and then rankings of the candidates were compiled according to RN(SOIL) values. A comparison between three rankings showed the different ranking orders. The existence of differences in ranking order indicates that the scales would not have reciprocal compatibility for two-scale evaluation and that each scale should be used independently. The RN(SOIL) with LCA will be helpful in selecting a technology, provided an appropriate scale is determined. Copyright © 2011 Elsevier B.V. All rights reserved.