WorldWideScience

Sample records for rankine cycle solar

  1. Rankine-cycle solar-cooling systems

    Science.gov (United States)

    Weathers, H. M.

    1979-01-01

    Report reviews progress made by three contractors to Marshall Space Flight Center and Department of Energy in developing Rankine-cycle machines for solar cooling and testing of commercially available equipment involved.

  2. Organic Rankine Cycle with Solar Heat Storage in Paraffin Way

    Directory of Open Access Journals (Sweden)

    Constantin LUCA

    2015-06-01

    Full Text Available The paper presents an electricity generation system based on an Organic Rankine Cycle and proposed storing the amount of the heat produced by the solar panels using large volume of paraffin wax. The proposed working fluid is R-134a refrigerant. The cycle operates at very low temperatures. A efficiency of 6,55% was obtained.

  3. Analysis of Low Temperature Organic Rankine Cycles for Solar Applications

    Science.gov (United States)

    Li, Yunfei

    The present work focuses on Organic Rankine Cycle (ORC) systems and their application to low temperature waste heat recovery, combined heat and power as well as off-grid solar power generation applications. As CO_2 issues come to the fore front and fossil fuels become more expensive, interest in low grade heat recovery has grown dramatically in the past few years. Solar energy, as a clean, renewable, pollution-free and sustainable energy has great potential for the use of ORC systems. Several ORC solutions have been proposed to generate electricity from low temperature sources. The ORC systems discussed here can be applied to fields such as solar thermal, biological waste heat, engine exhaust gases, small-scale cogeneration, domestic boilers, etc. The current work presents a thermodynamic and economic analysis for the use of ORC systems to convert solar energy or low exergy energy to generate electrical power. The organic working fluids investigated here were selected to investigate the effect of the fluid saturation temperature on the performance of ORCs. The working fluids under investigation are R113, R245fa, R123, with boiling points between 40°C and 200°C at pressures from 10 kPa to 10 MPa. Ambient temperature air at 20oC to 30oC is utilized as cooling resource, and allowing for a temperature difference 10°C for effective heat transfer. Consequently, the working fluids are condensed at 40°C. A combined first- and second-law analysis is performed by varying some system independent parameters at various reference temperatures. The present work shows that ORC systems can be viable and economical for the applications such as waste heat use and off-grid power generation even though they are likely to be more expensive than grid power.

  4. Optimal design of compact organic Rankine cycle units for domestic solar applications

    DEFF Research Database (Denmark)

    Barbazza, Luca; Pierobon, Leonardo; Mirandola, Alberto

    2014-01-01

    Organic Rankine cycle turbogenerators are a promising technology to transform the solar radiation harvested by solar collectors into electric power. The present work aims at sizing a small-scale organic Rankine cycle unit by tailoring its design for domestic solar applications. Stringent design...... solar collectors (hot water temperature equal to 75 degrees C), R1234yf is the optimal solution. The heat exchanger volume ranges between 6.0 and 23.0 dm(3), whereas the thermal efficiency is around 4.5%. R1234ze is the best working fluid employing parabolic solar collectors (hot water temperature equal...

  5. Performance analysis a of solar driven organic Rankine cycle using multi-component working fluids

    DEFF Research Database (Denmark)

    Baldasso, E.; Andreasen, J. G.; Modi, A.

    2015-01-01

    Among the different renewable sources of energy, solar power could play a primary role in the development of a more sustainable electricity generation system. While large scale concentrated solar power plants based on the steam Rankine cycle have already been proved to be cost effective, research...... is still under progress for small scale low temperature solar-driven power plants. The steam Rankine cycle is suitable for high temperature applications, but its efficiency drastically decreases as the heat source temperature drops. In these cases a much more promising configuration is the organic Rankine...... field made of parabolic trough collectors and a recuperative organic Rankine cycle. Pressurized water is selected as heat transfer fluid and its maximum temperature is fixed to 150°C. The target power output for the plant is 100 kWel. A part load analysis is carried out in order to define the most...

  6. SORCE: A design tool for solar organic Rankine cycle systems in distributed generation applications

    OpenAIRE

    Orosz, Matthew; Quoilin, Sylvain; Hemond, Harold

    2010-01-01

    Recent interest in small-scale solar thermal combined heat and power (CHP) power systems has coincided with demand growth for distributed electricity supplies in areas poorly served by centralized power stations. One potential technical approach to meeting this demand is the parabolic trough solar thermal collector coupled with an organic Rankine cycle (ORC) heat engine. Much existing research touches on aspects of the underlying physics and mechanics of this technology, but a holistic treatm...

  7. Thermodynamic analysis of a Rankine cycle powered vapor compression ice maker using solar energy.

    Science.gov (United States)

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m(-2) and 7.61 kg m(-2) day(-1) at the generation temperature of 140 °C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker.

  8. Autonomous low-temperature solar Rankine cycle system for reverse osmosis desalination

    Energy Technology Data Exchange (ETDEWEB)

    Manolakos, D.; Makris, G.; Papadakis, G.; Kyritsis, S. [Agricultural University of Athens (Greece). Dept. of Agricultural Engineering; Bouzianas, K. [Hellas Energy K. Bouzianas P. Moschovitis and Co., Athens (Greece)

    2004-07-01

    The research regards the development, application testing and performance evaluation of a low temperature solar organic Rankine cycle system for Reverse Osmosis (RO) desalination. Below is given a technical description of the system under development: Thermal energy produced by the solar array evaporates the working fluid (HFC- 134a) in the evaporator surface. The super-heated vapour is driven to the expanders where the generated mechanical work produced by the Rankine cycle drives the RO unit pumps (high pressure pump, cooling water pump, feed water pump) and circulating pump. The saturated vapour at the expanders' outlet is directed to the condenser and condensates. On the condenser surface, seawater is pre-heated and directed to the seawater reservoir. Seawater pre-heating is applied to increase the fresh water recovery ratio. The seawater tank is insulated. The use of seawater on the condenser surface decreases the temperature of ''Low Temperature Reservoir'' of Rankine cycle thus a better cycle efficiency is achieved. For the prototype system 240 m2 of vacuum tube solar collectors will be deployed. The evaporator and condenser capacity is estimated to be about 100 kW. For these systems' characteristics and considering a water recovery ratio of seawater RO desalination unit of 30%, the average yearly fresh water production is estimated at 1450 m3 (or 4 m3 daily). Specific innovations of the system are: Low temperature thermal sources can be exploited efficiently for fresh water production; solar energy is used indirectly and does not heat the seawater; the RO unit is driven by mechanical work produced from the process; the system condenser acts as sea water pre-heater and this serves a double purpose; (1) increase of feed water temperature implies higher fresh water production (2) decrease of temperature of ''low temperature reservoir'' of Rankine cycle implies higher cycle efficiencies. (orig.)

  9. Analysis and optimization of the low-temperature solar organic Rankine cycle (ORC)

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Torres, Agustin M. [Dpto. Fisica Fundamental y Experimental, Electronica y Sistemas, Escuela Tecnica Superior de Ingenieria Civil e Industrial, Universidad de La Laguna (ULL), Avda, Astrofisico Francisco Sanchez s/n, 38206 La Laguna, Tenerife (Spain); Garcia-Rodriguez, Lourdes [Dpto. Ingenieria Energetica, Escuela Tecnica Superior de Ingenieros, Universidad de Sevilla, Camino de los Descubrimientos, s/n 41092 Sevilla (Spain)

    2010-12-15

    Solar thermal driven reverse osmosis desalination is a promising renewable energy-driven desalination technology. A joint use of the solar thermal powered organic Rankine cycle (ORC) and the desalination technology of less energy consumption, reverse osmosis (RO), makes this combination interesting in some scarce water resource scenarios. However, prior to any practical experience with any new process, a comprehensive and rigorous theoretical study must be done in order to assess the performance of the new technology or combination of existing technologies. The main objective of the present paper is the expansion of the theoretical analysis done by the authors in previous works to the case in which the thermal energy required by a solar ORC is supplied by means of stationary solar collectors. Twelve substances are considered as working fluids of the ORC and four different models of stationary solar collectors (flat plate collectors, compound parabolic collectors and evacuated tube collectors) are also taken into account. Operating conditions of the solar ORC that minimizes the aperture area needed per unit of mechanical power output of the solar cycle are determined for every working fluid and every solar collector. The former is done considering a direct vapour generation configuration of the solar cycle and also the configuration with water as heat transfer fluid flowing inside the solar collector. This work is part of the theoretical analysis of the solar thermal driven seawater and brackish water reverse osmosis desalination technology. Nevertheless, the supplied information can be also used for the assessment of different applications of the solar ORC. In that case, results presented in this paper can be useful in techno-economic analysis, selection of working fluids of the Rankine cycle, sizing of systems and assessment of solar power cycle configuration. (author)

  10. Computer modeling of a regenerative solar-assisted Rankine power cycle

    Science.gov (United States)

    Lansing, F. L.

    1977-01-01

    A detailed interpretation of the computer program that describes the performance of one of these cycles; namely, a regenerative Rankine power cycle is presented. Water is used as the working medium throughout the cycle. The solar energy collected at relatively low temperature level presents 75 to 80% of the total heat demand and provides mainly the latent heat of vaporization. Another energy source at high temperature level superheats the steam and supplements the solar energy share. A program summary and a numerical example showing the sequency of computations are included. The outcome from the model comprises line temperatures, component heat rates, specific steam consumption, percentage of solar energy contribution, and the overall thermal efficiency.

  11. Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

    Directory of Open Access Journals (Sweden)

    Bing Hu

    2014-01-01

    Full Text Available To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m−2 and 7.61 kg m−2 day−1 at the generation temperature of 140°C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker.

  12. Experimental and Thermoeconomic Analysis of Small-Scale Solar Organic Rankine Cycle (SORC System

    Directory of Open Access Journals (Sweden)

    Suresh Baral

    2015-04-01

    Full Text Available A small-scale solar organic Rankine cycle (ORC is a promising renewable energy-driven power generation technology that can be used in the rural areas of developing countries. A prototype was developed and tested for its performance characteristics under a range of solar source temperatures. The solar ORC system power output was calculated based on the thermal and solar collector efficiency. The maximum solar power output was observed in April. The solar ORC unit power output ranged from 0.4 kW to 1.38 kW during the year. The highest power output was obtained when the expander inlet pressure was 13 bar and the solar source temperature was 120 °C. The area of the collector for the investigation was calculated based on the meteorological conditions of Busan City (South Korea. In the second part, economic and thermoeconomic analyses were carried out to determine the cost of energy per kWh from the solar ORC. The selling price of electricity generation was found to be $0.68/kWh and $0.39/kWh for the prototype and low cost solar ORC, respectively. The sensitivity analysis was carried out in order to find the influencing economic parameters for the change in NPV. Finally, the sustainability index was calculated to assess the sustainable development of the solar ORC system.

  13. Optimal design of compact organic Rankine cycle units for domestic solar applications

    Directory of Open Access Journals (Sweden)

    Barbazza Luca

    2014-01-01

    Full Text Available Organic Rankine cycle turbogenerators are a promising technology to transform the solar radiation harvested by solar collectors into electric power. The present work aims at sizing a small-scale organic Rankine cycle unit by tailoring its design for domestic solar applications. Stringent design criteria, i. e., compactness, high performance and safe operation, are targeted by adopting a multi-objective optimization approach modeled with the genetic algorithm. Design-point thermodynamic variables, e. g., evaporating pressure, the working fluid, minimum allowable temperature differences, and the equipment geometry, are the decision variables. Flat plate heat exchangers with herringbone corrugations are selected as heat transfer equipment for the preheater, the evaporator and the condenser. The results unveil the hyperbolic trend binding the net power output to the heat exchanger compactness. Findings also suggest that the evaporator and condenser minimum allowable temperature differences have the largest impact on the system volume and on the cycle performances. Among the fluids considered, the results indicate that R1234yf and R1234ze are the best working fluid candidates. Using flat plate solar collectors (hot water temperature equal to 75 °C, R1234yf is the optimal solution. The heat exchanger volume ranges between 6.0 and 23.0 dm3, whereas the thermal efficiency is around 4.5%. R1234ze is the best working fluid employing parabolic solar collectors (hot water temperature equal to 120 °C. In such case the thermal efficiency is around 6.9%, and the heat exchanger volume varies from 6.0 to 18.0 dm3.

  14. Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

    National Research Council Canada - National Science Library

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

      To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working...

  15. Thermodynamic analysis of a Rankine cycle powered vapor compression ice maker using solar energy

    National Research Council Canada - National Science Library

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working...

  16. Thermal analysis of a Phase Change Material for a Solar Organic Rankine Cycle

    Science.gov (United States)

    Iasiello, M.; Braimakis, K.; Andreozzi, A.; Karellas, S.

    2017-11-01

    Organic Rankine Cycle (ORC) is a promising technology for low temperature power generation, for example for the utilization of medium temperature solar energy. Since heat generated from solar source is variable throughout the day, the implementation of Thermal Energy Storage (TES) systems to guarantee the continuous operation of solar ORCs is a critical task, and Phase Change Materials (PCM) rely on latent heat to store large amounts of energy. In the present study, a thermal analysis of a PCM for a solar ORC is carried out. Three different types of PCMs are analyzed. The energy equation for the PCM is modeled by using the heat capacity method, and it is solved by employing a 1Dexplicit finite difference scheme. The solar source is modeled with a time-variable temperature boundary condition, with experimental data taken from the literature for two different solar collectors. Results are presented in terms of temperature profiles and stored energy. It has been shown that the stored energy depends on the heat source temperature, on the employed PCM and on the boundary conditions. It has been demonstrated that the use of a metal foam can drastically enhance the stored energy due to the higher overall thermal conductivity.

  17. Parametric theoretical study of a two-stage solar organic Rankine cycle for RO desalination

    Energy Technology Data Exchange (ETDEWEB)

    Kosmadakis, G.; Manolakos, D.; Papadakis, G. [Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens (Greece)

    2010-05-15

    The present work concerns the parametric study of an autonomous, two-stage solar organic Rankine cycle for RO desalination. The main goal of the current simulation is to estimate the efficiency, as well as to calculate the annual mechanical energy available for desalination in the considered cases, in order to evaluate the influence of various parameters on the performance of the system. The parametric study concerns the variation of different parameters, without changing actually the baseline case. The effect of the collectors' slope and the total number of evacuated tube collectors used, have been extensively examined. The total cost is also taken into consideration and is calculated for the different cases examined, along with the specific fresh water cost (EUR/m{sup 3}). (author)

  18. Evaluation of a solar-powered organic Rankine cycle using dry organic working fluids

    Directory of Open Access Journals (Sweden)

    Emily Spayde

    2015-12-01

    Full Text Available This paper presents a model to evaluate the performance of a solar-powered organic Rankine cycle (ORC. The system was evaluated in Jackson, MS, using five dry organic working fluids, R218, R227ea, R236ea, R236fa, and RC318. The purpose of this study is to investigate how hourly temperature change affects the electricity production and exergy destruction rates of the solar ORC, and to determine the effect of the working fluid on the proposed system. The system was also evaluated in Tucson, AZ, to investigate the effect of average hourly outdoor temperatures on its performance. The potential of the system to reduce primary energy consumption and carbon dioxide emissions is also investigated. A parametric analysis to determine how temperature and pressure of the organic working fluid, the solar collector area, and the turbine efficiency affect the electricity production is performed. Results show that the ORC produces the most electricity during the middle of the day, when the temperatures are the highest and when the solar collectors have the highest efficiency. Also, R-236ea is the working fluid that shows the best performance of the evaluated fluids. An economic analysis was performed to determine the capital cost available for the proposed system.

  19. Effect of Regenerative Organic Rankine Cycle (RORC on the Performance of Solar Thermal Power in Yogyakarta, Indonesia

    Directory of Open Access Journals (Sweden)

    Ghalya Pikra

    2013-07-01

    Full Text Available This paper presents effect of Regenerative Organic Rankine Cycle (RORC on the performance of solar thermal power in Yogyakarta, Indonesia. Solar thermal power is a plant that uses solar energy as heat source. Indonesia has high humidity level, so that parabolic trough is the most suitable type of solar thermal power technology to be developed, where the design is made with small focal distance. Organic Rankine Cycle (ORC is a Rankine cycle that use organic fluid as working fluid to utilize low temperature heat sources. RORC is used to increase ORC performance. The analysis was done by comparing ORC system with and without regenerator addition. Refrigerant that be used in the analysis is R123. Preliminary data was taken from the solar collector system that has been installed in Yogyakarta. The analysis shows that with 36 m total parabolic length, the resulting solar collector capacity is 63 kW, heat input/evaporator capacity is determined 26.78 kW and turbine power is 3.11 kW for ORC, and 3.38 kW for RORC. ORC thermal efficiency is 11.28% and RORC is 12.26%. Overall electricity efficiency is 4.93% for ORC, and 5.36% for RORC. With 40°C condensing temperature and evaporation at 10 bar saturated condition, efficiency of RORC is higher than ORC. Greater evaporation temperature at the same pressure (10 bar provide greater turbine power and efficiency.

  20. Stand-Alone Solar Organic Rankine Cycle Water Pumping System and Its Economic Viability in Nepal

    Directory of Open Access Journals (Sweden)

    Suresh Baral

    2015-12-01

    Full Text Available The current study presents the concept of a stand-alone solar organic Rankine cycle (ORC water pumping system for rural Nepalese areas. Experimental results for this technology are presented based on a prototype. The economic viability of the system was assessed based on solar radiation data of different Nepalese geographic locations. The mechanical power produced by the solar ORC is coupled with a water pumping system for various applications, such as drinking and irrigation. The thermal efficiency of the system was found to be 8% with an operating temperature of 120 °C. The hot water produced by the unit has a temperature of 40 °C. Economic assessment was done for 1-kW and 5-kW solar ORC water pumping systems. These systems use different types of solar collectors: a parabolic trough collector (PTC and an evacuated tube collector (ETC. The economic analysis showed that the costs of water are $2.47/m3 (highest and $1.86/m3 (lowest for the 1-kW system and a 150-m pumping head. In addition, the cost of water is reduced when the size of the system is increased and the pumping head is reduced. The minimum volumes of water pumped are 2190 m3 and 11,100 m3 yearly for 1 kW and 5 kW, respectively. The payback period is eight years with a profitability index of 1.6. The system is highly feasible and promising in the context of Nepal.

  1. Exergy and economic analysis of organic rankine cycle hybrid system utilizing biogas and solar energy in rural area of China

    DEFF Research Database (Denmark)

    Zhao, Chunhua; Zheng, Siyu; Zhang, Ji

    2017-01-01

    Due to the existing huge biogas resource in the rural area of China, biogas is widely used for production and living. Cogeneration system provides an opportunity to realize the balanced utilization of the renewable energy such as biogas and solar energy. This paper presented a numerical...... investigation of a hybrid energy-driven organic Rankine cycle (ORC) cogeneration system, involving a solar organic Rankine cycle and a biogas boiler. The biogas boiler with a module of solar Parabolic-Trough Collectors (PTC) is employed to provide heat source to the ORC via two distinct intermediate pressurized...... circuits. The cogeneration supplied the power to the air-condition in summer condition and hot water, which is heated in the condenser, in winter condition. The system performance under the subcritical pressures has been assessed according to the energy-exergy and economic analysis with the organic working...

  2. Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

    OpenAIRE

    Bing Hu; Xianbiao Bu; Weibin Ma

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with incr...

  3. Development of an Organic Rankine-Cycle power module for a small community solar thermal power experiment

    Science.gov (United States)

    Kiceniuk, T.

    1985-01-01

    An organic Rankine-cycle (ORC) power module was developed for use in a multimodule solar power plant to be built and operated in a small community. Many successful components and subsystems, including the reciever, power conversion subsystem, energy transport subsystem, and control subsystem, were tested. Tests were performed on a complete power module using a test bed concentrator in place of the proposed concentrator. All major single-module program functional objectives were met and the multimodule operation presented no apparent problems. The hermetically sealed, self-contained, ORC power conversion unit subsequently successfully completed a 300-hour endurance run with no evidence of wear or operating problems.

  4. Performance Evaluation of a Helical Coil Heat Exchanger Working under Supercritical Conditions in a Solar Organic Rankine Cycle Installation

    Directory of Open Access Journals (Sweden)

    Marija Lazova

    2016-06-01

    Full Text Available Worldwide interest in low grade heat valorization using organic Rankine cycle (ORC technologies has increased significantly. A new small-scale ORC with a net capacity of 3 kW was efficiently integrated with a concentrated solar power technology for electricity generation. The excess heat source from Photovoltaic (PV collectors with a maximum temperature of 100 °C was utilized through a supercritical heat exchanger that uses R-404A as working medium. By ensuring supercritical heat transfer leads to a better thermal match in the heat exchanger and improved overall cycle efficiency. A helical coil heat exchanger was designed by using heat transfer correlations from the literature. These heat transfer correlations were derived for different conditions than ORCs and their estimated uncertainty is ~20%. In order to account for the heat transfer correlation uncertainties this component was oversized by 20%. Next, a prototype was built and installed in an integrated concentrated photovoltaic/thermal (CPV/T/Rankine system. The results from the measurements show that for better estimation of the sizing of the heat exchanger a more accurate correlation is required in order to design an optimal configuration and thus employ cheaper components.

  5. A Co-Powered Biomass and Concentrated Solar Power Rankine Cycle Concept for Small Size Combined Heat and Power Generation

    Directory of Open Access Journals (Sweden)

    Eileen Tortora

    2013-03-01

    Full Text Available The present work investigates the matching of an advanced small scale Combined Heat and Power (CHP Rankine cycle plant with end-user thermal and electric load. The power plant consists of a concentrated solar power field co-powered by a biomass furnace to produce steam in a Rankine cycle, with a CHP configuration. A hotel was selected as the end user due to its high thermal to electric consumption ratio. The power plant design and its operation were modelled and investigated by adopting transient simulations with an hourly distribution. The study of the load matching of the proposed renewable power technology and the final user has been carried out by comparing two different load tracking scenarios, i.e., the thermal and the electric demands. As a result, the power output follows fairly well the given load curves, supplying, on a selected winter day, about 50 GJ/d of thermal energy and the 6 GJ/d of electric energy, with reduced energy dumps when matching the load.

  6. An Innovative Application of a Solar Storage Wall Combined with the Low-Temperature Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Tzu-Chen Hung

    2014-01-01

    Full Text Available The objective of this study is to collect energy on the waste heat from air produced by solar ventilation systems. This heat used for electricity generation by an organic Rankine cycle (ORC system was implemented. The advantages of this method include the use of existing building’s wall, and it also provides the region of energy scarcity for reference. This is also an innovative method, and the results will contribute to the efforts made toward improving the design of solar ventilation in the field of solar thermal engineering. In addition, ORC system would help generate electricity and build a low-carbon building. This study considered several critical parameters such as length of the airflow channel, intensity of solar radiation, pattern of the absorber plate, stagnant air layer, and operating conditions. The simulation results show that the highest outlet temperature and heat collecting efficiency of solar ventilation system are about 120°C and 60%, respectively. The measured ORC efficiency of the system was 6.2%. The proposed method is feasible for the waste heat from air produced by ventilation systems.

  7. Economic, Energetic, and Environmental Performance of a Solar Powered Organic Rankine Cycle with Electric Energy Storage in Different Commercial Buildings

    Directory of Open Access Journals (Sweden)

    Emily Spayde

    2018-01-01

    Full Text Available This paper presents an analysis to determine the economic, energetic, and environmental benefits that could be obtained from the implementation of a combined solar-power organic Rankine cycle (ORC with electric energy storage (EES to supply electricity to several commercial buildings including a large office, a small office, and a full service restaurant. The operational strategy for the ORC-EES system consists in the ORC charging the EES when the irradiation level is sufficient to generate power, and the EES providing electricity to the building when there is not irradiation (i.e., during night time. Electricity is purchased from the utility grid unless it is provided by the EES. The potential of the proposed system to reduce primary energy consumption (PEC, carbon dioxide emission (CDE, and cost was evaluated. Furthermore, the available capital cost for a variable payback period for the ORC-EES system was determined for each of the evaluated buildings. The effect of the number of solar collectors on the performance of the ORC-EES is also studied. Results indicate that the proposed ORC-EES system is able to satisfy 11%, 13%, and 18% of the electrical demand for the large office, the small office and the restaurant, respectively.

  8. A Mathematical Model of Hourly Solar Radiation in Varying Weather Conditions for a Dynamic Simulation of the Solar Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Taehong Sung

    2015-07-01

    Full Text Available A mathematical model of hourly solar radiation with weather variability is proposed based on the simple sky model. The model uses a superposition of trigonometric functions with short and long periods. We investigate the effects of the model variables on the clearness (kD and the probability of persistence (POPD indices and also evaluate the proposed model for all of the kD-POPD weather classes. A simple solar organic Rankine cycle (SORC system with thermal storage is simulated using the actual weather conditions, and then, the results are compared with the simulation results using the proposed model and the simple sky model. The simulation results show that the proposed model provides more accurate system operation characteristics than the simple sky model.

  9. Test results of an organic Rankine-cycle power module for a small community solar thermal power experiment

    Science.gov (United States)

    Clark, T. B.

    1985-01-01

    The organic Rankine-cycle (ORC) power conversion assembly was tested. Qualification testing of the electrical transport subsystem was also completed. Test objectives were to verify compatibility of all system elements with emphasis on control of the power conversion assembly, to evaluate the performance and efficiency of the components, and to validate operating procedures. After 34 hours of power generation under a wide range of conditions, the net module efficiency exceeded 18% after accounting for all parasitic losses.

  10. Exergy analysis of micro-organic Rankine power cycles for a small scale solar driven reverse osmosis desalination system

    Energy Technology Data Exchange (ETDEWEB)

    Tchanche, B.F.; Lambrinos, Gr.; Frangoudakis, A.; Papadakis, G. [Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens (Greece)

    2010-04-15

    Exergy analysis of micro-organic Rankine heat engines is performed to identify the most suitable engine for driving a small scale reverse osmosis desalination system. Three modified engines derived from simple Rankine engine using regeneration (incorporation of regenerator or feedliquid heaters) are analyzed through a novel approach, called exergy-topological method based on the combination of exergy flow graphs, exergy loss graphs, and thermoeconomic graphs. For the investigations, three working fluids are considered: R134a, R245fa and R600. The incorporated devices produce different results with different fluids. Exergy destruction throughout the systems operating with R134a was quantified and illustrated using exergy diagrams. The sites with greater exergy destruction include turbine, evaporator and feedliquid heaters. The most critical components include evaporator, turbine and mixing units. A regenerative heat exchanger has positive effects only when the engine operates with dry fluids; feedliquid heaters improve the degree of thermodynamic perfection of the system but lead to loss in exergetic efficiency. Although, different modifications produce better energy conversion and less exergy destroyed, the improvements are not significant enough and subsequent modifications of the simple Rankine engine cannot be considered as economically profitable for heat source temperature below 100 C. As illustration, a regenerator increases the system's energy efficiency by 7%, the degree of thermodynamic perfection by 3.5% while the exergetic efficiency is unchanged in comparison with the simple Rankine cycle, with R600 as working fluid. The impacts of heat source temperature and pinch point temperature difference on engine's performance are also examined. Finally, results demonstrate that energy analysis combined with the mathematical graph theory is a powerful tool in performance assessments of Rankine based power systems and permits meaningful comparison of

  11. Organic Rankine Cycles. Old wine in new bottles; Organic Rankine Cycles. Oude wijn in nieuwe zakken

    Energy Technology Data Exchange (ETDEWEB)

    Den Hartog, T.L.B. [Cumae, Arnhem (Netherlands)

    2007-05-15

    An overview is given of the renewed interest for the Organic Rankine Cycle technology and new developments with regard to this power generating technology. [Dutch] Een overzicht wordt gegeven van de hernieuwde belangstelling voor de Organic Rankine Cycle (ORC) technologie en nieuwe ontwikkeling m.b.t. deze vorm van elektriciteitopwekking.

  12. Rankine-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  13. Preliminary design of seawater and brackish water reverse osmosis desalination systems driven by low-temperature solar organic Rankine cycles (ORC)

    Energy Technology Data Exchange (ETDEWEB)

    Delgado-Torres, Agustin M. [Dpto. Fisica Fundamental y Experimental, Electronica y Sistemas, Escuela Tecnica Superior de Ingenieria Civil e Industrial, Universidad de La Laguna (ULL), Avda. Astrofisico Francisco Sanchez s/n. 38206 La Laguna (Tenerife) (Spain); Garcia-Rodriguez, Lourdes [Dpto. Ingenieria Energetica, Universidad de Sevilla Escuela Tecnica Superior de Ingenieros, Camino de los Descubrimientos, s/n 41092 Sevilla (Spain)

    2010-12-15

    In this paper, the coupling between the low-temperature solar organic Rankine cycle (ORC) and seawater and brackish water reverse osmosis desalination units has been carried out. Four substances have been considered as working fluids of the solar cycle (butane, isopentane, R245fa and R245ca). With these four fluids the volumetric flow of fresh water produced per unit of aperture area of stationary solar collector has been calculated. The former has been made with the optimized direct vapour generation (DVG) configuration and heat transfer fluid (HTF) configuration of the solar ORC. In the first one (DVG), working fluid of the ORC is directly heated inside the absorber of the solar collector. In the second one (HTF), a fluid different than the working fluid of the ORC (water in this paper) is heated without phase change inside the absorber of the solar collector. Once this fluid has been heated it is carried towards a heat exchanger where it is cooled. Thermal energy delivered in this cooling process is transferred to the working fluid of the ORC. Influence of condensation temperature of the ORC and regeneration's process effectiveness over productivity of the system has also been analysed. Finally, parameters of several preliminary designs of the low-temperature solar thermal driven RO desalination are supplied. R245fa is chosen as working fluid of the ORC in these preliminary designs. The information of the proposed preliminary designs can also be used, i.e., for the assessment of the use of thermal energy rejected by the solar cycle. Overall analysis of the efficiency of the solar thermal driven RO desalination technology is given with the results presented in this paper and the results obtained with the medium temperature solar thermal RO desalination system presented by the authors in previous papers. This work has been carried out within the framework of the OSMOSOL and POWERSOL projects. (author)

  14. Energetic and exergetic analysis of Rankine cycles for solar power plants with parabolic trough and thermal storage

    Directory of Open Access Journals (Sweden)

    Cenuşă Victor-Eduard

    2016-01-01

    Full Text Available The paper analyzes the “secondary” circuit (for thermodynamic conversion of a Concentrated Solar Power (CSP plant with thermodynamic cycle, whose mirrors field supplies a thermal power, averaged over a sunny day, of about 100 MW heat. We study the case of parabolic trough solar collector using silicone oil in the “primary” circuit, which limits the peak temperature below 400 °C. The “primary” circuit uses thermal storage, allowing a delay between the power generation in rapport with the solar energy capture. We choose a water-steam cycle, type Hirn. For increasing its efficiency, it has regenerative feed water preheating and steam reheating. We compared, energetic and exergetic, two types of cycles, using a numerical model with iterative structure, developed by the authors. The results showed that the simplified design achieves practically the same thermodynamic performances with the advanced one.

  15. Cascaded organic rankine cycles for waste heat utilization

    Science.gov (United States)

    Radcliff, Thomas D [Vernon, CT; Biederman, Bruce P [West Hartford, CT; Brasz, Joost J [Fayetteville, NY

    2011-05-17

    A pair of organic Rankine cycle systems (20, 25) are combined and their respective organic working fluids are chosen such that the organic working fluid of the first organic Rankine cycle is condensed at a condensation temperature that is well above the boiling point of the organic working fluid of the second organic Rankine style system, and a single common heat exchanger (23) is used for both the condenser of the first organic Rankine cycle system and the evaporator of the second organic Rankine cycle system. A preferred organic working fluid of the first system is toluene and that of the second organic working fluid is R245fa.

  16. Organic rankine cycle waste heat applications

    Science.gov (United States)

    Brasz, Joost J.; Biederman, Bruce P.

    2007-02-13

    A machine designed as a centrifugal compressor is applied as an organic rankine cycle turbine by operating the machine in reverse. In order to accommodate the higher pressures when operating as a turbine, a suitable refrigerant is chosen such that the pressures and temperatures are maintained within established limits. Such an adaptation of existing, relatively inexpensive equipment to an application that may be otherwise uneconomical, allows for the convenient and economical use of energy that would be otherwise lost by waste heat to the atmosphere.

  17. Low-Concentration Solar-Power Systems based on Organic Rankine Cycles for Distributed-Scale Applications:Overview and Further Developments

    Directory of Open Access Journals (Sweden)

    Christos N. Markides

    2015-12-01

    Full Text Available This paper is concerned with the emergence and development of low- to medium-grade thermal-energy conversion systems for distributed power generation based on thermodynamic vapour-phase heat-engine cycles undergone by organic working-fluids, namely organic Rankine cycles (ORCs. ORC power systems are, to some extent, a relatively established and mature technology that is well-suited to converting low-/medium-grade heat (at temperatures up to ~ 300 – 400 °C to useful work, at an output power scale from a few kW to 10s of MW. Thermal efficiencies in excess of 25% are achievable at higher temperatures and larger scales, and efforts are currently in progress to improve the overall economic viability, and thus uptake, of ORC power systems by focusing on advanced architectures, working-fluid selection, heat exchangers and expansion machines. Solar-power systems based on ORC technology have a significant potential to be used for distributed power generation, by converting thermal energy from simple and low-cost non-concentrated or low-concentration collectors to mechanical, hydraulic or electrical energy. Current fields of use include mainly geothermal and biomass/biogas, as well as the recovery and conversion of waste heat, leading to improved energy efficiency, primary energy (i.e. fuel use and emission minimization, yet the technology is highly transferable to solar power generation as an affordable alternative to small- to medium-scale photovoltaic (PV systems. Solar-ORC systems offer naturally the advantages of providing a simultaneous thermal-energy output for hot water provision and/or space heating, and the particularly interesting possibility of relatively straightforward on-site (thermal energy storage. Key performance characteristics are presented, and important heat transfer effects that act to limit performance are identified as noteworthy directions of future research for the further development of this technology.

  18. Experimental Assessment of a Helical Coil Heat Exchanger Operating at Subcritical and Supercritical Conditions in a Small-Scale Solar Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Marija Lazova

    2017-05-01

    Full Text Available In this study, the performance of a helical coil heat exchanger operating at subcritical and supercritical conditions is analysed. The counter-current heat exchanger was specially designed to operate at a maximal pressure and temperature of 42 bar and 200 °C, respectively. The small-scale solar organic Rankine cycle (ORC installation has a net power output of 3 kWe. The first tests were done in a laboratory where an electrical heater was used instead of the concentrated photovoltaic/thermal (CPV/T collectors. The inlet heating fluid temperature of the water was 95 °C. The effects of different parameters on the heat transfer rate in the heat exchanger were investigated. Particularly, the performance analysis was elaborated considering the changes of the mass flow rate of the working fluid (R-404A in the range of 0.20–0.33 kg/s and the inlet pressure varying from 18 bar up to 41 bar. Hence, the variation of the heat flux was in the range of 5–9 kW/m2. The results show that the working fluid’s mass flow rate has significant influence on the heat transfer rate rather than the operational pressure. Furthermore, from the comparison between the experimental results with the heat transfer correlations from the literature, the experimental results fall within the uncertainty range for the supercritical analysis but there is a deviation of the investigated subcritical correlations.

  19. A hybrid solar photovoltaic-wind turbine-Rankine cycle for electricity generation in Turkish Republic of Northern Cyprus

    Directory of Open Access Journals (Sweden)

    Samuel Asumadu-Sarkodie

    2016-12-01

    Full Text Available This paper presents an energy demand model by designing a hybrid solar-wind-thermal power generation system of the Turkish Republic of Northern Cyprus, a promising substitute for the expensive battery banks. The study models the future energy demand of Turkish Republic of Northern Cyprus based on the IPCC emissions scenario A1B and A2 by designing a new hybrid solar-wind-thermal power system that satisfies the current and future requirements of firm capacity during peak periods. The study suggests an improvement in a hybrid solar-wind-thermal power system performance by predicting reliable outputs that can integrate renewable energy technologies to conventional power generation. The energy consumption prediction model emphasizes the energy requirement that has a growing demand from 300 to 400 GWh in scenario A1B and 150–450 GWh in scenario A2 from 2010 to 2050. The proposed design can meet 400 GWh of electricity demand in TRNC based on IPCC scenario A1B and 450 GWh of electricity demand in TRNC based on IPCC scenario A2. The percentage contribution of solar, wind and thermal energy for 2010, 2020, 2030, 2040 and 2050 are presented along with CO2 emissions and water consumption for each of the years.

  20. Solar-powered Rankine heat pump for heating and cooling

    Science.gov (United States)

    Rousseau, J.

    1978-01-01

    The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.

  1. Emissions-critical charge cooling using an organic rankine cycle

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-07-15

    The disclosure provides a system including a Rankine power cycle cooling subsystem providing emissions-critical charge cooling of an input charge flow. The system includes a boiler fluidly coupled to the input charge flow, an energy conversion device fluidly coupled to the boiler, a condenser fluidly coupled to the energy conversion device, a pump fluidly coupled to the condenser and the boiler, an adjuster that adjusts at least one parameter of the Rankine power cycle subsystem to change a temperature of the input charge exiting the boiler, and a sensor adapted to sense a temperature characteristic of the vaporized input charge. The system includes a controller that can determine a target temperature of the input charge sufficient to meet or exceed predetermined target emissions and cause the adjuster to adjust at least one parameter of the Rankine power cycle to achieve the predetermined target emissions.

  2. Equation of State Selection for Organic Rankine Cycle Modeling Under Uncertainty

    DEFF Research Database (Denmark)

    Frutiger, Jerome; O'Connell, John; Abildskov, Jens

    combustion, geothermal and solar heat sources. The working fluid is essential to the performance of the cycle. In order to evaluate and test promising fluid candidates, an appropriate Equation of State (EoS) [1] is necessary. For ORC applications, an EoS is commonly selected based on goodness-of-fits to data......In recent years there has been a great interest in the design and selection of working fluids for low-temperature Organic Rankine Cycles (ORC), to efficiently produce electrical power from waste heat from chemical engineering applications, as well as from renewable energy sources such as biomass...... cycle, all influence the model output uncertainty. The procedure is highlighted for an ORC for with a low-temperature heat source from exhaust gas from a marine diesel engine.[1] Saleh B, Koglbauer G, Wendland M, Fischer J. Working fluids for lowtemperature organic Rankine cycles. Energy 2007...

  3. Exergetic Analysis of an Integrated Tri-Generation Organic Rankine Cycle

    OpenAIRE

    Ratha Z. Mathkor; Brian Agnew; Mohammed A. Al-Weshahi; Fathi Latrsh

    2015-01-01

    This paper reports on a study of the modelling, validation and analysis of an integrated 1 MW (electrical output) tri-generation system energized by solar energy. The impact of local climatic conditions in the Mediterranean region on the system performance was considered. The output of the system that comprised a parabolic trough collector (PTC), an organic Rankine cycle (ORC), single-effect desalination (SED), and single effect LiBr-H2O absorption chiller (ACH) was electrical power, distille...

  4. Economic analysis of a dish-Rankine solar thermal power system

    Science.gov (United States)

    Pons, R. L.; Irwin, R. E.

    An analysis of the performance and costs of a first generation dish Rankine solar thermal power system for small community and industrial applications is presented. The system is of the point-focusing distributed receiver type, with distributed generation and employs multiple paraboloidal concentrators with organic Rankine cycle power conversion systems at the focus of each dish. Projected life cycle energy costs for a fully developed and mass produced system are shown to be competitive with costs projected in the near future for electricity generated by more conventional means. It is shown that: (1) the method of rating plant poer output has a minor influence on life cycle energy cost, (2) optimum dish size is greater than 12m, (3) energy cost is virtually independent of plant size above 1 MW sub e and (4) dish spacing and geometric arrangement can be optimized to reduce energy cost.

  5. Performance of a reversible heat pump/organic Rankine cycle unit coupled with a passive house to get a positive energy building

    DEFF Research Database (Denmark)

    Dumont, Olivier; Carmo, Carolina; Fontaine, Valentin

    2016-01-01

    and generate electricity, coupled to a solar thermal collector roof. This reversible HP/organic Rankine cycle unit presents three operating modes: direct heating, HP and organic Rankine cycle. This work focuses on describing the dynamic model of the multi-component system followed by a techno-economic analysis......Wh/year and total electrical consumption of 2318 kWh/year) with a 138.8 m2 solar roof in Denmark....

  6. Numerical Optimization of an Organic Rankine Cycle Scheme for Co-generation

    OpenAIRE

    Potenza, Marco; Naccarato, Fabrizio; Stigliano, Gianbattista; Risi, Arturo de

    2016-01-01

    The aim of the present work was the optimization of a small size Organic Rankine Cycle (ORC) system powered by a linear Parabolic Trough Collector (PTC) solar field by means of numerical model code developed on purpose. In the proposed scheme the solar energy is collected by a newly designed low cost PTC of 20m2 with a single tracking axis and it is concentrated on an opaque pipe collector in which flows as thermal fluid the Therminol® 66 oil. An oil-free scroll expander coupled with a 2 kW e...

  7. Organic Rankine Cycle System Analysis for Low GWP Working Fluids

    OpenAIRE

    Datla, Bala Varma; Brasz, Joost

    2012-01-01

    The last decade has seen a substantial increase in Organic Rankine Cycle system installations for low temperature waste heat power recovery. The availability of HFC245fa has played a major role in this recent surge in ORC systems since it allows the use of existing HVAC hardware (heat exchangers and compressors) to be used as ORC components (turbines, boilers and condensers) with minimal redesign. The environmental drawback of HFC245fa is its relatively high GWP value of 950. The advent of a ...

  8. Conceptual design and analysis of a Dish-Rankine solar thermal power system

    Science.gov (United States)

    Pons, R. L.

    1980-08-01

    A Point Focusing Distributed Receiver (PFDR) solar thermal electric system which employs small Organic Rankine Cycle (ORC) engines is examined with reference to its projected technical/economic performance. With mass-produced power modules (about 100,000 per year), the projected life-cycle energy cost for an optimized no-storage system is estimated at 67 mills/kWh (Levelized Busbar Energy Cost) without the need for advanced development of any of its components. At moderate production rates (about 50 MWe/yr) system energy costs are competitive with conventional power generation systems in special remote-site types of applications.

  9. Design of organic Rankine cycles using a non-conventional optimization approach

    DEFF Research Database (Denmark)

    Andreasen, J. G.; Larsen, Ulrik; Haglind, F.

    2015-01-01

    The organic Rankine cycle is a suitable technology for utilizing low grade heat for electricity production. Compared to the traditional steam Rankine cycle, the organic Rankine cycle is beneficial, since it enables the choice of a working fluid which performs better than steam at low heat input...... temperatures and at lowpower outputs. Selecting the process layout of the organic Rankine cycle and the working fluid are two key design decisions which are critical for the thermodynamic and economic performance of the cycle. The prevailing approach used in the design and optimization of organic Rankine...... product of the overall heat transfer coefficient and the heat transfer area) is assigned to the cycle, while the distribution of this total UA-value to each of the heat exchangers is optimized. Optimizations are carried out for three different marine engine waste heatsources at temperatures ranging from...

  10. Energy analysis of Organic Rankine Cycles for biomass applications

    Directory of Open Access Journals (Sweden)

    Algieri Angelo

    2015-01-01

    Full Text Available The present paper aims at analysing the performances of Organic Rankine Cycles (ORCs adopted for the exploitation of the biomass resulting from the pruning residues in a 3000 hectares district in Southern Italy. A parametric energy analysis has been carried out to define the influence of the main plant operating conditions. To this purpose, both subcritical and transcritical power plants have been examined and saturated and superheated conditions at the turbine inlet have been imposed. Moreover, the effect of the working fluid, condensation temperature, and internal regeneration on system performances has been investigated. The results show that ORC plants represent an interesting and sustainable solution for decentralised and small-scale power production. Furthermore, the analysis highlights the significant impact of the maximum temperature and the noticeable effect of internal regeneration on the performances of the biomass power plants.

  11. Analysis of hot spots in boilers of organic Rankine cycle units during transient operation

    DEFF Research Database (Denmark)

    Benato, A.; Kærn, Martin Ryhl; Pierobon, Leonardo

    2015-01-01

    This paper is devoted to the investigation of critical dynamic events causing thermochemical decompositionof the working fluid in organic Rankine cycle power systems. The case study is the plant of an oiland gas platform where one of the three gas turbines is combined with an organic Rankine cycl...

  12. Affordable Rankine Cycle Waste Heat Recovery for Heavy Duty Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Swami Nathan [Eaton Corporation

    2017-06-30

    Nearly 30% of fuel energy is not utilized and wasted in the engine exhaust. Organic Rankine Cycle (ORC) based waste heat recovery (WHR) systems offer a promising approach on waste energy recovery and improving the efficiency of Heavy-Duty diesel engines. Major barriers in the ORC WHR system are the system cost and controversial waste heat recovery working fluids. More than 40% of the system cost is from the additional heat exchangers (recuperator, condenser and tail pipe boiler). The secondary working fluid loop designed in ORC system is either flammable or environmentally sensitive. The Eaton team investigated a novel approach to reduce the cost of implementing ORC based WHR systems to Heavy-Duty (HD) Diesel engines while utilizing safest working fluids. Affordable Rankine Cycle (ARC) concept aimed to define the next generation of waste energy recuperation with a cost optimized WHR system. ARC project used engine coolant as the working fluid. This approach reduced the need for a secondary working fluid circuit and subsequent complexity. A portion of the liquid phase engine coolant has been pressurized through a set of working fluid pumps and used to recover waste heat from the exhaust gas recirculation (EGR) and exhaust tail pipe exhaust energy. While absorbing heat, the mixture is partially vaporized but remains a wet binary mixture. The pressurized mixed-phase engine coolant mixture is then expanded through a fixed-volume ratio expander that is compatible with two-phase conditions. Heat rejection is accomplished through the engine radiator, avoiding the need for a separate condenser. The ARC system has been investigated for PACCAR’s MX-13 HD diesel engine.

  13. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part B

    DEFF Research Database (Denmark)

    La Seta, Angelo; Meroni, Andrea; Andreasen, Jesper Graa

    2016-01-01

    due to the peculiar physical properties of the working fluid and the gas-dynamic phenomena occurring in the machine. Unlike steam Rankine and Brayton engines, organic Rankine cycle expanders combine small enthalpy drops with large expansion ratios. These features yield turbine designs with few highly-loaded...... variables affecting the turbine design. Part B of this two-part paper presents the first application of a design method where the thermodynamic cycle optimization is combined with calculations of the maximum expander performance using the mean-line design tool described in part A. The high computational...

  14. Performance analysis of organic Rankine cycles using different working fluids

    Directory of Open Access Journals (Sweden)

    Zhu Qidi

    2015-01-01

    Full Text Available Low-grade heat from renewable or waste energy sources can be effectively recovered to generate power by an organic Rankine cycle (ORC in which the working fluid has an important impact on its performance. The thermodynamic processes of ORCs using different types of organic fluids were analyzed in this paper. The relationships between the ORC’s performance parameters (including evaporation pressure, condensing pressure, outlet temperature of hot fluid, net power, thermal efficiency, exergy efficiency, total cycle irreversible loss, and total heat-recovery efficiency and the critical temperatures of organic fluids were established based on the property of the hot fluid through the evaporator in a specific working condition, and then were verified at varied evaporation temperatures and inlet temperatures of the hot fluid. Here we find that the performance parameters vary monotonically with the critical temperatures of organic fluids. The values of the performance parameters of the ORC using wet fluids are distributed more dispersedly with the critical temperatures, compared with those of using dry/isentropic fluids. The inlet temperature of the hot fluid affects the relative distribution of the exergy efficiency, whereas the evaporation temperature only has an impact on the performance parameters using wet fluid.

  15. Organic Rankine cycle - review and research directions in engine applications

    Science.gov (United States)

    Panesar, Angad

    2017-11-01

    Waste heat to power conversion using Organic Rankine Cycles (ORC) is expected to play an important role in CO2 reductions from diesel engines. Firstly, a review of automotive ORCs is presented focusing on the pure working fluids, thermal architectures and expanders. The discussion includes, but is not limited to: R245fa, ethanol and water as fluids; series, parallel and cascade as architectures; dry saturated, superheated and supercritical as expansion conditions; and scroll, radial turbine and piston as expansion machines. Secondly, research direction in versatile expander and holistic architecture (NOx + CO2) are proposed. Benefits of using the proposed unconventional approaches are quantified using Ricardo Wave and Aspen HYSYS for diesel engine and ORC modelling. Results indicate that, the implementation of versatile piston expander tolerant to two-phase and using cyclopentane can potentially increase the highway drive cycle power by 8%. Furthermore, holistic architecture offering complete utilisation of charge air and exhaust recirculation heat increased the performance noticeably to 5% of engine power at the design point condition.

  16. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part A

    DEFF Research Database (Denmark)

    Meroni, Andrea; La Seta, Angelo; Andreasen, Jesper Graa

    2016-01-01

    Rankine cycle power systems. In this two-part paper, an overall cycle model and a model of an axial turbine were combined in order to provide a comprehensive preliminary design of the organic Rankine cycle unit, taking into account both cycle and turbine optimal designs. Part A presents the preliminary......Axial-flow turbines represent a well-established technology for a wide variety of power generation systems. Compactness, flexibility, reliability and high efficiency have been key factors for the extensive use of axial turbines in conventional power plants and, in the last decades, in organic...... turbine design model, the details of the validation and a sensitivity analysis on the main parameters, in order to minimize the number of decision variables in the subsequent turbine design optimization. Part B analyzes the application of the combined turbine and cycle designs on a selected case study...

  17. FLUOROETHERS AS A WORKING FLUIDS FOR LOW TEMPERATURE ORGANIC RANKINE CYCLE

    Directory of Open Access Journals (Sweden)

    Artemenko S.V

    2014-12-01

    Full Text Available Hydrofluoroethers as a new class of working fluids for the organic Rankine cycle have been considered to utilize the low-potential waste heat. Temperature range 300…400 K was chosen to provide energy conversion of waste heat from fuel cells. The direct assessment of the efficiency criteria for the Rankine cycle via artificial neural networks (ANN was used. To create ANN the critical parameters of substance and normal boiling temperature as input were chosen. The forecast of efficiency criteria for the Rankine cycle as output parameter which reproduces the coefficient of performance with high accuracy and without thermodynamic property calculations was presented.

  18. Biogas Engine Waste Heat Recovery Using Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Alberto Benato

    2017-03-01

    Full Text Available Italy is a leading country in the biogas sector. Energy crops and manure are converted into biogas using anaerobic digestion and, then, into electricity using internal combustion engines (ICEs. Therefore, there is an urgent need for improving the efficiency of these engines taking the real operation into account. To this purpose, in the present work, the organic Rankine cycle (ORC technology is used to recover the waste heat contained in the exhaust gases of a 1 MWel biogas engine. The ICE behavior being affected by the biogas characteristics, the ORC unit is designed, firstly, using the ICE nameplate data and, then, with data measured during a one-year monitoring activity. The optimum fluid and the plant configuration are selected in both cases using an “in-house” optimization tool. The optimization goal is the maximization of the net electric power while the working fluid is selected among 115 pure fluids and their mixtures. Results show that a recuperative ORC designed using real data guarantees a 30% higher net electric power than the one designed with ICE nameplate conditions.

  19. Performance Evaluation of a HP/ORC (Heat Pump/Organic Rankine Cycle) System with Optimal Control of Sensible Thermal Storage

    DEFF Research Database (Denmark)

    Carmo, Carolina; Nielsen, Mads P.; Elmegaard, Brian

    2016-01-01

    come to contribute to the integration of intermittent renewables.This paper describes an innovative concept that consists of the addition of an Organic Rankine Cycle (ORC) toa combined solar system coupled to a ground-source heat pump (HP) in a single-family building. The ORC enables the use of solar...

  20. Theoretical and experimental research of organic Rankine cycle steam turbine plants

    Science.gov (United States)

    Kishkin, A. A.; Delkov, A. V.; Melkozerov, M. G.

    2017-10-01

    Currently steam power cycles using organic actuation fluid - Freon, ammonia, ethanol, isobutene, etc are becoming increasingly important. Such cycles are called Organic Rankine Cycle (ORC). With the help of such cycles it is possible to use low-grade heat sources in the production of mechanical and electrical energy.

  1. Optimization of organic Rankine cycle power systems considering multistage axial turbine design

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Persico, Giacomo

    2018-01-01

    Organic Rankine cycle power systems represent a viable and efficient solution for the exploitation of medium-to-low temperature heat sources. Despite the large number of commissioned units, there is limited literature on the design and optimization of organic Rankine cycle power systems considering......-butane yields the best compromise in terms of cycle net power output, turbine cost and efficiency for the considered case study. When a conservative design approach is adopted, the turbine features a two-stage configuration with supersonic converging nozzles and post-expansion. Conversely, a single...... multistage turbine design. This work presents a preliminary design methodology and working fluid selection for organic Rankine cycle units featuring multistage axial turbines. The method is then applied to the case of waste heat recovery from a large marine diesel engine. A multistage axial turbine model...

  2. Optimization of organic Rankine cycle power systems considering multistage axial turbine design

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Persico, Giacomo

    2017-01-01

    Organic Rankine cycle power systems represent a viable and efficient solution for the exploitation of medium-to-low temperature heat sources. Despite the large number of commissioned units, there is limited literature on the design and optimization of organic Rankine cycle power systems considering......-butane yields the best compromise in terms of cycle net power output, turbine cost and efficiency for the considered case study. When a conservative design approach is adopted, the turbine features a two-stage configuration with supersonic converging nozzles and post-expansion. Conversely, a single...... multistage turbine design. This work presents a preliminary design methodology and working fluid selection for organic Rankine cycle units featuring multistage axial turbines. The method is then applied to the case of waste heat recovery from a large marine diesel engine. A multistage axial turbine model...

  3. Simulation of a passive house coupled with a heat pump/organic Rankine cycle reversible unit

    DEFF Research Database (Denmark)

    Dumont, Olivier; Carmo, Carolina; Randaxhe, François

    2014-01-01

    This paper presents a dynamic model of a passive house located in Denmark with a large solar absorber, a horizontal ground heat exchanger coupled with a HP/ORC unit. The HP/ORC reversible unit is a module able to work as an Organic Rankine Cycle (ORC) or as a heat pump (HP). There are 3 possible...... modes that need to be chosen optimally depending on the weather conditions, the heat demand and the temperature level of the storage. The ORC mode is activated, as long as the heat demand of the house is covered by the storage to produce electricity based upon the heat generated by the solar roof...... of the year in the Modelica language. A peak of 3.28 kW of power is reached in ORC mode with a heat input of 59.5 kW from the solar roof (23.9 kWh are produced during a typical summer day). In a representative winter day, 17.28 kWh are consumed by the heat pump with a daily average COP of 4.1. Conclusions...

  4. Optimization of Cycle and Expander Design of an Organic Rankine Cycle Unit using Multi-Component Working Fluids

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Pierobon, Leonardo

    2016-01-01

    for an organic Rankine cycle unit utilizing waste heat from low temperature heat sources. The study addresses a case where the minimum temperature of the heat source is constrained and a case where no constraint is imposed. The former case is the wasteheat recovery from jacket cooling water of a marine diesel...... engine onboard a large ship, and the latter is representative of a low-temperature geothermal, solar or waste heat recovery application. Multi-component working fluids are investigated, as they allow improving the match between the temperature pro-files in the heat exchangers and, consequently, reducing...... the irreversibility in the ORC system. This work considers mixtures of R245fa/pentane and propane/isobutane. The use of multi-component working fluids typically results in increased heat transfer areas and different expander designs compared to purefluids. In order to properly account for turbine performance...

  5. Energy performance and economic evaluation of heat pump/organic rankine cycle system with sensible thermal storage

    DEFF Research Database (Denmark)

    Carmo, Carolina; Dumont, Olivier; Nielsen, Mads Pagh

    2016-01-01

    that consists of a ground-source heat pump with possibility of reversing operation as an ORC power cycle combined with solar heating in a single-family building is introduced. The ORC mode enables the use of solar energy in periods of no heat energy demand and reverses the heat pump cycle to supply electrical......-life conditions knowledge, the paper considers two different sensible energy storage (TES) configurations for the reversible heat pump/organic Rankine cycle (HP/ORC) system: a buffer tank for both space heating and domestic hot water and a hot water storage tank used exclusively for domestic hot water......The interaction between electrical and thermal energy demands represent a potential area for balancing supply and demand that could contribute to the integration of intermittent renewables in energy systems. To enable the interaction between thermal and electric energy, an innovative concept...

  6. Energy Performance and Economic Evaluation of Heat Pump/Organic Rankine Cycle System with Sensible Thermal Storage

    DEFF Research Database (Denmark)

    Carmo, C.; Dumont, O.; Nielsen, M. P.

    2016-01-01

    that consists of a ground-source heat pump with possibility of reversing operation as an ORC power cycle combined with solar heating in a single-family building is introduced. The ORC mode enables the use of solar energy in periods of no heat energy demand and reverses the heat pump cycle to supply electrical......-life conditions knowledge, the paper considers two different sensible energy storage (TES) configurations for the reversible heat pump/organic Rankine cycle (HP/ORC) system: a buffer tank for both space heating and domestic hot water and a hot water storage tank used exclusively for domestic hot water......The interaction between electrical and thermal energy demands represent a potential area for balancing supply and demand that could contribute to the integration of intermittent renewables in energy systems. To enable the interaction between thermal and electric energy, an innovative concept...

  7. Exergetic Analysis of an Integrated Tri-Generation Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Ratha Z. Mathkor

    2015-08-01

    Full Text Available This paper reports on a study of the modelling, validation and analysis of an integrated 1 MW (electrical output tri-generation system energized by solar energy. The impact of local climatic conditions in the Mediterranean region on the system performance was considered. The output of the system that comprised a parabolic trough collector (PTC, an organic Rankine cycle (ORC, single-effect desalination (SED, and single effect LiBr-H2O absorption chiller (ACH was electrical power, distilled water, and refrigerant load. The electrical power was produced by the ORC which used cyclopentane as working fluid and Therminol VP-1 was specified as the heat transfer oil (HTO in the collectors with thermal storage. The absorption chiller and the desalination unit were utilize the waste heat exiting from the steam turbine in the ORC to provide the necessary cooling energy and drinking water respectively. The modelling, which includes an exergetic analysis, focuses on the performance of the solar tri-generation system. The simulation results of the tri-generation system and its subsystems were produced using IPSEpro software and were validated against experimental data which showed good agreement. The tri-generation system was able to produce about 194 Ton of refrigeration, and 234 t/day distilled water.

  8. Thermodynamic Analysis of an Integrated Solid Oxide Fuel Cell Cycle with a Rankine Cycle

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2010-01-01

    Hybrid systems consisting of Solid Oxide Fuel Cells (SOFC) on the top of a Steam Turbine (ST) are investigated. The plants are fired by natural gas (NG). A desulfurization reactor removes the sulfur content in the fuel while a pre-reformer breaks down the heavier hydrocarbons. The pre-treated fuel...... enters then into the anode side of the SOFC. The remaining fuels after the SOFC stacks enter a burner for further burning. The off-gases are then used to produce steam for a Rankine cycle in a Heat Recovery Steam Generator (HRSG). Different system setups are suggested. Cyclic efficiencies up to 67......% are achieved which is considerably higher than the conventional Combined Cycles (CC). Both ASR (Adiabatic Steam Reformer) and CPO (Catalytic Partial Oxidation) fuel pre-reformer reactors are considered in this investigation....

  9. Comparison of Organic Rankine Cycle Under Varying Conditions Using Turbine and Twin-Screw Expanders

    OpenAIRE

    Read, M G; Smith, I.K.; Stosic, N.

    2015-01-01

    A multi-variable optimization program has been developed to investigate the performance of Organic Rankine Cycles (ORCs) for low temperature heat recovery applications. This cycle model contains detailed thermodynamic models of the system components, and the methods used to match the operation of the expander to the requirements of the cycle are described. Two types of ORC system are considered; one containing a turbine to expand dry saturated or superheated vapour, and one with a twin-screw ...

  10. A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Meroni, Andrea; Haglind, Fredrik

    2017-01-01

    %) fuel case. The processes were compared based on their off-design performance for diesel engine loads in the range between 25% and 100%. The fluids considered in the organic Rankine cycle process were MM(hexamethyldisiloxane), toluene, n-pentane, i-pentane and c-pentane. The results of the comparison...... indicate that the net power output of the steam Rankine cycle process is higher at high engine loads, while the performance of the organic Rankine cycle units is higher at lower loads. Preliminary turbine design considerations suggest that higher turbine efficiencies can be obtained for the ORC unit......This paper presents a comparison of the conventional dual pressure steam Rankine cycle process and the organic Rankine cycle process for marine engine waste heat recovery. The comparison was based on a container vessel, and results are presented for a high-sulfur (3 wt %) and low-sulfur (0.5 wt...

  11. Final Report. Conversion of Low Temperature Waste Heat Utilizing Hermetic Organic Rankine Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Robert L.

    2005-04-20

    The design of waste heat recovery using the organic Rankine cycle (ORC) engine is updated. Advances in power electronics with lower cost enable the use of a single shaft, high-speed generator eliminating wear items and allowing hermetic sealing of the working fluid. This allows maintenance free operation and a compact configuration that lowers cost, enabling new market opportunities.

  12. Method of optimizing performance of Rankine cycle power plants. [US DOE Patent

    Science.gov (United States)

    Pope, W.L.; Pines, H.S.; Doyle, P.A.; Silvester, L.F.

    1980-06-23

    A method is described for efficiently operating a Rankine cycle power plant to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine fluid inlet state which is substantially on the area adjacent and including the transposed critical temperature line.

  13. The dish-Rankine SCSTPE program (Engineering Experiment no. 1). [systems engineering and economic analysis for a small community solar thermal electric system

    Science.gov (United States)

    Pons, R. L.; Grigsby, C. E.

    1980-01-01

    Activities planned for phase 2 Of the Small Community Solar Thermal Power Experiment (PFDR) program are summarized with emphasis on a dish-Rankine point focusing distributed receiver solar thermal electric system. Major design efforts include: (1) development of an advanced concept indirect-heated receiver;(2) development of hardware and software for a totally unmanned power plant control system; (3) implementation of a hybrid digital simulator which will validate plant operation prior to field testing; and (4) the acquisition of an efficient organic Rankine cycle power conversion unit. Preliminary performance analyses indicate that a mass-produced dish-Rankine PFDR system is potentially capable of producing electricity at a levelized busbar energy cost of 60 to 70 mills per KWh and with a capital cost of about $1300 per KW.

  14. Comparison of organic rankine cycle systems under varying conditions using turbine and twin-screw expanders

    OpenAIRE

    Read, M G; Smith, I.K.; Stosic, N.; Kovacevic, A.

    2016-01-01

    A multi-variable optimization program has been developed to investigate the performance of Organic Rankine Cycles (ORCs) for low temperature heat recovery applications using both turbine and twin-screw expanders when account is taken of performance variation due to changes in ambient conditions. The cycle simulation contains thermodynamic models of both types of expander. In the case of the twin-screw machine, the methods used to match the operation of the expander to the requirements of the ...

  15. Preliminary Design and Simulation of a Turbo Expander for Small Rated Power Organic Rankine Cycle (ORC

    Directory of Open Access Journals (Sweden)

    Roberto Capata

    2014-11-01

    Full Text Available Nowadays, the Organic Rankine Cycle (ORC system, which operates with organic fluids, is one of the leading technologies for “waste energy recovery”. It works as a conventional Rankine Cycle but, as mentioned, instead of steam/water, an organic fluid is used. This change allows it to convert low temperature heat into electric energy where required. Large numbers of studies have been carried out to identify the most suitable fluids, system parameters and the various configurations. In the present market, most ORC systems are designed and manufactured for the recovery of thermal energy from various sources operating at “large power rating” (exhaust gas turbines, internal combustion engines, geothermal sources, large melting furnaces, biomass, solar, etc.; from which it is possible to produce a large amount of electric energy (30 kW ÷ 300 kW. Such applications for small nominal power sources, as well as the exhaust gases of internal combustion engines (car sedan or town, ships, etc. or small heat exchangers, are very limited. The few systems that have been designed and built for small scale applications, have, on the other hand, different types of expander (screw, scroll, etc.. These devices are not adapted for placement in small and restricted places like the interior of a conventional car. The aim of this work is to perform the preliminary design of a turbo-expander that meets diverse system requirements such as low pressure, small size and low mass flow rates. The expander must be adaptable to a small ORC system utilizing gas of a diesel engine or small gas turbine as thermal source to produce 2–10 kW of electricity. The temperature and pressure of the exhaust gases, in this case study (400–600 °C and a pressure of 2 bar, imposes a limit on the use of an organic fluid and on the net power that can be produced. In addition to water, fluids such as CO2, R134a and R245fa have been considered. Once the operating fluids has been chosen

  16. Part-Load Performance of a Wet Indirectly Fired Gas Turbine Integrated with an Organic Rankine Cycle Turbogenerator

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Nguyen, Tuong-Van; Mazzucco, Andrea

    2014-01-01

    ) fueled by woodchips and an organic Rankine cycle (ORC) turbogenerator. An exergy analysis is performed to identify the sources of inefficiencies, the optimal design variables, and the most suitable working fluid for the organic Rankine process. This step enables to parametrize the part-load model...

  17. Multi-Objective Optimization of Organic Rankine Cycle Power Plants Using Pure and Mixed Working Fluids

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Kærn, Martin Ryhl; Pierobon, Leonardo

    2016-01-01

    For zeotropic mixtures, the temperature varies during phase change, which is opposed to the isothermal phase change of pure fluids. The use of such mixtures as working fluids in organic Rankine cycle power plants enables a minimization of the mean temperature difference of the heat exchangers......, which is beneficial for cycle performance. On the other hand, larger heat transfer surface areas are typically required for evaporation and condensation when zeotropic mixtures are used as working fluids. In order to assess the feasibility of using zeotropic mixtures, it is, therefore, important...... to consider the additional costs of the heat exchangers. In this study, we aim at evaluating the economic feasibility of zeotropic mixtures compared to pure fluids. We carry out a multi-objective optimization of the net power output and the component costs for organic Rankine cycle power plants using low...

  18. Prospects of the use of nanofluids as working fluids for organic Rankine cycle power systems

    DEFF Research Database (Denmark)

    Mondejar, Maria E.; Andreasen, Jesper G.; Regidor, Maria

    2017-01-01

    The search of novel working fluids for organic Rankine cycle power systems is driven by the recent regulations imposing additional phase-out schedules for substances with adverse environmental characteristics. Recently, nanofluids (i.e. colloidal suspensions of nanoparticles in fluids) have been...... suggested as potential working fluids for organic Rankine cycle power systems due to their enhanced thermal properties, potentially giving advantages with respect to the design of the components and the cycle performance. Nevertheless, a number of challenges concerning the use of nanofluids must...... be investigated prior to their practical use. Among other things, the trade-off between enhanced heat transfer and increased pressure drop in heat exchangers, and the impact of the nanoparticles on the working fluid thermophysical properties, must be carefully analyzed. This paper is aimed at evaluating...

  19. Application of unscented Kalman filter for condition monitoring of an organic Rankine cycle turbogenerator

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Schlanbusch, Rune; Kandepu, Rambabu

    2014-01-01

    emphasis on compactness and reliability. In such context, organic Rankine cycle turbogenerators are a promising technology. The implementation of an organic Rankine cycle unit is thus considered for the power system of the Draugen offshore platform in the northern sea, which is the case study......This work relates to a project focusing on energy optimization on offshore facilities. On oil and gas platforms it is common practice to employ gas turbines for power production. So as to increase the system performance and reduce emissions, a bottoming cycle unit can be designed with particular...... for this project. Considering the plant dynamics, it is of paramount importance to monitor the peak temperatures within the once-through boiler serving the bottoming unit to prevent the decomposition of the working fluid. This paper accordingly aims at applying the unscented Kalman filter to estimate...

  20. A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships

    Directory of Open Access Journals (Sweden)

    Jesper Graa Andreasen

    2017-04-01

    Full Text Available This paper presents a comparison of the conventional dual pressure steam Rankine cycle process and the organic Rankine cycle process for marine engine waste heat recovery. The comparison was based on a container vessel, and results are presented for a high-sulfur (3 wt % and low-sulfur (0.5 wt % fuel case. The processes were compared based on their off-design performance for diesel engine loads in the range between 25% and 100%. The fluids considered in the organic Rankine cycle process were MM(hexamethyldisiloxane, toluene, n-pentane, i-pentane and c-pentane. The results of the comparison indicate that the net power output of the steam Rankine cycle process is higher at high engine loads, while the performance of the organic Rankine cycle units is higher at lower loads. Preliminary turbine design considerations suggest that higher turbine efficiencies can be obtained for the ORC unit turbines compared to the steam turbines. When the efficiency of the c-pentane turbine was allowed to be 10% points larger than the steam turbine efficiency, the organic Rankine cycle unit reaches higher net power outputs than the steam Rankine cycle unit at all engine loads for the low-sulfur fuel case. The net power production from the waste heat recovery units is generally higher for the low-sulfur fuel case. The steam Rankine cycle unit produces 18% more power at design compared to the high-sulfur fuel case, while the organic Rankine cycle unit using MM produces 33% more power.

  1. Selected aspects of operation of supercritical (transcritical organic Rankine cycle

    Directory of Open Access Journals (Sweden)

    Mocarsk Szymon

    2015-06-01

    Full Text Available The paper presents a literature review on the topic of vapour power plants working according to the two-phase thermodynamic cycle with supercritical parameters. The main attention was focused on a review of articles and papers on the vapour power plants working using organic circulation fluids powered with low- and medium-temperature heat sources. Power plants with water-steam cycle supplied with a high-temperature sources have also been shown, however, it has been done mainly to show fundamental differences in the efficiency of the power plant and applications of organic and water-steam cycles. Based on a review of available literature references a comparative analysis of the parameters generated by power plants was conducted, depending on the working fluid used, the type and parameters of the heat source, with particular attention to the needs of power plant internal load.

  2. Experimental Study of a Low-Temperature Power Generation System in an Organic Rankine Cycle

    DEFF Research Database (Denmark)

    Mu, Yongchao; Zhang, Yufeng; Deng, Na

    2015-01-01

    as the engine of the power generator. The style of the preheater was a shell and tube heat exchanger, which could provide a long path for the working fluid. A flooded heat exchanger with a high heat transfer coefficient was taken as the evaporator. R134a was used as working fluid for the Rankine cycle......This paper presents a new power generation system under the principle of organic Rankine cycle which can generate power with a low-temperature heat source. A prototype was built to investigate the proposed system. In the prototype, an air screw compressor was converted into an expander and used...... in the system. This study compared and analyzed the experimental performance of the prototype at different heat source temperatures. The results show that the preheater and flooded evaporator was used for sensible heating and latent heating of the working fluid, respectively, as expected. When the temperature...

  3. Study of toluene stability for an Organic Rankine Cycle (ORC) space-based power system

    Science.gov (United States)

    Havens, Vance; Ragaller, Dana

    1988-01-01

    The design, fabrication, assembly, and endurance operation of a dynamic test loop, built to evaluate the thermal stability of a proposed Organic Rankine Cycle (ORC) working fluid, is discussed. The test fluid, toluene, was circulated through a heater, simulated turbine, regenerator, condenser and pump to duplicate an actual ORC system. The maximum nominal fluid temperature, 750 F, was at the turbine simulator inlet. Samples of noncondensible gases and liquid toluene were taken periodically during the test. The samples were analyzed to identify the degradation products formed and the quantity of these products. From these data it was possible to determine the degradation rate of the working fluid and the generation rate of noncondensible gases. A further goal of this work was to relate the degradation observed in the dynamic operating loop to degradation obtained in isothermal capsule tests. This relationship was the basis for estimating the power loop degradation in the Space Station Organic Rankine Cycle system.

  4. Working fluid selection for the Organic Rankine Cycle (ORC) exhaust heat recovery of an internal combustion engine power plant

    Science.gov (United States)

    Douvartzides, S.; Karmalis, I.

    2016-11-01

    Organic Rankine cycle technology is capable to efficiently convert low-grade heat into useful mechanical power. In the present investigation such a cycle is used for the recovery of heat from the exhaust gases of a four stroke V18 MAN 51/60DF internal combustion engine power plant operating with natural gas. Design is focused on the selection of the appropriate working fluid of the Rankine cycle in terms of thermodynamic, environmental and safety criteria. 37 candidate fluids have been considered and all Rankine cycles examined were subcritical. The thermodynamic analysis of all fluids has been comparatively undertaken and the effect of key operation conditions such as the evaporation pressure and the superheating temperature was taken into account. By appropriately selecting the working fluid and the Rankine cycle operation conditions the overall plant efficiency was improved by 5.52% and fuel consumption was reduced by 12.69%.

  5. System and method for regulating EGR cooling using a Rankine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Morris, Dave

    2017-08-29

    This disclosure relates to a waste heat recovery (WHR) system and method for regulating exhaust gas recirculation (EGR) cooling, and more particularly, to a Rankine cycle WHR system and method, including a recuperator bypass arrangement to regulate EGR exhaust gas cooling for engine efficiency improvement and thermal management. This disclosure describes other unique bypass arrangements for increased flexibility in the ability to regulate EGR exhaust gas cooling.

  6. Optimisation robuste de turbines pour les cycles organiques de Rankine (ORC)

    OpenAIRE

    Bufi, Elio Antonio

    2016-01-01

    In recent years, the Organic Rankine Cycle (ORC) technology has received great interest from the scientific and technical community because of its capability to recover energy from low-grade heat sources. In some applications, as the Waste Heat Recovery (WHR), ORC plants need to be as compact as possible because of geometrical and weight constraints. Recently, these issues have been studied in order to promote the ORC technology for Internal Combustion Engine (ICE) applications. The idea to r...

  7. Thermodynamic Optimization of a Geothermal- Based Organic Rankine Cycle System Using an Artificial Bee Colony Algorithm

    OpenAIRE

    Osman Özkaraca; Pınar Keçebaş; Cihan Demircan; Ali Keçebaş

    2017-01-01

    Geothermal energy is a renewable form of energy, however due to misuse, processing and management issues, it is necessary to use the resource more efficiently. To increase energy efficiency, energy systems engineers carry out careful energy control studies and offer alternative solutions. With this aim, this study was conducted to improve the performance of a real operating air-cooled organic Rankine cycle binary geothermal power plant (GPP) and its components in the aspects of thermodynamic ...

  8. Organic Rankine Cycle and its application in renewable power engineering

    Directory of Open Access Journals (Sweden)

    G. V. Belov

    2014-01-01

    Full Text Available A considerable part of energy consumed in the world is thermal power that is produced due to burning of hydrocarbon fuels and as a result of controlled course of nuclear reactions. Thus rather large part of thermal power is used ultrainefficiently, often simply dissipates in environment. The rise in prices for energy compels to use low-grade one to be released in large quantities in environment. To utilize the low-grade energy Renkin's cycle with with alternative working bodies is often applied. The corresponding cycle was called Renkin's organic cycle (ROC. A substance with lower boiling temperature, than that of water is used in ROC as a working body to utilize low-grade energy.The review of literature shows that thrust on power sector related to utilization of residual heat (thermal waste and use of alternative energy sources, recently, intensively develops. However there is, essentially, a lack of publications on this subject in Russian. The objective of given article is to analyse modern sources of information (mainly, foreign ones which consider various aspects of ROC and its application potential in alternative power engineering. The article focuses much attention on the choice of ROC working body. It presents a list of main requirements for a working body. The article studies the matters of ROC simulation.It is shown that ROC application enables using the low-grade power of exhaust gases, geothermal sources, other thermal streams with rather low temperature. Integration of ROC with ICE (internal combustion engine is in position to increase an efficiency of used fuel energy and to reduce amount of toxic impurity in exhaust gases. Essential influence of working body properties on its characteristics of ROC is noted.

  9. Design and optimization of a novel organic Rankine cycle with improved boiling process

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Larsen, U.; Knudsen, Thomas

    2015-01-01

    to improve the boiling process. Optimizations are carried out for eight hydrocarbon mixtures for hot fluid inlet temperatures at 120 °C and 90 °C, using a genetic algorithm to determine the cycle conditions for which the net power output is maximized. The most promising mixture is an isobutane....../pentane mixture which, for the 90 °C hot fluid inlet temperature case, achieves a 14.5% higher net power output than an optimized organic Rankine cycle using the same mixture. Two parameter studies suggest that optimum conditions for the organic split-cycle are when the temperature profile allows the minimum...

  10. closed cycle solar refrigeration with the calcium chloride system

    African Journals Online (AJOL)

    user

    1986-09-01

    Sep 1, 1986 ... gives an option tree of the alternative schemes. When the energy of the vapour compression machine is solar, the electrical power for driving the compressor can be provided by photovoltaic panels. Alternatively, a concentrating or flat plate solar collector may be used to replace the boiler in a rankine cycle.

  11. Control system to a Rankine cycle with a Tesla turbine using arduino

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Josenei G., E-mail: joseneigodoi@yahoo.com.br [Faculdade de Tecnologia Sao Francisco (FATESF), Jacarei, SP (Brazil); Guimaraes, Lamartine F.; Placco, Guilherme M., E-mail: guimarae@ieav.cta.br, E-mail: placco@ieav.cta.br [Instituto de Estudos Avancados (ENU/IEAv/DCTA), Sao Jose dos Campos, SP (Brazil). Departamento de Energia Nuclear

    2013-07-01

    The thermal Rankine cycle is a thermodynamic cycle which converts heat in energy. This cycle occurs in steady state, in other words the cycle is a closed loop circuit with continuous feedback, which guarantees the reuse process one energy transformed in the various stages of the cycle. This cycle is used to drive a turbine type TESLA designed for the system. The objective of this work is to create the control and automation of this cycle using an micro-controlled system with Arduino that will hold the collection of sensors and the system will act to maintain the balance of the cycle causing it to behave continuously and with less interference from human operation for maintenance. Data will be collected and further processed, where it will display all the sensors and the situation of the actuators involved. Using Arduino system ensures the stability and reliability with a low cost of implementation.

  12. Investigations on the application of zeotropic fluid mixtures in the organic rankine cycle for the geothermal power generation; Untersuchung zum Einsatz von zeotropen Fluidgemischen im Organic Rankine Cycle fuer die geothermische Stromerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Heberle, Florian

    2013-04-01

    The organic rankine cycle is a thermodynamic cycle process which uses an organic fluid working fluid instead of water in comparison to the commercial rankine process. The organic rankine cycle facilitates sufficiently high pressures at moderate temperatures. The organic rankine cycle significantly expands the technically possible and economically feasible ranges of application of such heat and power processes. The geothermal power is a very attractive field of application. Thermal water with a temperature of nearly 100 Celsius can be used for the power generation by means of the organic rankine cycle. Especially zeotropic mixtures are interesting as a working fluid. This is due to a non-isothermal phase change to a temperature glide which adapts very well to the temperature progress of the heat source. The author of the book under consideration reports on the application of different mixtures in the organic rankine cycle. The evaluation is based on a thermodynamic analysis and considers also toxicological, ecologic, technical as well as economic aspects.

  13. Dual-objective optimization of organic Rankine cycle (ORC) systems using genetic algorithm: a comparison between basic and recuperative cycles

    Science.gov (United States)

    Hayat, Nasir; Ameen, Muhammad Tahir; Tariq, Muhammad Kashif; Shah, Syed Nadeem Abbas; Naveed, Ahmad

    2017-08-01

    Exploitation of low potential waste thermal energy for useful net power output can be done by manipulating organic Rankine cycle systems. In the current article dual-objectives (η_{th} and SIC) optimization of ORC systems [basic organic Rankine cycle (BORC) and recuperative organic Rankine cycle (RORC)] has been done using non-dominated sorting genetic algorithm (II). Seven organic compounds (R-123, R-1234ze, R-152a, R-21, R-236ea, R-245ca and R-601) have been employed in basic cycle and four dry compounds (R-123, R-236ea, R-245ca and R-601) have been employed in recuperative cycle to investigate the behaviour of two systems and compare their performance. Sensitivity analyses show that recuperation boosts the thermodynamic behaviour of systems but it also raises specific investment cost significantly. R-21, R-245ca and R-601 show attractive performance in BORC whereas R-601 and R-236ea in RORC. RORC, due to higher total investment cost and operation & maintenance costs, has longer payback periods as compared to BORC.

  14. Experimental Comparison Of Working Fluids For Organic Rankine Cycle With Single-Screw Expander

    OpenAIRE

    Gusev, Sergei; Ziviani, Davide; Bell, Ian; De Paepe, Michel; van den Broek, Martijn

    2014-01-01

    This paper describes the behavior of an Organic Rankine Cycle (ORC) fed by a heat source with adaptable temperature and mass flow. For a suitable choice of working fluid, the setting of its evaporation pressure is crucial for the performance of an ORC installation. The higher the evaporation pressure, the higher the cycle efficiency on the one hand, but the lower the energy recovered from the heat source due to a higher outlet temperature on the other hand. An optimum has to be found to achie...

  15. Integrated working fluid-thermodynamic cycle design of organic Rankine cycle power systems for waste heat recovery

    DEFF Research Database (Denmark)

    Cignitti, Stefano; Andreasen, Jesper Graa; Haglind, Fredrik

    2017-01-01

    recovery. Inthis paper, an organic Rankine cycle process and its pure working fluid are designed simultaneously forwaste heat recovery of the exhaust gas from a marine diesel engine. This approach can overcome designissues caused by the high sensitivity between the fluid and cycle design variables...... the simultaneousdesign approach the optimum solution was found in 5.04 s, while a decomposed approach found thesame solution in 5.77 h. However, the decomposed approach provided insights on the correlationbetween the fluid and cycle design variables by analyzing all possible solutions. It was shown that thehigh...

  16. Advanced Rankine and Brayton cycle power systems: Materials needs and opportunities

    Science.gov (United States)

    Grisaffe, S. J.; Guentert, D. C.

    1974-01-01

    Conceptual advanced potassium Rankine and closed Brayton power conversion cycles offer the potential for improved efficiency over steam systems through higher operating temperatures. However, for utility service of at least 100,000 hours, materials technology advances will be needed for such high temperature systems. Improved alloys and surface protection must be developed and demonstrated to resist coal combustion gases as well as potassium corrosion or helium surface degradation at high temperatures. Extensions in fabrication technology are necessary to produce large components of high temperature alloys. Long time property data must be obtained under environments of interest to assure high component reliability.

  17. Advanced Rankine and Brayton cycle power systems - Materials needs and opportunities

    Science.gov (United States)

    Grisaffe, S. J.; Guentert, D. C.

    1974-01-01

    Conceptual advanced potassium Rankine and closed Brayton power conversion cycles offer the potential for improved efficiency over steam systems through higher operating temperatures. However, for utility service of at least 100,000 hours, materials technology advances will be needed for such high temperature systems. Improved alloys and surface protection must be developed and demonstrated to resist coal combustion gases as well as potassium corrosion or helium surface degradation at high temperatures. Extensions in fabrication technology are necessary to produce large components of high temperature alloys. Long-time property data must be obtained under environments of interest to assure high component reliability.

  18. Theoretical study of thermally driven heat pumps based on double organic rankine cycle

    OpenAIRE

    Demierre, Jonathan; Favrat, Daniel

    2013-01-01

    Part of: Thermally driven heat pumps for heating and cooling. – Ed.: Annett Kühn – Berlin: Universitätsverlag der TU Berlin, 2013 ISBN 978-3-7983-2686-6 (print) ISBN 978-3-7983-2596-8 (online) urn:nbn:de:kobv:83-opus4-39458 [http://nbn-resolving.de/urn:nbn:de:kobv:83-opus4-39458] This study deals with a type of thermally driven heat pumps that consists of a reverse Rankine heat pump cycle, the compressor of which is driven by the turbine of a supercritical Organi...

  19. Uncertainty assessment of equations of state with application to an organic Rankine cycle

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Bell, Ian; O’Connell, John P.

    2017-01-01

    Evaluations of equations of state (EoS) should include uncertainty. This study presents a genericmethod to analyse EoS from a detailed uncertainty analysis of the mathematical form and the dataused to obtain EoS parameter values. The method is illustrated by comparison of Soave–Redlich–Kwong (SRK......) cubic EoS with perturbed-chain statistical associating fluid theory (PC-SAFT) EoS for anorganic Rankine cycle (ORC) for heat recovery to power fromthe exhaust gas of a marine diesel engineusing cyclopentane as working fluid. Uncertainties of the EoS input parameters including...

  20. Performance analysis of different organic Rankine cycle configurations on board liquefied natural gas-fuelled vessels

    DEFF Research Database (Denmark)

    Baldasso, Enrico; Andreasen, Jesper Graa; Meroni, Andrea

    2017-01-01

    natural gas (LNG). The study compares the performance of six different ORC configurations both in design and off-design operation, and provides guidelines with respect to the most promising heat sources and sinks to be utilized by an ORC unit in order to maximize the annual fuel savings. In addition......Gas-fuelled shipping is expected to increase significantly in the coming years. Similarly, much effort is devoted to the study of waste heat recovery systems to be implemented on board ships. In this context, the organic Rankine cycle (ORC) technology is considered one of the most promising...

  1. Utilization of recently developed codes for high power Brayton and Rankine cycle power systems

    Science.gov (United States)

    Doherty, Michael P.

    1993-01-01

    Two recently developed FORTRAN computer codes for high power Brayton and Rankine thermodynamic cycle analysis for space power applications are presented. The codes were written in support of an effort to develop a series of subsystem models for multimegawatt Nuclear Electric Propulsion, but their use is not limited just to nuclear heat sources or to electric propulsion. Code development background, a description of the codes, some sample input/output from one of the codes, and state future plans/implications for the use of these codes by NASA's Lewis Research Center are provided.

  2. Research of efficiency of the organic Rankine cycle on a mathematical model

    Directory of Open Access Journals (Sweden)

    Galashov N.

    2017-01-01

    Full Text Available The object of the study are the organic Rankine cycle. The purpose of research is to evaluate the impact on the net efficiency of the initial and final properties of the cycle at work on a saturated and superheated steam. Investigations were carried out on the basis of a mathematical model, in which the thermodynamic properties of materials are determined on the basis of “REFPROP”. On the basis of the available scientific publications on the use of working fluids in an organic Rankine cycle analysis was selected ozone-safe pentane. A mathematical model has been developed on condition that condenser is used as air cooler which allows the substance to condense at a temperature below 0 °С. Numerical study on the mathematical model shown that net efficiency at work on pentane linearly depends on the condensation temperature and parabolically depends on the initial temperature with the saturated steam. During work at the superheated steam efficiency strongly depends on both the initial temperature and of the initial pressure. With rising initial temperature is necessary to gradually increase the initial pressure under certain conditions.

  3. Multi-Objective Optimization of Organic Rankine Cycle Power Plants Using Pure and Mixed Working Fluids

    Directory of Open Access Journals (Sweden)

    Jesper G. Andreasen

    2016-04-01

    Full Text Available For zeotropic mixtures, the temperature varies during phase change, which is opposed to the isothermal phase change of pure fluids. The use of such mixtures as working fluids in organic Rankine cycle power plants enables a minimization of the mean temperature difference of the heat exchangers, which is beneficial for cycle performance. On the other hand, larger heat transfer surface areas are typically required for evaporation and condensation when zeotropic mixtures are used as working fluids. In order to assess the feasibility of using zeotropic mixtures, it is, therefore, important to consider the additional costs of the heat exchangers. In this study, we aim at evaluating the economic feasibility of zeotropic mixtures compared to pure fluids. We carry out a multi-objective optimization of the net power output and the component costs for organic Rankine cycle power plants using low-temperature heat at 90 ∘ C to produce electrical power at around 500 kW. The primary outcomes of the study are Pareto fronts, illustrating the power/cost relations for R32, R134a and R32/R134a (0.65/0.35 mole . The results indicate that R32/R134a is the best of these fluids, with 3.4 % higher net power than R32 at the same total cost of 1200 k$.

  4. The Solar Cycle

    Directory of Open Access Journals (Sweden)

    David H. Hathaway

    2010-03-01

    Full Text Available The Solar Cycle is reviewed. The 11-year cycle of solar activity is characterized by the rise and fall in the numbers and surface area of sunspots. We examine a number of other solar activity indicators including the 10.7 cm radio flux, the total solar irradiance, the magnetic field, flares and coronal mass ejections, geomagnetic activity, galactic cosmic ray fluxes, and radioisotopes in tree rings and ice cores that vary in association with the sunspots. We examine the characteristics of individual solar cycles including their maxima and minima, cycle periods and amplitudes, cycle shape, and the nature of active latitudes, hemispheres, and longitudes. We examine long-term variability including the Maunder Minimum, the Gleissberg Cycle, and the Gnevyshev–Ohl Rule. Short-term variability includes the 154-day periodicity, quasi-biennial variations, and double peaked maxima. We conclude with an examination of prediction techniques for the solar cycle.

  5. Waste Heat Recovery of a PEMFC System by Using Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Tianqi He

    2016-04-01

    Full Text Available In this study, two systems are brought forward to recover the waste heat of a proton exchange membrane fuel cell (PEMFC, which are named the organic Rankine cycle (ORC, and heat pump (HP combined organic Rankine cycle (HPORC. The performances of both systems are simulated on the platform of MATLAB with R123, R245fa, R134a, water, and ethanol being selected as the working fluid, respectively. The results show that, for PEMFC where operating temperature is constantly kept at 60 °C, there exists an optimum working temperature for each fluid in ORC and HPORC. In ORC, the maximal net power can be achieved with R245fa being selected as the working fluid. The corresponding thermal efficiency of the recovery system is 4.03%. In HPORC, the maximal net power can be achieved with water being selected in HP and R123 in ORC. The thermal efficiency of the recovery system increases to 4.73%. Moreover, the possibility of using ORC as the cooling system of PEMFC is also studied. The heat released from PEMFC stack is assumed to be wholly recovered by the ORC or HPORC system. The results indicate that the HPORC system is much more feasible for the cooling system of a PEMFC stack, since the heat recovery ability can be promoted due to the presence of HP.

  6. Selection and optimization of pure and mixed working fluids for low grade heat utilization using organic Rankine cycles

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Larsen, Ulrik; Knudsen, Thomas

    2014-01-01

    We present a generic methodology for organic Rankine cycle optimization, where the working fluid is included as an optimization parameter, in order to maximize the net power output of the cycle. The method is applied on two optimization cases with hot fluid inlet temperatures at 120°C and 90°C. P...

  7. Thermodynamic analysis of an integrated gasification solid oxide fuel cell plant combined with an organic Rankine cycle

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Rokni, Masoud; Larsen, Ulrik

    2013-01-01

    into a fixed bed gasification plant to produce syngas which fuels the combined solid oxide fuel cells e organic Rankine cycle system to produce electricity. More than a hundred fluids are considered as possible alternative for the organic cycle using non-ideal equations of state (or state-of-the-art equations...

  8. Draft report: application of organic Rankine cycle heat recovery systems to diesel powered marine vessels

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-15

    The analysis and results of an investigation of the application of organic Rankine cycle heat recovery systems to diesel-powered marine vessels are described. The program under which this study was conducted was sponsored jointly by the US Energy Research and Development Administration, the US Navy, and the US Maritime Administration. The overall objective of this study was to investigate diesel bottoming energy recovery systems, currently under development by three US concerns, to determine the potential for application to marine diesel propulsion and auxiliary systems. The study primarily focused on identifying the most promising vessel applications (considering vessel type, size, population density, operational duty cycle, etc.) so the relative economic and fuel conservation merits of energy recovery systems could be determined and assessed. Vessels in the current fleet and the projected 1985 fleet rated at 1000 BHP class and above were investigated.

  9. Dataset of working conditions and thermo-economic performances for hybrid organic Rankine plants fed by solar and low-grade energy sources.

    Science.gov (United States)

    Scardigno, Domenico; Fanelli, Emanuele; Viggiano, Annarita; Braccio, Giacobbe; Magi, Vinicio

    2016-06-01

    This article provides the dataset of operating conditions of a hybrid organic Rankine plant generated by the optimization procedure employed in the research article "A genetic optimization of a hybrid organic Rankine plant for solar and low-grade energy sources" (Scardigno et al., 2015) [1]. The methodology used to obtain the data is described. The operating conditions are subdivided into two separate groups: feasible and unfeasible solutions. In both groups, the values of the design variables are given. Besides, the subset of feasible solutions is described in details, by providing the thermodynamic and economic performances, the temperatures at some characteristic sections of the thermodynamic cycle, the net power, the absorbed powers and the area of the heat exchange surfaces.

  10. The Solar Cycle

    Directory of Open Access Journals (Sweden)

    David H. Hathaway

    2015-09-01

    Full Text Available The solar cycle is reviewed. The 11-year cycle of solar activity is characterized by the rise and fall in the numbers and surface area of sunspots. A number of other solar activity indicators also vary in association with the sunspots including; the 10.7 cm radio flux, the total solar irradiance, the magnetic field, flares and coronal mass ejections, geomagnetic activity, galactic cosmic ray fluxes, and radioisotopes in tree rings and ice cores. Individual solar cycles are characterized by their maxima and minima, cycle periods and amplitudes, cycle shape, the equatorward drift of the active latitudes, hemispheric asymmetries, and active longitudes. Cycle-to-cycle variability includes the Maunder Minimum, the Gleissberg Cycle, and the Gnevyshev–Ohl (even-odd Rule. Short-term variability includes the 154-day periodicity, quasi-biennial variations, and double-peaked maxima. We conclude with an examination of prediction techniques for the solar cycle and a closer look at cycles 23 and 24.

  11. Working fluid selection for organic Rankine cycles - Impact of uncertainty of fluid properties

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Andreasen, Jesper Graa; Liu, Wei

    2016-01-01

    This study presents a generic methodology to select working fluids for ORC (Organic Rankine Cycles)taking into account property uncertainties of the working fluids. A Monte Carlo procedure is described as a tool to propagate the influence of the input uncertainty of the fluid parameters on the ORC...... modeloutput, and provides the 95%-confidence interval of the net power output with respect to the fluid property uncertainties. The methodology has been applied to a molecular design problem for an ORCusing a low-temperature heat source and consisted of the following four parts: 1) formulation...... of processmodels and constraints 2) selection of property models, i.e. Penge Robinson equation of state 3)screening of 1965 possible working fluid candidates including identification of optimal process parametersbased on Monte Carlo sampling 4) propagating uncertainty of fluid parameters to the ORC netpower output...

  12. Effectiveness of Operation of Organic Rankine Cycle Installation Applied in the Liquid Natural Gas Regasification Plant

    Science.gov (United States)

    Kaczmarek, R.; Stachel, A. A.

    2017-05-01

    An analysis of the operation of an Organic Rankine Cycle (ORC) installation heated by a low-temperature heat source is presented for the case where a condenser of a working fluid is cooled by a liquid of ultralow temperature. For this purpose, the process of regasification of liquid natural gas (LNG) is considered. In the process, the condensation heat of the working fluid in ORC is taken by the LNG evaporating subsequently (i.e., undergoing regasification). The paper presents the schematic of this installation and its application, as well as the results of calculations on the basis of the analysis in terms of the power and efficiency. In the analysis, organic fluids used in the ORC as working ones have been selected.

  13. Linear Active Disturbance Rejection Control of Waste Heat Recovery Systems with Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Fang Fang

    2012-12-01

    Full Text Available In this paper, a linear active disturbance rejection controller is proposed for a waste heat recovery system using an organic Rankine cycle process, whose model is obtained by applying the system identification technique. The disturbances imposed on the waste heat recovery system are estimated through an extended linear state observer and then compensated by a linear feedback control strategy. The proposed control strategy is applied to a 100 kW waste heat recovery system to handle the power demand variations of grid and process disturbances. The effectiveness of this controller is verified via a simulation study, and the results demonstrate that the proposed strategy can provide satisfactory tracking performance and disturbance rejection.

  14. Thermal Stability of Hexamethyldisiloxane (MM for High-Temperature Organic Rankine Cycle (ORC

    Directory of Open Access Journals (Sweden)

    Markus Preißinger

    2016-03-01

    Full Text Available The design of efficient Organic Rankine Cycle (ORC units for the usage of industrial waste heat at high temperatures requires direct contact evaporators without intermediate thermal oil circuits. Therefore, the thermal stability of high-temperature working fluids gains importance. In this study, the thermal degradation of hexamethyldisiloxane (MM is investigated in an electrically heated tube. Qualitative results concerning remarks on degradation products as well as quantitative results like the annual degradation rate are presented. It is shown that MM is stable up to a temperature of 300 °C with annual degradation rates of less than 3.5%. Furthermore, the break of a silicon–carbon bond can be a main chemical reaction that influences the thermal degradation. Finally, it is discussed how the results may impact the future design of ORC units.

  15. Rankine cycle condenser pressure control using an energy conversion device bypass valve

    Science.gov (United States)

    Ernst, Timothy C; Nelson, Christopher R; Zigan, James A

    2014-04-01

    The disclosure provides a waste heat recovery system and method in which pressure in a Rankine cycle (RC) system of the WHR system is regulated by diverting working fluid from entering an inlet of an energy conversion device of the RC system. In the system, an inlet of a controllable bypass valve is fluidly coupled to a working fluid path upstream of an energy conversion device of the RC system, and an outlet of the bypass valve is fluidly coupled to the working fluid path upstream of the condenser of the RC system such that working fluid passing through the bypass valve bypasses the energy conversion device and increases the pressure in a condenser. A controller determines the temperature and pressure of the working fluid and controls the bypass valve to regulate pressure in the condenser.

  16. Organic Rankine cycle unit for waste heat recovery on ships (PilotORC)

    DEFF Research Database (Denmark)

    Haglind, Fredrik; Montagud, Maria E. Mondejar; Andreasen, Jesper Graa

    The project PilotORC was aimed at evaluating the technical and economic feasibility of the use of organic Rankine cycle (ORC) units to recover low-temperature waste heat sources (i.e. exhaust gases, scavenge air, engine cooling system, and lubricant oil system) on container vessels. The project...... included numerical simulations and experimental tests on a 125 kW demonstration ORC unit that utilizes the waste heat of the main engine cooling system on board one of Mærsk's container vessels. During the design of the demonstration ORC unit, different alternatives for the condenser were analyzed in order...... to minimize the size of the heat exchanger area. Later on the ORC unit was successfully installed on board, and it has been working uninterruptedly since, demonstrating the matureness of the ORC technology for maritime applications. During the onboard testing, additional measuring devices were installed...

  17. Recent research trends in organic Rankine cycle technology: A bibliometric approach

    DEFF Research Database (Denmark)

    Imran, Muhammad; Haglind, Fredrik; Asim, Muhammad

    2018-01-01

    Expanded. Different aspects of the publications were analyzed, such as publication type, major research areas, journals, citations, authorship pattern, affiliations as well as the keyword occurrence frequency. The impact factor, h-index and number of citations were used to investigate the strength...... of active countries, institutes, authors, and journals in the organic Rankine cycle technology field. From 2000 to 2016, there were 2120 articles published by 3443 authors from 997 research institutes scattered over 71 countries. The total number of citations and impact factor are 36,739 and 4597......, respectively, corresponding to 17 citations per paper and an impact factor of 2.168 per publication. The research articles originate primarily from China, the USA, and European countries. Results indicate that China, the United States, Italy, Greece, Belgium, Spain, Germany and the United Kingdom...

  18. Organic Rankine Cycle Analysis: Finding the Best Way to Utilize Waste Heat

    Directory of Open Access Journals (Sweden)

    Nadim Chakroun

    2012-01-01

    Full Text Available An Organic Rankine Cycle (ORC is a type of power cyclethat uses organic substances such as hydrocarbons orrefrigerants as the working fluid. ORC technology is usedto generate electricity in waste heat recovery applications,because the available heat is not at a high enoughtemperature to operate with other types of cycles. Theoptimum amount of working fluid required for the cycle(i.e., optimum charge level was investigated. Three chargelevels (13, 15, and 18 lbm were tested, and their effect onefficiency and performance of the system was analyzed.The heat source for the fluid was waste steam from thePurdue Power Plant, which had an average temperatureof 120oC. Regular city tap water at a temperature of 15oCwas used as the heat sink. For each charge level, multipletests were performed by measuring the temperaturesand pressures at all state points in the cycle, in order tounderstand any overarching patterns within the data.An important parameter that was analyzed is the 2nd lawefficiency. This efficiency is a measure of the effectivenessof the energy utilization compared to that of an idealcase. The peak efficiency increased from 24% to 27% asthe charge in the system decreased. Therefore, movingforward, this research suggests that a lower charge levelin the system will increase efficiency. However, testingbelow 13 lbm might cause mechanical complications inthe equipment as there may not be enough fluid to flowaround; thus, a compromise had to be made.

  19. A Comparative Exergoeconomic Analysis of Waste Heat Recovery from a Gas Turbine-Modular Helium Reactor via Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Naser Shokati

    2014-04-01

    Full Text Available A comparative exergoeconomic analysis is reported for waste heat recovery from a gas turbine-modular helium reactor (GT-MHR using various configurations of organic Rankine cycles (ORCs for generating electricity. The ORC configurations studied are: a simple organic Rankine cycle (SORC, an ORC with an internal heat exchanger (HORC and a regenerative organic Rankine cycle (RORC. Exergoeconomic analyses are performed with the specific exergy costing (SPECO method. First, energy and exergy analyses are applied to the combined cycles. Then, a cost-balance, as well as auxiliary equations are developed for the components to determine the exergoeconomic parameters for the combined cycles and their components. The three combined cycles are compared considering the same operating conditions for the GT-MHR cycle, and a parametric study is done to reveal the effects on the exergoeconomic performance of the combined cycles of various significant parameters, e.g., turbine inlet and evaporator temperatures and compressor pressure ratio. The results show that the GT-MHR/RORC has the lowest unit cost of electricity generated by the ORC turbine. This value is highest for the GT-MHR/HORC. Furthermore, the GT-MHR/RORC has the highest and the GT-MHR/HORC has the lowest exergy destruction cost rate.

  20. Performance analysis of an organic Rankine cycle with internal heat exchanger having zeotropic working fluid

    Directory of Open Access Journals (Sweden)

    Thoranis Deethayat

    2015-09-01

    Full Text Available In this study, performance of a 50 kW organic Rankine cycle (ORC with internal heat exchanger (IHE having R245fa/R152a zeotropic refrigerant with various compositions was investigated. The IHE could reduce heat rate at the ORC evaporator and better cycle efficiency could be obtained. The zeotropic mixture could reduce the irreversibilities during the heat exchanges at the ORC evaporator and the ORC condenser due to its gliding temperature; thus the cycle working temperatures came closer to the temperatures of the heat source and the heat sink. In this paper, effects of evaporating temperature, mass fraction of R152a and effectiveness of internal heat exchanger on the ORC performances for the first law and the second law of thermodynamics were considered. The simulated results showed that reduction of R245fa composition could reduce the irreversibilities at the evaporator and the condenser. The suitable composition of R245fa was around 80% mass fraction and below this the irreversibilities were nearly steady. Higher evaporating temperature and higher internal heat exchanger effectiveness also increased the first law and second law efficiencies. A set of correlations to estimate the first and the second law efficiencies with the mass fraction of R245fa, the internal heat exchanger effectiveness and the evaporating temperature were also developed.

  1. Solar Cycle Prediction

    Directory of Open Access Journals (Sweden)

    Kristóf Petrovay

    2010-12-01

    Full Text Available A review of solar cycle prediction methods and their performance is given, including forecasts for cycle 24. The review focuses on those aspects of the solar cycle prediction problem that have a bearing on dynamo theory. The scope of the review is further restricted to the issue of predicting the amplitude (and optionally the epoch of an upcoming solar maximum no later than right after the start of the given cycle. Prediction methods form three main groups. Precursor methods rely on the value of some measure of solar activity or magnetism at a specified time to predict the amplitude of the following solar maximum. Their implicit assumption is that each numbered solar cycle is a consistent unit in itself, while solar activity seems to consist of a series of much less tightly intercorrelated individual cycles. Extrapolation methods, in contrast, are based on the premise that the physical process giving rise to the sunspot number record is statistically homogeneous, i.e., the mathematical regularities underlying its variations are the same at any point of time and, therefore, it lends itself to analysis and forecasting by time series methods. Finally, instead of an analysis of observational data alone, model based predictions use physically (more or less consistent dynamo models in their attempts to predict solar activity. In their overall performance during the course of the last few solar cycles, precursor methods have clearly been superior to extrapolation methods. Nevertheless, most precursor methods overpredicted cycle 23, while some extrapolation methods may still be worth further study. Model based forecasts have not yet had a chance to prove their skills. One method that has yielded predictions consistently in the right range during the past few solar cycles is that of K. Schatten et al., whose approach is mainly based on the polar field precursor. The incipient cycle 24 will probably mark the end of the Modern Maximum, with the Sun

  2. Development and a Validation of a Charge Sensitive Organic Rankine Cycle (ORC Simulation Tool

    Directory of Open Access Journals (Sweden)

    Davide Ziviani

    2016-05-01

    Full Text Available Despite the increasing interest in organic Rankine cycle (ORC systems and the large number of cycle models proposed in the literature, charge-based ORC models are still almost absent. In this paper, a detailed overall ORC simulation model is presented based on two solution strategies: condenser subcooling and total working fluid charge of the system. The latter allows the subcooling level to be predicted rather than specified as an input. The overall cycle model is composed of independent models for pump, expander, line sets, liquid receiver and heat exchangers. Empirical and semi-empirical models are adopted for the pump and expander, respectively. A generalized steady-state moving boundary method is used to model the heat exchangers. The line sets and liquid receiver are used to better estimate the total charge of the system and pressure drops. Finally, the individual components are connected to form a cycle model in an object-oriented fashion. The solution algorithm includes a preconditioner to guess reasonable values for the evaporating and condensing temperatures and a main cycle solver loop which drives to zero a set of residuals to ensure the convergence of the solution. The model has been developed in the Python programming language. A thorough validation is then carried out against experimental data obtained from two test setups having different nominal size, working fluids and individual components: (i a regenerative ORC with a 5 kW scroll expander and an oil flooding loop; (ii a regenerative ORC with a 11 kW single-screw expander. The computer code is made available through open-source dissemination.

  3. Organic Rankine cycle – review and research directions in engine applications

    Directory of Open Access Journals (Sweden)

    Panesar Angad

    2017-01-01

    Full Text Available Waste heat to power conversion using Organic Rankine Cycles (ORC is expected to play an important role in CO2 reductions from diesel engines. Firstly, a review of automotive ORCs is presented focusing on the pure working fluids, thermal architectures and expanders. The discussion includes, but is not limited to: R245fa, ethanol and water as fluids; series, parallel and cascade as architectures; dry saturated, superheated and supercritical as expansion conditions; and scroll, radial turbine and piston as expansion machines. Secondly, research direction in versatile expander and holistic architecture (NOx + CO2 are proposed. Benefits of using the proposed unconventional approaches are quantified using Ricardo Wave and Aspen HYSYS for diesel engine and ORC modelling. Results indicate that, the implementation of versatile piston expander tolerant to two-phase and using cyclopentane can potentially increase the highway drive cycle power by 8%. Furthermore, holistic architecture offering complete utilisation of charge air and exhaust recirculation heat increased the performance noticeably to 5% of engine power at the design point condition.

  4. Energy analysis of a trigeneration plant based on solid oxide fuel cell and organic Rankine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Al-Sulaiman, Fahad A. [Mechanical and Aerospace Engineering Department, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario (Canada); Dincer, Ibrahim [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada); Hamdullahpur, Feridun [Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario (Canada)

    2010-05-15

    In this study, energy analysis of a trigeneration plant based on solid oxide fuel cell (SOFC) and organic Rankine cycle (ORC) is conducted. The physical and thermodynamic elements of the plant include an SOFC, an ORC, a heat exchanger for the heating process and a single-effect absorption chiller for cooling. The results obtained from this study show that there is at least a 22% gain in efficiency using the trigeneration plant compared with the power cycle (SOFC and ORC). The study also shows that the maximum efficiency of the trigeneration plant is 74%, heating cogeneration is 71%, cooling cogeneration is 57% and net electricity is 46%. Furthermore, it is found that the highest net power output that can be provided by the trigeneration plant considered in this study is 540 kW and, the highest SOFC-AC power is 520 kW. The study reveals that the inlet pressure of the turbine has an insignificant effect on the efficiency. The study also examines the effect of both the SOFC current density and the SOFC inlet flow temperature on the cell voltage and voltage loss. (author)

  5. Organic Rankine-cycle power systems working fluids study: Topical report No. 2, Toluene

    Energy Technology Data Exchange (ETDEWEB)

    Cole, R.L.; Demirgian, J.C.; Allen, J.W.

    1987-02-01

    The US Department of Energy initiated an investigation at Argonne National Laboratory in 1982 to experimentally determine the thermal stability limits and degradation rates of toluene as a function of maximum cycle temperature. Following the design and construction of a dynamic test loop capable of closely simulating the thermodynamic conditions of typical organic Rankine-cycle (ORC) power systems, four test runs, totaling about 3900 h of test time and covering a temperature range of 600-677(degree)F, were completed. Both liquid and noncondensable-vapor (gaseous) samples were drawn periodically and analyzed using capillary-column gas chromatography, gas chromatography/mass spectrometry, and mass spectrometry. A computer program that can predict degradation in an ORC engine was developed. Experimental results indicate that, if oxygen can be excluded from the system, toluene is a stable fluid up to the maximum test temperature; the charge of toluene could be used for several years before replacement became necessary. (Additional data provided by Sundstrand Corp. from tests sponsored by the National Aeronautics and Space Administration indicate that toluene may be used at temperatures up to 750(degree)F.) Degradation products are benign; the main liquid degradation products are bibenzyls, and the main gaseous degradation products are hydrogen and methane. A cold trap to remove gaseous degradation products from the condenser is necessary for extended operation. 21 figs., 22 tabs.

  6. The simulation of organic rankine cycle power plant with n-pentane working fluid

    Science.gov (United States)

    Nurhilal, Otong; Mulyana, Cukup; Suhendi, Nendi; Sapdiana, Didi

    2016-02-01

    In the steam power plant in Indonesia the dry steam from separator directly used to drive the turbin. Meanwhile, brine from the separator with low grade temperature reinjected to the earth. The brine with low grade temperature can be converted indirectly to electrical power by organic Rankine cycle (ORC) methods. In ORC power plant the steam are released from vaporization of organic working fluid by brine. The steam released are used to drive an turbine which in connected to generator to convert the mechanical energy into electric energy. The objective of this research is the simulation ORC power plant with n-pentane as organic working fluid. The result of the simulation for brine temperature around 165°C and the pressure 8.001 bar optained the net electric power around 1173 kW with the cycle thermal efficiency 14.61% and the flow rate of n-pentane around 15.51 kg/s. This result enable to applied in any geothermal source in Indonesia.

  7. Analysis of a rotating spool expander for Organic Rankine Cycle applications

    Science.gov (United States)

    Krishna, Abhinav

    Increasing interest in recovering or utilizing low-grade heat for power generation has prompted a search for ways in which the power conversion process may be enhanced. Amongst the conversion systems, the Organic Rankine Cycle (ORC) has generated an enormous amount of interest amongst researchers and system designers. Nevertheless, component level technologies need to be developed and match the range of potential applications. In particular, technical challenges associated with scaling expansion machines (turbines) from utility scale to commercial scale have prevented widespread adoption of the technology. In this regard, this work focuses on a novel rotating spool expansion machine at the heart of an Organic Rankine Cycle. A comprehensive, deterministic simulation model of the rotating spool expander is developed. The comprehensive model includes a detailed geometry model of the spool expander and the suction valve mechanism. Sub-models for mass flow, leakage, heat transfer and friction within the expander are also developed. Apart from providing the ability to characterize the expander in a particular system, the model provides a valuable tool to study the impact of various design variables on the performance of the machine. The investigative approach also involved an experimental program to assess the performance of a working prototype. In general, the experimental data showed that the expander performance was sub-par, largely due to the mismatch of prevailing operating conditions and the expander design criteria. Operating challenges during the shakedown tests and subsequent sub-optimal design changes also detracted from performance. Nevertheless, the results of the experimental program were sufficient for a proof-of-concept assessment of the expander and for model validation over a wide range of operating conditions. The results of the validated model reveal several interesting details concerning the expander design and performance. For example, the match

  8. Numerical evaluation of the Kalina cycle for concentrating solar power plants

    DEFF Research Database (Denmark)

    Modi, Anish

    of using a Kalina cycle is evaluated with a thermoeconomic optimization with a turbine inlet temperature of 500 C for a central receiver solar power plant with direct vapour generation, and 370 C for a parabolic trough solar power plant with Therminol VP-1 as the solar field heat transfer fluid. No thermal...... a higher specific capital investment cost and a higher levelized cost of electricity than the state-of-the-art steam Rankine cycle for both the central receiver and the parabolic trough plants. This is mainly because of worse power cycle design point efficiency than the corresponding steam Rankine cycle......Concentrating solar power plants use a number of reflecting mirrors to focus and convert the incident solar energy to heat, and a power cycle to convert this heat into electricity. One of the key challenges currently faced by the solar industry is the high cost of electricity production...

  9. Thermo-Economic Evaluation of Organic Rankine Cycles for Geothermal Power Generation Using Zeotropic Mixtures

    Directory of Open Access Journals (Sweden)

    Florian Heberle

    2015-03-01

    Full Text Available We present a thermo-economic evaluation of binary power plants based on the Organic Rankine Cycle (ORC for geothermal power generation. The focus of this study is to analyse if an efficiency increase by using zeotropic mixtures as working fluid overcompensates additional requirements regarding the major power plant components. The optimization approach is compared to systems with pure media. Based on process simulations, heat exchange equipment is designed and cost estimations are performed. For heat source temperatures between 100 and 180 °C selected zeotropic mixtures lead to an increase in second law efficiency of up to 20.6% compared to pure fluids. Especially for temperatures about 160 °C, mixtures like propane/isobutane, isobutane/isopentane, or R227ea/R245fa show lower electricity generation costs compared to the most efficient pure fluid. In case of a geothermal fluid temperature of 120 °C, R227ea and propane/isobutane are cost-efficient working fluids. The uncertainties regarding fluid properties of zeotropic mixtures, mainly affect the heat exchange surface. However, the influence on the determined economic parameter is marginal. In general, zeotropic mixtures are a promising approach to improve the economics of geothermal ORC systems. Additionally, the use of mixtures increases the spectrum of potential working fluids, which is important in context of present and future legal requirements considering fluorinated refrigerants.

  10. Reciprocating Expander for an Exhaust Heat Recovery Rankine Cycle for a Passenger Car Application

    Directory of Open Access Journals (Sweden)

    Osoko Shonda

    2012-06-01

    Full Text Available Nowadays, on average, two thirds of the fuel energy consumed by an engine is wasted through the exhaust gases and the cooling liquid. The recovery of this energy would enable a substantial reduction in fuel consumption. One solution is to integrate a heat recovery system based on a steam Rankine cycle. The key component in such a system is the expander, which has a strong impact on the system’s performance. A survey of different expander technologies leads us to select the reciprocating expander as the most promising one for an automotive application. This paper therefore proposes a steady-state semi-empirical model of the expander device developed under the Engineering Equation Solver (EES environment. The ambient and mechanical losses as well as internal leakage were taken into account by the model. By exploiting the expander manufacturer’s data, all the parameters of the expander model were identified. The model computes the mass flow rate, the power output delivered and the exhaust enthalpy of the steam. The maximum deviation between predictions and measurement data is 4.7%. A performance study of the expander is carried out and shows that the isentropic efficiency is quite high and increases with the expander rotary speed. The mechanical efficiency depends on mechanical losses which are quite high, approximately 90%. The volumetric efficiency was also evaluated.

  11. Radial turbine expander design for organic rankine cycle, waste heat recovery in high efficiency, off-highway vehicles

    OpenAIRE

    Alshammari, F.; Karvountzis-Kontakiotis, A; Pesiridis, A

    2016-01-01

    Although state-of-the-art, heavy duty diesel engines of today can reach peak thermal efficiencies of approximately 45%, still most of the fuel energy is transformed into wasted heat in the internal combustion process. Recovering this wasted energy could increase the overall thermal efficiency of the engine as well as reduce the exhaust gas emissions. Compared to other Waste Heat Recovery (WHR) technologies, Organic Rankine Cycle (ORC) systems are regarded favourably due to their relative simp...

  12. Part-Load Performance of a Wet Indirectly Fired Gas Turbine Integrated with an Organic Rankine Cycle Turbogenerator

    OpenAIRE

    Leonardo Pierobon; Tuong-Van Nguyen; Andrea Mazzucco; Ulrik Larsen; Fredrik Haglind

    2014-01-01

    Over the last years, much attention has been paid to the development of efficient and low-cost power systems for biomass-to-electricity conversion. This paper aims at investigating the design- and part-load performance of an innovative plant based on a wet indirectly fired gas turbine (WIFGT) fueled by woodchips and an organic Rankine cycle (ORC) turbogenerator. An exergy analysis is performed to identify the sources of inefficiencies, the optimal design variables, and the most suitable worki...

  13. Modelling of organic Rankine cycle power systems in off-design conditions: an experimentally-validated comparative study

    OpenAIRE

    Dickes, Rémi; Dumont, Olivier; Daccord, Rémi; Quoilin, Sylvain; Lemort, Vincent

    2017-01-01

    Because of environmental issues and the depletion of fossil fuels, the world energy sector is undergoing many changes toward increased sustainability. Among the many fields of research and development, power generation from low-grade heat sources is gaining interest and the organic Rankine cycle (ORC) is seen as one of the most promising technologies for such applications. In this paper, it is proposed to perform an experimentally-validated comparison of different modelling methods for the of...

  14. Performance of Siloxane Mixtures in a High-Temperature Organic Rankine Cycle Considering the Heat Transfer Characteristics during Evaporation

    OpenAIRE

    Theresa Weith; Florian Heberle; Markus Preißinger; Dieter Brüggemann

    2014-01-01

    The application of the Organic Rankine Cycle to high temperature heat sources is investigated on the case study of waste heat recovery from a selected biogas plant. Two different modes of operation are distinguished: pure electric power and combined heat and power generation. The siloxanes hexamethyldisiloxane (MM) and octamethyltrisiloxane (MDM) are chosen as working fluids. Moreover, the effect of using mixtures of these components is analysed. Regarding pure electricity generation, process...

  15. Economic optimization of a Kalina cycle for a parabolic trough solar thermal power plant

    DEFF Research Database (Denmark)

    Modi, Anish; Kærn, Martin Ryhl; Andreasen, J. G.

    2015-01-01

    technology for the conversion of solar thermal energy into electricity. In this paper, a Kalina cycle and a steam Rankine cycle are compared in terms of the total capital investment cost for use in a parabolic trough solar thermal power plant without storage. In order to minimize the total capital investment...... cost of the Kalina cycle power plant (the solar field plus the power cycle), an optimization was performed by varying the turbine outlet pressure, the separator inlet temperature and the separator inlet ammonia mass fraction. All the heat exchangers were modelled as shell and tube type using suitable......The Kalina cycle has recently seen increased interest as a replacement for the more traditional steam Rankine cycle for geothermal, solar, ocean thermal energy conversion and waste heat recovery applications. The Kalina cycle uses a mixture of ammonia and water as the working fluid. The ammonia...

  16. Experimental and thermodynamic analysis of a bottoming Organic Rankine Cycle (ORC) of gasoline engine using swash-plate expander

    OpenAIRE

    Galindo, José,; Ruiz Rosales, Santiago; Dolz Ruiz, Vicente; ROYO PASCUAL, LUCÍA; Haller, R.; Nicolas, B.; Glavatskaya, Y.

    2015-01-01

    This paper deals with the experimental testing of an Organic Rankine Cycle (ORC) integrate in a 2 liter turbocharged gasoline engine using ethanol as working fluid. The main components of the cycle are a boiler, a condenser, a pump and a swash-plate expander. Five engine operating points have been tested, they correspond to a nominal heat input into the boiler of 5, 12, 20, 25 and 30 kW. With the available bill of material based on prototypes, power balances and cycles efficiencies were estim...

  17. Thermal energy storage for low grade heat in the organic Rankine cycle

    Science.gov (United States)

    Soda, Michael John

    Limits of efficiencies cause immense amounts of thermal energy in the form of waste heat to be vented to the atmosphere. Up to 60% of unrecovered waste heat is classified as low or ultra-low quality, making recovery difficult or inefficient. The organic Rankine cycle can be used to generate mechanical power and electricity from these low temperatures where other thermal cycles are impractical. A variety of organic working fluids are available to optimize the ORC for any target temperature range. San Diego State University has one such experimental ORC using R245fa, and has been experimenting with multiple expanders. One limitation of recovering waste heat is the sporadic or cyclical nature common to its production. This inconsistency makes sizing heat recovery ORC systems difficult for a variety of reasons including off-design-point efficiency loss, increased attrition from varying loads, unreliable outputs, and overall system costs. Thermal energy storage systems can address all of these issues by smoothing the thermal input to a constant and reliable level and providing back-up capacity for times when the thermal input is deactivated. Multiple types of thermal energy storage have been explored including sensible, latent, and thermochemical. Latent heat storage involves storing thermal energy in the reversible phase change of a phase change material, or PCM, and can have several advantages over other modalities including energy storage density, cost, simplicity, reliability, relatively constant temperature output, and temperature customizability. The largest obstacles to using latent heat storage include heat transfer rates, thermal cycling stability, and potentially corrosive PCMs. Targeting 86°C, the operating temperature of SDSU's experimental ORC, multiple potential materials were explored and tested as potential PCMs including Magnesium Chloride Hexahydrate (MgCl2˙6H2O), Magnesium Nitrate Hexahydrate (Mg(NO3)2˙6H 2O), montan wax, and carnauba wax. The

  18. Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system

    Science.gov (United States)

    Mehrpooya, Mehdi; Dehghani, Hossein; Ali Moosavian, S. M.

    2016-02-01

    A combined system containing solid oxide fuel cell-gas turbine power plant, Rankine steam cycle and ammonia-water absorption refrigeration system is introduced and analyzed. In this process, power, heat and cooling are produced. Energy and exergy analyses along with the economic factors are used to distinguish optimum operating point of the system. The developed electrochemical model of the fuel cell is validated with experimental results. Thermodynamic package and main parameters of the absorption refrigeration system are validated. The power output of the system is 500 kW. An optimization problem is defined in order to finding the optimal operating point. Decision variables are current density, temperature of the exhaust gases from the boiler, steam turbine pressure (high and medium), generator temperature and consumed cooling water. Results indicate that electrical efficiency of the combined system is 62.4% (LHV). Produced refrigeration (at -10 °C) and heat recovery are 101 kW and 22.1 kW respectively. Investment cost for the combined system (without absorption cycle) is about 2917 kW-1.

  19. Alkali Metal Rankine Cycle Boiler Technology Challenges and Some Potential Solutions for Space Nuclear Power and Propulsion Applications

    Science.gov (United States)

    Stone, James R.

    1994-01-01

    Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently. This report is aimed at evaluating alkali metal boiler

  20. Waste Heat-to-Power Using Scroll Expander for Organic Rankine Bottoming Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, John [TIAX LLC, Lexington, MA (United States); Smutzer, Chad [TIAX LLC, Lexington, MA (United States); Sinha, Jayanti [TIAX LLC, Lexington, MA (United States)

    2017-05-30

    The objective of this program was to develop a novel, scalable scroll expander for conversion of waste heat to power; this was accomplished and demonstrated in both a bench-scale system as well as a full-scale system. The expander is a key component in Organic Rankine Cycle (ORC) waste heat recovery systems which are used to convert medium-grade waste heat to electric power in a wide range of industries. These types of waste heat recovery systems allow for the capture of energy that would otherwise just be exhausted to the atmosphere. A scroll expander has the benefit over other technologies of having high efficiency over a broad range of operating conditions. The speed range of the TIAX expander (1,200 to 3,600 RPM) enables the shaft power output to directly drive an electric generator and produce 60 Hz electric power without incurring the equipment costs or losses of electronic power conversion. This greatly simplifies integration with the plant electric infrastructure. The TIAX scroll expander will reduce the size, cost, and complexity of a small-scale waste heat recovery system, while increasing the system efficiency compared to the prevailing ORC technologies at similar scale. During this project, TIAX demonstrated the scroll expander in a bench-scale test setup to have isentropic efficiency of 70-75% and operated it successfully for ~200 hours with minimal wear. This same expander was then installed in a complete ORC system driven by a medium grade waste heat source to generate 5-7 kW of electrical power. Due to funding constraints, TIAX was unable to complete this phase of testing, although the initial results were promising and demonstrated the potential of the technology.

  1. Thermo-Economic Performance Analysis of a Regenerative Superheating Organic Rankine Cycle for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Zhonghe Han

    2017-10-01

    Full Text Available The Organic Rankine Cycle (ORC is a promising form of technology for recovering low-grade waste heat. In this study, a regenerative ORC system is established to recover the waste flue gas of 160 °C. Focusing on thermodynamic and economic performance while simultaneously considering the limitations of volume flow ratio (VFR and the effect of superheat, working fluid selection and parameter optimization have been investigated. The optimization of the evaporation temperature is carried out by analyzing the variation of net power output and specific investment cost (SIC. Then, the net power output, specific net power output, total exergy destruction rate, VFR, total capital cost, and levelized electricity cost (LEC are selected as criteria, and a fuzzy multi-criteria evaluation method is adopted to select a more suitable working fluid and determine the optimal degree of superheat. In addition, the preheating coefficient, latent heat coefficient, superheating coefficient, and internal heat coefficient were proposed to explore the effect of working fluid critical temperature on thermal efficiency. Research studies demonstrate that there is an optimal evaporation temperature, maximizing net power output and minimizing the SIC. Isohexane and butane have greater specific net power output due to greater latent heat. A suitable degree of superheat is not only conducive to improving the working capacity of working fluids, but also reduces the VFR, total capital cost, SIC, and LEC for different working fluids. Thus, the system’s thermodynamic and economic performance—as well as the operational stability—are improved. Among the six working fluids, butane exhibits the best comprehensive performance, and its optimal evaporation temperature and degree of superheat are 100 °C and 5 °C, respectively.

  2. Applied studies in advanced boiler technology for Rankine cycle power systems

    Energy Technology Data Exchange (ETDEWEB)

    Paul, F.W.; Negreanu, M.J.

    1978-02-01

    A study is presented on a new rotational boiler design which has improved passive dynamic response and two-phase flow stability characteristics. A survey of small boiler manufacturers in the United States indicated that currently available designs are based on steady-state operating requirements rather than for dynamic performance. Recent work by EPA and ERDA which addressed boiler designs for mobile automotive Rankine cycle power systems showed that boilers of a monotube or multipass tube configuration design could be developed which were physically compact, but still were subject to the two-phase flow instability problem when coupled within an operating power system. The objectives of this work were to evaluate alternative boiler configurations which would improve boiler dynamic response and also have good two-phase liquid-vapor interface flow stability. The major physical design limitation of any boiler is the small external hot gas heat transfer coefficient. Such a low coefficient requires considerable design enhancements to increase the rate of energy transfer to the circulation system fluid. The rotational boiler is a physical design configuration which addresses this problem. The results of an analytic study using several mathematical model formulations showed that a rotational boiler could have a passive response time constant which was approximately one-half the magnitude for an equivalent single pass monotube boiler. An experimental prototype rotational boiler was designed, manufactured and tested, with the experimental results confirming that the experimental passive response time constants were comparable to the estimates from the analytic models. The experimental boiler operating in two-phase flow was found to be stable and responsive to external inputs. A rotational boiler configuration is a good alternative design configuration for small compact vapor generator designs based on fast transient passive response and two-phase flow stability.

  3. Thermodynamic Optimization of a Geothermal- Based Organic Rankine Cycle System Using an Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Osman Özkaraca

    2017-10-01

    Full Text Available Geothermal energy is a renewable form of energy, however due to misuse, processing and management issues, it is necessary to use the resource more efficiently. To increase energy efficiency, energy systems engineers carry out careful energy control studies and offer alternative solutions. With this aim, this study was conducted to improve the performance of a real operating air-cooled organic Rankine cycle binary geothermal power plant (GPP and its components in the aspects of thermodynamic modeling, exergy analysis and optimization processes. In-depth information is obtained about the exergy (maximum work a system can make, exergy losses and destruction at the power plant and its components. Thus the performance of the power plant may be predicted with reasonable accuracy and better understanding is gained for the physical process to be used in improving the performance of the power plant. The results of the exergy analysis show that total exergy production rate and exergy efficiency of the GPP are 21 MW and 14.52%, respectively, after removing parasitic loads. The highest amount of exergy destruction occurs, respectively, in condenser 2, vaporizer HH2, condenser 1, pumps 1 and 2 as components requiring priority performance improvement. To maximize the system exergy efficiency, the artificial bee colony (ABC is applied to the model that simulates the actual GPP. Under all the optimization conditions, the maximum exergy efficiency for the GPP and its components is obtained. Two of these conditions such as Case 4 related to the turbine and Case 12 related to the condenser have the best performance. As a result, the ABC optimization method provides better quality information than exergy analysis. Based on the guidance of this study, the performance of power plants based on geothermal energy and other energy resources may be improved.

  4. Design and development of an automotive propulsion system utilizing a Rankine cycle engine (water based fluid). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Demler, R.L.

    1977-09-01

    Under EPA and ERDA sponsorship, SES successfully designed, fabricated and tested the first federally sponsored steam powered automobile. The automobile - referred to as the simulator - is a 1975 Dodge Monaco standard size passenger car with the SES preprototype Rankine cycle automotive propulsion system mounted in the engine compartment. In the latter half of 1975, the simulator successfully underwent test operations at the facilities of SES in Watertown, Massachusetts and demonstrated emission levels below those of the stringent federally established automotive requirements originally set for implementation by 1976. The demonstration was accomplished during testing over the Federal Driving Cycle on a Clayton chassis dynamometer. The design and performance of the vehicle are described.

  5. Application Guide for Waste Heat Recovery with Organic Rankine Cycle Equipment.

    Science.gov (United States)

    1983-01-15

    Cycle Development and Its Application to Solar Energy Utilization," Ishikawajima - Harima Heavy Industries Co., Ltd. (AFI), International Congress of...20 , LU z 600 FOR ESTIMATING S800 "PURPOSES ’. Uj100 C 40000 DATA FROM SPS INC. ~t DATA FROM AFI -, 6000 0 DATA FROM ISHIKAWAJIMA - HARIMA 3. Figure 3-6...literature search and industry survey. Engineering criteria for applying ORC tech- nology are established, and a set of nomograms to enable the rapid

  6. Part-Load Performance of aWet Indirectly Fired Gas Turbine Integrated with an Organic Rankine Cycle Turbogenerator

    Directory of Open Access Journals (Sweden)

    Leonardo Pierobon

    2014-12-01

    Full Text Available Over the last years, much attention has been paid to the development of efficient and low-cost power systems for biomass-to-electricity conversion. This paper aims at investigating the design- and part-load performance of an innovative plant based on a wet indirectly fired gas turbine (WIFGT fueled by woodchips and an organic Rankine cycle (ORC turbogenerator. An exergy analysis is performed to identify the sources of inefficiencies, the optimal design variables, and the most suitable working fluid for the organic Rankine process. This step enables to parametrize the part-load model of the plant and to estimate its performance at different power outputs. The novel plant has a nominal power of 250 kW and a thermal efficiency of 43%. The major irreversibilities take place in the burner, recuperator, compressor and in the condenser. Toluene is the optimal working fluid for the organic Rankine engine. The part-load investigation indicates that the plant can operate at high efficiencies over a wide range of power outputs (50%–100%, with a peak thermal efficiency of 45% at around 80% load. While the ORC turbogenerator is responsible for the efficiency drop at low capacities, the off-design performance is governed by the efficiency characteristics of the compressor and turbine serving the gas turbine unit.

  7. A Burst Mode, Ultrahigh Temperature UF4 Vapor Core Reactor Rankine Cycle Space Power System Concept

    Science.gov (United States)

    Dugan, E. T.; Kahook, S. D.; Diaz, N. J.

    1996-01-01

    Static and dynamic neutronic analyses have been performed on an innovative burst mode (100's of MW output for a few thousand seconds) Ulvahigh Temperature Vapor Core Reactor (UTVR) space nuclear power system. The NVTR employs multiple, neutronically-coupled fissioning cores and operates on a direct, closed Rankine cycle using a disk Magnetohydrodynamic (MHD) generater for energy conversion. The UTVR includes two types of fissioning core regions: (1) the central Ultrahigh Temperature Vapor Core (UTVC) which contains a vapor mixture of highly enriched UF4 fuel and a metal fluoride working fluid and (2) the UF4 boiler column cores located in the BeO moderator/reflector region. The gaseous nature of the fuel the fact that the fuel is circulating, the multiple coupled fissioning cores, and the use of a two phase fissioning fuel lead to unique static and dynamic neutronic characteristics. Static neutronic analysis was conducted using two-dimensional S sub n, transport theory calculations and three-dimensional Monte Carlo transport theory calculations. Circulating-fuel, coupled-core point reactor kinetics equations were used for analyzing the dynamic behavior of the UTVR. In addition to including reactivity feedback phenomena associated with the individual fissioning cores, the effects of core-to-core neutronic and mass flow coupling between the UTVC and the surrounding boiler cores were also included in the dynamic model The dynamic analysis of the UTVR reveals the existence of some very effectlve inherent reactivity feedback effects that are capable of quickly stabilizing this system, within a few seconds, even when large positive reactivity insertions are imposed. If the UTVC vapor fuel density feedback is suppressed, the UTVR is still inherently stable because of the boiler core liquid-fuel volume feedback; in contrast, suppression of the vapor fuel density feedback in 'conventional" gas core cavity reactors causes them to become inherently unstable. Due to the

  8. 10-75-kWe-reactor-powered organic Rankine-cycle electric power systems (ORCEPS) study. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1977-03-30

    This 10-75 kW(e) Reactor-ORCEPS study was concerned with the evaluation of several organic Rankine cycle energy conversion systems which utilized a /sup 235/U-ZrH reactor as a heat source. A liquid metal (NaK) loop employing a thermoelectric converter-powered EM pump was used to transfer the reactor energy to the organic working fluid. At moderate peak cycle temperatures (750/sup 0/F), power conversion unit cycle efficiencies of up to 25% and overall efficiencies of 20% can be obtained. The required operating life of seven years should be readily achievable. The CP-25 (toluene) working fluid cycle was found to provide the highest performance levels at the lowest system weights. Specific weights varies from 100 to 50 lb/kW(e) over the power level range 10 to 75 kW(e). (DLC)

  9. Altheim geothermal plant. Power generation by means of an ORC turbogenerator; Geothermieanlagen Altheim. Stromerzeugung mittels Organic-Rankine-Cycle Turbogenerator

    Energy Technology Data Exchange (ETDEWEB)

    Pernecker, G. [Marktgemeindeamt Altheim (Austria)

    1997-12-01

    The report describes the project of the Austrian market town of Altheim to generate electricity by means of an ORC turbogenerator using low-temperature thermal water. The project is to improve the technical and economic situation of the existing industrial-scale geothermal project. (orig.) [Deutsch] Der Bericht beschreibt das Vorhaben der Marktgemeinde Altheim in Oberoesterreich, Strom mittels eines Organic-Rankine-Cycle-Turbogenerators unter Verwendung niedrig temperierten Thermalwassers zu produzieren. Ziel bzw. der Zweck des Projektes ist es, die technische und wirtschaftliche Situation der bestehenden Grossthermieanlage zu verbessern. (orig.)

  10. Organic Rankine-Cycle Power Systems Working Fluids Study: Topical report No. 3, 2-methylpyridine/water

    Energy Technology Data Exchange (ETDEWEB)

    Cole, R.L.; Demirgian, J.C.; Allen, J.W.

    1987-09-01

    A mixture of 35 mole percent (mol %) 2-methylpyridine and 65 mol % water was tested at 575, 625, and 675/degree/F in a dynamic loop. Samples of the degraded fluid were chemically analyzed to determine the identities of major degradation products and the quantity of degradation. Computed degradation rates were found to be higher than those for Fluorinol 85 or toluene. For this reason (and other reasons, related to fluid handling), other fluids are recommended as the first choice for service in organic Rankine-cycle systems in preference to 2-methylpyridine/water. 7 refs., 39 figs., 39 tabs.

  11. Advanced power cycles and configurations for solar towers: Modeling and optimization of the decoupled solar combined cycle concept

    Science.gov (United States)

    García-Barberena, Javier; Olcoz, Asier; Sorbet, Fco. Javier

    2017-06-01

    CSP technologies are essential to allow large shares of renewables into the grid due to their unique ability to cope with the large variability of the energy resource by means of technically and economically feasible thermal energy storage (TES) systems. However, there is still the need and sought to achieve technological breakthroughs towards cost reductions and increased efficiencies. For this, research on advanced power cycles, like the Decoupled Solar Combined Cycle (DSCC) is, are regarded as a key objective. The DSCC concept is, basically, a Combined Brayton-Rankine cycle in which the bottoming cycle is decoupled from the operation of the topping cycle by means of an intermediate storage system. According to this concept, one or several solar towers driving a solar air receiver and a Gas Turbine (Brayton cycle) feed through their exhaust gasses a single storage system and bottoming cycle. This general concept benefits from a large flexibility in its design. On the one hand, different possible schemes related to number and configuration of solar towers, storage systems media and configuration, bottoming cycles, etc. are possible. On the other, within a specific scheme a large number of design parameters can be optimized, including the solar field size, the operating temperatures and pressures of the receiver, the power of the Brayton and Rankine cycles, the storage capacity and others. Heretofore, DSCC plants have been analyzed by means of simple steady-state models with pre-stablished operating parameters in the power cycles. In this work, a detailed transient simulation model for DSCC plants has been developed and is used to analyze different DSCC plant schemes. For each of the analyzed plant schemes, a sensitivity analysis and selection of the main design parameters is carried out. Results show that an increase in annual solar to electric efficiency of 30% (from 12.91 to 16.78) can be achieved by using two bottoming Rankine cycles at two different

  12. An experimental analysis of flow boiling and pressure drop in a brazed plate heat exchanger for organic Rankine cycle power systems

    DEFF Research Database (Denmark)

    Desideri, Adriano; Zhang, Ji; Kærn, Martin Ryhl

    2017-01-01

    Organic Rankine cycle power systems for low quality waste heat recovery applications can play a major role in achieving targets of increasing industrial processes efficiency and thus reducing the emissions of greenhouse gases. Low capacity organic Rankine cycle systems are equipped with brazed...... and pressure drop during vaporization at typical temperatures for low quality waste heat recovery organic Rankine cycle systems are presented for the working fluids HFC-245fa and HFO-1233zd. The experiments were carried out at saturation temperatures of 100°C, 115°C and 130°C and inlet and outlet qualities...... plate heat exchangers which allows for efficient heat transfer with a compact design. Accurate heat transfer correlations characterizing these devices are required from the design phase to the development of model-based control strategies. In this paper, the experimental heat transfer coefficient...

  13. Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Pierobon, Leonardo; Haglind, Fredrik

    2013-01-01

    , boundary conditions, hazard levels and environmental concerns. A generally applicable methodology, based on the principles of natural selection, is presented and used to determine the optimum working fluid, boiler pressure and Rankine cycle process layout for scenarios related to marine engine heat......Power cycles using alternative working fluids are currently receiving significant attention. Selection of working fluid among many candidates is a key topic and guidelines have been presented. A general problem is that the selection is based on numerous criteria, such as thermodynamic performance...... recovery. Included in the solution domain are 109 fluids in sub and supercritical processes, and the process is adapted to the properties of the individual fluid. The efficiency losses caused by imposing process constraints are investigated to help propose a suitable process layout. Hydrocarbon dry type...

  14. Improving the efficiency of heat supply systems on the basis of plants operating on organic Rankine cycle

    Science.gov (United States)

    Solomin, I. N.; Daminov, A. Z.; Sadykov, R. A.

    2017-11-01

    Results of experimental and analytical studies of the plant main element – plant turbomachine (turbo-expander) operating on organic Rankine cycle were obtained for facilities of the heat supply systems of small-scale power generation. At simultaneous mathematical modeling and experimental studies it was found that the best working medium to be used in the turbomachines of these plants is Freon R245fa which has the most suitable calorimetric properties to be used in the cycle. The mathematical model of gas flow in the turbomachine was developed. The main engineering dependencies to calculate the optimal design parameters of the turbomachine were obtained. The engineering problems of providing the minimum axial size of the turbomachine impeller were solved and the main design elements were unified.

  15. Cogenerative Performance of a Wind − Gas Turbine − Organic Rankine Cycle Integrated System for Offshore Applications

    DEFF Research Database (Denmark)

    Bianchi, Michele; Branchini, Lisa; De Pascale, Andrea

    2016-01-01

    Gas Turbines (GT) are widely used for power generationin offshore oil and gas facilities, due to their high reliability,compactness and dynamic response capabilities. Small heavyduty and aeroderivative units in multiple arrangements aretypically used to offer larger load flexibility......, but limitedefficiency of such machines is the main drawback. A solutionto enhance the system performance, also in Combined Heat andPower (CHP) arrangement, is the implementation of OrganicRankine Cycle (ORC) systems at the bottom of the gas turbines.Moreover, the resulting GT-ORC combined cycle could befurther...... a 10MW offshorewind farm and three gas turbines rated for 16:5MW, eachone coupled with an 4:5MW ORC module. The ORC mainparameters are observed under different wind power fluctuations.Due to the non-programmable availability of wind and powerdemand, the part-load and dynamic characteristics...

  16. Selecting working fluids in an organic Rankine cycle for power generation from low temperature heat sources

    Directory of Open Access Journals (Sweden)

    Fredy Vélez

    2014-01-01

    Full Text Available Este trabajo presenta un estudio termodinámico realizado sobre el uso de fuentes de calor de baja temperatura para la generaci ón de energía a través de un ciclo Rankin e subcrítico con fluidos de trabajo orgánicos. Un análisis d el estado del arte de esta tecn ología muestra como línea de investigación abierta, la selección del fluido de trabajo, pues hasta ahora, no existe un fluido que satisfaga t odos los aspectos medioambientales y técnicos a tener en cuenta en estos ciclos. Por ello, se ha desarrollado una serie de simulaciones que permiten estudiar el comportamiento del ciclo Rankine con difer entes configuraciones y fluidos (húmedo, seco e isoentrópico, permitiendo con ello observar de qué manera influyen cambios ta nto en esos tipos de fluidos utilizados (refrigerantes, hidroca rburos y agua, como de condiciones de temperatura, presión, flujo, etc. , sobre la eficiencia total del ciclo. Con el trabajo realizado se demuestra la viabilidad de este tipo de proceso en la recuperación de calore s en la industria y/o aprovechamiento de fuentes renovables de baja y media temperatura para la producción de energía eléctrica.

  17. Multi-objective optimization of organic Rankine cycle power plants using pure and mixed working fluids

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Kærn, Martin Ryhl; Pierobon, Leonardo

    2015-01-01

    For zeotropic mixtures, the temperature varies during phase change, which is opposed to the isothermalphase change of pure fluids. The use of such mixtures as working fluids in organic Rankine cyclepower plants enables a minimization of the mean temperature difference of the heat exchangers whenthe...... mixturesare usually degraded compared to an ideal mixture heat transfer coefficient linearly interpolatedbetween the pure fluid values. This entails a need for larger and more expensive heat exchangers. Previousstudies primarily focus on the thermodynamic benefits of zeotropic mixtures by employing firstand...... second law analyses. In order to assess the feasibility of using zeotropic mixtures, it is, however,important to consider the additional costs of the heat exchangers. In this study, we aim at evaluatingthe economic feasibility of zeotropic mixtures compared to pure fluids. We carry out a multi...

  18. Comparative investigation of working fluids for an organic Rankine cycle with geothermal water

    Science.gov (United States)

    Liu, Yan-Na; Xiao, Song

    2015-06-01

    In this paper, the thermodynamic investigation on the use of geothermal water (130 °C as maximum) for power generation through a basic Rankine has been presented together with obtained main results. Six typical organic working fluids (i.e., R245fa, R141b, R290, R600, R152a, and 134a) were studied with modifying the input pressure and temperature to the turbine. The results show that there are no significant changes taking place in the efficiency for these working fluids with overheating the inlet fluid to the turbine, i.e., efficiency is a weak function of temperature. However, with the increasing of pressure ratio in the turbine, the efficiency rises more sharply. The technical viability is shown of implementing this type of process for recovering low temperature heat resource.

  19. Application of Biomass from Palm Oil Mill for Organic Rankine Cycle to Generate Power in North Sumatera Indonesia

    Science.gov (United States)

    Nur, T. B.; Pane, Z.; Amin, M. N.

    2017-03-01

    Due to increasing oil and gas demand with the depletion of fossil resources in the current situation make efficient energy systems and alternative energy conversion processes are urgently needed. With the great potential of resources in Indonesia, make biomass has been considered as one of major potential fuel and renewable resource for the near future. In this paper, the potential of palm oil mill waste as a bioenergy source has been investigated. An organic Rankine cycle (ORC) small scale power plant has been preliminary designed to generate electricity. The working fluid candidates for the ORC plant based on the heat source temperature domains have been investigated. The ORC system with a regenerator has higher thermal efficiency than the basic ORC system. The study demonstrates the technical feasibility of ORC solutions in terms of resources optimizations and reducing of greenhouse gas emissions.

  20. Thermal-Economic Modularization of Small, Organic Rankine Cycle Power Plants for Mid-Enthalpy Geothermal Fields

    Directory of Open Access Journals (Sweden)

    Yodha Y. Nusiaputra

    2014-07-01

    Full Text Available The costs of the surface infrastructure in mid-enthalpy geothermal power systems, especially in remote areas, could be reduced by using small, modular Organic Rankine Cycle (ORC power plants. Thermal-economic criteria have been devised to standardize ORC plant dimensions for such applications. We designed a modular ORC to utilize various wellhead temperatures (120–170 °C, mass flow rates and ambient temperatures (−10–40 °C. A control strategy was developed using steady-state optimization, in order to maximize net power production at off-design conditions. Optimum component sizes were determined using specific investment cost (SIC minimization and mean cashflow (MCF maximization for three different climate scenarios. Minimizing SIC did not yield significant benefits, but MCF proved to be a much better optimization function.

  1. Experimental study on Rankine cycle evaporator efficiency intended for exhaust waste heat recovery of a diesel engine

    Directory of Open Access Journals (Sweden)

    Milkov Nikolay

    2017-01-01

    Full Text Available The paper pressents an experimental study of Rankine cycle evaporator efficiency. Water was chosen as the working fluid in the system. The experimental test was conducted on a test bench equipped with a burner charged by compressed fresh air. Generated exhaust gases parameters were previously determined over the diesel engine operating range (28 engine operating points were studied. For each test point the working fluid parameters (flow rate and evaporating pressure were varied. Thus, the enthalpy flow through the heat exchanger was determined. Heat exchanger was designed as 23 helical tubes are inserted. On the basis of the results, it was found out that efficiency varies from 25 % to 51,9 %. The optimal working fluid pressure is 20 bar at most of the operating points while the optimum fluid mass flow rate varies from 2 g/s to 10 g/s.

  2. Study on the Characteristics of Expander Power Output Used for Offsetting Pumping Work Consumption in Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Yu-Ting Wu

    2014-07-01

    Full Text Available The circulation pump in an organic Rankine cycle (ORC increases the pressure of the liquid working fluid from low condensing pressure to high evaporating pressure, and the expander utilizes the pressure difference to generate work. A portion of the expander output power is used to offset the consumed pumping work, and the rest of the expander power is exactly the net work produced by the ORC system. Because of the relatively great theoretical pumping work and very low efficiency of the circulation pump reported in previous papers, the characteristics of the expander power used for offsetting the pumping work need serious consideration. In particular, the present work examines those characteristics. It is found that the characteristics of the expander power used for offsetting the pumping work are satisfactory only under the condition that the working fluid absorbs sufficient heat in the evaporator and its specific volume at the evaporator outlet is larger than or equal to a threshold value.

  3. Structural optimisation of a high speed Organic Rankine Cycle generator using a genetic algorithm and a finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Palko, S. [Machines Division, ABB industry Oy, Helsinki (Finland)

    1997-12-31

    The aim in this work is to design a 250 kW high speed asynchronous generator using a genetic algorithm and a finite element method for Organic Rankine Cycle. The characteristics of the induction motors are evaluated using two-dimensional finite element method (FEM) The movement of the rotor and the non-linearity of the iron is included. In numerical field problems it is possible to find several local extreme for an optimisation problem, and therefore the algorithm has to be capable of determining relevant changes, and to avoid trapping to a local minimum. In this work the electromagnetic (EM) losses at the rated point are minimised. The optimisation includes the air gap region. Parallel computing is applied to speed up optimisation. (orig.) 2 refs.

  4. Energy, Exergy and Economic Evaluation Comparison of Small-Scale Single and Dual Pressure Organic Rankine Cycles Integrated with Low-Grade Heat Sources

    Directory of Open Access Journals (Sweden)

    Armando Fontalvo

    2017-09-01

    Full Text Available Low-grade heat sources such as solar thermal, geothermal, exhaust gases and industrial waste heat are suitable alternatives for power generation which can be exploited by means of small-scale Organic Rankine Cycle (ORC. This paper combines thermodynamic optimization and economic analysis to assess the performance of single and dual pressure ORC operating with different organic fluids and targeting small-scale applications. Maximum power output is lower than 45 KW while the temperature of the heat source varies in the range 100–200 °C. The studied working fluids, namely R1234yf, R1234ze(E and R1234ze(Z, are selected based on environmental, safety and thermal performance criteria. Levelized Cost of Electricity (LCOE and Specific Investment Cost (SIC for two operation conditions are presented: maximum power output and maximum thermal efficiency. Results showed that R1234ze(Z achieves the highest net power output (up to 44 kW when net power output is optimized. Regenerative ORC achieves the highest performance when thermal efficiency is optimized (up to 18%. Simple ORC is the most cost-effective among the studied cycle configurations, requiring a selling price of energy of 0.3 USD/kWh to obtain a payback period of 8 years. According to SIC results, the working fluid R1234ze(Z exhibits great potential for simple ORC when compared to conventional R245fa.

  5. Solar Cycle #24 and the Solar Dynamo

    Science.gov (United States)

    Schatten, Kenneth; Pesnell, W. Dean

    2007-01-01

    We focus on two solar aspects related to flight dynamics. These are the solar dynamo and long-term solar activity predictions. The nature of the solar dynamo is central to solar activity predictions, and these predictions are important for orbital planning of satellites in low earth orbit (LEO). The reason is that the solar ultraviolet (UV) and extreme ultraviolet (EUV) spectral irradiances inflate the upper atmospheric layers of the Earth, forming the thermosphere and exosphere through which these satellites orbit. Concerning the dynamo, we discuss some recent novel approaches towards its understanding. For solar predictions we concentrate on a solar precursor method, in which the Sun's polar field plays a major role in forecasting the next cycle s activity based upon the Babcock-Leighton dynamo. With a current low value for the Sun s polar field, this method predicts that solar cycle #24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 130 plus or minus 30 (2 sigma), in the 2013 timeframe. One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. Concomitant effects of low solar activity upon satellites in LEO will need to be considered, such as enhancements in orbital debris. Support for our prediction of a low solar cycle #24 is borne out by the lack of new cycle sunspots at least through the first half of 2007. Usually at the present epoch in the solar cycle (approx. 7+ years after the last solar maximum), for a normal size following cycle, new cycle sunspots would be seen. The lack of their appearance at this time is only consistent with a low cycle #24. Polar field observations of a weak magnitude are consistent with unusual structures seen in the Sun s corona. Polar coronal holes are the hallmarks of the Sun's open field structures. At present, it appears that the polar coronal holes are relatively weak, and there have been many equatorial coronal holes

  6. Solar Cycle 24 and the Solar Dynamo

    Science.gov (United States)

    Pesnell, W. D.; Schatten, K.

    2007-01-01

    We will discuss the polar field precursor method for solar activity prediction, which predicts cycle 24 will be significantly lower than recent activity cycles, and some new ideas rejuvenating Babcock's shallow surface dynamo. The polar field precursor method is based on Babcock and Leighton's dynamo models wherein the polar field at solar minimum plays a major role in generating the next cycle's toroidal field and sunspots. Thus, by examining the polar fields of the Sun near solar minimum, a forecast for the next cycle's activity is obtained. With the current low value for the Sun's polar fields, this method predicts solar cycle 24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 135 plus or minus 35 (2 sigma), in the 2012-2013 timeframe (equivalent to smoothed Rz near 80 plus or minus 35 [2 sigma]). One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. We discuss unusual behavior in the Sun's polar fields that support this prediction. Normally, the solar precursor method is consistent with the geomagnetic precursor method, wherein geomagnetic variations are thought to be a good measure of the Sun's polar field strength. Because of the unusual polar field, the Earth does not appear to be currently bathed in the Sun's extended polar field (the interplanetary field), hence negating the primal cause behind the geomagnetic precursor technique. We also discuss how percolation may support Babcock's original shallow solar dynamo. In this process ephemeral regions from the solar magnetic carpet, guided by shallow surface fields, may collect to form pores and sunspots.

  7. Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling, heating and power production

    Energy Technology Data Exchange (ETDEWEB)

    Al-Sulaiman, Fahad A. [Mechanical and Aerospace Engineering Department, Carleton University 1125 Colonel By Drive, Ottawa, Ontario (Canada); Dincer, Ibrahim [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology 2000 Simcoe Street North, Oshawa, Ontario (Canada); Hamdullahpur, Feridun [Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario (Canada)

    2010-04-15

    The study examines a novel system that combined a solid oxide fuel cell (SOFC) and an organic Rankine cycle (ORC) for cooling, heating and power production (trigeneration) through exergy analysis. The system consists of an SOFC, an ORC, a heat exchanger and a single-effect absorption chiller. The system is modeled to produce a net electricity of around 500 kW. The study reveals that there is 3-25% gain on exergy efficiency when trigeneration is used compared with the power cycle only. Also, the study shows that as the current density of the SOFC increases, the exergy efficiencies of power cycle, cooling cogeneration, heating cogeneration and trigeneration decreases. In addition, it was shown that the effect of changing the turbine inlet pressure and ORC pump inlet temperature are insignificant on the exergy efficiencies of the power cycle, cooling cogeneration, heating cogeneration and trigeneration. Also, the study reveals that the significant sources of exergy destruction are the ORC evaporator, air heat exchanger at the SOFC inlet and heating process heat exchanger. (author)

  8. Selection of cooling fluid for an organic Rankine cycle unit recovering heat on a container ship sailing in the Arctic region

    DEFF Research Database (Denmark)

    Suárez de la Fuente, Santiago; Larsen, Ulrik; Pierobon, Leonardo

    2017-01-01

    air as coolant. This paper explores the use of two different coolants, air and seawater, for an organic Rankine cycle (ORC) unit using the available waste heat in the scavenge air system of a container ship navigating in Arctic Circle. Using a two-step single objective optimisation process, detailed...

  9. Assessment of solar-powered cooling of buildings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Curran, H.M.

    1975-04-01

    Three solar-powered cooling concepts are analyzed and evaluated. These are: (1) the solar Rankine concept in which a Rankine cycle driven by solar energy is used to drive a vapor compression refrigeration machine, (2) the solar-assisted Rankine concept in which a Rankine cycle driven by both solar energy and fuel combustion is used to drive a vapor compression refrigeration machine, and (3) the solar absorption concept in which solar energy is used to drive an absorption refrigeration machine. These concepts are compared on the bases of coefficient of performance, requirements for primary fuel input, and economic considerations. Conclusions and recommendations are presented. (WHK)

  10. Organic Rankine-cycle power systems working fluids study: Topical report No. 1: Fluorinol 85. [85 mole % trofluoroethanol in water

    Energy Technology Data Exchange (ETDEWEB)

    Jain, M.L.; Demirgian, J.C.; Cole, R.L.

    1986-09-01

    An investigation to experimentally determine the thermal stability limits and degradation rates of Fluorinol 85 as a function of maximum cycle temperatures was initiated in 1982. Following the design and construction of a dynamic test loop capable of simulating the thermodynamic conditions of possible prototypical organic Rankine-cycle (ORC) power systems, several test runs were completed. The Fluorinol 85 test loop was operated for about 3800 h, covering a temperature range of 525-600/sup 0/F. Both liquid and noncondensable vapor (gas) samples were drawn periodically and analyzed using capillary column gas chromatography, gas chromatography/mass spectrometry and mass spectrometry. Results indicate that Fluorinol 85 would not decompose significantly over an extended period of time, up to a maximum cycle temperature of 550/sup 0/F. However, 506-h data at 575/sup 0/F show initiation of significant degradation. The 770-h data at 600/sup 0/F, using a fresh charge of Fluorinol 85, indicate an annual degradation rate of more than 17.2%. The most significant degradation product observed is hydrofluoric acid, which could cause severe corrosion in an ORC system. Devices to remove the hydrofluoric acid and prevent extreme temperature excursions are necessary for any ORC system using Fluorinol 85 as a working fluid.

  11. Solar Cycle 25: Another Moderate Cycle?

    Science.gov (United States)

    Cameron, R. H.; Jiang, J.; Schüssler, M.

    2016-06-01

    Surface flux transport simulations for the descending phase of Cycle 24 using random sources (emerging bipolar magnetic regions) with empirically determined scatter of their properties provide a prediction of the axial dipole moment during the upcoming activity minimum together with a realistic uncertainty range. The expectation value for the dipole moment around 2020 (2.5 ± 1.1 G) is comparable to that observed at the end of Cycle 23 (about 2 G). The empirical correlation between the dipole moment during solar minimum and the strength of the subsequent cycle thus suggests that Cycle 25 will be of moderate amplitude, not much higher than that of the current cycle. However, the intrinsic uncertainty of such predictions resulting from the random scatter of the source properties is considerable and fundamentally limits the reliability with which such predictions can be made before activity minimum is reached.

  12. Conversion of Low Quality Waste Heat to Electric Power with Small-Scale Organic Rankine Cycle (ORC) Engine/Generator Technology

    Science.gov (United States)

    2016-08-01

    Small-Scale W912H0-12-C-0059 Organic Rankine Cycle (ORC) Engine /Generator Technology 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( SI 5d...same fuel input. This value is used for calculation of Greenhouse Gas (GHG) reductions and economic results. Life cycle economics of the system are...associated with engine and other electric generator systems , waste heat from steam or heat distribution, waste heat from boiler exhausts, and heat

  13. Performance Analysis and Working Fluid Selection of a Supercritical Organic Rankine Cycle for Low Grade Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Yourong Li

    2012-08-01

    Full Text Available The performance analysis of a supercritical organic Rankine cycle system driven by exhaust heat using 18 organic working fluids is presented. Several parameters, such as the net power output, exergy efficiency, expander size parameter (SP, and heat exchanger requirement of evaporator and the condenser, were used to evaluate the performance of this recovery cycle and screen the working fluids. The results reveal that in most cases, raising the expander inlet temperature is helpful to improve the net power output and the exergy efficiency. However, the effect of the expander inlet pressure on those parameters is related to the expander inlet temperature and working fluid used. Either lower expander inlet temperature and pressure, or higher expander inlet temperature and pressure, generally makes the net power output more. Lower expander inlet temperature results in larger total heat transfer requirement and expander size. According to the screening criteria of both the higher output and the lower investment, the following working fluids for the supercritical ORC system are recommended: R152a and R143a.

  14. About the prediction of Organic Rankine Cycles performances integrating local high-fidelity turbines simulation and uncertainties

    Science.gov (United States)

    Congedo, Pietro; de Santis, Dante; Geraci, Gianluca

    2014-11-01

    Organic Rankine Cycles (ORCs) are of key-importance when exploiting energy systems with a high efficiency. The variability of renewable heat sources makes more complex the global performance prediction of a cycle. The thermodynamic properties of the complex fluids used in the process are another source of uncertainty. The need for a predictive and robust simulation tool of ORCs remains strong. A high-order accurate Residual Distribution scheme has been recently developed for efficiently computing a turbine stage on unstructured grids, including advanced equations of state in order to take into account the complex fluids used in ORCs. Advantages in using high-order methods have been highlighted, in terms of number of degrees of freedom and computational time used, for computing the numerical solution with a greater accuracy compared to lower-order methods, even for shocked flows. The objective of this work is to quantify the numerical error with respect to the various sources of uncertainty of the ORC turbine, thus providing a very high-fidelity prediction in the coupled physical/stochastic space.

  15. Thermo-Economic Analysis of Zeotropic Mixtures and Pure Working Fluids in Organic Rankine Cycles for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Florian Heberle

    2016-03-01

    Full Text Available We present a thermo-economic analysis of an Organic Rankine Cycle (ORC for waste heat recovery. A case study for a heat source temperature of 150 °C and a subcritical, saturated cycle is performed. As working fluids R245fa, isobutane, isopentane, and the mixture of isobutane and isopentane are considered. The minimal temperature difference in the evaporator and the condenser, as well as the mixture composition are chosen as variables in order to identify the most suitable working fluid in combination with optimal process parameters under thermo-economic criteria. In general, the results show that cost-effective systems have a high minimal temperature difference ΔTPP,C at the pinch-point of the condenser and a low minimal temperature difference ΔTPP,E at the pinch-point of the evaporator. Choosing isobutane as the working fluid leads to the lowest costs per unit exergy with 52.0 €/GJ (ΔTPP,E = 1.2 K; ΔTPP,C = 14 K. Considering the major components of the ORC, specific costs range between 1150 €/kW and 2250 €/kW. For the zeotropic mixture, a mole fraction of 90% isobutane leads to the lowest specific costs per unit exergy. A further analysis of the ORC system using isobutane shows high sensitivity of the costs per unit exergy for the selected cost estimation methods and for the isentropic efficiency of the turbine.

  16. Economic assessment of greenhouse gas reduction through low-grade waste heat recovery using organic Rankine cycle (ORC)

    Energy Technology Data Exchange (ETDEWEB)

    Imran, Muhammad; Park, Byung Sik; Kim, Hyouck Ju; Usman, Muhammad [University of Science and Technology, Daejeon (Korea, Republic of); Lee, Dong Hyun [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2015-02-15

    Low-grade waste heat recovery technologies reduce the environmental impact of fossil fuels and improve overall efficiency. This paper presents the economic assessment of greenhouse gas (GHG) reduction through waste heat recovery using organic Rankine cycle (ORC). The ORC engine is one of the mature low temperature heat engines. The low boiling temperature of organic working fluid enables ORC to recover low-temperature waste heat. The recovered waste heat is utilized to produce electricity and hot water. The GHG emissions for equivalent power and hot water from three fossil fuels-coal, natural gas, and diesel oil-are estimated using the fuel analysis approach and corresponding emission factors. The relative decrease in GHG emission is calculated using fossil fuels as the base case. The total cost of the ORC system is used to analyze the GHG reduction cost for each of the considered fossil fuels. A sensitivity analysis is also conducted to investigate the effect of the key parameter of the ORC system on the cost of GHG reduction. Throughout the 20-year life cycle of the ORC plant, the GHG reduction cost for R245fa is 0.02 $/kg to 0.04 $/kg and that for pentane is 0.04 $/kg to 0.05 $/kg. The working fluid, evaporation pressure, and pinch point temperature difference considerably affect the GHG emission.

  17. The dish-Rankine SCSTPE program (Engineering Experiment no. 1)

    Science.gov (United States)

    Pons, R. L.; Grigsby, C. E.

    1980-05-01

    Activities planned for phase 2 Of the Small Community Solar Thermal Power Experiment (PFDR) program are summarized with emphasis on a dish-Rankine point focusing distributed receiver solar thermal electric system. Major design efforts include: (1) development of an advanced concept indirect-heated receiver;(2) development of hardware and software for a totally unmanned power plant control system; (3) implementation of a hybrid digital simulator which will validate plant operation prior to field testing; and (4) the acquisition of an efficient organic Rankine cycle power conversion unit. Preliminary performance analyses indicate that a mass-produced dish-Rankine PFDR system is potentially capable of producing electricity at a levelized busbar energy cost of 60 to 70 mills per KWh and with a capital cost of about $1300 per KW.

  18. Modeling and analysis of a transcritical rankine power cycle with a low grade heat source

    DEFF Research Database (Denmark)

    Nguyen, Chan; Veje, Christian

    efficiency, exergetic efficiency and specific net power output. A generic cycle configuration has been used for analysis of a geothermal energy heat source. This model has been validated against similar calculations using industrial waste heat as the energy source. Calculations are done with fixed...

  19. Coupling of Modular High-Temperature Gas-Cooled Reactor with Supercritical Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Shutang Zhu

    2008-01-01

    Full Text Available This paper presents investigations on the possible combination of modular high-temperature gas-cooled reactor (MHTGR technology with the supercritical (SC steam turbine technology and the prospective deployments of the MHTGR SC power plant. Energy conversion efficiency of steam turbine cycle can be improved by increasing the main steam pressure and temperature. Investigations on SC water reactor (SCWR reveal that the development of SCWR power plants still needs further research and development. The MHTGR SC plant coupling the existing technologies of current MHTGR module design with operation experiences of SC FPP will achieve high cycle efficiency in addition to its inherent safety. The standard once-reheat SC steam turbine cycle and the once-reheat steam cycle with life-steam have been studied and corresponding parameters were computed. Efficiencies of thermodynamic processes of MHTGR SC plants were analyzed, while comparisons were made between an MHTGR SC plant and a designed advanced passive PWR - AP1000. It was shown that the net plant efficiency of an MHTGR SC plant can reach 45% or above, 30% higher than that of AP1000 (35% net efficiency. Furthermore, an MHTGR SC plant has higher environmental competitiveness without emission of greenhouse gases and other pollutants.

  20. Design of organic Rankine cycle power systems accounting for expander performance

    DEFF Research Database (Denmark)

    La Seta, Angelo; Andreasen, Jesper Graa; Pierobon, Leonardo

    2015-01-01

    -loaded stages in supersonic flow regimes. This paper proposes a design method where the conventional cycle analysis is combined with calculations of the maximum expander performance using a validated mean-line design tool. The high computational cost of the turbine optimization is tackled building a model which...

  1. Analysis and optimization of three main organic Rankine cycle configurations using a set of working fluids with different thermodynamic behaviors

    Science.gov (United States)

    Hamdi, Basma; Mabrouk, Mohamed Tahar; Kairouani, Lakdar; Kheiri, Abdelhamid

    2017-06-01

    Different configurations of organic Rankine cycle (ORC) systems are potential thermodynamic concepts for power generation from low grade heat. The aim of this work is to investigate and optimize the performances of the three main ORC systems configurations: basic ORC, ORC with internal heat exchange (IHE) and regenerative ORC. The evaluation for those configurations was performed using seven working fluids with typical different thermodynamic behaviours (R245fa, R601a, R600a, R227ea, R134a, R1234ze and R1234yf). The optimization has been performed using a genetic algorithm under a comprehensive set of operative parameters such as the fluid evaporating temperature, the fraction of flow rate or the pressure at the steam extracting point in the turbine. Results show that there is no general best ORC configuration for all those fluids. However, there is a suitable configuration for each fluid. Contribution to the topical issue "Materials for Energy harvesting, conversion and storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  2. Technical Analysis of Organic Rankine Cycle System Using Low-Temperature Source to Generate Electricity in Ship

    Directory of Open Access Journals (Sweden)

    Akram Faisal

    2017-01-01

    Full Text Available Nowadays, the shipping sector has growth rapidly as followed by the increasing of world population and the demands for public transportation via sea. This issue entails the large attention on emission, energy efficiency and fuel consumption on the ship. Waste Heat Recovery (WHR is one of the solution to overcome the mentioned issue and one of the WHR method is by installing Organic Rankine Cycle (ORC system in ship. ORC demonstrate to recover and exploit the low temperature waste heat rejected by the ship power generation plant. The main source of heat to be utilized is obtained from container ship (7900 kW BHP, DWT 10969 mt ship jacket water cooling system and use R-134a as a refrigerant. The main equipment consists of evaporator, condenser, pump and steam turbine to generate the electricity. The main objective is to quantifying the estimation of electrical power which can be generated at typical loads of the main engine. As the final result of analysis, the ORC system is able to generate the electricity power ranged from 77,5% - 100% of main engine load producing power averagely 57,69 kW.

  3. Study on Mixed Working Fluids with Different Compositions in Organic Rankine Cycle (ORC Systems for Vehicle Diesel Engines

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2014-08-01

    Full Text Available One way to increase the thermal efficiency of vehicle diesel engines is to recover waste heat by using an organic Rankine cycle (ORC system. Tests were conducted to study the running performances of diesel engines in the whole operating range. The law of variation of the exhaust energy rate under various engine operating conditions was also analyzed. A diesel engine-ORC combined system was designed, and relevant evaluation indexes proposed. The variation of the running performances of the combined system under various engine operating conditions was investigated. R245fa and R152a were selected as the components of the mixed working fluid. Thereafter, six kinds of mixed working fluids with different compositions were presented. The effects of mixed working fluids with different compositions on the running performances of the combined system were revealed. Results show that the running performances of the combined system can be improved effectively when mass fraction R152a in the mixed working fluid is high and the engine operates with high power. For the mixed working fluid M1 (R245fa/R152a, 0.1/0.9, by mass fraction, the net power output of the combined system reaches the maximum of 34.61 kW. Output energy density of working fluid (OEDWF, waste heat recovery efficiency (WHRE, and engine thermal efficiency increasing ratio (ETEIR all reach their maximum values at 42.7 kJ/kg, 10.90%, and 11.29%, respectively.

  4. Modelling the Influence of Climate on the Performance of the Organic Rankine Cycle for Industrial Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Ivan Korolija

    2016-05-01

    Full Text Available This paper describes a study of the relative influences of different system design decisions upon the performance of an organic Rankine cycle (ORC used to generate electricity from foundry waste heat. The design choices included concern the working fluid, whether to use a regenerator and the type of condenser. The novelty of the research lies in its inclusion of the influence of both the ORC location and the auxiliary electricity used by the pumps and fans in the ORC power system. Working fluids suitable for high temperature applications are compared, including three cyclic siloxanes, four linear siloxanes and three aromatic fluids. The ORC is modelled from first principles and simulation runs carried out using weather data for 106 European locations and a heat input profile that was derived from empirical data. The impact of design decisions upon ORC nominal efficiency is reported followed by the impact upon annual system efficiency in which variations in heat input and the condition of outdoor air over a year are considered. The main conclusion is that the location can have a significant impact upon the efficiency of ORC systems due to the influence of climate upon the condenser and auxiliary electricity requirements.

  5. Performance analysis of exhaust heat recovery using organic Rankine cycle in a passenger car with a compression ignition engine

    Science.gov (United States)

    Ghilvacs, M.; Prisecaru, T.; Pop, H.; Apostol, V.; Prisecaru, M.; Pop, E.; Popescu, Gh; Ciobanu, C.; Mohanad, A.; Alexandru, A.

    2016-08-01

    Compression ignition engines transform approximately 40% of the fuel energy into power available at the crankshaft, while the rest part of the fuel energy is lost as coolant, exhaust gases and other waste heat. An organic Rankine cycle (ORC) can be used to recover this waste heat. In this paper, the characteristics of a system combining a compression ignition engine with an ORC which recover the waste heat from the exhaust gases are analyzed. The performance map of the diesel engine is measured on an engine test bench and the heat quantities wasted by the exhaust gases are calculated over the engine's entire operating region. Based on this data, the working parameters of ORC are defined, and the performance of a combined engine-ORC system is evaluated across this entire region. The results show that the net power of ORC is 6.304kW at rated power point and a maximum of 10% reduction in brake specific fuel consumption can be achieved.

  6. Performance of Siloxane Mixtures in a High-Temperature Organic Rankine Cycle Considering the Heat Transfer Characteristics during Evaporation

    Directory of Open Access Journals (Sweden)

    Theresa Weith

    2014-08-01

    Full Text Available The application of the Organic Rankine Cycle to high temperature heat sources is investigated on the case study of waste heat recovery from a selected biogas plant. Two different modes of operation are distinguished: pure electric power and combined heat and power generation. The siloxanes hexamethyldisiloxane (MM and octamethyltrisiloxane (MDM are chosen as working fluids. Moreover, the effect of using mixtures of these components is analysed. Regarding pure electricity generation, process simulations using the simulation tool Aspen Plus show an increase in second law efficiency of 1.3% in case of 97/03 wt % MM/MDM-mixture, whereas for the combined heat and power mode a 60/40 wt % MM/MDM-mixture yields the highest efficiency with an increase of nearly 3% compared to most efficient pure fluid. Next to thermodynamic analysis, measurements of heat transfer coefficients of these siloxanes as well as their mixtures are conducted and Kandlikar’s correlation is chosen to describe the results. Based on that, heat exchanger areas for preheater and evaporator are calculated in order to check whether the poorer heat transfer characteristics of mixtures devalue their efficiency benefit due to increased heat transfer areas. Results show higher heat transfer areas of 0.9% and 14%, respectively, compared to MM.

  7. Direct generation of steam and electricity in a open cycle Rankine; Generacion directa de vapor y electricidad en un ciclo Rankine abierto

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Alvaro; Almanza, Rafael; Flores, Vicente [UNAM, Mexico, D.F. (Mexico)

    2000-07-01

    In this work the results of the experimental tests about steam and electricity generation are presented. This work carried out in the solar thermal power plant of the Institute of Engineering with direct steam generation in parabolic through. The global efficiency of the system is studied as for the conversion solar-electricity. The efficiency is determined and it describes the obtaining process of the main plant components, like they are, the solar steam generator, the steam motor and the electric generator. [Spanish] En este trabajo se presentan los resultados de las pruebas experimentales de la generacion de vapor y electricidad realizadas en la planta solar del Instituto de Ingenieria con generacion directa de vapor en concentradores de canal parabolico. Se estudia la eficiencia global del sistema en cuanto a la conversion de energia solar-electricidad. Se determina la eficiencia y describe el proceso de obtencion de la misma y de los principales componentes de la planta como son, el generador de vapor solar, el motor de pistones de vapor y el alternador electrico.

  8. Coupling of Modular High-Temperature Gas-Cooled Reactor with Supercritical Rankine Cycle

    OpenAIRE

    Shutang Zhu; Ying Tang; Kun Xiao; Zuoyi Zhang

    2008-01-01

    This paper presents investigations on the possible combination of modular high-temperature gas-cooled reactor (MHTGR) technology with the supercritical (SC) steam turbine technology and the prospective deployments of the MHTGR SC power plant. Energy conversion efficiency of steam turbine cycle can be improved by increasing the main steam pressure and temperature. Investigations on SC water reactor (SCWR) reveal that the development of SCWR power plants still needs further research and develop...

  9. Optimization of Biomass-Fuelled Combined Cooling, Heating and Power (CCHP) Systems Integrated with Subcritical or Transcritical Organic Rankine Cycles (ORCs)

    OpenAIRE

    Daniel Maraver; Sylvain Quoilin; Javier Royo

    2014-01-01

    This work is focused on the thermodynamic optimization of Organic Rankine Cycles (ORCs), coupled with absorption or adsorption cooling units, for combined cooling heating and power (CCHP) generation from biomass combustion. Results were obtained by modelling with the main aim of providing optimization guidelines for the operating conditions of these types of systems, specifically the subcritical or transcritical ORC, when integrated in a CCHP system to supply typical heating and cooling deman...

  10. Piping design considerations in a solar-Rankine power plant. [pipe size

    Science.gov (United States)

    Lansing, F. L.

    1977-01-01

    Two of the main parameters in sizing the piping of a solar power plant are the working pressure of the vapor leaving the solar collectors, and the type of working fluid used. Numerical examples for each case are given using the graphical Moody friction charts and the analytical Darcy-Weisbach equation. Different working pressures of steam vapor in the solar collector-turbine pipe connection indicate their major role in the design. The size variation was found not to be in linear proportion to vapor density variations. On the other hand, high molecular weight organic fluids such as R-11 and R-113, when compared with water, show insignificant changes in piping sizes.

  11. Microfabricated rankine cycle steam turbine for power generation and methods of making the same

    Science.gov (United States)

    Frechette, Luc (Inventor); Muller, Norbert (Inventor); Lee, Changgu (Inventor)

    2009-01-01

    In accordance with the present invention, an integrated micro steam turbine power plant on-a-chip has been provided. The integrated micro steam turbine power plant on-a-chip of the present invention comprises a miniature electric power generation system fabricated using silicon microfabrication technology and lithographic patterning. The present invention converts heat to electricity by implementing a thermodynamic power cycle on a chip. The steam turbine power plant on-a-chip generally comprises a turbine, a pump, an electric generator, an evaporator, and a condenser. The turbine is formed by a rotatable, disk-shaped rotor having a plurality of rotor blades disposed thereon and a plurality of stator blades. The plurality of stator blades are interdigitated with the plurality of rotor blades to form the turbine. The generator is driven by the turbine and converts mechanical energy into electrical energy.

  12. Flow boiling heat transfer and pressure drop characteristics of R134a, R1234yf and R1234ze in a plate heat exchanger for organic Rankine cycle units

    DEFF Research Database (Denmark)

    Zhang, Ji; Desideri, Adriano; Kærn, Martin Ryhl

    2017-01-01

    . This paper is aimed at obtaining flow boiling heat transfer and pressure drop characteristics in a plate heat exchanger under the working conditions prevailing in the evaporator of organic Rankine cycle units. Two hydrofluoroolefins R1234yf and R1234ze, and one hydrofluorocarbon R134a, were selected......The optimal design of the evaporator is one of the key issues to improve the efficiency and economics of organic Rankine cycle units. The first step in studying the evaporator design is to understand the thermal-hydraulic performance of the working fluid in the evaporator of organic Rankine cycles......, respectively. The working conditions covered relatively high saturation temperatures (corresponding reduced pressures of 0.35-0.74), which are prevailing in organic Rankine cycles yet absent in the open literature. The experimental data were compared with existing correlations, and new correlations were...

  13. Thermoeconomic optimization of a Kalina cycle for a central receiver concentrating solar power plant

    DEFF Research Database (Denmark)

    Modi, Anish; Kærn, Martin Ryhl; Andreasen, Jesper Graa

    2016-01-01

    with direct vapour generation and without storage. The use of the ammonia-water mixture as the power cycle working fluid with non-isothermal evaporation and condensation presents the potential to improve the overall performance of the plant. This however comes at a price of requiring larger heat exchangers......Concentrating solar power plants use a number of reflecting mirrors to focus and convert the incident solar energy to heat, and a power cycle to convert this heat into electricity. This paper evaluates the use of a high temperature Kalina cycle for a central receiver concentrating solar power plant...... because of lower thermal pinch and heat transfer degradation for mixtures as compared with using a pure fluid in a conventional steam Rankine cycle, and the necessity to use a complex cycle arrangement. Most of the previous studies on the Kalina cycle focused solely on the thermodynamic aspects...

  14. Effect of variable heat input on the heat transfer characteristics in an Organic Rankine Cycle system

    Directory of Open Access Journals (Sweden)

    Aboaltabooq Mahdi Hatf Kadhum

    2016-01-01

    Full Text Available This paper analyzes the heat transfer characteristics of an ORC evaporator applied on a diesel engine using measured data from experimental work such as flue gas mass flow rate and flue gas temperature. A mathematical model was developed with regard to the preheater, boiler and the superheater zones of a counter flow evaporator. Each of these zones has been subdivided into a number of cells. The hot source of the ORC cycle was modeled. The study involves the variable heat input's dependence on the ORC system's heat transfer characteristics, with especial emphasis on the evaporator. The results show that the refrigerant's heat transfer coefficient has a higher value for a 100% load from the diesel engine, and decreases with the load decrease. Also, on the exhaust gas side, the heat transfer coefficient decreases with the decrease of the load. The refrigerant's heat transfer coefficient increased normally with the evaporator's tube length in the preheater zone, and then increases rapidly in the boiler zone, followed by a decrease in the superheater zone. The exhaust gases’ heat transfer coefficient increased with the evaporator’ tube length in all zones. The results were compared with result by other authors and were found to be in agreement.

  15. Development of an Organic Rankine Cycle system for exhaust energy recovery in internal combustion engines

    Science.gov (United States)

    Cipollone, Roberto; Bianchi, Giuseppe; Gualtieri, Angelo; Di Battista, Davide; Mauriello, Marco; Fatigati, Fabio

    2015-11-01

    Road transportation is currently one of the most influencing sectors for global energy consumptions and CO2 emissions. Nevertheless, more than one third of the fuel energy supplied to internal combustion engines is still rejected to the environment as thermal waste at the exhaust. Therefore, a greater fuel economy might be achieved recovering the energy from exhaust gases and converting it into useful power on board. In the current research activity, an ORC-based energy recovery system was developed and coupled with a diesel engine. The innovative feature of the recovery power unit relies upon the usage of sliding vane rotary machines as pump and expander. After a preliminary exhaust gas mapping, which allowed to assess the magnitude of the thermal power to be recovered, a thermodynamic analysis was carried out to design the ORC system and the sliding vane machines using R236fa as working fluid. An experimental campaign was eventually performed at different operating regimes according to the ESC procedure and investigated the recovery potential of the power unit at design and off-design conditions. Mechanical power recovered ranged from 0.7 kW up to 1.9 kW, with an overall cycle efficiency from 3.8% up to 4.8% respectively. These results candidate sliding vane machines as efficient and reliable devices for waste heat recovery applications.

  16. Final Report: Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna Post [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zia, Jalal [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-09-01

    This research and development (R&D) project exemplifies a shared public private commitment to advance the development of energy efficient industrial technologies that will reduce the U.S. dependence upon foreign oil, provide energy savings and reduce greenhouse gas emissions. The purpose of this project was to develop and demonstrate a Direct Evaporator for the Organic Rankine Cycle (ORC) for the conversion of waste heat from gas turbine exhaust to electricity. In conventional ORCs, the heat from the exhaust stream is transferred indirectly to a hydrocarbon based working fluid by means of an intermediate thermal oil loop. The Direct Evaporator accomplishes preheating, evaporation and superheating of the working fluid by a heat exchanger placed within the exhaust gas stream. Direct Evaporation is simpler and up to 15% less expensive than conventional ORCs, since the secondary oil loop and associated equipment can be eliminated. However, in the past, Direct Evaporation has been avoided due to technical challenges imposed by decomposition and flammability of the working fluid. The purpose of this project was to retire key risks and overcome the technical barriers to implementing an ORC with Direct Evaporation. R&D was conducted through a partnership between the Idaho National Laboratory (INL) and General Electric (GE) Global Research Center (GRC). The project consisted of four research tasks: (1) Detailed Design & Modeling of the ORC Direct Evaporator, (2) Design and Construction of Partial Prototype Direct Evaporator Test Facility, (3) Working Fluid Decomposition Chemical Analyses, and (4) Prototype Evaluation. Issues pertinent to the selection of an ORC working fluid, along with thermodynamic and design considerations of the direct evaporator, were identified. The FMEA (Failure modes and effects analysis) and HAZOP (Hazards and operability analysis) safety studies performed to mitigate risks are described, followed by a discussion of the flammability analysis of the

  17. Comparison of a Novel Organic-Fluid Thermofluidic Heat Converter and an Organic Rankine Cycle Heat Engine

    Directory of Open Access Journals (Sweden)

    Christoph J.W. Kirmse

    2016-06-01

    Full Text Available The Up-THERM heat converter is an unsteady, two-phase thermofluidic oscillator that employs an organic working fluid, which is currently being considered as a prime-mover in small- to medium-scale combined heat and power (CHP applications. In this paper, the Up-THERM heat converter is compared to a basic (sub-critical, non-regenerative organic Rankine cycle (ORC heat engine with respect to their power outputs, thermal efficiencies and exergy efficiencies, as well as their capital and specific costs. The study focuses on a pre-specified Up-THERM design in a selected application, a heat-source temperature range from 210 °C to 500 °C and five different working fluids (three n-alkanes and two refrigerants. A modeling methodology is developed that allows the above thermo-economic performance indicators to be estimated for the two power-generation systems. For the chosen applications, the power output of the ORC engine is generally higher than that of the Up-THERM heat converter. However, the capital costs of the Up-THERM heat converter are lower than those of the ORC engine. Although the specific costs (£/kW of the ORC engine are lower than those of the Up-THERM converter at low heat-source temperatures, the two systems become progressively comparable at higher temperatures, with the Up-THERM heat converter attaining a considerably lower specific cost at the highest heat-source temperatures considered.

  18. Performance Evaluation of HP/ORC (Heat Pump/Organic Rankine Cycle) System with Optimal Control of Sensible Thermal Storage

    DEFF Research Database (Denmark)

    Do Carmo, Carolina Madeira Ramos; Dumont, Olivier; Nielsen, Mads Pagh

    2016-01-01

    energy in periods of no thermal energy demand and reverses the heat pump cycle to supply electrical power. A dynamic model based on empirical data of this system is used to determine the annual performance. Furthermore, this work assesses the benefits of different control strategies that address...... of the users. Results show that real load control logic can lessen the adverse effects of cycling in the compressor of the system as well as increase the thermal demand (up to 33%) and the electrical demand (max. 8.4%) covered by renewable energy (solar). However, the extension of these improvements is highly...

  19. Design and development of an automotive organic Rankine-cycle powerplant with a reciprocating expander. Final report. Volume II. Detailed discussion

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-01

    Work performed for the design and development of an organic Rankine-cycle engine for automobile propulsion is reported. An automotive power plant using an organic Rankine-cycle system with a reciprocating expander has been designed, built, and tested on an engine dynamometer in a preprototype configuration. The system is designed to provide performance approximately equivalent to that of a 351-CID internal combustion engine in the reference car, a 1972 Ford Galaxie 500. A description of the preprototype system, major components, and results from component and system testing are presented. The fuel economy based on steady-state measurements is estimated to be 10.2 mpg over the federal driving cycle with a maximum of 16 mpg at 30 mph. Projections of steady-state emission measurements show compliance with the 1970 Clean Air Act standards for 1978 vehicle emissions. The levels for unburned hydrocarbons, carbon monoxide, and oxides of nitrogen were 41 percent, 6 percent, and 69 percent of the standards, respectively. At the conclusion of the preprototype phase of the program, a prototype design effort was initiated to upgrade and improve the performance of the preprototype system. The reference vehicle for this prototype design is a compact car in the weight class of a 1974 Ford Pinto. The results of this design study, including performance projections, are also presented.

  20. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 7: Metal vapor Rankine topping-steam bottoming cycles. [energy conversion efficiency in electric power plants

    Science.gov (United States)

    Deegan, P. B.

    1976-01-01

    Adding a metal vapor Rankine topper to a steam cycle was studied as a way to increase the mean temperature at which heat is added to the cycle to raise the efficiency of an electric power plant. Potassium and cesium topping fluids were considered. Pressurized fluidized bed or pressurized (with an integrated low-Btu gasifier) boilers were assumed. Included in the cycles was a pressurizing gas turbine with its associated recuperator, and a gas economizer and feedwater heater. One of the ternary systems studied shows plant efficiency of 42.3% with a plant capitalization of $66.7/kW and a cost of electricity of 8.19 mills/MJ (29.5 mills/kWh).

  1. Energy and exergy analysis of the Kalina cycle for use in concentrated solar power plants with direct steam generation

    DEFF Research Database (Denmark)

    Knudsen, Thomas; Clausen, Lasse Røngaard; Haglind, Fredrik

    2014-01-01

    In concentrated solar power plants using direct steam generation, the usage of a thermal storage unit based only on sensible heat may lead to large exergetic losses during charging and discharging, due to a poor matching of the temperature profiles. By the use of the Kalina cycle, in which...... with direct steam generation. The following two scenarios were addressed using energy and exergy analysis: generating power using heat from only the receiver and using only stored heat. For each of these scenarios comparisons were made for mixture concentrations ranging from 0.1 mole fraction of ammonia to 0.......9, and compared to the conventional Rankine cycle. This comparison was then also carried out for various turbine inlet pressures (100 bar to critical pressures). The results suggest that there would be no benefit from using a Kalina cycle instead of a Rankine cycle when generating power from heat taken directly...

  2. Performance comparison of different thermodynamic cycles for an innovative central receiver solar power plant

    Science.gov (United States)

    Reyes-Belmonte, Miguel A.; Sebastián, Andrés; González-Aguilar, José; Romero, Manuel

    2017-06-01

    The potential of using different thermodynamic cycles coupled to a solar tower central receiver that uses a novel heat transfer fluid is analyzed. The new fluid, named as DPS, is a dense suspension of solid particles aerated through a tubular receiver used to convert concentrated solar energy into thermal power. This novel fluid allows reaching high temperatures at the solar receiver what opens a wide range of possibilities for power cycle selection. This work has been focused into the assessment of power plant performance using conventional, but optimized cycles but also novel thermodynamic concepts. Cases studied are ranging from subcritical steam Rankine cycle; open regenerative Brayton air configurations at medium and high temperature; combined cycle; closed regenerative Brayton helium scheme and closed recompression supercritical carbon dioxide Brayton cycle. Power cycle diagrams and working conditions for design point are compared amongst the studied cases for a common reference thermal power of 57 MWth reaching the central cavity receiver. It has been found that Brayton air cycle working at high temperature or using supercritical carbon dioxide are the most promising solutions in terms of efficiency conversion for the power block of future generation by means of concentrated solar power plants.

  3. Analyzing the Performance of a Dual Loop Organic Rankine Cycle System for Waste Heat Recovery of a Heavy-Duty Compressed Natural Gas Engine

    Directory of Open Access Journals (Sweden)

    Baofeng Yao

    2014-11-01

    Full Text Available A dual loop organic Rankine cycle (DORC system is designed to recover waste heat from a heavy-duty compressed natural gas engine (CNGE, and the performance of the DORC–CNGE combined system is simulated and discussed. The DORC system includes high-temperature (HT and low-temperature (LT cycles. The HT cycle recovers energy from the exhaust gas emitted by the engine, whereas the LT cycle recovers energy from intake air, engine coolant, and the HT cycle working fluid in the preheater. The mathematical model of the system is established based on the first and second laws of thermodynamics. The characteristics of waste heat energy from the CNGE are calculated according to engine test data under various operating conditions. Moreover, the performance of the DORC–CNGE combined system is simulated and analyzed using R245fa as the working fluid. Results show that the maximum net power output and the maximum thermal efficiency of the DORC system are 29.37 kW and 10.81%, respectively, under the rated power output condition of the engine. Compared with the original CNG engine, the maximum power output increase ratio and the maximum brake specific fuel consumption improvement ratio are 33.73% and 25%, respectively, in the DORC–CNGE combined system.

  4. Dynamo Models of the Solar Cycle

    Directory of Open Access Journals (Sweden)

    Paul Charbonneau

    2010-09-01

    Full Text Available This paper reviews recent advances and current debates in modeling the solar cycle as a hydromagnetic dynamo process. Emphasis is placed on (relatively simple dynamo models that are nonetheless detailed enough to be comparable to solar cycle observations. After a brief overview of the dynamo problem and of key observational constraints, we begin by reviewing the various magnetic field regeneration mechanisms that have been proposed in the solar context. We move on to a presentation and critical discussion of extant solar cycle models based on these mechanisms. We then turn to the origin and consequences of fluctuations in these models, including amplitude and parity modulation, chaotic behavior, intermittency, and predictability. The paper concludes with a discussion of our current state of ignorance regarding various key questions relating to the explanatory framework offered by dynamo models of the solar cycle.

  5. Test Requirements and Conceptual Design for a Potassium Test Loop to Support an Advanced Potassium Rankine Cycle Power Conversion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, JR.G.L.

    2006-03-08

    Parameters for continuing the design and specification of an experimental potassium test loop are identified in this report. Design and construction of a potassium test loop is part of the Phase II effort of the project ''Technology Development Program for an Advanced Potassium Rankine Power Conversion System''. This program is supported by the National Aeronautics and Space Administration. Design features for the potassium test loop and its instrumentation system, specific test articles, and engineered barriers for ensuring worker safety and protection of the environment are described along with safety and environmental protection requirements to be used during the design process. Information presented in the first portion of this report formed the basis to initiate the design phase of the program; however, the report is a living document that can be changed as necessary during the design process, reflecting modifications as additional design details are developed. Some portions of the report have parameters identified as ''to be determined'' (TBD), reflecting the early stage of the overall process. In cases where specific design values are presently unknown, the report attempts to document the quantities that remain to be defined in order to complete the design of the potassium test loop and supporting equipment.

  6. Ultrafast Thermal Cycling of Solar Panels

    National Research Council Canada - National Science Library

    Wall, T

    1998-01-01

    Two new cyclers that utilize a novel hybrid approach to perform fast thermal cycling of solar panels have been built and are now operational in the Mechanics and Materials Technology Center at The Aerospace Corporation...

  7. Thermo-Economic and Heat Transfer Optimization of Working-Fluid Mixtures in a Low-Temperature Organic Rankine Cycle System

    Directory of Open Access Journals (Sweden)

    Oyeniyi A. Oyewunmi

    2016-06-01

    Full Text Available In the present paper, we consider the employment of working-fluid mixtures in organic Rankine cycle (ORC systems with respect to thermodynamic and heat-transfer performance, component sizing and capital costs. The selected working-fluid mixtures promise reduced exergy losses due to their non-isothermal phase-change behaviour, and thus improved cycle efficiencies and power outputs over their respective pure-fluid components. A multi-objective cost-power optimization of a specific low-temperature ORC system (operating with geothermal water at 98 °C reveals that the use of working-fluid-mixtures does indeed show a thermodynamic improvement over the pure-fluids. At the same time, heat transfer and cost analyses, however, suggest that it also requires larger evaporators, condensers and expanders; thus, the resulting ORC systems are also associated with higher costs. In particular, 50% n-pentane + 50% n-hexane and 60% R-245fa + 40% R-227ea mixtures lead to the thermodynamically optimal cycles, whereas pure n-pentane and pure R-245fa have lower plant costs, both estimated as having ∼14% lower costs per unit power output compared to the thermodynamically optimal mixtures. These conclusions highlight the importance of using system cost minimization as a design objective for ORC plants.

  8. Optimisation of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    DEFF Research Database (Denmark)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    Central receiver solar thermal power plants are regarded as one of the promising ways to generate electricity in near future. They offer the possibility of using high temperatures and pressures to achieve high efficiencies with standard power cycles. A direct steam generation approach can be used...... for a central receiver solar thermal power plant with direct steam generation. The variation in the cycle performance with respect to the turbine inlet ammonia mass fraction and pressure and a comparison of the initial investment with that of the basic Rankine cycle are also presented. Only high live steam...... for such plants for improved performance. This approach can also be combined with using advanced power cycles like the Kalina cycle, which uses a zeotropic mixture of ammonia and water instead of pure water as the working fluid. This paper presents the optimisation of a particular Kalina cycle layout...

  9. Nonlinear solar cycle forecasting: theory and perspectives

    Directory of Open Access Journals (Sweden)

    A. L. Baranovski

    2008-02-01

    Full Text Available In this paper we develop a modern approach to solar cycle forecasting, based on the mathematical theory of nonlinear dynamics. We start from the design of a static curve fitting model for the experimental yearly sunspot number series, over a time scale of 306 years, starting from year 1700 and we establish a least-squares optimal pulse shape of a solar cycle. The cycle-to-cycle evolution of the parameters of the cycle shape displays different patterns, such as a Gleissberg cycle and a strong anomaly in the cycle evolution during the Dalton minimum. In a second step, we extract a chaotic mapping for the successive values of one of the key model parameters – the rate of the exponential growth-decrease of the solar activity during the n-th cycle. We examine piece-wise linear techniques for the approximation of the derived mapping and we provide its probabilistic analysis: calculation of the invariant distribution and autocorrelation function. We find analytical relationships for the sunspot maxima and minima, as well as their occurrence times, as functions of chaotic values of the above parameter. Based on a Lyapunov spectrum analysis of the embedded mapping, we finally establish a horizon of predictability for the method, which allows us to give the most probable forecasting of the upcoming solar cycle 24, with an expected peak height of 93±21 occurring in 2011/2012.

  10. Nonlinear solar cycle forecasting: theory and perspectives

    Directory of Open Access Journals (Sweden)

    A. L. Baranovski

    2008-02-01

    Full Text Available In this paper we develop a modern approach to solar cycle forecasting, based on the mathematical theory of nonlinear dynamics. We start from the design of a static curve fitting model for the experimental yearly sunspot number series, over a time scale of 306 years, starting from year 1700 and we establish a least-squares optimal pulse shape of a solar cycle. The cycle-to-cycle evolution of the parameters of the cycle shape displays different patterns, such as a Gleissberg cycle and a strong anomaly in the cycle evolution during the Dalton minimum. In a second step, we extract a chaotic mapping for the successive values of one of the key model parameters – the rate of the exponential growth-decrease of the solar activity during the n-th cycle. We examine piece-wise linear techniques for the approximation of the derived mapping and we provide its probabilistic analysis: calculation of the invariant distribution and autocorrelation function. We find analytical relationships for the sunspot maxima and minima, as well as their occurrence times, as functions of chaotic values of the above parameter. Based on a Lyapunov spectrum analysis of the embedded mapping, we finally establish a horizon of predictability for the method, which allows us to give the most probable forecasting of the upcoming solar cycle 24, with an expected peak height of 93±21 occurring in 2011/2012.

  11. Dynamo Models of the Solar Cycle

    Directory of Open Access Journals (Sweden)

    Charbonneau Paul

    2005-06-01

    Full Text Available This paper reviews recent advances and current debates in modeling the solar cycle as a hydromagnetic dynamo process. Emphasis is placed on (relatively simple dynamo models that are nonetheless detailed enough to be comparable to solar cycle observations. After a brief overview of the dynamo problem and of key observational constraints, we begin by reviewing the various magnetic field regeneration mechanisms that have been proposed in the solar context. We move on to a presentation and critical discussion of extant solar cycle models based on these mechanisms. We then turn to the origin of fluctuations in these models, including amplitude and parity modulation, chaotic behavior, and intermittency. The paper concludes with a discussion of our current state of ignorance regarding various key questions, the most pressing perhaps being the identification of the physical mechanism(s responsible for the generation of the Sun's poloidal magnetic field component.

  12. A quantitative risk-assessment system (QR-AS) evaluating operation safety of Organic Rankine Cycle using flammable mixture working fluid.

    Science.gov (United States)

    Tian, Hua; Wang, Xueying; Shu, Gequn; Wu, Mingqiang; Yan, Nanhua; Ma, Xiaonan

    2017-09-15

    Mixture of hydrocarbon and carbon dioxide shows excellent cycle performance in Organic Rankine Cycle (ORC) used for engine waste heat recovery, but the unavoidable leakage in practical application is a threat for safety due to its flammability. In this work, a quantitative risk assessment system (QR-AS) is established aiming at providing a general method of risk assessment for flammable working fluid leakage. The QR-AS covers three main aspects: analysis of concentration distribution based on CFD simulations, explosive risk assessment based on the TNT equivalent method and risk mitigation based on evaluation results. A typical case of propane/carbon dioxide mixture leaking from ORC is investigated to illustrate the application of QR-AS. According to the assessment results, proper ventilation speed, safe mixture ratio and location of gas-detecting devices have been proposed to guarantee the security in case of leakage. The results revealed that this presented QR-AS was reliable for the practical application and the evaluation results could provide valuable guidance for the design of mitigation measures to improve the safe performance of ORC system. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Sudden ionospheric disturbances in solar cycle 24

    Science.gov (United States)

    Bothmer, Volker; Bernert, Barbara

    2014-05-01

    Sudden ionospheric disturbances in solar cycle 24 Within the framework of the UN International Space Weather Initiative, and building upon the achievements of the International Heliophysical Year, the German project SIMONE (Sun Ionosphere MOnitoring NEtwork) operates several SID monitors provided by the University of Stanford. Here we present an overview of sudden ionospheric disturbances recorded since 2006 at the high school Gymnasium Walsrode until to date. The continous measurements allow a detailed comparison of locally measured SIDs with the general trend of solar activity during the current solar maximum. We further show that the measurements reveal specific information on the variable response of the dayside ionosphere to solar flares.

  14. Exergetic and environmental impact assessments of an integrated organic Rankine cycle with a biomass combustor for combined cooling, heating and power production

    Energy Technology Data Exchange (ETDEWEB)

    Al-Sulaiman, F.A. [Carleton Univ., Ottawa, ON (Canada). Dept. of Mechanical and Aerospace Engineering; Hamdullahpur, F. [Waterloo Univ., ON (Canada). Dept. of Mechanical and Mechatronics Engineering; Dincer, I. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada). Faculty of Engineering and Applied Science

    2010-07-01

    A trigeneration thermal system produces cooling, heating and power from the same source. In trigeneration plants, waste heat is used for heating and cooling. In this paper, exergetic and environmental impact analyses of a trigeneration system based on an integrated organic Rankine cycle (ORC) with a biomass combustor were conducted. The analyses were extended to include electrical-power, cooling-cogeneration and heating-cogeneration cases. The objective was to understand the working phenomena of the proposed system, and identify and quantify the sources of the irreversibilities in the system associated with each component. The environmental impact of the proposed system was also quantified. The exergy efficiency, exergy destruction rate and carbon dioxide (CO{sub 2}) emissions were examined under the variations of pump inlet temperature and turbine inlet pressure. The results showed that exergy efficiency increased to 27 per cent when trigeneration was used as compared 11 per cent when the electrical power system was used. The main two sources of exergy destruction were the biomass combustor and the ORC evaporator. Emissions of CO{sub 2} were much higher in the case of the the electrical-power system compared to the trigeneration system. 11 refs., 1 tab., 8 figs.

  15. Preliminary Development of a Free Piston Expander–Linear Generator for Small-Scale Organic Rankine Cycle (ORC Waste Heat Recovery System

    Directory of Open Access Journals (Sweden)

    Gaosheng Li

    2016-04-01

    Full Text Available A novel free piston expander-linear generator (FPE-LG integrated unit was proposed to recover waste heat efficiently from vehicle engine. This integrated unit can be used in a small-scale Organic Rankine Cycle (ORC system and can directly convert the thermodynamic energy of working fluid into electric energy. The conceptual design of the free piston expander (FPE was introduced and discussed. A cam plate and the corresponding valve train were used to control the inlet and outlet valve timing of the FPE. The working principle of the FPE-LG was proven to be feasible using an air test rig. The indicated efficiency of the FPE was obtained from the p–V indicator diagram. The dynamic characteristics of the in-cylinder flow field during the intake and exhaust processes of the FPE were analyzed based on Fluent software and 3D numerical simulation models using a computation fluid dynamics method. Results show that the indicated efficiency of the FPE can reach 66.2% and the maximal electric power output of the FPE-LG can reach 22.7 W when the working frequency is 3 Hz and intake pressure is 0.2 MPa. Two large-scale vortices are formed during the intake process because of the non-uniform distribution of velocity and pressure. The vortex flow will convert pressure energy and kinetic energy into thermodynamic energy for the working fluid, which weakens the power capacity of the working fluid.

  16. Ideal Point Design and Operation of CO2-Based Transcritical Rankine Cycle (CTRC System Based on High Utilization of Engine’s Waste Heats

    Directory of Open Access Journals (Sweden)

    Lingfeng Shi

    2017-10-01

    Full Text Available This research conducted a study specially to systematically analyze combined recovery of exhaust gas and engine coolant and related influence mechanism, including a detailed theoretical study and an assistant experimental study. In this research, CO2-based transcritical Rankine cycle (CTRC was used for fully combining the wastes heats. The main objective of theoretical research was to search an ‘ideal point’ of the recovery system and related influence mechanism, which was defined as operating condition of complete recovery of two waste heats. The theoretical methodology of this study could also provide a design reference for effective combined recovery of two or multiple waste heats in other fields. Based on a kW-class preheated CTRC prototype that was designed by the ‘ideal point’ method, an experimental study was conducted to verify combined utilization degree of two engine waste heats by the CTRC system. The operating results showed that the prototype can gain 44.4–49.8 kW and 22.7–26.7 kW heat absorption from exhaust gas and engine coolant, respectively. To direct practical operation, an experimental optimization work on the operating process was conducted for complete recovery of engine coolant exactly, which avoided deficient or excessive recovery.

  17. Thermodynamic Performance Analysis of a Biogas-Fuelled Micro-Gas Turbine with a Bottoming Organic Rankine Cycle for Sewage Sludge and Food Waste Treatment Plants

    Directory of Open Access Journals (Sweden)

    Sunhee Kim

    2017-02-01

    Full Text Available In the Republic of Korea, efficient biogas-fuelled power systems are needed to use the excess biogas that is currently burned due to a lack of suitable power technology. We examined the performance of a biogas-fuelled micro-gas turbine (MGT system and a bottoming organic Rankine cycle (ORC. The MGT provides robust operation with low-grade biogas, and the exhaust can be used for heating the biodigester. Similarly, the bottoming ORC generates additional power output with the exhaust gas. We selected a 1000-kW MGT for four co-digestion plants with 28,000-m3 capacity. A 150-kW ORC system was selected for the MGT exhaust gas. We analysed the effects of the system size, methane concentration, and ORC operating conditions. Based on the system performance, we analysed the annual performance of the MGT with a combined heat and power (CHP system, bottoming ORC, or both a bottoming ORC and CHP system. The annual net power outputs for each system were 7.4, 8.5, and 9.0 MWh per year, respectively.

  18. Studi Numerik Dua Dimensi Labyrinth Seal Turbin Uap Organic Rankine Cycle (ORC Type Straight-Through dengan Variasi Tekanan Inlet, Kecepatan Putaran Poros, Jarak Pitch, dan Tinggi Rongga

    Directory of Open Access Journals (Sweden)

    Fungki Setyo Yulianto

    2013-03-01

    Full Text Available ORC (Organic Rankine Cycle merupakan salah satu sistem pembangkit tenaga yang mampu memanfaatkan waste energy dengan menggunakan fluida organik yang mampu menguap pada temperatur dan tekanan rendah. Salah satu komponen utama pada sistem ORC adalah Turbin. Untuk mendapatkan efisiensi yang maksimal,  kebocoran fluida pada turbin uap harus di minimalisir. Untuk itulah di perlukan penggunaan labyrinth seal untuk mengurai kebocoran fluida R123 pada turbin uap ORC. Pada dunia Industri jenis labyrinth seal sangat banyak sekali, salah satunya adalah labyrinth seal tipe Straight-Through. Penelitian ini dilakukan dengan metode numerik (CFD software Fluent. Penelitian ini menggunakan variasi tekanan inlet yaitu 5, 10 dan 15 bar, putaran poros 0, 1500 dan 3000 rpm, panjang pitch 4 mm, 6 mm, 8 mm, 10 mm, serta tinggi rongga 3,415 mm, 3,915 mm dan 5,915 mm. Simulasi menggunakan model turbulensi k-ε RNG. Pada variasi tekanan inlet laju kebocoran paling besar terjadi pada tekanan 15 bar. Pada variasi putaran poros laju kebocoran terjadi berubah secara signifikan pada setiap variasi. Pada variasi tinggi rongga laju kebocoran paling kecil terjadi pada tinggi rongga 3,415 mm. Pada variasi panjang pitch, laju kebocoran paling kecil terjadi pada panjang pitch 10 mm.

  19. Geometry Analysis and Effect of Turbulence Model on the Radial Rotor Turbo-Expander Design for Small Organic Rankine Cycle System

    Directory of Open Access Journals (Sweden)

    Maulana Arifin

    2015-07-01

    Full Text Available Organic Rankine Cycle (ORC is one of the most promising technology for small electric power generations. The geometry analysis and the effect of turbulence model on the radial turbo-expanders design for small ORC power generation systems were discussed in this paper. The rotor blades and performance were calculated using several working fluids such as R134a, R143a, R245fa, n-Pentane, and R123. Subsequently, a numerical study was carried out in the fluid flow area with R134a and R123 as the working fluids. Analyses were performed using Computational Fluid Dynamics (CFD ANSYS Multiphysics on two real gas models, with the k-epsilon and SST (shear stress transport turbulence models. The result shows the distribution of Mach number, pressure, velocity and temperature along the rotor blade of the radial turbo-expanders and estimation of performance at various operating conditions. The operating conditions are as follow: 250,000 grid mesh flow area, real gas model SST at steady state condition, 0.4 kg/s of mass flow rate, 15,000 rpm rotor speed, 5 bar inlet pressure, and 373K inlet temperature. By using those conditions, CFD analysis shows that the turbo-expander able to produce 6.7 kW and 5.5 kW of power when using R134a and R123, respectively.

  20. Milestone Report #2: Direct Evaporator Leak and Flammability Analysis Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna Post [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-09-01

    The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammable hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.

  1. Modeling and Experimental Validation of a Volumetric Expander Suitable for Waste Heat Recovery from an Automotive Internal Combustion Engine Using an Organic Rankine Cycle with Ethanol

    Directory of Open Access Journals (Sweden)

    José Galindo

    2016-04-01

    Full Text Available Waste heat recovery (WHR in exhaust gas flow of automotive engines has proved to be a useful path to increase the overall efficiency of internal combustion engines (ICE. Recovery potentials of up to 7% are shown in several works in the literature. However, most of them are theoretical estimations. Some present results from prototypes fed by steady flows generated in an auxiliary gas tank and not with actual engine exhaust gases. This paper deals with the modeling and experimental validation of an organic Rankine cycle (ORC with a swash-plate expander integrated in a 2 L turbocharged petrol engine using ethanol as working fluid. A global simulation model of the ORC was developed with a maximum difference of 5%, validated with experimental results. Considering the swash-plate as the main limiting factor, an additional specific submodel was implemented to model the physical phenomena in this element. This model allows simulating the fluid dynamic behavior of the swash-plate expander using a 0D model (Amesim. Differences up to 10.5% between tests and model results were found.

  2. Thermoeconomic Evaluation of Modular Organic Rankine Cycles for Waste Heat Recovery over a Broad Range of Heat Source Temperatures and Capacities

    Directory of Open Access Journals (Sweden)

    Markus Preißinger

    2017-02-01

    Full Text Available Industrial waste heat recovery by means of an Organic Rankine Cycle (ORC can contribute to the reduction of CO2 emissions from industries. Before market penetration, high efficiency modular concepts have to be developed to achieve appropriate economic value for industrial decision makers. This paper aims to investigate modularly designed ORC systems from a thermoeconomic point of view. The main goal is a recommendation for a suitable chemical class of working fluids, preferable ORC design and a range of heat source temperatures and thermal capacities in which modular ORCs can be economically feasible. For this purpose, a thermoeconomic model has been developed which is based on size and complexity parameters of the ORC components. Special emphasis has been laid on the turbine model. The paper reveals that alkylbenzenes lead to higher exergetic efficiencies compared to alkanes and siloxanes. However, based on the thermoeconomic model, the payback periods of the chemical classes are almost identical. With the ORC design, the developed model and the boundary conditions of this study, hexamethyldisiloxane is a suitable working fluid and leads to a payback period of less than 5 years for a heat source temperature of 400 to 600 °C and a mass flow rate of the gaseous waste heat stream of more than 4 kg/s.

  3. Solar spectral irradiance changes during cycle 24

    Energy Technology Data Exchange (ETDEWEB)

    Marchenko, S. V.; DeLand, M. T. [Also at NASA/Goddard Space Flight Center, Greenbelt, MD, USA. (United States)

    2014-07-10

    We use solar spectra obtained by the Ozone Monitoring Instrument (OMI) on board the Aura satellite to detect and follow long-term (years) and short-term (weeks) changes in the solar spectral irradiance (SSI) in the 265-500 nm spectral range. During solar Cycle 24, in the relatively line-free regions the SSI changed by ∼0.6% ± 0.2% around 265 nm. These changes gradually diminish to 0.15% ± 0.20% at 500 nm. All strong spectral lines and blends, with the notable exception of the upper Balmer lines, vary in unison with the solar 'continuum'. Besides the lines with strong chromospheric components, the most involved species include Fe I blends and all prominent CH, NH, and CN spectral bands. Following the general trend seen in the solar 'continuum', the variability of spectral lines also decreases toward longer wavelengths. The long-term solar cycle SSI changes are closely, to within the quoted 0.1%-0.2% uncertainties, matched by the appropriately adjusted short-term SSI variations derived from the 27 day rotational modulation cycles. This further strengthens and broadens the prevailing notion about the general scalability of the UV SSI variability to the emissivity changes in the Mg II 280 nm doublet on timescales from weeks to years. We also detect subtle deviations from this general rule: the prominent spectral lines and blends at λ ≳ 350 nm show slightly more pronounced 27 day SSI changes when compared to the long-term (years) trends. We merge the solar data from Cycle 21 with the current Cycle 24 OMI and GOME-2 observations and provide normalized SSI variations for the 170-795 nm spectral region.

  4. Solar Spectral Irradiance Changes During Cycle 24

    Science.gov (United States)

    Marchenko, Sergey; Deland, Matthew

    2014-01-01

    We use solar spectra obtained by the Ozone Monitoring Instrument (OMI) on board the Aura satellite to detect and follow long-term (years) and short-term (weeks) changes in the solar spectral irradiance (SSI) in the 265-500 nm spectral range. During solar Cycle 24, in the relatively line-free regions the SSI changed by approximately 0.6% +/- 0.2% around 265 nm. These changes gradually diminish to 0.15% +/- 0.20% at 500 nm. All strong spectral lines and blends, with the notable exception of the upper Balmer lines, vary in unison with the solar "continuum." Besides the lines with strong chromospheric components, the most involved species include Fe I blends and all prominent CH, NH, and CN spectral bands. Following the general trend seen in the solar "continuum," the variability of spectral lines also decreases toward longer wavelengths. The long-term solar cycle SSI changes are closely, to within the quoted 0.1%-0.2% uncertainties, matched by the appropriately adjusted short-term SSI variations derived from the 27 day rotational modulation cycles. This further strengthens and broadens the prevailing notion about the general scalability of the UV SSI variability to the emissivity changes in the Mg II 280 nm doublet on timescales from weeks to years. We also detect subtle deviations from this general rule: the prominent spectral lines and blends at lambda approximately or greater than 350 nm show slightly more pronounced 27 day SSI changes when compared to the long-term (years) trends. We merge the solar data from Cycle 21 with the current Cycle 24 OMI and GOME-2 observations and provide normalized SSI variations for the 170-795 nm spectral region.

  5. Solar cycle changes in the polar solar wind

    Science.gov (United States)

    Coles, W. A.; Rickett, B. J.; Rumsey, V. H.; Kaufman, J. J.; Turley, D. G.; Ananthakrishnan, S.; Armstrong, J. W.; Harmons, J. K.; Scott, S. L.; Sime, D. G.

    1980-01-01

    It is noted that although the 11 year solar cycle was first recognized in 1843, it is still only poorly understood. Further, while there are satisfactory models for the magnetic variations, the underlying physics is still obscure. New observations on the changing three-dimensional form of the solar wind are presented which help relate some of the modulations observed in geomagnetic activity, the ionosphere, and the flux of galactic cosmic rays.

  6. THE BIMODAL STRUCTURE OF THE SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Du, Z. L., E-mail: zldu@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2015-05-01

    Some properties of the 11 yr solar cycle can be explained by the current solar dynamo models. However, some other features remain not well understood such as the asymmetry of the cycle, the double-peaked structure, and the “Waldmeier effect” that a stronger cycle tends to have less rise time and a shorter cycle length. We speculate that the solar cycle is governed by a bi-dynamo model forming two stochastic processes depicted by a bimodal Gaussian function with a time gap of about 2 yr, from which the above features can be reasonably explained. The first one describes the main properties of the cycle dominated by the current solar dynamo models, and the second one occurs either in the rising phase as a short weak explosive perturbation or in the declining phase as a long stochastic perturbation. The above function is the best one selected from several in terms of the Akaike information criterion. Through analyzing different distributions, one might speculate about the dominant physical process inside the convection zone. The secondary (main) process is found to be closely associated with complicated (simple) active ranges. In effect, the bi-dynamo model is a reduced form of a multi-dynamo model, which could occur from the base of the convection zone through its envelope and from low to high heliographic latitude, reflecting the active belts in the convection zone. These results are insensitive to the hemispheric asymmetry, smoothing filters, and distribution functions selected and are expected to be helpful in understanding the formation of solar and stellar cycles.

  7. Working Fluid Stability in Large-Scale Organic Rankine Cycle-Units Using Siloxanes—Long-Term Experiences and Fluid Recycling

    Directory of Open Access Journals (Sweden)

    Tobias G. Erhart

    2016-05-01

    Full Text Available The results in this work show the influence of long-term operation on the decomposition of working fluids in eight different organic rankine cycle (ORC power plants (both heat-led and electricity-led in a range of 900 kW el to 2 MW el . All case study plants are using octamethyltrisiloxane (MDM as a working fluid; the facilities are between six to 12 years old. Detailed analyses, including the fluid distribution throughout the cycle, are conducted on one system. All presented fluid samples are analyzed via head space gas chromatography mass spectrometry (HS-GC-MS. Besides the siloxane composition, the influence of contaminants, such as mineral oil-based lubricants (and their components, is examined. In most cases, the original working fluid degrades to fractions of siloxanes with a lower boiling point (low boilers and fractions with a higher boiling point (high boilers. As a consequence of the analyses, a new fluid recycling and management system was designed and tested in one case study plant (Case Study #8. Pre-post comparisons of fluid samples prove the effectiveness of the applied methods. The results show that the recovery of used working fluid offers an alternative to the purchase of fresh fluid, since operating costs can be significantly reduced. For large facilities, the prices for new fluid range from € 15 per liter (in 2006 to € 22 per liter (in 2013, which is a large reinvestment, especially in light of filling volumes of 4000 liters to 7000 liters per unit. Using the aforementioned method, a price of € 8 per liter of recovered MDM can be achieved.

  8. Preliminary Design of Compact Condenser in an Organic Rankine Cycle System for the Low Grade Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Roberto Capata

    2014-11-01

    Full Text Available The aim of this paper is to present a thermodynamic cycle for the production of electrical power in the 2–5 kW range, suitable for all types of thermally propelled vehicles. The sensible heat recovered from the exhaust gases feeds the energy recovery system, which is able to produce sufficient power to sustain the air conditioning system or other auxiliaries. The working fluids R134a and R245fa have been used in the ORC system, and the systems are simulated by CAMEL-ProTM software. The cycles are generated starting from the same heat source: the exhaust gas of a typical 2.0 L Diesel engine (or from a small size turbine engine. The design of the condenser has been performed to obtain a very compact component, evaluating the heat exchanger tube and fins type design. Through empirical formulas, the area of heat exchange, the heat required to exchange and the pressure drop in the element have been calculated. A commercial software package is used to build the model of the condenser, then a thermal and mechanical analysis and a CFD analysis are realized to estimate the heat exchange. Finally the evaluations, the possible future studies and possible improvements of the system are shown.

  9. A proposal for the modular integration of the renewable energy sources, via hydrogen, and the Rankine power cycle; Una propuesta de integracion modular de las fuentes de energia renovables, via hidrogeno, y el ciclo de potencia Rankine

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Dirzo, Rafael

    2004-07-01

    This thesis synthesizes the state-of-the-art of the modular integration of the renewable energy sources and the Ranking power cycle. This is possible to obtain due to the development of the hydrogen production technologies and with it the chemical storage of the energies solar, Aeolian (wind) and tidal, among others. The purpose of this thesis is the assessment of hydrogen as fuel, its obtaining through the breaking of the water molecule using the renewable energies and the thermodynamic analysis of two prototypes for its energy conversion into electricity and power, voltage and fixed frequency: the first one at laboratory scale of 800 W and the second one, on industrial scale of 1 GW of power. Included here is the synthesis of the increasing bibliography on the development of the hydrogen technologies and the renewable energies, passing through the mass and energy balance in the power cycles until proposing, at the level of Process Flow Charts of the results of the proposed prototypes. The products show the possibility of constructing and operating the experimental prototype, whereas the thermodynamic analysis suggests that the industrial prototype is viable. The economic analysis of both proposals is part of a doctorate project in process. [Spanish] Esta tesis sintetiza el estado del arte de la integracion modular de las fuentes de energia renovables y el ciclo de potencia Ranking. Esto es posible lograrlo debido al desarrollo de las tecnologias de produccion de hidrogeno y con ello el almacenamiento quimico de las energias solar, eolica y maremotriz, entre otras. Es objetivo de esta tesis la valoracion del hidrogeno como combustible, su obtencion a traves del rompimiento de la molecula del agua utilizando las energias renovables y el analisis termodinamico de dos prototipo para su conversion energetica en electricidad a potencia, voltaje y frecuencia fijos: el primero a escala de laboratorio de 800 W y el segundo, a escala industrial de 1 GW de potencia. Se

  10. Geomagnetism during solar cycle 23: Characteristics

    Directory of Open Access Journals (Sweden)

    Jean-Louis Zerbo

    2013-05-01

    Full Text Available On the basis of more than 48 years of morphological analysis of yearly and monthly values of the sunspot number, the aa index, the solar wind speed and interplanetary magnetic field, we point out the particularities of geomagnetic activity during the period 1996–2009. We especially investigate the last cycle 23 and the long minimum which followed it. During this period, the lowest values of the yearly averaged IMF (3 nT and yearly averaged solar wind speed (364 km/s are recorded in 1996, and 2009 respectively. The year 2003 shows itself particular by recording the highest value of the averaged solar wind (568 km/s, associated to the highest value of the yearly averaged aa index (37 nT. We also find that observations during the year 2003 seem to be related to several coronal holes which are known to generate high-speed wind stream. From the long time (more than one century study of solar variability, the present period is similar to the beginning of twentieth century. We especially present the morphological features of solar cycle 23 which is followed by a deep solar minimum.

  11. Double maxima of 11-year solar cycles

    Science.gov (United States)

    Krivodubskij, V. N.

    2015-10-01

    The explanation of the observed phenomenon of double peaks of the 11 year sunspot cycles is proposed. The scenario involves five processes of reconstruction of magnetism in the solar convective zone (SCZ): ω effect, magnetic buoyancy, macroscopic turbulent diamagnetism, rotary \\downtriangle ρ effect and meridional circulation. It was established that the reconstruction of magnetism in high-latitude and equatorial domains of the SCZ occurs in different modes. Two time-shifted waves of the toroidal field to the solar surface play a key role in the proposed mechanism in the equatorial domain.

  12. Comparative Evaluation of Integrated Waste Heat Utilization Systems for Coal-Fired Power Plants Based on In-Depth Boiler-Turbine Integration and Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Shengwei Huang

    2018-01-01

    Full Text Available To maximize the system-level heat integration, three retrofit concepts of waste heat recovery via organic Rankine cycle (ORC, in-depth boiler-turbine integration, and coupling of both are proposed, analyzed and comprehensively compared in terms of thermodynamic and economic performances. For thermodynamic analysis, exergy analysis is employed with grand composite curves illustrated to identify how the systems are fundamentally and quantitatively improved, and to highlight key processes for system improvement. For economic analysis, annual revenue and investment payback period are calculated based on the estimation of capital investment of each component to identify the economic feasibility and competitiveness of each retrofit concept proposed. The results show that the in-depth boiler-turbine integration achieves a better temperature match of heat flows involved for different fluids and multi-stage air preheating, thus a significant improvement of power output (23.99 MW, which is much larger than that of the system with only ORC (6.49 MW. This is mainly due to the limitation of the ultra-low temperature (from 135 to 75 °C heat available from the flue gas for ORC. The thermodynamic improvement is mostly contributed by the reduction of exergy destruction within the boiler subsystem, which is eventually converted to mechanical power; while the exergy destruction within the turbine system is almost not changed for the three concepts. The selection of ORC working fluids is performed to maximize the power output. Due to the low-grade heat source, the cycle with R11 offers the largest additional net power generation but is not significantly better than the other preselected working fluids. Economically, the in-depth boiler-turbine integration is the most economic completive solution with a payback period of only 0.78 year. The ORC concept is less attractive for a sole application due to a long payback time (2.26 years. However, by coupling both

  13. A thermodynamic cycle for the solar cell

    Science.gov (United States)

    Alicki, Robert; Gelbwaser-Klimovsky, David; Jenkins, Alejandro

    2017-03-01

    A solar cell is a heat engine, but textbook treatments are not wholly satisfactory from a thermodynamic standpoint, since they present solar cells as directly converting the energy of light into electricity, and the current in the circuit as maintained by an electrostatic potential. We propose a thermodynamic cycle in which the gas of electrons in the p phase serves as the working substance. The interface between the p and n phases acts as a self-oscillating piston that modulates the absorption of heat from the photons so that it may perform a net positive work during a complete cycle of its motion, in accordance with the laws of thermodynamics. We draw a simple hydrodynamical analogy between this model and the "putt-putt" engine of toy boats, in which the interface between the water's liquid and gas phases serves as the piston. We point out some testable consequences of this model.

  14. A solar cycle lengthwise series of solar diameter measurements

    Science.gov (United States)

    Penna, J. L.; Andrei, A. H.; Boscardin, S. C.; Neto, E. Reis; d'Ávila, V. A.

    2010-02-01

    The measurements of the solar photospheric diameter rank among the most difficult astronomic observations. Reasons for this are the fuzzy definition of the limb, the SNR excess, and the adverse daytime seeing condition. As a consequence there are very few lengthy and consistent time series of such measurements. Using modern techniques, just the series from the IAG/USP and from Calern/OCA span more than one solar cycle. The Rio de Janeiro Group observations started in 1997, and therefore in 2008 one complete solar cycle time span can be analyzed. The series shares common principles of observation and analysis with the ones afore mentioned, and it is complementary on time to them. The distinctive features are the larger number of individual points and the improved precision. The series contains about 25,000 single observations, evenly distributed on a day-by-day basis. The typical error of a single observation is half an arc-second, enabling us to investigate variations at the expected level of tens of arc-second on a weekly basis. These features prompted to develop a new methodology for the investigation of the heliophysical scenarios leading to the observed variations, both on time and on heliolatitude. The algorithms rely on running averages and time shifts to derive the correlation and statistical incertitude for the comparison of the long term and major episodes variations of the solar diameter against activity markers. The results bring support to the correlation between the diameter variation and the solar activity, but evidentiating two different regimens for the long term trend and the major solar events.

  15. Update on a Solar Magnetic Catalog Spanning Four Solar Cycles

    Science.gov (United States)

    Vargas-Acosta, Juan Pablo; Munoz-Jaramillo, Andres; Vargas Dominguez, Santiago; Werginz, Zachary; DeLuca, Michael D.; Longcope, Dana; Harvey, J. W.; Windmueller, John; Zhang, Jie; Martens, Petrus C.

    2017-08-01

    Bipolar magnetic regions (BMRs) are the cornerstone of solar cycle propagation, the building blocks that give structure to the solar atmosphere, and the origin of the majority of space weather events. However, in spite of their importance, there is no homogeneous BMR catalog spanning the era of systematic solar magnetic field measurements. Here we present the results of an ongoing project to address this deficiency applying the Bipolar Active Region Detection (BARD) code to magnetograms from the 512 Channel of the Kitt Peak Vaccum Telescope, SOHO/MDI, and SDO/HMI.The BARD code automatically identifies BMRs and tracks them as they are rotated by differential rotation. The output of the automatic detection is supervised by a human observer to correct possible mistakes made by the automatic algorithm (like incorrect pairings and tracking mislabels). Extra passes are made to integrate fragmented regions as well as to balance the flux between BMR polarities. At the moment, our BMR database includes nearly 10,000 unique objects (detected and tracked) belonging to four separate solar cycles (21-24).

  16. Thermoeconomic Analysis of Advanced Solar-Fossil Combined Power Plants

    OpenAIRE

    Kane, El Hadj Malick; Favrat, Daniel; Ziegler, Klaus; Allani, Yassine

    2000-01-01

    Hybrid solar thermal power plants (with parabolic trough type of solar collectors) featuring gas burners and Rankine steam cycles have been successfully demonstrated by California's Solar Electric Generating System (SEGS). This system has been proven to be one of the most efficient and economical schemes to convert solar energy into electricity. Recent technological progress opens interesting prospects for advanced cycle concepts: a) the ISCCS (Integrated Solar Combined Cycle System)...

  17. Revisited sunspot numbers and prediction of solar cycle 25

    Science.gov (United States)

    Pishkalo, M.

    2016-06-01

    Parameteres of solar cycles are found usind revisited sunspot numbers in 2015. Correlations between cycle parameters were studied. Solar cycle 25 was predicted using regression equations obtained. I was predicted that minimum and maximum of the cycle (8.3 and 166.7) will occur in May of 2020 and November 2024 to February 2025 respectively.49

  18. The Geoeffective ICMEs of Solar Cycle 24

    Science.gov (United States)

    Hess, P.; Zhang, J.

    2016-12-01

    Using in situ observations from the Advanced Composition Explorer (ACE) spacecraft, we have identified every geoeffective Interplanetary Coronal Mass Ejection (ICME) in solar cycle 24. Because of the unprecedented extent of heliospheric observations in cycle 24 because of the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) instruments on board the Solar Terrestrial Earth Observatory (STEREO) spacecraft, we observe these events throughout the heliosphere from the Sun to the Earth and can therefore relate these in-situ signatures to remote sensing data that allows us to track the event completely back to the source of the eruption in the low corona. We present a summary of the geoeffective ICMEs and a statistical study of the properties of these events including source region, speed, and magnetic field strength. We infer the structure of these events, differentiating between classic magnetic cloud events and those with weaker and more complex signatures. We compare the coronal and heliospheric measurements of these events to understand the difference between these different classifications of events. We also present a comparison between the events of cycle 24 to those of previous cycles, based on previous studies of CMEs from other data sets.

  19. Solar origins of solar wind properties during the cycle 23 solar minimum and rising phase of cycle 24

    Science.gov (United States)

    Luhmann, Janet G.; Petrie, Gordon; Riley, Pete

    2012-01-01

    The solar wind was originally envisioned using a simple dipolar corona/polar coronal hole sources picture, but modern observations and models, together with the recent unusual solar cycle minimum, have demonstrated the limitations of this picture. The solar surface fields in both polar and low-to-mid-latitude active region zones routinely produce coronal magnetic fields and related solar wind sources much more complex than a dipole. This makes low-to-mid latitude coronal holes and their associated streamer boundaries major contributors to what is observed in the ecliptic and affects the Earth. In this paper we use magnetogram-based coronal field models to describe the conditions that prevailed in the corona from the decline of cycle 23 into the rising phase of cycle 24. The results emphasize the need for adopting new views of what is ‘typical’ solar wind, even when the Sun is relatively inactive. PMID:25685422

  20. Solar-powered air-conditioning

    Science.gov (United States)

    Clark, D. C.; Rousseau, J.

    1977-01-01

    Report focuses on recent study on development of solar-powered residential air conditioners and is based on selected literature through 1975. Its purposes are to characterize thermal and mechanical systems that might be useful in development of Rankine-cycle approach to solar cooling and assessment of a Lithium Bromide/Water absorption cycle system.

  1. Performance Analysis of an Evaporator for a Diesel Engine–Organic Rankine Cycle (ORC Combined System and Influence of Pressure Drop on the Diesel Engine Operating Characteristics

    Directory of Open Access Journals (Sweden)

    Chen Bei

    2015-06-01

    Full Text Available The main purpose of this research is to analyze the performance of an evaporator for the organic Rankine cycle (ORC system and discuss the influence of the evaporator on the operating characteristics of diesel engine. A simulation model of fin-and-tube evaporator of the ORC system is established by using Fluent software. Then, the flow and heat transfer characteristics of the exhaust at the evaporator shell side are obtained, and then the performance of the fin-and-tube evaporator of the ORC system is analyzed based on the field synergy principle. The field synergy angle (β is the intersection angle between the velocity vector and the temperature gradient. When the absolute values of velocity and temperature gradient are constant and β < 90°, heat transfer enhancement can be achieved with the decrease of the β. When the absolute values of velocity and temperature gradient are constant and β >90°, heat transfer enhancement can be achieved with the increase of the β. Subsequently, the influence of the evaporator of the ORC system on diesel engine performance is studied. A simulation model of the diesel engine is built by using GT–Power software under various operating conditions, and the variation tendency of engine power, torque, and brake specific fuel consumption (BSFC are obtained. The variation tendency of the power output and BSFC of diesel engine–ORC combined system are obtained when the evaporation pressure ranges from 1.0 MPa to 3.5 MPa. Results show that the field synergy effect for the areas among the tube bundles of the evaporator main body and the field synergy effect for the areas among the fins on the windward side are satisfactory. However, the field synergy effect in the areas among the fins on the leeward side is weak. As a result of the pressure drop caused by the evaporator of the ORC system, the diesel engine power and torque decreases slightly, whereas the BSFC increases slightly with the increase of exhaust back

  2. Comparative performance of twenty-three types of flat plate solar energy collectors

    Science.gov (United States)

    Simon, F. F.

    1975-01-01

    Report compares efficiencies of 23 solar collectors for four different purposes: operating a Rankine-cycle engine, heating or absorption air conditioning, heating hot water, and heating a swimming pool.

  3. Double Maxima of 11-year Solar Cycle

    Science.gov (United States)

    Krivodubskij, Valery N.

    2015-08-01

    We propose a scenario to explain the observed phenomenon of double sunspot cycle maximum, which is attended by five processes of magnetic reconstruction in the solar convection zone (SCZ): Omega effect, magnetic buoyancy, macroscopic turbulent diamagnetism, gradient-rho effect and meridional circulation. It was found that the reconstruction of magnetic fields in the high-latitude and equatorial domains of the SCZ occurs in different ways. Two tides of inner toroidal fields from the lower base of the SCZ to the solar surface in the equatorial domain play a key role in the developed mechanism of double maxima. Deep toroidal fields are excited due to Omega effect near the bottom of the SCZ at the beginning of the cycle. Then these fields are transported to the surface due to combined acting of magnetic buoyancy, macroscopic turbulent diamagnetism and magnetic gradient-rho flow in the equatorial domain. Over time the magnetic fragments can be seen as bipolar sunspot groups in the middle latitudes in the "royal zone". This first wave of toroidal fields, which is directed up, gives the main maximum of sunspot activity. However, the inner toroidal fields in the high-latitude polar domains at the beginning of the cycle are blocked near bottom of the SCZ by two antibuoyancy effects (turbulent diamagnetic transfer and magnetic gradient-rho pumping, which are directed downward). Deep meridional flow toward the equator transports these fields to low latitudes of the equatorial domain (with favorable conditions for magnetic buoyancy) during about 1 2 years. Then "belated" magnetic fields rise up to surface (second tide of toroidal field). This second delayed portion of toroidal fields, rising to the solar surface at low latitudes, leads to second (repeated) sunspot maximum.

  4. The solar energetic particle propagation of solar flare events on 24th solar cycle.

    Science.gov (United States)

    Paluk, P.; Khumlumlert, T.; Kanlayaprasit, N.; Aiemsa-ad, N.

    2017-09-01

    Now the Sun is in the 24th solar cycle. The peak of solar cycle correspond to the number of the Sun activities, which one of them is solar flare. The solar flare is the violent explosion at the solar atmosphere and releases the high energy ion from the Sun to the interplanetary medium. Solar energetic particles or solar cosmic ray have important effect on the Earth, such as disrupt radio communication. We analyze the particle transport of the solar flare events on August 9, 2011, January 27, 2012, and November 3, 2013 in 24th solar cycle. The particle data for each solar flare was obtained from SIS instrument on ACE spacecraft. We simulate the particle transport with the equation of Ruffolo 1995, 1998. We solve the transport equation with the numerical technique of finite different. We find the injection duration from the Sun to the Earth by the compared fitting method of piecewise linear function between the simulation results and particle data from spacecraft. The position of these solar flare events are on the west side of the Sun, which are N18W68, N33W85, and S12W16. We found that mean free path is roughly constant for a single event. This implies that the interplanetary scattering is approximately energy independent, but the level of scattering varies with time. The injection duration decreases with increasing energy. We found the resultant variation of the highest energy and lowest energy, because the effect of space environments and the number of the detected data was small. The high mean free path of the high energy particles showed the transport capability of particles along to the variable magnetic field line. The violent explosion of these solar flares didn’t affect on the Earth magnetic field with Kp-index less than 3.

  5. Predicting Solar Cycle 25 using Surface Flux Transport Model

    Science.gov (United States)

    Imada, Shinsuke; Iijima, Haruhisa; Hotta, Hideyuki; Shiota, Daiko; Kusano, Kanya

    2017-08-01

    It is thought that the longer-term variations of the solar activity may affect the Earth’s climate. Therefore, predicting the next solar cycle is crucial for the forecast of the “solar-terrestrial environment”. To build prediction schemes for the next solar cycle is a key for the long-term space weather study. Recently, the relationship between polar magnetic field at the solar minimum and next solar activity is intensively discussed. Because we can determine the polar magnetic field at the solar minimum roughly 3 years before the next solar maximum, we may discuss the next solar cycle 3years before. Further, the longer term (~5 years) prediction might be achieved by estimating the polar magnetic field with the Surface Flux Transport (SFT) model. Now, we are developing a prediction scheme by SFT model as a part of the PSTEP (Project for Solar-Terrestrial Environment Prediction) and adapting to the Cycle 25 prediction. The predicted polar field strength of Cycle 24/25 minimum is several tens of percent smaller than Cycle 23/24 minimum. The result suggests that the amplitude of Cycle 25 is weaker than the current cycle. We also try to obtain the meridional flow, differential rotation, and turbulent diffusivity from recent modern observations (Hinode and Solar Dynamics Observatory). These parameters will be used in the SFT models to predict the polar magnetic fields strength at the solar minimum. In this presentation, we will explain the outline of our strategy to predict the next solar cycle and discuss the initial results for Cycle 25 prediction.

  6. Solar cycle variations in the ionosphere of Mars

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Cano, B.; Lester, M.; Witasse, Ol; Blelly, P.L.; Cartacci, M.; Radicella, S.M.; Herraiz, M.

    2016-07-01

    Solar cycle variations in solar radiation create notable changes in the Martian ionosphere, which have been analysed with Mars Express plasma datasets in this paper. In general, lower densities and temperatures of the ionosphere are found during the low solar activity phase, while higher densities and temperatures are found during the high solar activity phase. In this paper, we assess the degree of influence of the long term solar flux variations in the ionosphere of Mars. (Author)

  7. Mechanism of Cyclically Polarity Reversing Solar Magnetic Cycle as ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We briefly describe historical development of the concept of solar dynamo mechanism that generates electric current and magnetic field by plasma flows inside the solar convection zone. The dynamo is the driver of the cyclically polarity reversing solar magnetic cycle. The reversal process can easily and ...

  8. Solar spectral irradiance variability in cycle 24: observations and models

    Directory of Open Access Journals (Sweden)

    Marchenko Sergey V.

    2016-01-01

    Full Text Available Utilizing the excellent stability of the Ozone Monitoring Instrument (OMI, we characterize both short-term (solar rotation and long-term (solar cycle changes of the solar spectral irradiance (SSI between 265 and 500 nm during the ongoing cycle 24. We supplement the OMI data with concurrent observations from the Global Ozone Monitoring Experiment-2 (GOME-2 and Solar Radiation and Climate Experiment (SORCE instruments and find fair-to-excellent, depending on wavelength, agreement among the observations, and predictions of the Naval Research Laboratory Solar Spectral Irradiance (NRLSSI2 and Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S models.

  9. Solar spectral irradiance variability in cycle 24: observations and models

    Science.gov (United States)

    Marchenko, Sergey V.; DeLand, Matthew T.; Lean, Judith L.

    2016-12-01

    Utilizing the excellent stability of the Ozone Monitoring Instrument (OMI), we characterize both short-term (solar rotation) and long-term (solar cycle) changes of the solar spectral irradiance (SSI) between 265 and 500 nm during the ongoing cycle 24. We supplement the OMI data with concurrent observations from the Global Ozone Monitoring Experiment-2 (GOME-2) and Solar Radiation and Climate Experiment (SORCE) instruments and find fair-to-excellent, depending on wavelength, agreement among the observations, and predictions of the Naval Research Laboratory Solar Spectral Irradiance (NRLSSI2) and Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S) models.

  10. Early developments in solar cooling equipment

    Science.gov (United States)

    Price, J. M.

    1978-01-01

    A brief description of a development program to design, fabricate and field test a series of solar operated or driven cooling devices, undertaken by the Marshall Space Flight Center in the context of the Solar Heating and Cooling Demonstration Act of 1974, is presented. Attention is given to two basic design concepts: the Rankine cycle principle and the use of a dessicant for cooling.

  11. Low-power heat pump systems combining two organic Rankine cycles; Applications de pompe a chaleur. A l'exemple des systemes ORC-ORC de petite puissance

    Energy Technology Data Exchange (ETDEWEB)

    Demierre, J.

    2009-07-01

    In this basic article that includes many diagrams and equations illustrating a research project conducted at the Swiss Federal Institute of Technology (EPFL) in Lausanne, Switzerland the author describes the first part of his thesis. A new concept of thermally driven heat pump (TDHP) is presented, which could be a real alternative to today's heating systems in buildings that are mainly based on less efficient fuel-fired boilers. Nowadays, the heat pump market is dominated by two kinds of systems: the electrically driven vapor compression heat pumps, which are the most widely used in residential heating applications, and the thermally driven heat pumps that are usually based on a sorption process. In this research project, the investigated TDHP - designated by ORC-ORC - is based on the coupling of a vapor compression heat pump cycle and an organic Rankine cycle (ORC). The studied concept uses a single stage centrifugal compressor directly coupled to a single stage radial inflow turbine. The shaft is rotating on gas bearings, which allows the system to be oil-free. Like most of the other TDHP's, this system has the advantage to work with a variety of fuels or heat sources like wood pellets, natural gas, solar heat, geothermal heat or waste heat. The concept studied in this work is a gas fired system for space heating and domestic hot water production in small residential buildings (power range: 20 kW). A systematic approach has been used to theoretically evaluate, in terms of energy efficiency, the potential of ORC-ORC systems. The method is based on the optimization which allows identifying the best configurations at each design step with respect to the designer choices. This approach is divided into three steps. In the first step, a model of the complete system has been developed based on a process integration approach. This step allows to quickly determine whether the system is potentially attractive or not, for given conditions, before going deeper into

  12. Large Energetic Particle Pressures in Solar Cycles 23 and 24

    Science.gov (United States)

    Lario, D.; Decker, R. B.; Roelof, E. C.; Viñas, A. F.; Wimmer-Schweingruber, R. F.; Berger, L.

    2017-09-01

    We study periods of elevated energetic particle intensities observed at the L1 Sun-Earth Lagrangian point when the partial energy density associated with energetic (≥80 keV) particles (PEP) dominates that of the local magnetic field (PB) and thermal plasma populations (PPLS). These periods are not uncommon and are frequently observed prior to the passage of interplanetary (IP) shocks. Because of the significant decreases in key solar wind parameters observed during solar cycle 24 [e.g., 1], we were motivated to perform a comparative statistical analysis to determine if the occurrence rate of periods when PEP exceeded PB or PPLS, or both, differed between solar cycles 23 and 24. We find that the general decrease of PB and PPLS in solar cycle 24 was also accompanied by a general decrease of periods with elevated PEP. The result is that solar cycle 24 showed a lower number of time intervals dominated by PEP. We analyze whether these differences can be related to the properties of the IP shocks observed at L1. Incomplete datasets of shock parameters do not show significant differences between solar cycles 23 and 24 that would allow us to explain the difference in the number of periods with PEP>PB and PEP>PPLS. We analyze then the averaged plasma parameters measured in the upstream region of the shocks and find significantly lower solar wind proton temperatures and magnetic field magnitude upstream of IP shocks in solar cycle 24 compared with those in solar cycle 23. These factors, together with the lower level of solar activity, may explain the lower particle intensities in solar cycle 24 and hence the fewer events with PEP>PB and PEP>PPLS.

  13. Will Solar Cycles 25 and 26 Be Weaker than Cycle 24?

    Science.gov (United States)

    Javaraiah, J.

    2017-11-01

    The study of variations in solar activity is important for understanding the underlying mechanism of solar activity and for predicting the level of activity in view of the activity impact on space weather and global climate. Here we have used the amplitudes (the peak values of the 13-month smoothed international sunspot number) of Solar Cycles 1 - 24 to predict the relative amplitudes of the solar cycles during the rising phase of the upcoming Gleissberg cycle. We fitted a cosine function to the amplitudes and times of the solar cycles after subtracting a linear fit of the amplitudes. The best cosine fit shows overall properties (periods, maxima, minima, etc.) of Gleissberg cycles, but with large uncertainties. We obtain a pattern of the rising phase of the upcoming Gleissberg cycle, but there is considerable ambiguity. Using the epochs of violations of the Gnevyshev-Ohl rule (G-O rule) and the `tentative inverse G-O rule' of solar cycles during the period 1610 - 2015, and also using the epochs where the orbital angular momentum of the Sun is steeply decreased during the period 1600 - 2099, we infer that Solar Cycle 25 will be weaker than Cycle 24. Cycles 25 and 26 will have almost same strength, and their epochs are at the minimum between the current and upcoming Gleissberg cycles. In addition, Cycle 27 is expected to be stronger than Cycle 26 and weaker than Cycle 28, and Cycle 29 is expected to be stronger than both Cycles 28 and 30. The maximum of Cycle 29 is expected to represent the next Gleissberg maximum. Our analysis also suggests a much lower value (30 - 40) for the maximum amplitude of the upcoming Cycle 25.

  14. Helioseismic Solar Cycle Changes and Splitting Coefficients

    Indian Academy of Sciences (India)

    tribpo

    Division of the NOAO, which is operated by AURA, Inc. under cooperative agree ment with the NSF. The data were acquired by instruments operated by Big Bear Solar. Observatory, High Altitude Observatory, Learmonth Solar Observatory, Udaipur. Solar Observatory, Institute de Astrophsico de Canaris, and Cerro Tololo ...

  15. Weak ionization of the global ionosphere in solar cycle 24

    Directory of Open Access Journals (Sweden)

    Y. Q. Hao

    2014-07-01

    Full Text Available Following prolonged and extremely quiet solar activity from 2008 to 2009, the 24th solar cycle started slowly. It has been almost 5 years since then. The measurement of ionospheric critical frequency (foF2 shows the fact that solar activity has been significantly lower in the first half of cycle 24, compared to the average levels of cycles 19 to 23; the data of global average total electron content (TEC confirm that the global ionosphere around the cycle 24 peak is much more weakly ionized, in contrast to cycle 23. The weak ionization has been more notable since the year 2012, when both the ionosphere and solar activity were expected to be approaching their maximum level. The undersupply of solar extreme ultraviolet (EUV irradiance somewhat continues after the 2008–2009 minimum, and is considered to be the main cause of the weak ionization. It further implies that the thermosphere and ionosphere in the first solar cycle of this millennium would probably differ from what we have learned from the previous cycles of the space age.

  16. The Effect of "Rogue" Active Regions on the Solar Cycle

    Science.gov (United States)

    Nagy, Melinda; Lemerle, Alexandre; Labonville, François; Petrovay, Kristóf; Charbonneau, Paul

    2017-11-01

    The origin of cycle-to-cycle variations in solar activity is currently the focus of much interest. It has recently been pointed out that large individual active regions with atypical properties can have a significant impact on the long-term behavior of solar activity. We investigate this possibility in more detail using a recently developed 2×2D dynamo model of the solar magnetic cycle. We find that even a single "rogue" bipolar magnetic region (BMR) in the simulations can have a major effect on the further development of solar activity cycles, boosting or suppressing the amplitude of subsequent cycles. In extreme cases, an individual BMR can completely halt the dynamo, triggering a grand minimum. Rogue BMRs also have the potential to induce significant hemispheric asymmetries in the solar cycle. To study the effect of rogue BMRs in a more systematic manner, a series of dynamo simulations were conducted, in which a large test BMR was manually introduced in the model at various phases of cycles of different amplitudes. BMRs emerging in the rising phase of a cycle can modify the amplitude of the ongoing cycle, while BMRs emerging in later phases will only affect subsequent cycles. In this model, the strongest effect on the subsequent cycle occurs when the rogue BMR emerges around cycle maximum at low latitudes, but the BMR does not need to be strictly cross-equatorial. Active regions emerging as far as 20° from the equator can still have a significant effect. We demonstrate that the combined effect of the magnetic flux, tilt angle, and polarity separation of the BMR on the dynamo is via their contribution to the dipole moment, δ D_{BMR}. Our results indicate that prediction of the amplitude, starting epoch, and duration of a cycle requires an accurate accounting of a broad range of active regions emerging in the previous cycle.

  17. Solar cycle dependence of scaling in solar wind fluctuations

    Directory of Open Access Journals (Sweden)

    S. C. Chapman

    2008-06-01

    Full Text Available In this review we collate recent results for the statistical scaling properties of fluctuations in the solar wind with a view to synthesizing two descriptions: that of evolving MHD turbulence and that of a scaling signature of coronal origin that passively propagates with the solar wind. The scenario that emerges is that of coexistent signatures which map onto the well known "two component" picture of solar wind magnetic fluctuations. This highlights the need to consider quantities which track Alfvénic fluctuations, and energy and momentum flux densities to obtain a complete description of solar wind fluctuations.

  18. Solar cycle dependence of scaling in solar wind fluctuations

    Science.gov (United States)

    Chapman, S. C.; Hnat, B.; Kiyani, K.

    2008-06-01

    In this review we collate recent results for the statistical scaling properties of fluctuations in the solar wind with a view to synthesizing two descriptions: that of evolving MHD turbulence and that of a scaling signature of coronal origin that passively propagates with the solar wind. The scenario that emerges is that of coexistent signatures which map onto the well known "two component" picture of solar wind magnetic fluctuations. This highlights the need to consider quantities which track Alfvénic fluctuations, and energy and momentum flux densities to obtain a complete description of solar wind fluctuations.

  19. Solar Cycle Spectral Irradiance Variation and Stratospheric Ozone

    Science.gov (United States)

    Stolarski, R. S.; Swartz, W. H.; Jackman, C. H.; Fleming, E. L.

    2011-12-01

    Recent measurements from the SIM instrument on the SORCE satellite have been interpreted by Harder et al (Geophys. Res. Lett., 36, L07801, doi:10.1029/2008GL036797, 2009) as implying a different spectral irradiance variation over the solar cycle than that put forward by Lean (Geophys. Res. Lett., 27, 2425-2428, 2000). When we inserted this new wavelength dependent solar cycle variation into our 3D CCM we found a different solar cycle dependence of the ozone concentration as a function of altitude from that we derived using the traditional Lean wavelength dependence. Examination of these results led us to realize that the main issue is the solar cycle variation of radiation at wavelengths less than 240 nm versus the solar cycle variation of radiation at wavelengths between 240 nm and 300 nm. The impact of wavelengths less than 240 nm occurs through photodissociation of O2 leading to the production of ozone. The impact of wavelengths between 240 nm and 300 nm occurs through photodissociation of O3 leading to an increase in O atoms and enhanced ozone destruction. Thus one wavelength region gives an in-phase relationship of ozone with the solar cycle while the other wavelength region gives an out-of-phase relationship of ozone with the solar cycle. We have used the Goddard two-dimensional (2D) photochemistry transport model to examine this relationship in more detail. We calculate the altitude and latitude sensitivity of ozone to changes in the solar UV irradiance as a function of wavelength. These results can be used to construct the ozone response to arbitrary wavelength dependencies of solar UV variation.

  20. Forecast for solar cycle 23 activity: a progress report

    Science.gov (United States)

    Ahluwalia, H. S.

    2001-08-01

    At the 25th International Cosmic Ray Conference (ICRC) at Durban, South Africa, I announced the discovery of a three cycle quasi-periodicity in the ion chamber data string assembled by me, for the 1937 to 1994 period (Conf. Pap., v. 2, p. 109, 1997). It corresponded in time with a similar quasi-periodicity observed in the dataset for the planetary index Ap. At the 26th ICRC at Salt Lake City, UT, I reported on our analysis of the Ap data to forecast the amplitude of solar cycle 23 activity (Conf. Pap., v. 2, pl. 260, 1999). I predicted that cycle 23 will be moderate (a la cycle 17), notwithstanding the early exuberant forecasts of some solar astronomers that cycle 23, "may be one of the greatest cycles in recent times, if not the greatest." Sunspot number data up to April 2001 indicate that our forecast appears to be right on the mark. We review the solar, interplanetary and geophysical data and describe the important lessons learned from this experience. 1. Introduction Ohl (1971) was the first to realize that Sun may be sending us a subliminal message as to its intent for its activity (Sunspot Numbers, SSN) in the next cycle. He posited that the message was embedded in the geomagnetic activity (given by sum Kp). Schatten at al (1978) suggested that Ohl hypothesis could be understood on the basis of the model proposed by Babcock (1961) who suggested that the high latitude solar poloidal fields, near a minimum, emerge as the toroidal fields on opposite sides of the solar equator. This is known as the Solar Dynamo Model. One can speculate that the precursor poloidal solar field is entrained in the high speed solar wind streams (HSSWS) from the coronal holes which are observed at Earth's orbit during the descending phase of the previous cycle. The interaction

  1. Can origin of the 2400-year cycle of solar activity be caused by solar inertial motion?

    Directory of Open Access Journals (Sweden)

    I. Charvátová

    Full Text Available A solar activity cycle of about 2400 years has until now been of uncertain origin. Recent results indicate it is caused by solar inertial motion. First we describe the 178.7-year basic cycle of solar motion. The longer cycle, over an 8000 year interval, is found to average 2402.2 years. This corresponds to the Jupiter/Heliocentre/Barycentre alignments (9.8855 × 243. Within each cycle an exceptional segment of 370 years has been found characterized by a looping pattern by a trefoil or quasitrefoil geometry. Solar activity, evidenced by 14C tree-ring proxies, shows the same pattern. Solar motion is computable in advance, so this provides a basis for future predictive assessments. The next 370-year segment will occur between AD 2240 and 2610.

    Key words: Solar physics (celestial mechanics

  2. Solar Cycle Phase Dependence of Supergranular Fractal Dimension

    Indian Academy of Sciences (India)

    We study the complexity of supergranular cells using the intensity patterns obtained from the Kodaikanal Solar Observatory during the 23rd solar cycle. Our data consists of visually identified supergranular cells, from which a fractal dimension for supergranulation is obtained according to the relation ∝ /2, where is ...

  3. Intermediate-term variations in solar radius during solar cycle 23

    Science.gov (United States)

    Kiliç, H.; Golbasi, O.; Chollet, F.

    2009-04-01

    In this study, we look for the mid-term variations in the daily average data of solar radius measurements made at the Solar Astrolabe Station of TUBITAK National Observatory (TUG) during solar cycle 23 for a time interval from 2000 February 26 to 2006 November 15. Due to the weather conditions and seasonal effect dependent on the latitude, the data series has the temporal gaps. For spectral analysis of the data series, thus, we use the Date Compensated Discrete Fourier Transform (DCDFT) and the CLEANest algorithm, which are powerful methods for irregularly spaced data. The CLEANest spectra of the solar radius data exhibit several significant mid-term periodicities at 393.2, 338.9, 206.5, 195.2, 172.3 and 125.4 days which are consistent with periods detected in several solar time series by several authors during different solar cycles. The knowledge relating to the origin of solar radius variations is not yet present. To see whether these variations will repeat in next cycles and to understand how the amplitudes of such variations change with different phases of the solar cycles, we need more systematic efforts and the long-term homogeneous data. Since most of the periodicities detected in the present study are frequently seen in solar activity indicators, it is thought that the physical mechanisms driving the periodicities of solar activity may also be effective in solar radius variations.

  4. SOLAR CYCLE VARIATION OF THE INTER-NETWORK MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Chunlan; Wang, Jingxiu, E-mail: cljin@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2015-06-20

    The solar inter-network magnetic field is the weakest component of solar magnetism, but it contributes most of the solar surface magnetic flux. The study of its origin has been constrained by the inadequate tempospatial resolution and sensitivity of polarization observations. With dramatic advances in spatial resolution and detecting sensitivity, the solar spectropolarimetry provided by the Solar Optical Telescope on board Hinode in an interval from the solar minimum to maximum of cycle 24 opens an unprecedented opportunity to study the cyclic behavior of the solar inter-network magnetic field. More than 1000 Hinode magnetograms observed from 2007 January to 2014 August are selected in the study. It has been found that there is a very slight correlation between sunspot number and magnetic field at the inter-network flux spectrum. From solar minimum to maximum of cycle 24, the flux density of the solar inter-network field is invariant, at 10 ± 1 G. The observations suggest that the inter-network magnetic field does not arise from flux diffusion or flux recycling of solar active regions, thereby indicating the existence of a local small-scale dynamo. Combining the full-disk magnetograms observed by the Solar and Heliospheric Observatory/Michelson Doppler Imager and the Solar Dynamics Observatory/Helioseismic and Magnetic Imager in the same period, we find that the area ratio of the inter-network region to the full disk of the Sun apparently decreases from solar minimum to maximum but always exceeds 60%, even in the phase of solar maximum.

  5. Solar Wind Variation with the Cycle

    Indian Academy of Sciences (India)

    dependent boundary conditions in the solar corona. "Minimal" coronal configurations correspond to the regular appearance of the tenuous, but hot and fast plasma streams from the large polar coronal holes. The denser, but cooler and slower ...

  6. Toluene stability Space Station Rankine power system

    Science.gov (United States)

    Havens, V. N.; Ragaller, D. R.; Sibert, L.; Miller, D.

    1987-01-01

    A dynamic test loop is designed to evaluate the thermal stability of an organic Rankine cycle working fluid, toluene, for potential application to the Space Station power conversion unit. Samples of the noncondensible gases and the liquid toluene were taken periodically during the 3410 hour test at 750 F peak temperature. The results obtained from the toluene stability loop verify that toluene degradation will not lead to a loss of performance over the 30-year Space Station mission life requirement. The identity of the degradation products and the low rates of formation were as expected from toluene capsule test data.

  7. Application of Solar Energy to Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    M, Nash J; J, Harstad A

    1976-11-01

    The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/ Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.

  8. Application of solar energy to air conditioning systems

    Science.gov (United States)

    Nash, J. M.; Harstad, A. J.

    1976-01-01

    The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.

  9. Exergy and Thermoeconomic Analyses of Central Receiver Concentrated Solar Plants Using Air as Heat Transfer Fluid

    OpenAIRE

    Claudia Toro; Rocco, Matteo V; Emanuela Colombo

    2016-01-01

    The latest developments in solar technologies demonstrated that the solar central receiver configuration is the most promising application among concentrated solar power (CSP) plants. In CSPs solar-heated air can be used as the working fluid in a Brayton thermal cycle and as the heat transfer fluid for a Rankine thermal cycle as an alternative to more traditional working fluids thereby reducing maintenance operations and providing the power section with a higher degree of flexibility To suppl...

  10. Development of a solar-powered residential air conditioner

    Science.gov (United States)

    1975-01-01

    An extensive review of the literature was conducted which was concerned with the characterization of systems and equipment that could be applicable to the development of solar-powered air conditioners based on the Rankine cycle approach, and the establishment of baseline data defining the performance, physical characteristics, and cost of systems using the LiBr/H2O absorption cycle.

  11. Interannual Variations of MLS Carbon Monoxide Induced by Solar Cycle

    Science.gov (United States)

    Lee, Jae N.; Wu, Dong L.; Ruzmaikin, Alexander

    2013-01-01

    More than eight years (2004-2012) of carbon monoxide (CO) measurements from the Aura Microwave Limb Sounder (MLS) are analyzed. The mesospheric CO, largely produced by the carbon dioxide (CO2) photolysis in the lower thermosphere, is sensitive to the solar irradiance variability. The long-term variation of observed mesospheric MLS CO concentrations at high latitudes is likely driven by the solar-cycle modulated UV forcing. Despite of different CO abundances in the southern and northern hemispheric winter, the solar-cycle dependence appears to be similar. This solar signal is further carried down to the lower altitudes by the dynamical descent in the winter polar vortex. Aura MLS CO is compared with the Solar Radiation and Climate Experiment (SORCE) total solar irradiance (TSI) and also with the spectral irradiance in the far ultraviolet (FUV) region from the SORCE Solar-Stellar Irradiance Comparison Experiment (SOLSTICE). Significant positive correlation (up to 0.6) is found between CO and FUVTSI in a large part of the upper atmosphere. The distribution of this positive correlation in the mesosphere is consistent with the expectation of CO changes induced by the solar irradiance variations.

  12. Advanced power cycles for concentrated solar power

    OpenAIRE

    Stein, W. H.; Buck, Reiner

    2017-01-01

    This paper provides a review of advanced power cycles under consideration for CSP. As variable renewables make rapid commercial progress, CSP with thermal energy storage is in an excellent position to provide low cost stability and reliability to the grid, however higher efficiency and lower costs are critical. Steam turbines provide a robust commercial option for today but more advanced power cycles offering greater agility and flexibility are needed. Supercritical steam turbines are attract...

  13. 25 MeV solar proton events in Cycle 24 and previous cycles

    Science.gov (United States)

    Richardson, Ian G.; von Rosenvinge, Tycho T.; Cane, Hilary V.

    2017-08-01

    We summarize observations of around a thousand solar energetic particle (SEP) events since 1967 that include ∼25 MeV protons, made by various near-Earth spacecraft (IMPs 4, 5, 7, 8, ISEE 3, SOHO), that encompass Solar Cycle 20 to the current cycle (24). We also discuss recent observations of similar SEP events in Cycle 24 made by the STEREO spacecraft. The observations show, for example, that the time distribution of ∼25 MeV proton events varies from cycle to cycle. In particular, the time evolution of the SEP occurrence rate in Cycle 24 is strongly asymmetric between the northern and southern solar hemispheres, and tracks the sunspot number in each hemisphere, whereas Cycle 23 was more symmetric. There was also an absence of 25 MeV proton events during the solar minimum preceding Cycle 24 (other minima show occasional, often reasonably intense events). So far, events comparable to the exceptionally intense events detected in Cycles 22 and 23 have not been observed at Earth in Cycle 24, though Cycle 21 (the largest of the cycles considered here) also apparently lacked such events. We note a correlation between the rates of intense 25 MeV proton events and ;ground level enhancements; (GLEs) observed by neutron monitors, since 1967, and conclude that the number of ;official; GLEs (1) observed to date in Cycle 24 appears to be significantly lower than expected (5 to 7 ± 1) based on the rate of intense 25 MeV proton events in this cycle.

  14. Life-cycle analysis of product integrated polymer solar cells

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; García-Valverde, Rafael; Krebs, Frederik C

    2011-01-01

    A life cycle analysis (LCA) on a product integrated polymer solar module is carried out in this study. These assessments are well-known to be useful in developmental stages of a product in order to identify the bottlenecks for the up-scaling in its production phase for several aspects spanning from......, switch and a white light emitting semiconductor diode. The polymer solar cell employed in this prototype presents a power conversion efficiency in the range of 2 to 3% yielding energy payback times (EPBT) in the range of 1.3–2 years. Based on this it is worthwhile to undertake a life-cycle study...

  15. High solar cycle spectral variations inconsistent with stratospheric ozone observations

    CERN Document Server

    Ball, W T; Rozanov, E V; Kuchar, A; Sukhodolov, T; Tummon, F; Shapiro, A V; Schmutz, W

    2016-01-01

    Some of the natural variability in climate is understood to come from changes in the Sun. A key route whereby the Sun may influence surface climate is initiated in the tropical stratosphere by the absorption of solar ultraviolet (UV) radiation by ozone, leading to a modification of the temperature and wind structures and consequently to the surface through changes in wave propagation and circulation. While changes in total, spectrally-integrated, solar irradiance lead to small variations in global mean surface temperature, the `top-down' UV effect preferentially influences on regional scales at mid-to-high latitudes with, in particular, a solar signal noted in the North Atlantic Oscillation (NAO). The amplitude of the UV variability is fundamental in determining the magnitude of the climate response but understanding of the UV variations has been challenged recently by measurements from the SOlar Radiation and Climate Experiment (SORCE) satellite, which show UV solar cycle changes up to 10 times larger than p...

  16. Prediction of Main Parameters of 24 Solar Cycle

    Science.gov (United States)

    Chumak, O. V.

    It is shown that there are certain rules which connect a height of previous solar activity cycle with the entropy of the next one. For even and odd cycles these rules are asymmetrical. So if it is known height of the previous cycle one can make estimation for entropy of the next one according to one of these rules. It has been shown also, that entropy (ES) of a cycle has good correlation with its height. On the other hand height of a cycle (Wmax) correlates with duration of its rise branch (Waldmeier's rule), and it allows to get the estimation of epoch of maximum (Tmax) of future cycle. Epignosis shows that the reliability of such forecasts is about 83%. Below we present the values of main parameters of future 24 cycle obtained according to these rules: Shannon's entropy ES = 5.0 ± 0.2; height of the cycle Wmax = 95± 20 (in monthly Wolf numbers); duration of arise branch Ta = 4.5 ± 0.5 years; epoch of the cycle maximum Tmax = 2012.25 ± 0.5 year. Full version of the paper is prepared to be published in Solar System Research.

  17. A Statistical Test of Uniformity in Solar Cycle Indices

    Science.gov (United States)

    Hathaway David H.

    2012-01-01

    Several indices are used to characterize the solar activity cycle. Key among these are: the International Sunspot Number, the Group Sunspot Number, Sunspot Area, and 10.7 cm Radio Flux. A valuable aspect of these indices is the length of the record -- many decades and many (different) 11-year cycles. However, this valuable length-of-record attribute has an inherent problem in that it requires many different observers and observing systems. This can lead to non-uniformity in the datasets and subsequent erroneous conclusions about solar cycle behavior. The sunspot numbers are obtained by counting sunspot groups and individual sunspots on a daily basis. This suggests that the day-to-day and month-to-month variations in these numbers should follow Poisson Statistics and be proportional to the square-root of the sunspot numbers themselves. Examining the historical records of these indices indicates that this is indeed the case - even with Sunspot Area and 10.7 cm Radio Flux. The ratios of the RMS variations to the square-root of the indices themselves are relatively constant with little variation over the phase of each solar cycle or from small to large solar cycles. There are, however, important step-like changes in these ratios associated with changes in observer and/or observer system. Here we show how these variations can be used to construct more uniform datasets.

  18. Reconciling solar and stellar magnetic cycles with nonlinear dynamo simulations.

    Science.gov (United States)

    Strugarek, A; Beaudoin, P; Charbonneau, P; Brun, A S; do Nascimento, J-D

    2017-07-14

    The magnetic fields of solar-type stars are observed to cycle over decadal periods-11 years in the case of the Sun. The fields originate in the turbulent convective layers of stars and have a complex dependency upon stellar rotation rate. We have performed a set of turbulent global simulations that exhibit magnetic cycles varying systematically with stellar rotation and luminosity. We find that the magnetic cycle period is inversely proportional to the Rossby number, which quantifies the influence of rotation on turbulent convection. The trend relies on a fundamentally nonlinear dynamo process and is compatible with the Sun's cycle and those of other solar-type stars. Copyright © 2017, American Association for the Advancement of Science.

  19. Performance of a reversible heat pump/organic Rankine cycle unit coupled with a passive house to get a positive energy building

    DEFF Research Database (Denmark)

    Dumont, Olivier; Carmo, Carolina; Fontaine, Valentin

    2016-01-01

    of the system under different operational conditions. Sensitivity studies include: building envelope, climate, appliances, lighting and heat demand profiles. It is concluded that the HP/ORC unit can turn a single-family house into a PEB under certain weather conditions (electrical production of 3012 k......This paper presents an innovative technology that can be used to deliver more renewable electricity production than the total electrical consumption of a building while covering the heat demand on a yearly basis. The technology concept uses a heat pump (HP), slightly modified to revert its cycle...

  20. Power and Efficiency Analysis of a Solar Central Receiver Combined Cycle Plant with a Small Particle Heat Exchanger Receiver

    Science.gov (United States)

    Virgen, Matthew Miguel

    Two significant goals in solar plant operation are lower cost and higher efficiencies. To achieve those goals, a combined cycle gas turbine (CCGT) system, which uses the hot gas turbine exhaust to produce superheated steam for a bottoming Rankine cycle by way of a heat recovery steam generator (HRSG), is investigated in this work. Building off of a previous gas turbine model created at the Combustion and Solar Energy Laboratory at SDSU, here are added the HRSG and steam turbine model, which had to handle significant change in the mass flow and temperature of air exiting the gas turbine due to varying solar input. A wide range of cases were run to explore options for maximizing both power and efficiency from the proposed CSP CCGT plant. Variable guide vanes (VGVs) were found in the earlier model to be an effective tool in providing operational flexibility to address the variable nature of solar input. Combined cycle efficiencies in the range of 50% were found to result from this plant configuration. However, a combustor inlet temperature (CIT) limit leads to two distinct Modes of operation, with a sharp drop in both plant efficiency and power occurring when the air flow through the receiver exceeded the CIT limit. This drawback can be partially addressed through strategic use of the VGVs. Since system response is fully established for the relevant range of solar input and variable guide vane angles, the System Advisor Model (SAM) from NREL can be used to find what the actual expected solar input would be over the course of the day, and plan accordingly. While the SAM software is not yet equipped to model a Brayton cycle cavity receiver, appropriate approximations were made in order to produce a suitable heliostat field to fit this system. Since the SPHER uses carbon nano-particles as the solar absorbers, questions of particle longevity and how the particles might affect the flame behavior in the combustor were addressed using the chemical kinetics software Chemkin

  1. Characteristics of Solar Wind Density Depletions During Solar Cycles 23 and 24

    Directory of Open Access Journals (Sweden)

    Keunchan Park

    2017-06-01

    Full Text Available Solar wind density depletions are phenomena that solar wind density is rapidly decreased and keep the state. They are generally believed to be caused by the interplanetary (IP shocks. However, there are other cases that are hardly associated with IP shocks. We set up a hypothesis for this phenomenon and analyze this study. We have collected the solar wind parameters such as density, speed and interplanetary magnetic field (IMF data related to the solar wind density depletion events during the period from 1996 to 2013 that are obtained with the advanced composition explorer (ACE and the Wind satellite. We also calculate two pressures (magnetic, dynamic and analyze the relation with density depletion. As a result, we found total 53 events and the most these phenomena’s sources caused by IP shock are interplanetary coronal mass ejection (ICME. We also found that solar wind density depletions are scarcely related with IP shock’s parameters. The solar wind density is correlated with solar wind dynamic pressure within density depletion. However, the solar wind density has an little anti-correlation with IMF strength during all events of solar wind density depletion, regardless of the presence of IP shocks. Additionally, In 47 events of IP shocks, we find 6 events that show a feature of blast wave. The quantities of IP shocks are weaker than blast wave from the Sun, they are declined in a short time after increasing rapidly. We thus argue that IMF strength or dynamic pressure are an important factor in understanding the nature of solar wind density depletion. Since IMF strength and solar wind speed varies with solar cycle, we will also investigate the characteristics of solar wind density depletion events in different phases of solar cycle as an additional clue to their physical nature.

  2. Phase Relationships of Solar Hemispheric Toroidal and Poloidal Cycles

    Science.gov (United States)

    Muraközy, J.

    2016-08-01

    The solar northern and southern hemispheres exhibit differences in their intensities and time profiles of the activity cycles. The time variation of these properties was studied in a previous article covering the data from Cycles 12-23. The hemispheric phase lags exhibited a characteristic variation: the leading role was exchanged between hemispheres every four cycles. The present work extends the investigation of this variation using the data of Staudacher and Schwabe in Cycles 1-4 and 7-10 as well as Spörer’s data in Cycle 11. The previously observed variation cannot be clearly recognized using the data of Staudacher, Schwabe, and Spörer. However, it is more interesting that the phase lags of the reversals of the magnetic fields at the poles follow the same variations as those of the hemispheric cycles in Cycles 12-23, i.e., one of the hemispheres leads in four cyles and the leading role jumps to the opposite hemisphere in the next four cycles. This means that this variation is a long-term property of the entire solar dynamo mechanism, for both the toroidal and poloidal fields, which hints at an unidentified component of the process responsible for the long-term memory.

  3. Solar High Temperature Water-Splitting Cycle with Quantum Boost

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Robin [SAIC; Davenport, Roger [SAIC; Talbot, Jan [UCSD; Herz, Richard [UCSD; Genders, David [Electrosynthesis Co.; Symons, Peter [Electrosynthesis Co.; Brown, Lloyd [TChemE

    2014-04-25

    A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle for reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are

  4. Mir Cooperative Solar Array Project Accelerated Life Thermal Cycling Test

    Science.gov (United States)

    Hoffman, David J.; Scheiman, David A.

    1996-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint U.S./Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA will be used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station. The MCSA was brought to Mir by space shuttle Atlantis in November 1995. This report describes an accelerated thermal life cycle test which was performed on two samples of the MCSA. In eight months time, two MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles. There was no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early and removed from consideration. The nature of the performance degradation caused by this one cell is briefly discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the U.S. solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit). This was considered a successful development test.

  5. Refined life-cycle assessment of polymer solar cells

    DEFF Research Database (Denmark)

    Lenzmann, F.; Kroon, J.; Andriessen, R.

    2011-01-01

    A refined life-cycle assessment of polymer solar cells is presented with a focus on critical components, i.e. the transparent conductive ITO layer and the encapsulation components. This present analysis gives a comprehensive sketch of the full environmental potential of polymer-OPV in comparison...

  6. Quiet solar wind interaction with Mars over the entire solar cycle.

    Science.gov (United States)

    Fedorov, Andrey; Modolo, Ronan; Jarvinen, Riku; Barabash, Stas

    2017-04-01

    This work presents a massive statistical analysis of the ion flows in the Martian induced magnetosphere over the one solar cycle. We performed this analysis using Mars Express ion mass spectrometer data taken during 2008 - 2014 time interval. This data allows to make an enhanced study of the induced magnetosphere variations as a response of the solar activity level. Since Mars Express has no onboard magnetometer, we used the hybrid models of the Martian plasma environment to get a proper frame to make an adequate statistics of the magnetospheric response. We found that the planetary ions escape rate for the quiet solar wind time intervals do not depend on the solar activity. However the induced magnetosphere structure depends very much on the low/high solar cycle season.

  7. Solar cycle effect delays onset of ozone recovery

    Science.gov (United States)

    Dameris, M.; Matthes, S.; Deckert, R.; Grewe, V.; Ponater, M.

    2006-02-01

    Short- and long-term changes of total ozone are investigated by means of an ensemble simulation with the coupled chemistry-climate model E39/C for the period 1960 to 2020. Past total ozone changes are well simulated on both, long (decadal) and short (monthly) timescales. Even the 2002 Antarctic ozone anomaly appears in the ensemble. The model results indicate that the 11-year solar cycle will delay the onset of a sustained ozone recovery. The lowest global mean total ozone values occur between 2005 and 2010, although stratospheric chlorine loading is assumed to decline after 2000. E39/C results exhibit a significant increase of total ozone after the beginning of the next decade, following the upcoming solar minimum. The observed ozone increase in the second half of the 1990s is reproduced by E39/C and is identified as a combined post-Pinatubo and solar cycle effect rather than the beginning of a sustainable ozone recovery.

  8. Solar panel thermal cycling testing by solar simulation and infrared radiation methods

    Science.gov (United States)

    Nuss, H. E.

    1980-01-01

    For the solar panels of the European Space Agency (ESA) satellites OTS/MAROTS and ECS/MARECS the thermal cycling tests were performed by using solar simulation methods. The performance data of two different solar simulators used and the thermal test results are described. The solar simulation thermal cycling tests for the ECS/MARECS solar panels were carried out with the aid of a rotatable multipanel test rig by which simultaneous testing of three solar panels was possible. As an alternative thermal test method, the capability of an infrared radiation method was studied and infrared simulation tests for the ultralight panel and the INTELSAT 5 solar panels were performed. The setup and the characteristics of the infrared radiation unit using a quartz lamp array of approx. 15 sq and LN2-cooled shutter and the thermal test results are presented. The irradiation uniformity, the solar panel temperature distribution, temperature changing rates for both test methods are compared. Results indicate the infrared simulation is an effective solar panel thermal testing method.

  9. Magnetic solar and economic cycles: mechanism of close connection

    Directory of Open Access Journals (Sweden)

    Vladimir Alekseyevich Belkin

    2013-03-01

    Full Text Available In the article on extensivestatistical material over long periods of timeshows therelationship of the magneticradiation from thesun cycles and cycles of key macroeconomic indicators, namely, GDP, the level of stagflation (an index print including seasonal cycles, the cycles Kuznets and Kondratieff cycles. The authorexplains this relationship on the basis of theresults of scientificexperimentsconducted by the Institute of Space Research of the Russian Academy of Sciences. As a result of these experiments a negative effect of magnetic storms on the mental and physical well-being, which, as the author shows, leads to decrease in labor productivity and gross domestic product has been proved. Therefore, cyclic geomagnetic disturbances are the main cause of cyclicity of main economic indicators. Thus, it is possible to develop economic forecasts based on astrophysical predictions of solar activity and geomagnetic disturbances. The author has developed some of them. Identifying strong direct relationship of long waves of stagflation in the U.S. and long (large cycles of solar activity, and the identification of a strong geomagnetic feedback seasonal and economic cycles in the U.S. economy, and Russia are considered to be the scientific innovation of the article.

  10. Solar powered Stirling cycle electrical generator

    Science.gov (United States)

    Shaltens, Richard K.

    1991-01-01

    Under NASA's Civil Space Technology Initiative (CSTI), the NASA Lewis Research Center is developing the technology needed for free-piston Stirling engines as a candidate power source for space systems in the late 1990's and into the next century. Space power requirements include high efficiency, very long life, high reliability, and low vibration. Furthermore, system weight and operating temperature are important. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, non-contacting gas bearings, and can be hermetically sealed. These attributes of the free-piston Stirling engine also make it a viable candidate for terrestrial applications. In cooperation with the Department of Energy, system designs are currently being completed that feature the free-piston Stirling engine for terrestrial applications. Industry teams were assembled and are currently completing designs for two Advanced Stirling Conversion Systems utilizing technology being developed under the NASA CSTI Program. These systems, when coupled with a parabolic mirror to collect the solar energy, are capable of producing about 25 kW of electricity to a utility grid. Industry has identified a niche market for dish Stirling systems for worldwide remote power application. They believe that these niche markets may play a major role in the introduction of Stirling products into the commercial market.

  11. Statistical properties of solar flares and coronal mass ejections through the solar cycle

    Energy Technology Data Exchange (ETDEWEB)

    Telloni, Daniele; Antonucci, Ester [INAF-Astrophysical Observatory of Torino, Via Osservatorio 20, 10025 Pino Torinese (Italy); Carbone, Vincenzo [University of Calabria, Department of Physics, Ponte P. Bucci Cubo 31C, 87036 Rende (Italy); CNR-Institute for Chemical-Physical Processes, Ponte P. Bucci Cubo 33B, 87036 Rende (Italy); Lepreti, Fabio [University of Calabria, Department of Physics, Ponte P. Bucci Cubo 31C, 87036 Rende (Italy)

    2016-03-25

    Waiting Time Distributions (WTDs) of solar flares are investigated all through the solar cycle. The same approach applied to Coronal Mass Ejections (CMEs) in a previous work is considered here for flare occurrence. Our analysis reveals that flares and CMEs share some common statistical properties, which result dependent on the level of solar activity. Both flares and CMEs seem to independently occur during minimum solar activity phases, whilst their WTDs significantly deviate from a Poisson function at solar maximum, thus suggesting that these events are correlated. The characteristics of WTDs are constrained by the physical processes generating those eruptions associated with flares and CMEs. A scenario may be drawn in which different mechanisms are actively at work during different phases of the solar cycle. Stochastic processes, most likely related to random magnetic reconnections of the field lines, seem to play a key role during solar minimum periods. On the other hand, persistent processes, like sympathetic eruptions associated to the variability of the photospheric magnetism, are suggested to dominate during periods of high solar activity. Moreover, despite the similar statistical properties shown by flares and CMEs, as it was mentioned above, their WTDs appear different in some aspects. During solar minimum periods, the flare occurrence randomness seems to be more evident than for CMEs. Those persistent mechanisms generating interdependent events during maximum periods of solar activity can be suggested to play a more important role for CMEs than for flares, thus mitigating the competitive action of the random processes, which seem instead strong enough to weaken the correlations among flare event occurrence during solar minimum periods. However, it cannot be excluded that the physical processes at the basis of the origin of the temporal correlation between solar events are different for flares and CMEs, or that, more likely, more sophisticated effects are

  12. Thermal Cycling of Mir Cooperative Solar Array (MCSA) Test Panels

    Science.gov (United States)

    Hoffman, David J.; Scheiman, David A.

    1997-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint US/Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA is currently being used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station (ISS), which will use arrays based on the same solar cells used in the MCSA. The US supplied the photovoltaic power modules (PPMs) and provided technical and programmatic oversight while Russia provided the array support structures and deployment mechanism and built and tested the array. In order to ensure that there would be no problems with the interface between US and Russian hardware, an accelerated thermal life cycle test was performed at NASA Lewis Research Center on two representative samples of the MCSA. Over an eight-month period (August 1994 - March 1995), two 15-cell MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles (+80 C to -100 C), equivalent to four years on-orbit. The test objectives, facility, procedure and results are described in this paper. Post-test inspection and evaluation revealed no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early as an artifact of the test and removed from consideration. The interesting nature of the performance degradation caused by this one cell, which only occurred at elevated temperatures, is discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the US solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit).

  13. Why are there fewer large SEP events this solar cycle?

    Science.gov (United States)

    Giacalone, J.; Mewaldt, R. A.

    2016-12-01

    There have been fewer large Solar Energetic Particle (SEP) events seen during the current solar cycle compared to the previous one. To understand this, we use a model for the acceleration of energetic protons at (individual) fast and strong interplanetary shocks, combined with remote observations of the speed of coronal mass ejections (CME) near the Sun, to estimate the total integrated flux of large SEP events at Earth throughout the past two solar cycles. Our results are compared with NOAA/GOES observations of large SEP events during this period. We find that the dearth of large SEP events in the current solar cycle is caused partly by there being fewer fast CMEs, and partly because the interplanetary magnetic field magnitude is weaker. A weaker magnetic field causes the particles to be accelerated more slowly; and during the time over which the shock moves from the Sun to 1 AU, the slower acceleration rate results in a lower intensity of high-energy particles. Our model is based on a solution to the diffusive shock acceleration theory applied to a spherically propagating shock. We use a diffusion coefficient that scales with the square of the heliocentric distance, so that it is very small near the Sun. Its value at 1AU is determined from observations of one particular large SEP event (DOY 302, 2003) seen during the well-known Halloween storm period of 2003. Comparison with this one event is also used to normalize our results. When convolved with the remotely observed speed distribution of many thousands of CMEs during the past two solar cycles, our model gives a reasonably close estimate of the observed total integrated flux of high-energy (>10 MeV) SEPs, despite its rather simple assumptions.

  14. Solar-Driven Air-Conditioning Cycles: A Review

    Directory of Open Access Journals (Sweden)

    A. M. Abu-Zour

    2007-12-01

    Full Text Available Most conventional cooling/refrigeration systems are driven by fossil fuel combustion, and therefore give rise to emission of environmentally damaging pollutants. In addition, many cooling systems employ refrigerants, which are also harmful to the environment in terms of their Global Warming Potential (GWP and Ozone Depletion Potential (ODP. Development of a passive or hybrid solar-driven air-conditioning system is therefore of interest as exploitation of such systems would reduce the demand for grid electricity particularly at times of peak load. This paper presents a review of various cooling cycles and summarises work carried out on solar-driven air-conditioning systems.

  15. Thermoeconomic Evaluation of Integrated Solar Combined Cycle Systems (ISCCS

    Directory of Open Access Journals (Sweden)

    Javier Rodríguez Martín

    2014-07-01

    Full Text Available Three alternatives for integrating a solar field with the bottoming cycle of a combined cycle plant are modeled: parabolic troughs with oil at intermediate and low cycle pressures and Fresnel linear collectors at low cycle pressure. It is assumed that the plant will always operate at nominal conditions, using post-combustion during the hours of no solar resource. A thermoeconomic study of the operation of the plant throughout a year has been carried out. The energy and exergy efficiencies of the plant working in fuel only and hybrid modes are compared. The energy efficiencies obtained are very similar; slightly better for the fuel only mode. The exergy efficiencies are slightly better for hybrid operation than for fuel-only mode, due to the high exergy destruction associated with post-combustion. The values for solar electric efficiency are in line with those of similar studies. The economic study shows that the Fresnel hybridization alternative offers similar performance to the others at a significantly lower cost.

  16. The solar activity cycle physical causes and consequences

    CERN Document Server

    Hudson, Hugh; Petrovay, Kristóf; Steiger, Rudolf

    2015-01-01

    A collection of papers edited by four experts in the field, this book sets out to describe the way solar activity is manifested in observations of the solar interior, the photosphere, the chromosphere, the corona and the heliosphere. The 11-year solar activity cycle, more generally known as the sunspot cycle, is a fundamental property of the Sun.  This phenomenon is the generation and evolution of magnetic fields in the Sun’s convection zone, the photosphere.  It is only by the careful enumeration and description of the phenomena and their variations that one can clarify their interdependences.   The sunspot cycle has been tracked back about four centuries, and it has been recognized that to make this data set a really useful tool in understanding how the activity cycle works and how it can be predicted, a very careful and detailed effort is needed to generate sunspot numbers.  This book deals with this topic, together with several others that present related phenomena that all indicate the physical pr...

  17. Preliminary prediction of the 25-thTH solar cycle parameters

    Science.gov (United States)

    Pishkalo, M.

    2014-12-01

    Solar activity varies with a period of about 11 years. The solar activity variations cause changes in the interplanetary and near-Earth space. The whole space weather is mainly controlled by the solar activity. Changes in space weather affect the operation of space-borne and ground-based technological systems such as manned space flights, aero-navigation and space navigation, radars, high-frequency radio communication, GPS navigation, ground power lines. The solar activity variations influence living organisms and the climate on Earth. That is why it is important to know the level of solar activity in a solar cycle in advance. Current solar activity is near the maximum of solar cycle 24. Maximal monthly sunspot number was 102.8 in February 2014 and smoothed one was 75.4 in November 2013 (preliminary). Taking it into account and using correlation relations and regression equations from (Pishkalo, 2014: Solar Phys., vol. 289, 1815) we can estimate duration of solar cycle 24 and then predict parameters of solar cycle 25. Precursors in our calculations are the estimated duration of solar cycle 24 and sunspot number at the end of the cycle. We found that minimum and maximum of solar cycle 25 in monthly sunspot numbers will amount to 5 in April-June of 2020 and 105-110 in October-December of 2024, respectively. Solar cycle 25 will be stronger than the current cycle 24. No very deep drop in solar activity similar to Dalton or Maunder minimums was predicted.

  18. Solar Wind Variation with the Cycle I. S. Veselovsky,* A. V. Dmitriev ...

    Indian Academy of Sciences (India)

    tribpo

    Solar wind, energy and mass flux densities during the 20–23 solar cycles. (a) sunspot numbers; (b) solar wind energy flux density St;(c) solar wind mass flux density j. cycles with time scales from days to tens of years. The results of this investigation. (Veselovsky et al. 2000b) show a large manifold of the regular and irregular ...

  19. Solar power satellite life-cycle energy recovery consideration

    Energy Technology Data Exchange (ETDEWEB)

    Weingartner, S.; Blumenberg, J. [Deutsche Aerospace AG, Munich (Germany)]|[Technical Univ. of Munich, Munich (Germany)

    1994-12-31

    The construction, in-orbit installation and maintenance of a solar power satellite (SPS) will demand large amounts of energy. As a minimum requirement for an energy effective power satellite it is asked that this amount of energy be recovered. The energy effectiveness in this sense resulting in a positive net energy balance is a prerequisite for cost-effective power satellite. This paper concentrates on life-cycle energy recovery instead on monetary aspects. The trade-offs between various power generation systems (different types of solar cells, solar dynamic), various construction and installation strategies (using terrestrial or extra-terrestrial resources) and the expected/required lifetime of the SPS are reviewed. The presented work is based on a 2-year study performed at the Technical University of Munich. The study showed that the main energy which is needed to make a solar power satellite a reality is required for the production of the solar power components (up to 65%), especially for the solar cell production. Whereas transport into orbit accounts in the order of 20% and the receiving station on earth (rectenna) requires about 15% of the total energy investment. The energetic amortization time, i.e. the time the SPS has to be operational to give back the amount of energy which was needed for its production installation and operation, is about two years.

  20. The Complex Solar Polarity Reversal during Cycle 24

    Science.gov (United States)

    Gopalswamy, N.; Yashiro, S.; Akiyama, S.

    2016-10-01

    The polarity reversal at solar poles is an important event with important implications for solar magnetism, the polarity of interplanetary coronal mass ejections, and even cosmic ray modulation. The poles often do not reverse simultaneously. During the several recent cycles, the north pole reversed first, followed by the south. During cycle 24, this trend has been broken in that the south pole reversed first. The polarity reversal is typically marked by the cessation of high-latitude eruptive activities such coronal mass ejections and prominence eruptions. Even though polar prominences started appearing as early as 2011, the reversal in the north was completed only by the end of 2015. On the other hand the south polar region behaved as in previous cycles and reversed over a shorter time scale, about a year before the reversal in the north. By combining prominence eruption detected automatically (Nobeyama Radioheliograph and SDO), the polar microwave brightness (Nobeyama Radioheliograph), and the magnetic butterfly diagram (SDO and NSO) we show that the complexity can be attributed to the emergence of active regions that violated the Hale polarity rule and Joy's law. The extended period of near-zero field in the north polar region should result in very weak and delayed sunspot activity in the northern hemisphere in cycle 25, the southern hemispheric activity should start early; the amplitude will depend on how the south polar fields will evolve in the declining phase of cycle (24).

  1. The South Atlantic Anomaly throughout the solar cycle

    Science.gov (United States)

    Domingos, João; Jault, Dominique; Pais, Maria Alexandra; Mandea, Mioara

    2017-09-01

    The Sun-Earth's interaction is characterized by a highly dynamic electromagnetic environment, in which the magnetic field produced in the Earth's core plays an important role. One of the striking characteristics of the present geomagnetic field is denoted the South Atlantic Anomaly (SAA) where the total field intensity is unusually low and the flux of charged particles, trapped in the inner Van Allen radiation belts, is maximum. Here, we use, on one hand, a recent geomagnetic field model, CHAOS-6, and on the other hand, data provided by different platforms (satellites orbiting the Earth - POES NOAA for 1998-2014 and CALIPSO for 2006-2014). Evolution of the SAA particle flux can be seen as the result of two main effects, the secular variation of the Earth's core magnetic field and the modulation of the density of the inner radiation belts during the solar cycle, as a function of the L value that characterises the drift shell, where charged particles are trapped. To study the evolution of the particle flux anomaly, we rely on a Principal Component Analysis (PCA) of either POES particle flux or CALIOP dark noise. Analysed data are distributed on a geographical grid at satellite altitude, based on a L-shell reference frame constructed from the moving eccentric dipole. Changes in the main magnetic field are responsible for the observed westward drift. Three PCA modes account for the time evolution related to solar effects. Both the first and second modes have a good correlation with the thermospheric density, which varies in response to the solar cycle. The first mode represents the total intensity variation of the particle flux in the SAA, and the second the movement of the anomaly between different L-shells. The proposed analysis allows us to well recover the westward drift rate, as well as the latitudinal and longitudinal solar cycle oscillations, although the analysed data do not cover a complete (Hale) magnetic solar cycle (around 22 yr). Moreover, the developments

  2. Ground level enhancements of cosmic rays in solar cycle 24

    Science.gov (United States)

    Kravtsova, M. V.; Sdobnov, V. E.

    2017-07-01

    Using data from ground-based observations of cosmic rays (CRs) on the worldwide network of stations and spacecraft, we have investigated the proton spectra and the CR anisotropy during the ground level enhancements of CRs on May 17, 2012 (GLE71) and January 6, 2014 (GLE72) occurred in solar cycle 24 by the spectrographic global survey method. We provide the CR rigidity spectra and the relative changes in the intensity of CRs with a rigidity of 2 GV in the solar-ecliptic geocentric coordinate system in specific periods of these events. We show that the proton acceleration during GLE71 and GLE72 occurred up to rigidities R 2.3-2.5 GV, while the differential rigidity spectra of solar CRs are described neither by a power nor by an exponential function of particle rigidity. At the times of the events considered the Earth was in a loop-like structure of the interplanetary magnetic field.

  3. Drought over Seoul and Its Association with Solar Cycles

    Directory of Open Access Journals (Sweden)

    Jong-Hyeok Park

    2013-12-01

    Full Text Available We have investigated drought periodicities occurred in Seoul to find out any indication of relationship between drought in Korea and solar activities. It is motivated, in view of solar-terrestrial connection, to search for an example of extreme weather condition controlled by solar activity. The periodicity of drought in Seoul has been re-examined using the wavelet transform technique as the consensus is not achieved yet. The reason we have chosen Seoul is because daily precipitation was recorded for longer than 200 years, which meets our requirement that analyses of drought frequency demand long-term historical data to ensure reliable estimates. We have examined three types of time series of the Effective Drought Index (EDI. We have directly analyzed EDI time series in the first place. And we have constructed and analyzed time series of histogram in which the number of days whose EDI is less than -1.5 for a given month of the year is given as a function of time, and one in which the number of occasions where EDI values of three consecutive days are all less than -1.5 is given as a function of time. All the time series data sets we analyzed are periodic. Apart from the annual cycle due to seasonal variations, periodicities shorter than the 11 year sunspot cycle, ~ 3, ~ 4, ~ 6 years, have been confirmed. Periodicities to which theses short periodicities (shorter than Hale period may be corresponding are not yet known. Longer periodicities possibly related to Gleissberg cycles, ~ 55, ~ 120 years, can be also seen. However, periodicity comparable to the 11 year solar cycle seems absent in both EDI and the constructed data sets.

  4. Jovian Northern Ethane Aurora and the Solar Cycle

    Science.gov (United States)

    Kostiuk,T.; Livengood, T.; Fast, K.; Buhl, D.; Goldstein, J.; Hewagama, T.

    1999-01-01

    Thermal infrared auroral spectra from Jupiter's North polar region have been collected from 1979 to 1998 in a continuing study of long-term variability in the northern thermal IR aurora, using C2H6 emission lines near 12 microns as a probe. Data from Voyager I and 2 IRIS measurements and ground based spectral measurements were analyzed using the same model atmosphere to provide a consistent relative comparison. A retrieved equivalent mole fraction was used to compare the observed integrated emission. Short term (days), medium term (months) and long term (years) variability in the ethane emission was observed. The variability Of C2H6 emission intensities was compared to Jupiter's seasonal cycle and the solar activity cycle. A positive correlation appears to exist, with significantly greater emission and short term variability during solar maxima. Observations on 60 N latitude during increased solar activity in 1979, 1989, and most recently in 1998 show up to 5 times brighter integrated line emission of C2H6 near the north polar "hot spot" (150-210 latitude) than from the north quiescent region. Significantly lower enhancement was observed during periods of lower solar activity in 1982, 1983, 1993, and 1995. Possible sources and mechanisms for the enhancement and variability will be discussed.

  5. A new method for forecasting the solar cycle descent time

    Science.gov (United States)

    Kakad, Bharati; Kakad, Amar; Sai Ramesh, Durbha

    2015-08-01

    The prediction of an extended solar minimum is extremely important because of the severity of its impact on the near-earth space. Here, we present a new method for predicting the descent time of the forthcoming solar cycle (SC); the method is based on the estimation of the Shannon entropy. We use the daily and monthly smoothed international sunspot number. For each nth SC, we compute the parameter [Tpre]n by using information on the descent and ascent times of the n - 3th and nth SCs, respectively. We find that [Tpre] of nth SC and entropy can be effectively used to predict the descent time of the n + 2th SC. The correlation coefficient between [Td]n+2 - [Tpre]n and [E]n is found to be 0.95. Using these parameters the prediction model is developed. Solar magnetic field and F10.7 flux data are available for SCs 21-22 and 19-23, respectively, and they are also utilized to get estimates of the Shannon entropy. It is found that the Shannon entropy, a measure of randomness inherent in the SC, is reflected well in the various proxies of the solar activity (viz sunspot, magnetic field, F10.7 flux). The applicability and accuracy of the prediction model equation is verified by way of association of least entropy values with the Dalton minimum. The prediction model equation also provides possible criteria for the occurrence of unusually longer solar minima.

  6. Methods of increasing net work output of organic Rankine cycles for low-grade waste heat recovery with a detailed analysis using a zeotropic working fluid mixture and scroll expander

    Science.gov (United States)

    Woodland, Brandon Jay

    An organic Rankine cycle (ORC) is a thermodynamic cycle that is well-suited for waste heat recovery. It is generally employed for waste heat with temperatures in the range of 80 °C -- 300 °C. When the application is strictly to convert waste heat into work, thermal efficiency is not recommended as a key performance metric. In such an application, maximization of the net power output should be the objective rather than maximization of the thermal efficiency. Two alternative cycle configurations that can increase the net power produced from a heat source with a given temperature and flow rate are proposed and analyzed. These cycle configurations are 1) an ORC with two-phase flash expansion and 2) an ORC with a zeotropic working fluid mixture (ZRC). A design-stage ORC model is presented for consistent comparison of multiple ORC configurations. The finite capacity of the heat source and heat sink fluids is a key consideration in this model. Of all working fluids studied for the baseline ORC, R134a and R245fa yield the highest net power output from a given heat source. Results of the design-stage model indicate that the ORC with two-phase flash expansion offers the most improvement over the baseline ORC. However, the level of improvement that could be achieved in practice is highly uncertain due to the requirement of highly efficient two-phase expansion. The ZRC shows improvement over the baseline as long as the condenser fan power requirement is not negligible. At the highest estimated condenser fan power, the ZRC shows the most improvement, while the ORC with flash expansion is no longer beneficial. The ZRC was selected for detailed study because it does not require two-phase expansion. An experimental test rig was used to evaluate baseline ORC performance with R134a and with R245fa. The ZRC was tested on the same rig with a mixture of 62.5% R134a and 37.5% R245fa. The tested expander is a minimally-modified, of-the-shelf automotive scroll compressor. The high

  7. Solar cycle signatures in the NCEP equatorial annual oscillation

    Directory of Open Access Journals (Sweden)

    H. G. Mayr

    2009-08-01

    Full Text Available Our analysis of temperature and zonal wind data (1958 to 2006 from the National Center for Atmospheric Research (NCAR reanalysis (Re-1, supplied by the National Centers for Environmental Prediction (NCEP, shows that the hemispherically symmetric 12-month equatorial annual oscillation (EAO contains spectral signatures with periods around 11 years. Moving windows of 44 years show that, below 20 km, the 11-year modulation of the EAO is phase locked to the solar cycle (SC. The spectral features from the 48-year data record reveal modulation signatures of 9.6 and 12 years, which produce EAO variations that mimic in limited altitude regimes the varying maxima and minima of the 10.7 cm flux solar index. Above 20 km, the spectra also contain modulation signatures with periods around 11 years, but the filtered variations are too irregular to suggest that systematic SC forcing is the principal agent.

  8. Performance Analysis of Organic Rankine-vapor Compression Ice Maker Utilizing Food Industry Waste Heat

    OpenAIRE

    Bing Hu; Yuanshu Cao; Weibin Ma

    2015-01-01

    To develop the organic Rankine-vapor compression ice maker driven by food industry exhaust gases and engine cooling water, an organic Rankine-vapor compression cycle system was employed for ice making and a thermodynamic model was developed and the effects of working fluid types, hot water temperature and condensation temperature on the system performance were analyzed and the ice making capacity from unit mass hot water and unit power waste heat were evaluated. The calculated results show th...

  9. The solar corona through the sunspot cycle: preparing for the August 21, 2017, total solar eclipse

    Science.gov (United States)

    Pasachoff, Jay M.; Seaton, Daniel; Rusin, Vojtech

    2017-01-01

    We discuss the evolution of the solar corona as seen at eclipses through the solar-activity cycle. In particular, we discuss the variations of the overall shape of the corona through the relative proportions of coronal streamers at equatorial and other latitudes vs. polar plumes. We analyze the two coronal mass ejections that we observed from Gabon at the 2013 total solar eclipse and how they apparently arose from polar crown filaments, one at each pole. We describe the change in the Ludendorff flattening index from solar maximum in one hemisphere as of the 2013 eclipse through the 2015 totality's corona we observed from Svalbard and, with diminishing sunspot and other magnetic activity in each hemisphere, through the 2016 corona we observed from Ternate, Indonesia.We discuss our observational plans for the August 21, 2017, total solar eclipse from our main site in Salem, Oregon, and subsidiary sites in Madras, OR; Carbondale, IL; and elsewhere, our main site chosen largely by its favorable rating in cloudiness statistics. We discuss the overlapping role of simultaneous spacecraft observations, including those expected not only from NASA's SDO, ESA's SWAP on PROBA2, and NRL/NASA/ESA's LASCO on SOHO but also from the new SUVI (Solar Ultraviolet Imager) aboard NOAA's GOES-R satellite, scheduled as of this writing to have been launched by the time of this January 2017 meeting.Our research on the 2013 and 2015 total solar eclipses was supported by grants from the Committee for Research and Exploration of the National Geographic Society (NG-CRE). Our research on the 2017 total solar eclipse is supported by both NG-CRE and the Solar Terrestrial Program of the Atmospheric and Geospace Sciences Division of the National Science Foundation.

  10. Solar wind drivers of geomagnetic storms during more than four solar cycles

    Directory of Open Access Journals (Sweden)

    Richardson Ian G.

    2012-05-01

    Full Text Available Using a classification of the near-Earth solar wind into three basic flow types: (1 High-speed streams associated with coronal holes at the Sun; (2 Slow, interstream solar wind; and (3 Transient flows originating with coronal mass ejections (CMEs at the Sun, including interplanetary CMEs and the associated upstream shocks and post-shock regions, we determine the drivers of geomagnetic storms of various size ranges based on the Kp index and the NOAA “G” criteria since 1964, close to the beginning of the space era, to 2011, encompassing more than four solar cycles (20–23. We also briefly discuss the occurrence of storms since the beginning of the Kp index in 1932, in the minimum before cycle 17. We note that the extended low level of storm activity during the minimum following cycle 23 is without precedent in this 80-year interval. Furthermore, the “typical” numbers of storm days/cycle quoted in the standard NOAA G storm table appear to be significantly higher than those obtained from our analysis, except for the strongest (G5 storms, suggesting that they should be revised downward.

  11. Rankline-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  12. Structure and sources of solar wind in the growing phase of 24th solar cycle

    Science.gov (United States)

    Slemzin, Vladimir; Goryaev, Farid; Shugay, Julia; Rodkin, Denis; Veselovsky, Igor

    2015-04-01

    We present analysis of the solar wind (SW) structure and its association with coronal sources during the minimum and rising phase of 24th solar cycle (2009-2011). The coronal sources prominent in this period - coronal holes, small areas of open magnetic fields near active regions and transient sources associated with small-scale solar activity have been investigated using EUV solar images and soft X-ray fluxes obtained by the CORONAS-Photon/TESIS/Sphinx, PROBA2/SWAP, Hinode/EIS and AIA/SDO instruments as well as the magnetograms obtained by HMI/SDO. It was found that at solar minimum (2009) velocity and magnetic field strength of high speed wind (HSW) and transient SW from small-scale flares did not differ significantly from those of the background slow speed wind (SSW). The major difference between parameters of different SW components was seen in the ion composition represented by the C6/C5, O7/O6, Fe/O ratios and the mean charge of Fe ions. With growing solar activity, the speed of HSW increased due to transformation of its sources - small-size low-latitude coronal holes into equatorial extensions of large polar holes. At that period, the ion composition of transient SW changed from low-temperature to high-temperature values, which was caused by variation of the source conditions and change of the recombination/ionization rates during passage of the plasma flow through the low corona. However, we conclude that criteria of separation of the SW components based on the ion ratios established earlier by Zhao&Fisk (2009) for higher solar activity are not applicable to the extremely weak beginning of 24th cycle. The research leading to these results has received funding from the European Commission's Seventh Framework Programme (FP7/2007-2013) under the grant agreement eHeroes (project n° 284461, www.eheroes.eu).

  13. A new method for forecasting the solar cycle descent time

    Directory of Open Access Journals (Sweden)

    Kakad Bharati

    2015-01-01

    Full Text Available The prediction of an extended solar minimum is extremely important because of the severity of its impact on the near-earth space. Here, we present a new method for predicting the descent time of the forthcoming solar cycle (SC; the method is based on the estimation of the Shannon entropy. We use the daily and monthly smoothed international sunspot number. For each nth SC, we compute the parameter [Tpre]n by using information on the descent and ascent times of the n − 3th and nth SCs, respectively. We find that [Tpre] of nth SC and entropy can be effectively used to predict the descent time of the n + 2th SC. The correlation coefficient between [Td]n+2 − [Tpre]n and [E]n is found to be 0.95. Using these parameters the prediction model is developed. Solar magnetic field and F10.7 flux data are available for SCs 21–22 and 19–23, respectively, and they are also utilized to get estimates of the Shannon entropy. It is found that the Shannon entropy, a measure of randomness inherent in the SC, is reflected well in the various proxies of the solar activity (viz sunspot, magnetic field, F10.7 flux. The applicability and accuracy of the prediction model equation is verified by way of association of least entropy values with the Dalton minimum. The prediction model equation also provides possible criteria for the occurrence of unusually longer solar minima.

  14. Energy comparison between solar thermal power plant and photovoltaic power plant

    Science.gov (United States)

    Novosel, Urška; Avsec, Jurij

    2017-07-01

    The combined use of renewable energy and alternative energy systems and better efficiency of energy devices is a promising approach to reduce effects due to global warming in the world. On the basis of first and second law of thermodynamics we could optimize the processes in the energy sector. The presented paper shows the comparison between solar thermal power plant and photovoltaic power plant in terms of energy, exergy and life cycle analysis. Solar thermal power plant produces electricity with basic Rankine cycle, using solar tower and solar mirrors to produce high fluid temperature. Heat from the solar system is transferred by using a heat exchanger to Rankine cycle. Both power plants produce hydrogen via electrolysis. The paper shows the global efficiency of the system, regarding production of the energy system.

  15. On the Reduced Geoeffectiveness of Solar Cycle 24: A Moderate Storm Perspective

    Science.gov (United States)

    Selvakumaran, R.; Veenadhari, B.; Akiyama, S.; Pandya, Megha; Gopalswamy, N,; Yashiro, S.; Kumar, Sandeep; Makela, P.; Xie, H.

    2016-01-01

    The moderate and intense geomagnetic storms are identified for the first 77 months of solar cycles 23 and 24. The solar sources responsible for the moderate geomagnetic storms are indentified during the same epoch for both the cycles. Solar cycle 24 has shown nearly 80% reduction in the occurrence of intense storms whereas it is only 40% in case of moderate storms when compared to previous cycle. The solar and interplanetary characteristics of the moderate storms driven by coronal mass ejection (CME) are compared for solar cycles 23 and 24 in order to see reduction in geoeffectiveness has anything to do with the occurrence of moderate storm. Though there is reduction in the occurrence of moderate storms, the Dst distribution does not show much difference. Similarly, the solar source parameters like CME speed, mass, and width did not show any significant variation in the average values as well as the distribution. The correlation between VBz and Dst is determined, and it is found to be moderate with value of 0.68 for cycle 23 and 0.61 for cycle 24. The magnetospheric energy flux parameter epsilon (epsilon) is estimated during the main phase of all moderate storms during solar cycles 23 and 24. The energy transfer decreased in solar cycle 24 when compared to cycle 23. These results are significantly different when all geomagnetic storms are taken into consideration for both the solar cycles.

  16. Modular Trough Power Plant Cycle and Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Price, H.; Hassani, V.

    2002-01-01

    This report summarizes an analysis to reduce the cost of power production from modular concentrating solar power plants through a relatively new and exciting concept that merges two mature technologies to produce distributed modular electric power in the range of 500 to 1,500 kWe. These are the organic Rankine cycle (ORC) power plant and the concentrating solar parabolic (CSP) trough technologies that have been developed independent of each other over many years.

  17. On the Performance of Multi-Instrument Solar Flare Observations During Solar Cycle 24

    Science.gov (United States)

    Milligan, Ryan O.; Ireland, Jack

    2018-02-01

    observations for solar-flare research is discussed with respect to instruments projected to begin operations during Solar Cycle 25, such as the Daniel K. Inouye Solar Telescope, Solar Orbiter, and Parker Solar Probe.

  18. High-Energy Solar Particle Events in Cycle 24

    Science.gov (United States)

    Gopalswamy, N.; Makela, P.; Yashiro, S.; Xie, H.; Akiyama, S.; Thakur, N.

    2015-01-01

    The Sun is already in the declining phase of cycle 24, but the paucity of high-energy solar energetic particle (SEP) events continues with only two ground level enhancement (GLE) events as of March 31, 2015. In an attempt to understand this, we considered all the large SEP events of cycle 24 that occurred until the end of 2014. We compared the properties of the associated CMEs with those in cycle 23. We found that the CME speeds in the sky plane were similar, but almost all those cycle-24 CMEs were halos. A significant fraction of (16%) of the frontside SEP events were associated with eruptive prominence events. CMEs associated with filament eruption events accelerate slowly and attain peak speeds beyond the typical GLE release heights. When we considered only western hemispheric events that had good connectivity to the CME nose, there were only 8 events that could be considered as GLE candidates. One turned out to be the first GLE event of cycle 24 (2012 May 17). In two events, the CMEs were very fast (>2000 km/s) but they were launched into a tenuous medium (high Alfven speed). In the remaining five events, the speeds were well below the typical GLE CME speed (2000 km/s). Furthermore, the CMEs attained their peak speeds beyond the typical heights where GLE particles are released. We conclude that several factors contribute to the low rate of high-energy SEP events in cycle 24: (i) reduced efficiency of shock acceleration (weak heliospheric magnetic field), (ii) poor latitudinal and longitudinal connectivity), and (iii) variation in local ambient conditions (e.g., high Alfven speed).

  19. Periodicities in solar wind-magnetosphere coupling functions and geomagnetic activity during the past solar cycles

    Science.gov (United States)

    Andriyas, T.; Andriyas, S.

    2017-09-01

    In this paper, we study the solar-terrestrial relation through the wavelet analysis. We report periodicities common between multiple solar wind coupling functions and geomagnetic indices during five solar cycles and also and the strength of this correspondence. The Dst (found to be most predictable in Newell et al., J. Geophys. Res. Space Phys. 112(A1):A01206, 2007) and AL (least predictable in Newell et al., J. Geophys. Res. Space Phys. 112(A1):A01206, 2007) indices are used for this purpose. During the years 1966-2016 (which includes five solar cycles 20, 21, 22, 23, and 24), prominent periodicities ≤720 days with power above 95% confidence level were found to occur around 27, 182, 385, and 648 days in the Dst index while those in the AL index were found in bands around 27, 187, and 472 days. Ten solar wind coupling functions were then used to find periodicities common with the indices. All the coupling functions had significant power in bands centered around 27, 280, and 648 days while powers in fluctuations around 182, 385, and 472 days were only found in some coupling functions. All the drivers and their variants had power above the significant level in the 280-288 days band, which was absent in the Dst and AL indices. The normalized scale averaged spectral power around the common periods in the coupling functions and the indices indicated that the coupling functions most correlated with the Dst index were the Newell (27 and 385 days), Wygant (182 days), and Scurry-Russell and Boynton (648 days) functions. An absence of common power between the coupling functions and the Dst index around the annual periodicity was noted during the even solar cycles. A similar analysis for the AL index indicated that Newell (27 days), Rectified (187 days), and Boynton (472 days) were the most correlated functions. It was also found that the correlation numbers were relatively weaker for the AL index, specially for the 187 day periodicity. It is concluded that as the two

  20. Solar energy demand (SED) of commodity life cycles.

    Science.gov (United States)

    Rugani, Benedetto; Huijbregts, Mark A J; Mutel, Christopher; Bastianoni, Simone; Hellweg, Stefanie

    2011-06-15

    The solar energy demand (SED) of the extraction of 232 atmospheric, biotic, fossil, land, metal, mineral, nuclear, and water resources was quantified and compared with other energy- and exergy-based indicators. SED represents the direct and indirect solar energy required by a product or service during its life cycle. SED scores were calculated for 3865 processes, as implemented in the Ecoinvent database, version 2.1. The results showed that nonrenewable resources, and in particular minerals, formed the dominant contribution to SED. This large share is due to the indirect solar energy required to produce these resource inputs. Compared with other energy- and exergy-based indicators, SED assigns higher impact factors to minerals and metals and smaller impact factors to fossil energetic resources, land use, and nuclear energy. The highest differences were observed for biobased and renewable energy generation processes, whose relative contribution of renewable resources such as water, biomass, and land occupation was much lower in SED than in energy- and exergy-based indicators.

  1. High-Efficiency Low-Cost Solar Receiver for Use Ina a Supercritical CO2 Recompression Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Shaun D. [Brayton Energy, LLC, Portsmouth, NH (United States); Kesseli, James [Brayton Energy, LLC, Portsmouth, NH (United States); Nash, James [Brayton Energy, LLC, Portsmouth, NH (United States); Farias, Jason [Brayton Energy, LLC, Portsmouth, NH (United States); Kesseli, Devon [Brayton Energy, LLC, Portsmouth, NH (United States); Caruso, William [Brayton Energy, LLC, Portsmouth, NH (United States)

    2016-04-06

    This project has performed solar receiver designs for two supercritical carbon dioxide (sCO2) power cycles. The first half of the program focused on a nominally 2 MWe power cycle, with a receiver designed for test at the Sandia Solar Thermal Test Facility. This led to an economical cavity-type receiver. The second half of the program focused on a 10 MWe power cycle, incorporating a surround open receiver. Rigorous component life and performance testing was performed in support of both receiver designs. The receiver performance objectives are set to conform to the US DOE goals of 6¢/kWh by 2020 . Key findings for both cavity-type and direct open receiver are highlighted below: A tube-based absorber design is impractical at specified temperatures, pressures and heat fluxes for the application; a plate-fin architecture however has been shown to meet performance and life targets; the $148/kWth cost of the design is significantly less than the SunShot cost target with a margin of 30%; the proposed receiver design is scalable, and may be applied to both modular cavity-type installations as well as large utility-scale open receiver installations; the design may be integrated with thermal storage systems, allowing for continuous high-efficiency electrical production during off-sun hours; costs associated with a direct sCO2 receiver for a sCO2 Brayton power cycle are comparable to those of a typical molten salt receiver; lifetimes in excess of the 90,000 hour goal are achievable with an optimal cell geometry; the thermal performance of the Brayton receiver is significantly higher than the industry standard, and enables at least a 30% efficiency improvement over the performance of the baseline steam-Rankine boiler/cycle system; brayton’s patent-pending quartz tube window provides a greater than five-percent efficiency benefit to the receiver by reducing both convection and radiation losses.

  2. Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review

    Directory of Open Access Journals (Sweden)

    Patrick Linke

    2015-05-01

    Full Text Available Efficient power generation from low to medium grade heat is an important challenge to be addressed to ensure a sustainable energy future. Organic Rankine Cycles (ORCs constitute an important enabling technology and their research and development has emerged as a very active research field over the past decade. Particular focus areas include working fluid selection and cycle design to achieve efficient heat to power conversions for diverse hot fluid streams associated with geothermal, solar or waste heat sources. Recently, a number of approaches have been developed that address the systematic selection of efficient working fluids as well as the design, integration and control of ORCs. This paper presents a review of emerging approaches with a particular emphasis on computer-aided design methods.

  3. Properties and relationship between solar eruptive flares and Coronal Mass Ejections during rising phase of Solar Cycles 23 and 24

    Science.gov (United States)

    Syed Ibrahim, M.; Shanmugaraju, A.; Moon, Y.-J.; Vrsnak, B.; Umapathy, S.

    2018-01-01

    Statistical relationship between major flares and the associated CMEs during rising phases of Solar Cycles 23 and 24 are studied. Totally more than 6000 and 10,000 CMEs were observed by SOHO/LASCO (Solar and Heliospheric Observatory/Large Angle Spectrometric Coronagraph) during 23rd [May 1996-June 2002] and 24th [December 2008-December 2014] solar cycles, respectively. In particular, we studied the relationship between properties of flares and CMEs using the limb events (longitude 70-85°) to avoid projection effects of CMEs and partial occultation of flares that occurred near 90°. After selecting a sample of limb flares, we used certain spatial and temporal constraints to find the flare-CME pairs. Using these constraints, we compiled 129 events in Solar Cycle 23 and 92 events in Solar Cycle 24. We compared the flare-CME relationship in the two solar cycles and no significant differences are found between the two cycles. We only found out that the CME mean width was slightly larger and the CME mean acceleration was slightly higher in cycle 24, and that there was somewhat a better relation between flare flux and CME deceleration in cycle 24 than in cycle 23.

  4. Unusual Polar Conditions in Solar Cycle 24 and Their Implications for Cycle 25

    Science.gov (United States)

    Gopalswamy, Nat; Yashiro, Seiji; Akiyama, Sachiko

    2016-01-01

    We report on the prolonged solar-maximum conditions until late 2015 at the north-polar region of the Sun indicated by the occurrence of high-latitude prominence eruptions (PEs) and microwave brightness temperature close to the quiet-Sun level. These two aspects of solar activity indicate that the polarity reversal was completed by mid-2014 in the south and late 2015 in the north. The microwave brightness in the south-polar region has increased to a level exceeding the level of the Cycle 23/24 minimum, but just started to increase in the north. The northsouth asymmetry in the polarity reversal has switched from that in Cycle 23. These observations lead us to the hypothesis that the onset of Cycle 25 in the northern hemisphere is likely to be delayed with respect to that in the southern hemisphere. We find that the unusual condition in the north is a direct consequence of the arrival of poleward surges of opposite polarity from the active region belt. We also find that multiple rush-to-the-pole episodes were indicated by the PE locations that lined up at the boundary between opposite-polarity surges. The high-latitude PEs occurred in the boundary between the incumbent polar flux and the insurgent flux of opposite polarity.

  5. Thermal stress cycling of GaAs solar cells

    Science.gov (United States)

    Janousek, B. K.; Francis, R. W.; Wendt, J. P.

    1985-01-01

    A thermal cycling experiment was performed on GaAs solar cells to establish the electrical and structural integrity of these cells under the temperature conditions of a simulated low-Earth orbit of 3-year duration. Thirty single junction GaAs cells were obtained and tests were performed to establish the beginning-of-life characteristics of these cells. The tests consisted of cell I-V power output curves, from which were obtained short-circuit current, open circuit voltage, fill factor, and cell efficiency, and optical micrographs, spectral response, and ion microprobe mass analysis (IMMA) depth profiles on both the front surfaces and the front metallic contacts of the cells. Following 5,000 thermal cycles, the performance of the cells was reexamined in addition to any factors which might contribute to performance degradation. It is established that, after 5,000 thermal cycles, the cells retain their power output with no loss of structural integrity or change in physical appearance.

  6. Bibliographic Review about Solar Hydrogen Production Through Thermochemical Cycles; Revision Bibliografica sobre la Produccion de Hidrogeno Solar Mediante Ciclos Termoquimicos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Saavedra, R.

    2008-08-06

    This report presents a summary of the different thermical processes used to obtain hydrogen through solar energy, paying more attention to the production of hydrogen from water through thermochemical cycles. In this aspect, it is briefly y described the most interesting thermochemical cycles, focusing on thermochemical cycles based on oxides. (Author) 25 refs.

  7. Bibliographic Review about Solar Hydrogen Production Through Thermochemical Cycles; Revision Bibliografica sobre la Produccion de Hidrogeno Solar Mediante Ciclos Termoquimicos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Saavedra, R.

    2007-12-28

    This report presents a summary of the different thermical processes used to obtain hydrogen through solar energy, paying more attention to the production of hydrogen from water through thermochemical cycles. In this aspect, it is briefly described the most interesting thermochemical cycles, focusing on thermochemical cycles based on oxides. (Author) 25 refs.

  8. Solar wind interaction with the Martian upper atmosphere: Crustal field orientation, solar cycle, and seasonal variations

    Science.gov (United States)

    Dong, Chuanfei; Bougher, Stephen W.; Ma, Yingjuan; Toth, Gabor; Lee, Yuni; Nagy, Andrew F.; Tenishev, Valeriy; Pawlowski, Dave J.; Combi, Michael R.; Najib, Dalal

    2015-09-01

    A comprehensive study of the solar wind interaction with the Martian upper atmosphere is presented. Three global models: the 3-D Mars multifluid Block Adaptive Tree Solar-wind Roe Upwind Scheme MHD code (MF-MHD), the 3-D Mars Global Ionosphere Thermosphere Model (M-GITM), and the Mars exosphere Monte Carlo model Adaptive Mesh Particle Simulator (M-AMPS) were used in this study. These models are one-way coupled; i.e., the MF-MHD model uses the 3-D neutral inputs from M-GITM and the 3-D hot oxygen corona distribution from M-AMPS. By adopting this one-way coupling approach, the Martian upper atmosphere ion escape rates are investigated in detail with the combined variations of crustal field orientation, solar cycle, and Martian seasonal conditions. The calculated ion escape rates are compared with Mars Express observational data and show reasonable agreement. The variations in solar cycles and seasons can affect the ion loss by a factor of ˜3.3 and ˜1.3, respectively. The crustal magnetic field has a shielding effect to protect Mars from solar wind interaction, and this effect is the strongest for perihelion conditions, with the crustal field facing the Sun. Furthermore, the fraction of cold escaping heavy ionospheric molecular ions [(O2+ and/or O2+)/Total] are inversely proportional to the fraction of the escaping (ionospheric and corona) atomic ion [O+/Total], whereas O2+ and O2+ ion escape fractions show a positive linear correlation since both ion species are ionospheric ions that follow the same escaping path.

  9. Conceptual design of a solar tower power plant with a co-generative ...

    African Journals Online (AJOL)

    It describes in details the design and operation of a re-innovated solar power plant with a co-generative organic rankine system as the bottoming cycle. It involves heat energy being captured and used to generate steam, which drives a steam turbine to produce electrical energy from the alternator. The low temperature ...

  10. Reading The Sun: A Three Dimensional Visual Model of The Solar Environment During Solar Cycle 24

    Science.gov (United States)

    Carranza-fulmer, T. L.; Moldwin, M.

    2014-12-01

    The sun is a powerful force that has proven to our society that it has a large impact on our lives. Unfortunately, there is still a lack of awareness on how the sun is capable of affecting Earth. The over all idea of "Reading The Sun" installation is to help demonstrate how the sun impacts the Earth, by compiling various data sources from satellites (SOHO, SDO, and STERO) with solar and solar wind models (MAS and ENLIL) to create a comprehensive three dimensional display of the solar environment. It focuses on the current solar maximum of solar cycle 24 and a CME that impacted Earth's magnetic field on February 27, 2014, which triggered geomagnetic storms around the Earth's poles. The CME was an after-effect of a class X4.9 solar flare, which was released from the sun on February 25, 2014. "Reading The Sun" is a 48" x 48" x 48" hanging model of the sun with color coded open opposing magnetic field lines along with various layers of the solar atmosphere, the heliospheric current sheet, and the inner planets. At the center of the xyz axis is the sun with the open magnetic field lines and the heliospheric current sheet permeating inner planetary space. The xyz axes are color coded to represent various types of information with corresponding visual images for the viewer to be able to read the model. Along the z-axis are three colors (yellow, orange, and green) that represent the different layers of the solar atmosphere (photosphere, chromosphere, and corona) that correspond to three satellite images in various spectrums related to a CME and Solar Flare and the xy-plane shows where the inner planets are in relation to the sun. The exhibit in which "Reading The Sun "is being displayed is called, The Rotation of Language at the Wheather Again Gallery in Rockaway, New York. The intent of the exhibit is to both celebrate as well as present a cautionary tale on the ability of human language to spark and ignite the individual and collective imagination towards an experience

  11. Velocity fluctuations in polar solar wind: a comparison between different solar cycles

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2009-02-01

    Full Text Available The polar solar wind is a fast, tenuous and steady flow that, with the exception of a relatively short phase around the Sun's activity maximum, fills the high-latitude heliosphere. The polar wind properties have been extensively investigated by Ulysses, the first spacecraft able to perform in-situ measurements in the high-latitude heliosphere. The out-of-ecliptic phases of Ulysses cover about seventeen years. This makes possible to study heliospheric properties at high latitudes in different solar cycles. In the present investigation we focus on hourly- to daily-scale fluctuations of the polar wind velocity. Though the polar wind is a quite uniform flow, fluctuations in its velocity do not appear negligible. A simple way to characterize wind velocity variations is that of performing a multi-scale statistical analysis of the wind velocity differences. Our analysis is based on the computation of velocity differences at different time lags and the evaluation of statistical quantities (mean, standard deviation, skewness, and kurtosis for the different ensembles. The results clearly show that, though differences exist in the three-dimensional structure of the heliosphere between the investigated solar cycles, the velocity fluctuations in the core of polar coronal holes exhibit essentially unchanged statistical properties.

  12. Nant-De-Chatillon: electric power generation by ORC (organic Rankine cycle) using waste heat from the Chatillon biogas plant; Nant-de-Chatillon: Production d'electricite par ORC a partir des rejets de chaleur du site de methanisation de Chatillon. Resume

    Energy Technology Data Exchange (ETDEWEB)

    Kane, M.; Gay, B.

    2005-07-01

    This report prepared for the Swiss Federal Office of Energy (SFOE) describes the practical realisation and testing of a heat recovery system based on a one-stage organic Rankine cycle with R134a as the working fluid. The waste heat has a temperature of 95 {sup o}C and originates from a gas engine that powers a small co-generation plant fuelled with biogas produced on-site. Two similar cycles have been built, ORC1 with one and ORC2 with two turbines. Only ORC1 has been tested so far. The maximum efficiency measured in these tests was 6.64% (theoretical Carnot-efficiency: 17 %) and the electric power output was 5.0 kW. The problems encountered during commissioning are described and recommendations for further improvements are given.

  13. Is the flux of solar neutrinos correlated with the solar magnetic activity cycle

    Energy Technology Data Exchange (ETDEWEB)

    VanDeKop, T.; Snodgrass, H.B. (Lewis and Clark College, Portland, OR (United States))

    1993-01-01

    A number of recent investigations (eg. Bahcall and Press 1991, Ap. J. 370, 730) have found a weak anticorrelation between solar neutrino flux and sunspot number, but according to the electroweak model for the neutrino, there should be no coupling of neutrinos with such solar parameters as magnetic field strength; hence if the magnetic cycle is produced as the authors think it is (i.e. not connected to some periodicity in the Sun's nuclear reactor) no such correlation should exist. A convincing demonstration that a correlation between SNU and magnetic activity does exist would therefore constitute a major discovery, necessarily altering current understanding either of the physics taking place within the Sun or of the neutrino itself. Bahcall and Press, using the rank-order correlation method, determined that the anticorrelation of SNU with sunspot number is of significance during the period 1977-89. The authors have redone this project, extending the data base to include all data through 1992, and they find that inclusion of the additional data greatly reduces the correlation between SNU and the solar magnetic field strength itself. Results have been obtained using both the magnetic flux for the entire sun and that within bands of latitude of varying width along the line of sight to the solar core. Here, using the entire data set 1970-92, the authors find a significant correlation for which the significance varies with the band width, being greatest when the width approximates the core diameter.

  14. Electron–Ion Intensity Dropouts in Gradual Solar Energetic Particle Events during Solar Cycle 23

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lun C., E-mail: ltan@umd.edu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2017-09-01

    Since the field-line mixing model of Giacalone et al. suggests that ion dropouts cannot happen in the “gradual” solar energetic particle (SEP) event because of the large size of the particle source region in the event, the observational evidence of ion dropouts in the gradual SEP event should challenge the model. We have searched for the presence of ion dropouts in the gradual SEP event during solar cycle 23. From 10 SEP events the synchronized occurrence of ion and electron dropouts is identified in 12 periods. Our main observational facts, including the mean width of electron–ion dropout periods being consistent with the solar wind correlation scale, during the dropout period the dominance of the slab turbulence component and the enhanced turbulence power parallel to the mean magnetic field, and the ion gyroradius dependence of the edge steepness in dropout periods, are all in support of the solar wind turbulence origin of dropout events. Also, our observation indicates that a wide longitude distribution of SEP events could be due to the increase of slab turbulence fraction with the increased longitude distance from the flare-associated active region.

  15. Temporal Variations of Different Solar Activity Indices Through the Solar Cycles 21-23

    Science.gov (United States)

    Göker, Ü. D.; Singh, J.; Nutku, F.; Priyal, M.

    2017-12-01

    Here, we compare the sunspot counts and the number of sunspot groups (SGs) with variations of total solar irradiance (TSI), magnetic activity, Ca II K-flux, faculae and plage areas. We applied a time series method for extracting the data over the descending phases of solar activity cycles (SACs) 21, 22 and 23, and the ascending phases 22 and 23. Our results suggest that there is a strong correlation between solar activity indices and the changes in small (A, B, C and H-modified Zurich Classification) and large (D, E and F) SGs. This somewhat unexpected finding suggests that plage regions substantially decreased in spite of the higher number of large SGs in SAC 23 while the Ca II K-flux did not decrease by a large amount nor was it comparable with SAC 22 and relates with C and DEF type SGs. In addition to this, the increase of facular areas which are influenced by large SGs, caused a small percentage decrease in TSI while the decrement of plage areas triggered a higher decrease in the magnetic field flux. Our results thus reveal the potential of such a detailed comparison of the SG analysis with solar activity indices for better understanding and predicting future trends in the SACs.

  16. Association of Supergranule Mean Scales with Solar Cycle Strengths and Total Solar Irradiance

    Science.gov (United States)

    Mandal, Sudip; Chatterjee, Subhamoy; Banerjee, Dipankar

    2017-07-01

    We analyze the long-term behavior of the supergranule scale parameter, in active regions (ARs) and quiet regions (QRs), using the Kodaikanal digitized data archive. This database provides century-long daily full disk observations of the Sun in Ca II K wavelengths. In this paper, we study the distributions of the supergranular scales, over the whole data duration, which show identical shape in these two regimes. We found that the AR mean scale values are always higher than that of the QR for every solar cycle. The mean scale values are highly correlated with the sunspot number cycle amplitude and also with total solar irradiance (TSI) variations. Such a correlation establishes the cycle-wise mean scale as a potential calibrator for the historical data reconstructions. We also see an upward trend in the mean scales, as has already been reported in TSI. This may provide new input for climate forcing models. These results also give us insight into the different evolutionary scenarios of the supergranules in the presence of strong (AR) and weak (QR) magnetic fields.

  17. Association of Supergranule Mean Scales with Solar Cycle Strengths and Total Solar Irradiance

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sudip; Chatterjee, Subhamoy; Banerjee, Dipankar, E-mail: sudip@iiap.res.in [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India)

    2017-07-20

    We analyze the long-term behavior of the supergranule scale parameter, in active regions (ARs) and quiet regions (QRs), using the Kodaikanal digitized data archive. This database provides century-long daily full disk observations of the Sun in Ca ii K wavelengths. In this paper, we study the distributions of the supergranular scales, over the whole data duration, which show identical shape in these two regimes. We found that the AR mean scale values are always higher than that of the QR for every solar cycle. The mean scale values are highly correlated with the sunspot number cycle amplitude and also with total solar irradiance (TSI) variations. Such a correlation establishes the cycle-wise mean scale as a potential calibrator for the historical data reconstructions. We also see an upward trend in the mean scales, as has already been reported in TSI. This may provide new input for climate forcing models. These results also give us insight into the different evolutionary scenarios of the supergranules in the presence of strong (AR) and weak (QR) magnetic fields.

  18. Probability density functions for the variable solar wind near the solar cycle minimum

    CERN Document Server

    Vörös,; Leitner, M; Narita, Y; Consolini, G; Kovács, P; Tóth, A; Lichtenberger, J

    2015-01-01

    Unconditional and conditional statistics is used for studying the histograms of magnetic field multi-scale fluctuations in the solar wind near the solar cycle minimum in 2008. The unconditional statistics involves the magnetic data during the whole year 2008. The conditional statistics involves the magnetic field time series splitted into concatenated subsets of data according to a threshold in dynamic pressure. The threshold separates fast stream leading edge compressional and trailing edge uncompressional fluctuations. The histograms obtained from these data sets are associated with both large-scale (B) and small-scale ({\\delta}B) magnetic fluctuations, the latter corresponding to time-delayed differences. It is shown here that, by keeping flexibility but avoiding the unnecessary redundancy in modeling, the histograms can be effectively described by a limited set of theoretical probability distribution functions (PDFs), such as the normal, log-normal, kappa and logkappa functions. In a statistical sense the...

  19. Using dynamo theory to predict the sunspot number during solar cycle 21

    Science.gov (United States)

    Schatten, K. H.; Scherrer, P. H.; Svalgaard, L.; Wilcox, J. M.

    1978-01-01

    On physical grounds it is suggested that the polar field strength of the sun near a solar minimum is closely related to the solar activity of the following cycle. Four methods of estimating the polar magnetic field strength of the sun near solar minimum are employed to provide an estimate of the yearly mean sunspot number of cycle 21 at solar maximum of 140 + or - 20. This estimate may be considered a first-order attempt to predict the cycle activity using one parameter of physical importance based upon dynamo theory.

  20. Reconstructing the 11-year solar cycle length from cosmogenic radionuclides for the last 600 years

    Science.gov (United States)

    Nilsson, Emma; Adolphi, Florian; Mekhaldi, Florian; Muscheler, Raimund

    2017-04-01

    The cyclic behavior of the solar magnetic field has been known for centuries and the 11-year solar cycle is one of the most important features directly visible on the solar disc. Using sunspot records it is evident that the length of this cycle is variable. A hypothesis of an inverse relationship between the average solar activity level and the solar cycle length has been put forward (e.g. Friis-Christensen & Lassen, 1991), indicating longer solar cycles during periods of low solar activity and vice versa. So far, studies of the behavior of the 11-year solar cycle have largely been limited for the last 4 centuries where observational sunspot data are available. However, cosmogenic radionuclides, such as 10Be and 14C from ice cores and tree rings allow an assessment of the strength of the open solar magnetic field due to its shielding influence on galactic cosmic rays in the heliosphere. Similarly, very strong solar storms can leave their imprint in cosmogenic radionuclide records via solar proton-induced direct production of cosmogenic radionuclides in the Earth atmosphere. Here, we test the hypothesis of an inverse relationship between solar cycle length and the longer-term solar activity level by using cosmogenic radionuclide records as a proxy for solar activity. Our results for the last six centuries suggest significant solar cycle length variations that could exceed the range directly inferred from sunspot records. We discuss the occurrence of SPEs within the 11-year solar cycle from a radionuclide perspective, specifically the largest one known yet, at AD 774-5 (Mekhaldi et al., 2015). References: Friis-Christensen, E. & Lassen, K. Length of the solar-cycle - An indicator of solar activity closely associated with climate. Science 254, 698-700, doi:10.1126/science.254.5032.698 (1991). Mekhaldi, F., Muscheler, R., Adolphi, F., Aldahan, A., Beer, J., McConnell, J. R., Possnert, G., Sigl, M., Svensson, A., Synal, H. A., Welten, K. C. & Woodruff, T. E

  1. Solar Spectral Irradiance Variability in Cycle 24: Model Predictions and OMI Observations

    Science.gov (United States)

    Marchenko, S.; DeLand, M.; Lean, J.

    2016-01-01

    Utilizing the excellent stability of the Ozone Monitoring Instrument (OMI), we characterize both short-term (solar rotation) and long-term (solar cycle) changes of the solar spectral irradiance (SSI) between 265-500 nanometers during the ongoing Cycle 24. We supplement the OMI data with concurrent observations from the GOME-2 (Global Ozone Monitoring Experiment - 2) and SORCE (Solar Radiation and Climate Experiment) instruments and find fair-to-excellent agreement between the observations and predictions of the NRLSSI2 (Naval Research Laboratory Solar Spectral Irradiance - post SORCE) and SATIRE-S (the Naval Research Laboratory's Spectral And Total Irradiance REconstruction for the Satellite era) models.

  2. Radiation Belt Electron Intensity Variations: Van Allen Probes era vs. Previous two Solar Cycles

    Science.gov (United States)

    Li, X.; Baker, D. N.; Zhao, H.; Zhang, K.; Jaynes, A. N.; Schiller, Q.; Kanekal, S. G.; Blake, J. B.

    2016-12-01

    Long term (>2 solar cycles) measurements of solar wind speed, geomagnetic storm index (Dst), >2MeV electrons at geostationary orbit, 2MeV electrons in different L-shells measured at and normalized to low earth orbit show that the solar wind speed and the geomagnetic activity have been extremely low, so have been the MeV electron fluxes, during this current solar cycle, including years before and during Van Allen Probes era. There have been no 2MeV electrons enhancements deep inside L 2.6 since 2009, while numerous deep penetrations of MeV electrons into Lsolar wind conditions (high solar wind speed and sustained southward Bz) and thus stronger geomagnetic activity existed. We note that results from Van Allen Probes, which have been providing the finest measurements but in operation during an extremely quiet solar activity period, may not represent the overall radiation belt dynamics during other solar cycle phases.

  3. Low-latitude geomagnetic signatures during major solar energetic particle events of solar cycle-23

    Directory of Open Access Journals (Sweden)

    R. Rawat

    2006-12-01

    Full Text Available The frequency of occurrence of disruptive transient processes in the Sun is enhanced during the high solar activity periods. Solar cycle-23 evidenced major geomagnetic storm events and intense solar energetic particle (SEP events. The SEP events are the energetic outbursts as a result of acceleration of heliospheric particles by solar flares and coronal mass ejections (CMEs. The present work focuses on the geomagnetic variations at equatorial and low-latitude stations during the four major SEP events of 14 July 2000, 8 November 2000, 24 September 2001 and 4 November 2001. These events have been reported to be of discernible magnitude following intense X-ray flares and halo coronal mass ejections. Low-latitude geomagnetic records evidenced an intense main phase development subsequent to the shock impact on the Earth's magnetosphere. Satellite observations show proton-flux enhancements associated with solar flares for all events. Correlation analysis is also carried out to bring out the correspondence between the polar cap magnetic field perturbations, AE index and the variations of low-latitude magnetic field. The results presented in the current study elucidate the varying storm development processes, and the geomagnetic field response to the plasma and interplanetary magnetic field conditions for the energetic events. An important inference drawn from the current study is the close correspondence between the persistence of a high level of proton flux after the shock in some events and the ensuing intense magnetic storm. Another interesting result is the role of the pre-shock southward IMF Bz duration in generating a strong main phase.

  4. Shannon Entropy-Based Prediction of Solar Cycle 25

    Science.gov (United States)

    Kakad, Bharati; Kakad, Amar; Ramesh, Durbha Sai

    2017-07-01

    A new model is proposed to forecast the peak sunspot activity of the upcoming solar cycle (SC) using Shannon entropy estimates related to the declining phase of the preceding SC. Daily and monthly smoothed international sunspot numbers are used in the present study. The Shannon entropy is the measure of inherent randomness in the SC and is found to vary with the phase of an SC as it progresses. In this model each SC with length T_{cy} is divided into five equal parts of duration T_{cy}/5. Each part is considered as one phase, and they are sequentially termed P1, P2, P3, P4, and P5. The Shannon entropy estimates for each of these five phases are obtained for the nth SC starting from n=10 - 23. We find that the Shannon entropy during the ending phase (P5) of the nth SC can be efficiently used to predict the peak smoothed sunspot number of the (n+1)th SC, i.e. S_{max}^{n+1}. The prediction equation derived in this study has a good correlation coefficient of 0.94. A noticeable decrease in entropy from 4.66 to 3.89 is encountered during P5 of SCs 22 to 23. The entropy value for P5 of the present SC 24 is not available as it has not yet ceased. However, if we assume that the fall in entropy continues for SC 24 at the same rate as that for SC 23, then we predict the peak smoothed sunspot number of 63±11.3 for SC 25. It is suggested that the upcoming SC 25 will be significantly weaker and comparable to the solar activity observed during the Dalton minimum in the past.

  5. Coolidge solar powered irrigation pumping project

    Science.gov (United States)

    Larson, D. L.

    1980-01-01

    A 150 kW solar thermal electric power plant which includes over 2100 square meters of parabolic trough type collectors and an organic Rankine cycle turbine engine was constructed on an irrigated farm. The plant is interconnected with the electrical utility grid. Operation is providing an evaluation of equipment performance and operating and maintenance requirements as well as the desirability of an on farm location.

  6. A handbook for solar central receiver design

    Energy Technology Data Exchange (ETDEWEB)

    Falcone, P.K.

    1986-12-01

    This Handbook describes central receiver technology for solar thermal power plants. It contains a description and assessment of the major components in a central receiver system configured for utility scale production of electricity using Rankine-cycle steam turbines. It also describes procedures to size and optimize a plant and discussed examples from recent system analyses. Information concerning site selection criteria, cost estimation, construction, and operation and maintenance is also included, which should enable readers to perform design analyses for specific applications.

  7. Hard X-Ray Emission from Partially Occulted Solar Flares: RHESSI Observations in Two Solar Cycles

    Science.gov (United States)

    Effenberger, Frederic; Rubio da Costa, Fatima; Oka, Mitsuo; Saint-Hilaire, Pascal; Liu, Wei; Petrosian, Vahé; Glesener, Lindsay; Krucker, Säm

    2017-02-01

    Flares close to the solar limb, where the footpoints are occulted, can reveal the spectrum and structure of the coronal looptop source in X-rays. We aim at studying the properties of the corresponding energetic electrons near their acceleration site, without footpoint contamination. To this end, a statistical study of partially occulted flares observed with Reuven Ramaty High-Energy Solar Spectroscopic Imager is presented here, covering a large part of solar cycles 23 and 24. We perform detailed spectra, imaging, and light curve analyses for 116 flares and include contextual observations from SDO and STEREO when available, providing further insights into flare emission that were previously not accessible. We find that most spectra are fitted well with a thermal component plus a broken power-law, non-thermal component. A thin-target kappa distribution model gives satisfactory fits after the addition of a thermal component. X-ray imaging reveals small spatial separation between the thermal and non-thermal components, except for a few flares with a richer coronal source structure. A comprehensive light curve analysis shows a very good correlation between the derivative of the soft X-ray flux (from GOES) and the hard X-rays for a substantial number of flares, indicative of the Neupert effect. The results confirm that non-thermal particles are accelerated in the corona and estimated timescales support the validity of a thin-target scenario with similar magnitudes of thermal and non-thermal energy fluxes.

  8. Solar Photovoltaic Development in Australia—A Life Cycle Sustainability Assessment Study

    OpenAIRE

    Man Yu; Anthony Halog

    2015-01-01

    Australia possesses the highest average solar radiation of any continent in the world, but solar energy in total contributes less than 1% to Australia’s primary energy consumption. This study intends to assess whether solar photovoltaic (PV) is really a sustainable option for Australia’s energy transition on the project level. A life cycle sustainability assessment (LCSA) was conducted on a 1.2 MW flat-roof mounted PV solar array called UQ Solar, and the results suggested UQ Solar performed...

  9. Breathing of heliospheric structures triggered by the solar-cycle activity

    Directory of Open Access Journals (Sweden)

    K. Scherer

    2003-06-01

    Full Text Available Solar wind ram pressure variations occuring within the solar activity cycle are communicated to the outer heliosphere as complicated time-variabilities, but repeating its typical form with the activity period of about 11 years. At outer heliospheric regions, the main surviving solar cycle feature is a periodic variation of the solar wind dynamical pressure or momentum flow, as clearly recognized by observations of the VOYAGER-1/2 space probes. This long-periodic variation of the solar wind dynamical pressure is modeled here through application of appropriately time-dependent inner boundary conditions within our multifluid code to describe the solar wind – interstellar medium interaction. As we can show, it takes several solar cycles until the heliospheric structures adapt to an average location about which they carry out a periodic breathing, however, lagged in phase with respect to the solar cycle. The dynamically active heliosphere behaves differently from a static heliosphere and especially shows a historic hysteresis in the sense that the shock structures move out to larger distances than explained by the average ram pressure. Obviously, additional energies are pumped into the heliosheath by means of density and pressure waves which are excited. These waves travel outwards through the interface from the termination shock towards the bow shock. Depending on longitude, the heliospheric sheath region memorizes 2–3 (upwind and up to 6–7 (downwind preceding solar activity cycles, i.e. the cycle-induced waves need corresponding travel times for the passage over the heliosheath. Within our multifluid code we also adequately describe the solar cycle variations in the energy distributions of anomalous and galactic cosmic rays, respectively. According to these results the distribution of these high energetic species cannot be correctly described on the basis of the actually prevailing solar wind conditions.Key words. Interplanetary physics

  10. Breathing of heliospheric structures triggered by the solar-cycle activity

    Directory of Open Access Journals (Sweden)

    K. Scherer

    Full Text Available Solar wind ram pressure variations occuring within the solar activity cycle are communicated to the outer heliosphere as complicated time-variabilities, but repeating its typical form with the activity period of about 11 years. At outer heliospheric regions, the main surviving solar cycle feature is a periodic variation of the solar wind dynamical pressure or momentum flow, as clearly recognized by observations of the VOYAGER-1/2 space probes. This long-periodic variation of the solar wind dynamical pressure is modeled here through application of appropriately time-dependent inner boundary conditions within our multifluid code to describe the solar wind – interstellar medium interaction. As we can show, it takes several solar cycles until the heliospheric structures adapt to an average location about which they carry out a periodic breathing, however, lagged in phase with respect to the solar cycle. The dynamically active heliosphere behaves differently from a static heliosphere and especially shows a historic hysteresis in the sense that the shock structures move out to larger distances than explained by the average ram pressure. Obviously, additional energies are pumped into the heliosheath by means of density and pressure waves which are excited. These waves travel outwards through the interface from the termination shock towards the bow shock. Depending on longitude, the heliospheric sheath region memorizes 2–3 (upwind and up to 6–7 (downwind preceding solar activity cycles, i.e. the cycle-induced waves need corresponding travel times for the passage over the heliosheath. Within our multifluid code we also adequately describe the solar cycle variations in the energy distributions of anomalous and galactic cosmic rays, respectively. According to these results the distribution of these high energetic species cannot be correctly described on the basis of the actually prevailing solar wind conditions.

    Key words. Interplanetary

  11. Integrated solar combined cycles using gas turbines with partial recuperation and solar integration at different pressure levels

    Science.gov (United States)

    Rovira, Antonio; Sánchez, Consuelo; Fernández, Santiago; Muñoz, Marta; Barbero, Rubén

    2017-06-01

    This work studies and compares two alternatives to improve the solar-to-electricity energy conversion efficiency in integrated solar combined cycle power plants (ISCC), which are based on the use of combined cycles including partial recuperative gas turbines. Each alternative has been integrated into dual and triple pressure levels with reheat heat recovery steam generators (HRSG). Partial recuperation conveys lower heat recovery at the steam generator than in conventional plants, because each MW exchanged in the recuperator is not available at the HRSG. This thermal power decrease at the HRSG may be overcome by the integration of solar energy that is implemented using parabolic trough collectors. Moreover, with such an implementation each solar thermal MW integrated allows a MW of heat recuperation and, thus a MW of fossil fuel saving, thus the solar heat-to-electricity energy conversion rate may reach values up to 50 %, which makes the proposal interesting.

  12. Concept definition study of small Brayton cycle engines for dispersed solar electric power systems

    Science.gov (United States)

    Six, L. D.; Ashe, T. L.; Dobler, F. X.; Elkins, R. T.

    1980-01-01

    Three first-generation Brayton cycle engine types were studied for solar application: a near-term open cycle (configuration A), a near-term closed cycle (configuration B), and a longer-term open cycle (configuration C). A parametric performance analysis was carried out to select engine designs for the three configurations. The interface requirements for the Brayton cycle engine/generator and solar receivers were determined. A technology assessment was then carried out to define production costs, durability, and growth potential for the selected engine types.

  13. Flexible thermal cycle test equipment for concentrator solar cells

    Science.gov (United States)

    Hebert, Peter H [Glendale, CA; Brandt, Randolph J [Palmdale, CA

    2012-06-19

    A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

  14. Simulated Effect of Carbon Cycle Feedback on Climate Response to Solar Geoengineering

    Science.gov (United States)

    Cao, Long; Jiang, Jiu

    2017-12-01

    Most modeling studies investigate climate effects of solar geoengineering under prescribed atmospheric CO2, thereby neglecting potential climate feedbacks from the carbon cycle. Here we use an Earth system model to investigate interactive feedbacks between solar geoengineering, global carbon cycle, and climate change. We design idealized sunshade geoengineering simulations to prevent global warming from exceeding 2°C above preindustrial under a CO2 emission scenario with emission mitigation starting from middle of century. By year 2100, solar geoengineering reduces the burden of atmospheric CO2 by 47 PgC with enhanced carbon storage in the terrestrial biosphere. As a result of reduced atmospheric CO2, consideration of the carbon cycle feedback reduces required insolation reduction in 2100 from 2.0 to 1.7 W m-2. With higher climate sensitivity the effect from carbon cycle feedback becomes more important. Our study demonstrates the importance of carbon cycle feedback in climate response to solar geoengineering.

  15. Extreme ultraviolet solar irradiance during the rising phase of solar cycle 24 observed by PROBA2/LYRA

    Directory of Open Access Journals (Sweden)

    Zender Joe

    2012-08-01

    Full Text Available The Large-Yield Radiometer (LYRA is a radiometer that has monitored the solar irradiance at high cadence and in four pass bands since January 2010. Both the instrument and its spacecraft, PROBA2 (Project for OnBoard Autonomy, have several innovative features for space instrumentation, which makes the data reduction necessary to retrieve the long-term variations of solar irradiance more complex than for a fully optimized solar physics mission. In this paper, we describe how we compute the long-term time series of the two extreme ultraviolet irradiance channels of LYRA and compare the results with those of SDO/EVE. We find that the solar EUV irradiance has increased by a factor of 2 since the last solar minimum (between solar cycles 23 and 24, which agrees reasonably well with the EVE observations.

  16. Catalogue of 55-80 MeV solar proton events extending through solar cycles 23 and 24

    Science.gov (United States)

    Paassilta, Miikka; Raukunen, Osku; Vainio, Rami; Valtonen, Eino; Papaioannou, Athanasios; Siipola, Robert; Riihonen, Esa; Dierckxsens, Mark; Crosby, Norma; Malandraki, Olga; Heber, Bernd; Klein, Karl-Ludwig

    2017-06-01

    We present a new catalogue of solar energetic particle events near the Earth, covering solar cycle 23 and the majority of solar cycle 24 (1996-2016), based on the 55-80 MeV proton intensity data gathered by the Solar and Heliospheric Observatory/the Energetic and Relativistic Nuclei and Electron experiment (SOHO/ERNE). In addition to ERNE proton and heavy ion observations, data from the Advanced Composition Explorer/Electron, Proton and Alpha Monitor (ACE/EPAM) (near-relativistic electrons), SOHO/EPHIN (Electron Proton Helium Instrument) (relativistic electrons), SOHO/LASCO (Large Angle and Spectrometric Coronagraph) (coronal mass ejections, CMEs) and Geostationary Operational Environmental Satellite (GOES) soft X-ray experiments are also considered and the associations between the particle and CME/X-ray events deduced to obtain a better understanding of each event. A total of 176 solar energetic particle (SEP) events have been identified as having occurred during the time period of interest; their onset and solar release times have been estimated using both velocity dispersion analysis (VDA) and time-shifting analysis (TSA) for protons, as well as TSA for near-relativistic electrons. Additionally, a brief statistical analysis was performed on the VDA and TSA results, as well as the X-rays and CMEs associated with the proton/electron events, both to test the viability of the VDA and to investigate possible differences between the two solar cycles. We find, in confirmation of a number of previous studies, that VDA results for protons that yield an apparent path length of 1 AU probably unreliable, as evidenced by the anticorrelation between apparent path length and release time estimated from the X-ray activity. It also appears that even the first-arriving energetic protons apparently undergo significant pitch angle scattering in the interplanetary medium, with the resulting apparent path length being on average about twice the length of the spiral magnetic field

  17. The Variability of Solar Spectral Irradiance and Solar Surface Indices Through the Solar Activity Cycles 21-23

    Science.gov (United States)

    Deniz Goker, Umit

    2016-07-01

    A study of variations of solar spectral irradiance (SSI) in the wavelength ranges 121.5 nm-300.5 nm for the period 1981-2009 is presented. We used various data for ultraviolet (UV) spectral lines and international sunspot number (ISSN) from interactive data centers as SME (NSSDC), UARS (GDAAC), SORCE (LISIRD) and SIDC, respectively. We developed a special software for extracting the data and reduced this data by using the MATLAB. In this respect, we revealed negative correlations of intensities of UV (289.5 nm-300.5 nm) emission lines originating in the solar chromosphere with the ISSN index during the unusually prolonged minimum between the solar cycles (SCs) 23 and 24. We also compared our results with the ground-based telescopes as Solar Irradiance Platform, Stanford Data (SFO), Kodaikanal Data (KKL) and NGDC Homepage (Rome and Learmonth Solar Observatories). We studied the variations of total solar irradiance (TSI), magnetic field, sunspots/sunspot groups, Ca II K-flux, faculae and plage areas data with these ground-based telescopes, respectively. We reduced the selected data using the Phyton programming language and plot with the IDL programme. Therefore, we found that there was a decrease in the area of bright faculae and chromospheric plages while the percentage of dark faculae and plage decrease, as well. However, these decreases mainly occurred in small sunspots, contrary to this, these terms in large sunspot groups were comparable to previous SCs or even larger. Nevertheless, negative correlations between ISSN and SSI data indicate that these emissions are in close connection with the classes of sunspots/sunspot groups and "PLAGE" regions. Finally, we applied the time series of the chemical elements correspond to the wavelengths 121.5 nm-300.5 nm and compared with the ISSN data. We found an unexpected increasing in the 298.5 nm for the Fe II element. The variability of Fe II (298.5 nm) is in close connection with the plage regions and the sizes of the

  18. Seasonal, Diurnal, and Solar-Cycle Variations of Electron Density at Two West Africa Equatorial Ionization Anomaly Stations

    Directory of Open Access Journals (Sweden)

    Frédéric Ouattara

    2012-01-01

    Full Text Available We analyse the variability of foF2 at two West Africa equatorial ionization anomaly stations (Ouagadougou and Dakar during three solar cycles (from cycle 20 to cycle 22, that is, from 1966 to 1998 for Ouagadougou and from 1971 to 1997 for Dakar. We examine the effect of the changing levels of solar extreme ultraviolet radiation with sunspot number. The study shows high correlation between foF2 and sunspot number (Rz. The correlation coefficient decreases from cycle 20 to cycle 21 at both stations. From cycle 21 to cycle 22 it decreases at Ouagadougou station and increases at Dakar station. The best correlation coefficient, 0.990, is obtained for Dakar station during solar cycle 22. The seasonal variation displays equinoctial peaks that are asymmetric between March and September. The percentage deviations of monthly average data from one solar cycle to another display variability with respect to solar cycle phase and show solar ultraviolet radiation variability with solar cycle phase. The diurnal variation shows a noon bite out with a predominant late-afternoon peak except during the maximum phase of the solar cycle. The diurnal Ouagadougou station foF2 data do not show a significant difference between the increasing and decreasing cycle phases, while Dakar station data do show it, particularly for cycle 21. The percentage deviations of diurnal variations from solar-minimum conditions show more ionosphere during solar cycle 21 at both stations for all three of the other phases of the solar cycle. There is no significant variability of ionosphere during increasing and decreasing solar cycle phases at Ouagadougou station, but at Dakar station there is a significant variability of ionosphere during these two solar-cycle phases.

  19. Intense Geomagnetic Storms Associated with Coronal Holes Under the Weak Solar-Wind Conditions of Cycle 24

    Science.gov (United States)

    Watari, S.

    2018-02-01

    The activity of Solar Cycle 24 has been extraordinarily low. The yearly averaged solar-wind speed is also lower in Cycle 24 than in Cycles 22 and 23. The yearly averaged speed in the rising phase of Cycle 21 is as low as that of Cycle 24, although the solar activity of Cycle 21 is higher than that of Cycle 24. The relationship between the solar-wind temperature and its speed is preserved under the solar-wind conditions of Cycle 24. Previous studies have shown that only a few percent of intense geomagnetic storms (minimum Dst solar-wind flows from coronal holes. We identify two geomagnetic storms associated with coronal holes within the 19 intense geomagnetic storms that took place in Cycle 24.

  20. Solar cycle effect on geomagnetic storms caused by interplanetary magnetic clouds

    Directory of Open Access Journals (Sweden)

    C.-C. Wu

    2006-12-01

    Full Text Available We investigated geomagnetic activity which was induced by interplanetary magnetic clouds during the past four solar cycles, 1965–1998. We have found that the intensity of such geomagnetic storms is more severe in solar maximum than in solar minimum. In addition, we affirm that the average solar wind speed of magnetic clouds is faster in solar maximum than in solar minimum. In this study, we find that solar activity level plays a major role on the intensity of geomagnetic storms. In particular, some new statistical results are found and listed as follows. (1 The intensity of a geomagnetic storm in a solar active period is stronger than in a solar quiet period. (2 The magnitude of negative Bzmin is larger in a solar active period than in a quiet period. (3 Solar wind speed in an active period is faster than in a quiet period. (4 VBsmax in an active period is much larger than in a quiet period. (5 Solar wind parameters, Bzmin, Vmax and VBsmax are correlated well with geomagnetic storm intensity, Dstmin during a solar active period. (6 Solar wind parameters, Bzmin, and VBsmax are not correlated well (very poorly for Vmax with geomagnetic storm intensity during a solar quiet period. (7 The speed of the solar wind plays a key role in the correlation of solar wind parameters vs. the intensity of a geomagnetic storm. (8 More severe storms with Dstmin≤−100 nT caused by MCs occurred in the solar active period than in the solar quiet period.

  1. Solar cycle effect on geomagnetic storms caused by interplanetary magnetic clouds

    Directory of Open Access Journals (Sweden)

    C.-C. Wu

    2006-12-01

    Full Text Available We investigated geomagnetic activity which was induced by interplanetary magnetic clouds during the past four solar cycles, 1965–1998. We have found that the intensity of such geomagnetic storms is more severe in solar maximum than in solar minimum. In addition, we affirm that the average solar wind speed of magnetic clouds is faster in solar maximum than in solar minimum. In this study, we find that solar activity level plays a major role on the intensity of geomagnetic storms. In particular, some new statistical results are found and listed as follows. (1 The intensity of a geomagnetic storm in a solar active period is stronger than in a solar quiet period. (2 The magnitude of negative Bzmin is larger in a solar active period than in a quiet period. (3 Solar wind speed in an active period is faster than in a quiet period. (4 VBsmax in an active period is much larger than in a quiet period. (5 Solar wind parameters, Bzmin, Vmax and VBsmax are correlated well with geomagnetic storm intensity, Dstmin during a solar active period. (6 Solar wind parameters, Bzmin, and VBsmax are not correlated well (very poorly for Vmax with geomagnetic storm intensity during a solar quiet period. (7 The speed of the solar wind plays a key role in the correlation of solar wind parameters vs. the intensity of a geomagnetic storm. (8 More severe storms with Dstmin≤−100 nT caused by MCs occurred in the solar active period than in the solar quiet period.

  2. Simulating the Outer Radiation Belt During the Rising Phase of Solar Cycle 24

    Science.gov (United States)

    Fok, Mei-Ching; Glocer, Alex; Zheng, Qiuhua; Chen, Sheng-Hsien; Kanekal, Shri; Nagai, Tsungunobu; Albert, Jay

    2011-01-01

    After prolonged period of solar minimum, there has been an increase in solar activity and its terrestrial consequences. We are in the midst of the rising phase of solar cycle 24, which began in January 2008. During the initial portion of the cycle, moderate geomagnetic storms occurred follow the 27 day solar rotation. Most of the storms were accompanied by increases in electron fluxes in the outer radiation belt. These enhancements were often preceded with rapid dropout at high L shells. We seek to understand the similarities and differences in radiation belt behavior during the active times observed during the of this solar cycle. This study includes extensive data and simulations our Radiation Belt Environment Model. We identify the processes, transport and wave-particle interactions, that are responsible for the flux dropout and the enhancement and recovery.

  3. The phase shift between the hemispheres in the solar activity cycle

    Science.gov (United States)

    Shibalova, A. S.; Obridko, V. N.; Sokoloff, D. D.

    2016-10-01

    The shift between the solar activity cycles in the northern and southern hemispheres of the Sun is studied using data on sunspot number and area. The data obtained are compared with archival information on episodes of appreciable solar-cycle asymmetry. The small phase shift between recent activity cycles in the northern and southern solar hemispheres differs considerably from the shift for episodes of appreciable deviations from dipolar symmetry in the sunspot distribution detected with various degrees of confidence in archival astronomical data from the 17th-19th centuries. The current time shift between the hemispheres is insignificant, about 6-7 months. This shift has changed its sign twice in recent solar history; this probably corresponds to more or less periodic variations with a timescale close to the duration of the Gleissberg cycle.

  4. On the Influence of the Solar Bi-Cycle on Comic Ray Modulatio

    Science.gov (United States)

    Lifter, N. Part Xxvii: A. Defect Of The Solar Dynamo. B.; Scissors, K.; Sprucener, H.

    In this presentation we propose a new paradigm that explains the different lengths of individual solar Hale cycles. It proves beneficial to distinguish between a so-called inHale and ex-Hale cycle, which together form the solar bi-cycle. We carefully analyzed the influence of so-called complex mode excitations (CMEs) on comic ray modulation, in particular on the drifts of the comic isotope O+3 , which we found to induce characteristic anisotropies. This comic isotope anisotropy (CIA) is caused by the wellknown north-south asymmetry (NSA) and can be observed as a rare Forbush increase (FBI). The latter is linked to the solar magnetic field which appears to have a chaotic behaviour (for details see part I-XXVI). Especially during an ex-Hale cycle magnetic flux is pseudo-pneumatically escaping through a coronal hole. Consequently, the solar dynamo can no longer operate efficiently, i.e. is defect.

  5. Predicting Maximum Sunspot Number in Solar Cycle 24 Nipa J Bhatt ...

    Indian Academy of Sciences (India)

    annual mean geomagnetic activity aa index for the solar maximum year in cycle 24 to be 20.6 ± 4.7 and the ... number for cycle 23 to be 166.2 which is found to be higher than the observed value of. 120. In fact, he did not propose the ..... Javaraiah, J. 2008, Solar Phys., 252, 419–439. Kane, R. P. 1978, Nature, 274, 139.

  6. Observations of Solar Spectral Irradiance Change During Cycle 22 from NOAA-9 SBUV/2

    Science.gov (United States)

    DeLand, Matthew T.; Cebula, Richard P.; Hilsenrath, Ernest

    2003-01-01

    The NOM-9 Solar Backscatter Ultraviolet, model 2 (SBUV/2) instrument is one of a series of instruments providing daily solar spectral irradiance measurements in the middle and near ultraviolet since 1978. The SBUV/2 instruments are primarily designed to measure stratospheric profile and total column ozone, using the directional albedo as the input to the ozone processing algorithm. As a result, the SBUV/2 instrument does not have onboard monitoring of all time-dependent response changes. We have applied internal comparisons and vicarious (external) comparisons to determine the long-term instrument characterization for NOAA-9 SBUV/2 to derive accurate solar spectral irradiances from March 1985 to May 1997 spanning two solar cycle minima with a single instrument. The NOAA-9 data show an amplitude of 9.3(+/- 2.3)% (81-day averaged) at 200-205 nm for solar cycle 22. This is consistent with the result of (Delta)F(sub 200-205) = 8.3(+/- 2.6)% for cycle 21 from Nimbus-7 SBUV and (Delta)F(sub 200-205) = 10(+/- 2)% (daily values) for cycle 23 from UARS SUSIM. NOAA-9 data at 245-250 nm show a solar cycle amplitude of (Delta)F(sub 245-250) = 5.7(+/- 1.8)%. NOAA-9 SBUV/2 data can be combined with other instruments to create a 25-year record of solar UV irradiance.

  7. Effects of Solar UV Radiation and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    Science.gov (United States)

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions...

  8. North–South Distribution of Solar Flares during Cycle 23 Bhuwan ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we investigate the spatial distribution of solar flares in the northern and southern hemispheres of the Sun that occurred during the period 1996 to 2003. This period of investigation includes the ascending phase, the maximum and part of the descending phase of solar cycle 23. It is revealed that the ...

  9. Relationships between solar activity and climate change. [sunspot cycle effects on lower atmosphere

    Science.gov (United States)

    Roberts, W. O.

    1974-01-01

    Recurrent droughts are related to the double sunspot cycle. It is suggested that high solar activity generally increases meridional circulations and blocking patterns at high and intermediate latitudes, especially in winter. This effect is related to the sudden formation of cirrus clouds during strong geomagnetic activity that originates in the solar corpuscular emission.

  10. Next Generation UV Coronagraph Instrumentation for Solar Cycle ...

    Indian Academy of Sciences (India)

    ultraviolet coronagraph observations provide the constraints needed to test and guide theoretical models aimed at determining the physical processes that control solar wind acceleration, CME heating and acceleration, and solar energetic particle (SEP) acceleration. Measurements to date from sounding rockets, the shuttle ...

  11. Next Generation UV Coronagraph Instrumentation for Solar Cycle-24

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Ultraviolet coronagraph observations of the extended solar corona (defined here as 1.5 to 10 solar radii from Sun-center) have become a powerful tool for ... The images would be used to select targets for more detailed spectroscopic studies with the large aperture UV coronagraph spectrometer and to ...

  12. On the possible relations between solar activities and global seismicity in the solar cycle 20 to 23

    Energy Technology Data Exchange (ETDEWEB)

    Herdiwijaya, Dhani, E-mail: dhani@as.itb.ac.id [Astronomy Research Division and Bosscha Observatory, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Ganesha 10, Bandung, Indonesia 40132 (Indonesia); Arif, Johan [Geology Research Division, Faculty of Earth Sciences and Technology, Bandung Institute of Technology, Ganesha 10, Bandung, Indonesia 40132 (Indonesia); Nurzaman, Muhamad Zamzam; Astuti, Isna Kusuma Dewi [Astronomy Study Program, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Ganesha 10, Bandung, Indonesia 40132 (Indonesia)

    2015-09-30

    Solar activities consist of high energetic particle streams, electromagnetic radiation, magnetic and orbital gravitational forces. The well-know solar activity main indicator is the existence of sunspot which has mean variation in 11 years, named by solar cycle, allow for the above fluctuations. Solar activities are also related to the space weather affecting all planetary atmospheric variability, moreover to the Earth’s climate variability. Large extreme space and geophysical events (high magnitude earthquakes, explosive volcanic eruptions, magnetic storms, etc.) are hazards for humankind, infrastructure, economies, technology and the activities of civilization. With a growing world population, and with modern reliance on delicate technological systems, human society is becoming increasingly vulnerable to natural hazardous events. The big question arises to the relation between solar forcing energy to the Earth’s global seismic activities. Estimates are needed for the long term occurrence-rate probabilities of these extreme natural hazardous events. We studied connectivity from yearly seismic activities that refer to and sunspot number within the solar cycle 20 to 23 of year 1960 to 2013 (53 years). We found clear evidences that in general high magnitude earthquake events and their depth were related to the low solar activity.

  13. Solar Electromagnetic Radiation Study for Solar Cycle 22: Solar Ultraviolet Irradiance, 120 to 300 NM: Report of Working Groups 2 and 3 of SOLERS 22

    Science.gov (United States)

    Rottman, G. J.; Cebula, R. P.; Gillotay, D.; Simon, P. A.

    1996-01-01

    This report summarizes the activities of Working Group 2 and Working Group 3 of the SOLax Electromagnetic Radiation Study for Solar Cycle 22 (SOLERS22) Program. The international (SOLERS22) is Project 1.2 of the Solar-Terrestrial Energy Program (STEP) sponsored by SCOSTEP, a committee of the International Council of Scientific Unions). SOLERS22 is comprised of five Working Groups, each concentrating on a specific wave-length range: WG-1 - visible and infrared, WG-2 - mid-ultraviolet (200 solar irradiance values in the specified wavelength ranges, 2) consider the evolving solar structures as the cause of temporal variations, and 3) understand the underlying physical processes driving these changes.

  14. A Study of the Earth-Affecting CMEs of Solar Cycle 24

    Science.gov (United States)

    Hess, Phillip; Zhang, Jie

    2017-06-01

    Using in situ observations from the Advanced Composition Explorer (ACE), we have identified 70 Earth-affecting interplanetary coronal mass ejections (ICMEs) in Solar Cycle 24. Because of the unprecedented extent of heliospheric observations in Cycle 24 that has been achieved thanks to the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) instruments onboard the Solar Terrestrial Relations Observatory (STEREO), we observe these events throughout the heliosphere from the Sun to the Earth, and we can relate these in situ signatures to remote sensing data. This allows us to completely track the event back to the source of the eruption in the low corona. We present a summary of the Earth-affecting CMEs in Solar Cycle 24 and a statistical study of the properties of these events including the source region. We examine the characteristics of CMEs that are more likely to be strongly geoeffective and examine the effect of the flare strength on in situ properties. We find that Earth-affecting CMEs in the first half of Cycle 24 are more likely to come from the northern hemisphere, but after April 2012, this reverses, and these events are more likely to originate in the southern hemisphere, following the observed magnetic asymmetry in the two hemispheres. We also find that as in past solar cycles, CMEs from the western hemisphere are more likely to reach Earth. We find that Cycle 24 lacks in events driving extreme geomagnetic storms compared to past solar cycles.

  15. CORONAL DYNAMIC ACTIVITIES IN THE DECLINING PHASE OF A SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Minhwan; Choe, G. S. [Department of Astronomy and Space Science, Kyung Hee University, Yongin 17104 (Korea, Republic of); Woods, T. N. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 (United States); Hong, Sunhak, E-mail: gchoe@khu.ac.kr [School of Space Research, Kyung Hee University, Yongin 17104 (Korea, Republic of)

    2016-12-10

    It has been known that some solar activity indicators show a double-peak feature in their evolution through a solar cycle, which is not conspicuous in sunspot number. In this Letter, we investigate the high solar dynamic activity in the declining phase of the sunspot cycle by examining the evolution of polar and low-latitude coronal hole (CH) areas, splitting and merging events of CHs, and coronal mass ejections (CMEs) detected by SOHO /LASCO C3 in solar cycle 23. Although the total CH area is at its maximum near the sunspot minimum, in which polar CHs prevail, it shows a comparable second maximum in the declining phase of the cycle, in which low-latitude CHs are dominant. The events of CH splitting or merging, which are attributed to surface motions of magnetic fluxes, are also mostly populated in the declining phase of the cycle. The far-reaching C3 CMEs are also overpopulated in the declining phase of the cycle. From these results we suggest that solar dynamic activities due to the horizontal surface motions of magnetic fluxes extend far in the declining phase of the sunspot cycle.

  16. Imprints from the solar cycle on the helium atom and helium pickup ion distributions

    Directory of Open Access Journals (Sweden)

    D. Rucinski

    2003-06-01

    Full Text Available Neutral interstellar helium atoms penetrate into the solar system almost unaffected by gas–plasma interactions in the heliospheric interface region, and thus can be considered as carriers of original information on the basic parameters (like density, temperature, bulk velocity of the Very Local Interstellar Medium (VLISM. Such information can nowadays be derived from analysis of data obtained from different experimental methods: in situ measurements of He atoms (Ulysses, observations of the solar backscattered He 584 A radiation (EUVE, in situ measurements of He + pickup ions (AMPTE, Ulysses, Wind, SOHO, ACE. In view of the current coordinated international ISSI campaign devoted to the study of the helium focusing cone structure and its evolution, we analyze expected variations of neutral He density, of He + pickup fluxes and of their phase space distributions at various phases of the solar activity cycle based on a realistic time-dependent modelling of the neutral helium and He + pickup ion distributions, which reflect solar cycle-induced variations of the photoionization rate. We show that the neutral helium density values are generally anticorrelated with the solar activity phase and in extreme cases (near the downwind axis the maximum-to-minimum density ratio may even exceed factors of ~ 3 at 1 AU. We also demonstrate that in the upwind hemisphere (at 1 AU and beyond the He + fluxes are correlated with the solar cycle activity, whereas on the downwind side the maximum of the expected flux up to distances of ~ 3 AU occurs around solar minimum epoch, and only further away does the correlation with solar activity become positive. Finally, we present the response of the phase space distribution spectra of He + pickup ions (in the solar wind frame for different epochs of the solar cycle and heliocentric distances from 1 to 5 AU covering the range of Ulysses, Wind and ACE observations.Key words. Solar physics, astrophysics and astronomy

  17. Probability density functions for the variable solar wind near the solar cycle minimum

    Science.gov (United States)

    Vörös, Z.; Leitner, M.; Narita, Y.; Consolini, G.; Kovács, P.; Tóth, A.; Lichtenberger, J.

    2015-08-01

    Unconditional and conditional statistics are used for studying the histograms of magnetic field multiscale fluctuations in the solar wind near the solar cycle minimum in 2008. The unconditional statistics involves the magnetic data during the whole year in 2008. The conditional statistics involves the magnetic field time series split into concatenated subsets of data according to a threshold in dynamic pressure. The threshold separates fast-stream leading edge compressional and trailing edge uncompressional fluctuations. The histograms obtained from these data sets are associated with both multiscale (B) and small-scale (δB) magnetic fluctuations, the latter corresponding to time-delayed differences. It is shown here that, by keeping flexibility but avoiding the unnecessary redundancy in modeling, the histograms can be effectively described by a limited set of theoretical probability distribution functions (PDFs), such as the normal, lognormal, kappa, and log-kappa functions. In a statistical sense the model PDFs correspond to additive and multiplicative processes exhibiting correlations. It is demonstrated here that the skewed small-scale histograms inherent in turbulent cascades are better described by the skewed log-kappa than by the symmetric kappa model. Nevertheless, the observed skewness is rather small, resulting in potential difficulties of estimation of the third-order moments. This paper also investigates the dependence of the statistical convergence of PDF model parameters, goodness of fit, and skewness on the data sample size. It is shown that the minimum lengths of data intervals required for the robust estimation of parameters is scale, process, and model dependent.

  18. Heliospheric Magnetic Fields, Energetic Particles, and the Solar Cycle

    Indian Academy of Sciences (India)

    2016-01-27

    . It extends from the solar corona to well beyond the planets, and is separated from the interstellar medium by the heliopause. The latter is embedded in a complex and still unexplored boundary region. The characteristics of ...

  19. Technology for Bayton-cycle powerplants using solar and nuclear energy

    Science.gov (United States)

    English, R. E.

    1986-01-01

    Brayton cycle gas turbines have the potential to use either solar heat or nuclear reactors for generating from tens of kilowatts to tens of megawatts of power in space, all this from a single technology for the power generating system. Their development for solar energy dynamic power generation for the space station could be the first step in an evolution of such powerplants for a very wide range of applications. At the low power level of only 10 kWe, a power generating system has already demonstrated overall efficiency of 0.29 and operated 38 000 hr. Tests of improved components show that these components would raise that efficiency to 0.32, a value twice that demonstrated by any alternate concept. Because of this high efficiency, solar Brayton cycle power generators offer the potential to increase power per unit of solar collector area to levels exceeding four times that from photovoltaic powerplants using present technology for silicon solar cells. The technologies for solar mirrors and heat receivers are reviewed and assessed. This Brayton technology for solar powerplants is equally suitable for use with the nuclear reactors. The available long time creep data on the tantalum alloy ASTAR-811C show that such Brayton cycles can evolve to cycle peak temperatures of 1500 K (2240 F). And this same technology can be extended to generate 10 to 100 MW in space by exploiting existing technology for terrestrial gas turbines in the fields of both aircraft propulsion and stationary power generation.

  20. Solar cycle length hypothesis appears to support the IPCC on global warming

    DEFF Research Database (Denmark)

    Laut, Peter; Gundermann, Jesper

    1999-01-01

    lengths with the "corrected" temperature anomalies is substantially better than with the historical anomalies. Therefore our findings support a total reversal of the common assumption that a verification of the solar hypothesis would challenge the IPCC assessment of man-made global warming.......Since the discovery of a striking correlation between 1-2-2-2-1 filtered solar cycle lengths and the 11-year running average of Northern Hemisphere land air temperatures there have been widespread speculations as to whether these findings would rule out any significant contributions to global...... warming from the enhanced concentrations of greenhouse gases. The "solar hypothesis" claims that solar activity causes a significant component of the global mean temperature to vary in phase opposite to the filtered solar cycle lengths. In an earlier paper we have demonstrated that for data covering...

  1. Development of a solar-powered residential air conditioner

    Science.gov (United States)

    1975-01-01

    The initial objective of the program was the optimization (in terms of cost and performance) of a Rankine cycle mechanical refrigeration system which utilizes thermal energy from a flat solar collector for air conditioning residential buildings. However, feasibility investigations of the adsorption process revealed that a dessicant-type air conditioner offers many significant advantages. As a result, limited efforts were expended toward the optimization of such a system.

  2. Economic evaluation of solar-powered triple-fluid Einstein refrigeration cycle

    Energy Technology Data Exchange (ETDEWEB)

    Qenawy, A.M.; El-Dib, A.W.F.; Ghoraba, M.M. [Cairo Univ., Giza (Egypt). Mechanical Power Dept., Faculty of Engineering

    2006-07-01

    The renewed interest in solar cooling systems can be attributed to rising energy prices and environmental concerns. However, the controlling factor for successful commercialization of such systems is their economic feasibility. In response, systems using solar energy are being actively developed. An alternative to vapor compression systems is the absorption refrigerator cycle which can be driven by low grade energy such as solar energy. Single pressure absorption systems are characterized by absorbing and refrigerant mediums as well as by a pressure-equalizing medium. Two cycles of this type exist, namely the ammonia-water-hydrogen (AWH) and the Einstein cycles. In the Einstein refrigeration cycle, the generator produces ammonia, the pressure-equalizing fluid that lowers the liquid butane partial pressure in the evaporator, thereby producing a cooling effect. In the proposed system, the solar collector acts as the generator. This paper investigated the economics of solar powered Einstein refrigeration system for use in the food industry or for ice production in isolated fish villages in Egypt. Such an icemaker could be used to refrigerate vaccines, meat, dairy products or vegetables. The ice can be sold as a commercial product, or used in a cooler or icebox refrigerator. Solar energy is required to produce the cooling effect in the solar powered Einstein refrigeration cycle. Although solar radiant energy is free, the equipment required to convert it to a useful cooling is not. The system ice production cost was found to be approximately 50 per cent more than other conventional refrigeration systems. Although the initial cost of the solar refrigerator was found to be relatively high, it could be an acceptable solution if this equipment is mass produced. The use of the system is essential in rural areas which do not have electric service. 12 refs., 4 figs.

  3. Interhemispheric coupling induced by the Holton-Tan effect and its sensitivity to the solar cycle

    Science.gov (United States)

    Matthias, Vivien; Becker, Erich

    2016-04-01

    The modulation of the northern winter polar vortex due to the Holton-Tan (HT) effect results in changes of the gravity wave (GW) drag in the mesosphere/ lower thermosphere (MLT). According to the interhemispheric coupling mechanism, one expects an associated modulation of the entire residual circulation from the summer to the winter pole, including a corresponding variability of the southern summer mesopause temperature. In a preceding study we studied this possible vertical and global extension of the HT effect on the basis of the CMAM30 (Canadian Middle Atmosphere Model) data. We found that a clear effect shows up only when sorting the data according to the phases of the 11-year solar cycle. In particular, the strongest interhemispheric coupling induced by the HT effect in January is visible during solar maximum, while the effect is much weaker during solar minimum and even reversed during the transition phases. In the present study we analyze sensitivity experiments with a new version of the KMCM (Kühlungsborn Mechanistic general Circulation Model; T42,L115) that includes self-generated QBO. Different phases of the solar cycle are mimicked by absorption of solar insolation by ozone around the stratopause. The model runs reproduce the behavior as detected from the CMAM30 data, confirming that the primary cause for the solar-cycle-induced variations of the HT effect are due to the solar heating around the stratopause. In order to explain the simulated sensitivity of the MLT to the solar cycle, we will analyze the differences among the model runs with respect to the dynamics of Rossby waves and GWs and their wave-wave and wave-mean flow interactions. For example, the stratospheric planetary wave drag is weaker during solar transition than during both solar minimum and maximum.

  4. Working fluids selection for fishing boats waste heat powered organic Rankine-vapor compression ice maker

    Science.gov (United States)

    Bu, Xianbiao; Wang, Lingbao; Li, Huashan

    2014-10-01

    To utilize waste heat from fishing boats, an organic Rankine cycle/vapor compression cycle system was employed for ice making and a thermodynamic model was developed. Six working fluids were selected and compared in order to identify suitable working fluids which may yield high system efficiencies. The calculated results show that R600a is most suitable working fluid through comprehensive comparison of efficiency, size parameter, pressure ratio, coefficient of performance, system pressure and safety.

  5. Possible emissions from electricity and heat generation from geothermal energy by the use of F-gases in the energy conversion process by an Organic Rankine Cycle (ORC); Moegliche Emissionen bei der Strom- und Waermeerzeugung aus Geothermie durch den Einsatz von F-Gasen im Energiewandlungsprozess mittels ORC

    Energy Technology Data Exchange (ETDEWEB)

    Heberle, Florian; Obermeier, Andreas; Brueggemann, Dieter [Steinbeis-Transferzentrum - Angewandte Thermodynamik, Energie- und Verbrennungstechnik (ATEV), Bayreuth (Germany)

    2012-11-15

    In case of low temperature heat sources Organic Rankine Cycle (ORC) is next to Kalina Cycle one of the few thermodynamic cycles suitable for power generation. Optimization strategies provide a better glide matching of the temperature profiles of heat source or sink to the ORC compared to the standard cycle. This leads to an increase in efficiencies in the range of 15 % to 25 %. In this context, selection of suitable working fluids, two-stage expansion, supercritical cycles or the usage of zeotropic mixtures as working fluids has to be mentioned. Due to the use of fluorinated hydrocarbons, the number of potential fluids as well as the efficiency increase significantly. However, an increase in emissions due to leakages during operation, filling and disposal is associated with fluorinated fluids compared to natural hydrocarbons. Such emissions cannot be completely avoided and according to information of manufacturers and operators they are annually in the range of 1 % to 3 % of the capacity. Based on legal regulations recording of the use levels of fluorinated hydrocarbons in ORC systems according to UStatG and EU Regulation 842/2006 is obligatory. The recording obligation exists regarding the national emission inventory based on the framework convention on climate change. To evaluate potential greenhouse gas emissions by geothermal power plants, in this study different scenarios depending on rate of emission and number of power plants are calculated. If a development in geothermal power generation as predicted takes place, the emissions until the year 2030 are to be classified as low. In case of the technical-ecological potential with 2120 power plants and a rate of emission of 3 % the emissions are between 0.24 Million t/a and 3.02 Million t/a depending on the considered scenario. A comparison to the greenhouse gases by fluorinated hydrocarbons in the year 2009 with 15.6 Million t/a shows that the emissions for this number of power plants are definitely relevant

  6. On climatic changes related to the 22-year solar cycle

    Science.gov (United States)

    Schuurmans, C. J. E.

    1974-01-01

    The 22-year or double sunspot cycle as a cause for longitudinal displacements of atmospheric semi-permanent centers of action is studied. A difference in frequency of occurence of Icelandic lows between the two halves of the double sunspot cycle during winter seasons is found.

  7. North–South Asymmetry in Rieger-type Periodicity during Solar Cycles 19–23

    Energy Technology Data Exchange (ETDEWEB)

    Gurgenashvili, Eka; Zaqarashvili, Teimuraz V.; Kukhianidze, Vasil [Abastumani Astrophysical Observatory at Ilia State University, Tbilisi, Georgia (United States); Oliver, Ramon; Ballester, Jose Luis [Departament de Física, Universitat de les Illes Balears, E-07122, Palma de Mallorca (Spain); Dikpati, Mausumi; McIntosh, Scott W., E-mail: Eka.gurgenashvili.1@iliauni.edu.ge [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States)

    2017-08-20

    Rieger-type periodicity has been detected in different activity indices over many solar cycles. It was recently shown that the periodicity correlates with solar activity having a shorter period during stronger cycles. Solar activity level is generally asymmetric between northern and southern hemispheres, which could suggest the presence of a similar behavior in the Rieger-type periodicity. We analyze the sunspot area/number and the total magnetic flux data for northern and southern hemispheres during solar cycles 19–23, which had remarkable north–south asymmetry. Using wavelet analysis of sunspot area and number during the north-dominated cycles (19–20), we obtained the periodicity of 160–165 days in the stronger northern hemisphere and 180–190 days in the weaker southern hemisphere. On the other hand, south-dominated cycles (21–23) display the periodicity of 155–160 days in the stronger southern hemisphere and 175–188 days in the weaker northern hemisphere. Therefore, the Rieger-type periodicity has the north–south asymmetry in sunspot area/number data during solar cycles with strong hemispheric asymmetry. We suggest that the periodicity is caused by magnetic Rossby waves in the internal dynamo layer. Using the dispersion relation of magnetic Rossby waves and observed Rieger periodicity, we estimated the magnetic field strength in the layer as 45–49 kG in more active hemispheres (north during cycles 19–20 and south during cycles 21–23) and 33–40 kG in weaker hemispheres. The estimated difference in the hemispheric field strength is around 10 kG, which provides a challenge for dynamo models. Total magnetic flux data during cycles 20–23 reveals no clear north–south asymmetry, which needs to be explained in the future.

  8. Radiation belt electron dynamics at low L (Van Allen Probes era versus previous two solar cycles

    Science.gov (United States)

    Li, X.; Baker, D. N.; Zhao, H.; Zhang, K.; Jaynes, A. N.; Schiller, Q.; Kanekal, S. G.; Blake, J. B.; Temerin, M.

    2017-05-01

    Long-term (>2 solar cycles) measurements reveal that MeV electron fluxes, solar wind speed, and geomagnetic activity have been extremely low during this current solar cycle, including years before and during the Van Allen Probes era. This study examines solar wind speed, the geomagnetic storm index (Dst), >2 MeV electrons at geostationary orbit, and 2 MeV electrons across various L shells measured by Solar Anomalous Magnetospheric Particle Explorer in low Earth orbit (LEO) and by the Van Allen Probes/Relativistic Electron and Proton Telescope (REPT) in a geotransfer-like orbit; the latter measurements are normalized to LEO based on comparison with Colorado Student Space Weather Experiment/Relativistic Electron and Proton Telescope integrated little experiment (REPTile) measurements in LEO. The average ratio of REPTile/REPT varies in a systematic manner with L, 16% at L = 2.7, decreasing with L and reaching 0.7% at L = 4.7, and increasing again with L though with greater uncertainty. We show that there have been no 2 MeV electron enhancements inside L 2.6 since 2006, prior to which numerous penetrations of 2 MeV electrons into L Van Allen Probes, which have been providing the finest measurements but in operation during a quiet solar activity period, may not be representative of radiation belt dynamics, particularly for the inner edge of the outer belt, during other solar cycle phases.

  9. Closed Cycle Engine Program Used in Solar Dynamic Power Testing Effort

    Science.gov (United States)

    Ensworth, Clint B., III; McKissock, David B.

    1998-01-01

    NASA Lewis Research Center is testing the world's first integrated solar dynamic power system in a simulated space environment. This system converts solar thermal energy into electrical energy by using a closed-cycle gas turbine and alternator. A NASA-developed analysis code called the Closed Cycle Engine Program (CCEP) has been used for both pretest predictions and post-test analysis of system performance. The solar dynamic power system has a reflective concentrator that focuses solar thermal energy into a cavity receiver. The receiver is a heat exchanger that transfers the thermal power to a working fluid, an inert gas mixture of helium and xenon. The receiver also uses a phase-change material to store the thermal energy so that the system can continue producing power when there is no solar input power, such as when an Earth-orbiting satellite is in eclipse. The system uses a recuperated closed Brayton cycle to convert thermal power to mechanical power. Heated gas from the receiver expands through a turbine that turns an alternator and a compressor. The system also includes a gas cooler and a radiator, which reject waste cycle heat, and a recuperator, a gas-to-gas heat exchanger that improves cycle efficiency by recovering thermal energy.

  10. Solar cycle lengths and climate: A reference revisited - Reply

    DEFF Research Database (Denmark)

    Lassen, K.; Friis-Christensen, Eigil

    2000-01-01

    that solar forcing constitutes an important contribution to the natural temperature fluctuations. This does not exclude, as also stated previously, that other climate forcings may have an effect on global temperature, including the effect of man-made greenhouse gases, in particular, after 1970....

  11. Helioseismology and the Solar Cycle: Past, Present and Future ...

    Indian Academy of Sciences (India)

    similar to methods used in terrestrial seismology. Acoustic waves emitted at the surface travel downward into the solar interior, are refracted upwards and reappear some time later and some distance away from the source. The time and distance is influenced by the conditions of the plasma that the wave propagates through.

  12. Nexant Parabolic Trough Solar Power Plant Systems Analysis; Task 1: Preferred Plant Size, 20 January 2005 - 31 December 2005

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, B.

    2006-07-01

    The Rankine cycles for commercial parabolic trough solar projects range in capacity from 13.5 MWe at the Solar Electric Generating Station I (SEGS I) plant, to a maximum of 89 MWe at the SEGS VIII/IX plants. The series of SEGS projects showed a consistent reduction in the levelized energy cost due to a combination of improvements in collector field technology and economies of scale in both the Rankine cycle and the operation and maintenance costs. Nonetheless, the question of the optimum Rankine cycle capacity remains an open issue. The capacities of the SEGS VIII/IX plants were limited by Federal Energy Regulatory Commission and Public Utility Regulatory Policy Act requirements to a maximum net output of 80 MWe. Further improvements in the Rankine cycle efficiency, and economies of scale in both the capital and the operating cost, should be available at larger plant sizes. An analysis was conducted to determine the effect of Rankine cycle capacities greater than 80 MWe on the levelized energy cost. The study was conducted through the following steps: (1) Three gross cycle capacities of 88 MWe, 165 MWe, and 220 MWe were selected. (2) Three Rankine cycle models were developed using the GateCycle program. The models were based on single reheat turbine cycles, with main steam conditions of 1,450 lb{sub f}/in{sup 2} and 703 F, and reheat steam conditions of 239 lb{sub f}/in{sup 2} and 703 F. The feedwater heater system consisted of 5 closed heaters and 1 open deaerating heater. The design condenser pressure was 2.5 in. HgA. (3) The optimization function within Excelergy was used to determine the preferred solar multiple for each plant. Two cases were considered for each plant: (a) a solar-only project without thermal storage, and (b) a solar-fossil hybrid project, with 3 hours of thermal storage and a heat transport fluid heater fired by natural gas. (4) For each of the 6 cases, collector field geometries, heat transport fluid pressure losses, and heat transport pump

  13. Assessment of the environmental impacts deriving from the life cycle of a typical solar water heater

    Directory of Open Access Journals (Sweden)

    G. Gaidajis

    2014-01-01

    Full Text Available According to life cycle thinking, the environmental burden deriving from different life cycle stages of a product or a system, such as manufacturing, transportation, maintenance and landfilling should be taken into consideration while assessing its environmental performance. In that aspect, the environmental impacts deriving from the life cycle of a typical solar water heater (SWH in Greece are analyzed and assessed with the application of relative life cycle assessment (LCA software in this study. In order to examine various impact categories such as global warming, ozone layer depletion, ecotoxicity and so forth, the IMPACT2002+ method is applied. The aim of this study is to examine the life cycle stages, processes and materials that significantly affect the system under examination and to provide a discussion regarding the environmental friendliness of solar water heaters.

  14. Solar power satellites - Heat engine or solar cells

    Science.gov (United States)

    Oman, H.; Gregory, D. L.

    1978-01-01

    A solar power satellite is the energy-converting element of a system that can deliver some 10 GW of power to utilities on the earth's surface. We evaluated heat engines and solar cells for converting sunshine to electric power at the satellite. A potassium Rankine cycle was the best of the heat engines, and 50 microns thick single-crystal silicon cells were the best of the photovoltaic converters. Neither solar cells nor heat engines had a clear advantage when all factors were considered. The potassium-turbine power plant, however, was more difficult to assemble and required a more expensive orbital assembly base. We therefore based our cost analyses on solar-cell energy conversion, concluding that satellite-generated power could be delivered to utilities for around 4 to 5 cents a kWh.

  15. SUN-LIKE MAGNETIC CYCLES IN THE RAPIDLY ROTATING YOUNG SOLAR ANALOG HD 30495

    Energy Technology Data Exchange (ETDEWEB)

    Egeland, Ricky [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Metcalfe, Travis S. [Space Science Institute, 4750 Walnut St. Suite 205, Boulder, CO 80301 (United States); Hall, Jeffrey C. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Henry, Gregory W., E-mail: egeland@ucar.edu [Center of Excellence in Information Systems, Tennessee State University, 3500 John A. Merritt Blvd., Box 9501, Nashville, TN 37209 (United States)

    2015-10-10

    A growing body of evidence suggests that multiple dynamo mechanisms can drive magnetic variability on different timescales, not only in the Sun but also in other stars. Many solar activity proxies exhibit a quasi-biennial (∼2 year) variation, which is superimposed upon the dominant 11 year cycle. A well-characterized stellar sample suggests at least two different relationships between rotation period and cycle period, with some stars exhibiting long and short cycles simultaneously. Within this sample, the solar cycle periods are typical of a more rapidly rotating star, implying that the Sun might be in a transitional state or that it has an unusual evolutionary history. In this work, we present new and archival observations of dual magnetic cycles in the young solar analog HD 30495, a ∼1 Gyr old G1.5 V star with a rotation period near 11 days. This star falls squarely on the relationships established by the broader stellar sample, with short-period variations at ∼1.7 years and a long cycle of ∼12 years. We measure three individual long-period cycles and find durations ranging from 9.6 to 15.5 years. We find the short-term variability to be intermittent, but present throughout the majority of the time series, though its occurrence and amplitude are uncorrelated with the longer cycle. These essentially solar-like variations occur in a Sun-like star with more rapid rotation, though surface differential rotation measurements leave open the possibility of a solar equivalence.

  16. Can solar cycle modulate the ENSO effect on the Pacific/North American pattern?

    Science.gov (United States)

    Li, Delin; Xiao, Ziniu

    2018-01-01

    The ENSO effect on the Pacific/North American pattern (PNA) is well-known robust. Recent studies from observations and model simulations have reported that some important atmospheric circulation systems of extratropics are markedly modulated by the 11-year solar cycle. But less effort has been devoted to revealing the solar influence on the PNA. We thus hypothesize that the instability and uncertainty in the relationship between solar activity and PNA could be due to the ENSO impacts. In this study, solar cycle modulation of the ENSO effect on the PNA has been statistically examined by the observations from NOAA and NCEP/NCAR for the period of 1950-2014. Results indicate that during the high solar activity (HS) years, the PNA has stronger relevance to the ENSO, and the response of tropospheric geopotential height to ENSO variability is broadly similar to the typical positive PNA pattern. However, in the case of low solar activity (LS) years, the correlation between ENSO and PNA decreases relatively and the response has some resemblance to the negative phase of Arctic Oscillation (AO). Also, we find the impacts of solar activity on the middle troposphere are asymmetric during the different solar cycle phases, and the weak PNA-like response to solar activity only presents in the HS years. Closer inspection suggests that the higher solar activity has a much more remarkable modulation on the PNA-like response to the warm ENSO (WE) than that to the cold ENSO (CE), particularly over the Northeast Pacific region. The possible cause of the different responses might be the solar influence on the subtropical westerlies of upper troposphere. When the sea surface temperature (SST) of east-central tropical Pacific is anomalously warm, the upper tropospheric westerlies are significantly modulated by the higher solar activity, resulting in the acceleration and eastward shift of the North Pacific subtropical jet, which favors the propagation of WE signal from the tropical Pacific

  17. Organic Rankine Kilowatt Isotope Power System. Final phase I report

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-15

    On 1 August 1975 under Department of Energy Contract EN-77-C-02-4299, Sundstrand Energy Systems commenced development of a Kilowatt Isotope Power System (KIPS) directed toward satisfying the higher power requirements of satellites of the 1980s and beyond. The KIPS is a /sup 238/PuO/sub 2/ fueled organic Rankine cycle turbine power system which will provide design output power in the range of 500 to 2000 W/sub (e)/ with a minimum of system changes. The principal objectives of the Phase 1 development effort were to: conceptually design a flight system; design a Ground Demonstration System (GDS) that is prototypic of the flight system in order to prove the feasibility of the flight system design; fabricate and assemble the GDS; and performance and endurance test the GDS using electric heaters in lieu of the isotope heat source. Results of the work performed under the Phase 1 contract to 1 July 1978 are presented.

  18. Modulation of galactic cosmic rays in solar cycles 22-24: Analysis and physical interpretation

    Science.gov (United States)

    Kalinin, M. S.; Bazilevskaya, G. A.; Krainev, M. B.; Svirzhevskaya, A. K.; Svirzhevsky, N. S.; Starodubtsev, S. A.

    2017-09-01

    This work represents a physical interpretation of cosmic ray modulation in the 22nd-24th solar cycles, including an interpretation of an unusual behavior of their intensity in the last minimum of the solar activity (2008-2010). In terms of the Parker modulation model, which deals with regularly measured heliospheric characteristics, it is shown that the determining factor of the increased intensity of the galactic cosmic rays in the minimum of the 24th solar cycle is an anomalous reduction of the heliospheric magnetic field strength during this time interval under the additional influence of the solar wind velocity and the tilt angle of the heliospheric current sheet. We have used in the calculations the dependence of the diffusion tensor on the rigidity in the form K ij ∝ R 2-μ with μ = 1.2 in the sector zones of the heliospheric magnetic field and with μ = 0.8 outside the sector zones, which leads to an additional amplification of the diffusion mechanism of cosmic ray modulation. The proposed approach allows us to describe quite satisfactorily the integral intensity of protons with an energy above 0.1 GeV and the energy spectra in the minima of the 22nd-24th solar cycles at the same value of the free parameter. The determining factor of the anomalously high level of the galactic cosmic ray intensity in the minimum of the 24th solar cycle is the significant reduction of the heliospheric magnetic field strength during this time interval. The forecast of the intensity level in the minimum of the 25th solar cycle is provided.

  19. Helioseismic Observations of Two Solar Cycles and Constraints on Dynamo Theory

    Science.gov (United States)

    Kosovichev, Alexander

    2018-01-01

    Helioseismology data from the SOHO and SDO, obtained in 1996-2017 for almost two solar cycles, provide a unique opportunity to investigate variations of the solar interior structure and dynamics, and link these variations to the current dynamo models and simulations. The solar oscillation frequencies and frequency splitting of medium-degree p- and f-modes, as well as helioseismic inversions have been used to analyze variations of the differential rotation (“torsional oscillations”) and the global asphericity. By comparing the helioseismology results with the synoptic surface magnetic fields we identify characteristic changes associated the initiation and evolution of the solar cycles, 23 and 24. The observational results are compared with the current mean-field dynamo models and 3D MHD dynamo simulations. It is shown that the helioseismology inferences provide important constraints on the dynamics of the tachocline and near-surface shear layer, and also may explain the fundamental difference between the two solar cycles and detect the onset of the next cycle.

  20. Effects of Stratospheric Ozone Depletion, Solar UV Radiation, and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    Science.gov (United States)

    Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment...

  1. Life-Cycle Assessment of Solar Charger with Integrated Organic Photovoltaics

    DEFF Research Database (Denmark)

    Benatto, Gisele Alves dos Reis; Espinosa Martinez, Nieves; Krebs, Frederik C

    2017-01-01

    OPV panel, enabling the possibility to be charged from the sun, and not only from the grid. In this paper, two well-established power bank products using amorphous silicon solar panels (a-Si PV) and a regular power bank without any portable solar panel is compared to HeLi-on. The environmental impact...... of the products is quantified with the aim of indicate where eco-design improvements would make a difference and to point out performance of a portable solar panel depending on the context of use (Denmark and China), realistic disposal scenarios and the recycling relevance particularly concerning metals content.......Organic photovoltaics (OPV) applied in a commercial product comprising a solar charged power bank is subjected to a life cycle assessment (LCA) study. Regular power banks harvest electricity from the grid only. The solar power bank (called HeLi-on) is however, a power bank that includes a portable...

  2. DOES THE VARIATION OF THE SOLAR INTRA-NETWORK HORIZONTAL FIELD FOLLOW THE SUNSPOT CYCLE?

    Energy Technology Data Exchange (ETDEWEB)

    Jin, C. L.; Wang, J. X., E-mail: cljin@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2015-07-01

    The ubiquitousness of the solar inter-network horizontal magnetic field has been revealed by space-borne observations with high spatial resolution and polarization sensitivity. However, no consensus has been achieved on the origin of the horizontal field among solar physicists. For a better understanding, in this study, we analyze the cyclic variation of the inter-network horizontal field by using the spectro-polarimeter observations provided by the Solar Optical Telescope on board Hinode, covering the interval from 2008 April to 2015 February. The method of wavelength integration is adopted to achieve a high signal-to-noise ratio. It is found that from 2008 to 2015 the inter-network horizontal field does not vary when solar activity increases, and the average flux density of the inter-network horizontal field is 87 ± 1 G, In addition, the imbalance between horizontal and vertical fields also keeps invariant within the scope of deviation, i.e., 8.7 ± 0.5, from the solar minimum to maximum of solar cycle 24. This result confirms that the inter-network horizontal field is independent of the sunspot cycle. The revelation favors the idea that a local dynamo is creating and maintaining the solar inter-network horizontal field.

  3. Life Cycle Assessment of Titania Perovskite Solar Cell Technology for Sustainable Design and Manufacturing.

    Science.gov (United States)

    Zhang, Jingyi; Gao, Xianfeng; Deng, Yelin; Li, Bingbing; Yuan, Chris

    2015-11-01

    Perovskite solar cells have attracted enormous attention in recent years due to their low cost and superior technical performance. However, the use of toxic metals, such as lead, in the perovskite dye and toxic chemicals in perovskite solar cell manufacturing causes grave concerns for its environmental performance. To understand and facilitate the sustainable development of perovskite solar cell technology from its design to manufacturing, a comprehensive environmental impact assessment has been conducted on titanium dioxide nanotube based perovskite solar cells by using an attributional life cycle assessment approach, from cradle to gate, with manufacturing data from our laboratory-scale experiments and upstream data collected from professional databases and the literature. The results indicate that the perovskite dye is the primary source of environmental impact, associated with 64.77% total embodied energy and 31.38% embodied materials consumption, contributing to more than 50% of the life cycle impact in almost all impact categories, although lead used in the perovskite dye only contributes to about 1.14% of the human toxicity potential. A comparison of perovskite solar cells with commercial silicon and cadmium-tellurium solar cells reveals that perovskite solar cells could be a promising alternative technology for future large-scale industrial applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Predictions of the Maximum Amplitude, Time of Occurrence, and Total Length of Solar Cycle 24

    Science.gov (United States)

    Uzal, L. C.; Piacentini, R. D.; Verdes, P. F.

    2012-08-01

    In this work we predict the maximum amplitude, its time of occurrence, and the total length of Solar Cycle 24 by linear regression to the curvature (second derivative) at the preceding minimum of a smoothed version of the sunspots time series. We characterise the predictive power of the proposed methodology in a causal manner by an incremental incorporation of past solar cycles to the available data base. In regressing maximum cycle intensity to curvature at the leading minimum, we obtain a correlation coefficient R≈0.91 and for the upcoming Cycle 24 a forecast of 78 (90 % confidence interval: 56 - 106). The ascent time also appears to be highly correlated to the second derivative at the starting minimum ( R≈-0.77), predicting maximum solar activity for October 2013 (90 % confidence interval: January 2013 to September 2014). Solar Cycle 24 should come to an end by February 2020 (90 % confidence interval: January 2019 to July 2021), although in this case correlational evidence is weaker ( R≈-0.56).

  5. Interglacials, Milankovitch Cycles, Solar Activity, and Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Gerald E. Marsh

    2014-01-01

    Full Text Available The existing understanding of interglacial periods is that they are initiated by Milankovitch cycles enhanced by rising atmospheric carbon dioxide concentrations. During interglacials, global temperature is also believed to be primarily controlled by carbon dioxide concentrations, modulated by internal processes such as the Pacific Decadal Oscillation and the North Atlantic Oscillation. Recent work challenges the fundamental basis of these conceptions.

  6. Closed Cycle Solar Refrigeration with the Calcium Chloride System ...

    African Journals Online (AJOL)

    A closed cycle solid absorption intermittent refrigerator, using CaC12 absorbent and NH3 refrigerant, was constructed and tested to obtain the instantaneous and cumulative available overall COP. The combined collector/absorber/generator unit had double glazing of 1.14 m2 exposed areas. The system was fitted with a ...

  7. Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power ...

    African Journals Online (AJOL)

    Many homes in Nigeria are in remote locations where grid electricity supply could not be extended. This paper attempts to present a concise life-cycle-cost comparison of diesel generator power supply system and photovoltaic power system for a remote rural application. In this comparative analysis, conceptual designs ...

  8. Solar Cycle in the Heliosphere and Cosmic Rays

    Science.gov (United States)

    2014-10-23

    viz. diffusion due to scattering on the HMF irregularities , convection with the radially expanding solar wind plasma, drift in the large-scale...magnetic irregularities in the heliosphere (Jokipii 1966). Recent models (e.g., Ferreira and Potgieter 2004) are good in explaining the temporal variability...Brueckner, R.A. Howard, M.J. Koomen, C.M. Korendyke, D.J. Michels, J.D. Moses, D.G. Socker, K.P. Dere, P.L. Lamy, A. Llebaria, M.V. Bout , R. Schwenn, G.M

  9. Precursors of Solar Cycles 24 and 25 at Middle and High Latitudes

    Science.gov (United States)

    Golovko, A. A.

    2018-01-01

    Magnetic activity in the middle latitude zone from 40 to 60 degrees was investigated using a multifractal segmentation method. Statistics of magnetic knots with a size of 3-4" revealed the peak of maximum 20 times higher than the background level of the knots population number during 2007-2008, which preceded by two years the beginning of the solar cycle 24. A similar peak commenced in 2016 gives the prediction of the beginning of cycle 25 during 2018.

  10. Comparison of Total Solar Irradiance with NASA/NSO Spectromagnetograph Data in Solar Cycles 22 and 23

    Science.gov (United States)

    Jones, Harrison P.; Branston, Detrick D.; Jones, Patricia B.; Popescu, Miruna D.

    2002-01-01

    An earlier study compared NASA/NSO Spectromagnetograph (SPM) data with spacecraft measurements of total solar irradiance (TSI) variations over a 1.5 year period in the declining phase of solar cycle 22. This paper extends the analysis to an eight-year period which also spans the rising and early maximum phases of cycle 23. The conclusions of the earlier work appear to be robust: three factors (sunspots, strong unipolar regions, and strong mixed polarity regions) describe most of the variation in the SPM record, but only the first two are associated with TSI. Additionally, the residuals of a linear multiple regression of TSI against SPM observations over the entire eight-year period show an unexplained, increasing, linear time variation with a rate of about 0.05 W m(exp -2) per year. Separate regressions for the periods before and after 1996 January 01 show no unexplained trends but differ substantially in regression parameters. This behavior may reflect a solar source of TSI variations beyond sunspots and faculae but more plausibly results from uncompensated non-solar effects in one or both of the TSI and SPM data sets.

  11. Carrington cycle 24: the solar chromospheric emission in a historical and stellar perspective

    Science.gov (United States)

    Schröder, K.-P.; Mittag, M.; Schmitt, J. H. M. M.; Jack, D.; Hempelmann, A.; González-Pérez, J. N.

    2017-09-01

    We present the solar S-index record of cycle 24, obtained by the Telescopio Internacional de Guanajuato, Robotico Espectroscopico robotic telescope facility and its high-resolution spectrograph HEROS (R ≈ 20 000), which measures the solar chromospheric Ca ii H&K line emission by using moonlight. Our calibration process uses the same set of standard stars as introduced by the Mount Wilson team, thus giving us a direct comparison with their huge body of observations taken between 1966 and 1992, as well as with other cool stars. Carrington cycle 24 activity started from the unusually deep and long minimum 2008/2009, with an S-index average of only 0.154, 0.015 deeper than the one of 1986 (〈S〉 = 0.169). In this respect, the chromospheric radiative losses differ remarkably from the variation of the coronal radio flux F10.7 cm and the sunspot numbers. In addition, the cycle 24 S-amplitude remained small, 0.022 (cycles 21 and 22 averaged: 0.024), and so resulted in a very low 2014 maximum of 〈S〉 = 0.176 (cycles 21 and 22 averaged: 0.193). We argue that this find is significant, since the Ca ii H&K line emission is a good proxy for the solar far-ultraviolet (far-UV) flux, which plays an important role in the heating of the Earth's stratosphere, and we further argue that the solar far-UV flux changes with solar activity much more strongly than the total solar output.

  12. Fast thermal cycling of acetanilide and magnesium chloride hexahydrate for indoor solar cooking

    Energy Technology Data Exchange (ETDEWEB)

    El-Sebaii, A.A.; Al-Amir, S.; Al-Marzouki, F.M.; Faidah, Adel S.; Al-Ghamdi, A.A.; Al-Heniti, S. [Physics Dept., Faculty of Science, King Abdul Aziz Univ., P.O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2009-12-15

    Solar cookers are broadly divided into a direct or focusing type, indirect or box-type and advanced solar cookers. The focusing and box-type solar cookers are for outdoor applications. The advanced solar cookers have the advantage of being usable indoors and thus solve one of the problems, which impede the social acceptance of solar cookers. The advanced type solar cookers are employing additional solar units that increase the cost. Therefore, the solar cooker must contain a heat storage medium to store thermal energy for use during off-sunshine hours. The main aim of this study is to investigate the influence of the melting/solidification fast cycling of the commercial grade acetanilide C{sub 8}H{sub 9}NO (T{sub m} = 116 C) and magnesium chloride hexahydrate MgCl{sub 2}.6H{sub 2}O (T{sub m} = 116.7 C) on their thermo-physical properties; such as melting point and latent heat of fusion, to be used as storage media inside solar cookers. Five hundred cycles have been performed. The thermo-physical properties are measured using the differential scanning calorimetric technique. The compatibility of the selected phase change materials (PCMs) with the containing material is also studied via the surface investigation, using the SIM technique, of aluminum and stainless steel samples embedded in the PCM during cycling. It is inferred that acetanilide is a promising PCM for cooking indoors and during low intensity solar radiation periods with good compatibility with aluminum as a containing material. However, MgCl{sub 2}.6H{sub 2}O is not stable during its thermal cycling (even with the extra water principle) due to the phase segregation problem; therefore, it is not recommended as a storage material inside solar cookers for cooking indoors. It is also indicated that MgCl{sub 2}.6H{sub 2}O is not compatible with either aluminum or stainless steel. (author)

  13. An early prediction of 25th solar cycle using Hurst exponent

    Science.gov (United States)

    Singh, A. K.; Bhargawa, Asheesh

    2017-11-01

    The analysis of long memory processes in solar activity, space weather and other geophysical phenomena has been a major issue even after the availability of enough data. We have examined the data of various solar parameters like sunspot numbers, 10.7 cm radio flux, solar magnetic field, proton flux and Alfven Mach number observed for the year 1976-2016. We have done the statistical test for persistence of solar activity based on the value of Hurst exponent (H) which is one of the most classical applied methods known as rescaled range analysis. We have discussed the efficiency of this methodology as well as prediction content for next solar cycle based on long term memory. In the present study, Hurst exponent analysis has been used to investigate the persistence of above mentioned (five) solar activity parameters and a simplex projection analysis has been used to predict the ascension time and the maximum number of counts for 25th solar cycle. For available dataset of the year 1976-2016, we have calculated H = 0.86 and 0.82 for sunspot number and 10.7 cm radio flux respectively. Further we have calculated maximum number of counts for sunspot numbers and F10.7 cm index as 102.8± 24.6 and 137.25± 8.9 respectively. Using the simplex projection analysis, we have forecasted that the solar cycle 25th would start in the year 2021 (January) and would last up to the year 2031 (September) with its maxima in June 2024.

  14. Control system development for an organic Ranking cycle engine

    Science.gov (United States)

    Bergthold, F. M., Jr.; Fulton, D. G.; Haskins, H. J.

    1981-01-01

    An organic Rankine cycle engine is used as part of a solar thermal power conversion assembly (PCA). The PCA, including a direct-heated cavity receiver and a shaft-mounted alternator, is mounted at the focal point of a parabolic dish concentrator. The engine controls are required to maintain approximately constant values of turbine inlet temperature and shaft speed, despite variation in the concentrated solar power input to the receiver. The controls design approach, system models, and initial stability and performance analysis results are presented herein.

  15. Optimised heat recovery steam generators for integrated solar combined cycle plants

    Science.gov (United States)

    Peterseim, Jürgen H.; Huschka, Karsten

    2017-06-01

    The cost of concentrating solar power (CSP) plants is decreasing but, due to the cost differences and the currently limited value of energy storage, implementation of new facilities is still slow compared to photovoltaic systems. One recognized option to lower cost instantly is the hybridization of CSP with other energy sources, such as natural gas or biomass. Various references exist for the combination of CSP with natural gas in combined cycle plants, also known as Integrated Solar Combined Cycle (ISCC) plants. One problem with current ISCC concepts is the so called ISCC crisis, which occurs when CSP is not contributing and cycle efficiency falls below efficiency levels of solely natural gas only fired combined cycle plants. This paper analyses current ISCC concepts and compares them with two optimised designs. The comparison is based on a Kuraymat type ISCC plant and shows that cycle optimization enables a net capacity increase of 1.4% and additional daily generation of up to 7.9%. The specific investment of the optimised Integrated Solar Combined Cycle plant results in a 0.4% cost increase, which is below the additional net capacity and daily generation increase.

  16. MAGNETOHYDRODYNAMIC SIMULATION-DRIVEN KINEMATIC MEAN FIELD MODEL OF THE SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Simard, Corinne; Charbonneau, Paul [Departement de Physique, Universite de Montreal, C.P. 6128 Succ. Centre-ville, Montreal, Qc H3C 3J7 (Canada); Bouchat, Amelie, E-mail: corinne@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca, E-mail: amelie.bouchat@mail.mcgill.ca [Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke West, Montreal, Quebec H3A 2K6 (Canada)

    2013-05-01

    We construct a series of kinematic axisymmetric mean-field dynamo models operating in the {alpha}{Omega}, {alpha}{sup 2}{Omega} and {alpha}{sup 2} regimes, all using the full {alpha}-tensor extracted from a global magnetohydrodynamical simulation of solar convection producing large-scale magnetic fields undergoing solar-like cyclic polarity reversals. We also include an internal differential rotation profile produced in a purely hydrodynamical parent simulation of solar convection, and a simple meridional flow profile described by a single cell per meridional quadrant. An {alpha}{sup 2}{Omega} mean-field model, presumably closest to the mode of dynamo action characterizing the MHD simulation, produces a spatiotemporal evolution of magnetic fields that share some striking similarities with the zonally-averaged toroidal component extracted from the simulation. Comparison with {alpha}{sup 2} and {alpha}{Omega} mean-field models operating in the same parameter regimes indicates that much of the complexity observed in the spatiotemporal evolution of the large-scale magnetic field in the simulation can be traced to the turbulent electromotive force. Oscillating {alpha}{sup 2} solutions are readily produced, and show some similarities with the observed solar cycle, including a deep-seated toroidal component concentrated at low latitudes and migrating equatorward in the course of the solar cycle. Various numerical experiments performed using the mean-field models reveal that turbulent pumping plays an important role in setting the global characteristics of the magnetic cycles.

  17. Solar cycle variations of stratospheric ozone and temperature in simulations of a coupled chemistry-climate model

    Directory of Open Access Journals (Sweden)

    J. Austin

    2007-01-01

    Full Text Available The results from three 45-year simulations of a coupled chemistry climate model are analysed for solar cycle influences on ozone and temperature. The simulations include UV forcing at the top of the atmosphere, which includes a generic 27-day solar rotation effect as well as the observed monthly values of the solar fluxes. The results are analysed for the 27-day and 11-year cycles in temperature and ozone. In accordance with previous results, the 27-day cycle results are in good qualitative agreement with observations, particularly for ozone. However, the results show significant variations, typically a factor of two or more in sensitivity to solar flux, depending on the solar cycle. In the lower and middle stratosphere we show good agreement also between the modelled and observed 11-year cycle results for the ozone vertical profile averaged over low latitudes. In particular, the minimum in solar response near 20 hPa is well simulated. In comparison, experiments of the model with fixed solar phase (solar maximum/solar mean and climatological sea surface temperatures lead to a poorer simulation of the solar response in the ozone vertical profile, indicating the need for variable phase simulations in solar sensitivity experiments. The role of sea surface temperatures and tropical upwelling in simulating the ozone minimum response are also discussed.

  18. Preliminary design package for residential heating/cooling system--Rankine air conditioner redesign

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    This report contains a summary of the preliminary redesign and development of a marketable single-family heating and cooling system. The objectives discussed are the interim design and schedule status of the Residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  19. Evidence of Suess solar-cycle bursts in Holocene speleothem d18O records

    DEFF Research Database (Denmark)

    Knudsen, Mads Faurschou; Jacobsen, B. H.; Riisager, Peter

    2012-01-01

    , 4500–5700 BP, and 7750–8850 BP when the ~210 yr solar cycle was particularly strong. The speleothems from Dongge Cave (China) and Sofular Cave (Turkey) appear to have recorded all three Suess bursts, whereas the speleothems from Heshang Cave (China) and Pink Panther Cave (southwestern USA) only...

  20. STATISTICAL STUDY OF STRONG AND EXTREME GEOMAGNETIC DISTURBANCES AND SOLAR CYCLE CHARACTERISTICS

    Energy Technology Data Exchange (ETDEWEB)

    Kilpua, E. K. J. [Department of Physics, University Helsinki (Finland); Olspert, N.; Grigorievskiy, A.; Käpylä, M. J.; Tanskanen, E. I.; Pelt, J. [ReSoLVE Centre of Excellence, Department of Computer Science, P.O. Box 15400, FI-00076 Aalto Univeristy (Finland); Miyahara, H. [Musashino Art University, 1-736 Ogawa-cho, Kodaira-shi, Tokyo 187-8505 (Japan); Kataoka, R. [National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518 (Japan); Liu, Y. D. [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-06-20

    We study the relation between strong and extreme geomagnetic storms and solar cycle characteristics. The analysis uses an extensive geomagnetic index AA data set spanning over 150 yr complemented by the Kakioka magnetometer recordings. We apply Pearson correlation statistics and estimate the significance of the correlation with a bootstrapping technique. We show that the correlation between the storm occurrence and the strength of the solar cycle decreases from a clear positive correlation with increasing storm magnitude toward a negligible relationship. Hence, the quieter Sun can also launch superstorms that may lead to significant societal and economic impact. Our results show that while weaker storms occur most frequently in the declining phase, the stronger storms have the tendency to occur near solar maximum. Our analysis suggests that the most extreme solar eruptions do not have a direct connection between the solar large-scale dynamo-generated magnetic field, but are rather associated with smaller-scale dynamo and resulting turbulent magnetic fields. The phase distributions of sunspots and storms becoming increasingly in phase with increasing storm strength, on the other hand, may indicate that the extreme storms are related to the toroidal component of the solar large-scale field.

  1. Solar cycle influences on the shape and location of the Earth's magnetopause

    Science.gov (United States)

    Raymer, K.; Imber, S.; Milan, S. E.

    2016-12-01

    We have developed an automated routine to determine the location of the Earth's magnetopause using a combination of in situ plasma and magnetic field data. The technique has been applied to almost two solar cycles of Geotail spacecraft data (1996 - 2015), producing a database of 8561 magnetopause crossings. The magnetopause crossings are normalised for solar wind dynamic pressure, and the shape of the magnetopause is modelled with the functional form of the Shue et al. (1997) empirical model for each of the 20 years of data. We find that the yearly averaged level of flaring in the magnetotail and magnetopause standoff distance vary significantly throughout the solar cycle, and that our improved coverage of the flanks is essential for accurately characterising the flaring of the nightside magnetopause. We also find that the shape of the magnetopause depends on the ring current strength and the amount of open magnetic flux in the system.

  2. Entropy Analysis of Solar Two-Step Thermochemical Cycles for Water and Carbon Dioxide Splitting

    Directory of Open Access Journals (Sweden)

    Matthias Lange

    2016-01-01

    Full Text Available The present study provides a thermodynamic analysis of solar thermochemical cycles for splitting of H2O or CO2. Such cycles, powered by concentrated solar energy, have the potential to produce fuels in a sustainable way. We extend a previous study on the thermodynamics of water splitting by also taking into account CO2 splitting and the influence of the solar absorption efficiency. Based on this purely thermodynamic approach, efficiency trends are discussed. The comprehensive and vivid representation in T-S diagrams provides researchers in this field with the required theoretical background to improve process development. Furthermore, results about the required entropy change in the used redox materials can be used as a guideline for material developers. The results show that CO2 splitting is advantageous at higher temperature levels, while water splitting is more feasible at lower temperature levels, as it benefits from a great entropy change during the splitting step.

  3. Formation of a strong southward IMF near the solar maximum of cycle 23

    Directory of Open Access Journals (Sweden)

    S. Watari

    2004-01-01

    Full Text Available We analyzed observations of the solar activities and the solar wind parameters associated with large geomagnetic storms near the maximum of solar cycle 23. This analysis showed that strong southward interplanetary magnetic fields (IMFs, formed through interaction between an interplanetary disturbance, and background solar wind or between interplanetary disturbances are an important factor in the occurrence of intense geomagnetic storms. Based on our analysis, we seek to improve our understanding of the physical processes in which large negative Bz's are created which will lead to improving predictions of space weather.

    Key words. Interplanetary physics (Flare and stream dynamics; Interplanetary magnetic fields; Interplanetary shocks

  4. Dynamic Modeling of the Solar Field in Parabolic Trough Solar Power Plants

    Directory of Open Access Journals (Sweden)

    Lourdes A. Barcia

    2015-11-01

    Full Text Available Parabolic trough solar power plants use a thermal fluid to transfer thermal energy from solar radiation to a water-steam Rankine cycle in order to drive a turbine that, coupled to an electrical generator, produces electricity. These plants have a heat transfer fluid (HTF system with the necessary elements to transform solar radiation into heat and to transfer that thermal energy to the water-steam exchangers. In order to get the best possible performance in the Rankine cycle and, hence, in the thermal plant, it is necessary that the thermal fluid reach its maximum temperature when leaving the solar field (SF. Also, it is mandatory that the thermal fluid does not exceed the maximum operating temperature of the HTF, above which it degrades. It must be noted that the optimal temperature of the thermal fluid is difficult to obtain, since solar radiation can change abruptly from one moment to another. The aim of this document is to provide a model of an HTF system that can be used to optimize the control of the temperature of the fluid without interfering with the normal operation of the plant. The results obtained with this model will be contrasted with those obtained in a real plant.

  5. Evaluation of ORC processes and their implementation in solar thermal DSG plants

    OpenAIRE

    Degli Esposti, Dalma

    2014-01-01

    Abstract In recent years Direct Steam Generation (DSG) systems using water have been developed as an alternative to state-of-the-art parabolic trough plants with thermal oil. After a comprehensive research, first commercial DSG plants have already been realized. Organic Rankine Cycles (ORC) that have been widely used for electricity production with low-temperature heat (e.g. geothermal energy) are also suited for the implementation in solar thermal power plants. To the knowledge of t...

  6. Material cycling solar system modeled ecosystem; Seitaikei wo model to shita busshitsu junkangata solar system

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M. [Hachinohe Institute of Technology, Aomori (Japan)

    1996-10-27

    It is proposed to establish an integrated system close to a natural ecosystem for an industrial complex, taking that in Hachinohe City, Aomori Pref. as the conceptual site. It is a system in which materials are recycled by solar energy and industrial waste heat for a complex food industry. The conceptual site, although blessed with various marine products, are sometimes attacked by cold weather. Waste heat from a 250,000kW power plant, if transported by EHD heat pipes to the site, could provide roughly 400 times the heat required for production of agricultural and marine products, such as cabbages and fish meat. The waste heat, coupled with solar energy, should solve the problems resulting from hot waste water, if they could be utilized for the industrial purposes. The food industrial site that produces agricultural and marine products is considered to be suited as the center of the solar industrial complex incorporating farms. 5 refs., 3 figs.

  7. Scaling properties of intermittent solar wind turbulence and their solar cycle dependence.

    Science.gov (United States)

    Hnat, B.; Chapman, S. C.; Rowlands, G.

    Quantifying the properties of solar wind turbulence is important for our understanding of the fundamentals of MHD turbulence the evolution of the solar wind and for the propagation of energetic particles A hallmark of turbulence is scaling in statistical measures of fluctuations in the flow In data this is quantified by testing for scaling in the Probability Density Functions PDF of fluctuations either directly or via structure function analysis Comparisons can then be made at least in principle with turbulence phenomenologies Having determined the scaling exponents from the data we can also derive a Fokker-Planck model along with the associated Langevin equation- this provides a stochastic dynamical equation for the fluctuations in the time series of in- situ plasma parameters Differences in the scaling exponents found for different plasma parameters constructed to more closely track distinct phenomenologies Alvenic or compressive may reflect both local and nonlocal processes with implications for our understanding of the evolving solar wind

  8. The solar cycle and solar dynamo models: past accomplishments, present status and a strategy for the 21st century

    Science.gov (United States)

    Dikpati, Mausumi

    2016-07-01

    We describe the primary observational features of solar cycles, as seen in the photosphere, and review progress made over the past sixty years to simulate and predict these features using magneto-hydrodynamic dynamo models. The focus is on the so-called Babcock-Leighton flux-transport (BLFT) dynamo models, calibrated for the Sun, which so far have been the most successful in simulation, and the only ones tested for prediction. The proposed 21st century strategy for progress emphasizes the need (a) to use modern data assimilation techniques, so successful for Earth's atmosphere simulation and prediction, to exploit all available solar observations, and (b) to generalize BLFT dynamo models to 3D to simulate and predict longitude-dependent cycle features. The 3D models must include (a) global HD and MHD instabilities in the solar tachocline, which probably create spatial patterns and time dependence that is reflected in surface observations, such as active longitudes, and (b) processes that capture the statistics and effects of emerging active regions that are tilted with respect to latitude circles, in order to accurately represent the surface source of poloidal fields, whose transport to the poles is responsible for polar field reversals.

  9. Combined cycle solar central receiver hybrid power system study. Final technical report. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    This study develops the conceptual design for a commercial-scale (nominal 100 MWe) central receiver solar/fossil fuel hybrid power system with combined cycle energy conversion. A near-term, metallic heat pipe receiver and an advanced ceramic tube receiver hybrid system are defined through parametric and market potential analyses. Comparative evaluations of the cost of power generation, the fuel displacement potential, and the technological readiness of these two systems indicate that the near-term hybrid system has better potential for commercialization by 1990. Based on the assessment of the conceptual design, major cost and performance improvements are projected for the near-term system. Constraints preventing wide-spread use were not identified. Energy storage is not required for this system and analyses show no economic advantages with energy storage provisions. It is concluded that the solar hybrid system is a cost effective alternative to conventional gas turbines and combined cycle generating plants, and has potential for intermediate-load market penetration at 15% annual fuel escalation rate. Due to their flexibility, simple solar/nonsolar interfacing, and short startup cycles, these hybrid plants have significant operating advantages. Utility company comments suggest that hybrid power systems will precede stand-alone solar plants.

  10. Proton Fluxes Measured by the PAMELA Experiment from the Minimum to the Maximum Solar Activity for Solar Cycle 24

    Science.gov (United States)

    Martucci, M.; Munini, R.; Boezio, M.; Di Felice, V.; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Castellini, G.; De Santis, C.; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Marcelli, N.; Mayorov, A. G.; Menn, W.; Mergè, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Osteria, G.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.; Potgieter, M. S.; Raath, J. L.

    2018-02-01

    Precise measurements of the time-dependent intensity of the low-energy (physical phenomena. The minimum phase between solar cycles 23 and 24 was peculiarly long, extending up to the beginning of 2010 and followed by the maximum phase, reached during early 2014. In this Letter, we present proton differential spectra measured from 2010 January to 2014 February by the PAMELA experiment. For the first time the GCR proton intensity was studied over a wide energy range (0.08–50 GeV) by a single apparatus from a minimum to a maximum period of solar activity. The large statistics allowed the time variation to be investigated on a nearly monthly basis. Data were compared and interpreted in the context of a state-of-the-art three-dimensional model describing the GCRs propagation through the heliosphere.

  11. Estimate of the upper limit of amplitude of Solar Cycle No. 23

    Energy Technology Data Exchange (ETDEWEB)

    Silbergleit, V. M; Larocca, P. A [Departamento de Fisica, UBA (Argentina)

    2001-07-01

    AA* indices of values greater than 60 10{sup -9} Tesla are considered in order to characterize geomagnetic storms since the available series of these indices comprise the years from 1868 to 1998 (The longest existing interval of geomagnetic activity). By applying the precursor technique we have performed an analysis of the storm periods and the solar activity, obtaining a good correlation between the number of storms ({alpha})(characterized by the AA* indices) and the amplitudes of each solar cycle ({zeta}) and those of the next ({mu}). Using the multiple regression method applied to {alpha}=A+B{zeta} +C{mu}, the constants are calculated and the values found are: A=-33 {+-}18, B= 0.74{+-}0.13 y C= 0.56{+-}0.13. The present statistical method indicates that the current solar cycle (number 23) would have an upper limit of 202{+-}57 monthy mean sunspots. This value indicates that the solar activity would be high causing important effects on the Earth's environment. [Spanish] Se consideran los valores de los indices AA* de valor mayor que 60 10{sup -9} Tesla para caracterizar tormentas geomagneticas ya que las series disponibles de estos indices van desde 1868 hasta 1998 (el mas largo intervalo de la actividad geomagnetica existente). Aplicando la tecnica del precursor hemos realizado un analisis de los periodos de tormentas y la actividad solar obteniendo una buena correlacion entre el numero de tormentas ({alpha}) (caracterizado por los indices AA*) y las amplitudes de los ciclos solares corriente ({zeta}) y el proximo ({mu}). Usando el metodo de regresion multiple aplicado a {alpha}=A+B{zeta} +C{mu}, las consonantes resultaron: A=-33 {+-}18, B= 0.74{+-}0.13 y C= 0.56{+-}0.13. El metodo estadistico presentado indica que el ciclo actual (numero 23) tendria un pico de 202{+-} 57 manchas mensuales promedio. Este valor indica que la actividad solar seria alta produciendo importantes efectos en el medio ambiente terrestre.

  12. Space weather events at Mars: atmospheric erosion during solar cycle 24

    Science.gov (United States)

    Curry, Shannon; Luhmann, Janet; Dong, Chuanfei; Thiemann, Ed; Gruesbeck, Jacob; Lee, Christina; DiBraccio, Gina A.; Ma, Yingjuan; Brain, David; Halekas, Jasper; Espley, Jared R.; Connerney, John E. P.

    2017-10-01

    The early Sun played a major role in the evolution of terrestrial atmospheres, with extreme EUV and X-ray fluxes, as well as a more intense solar wind and higher occurrences of powerful solar transient events. The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has been observing the upper atmosphere and magnetic topology of Mars, and has made numerous measurements of solar transient events such as Interplanetary Coronal Mass Ejections (ICMEs) and Stream Interaction Regions (SIRs) since November 2014. These events are characterized by dramatic changes in dynamic pressure, magnetic field strength and substantial increases in escaping and precipitating planetary ions. We will present MAVEN observations of ICMEs and SIRs and show three of the strongest solar transient events observed during solar cycle 24. We will also present global MHD and test particle simulations of these events and discuss their influence on the magnetic topology and atmospheric escape rates at Mars. Finally, using observations of the magnitude and frequency of M and X class flares at younger, Sun-like stars, we have extrapolated the frequency of ICMEs at earlier stages of the Sun and will present simulations of the Mars-early solar wind interaction. The extreme conditions in the Sun’s early history may have had a significant influence on the evolution of the Martian atmosphere and may also have implications for exoplanets interacting with the stellar winds of younger, more active stars.

  13. Performance Analysis of Solar Combined Ejector-Vapor Compression Cycle Using Environmental Friendly Refrigerants

    Directory of Open Access Journals (Sweden)

    A. B. Kasaeian

    2013-04-01

    Full Text Available In this study, a new model of a solar combined ejector-vapor compression refrigeration system has been considered. The system is equipped with an internal heat exchanger to enhance the performance of the cycle. The effects of working fluid and operating conditions on the system performance including COP, entrainment ratio (ω, compression ratio (rp and exergy efficiency were investigated. Some working fluids suggested are: R114, R141b, R123, R245fa, R600a, R365mfc, R1234ze(e and R1234ze(z. The results show that R114 and R1234ze(e yield the highest COP and exergy efficiency followed by R123, R245fa, R365mfc, R141b, R152a and R600a. It is noticed that the COP value of the new solar ejector-vapor compression refrigeration cycle is higher than that of the conventional ejector cycle with R1234ze(e for all operating conditions. This paper also demonstrates that R1234ze(e will be a suitable refrigerant in the solar combined ejector-vapor compression refrigeration system, due to its environmental friendly properties and better performance. ABSTRAK: Kajian ini menganalisa model baru sistem penyejukan mampatan gabungan ejektor-wap solar.Sistem ini dilengkapi dengan penukar haba dalaman untuk meningkatkan prestasi kitaran.Kesan bendalir bekerja dan keadaan operasi pada prestasi sistem termasuk COP, nisbah pemerangkapan (ω, nisbah mampatan (rp dan kecekapan eksergi telah disiasat.Beberapa bendalir bekerja yang dicadangkan adalah: R114, R141b, R123, R245fa, R600a, R365mfc, R1234ze(e dan R1234ze(z.Hasil kajian menunjukkan R114 dan R1234ze(e menghasilkan COP dan kecekapan eksergi tertinggi diikuti oleh R123, R245fa, R365mfc, R141b, R152a dan R600a.Didapati nilai COP kitaran penyejukan mampatan bagi ejektor-wap solar baru adalah lebih tinggi daripada kitaran ejektor konvensional dengan R1234ze(e bagi semua keadaan operasi.Kertas kerja ini juga menunjukkan bahawa R1234ze(e boleh menjadi penyejuk yang sesuai dalam sistem penyejukan mampatan gabungan ejektor

  14. Longitudinal, seasonal and solar cycle variation in lunar tide influence on the equatorial electrojet

    Directory of Open Access Journals (Sweden)

    E. Yizengaw

    2017-04-01

    Full Text Available It has been well documented that the lunar tidal waves can modulate the ionospheric electrodynamics and create a visible influence on the equatorial electrojet (EEJ. The lunar tide influence gets intensified around noon, primarily during new and full Moon periods. However, the longitudinal, seasonal and solar cycle variability in the lunar tide influence on ionospheric current systems is not well understood yet. In order to investigate this, 17 years (1998–2014 of extensive magnetometer observations at four longitudinal sectors (western American, western and eastern African, and Asian have been analyzed. All observations performed during magnetically active periods (Kp>3 have been excluded for this study to eliminate storm contributions to the geomagnetic field variation at the geomagnetic equator. This study's quantitative analysis revealed significant longitudinal, seasonal and solar cycle dependence of the lunar tide influence on the equatorial electrojet.

  15. Longitudinal, seasonal and solar cycle variation in lunar tide influence on the equatorial electrojet

    Energy Technology Data Exchange (ETDEWEB)

    Yizengaw, Endawoke [Boston College, Chestnut Hill, MA (United States). Inst. for Scientific Research; Carter, Brett A. [RMIT Univ., Melbourne, VIC (Australia). SPACE Research Centre

    2017-07-01

    It has been well documented that the lunar tidal waves can modulate the ionospheric electrodynamics and create a visible influence on the equatorial electrojet (EEJ). The lunar tide influence gets intensified around noon, primarily during new and full Moon periods. However, the longitudinal, seasonal and solar cycle variability in the lunar tide influence on ionospheric current systems is not well understood yet. In order to investigate this, 17 years (1998-2014) of extensive magnetometer observations at four longitudinal sectors (western American, western and eastern African, and Asian) have been analyzed. All observations performed during magnetically active periods (K{sub p}>3) have been excluded for this study to eliminate storm contributions to the geomagnetic field variation at the geomagnetic equator. This study's quantitative analysis revealed significant longitudinal, seasonal and solar cycle dependence of the lunar tide influence on the equatorial electrojet.

  16. Solar Cycle Fine Structure and Surface Rotation from Ca II K-Line Time Series Data

    Science.gov (United States)

    Scargle, Jeff; Keil, Steve; Worden, Pete

    2011-01-01

    Analysis of three and a half decades of data from the NSO/AFRL/Sac Peak K-line monitoring program yields evidence for four components to the variation: (a) the solar cycle, with considerable fine structure and a quasi-periodicity of 122.4 days; (b) a stochastic process, faster than (a) and largely independent of it, (c) a quasi-periodic signal due to rotational modulation, and of course (d) observational errors (shown to be quite small). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these chromospheric parameters. Time-frequency analysis is especially useful for extracting information about differential rotation, and in particular elucidates the connection between its behavior and fine structure of the solar cycle on approximately one-year time scales. These results further suggest that similar analyses will be useful at detecting and characterizing differential rotation in stars from stellar light-curves such as those being produced at NASA's Kepler observatory.

  17. The 11-years solar cycle as the manifestation of the dark Universe

    CERN Document Server

    Zioutas, K; Semertzidis, Y K; Papaevangelou, T; Hoffmann, D H H; Anastassopoulos, V

    2014-01-01

    The solar luminosity in the visible changes at the 10-3 level, following an 11 years period. In X-rays, which should not be there, the amplitude varies 100000 times stronger, making their mysterious origin since the discovery in 1938 even more puzzling, and inspiring. We suggest that the multifaceted mysterious solar cycle is due to some kind of dark matter streams hitting the Sun. Planetary gravitational lensing enhances (occasionally) slow moving flows of dark constituents towards the Sun, giving rise to the periodic behaviour. Jupiter provides the driving oscillatory force, though its 11.8 years orbital period appears slightly decreased, just as 11 years, if the lensing impact of other planets is included. Then, the 11 years solar clock may help to decipher (overlooked) signatures from the dark sector in laboratory experiments or observations in space.

  18. Intermittent Solar Ammonia Absorption Cycle (ISAAC) refrigeration for lesser developed countries

    Science.gov (United States)

    Erickson, Donald C.

    1990-02-01

    The Intermittent Solar Ammonia Absorption Cycle (ISAAC) refrigerator is a solar thermal technology which provides low cost, efficient, reliable ice-making to areas without ready access to electricity. An ISAAC refrigeration system consists of a compound parabolic solar collector, two pressure vessels, a condenser, a cold box or refrigerated space, and simple connective piping -- no moving parts or electrical components. Most parts are simple construction or plumbing grade materials, locally available in many remote areas. This technology has numerous potential benefits in lesser developed countries both by providing a cheap, reliable source of ice, and, since manufacture requires only semi-skilled labor, a source of employment to the local economy. Applications include vaccine storage for health care clinics; fish, meat, and dairy product storage; and personal consumption. Importantly, this technology increases the quality of life for people in lesser developed countries without depleting fossil fuel resources or increasing the release of greenhouse gases such as CO2 and chlorofluorocarbons.

  19. Variations in meteor heights at 22.7° S during solar cycle 23

    Science.gov (United States)

    Lima, Lourivaldo; Takahashi, Hisao; Clemesha, Barclay; Batista, Paulo; Rodrigues de Araujo, Luciana; Alves, Edvaldo de O.

    Meteoroids impinging on Earth’s upper atmosphere ablate and form meteor ionized trails, which are able to reflect and scatter incident radio waves in the high frequency (HF) and very high frequency (VHF) bands. From radar measurements it is possible to determinate meteor trails and atmospheric characteristics in the MLT region. In this work, measurements obtained at Cachoeira Paulista (22.7° S, 45.0° W) by SKiYMET radar system, has been used to investigate long-term trends in the peak altitude of the meteor layer during solar cycle 23. The peak heights were analyzed with respect to a possible long-term trend and solar activity-induced variations by linear fitting and the results have revealed a linear decadal decrease of about 1.1 km for meteor peak heights. In this paper will discuss the possible solar effect in the meteor peak height variations.

  20. Two Exceptions in the Large SEP Events of Solar Cycles 23 and 24

    Science.gov (United States)

    Thakur, N.; Gopalswamy, N.; Makela, P.; Akiyama, S.; Yashiro, S.; Xie, H.

    2016-01-01

    We discuss our findings from a survey of all large solar energetic particle (SEP) events of Solar Cycles 23 and 24, i.e. the SEP events where the intensity of greater than 10 megaelectronvolts protons observed by GOES (Geostationary Operational Environmental Satellite) was greater than 10 proton flux units. In our previous work (Gopalswamy et al. in Geophys.Res.Lett. 41, 2673, 2014) we suggested that ground level enhancements (GLEs) in Cycles 23 and 24 also produce an intensity increase in the GOES greater than 700 megaelectronvolts proton channel. Our survey, now extended to include all large SEP events of Cycle 23, confirms this to be true for all but two events: i) the GLE of 6 May 1998 (GLE57) for which GOES did not observe enhancement in greater than 700 megaelectronvolts protons intensities and ii) a high-energy SEP event of 8 November 2000, for which GOES observed greater than 700 megaelectronvolts protons but no GLE was recorded. Here we discuss these two exceptions. We compare GLE57 with other small GLEs, and the 8 November 2000 SEP event with those that showed similar intensity increases in the GOES greater than 700 megaelectronvolts protons but produced GLEs. We find that, because GOES greater than 700 megaelectronvolts proton intensity enhancements are typically small for small GLEs, they are difficult to discern near solar minima due to higher background. Our results also support that GLEs are generally observed when shocks of the associated coronal mass ejections (CMEs) form at heights 1.2-1.93 solar radii [R (sub solar)] and when the solar particle release occurs between 2-6 solar radii [R (sub solar)]. Our secondary findings support the view that the nose region of the CME-shock may be accelerating the first-arriving GLE particles and the observation of a GLE is also dependent on the latitudinal connectivity of the observer to the CME-shock nose. We conclude that the GOES greater than 700 megaelectronvolts proton channel can be used as an indicator

  1. Global Solar Convective Dynamo with Cycles, Equatorward Propagation and Grand Minima

    Science.gov (United States)

    Toomre, Juri; Augustson, Kyle C.; Brun, Allan Sacha; Miesch, Mark S.

    2016-05-01

    The 3-D MHD Anelastic Spherical Harmonic (ASH) code, using slope-limited diffusion, is used to study the interaction of turbulent convection, rotation and magnetism in a full spherical shell comparable to the solar convection zone. Here a star of one solar mass, with a solar luminosity, is considered that is rotating at three times the solar rate. The dynamo generated magnetic field forms large-scale toroidal wreaths, whose formation is tied to the low Rossby number of the convection in this simulation which we have labeled K3S. This case displays prominent polarity cycles with regular reversals occurring roughly every 6.2 years. These reversals are linked to the weakened differential rotation and a resistive collapse of the large-scale magnetic field. Distinctive equatorial migration of the strong magnetic wreaths is seen, arising from modulation of the differential rotation rather than a dynamo wave. As the wreaths approach the equator, cross-equatorial magnetic flux is achieved that permits the low-latitude convection to generate poloidal magnetic field with opposite polarity. Poleward migration of such magnetic flux from the equator eventually leads to the reversal of the polarity of the high-latitude magnetic field. This K3S simulation also enters an interval with reduced magnetic energy at low latitudes lasting roughly 16 years (about 2.5 polarity cycles), during which the polarity cycles are disrupted and after which the dynamo recovers its regular polarity cycles. An analysis of this striking grand minimum reveals that it likely arises through the interplay of symmetric and antisymmetric dynamo families.

  2. Flux-transport and mean-field dynamo theories of solar cycles

    Science.gov (United States)

    Choudhuri, Arnab Rai

    2013-07-01

    We point out the difficulties in carrying out direct numerical simulation of the solar dynamo problem and argue that kinematic mean-field models are our best theoretical tools at present for explaining various aspects of the solar cycle in detail. The most promising kinematic mean-field model is the flux transport dynamo model, in which the toroidal field is produced by differential rotation in the tachocline, the poloidal field is produced by the Babcock-Leighton mechanism at the solar surface and the meridional circulation plays a crucial role. Depending on whether the diffusivity is high or low, either the diffusivity or the meridional circulation provides the main transport mechanism for the poloidal field to reach the bottom of the convection zone from the top. We point out that the high-diffusivity flux transport dynamo model is consistent with various aspects of observational data. The irregularities of the solar cycle are primarily produced by fluctuations in the Babcock-Leighton mechanism and in the meridional circulation. We summarize recent work on the fluctuations of meridional circulation in the flux transport dynamo, leading to explanations of such things as the Waldmeier effect.

  3. Solution and vapour deposited lead perovskite solar cells: Ecotoxicity from a life cycle assessment perspective

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; Serrano-Luján, Lucía; Urbina, Antonio

    2015-01-01

    We present a life cycle analysis (LCA) and an environmental impact analysis (EIA) of lead based perovskite solar cells prepared according to the two most successfully reported literature methods that comprise either vapour phase deposition or solution phase deposition. We have developed the inven......We present a life cycle analysis (LCA) and an environmental impact analysis (EIA) of lead based perovskite solar cells prepared according to the two most successfully reported literature methods that comprise either vapour phase deposition or solution phase deposition. We have developed...... in the analysis and further present a sensitivity analysis with the operational lifetime as a basis. We find that the major impact comes from the preparation of the perovskite absorber layer due to the electrical energy required in the manufacture and also make the striking observation that the impact of toxic...... lead(II)halides is very limited compared to methylammoniumhalides employed. This applies during the raw materials extraction, synthesis of the starting materials and manufacture of the perovskite solar cells and from these points of view the lead based perovskite solar cells do not pose extra concerns...

  4. Statistical Prediction of Solar Particle Event Frequency Based on the Measurements of Recent Solar Cycles for Acute Radiation Risk Analysis

    Science.gov (United States)

    Myung-Hee, Y. Kim; Shaowen, Hu; Cucinotta, Francis A.

    2009-01-01

    Large solar particle events (SPEs) present significant acute radiation risks to the crew members during extra-vehicular activities (EVAs) or in lightly shielded space vehicles for space missions beyond the protection of the Earth's magnetic field. Acute radiation sickness (ARS) can impair performance and result in failure of the mission. Improved forecasting capability and/or early-warning systems and proper shielding solutions are required to stay within NASA's short-term dose limits. Exactly how to make use of observations of SPEs for predicting occurrence and size is a great challenge, because SPE occurrences themselves are random in nature even though the expected frequency of SPEs is strongly influenced by the time position within the solar activity cycle. Therefore, we developed a probabilistic model approach, where a cumulative expected occurrence curve of SPEs for a typical solar cycle was formed from a non-homogeneous Poisson process model fitted to a database of proton fluence measurements of SPEs that occurred during the past 5 solar cycles (19 - 23) and those of large SPEs identified from impulsive nitrate enhancements in polar ice. From the fitted model, the expected frequency of SPEs was estimated at any given proton fluence threshold (Phi(sub E)) with energy (E) >30 MeV during a defined space mission period. Corresponding Phi(sub E) (E=30, 60, and 100 MeV) fluence distributions were simulated with a random draw from a gamma distribution, and applied for SPE ARS risk analysis for a specific mission period. It has been found that the accurate prediction of deep-seated organ doses was more precisely predicted at high energies, Phi(sub 100), than at lower energies such as Phi(sub 30) or Phi(sub 60), because of the high penetration depth of high energy protons. Estimates of ARS are then described for 90th and 95th percentile events for several mission lengths and for several likely organ dose-rates. The ability to accurately measure high energy protons

  5. Analysis of Solar Diameter Variations around the Peak of Activity Cycle 23

    Science.gov (United States)

    Andrei, A. H.; Boscardin, S. C.; Reis Neto, E.; Penna, J. L.; D'Ávila, V. A.

    2006-08-01

    The CCD Solar Astrolabe of the Observatório Nacional at Rio de Janeiro integrates the R2S3 international network of Solar Semidiameter monitoring. In operation since 1997, more than 2,500 observations had been taken yearly, without seasonal interruptions and spanning all heliolatitudes. From the entire sample, we take the series of 16,23 coherent data between years 1998 and 2003. This period contains the maximum and the surroundings of the 23th cycle of solar activity. The average semi-diameter value is 959".163 ± 0".004, but the Kolmogorov-Smirnov Normality Test results non-significant (p-value smaller than 0.01), while the Runs test rejects the random order of data hypothesis to all levels larger than 10exp-4. The data is then treated as a time series, allowing a detailed comparison with time series of estimators of the solar activity: Flare Index, Total Irradiance, Integrated Magnetic Field, Sunspot Number and 10.7cm Radio Flux. The hypothesis of variation of the Semidiameter tied to the solar activity, otherwise being its estimator, was examined through the correlations between the different pairs of pointers. The comparisons are made in three stances: as regard to the smoothed time series, as regard to the peaks and dips correlation, and accounting for phase between the series. Strong correlations between some pairs were obtained, and interpreted as strong physical interaction between them. For the pair Solar Semidiameter and Irradiance the mode of the phase for maximum correlation was calculated for two distinct cases: either for the complete series of data, or leaving off the data relative to the epochs of the two summits of the solar activity cycle. The comparison shows that the Solar Semidiameter responds closely to variations of Irradiance in the conditions where the peaks of activity are considered; inversely, it precedes the variations of Irradiance, by at least one hundred days, when the peak values are discarded, thus indicating the existence of two

  6. Rankine cycle load limiting through use of a recuperator bypass

    Science.gov (United States)

    Ernst, Timothy C.

    2011-08-16

    A system for converting heat from an engine into work includes a boiler coupled to a heat source for transferring heat to a working fluid, a turbine that transforms the heat into work, a condenser that transforms the working fluid into liquid, a recuperator with one flow path that routes working fluid from the turbine to the condenser, and another flow path that routes liquid working fluid from the condenser to the boiler, the recuperator being configured to transfer heat to the liquid working fluid, and a bypass valve in parallel with the second flow path. The bypass valve is movable between a closed position, permitting flow through the second flow path and an opened position, under high engine load conditions, bypassing the second flow path.

  7. Optimization of Organic Rankine Cycles for Off-Shore Applications

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Larsen, Ulrik; Nguyen, Tuong-Van

    2013-01-01

    the optimal working fluid is identified by removing the restriction on the maximum pressure. Different limits on hazards and global warming potential (GWP) are also set. The study is focused on the SGT-500 gas turbine installed on the Draugen platform in the Norwegian Sea. The simulations suggest that, when...... characteristics of the fluids, e.g. stability, environmental and human health impacts, and safety issues. Both supercritical and subcritical ORCs are included in the analysis. The optimization procedure is first applied to a conservative ORC where the maximum pressure is limited to 20 bar. Subsequently...

  8. Staging Rankine Cycles Using Ammonia for OTEC Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Bharathan, D.

    2011-03-01

    Recent focus on renewable power production has renewed interest in looking into ocean thermal energy conversion (OTEC) systems. Early studies in OTEC applicability indicate that the island of Hawaii offers a potential market for a nominal 40-MWe system. a 40-MWe system represents a large leap in the current state of OTEC technology. Lockheed Martin Inc. is currently pursuing a more realistic goal of developing a 10-MWe system under U.S. Navy funding (Lockheed 2009). It is essential that the potential risks associated with the first-of-its-kind plant should be minimized for the project's success. Every means for reducing costs must also be pursued without increasing risks. With this in mind, the potential for increasing return on the investment is assessed both in terms of effective use of the seawater resource and of reducing equipment costs.

  9. Thermochemical cycles based on metal oxides for solar hydrogen production; Ciclos termoquimicos basados en oxidos metalicos para produccion de hidrogeno solar

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Saavedra, R.; Quejido Cabezas, J.

    2012-11-01

    The growing demand for energy requires the development and optimization of alternative energy sources. One of the options currently being investigated is solar hydrogen production with thermochemical cycles. This process involves the use of concentrated solar radiation as an energy source to dissociate water through a series of endothermic and exothermic chemical reactions, for the purpose of obtaining hydrogen on a sustainable basis. Of all the thermochemical cycles that have been evaluated, the most suitable ones for implementation with solar energy are those based on metal oxides. (Author) 20 refs.

  10. The 11-year solar cycle, the 27-day Sun's rotation and the area of the stratospheric Aleutian high

    Directory of Open Access Journals (Sweden)

    Boris Soukharev

    2001-03-01

    Full Text Available The effect of the 11-year solar cycle on the 30-hPa geopotential height and temperature fields in the area of the Aleutian high caused by solar activity oscillations resulting from the Sun's rotation (27.2 d is investigated, applying methods of statistical cross-spectral analysis to daily data for the period from 1965 to 1998. The area of the stratospheric Aleutian high is considered as an 'indicator' of the solar influence on the winter stratosphere proceeding from the results by LABITZKE and VAN LOON (1988, and VAN LOON and LABITZKE (1990. An effect of the 11-year solar cycle on the response of the summer middle stratosphere to solar activity oscillations on the time scale of the Sun's rotation is not found. In contrast to summer, the atmospheric responses in winter demonstrate clear differences between maximum and minimum of the 11-year solar cycle for the 27.2 d solar rotation periodicity and for the two other oscillations of 29.4 d and 25.3 d, resulting from the modulation of the 27.2 d solar-induced periodicity by the annual atmospheric variation. The atmospheric response for the fourth periodicity studied, the 17 d oscillation, which is supposed to be a normal mode of the atmosphere, close to the known 16-day wave (MADDEN, 1978, also shows a clear dependence on the 11-year solar cycle. For all the periodicities studied the coherence between the 10.7 cm solar radio flux and the 30-hPa height/temperature fields in the Aleutian high area in winter is on the average stronger at maxima than at minima of the 11-year solar cycle. The corresponding amplitudes of the solar-induced geopotential height and temperature perturbations are also larger at high than at low solar activity, with the largest differences revealed at the moderate and polar latitudes. Thus, we conclude that the response of the winter 30-hPa height/temperature fields in the area of the Aleutian high to solar oscillations on the time scale of the Sun's rotation is on the average

  11. Radiation exposure of German aircraft crews under the impact of solar cycle 23 and airline business factors.

    Science.gov (United States)

    Frasch, Gerhard; Kammerer, Lothar; Karofsky, Ralf; Schlosser, Andrea; Stegemann, Ralf

    2014-12-01

    The exposure of German aircraft crews to cosmic radiation varies both with solar activity and operational factors of airline business. Data come from the German central dose registry and cover monthly exposures of up to 37,000 German aircraft crewmembers that were under official monitoring. During the years 2004 to 2009 of solar cycle 23 (i.e., in the decreasing phase of solar activity), the annual doses of German aircraft crews increased by an average of 20%. Decreasing solar activity allows more galactic radiation to reach the atmosphere, increasing high-altitude doses. The rise results mainly from the less effective protection from the solar wind but also from airline business factors. Both cockpit and cabin personnel differ in age-dependent professional and social status. This status determines substantially the annual effective dose: younger cabin personnel and the elder pilots generally receive higher annual doses than their counterparts. They also receive larger increases in their annual dose when the solar activity decreases. The doses under this combined influence of solar activity and airline business factors result in a maximum of exposure for German aircrews for this solar cycle. With the increasing solar activity of the current solar cycle 24, the doses are expected to decrease again.

  12. Towards a better representation of the solar cycle in general circulation models

    Directory of Open Access Journals (Sweden)

    K. M. Nissen

    2007-10-01

    Full Text Available We introduce the improved Freie Universität Berlin (FUB high-resolution radiation scheme FUBRad and compare it to the 4-band standard ECHAM5 SW radiation scheme of Fouquart and Bonnel (FB. Both schemes are validated against the detailed radiative transfer model libRadtran. FUBRad produces realistic heating rate variations during the solar cycle. The SW heating rate response with the FB scheme is about 20 times smaller than with FUBRad and cannot produce the observed temperature signal. A reduction of the spectral resolution to 6 bands for solar irradiance and ozone absorption cross sections leads to a degradation (reduction of the solar SW heating rate signal by about 20%.

    The simulated temperature response agrees qualitatively well with observations in the summer upper stratosphere and mesosphere where irradiance variations dominate the signal.

    Comparison of the total short-wave heating rates under solar minimum conditions shows good agreement between FUBRad, FB and libRadtran up to the middle mesosphere (60–70 km indicating that both parameterizations are well suited for climate integrations that do not take solar variability into account.

    The FUBRad scheme has been implemented as a sub-submodel of the Modular Earth Submodel System (MESSy.

  13. Thermodynamic and dynamic responses of the hydrological cycle to solar dimming

    Science.gov (United States)

    Smyth, Jane E.; Russotto, Rick D.; Storelvmo, Trude

    2017-05-01

    The fundamental role of the hydrological cycle in the global climate system motivates a thorough evaluation of its responses to climate change and mitigation. The Geoengineering Model Intercomparison Project (GeoMIP) is a coordinated international effort to assess the climate impacts of solar geoengineering, a proposal to counteract global warming with a reduction in incoming solar radiation. We assess the mechanisms underlying the rainfall response to a simplified simulation of such solar dimming (G1) in the suite of GeoMIP models and identify robust features. While solar geoengineering nearly restores preindustrial temperatures, the global hydrology is altered. Tropical precipitation changes dominate the response across the model suite, and these are driven primarily by shifts of the Hadley circulation cells. We report a damping of the seasonal migration of the Intertropical Convergence Zone (ITCZ) in G1, associated with preferential cooling of the summer hemisphere, and annual mean ITCZ shifts in some models that are correlated with the warming of one hemisphere relative to the other. Dynamical changes better explain the varying tropical rainfall anomalies between models than changes in relative humidity or the Clausius-Clapeyron scaling of precipitation minus evaporation (P - E), given that the relative humidity and temperature responses are robust across the suite. Strong reductions in relative humidity over vegetated land regions are likely related to the CO2 physiological response in plants. The uncertainty in the spatial distribution of tropical P - E changes highlights the need for cautious consideration and continued study before any implementation of solar geoengineering.

  14. Scaling in sub- substorm scale fluctuations in epsilon, AU and AL- solar cycle dependence.

    Science.gov (United States)

    Hnat, B.; Chapman, S. C.

    2006-12-01

    A key property of magnetospheric energy release is intermittent, non-Gaussian fluctuations in geomagnetic indices and in single station magnetometer data occurring on shorter than substorm timescales. However, the turbulent solar wind is also intermittent, so that the Poynting flux into the magnetosphere shares these qualitative features. We study the properties of fluctuations of the AU and AL geomagnetic indices and of the epsilon parameter which is a measure of the solar wind driver. We perform analyses that provide quantitative measures within the framework of models for turbulence and for critical phenomena; that is, we find the exponent that captures the self-similarity in the time series, and the functional form of the non- Gaussian Probability Density Function (PDF) that expresses its intermittency. Generalized structure function analysis is accompanied by PDF rescaling. Fluctuations in all quantities are found to exhibit self-similar statistics for up to 1-2 hours. We divide the data into intervals of solar maximum and minimum and find that whereas fluctuations in epsilon and AU change their properties with the solar cycle, fluctuations in AL do not. This places strong statistical constraints on the propagation of information from these below- substorm scale fluctuations from the solar wind to the magnetosphere as seen by the indices.

  15. Comparative Modeling of a Parabolic Trough Collectors Solar Power Plant with MARS Models

    Directory of Open Access Journals (Sweden)

    Jose Ramón Rogada

    2017-12-01

    Full Text Available Power plants producing energy through solar fields use a heat transfer fluid that lends itself to be influenced and changed by different variables. In solar power plants, a heat transfer fluid (HTF is used to transfer the thermal energy of solar radiation through parabolic collectors to a water vapor Rankine cycle. In this way, a turbine is driven that produces electricity when coupled to an electric generator. These plants have a heat transfer system that converts the solar radiation into heat through a HTF, and transfers that thermal energy to the water vapor heat exchangers. The best possible performance in the Rankine cycle, and therefore in the thermal plant, is obtained when the HTF reaches its maximum temperature when leaving the solar field (SF. In addition, it is necessary that the HTF does not exceed its own maximum operating temperature, above which it degrades. The optimum temperature of the HTF is difficult to obtain, since the working conditions of the plant can change abruptly from moment to moment. Guaranteeing that this HTF operates at its optimal temperature to produce electricity through a Rankine cycle is a priority. The oil flowing through the solar field has the disadvantage of having a thermal limit. Therefore, this research focuses on trying to make sure that this fluid comes out of the solar field with the highest possible temperature. Modeling using data mining is revealed as an important tool for forecasting the performance of this kind of power plant. The purpose of this document is to provide a model that can be used to optimize the temperature control of the fluid without interfering with the normal operation of the plant. The results obtained with this model should be necessarily contrasted with those obtained in a real plant. Initially, we compare the PID (proportional–integral–derivative models used in previous studies for the optimization of this type of plant with modeling using the multivariate adaptive

  16. How can we understand the global distribution of the solar cycle signal on the Earth's surface?

    Directory of Open Access Journals (Sweden)

    K. Kodera

    2016-10-01

    Full Text Available To understand solar cycle signals on the Earth's surface and identify the physical mechanisms responsible, surface temperature variations from observations as well as climate model data are analysed to characterize their spatial structure. The solar signal in the annual mean surface temperature is characterized by (i mid-latitude warming and (ii no overall tropical warming. The mid-latitude warming during solar maxima in both hemispheres is associated with a downward penetration of zonal mean zonal wind anomalies from the upper stratosphere during late winter. During the Northern Hemisphere winter this is manifested by a modulation of the polar-night jet, whereas in the Southern Hemisphere, the upper stratospheric subtropical jet plays the major role. Warming signals are particularly apparent over the Eurasian continent and ocean frontal zones, including a previously reported lagged response over the North Atlantic. In the tropics, local warming occurs over the Indian and central Pacific oceans during high solar activity. However, this warming is counterbalanced by cooling over the cold tongue sectors in the southeastern Pacific and the South Atlantic, and results in a very weak zonally averaged tropical mean signal. The cooling in the ocean basins is associated with stronger cross-equatorial winds resulting from a northward shift of the ascending branch of the Hadley circulation during solar maxima. To understand the complex processes involved in the solar signal transfer, results of an idealized middle atmosphere–ocean coupled model experiment on the impact of stratospheric zonal wind changes are compared with solar signals in observations. Model integration of 100 years of strong or weak stratospheric westerly jet condition in winter may exaggerate long-term ocean feedback. However, the role of ocean in the solar influence on the Earth's surface can be better seen. Although the momentum forcing differs from that of solar radiative forcing

  17. Solar Electromagnetic Radiation Study for Solar Cycle 22: Solar Ultraviolet Irradiance, 120 to 300 NM: Report of Working Groups 2 and 3 of SOLERS 22

    Science.gov (United States)

    Rottman, G. J.; Cebula, R. P.; Gillotay, D.; Simon, P. A.

    1996-01-01

    This report summarizes the activities of Working Group 2 and Working Group 3 of the SOLax Electromagnetic Radiation Study for Solar Cycle 22 (SOLERS22) Program. The international (SOLERS22) is Project 1.2 of the Solar-Terrestrial Energy Program (STEP) sponsored by SCOSTEP, a committee of the International Council of Scientific Unions). SOLERS22 is comprised of five Working Groups, each concentrating on a specific wave-length range: WG-1 - visible and infrared, WG-2 - mid-ultraviolet (200 < A < 300 nm), WG-3 - Far-ultraviolet (lambda greater than 100 and lambda less than 200 nanometers), WG-4 - extreme-ultraviolet (lambda greater than 10 and lambda less than 100 nm), and WG-5 - X-ray (lambda greater than 1 and lambda less than 10 nano meters). The overarching goals of SOLERS22 are to: 1) establish daily solar irradiance values in the specified wavelength ranges, 2) consider the evolving solar structures as the cause of temporal variations, and 3) understand the underlying physical processes driving these changes.

  18. LONG-TERM (SOLAR CYCLE) VARIATION OF THE EXTREME ULTRAVIOLET RADIATION AND 10.7CENTIMETER FLUX FROM THE SUN.

    Science.gov (United States)

    The proposal is made that the 10.7-cm flux from the sun , generally regarded as a good index of the solar extreme ultraviolet radiation (EUV), does...in some degree, since many features of the sun vary with the solar cycle. With regard to the radio waves represented by the flux and optical

  19. Environmental life cycle assessment of roof-integrated flexible amorphous silicon/nanocrystalline silicon solar cell laminate

    NARCIS (Netherlands)

    Mohr, N.J.; Meijer, A.; Huijbregts, M.A.J.; Reijnders, L.

    2013-01-01

    This paper presents an environmental life cycle assessment of a roof-integrated flexible solar cell laminate with tandem solar cells composed of amorphous silicon/nanocrystalline silicon (a-Si/nc-Si). The a-Si/nc-Si cells are considered to have 10% conversion efficiency. Their expected service life

  20. Moteurs composites à allumage par compression et cycle de Rankine Dual Fuel Compression Ignition Engines Operating on the Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Daugas C.

    2006-11-01

    Full Text Available Sur les 60 % de l'énergie introduite dans un groupe électrogène et perdue sous forme de chaleur, une bonne partie peut être utilisée pour fabriquer à nouveau de l'électricité à partir d'une turbine à vapeur. Les moteurs dual fuel brûlant essentiellement du gaz naturel sont remarquablement placés pour une telle récupération, dont le rendement est meilleur aux charges partielles que celui des moteurs diesel classiques. Les différents types de fluides utilisés pour la récupération sont examinés : avantages des fluides organiques sur l'eau. Études d'une réalisation concrète. Fonctionnement aux charges partielles. Influence des différents paramètres pour obtenir le meilleur rapport prix/puissance. Of the 60% of input energy lost in the form of heat in a generating set, a sizeable part can be used to generate electricity again by means of a steam turbine. Dual fuel engines which mainly burn natural gas are outstandingly suitable for such a recovery process, the efficiency under partial loads being better than that of conventional diesel engines. The author considers the different types of fluids used for the recovery process superiority of organic fluids over water. Study of a concrete example. Operation with partial loads. Influence of the different parameters in the quest for the best cost-power ratio.

  1. Temporal relations between magnetic bright points and the solar sunspot cycle

    Science.gov (United States)

    Utz, Dominik; Muller, Richard; Van Doorsselaere, Tom

    2017-12-01

    The Sun shows a global magnetic field cycle traditionally best visible in the photosphere as a changing sunspot cycle featuring roughly an 11-year period. In addition we know that our host star also harbours small-scale magnetic fields often seen as strong concentrations of magnetic flux reaching kG field strengths. These features are situated in inter-granular lanes, where they show up bright as so-called magnetic bright points (MBPs). In this short paper we wish to analyse an homogenous, nearly 10-year-long synoptic Hinode image data set recorded from 2006 November up to 2016 February in the G-band to inspect the relationship between the number of MBPs at the solar disc centre and the relative sunspot number. Our findings suggest that the number of MBPs at the solar disc centre is indeed correlated to the relative sunspot number, but with the particular feature of showing two different temporal shifts between the decreasing phase of cycle 23 including the minimum and the increasing phase of cycle 24 including the maximum. While the former is shifted by about 22 months, the latter is only shifted by less than 12 months. Moreover, we introduce and discuss an analytical model to predict the number of MBPs at the solar disc centre purely depending on the evolution of the relative sunspot number as well as the temporal change of the relative sunspot number and two background parameters describing a possibly acting surface dynamo as well as the strength of the magnetic field diffusion. Finally, we are able to confirm the plausibility of the temporal shifts by a simplistic random walk model. The main conclusion to be drawn from this work is that the injection of magnetic flux, coming from active regions as represented by sunspots, happens on faster time scales than the removal of small-scale magnetic flux elements later on.

  2. Survey of solar thermal energy storage subsystems for thermal/electric applications

    Energy Technology Data Exchange (ETDEWEB)

    Segaser, C. L.

    1978-08-01

    A survey of the current technology and estimated costs of subsystems for storing the thermal energy produced by solar collectors is presented. The systems considered were capable of producing both electricity and space conditioning for three types of loads: a single-family detached residence, an apartment complex of 100 units, and a city of 30,000 residents, containing both single-family residences and apartments. Collector temperatures will be in four ranges: (1) 100 to 250/sup 0/F (used for space heating and single-cycle air conditioners and organic Rankine low-temperature turbines); (2) 300 to 400/sup 0/F (used for dual-cycle air conditioners and low-temperature turbines); (3) 400 to 600/sup 0/F (using fluids from parabolic trough collectors to run Rankine turbines); (4) 800 to 1000/sup 0/F (using fluids from heliostats to run closed-cycle gas turbines and steam Rankine turbines). The solar thermal energy subsystems will require from 60 to 36 x 10/sup 5/ kWhr (2.05 x 10/sup 5/ to 1.23 x 10/sup 10/ Btu) of thermal storage capacity. In addition to sensible heat and latent heat storage materials, several other media were investigated as potential thermal energy storage materials, including the clathrate and semiclathrate hydrates, various metal hydrides, and heat storage based on inorganic chemical reactions.

  3. Exergetic Analysis of a Novel Solar Cooling System for Combined Cycle Power Plants

    Directory of Open Access Journals (Sweden)

    Francesco Calise

    2016-09-01

    Full Text Available This paper presents a detailed exergetic analysis of a novel high-temperature Solar Assisted Combined Cycle (SACC power plant. The system includes a solar field consisting of innovative high-temperature flat plate evacuated solar thermal collectors, a double stage LiBr-H2O absorption chiller, pumps, heat exchangers, storage tanks, mixers, diverters, controllers and a simple single-pressure Combined Cycle (CC power plant. Here, a high temperature solar cooling system is coupled with a conventional combined cycle, in order to pre-cool gas turbine inlet air in order to enhance system efficiency and electrical capacity. In this paper, the system is analyzed from an exergetic point of view, on the basis of an energy-economic model presented in a recent work, where the obtained main results show that SACC exhibits a higher electrical production and efficiency with respect to the conventional CC. The system performance is evaluated by a dynamic simulation, where detailed simulation models are implemented for all the components included in the system. In addition, for all the components and for the system as whole, energy and exergy balances are implemented in order to calculate the magnitude of the irreversibilities within the system. In fact, exergy analysis is used in order to assess: exergy destructions and exergetic efficiencies. Such parameters are used in order to evaluate the magnitude of the irreversibilities in the system and to identify the sources of such irreversibilities. Exergetic efficiencies and exergy destructions are dynamically calculated for the 1-year operation of the system. Similarly, exergetic results are also integrated on weekly and yearly bases in order to evaluate the corresponding irreversibilities. The results showed that the components of the Joule cycle (combustor, turbine and compressor are the major sources of irreversibilities. System overall exergetic efficiency was around 48%. Average weekly solar collector

  4. Polar Network Index as a Magnetic Proxy for the Solar Cycle Studies

    Science.gov (United States)

    Priyal, Muthu; Banerjee, Dipankar; Karak, Bidya Binay; Muñoz-Jaramillo, Andrés; Ravindra, B.; Choudhuri, Arnab Rai; Singh, Jagdev

    2014-09-01

    The Sun has a polar magnetic field which oscillates with the 11 yr sunspot cycle. This polar magnetic field is an important component of the dynamo process which operates in the solar convection zone and produces the sunspot cycle. We have direct systematic measurements of the Sun's polar magnetic field only from about the mid-1970s. There are, however, indirect proxies which give us information about this field at earlier times. The Ca-K spectroheliograms taken at the Kodaikanal Solar Observatory during 1904-2007 have now been digitized with 4k × 4k CCD and have higher resolution (~0.86 arcsec) than the other available historical data sets. From these Ca-K spectroheliograms, we have developed a completely new proxy (polar network index, hereafter PNI) for the Sun's polar magnetic field. We calculate PNI from the digitized images using an automated algorithm and calibrate our measured PNI against the polar field as measured by the Wilcox Solar Observatory for the period 1976-1990. This calibration allows us to estimate the polar fields for the earlier period up to 1904. The dynamo calculations performed with this proxy as input data reproduce reasonably well the Sun's magnetic behavior for the past century.

  5. Solar spectral irradiance variability of some chromospheric emission lines through the solar activity cycles 21-23

    Directory of Open Access Journals (Sweden)

    Göker Ü.D.

    2017-01-01

    Full Text Available A study of variations of solar spectral irradiance (SSI in the wave-length ranges 121.5 nm-300.5 nm for the period 1981-2009 is presented. We used various data for ultraviolet (UV spectral lines and international sunspot number (ISSN from interactive data centers such as SME (NSSDC, UARS (GDAAC, SORCE (LISIRD and SIDC, respectively. We reduced these data by using the MATLsoftware package. In this respect, we revealed negative correlations of intensities of UV (289.5 nm-300.5 nm spectral lines originating in the solar chromosphere with the ISSN index during the unusually prolonged minimum between the solar activity cycles (SACs 23 and 24. We also compared our results with the variations of solar activity indices obtained by the ground-based telescopes. Therefore, we found that plage regions decrease while facular areas are increasing in SAC 23. However, the decrease in plage regions is seen in small sunspot groups (SGs, contrary to this, these regions in large SGs are comparable to previous SACs or even larger as is also seen in facular areas. Nevertheless, negative correlations between ISSN and SSI data indicate that these variations are in close connection with the classes of sunspots/SGs, faculae and plage regions. Finally, we applied the time series analysis of spectral lines corresponding to the wavelengths 121.5 nm-300.5 nm and made comparisons with the ISSN data. We found an unexpected increase in the 298.5 nm line for the Fe II ion. The variability of Fe II ion 298.5 nm line is in close connection with the facular areas and plage regions, and the sizes of these solar surface indices play an important role for the SSI variability, as well. So, we compared the connection between the sizes of faculae and plage regions, sunspots/SGs, chemical elements and SSI variability. Our future work will be the theoretical study of this connection and developing of a corresponding model.

  6. Experimental Analysis of Thermoelectric Heat Exchanger for Power Generation from Salinity Gradient Solar Pond Using Low-Grade Heat

    Science.gov (United States)

    Singh, Baljit; Baharin, Nuraida `Aadilia; Remeli, Muhammad Fairuz; Oberoi, Amandeep; Date, Abhijit; Akbarzadeh, Aliakbar

    2017-05-01

    Salinity gradient solar ponds act as an integrated thermal solar energy collector and storage system. The temperature difference between the upper convective zone and the lower convective zone of a salinity gradient solar pond can be in the range of 40-60°C. The temperature at the bottom of the pond can reach up to 90°C. Low-grade heat (solar ponds is currently converted into electricity by organic Rankine cycle engines. Thermoelectric generators can operate at very low temperature differences and can be a good candidate to replace organic Rankine cycle engines for power generation from salinity gradient solar ponds. The temperature difference in a solar pond can be used to power thermoelectric generators for electricity production. This paper presents an experimental investigation of a thermoelectric generators heat exchanger system designed to be powered by the hot water from the lower convective zone of a solar pond, and cold water from the upper convective zone of a solar pond. The results obtained have indicated significant prospects of such a system to generate power from low-grade heat for remote area power supply systems.

  7. Thermodynamic optimisation and analysis of four Kalina cycle layouts for high temperature applications

    DEFF Research Database (Denmark)

    Modi, Anish; Haglind, Fredrik

    2015-01-01

    The Kalina cycle has seen increased interest in the last few years as an efficient alternative to the conventional steam Rankine cycle. However, the available literature gives little information on the algorithms to solve or optimise this inherently complex cycle. This paper presents a detailed...... approach to solve and optimise a Kalina cycle for high temperature (a turbine inlet temperature of 500°C) and high pressure (over 100bar) applications using a computationally efficient solution algorithm. A central receiver solar thermal power plant with direct steam generation was considered as a case...... study. Four different layouts for the Kalina cycle based on the number and/or placement of the recuperators in the cycle were optimised and compared based on performance parameters such as the cycle efficiency and the cooling water requirement. The cycles were modelled in steady state and optimised...

  8. Design considerations for concentrating solar power tower systems employing molten salt.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles; Siegel, Nathan Phillip; Kolb, Gregory J.; Vernon, Milton E.; Ho, Clifford Kuofei

    2010-09-01

    The Solar Two Project was a United States Department of Energy sponsored project operated from 1996 to 1999 to demonstrate the coupling of a solar power tower with a molten nitrate salt as a heat transfer media and for thermal storage. Over all, the Solar Two Project was very successful; however many operational challenges were encountered. In this work, the major problems encountered in operation of the Solar Two facility were evaluated and alternative technologies identified for use in a future solar power tower operating with a steam Rankine power cycle. Many of the major problems encountered can be addressed with new technologies that were not available a decade ago. These new technologies include better thermal insulation, analytical equipment, pumps and values specifically designed for molten nitrate salts, and gaskets resistant to thermal cycling and advanced equipment designs.

  9. Harmonic model for solar and climate cyclical variation throughout the Holocene based on Jupiter-Saturn tidal frequencies plus the 11-year solar dynamo cycle

    Science.gov (United States)

    Scafetta, N.

    2012-12-01

    We show that the Schwabe frequency band of the Zurich sunspot record since 1749 is made of three major cycles that are closely related to the spring tidal period of Jupiter and Saturn (~9.93 year), to the tidal sidereal period of Jupiter (about 11.86 years) and to a central cycle that may be associated to a quasi-11-year solar dynamo cycle. The central harmonic is approximately synchronized to the average of the two planetary frequencies. A harmonic model based on the above two planetary tidal frequencies and on the exact dates of Jupiter and Saturn planetary tidal phases, plus a theoretically deduced 10.87-year central cycle reveals major beat periods occurring at about 115, 61 and 130 years, plus a quasi-millennial large beat cycle around 983 years. Equivalent synchronized cycles are found in cosmogenic solar proxy records used to reconstruct solar activity and in proxy climate records throughout the Holocene (last 12,000 years) up to now. The quasi-secular beat oscillations hindcast reasonably well the known prolonged periods of low solar activity during the last millennium such as the Oort, Wolf, Sporer, Maunder and Dalton minima, as well as the 17 115-year long oscillations found in a detailed temperature reconstruction of the Northern Hemisphere covering the last 2000 years. The millennial three-frequency beat cycle hindcasts equivalent solar and climate cycles for 12,000 years. Finally, the harmonic model herein proposed reconstructs the prolonged solar minima around 1900-1920 and 1960-1980, the secular solar maxima around 1870-1890, 1940-1950 and 1995-2005, and a secular upward trending during the 20th century. The latter modulated trending agrees well with some solar proxy model, with the ACRIM TSI satellite composite and with the global surface temperature modulation since 1850. The model forecasts a new prolonged solar minimum during 2020-2045, which is produced by the minima of both the 61 and 115-year reconstructed cycles. Finally, the model predicts

  10. Phase 1 of the First Small Power System Experiment (engineering Experiment No. 1). Volume 1: Executive Summary. [development and testing of a solar thermal power plant

    Science.gov (United States)

    Holl, R. J.

    1979-01-01

    The development of a modular solar thermal power system for application in the 1 to 10 MWe range is presented. The system is used in remote utility applications, small communities, rural areas, and for industrial uses. Investigations are performed on the energy storage requirements and type of energy storage, concentrator design and field optimization, energy transport, and power conversion subsystems. The system utilizes a Rankine cycle, an axial flow steam turbine for power conversion, and heat transfer sodium for collector fluid.

  11. The heliospheric Hale cycle over the last 300 years and its implications for a “lost” late 18th century solar cycle

    Directory of Open Access Journals (Sweden)

    Owens Mathew J.

    2015-01-01

    Full Text Available A Hale cycle, one complete magnetic cycle of the Sun, spans two complete Schwabe cycles (also referred to as sunspot and, more generally, solar cycles. The approximately 22-year Hale cycle is seen in magnetic polarities of both sunspots and polar fields, as well as in the intensity of galactic cosmic rays reaching Earth, with odd- and even-numbered solar cycles displaying qualitatively different waveforms. Correct numbering of solar cycles also underpins empirical cycle-to-cycle relations which are used as first-order tests of stellar dynamo models. There has been much debate about whether the unusually long solar cycle 4 (SC4, spanning 1784–1799, was actually two shorter solar cycles combined as a result of poor data coverage in the original Wolf sunspot number record. Indeed, the group sunspot number does show a small increase around 1794–1799 and there is evidence of an increase in the mean latitude of sunspots at this time, suggesting the existence of a cycle “4b”. In this study, we use cosmogenic radionuclide data and associated reconstructions of the heliospheric magnetic field (HMF to show that the Hale cycle has persisted over the last 300 years and that data prior to 1800 are more consistent with cycle 4 being a single long cycle (the “no SC4b” scenario. We also investigate the effect of cycle 4b on the HMF using an open solar flux (OSF continuity model, in which the OSF source term is related to sunspot number and the OSF loss term is determined by the heliospheric current sheet tilt, assumed to be a simple function of solar cycle phase. The results are surprising; Without SC4b, the HMF shows two distinct peaks in the 1784–1799 interval, while the addition of SC4b removes the secondary peak, as the OSF loss term acts in opposition to the later rise in sunspot number. The timing and magnitude of the main SC4 HMF peak is also significantly changed by the addition of SC4b. These results are compared with the cosmogenic

  12. Review of the Life Cycle Greenhouse Gas Emissions from Different Photovoltaic and Concentrating Solar Power Electricity Generation Systems

    Directory of Open Access Journals (Sweden)

    Raghava Kommalapati

    2017-03-01

    Full Text Available This paper contains an extensive review of life cycle assessment (LCA studies on greenhouse gas emissions (GHG from different material-based photovoltaic (PV and working mechanism-based concentrating solar power (CSP electricity generation systems. Statistical evaluation of the life cycle GHG emissions is conducted to assess the role of different PVs and CSPs in reducing GHG emissions. The widely-used parabolic trough and central receiver CSP electricity generation systems emitted approximately 50% more GHGs than the paraboloidal dish, solar chimney, and solar pond CSP electricity generation systems. The cadmium telluride PVs and solar pond CSPs contributed to minimum life cycle GHGs. Thin-film PVs are also suitable for wider implementation, due to their lower Energy Pay-Back Time (EPBT periods, in addition to lower GHG emission, in comparison with c-Si PVs.

  13. Spherical cap harmonic analysis of the Arctic ionospheric TEC for one solar cycle

    Science.gov (United States)

    Liu, Jingbin; Chen, Ruizhi; An, Jiachun; Wang, Zemin; Hyyppa, Juha

    2014-01-01

    Precise knowledge of the Arctic ionosphere total electron content (TEC) and its variations has scientific relevance due to the unique characteristics of the polar ionosphere. Understanding the Arctic TEC is also important for precise positioning and navigation in the Arctic. This study utilized the spherical cap harmonic analysis (SCHA) method to map the Arctic TEC for the most recent solar cycle from 2000 to 2013 and analyzed the distributions and variations of the Arctic TEC at different temporal and spatial scales. Even with different ionosphere conditions during the solar cycle, the results showed that the existing International Global Navigation Satellite Systems Service stations are sufficient for mapping the Arctic TEC. The SCHA method provides adequate accuracy and resolution to analyze the spatiotemporal distributions and variations of the Arctic TEC under different ionosphere conditions and to track ionization patches in this polar region (e.g., the ionization event of 26 September 2011). The results derived from the SCHA model were compared to direct observations using the Super Dual Auroral Radar Network radar. The SCHA method is able to predict the TEC in the long and short terms. This paper presented a long-term prediction with a relative uncertainty of 75% for a latency of one solar cycle and a short-term prediction with errors of ±2.2 total electron content units (TECUs, 1 TECU = 1016 el m-2), ±3.8 TECU, and ±4.8 TECU for a latency of 1, 2, and 3 days, respectively. The SCHA is an effective method for mapping, predicting, and analyzing the Arctic TEC.

  14. Propagation of Coronal Mass Ejections Observed During the Rising Phase of Solar Cycle 24

    Science.gov (United States)

    Syed Ibrahim, M.; Manoharan, P. K.; Shanmugaraju, A.

    2017-09-01

    In this study, we investigate the interplanetary consequences and travel time details of 58 coronal mass ejections (CMEs) in the Sun-Earth distance. The CMEs considered are halo and partial halo events of width {>} 120°. These CMEs occurred during 2009 - 2013, in the ascending phase of the Solar Cycle 24. Moreover, they are Earth-directed events that originated close to the centre of the solar disk (within about ±30° from the Sun's centre) and propagated approximately along the Sun-Earth line. For each CME, the onset time and the initial speed have been estimated from the white-light images observed by the LASCO coronagraphs onboard the SOHO space mission. These CMEs cover an initial speed range of {˜} 260 - 2700 km s^{-1}. For these CMEs, the associated interplanetary shocks (IP shocks) and interplanetary CMEs (ICMEs) at the near-Earth environment have been identified from in-situ solar wind measurements available at the OMNI data base. Most of these events have been associated with moderate to intense IP shocks. However, these events have caused only weak to moderate geomagnetic storms in the Earth's magnetosphere. The relationship of the travel time with the initial speed of the CME has been compared with the observations made in the previous Cycle 23, during 1996 - 2004. In the present study, for a given initial speed of the CME, the travel time and the speed at 1 AU suggest that the CME was most likely not much affected by the drag caused by the slow-speed dominated heliosphere. Additionally, the weak geomagnetic storms and moderate IP shocks associated with the current set of Earth-directed CMEs indicate magnetically weak CME events of Cycle 24. The magnetic energy that is available to propagate CME and cause geomagnetic storm could be significantly low.

  15. Digitized archive of the Kodaikanal images: Representative results of solar cycle variation from sunspot area determination

    Science.gov (United States)

    Ravindra, B.; Priya, T. G.; Amareswari, K.; Priyal, M.; Nazia, A. A.; Banerjee, D.

    2013-02-01

    Context. Sunspots have been observed since Galileo Galilei invented the telescope. Later, sunspot drawings have been upgraded to image storage using photographic plate in the second half of nineteenth century. These photographic images are valuable data resources for studying long-term changes in the solar magnetic field and its influence on the Earth's climate and weather. Aims: Digitized photographic plates cannot be used directly for the scientific analysis. It requires certain steps of calibration and processing before using them for extracting any useful information. The final data can be used to study solar cycle variations over several cycles. Methods: We digitized more than 100 years of white-light images stored in photographic plates and films that are available at Kodaikanal observatory starting from 1904. The images were digitized using a 4k × 4k format CCD-camera-based digitizer unit.The digitized images were calibrated for relative plate density and aligned in such a way that the solar north is in upward direction. A semi-automated sunspot detection technique was used to identify the sunspots on the digitized images. Results: In addition to describing the calibration procedure and availability of the data, we here present preliminary results on the sunspot area measurements and their variation with time. The results show that the white-light images have a uniform spatial resolution throughout the 90 years of observations. However, the contrast of the images decreases from 1968 onwards. The images are circular and do not show any major geometrical distortions. The measured monthly averaged sunspot areas closely match the Greenwich sunspot area over the four solar cycles studied here. The yearly averaged sunspot area shows a high degree of correlation with the Greenwich sunspot area. Though the monthly averaged sunspot number shows a good correlation with the monthly averaged sunspot areas, there is a slight anti-correlation between the two during solar

  16. Multi-scale harmonic model for solar and climate cyclical variation throughout the Holocene based on Jupiter-Saturn tidal frequencies plus the 11-year solar dynamo cycle

    Science.gov (United States)

    Scafetta, Nicola

    2012-05-01

    The Schwabe frequency band of the Zurich sunspot record since 1749 is found to be made of three major cycles with periods of about 9.98, 10.9 and 11.86 years. The side frequencies appear to be closely related to the spring tidal period of Jupiter and Saturn (range between 9.5 and 10.5 years, and median 9.93 years) and to the tidal sidereal period of Jupiter (about 11.86 years). The central cycle may be associated to a quasi-11-year solar dynamo cycle that appears to be approximately synchronized to the average of the two planetary frequencies. A simplified harmonic constituent model based on the above two planetary tidal frequencies and on the exact dates of Jupiter and Saturn planetary tidal phases, plus a theoretically deduced 10.87-year central cycle reveals complex quasi-periodic interference/beat patterns. The major beat periods occur at about 115, 61 and 130 years, plus a quasi-millennial large beat cycle around 983 years. We show that equivalent synchronized cycles are found in cosmogenic records used to reconstruct solar activity and in proxy climate records throughout the Holocene (last 12,000 years) up to now. The quasi-secular beat oscillations hindcast reasonably well the known prolonged periods of low solar activity during the last millennium such as the Oort, Wolf, Spörer, Maunder and Dalton minima, as well as the 17 115-year long oscillations found in a detailed temperature reconstruction of the Northern Hemisphere covering the last 2000 years. The millennial three-frequency beat cycle hindcasts equivalent solar and climate cycles for 12,000 years. Finally, the harmonic model herein proposed reconstructs the prolonged solar minima that occurred during 1900-1920 and 1960-1980 and the secular solar maxima around 1870-1890, 1940-1950 and 1995-2005 and a secular upward trending during the 20th century: this modulated trending agrees well with some solar proxy model, with the ACRIM TSI satellite composite and with the global surface temperature

  17. Magnetic Cycles in a Convective Dynamo Simulation of a Young Solar-type Star

    Science.gov (United States)

    Brown, Benjamin P.; Miesch, Mark S.; Browning, Matthew K.; Brun, Allan Sacha; Toomre, Juri

    2011-04-01

    Young solar-type stars rotate rapidly and many are magnetically active. Some appear to undergo magnetic cycles similar to the 22 yr solar activity cycle. We conduct simulations of dynamo action in rapidly rotating suns with the three-dimensional magnetohydrodynamic anelastic spherical harmonic (ASH) code to explore dynamo action achieved in the convective envelope of a solar-type star rotating at five times the current solar rotation rate. We find that dynamo action builds substantial organized global-scale magnetic fields in the midst of the convection zone. Striking magnetic wreaths span the convection zone and coexist with the turbulent convection. A surprising feature of this wreath-building dynamo is its rich time dependence. The dynamo exhibits cyclic activity and undergoes quasi-periodic polarity reversals where both the global-scale poloidal and toroidal fields change in sense on a roughly 1500 day timescale. These magnetic activity patterns emerge spontaneously from the turbulent flow and are more organized temporally and spatially than those realized in our previous simulations of the solar dynamo. We assess in detail the competing processes of magnetic field creation and destruction within our simulations that contribute to the global-scale reversals. We find that the mean toroidal fields are built primarily through an Ω-effect, while the mean poloidal fields are built by turbulent correlations which are not well represented by a simple α-effect. During a reversal the magnetic wreaths propagate toward the polar regions, and this appears to arise from a poleward propagating dynamo wave. As the magnetic fields wax and wane in strength and flip in polarity, the primary response in the convective flows involves the axisymmetric differential rotation which varies on similar timescales. Bands of relatively fast and slow fluid propagate toward the poles on timescales of roughly 500 days and are associated with the magnetic structures that propagate in the

  18. XMM-Newton detects X-ray 'solar cycle' in distant star

    Science.gov (United States)

    2004-05-01

    The Sun as observed by SOHO hi-res Size hi-res: 708 Kb The Sun as observed by SOHO The Sun as observed by the ESA/NASA SOHO observatory near the minimum of the solar cycle (left) and near its maximum (right). The signs of solar activity near the maximum are clearly seen. New XMM-Newton observations suggest that this behaviour may be typical of stars like the Sun, such as HD 81809 in the constellation Hydra. Solar flare - 4 November 2003 The huge flare produced on 4 November 2003 This image of the Sun, obtained by the ESA/NASA SOHO observatory, shows the powerful X-ray flare that took place on 4 November 2003. The associated coronal mass ejection, coming out of the Sun at a speed of 8.2 million kilometres per hour, hit the Earth several hours later and caused disruptions to telecommunication and power distribution lines. New XMM-Newton observations suggest that this behaviour may be typical of stars like the Sun, such as HD 81809 in the constellation Hydra. Since the time Galileo discovered sunspots, in 1610, astronomers have measured their number, size and location on the disc of the Sun. Sunspots are relatively cooler areas on the Sun that are observed as dark patches. Their number rises and falls with the level of activity of the Sun in a cycle of about 11 years. When the Sun is very active, large-scale phenomena take place, such as the flares and coronal mass ejections observed by the ESA/NASA solar observatory SOHO. These events release a large amount of energy and charged particles that hit the Earth and can cause powerful magnetic storms, affecting radio communications, power distribution lines and even our weather and climate. During the solar cycle, the X-ray emission from the Sun varies by a large amount (about a factor of 100) and is strongest when the cycle is at its peak and the surface of the Sun is covered by the largest number of spots. ESA's X-ray observatory, XMM-Newton, has now shown for the first time that this cyclic X-ray behaviour is common to

  19. Sustainable renewable energy seawater desalination using combined-cycle solar and geothermal heat sources

    KAUST Repository

    Missimer, Thomas M.

    2013-01-01

    Key goals in the improvement of desalination technology are to reduce overall energy consumption, make the process "greener," and reduce the cost of the delivered water. Adsorption desalination (AD) is a promising new technology that has great potential to reduce the need for conventional power, to use solely renewable energy sources, and to reduce the overall cost of water treatment. This technology can desalt seawater or water of even higher salinity using waste heat, solar heat, or geothermal heat. An AD system can operate effectively at temperatures ranging from 55 to 80 °C with perhaps an optimal temperature of 80 °C. The generally low temperature requirement for the feedwater allows the system to operate quite efficiently using an alternative energy source, such as solar power. Solar power, particularly in warm dry regions, can generate a consistent water temperature of about 90 °C. Although this temperature is more than adequate to run the system, solar energy collection only can occur during daylight hours, thereby necessitating the use of heat storage during nighttime or very cloudy days. With increasing capacity, the need for extensive thermal storage may be problematic and could add substantial cost to the development of an AD system. However, in many parts of the world, there are subsurface geothermal energy sources that have not been extensively used. Combining a low to moderate geothermal energy recovery system to an AD system would provide a solution to the thermal storage issue. However, geothermal energy development from particularly Hot Dry Rock is limited by the magnitude of the heat flow required for the process and the thermal conductivity of the rock material forming the heat reservoir. Combining solar and geothermal energy using an alternating 12-h cycle would reduce the probability of depleting the heat source within the geothermal reservoir and provide the most effective use of renewable energy. © 2013 Desalination Publications.

  20. Preliminary design of a solar heat receiver for a Brayton cycle space power system

    Science.gov (United States)

    Cameron, H. M.; Mueller, L. A.; Namkoong, D.

    1972-01-01

    The preliminary design of a solar heat receiver for use as a heat source for an earth-orbiting 11-kWe Brayton-cycle engine is described. The result was a cavity heat receiver having the shape of a frustum of a cone. The wall of the cone is formed by 48 heat-transfer tubes, each tube containing pockets of lithium fluoride for storing heat for as much as 38 minutes of fullpower operation in the shade. Doors are provided in order to dump excess heat especially during operation in orbits with full sun exposure. The receiver material is predominantly columbium - 1-percent-zironium (Cb-1Zr) alloy. Full-scale testing of three heat-transfer tubes for more than 2000 hours and 1250 sun-shade cycles verified the design concept.

  1. Performance evaluation of a solar ejector-vapour compression cycle for cooling application

    Science.gov (United States)

    Megdouli, K.; Elakhdar, M.; Nahdi, E.; Kairouani, L.; Mhimid, A.

    2015-04-01

    This study deals with the performance of the ejector-vapour compression cycle assisted by solar. The effect of operating conditions on the combined cycle performance is examined. Also, a comparison of the system performance with environment friendly refrigerants (R134a, R600, R123, R141b, R142b, R152a, R290, and R245fa) is made. This performance is calculated using an empirical correlation. Thermodynamic properties of functioning fluids are obtained with package REFPROP 8. Using the typical meteorological year file containing the weather data of the city of Tunis, the system performance is computed for three collector types. The theoretical results show that the R290 offers the highest coefficient of performance, COP=3.75, for generator temperature TB = 78°C, condenser temperature Tc = 30°C and the intercooler temperature Te = 15°C.

  2. Solar cycle variations of the energetic H/He intensity ratio at high heliolatitudes and in the ecliptic plane

    Directory of Open Access Journals (Sweden)

    D. Lario

    Full Text Available We study the variability of the heliospheric energetic proton-to-helium abundance ratios during different phases of the solar cycle. We use energetic particle, solar wind, and magnetic field data from the Ulysses, ACE and IMP-8 spacecraft to compare the H/He intensity ratio at high heliographic latitudes and in the ecliptic plane. During the first out-of-ecliptic excursion of Ulysses (1992–1996, the HI-SCALE instrument measured corotating energetic particle intensity enhancements characterized by low values (< 10 of the 0.5–1.0 MeV nucleon-1 H/He intensity ratio. During the second out-of-ecliptic excursion of Ulysses (1999–2002, the more frequent occurrence of solar energetic particle events resulted in almost continuously high (< 20 values of the H/He ratio, even at the highest heliolatitudes reached by Ulysses. Comparison with in-ecliptic measurements from an identical instrument on the ACE spacecraft showed similar H/He values at ACE and Ulysses, suggesting a remarkable uniformity of energetic particle intensities in the solar maximum heliosphere at high heliolatitudes and in the ecliptic plane. In-ecliptic observations of the H/He intensity ratio from the IMP-8 spacecraft show variations between solar maximum and solar minimum similar to those observed by Ulysses at high heliographic latitudes. We suggest that the variation of the H/He intensity ratio throughout the solar cycle is due to the different level of transient solar activity, as well as the different structure and duration that corotating solar wind structures have under solar maximum and solar minimum conditions. During solar minimum, the interactions between the two different types of solar wind streams (slow vs. fast are strong and long-lasting, allowing for a continuous and efficient acceleration of interstellar pickup He +. During solar maximum, transient events of solar origin (characterized by high values of the H/He ratio are able to globally

  3. Solar cycle variations of the energetic H/He intensity ratio at high heliolatitudes and in the ecliptic plane

    Directory of Open Access Journals (Sweden)

    D. Lario

    2003-06-01

    Full Text Available We study the variability of the heliospheric energetic proton-to-helium abundance ratios during different phases of the solar cycle. We use energetic particle, solar wind, and magnetic field data from the Ulysses, ACE and IMP-8 spacecraft to compare the H/He intensity ratio at high heliographic latitudes and in the ecliptic plane. During the first out-of-ecliptic excursion of Ulysses (1992–1996, the HI-SCALE instrument measured corotating energetic particle intensity enhancements characterized by low values (< 10 of the 0.5–1.0 MeV nucleon-1 H/He intensity ratio. During the second out-of-ecliptic excursion of Ulysses (1999–2002, the more frequent occurrence of solar energetic particle events resulted in almost continuously high (< 20 values of the H/He ratio, even at the highest heliolatitudes reached by Ulysses. Comparison with in-ecliptic measurements from an identical instrument on the ACE spacecraft showed similar H/He values at ACE and Ulysses, suggesting a remarkable uniformity of energetic particle intensities in the solar maximum heliosphere at high heliolatitudes and in the ecliptic plane. In-ecliptic observations of the H/He intensity ratio from the IMP-8 spacecraft show variations between solar maximum and solar minimum similar to those observed by Ulysses at high heliographic latitudes. We suggest that the variation of the H/He intensity ratio throughout the solar cycle is due to the different level of transient solar activity, as well as the different structure and duration that corotating solar wind structures have under solar maximum and solar minimum conditions. During solar minimum, the interactions between the two different types of solar wind streams (slow vs. fast are strong and long-lasting, allowing for a continuous and efficient acceleration of interstellar pickup He +. During solar maximum, transient events of solar origin (characterized by high values of the H/He ratio are able to globally fill the heliosphere. In

  4. Sensitivity of equatorial atomic oxygen in the MLT region to the 11-year and 27-day solar cycles

    Science.gov (United States)

    Lednyts'kyy, Olexandr; von Savigny, Christian; Weber, Mark

    2017-09-01

    We report on 27-day and 11-year solar cycle signatures in atomic oxygen (O) concentrations ([O]) in the MLT (Mesosphere/Lower Thermosphere) region of the terrestrial atmosphere. MLT [O] profiles were retrieved on the base of green line (557.7 nm) nightglow data sets provided by the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) onboard Envisat from 2002 to 2012. A statistically significant solar 27-day signature was identified (and then quantified with respect to the sensitivity and phase relationship to solar forcing) in time series of MLT [O] profiles with use of cross-correlation and superposed epoch analysis techniques. It was the first identification of the solar 27-day signature in MLT atomic oxygen on the base of such experimental data sets. The sensitivity of [O] to solar cycle variability at the 11-year time scale was quantified with use of cross-correlation and multiple-linear regression analysis techniques, which yield results consistent with known studies and, particularly, indicate that the sensitivity of [O] to solar forcing increases with increasing altitude. A comparison of obtained values of atomic oxygen sensitivity in response to solar forcing at the 27-day and 11-year time scales reveals the fact that the sensitivities agree well to each other within their uncertainties during the descending phase of the last (23rd) 11-year cycle of solar activity, whereas the [O] sensitivity values at the 27-day time scale during the last solar minimum phase were lower than those ones during the descending phase. It was also determined that atomic oxygen is in-phase with the solar forcing (in agreement with model results) at the 11-year time scale, whereas the time lag of the 27-day signature in response to solar forcing was about 12 - 14 days.

  5. Characteristics of PMSE associated with the geomagnetic disturbance driven by corotating interaction region and high-speed solar wind streams in the declining solar cycle 23

    Science.gov (United States)

    Lee, Young-Sook; Kirkwood, Sheila; Kwak, Young-Sil; Shepherd, Gordon G.; Kim, Kyung-Chan; Yang, Tae-Yong; Kero, Antti

    2015-04-01

    We report interannual variations of the correlation between the reflectivity of polar mesospheric summer echoes (PMSEs) and solar wind parameters (speed and dynamic pressure), and AE index as a proxy of geomagnetic disturbances, and cosmic noise absorption (CNA) in the declining phase (2001-2008) of solar cycle 23. PMSEs are observed by 52 MHz VHF radar measurements at Esrange (67.8°N, 20.4°E), Sweden. In approaching the solar minimum years, high-speed solar wind streams emanate from frequently emerging coronal holes, leading to 7, 9, and 13.5 day periodicities in their arrival at Earth. Periodicities of 7 and/or 9 days are found in PMSE reflectivity in 2005-2006 and 2008. Periodicity-resolved correlations at 7 and 9 days of both D region ionization observed by cosmic noise absorption (CNA) and PMSE with solar wind speed and AE index vary from year to year but generally increase as solar minimum is approached. PMSEs have a higher periodicity-resolved correlation with AE index than the solar wind speed. In addition, cross correlation of PMSE reflectivity with AE index is mostly higher than with CNA in solar minimum years (2005-2008). This can signify that high-speed solar wind stream-induced high-energy particles possibly have strong influence on CNA, but not as much as on PMSE, especially for the years of significant periodicities occurring.

  6. Integration of photovoltaic and concentrated solar thermal technologies for H2 production by the hybrid sulfur cycle

    Science.gov (United States)

    Liberatore, Raffaele; Ferrara, Mariarosaria; Lanchi, Michela; Turchetti, Luca

    2017-06-01

    It is widely agreed that hydrogen used as energy carrier and/or storage media may significantly contribute in the reduction of emissions, especially if produced by renewable energy sources. The Hybrid Sulfur (HyS) cycle is considered as one of the most promising processes to produce hydrogen through the water-splitting process. The FP7 project SOL2HY2 (Solar to Hydrogen Hybrid Cycles) investigates innovative material and process solutions for the use of solar heat and power in the HyS process. A significant part of the SOL2HY2 project is devoted to the analysis and optimization of the integration of the solar and chemical (hydrogen production) plants. In this context, this work investigates the possibility to integrate different solar technologies, namely photovoltaic, solar central receiver and solar troughs, to optimize their use in the HyS cycle for a green hydrogen production, both in the open and closed process configurations. The analysis carried out accounts for different combinations of geographical location and plant sizing criteria. The use of a sulfur burner, which can serve both as thermal backup and SO2 source for the open cycle, is also considered.

  7. Numerical simulation of a Linear Fresnel Reflector Concentrator used as direct generator in a Solar-GAX cycle

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez, N.; Sauceda, D.; Beltran, R. [Instituto de Ingenieria, Universidad Autonoma de Baja California, Blvd. Benito Juarez y Calle de la Normal s/n, Mexicali, Baja California 21280 (Mexico); Garcia-Valladares, O. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Temixco, Morelos 62580 (Mexico)

    2010-03-15

    In this work a methodological analysis to design and evaluate the technical feasibility of use a Linear Fresnel Reflector Concentrator (LFRC) as generator in an advanced absorption refrigeration system (Solar-GAX cycle) has been carried out. For this purpose, a detailed one-dimensional numerical simulation of the thermal and fluid-dynamic behavior of a LFRC that solves, in a segregated manner, four subroutines: (a) fluid flow inside the receptor tube, (b) heat transfer in the receptor tube wall, (c) heat transfer in cover tube wall, and (d) solar thermal analysis in the solar concentrator has been developed. The LFRC numerical model has been validated with experimental data obtained from the technical literature; after that, a parametric study for different configurations of design has been carried out in order to obtain the highest solar concentration with the lowest thermal losses, keeping in mind both specific weather conditions and construction restrictions. The numerical result obtained demonstrates that using a LFRC as a direct generator in a Solar-GAX cycle satisfy not only the quantity and quality of the energy demanded by the advanced cooling system, it also allows to obtain higher global efficiencies of the system due to it can be operated in conditions where the maximum performance of the Solar-GAX cycle is obtained without affecting in any significant way the solar collector efficiency. (author)

  8. Parallels among the ``music scores'' of solar cycles, space weather and Earth's climate

    Science.gov (United States)

    Kolláth, Zoltán; Oláh, Katalin; van Driel-Gesztelyi, Lidia

    2012-07-01

    Solar variability and its effects on the physical variability of our (space) environment produces complex signals. In the indicators of solar activity at least four independent cyclic components can be identified, all of them with temporal variations in their timescales. Time-frequency distributions (see Kolláth & Oláh 2009) are perfect tools to disclose the ``music scores'' in these complex time series. Special features in the time-frequency distributions, like frequency splitting, or modulations on different timescales provide clues, which can reveal similar trends among different indices like sunspot numbers, interplanetary magnetic field strength in the Earth's neighborhood and climate data. On the pseudo-Wigner Distribution (PWD) the frequency splitting of all the three main components (the Gleissberg and Schwabe cycles, and an ~5.5 year signal originating from cycle asymmetry, i.e. the Waldmeier effect) can be identified as a ``bubble'' shaped structure after 1950. The same frequency splitting feature can also be found in the heliospheric magnetic field data and the microwave radio flux.

  9. Examples of studies of solar and lunar cycles carried out in Ireland in Neolithic times

    Science.gov (United States)

    McKenna McKenna-Lawlor, Susan

    2016-10-01

    Brứ na Bόinn (Newgrange) is the largest member of a group of Neolithic passage graves located in the Boyne Valley, Co. Meath, about 50 km from Dublin in Ireland. According to radio carbon dating, the monument was constructed between about 3200 and 3100 BC and it is thus s about five hundred years older than the current form of Stonehenge as well as older than the Great Pyramid of Giza in Egypt. Also, it predates the Mycenaean culture of ancient Greece. At the Winter Solstice, the rising sun shines through an external architectural feature called the roof box and traverses a 19m long passage to illuminate an inner chamber decorated by an elegant triple spiral and other carvings. This illumination lasts for about 17 minutes. Today, first light enters about four minutes after sunrise, but calculations based on the precession of the Earth show that, 5,000 years ago, first light would have entered exactly at sunrise. The poster presents drawings of the geometrical alignment concerned and places the monument in the context of other Neolithic monuments in Ireland oriented to key dates in the solar calendar. Evidence for the existence in the Boyne Valley of an interest in lunar as well as in solar cycles is discussed and a carving of a lunar cycle, deemed to be the earliest to be identified without serious ambiguity in either Ireland or Britain, is illustrated and described.

  10. Solar cycle response and long-term trends in the mesospheric metal layers

    Science.gov (United States)

    Dawkins, E. C. M.

    2016-12-01

    The meteoric metal layers (Na, Fe, K) - which form as a result of the ablation of incoming meteors - act as unique tracers for chemical and dynamical processes that occur within the upper mesosphere/lower thermosphere (MLT) region. Here we examine whether these metal layers are sensitive indicators of decadal long-term changes within the upper atmosphere. Output from the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model (WACCM) is used to assess the response of the Na, K and Fe layers across a 50-year period (1955-2005). At short timescales, the K layer has previously been shown to exhibit a very different seasonal behavior compared to the other metals. In this work, we demonstrate that this unusual behavior is also exhibited at longer timescales (both the 11-yr solar cycle and 50-year periods), with K displaying a much more pronounced response to atmospheric temperature changes than either Na or Fe. The contrasting 11-year solar cycle behavior of the K and Na layers predicted by the model is confirmed using new satellite and lidar observations for the period 2004-2015. Overall, the results presented here demonstrate that the unusual behavior of K compared to Na and Fe is present not only at diurnal and seasonal timescales, but also over longer-term periods, which may lead to the K layer being a sensitive indicator of long-term changes in the MLT region.

  11. Results of Spectral Corona Observations in Solar Activity Cycles 17-24

    Science.gov (United States)

    Aliev, A. Kh.; Guseva, S. A.; Tlatov, A. G.

    2017-12-01

    The results of the work of the global observation network are considered, and a comparative analysis of the data of various coronal observatories is performed. The coronal activity index has been reconstructed for the period 1939-2016 based on the data of various observatories in Kislovodsk system. For this purpose, the corona daily intensity maps from the Sacramento Peak and Lomnický Štít observatories according to the Solar-Geophysical Data journal have been digitized; they supplement the data of other observatories. The homogeneity and continuity of the corona observations at the Kislovodsk station, including activity cycle 24, is confirmed. Unfortunately, the only observatory at present that continues observation of the spectral corona in Fe XIV 5303 Å and Fe XIV 6374 Å lines is the Kislovodsk astronomical station Mountain Astronomical Station (MAS) of the Central Astronomical Observatory, Russian Academy of Sciences (Pulkovo). The data on the combined corona in 5303 Å line are analyzed. It is shown that there is a high correlation of the intensity index of green corona with solar radiation measurements in the vacuum UV region. Data on the beginning of the new 25th activity cycle in the corona at high latitudes are presented.

  12. Seasonal and solar-cycle variations of polar magnetic fields resolved via eigenanalysis and graph theory

    Science.gov (United States)

    Shore, Robert; Freeman, Mervyn; Gjerloev, Jesper

    2017-04-01

    We apply the meteorological analysis method of Empirical Orthogonal Functions (EOF) to ground magnetometer measurements, and subsequently use graph theory to classify the results. The EOF method is used to characterise and separate contributions to the variability of the Earth's external magnetic field (EMF) in the northern polar region. EOFs decompose the noisy EMF data into a small number of independent spatio-temporal basis functions, which collectively describe the majority of the magnetic field variance. We use these basis functions (computed monthly) to infill where data are missing, providing a self-consistent description of the EMF at 5-minute resolution spanning 1997—2009 (solar cycle 23). Each of the EOF basis functions can typically be associated with one of the Disturbance Polar (DP)-type current systems (e.g. DP2, DP1, DPY, NBZ), or with the motion of these systems. This association allows us to describe the varying behaviour of the current systems over the 144 months (i.e. 1997—2009) of our reanalysis. However, the EOF basis functions are (by definition) ranked by their contribution to the total variance, and thus a given current system may be described by a different rank of basis vector from month to month. We use graph theory to find clusters of quantifiably-similar spatial basis functions, and thereby track a given pattern throughout the span of 144 months. Via this method, we present the seasonal and solar cycle variations in the polar current systems.

  13. New Modeling of Galactic Proton Modulation during the Minimum of Solar Cycle 23/24

    Science.gov (United States)

    Vos, Etienne E.; Potgieter, Marius S.

    2015-12-01

    During the recent prolonged solar minimum of cycle 23/24, the PAMELA detector measured 27-day averaged Galactic proton energy spectra over the energy range that is important for solar modulation. By comparing these spectra to computed spectra from a three-dimensional model that contains all of the important heliospheric modulation processes, the recent minimum can be studied in detail from a modulation perspective. This was done by setting up a realistic heliosphere in the model, and reproducing a representative selection of seven intermittent PAMELA spectra, separated by approximately six months, from 2006 July to 2009 December. Additionally, a new very local interstellar proton spectrum was constructed using measurements below 600 MeV from Voyager 1, taken beyond the heliopause, combined with PAMELA and AMS-02 measurements above 30 GeV at the Earth. As a result of the extreme minimum modulation conditions that governed the recent solar minimum, the highest ever Galactic cosmic ray spectrum at Earth was observed by PAMELA at the end of 2009. It was found that, apart from the self-consistent changes in the heliospheric current sheet and the heliospheric magnetic field over time, additional increases in the mean free paths during this period were required below ∼ 4 GV in order to reproduce the intensities observed by PAMELA.

  14. Evidence for Solar Cycle Influence on the Infrared Energy Budget and Radiative Cooling of the Thermosphere

    Science.gov (United States)

    Mlynczak, Martin G.; Martin-Torres, F. Javier; Marshall, B. Thomas; Thompson, R. Earl; Williams, Joshua; Turpin, TImothy; Kratz, D. P.; Russell, James M.; Woods, Tom; Gordley, Larry L.

    2007-01-01

    We present direct observational evidence for solar cycle influence on the infrared energy budget and radiative cooling of the thermosphere. By analyzing nearly five years of data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, we show that the annual mean infrared power radiated by the nitric oxide (NO) molecule at 5.3 m has decreased by a factor of 2.9. This decrease is correlated (r = 0.96) with the decrease in the annual mean F10.7 solar index. Despite the sharp decrease in radiated power (which is equivalent to a decrease in the vertical integrated radiative cooling rate), the variability of the power as given in the standard deviation of the annual means remains approximately constant. A simple relationship is shown to exist between the infrared power radiated by NO and the F10.7 index, thus providing a fundamental relationship between solar activity and the thermospheric cooling rate for use in thermospheric models. The change in NO radiated power is also consistent with changes in absorbed ultraviolet radiation over the same time period.

  15. Environmental life cycle assessment of the Elkem Solar Metallurgical process route to solar grade silicon with focus on energy consumption and greenhouse gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    Glockner, R.; Odden, J-O.; Halvorsen, G.; Tronstad, R. [Elkem Solar AS, P.O. Box 8040 Vaagsbygd, N-4675 Kristiansand (Norway); De Wild-Scholten, M.J. [ECN Solar Energy, Petten (Netherlands)

    2008-10-15

    Today more than 95% of solar grade silicon feedstock is produced by decomposition of (chloro)silanes using Siemens, Komatsu or FBR (Fluidised Bed Reactor)-technology. Metallurgical refined silicon of solar grade quality will in the coming years become increasingly available to the solar market and may reach a market share of 20-30% by 2011. Energy consumption and life cycle CO2-emission are important competitive factors. The industry will be faced with complete life cycle assessment (LCA) studies to compare solar energy with other sustainable energy sources. The present paper reports on an environmental LCA study performed on Elkem Solar Silicon (ESS) as the single source of solar grade silicon (SoG-Si) used in the production of a rooftop multicrystalline photovoltaic system. Life cycle green house gas (GHG) emissions and cumulative energy demand (CED) are estimated for feedstock plants located in Norway. A sensitivity analysis is done using Norwegian and European electricity mixes. Energy pay-back times (EPBT) are calculated for PV-systems mounted in Southern and North Western Europe. The results show that the EPBT applying ESS produced in Norway is 1.1 and 1.9 years for a system installed in Southern and North Western Europe, respectively. Life cycle emissions of GHG are estimated to be circa 14 g CO2-eq / kg ESS produced. The total life cycle GHG emissions for a rooftop PV system installed in Southern Europe is estimated to be approximately 23 g CO2-eq / kWh. For both EPBT and GHG emissions, the contribution from production of ESS is comparable in size to contributions from production of wafer, cell, laminate and inverter and more than 3 times lower than for conventional gas route processes.

  16. A cycle of measurements of the solar semidiameter with the astrolabe of Rio de Janeiro (1998-2009)

    Science.gov (United States)

    Calderari Boscardin, Sérgio

    2013-01-01

    The solar astrolabe at Observatorio Nacional has been doing a series of solar semidiameter measurements, extending from 1998 up to 2009, to a total of 21640 observations of the Sun. Using the data series it was established the solar radius variation along that period, as well as determining results about the change of the solar ellipticity. To the work in perspective, the measurements of the solar radius in the past four centuries are reviewed, followed by a more detailed account of the contemporaneous measurements. The deviations of the observed values from the true values caused by observational and instrumental effects are studied and the strategies used to derive the corresponding corrections are shown. The relationships linking the variation of the semidiameter and the relevant indexes of the solar activity are analyzed. Finally, the time series from Observatorio Nacional was enchained to all the other similar astrolabe series, from which the data were graciously confided to this work. Using such much longer combined data set it was established the long term behavior of the solar semidiameter along the last three solar cycles. The outcome is a strong correlation to the long period features of the solar activity described by the annual mean of sunspots count. Putting together the long term semidiameter variation and other solar evidences we point out the near approach of a deep minimum of sunspots.

  17. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    OpenAIRE

    Ho, Tony

    2012-01-01

    The Organic Flash Cycle (OFC) is proposed as a vapor power cycle that could potentially increase power generation and improve the utilization efficiency of renewable energy and waste heat recovery systems. A brief review of current advanced vapor power cycles including the Organic Rankine Cycle (ORC), the zeotropic Rankine cycle, the Kalina cycle, the transcritical cycle, and the trilateral flash cycle is presented. The premise and motivation for the OFC concept is that essentially by impro...

  18. Thermal energy storage for a space solar dynamic power system

    Science.gov (United States)

    Faget, N. M.; Fraser, W. M., Jr.; Simon, W. E.

    1985-01-01

    In the past, NASA has employed solar photovoltaic devices for long-duration missions. Thus, the Skylab system has operated with a silicon photovoltaic array and a nickel-cadmium electrochemical system energy storage system. Difficulties regarding the employment of such a system for the larger power requirements of the Space Station are related to a low orbit system efficiency and the large weight of the battery. For this reason the employment of a solar dynamic power system (SDPS) has been considered. The primary components of an SDPS include a concentrating mirror, a heat receiver, a thermal energy storage (TES) system, a thermodynamic heat engine, an alternator, and a heat rejection system. The heat-engine types under consideration are a Brayton cycle engine, an organic Rankine cycle engine, and a free-piston/linear-alternator Stirling cycle engine. Attention is given to a system description, TES integration concepts, and a TES technology assessment.

  19. Bayesian Zero-Failure (BAZE) reliability demonstration testing procedure and its application to a Rankine dynamic radioisotope power conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Martz, H.F. Jr.; Waller, R.A.

    1976-07-01

    A Bayesian Zero-Failure (BAZE) reliability demonstration testing procedure is developed. The procedure may be used to verify component failure rates associated with both real-time dependent and cycle-dependent chance failure mechanisms. A constant falure-rate model with a gamma prior distribution is assumed. The procedure is used to obtain sample test plans for components of a proposed Rankine power conversion system.

  20. Étude expérimentale d'une installation de micro-cogénération solaire couplant un concentrateur cylindro-parabolique et un moteur à cycle de Hirn

    OpenAIRE

    Bouvier, Jean-Louis

    2014-01-01

    The objective of this thesis is the experimental study of the energy performances of a micro combined solar heat and power (micro-CHP) unit. The prototype is composed of a solar parabolic trough collector coupled to a Hirn (superheated Rankine) cycle engine. The originalities of this project are the use of solar energy which is renewable and inexhaustible but intermittent, the direct steam generation with a reduced size parabolic trough collector (46.5 m²), the two axis tracking system and th...