WorldWideScience

Sample records for rankine air conditioner

  1. Preliminary design package for residential heating/cooling system: Rankine air conditioner redesign

    Science.gov (United States)

    1978-01-01

    A summary of the preliminary redesign and development of a marketable single family heating and cooling system is presented. The interim design and schedule status of the residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities were discussed. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  2. Preliminary design package for residential heating/cooling system--Rankine air conditioner redesign

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    This report contains a summary of the preliminary redesign and development of a marketable single-family heating and cooling system. The objectives discussed are the interim design and schedule status of the Residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  3. Air conditioner

    International Nuclear Information System (INIS)

    Sato, Masaaki

    1993-01-01

    The present invention provides an air conditioner which can prevent an undesirable effects on a human body due to radon daughter nuclides in a closed space. That is, the concentration of the radon daughter nuclides in the air in the closed space is continuously measured. A necessary amount of ventilation air is determined based on the measured concentration to generate control signals. External air is introduced into the closed space by the generated control signals. With such procedures, necessary amount of external air is taken from the atmospheric air which can be regarded to have the radon daughter nuclide concentration substantially at zero, thereby enabling to reduce the concentration of the radon daughter nuclides in the closed space. As a result, undesired effects on the human body due to the radon daughter nuclides staying in the closed space can be prevented. According to simulation, the radon daughter nuclides are rapidly decreased only by ventilation only for three times or so in one hour. Accordingly, ventilation is extremely effective and convenient means as a countermeasure for the radon daughter nuclides. (I.S.)

  4. Air Conditioner/Dehumidifier

    Science.gov (United States)

    1986-01-01

    An ordinary air conditioner in a very humid environment must overcool the room air, then reheat it. Mr. Dinh, a former STAC associate, devised a heat pipe based humidifier under a NASA Contract. The system used heat pipes to precool the air; the air conditioner's cooling coil removes heat and humidity, then the heat pipes restore the overcooled air to a comfortable temperature. The heat pipes use no energy, and typical savings are from 15-20%. The Dinh Company also manufactures a "Z" coil, a retrofit cooling coil which may be installed on an existing heater/air conditioner. It will also provide free hot water. The company has also developed a photovoltaic air conditioner and solar powered water pump.

  5. Ventilating Air-Conditioner

    Science.gov (United States)

    Dinh, Khanh

    1994-01-01

    Air-conditioner provides ventilation designed to be used alone or incorporated into cooling or heating system operates efficiently only by recirculating stale air within building. Energy needed to operate overall ventilating cooling or heating system slightly greater than operating nonventilating cooling or heating system. Helps to preserve energy efficiency while satisfying need for increased forced ventilation to prevent accumulation of undesired gases like radon and formaldehyde. Provides fresh treated air to variety of confined spaces: hospital surgeries, laboratories, clean rooms, and printing shops and other places where solvents used. In mobile homes and portable classrooms, eliminates irritant chemicals exuded by carpets, panels, and other materials, ensuring healthy indoor environment for occupants.

  6. Experimental Analysis on Solar Desiccant Air Conditioner

    OpenAIRE

    Dr. U. V. Kongre, C. M. Singh, A. B. Biswas

    2014-01-01

    The experiment investigated and evaluated the feasibility of an solar desiccant air conditioner. Its effectiveness as a possible air conditioner option used in household air conditioner or as an energy efficient and environmentally friendly alternative to conventional air conditioning units used in houses are evaluated. A solar water heater was used as heat gain. The model utilizes the technology of solar air conditioner system. The purpose in the long term wou...

  7. Development of a solar-powered residential air conditioner

    Science.gov (United States)

    1975-01-01

    The initial objective of the program was the optimization (in terms of cost and performance) of a Rankine cycle mechanical refrigeration system which utilizes thermal energy from a flat solar collector for air conditioning residential buildings. However, feasibility investigations of the adsorption process revealed that a dessicant-type air conditioner offers many significant advantages. As a result, limited efforts were expended toward the optimization of such a system.

  8. Development of a solar-powered residential air conditioner: System optimization preliminary specification

    Science.gov (United States)

    Rousseau, J.; Hwang, K. C.

    1975-01-01

    Investigations aimed at the optimization of a baseline Rankine cycle solar powered air conditioner and the development of a preliminary system specification were conducted. Efforts encompassed the following: (1) investigations of the use of recuperators/regenerators to enhance the performance of the baseline system, (2) development of an off-design computer program for system performance prediction, (3) optimization of the turbocompressor design to cover a broad range of conditions and permit operation at low heat source water temperatures, (4) generation of parametric data describing system performance (COP and capacity), (5) development and evaluation of candidate system augmentation concepts and selection of the optimum approach, (6) generation of auxiliary power requirement data, (7) development of a complete solar collector-thermal storage-air conditioner computer program, (8) evaluation of the baseline Rankine air conditioner over a five day period simulating the NASA solar house operation, and (9) evaluation of the air conditioner as a heat pump.

  9. ENERGY STAR Certified Room Air Conditioners

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Room Air Conditioners that are effective as of...

  10. Mold contamination of automobile air conditioner systems.

    Science.gov (United States)

    Kumar, P; Lopez, M; Fan, W; Cambre, K; Elston, R C

    1990-02-01

    Eight cars belonging to patients who were found to have exacerbation of allergic rhinitis and bronchial asthma after turning on the air conditioner in their cars were examined. Mold concentrations inside the passenger compartment with the a/c turned off and at different climate control settings were lower than concentrations in the outside air. After turning on the air conditioner to "Max", cultures obtained at various intervals revealed that mold concentrations decreased significantly with time. Furthermore, placement of a filter at the portal of entry of outside air significantly reduced the mold concentration in the passenger compartment.

  11. High Efficiency Room Air Conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Pradeep [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    This project was undertaken as a CRADA project between UT-Battelle and Geberal Electric Company and was funded by Department of Energy to design and develop of a high efficiency room air conditioner. A number of novel elements were investigated to improve the energy efficiency of a state-of-the-art WAC with base capacity of 10,000 BTU/h. One of the major modifications was made by downgrading its capacity from 10,000 BTU/hr to 8,000 BTU/hr by replacing the original compressor with a lower capacity (8,000 BTU/hr) but high efficiency compressor having an EER of 9.7 as compared with 9.3 of the original compressor. However, all heat exchangers from the original unit were retained to provide higher EER. The other subsequent major modifications included- (i) the AC fan motor was replaced by a brushless high efficiency ECM motor along with its fan housing, (ii) the capillary tube was replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and (iii) the unit was tested with a drop-in environmentally friendly binary mixture of R32 (90% molar concentration)/R125 (10% molar concentration). The WAC was tested in the environmental chambers at ORNL as per the design rating conditions of AHAM/ASHRAE (Outdoor- 95F and 40%RH, Indoor- 80F, 51.5%RH). All these modifications resulted in enhancing the EER of the WAC by up to 25%.

  12. Comparative investigation of thermoelectric air-conditioners versus vapour compression and absorption air-conditioners

    International Nuclear Information System (INIS)

    Riffat, S.B.; Qiu Guoquan

    2004-01-01

    This paper compares the performance of three types of domestic air-conditioners, namely the vapour compression air-conditioner (VCAC), the absorption air-conditioner (AAC) and the thermoelectric air-conditioner (TEAC). The basic cycles of the three types of air-conditioning systems are described and methods to calculate their coefficients of performance are presented. General specification data for each type of air-conditioner are given, and performance characteristics are presented. The comparison shows that although VCACs have the advantages of high COP and low purchase price, use of these systems will be phased out due to their contribution to the greenhouse effect and depletion of the ozone layer. AACs are generally bulky, complex and expensive but operate on thermal energy, so their operational consumption is low. TEACs are environmental friendly, simple and reliable but still very expensive at present. Their low COP is an additional factor limiting their application for domestic cooling. TEACs however, have a large potential market as air-conditioners for small enclosures, such as cars and submarine cabins, where the power consumption would be low, or safety and reliability would be important

  13. Ventilation air conditioner for a reactor container

    International Nuclear Information System (INIS)

    Ikegame, Noboru; Nakagawa, Takeshi.

    1980-01-01

    Purpose: To suppress the variations in the internal pressure of a reactor container and smoothly ventilate the reactor container. Constitution: The air conditioner provides an air-flow-rate-control damper, a purge-air supply fan, and a filter device in the air-supply pipe of a reactor container. Furthermore, it provides a pressure difference detector at a part of the container. The air-flow-rate-control damper is connected electrically through a position-modulator-comparison amplifier to the pressure difference detector. When the filtration becomes insufficient by clogging of the filter device and the internal pressure increased abruptly in the container, the pressure-difference detector can detect it, and the damper is operated by a pressure regulator and the comparator so as to control the air flow to the container. Thus, the internal pressure variation is controlled so as to easily ventilate the container. (J.P.N.)

  14. Requirements of office air conditioners. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, W

    1988-01-01

    New building designs and experiences gained in the past are reponsible for the considerable changes the requirements of air conditioners have gone through in recent years. Details are given on an exemplary air conditioning system designed for the Colonia Insurances building complex located in the city of Cologne. The ventilation requirements and hygienic conditions set out for air conditioned rooms call for outside air supplies, the careful selection of air intakes, and the filtering of intake air. Details are given on the efficiency and limits of combined natural window ventilation/artificial ventilation systems, the influence of window types, and the influence of building structures. The pressure conditions to be expected for larger building complexes in the case of natural ventilation should be assessed with the help of models put to wind tunnel tests.

  15. 77 FR 28519 - Test Procedure Guidance for Room Air Conditioners, Residential Dishwashers, and Residential...

    Science.gov (United States)

    2012-05-15

    ... Guidance for Room Air Conditioners, Residential Dishwashers, and Residential Clothes Washers: Public... procedures for room air conditioners, residential dishwashers, and residential clothes washers. DATES: DOE...'s existing test procedures for residential room air conditioners, residential dishwashers, and...

  16. 16 CFR Appendix E to Part 305 - Room Air Conditioners

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Room Air Conditioners E Appendix E to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE... Appendix E to Part 305—Room Air Conditioners Range Information Manufacturer's rated cooling capacity in Btu...

  17. Air conditioner for radioactive material handling facility

    International Nuclear Information System (INIS)

    Tanaka, Takeaki.

    1991-01-01

    An air conditioner intakes open-air from an open-air intake port to remove sands and sea salt particles by air filters. Then, natural and artificial radioactive particles of less than 1 μm are removed by high performance particulate filters. After controlling the temperature by an air heater or an air cooler, air is sent to each of chambers in a facility under pressure elevation by a blower. In this case, glass fibers are used as the filter material for the high performance particulate filter, which has a performance of more than 99.97% for the particles of 0.3 μm grain size. Since this can sufficiently remove the natural radioactive materials intruded from the outside, a detection limit value in each of the chambers of the facility can be set 10 -13 to 10 -14 μci/cm 3 in respect of radiation control. Accordingly, radiation control can be conducted smoothly and appropriately. (I.N.)

  18. [Gohieria fusca found in dust of air-conditioner filters].

    Science.gov (United States)

    Qiang, Chai; Xiao-Dong, Zhan; Wei, Guo; Chao-Pin, Li

    2017-09-25

    To investigate the pollution status of Gohieria fusca in the air conditioner-filters of different places in Wuhu City. The dust samples were collected from the filters of air-conditioners in dining rooms, shopping malls, hotels and households between June and September, 2013, and G. fusca was detected in the dust samples. There were 430 dust samples collected and 98 were G. fusca positive with the breeding rate of 22.79%. The difference of breeding rates of G. fusca were statistically significant among the different places ( χ 2 =18.294, P air-conditioner filters in Wuhu City gravely.

  19. Optimum dry-cooling sub-systems for a solar air conditioner

    Science.gov (United States)

    Chen, J. L. S.; Namkoong, D.

    1978-01-01

    Dry-cooling sub-systems for residential solar powered Rankine compression air conditioners were economically optimized and compared with the cost of a wet cooling tower. Results in terms of yearly incremental busbar cost due to the use of dry-cooling were presented for Philadelphia and Miami. With input data corresponding to local weather, energy rate and capital costs, condenser surface designs and performance, the computerized optimization program yields design specifications of the sub-system which has the lowest annual incremental cost.

  20. Statistical analysis of the count and profitability of air conditioners.

    Science.gov (United States)

    Rady, El Houssainy A; Mohamed, Salah M; Abd Elmegaly, Alaa A

    2018-08-01

    This article presents the statistical analysis of the number and profitability of air conditioners in an Egyptian company. Checking the same distribution for each categorical variable has been made using Kruskal-Wallis test.

  1. Pulmonary functions in air conditioner users.

    Science.gov (United States)

    Khaliq, Farah; Sharma, Sameer; Tandon, O P

    2006-01-01

    Air conditioning may affect human health since it has profound effect on our environment, than just lowering temperature. The present study was planned to assess the effect of air conditioners (AC) on pulmonary functions in young healthy non-smoker males. The study group comprised of ten subjects who were using AC's in their cars for at least 1 hr daily since last 6 months. While ten subjects who did not use AC at all served as controls. The pulmonary functions were assessed using PK Morgan 232 spirometer in a closed room. The peak expiratory flow rate (PEFR) and Forced expiratory flow between 25-75% of vital capacity (FEF25-75) were significantly reduced in subjects using car AC's. Inspiratory flow rates also showed a trend towards decline in AC users but could not reach the level of significance. The lung volumes and capacities were not significantly different in the two groups except for forced expiratory volume in 0.5 sec (FEV 0.5 sec), which also decreased in AC users. The airway resistance and lung compliance did not show significant change. In the presence of normal FEV1, reduced FEF25-75% which is the flow rate over the middle half of vital capacity, is an evidence of mild airflow limitation. The result is suggestive of predisposition of AC users towards respiratory disorders in form of mild airflow restriction.

  2. Orbiting compressor for residential air-conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jin; Kim, Woo Young; Ahn, Jong Min [Department of Mechanical Engineering, University of Incheon, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406-840 (Korea)

    2010-01-15

    A new type of compressor, called an orbiting compressor, is introduced in this paper. The orbiting compressor is characterized by an orbiting piston, and the piston or orbiter consists of a circular base plate and a ring type vane protruding vertically from the base plate. The orbiter is made to orbit in an annular space formed between two concentric circular walls via an Oldham-ring mechanism, producing two sealed gas pockets on both sides of the vane wrap with a 180 phase difference. This operating mechanism leads to alternating compression and discharge processes, which results in low torque variation. The orbiting compressor has been designed for an R410A residential air conditioner with a cooling capacity of 10.0 kW. The performance of the orbiting compressor model has been analytically investigated, where the volumetric, adiabatic and mechanical efficiencies were calculated to be 94.8%, 90.4% and 93.4%, respectively for the ARI condition. The EER was estimated to be about 10.86 with a motor efficiency of 89%. (author)

  3. High efficiency novel window air conditioner

    International Nuclear Information System (INIS)

    Bansal, Pradeep

    2015-01-01

    Highlights: • Use of novel refrigerant mixture of R32/R125 (85/15% molar conc.) to reduce global warming and improve energy efficiency. • Use of novel features such as electronically commuted motor (ECM) fan motor, slinger and sub-merged sub-cooler. • Energy savings of up to 0.1 Quads per year in USA and much more in Asia/Middle East where WACs are used in large numbers. • Payback period of only 1.4 years of the novel efficient WAC. - Abstract: This paper presents the results of an experimental and analytical evaluation of measures to raise the efficiency of window air conditioners (WAC). In order to achieve a higher energy efficiency ratio (EER), the original capacity of a baseline R410A unit was reduced by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. Subsequent major modifications included – replacing the alternating current fan motor with a brushless high efficiency electronically commutated motor (ECM) motor, replacing the capillary tube with a needle valve to better control the refrigerant flow and refrigerant set points, and replacing R410A with a ‘drop-in’ lower global warming potential (GWP) binary mixture of R32/R125 (85/15% molar concentration). All these modifications resulted in significant enhancement in the EER of the baseline WAC. Further, an economic analysis of the new WAC revealed an encouraging payback period

  4. Control Technologies for Room Air-conditioner and Packaged Air-conditioner

    Science.gov (United States)

    Ito, Nobuhisa

    Trends of control technologies about air-conditioning machineries, especially room or packaged air conditioners, are presented in this paper. Multiple air conditioning systems for office buildings are mainly described as one application of the refrigeration cycle control technologies including sensors for thermal comfort and heating/ cooling loads are also described as one of the system control technologies. Inverter systems and related technologies for driving variable speed compressors are described in both case of including induction motors and brushless DC motors. Technologies for more accurate control to meet various kind of regulations such as ozone layer destruction, energy saving and global warming, and for eliminating harmonic distortion of power source current, as a typical EMC problem, will be urgently desired.

  5. Feasibility study on novel room air conditioner with natural cooling capability

    International Nuclear Information System (INIS)

    Han, Zongwei; Liu, Qiankun; Zhang, Yanqing; Zhang, Shuwei; Liu, Jiangzhen; Li, Weiliang

    2016-01-01

    Highlights: • A novel heat pipe combined evaporative cooling room air conditioner is constructed. • The mathematical model of the air conditioner is established. • The reliability of the model is verified by experiments. • The performance of the novel and conventional air conditioner is compared. • The applicability of the novel air conditioner in different areas is investigated. - Abstract: In order to improve the energy efficiency of room air conditioners, this paper proposed a new air conditioner that combined evaporative cooling technology, separate type heat pipe technology, and vapour compression refrigeration technology (called “combined air conditioner”). The mathematical model of the air conditioner was established and its reliability was verified by experiments. Based on the model, the simulation of the operating performance of the combined air conditioner and a conventional air conditioner was studied in typical climate regions during the cooling period, with the following results: In cold and dry areas like Shenyang, compared with the conventional air conditioner, the average cooling coefficient of performance (COP) of the combined air conditioner was increased by 27.40%. As the climate gradually became warmer and humidity gradually increased, the running time of the heat pipe cooling mode was gradually reduced, and then the energy-saving effect of the combined air conditioner became worse. For example, in the hot and humid Guangzhou, the energy saving rate was only 11.81%. Therefore, it was found that the combined air conditioner had good energy-saving potential in cold and dry areas.

  6. Air-conditioner filters enriching dust mites allergen.

    Science.gov (United States)

    Zhan, Xiaodong; Li, Chaopin; Xu, Haifeng; Xu, Pengfei; Zhu, Haibin; Diao, Jidong; Li, Na; Zhao, Beibei

    2015-01-01

    We detected the concentration of dust mites allergen (Der f1 & Der p1) in the air of different places before and after the starting of air-conditioners in Wuhu City, Anhui, China, and to discuss the relation between the dust mites allergen in air-conditioner filters and the asthma attack. The dust samples were collected from the air-conditioner filters in dining rooms, shopping malls, hotels and households respectively. Concentrations of dust mites major group allergen 1 (Der f 1, Der p1) were detected with enzyme linked immunosorbent assay (ELISA), and the dust mite immune activities were determined by dot-ELISA. The concentration of Der f1 in dining rooms, shopping malls, hotels and households was 1.52 μg/g, 1.24 μg/g, 1.31 μg/g and 1.46 μg/g respectively, and the concentration of Der p1 in above-mentioned places was 1.23 μg/g, 1.12 μg/g, 1.16 μg/g and 1.18 μg/g respectively. The concentration of Der f1 & Der p1 in air was higher after the air-conditioners starting one hours later, and the difference was significant (Pair-conditioner filters can enrich dust mites major group allergen, and the allergens can induce asthma. The air-conditioner filters shall be cleaned or replaced regularly to prevent or reduce accumulation of the dust mites and its allergens.

  7. Pulmonary function tests in air conditioner users | Vidya ...

    African Journals Online (AJOL)

    Background: Modernization has been implicated in the pathogenesis of allergic airway diseases. House dust, mites, and indoor air pollutants have been reported to cause elevation of serum IgE levels and/or enhancement of eosinophil activity. A component of modern lifestyle is the intense use of air-conditioners (AC) that ...

  8. Design of direct solar PV driven air conditioner

    KAUST Repository

    Huang, Bin-Juine

    2015-12-05

    © 2015 Elsevier Ltd. Solar air conditioning system directly driven by stand-alone solar PV is studied. The air conditioning system will suffer from loss of power if the solar PV power generation is not high enough. It requires a proper system design to match the power consumption of air conditioning system with a proper PV size. Six solar air conditioners with different sizes of PV panel and air conditioners were built and tested outdoors to experimentally investigate the running probabilities of air conditioning at various solar irradiations. It is shown that the instantaneous operation probability (OPB) and the runtime fraction (RF) of the air conditioner are mainly affected by the design parameter rpL (ratio of maximum PV power to load power). The measured OPB is found to be greater than 0.98 at instantaneous solar irradiation IT > 600 W m-2 if rpL > 1.71 RF approaches 1.0 (the air conditioner is run in 100% with solar power) at daily-total solar radiation higher than 13 MJ m-2 day-1, if rpL > 3.

  9. [Verification of bacteriological safety of PCM 40 air conditioner].

    Science.gov (United States)

    Dumas, J L; Ducel, G; Rouge, J C

    1991-01-01

    This study assessed the bacteriological safety of the bedside air conditioner PCM 40 (Howorth Airtech), used for prevention of intraoperative hypothermia, by blowing filtered warm air through a special mattress. The 3 microns bacterial filter of the device released 2,968 +/- 5,618 particles of diameter less than 3 microns per m3 of room air, containing 78,798 +/- 37,243 of such particles per m3. The amount of bacteries in the air pulsed from the mattress was 30 +/- 41 cfu/m3 vs 120 cfu/m3 in the ambient air and in the hot air supply tubing it reached 6 +/- 5 cfu/m3 vs 175 +/- 77 cfu/m3. It is concluded that bacteriological data do not contra-indicate the use of this air conditioner in the operating theater. The only limitations for use are the position (prone or lateral position) and type of surgery (neurosurgery).

  10. 77 FR 8178 - Test Procedures for Central Air Conditioners and Heat Pumps: Public Meeting

    Science.gov (United States)

    2012-02-14

    .... EERE-2010-BT-TP-0038] Test Procedures for Central Air Conditioners and Heat Pumps: Public Meeting... methodologies and gather comments on testing residential central air conditioners and heat pumps designed to use... residential central air conditioners and heat pumps that are single phase with rated cooling capacities less...

  11. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Science.gov (United States)

    2010-10-01

    ... and Air Conditioners. 52.223-12 Section 52.223-12 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor shall...

  12. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Labeling for central air conditioners, heat... (âAPPLIANCE LABELING RULEâ) Required Disclosures § 305.12 Labeling for central air conditioners, heat pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and...

  13. 75 FR 7987 - Energy Conservation Standards for Residential Clothes Dryers and Room Air Conditioners: Public...

    Science.gov (United States)

    2010-02-23

    ... Conservation Standards for Residential Clothes Dryers and Room Air Conditioners: Public Meeting and... conservation standards for residential clothes dryers and room air conditioners; the analytical framework..., Mailstop EE-2J, Public Meeting for Residential Clothes Dryers and Room Air Conditioners, EERE-2007-BT-STD...

  14. 10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning commercial air conditioners and... PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps § 431.92 Definitions concerning commercial air conditioners and heat pumps. The following definitions apply...

  15. 75 FR 72739 - Compliance Testing Procedures: Correction Factor for Room Air Conditioners

    Science.gov (United States)

    2010-11-26

    ...: Correction Factor for Room Air Conditioners AGENCY: Office of the General Counsel, Department of Energy (DOE... air conditioners. The petition seeks temporary enforcement forbearance, or in the alternative, a... procedures for room air conditioners. Public comment is requested on whether DOE should grant the petition...

  16. 75 FR 14368 - Energy Conservation Standards for Residential Central Air Conditioners and Heat Pumps: Public...

    Science.gov (United States)

    2010-03-25

    ... Conservation Standards for Residential Central Air Conditioners and Heat Pumps: Public Meeting and Availability... conservation standards for residential central air conditioners and heat pumps; the analytical framework..., Mailstop EE-2J, Public Meeting for Residential Central Air Conditioners and Heat Pumps, EERE-2008-BT- STD...

  17. Development of a solar-powered residential air conditioner: Economic analysis

    Science.gov (United States)

    1975-01-01

    The results of investigations aimed at the development of cost models to be used in the economic assessment of Rankine-powered air conditioning systems for residential application are summarized. The rationale used in the development of the cost model was to: (1) collect cost data on complete systems and on the major equipment used in these systems; (2) reduce these data and establish relationships between cost and other engineering parameters such as weight, size, power level, etc; and (3) derive simple correlations from which cost-to-the-user can be calculated from performance requirements. The equipment considered in the survey included heat exchangers, fans, motors, and turbocompressors. This kind of hardware represents more than 2/3 of the total cost of conventional air conditioners.

  18. Residential air-conditioner usage in China and efficiency standardization

    International Nuclear Information System (INIS)

    Wu, Jianghong; Liu, Chaopeng; Li, Hongqi; Ouyang, Dong; Cheng, Jianhong; Wang, Yuanxia; You, Shaofang

    2017-01-01

    Determining the real energy consumption and usage pattern of a room air-conditioner (RAC) are important issues from the point of view of both RAC design and evaluation of its energy efficiency. An air-conditioner's running time is fundamental data for the calculation of SEER and APF values. Therefore, in 2010, a nationwide investigation of RAC usage was conducted and 400 selected air-conditioning-units were monitored for a full year to obtain data on their cooling and heating usage. Two running time curves (cooling and heating) were obtained for the air-conditioners as a function of outdoor air temperatures using statistical analysis. The results show that the 27–30 °C temperature range accounts for more than 52% of the cooling time. Conversely, the 0–8 °C temperature range is associated with more than 75% of the heating time. The research presented in this paper has significantly contributed to China's new variable-speed RAC efficiency standard (GB21455-2013). It also has far-reaching implications for both the air-conditioner industry and energy policy in China due to its different method of calculating energy efficiency. - Highlights: • A nationwide survey to realize China's residential air-conditions usage behaviors. • Air-conditioner running time-environment temperature curves are obtained. • The peak heating demand and peak cooling demand happen at 28 °C and 4 °C, respectively. • The temperature of 27 °C–30 °C accounts for over 52% refrigeration time. • The temperature of 0 °C–8 °C occupies more than 75% heating time.

  19. Design of direct solar PV driven air conditioner

    KAUST Repository

    Huang, Bin-Juine; Hou, Tung-Fu; Hsu, Po-Chien; Lin, Tse-Han; Chen, Yan-Tze; Chen, Chi-Wen; Li, Kang; Lee, K.Y.

    2015-01-01

    ). The measured OPB is found to be greater than 0.98 at instantaneous solar irradiation IT > 600 W m-2 if rpL > 1.71 RF approaches 1.0 (the air conditioner is run in 100% with solar power) at daily-total solar radiation higher than 13 MJ m-2 day-1, if rpL > 3.

  20. Domestic Refrigeration, Freezer, and Window Air Conditioner Service. Teacher Edition.

    Science.gov (United States)

    Clemons, Mark

    This curriculum guide contains six units of instruction for a course in domestic refrigerator, freezer, and window air conditioner service. The units cover the following topics: (1) service fundamentals; (2) mechanical components and functions; (3) electrical components and control devices; (4) refrigerator and freezer service; (5) domestic ice…

  1. Influence of local air velocity from air conditioner evaluated by salivary and skin biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Masaki; Takahashi, Takayuki; Yoshino, Yuichiro; Sasaki, Makoto [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Nishimiya, Hajime [Asahi Kasei Homes Corporation, R and D Laboratories, 2-1 Samejima, Fuji, Shizuoka 416-8501 (Japan)

    2010-11-15

    The purpose of this paper is to reveal both the psychosomatic and the physical effects of local air velocity from an air conditioner using biomarkers which can be collected noninvasively. Salivary {alpha}-amylase activity (SAA) and salivary cortisol were used as the indexes of psychosomatic effects. The total protein (TP) collected from stratum corneum was used as an index of the physical condition of dry skin. A continuous experiment over a 5 days period in summer was conducted using 8 healthy young male adults for 2-types of airflow conditioners, a whole ceiling-type air conditioner (without local air velocity) and a normal-type air conditioner (with local air velocity). The subjects felt cool, windy, dry and uncomfortable when under the normal-type air conditioner as determined in a subjective evaluation. The SAA under the normal-type air conditioner fluctuated more widely than with the whole ceiling-type air conditioner. The level of salivary cortisol decreased more in a day under the normal-type air conditioner than with the whole ceiling-type air conditioner. These results showed that reducing local air velocity may provide more healthy psychosomatic conditions over the long-term. Moreover, the TP of a drying-exposed skin area showed a significant change during this experiment whereas the TP of drying-protected area was relatively unchanged. It was indicated that one week's exposure to local air velocity conditions possibly influences the drying of facial skin. Thus, air movement at low velocity can be provides more comfortable conditions not only psychosomatically but also physically. (author)

  2. Air conditioner with three stages of indirect regeneration

    International Nuclear Information System (INIS)

    Worthington, M.N.

    1987-01-01

    An air conditioner is described comprising: a cabinet defining an internal evaporation chamber and having an air inlet and an air outlet; a heat exchanger mounted in the cabinet and defining an air movement path between the air inlet and the air outlet; means for supplying air to be cooled to the air inlet of the cabinet of movement through the air movement path of the heat exchanger in a heat exchanger relationship; air diversion means for continuously diverting some of the air emerging from the air outlet of the cabinet; and means in the evaporation chamber of the cabinet for recirculating spraying water into the chiller tube of the heat exchanger for interacting with the diverted air moving therethrough to evaporatively cool the heat exchanger

  3. ENERGY STAR Certified Non-AHRI Central Air Conditioner Equipment and Air Source Heat Pump

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Air Source Heat Pump and Central Air Conditioner...

  4. Ventilation-air conditioner system in nuclear power plant

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Sugisaki, Toshihiko.

    1989-01-01

    This invention concerns a ventilation-air conditioner system which enables, upon occurrence of accidents in a nuclear power plant, continuous operation for other adjacent nuclear power plants with no effect of accidents. Air supply system and exhaust system are operated during usual operaiton. If loss of coolants accidents should occur in an adjacent nuclear power plants, operation is switched from ventilation operaiton to the operation of re-cycling system based on an AND logic of three signals, that is, a pressure HIGH signal for the reactor container, a water level LOW signal for the reactor and a radioactivity signal of the ventilation-air conditioner sytem on the side of air supply in the nuclear power plant. Thus, nuclear reactor buildings of the nuclear power plant are from the external atmosphere. Therefore, the radioactivity HIGH signal for switching to the emergency air conditioner system of the nuclear power plant is not actuated due to the loss of coolant accidents in the adjacent nuclear power plant. In addition, since the atmospheric temperature in the nuclear reactor building can be maintained by a cooling device disposed to the recycling system, reactor shutdown can be prevented. (I.S.)

  5. 10 CFR Appendix F to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Room Air Conditioners

    Science.gov (United States)

    2010-01-01

    ... of Room Air Conditioners F Appendix F to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY... Conditioners 1. Test method. The test method for testing room air conditioners shall consist of application of the methods and conditions in American National Standard (ANS) Z234.1-1972, “Room Air Conditioners...

  6. Room air conditioner load control under summer comfort constraint

    OpenAIRE

    Da Silva , David; Brancaccio , M; Duplessis , Bruno; Adnot , J

    2010-01-01

    International audience; Load control options interest is growing because it can represent a response to future network investments and to congestion problems. In this frame, the present paper gives a methodology to quantify the value of load control for heat pumps (room air conditioners), in small tertiary and residential buildings, considering the occupant's comfort and the electrical grid needs for load shift. This methodology was applied to a small office building where simulations were ma...

  7. Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, E.; Woods, J.; Judkoff, R.

    2012-04-01

    This report documents the design of a desiccant enhanced evaporative air conditioner (DEVAP AC) prototype and the testing to prove its performance. Previous numerical modeling and building energy simulations indicate a DEVAP AC can save significant energy compared to a conventional vapor compression AC (Kozubal et al. 2011). The purposes of this research were to build DEVAP prototypes, test them to validate the numerical model, and identify potential commercialization barriers.

  8. Development of multiplexing network for air conditioner systems; Eakon yo LAN system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, T; Nakazawa, Y; Nakase, M; Sato, Y [Nissan Motor Co. Ltd., Tokyo (Japan); Nomura, M; Okasato, Y; Sunaga, H [Calsonic Corp., Tokyo (Japan)

    1997-10-01

    Plural air flap actuators of the air conditioner system in a vehicle have been integrated into a single-type actuator using two newly developed technologies: super-low-cost multiplexing network technology and digital motor control technology with a 1-bit A/D converter. The number of harnesses and connectors and the handling load of the air conditioner control microcomputer are reduced, so that we succeeded in sharply reducing the cost of the air conditioner system. 9 figs., 2 tabs.

  9. Active Participation of Air Conditioners in Power System Frequency Control Considering Users’ Thermal Comfort

    Directory of Open Access Journals (Sweden)

    Rongxiang Zhang

    2015-09-01

    Full Text Available Air conditioners have great potential to participate in power system frequency control. This paper proposes a control strategy to facilitate the active participation of air conditioners. For each air conditioner, a decentralized control law is designed to adjust its temperature set point in response to the system frequency deviation. The decentralized control law accounts for the user’s thermal comfort that is evaluated by a fuzzy algorithm. The aggregation of air conditioners’ response is conducted by using the Monte Carlo simulation method. A structure preserving model is applied to the multi-bus power system, in which air conditioners are aggregated at certain load buses. An inner-outer iteration scheme is adopted to solve power system dynamics. An experiment is conducted on a test air conditioner to examine the performance of the proposed decentralized control law. Simulation results on a test power system verify the effectiveness of the proposed strategy for air conditioners participating in frequency control.

  10. Energy performance and consumption for biogas heat pump air conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenjun [Architectural Engineering College, Qingdao Agricultural University, 266109 (China); Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Tianjin University, Tianjin, 300072 (China); Wu, Huaizhi; Wu, Meiling [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Tianjin University, Tianjin, 300072 (China)

    2010-12-15

    Biogas engine-driven heat pump air conditioner is a new-style system which includes biogas engine-driven heat pump, primary heat exchanger, second heat exchanger, sprayed room and fans, pumps, etc. In summertime, the air can be reheated by the waste heat water from the biogas engine in the system, while the air can be reheated and humidified by the waste heat water in winter. Reducing or displacing electrical heating requirements can achieve the great opportunity for significant energy savings. This paper, therefore, aims to improve the energy performance of the AC system by using the waste heat from the biogas engine. The mathematic model was used to research the BHPAC. Explicitly, we investigated the influence of various factors including the outdoor air temperature and humidity in summer and winter. Results show that the biogas engine-driven heat pump air conditioner can save more energy than the electrical power heat pump. In summer, the minimum for percentage of primary energy saving for BHPAC is over 25%. With the outdoor air dry-bulb temperature and the relative humidity rises, the saving energy percentage rises. In winter, the minimum for percentage of primary energy saving for BHPAC is 37%. The more the outdoor air relative humidity of the outdoor air decreases, the more the BHPAC saves energy. It is proved that the system which is a highly actively fully utilizing energy technology has good partial load characteristic and good effects of energy saving. (author)

  11. Viewpoint Mitigation of emissions through energy efficiency standards for room air conditioners in Malaysia

    International Nuclear Information System (INIS)

    Mahlia, T.M.I.; Masjuki, H.H.; Saidur, R.; Amalina, M.A.

    2004-01-01

    Malaysian economy has grown rapidly in the last two decades. This growth has increased the ownership of household electrical appliances including room air conditioners. The number of users of air conditioners is predicted to grow dramatically in Malaysian households in the future. To reduce energy consumption in the residential sector, the Malaysia Energy Commission is considering implementing minimum energy efficiency standards for room air conditioners in early 2004. This paper attempts to predict the potential mitigation of emissions through energy efficiency standards for room air conditioners in Malaysia. The calculations were based on the growth of room air conditioners ownership data in Malaysian households. The study found that the energy efficiency standards for room air conditioners would mitigate a significant amount of emissions in this country

  12. Research on a Micro-Grid Frequency Modulation Strategy Based on Optimal Utilization of Air Conditioners

    Directory of Open Access Journals (Sweden)

    Qingzhu Wan

    2016-12-01

    Full Text Available With the proportion of air conditioners increasing gradually, they can provide a certain amount of frequency-controlled reserves for a micro-grid. Optimizing utilization of air conditioners and considering load response characteristics and customer comfort, the frequency adjustment model is a quadratic function model between the trigger temperature of the air conditioner compressor, and frequency variation is provided, which can be used to regulate the trigger temperature of the air conditioner when the micro-grid frequency rises and falls. This frequency adjustment model combines a primary frequency modulation method and a secondary frequency modulation method of the energy storage system, in order to optimize the frequency of a micro-grid. The simulation results show that the frequency modulation strategy for air conditioners can effectively improve the frequency modulation ability of air conditioners and frequency modulation effects of a micro-grid in coordination with an energy storage system.

  13. Refrigerant lines in split-type air conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Rettenberger, P

    1979-01-01

    Condensator and evaporating units of split-type air conditioners are evaluated and filled with the refrigerant by the producer. The line systems are hermetically closed and prevent the loss of refrigerant and the penetration of moisture or dirt. The best installation method is the 'bendable lines'. They combine flexibility and easy installation with the advantages of the copper pipe. Several ducting systems and their connecting elements like couplings and valves are described, their installation is explained. These flexible systems are especially suitable for small air-condition plants of the split-type the evaporating unit of which is portable and can put where it is desired.

  14. Pulmonary function tests in air conditioner users

    African Journals Online (AJOL)

    McRoy

    2014-07-26

    Jul 26, 2014 ... Background: Modernization has been implicated in the pathogenesis of allergic airway diseases. House dust, mites, and indoor air pollutants have been reported to cause elevation of serum IgE levels and/or enhancement of eosinophil activity. A component of modern lifestyle is the intense use of ...

  15. Application of the CPE-air conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Van Hest, J.; Van der Neut, R.P.; Wijnstra, K.P.

    1986-09-01

    Described is an air conditioning system with a special cooling unit, CPE (combined dew point and heat exchanger). The system has been installed for the first time in the Netherlands in a shop in Utrecht. Results of measurements during September 1985 are presented. 7 figs.

  16. 16 CFR Appendix H to Part 305 - Cooling Performance and Cost for Central Air Conditioners

    Science.gov (United States)

    2010-01-01

    ... RULEâ) Pt. 305, App. H Appendix H to Part 305—Cooling Performance and Cost for Central Air Conditioners... Split System Units Central Air Conditioners (Cooling Only): All capacities 10.9 23.0 Heat Pumps (Cooling... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Cooling Performance and Cost for Central Air...

  17. Bacterial community structures in air conditioners installed in Japanese residential buildings.

    Science.gov (United States)

    Hatayama, Kouta; Oikawa, Yurika; Ito, Hiroyuki

    2018-01-01

    The bacterial community structures in four Japanese split-type air conditioners were analyzed using a next-generation sequencer. A variety of bacteria were detected in the air filter of an air conditioner installed on the first floor. In the evaporator of this air conditioner, bacteria belonging to the genus Methylobacterium, or the family of Sphingomonadaceae, were predominantly detected. On the other hand, the majority of bacteria detected in the air filters and evaporators of air conditioners installed on the fifth and twelfth floors belonged to the family Enterobacteriaceae. The source of bacteria belonging to the family Enterobacteriaceae may have been aerosols generated by toilet flushing in the buildings. Our results suggested the possibility that the bacterial contamination in the air conditioners was affected by the floor level on which they were installed. The air conditioner installed on the lower floor, near the ground, may have been contaminated by a variety of outdoor bacteria, whereas the air conditioners installed on floors more distant from the ground may have been less contaminated by outdoor bacteria. However, these suppositions may apply only to the specific split-type air conditioners that we analyzed, because our sample size was small.

  18. Research on a compact adsorption room air conditioner

    International Nuclear Information System (INIS)

    Yang, G.Z.; Xia, Z.Z.; Wang, R.Z.; Keletigui, Daou; Wang, D.C.; Dong, Z.H.; Yang, X.

    2006-01-01

    A novel compact adsorption room air conditioner with a cooling capacity of 1 kW has been designed, and two prototypes have been built. A two bed, continuous adsorption refrigeration cycle with heat recovery and mass recovery is adopted. Micropore spherical silica gel and water are selected as the working pair. A gravity heat pipe with methanol as working medium is designed to output the cooling. Experimental investigations have indicated that under typical air conditioning conditions, for the first prototype, a cooling capacity of 687 W and a COP (coefficient of performance) of 0.307 can be obtained. However, for the improved one, a cooling capacity of 790 W and a COP of 0.446 can be reached. It is also proved that the operating temperatures have strong influences on the performance. The designed room air conditioner can be driven by a low grade heat source ( o C) and has small dimensions of 300 mm (depth), 500 mm (width) and 950 mm (height)

  19. Development of a solar-powered residential air conditioner: Screening analysis

    Science.gov (United States)

    1975-01-01

    Screening analysis aimed at the definition of an optimum configuration of a Rankine cycle solar-powered air conditioner designed for residential application were conducted. Initial studies revealed that system performance and cost were extremely sensitive to condensing temperature and to the type of condenser used in the system. Consequently, the screening analyses were concerned with the generation of parametric design data for different condenser approaches; i. e., (1) an ambient air condenser, (2) a humidified ambient air condenser (3) an evaporative condenser, and (4) a water condenser (with a cooling tower). All systems feature a high performance turbocompressor and a single refrigerant (R-11) for the power and refrigeration loops. Data were obtained by computerized methods developed to permit system characterization over a broad range of operating and design conditions. The criteria used for comparison of the candidate system approaches were (1) overall system COP (refrigeration effect/solar heat input), (2) auxiliary electric power for fans and pumps, and (3) system installed cost or cost to the user.

  20. 16 CFR Appendix I to Part 305 - Heating Performance and Cost for Central Air Conditioners

    Science.gov (United States)

    2010-01-01

    ... RULEâ) Pt. 305, App. I Appendix I to Part 305—Heating Performance and Cost for Central Air Conditioners... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Heating Performance and Cost for Central Air Conditioners I Appendix I to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC...

  1. Evaluation of environmental and physiological factors of a whole ceiling-type air conditioner using a salivary biomarker

    Energy Technology Data Exchange (ETDEWEB)

    Tahara, Yusuke; Yamaguchi, Masaki [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Morito, Naomi; Nishimiya, Hajime; Yamagishi, Hideyuki [Asahi Kasei Homes Corporation, R and D Laboratories, 2-1 Samejima, Fuji, Shizuoka 416-8501 (Japan)

    2009-06-15

    In order to improve environmental condition such as humidity and airflow in living spaces, a whole ceiling-type air conditioner is proposed. This novel air conditioner exhaust dispersed airflow from the whole ceiling by using a 3-dimensional knit fabric. The purpose of this paper is to reveal the effects when controlling humidity and airflow using the whole ceiling-type air conditioner compared to a commercialized concentrated exhaust air conditioner (normal-type air conditioner) under the same temperature. Salivary {alpha}-amylase activity (SAA) was used as an index of sympathetic nervous activity. An acute experiment for a 15 min period was conducted using 12 healthy young female adults. No significant differences in room and skin temperatures were observed between the whole ceiling-type air conditioner and the normal-type air conditioner. The whole ceiling-type air conditioner showed 11.1% lower humidity than the normal-type air conditioner. The whole ceiling-type air conditioner showed one-thirteenth the airflow of the normal-type air conditioner. As a result, the PMV of the whole ceiling-type air conditioner was more comfortable level than the normal one. Moreover, subjective evaluation questionnaire revealed a significant difference was observed in wind perception (windy). The SAA of subjects under the whole ceiling-type air conditioner showed significantly low values compared with the normal-type air conditioner. It was found that the subject's sympathetic nervous activity has been inactivated under the conditions of the whole ceiling-type air conditioner. Thus, it was revealed that the whole ceiling-type air conditioner provides a more comfortable air environment by reducing physical stimulations to humans. (author)

  2. Huffing air conditioner fluid: a cool way to die?

    Science.gov (United States)

    Phatak, Darshan R; Walterscheid, Jeffrey

    2012-03-01

    "Huffing," the form of substance abuse involving inhalants, is growing in popularity because of the ease and availability of chemical inhalants in many household products. The purpose in huffing is to achieve euphoria when the chemicals in question interact with the central nervous system in combination with oxygen displacement. The abuser is lulled into a false sense of safety despite the well-documented potential for lethal cardiac arrhythmia and the effects of chronic inhalant abuse, including multisystem organ failure, and brain damage. Huffing air conditioner fluid is a growing problem given the accessibility to outdoor units and their fluid components, such as difluorochloromethane(chlorodifluoromethane, Freon), and we have classified multiple cases of accidental death due to the toxicity of difluorochloromethane. Given the ubiquity of these devices and the vast lack of gating or security devices, they make an inviting target for inhalant abusers. Acute huffing fatalities have distinct findings that are present at the scene, given the position of the decedent and proximity to the air conditioner unit. The purpose of the autopsy in these cases is to exclude other potential causes of death and to procure specimens for toxicological analysis.

  3. Towards a Residential Air-Conditioner Usage Model for Australia

    Directory of Open Access Journals (Sweden)

    Mark Goldsworthy

    2017-08-01

    Full Text Available Realistic models of occupant behaviour in relation to air-conditioner (a/c use are fundamentally important for developing accurate building energy simulation tools. In Australia and elsewhere, such simulation tools are inextricably bound both in legislation and in the design of new technology, electricity infrastructure and regulatory schemes. An increasing number of studies in the literature confirm just how important occupants are in determining overall energy consumption, but obtaining the data on which to build behaviour models is a non-trivial task. Here data is presented on air-conditioner usage derived from three different types of case study analyses. These are: (i use of aggregate energy consumption data coupled with weather, demographic and building statistics across Australia to estimate key predictors of energy use at the aggregate level; (ii use of survey data to determine characteristic a/c switch on/off behaviours and usage frequencies; and (iii use of detailed household level sub-circuit monitoring from 140 households to determine a/c switch on/off probabilities and their dependence on different building and occupant parameters. These case studies are used to assess the difficulties associated with translation of different forms of individual, aggregate and survey based information into a/c behaviour simulation models. Finally a method of linking the data gathering methodologies with the model development is suggested. This method would combine whole-of-house “smart”-meter data measurements with linked targeted occupant surveying.

  4. Capacity modulation of an inverter-driven multi-air conditioner using electronic expansion valves

    International Nuclear Information System (INIS)

    Choi, J.M.; Kim, Y.C.

    2003-01-01

    An inverter-driven multi-air conditioner provides the benefits of comfort, energy conservation and easy maintenance. Recently, the multi-air conditioner has been employed in small and medium-sized buildings. However, the performance data and control algorithm for multi-air conditioners are limited in literature due to complicated system parameters and operating conditions. In the present study, the performance of an inverter-driven multi-air conditioner having two indoor units with electronic expansion valves (EEV) was measured by varying indoor loads, EEV opening, and compressor speed. Based on the experimental results, the operating characteristics and capacity modulation of the inverter-driven multi-air conditioner are discussed. As a result, it is suggested that the superheats for both indoor units have to be maintained around 4 o C by utilizing the EEVs in this system, and consequently, the compressor speed needs to be adjusted to provide optimum cooling capacity for each indoor unit

  5. Need Analysis for Air Conditioners in Public Sector of Surabaya City Government

    Directory of Open Access Journals (Sweden)

    Dwiarti Larasputri

    2017-01-01

    Full Text Available In typical buildings, air conditioners have the biggest percentage in energy consumption among all sectors. It makes a good management for air conditioners is needed and important in order to use the energy efficiently. Having a very hot and humid weather, it gives impact that most of buildings in Surabaya installed air conditioners, including Surabaya City Government office buildings. However, there is no regulation nor guidance how to manage air conditioners in Surabaya City Government, while Surabaya itself has a goal to become a green-eco city. Then, the existing condition of air conditioners usage in Surabaya Government units (SKPDs is evaluated. The evaluation resulted that most of air conditioners were over capacity and not all of them were efficient in energy consumption. Therefore, a need analysis is required to help Surabaya City Government managing its air conditioners better. By applying two different concepts, one is based on the architectural view and another one is based on green building criteria, the existing condition is analyzed and two procedures of need analysis are produced. The procedures can be implemented for two different conditions of office building rooms in Surabaya City Government.

  6. Substantial energy conservation in air conditioners; Substantiele energiebesparing bij luchtbehandelingsinstallaties

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    An air conditioner has been retrofitted by application of an optimized fan in combination with an EC motor (brushless dc-motor). Attention is paid to the difference between an AC- and and EC motor, between free-running and spiral housing fans, between direct or indirect-driven, and between forward-bended and backward-bended blades. By means of equations and diagrams the realized energy conservation is visualized. [Dutch] De renovatie van een luchtbehandelingskast wordt besproken. Door de toepassing van ventilatoren met een geoptimaliseerde waaier in combinatie met een EC-motor (borstelloze gelijkstroommotor) wordt een substantiele energiebesparing gerealiseerd. Er wordt op verschillende aspecten ingegaan. Onder meer het verschil tussen een AC- en EC-motor, tussen vrijlopende en slakkenhuisventilatoren, tussen direct- of indirect-gedreven schoepen en tussen voorwaarts- of achterwaartsgebogen schoepen. Aan de hand van vergelijkingen en diagrammen wordt de energiewinst zichtbaar gemaakt.

  7. Development of a solar powered residential air conditioner (General optimization)

    Science.gov (United States)

    Lowen, D. J.

    1976-01-01

    A commercially available 3-ton residential Lithium Bromide (LiBr) absorption air conditioner was modified for use with lower temperature solar heated water. The modification included removal of components such as the generator, concentration control chamber, liquid trap, and separator; and the addition of a Chrysler designed generator, an off-the-shelf LiBr-solution pump. The design goal of the modified unit was to operate with water as the heat-transfer fluid at a target temperature of 85 C (185 F), 29.4 C (85 F) cooling water inlet, producing 10.5 kW (3 tons) of cooling. Tests were performed on the system before and after modification to provide comparative data. At elevated temperatures (96 C, 205 F), the test results show that Lithium Bromide was carried into the condenser due to the extremely violent boiling and degraded the evaporator performance.

  8. Improvement of Cooling Performance of a Compact Thermoelectric Air Conditioner Using a Direct Evaporative Cooling System

    Science.gov (United States)

    Tipsaenporm, W.; Lertsatitthanakorn, C.; Bubphachot, B.; Rungsiyopas, M.; Soponronnarit, S.

    2012-06-01

    This paper presents the results of tests carried out to investigate the potential application of a direct evaporative cooling (DEC) system for improving the performance of a compact thermoelectric (TE) air conditioner. The compact TE air conditioner is composed of three TE modules. The cold and hot sides of the TE modules were fixed to rectangular fin heat sinks. The DEC system produced cooling air that was used to assist the release of heat from the heat sinks at the hot side of the TE modules. The results showed that the cooling air dry bulb temperature from the DEC system achieved drops of about 5.9°C in parallel with about a 33.4% rise in relative humidity. The cooling efficiency of the DEC system varies between 72.1% and 81.5%. It increases the cooling capacity of the compact TE air conditioner from 53.0 W to 74.5 W. The 21.5 W (40.6%) increase represents the difference between the compact air conditioner operating with ambient air flowing through the TE module's heat sinks, and the compact air conditioner operating with the cooler air from the DEC system flowing through the TE module's heat sinks. In both scenarios, electric current of 4.5 A was supplied to the TE modules. It also has been experimentally proven that the coefficient of performance (COP) of the compact TE air conditioner can be improved by up to 20.9% by incorporating the DEC system.

  9. Thermoeconomic optimization of small size central air conditioner

    International Nuclear Information System (INIS)

    Zhang, G.Q.; Wang, L.; Liu, L.; Wang, Z.

    2004-01-01

    The application of thermoeconomic optimization design in an air-conditioning system is important in achieving economical life cycle cost. Previous work on thermoeconomic optimization mainly focused on directly calculating exergy input into the system. However, it is usually difficult to do so because of the uncertainty of input power of fan on the air side of the heat-exchanger and that of pump in the system. This paper introduces a new concept that exergy input into the system can be substituted for the sum of exergy destruction and exergy output from the system according to conservation of exergy. Although it is also difficult for a large-scale system to calculate exergy destruction, it is feasible to do so for a small-scale system, for instance, villa air conditioner (VAC). In order to perform thermoeconomic optimization, a program is firstly developed to evaluate the thermodynamic property of HFC134a on the basis of Martin-Hou state equation. Authors develop thermodynamic and thermoeconomic objective functions based on second law and thermoeconomic analysis of VAC system. Two optimization results are obtained. The design of VAC only aimed at decreasing the energy consumption is not comprehensive. Life cycle cost at thermoeconomic optimization is lower than that at thermodynamic optimization

  10. Energy and economic analysis of a building air-conditioner with a phase change material (PCM)

    International Nuclear Information System (INIS)

    Chaiyat, Nattaporn

    2015-01-01

    Highlights: • Phase change material of Rubitherm20 was applied with the air-conditioner under the climate of Thailand. • PCM was used to reduce cooling load and electrical power of the air-conditioner. • Mathematical model of the packed ball bed of PCM was presented to predict the thermal performance. - Abstract: In this study, a concept of using phase change material (PCM) for improving cooling efficiency of an air-conditioner had been presented under Thailand climate. Rubitherm20 (RT-20) was selected to evaluate the thermal performance by reducing the air temperature entering the evaporating coil. The model of PCM celluloid balls had been performed with the air-conditioner. For the experiment, 2 TR of R-134a air-conditioner was chosen to test a pack bed of PCM balls with thickness 40 cm. The pressure drops of the air flowing through the bed were considered with and without a set of by-pass tubes along the height of the storage bed. The mathematical model of the air-conditioner with the PCM storage was developed and verified with the testing results. From the study results, it could be seen that pressure drops of the bed with and without bypass tubes were nearly the same results. Thus, PCM ball pack bed using RT-20 without bypass tubes was used to improve the cooling efficiency of the air-conditioner. The experimental result of the modified unit was compared and verified with the mathematical model, which agreed quite well with the simulation result. Finally, the model was used to analyze the economic result, which found that the electrical consumption of the modified air-conditioner could be decreased around 3.09 kW h/d. The saving cost from the PCM bed could be 9.10% of 170.03 USD/y and the payback period was around 4.15 y

  11. Application of evaporative cooling on the condenser of window-air-conditioner

    International Nuclear Information System (INIS)

    Hajidavalloo, Ebrahim

    2007-01-01

    Reduction of energy consumption is a major concern in the vapor compression refrigeration cycle especially in the area with very hot weather conditions (about 50 deg. C), where window-air-conditioners are usually used to cool homes. In this weather condition performance of air condenser window-air-conditioners decrease sharply and electrical power consumption increase considerably. These problems have activated the research programs in order to improve the performance of window-air-conditioners by enhancing heat transfer rate in the condenser. In this article, a new design with high commercialization potential for incorporating of evaporative cooling in the condenser of window-air-conditioner is introduced and experimentally investigated. A real air conditioner is used to test the innovation by putting two cooling pads in both sides of the air conditioner and injecting water on them in order to cool down the air before it passing over the condenser. The experimental results show that thermodynamic characteristics of new system are considerably improved and power consumption decreases by about 16% and the coefficient of performance increases by about 55%

  12. Application of evaporative cooling on the condenser of window-air-conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Hajidavalloo, Ebrahim [Shahid Chamran University, Department of Mechanical Engineering, Golestan St., Ahwaz, Khoozestan 61355 (Iran, Islamic Republic of)]. E-mail: hajidae_1999@yahoo.com

    2007-08-15

    Reduction of energy consumption is a major concern in the vapor compression refrigeration cycle especially in the area with very hot weather conditions (about 50 deg. C), where window-air-conditioners are usually used to cool homes. In this weather condition performance of air condenser window-air-conditioners decrease sharply and electrical power consumption increase considerably. These problems have activated the research programs in order to improve the performance of window-air-conditioners by enhancing heat transfer rate in the condenser. In this article, a new design with high commercialization potential for incorporating of evaporative cooling in the condenser of window-air-conditioner is introduced and experimentally investigated. A real air conditioner is used to test the innovation by putting two cooling pads in both sides of the air conditioner and injecting water on them in order to cool down the air before it passing over the condenser. The experimental results show that thermodynamic characteristics of new system are considerably improved and power consumption decreases by about 16% and the coefficient of performance increases by about 55%.

  13. DEMONSTRATION AND TESTING OF AN EER OPTIMIZER SYSTEM FOR DX AIR-CONDITIONERS

    Science.gov (United States)

    2017-10-07

    Conditioner and Any Web Connected Device Such as a Tablet, Phone, Laptop, or Desktop Computer. ............. 28  Figure 15. A Summary Screen Showing...efficiency specifications published by the Consortium for Energy Efficiency (CEEE) for new unitary air conditioning and heat pump systems5 establish Energy...Figure 14. Connection Diagram Showing Data Path between the Air Conditioner and Any Web Connected Device Such as a Tablet, Phone, Laptop, or Desktop

  14. Influence of local air velocity from air conditioner evaluated by salivary and skin biomarkers

    OpenAIRE

    Yamaguchi, Masaki; Takahashi, Takayuki; Yoshino, Yuichiro; Sasaki, Makoto; Nishiyama, Hajime

    2010-01-01

    The purpose of this paper is to reveal both the psychosomatic and the physical effects of local air velocity from an air conditioner using biomarkers which can be collected noninvasively. Salivary α-amylase activity (SAA) and salivary cortisol were used as the indexes of psychosomatic effects. The total protein (TP) collected from stratum corneum was used as an index of the physical condition of dry skin. A continuous experiment over a 5 days period in summer was conducted using 8 healthy you...

  15. The life cycle rebound effect of air-conditioner consumption in China

    International Nuclear Information System (INIS)

    Liu, Jingru; Sun, Xin; Lu, Bin; Zhang, Yunkun; Sun, Rui

    2016-01-01

    Highlights: • Develop a life cycle rebound effect model. • Assess the life cycle rebound effect of Chinese room air conditioners. • Conduct a questionnaire to assess the consumption behavior of Chinese room air conditioners. • Rebound effect should be considered by energy policy makers. - Abstract: Governments worldwide are attempting to reduce energy consumption and environmental pollution by confronting environmental problems and adopting more energy-efficient products. However, because of the rebound effect, energy-saving targets cannot always be fully achieved, and sometimes greater energy consumption is generated. Research on the rebound effect from the perspective of industrial ecology considers not only direct energy consumption but also its life cycle negative impacts on the environment with China’s rapid economic development and simultaneously improving quality of life, the ownership of room air conditioners (RACs) has increased more than three hundred times, and air conditioners’ energy consumption has increased one thousand times over the last twenty years. The Air Conditioner Energy Efficiency Standard is one of the most important measures in China for reducing the amount of energy consumed by RACs. This paper introduces a life cycle based method to estimate the rebound effect of Chinese RACs consumption. This model provides a product’s life-cycle view to assess the rebound effect, considering the contribution of both producer and consumer. Based on the established life cycle rebound effect model, we compared urban household RAC consumption behaviour before and after the launch of the Air Conditioner Energy Efficiency Standard. A rebound effect in RAC consumption was found that there was a longer daily usage period in the household as air conditioner efficiency levels improved. The life cycle rebound effect of household air-conditioner consumption was calculated to be 67%. The main conclusion obtained from this study is that policies and

  16. [Research on dust mite allergen gathered from filters of air-conditioners].

    Science.gov (United States)

    Zhan, Xiao-dong; Wu, Hua; Hu, Hui-min; Li, Chao-pin

    2015-12-01

    To discuss the relation between the dust mite allergen (Der) in air-conditioner filters and the asthma attack. The dust samples were collected from the filters of air-conditioners in dining rooms, shopping malls, hotels and households, respectively. The concentrations of Der f 1 and Der p1 were detected by ELISA, and the dust mite immune activities were determined by dot-ELISA. The concentrations of Der f 1 in the dining rooms, shopping malls, hotels and households were 1.52, 1.24, 1.31 µg/g and 1.46 µg/g respectively, and the concentrations of Der p 1 were 1.23, 1.12, 1.16 µg/ g and 1.18 µg, respectively. One hour after the running of air-conditioners, the concentrations of Der f 1 and Der p 1 in the air were higher than those before the running of air-conditioners, and the differences were significant (P air-conditioners in domestic houses in Wuhu City, and the allergens can induce asthma.

  17. Roseomonas aerofrigidensis sp. nov., isolated from an air conditioner.

    Science.gov (United States)

    Hyeon, Jong Woo; Jeon, Che Ok

    2017-10-01

    A Gram-stain-negative, strictly aerobic bacterium, designated HC1 T , was isolated from an air conditioner in South Korea. Cells were orange, non-motile cocci with oxidase- and catalase-positive activities and did not contain bacteriochlorophyll a. Growth of strain HC1 T was observed at 10-45 °C (optimum, 30 °C), pH 4.5-9.5 (optimum, pH 7.0) and 0-3 % (w/v) NaCl (optimum, 0 %). Strain HC1 T contained summed feature 8 (comprising C18 : 1ω7c/C18 : 1ω6c), C16 : 0 and cyclo-C19 : 0ω8c as the major fatty acids and ubiquinone-10 as the sole isoprenoid quinone. Phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and an unknown aminolipid were detected as the major polar lipids. The major carotenoid was hydroxyspirilloxanthin. The G+C content of the genomic DNA was 70.1 mol%. Phylogenetic analysis, based on 16S rRNA gene sequences, showed that strain HC1 T formed a phylogenetic lineage within the genus Roseomonas. Strain HC1 T was most closely related to the type strains of Roseomonas oryzae, Roseomonas rubra, Roseomonas aestuarii and Roseomonas rhizosphaerae with 98.1, 97.9, 97.6 and 96.8 % 16S rRNA gene sequence similarities, respectively, but the DNA-DNA relatedness values between strain HC1 T and closely related type strains were less than 70 %. Based on phenotypic, chemotaxonomic and molecular properties, strain HC1 T represents a novel species of the genus Roseomonas, for which the name Roseomonas aerofrigidensis sp. nov. is proposed. The type strain is HC1 T (=KACC 19097 T =JCM 31878 T ).

  18. A hybrid air conditioner driven by a hybrid solar collector

    Science.gov (United States)

    Al-Alili, Ali

    The objective of this thesis is to search for an efficient way of utilizing solar energy in air conditioning applications. The current solar Air Conditioners (A/C)s suffer from low Coefficient of Performance (COP) and performance degradation in hot and humid climates. By investigating the possible ways of utilizing solar energy in air conditioning applications, the bottlenecks in these approaches were identified. That resulted in proposing a novel system whose subsystem synergy led to a COP higher than unity. The proposed system was found to maintain indoor comfort at a higher COP compared to the most common solar A/Cs, especially under very hot and humid climate conditions. The novelty of the proposed A/C is to use a concentrating photovoltaic/thermal collector, which outputs thermal and electrical energy simultaneously, to drive a hybrid A/C. The performance of the hybrid A/C, which consists of a desiccant wheel, an enthalpy wheel, and a vapor compression cycle (VCC), was investigated experimentally. This work also explored the use of a new type of desiccant material, which can be regenerated with a low temperature heat source. The experimental results showed that the hybrid A/C is more effective than the standalone VCC in maintaining the indoor conditions within the comfort zone. Using the experimental data, the COP of the hybrid A/C driven by a hybrid solar collector was found to be at least double that of the current solar A/Cs. The innovative integration of its subsystems allows each subsystem to do what it can do best. That leads to lower energy consumption which helps reduce the peak electrical loads on electric utilities and reduces the consumer operating cost since less energy is purchased during the on peak periods and less solar collector area is needed. In order for the proposed A/C to become a real alternative to conventional systems, its performance and total cost were optimized using the experimentally validated model. The results showed that for an

  19. Technologies for high performance and energy saving in room air conditioners. Shoenegata kokoritsu eakon ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, N. (Toshiba Corp., Tokyo (Japan))

    1994-05-31

    An energy saving inverter type air-conditioner was introduced. It is important to increase the efficiency in the low capacity zone below the rated capacity to realize the energy saving. For the reduction of peak, improving the efficiency in the high capacity operation is also necessary. The power consumption in compressor and in inverter is about 90 % of the total power consumption in air-conditioner. The other 10 % are distributed to the fan motor and the control unit. For achieving the energy saving, the reduction of this 10 % part is also necessary because this 10 % part is constant regardless of the capacity of air-conditioner. The compressor motor was modified to the brushless DC motor with rotor position detecting device to improve the rotor structure and the position detection system. The heat exchanger was changed to a room heat exchanger with slit pattern. For the outdoor heat exchanger, the complex curvature blade fan was adopted. The control system of air-conditioner was changed. The PMV was previously learned and input in the microcomputer to calculate the data. Resultantly, the power consumption was reduced by about 20 % as compared with the conventional air-conditioner. 10 figs., 1 tab.

  20. Net private benefits of purchasing eco-labeled air conditioners and subsidization policies in China

    International Nuclear Information System (INIS)

    Sun, Junxiu; Yin, Haitao; Wang, Feng

    2014-01-01

    Built on a data set of 527 air conditioner models collected from an online retailer, this study investigates whether the savings that consumers realize on their private electricity bills from purchasing energy-efficient appliances compensate for the additional cost of the appliances on the market, and if not, the size of the gap between the savings and the cost. Our findings show that, except for the most energy-efficient category, the cost savings from using energy-efficient air conditioners does compensate for their higher price. Therefore, any government subsidy should be reserved for the most efficient products. For less energy-efficient appliances, the best policy may be to provide more effective information instead of a subsidy because the subsidy might attract consumers away from more energy-efficient air conditioners and result in an unwanted effect. - Highlights: • This paper analyses the net private benefits of purchasing eco-labeled air conditioners in China. • There is no need to subsidize less energy-efficient air conditioners. • The most recently proposed policy development in China is a reform headed in the right direction

  1. Strategies for reducing the environmental impacts of room air conditioners in Europe

    International Nuclear Information System (INIS)

    Grignon-Masse, Laurent; Riviere, Philippe; Adnot, Jerome

    2011-01-01

    In Europe, buildings tend to be equipped with individual air conditioners, which constitute a fast growing electrical end-use. In this context, this study aims to assess the environmental impacts of European individual air conditioners and to analyse policy strategies to reduce these impacts. After analysing the European context concerning individual air conditioners, the environmental impacts of European air conditioners are assessed using a Life Cycle Analysis approach. The following step consists in studying, both technically and economically, different improvement options aiming at reducing the environmental impacts of these appliances. These results, obtained at the product level, are then generalised at the European level and different policy measures are defined and analysed. The main conclusion is that the implementation of a Minimum Energy Performance Standard based on Least Life Cycle Costs could save up to 49 TWh and 20 MtCO 2-eq in 2020 and be economically beneficial to the European end-user. - Research highlights: → A methodology based on Life Cycle Analysis is applied to European air conditioners. → Environmental impacts are mainly due to energy consumption. → There is a high potential for energy savings at very low costs for end users.

  2. [Fungus microbiota in air conditioners in intensive care units in Teresina, Piauí].

    Science.gov (United States)

    Mobin, Mitra; do Amparo Salmito, Maria

    2006-01-01

    With the aim of identifying the fungus microbiota in air conditioners in intensive care units (ICUs) within public and private hospitals in Teresina, Piauí, solid material was collected from ten different ICUs. Thirty-three species of Moniliaceae and Dematiaceae were isolated, which was the first report of these in Piauí. High frequencies of Aspergillus niger Van Tieghem (60%), Aspergillus fumigatus Fres (50%), Trichoderma koningii Oudem (50%) and Aspergillus flavus Link: Fr. (40%) were recorded. The air conditioner cleanliness validity had expired in all the ICUs, and the quantity of colony-forming units exceeded the levels permitted by Law 176/00 from the Ministry of Health. It is important to provide individual protection equipment for professionals, adopt hospital infection control measures, raise the awareness of the presence of fungus infection, improve air circulation around the environment, periodically clean the air conditioners, and make health professionals alert to the importance of these fungi in the hospital environment.

  3. Isolation and Identification of Pathogenic Fungi from Air Conditioners in Tutorial Rooms of the Faculty of Medicine, Universitas Padjadjaran

    Directory of Open Access Journals (Sweden)

    Gowre Govindasamy

    2014-02-01

    Full Text Available Background: Awareness about health problems caused by air conditioner is very important. Thus, it is crucial to have knowledge about proper maintenance of air conditioner. At the Faculty of Medicine, Universitas Padjadjaran, air conditioners are used in every tutorial rooms. This study was performed to provide adequate information on the fungi, such as Aspergillus, Penicillium and Mucor, found in air conditioners. Methods: A descriptive laboratory study was used to identify the presence and the type of pathogenic fungi from air conditioners in tutorial rooms. Thirty-four samples were collected from the air outlet grille of the air conditioners and cultured on Sabouraud agar at 27°C for 2 weeks. Fungi presence were then identified microscopically Results: The results showed that the majority of air conditioners in tutorial rooms of the Faculty of Medicine, University Padjadjaran contained many types of fungus that grew in Sabouraud agar. From 34 samples, thirty two samples were positive and 2 samples were negative. Various fungus have been identified, those were Penicillium (37.5%, Aspergillus (25%, Mucor (2.5% and unidentified (35% Conclusions : The majority of air conditioners in tutorial rooms of the Faculty of Medicine, University Padjadjaran contained many types of opportunistic fungus. [AMJ.2014;1(1:21–4

  4. Combined rankine and vapor compression cycles

    Science.gov (United States)

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  5. Feasibility study of a green energy powered thermoelectric chip based air conditioner for electric vehicles

    International Nuclear Information System (INIS)

    Miranda, Á.G.; Chen, T.S.; Hong, C.W.

    2013-01-01

    Traditional compressed-refrigerant air conditioning systems consume substantial energy that may reduce the driving performance and cruising mileage of electric vehicles considerably. It is crucial to design a new climate control system, using a direct energy conversion principle, to further aid in the commercialization of modern electric vehicles. A solid state air conditioner model consisting on TECs (thermoelectric chips) as the load, DSSCs (dye sensitized solar cells) as the renewable energy source and high power LiBs (lithium-ion batteries) as an energy storage device are considered for a personal mobility vehicle. The power management between the main power net and the solid state air conditioner interface is designed with an outer proportional-integral controller and an inner passivity based current controller with a loss included model for perfect tracking. This model is intended to comprise thermal and electrical elements which can be tunable for performance benchmarking and optimization of a solid state air conditioning system. Dynamic performance simulations of the solid-state air conditioner are performed, alongside guidelines for feasibility. - Highlights: • Alternative model extraction for dye sensitized solar cells. • Improved and computationally fast model for the cabin air temperature dynamics. • Euler–Lagrange loss included modeling of a buck converter. • Loss-included passivity based inner loop current control. • The thermoelectric chip air conditioner is tested in simulated cooling/heating scenarios

  6. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    Science.gov (United States)

    Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  7. Potential CO{sub 2} reduction by implementing energy efficiency standard for room air conditioner in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Mahlia, T.M.I.; Masjuki, H.H.; Choudhury, I.A.; Saidur, R. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2001-09-01

    This study attempts to predict the environmental impact of implementing an energy efficiency standard for room air conditioners in Malaysia. The ownership of room air conditioners has increased tremendously in this country. At present, there are about 528,792 room air conditioners in Malaysian households. In the year 2020, it will be about 1,511,276. The potential carbon dioxide reduction is based on the predicted electricity savings from implementing a minimum energy efficiency standard for room air conditioners. The electricity savings are calculated based on the predicted electricity consumption by a single air conditioner in the Malaysian household. The replacement of less efficient units of this appliance is reflected in reduced electricity consumption and emissions from power plants. The energy efficiency provisions of this regulation and agreement provide targets to save money, energy and, most importantly, to protect the environment. (Author)

  8. Noninvasive evaluation of the chronic influence of local air velocity from an air conditioner using salivary cortisol and skin caspase-14 as biomarkers of psychosomatic and environmental stress.

    Science.gov (United States)

    Yamaguchi, M; Nishimiya, H

    2012-01-01

    To demonstrate the possibility of evaluating the chronic influence of local air velocity from an air conditioner using noninvasive biomarkers. Over a consecutive 5-day period, 16 healthy young male adults were exposed to air flow from a whole ceiling-type air conditioner (low local air velocity) and from a commercial concentrated exhaust air conditioner (high local air velocity). Salivary cortisol was used as an index of the psychological effects and caspase-14, collected from the stratum corneum, was used as a marker of environmental stress on the skin. Local air velocity generated from the whole ceiling-type air conditioner where the subject's head was positioned was one-seventh that of the exhaust air conditioner. After exposure to the exhaust air conditioner for 5 days, salivary cortisol decreased significantly from morning to evening and skin caspase-14 gradually increased during the day. A significant increase in hydration index from the morning to the evening was found with the whole ceiling-type air conditioner. The effects of chronic exposure to air movement generated by an air conditioner may be quantified by measurement of salivary cortisol and skin caspase-14.

  9. Energy reduction of building air-conditioner with phase change material in Thailand

    Directory of Open Access Journals (Sweden)

    Nattaporn Chaiyat

    2014-11-01

    Full Text Available In this study, a concept of using phase change material (PCM for improving cooling efficiency of an air-conditioner had been presented under Thai climate. Paraffin waxes melting point at around 20 °C was selected to evaluate the thermal performance by reducing the air temperature entering the evaporating coil. The model of PCM celluloid balls had been performed with the air-conditioner. Moreover, the mathematical model of the air-conditioner with the PCM storage was developed and verified with the testing results. From the study results, it could be seen that the simulated data agreed quite well with the experimental result at the discrepant around 2–4%. Finally, the model was used to analyze the economic result which was found that the electrical consumption of the modified air-conditioner could be decreased 3.09 kW h/d. The electrical power consumption of the modified unit was 36.27 kW h/d at the operating time 15 h/d compared with 39.36 kW h/d of the normal unit at the operating time 12 h/d. The saving cost of the PCM bed could be 9.10% or 170.03 USD and the payback period was 4.15 y.

  10. Dynamic performance of self-operated three-way valve used in a hybrid air conditioner

    International Nuclear Information System (INIS)

    Zhang, Penglei; Zhou, Dehai; Shi, Wenxing; Li, Xianting; Wang, Baolong

    2014-01-01

    A hybrid air conditioner combining a thermosyphon cycle with a vapor compression refrigeration cycle has a large energy saving potential compared with a common air conditioner for spaces requiring year-round cooling. The performance of the switch between the vapor compression mode and the thermosyphon mode largely impacts the safety and reliability of hybrid air conditioners. Therefore, a self-operated three-way valve is proposed. A thermodynamic model and a kinetic model are developed in this paper to evaluate the dynamic performance of the switch valve. The effects of the spring force constant, compressor discharging volume, fit clearance and piston length on the dynamic performance of the switch valve are analyzed. In conclusion, the proposed self-operated three-way valve can realize the switch operation accurately. - Highlights: •A self-operated three-way valve is proposed for hybrid air conditioners. •The thermodynamic model and kinetic model of the self-operated three-way valve are developed. •The validity of models is verified by experiments. •Effects of four main design parameters on the operating performance of the valve are researched

  11. Product lifetime, energy efficiency and climate change: A case study of air conditioners in Japan.

    Science.gov (United States)

    Nishijima, Daisuke

    2016-10-01

    This study proposed a modelling technique for estimating life-cycle CO2 emissions of durable goods by considering changes in product lifetime and energy efficiency. The stock and flow of durable goods was modelled by Weibull lifetime distributions and the trend in annual energy efficiency (i.e., annual electricity consumption) of an "average" durable good was formulated as a reverse logistic curve including a technologically critical value (i.e., limit energy efficiency) with respect to time. I found that when the average product lifetime is reduced, there is a trade-off between the reduction in emissions during product use (use phase), due to the additional purchases of new, more energy-efficient air conditioners, and the increase in emissions arising from the additional production of new air conditioners stimulated by the reduction of the average product lifetime. A scenario analysis focused on residential air conditioners in Japan during 1972-2013 showed that for a reduction of average lifetime of 1 year, if the air conditioner energy efficiency limit can be improved by 1.4% from the estimated current efficiency level, then CO2 emissions can be reduced by approximately the same amount as for an extension of average product lifetime of 1 year. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Acoustic resonance of outer-rotor brushless dc motor for air-conditioner fan

    Science.gov (United States)

    Lee, Hong-Joo; Chung, Shi-Uk; Hwang, Sang-Moon

    2008-04-01

    Generation of acoustic noise in electric motor is an interacting combination of mechanical and electromagnetic sources. In this paper, a brushless dc motor for air-conditioner fan is analyzed by finite element method to identify noise source, and the analysis results are verified by experiments, and sensitivity analysis is performed by design of experiments.

  13. ENERGY STAR Certified Non-AHRI Central Air Conditioner Equipment and Air Source Heat Pump

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Air Source Heat Pump and Central Air Conditioner Equipment that are effective as of September 15, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=airsrc_heat.pr_crit_as_heat_pumps Listed products have been submitted to EPA by ENERGY STAR partners that do not participate in the AHRI certification program. EPA will continue to update this list with products that are certified by EPA-recognized certification bodies other than AHRI. The majority of ENERGY STAR products, certified by AHRI, can be found on the CEE/AHRI Verified Directory at http://www.ceedirectory.org/

  14. [Air-conditioner disease. Results of an industrial medicine survey (author's transl)].

    Science.gov (United States)

    Molina, C; Aiache, J M; Bedu, M; Menaut, P; Wahl, D; Brestowski, J; Grall, Y

    1982-07-03

    The results of a survey conducted in a company employing 1850 persons working in air-conditioned premises are reported. One hundred and five persons were examined, including 790 who mostly complained of respiratory disorders and 20 controls. Regular check-ups during the last two years have failed to reveal any serious disease. The most frequent complaints were rhinitis and tracheitis, especially among female employees. No alveolitis was observed. The finding of Bacillus subtilis in samples of ambient air and air-conditioner filters in conjunction with the presence of precipitating antibodies against crude extracts from these samples, suggested that the respiratory disorders might have been due to this microorganism. A multifactorial analysis demonstrated a statistically significant correlation between clinical symptoms and immunological disorders. The air-conditioner disease, therefore, may present as a benign condition.

  15. The application of fuzzy control on energy saving for multi-unit room air-conditioners

    International Nuclear Information System (INIS)

    Chiou, C.B.; Chiou, C.H.; Chu, C.M.; Lin, S.L.

    2009-01-01

    Most research, on energy saving methods for air-conditioners have focused on large chillers as its subject. As most school offices, laboratories, and classrooms are equipped with unitary systems for air-conditioning, this paper discusses methods for energy savings with regard to unitary systems. This paper will put forward the fuzzy temperature control method for multi-unit air-conditioners to enhance energy efficiency. The results show that the use of fuzzy control is efficient for energy saving as well as causing temperature control be steadier, even if there is a change to the thermal loading, the fuzzy control system is able to control the air-conditioning in stable conditions

  16. The role of technology, product lifetime, and energy efficiency in climate mitigation: A case study of air conditioners in Japan

    International Nuclear Information System (INIS)

    Nishijima, Daisuke

    2017-01-01

    This study analyzed the impact on the life-cycle CO_2 emissions derived from a specific durable good (i.e., household air conditioners in this study) of industrial technology changes, product lifetime changes, and energy efficiency improvements. I proposed a comprehensive structural decomposition analysis including two factors of average lifetime and energy efficiency trend of household air conditioners and applied the decomposition method to the Japanese environmental input-output tables of 1990, 1995, 2000, and 2005. The empirical results show that “Household air-conditioner sector” itself contributed to reducing life-cycle CO_2 emissions derived from household air conditioners, while other sectors such as “On-site power generation sector” and “Retail trade sector” contributed to increasing life-cycle CO_2 emissions derived from household air conditioners. I also conducted combined scenario analysis about reduction potential of product lifetime and energy efficiency of air conditioners and the results showed the reduction rate of energy efficiency necessary for maintain CO_2 emissions in 2005 at 1990 level on each average lifetime scenario. (e.g. if average lifetime of air conditioners is shortened by 1 year, energy efficiency of air conditioners have to be further improved by 20.6% from current level. - Highlights: • This study provides a decomposition framework for air conditioner’s CO_2 emissions. • Technology, product lifetime and energy efficiency are considered in the framework. • “Household air conditioner” sector contributed to reducing CO_2 emissions largely. • “On-site power generation” indirectly contributed to increasing CO_2 emissions. • I showed the improvement rates of energy efficiency to achieve a reduction target.

  17. LDDX: A High Efficiency Air Conditioner for DOD Buildings

    Science.gov (United States)

    2017-02-01

    Additional Benefits ........................................................................................................ 3 1.2.6 Deliverables...inadequate latent cooling can lead building managers to restrict ventilation to minimal levels that further compromise both the comfort and health of...bulb temperatures for outdoor air and return air respectively per ANSI/AHRI Standard 210/240 “Performance Rating of Unitary Air-Conditioning and Air

  18. Air conditioner operation behaviour based on students' skin temperature in a classroom.

    Science.gov (United States)

    Song, Gook-Sup; Lim, Jae-Han; Ahn, Tae-Kyung

    2012-01-01

    A total of 25 college students participated in a study to determine when they would use an air conditioner during a lecture in a university classroom. The ambient temperature and relative humidity were measured 75 cm above the floor every minute. Skin temperatures were measured every minute at seven points, according to the recommendation of Hardy and Dubois. The average clothing insulation value (CLO) of subjects was 0.53 ± 0.07 CLO. The mean air velocity in the classroom was 0.13 ± 0.028 m/s. When the subjects turned the air conditioner both on and off, the average ambient temperatures, relative humidity and mean skin temperatures were 27.4 and 23.7 °C (p = 0.000), 40.9 and 40.0% (p = 0.528) and 32.7 and 32.2 °C (p = 0.024), respectively. When the status of the air conditioner was changed, the differences of skin temperatures in core body parts (head, abdomen and thigh) were not statistically significant. However, in the extremities (mid-lower arm, hand, shin and instep), the differences were statistically significant. Subjects preferred a fluctuating environment to a constant temperature condition. We found that a changing environment does not affect classroom study. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  19. Transient modeling of an air conditioner with a rapid cycling compressor and multi-indoor units

    International Nuclear Information System (INIS)

    Zhang Weijiang; Zhang Chunlu

    2011-01-01

    Rapid cycling the compressor is an alternative of the variable speed compressor to modulate the capacity of refrigeration systems for the purpose of energy saving at part-load conditions. The multi-evaporator air conditioner combined with the rapid cycling compressor brings difficulties in control design because of the sophisticated system physics and dynamics. In this paper the transient model of a multi-split air conditioner with a digital scroll compressor is developed for predicting the system transients under performance modulations. The predicted cycling dynamics are in good agreement with the experimental data. Based on the validated model, the impact of compressor idle power and cycle period to the part load performance is discussed.

  20. Transient modeling of an air conditioner with a rapid cycling compressor and multi-indoor units

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei-Jiang [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Zhang, Chun-Lu [College of Mechanical Engineering, Tongji University, 4800 Cao An Highway, Shanghai 201804 (China)

    2011-01-15

    Rapid cycling the compressor is an alternative of the variable speed compressor to modulate the capacity of refrigeration systems for the purpose of energy saving at part-load conditions. The multi-evaporator air conditioner combined with the rapid cycling compressor brings difficulties in control design because of the sophisticated system physics and dynamics. In this paper the transient model of a multi-split air conditioner with a digital scroll compressor is developed for predicting the system transients under performance modulations. The predicted cycling dynamics are in good agreement with the experimental data. Based on the validated model, the impact of compressor idle power and cycle period to the part load performance is discussed. (author)

  1. Study of noise in offices with window-type room air-conditioners

    International Nuclear Information System (INIS)

    Shaikh, G.H.; Hashmi, R.; Shareef, A.

    2005-01-01

    A Study of Noise has been carried out in 17 private offices, with window-type room air-conditioners, to assess noise levels in these offices. A-Weighted equivalent sound-pressure levels (dB(A) LAeq) and equivalent octave-band sound-pressure levels (dB Leq) were measured in each office, and Preferred Speech Interference Levels (PSIL) evaluated. The results show that the interior noise-levels in these offices vary from 59.6 to 72.2 dB(A) LAeq. which are very high and much above the interior noise limits, recommended for offices by some individual workers. Some ways and means to limit its emission of high level of noise from the air conditioners are also discussed. (author)

  2. Transient modeling of an air conditioner with a rapid cycling compressor and multi-indoor units

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Weijiang [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Zhang Chunlu, E-mail: chunlu.zhang@carrier.utc.co [College of Mechanical Engineering, Tongji University, 4800 Cao An Highway, Shanghai 201804 (China)

    2011-01-15

    Rapid cycling the compressor is an alternative of the variable speed compressor to modulate the capacity of refrigeration systems for the purpose of energy saving at part-load conditions. The multi-evaporator air conditioner combined with the rapid cycling compressor brings difficulties in control design because of the sophisticated system physics and dynamics. In this paper the transient model of a multi-split air conditioner with a digital scroll compressor is developed for predicting the system transients under performance modulations. The predicted cycling dynamics are in good agreement with the experimental data. Based on the validated model, the impact of compressor idle power and cycle period to the part load performance is discussed.

  3. Modelling of an air-cooled two-stage Rankine cycle for electricity production

    International Nuclear Information System (INIS)

    Liu, Bo

    2014-01-01

    This work considers a two stage Rankine cycle architecture slightly different from a standard Rankine cycle for electricity generation. Instead of expanding the steam to extremely low pressure, the vapor leaves the turbine at a higher pressure then having a much smaller specific volume. It is thus possible to greatly reduce the size of the steam turbine. The remaining energy is recovered by a bottoming cycle using a working fluid which has a much higher density than the water steam. Thus, the turbines and heat exchangers are more compact; the turbine exhaust velocity loss is lower. This configuration enables to largely reduce the global size of the steam water turbine and facilitate the use of a dry cooling system. The main advantage of such an air cooled two stage Rankine cycle is the possibility to choose the installation site of a large or medium power plant without the need of a large and constantly available water source; in addition, as compared to water cooled cycles, the risk regarding future operations is reduced (climate conditions may affect water availability or temperature, and imply changes in the water supply regulatory rules). The concept has been investigated by EDF R and D. A 22 MW prototype was developed in the 1970's using ammonia as the working fluid of the bottoming cycle for its high density and high latent heat. However, this fluid is toxic. In order to search more suitable working fluids for the two stage Rankine cycle application and to identify the optimal cycle configuration, we have established a working fluid selection methodology. Some potential candidates have been identified. We have evaluated the performances of the two stage Rankine cycles operating with different working fluids in both design and off design conditions. For the most acceptable working fluids, components of the cycle have been sized. The power plant concept can then be evaluated on a life cycle cost basis. (author)

  4. Performance curves of room air conditioners for building energy simulation tools

    International Nuclear Information System (INIS)

    Meissner, José W.; Abadie, Marc O.; Moura, Luís M.; Mendonça, Kátia C.; Mendes, Nathan

    2014-01-01

    Highlights: • Experimental characteristic curves for two room air conditioners are presented. • These results can be implemented in building simulation codes. • The energy consumption under different conditions can numerically determine. • The labeled higher energy efficiency product not always provides the best result. - Abstract: In order to improve the modeling of air conditioners in building simulation tools, the characteristic curves for total cooling capacity, sensible cooling capacity and energy efficiency ratio of two room units were determined. They were obtained by means of standard capacity tests on climatic chambers in a set of environmental conditions described by external dry- and internal wet bulb temperatures. Afterward, the performance of these two units and that of four other units, with and without taking into to account the thermodynamic variations of the surrounding environments on it, were compared using a whole building simulation program for simulating a conditioned space. The comparative analysis showed that the air conditioner with the higher energy efficiency rating not always provides the lowest power consumption in real conditions of use

  5. The Performance of a Desiccant-Based air Conditioner on a Florida School

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.

    2001-08-22

    Indoor air quality has become a major public health issue in recent years. ASHRAE standard 62-1989-which is an attempt to improve indoor air quality by increasing building ventilation rates-greatly increases the latent loads on many buildings. In more humid climates, the Sensible Heat Ratio (SHR) of a building's air conditioner (which is the fraction of total delivered cooling that is sensible) is too high to meet the existing latent loads. The implementation of ASHRAE 62-1989 will only exacerbate this problem.

  6. Small fan assisted air conditioner for thermal comfort and energy saving in Thailand

    International Nuclear Information System (INIS)

    Atthajariyakul, Surat; Lertsatittanakorn, Charoenporn

    2008-01-01

    From the fact that Thai people have a tolerance to high air temperature and are accustomed to high air movement from electric fans in non-air conditioned space, this paper proposes the use of small fan assisted air conditioners for human thermal comfort and energy saving in Thailand. In the study, a total 15 students were tested in a 2.5 x 3.5 x 2.5 m 3 test room equipped with a 12,000 Btu/h split type air conditioner. During the tests, the room air temperature was varied from 25, 26, 27 and 28 deg. C every 1 h. A small fan with 15 cm diameter was placed in front of each subject. In each hour, the small fan was varied to supply a small area with velocity from 0.2, 0.5, 1, 1.5 and 2 m/s. In each condition, the subjects were asked to vote for their thermal sensation. The results showed that the temperature set point could be increased up to 28 deg. C when a small fan was used to supply local air velocity from 0.5 to 2 m/s according to individual preference. This would reduce the electricity consumption of the air conditioning unit. According to the proposed method, this can save energy for office buildings in the commercial sector as high as 1959.51 GWh/year

  7. Evaluation of Rankine cycle air conditioning system hardware by computer simulation

    Science.gov (United States)

    Healey, H. M.; Clark, D.

    1978-01-01

    A computer program for simulating the performance of a variety of solar powered Rankine cycle air conditioning system components (RCACS) has been developed. The computer program models actual equipment by developing performance maps from manufacturers data and is capable of simulating off-design operation of the RCACS components. The program designed to be a subroutine of the Marshall Space Flight Center (MSFC) Solar Energy System Analysis Computer Program 'SOLRAD', is a complete package suitable for use by an occasional computer user in developing performance maps of heating, ventilation and air conditioning components.

  8. Requirements of air conditioners for office buildings. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, W

    1988-02-01

    Presenting numerous explanatory diagrams part two of the report deals with auxiliary ventilation systems (mechanical systems); the influence of different ventilation circuits on the air quality (particle concentration, floor and ceiling air outlets); the requirements of heating systems (dimensioning of heating systems, effects of ventilation systems on the heat demand, reduced heat demand owing to auxiliary ventilation systems); the requirements of cooling (cooling loads in office buildings, room temperatures in the case of natural cooling, auxiliary ventilation systems, and cooling by means of refrigerators, floor/ceiling cooling systems); permissible ambient air velocities (complaints about draughts). Bottom-to-top ventilation circuits were found to provide for better air qualities and lower ambient air velocities without increasing the systems' energy demand. (HWJ).

  9. EER, COP, and the Second Law Efficiency for Air Conditioners

    Science.gov (United States)

    Leff, Harvey S.; Teeters, William D.

    1978-01-01

    Describes the relationship existing between coefficient of performance (COP) and energy efficiency ratio (EER) in air conditioning units and introduces new efficiency parameters measured relative to the energy extracted from the primary energy source. (SL)

  10. Deaths Due to Accidental Air Conditioner Compressor Explosion: A Case Series.

    Science.gov (United States)

    Behera, Chittaranjan; Bodwal, Jatin; Sikary, Asit K; Chauhan, Mohit Singh; Bijarnia, Manjul

    2017-01-01

    In an air-conditioning system, the compressor is a large electric pump that pressurizes the refrigerant gas as part of the process of turning it back into a liquid. The explosion of an air conditioner (AC) compressor is an uncommon event, and immediate death resulted from the blast effect is not reported in forensic literature. We report three such cases in which young AC mechanics were killed on the spot due to compressor blast, while repairing the domestic split AC unit. The autopsy findings, the circumstances leading to the explosion of the compressor, are discussed in this study. © 2016 American Academy of Forensic Sciences.

  11. Accelerating Energy Efficiency Improvements in Room Air Conditioners in India: Potential, Costs-Benefits, and Policies

    OpenAIRE

    Abhyankar, N; Shah, N; Park, WY; Phadke, AA

    2017-01-01

    Rising incomes, increasing urbanization, and large cooling demand prompted by India’s hot, humid climate are driving increasing uptake of room air conditioners (ACs). Air conditioning already accounts for 40-60% of summer peak load in large Indian cities such as Delhi and is on track to contribute 140 gigawatts (GW) ( 30%) to peak demand in 2030. India’s standards and labeling policies improved the market average efficiency of room ACs by about 35% between 2006 and 2016 (3% per year) even as ...

  12. Long-term indoor air conditioner filtration and cardiovascular health: A randomized crossover intervention study.

    Science.gov (United States)

    Chuang, Hsiao-Chi; Ho, Kin-Fai; Lin, Lian-Yu; Chang, Ta-Yuan; Hong, Gui-Bing; Ma, Chi-Ming; Liu, I-Jung; Chuang, Kai-Jen

    2017-09-01

    The association of short-term air pollution filtration with cardiovascular health has been documented. However, the effect of long-term indoor air conditioner filtration on the association between air pollution and cardiovascular health is still unclear. We recruited 200 homemakers from Taipei and randomly assigned 100 of them to air filtration or control intervention; six home visits were conducted per year from 2013 to 2014. The participants under air filtration intervention during 2013 were reassigned to control intervention in 2014. The air pollution measurements consisted of particulate matter less than or equal to 2.5μm in diameter (PM 2.5 ) and total volatile organic compounds (VOCs); blood pressure was monitored for each participant during each visit. The following morning, blood samples were collected after air pollution monitoring. The blood samples were used to analyze biological markers, including high sensitivity-C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG) and fibrinogen. Household information, including cleaning, cooking, and air conditioning, was collected by a questionnaire. Mixed-effects models were used to investigate the associations among air pollution measurements, blood pressure and biological markers. The results showed that increased levels of PM 2.5 and total VOCs were associated with increased hs-CRP, 8-OHdG and blood pressure. The health variables were higher among participants in the control intervention phase than among those in the air filtration intervention phase. We concluded that air pollution exposure was associated with systemic inflammation, oxidative stress and elevated blood pressure. The long-term filtration of air pollution with an air conditioner filter was associated with cardiovascular health of adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Influence of environmental characteristics and climatic factors on mites in the dust of air-conditioner filters.

    Science.gov (United States)

    Wu, J; Liu, Z G; Ran, P X; Wang, B

    2009-12-01

    To investigate mites in the dust of air-conditioner filters (MACF) in China, a total of 652 dust samples were collected from six cities: Guangzhou (n = 129), Nanchang (n = 127), Shanghai (n = 113), Xian (n = 93), Beijing (n = 93), and Shenyang (n = 79). Tarsonemus granarius was the most dominant species (87.2%). Dermatophagoides pteronyssinus and Dermatophagoides farinae only represented 7.0 and 3.0% of total mites, respectively. With latitude increasing, both mite occurrence rate (P air-conditioner age, utilization time and power. Wall and window type air-conditioner had higher risk of finding MACF than the floor type air-conditioner. As far as the cleaning interval time of ACF was concerned, higher risk ratio and the highest density of MACF were found in the time stage of >3, air-conditioner filters are potential indoor threat to asthma and allergy sufferers. In this study, we find that the storage mite Tarsonemus granarius is the predominant species of mites in the dust of air-conditioner filters (MACF). Thus, the possible clinical importance of T. granarius should cause more our attentions in the future. The abundance and distribution of MACF are also found significantly varied in different climatic regions of China. When we try to assess the possible risk of MACF, more attentions should be focused on subtropical region than temperate region. The influence analysis of environmental characteristics on the prevalence of MACF will shed light on the establishment of mite control strategy and the design of mite defense air-conditioner.

  14. Room Air Conditioners; Appliance Repair--Advanced: 9027.04.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This Quinmester course includes installations, electrical and mechanical servicing, reverse cycle air conditioning, malfunctions, troubleshooting and repair, discharge, pump down, and recharging the system. The course may be taught as a two or three Quinmester credit course. In each instance the course consists of six instructional blocks:…

  15. Performance test of a grid-tied PV system to power a split air conditioner system in Surabaya

    Science.gov (United States)

    Tarigan, E.

    2017-11-01

    Air conditioner for cooling air is one of the major needs for those who live in hot climate area such as Indonesia. This work presents the performance test of a grid-tied PV system to power air conditioner under a hot tropical climate in Surabaya, Indonesia. A 800 WP grid-tied photovoltaic (PV) system was used, and its performance was tested to power a 0.5 pk of split air conditioner system. It was found that about 3.5 kWh daily energy was consumed by the tested air conditioner system, and about 80% it could be supplied from the PV system. While the other 20% was supplied by the grid during periods of low solar irradiation, 440 Wh of energy was fed into the grid during operation out of office hours. By using the grid-tied PV system, the energy production by PV system did not need to match the consumption of the air conditioner. However, a larger capacity of PV system would mean that a higher percentage of the load would be covered by PV system.

  16. Numerical Analysis and Geometry Optimisation of Vertical Vane of Room Air-conditioner

    Directory of Open Access Journals (Sweden)

    Al-Obaidi Abdulkareem Sh. Mahdi

    2018-01-01

    Full Text Available Vertical vanes of room air-conditioners are used to control and direct cold air. This paper aims to study vertical vane as one of the parameters that affect the efficiency of dissipating cold air to a given space. The vertical vane geometry is analysed and optimised for lower production cost using CFD. The optimised geometry of the vertical vane should have the same or increased efficiency of dissipating cold air and have lesser mass compared to the existing original design. The existing original design of vertical vane is simplified and analysed by using ANSYS Fluent. Efficiency of wind direction is define as how accurate the direction of airflow coming out from vertical vane. In order to calculate the efficiency of wind direction, 15° and 30° rotation of vertical vane inside room air-conditioner are simulated. The efficiency of wind direction for 15° rotation of vertical vane is 57.81% while efficiency of wind direction for 30° rotation of vertical vane is 47.54%. The results of the efficiency of wind direction are used as base reference for parametric study. The parameters investigated for optimisation of vertical vane are focused at length of long span, tip chord and short span. The design of 15% decreased in vane surface area at tip chord is the best optimised design of vertical vane because the efficiency of wind direction is the highest as 60.32%.

  17. Analysis of a variable speed air conditioner considering the R-290/POE ISO 22 mixture effect

    International Nuclear Information System (INIS)

    Ribeiro, Guilherme B.; Barbosa, Jader R.

    2016-01-01

    Highlights: • A numerical model that considers the oil-refrigerant mixture effect is proposed. • In order to compare the model, an air conditioner calorimeter was constructed. • The system was evaluated under oil circulation ratios between 1 and 7%. • The presence of oil resulted in a significant SEER deterioration (around 69%). - Abstract: Air-conditioning applications using propane (R-290) have several environmental and thermodynamic advantages over more commonly used refrigerants, such as R-410A and R-22. This paper presents the development of a mathematical model for variable capacity air conditioning systems that use R-290/POE ISO 22 as refrigerant/lubricant. The thermodynamic performance of the refrigeration system is evaluated in terms of the SEER (Seasonal Energy Efficiency Ratio). The thermodynamic properties of the refrigerant/lubricant mixture were obtained from a departure-function approach using the Peng-Robinson equation of state. The effect of the oil on the condenser and evaporator heat transfer coefficients and pressure drops was also taken into account. Sub-models were developed for each component of the air conditioning system, including the connecting lines and the scroll compressor. Furthermore, an air conditioner experimental calorimeter was constructed and tested in order to validate the proposed model.

  18. Automotive absorption air conditioner utilizing solar and motor waste heat

    Science.gov (United States)

    Popinski, Z. (Inventor)

    1981-01-01

    In combination with the ground vehicles powered by a waste heat generating electric motor, a cooling system including a generator for driving off refrigerant vapor from a strong refrigerant absorbant solution is described. A solar collector, an air-cooled condenser connected with the generator for converting the refrigerant vapor to its liquid state, an air cooled evaporator connected with the condenser for returning the liquid refrigerant to its vapor state, and an absorber is connected to the generator and to the evaporator for dissolving the refrigerant vapor in the weak refrigerant absorbant solution, for providing a strong refrigerant solution. A pump is used to establish a pressurized flow of strong refrigerant absorbant solution from the absorber through the electric motor, and to the collector.

  19. LDDX: A High Efficiency Air Conditioner for DOD Buildings

    Science.gov (United States)

    2017-02-01

    and the entire 2016 cooling season. The LDDX-WF prototype met its performance objectives to supply dry air and to modulate the Sensible Heat Ratio... heat transfer of the desiccant on the fin is an effective substitute for the conductive heat transfer of the aluminum fins used in a conventional...respectively. 22 The May 2014 laboratory operation of the LDDX-WF prototype was the first opportunity to measure heat and mass transfer

  20. Measure Guideline: Air Conditioner Diagnostics, Maintenance, and Replacement

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D.; Dakin, B.

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  1. Measure Guideline. Air Conditioner Diagnostics, Maintenance, and Replacement

    Energy Technology Data Exchange (ETDEWEB)

    Springer, David [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, Bill [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  2. Incidence of polybrominated diphenyl ethers in central air conditioner filter dust from a new office building

    Energy Technology Data Exchange (ETDEWEB)

    Ni Honggang; Cao Shanping; Chang Wenjing [Shenzhen Key Laboratory of Circular Economy, Shenzhen Graduate School, Peking University, Shenzhen 518055 (China); Zeng Hui, E-mail: huizeng0608@gmail.com [Shenzhen Key Laboratory of Circular Economy, Shenzhen Graduate School, Peking University, Shenzhen 518055 (China); Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871 (China)

    2011-07-15

    This study examined polybrominated diphenyl ethers (PBDEs) in central air conditioner filter (CACF) dust from a new office building in Shenzhen, China. Human exposure to PBDE via dust inhalation and ingestion were also estimated. PBDEs level in CACF dust was lower than those in the other countries and regions. Approximately 0.671 pg/kg bw/day PM{sub 2.5} (Particulate Matter up to 2.5 {mu}m in size) bounded {Sigma}{sub 15}PBDEs can be inhaled deep into the lungs and 4.123 pg/kg bw/day PM{sub 10} (Particulate Matter up to 10 {mu}m in size) bounded {Sigma}{sub 15}PBDEs tend to be deposited in the upper parts of the respiratory system. The average total intake of {Sigma}{sub 15}PBDEs via dust inhalation and ingestion for adults reached {approx}141 pg/kg bw/day in this building. This value was far below the reference dose (RfD) recommended by United States Environmental Protection Agency. Human exposure to PBDEs via dust inhalation and ingestion in the new building is less than the old ones. - Highlights: > Human exposure to PBDEs via dust inhalation and ingestion in the new building is less than that in the old ones. > PBDE emissions from indoor sources can be expected to continue for a long time as the PBDE-containing products in offices were to be kept many years. > The household consumer products, especially computers, are the main sources of PBDEs in central air conditioner filter dust. > Further studies are needed to fully understand the emission mechanism of PBDE from indoor consumer products. - PBDEs in central air conditioner filter dust from a new building were investigated

  3. Incidence of polybrominated diphenyl ethers in central air conditioner filter dust from a new office building

    International Nuclear Information System (INIS)

    Ni Honggang; Cao Shanping; Chang Wenjing; Zeng Hui

    2011-01-01

    This study examined polybrominated diphenyl ethers (PBDEs) in central air conditioner filter (CACF) dust from a new office building in Shenzhen, China. Human exposure to PBDE via dust inhalation and ingestion were also estimated. PBDEs level in CACF dust was lower than those in the other countries and regions. Approximately 0.671 pg/kg bw/day PM 2.5 (Particulate Matter up to 2.5 μm in size) bounded Σ 15 PBDEs can be inhaled deep into the lungs and 4.123 pg/kg bw/day PM 10 (Particulate Matter up to 10 μm in size) bounded Σ 15 PBDEs tend to be deposited in the upper parts of the respiratory system. The average total intake of Σ 15 PBDEs via dust inhalation and ingestion for adults reached ∼141 pg/kg bw/day in this building. This value was far below the reference dose (RfD) recommended by United States Environmental Protection Agency. Human exposure to PBDEs via dust inhalation and ingestion in the new building is less than the old ones. - Highlights: → Human exposure to PBDEs via dust inhalation and ingestion in the new building is less than that in the old ones. → PBDE emissions from indoor sources can be expected to continue for a long time as the PBDE-containing products in offices were to be kept many years. → The household consumer products, especially computers, are the main sources of PBDEs in central air conditioner filter dust. → Further studies are needed to fully understand the emission mechanism of PBDE from indoor consumer products. - PBDEs in central air conditioner filter dust from a new building were investigated

  4. Select Components and Finish System Design of a Window Air Conditioner with Propane

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    This report describes the technical targets for developing a high efficiency window air conditioner (WAC) using propane (R-290). The baseline unit selected for this activity is a GE R-410A WAC. We established collaboration with a Chinese rotary compressor manufacturer, to select an R-290 compressor. We first modelled and calibrated the WAC system model using R-410A. Next, we applied the calibrated system model to design the R-290 WAC, and decided the strategies to reduce the system charge below 260 grams and achieve the capacity and efficiency targets.

  5. Applying water cooled air conditioners in residential buildings in Hong Kong

    International Nuclear Information System (INIS)

    Chen Hua; Lee, W.L.; Yik, F.W.H.

    2008-01-01

    The objective of this study is to conduct a realistic prediction of the potential energy saving for using water cooled air conditioners in residential buildings in Hong Kong. A split type air conditioner with air cooled (AAC) and water cooled (WAC) options was set up for experimental study at different indoor and outdoor conditions. The cooling output, power consumption and coefficient of performance (COP) of the two options were measured and calculated for comparison. The experimental results showed that the COP of the WAC is, on average, 17.4% higher than that of the AAC. The results were used to validate the mathematical models formulated for predicting the performance of WACs and AACs at different operating conditions and load characteristics. While the development of the mathematical models for WACs was reported in an earlier paper, this paper focuses on the experimental works for the AAC. The mathematical models were further used to predict the potential energy saving for application of WACs in residential buildings in Hong Kong. The predictions were based on actual building developments and realistic operating characteristics. The overall energy savings were estimated to be around 8.7% of the total electricity consumption for residential buildings in Hong Kong. Wider use of WACs in subtropical cities is, therefore, recommended

  6. Analysis for SEER of variable speed room air conditioner in China. Paper no. IGEC-1-104

    International Nuclear Information System (INIS)

    Yitai, M.; Shengchun, L.; Lirong, M.

    2005-01-01

    In this paper, the calculation method for seasonal energy efficiency ratio (SEER) given in Standard JRA4046-1999 is analyzed and further modified. Based on temperature zone map of U.S., Japan and China and detailed weather data of eight Chinese cities in last 30 years, regional seasonal energy efficiency ratio (RSEER) and energy saving percentage of variable speed room air conditioner are analyzed and compared with various geographical regions in China. It is concluded that RSEER presents the associated effect of season, climate and geography, and therefore should be taken as an evaluation standard for room air conditioner, especially variable speed room air conditioner. Experimental measurements are conducted in the analysis to investigate the effect of energy efficiency ratio (EER) on the improvement of energy saving percentage and SEER. (author)

  7. Comparative analysis of objective techniques for criteria weighing in two MCDM methods on example of an air conditioner selection

    Directory of Open Access Journals (Sweden)

    Vujičić Momčilo D.

    2017-01-01

    Full Text Available This paper deals with comparative analysis of two different types of objective techniques for criteria weighing: Entropy and CRITIC and two MCDM methods: MOORA and SAW on example of an air conditioner selection. We used six variants for calculation of normalized performance ratings. Results showed that the decision of the best air conditioner was basically independent of the MCDM method used, despite the applied technique for determination of criteria weights. Complete ranking within all of the combinations of methods and techniques with diverse ratio calculation variants showed that the best ranked air conditioner was A7, while the worst ones were A5 and A9. Significant positive correlation was obtained for almost all the pairs of variants in all the combinations except for the MOORA - CRITIC combination with SAW - Entropy combination to have the highest correlations between variants (p < 0.01.

  8. Compressor motor for air conditioners realizing high efficiency and low cost; Kokoritsu tei cost wo jitsugenshita eakonyo asshukuki motor

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, Y.; Kawamura, K.; Imazawa, K. [Toshiba Corp., Tokyo (Japan)

    2000-01-01

    The compressor motor accounts for most of the consumption of electric power in an air conditioner. To promote energy-saving, Toshiba has been progressively changing the compressor motors in its air conditioners to high-efficiency brushless DC motors. We have now developed a new compressor motor in order to achieve even greater energy-saving. A concentrated winding system was adopted featuring direct winding on the teeth of the stator core, for the first time in the industry. As a result, it was possible to realize a high-efficiency, compact, lightweight, and low-cost motor. Moreover, by constructing a new system for production, we were able to improve productivity and quality. The newly developed motor is expected to contribute to the further diffusion of energy-saving air conditioners. (author)

  9. Size optimization of stand-alone photovoltaic (PV) room air conditioners

    International Nuclear Information System (INIS)

    Chen, Chien-Wei; Zahedi, A.

    2006-01-01

    Sizing of a stand-alone PV system determines the main cost of the system. PV electricity cost is determined by the amount of solar energy received, hence the actual climate and weather conditions such as solar irradiance and ambient temperature affect the size required and cost of the system. Air conditioning demand also depends on the weather conditions. Therefore, sizing a PV powered air conditioner must consider the characteristics of local climate and temperature. In this paper, sizing procedures and special considerations for air conditioning under Melbourne's climatic conditions is presented. The reliability of various PV-battery size combinations is simulated by MATLAB. As a result, excellent system performance can be predicated.(Author)

  10. Modeling of a split type air conditioner with integrated water heater

    International Nuclear Information System (INIS)

    Techarungpaisan, P.; Theerakulpisut, S.; Priprem, S.

    2007-01-01

    This paper presents a steady state simulation model to predict the performance of a small split type air conditioner with integrated water heater. The mathematical model consists of submodels of system components such as evaporator, condenser, compressor, capillary tube, receiver and water heater. These submodels were built based on fundamental principles of heat transfer, thermodynamics, fluid mechanics, empirical relationships and manufacturer's data as necessary. The model was coded into a simulation program and used to predict system parameters of interest such as hot water temperature, condenser exit air temperature, evaporator exit air temperature, mass flow rate of refrigerant, heat rejection in the condenser and cooling capacity of the system. The simulation results were compared with experimental data obtained from an experimental rig built for validating the mathematical model. It was found that the experimental and simulation results are in good agreement

  11. Experimental study on split air conditioner with new hybrid equipment of energy storage and water heater all year round

    International Nuclear Information System (INIS)

    Wang Shaowei; Liu Zhenyan; Li Yuan; Zhao Keke; Wang Zhigang

    2005-01-01

    This paper presents a split air conditioner with a new hybrid equipment of energy storage and water heater all year round (ACWES). The authors made a special design on the storage tank to adjust the refrigerant capacity in the storage coils under different functions, instead of adding an accumulator to the system. An ACWES prototype, rebuilt from an original split air conditioner, has been finished, and experimental study of the operation processes of the prototype was done from which some important conclusions and suggestions have been made, which were helpful in the primary design and improvement of an ACWES system for potential users

  12. Utilization of air conditioner condenser as water heater in an effort to energy conservation

    Science.gov (United States)

    Sonawan, Hery; Saputro, Panji; Kurniawan, Iden Muhtar

    2018-04-01

    This paper presents an experimental study of utilization of air conditioner condenser as water heater. Modification of existing air conditioner system is an effort to harvest waste heat energy from condenser. Modification is conducted in order to test the system into two mode tests, first mode with one condenser and second mode with two condensers. Harvesting the waste heat from condenser needs a theoretical and practice study to see how much the AC performance changes if modifications are made. It should also be considered how the technique of harvesting waste heat for water heating purposes. From the problem, this paper presents a comparison between AC performance before and after modification. From the experiment, an increase in compressor power consumption is 4.3% after adding a new condenser. The hot water temperature is attained to 69 °C and ready for warm bath. The increase in power consumption is not too significant compared to the attainable hot water temperature. Also seen that the value of condenser Performance Factor increase from 5.8 to 6.25 or by 7.8%.

  13. A Proposal for the Time Domain Modeling of Split Air Conditioners for Consumer Reimbursement Studies

    Science.gov (United States)

    Rezende, Paulo Henrique Oliveira; Almeida Junior, Afonso Bernardino; Gondim, Isaque Nogueira; Oliveira, José Carlos

    2015-04-01

    This paper deals with computer application procedures for the evaluation of the causal consistency between anomalous phenomena manifested in electrical networks, along with the physical damage associated with electrical equipment and possible reimbursement requests. The focus is on the development of an air conditioner appliance model of the type known as split founded upon a representation, in the time domain, in accordance with the Alternative Transients Program (ATP) simulator requirements. This approach permits investigations concerning the performance of the product when submitted to ideal and non-ideal supply conditions. Once the equipment model is implemented in the program, a set of investigative studies are carried out to show the device performance under specific energy quality disturbance conditions. In addition, there are still the results for the validation of the process established through the correlation between computational performance of the air conditioner with corresponding studies carried out experimentally, which are presented herein. Moreover, once the effectiveness of the developed model is verified, it is implemented into the Requests for Reimbursement Software. Investigations related to the correlation between disturbances and the levels of thermal and dielectric tolerance are then performed aiming at illustrating the use of the research results for the reimbursement analyzes purposes.

  14. Designing and testing the optimum design of automotive air-to-air thermoelectric air conditioner (TEAC) system

    International Nuclear Information System (INIS)

    Attar, Alaa; Lee, HoSung

    2016-01-01

    Highlights: • The optimum design of automotive thermoelectric AC system is proposed. • It is optimized by combining the thermal isolation and the dimensionless methods. • An experiment is conducted to validate the analytical design. - Abstract: The current project is discussing the optimization of counter flow air-to-air thermoelectric air conditioners (TEAC) system. Previous work showed an analytical model with experimental validation of a unit cell of TEAC system. However, the focus of this work is to simulate the optimum design of a whole TEAC system from given inlet parameters (i.e., hot and cold air mass flow rates and ambient temperatures). The analytical model was built by combining an optimal design method with dimensional analysis, which was recently developed, and the thermal isolation method in order to optimize the thermoelectric parameters (i.e., electrical current supplied and the number of thermocouples or the geometric factor, simultaneously). Moreover, based on the designed model, an experiment was conducted in order to study the accuracy of the analytical model. Even though the analytical model was built based on the thermoelectric ideal equations, it shows a good agreement with the experiment. This agreement was mainly a result of the use of the thermoelectric effective material properties which are obtained from the measured maximum thermoelectric module parameters. Since the experiment validate the analytical model, this model provides uncomplicated method to study the optimum design at given inputs.

  15. Energy savings and economics of advanced control strategies for packaged air conditioners with gas heat

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2013-10-01

    This paper presents an evaluation of the potential energy savings from adding advanced control to existing packaged air conditioners. Advanced control options include air-side economizer, multi-speed fan control, demand control ventilation and staged cooling. The energy and cost savings from the different control strategies individually and in combination are estimated using the EnergyPlus detailed energy simulation program for four building types, namely, a small office building, a stand-alone retail building, a strip mall building and a supermarket building. For each of the four building types, the simulation was run for 16 locations covering all 15 climate zones in the U.S. The maximum installed cost of a replacement controller that provides acceptable payback periods to owners is estimated.

  16. Optimum placement of condensing units of split-type air-conditioners by numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Avara, Abdollah; Daneshgar, Ehsan [Mechanical Engineering Department, Persian Gulf University, Bushehr (Iran, Islamic Republic of)

    2008-07-01

    Split-type air-conditioners used in residential or office buildings often have the outdoor condensing units installed at the sidewalls or on the roofs. Installation distance from the supporting wall for the first group and the height of installation for the second group are two factors that affect the condenser efficiency. In this study, a CFD code is used to calculate the effect of distance from the supporting wall on the entrance air temperature and on the on-coil temperature of condenser installed between two walls. In the case of condenser installed on the roof, the effect of installation height of the condenser from the finished roof on on-coil temperature is investigated and the minimum recommended height of installation is determined. (author)

  17. Comparison of air conditioners for horticulture; Vergelijking van luchtbehandelingssystemen voor de tuinbouw

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, B.; Hendriksen, L. [TNO, Delft (Netherlands)

    2011-12-15

    The desire to reduce energy consumption in the greenhouse sector results into new techniques and applications. As such air conditioners are applied in greenhouses. They serve to control temperature, relative humidity and air flow in the greenhouse. However, because of the totally different climatic conditions in the greenhouses such systems must be adapted. TNO investigates how the systems can be evaluated properly [Dutch] De wens om het energieverbruik in de glastuinbouw omlaag te brengen, leidt tot nieuwe technieken en toepassingen. Zo vinden in de utiliteit gangbare luchtbehandelingssystemen nu ook hun weg naar de kas. Ze dienen om temperatuur, relatieve luchtvochtigheid en luchtbeweging in de kas te beheersen. Maar vanwege de totaal andere klimaatomstandigheden moeten de systemen worden aangepast. TNO onderzoekt hoe de systemen goed kunnen worden geevalueerd.

  18. Experimental Determination of Demand Response Control Models and Cost of Control for Ensembles of Window-Mount Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Geller, Drew Adam [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Backhaus, Scott N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-29

    Control of consumer electrical devices for providing electrical grid services is expanding in both the scope and the diversity of loads that are engaged in control, but there are few experimentally-based models of these devices suitable for control designs and for assessing the cost of control. A laboratory-scale test system is developed to experimentally evaluate the use of a simple window-mount air conditioner for electrical grid regulation services. The experimental test bed is a single, isolated air conditioner embedded in a test system that both emulates the thermodynamics of an air conditioned room and also isolates the air conditioner from the real-world external environmental and human variables that perturb the careful measurements required to capture a model that fully characterizes both the control response functions and the cost of control. The control response functions and cost of control are measured using harmonic perturbation of the temperature set point and a test protocol that further isolates the air conditioner from low frequency environmental variability.

  19. Particulate matter concentrations in residences: an intervention study evaluating stand-alone filters and air conditioners.

    Science.gov (United States)

    Batterman, S; Du, L; Mentz, G; Mukherjee, B; Parker, E; Godwin, C; Chin, J-Y; O'Toole, A; Robins, T; Rowe, Z; Lewis, T

    2012-06-01

    This study, a randomized controlled trial, evaluated the effectiveness of free-standing air filters and window air conditioners (ACs) in 126 low-income households of children with asthma. Households were randomized into a control group, a group receiving a free-standing HEPA filter placed in the child's sleeping area, and a group receiving the filter and a window-mounted AC. Indoor air quality (IAQ) was monitored for week-long periods over three to four seasons. High concentrations of particulate matter (PM) and carbon dioxide were frequently seen. When IAQ was monitored, filters reduced PM levels in the child's bedroom by an average of 50%. Filter use varied greatly among households and declined over time, for example, during weeks when pollutants were monitored, filter use was initially high, averaging 84±27%, but dropped to 63±33% in subsequent seasons. In months when households were not visited, use averaged only 34±30%. Filter effectiveness did not vary in homes with central or room ACs. The study shows that measurements over multiple seasons are needed to characterize air quality and filter performance. The effectiveness of interventions using free-standing air filters depends on occupant behavior, and strategies to ensure filter use should be an integral part of interventions. Environmental tobacco smoke (ETS) increased particulate matter (PM) levels by about 14 μg/m3 and was often detected using ETS-specific tracers despite restrictions on smoking in the house as reported on questionnaires administered to caregivers. PM concentrations depended on season, filter usage, relative humidity, air exchange ratios, number of children, outdoor PM levels, sweeping/dusting, and presence of a central air conditioner (AC). Free-standing air filters can be an effective intervention that provides substantial reductions in PM concentrations if the filters are used. However, filter use was variable across the study population and declined over the study duration, and

  20. [A patient with acute hypersensitivity pneumonitis with a diagnosis of air-conditioner lung, who responded to therapy].

    Science.gov (United States)

    Ishikawa, Rie; Kamiya, Hiroyuki; Ikushima, Souichiro; Oristu, Masaru; Takemura, Tamiko

    2010-02-01

    The patient was a 48-year-old woman and current smoker. In May 2007, she moved to a new residence. In the middle of the following month, she developed acute respiratory distress and a fever (38 degrees C) after running her air conditioner continuously throughout the night. The chest X-ray film showed diffuse infiltrative shadows in the middle and lower lung fields. After hospital admission, her oxygenation improved without treatment and the infiltrates improved over the clinical course. As a consequence, we suspected hypersensitivity pneumonitis. The bronchoalveolar lavage showed predominant lymphocytes of 72.6%, with a low CD 4/8 ratio of 0.2. Transbronchial lung biopsy findings corresponded to acute hypersensitivity pneumonitis. The results of the environmental challenge test were positive only when her air conditioner was on, resulting, in a diagnosis of air-conditioner lung. Several microorganisms were detected in an environmental sample, but 20 kinds of serum precipitating antibodies were negative on a thorough screening, so no responsible antigen could be identified. The patient's symptoms did not recur after her air conditioner was replaced.

  1. Numerical Study of an Ejector as an Expansion Device in Split-type Air Conditioners for Energy Savings

    Directory of Open Access Journals (Sweden)

    Kasni Sumeru

    2013-07-01

    Full Text Available The present study describes a numerical approach for determining both the motive nozzle and constant-area diameters of an ejector as an expansion device, based on the cooling capacity of a split-type air-conditioner using R290 as refrigerant. Previous studies have shown that replacement of HCFC R22 with HC290 (propane in the air conditioner can improve the coefficient of performance (COP. The purpose of replacing the capillary tube with an ejector as an expansion device in a split-type air conditioner using HC290 is to further improve the COP. In developing the model, conservation laws of mass, momentum and energy equations were applied to each part of the ejector. The numerical results show that the motive nozzle diameter remains constant (1.03 mm under varying condenser temperatures, whereas the diameter of the constant-area decreases as the condenser temperature increases. It was also found that improvement of the COP can reach 32.90% at a condenser temperature of 55 °C. From the results mentioned above, it can be concluded that the use of an ejector can further improve the COP of a split-type air conditioner using HC290 as working fluid.

  2. Simulated and experimental performance of split packaged air conditioner using refrigerant HC-290 as a substitute for HCFC-22

    International Nuclear Information System (INIS)

    Padalkar, Atul S.; Mali, Kundlik V.; Devotta, Sukumar

    2014-01-01

    This paper discusses the use of propane (HC-290) as a safe and energy efficient alternative to HCFC-22 in a typical split air conditioner with nominal cooling capacities up to 5.1 kW. Initially split air conditioner performance is simulated for cooling capacity, energy efficiency ratio (EER), and refrigerant charge. Tests were conducted for different test cases in a psychrometric test chamber with HCFC-22 and HC-290. The test conditions considered are as per Indian Standards, IS 1391 (1992) Part I. The various parameters considered were based on simulated performance with the objective to achieve maximum EER for the desired cooling capacity. As the flammability is an issue for HC-290, the reduction of HC-290 charge was another objective. Two different types of condensers, first with smaller size tubing and another parallel flow condenser (PFC) or minichannel condenser were used in order to reduce HC-290 charge. For HC-290, the highest EER achieved was 3.7 for cooling capacity 4.90 kW for a refrigerant charge of 360 g. The important safety aspects of using HC-290 in air conditioner are discussed. The refrigerant charge as per EN 378 for different cooling capacities and room sizes is also considered. -- Highlights: • Simulation for performance of split air conditioner has been done using HC-290 as a replacement to HCFC-22. • The safety aspects of HC-290 are discussed when used in split air conditioner. • HC-290 was tested in psychrometric test chamber as per IS 1391 part 1. • With PFC, HC-290 gave highest EER of 3.7 which was 37% higher than that of HCFC-22. • The lowest HC-290 charge used in test was 340 g which is well below LFL

  3. Effect of central ventilation and air conditioner system on the concentration and health risk from airborne polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Lv, Jinze; Zhu, Lizhong

    2013-03-01

    Central ventilation and air conditioner systems are widely utilized nowadays in public places for air exchange and temperature control, which significantly influences the transfer of pollutants between indoors and outdoors. To study the effect of central ventilation and air conditioner systems on the concentration and health risk from airborne pollutants, a spatial and temporal survey was carried out using polycyclic aromatic hydrocarbons (PAHs) as agent pollutants. During the period when the central ventilation system operated without air conditioning (AC-off period), concentrations of 2-4 ring PAHs in the model supermarket were dominated by outdoor levels, due to the good linearity between indoor air and outdoor air (r(p) > 0.769, p air conditioner systems were working simultaneously (AC-on period), although the total levels of PAHs were increased, the concentrations and percentage of the particulate PAHs indoors declined significantly. The BaP equivalency (BaPeq) concentration indicated that utilization of air conditioning reduced the health risks from PAHs in the model supermarket.

  4. Experimental investigations on performance of liquid desiccant-vapor compression hybrid air conditioner

    International Nuclear Information System (INIS)

    Mohan, B. Shaji; Tiwari, Shaligram; Maiya, M.P.

    2015-01-01

    A coupled desiccant column is integrated with a conventional room air conditioner (AC) to enhance dehumidification of the room air. One desiccant column (absorber) is placed after the evaporator the other (regenerator) after the condenser of the AC unit. Such a novel liquid desiccant vapour compression hybrid air conditioning system has been fabricated and tested in a balanced ambient room type calorimeter for very low flow rates of liquid desiccant (lithium bromide solution). The moisture from the cold supply air is transferred to the hot condenser air by the desiccant flowing in the loop, thereby complimenting the dehumidification of the room air at the evaporator. The supply air is also sensibly heated during the dehumidification process by liquid desiccant in the absorber, which together enables the hybrid system to maintain low humidity in the room. Whereas the liquid desiccant is regenerated by the condenser waste heat, the entire cooling is derived only by the AC unit. The experimental results show that an increase of room temperature reduces both dehumidification of process air and regeneration of liquid desiccant, whereas an increase of room specific humidity enhances both these for the flow rate of the liquid desiccant in the range of 0.2–1.6% of the air flow rate through the absorber. - Highlights: • A liquid desiccant vapor compression hybrid system is fabricated and tested. • The liquid desiccant reduces latent load but equally increases sensible load. • Hybrid system performance is studied for varying room temperature and humidity. • Higher room temperature lowers air dehumidification and desiccant regeneration. • Increase of room specific humidity enhances dehumidification and also regeneration

  5. Life-cycle cost and payback period analysis for commercial unitary air conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Rosenquist, Greg; Coughlin, Katie; Dale, Larry; McMahon, James; Meyers, Steve

    2004-03-31

    This report describes an analysis of the economic impacts of possible energy efficiency standards for commercial unitary air conditioners and heat pumps on individual customers in terms of two metrics: life-cycle cost (LCC) and payback period (PBP). For each of the two equipment classes considered, the 11.5 EER provides the largest mean LCC savings. The results show how the savings vary among customers facing different electricity prices and other conditions. At 11.5 EER, at least 80% of the users achieve a positive LCC savings. At 12.0 EER, the maximum efficiency analyzed, mean LCC savings are lower but still positive. For the {ge} $65,000 Btu/h to <135,000 Btu/h equipment class, 59% of users achieve a positive LCC savings. For the $135,000 Btu/h to <240,000 Btu/h equipment class, 91% of users achieve a positive LCC savings.

  6. Locating room air-conditioners at floor level for energy saving in residential buildings

    International Nuclear Information System (INIS)

    Gao, C.F.; Lee, W.L.; Chen Hua

    2009-01-01

    Residential air-conditioning becomes a common feature in our daily life. They are typically installed at high level known as ceiling-based system (CAC). With the increasing use of floor-based air-conditioning system in commercial buildings for energy saving, it is proposed in this study to locate a top discharge/front return air-conditioner at floor level to resemble a floor-based air-conditioning system (FAC) to curb energy use in residential buildings. Given the concerns about draught discomfort and thermal stratification associated with floor-based air-conditioning systems, the objective of this study is to evaluate the air distribution performance and to quantify the possible energy benefits. Bedroom was chosen as a sensitive case for detailed air distribution performance evaluation. Experimental study, CFD simulations and energy simulations were conducted in achieving the specific objectives. CAC and FAC were installed in a bedroom-like environmental chamber for experimental study at different indoor and outdoor conditions. The air velocities and temperatures at various positions and levels inside the chamber were measured to determine the air distribution performance indices (ADPI) and airflow draft risk (DR). The cooling output, power consumption and coefficient of performance (COP) of the two units were measured and calculated for comparison. The experimental results show that ADPI of CAC and FAC are 92.3% and 84.6%, respectively. COP of FAC is 8.11% higher than CAC, and the corresponding DR are comparable. The experimental results were used to validate the CFD simulations as well as providing actual performance data for predicting the energy use of applying CAC and FAC in a case-study building. CFD simulations and draught assessment confirmed that there is no potential draught discomfort and thermal stratification associated with the use of FAC. Energy simulations predicted that the associated energy saving is 6.9%. Wider use of FAC in residential

  7. Locating room air-conditioners at floor level for energy saving in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gao, C.F.; Lee, Hua; Chen, W.L. [Department of Building Services Engineering, Hong Kong Polytechnic University, Hung Hom (China)

    2009-08-15

    Residential air-conditioning becomes a common feature in our daily life. They are typically installed at high level known as ceiling-based system (CAC). With the increasing use of floor-based air-conditioning system in commercial buildings for energy saving, it is proposed in this study to locate a top discharge/front return air-conditioner at floor level to resemble a floor-based air-conditioning system (FAC) to curb energy use in residential buildings. Given the concerns about draught discomfort and thermal stratification associated with floor-based air-conditioning systems, the objective of this study is to evaluate the air distribution performance and to quantify the possible energy benefits. Bedroom was chosen as a sensitive case for detailed air distribution performance evaluation. Experimental study, CFD simulations and energy simulations were conducted in achieving the specific objectives. CAC and FAC were installed in a bedroom-like environmental chamber for experimental study at different indoor and outdoor conditions. The air velocities and temperatures at various positions and levels inside the chamber were measured to determine the air distribution performance indices (ADPI) and airflow draft risk (DR). The cooling output, power consumption and coefficient of performance (COP) of the two units were measured and calculated for comparison. The experimental results show that ADPI of CAC and FAC are 92.3% and 84.6%, respectively. COP of FAC is 8.11% higher than CAC, and the corresponding DR are comparable. The experimental results were used to validate the CFD simulations as well as providing actual performance data for predicting the energy use of applying CAC and FAC in a case-study building. CFD simulations and draught assessment confirmed that there is no potential draught discomfort and thermal stratification associated with the use of FAC. Energy simulations predicted that the associated energy saving is 6.9%. Wider use of FAC in residential

  8. Energy efficiency and energy saving air conditioners window and split type; Eficiencia energetica e economia de energia de condicionadores de ar tipo janela e split

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Edson Palhares de; Cardoso, Rafael Balbino; Nogueira, Luiz Augusto Horta [Universidade Federal de Itajuba (EXCEN/UNIFEI), MG (Brazil). Centro de Excelencia em Eficiencia Energetica

    2010-07-01

    The air-conditioners of window end Split type are responsible for a significant portion of energy consumption in residential sector of Brazil, from 20% of the sector. This study evaluates the impact energy of the Seal Program PROCEL in air-conditioners of window end Split type, showing the efficiency gains for the country in terms of energy saving. For this evaluation it was considered the effects of temperature and loss of performance due to age, PROCEL Stamp Program resulted in a power savings of 664 GWh in air-conditioners of window type residential sector in 2008. (author)

  9. Evaluation of malodor for automobile air conditioner evaporator by using laboratory-scale test cooling bench.

    Science.gov (United States)

    Kim, Kyung Hwan; Kim, Sun Hwa; Jung, Young Rim; Kim, Man Goo

    2008-09-12

    As one of the measures to improve the environment in an automobile, malodor caused by the automobile air-conditioning system evaporator was evaluated and analyzed using laboratory-scale test cooling bench. The odor was simulated with an evaporator test cooling bench equipped with an airflow controller, air temperature and relative humidity controller. To simulate the same odor characteristics that occur from automobiles, one previously used automobile air conditioner evaporator associated with unpleasant odors was selected. The odor was evaluated by trained panels and collected with aluminum polyester bags. Collected samples were analyzed by thermal desorption into a cryotrap and subsequent gas chromatographic separation, followed by simultaneous olfactometry, flame ionization detector and identified by atomic emission detection and mass spectrometry. Compounds such as alcohols, aldehydes, and organic acids were identified as responsible odor-active compounds. Gas chromatography/flame ionization detection/olfactometry combined sensory method with instrumental analysis was very effective as an odor evaluation method in an automobile air-conditioning system evaporator.

  10. Electric efficiency in lighting system and air conditioners replacement and automation of air conditioners split type in public buildings; Eficiencia eletrica na substituicao do sistema de iluminacao e de condicionadores de ar e automacao do sistema de condicionadores de ar tipo split em predios publicos

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcellos, Arnulfo Barroso de; Apolonio, Roberto; Silva, Luciana Oliveira da; Gomes, Fernanda Leles [Universidade Federal de Mato Grosso (UFMT), MT (Brazil); Malheiro, Teresa Irene Ribeiro de Carvalho [Instituto Federal de Educacao, Ciencia e Tecnologia de Mato Grosso (IFMT), MT (Brazil); Barros, Regiane Silva de [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2010-07-01

    The reduction in expenditure on electricity is a major benefit not only consumers but also to utilities. In this context, this article examines the process of replacing the system of internal lighting, window type air conditioners and automation of Split type air conditioners from buildings of public institutions of the state of Mato Grosso during 2009 year and verifies the reduction in annual consumption of electric power and demand active power. Thus, measurements and calculations performed are presented for the interior lighting systems and air conditioners of these buildings before and after implementation of the process of replacing the system of internal lighting and window type air conditioners and automation of Split type air conditioners. This work is the result of integration among the Dealer Network Energy Rede Cemat, the Federal University of Mato Grosso (UFMT) and the Administration of all public buildings, where the academy answered these real issues, solving the specific problem presented. (author)

  11. A desiccant-enhanced evaporative air conditioner: Numerical model and experiments

    International Nuclear Information System (INIS)

    Woods, Jason; Kozubal, Eric

    2013-01-01

    Highlights: ► We studied a new process combining liquid desiccants and evaporative cooling. ► We modeled the process using a finite-difference numerical model. ► We measured the performance of the process with experimental prototypes. ► Results show agreement between model and experiment of ±10%. ► Results add confidence to previous modeled energy savings estimates of 40–85%. - Abstract: This article presents modeling and experimental results on a recently proposed liquid desiccant air conditioner, which consists of two stages: a liquid desiccant dehumidifier and an indirect evaporative cooler. Each stage is a stack of channel pairs, where a channel pair is a process air channel separated from an exhaust air channel with a thin plastic plate. In the first stage, a liquid desiccant film, which lines the process air channels, removes moisture from the air through a porous hydrophobic membrane. An evaporating water film wets the surface of the exhaust channels and transfers the enthalpy of vaporization from the liquid desiccant into an exhaust airstream, cooling the desiccant and enabling lower outlet humidity. The second stage is a counterflow indirect evaporative cooler that siphons off and uses a portion of the cool-dry air exiting the second stage as the evaporative sink. The objectives of this article are to (1) present fluid-thermal numerical models for each stage, (2) present experimental results of prototypes for each stage, and (3) compare the modeled and experimental results. Several experiments were performed on the prototypes over a range of inlet temperatures and humidities, process and exhaust air flow rates, and desiccant concentrations and flow rates. The model predicts the experiments within ±10%.

  12. Performance analysis of the electric vehicle air conditioner by replacing hydrocarbon refrigerant

    Science.gov (United States)

    Santoso, Budi; Tjahjana, D. D. D. P.

    2017-01-01

    The thermal comfort in passenger cabins needs an automotive air-conditioning system. The electric vehicle air conditioner system is driven by an electric compressor which includes a compressor and an electric motor. Almost air-conditioning system uses CFC-12, CFC-22 and HFC-134a as refrigerant. However, CFC-12 and CFC-22 will damage the ozone layer. The extreme huge global warming potentials (GWP) values of CFC-12, CFC-22, and HFC-134a represent the serious greenhouse effect of Earth. This article shows new experimental measurements and analysis by using a mixture of HC-134 to replace HFC-134a. The result is a refrigerating effect, the coefficient of performance and energy factor increase along with cooling capacity, both for HFC-134a and HC-134. The refrigerating effect of HC-134 is almost twice higher than HFC-134a. The coefficient of performance value of HC-134 is also 36.42% greater than HFC-134a. Then, the energy factor value of HC-134 is 3.78% greater than HFC-134a.

  13. Performance evaluation of a solar energy assisted hybrid desiccant air conditioner integrated with HDH desalination system

    International Nuclear Information System (INIS)

    Kabeel, A.E.; Abdelgaied, Mohamed; Zakaria, Yehya

    2017-01-01

    Highlights: • The performance of a solar hybrid air conditioner integrated with HDH desalination system is numerically investigated. • For increase the regeneration air from 70 to 130 m 3 /h, the distillate water productivity increases from 2.988 to 4.78 L/h. • For increase the regeneration air from 70 to 130 m 3 /h, COP overall daily decreases from 4.66 to 3.386. • For increases the regeneration air temperature from 75 to 95 °C, the distillate water increases from 3.1752 to 5.011 L/h. • For increases the regeneration air temperature from 75 to 95 °C, COP overall daily decreases from 4.392 to 3.636. - Abstract: In this study, the performances of a solar energy assisted hybrid desiccant air conditioning system integrated with humidification–dehumidification (HDH) desalination system are numerically investigated. The aim of this study is to benefit from the temperature rise of the regeneration air outside of the desiccant conditioning system as well as the water vapor content in this regeneration air by feeding it to the humidification-dehumidification water desalination unit to produce distillate water. The distillate water productivity, human thermal comfort issues, and energy saving represent the main objective of the present numerical study. The simulated results developed for subsystems are validated with the published experimental results. The effects of regeneration air temperature and flow rate on supply cooled air temperature, distillate water productivity, the cooling coefficient of performance and overall daily coefficient of performance of the proposed system are investigated. The results show that (i) the distillate water productivity increases from 3.175 to 5.011 L/h and overall daily coefficient of performance decreases from 4.392 to 3.636 with increasing the regeneration air temperature from 75 to 95 as (ii) the increase in the regeneration air flow rate from 70 to 130 m 3 /h, increases the distillate water productivity from 2.988 to 4

  14. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    International Nuclear Information System (INIS)

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-01-01

    In support of the federal government's efforts to raise the minimum energy-efficiency standards for residential-type central air conditioners and heat pumps, a consumer life-cycle cost (LCC) analysis was conducted to demonstrate the economic impacts on individual consumers from revisions to the standards. LCC is the consumer's cost of purchasing and installing an air conditioner or heat pump and operating the unit over its lifetime. The LCC analysis is conducted on a nationally representative sample of air conditioner and heat pump consumers resulting in a distribution of LCC impacts showing the percentage of consumers that are either benefiting or being burdened by increased standards. Relative to the existing minimum efficiency standard of 10 SEER, the results show that a majority of split system air conditioner and heat pump consumers will either benefit or be insignificantly impacted by increased efficiency standards of up to 13 SEER

  15. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-10-10

    In support of the federal government's efforts to raise the minimum energy-efficiency standards for residential-type central air conditioners and heat pumps, a consumer life-cycle cost (LCC) analysis was conducted to demonstrate the economic impacts on individual consumers from revisions to the standards. LCC is the consumer's cost of purchasing and installing an air conditioner or heat pump and operating the unit over its lifetime. The LCC analysis is conducted on a nationally representative sample of air conditioner and heat pump consumers resulting in a distribution of LCC impacts showing the percentage of consumers that are either benefiting or being burdened by increased standards. Relative to the existing minimum efficiency standard of 10 SEER, the results show that a majority of split system air conditioner and heat pump consumers will either benefit or be insignificantly impacted by increased efficiency standards of up to 13 SEER.

  16. Experimental study on the performance of a multi-functional domestic air conditioner with integrated water heater

    International Nuclear Information System (INIS)

    Dong, Jiankai; Li, Hui; Yao, Yang; Jiang, Yiqiang; Zhang, Xinran

    2017-01-01

    Highlights: • A novel MDACWH was presented and experimentally studied. • MDACWH has high performance on making domestic hot water and air conditioning. • The time for heating water reduced to 22.0 min after modification. • Average COP reached 4.32, which was 1.58 times higher than the unmodified unit. - Abstract: The recovery of condenser heat is concerned one of the most effective methods to curb energy consumption in residential dwellings. Aiming at recovering the condenser heat of domestic air conditioner, this paper experimentally studied a multi-functional domestic air conditioner with integrated water heater (MDACWH) which can effectively provide space – cooling and domestic hot water simultaneously. The dynamic operation characteristics, such as hot water supply and energy efficiency were tested to verify the availability of the MDACWH. The results showed that the MDACWH can effectively heat the domestic hot water without losing its cooling capacity. It was also found that with the use of MDACWH, the coefficient of comprehensive energy performance of the MDACWH was about 1.58 times higher than that of the unmodified experimental unit. Furthermore, the water-heating time was shorten remarkably from 128.5 min to 22.0 min. The novel domestic air conditioner, compared with the unmodified initial prototype, can be more practical and provide significant energy savings in space-cooling and hot water supply.

  17. Consumption-efficient regulation and switching concepts for air conditioners in buses; Verbrauchseffiziente Regelungs- und Verschaltungskonzepte fuer Omnibusklimaanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Christian; Tegethoff, Wilhelm [TLK-Thermo GmbH, Braunschweig (Germany); Koehler, Juergen [TU Braunschweig (Germany). Inst. fuer Thermodynamik; Sonnekalb, Michael [Konvekta AG, Schwalmstadt (Germany)

    2012-07-01

    The reduction of the fuel consumption and the related reduction of CO{sub 2} emissions is one of the most important requirements in the current development of vehicles. This includes the development of fuel-efficient drive systems and the optimization of the so-called auxiliary users such as the air conditioner. The majority of the buses used today have an air conditioner in order to meet the increased demand of passengers for comfort. Since the operation of the air conditioner results in a significant increase in fuel consumption and thus in enhanced emissions of CO{sub 2}, an essential task of the development engineer is to minimize this additional consumption. In order to identify possible optimization potentials, a bus simulation model was developed which investigates not only exclusively compression refrigeration systems, but also is in communication with their relevant systems: heating circuit with engine cooling circuit, vehicle interior, on-board electrical system and vehicle longitudinal dynamics with the drive train. In the contribution under consideration, potentials of energy conservation should be identified that can be achieved due to the use of improved control and switching concepts. For this purpose, both the conventional R-744 (CO{sub 2}) bus air conditioning systems as well as alternative systems such as an ejector cycle were studied by means of a total vehicle simulation of the bus and compared.

  18. Study on residential appliances energy efficiency standards Refrigerators, air-conditioners, incandescent lamps, fluorescent lamps, color TVs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.G.; Cho, S.K.; Choi, S.H.; Jung, B.M.; Han, S.B.; Kim, K.D. [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The energy efficiency standards and rating act, as amended by the rational energy utilization act, provides energy efficiency standards and ratings for 6 types of consumer products(refrigerators, air-conditioners, fluorescent lamps, incandescent lamps, ballasts and cars) authorizes the Ministry of Trade, Industry and Energy(MOTIE) to prescribe amended or new energy efficiency standards and rating standards. This study was initiated by the KIER in 1992. KIER`s assessment of the standards is designed to evaluate their statistical and engineering analysis according to Korean(Industrial) Standards(KS). And to make distinction between the poor efficiency and good efficiency models, 5 grades are classified depending on their tested energy efficiency. This year, based on our analysis, MOTIE mandated updated standards for refrigerators, air-conditioners, incandescent lamps, and fluorescent lamps. Also the objective of this study is to set the energy efficiency standards and to grade for color TV sets. (author). 37 refs., 89 figs., 85 tabs.

  19. Performance analysis of a novel heat pump type air conditioner coupled with a liquid dehumidification/humidification cycle

    International Nuclear Information System (INIS)

    Cai, Dehua; Qiu, Chengbo; Zhang, Jiazheng; Liu, Yue; Liang, Xiao; He, Guogeng

    2017-01-01

    Graphical abstract: Cycle performance of a small scale heat pump type air conditioner coupled with a liquid desiccant/humidification cycle has been theoretically and experimentally evaluated by the present study. The liquid desiccant and humidification cycle is driven by the exhaust heat of the compressor. LDAC not only greatly improves the indoor air quality by controlling the humidity and temperature independently, but also decrease the electrical energy consumption of the traditional air conditioner. Parametric analysis on cycle performance of the present cycle based on both theoretical and experimental methods are carried out. - Highlights: • Hybrid cycle consists of refrigeration cycle and liquid desiccant cycle is proposed. • Liquid desiccant cycle is driven by the compressor exhaust heat. • Theoretical and experimental studies on cycle performance are provided. • Energy consumption decreases about 22.64% compared with the conventional one. - Abstract: In recent years, liquid desiccant air-conditioning system (LDAC) has shown a great potential alternative to the conventional vapor compression systems. LDAC not only greatly improves the indoor air quality by controlling the humidity and temperature independently, but also deceases the electrical energy consumption of the conventional air conditioner. In this work, the liquid desiccant and humidification cycle is driven by the exhaust heat of the compressor. Cycle performance of a small-scale heat pump type air conditioner coupled with a liquid desiccant/humidification cycle has been theoretically and experimentally evaluated by the present study. Parametric analysis on cycle performance of the present cycle is carried out through both theoretical and experimental methods, and lithium chloride aqueous solution is used as the working fluid of the solution cycle. The thermodynamic analysis results show that while the evaporating temperature of the present cycle increases to 15 °C, the energy consumption

  20. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Rooftop Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linkous, Randall Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goetzler, William [Navigant Consulting Inc., Burlington, MA (United States); Guernsey, Matt [Navigant Consulting Inc., Burlington, MA (United States); Bargach, Youssef [Navigant Consulting Inc., Burlington, MA (United States)

    2016-09-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for Low-Global Warming Potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants relative to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in packaged or Rooftop Unit (RTU) air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerants selection process, the test procedures, and the final results.

  1. Life cycle analysis of retrofitting with high energy efficiency air-conditioner and fluorescent lamp in existing buildings

    International Nuclear Information System (INIS)

    Techato, Kua-anan; Watts, Daniel J.; Chaiprapat, Sumate

    2009-01-01

    Life cycle analysis of mercury in discarded low energy efficiency fluorescent lamps (36 W) and of HCFC in air-conditioners (12,000 Btu) removed from service has been conducted in this study. The objective was to find out the environmental impact (EDIP 1997 category, waste evaluation) of the products that appear in the waste stream as a result of facility upgrades. The scope of the study starts from retrofitting of the lamps and air-conditioners through recycling and disposal. For a 36 W fluorescent lamp, the bulk waste 1.64E-5 kg, hazardous waste 1.11E-4 kg, radioactive waste 1.09E-9 kg, and slag-ash 6.02E-7 kg occurred at the end of life of the retrofitting cycle. For a 12,000 Btu air-conditioner, the bulk waste 0.58 kg, hazardous waste 0.11 kg, radioactive waste 0.0002 kg, and slag-ash 0.01 kg also occurred at the end of life of the retrofitting cycle. These small amounts become important when viewed at the country level. These quantities imply that the policy makers who deal with hazardous waste should be aware of this waste-generating characteristic before issuing any pertinent policy. Consideration of this characteristic and planning for appropriate waste management methods at the beginning stage will reduce any future problem of contamination by the hazardous waste

  2. Hardware-in-the-Loop Simulation of a Distribution System with Air Conditioners under Model Predictive Control: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, Bethany F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ruth, Mark F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Krishnamurthy, Dheepak [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pratt, Annabelle [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lunacek, Monte S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jones, Wesley B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wu, Hongyu [Kansas State University; Mittal, Saurabh [Mitre Corporation; Marks, Jesse [University of Missouri

    2017-08-01

    Many have proposed that responsive load provided by distributed energy resources (DERs) and demand response (DR) are an option to provide flexibility to the grid and especially to distribution feeders. However, because responsive load involves a complex interplay between tariffs and DER and DR technologies, it is challenging to test and evaluate options without negatively impacting customers. This paper describes a hardware-in-the-loop (HIL) simulation system that has been developed to reduce the cost of evaluating the impact of advanced controllers (e.g., model predictive controllers) and technologies (e.g., responsive appliances). The HIL simulation system combines large-scale software simulation with a small set of representative building equipment hardware. It is used to perform HIL simulation of a distribution feeder and the loads on it under various tariff structures. In the reported HIL simulation, loads include many simulated air conditioners and one physical air conditioner. Independent model predictive controllers manage operations of all air conditioners under a time-of-use tariff. Results from this HIL simulation and a discussion of future development work of the system are presented.

  3. Life cycle analysis of retrofitting with high energy efficiency air-conditioner and fluorescent lamp in existing buildings

    Energy Technology Data Exchange (ETDEWEB)

    Techato, Kua-anan [International Postgraduate Programs in Environmental Management (Hazardous Waste Management) and ERI (Energy Research Institute), Chulalongkorn University, Bangkok 10330 (Thailand); Watts, Daniel J. [Otto H. York Center for Environmental Engineering and Science, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Chaiprapat, Sumate [Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai Campus, Hat Yai, Songkhla 90112 (Thailand); National Center of Excellence for Environmental and Hazardous Waste Management-Satellite Center at Prince of Songkla University (Thailand)

    2009-01-15

    Life cycle analysis of mercury in discarded low energy efficiency fluorescent lamps (36 W) and of HCFC in air-conditioners (12,000 Btu) removed from service has been conducted in this study. The objective was to find out the environmental impact (EDIP 1997 category, waste evaluation) of the products that appear in the waste stream as a result of facility upgrades. The scope of the study starts from retrofitting of the lamps and air-conditioners through recycling and disposal. For a 36 W fluorescent lamp, the bulk waste 1.64E-5 kg, hazardous waste 1.11E-4 kg, radioactive waste 1.09E-9 kg, and slag-ash 6.02E-7 kg occurred at the end of life of the retrofitting cycle. For a 12,000 Btu air-conditioner, the bulk waste 0.58 kg, hazardous waste 0.11 kg, radioactive waste 0.0002 kg, and slag-ash 0.01 kg also occurred at the end of life of the retrofitting cycle. These small amounts become important when viewed at the country level. These quantities imply that the policy makers who deal with hazardous waste should be aware of this waste-generating characteristic before issuing any pertinent policy. Consideration of this characteristic and planning for appropriate waste management methods at the beginning stage will reduce any future problem of contamination by the hazardous waste. (author)

  4. Determination of heavy metals in air conditioner dust using FAAS and INAA

    International Nuclear Information System (INIS)

    Siddique, N.

    2012-01-01

    The elements Cd, Cr, Cu, Mn, Ni, Pb and Zn were determined in dust samples collected from air conditioner (AC) filters from 15 commercial sites of Lahore using flame atomic absorption spectroscopy (FAAS). The elements Cr, Mn and Zn were also determined using instrumental neutron activation analysis (INAA). The results obtained showed that higher amounts of these metals were measured in these dust samples than normally found in soil. This was especially true for Cd, Cu, Pb and Zn. Generally the amounts of Cd, Cr and Mn did not vary throughout the city of Lahore but the amounts of the traffic related Cu, Pb and Zn elements had the more variable ranges of 30-140, 30-230 and 74-2810 mg/kg respectively. The concentrations obtained for Cr, Mn and Zn by INAA were found to be higher than those obtained using FAAS. Analysis of the data obtained showed the digestion procedure employed to be the possible cause for this occurrence. It was also found that Mn was being over-estimated by INAA due to the interference from the Mg peak. (author)

  5. Greenhouse gas emissions for refrigerant choices in room air conditioner units.

    Science.gov (United States)

    Galka, Michael D; Lownsbury, James M; Blowers, Paul

    2012-12-04

    In this work, potential replacement refrigerants for window-mounted room air conditioners (RACs) in the U.S. have been evaluated using a greenhouse gas (GHG) emissions analysis. CO(2)-equivalent emissions for several hydrofluoroethers (HFEs) and other potential replacements were compared to the most widely used refrigerants today. Included in this comparison are pure refrigerants that make up a number of hydrofluorocarbon (HFC) mixtures, pure hydrocarbons, and historically used refrigerants such as propane and ammonia. GHG emissions from direct and indirect sources were considered in this thermodynamic analysis. Propylene, dimethyl ether, ammonia, R-152a, propane, and HFE-152a all performed effectively in a 1 ton window unit and produced slightly lower emissions than the currently used R-22 and R-134a. The results suggest that regulation of HFCs in this application would have some effect on reducing emissions since end-of-life emissions remain at 55% of total refrigerant charge despite EPA regulations that mandate 80% recovery. Even so, offsite emissions due to energy generation dominate over direct GHG emissions and all the refrigerants perform similarly in totals of indirect GHG emissions.

  6. The use of helical heat exchanger for heat recovery domestic water-cooled air-conditioners

    International Nuclear Information System (INIS)

    Yi Xiaowen; Lee, W.L.

    2009-01-01

    An experimental study on the performance of a domestic water-cooled air-conditioner (WAC) using tube-in-tube helical heat exchanger for preheating of domestic hot water was carried out. The main aims are to identify the comprehensive energy performance (space cooling and hot water preheating) of the WAC and the optimum design of the helical heat exchanger taking into account the variation in tap water flow rate. A split-type WAC was set up for experimental study at different indoor and outdoor conditions. The cooling output, the amount of recovered heat, and the power consumption for different hot water flow rates were measured. The experimental results showed that the cooling coefficient of performance (COP) of the WAC improves with the inclusion of the heat recovery option by a minimum of 12.3%. This can be further improved to 20.6% by an increase in tap water flow rate. Same result was observed for the comprehensive COP of the WAC. The maximum achievable comprehensive COP was 4.92 when the tap water flow rate was set at 7.7 L/min. The overall heat transfer coefficient of the helical heat exchanger under various operating conditions were determined by Wilson plot. A mathematical model relating the over all heat transfer coefficient to the outer pipe diameter was established which provides a convenient way of optimising the design of the helical heat exchanger

  7. Incidence of polybrominated diphenyl ethers in central air conditioner filter dust from a new office building.

    Science.gov (United States)

    Ni, Hong-Gang; Cao, Shan-Ping; Chang, Wen-Jing; Zeng, Hui

    2011-07-01

    This study examined polybrominated diphenyl ethers (PBDEs) in central air conditioner filter (CACF) dust from a new office building in Shenzhen, China. Human exposure to PBDE via dust inhalation and ingestion were also estimated. PBDEs level in CACF dust was lower than those in the other countries and regions. Approximately 0.671 pg/kg bw/day PM(2.5) (Particulate Matter up to 2.5 μm in size) bounded Σ(15)PBDEs can be inhaled deep into the lungs and 4.123 pg/kg bw/day PM(10) (Particulate Matter up to 10 μm in size) bounded Σ(15)PBDEs tend to be deposited in the upper parts of the respiratory system. The average total intake of Σ(15)PBDEs via dust inhalation and ingestion for adults reached ∼ 141 pg/kg bw/day in this building. This value was far below the reference dose (RfD) recommended by United States Environmental Protection Agency. Human exposure to PBDEs via dust inhalation and ingestion in the new building is less than the old ones. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Technical and Economic Aspects of Designing an Efficient Room Air-Conditioner Program in India

    Energy Technology Data Exchange (ETDEWEB)

    Abhyankar, Nikit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Div.; Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Div.; Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Div.; Park, Won Young [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Div.

    2017-09-05

    Several studies have projected a massive increase in the demand for air conditioners (ACs) over the next two decades in India. By 2030, room ACs could add 140 GW to the peak load, equivalent to over 30% of the total projected peak load. Therefore, there is significant interest among policymakers, regulators, and utilities in managing room AC demand by enhancing energy efficiency. Building on the historical success of the Indian Bureau of Energy Efficiency’s star-labeling program, Energy Efficiency Services Limited recently announced a program to accelerate the sale of efficient room ACs using bulk procurement, similar to their successful UJALA light-emitting diode (LED) bulk procurement program. This report discusses some of the key considerations in designing a bulk procurement or financial incentive program for enhancing room AC efficiency in India. We draw upon our previous research to demonstrate the overall technical potential and price impact of room AC efficiency improvement and its technical feasibility in India. We also discuss the importance of using low global warming potential (GWP) refrigerants and smart AC equipment that is demand response (DR) ready.

  9. Cooling the Planet: Opportunities for Deployment of Superefficient Room Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Waide, Paul [Navigant Consulting Inc., Chicago, IL (United States); Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-04-01

    This report presents the results of an analysis, commissioned by the U.S. Department of Energy, of Air Conditioner (AC) efficiency in support of the Super-efficient Equipment and Appliance Deployment (SEAD) initiative.1 The International Energy Studies group at Lawrence Berkeley National Laboratory in collaboration with Navigant Consulting Inc. performed the analysis. SEAD aims to transform the global market by increasing the penetration of highly efficient equipment and appliances. SEAD partners work together in voluntary activities to: (1) “raise the efficiency ceiling” by pulling superefficient appliances and equipment into the market through cooperation on measures like incentives, procurement, awards, and research and development (R&D) investments; (2) “raise the efficiency floor” by working together to bolster national or regional policies like minimum efficiency standards; and (3) “strengthen the efficiency foundations” of programs by coordinating technical work to support these activities.2 The objective of this analysis is to provide the background technical information necessary to improve the efficiency of ACs and to provide a foundation for the activities of SEAD participating countries. We find that even the best currently available technology offers large efficiency improvement opportunities (35% to 50% reduction in energy consumption from the market average) in most SEAD countries. The cost effective efficiency improvements range from 20% to 30% reduction in energy consumption based on a consumer perspective.

  10. Natural refrigerants for air conditioners in passenger cars. A contribution to climate protection. Background; Natuerliche Kaeltemittel fuer PKW-Klimaanlagen. Ein Beitrag zum Klimaschutz. Hintergrund

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Gabriele; Plehn, Wolfgang

    2010-09-15

    Air conditioners in passenger cars contain a refrigerant which significantly increases the greenhouse effect. Currently about 30 % of global emissions of partially fluorinated hydrocarbons originate from these air conditioners. According to the directive 2006/40/EC, this refrigerant must be replaced by a less harmful substance. Under this aspect, the contribution under consideration initially reports on the stock and level of air conditioning of passenger cars as well as on the refrigerant tetrafluoroethane. Subsequently, refrigerants for air conditioning of passenger cars such as carbon dioxide, 1.1-difluoroethane and 2,3,3,3-tetrafluoro propylene are described. Overall, the refrigerant carbon dioxide is the best alternative for mobile air conditioning.

  11. Using Field-Metered Data to Quantify Annual Energy Use of Portable Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Thomas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept., Environmental Energy Technologies Division; Willem, Henry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept., Environmental Energy Technologies Division; Ni, Chun Chun [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept., Environmental Energy Technologies Division; Stratton, Hannah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept., Environmental Energy Technologies Division; Chen, Yuting [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept., Environmental Energy Technologies Division; Ganeshalingam, Mohan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept., Environmental Energy Technologies Division; Iyer, Maithili [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept., Environmental Energy Technologies Division; Price, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept., Environmental Energy Technologies Division; Dunham, Camilla [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Dept., Environmental Energy Technologies Division

    2014-12-12

    As many regions of the United States experience rising temperatures, consumers have come to rely increasingly on cooling appliances (including portable air conditioners) to provide a comfortable indoor temperature. Home occupants sometimes use a portable air conditioner (PAC) to maintain a desired indoor temperature in a single room or enclosed space. Although PACs in residential use are few compared to centrally installed and room air conditioning (AC) units, the past few years have witnessed an increase of PACs use throughout the United States. There is, however, little information and few research projects focused on the energy consumption and performance of PACs, particularly studies that collect information from field applications of PACs. The operation and energy consumption of PACs may differ among geographic locations and households, because of variations in cooling load, frequency, duration of use, and other user-selected settings. In addition, the performance of building envelope (thermal mass and air leakage) as well as inter-zonal mixing within the building would substantially influence the ability to control and maintain desirable indoor thermal conditions. Lawrence Berkeley National Laboratory (LBNL) conducted an initial field-metering study aimed at increasing the knowledge and data related to PAC operation and energy consumption in the United States. LBNL performed its field-metering study from mid-April to late October 2014. The study, which monitored 19 sites in the Northeastern United States (4 in upstate New York and 15 near Philadelphia), collected real-time data on PAC energy consumption along with information regarding housing characteristics, consumer behavior, and environmental conditions that were expected to affect PAC performance. Given the limited number of test sites, this study was not intended to be statistically representative of PAC users in the United States but rather to understand the system response to the cooling demand and to

  12. Performance Optimization of Alternative Lower Global Warming Potential Refrigerants in Mini-Split Room Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [ORNL; Abdelaziz, Omar [ORNL; Shrestha, Som S [ORNL

    2017-01-01

    Oak Ridge National laboratory (ORNL) recently conducted extensive laboratory, drop-in investigations for lower Global Warming Potential (GWP) refrigerants to replace R-22 and R-410A. ORNL studied propane, DR-3, ARM-20B, N-20B and R-444B as lower GWP refrigerant replacement for R-22 in a mini-split room air conditioner (RAC) originally designed for R-22; and, R-32, DR-55, ARM-71A, and L41-2, in a mini-split RAC designed for R-410A. We obtained laboratory testing results with very good energy balance and nominal measurement uncertainty. Drop-in studies are not enough to judge the overall performance of the alternative refrigerants since their thermodynamic and transport properties might favor different heat exchanger configurations, e.g. cross-flow, counter flow, etc. This study compares optimized performances of individual refrigerants using a physics-based system model tools. The DOE/ORNL Heat Pump Design Model (HPDM) was used to model the mini-split RACs by inputting detailed heat exchangers geometries, compressor displacement and efficiencies as well as other relevant system components. The RAC models were calibrated against the lab data for each individual refrigerant. The calibrated models were then used to conduct a design optimization for the cooling performance by varying the compressor displacement to match the required capacity, and changing the number of circuits, refrigerant flow direction, tube diameters, air flow rates in the condenser and evaporator at 100% and 50% cooling capacities. This paper compares the optimized performance results for all alternative refrigerants and highlights best candidates for R-22 and R-410A replacement.

  13. Air Conditioner Charging. Automotive Mechanics. Air Conditioning. Instructor's Guide [and] Student Guide.

    Science.gov (United States)

    Spignesi, B.

    This instructional package, one in a series of individualized instructional units on automobile air conditioning, consists of a student guide and an instructor guide dealing with air conditioning charging. Covered in the module are checking the air conditioning system for leaks, checking and adding refrigerant oil as needed, evacuating the system,…

  14. Elemental analysis of dust trapped in air conditioner filters for the assessment of Lahore city's air quality

    International Nuclear Information System (INIS)

    Siddique, N.

    2011-01-01

    A study was undertaken to assess the air quality of Lahore by the elemental analysis of air conditioner (AC) filter dust samples collected from 15 different commercial sites. Samples were prepared using the Leeds Public Analyst Method and were analyzed using instrumental neutron activation analysis (INAA) for up to 31 elements. The elements Al, As, Ba, Ce, Co, Cr, Cs, Fe, Hf, K, La, Lu, Mn, Na, Nd, Rb, Sc, Sm, Sn, Ta, Th, Yb and Zn were detected in all 15 samples whereas the remaining elements have been detected in fewer samples; i.e. Mg, Sb and Tb were detected in 14 samples, Br and V in ten samples, U in nine samples and Ca and Ti in eight samples only. Al, Ca, Fe, K, Mg and Na were determined in all samples at percentage levels. The concentrations of most elements were found to lie around the mean values for the 15 samples studied and were not orders of magnitude different. However the concentrations of Ca, Mg, Sn and Zn were found to be more variable and were found to be dependant on activities such as construction, fruit and vegetable handling, tin plating and transport, respectively. (author)

  15. Performance evaluation of a stack cooling system using CO{sub 2} air conditioner in fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Chul; Won, Jong Phil [Thermal Management Research Center, Korea Automotive Technology Institute, Chungnam 330-912 (Korea); Park, Yong Sun; Lim, Tae Won [Corporate Research and Development Division, Hyundai-Kia Motors, Gyeonggi 449-912 (Korea); Kim, Min Soo [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744 (Korea)

    2009-01-15

    A relation between the heat release from a fuel cell stack and an air conditioning system's performance was investigated. The air conditioning system installed in a fuel cell vehicle can be used for stack cooling when additional stack heat release is required over a fixed radiator capacity during high vehicle power generation. This study investigated the performance of a stack cooling system using CO{sub 2} air conditioner at various operating conditions. Also, the heat releasing effectiveness and mutual interference were analyzed and compared with those for the conventional radiator cooling system with/without cabin cooling. When the radiator coolant inlet temperature and flow rate were 65 C and 80 L/min, respectively, for the outdoor air inlet speed of 5 m/s, the heat release of the stack cooling system with the aid of CO{sub 2} air conditioner increased up to 36% more than that of the conventional radiator cooling system with cabin cooling. Furthermore, this increased by 7% versus the case without cabin cooling. (author)

  16. Chemical Risk Evaluation: A Case Study in an Automotive Air Conditioner Production Facility

    Directory of Open Access Journals (Sweden)

    Tengku Hanidza T.I.

    2010-01-01

    Full Text Available There has been limited knowledge on worker’s exposure to chemicals used in the automotive industries. The purpose of this study is to assess chemical risk and to determine the adequacy of the existing control measures to reduce chemical exposure. A cross sectional survey was conducted in a factory involving installation and servicing of automotive air conditioner units. Qualitative exposure assessment was carried out following the Malaysian Chemical Health Risk Assessment Manual (CHRA. There were 180 employees, 156 workers worked in the production line, which constitutes six work units Tube fin pressed, Brazing, Welding, Final assembly, Piping and Kit II. From the chemical risk evaluation for each work unit, 26 chemical compounds were used. Most of the chemicals were irritants (eye and skin and some were asphyxiants and sensitizers. Based on the work assignment, 93 out of 180 (51.67% of the workers were exposed to chemicals. The highest numbers of workers exposed to chemicals were from the Brazing section (22.22% while the Final Assembly section was the lowest (1.67%. Health survey among the workers showed occurrence of eye irritation, skin irritation, and respiratory irritation, symptoms usually associated with chemical exposure. Using a risk rating matrix, several work process were identified as having ‘significant risk’. For these areas, the workers are at risk of adverse health effects since chemical exposure is not adequately controlled. This study recommends corrective actions be taken in order to control the level of exposure and to provide a safe work environment for workers.

  17. Flow, stock, and impact assessment of refrigerants in the Japanese household air conditioner sector.

    Science.gov (United States)

    Xue, Mianqiang; Kojima, Naoya; Machimura, Takashi; Tokai, Akihiro

    2017-05-15

    Refrigerants provide society with great benefits while have the potential to cause adverse effects on the environment and human health. The present study estimated time-dependent flows and stocks and assessed the effects of refrigerants (R-22, R-410a, and R-32) in household air conditioners in Japan. It was found that stock of R-22 and R-410a peaked at 49,147t in 2000 and 55,994t in 2017, respectively. The largest flow of R-22 and R-410a to waste phase occurred at 3417t/yr. in 2005 and 4011t/yr. in 2023, respectively. The total global warming potential (GWP) due to refrigerant emissions increased from 3.6kt CO 2 eq. in 1952 to 6999kt CO 2 eq. in 2019, and then decreased to 5314kt CO 2 eq. in 2030. The ozone depletion potential (ODP) peaked at 141t CFC-11 eq. in 2002. When substituting R-410a for R-22, the ODP decreased 50% while the GDP increased 8%. When substituting R-32 for R-410a, there was no effect on the ODP while the GDP decreased 6%. The human health damage due to the global warming effect of refrigerant emission was much higher than that due to the ozone depleting effect. The refrigerant emission in use and waste management phases dominated the human health damage. The dynamic estimation not only allows us to evaluate the performance of past policies but also supports the future sustainable management associated with the health effects of refrigerants. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. On the performance of air conditioner with heat pipe for cooling air in the condenser

    Energy Technology Data Exchange (ETDEWEB)

    Naphon, Paisarn, E-mail: paisarnn@swu.ac.t [Thermo-Fluids and Heat Transfer Enhancement Laboratory (TFHT), Department of Mechanical Engineering, Faculty of Engineering, Srinakharinwirot University, 63 Rangsit-Nakhornnayok Rd., Ongkharak, Nakhorn-Nayok 26120 (Thailand)

    2010-11-15

    Improvement of the air conditioning system performance by using the heat pipe for cooling air before entering the condenser is presented. In the experiment, the heat pipe is fabricated from the straight copper tube with the diameter and length of 10, 600 mm, respectively. The arrangements of the heat pipe sets are arranged in the staggered layout with the tube rows of 1, 2, 3. R134a refrigerant is used as working fluid in the heat pipe set for this present study. By comparing with a conventional air conditioning system, the air conditioning system with three rows of heat pipe gives the highest COP and EER with increasing of 6.4%, 17.5%, respectively. On the global warming and environment problems, the results of this study are expected to lead to guidelines that will allow the improved performance of the air conditioning systems which reduce its energy consumption.

  19. On the performance of air conditioner with heat pipe for cooling air in the condenser

    International Nuclear Information System (INIS)

    Naphon, Paisarn

    2010-01-01

    Improvement of the air conditioning system performance by using the heat pipe for cooling air before entering the condenser is presented. In the experiment, the heat pipe is fabricated from the straight copper tube with the diameter and length of 10, 600 mm, respectively. The arrangements of the heat pipe sets are arranged in the staggered layout with the tube rows of 1, 2, 3. R134a refrigerant is used as working fluid in the heat pipe set for this present study. By comparing with a conventional air conditioning system, the air conditioning system with three rows of heat pipe gives the highest COP and EER with increasing of 6.4%, 17.5%, respectively. On the global warming and environment problems, the results of this study are expected to lead to guidelines that will allow the improved performance of the air conditioning systems which reduce its energy consumption.

  20. Experimental investigations on automobile air conditioners working with R134a and R290/R600a as an alternative

    Directory of Open Access Journals (Sweden)

    Kandhaswamy Karthikeyan

    2017-01-01

    Full Text Available In this work, the performance of R134a based automobile air conditioning system has been evaluated by retrofitted with R290/R600a mixture (in the ratio of 50:50, by mass, as an alternative. The performance was evaluated at five different operating speeds (1000, 1500, 2000, 2500, and 3000, which covers the entire range of working conditions with four different cabin load (100, 200, 300, and 400 W. The condenser inlet air temperature was varied in the range between 30 and 50°C, which covers the entire climatic variations in Coimbatore city of India. The performance characteristics such as, refrigerating effect, coefficient of performance, compressor power consumption, and compressor discharge temperatures were considered for comparison. The results showed that, hydrocarbon mixture has faster cooling rate due to its high latent heat of vaporization, 5% higher coefficient of performance due to higher refrigeration effect, 8-10 K lower compressor discharge temperature due to its lower specific heat ratio with 5% lower compressor power consumption due to its lower viscosity and lower liquid density. The charge requirement of R290/R600a mixture is about 50% less compared to R134a. However, the mixture composition is considered as an interment replacement in automobile air conditioners due to composition shift under leak-age conditions. Hence, R290/R600a mixture is considered as an interim energy efficient and environment friendly option in R134a automobile air conditioners to extend its life.

  1. The experimental investigation of refrigerant distribution and leaking characteristics of R290 in split type household air conditioner

    International Nuclear Information System (INIS)

    Tang, Weier; He, Guogeng; Cai, Dehua; Zhu, Yihao; Zhang, Aoni; Tian, Qiqi

    2017-01-01

    Highlights: • A new quasi-liquid nitrogen method (QLNM) was proposed and firstly applied in experiments. • The R290 distribution was investigated by QLNM and the results proved the validation. • A solenoid valve was proposed to install near the capillary in STHAC in order to reduce risk factor. • R290 leaking rate was firstly measured by QLNM before and after the installation a solenoid valve. - Abstract: As a high-profile replacement for R22 split type household air conditioner (STHAC), R290 has several advantages in terms of thermodynamic properties, environmental characteristics, and cost. However, the obvious shortcoming of R290 is its flammability, which has a potential fire risk to the building. At present, the most important measure to ensure the safety of a R290 STHAC is to limit the refrigerant charge by domestic and international standards. But in fact, when the leakage of R290 occur from a STHAC, the distribution of R290 in STHAC, and the leaking rate also will seriously affect the safety of an R290 STHAC. In this study, a new quasi-liquid nitrogen method (QLNM) has been proposed in order to investigate the refrigerant distribution in R290 STHACs and the leaking rate under various conditions, and the experiments have been conducted. The experimental results of distribution proved the validation of the QLNM and showed that a large portion of the refrigerant distributed in the condenser when the air conditioner is on running stage and the refrigerant will migrate from the condenser to the evaporator when the air conditioner is on closed stage. Based on this, the installation of a solenoid valve near the capillary has been proposed. The comparison of experimental results of R290 leaking rate before and after the installation of a solenoid valve showed it will obviously reduce the leaking rate and thereby improve the safety of the R290 STHACs.

  2. An experimental and theoretical study on an injection-assisted air-conditioner using R32 in the refrigeration cycle

    International Nuclear Information System (INIS)

    Qv, Dehu; Dong, Bingbing; Cao, Lin; Ni, Long; Wang, Jijin; Shang, Runxin; Yao, Yang

    2017-01-01

    Highlights: • An advanced injection-assisted air-conditioner (IAC) using R32 was proposed. • In the whole day-night cycle, cooling capacity and energy efficiency ratio of the IAC were enhanced dramatically. • The injection duration of 8 s maximized the IAC cooling potential. • Two-phase injection attained the highest exergetic efficiency approximating 50% or more. • The economic and environmental benefits of the IAC were demonstrated. - Abstract: An air-conditioner (AC) that uses refrigerant R32 assisted with one-phase vapor injection shows high energy efficiency and low discharge temperature in the heat-pump cycle, but the performance is not satisfactory in the refrigeration cycle. In this study, an improved injection cycle consisting of one-phase vapor injection mode and two-phase injection mode is proposed and integrated into an AC using R32, which is now referred to as an advanced injection-assisted air-conditioner (IAC). Through an experimental and theoretical study, an optimal injection duration of 8 s is attained for maximizing the refrigeration potential of the IAC. Furthermore, in an entire day–night cycle, both the cooling capacity and energy efficiency ratio (EER) of the IAC within the two-phase injection cycle are enhanced by 25% and 32%, respectively, compared with those of a noninjection-assisted AC. Moreover, two-phase injection offers the highest exergetic efficiency, approximately 50% or more in the refrigeration cycle, exhibiting remarkable thermodynamic performance of the IAC. In addition, compared to the conventional AC using R410A, the IAC using R32 within a two-phase injection cycle demonstrates reasonable payback performance and substantial reduction in carbon dioxide and sulfur dioxide emissions in the refrigeration cycle.

  3. Future emissions and atmospheric fate of HFC-1234yf from mobile air conditioners in Europe.

    Science.gov (United States)

    Henne, Stephan; Shallcross, Dudley E; Reimann, Stefan; Xiao, Ping; Brunner, Dominik; O'Doherty, Simon; Buchmann, Brigitte

    2012-02-07

    HFC-1234yf (2,3,3,3-tetrafluoropropene) is under discussion for replacing HFC-134a (1,1,1,2-tetrafluoroethane) as a cooling agent in mobile air conditioners (MACs) in the European vehicle fleet. Some HFC-1234yf will be released into the atmosphere, where it is almost completely transformed to the persistent trifluoroacetic acid (TFA). Future emissions of HFC-1234yf after a complete conversion of the European vehicle fleet were assessed. Taking current day leakage rates and predicted vehicle numbers for the year 2020 into account, European total HFC-1234yf emissions from MACs were predicted to range between 11.0 and 19.2 Gg yr(-1). Resulting TFA deposition rates and rainwater concentrations over Europe were assessed with two Lagrangian chemistry transport models. Mean European summer-time TFA mixing ratios of about 0.15 ppt (high emission scenario) will surpass previously measured levels in background air in Germany and Switzerland by more than a factor of 10. Mean deposition rates (wet + dry) of TFA were estimated to be 0.65-0.76 kg km(-2) yr(-1), with a maxium of ∼2.0 kg km(-2) yr(-1) occurring in Northern Italy. About 30-40% of the European HFC-1234yf emissions were deposited as TFA within Europe, while the remaining fraction was exported toward the Atlantic Ocean, Central Asia, Northern, and Tropical Africa. Largest annual mean TFA concentrations in rainwater were simulated over the Mediterranean and Northern Africa, reaching up to 2500 ng L(-1), while maxima over the continent of about 2000 ng L(-1) occurred in the Czech Republic and Southern Germany. These highest annual mean concentrations are at least 60 times lower than previously determined to be a safe level for the most sensitive aquatic life-forms. Rainwater concentrations during individual rain events would still be 1 order of magnitude lower than the no effect level. To verify these results future occasional sampling of TFA in the atmospheric environment should be considered. If future HFC-1234yf

  4. Proposal of digital interface for the system of the air conditioner's remote control: analysis of the system of feedback.

    Science.gov (United States)

    da Silva de Queiroz Pierre, Raisa; Kawada, Tarô Arthur Tavares; Fontes, André Guimarães

    2012-01-01

    Develop a proposal of digital interface for the system of the remote control, that functions as support system during the manipulation of air conditioner adjusted for the users in general, from ergonomic parameters, objectifying the reduction of the problems faced for the user and improving the process. 20 people with questionnaire with both qualitative and quantitative level. Linear Method consists of a sequence of steps in which the input of one of them depends on the output from the previous one, although they are independent. The process of feedback, when necessary, must occur within each step separately.

  5. Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control

    Science.gov (United States)

    2012-11-01

    reading Current transformer Regen and conditioner Continental Controls CTS-0750-30 1 % of reading Pyranometer Horizontal Campbell...indoor comfort conditions. A pyranometer was used to quantify the efficiency of the solar collector array. Two measurements of electric energy were

  6. Performance of a prototype micro wind turbine in the manmade wind field from air conditioner of buildings

    Directory of Open Access Journals (Sweden)

    K. H. Goh

    2012-03-01

    Full Text Available Harnessing waste energy from the manmade air fields of buildings presents a new area of renewable energy to explore. Due to the unpredictability of the natural wind, this study is to evaluate the practicality for harnessing waste energy from the air conditioner exhaust units which are a more constant and predictable source available in the buildings. A prototype of the micro wind turbine has been designed to minimize the negative effect of the exhaust sources. After the micro wind turbine was manufactured, the performance of the turbine was tested in the selected air conditioner exhaust unit. Increasing the rotor solidity and decreasing the resistance of the generator contribute to improved starting torque and decreased generator break in torque respectively in the design. The power generation of the micro wind turbine increases with an increase of the rotor speed. The 24-hour operation of the prototype presents an observation for both exhaust performance and power generation prediction when the prototype is mounted on the exhaust unit.

  7. Effectiveness of finish materials and room air-conditioner on the reduction of indoor radon concentration in Hong Kong

    International Nuclear Information System (INIS)

    Ma, A.K.; Man, C.K.; Ho, E.; Pang, S.W.

    1995-01-01

    Four different kinds of finish material were investigated: wallpaper, paint, plaster and tile. When applied to the bare concrete walls of uninhabited rooms in flats of a building under construction, all of them were found to reduce indoor radon concentration. The magnitude of reduction by these finish materials ranged from 20% to 80%. Wallpaper was found to provide the best protection against radon emission from bare concrete walls in a bedroom with a size of 19.3 m 3 . Wallpaper can reduce the indoor radon concentration about twice as much as paint (water-based) or plaster in this investigation. Tile was also found to be a good material against radon emission from concrete walls in a bathroom with a size of 6.3 m 3 . Indoor radon concentration was found to decrease with elevation from the ground level, and was affected strongly by mechanical ventilation. Another 30% to 50% reduction in indoor radon concentration in addition to finish material can be achieved by a room air-conditioner. It was also found that indoor radon concentrations were not affected by turning the fresh air shutter to the 'on' or 'off' position in the room air-conditioner. (author)

  8. The design of the motor bracket for reduction of structure-borne noise in package air-conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Hyoun Jin; Lee, Sung Jin; Oh, Jae Eung [Hanyang University, Seoul (Korea, Republic of); Kang, Tae Ho [WiniaMando, Asan (Korea, Republic of); Lee, Jung Yoon [Kyonggi University, Suwon (Korea, Republic of)

    2006-02-15

    As the economic power is improved and the customer's demand is hard to please, the noise and vibration is the most important yardstick that can determine the quality of the product. Especially, as the air-conditioner's demand increase suddenly, the product of quality and the noise is becoming a decisive factor of determining whether purchase the product or not. Therefore, every manufactory is investing a lot of money and research to cut down the unpleasantness induced from noise and vibration. And they are emphasizing their product's difference by advertising a silence very actively. With these reason, the demand of a silent indoor air-conditioner is the essential research filed when the product is developed. In this study, the noise and vibration is visualized in the space and frequency domain by using experimental methods such as Operational Deflection Shape (ODS), modal testing and sound intensity. Also the location of noise source and its characteristic is analyzed in an acoustical point of view to reduce the structure borne noise that come from the fan motor, and the pertinent control method is suggested. Furthermore, the most suitable shape of the motor bracket is suggested by applying FEM and DOE (Design of Experiments) in the noise and vibration point a view.

  9. Effects of ejector geometries on performance of ejector-expansion R410A air conditioner considering cooling seasonal performance factor

    International Nuclear Information System (INIS)

    Jeon, Yongseok; Jung, Jongho; Kim, Dongwoo; Kim, Sunjae; Kim, Yongchan

    2017-01-01

    Highlights: •The performance of an ejector-expansion R410A air conditioner is measured. •The effect of ejector geometries on the COP and CSPF is analyzed. •The mixing-section diameter of the ejector is optimized based on the CSPF. •The mixing-section diameter is optimized based on the climatic conditions. -- Abstract: The objective of this study was to investigate the effects of ejector geometries on the performance of an ejector-expansion air conditioner (EEAC) considering the cooling seasonal performance factor (CSPF). The performance of the EEAC using R410A was measured and analyzed by varying the compressor speed, outdoor-bin temperature, operating pressures, nozzle-throat diameter, and mixing-section diameter. The EEAC in the medium-capacity mode exhibited maximum coefficient of performance (COP) improvement, i.e., 7.5%, over the baseline (conventional) cycle. The optimum mixing-section diameter was determined to be 9 mm based on the CSPF. In addition, the optimum mixing-section diameter increased with an increase in the annual average outdoor temperature. The CSPF of the EEAC with the optimized mixing-section diameter improved in the range of 16.0–20.3% over the baseline cycle depending on the climatic conditions.

  10. A review on test procedure, energy efficiency standards and energy labels for room air conditioners and refrigerator-freezers

    Energy Technology Data Exchange (ETDEWEB)

    Mahlia, T.M.I.; Saidur, R. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2010-09-15

    Air conditioners and refrigerator-freezers are major energy users in a household environment and hence efficiency improvement of these appliances can be considered as an important step to reduce their energy consumption along with environmental pollution prevention. Energy efficiency standards and labels are commonly used tools to reduce the energy uses for household appliances for many countries around the world. The first step towards adopting energy efficiency standards is to establish a test procedure for rating and testing of an appliance. It may be mentioned that an energy test procedure is the technical foundation for energy efficiency standards, energy labels, and other related programs. This paper reviews requirements and specifications of various international test standards for testing and rating of room air conditioners and refrigerators. A review on the development of the energy efficiency standards has been provided as well. Finally, energy labels that provide some useful information for identifying energy efficient products have been reviewed for these appliances. It may be stated that the review will be useful for the developing countries who wish to develop these energy savings strategies. It is also expected to be useful to revise the existing strategies for a few selected countries who already implemented these strategies earlier. (author)

  11. The design of the motor bracket for reduction of structure-borne noise in package air-conditioner

    International Nuclear Information System (INIS)

    Sim, Hyoun Jin; Lee, Sung Jin; Oh, Jae Eung; Kang, Tae Ho; Lee, Jung Yoon

    2006-01-01

    As the economic power is improved and the customer's demand is hard to please, the noise and vibration is the most important yardstick that can determine the quality of the product. Especially, as the air-conditioner's demand increase suddenly, the product of quality and the noise is becoming a decisive factor of determining whether purchase the product or not. Therefore, every manufactory is investing a lot of money and research to cut down the unpleasantness induced from noise and vibration. And they are emphasizing their product's difference by advertising a silence very actively. With these reason, the demand of a silent indoor air-conditioner is the essential research filed when the product is developed. In this study, the noise and vibration is visualized in the space and frequency domain by using experimental methods such as Operational Deflection Shape (ODS), modal testing and sound intensity. Also the location of noise source and its characteristic is analyzed in an acoustical point of view to reduce the structure borne noise that come from the fan motor, and the pertinent control method is suggested. Furthermore, the most suitable shape of the motor bracket is suggested by applying FEM and DOE (Design of Experiments) in the noise and vibration point a view

  12. Effect of heat recovery water heater system on the performance of residential split air conditioner using hydrocarbon refrigerant (HCR22)

    Science.gov (United States)

    Aziz, A.; Thalal; Amri, I.; Herisiswanto; Mainil, A. K.

    2017-09-01

    This This paper presents the performance of residential split air conditioner (RSAC) using hydrocarbon refrigerant (HCR22) as the effect on the use of heat recovery water heater system (HRWHS). In this study, RSAC was modified with addition of dummy condenser (trombone coil type) as heat recovery water heater system (HRWHS). This HRWHS is installed between a compressor and a condenser by absorbing a part of condenser waste heat. The results show that RSAC with HRWHS is adequate to generate hot water with the temperature range about 46.58˚C - 48.81˚C when compared to without HRWHS and the use of dummy condenser does not give significant effect to the split air conditioner performance. When the use of HRWHS, the refrigerant charge has increase about 19.05%, the compressor power consumption has slightly increase about 1.42% where cooling capacity almost the same with slightly different about 0.39%. The condenser heat rejection is lower about 2.68% and the COP has slightly increased about 1.05% when compared to without HRWHS. The use of HRWHS provide free hot water, it means there is energy saving for heating water without negative impact to the system performance of RSAC.

  13. Study on the complexity pricing game and coordination of the duopoly air conditioner market with disturbance demand

    Science.gov (United States)

    Ma, Junhai; Xie, Lei

    2016-03-01

    The paper focuses on the dynamic pricing game of the duopoly air conditioner market with disturbance in demand and analyzes the influence of disturbance on the dynamic game system. Considering the demand for products, such as air conditioner, varies with different seasons, we assume three cases based on the condition of disturbance, including growth market (Case 1), declining market (Case 2) and completely random market (Case 3). By analyzing these three cases and making comparison among them, the paper shows that the growth market is more sensitive to the changing parameters such as the adjustment variable and the competitive factor than the declining market. It is more difficult to keep the system stable in a growth market. Although the demand is completely random, the dynamic system can reach a stable state, on condition that the adjustment variable is small enough. The results also indicate that the bullwhip effect between the order quantity and the actual demand is weakened gradually along with the price adjustment.

  14. China Energy Efficiency Round Robin Testing Results for Room Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Nan; Fridley, David; Zheng, Nina; Pierrot, Andre

    2010-06-07

    consuming products has always been an important component of all countries energy strategies. As we all know, a very large amount of total energy consumption is due to energy consuming products and equipment, which account for about 50% of China's total energy consumption. However, the current average energy utilization efficiency of this sector is only about 60%, 10 percent lower than the international advanced level. Therefore, China's energy consuming products and equipment sector holds great energy-saving potential. On the other hand, the energy supplied to these products is mainly from fossil fuel combustion, a major source of greenhouse gas (GHG) emissions. Therefore, improving the energy efficiency and augmenting the market share of market-dominant energy consuming products is of significant importance to achieving China's energy saving and emission reduction target and is an effective means to deal with energy and environmental constraints and climate change issues. Main energy consuming products generally include widely-used home appliances, industrial equipment, office equipment, transportation vehicles, etc. China is one of the major manufacturers and exporters of energy end-using products such as air-conditioners, refrigerators, televisions, etc. Their overall energy efficiency is comparatively low and the products are poorly designed, leading to great energy-saving potential. For example, electricity consumption of air conditioners accounts for about 20% of China's total electricity consumption and 40% of the summer electricity peak load in large and medium cities. However, less than 5% of units sold in the domestic market in 2009 reached the standard's highly efficient level of grade 2 above. The electricity consumption of electric motors and their related drive systems accounts for about 60% of China's total electricity consumption; however, less than 2% of the domestic market share consists of energy-efficient electric motor

  15. Cardio-Muscular Conditioner

    Science.gov (United States)

    1993-01-01

    In the mid-sixties, Gary Graham, a Boeing designer, developed a cardiovascular conditioner for a planned Air Force orbiting laboratory. After the project was cancelled, Graham participated in space station conditioning studies for the Skylab program. Twenty years later, he used this expertise to develop the Shuttle 2000-1, a physical therapy and athletic development conditioner, available through Contemporary Designs. The machine is used by football teams, sports clinics and medical rehabilitation centers. Cardiovascular fitness and muscular strength development are promoted through both kinetic and plyometric exercises.

  16. 10 CFR Appendix M to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Energy Consumption... Consumption of Central Air Conditioners and Heat Pumps 1. DEFINITIONS 2. TESTING CONDITIONS 2.1Test room... more common ducts within each test room that contains multiple indoor coils. At the plane where each...

  17. Experimental investigation of HFC407C/HC290/HC600a mixture in a window air conditioner

    International Nuclear Information System (INIS)

    Jabaraj, D.B.; Avinash, P.; Lal, D. Mohan; Renganarayan, S.

    2006-01-01

    HCFC22, one of the widely used refrigerants in window air conditioners must be phased out soon as per the Montreal protocol. Presently, HFC407C is considered as a potential drop in substitute for HCFC22, but retrofitting HCFC22 systems with HFC407C with polyol ester oil (POE) is a major issue as HFC407C is immiscible with mineral oil. The miscibility issue of HFC407C with mineral oil was overcome with the addition of a HC blend to it. The above technoeconomic feasibility issues to retrofit the existing HCFC22 systems with an ozone friendly refrigerant and retain the energy efficiency of the system are challenges in the air conditioning sector. In this present work, an experimental analysis has been conducted in a window air conditioner retrofitted with eco-friendly refrigerant mixtures of HFC407C/HC290/HC600a without changing the mineral oil. Its performance, as well as energy consumption, was compared with the conventional one. It is observed that the mixtures demand lengthening of the condenser in order to maintain the discharge pressure within acceptable limits. This also resulted in better heat transfer at the condenser. Therefore, in this study, the condenser tube length was increased by 19% to suit the mixtures as compared to HCFC22. Compared to HCFC22, the refrigeration capacity of the new mixture was 9.54-12.76% higher than that of HCFC22, while the actual COP was found to be 11.91-13.24% higher than that of HCFC22. The overall performance has proved that the HFC407C/HC blend refrigerant mixture could be an eco-friendly substitute to phase out HCFC22

  18. A comparative study on the performance and environmental characteristics of R410A and R22 residential air conditioners

    International Nuclear Information System (INIS)

    Chen, W.

    2008-01-01

    R410A is a long-term alternative refrigerant with zero ODP (ozone-depleting-potential) for replacing R22. In this paper, four sets of comparable R410A and R22 split-type residential A/C (air conditioners) were developed and then their performance was comparatively studied using one simulation software. The A/C performance compared in this paper included the cooling capacity, EER (energy efficiency ratio), annual power consumption of A/C and the global warming impact of refrigerants adopted by the A/C. It was concluded that the adoption of R410A could be helpful for A/C to decrease their heat exchanger size or improve their operation efficiency for power saving. Moreover, compared to R22, R410A could in fact help alleviate its overall impact on global warming through significantly reducing the indirect global warming impact caused by operating R410A A/C

  19. The use of heteroduplex analysis of polymerase chain reaction products to support the possible transmission of Legionella pneumophila from a malfunctioning automobile air conditioner.

    Science.gov (United States)

    Pinar, Ahmet; Ramirez, Julio A; Schindler, Laura L; Miller, Richard D; Summersgill, James T

    2002-03-01

    Air conditioner condensates have not been previously associated with cases of Legionnaires' disease. We report the possible transmission of Legionella pneumophila serogroup 1 from a malfunctioning automobile air conditioning system's leaking water onto the floorboard of a car driven for a long distance by the patient. Heteroduplex analysis of polymerase chain reaction products was used to help establish an epidemiologic link between the water specimen and the patient.

  20. Swimming pools as heat sinks for air conditioners: Model design and experimental validation for natural thermal behavior of the pool

    Energy Technology Data Exchange (ETDEWEB)

    Woolley, Jonathan; Harrington, Curtis; Modera, Mark [University of California Davis, Western Cooling Efficiency Center, 1450 Drew Avenue, Suite 100, Davis, CA 95618 (United States)

    2011-01-15

    Swimming pools as thermal sinks for air conditioners could save approximately 40% on peak cooling power and 30% of overall cooling energy, compared to standard residential air conditioning. Heat dissipation from pools in semi-arid climates with large diurnal temperature shifts is such that pool heating and space cooling may occur concurrently; in which case heat rejected from cooling equipment could directly displace pool heating energy, while also improving space cooling efficiency. The performance of such a system relies on the natural temperature regulation of swimming pools governed by evaporative and convective heat exchange with the air, radiative heat exchange with the sky, and conductive heat exchange with the ground. This paper describes and validates a model that uses meteorological data to accurately predict the hourly temperature of a swimming pool to within 1.1 C maximum error over the period of observation. A thorough review of literature guided our choice of the most appropriate set of equations to describe the natural mass and energy exchange between a swimming pool and the environment. Monitoring of a pool in Davis, CA, was used to confirm the resulting simulations. Comparison of predicted and observed pool temperature for all hours over a 56 day experimental period shows an R-squared relatedness of 0.967. (author)

  1. Experimental performance of R432A to replace R22 in residential air-conditioners and heat pumps

    International Nuclear Information System (INIS)

    Park, Ki-Jung; Shim, Yun-Bo; Jung, Dongsoo

    2009-01-01

    In this study, thermodynamic performance of R432A and HCFC22 is measured in a heat pump bench tester under both air-conditioning and heat pumping conditions. R432A has no ozone depletion potential and very low greenhouse warming potential of less than 5. R432A also offers a similar vapor pressure to HCFC22 for 'drop-in' replacement. Test results showed that the coefficient of performance and capacity of R432A are 8.5-8.7% and 1.9-6.4% higher than those of HCFC22 for both conditions. The compressor discharge temperature of R432A is 14.1-17.3 deg. C lower than that of HCFC22 while the amount of charge for R432A is 50% lower than that of HCFC22 due to its low density. Overall, R432A is a good long term 'drop-in' environmentally friendly alternative to replace HCFC22 in residential air-conditioners and heat pumps due to its excellent thermodynamic and environmental properties

  2. Performance of R433A for replacing HCFC22 used in residential air-conditioners and heat pumps

    International Nuclear Information System (INIS)

    Park, Ki-Jung; Shim, Yun-Bo; Jung, Dongsoo

    2008-01-01

    In this study, thermodynamic performance of R433A and HCFC22 is measured in a heat pump bench tester under air-conditioning and heat pumping conditions. R433A has no ozone depletion potential and very low greenhouse warming potential of less than 5. R433A also offers a similar vapor pressure to HCFC22 for possible 'drop-in' replacement. Test results showed that the coefficient of performance of R433A is 4.9-7.6% higher than that of HCFC22 while the capacity of R433A is 1.0-5.5% lower than that of HCFC22 for both conditions. The compressor discharge temperature of R433A is 22.6-27.9 deg. C lower than that of HCFC22 while the amount of charge for R433A is 57.0-57.7% lower than that of HCFC22 due to its low density. Overall, R433A is a good long term environmentally friendly alternative to replace HCFC22 in residential air-conditioners and heat pumps due to its excellent thermodynamic and environmental properties with minor adjustments

  3. Auto-ignition of lubricating oil working at high pressures in a compressor for an air conditioner.

    Science.gov (United States)

    Kim, Chul Jin; Choi, Hyo Hyun; Sohn, Chae Hoon

    2011-01-15

    Auto-ignition of lubricating oil working in a compressor for an air conditioner is studied experimentally. The adopted lubricating oil is an unknown mixture with multi-components and known to have flash point temperature of 170 °C. First, its auto-ignition temperature is measured 365 °C at atmospheric pressure. The lubricating oil works under high-pressure condition up to 30 atm and it is heated and cooled down repeatedly. Accordingly, auto-ignition temperatures or flammable limits of lubricating oil are required at high pressures with respect to fire safety. Because there is not a standard test method for the purpose, a new ignition-test method is proposed in this study and thereby, auto-ignition temperatures are measured over the pressure range below 30 atm. The measured temperatures range from 215 °C to 255 °C and they strongly depend on pressure of gas mixture consisting of oil vapor, nitrogen, and oxygen. They are close to flash point temperature and the lubricating oil can be hazardous when it works for high-pressure operating condition and abundant air flows into a compressor. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Auto-ignition of lubricating oil working at high pressures in a compressor for an air conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chul Jin; Choi, Hyo Hyun [Department of Mechanical Engineering, Sejong University, Seoul 143-747 (Korea, Republic of); Sohn, Chae Hoon, E-mail: chsohn@sejong.ac.kr [Department of Mechanical Engineering, Sejong University, Seoul 143-747 (Korea, Republic of)

    2011-01-15

    Auto-ignition of lubricating oil working in a compressor for an air conditioner is studied experimentally. The adopted lubricating oil is an unknown mixture with multi-components and known to have flash point temperature of 170 deg. C. First, its auto-ignition temperature is measured 365 deg. C at atmospheric pressure. The lubricating oil works under high-pressure condition up to 30 atm and it is heated and cooled down repeatedly. Accordingly, auto-ignition temperatures or flammable limits of lubricating oil are required at high pressures with respect to fire safety. Because there is not a standard test method for the purpose, a new ignition-test method is proposed in this study and thereby, auto-ignition temperatures are measured over the pressure range below 30 atm. The measured temperatures range from 215 deg. C to 255 deg. C and they strongly depend on pressure of gas mixture consisting of oil vapor, nitrogen, and oxygen. They are close to flash point temperature and the lubricating oil can be hazardous when it works for high-pressure operating condition and abundant air flows into a compressor.

  5. Auto-ignition of lubricating oil working at high pressures in a compressor for an air conditioner

    International Nuclear Information System (INIS)

    Kim, Chul Jin; Choi, Hyo Hyun; Sohn, Chae Hoon

    2011-01-01

    Auto-ignition of lubricating oil working in a compressor for an air conditioner is studied experimentally. The adopted lubricating oil is an unknown mixture with multi-components and known to have flash point temperature of 170 deg. C. First, its auto-ignition temperature is measured 365 deg. C at atmospheric pressure. The lubricating oil works under high-pressure condition up to 30 atm and it is heated and cooled down repeatedly. Accordingly, auto-ignition temperatures or flammable limits of lubricating oil are required at high pressures with respect to fire safety. Because there is not a standard test method for the purpose, a new ignition-test method is proposed in this study and thereby, auto-ignition temperatures are measured over the pressure range below 30 atm. The measured temperatures range from 215 deg. C to 255 deg. C and they strongly depend on pressure of gas mixture consisting of oil vapor, nitrogen, and oxygen. They are close to flash point temperature and the lubricating oil can be hazardous when it works for high-pressure operating condition and abundant air flows into a compressor.

  6. Temperature control of the four-zone split inverter air conditioners using LMI expression based on LQR for mixed H2/H∞

    International Nuclear Information System (INIS)

    Yang, YauBin; Wu, Min-Der; Chang, Yu-Choung

    2014-01-01

    Highlights: • The optimal control gains were obtained from the linear matrix inequalities with mixed H 2 and H ∞ control algorithm. • The proposed method guaranteed convergence, stability, and provided a way for disturbance rejection and energy savings. • The coupling effects occurred among the compressor speed, opening degrees, evaporator temperatures and superheats. • The system identification and thermal dynamics equations could obtain the inner and outer loop transfer functions. • All simulations in this paper were in discrete time domain. - Abstract: Air conditioners in either commercial or residential buildings consume substantial electricity. Enhancing the air conditioner efficiency by using a new control scheme is critical. In four-zone multi-evaporator air conditioner systems, coupling effects occur among the compressor speed, the degree of opening of the four electronic expansion valves, the temperatures of the four evaporators, and the four superheats. The system identification and thermodynamic equations could be used to obtain the inner and outer loop transfer functions between the air conditioner and its environment. A variable structure (switching) for the proportional integral anti-windup method could circumvent the saturation phenomenon generated from the integral controller. The optimal control gains were obtained from the linear matrix inequalities (LMI) based on a linear quadratic regulator (LQR) with a mixed H 2 and H ∞ control algorithm. In a simulated example, this efficient method, through those feedback gains, guaranteed convergence and stability. In addition, the results indicated that the proposed LMI using a mixed H 2 and H ∞ control method is also an alternative way for disturbance rejection and energy savings in buildings

  7. Draft Genome Sequence of a Novel Chitinophaga sp. Strain, MD30, Isolated from a Biofilm in an Air Conditioner Condensate Pipe.

    Science.gov (United States)

    Wan, Xuehua; Darris, Maxwell; Hou, Shaobin; Donachie, Stuart P

    2017-10-19

    Most of the 24 known Chitinophaga species were originally isolated from soils. We report the draft genome sequence of a putatively novel Chitinophaga sp. from a biofilm in an air conditioner condensate pipe. The genome comprises 7,661,303 bp in one scaffold, 5,694 predicted protein-coding sequences, and a G+C content of 47.6%. Copyright © 2017 Wan et al.

  8. Alternative Refrigerant Evaluation for High-Ambient Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [ORNL; Munk, Jeffrey D [ORNL; Shrestha, Som S [ORNL; Linkous, Randall Lee [ORNL; Goetzler, William [Navigant Consulting Inc.; Guernsey, Matt [Navigant Consulting Inc.; Kassuga, Theo [Navigant Consulting Inc.

    2015-08-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient Temperature Testing Program for Low-GWP Refrigerants aims to develop an understanding of the performance of low-Global Warming Potential (low-GWP) alternatives to Hydrochlorofluorocarbon (HCFC) and Hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high ambient temperature conditions. This interim working paper describes the parties involved, the alternative refrigerants selection process, the test procedures, and the preliminary results.

  9. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shrestha, Som S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Munk, Jeffrey D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linkous, Randall Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Goetzler, William [Navigant Consulting Inc., Burlington, MA (United States); Guernsey, Matt [Navigant Consulting Inc., Burlington, MA (United States); Kassuga, Theo [Navigant Consulting Inc., Burlington, MA (United States)

    2015-10-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for low– global warming potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerant selection process, the test procedures, and the final results.

  10. Increased prevalence of IgG-induced sensitization and hypersensitivity pneumonitis (humidifier lung) in nonsmokers exposed to aerosols of a contaminated air conditioner.

    Science.gov (United States)

    Baur, X; Richter, G; Pethran, A; Czuppon, A B; Schwaiblmair, M

    1992-01-01

    Specific IgG antibodies against antigens of a contaminated air conditioner were estimated in serum of 134 workers of a printing company. Altogether 64% of the workers investigated revealed significantly elevated levels (> 3 U/ml) of IgG antibodies specific to these antigens as compared to a nonexposed control group. The occurrence of IgG antibodies for microbial extracts were 25% for Fusarium, 23% for Penicillium notatum, 13% for Alternaria tenuis, 12% for Aureobasidium pullulans, 9% for Sphaeropsidales species, 3% for Micropolyspora faeni, 2% for Aspergillus fumigatus and 2% for Thermoactionomyces vulgaris. Out of the 86 workers with elevated IgG antibodies for air conditioner antigens, 59 were nonsmokers. Considering a cut-off level of 10 U/ml IgG for high values, the proportion of smokers to nonsmokers becomes even more pronounced (6 to 36 respectively, binominal test p air conditioners are the best choice as antigen source for the diagnosis of humidifier lung in exposed workers. Nonsmokers are shown to have a high risk for immunological sensitization.

  11. Study on load levelling by means of the control of air conditioner operation; Kuchoki kado seigyo ni yoru fuka heijunka ni kansuru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, H. [Hiroshima University, Hiroshima (Japan); Sadakuni, S. [Japan Broadcasting Corp., Tokyo (Japan)

    1995-04-20

    The recent drastic increase in the number of air conditioners has caused sharp and narrow peaks in summer seasons due to the inherent temperature sensitive characteristics. The authors proposed to reduce the peak power demand by controlling air conditioner operations, verifying its effectiveness on peak demand clipping. However, the former study has shortcomings in that any qualitative treatment of room temperatures or pleasant feeling was not attempted and it did not provide a way of assessing peak demand clipping in a power system as a whole. In this paper, we shall first propose a new control method that can compromise pleasant feeling and reduction in power demand. Although air conditioners are used to pursue `pleasant feeling`, this contradicts to reduce power consumption and further more the concept of `pleasant feeling` is very vague. Hence, `Weber-Fechner`s law` is utilized to quantify the pleasant feeling which is treated as fuzzy quantity. Fuzzy co-ordination method is used to compromise power demand curtailment and pleasantness. In the second part of this paper, we shall propose an approach of assessing the amount of peak load clipping when the newly proposed control strategy is adopted in a real size power system: A decrease in the required generation capacity is estimated provided that the Loss of Load Probability (LOLP) is maintained at the same level before and after the application of the new control strategy. The reduction can be regarded as a dividend of load management. 5 refs., 9 figs., 5 tabs.

  12. Performance of a split-type air conditioner matched with coiled adiabatic capillary tubes using HCFC22 and HC290

    International Nuclear Information System (INIS)

    Zhou, Guobing; Zhang, Yufeng

    2010-01-01

    This paper experimentally investigated the system performance of a split-type air conditioner matching with different coiled adiabatic capillary tubes for HCFC22 and HC290. Experiments were carried out in a room-type calorimeter. The results have shown that (1) similar cooling effects can be achieved by matching various capillary tubes of different inner diameters; (2) parallel capillary tubes presented better system performance and flow stability with weaker inlet pressure fluctuations than the single capillary tube; (3) with the coil diameter of the capillary tube increasing from 40 mm to 120 mm, the mass flow rate tended to increase slightly. But the cooling capacity, input power and energy efficiency ratio (EER) did not show evident tendency of change; (4) the refrigerant charge and mass flow rate for HC290 were only 44% and 47% of that for HCFC22, respectively, due to the much lower density. And HC290 had 4.7-6.7% lower cooling capacity and 12.1-12.3% lower input power with respect to HCFC22. However, the EER of HC290 can be 8.5% higher than that of HCFC22, which exhibits the advantage of using HC290. In addition, the experimental uncertainties were analyzed and some application concerns of HC290 were discussed.

  13. Estimation of heat rejection based on the air conditioner use time and its mitigation from buildings in Taipei City

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Chun-Ming; Aramaki, Toshiya; Hanaki, Keisuke [The University of Tokyo, Bunkyo-ku, Tokyo (Japan). Department of Urban Engineering

    2007-09-15

    The main work in the research focuses on the analysis and mitigation of the anthropogenic heat discharged from buildings, which is one of the main reasons leading to the heat island effect. The residential and commercial buildings, divided into 10 categories, with HVAC systems were analyzed by the building energy program, EnergyPlus. With the help of GIS, the heat rejection of all the residential and commercial buildings in DaAn Ward of Taipei City were evaluated, in which the spatial data and diurnal variation of the heat rejection were described by 3-h time periods. Furthermore, the effect of mitigation strategies was discussed. The first strategy was to change the wall/roof material of building envelope. The second and third strategies, from the viewpoint of energy saving, were to change the temperature setting of air conditioners and to turn off the lighting and equipment when not in use. The fourth strategy was to use a better efficiency of the cooling systems. Finally, the evaluation of installing the water-cooled cooling system, which discharges heat in the form of sensible and latent heat, was also included. (author)

  14. Cost-Benefit of Improving the Efficiency of Room Air Conditioners (Inverter and Fixed Speed) in India

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Division; Abhyankar, Nikit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Division; Park, Won Young [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Division; Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Analysis and Environmental Impacts Division; Diddi, Saurabh [Government of India, New Delhi (India). Bureau of Energy Efficiency; Ahuja, Deepanshu [Collaborative Labeling and Appliance Standards Program (CLASP), Washington, DC (United States); Mukherjee, P. K. [Collaborative Labeling and Appliance Standards Program (CLASP), Washington, DC (United States); Walia, Archana [Collaborative Labeling and Appliance Standards Program (CLASP), Washington, DC (United States)

    2016-06-30

    Improving efficiency of air conditioners (ACs) typically involves improving the efficiency of various components such as compressors, heat exchangers, expansion valves, refrigerant and fans. We estimate the incremental cost of improving the efficiency of room ACs based on the cost of improving the efficiency of its key components. Further, we estimate the retail price increase required to cover the cost of efficiency improvement, compare it with electricity bill savings, and calculate the payback period for consumers to recover the additional price of a more efficient AC. We assess several efficiency levels, two of which are summarized below in the report. The finding that significant efficiency improvement is cost effective from a consumer perspective is robust over a wide range of assumptions. If we assume a 50% higher incremental price compared to our baseline estimate, the payback period for the efficiency level of 3.5 ISEER is 1.1 years. Given the findings of this study, establishing more stringent minimum efficiency performance criteria (one star level) should be evaluated rigorously considering significant benefits to consumers, energy security and environment.

  15. Cost-Benefit of Improving the Efficiency of Room Air Conditioners (Inverter and Fixed Speed) in India

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Abhyankar, Nikit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Park, Won Young [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Diddi, Saurabh [Bureau of Energy Efficiency, Government of India (India); Ahuja, Deepanshu [Collaborative Labeling and Appliance Standards Program (CLASP), Washington, DC (United States); Mukherjee, P. K. [Collaborative Labeling and Appliance Standards Program (CLASP), Washington, DC (United States); Walia, Archana [Collaborative Labeling and Appliance Standards Program (CLASP), Washington, DC (United States)

    2016-06-01

    Improving efficiency of air conditioners (ACs) typically involves improving the efficiency of various components such as compressors, heat exchangers, expansion valves, refrigerant,and fans. We estimate the incremental cost of improving the efficiency of room ACs based on the cost of improving the efficiency of its key components. Further, we estimate the retail price increase required to cover the cost of efficiency improvement, compare it with electricity bill savings, and calculate the payback period for consumers to recover the additional price of a more efficient AC. The finding that significant efficiency improvement is cost effective from a consumer perspective is robust over a wide range of assumptions. If we assume a 50% higher incremental price compared to our baseline estimate, the payback period for the efficiency level of 3.5 ISEER is 1.1 years. Given the findings of this study, establishing more stringent minimum efficiency performance criteria (one-star level) should be evaluated rigorously considering significant benefits to consumers, energy security, and environment

  16. Resources and Fact Sheets on Servicing Motor Vehicle Air Conditioners (Summary Page)

    Science.gov (United States)

    Page provides links to resources that can assist motor vehicle air-conditioning system technicians in understanding system servicing requirements and best practices, and learn about alternative refrigerants.

  17. Air Conditioner Selection with TOPSIS and VIKOR Methods In Multi Criteria Decision Making

    Directory of Open Access Journals (Sweden)

    İrfan ERTUĞRUL

    2014-06-01

    Full Text Available Technological and global changes nowadays enable air conditioning sector to gain a higher importance. Short and long term risks for comsumers, the use of air conditioningtechnology with cost minimization, the increase of product charesteristics and firms, and the variability of product features have led to the need for multi-criteria decision. Therefore, caring the multiple criteria and the alternatives, the multi-criteria decision making techniques are taken to the scope of application. The purpose of the study is to determine the factors which affect the decision of air conditioning choice and to present the preference ranking suggestion. Having the nearly have got the approximately equivalent heating and cooling capacity, air conditionings in A+ class are included in the scope of related research. In application, when choosing air conditioning products, Topsis and Vikor that are multi-criteria decision-making methods are used and the results are compared and evaluated. When choosing air conditioning products, preference plansa re presented in the application.

  18. Efficiency and limitations of the upper airway mucosa as an air conditioner evaluated from the mechanisms of bronchoconstriction in asthmatic subjects.

    Science.gov (United States)

    Konno, A; Terada, N; Okamoto, Y; Togawa, K

    1985-01-01

    To elucidate a limit to the efficiency of the upper airway mucosa as an air conditioner, the temperatures of the inspiratory air and mucosa were measured in the cervical trachea. Both of them were affected only minimally by change of atmospheric air temperature during resting nose breathing, but were affected greatly by change of mode of breathing. During hyperventilation through the mouth, when the atmospheric air temperature was 1 degree C, a temperature difference of 9 degrees C was noted between inspiratory air in the cervical trachea and body temperature, together with a mucosal temperature fall by 1.86 +/- 0.61 degree C. Wearing of a mask caused a rise of 3 degrees C in the inspiratory air temperature in the cervical trachea.

  19. Development of a solar-powered residential air conditioner. Program review

    Science.gov (United States)

    1975-01-01

    Progress in the effort to develop a residential solar-powered air conditioning system is reported. The topics covered include the objectives, scope and status of the program. The results of state-of-art, design, and economic studies and component and system data are also presented.

  20. DEVELOPMENT OF A LINEAR COMPRESSOR FOR AIR CONDITIONERS AND HEAT PUMPS

    Science.gov (United States)

    The report discusses the design, building, testing, and delivering to the Environmental Protection Agency of a linear compressor for operation in a 3.0- ton (10.5 kW) residential air-conditioning and heat pumping system. The compressor design evolved from a linear resonant piston...

  1. Investigation of the compressor part-load behaviour and its effects on the per annum energy consumption of the air conditioner; Untersuchung des Kompressor-Teillastverhaltens im Hinblick auf den Jahresverbrauch der Klimaanlage

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Klaus; Lechner, Bernhard [Virtual Vehicle. Kompetenzzentrum - Das virtuelle Fahrzeug Forschungsgesellschaft mbH (ViF), Graz (Austria); Rieberer, Rene [Technische Univ. Graz (Austria); Moenkediek, Thomas [Audi AG, Ingolstadt (Germany)

    2010-07-01

    The air conditioning system is one of the most important ancillary units of a motor vehicle. Energetic optimization of air conditioners has been a key issue of research at AUDI AG during the past few years. As a rule, the cooling capacity of the air conditioner is controlled by adapting the compressor lift if the compressor is driven by the car engine and control via the rotational speed is not possible. As air conditioners ted to be designed for extreme conditions, the compressor will work at part load in most operating conditions. Optimization of the energetic efficiency of the air conditioner also means to look at the part-load behaviour of the compressor. Simulations have been used successfully by AUDI AG for many years now; the have helped to shorten development times and improve the product quality. The contribution describes an advanced model of a swivel plate compressor of a R134a cooling cycle with particular consideration of part-lift operation. The simulation model is based on measurements with continous recording of the piston lift. The focus is on the influence of reduced lift on the compressor efficiency. Another point of interest is the successful integration of the compressor model in the overall refrigerating cycle model which will be used for simulations of system performance and efficiency and for further optimization of the air conditioner. (orig.)

  2. Factors influencing on the bioaccessibility of polybrominated diphenyl ethers in size-specific dust from air conditioner filters.

    Science.gov (United States)

    Yu, Yingxin; Yang, Dan; Wang, Xinxin; Huang, Ningbao; Zhang, Xinyu; Zhang, Dongping; Fu, Jiamo

    2013-11-01

    Size-specific concentrations and bioaccessibility of polybrominated diphenyl ethers (PBDEs) in dust from air conditioner filters were measured, and the factors influencing the PBDE bioaccessibility were determined. Generally, the PBDE concentrations increased with decreasing dust particle size, and BDE209 (deca-BDE) was generally the predominant congener. The bioaccessibility ranged from 20.3% to 50.8% for tri- to hepta-BDEs, and from 5.1% to 13.9% for BDE209 in dust fractions of varied particle size. The bioaccessibility of most PBDE congeners decreased with increasing dust particle size. The way of being of PBDE (adsorbed to dust surface or incorporated into polymers) in dust significantly influenced the bioaccessibility. There was a significant negative correlation between the tri- to hepta-BDE bioaccessibility and organic matter (OM) contents in dust. Furthermore, tri- to hepta-BDE bioaccessibility increased with increasing polarity of OMs, while with decreasing aromaticity of OMs. The tri- to hepta-BDE bioaccessibility significantly positively correlated with the surface areas and pore volumes of dust. Using multiple linear regression analysis, it was found that the OM contents and pore volumes of dust were the most important factors to influence the tri- to hepta-BDE bioaccessibility and they could be used to estimate the bioaccessibility of tri- to hepta-BDEs according to the following equation: bioaccessibility (%)=45.05-0.49 × OM%+1.79 × pore volume. However, BDE209 bioaccessibility did not correlate to any of these factors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Effects of component performance on overall performance of R410A air conditioner with oil flooding and regeneration

    International Nuclear Information System (INIS)

    Luo, Baojun

    2016-01-01

    Highlights: • COP benefits more than cooling capacity with regenerator. • High oil temperature leads to degradation of the system. • The improvement brought by oil flooding was greatly reduced by solubility. • A modified system is proposed for reducing the negative effects of solubility. • Comprehensive effects of regenerator, oil temperature and solubility are obtained. - Abstract: Oil flooded compression with regenerator (OFCR) is one of the possible technologies to improve the performance of air conditioner. The addition of OFCR system to basic vapor compression system adds several components: oil separator, oil cooler and regenerator. These components can lead to a significant increase in performance. In this study, parametric studies of these components performance have been carried out under various operating conditions. Compared with basic vapor compression system, COP of OFCR system with 100% effective regenerator is improved by 0.7–11.8% while COP of OFCR system without regenerator is reduced by 0.6–1.8%. When oil temperature exiting the oil cooler reaches 40 °C and 50 °C, the performance of OFCR system is worse than that of basic system at evaporation temperature T_e = 15 °C and T_e ⩾ 5 °C respectively. COP and cooling capacity of OFCR with solubility are decreased by 6.9% and 14.3% respectively at T_e = 5 °C and 0.4 oil mass fraction. A modification of OFCR system is suggested for reducing the negative effects of solubility. The results of COP and cooling capacity show that the modified OFCR system has a 3–4% performance improvement. Comprehensive effects of regenerator efficiency, oil temperature and solubility are also studied. Taking the solubility into account, the effects of regenerator efficiency and oil temperature are slightly different from that without solubility.

  4. Performance analysis of a ground-assisted direct evaporative cooling air conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Heidarinejad, Ghassem; Khalajzadeh, Vahid [Department of Mechanical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran); Delfani, Shahram [Building and Housing Research Center (BHRC), P O Box 13145-1696, Tehran (Iran)

    2010-11-15

    In this paper, the results of performance analysis of a ground-assisted hybrid evaporative cooling system in Tehran have been discussed. A Ground Coupled Circuit (GCC) provides the necessary pre-cooling effects, enabling a Direct Evaporative Cooler (DEC) that cools the air even below its wet-bulb temperature. The GCC includes four vertical ground heat exchangers (GHE) which were arrayed in series configuration. In order to have an accurate prediction of the optimum performance of a GCC, a computational fluid dynamic simulation was performed. Simulation results revealed that the combination of GCC and DEC system could provide comfort condition whereas DEC alone did not. Based on the simulation results the cooling effectiveness of a hybrid system is more than 100%. Thus, this novel hybrid system could decrease the air temperature below the ambient wet-bulb temperature. This environmentally clean and energy efficient system can be considered as an alternative to the mechanical vapor compression systems. (author)

  5. 76 FR 19913 - Compliance Testing Procedures: Correction Factor for Room Air Conditioners

    Science.gov (United States)

    2011-04-11

    ... to greater moisture content in the air, which generally increases latent heat removal). As a result... Pressure Inputs). Condensation Temp [deg]F 122.21 122.65 123.12 123.62 124.15 Evaporation Temp [deg]F 47.867 47.689 47.511 47.33 47.144 Condensation Press psia 446.62 449.1 451.8 454.7 457.8 Evaporation...

  6. Fault Detection And Diagnosis For Air Conditioners And Heat Pumps Based On Virtual Sensors

    OpenAIRE

    Kim, Woohyun

    2013-01-01

    The primary goal of this research is to develop and demonstrate an integrated, on-line performance monitoring and diagnostic system with low cost sensors for air conditioning and heat pump equipment. Automated fault detection and diagnostics (FDD) has the potential for improving energy efficiency along with reducing service costs and comfort complaints. To achieve this goal, virtual sensors with low cost measurements and simple models were developed to estimate quantities that would be expens...

  7. Experimental Investigation of Air Conditioner using the Desiccant Cooling System in Equatorial Climates

    Directory of Open Access Journals (Sweden)

    Abdullah Kamaruddin

    2018-01-01

    Full Text Available Indonesia lies in the tropical climate which requires air conditioning to increase working productivity of the people. Up to now people are still using the compressive cooling system which uses Freon as the refrigerant, which have been known to have a negative environmental impact. Therefore, new cooling system which is environmentally friendly is now needed. Desiccant cooling system manipulates the humidity condition of outside air in such a way so that the final temperature should become at 25 °C and RH of 65 %. Since it does not require refrigerant, a desiccant cooling has the potential to be developed in a tropical country like Indonesia. In this study an experimental desiccant cooling system has been designed and constructed and tested under laboratory condition. Experimental results have shown that the resulting air temperature was 26.1 °C with RH of 55.6 %, and average cooling capacity was 0.425 kW. The COP was found to be 0.44.

  8. Development of control method and dynamic model for multi-evaporator air conditioners (MEAC)

    International Nuclear Information System (INIS)

    Chen Wu; Zhou Xingxi; Deng Shiming

    2005-01-01

    Interference between operation parameters among the different evaporators makes the desirable control of MEAC hard to realize. A novel control strategy is herein proposed. The suction pressure was taken as the controlled variable to modulate the speed of its compressor, and at the same time, the room air temperatures were taken to regulate the openings of individual electronic expansion valves (EEV). A self tuning fuzzy control algorithm with a modifying factor was incorporated in the controller. A controllability test was conducted with a dynamic thermodynamic model developed with a special modeling methodology. The controllability test has shown that the control strategy and algorithm are feasible and can achieve desirable control results

  9. Development of control method and dynamic model for multi-evaporator air conditioners (MEAC)

    Energy Technology Data Exchange (ETDEWEB)

    Chen Wu; Deng Shiming [Hong Kong Polytechnic University (China). Dept. of Building Services Engineering; Zhou Xingxi [Shanghai Jiao Tong University (China). Institute of Refrigeration and Cryogenics

    2005-02-01

    Interference between operation parameters among the different evaporators makes the desirable control of MEAC hard to realize. A novel control strategy is herein proposed. The suction pressure was taken as the controlled variable to modulate the speed of its compressor, and at the same time, the room air temperatures were taken to regulate the openings of individual electronic expansion valves (EEV). A self tuning fuzzy control algorithm with a modifying factor was incorporated in the controller. A controllability test was conducted with a dynamic thermodynamic model developed with a special modeling methodology. The controllability test has shown that the control strategy and algorithm are feasible and can achieve desirable control results. (author)

  10. Development of control method and dynamic model for multi-evaporator air conditioners (MEAC)

    Energy Technology Data Exchange (ETDEWEB)

    Chen Wu; Zhou Xingxi; Deng Shiming E-mail: 02900058r@polyu.edu.hk

    2005-02-01

    Interference between operation parameters among the different evaporators makes the desirable control of MEAC hard to realize. A novel control strategy is herein proposed. The suction pressure was taken as the controlled variable to modulate the speed of its compressor, and at the same time, the room air temperatures were taken to regulate the openings of individual electronic expansion valves (EEV). A self tuning fuzzy control algorithm with a modifying factor was incorporated in the controller. A controllability test was conducted with a dynamic thermodynamic model developed with a special modeling methodology. The controllability test has shown that the control strategy and algorithm are feasible and can achieve desirable control results.

  11. Thermal comfort and indoor air quality in the lecture room with 4-way cassette air-conditioner and mixing ventilation system

    International Nuclear Information System (INIS)

    Noh, Kwang-Chul; Jang, Jae-Soo; Oh, Myung-Do

    2007-01-01

    We performed the experimental and the numerical studies on thermal comfort (TC) and indoor air quality (IAQ) in the lecture room with cooling loads when the operating conditions are changed. Predicted mean vote (PMV) value and CO 2 concentration of the lecture room were measured and compared to the numerical results. Both of them showed a reasonable agreement with each other and then we applied the numerical model to analyze TC and IAQ for a couple of different operating conditions. From the results we found that the increment of the discharge angle of 4-way cassette air-conditioner makes uniformity of TC worse, but rarely affects IAQ. It turned out that TC and IAQ are hardly affected by the variation of the discharge airflow. Finally TC was merely affected by the increment of the ventilation rate, but when the ventilation rate is more than 800m 3 /h, the average CO 2 concentration can be satisfied with the standard limits of Japanese in our case studies. (author)

  12. COP improvement of refrigerator/freezers, air-conditioners, and heat pumps using nonazeotropic refrigerant mixtures

    Science.gov (United States)

    Westra, Douglas G.

    1993-01-01

    With the February, 1992 announcement by President Bush to move the deadline for outlawing CFC (chloro-fluoro-carbon) refrigerants from the year 2000 to the year 1996, the refrigeration and air-conditioning industries have been accelerating their efforts to find alternative refrigerants. Many of the alternative refrigerants being evaluated require synthetic lubricants, are less efficient, and have toxicity problems. One option to developing new, alternative refrigerants is to combine existing non-CFC refrigerants to form a nonazeotropic mixture, with the concentration optimized for the given application so that system COP (Coefficient Of Performance) may be maintained or even improved. This paper will discuss the dilemma that industry is facing regarding CFC phase-out and the problems associated with CFC alternatives presently under development. A definition of nonazeotropic mixtures will be provided, and the characteristics and COP benefits of nonazeotropic refrigerant mixtures will be explained using thermodynamic principles. Limitations and disadvantages of nonazeotropic mixtures will be discussed, and example systems using such mixtures will be reviewed.

  13. Assessment of commercially available energy-efficient room air conditioners including models with low global warming potential (GWP) refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Shah, N. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Park, W. Y. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gerke, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-30

    Improving the energy efficiency of room air conditioners (RACs) while transitioning to low global-warming-potential (GWP) refrigerants will be a critical step toward reducing the energy, peak load, and emissions impacts of RACs while keeping costs low. Previous research quantified the benefits of leapfrogging to high efficiency in tandem with the transition to low-GWP refrigerants for RACs (Shah et al., 2015) and identified opportunities for initial action to coordinate energy efficiency with refrigerant transition in economies constituting about 65% of the global RAC market (Shah et al., 2017). This report describes further research performed to identify the best-performing (i.e., most efficient and low-GWP-refrigerant using) RACs on the market, to support an understanding of the best available technology (BAT). Understanding BAT can help support market-transformation programs for high-efficiency and low-GWP equipment such as minimum energy performance standards (MEPS), labeling, procurement, and incentive programs. We studied RACs available in six economies—China, Europe, India, Japan, South Korea, and the United States—that together account for about 70% of global RAC demand, as well as other emerging economies. The following are our key findings: • Highly efficient RACs using low-GWP refrigerants, e.g., HFC-32 (R-32) and HC-290 (R-290), are commercially available today at prices comparable to similar RACs using high-GWP HCFC-22 (R-22) or HFC-410A (R-410A). • High efficiency is typically a feature of high-end products. However, highly efficient, cost-competitive (less than 1,000 or 1,500 U.S. dollars in retail price, depending on size) RACs are available. • Where R-22 is being phased out, high GWP R-410A still dominates RAC sales in most mature markets except Japan, where R-32 dominates. • In all of the economies studied except Japan, only a few models are energy efficient and use low-GWP refrigerants. For example, in Europe, India, and Indonesia

  14. Similarity Theory Based Radial Turbine Performance and Loss Mechanism Comparison between R245fa and Air for Heavy-Duty Diesel Engine Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2017-01-01

    Full Text Available Organic Rankine Cycles using radial turbines as expanders are considered as one of the most efficient technologies to convert heavy-duty diesel engine waste heat into useful work. Turbine similarity design based on the existing air turbine profiles is time saving. Due to totally different thermodynamic properties between organic fluids and air, its influence on turbine performance and loss mechanisms need to be analyzed. This paper numerically simulated a radial turbine under similar conditions between R245fa and air, and compared the differences of the turbine performance and loss mechanisms. Larger specific heat ratio of air leads to air turbine operating at higher pressure ratios. As R245fa gas constant is only about one-fifth of air gas constant, reduced rotating speeds of R245fa turbine are only 0.4-fold of those of air turbine, and reduced mass flow rates are about twice of those of air turbine. When using R245fa as working fluid, the nozzle shock wave losses decrease but rotor suction surface separation vortex losses increase, and eventually leads that isentropic efficiencies of R245fa turbine in the commonly used velocity ratio range from 0.5 to 0.9 are 3%–4% lower than those of air turbine.

  15. Performance computation of window air conditioner with very low GWP near azeotropic refrigerant mixtures as a drop in Substitutes to R22

    Directory of Open Access Journals (Sweden)

    Vali Shaik Sharmas

    2018-01-01

    Full Text Available The principal objective of the present study is to compute the thermodynamic performance of window air conditioner based on standard vapour compression refrigeration cycle using R22, R407C and nineteen refrigerant mixtures. In this work nineteen R290/R1270 blends at different compositions are developed. A MATLAB code is developed to compute the thermodynamic performance parameters of all the studied refrigerants at condensing and evaporating temperatures of 54.4°C and 7.2°C respectively. The performance parameters are cooling effect, compressor work, COP, compressor discharge temperature, power per ton of refrigeration and volumetric cooling capacity respectively. Analytical results revealed that COP of new binary mixture R290/R1270 (90/10 by mass % is 2.82% higher among R22, R407C and nineteen studied refrigerants. Energy required by the compressor per ton of refrigeration for R290/R1270 (90/10 by mass % is 2.73% lower among R22, R407C and nineteen studied fluids. The discharge temperature of the compressor for all the nineteen investigated blends are reduced by 6.0-8.9oC compared to R22. Overall thermodynamic performance of window air conditioner with R290/R1270 (90/10 by mass % is better than R22 with significant savings in energy consumption and hence it is an energy efficient ecofriendly refrigerant mixture as a drop in substitute to R22.

  16. Endow My Air Conditioner!

    Science.gov (United States)

    Simmons, Charles E. P.

    1982-01-01

    Administrators need to plan and set priorities in various energy/maintenance areas, and trustees and legislators, faculty and students have to be educated regarding maintenance and conservation. Cost of energy consumption by area and department must be worked out. (MLW)

  17. Modeling and experimental study on performance of inverter air conditioner with variation of capillary tube using R-22 and R-407C

    International Nuclear Information System (INIS)

    Sarntichartsak, Pongsakorn; Monyakul, Veerapol; Thepa, Sirichai

    2007-01-01

    This paper focuses on an investigation of the proper capillary tube length for an inverter air conditioner. Air to air variable capacity systems with R-22 and R-407C were tested and modeled. First, the optimum refrigerant charge was determined for four capillary tubes at full load condition by varying the mass charge from 1.1 kg to 1.9 kg. The capillary tube lengths were 1.016 m, 0.914 m, 0.813 m and 0.711 m. The two zone model, the distributed model and the combined model were compared to estimate the optimal charge inventory. The combined model analysed a simple path evaporator, a complex path condenser with a two zone model and a distributed model, respectively. It obtained good agreement with experimental results for the system performances and the optimum mass charge. Furthermore, four capillary tubes with specific optimum mass charges were investigated at compressor frequencies in a range of 30-50 Hz. The R-22 capillary tube obtains the best performance with the addition length of 1.016 m at the lowest frequency. Especially, the length of 0.813 m with R-407C is the appropriate size at the operation frequency of 30-35 Hz. The base capillary tube of 0.914 m is optimum at other frequencies. The model prediction agrees with the experimental data in a range of 40-50 Hz

  18. Semi-empiric model of an air cooled cabinet air conditioner for the dynamic analysis of the building and acclimation systems integrated behaviour; Modelo semi-empirico de condicionador de gabinete resfriado a ar para analise dinamica do comportamento integrado de edificacoes e sistemas de climatizacao

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Jorge E. [Para Univ., Belem (Brazil). Dept. de Engenharia Mecanica]. E-mail: jecorrea@amazon.com.br; Melo, Claudio. E-mail: melo@nrva.ufsc.br; Negrao, Cezar O. R. E-mail: negrao@energia.damec.cefetpr.br

    2000-07-01

    This work presents a semi-empirical model for a air cooled case air conditioner. This model is to be inserted in the EPS-r program (Environmental System Performance - research version) allowing the dynamic analysis of the integrated behaviour of buildings and acclimation systems using this equipment. Results obtained from simulations under the operation conditions existing in Brazil are analysed.

  19. Numerically efficient simulation of multi-vaporator air conditioners in highly dynamic boundary conditions; Numerisch effiziente Simulation von Mehrverdampfer-Klimaanlagen unter hochdynamischen Randbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Christian; Kaiser, Christian [TLK-Thermo GmbH, Braunschweig (Germany); Tegethoff, Wilhelm; Koehler, Juergen [TU Braunschweig (Germany). Inst. fuer Thermodynamik

    2011-07-01

    In the development of physically based models for dynamic simulations of cycle processes, a good equilibrium must be chosen between the degree of detailing and the speed of calculation. Dynamic modelling of mult-evaporator air conditioners is a special challenge as the interaction of several heat transfer fluides at one pressure level may result in numerically challenging effects like reflux. The contribution goes into the simulation of the heat transfer fluids in such systems in highly dynamic boundary conditions, e.g. after shutoff of the compressor. There are different modelling methods, e.g. finite volume, moving boundary, or finite element analysis. The methods are presented and evaluated. For the 1-D finite volume method, various established simplification strategies are presented that may enhance numerical efficiency. It is also shown that the equation system will not always be solvable with these strategies, and an approach to ensure solvability is presented. The new approach is illustrated by the example of a multi-evaporator bus air conditioner. [German] Bei der Erstellung von physikalisch basierten Modellen fuer die dynamische Simulation von Kreisprozessen muss ein gutes Gleichgewicht zwischen Detaillierungsgrad und Rechengeschwindigkeit gewaehlt werden: Das Modell muss die Realitaet hinreichend genau abbilden, im Gegenzug jedoch auch innerhalb eines angemessenen Zeitraums Ergebnisse liefern sowie in allen Betriebszustaenden loesbar sein. Die dynamische Modellierung von Mehrverdampfer-Klimaanlagen stellt im Vergleich zu einfachen Kreisprozessen eine besondere Herausforderung dar, da in diesen Systemen die Interaktion mehrerer Waermeuebertrager auf einem Druckniveau zu numerisch herausfordernden Effekten wie z. B. Rueckstroemung fuehren kann. Dieser Beitrag beschaeftigt sich mit der Simulation der Waermeuebertrager in diesen Systemen unter hochdynamischen Randbedingungen wie z. B. einer Abschaltung des Verdichters. Zur Modellierung der Waermeuebertrager

  20. The Research on Programmable Control System of Lithium-Bromide Absorption Refrigerating Air Conditioner Based on the Network

    Directory of Open Access Journals (Sweden)

    Sun Lunan

    2016-01-01

    Full Text Available This article regard the solar lithium-bromide absorption refrigerating air conditioning system as the research object, and it was conducting adequate research of the working principle of lithium bromide absorption refrigerating machine, also it was analyzing the requirements of control system about solar energy air conditioning. Then the solar energy air conditioning control system was designed based on PLC, this system was given priority to field bus control system, and the remote monitoring is complementary, which was combining the network remote monitoring technology. So that it realized the automatic control and intelligent control of new lithium bromide absorption refrigerating air conditioning system with solar energy, also, it ensured the control system can automatically detect and adjust when the external conditions was random changing, to make air conditioning work effectively and steadily, ultimately ,it has great research significance to research the air conditioning control system with solar energy.

  1. Concentrations of polybrominated diphenyl ethers (PBDEs) in central air-conditioner filter dust and relevance of non-dietary exposure in occupational indoor environments in Greece.

    Science.gov (United States)

    Besis, Athanasios; Katsoyiannis, Athanasios; Botsaropoulou, Elisavet; Samara, Constantini

    2014-05-01

    Polybrominated Diphenyl Ethers (PBDEs) are ubiquitous in the indoor environment owing to their use in consumer products and various studies around the world have found higher concentrations indoors than outdoors. Central air conditioner (A/C) systems have been widely used in many workplaces, therefore, studying of PBDEs in central A/C filter dust is useful to better understand the occurrences and health implications of PBDEs in indoor environments. The present study examined the occurrence of PBDEs in central A/C filter dust collected from various workplaces (n = 20) in Thessaloniki, Greece. The sum concentrations of 21 target congeners (∑21PBDE) in A/C dust ranged between 84 and 4062 ng g(-1) with a median value of 1092 ng g(-1), while BDE-209 was found to be the most abundant BDE congener. The daily intake via dust ingestion of PBDEs estimated for the employees of the occupational settings ranged from 3 to 45 ng day(-1) (median 12 ng day(-1)). Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Impacts of the Degradation of 2,3,3,3-Tetrafluoropropene into Trifluoroacetic Acid from Its Application in Automobile Air Conditioners in China, the United States, and Europe.

    Science.gov (United States)

    Wang, Ziyuan; Wang, Yuhang; Li, Jianfeng; Henne, Stephan; Zhang, Boya; Hu, Jianxin; Zhang, Jianbo

    2018-03-06

    HFO-1234yf (2,3,3,3-tetrafluoropropene) was proposed as an automobile air conditioner (MAC) refrigerant worldwide. However, its atmospheric degradation product is the highly soluble and phytotoxic trifluoroacetic acid (TFA), which persists in aquatic environments. We used a global three-dimensional chemical transport model to assess the potential environmental effects resulting from complete future conversion of the refrigerant in all MAC to HFO-1234yf in China, the United States, and Europe. The annual mean atmospheric concentrations of HFO-1234yf were 2.62, 2.20, and 2.73 pptv, and the mean deposition rates of TFA were 0.96, 0.45, and 0.52 kg km -2 yr -1 , in three regions. The regional TFA deposition sources mainly came from emissions within the same region. The annual TFA deposition in the North Pole region was lower than the global average and mainly originated from European emissions. A potential doubling in the future HFO-1234yf emissions in China mainly affected the local TFA depositions. The TFA concentrations in rainwater were strongly affected by the regional precipitation rates. North Africa and the Middle East, regions with scant rainfall, had extremely high TFA concentrations. The rainwater concentrations of TFA during individual rain events can exceed the level considered to be safe, indicating substantial potential regional risks from future HFO-1234yf use.

  3. Use of nanoparticles to make mineral oil lubricants feasible for use in a residential air conditioner employing hydro-fluorocarbons refrigerants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixiang [School of Energy and Power Engineering, Xi' an Jiaotong University 710049 Xi' an (China); School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, No. 1, Zhanlan Guan Road, Beijing 100044 (China); Wu, Qingping; Wu, Yezheng [School of Energy and Power Engineering, Xi' an Jiaotong University 710049 Xi' an (China)

    2010-11-15

    The application of nano-fluids in refrigerating systems is considered to be a potential way to improve the energy efficiency and reliability of HVAC and R facilities and to make economic the use of environment-friendly refrigerants. In this paper, we report a method that uses nanoparticles to enhance the energy efficiency of retrofitted residential air conditioners (RAC) employing HFCs as alternative refrigerants. The reliability and performance of RAC with nanoparticles in the working fluid have been investigated experimentally. A new mineral-based nano-refrigeration oil (MNRO), formed by blending some nanoparticles (NiFe{sub 2}O{sub 4}) into naphthene based oil B32, was employed in the RAC using R410a as refrigerant. A method showing how to disperse the NiFe{sub 2}O{sub 4} nanoparticles in the mineral oil refrigeration lubricants is presented together with an investigation of their stability. The solubilities of the new MNRO in R134a, R407C, R410a and R425a were measured. The performances of the RAC, such as the cooling/heating capacity, the power input and the energy efficiency ratio, were determined. The results indicate that the mixture of R410a/MNRO works normally in the RAC. The cooling/heating EER of the RAC increased about 6% by replacing the Polyol-Easter oil VG 32 lubricant with MNRO. (author)

  4. A Two-Level Optimal Scheduling Strategy for Central Air-Conditioners Based on Metal Model with Comprehensive State-Queueing Control Models

    Directory of Open Access Journals (Sweden)

    Yebai Qi

    2017-12-01

    Full Text Available Unlike some thermostatically controlled appliances (TCAs with small capacities, Central Air-conditioner (CAC has huge potential for demand response because of its large capacity. This paper presents a new CAC control strategy under multiple constraints. The CAC is modeled by three main modules: CAC central unit, water pumps, and temperature simulation of terminal users. The CAC’s power consumption is mainly determined by users’ load ratio. As the information and communication system have become the central nervous system of the smart grid, big data analysis is of great significance. Assuming that reliable two-way communication systems are preset, an integrated parameter priority list (IPPL control strategy is used to control and monitor CAC. A new intelligent algorithm, Space Exploration and Unimodal Region Elimination (SEUMRE algorithm, is introduced for solving the optimization problem of demand response targets generation under multiple constraints with the help of big data analysis. In this paper, influences and constrain factors, such as price and users’ comfortable levels are taken into account to satisfy the need of actual situation. Simulation results show that the proposed approach, when comparing with other typical optimization algorithms, yields better performances and efficiency.

  5. Application of best practice for setting minimum energy efficiency standards in technically disadvantaged countries: Case study of Air Conditioners in Brunei Darussalam

    International Nuclear Information System (INIS)

    Shi, Xunpeng

    2015-01-01

    Highlights: • Setting MEPS requires significant data, financial resources and technical capacity. • Application of best practice in technical disadvantaged countries (TDCs) was demonstrated. • Best practice was successfully applied to Brunei for its AC MEPS. • For Brunei, COP at 2.9 is recommended and 15% efficiency improvement is achievable. • The methodology is applicable to other appliances in any TDCs. - Abstract: Application of the best practice of setting minimum energy performance standards (MEPS) in technically disadvantaged countries (TDCs) faces many barriers. The best practice of determining MEPS has a comprehensive analytical framework including engineering-economic analysis, life-cycle cost-benefit analysis, as well stakeholders’ and market impact assessments. However, TDCs usually are lack of reference product classes, market data, and other necessary inputs data. This study demonstrated how to overcome those barriers to apply the best practice to TDCs using the actual experience in setting initial MEPS for Air Conditioners (ACs) in Brunei from scratch with limited secondary data as an example. The series of application works include definition of the product classes and the baseline group; collection of market data; formulation of cost-efficiency relationship from the market data; examination of the economic, environmental, and financial impacts of various MEPS options; revealing of the consumers’ willingness to pay; and analysis of the impacts and responses from the industry and consumers. The coordination with the compliance of the Montreal Protocol was also considered. The methodology should also be applicable to setting MEPF for other appliances in any TDCs.

  6. Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control: Report and Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, J.; Kozubal, E.; Herrmann, L.; Miller, J.; Lowenstein, A.; Barker, G.; Slayzak, S.

    2012-11-01

    The primary objective of this project was to demonstrate the capabilities of a new high-performance, liquid-desiccant dedicated outdoor air system (DOAS) to enhance cooling efficiency and comfort in humid climates while substantially reducing electric peak demand at Tyndall Air Force Base (AFB), which is 12 miles east of Panama City, Florida.

  7. A comparison of four methods to evaluate the effect of a utility residential air-conditioner load control program on peak electricity use

    Energy Technology Data Exchange (ETDEWEB)

    Newsham, Guy R., E-mail: guy.newsham@nrc-cnrc.gc.ca [National Research Council Canada-Institute for Research in Construction, Building M24, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada); Birt, Benjamin J. [National Research Council Canada-Institute for Research in Construction, Building M24, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6 (Canada); Rowlands, Ian H. [University of Waterloo, Ontario (Canada)

    2011-10-15

    We analyzed the peak load reductions due to a residential direct load control program for air-conditioners in southern Ontario in 2008. In this program, participant thermostats were increased by 2 deg. C for four hours on five event days. We used hourly, whole-house data for 195 participant households and 268 non-participant households, and four different methods of analysis ranging from simple spreadsheet-based comparisons of average loads on event days, to complex time-series regression. Average peak load reductions were 0.2-0.9 kWh/h per household, or 10-35%. However, there were large differences between event days and across event hours, and in results for the same event day/hour, with different analysis methods. There was also a wide range of load reductions between individual households, and only a minority of households contributed to any given event. Policy makers should be aware of how the choice of an analysis method may affect decisions regarding which demand-side management programs to support, and how they might be incentivized. We recommend greater use of time-series methods, although it might take time to become comfortable with their complexity. Further investigation of what type of households contribute most to aggregate load reductions would also help policy makers better target programs. - Highlights: > We analyzed peak load reductions due to residential a/c load control. > We used four methods, ranging from simple comparisons to time-series regression. > Average peak load reductions were 0.2-0.9 kW per household, varying by method. > We recommend a move towards time-series regression for future studies. > A minority of participant households contributed to a given load control event.

  8. Concentrations of polybrominated diphenyl ethers (PBDEs) in central air-conditioner filter dust and relevance of non-dietary exposure in occupational indoor environments in Greece

    International Nuclear Information System (INIS)

    Besis, Athanasios; Katsoyiannis, Athanasios; Botsaropoulou, Elisavet; Samara, Constantini

    2014-01-01

    Polybrominated Diphenyl Ethers (PBDEs) are ubiquitous in the indoor environment owing to their use in consumer products and various studies around the world have found higher concentrations indoors than outdoors. Central air conditioner (A/C) systems have been widely used in many workplaces, therefore, studying of PBDEs in central A/C filter dust is useful to better understand the occurrences and health implications of PBDEs in indoor environments. The present study examined the occurrence of PBDEs in central A/C filter dust collected from various workplaces (n = 20) in Thessaloniki, Greece. The sum concentrations of 21 target congeners (∑ 21 PBDE) in A/C dust ranged between 84 and 4062 ng g −1 with a median value of 1092 ng g −1 , while BDE-209 was found to be the most abundant BDE congener. The daily intake via dust ingestion of PBDEs estimated for the employees of the occupational settings ranged from 3 to 45 ng day −1 (median 12 ng day −1 ). - Highlights: • PBDEs were investigated in dust of A/C filters in occupational settings in Thessaloniki, Greece. • BDE-209 was found to be the most abundant BDE congener. • High levels of PBDEs were found in a newspaper building, internet cafes and electronic shops. • PBDEs were attributable to the extensive presence and/or usage of electronic devices. • Exposure of employees to PBDEs via indoor dust ingestion was estimated at 12 ng day −1 . - PBDEs were for the first time measured in dust from central A/C filters in workplaces of Greece and their concentrations were used to estimate the non-dietary human exposure

  9. Accelerating Improvements in the Energy Efficiency of Room Air Conditioners (RACs) in India: Potential, Cost-Benefit, and Policies (Interim Assessment)

    Energy Technology Data Exchange (ETDEWEB)

    Abhyankar, Nikit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Park, Won Young [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-06-01

    Falling AC prices, increasing incomes, increasing urbanization, and high cooling requirements due to hot climate are all driving increasing uptake of Room Air Conditioners (RACs) in the Indian market. Air conditioning already comprises 40-60% of summer peak load in large metropolitan Indian cities such as Delhi and is likely to contribute 150 GW to the peak demand in 2030. Standards and labeling policies have contributed to improving the efficiency of RACs in India by about 2.5% in the last 10 years (2.5% per year) while inflation adjusted RAC prices have continued to decline. In this paper, we assess the technical feasibility, cost-benefit, and required policy enhancements by further accelerating the efficiency improvement of RACs in India. We find that there are examples of significantly more accelerated improvements such as those in Japan and Korea where AC efficiency improved by more than 7% per year resulting in almost a doubling of energy efficiency in 7 to 10 years while inflation adjusted AC prices continued to decline. We find that the most efficient RAC sold on the Indian market is almost twice as efficient as the typical AC sold on the market and hence see no technology constraints in a similar acceleration of improvement of efficiency. If starting 2018, AC efficiency improves at a rate of 6% instead of 3%, 40-60 GW of peak load (equivalent to connected load of 5-6 billion LED bulbs), and over 75 TWh/yr (equivalent to 60 million consumers consuming 100 kWh/month) will be saved by 2030; total peak load reduction would be as high as 50 GW. The net present value (NPV) of the consumer benefit between 2018-2030 will range from Rs 18,000 Cr in the most conservative case (in which prices don’t continue to decline and increase based estimates of today’s cost of efficiency improvement) to 140,000 Cr in a more realistic case (in which prices are not affected by accelerated efficiency improvement as shown by historical experience). This benefit is achievable by

  10. Metingen aan twee luchtwassystemen in een vleeskuikenstal met conditionering van ingaande ventilatielucht = Measurements on two air scrubbing systems on broiler houses with heat exchanger for inlet ventilation air

    NARCIS (Netherlands)

    Melse, R.W.; Hattum, van T.G.; Huis in 'T Veld, J.W.H.; Gerrits, F.A.

    2012-01-01

    The performance of two experimental air scrubber was investigated during 9 months on two broiler houses. The inlet ventilation air of the houses is led through a subsoil heat exchanger. In this report the removal efficiencies of the scrubber are reported for ammonia, odour and fine dust (PM10 and

  11. Modelagem de um condicionador de ar de alta precisão para uso em processamento agrícola Modeling of a high precision air conditioner for use in agricultural processing

    Directory of Open Access Journals (Sweden)

    Mauri Fortes

    2006-08-01

    Full Text Available Apresenta-se neste trabalho, estudo detalhado sobre a modelagem de um condicionador de ar com controle acurado de temperatura e umidade relativa. Desenvolveu-se um programa de computador que permite predizer o comportamento do sistema sob diferentes condições psicrométricas e de vazão do ar de entrada. O modelo global físico-matemático inclui equações de balanço de massa e de energia para três diferentes volumes de controle que compõem o condicionador. Modelaram-se os processos de mistura, evaporação (ou condensação simultânea de uma superfície d'água e de uma gota e o aquecimento de corrente de ar, separadamente. Propõem-se expressões semi-empíricas simples para os coeficientes de transferência de calor e massa inerentes ao processo de evaporação sobre uma superfície d'água e um modelo simplificado para o sistema de spray. Construiu-se um condicionador de ar no qual foram feitos testes experimentais para o ajuste das constantes que aparecem nas expressões para os coeficientes de transferência. Os dados obtidos validaram o modelo global, com precisão aceitável para projetos de engenharia.In this work, a detailed procedure for the analysis of an accurately controlled air conditioner is presented. A computer program, that allows predicting the behavior of the system under different psychrometric conditions and different input air mass flow rates, was developed. The global physical-mathematical model includes mass and energy conservation equations for three different control volumes that compose the conditioner. Thus, the processes of mixture of air, simultaneous evaporation (or condensation from a water surface and from a drop, and the air-stream heating are modeled separately. Simple semi-empiric expressions for heat and mass coefficients inherent to the evaporation process on a water surface are proposed as well a simplified model for the spray system. Experimental tests made on an air-conditioner allowed to obtain

  12. An experimental study of the air-side particulate fouling in finned-tube heat exchangers of air conditioners through accelerated tests

    International Nuclear Information System (INIS)

    Ahn, Young Chull; Cho, Jae Min; Lee, Jae Keun; Lee, Hyun Uk; Ahn, Seung Phyo; Youn, Deok Hyun; Kang, Tae Wook; Ock, Ju Jo

    2003-01-01

    The air-side particulate fouling in the heat exchangers of HVAC applications degrades the performance of cooling capacity, pressure drop across a heat exchanger, and indoor air quality. Indoor and outdoor air contaminants foul heat exchangers. The purpose of this study is to investigate the fouling characteristics trough accelerated tests. The fouling characteristics are analyzed as functions of a dust concentration (1.28 and 3.84 g/m 3 ), a face velocity (0.5, 1.0, and 1.5 m/s), and a surface condition. The cooling capacity in the slitted finned-tube heat exchangers at the face velocity of 1 m/s decreases about 2% and the pressure drop increases up to 57%. The rate of build-up of fouling is observed to be 3 times slower for this three-fold reduction of dust concentration whilst still approaching the same asymptotic level

  13. Development of new products for Europe and individual customer support: Sanden Technical Centre (Europe) GmbH. High-efficiency wind tunnel for passenger car air conditioners at Bad Nauheim; Entwicklung neuer Produkte fuer Europa und individuelle Kundenunterstuetzung: Sanden Technical Centre (Europe) GmbH. Hocheffizienter Klimawindkanal fuer Pkw-Klimaanlagen in Bad Nauheim

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2007-05-15

    As the importance of passenger cars as part of everyday life increased in Japan, Sanden decided that air conditioners for passenger cars would soon be indispensable. Since 1971, Sanden has worked on new technologies in this field, including compact refrigerating compressors. (orig.)

  14. Ammonia-water Rankine cycle

    International Nuclear Information System (INIS)

    Bo Hanliang; Ma Changwen; Wu Shaorong

    1997-01-01

    On characteristics of heating source and cooling source in nuclear heating reactor cooperation, the authors advance a new kind of power cycle in which a multicomponent mixture as the work fluid, ammonia-water Rankine cycle, describe its running principle, and compare it with steam Rankine cycle in the same situation. The result is that: the new kind of power cycle, ammonia-water Rankine cycle has higher electricity efficiency; it suits for the situation of heating source and cooling source which offered by nuclear heating reactor cooperation. For low temperature heating source, it maybe has a widely application

  15. Technical support document: Energy efficiency standards for consumer products: Room air conditioners, water heaters, direct heating equipment, mobile home furnaces, kitchen ranges and ovens, pool heaters, fluorescent lamp ballasts and television sets. Volume 1, Methodology

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    The Energy Policy and Conservation Act (P.L. 94-163), as amended, establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. DOE is currently considering amending standards for seven types of products: water heaters, direct heating equipment, mobile home furnaces, pool heaters, room air conditioners, kitchen ranges and ovens (including microwave ovens), and fluorescent light ballasts and is considering establishing standards for television sets. This Technical Support Document presents the methodology, data, and results from the analysis of the energy and economic impacts of the proposed standards. This volume presents a general description of the analytic approach, including the structure of the major models.

  16. UPQC (Unified power Quality Conditioner)

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. UPQC (Unified power Quality Conditioner). Hybrid of Shunt and Series compensator. Compensate both Current Quality and Voltage Quality. Costlier Solution as it involves two set of Inverters.

  17. Micromorphology of pelletized soil conditioners

    Science.gov (United States)

    Hirsch, Florian; Dietrich, Nils; Knoop, Christine; Raab, Thomas

    2017-04-01

    Soil conditioners produced by anaerobic digestion and subsequent composting of organic household waste, bear the potential to improve unproductive farmland together with a reduced input risk of unwanted pollutants into the soils. Within the VeNGA project (http://www.biogas-network.de/venga), soil conditioners from anaerobically digested organic household waste are tested for their potential to increase plant growth in glasshouse and field experiments. Because the production techniques of these soil conditioners may influence their physical and chemical behaviour in the soil, two different techniques for pelletizing the soil conditioners where applied. We present findings from a pot experiment with cereal that has been sampled after two months for micromorphological analyses. We visualize the decomposition and the physical behaviour of the soil conditioners. Pellets produced in an agglomeration mixer result in dense balls, that are only slightly decomposed after the trial. But the soil conditioners created under pressure in a screw extruder are rich in voids and have the potential of retaining more soil water.

  18. Experimental investigation on a small pumpless ORC (organic rankine cycle) system driven by the low temperature heat source

    International Nuclear Information System (INIS)

    Gao, P.; Wang, L.W.; Wang, R.Z.; Jiang, L.; Zhou, Z.S.

    2015-01-01

    A small pumpless ORC (organic rankine cycle) system with different scroll expanders modified from compressors of the automobile air-conditioner is established, and the refrigerant R245fa is chosen as the working fluid. Different hot water temperatures of 80, 85, 90 and 95 °C are employed to drive the pumpless ORC system. Experimental results show that a maximum shaft power of 361.0 W is obtained under the hot water temperature of 95 °C, whereas the average shaft power is 155.8 W. The maximum energy efficiency of 2.3% and the maximum exergy efficiency of 12.8% are obtained at the hot water temperature of 90 °C. Meanwhile a test rig for investigating the mechanical loss of the scroll expander is established. The torque caused by the internal mechanical friction of the expander is about 0.4 N m. Additionally, another scroll expander with a displacement of 86 ml/r is also employed to investigate how scroll expander displacement influences the performance of the pumpless ORC system. Finally, the performance of the pumpless ORC system is compared with that of the conventional ORC system, and experimental results show that the small pumpless ORC system has more advantages for the low-grade heat recovery. - Highlights: • A small pumpless ORC (organic rankine cycle) system is established, and different scroll expanders are tested. • The maximum energy and exergy efficiency are 2.3% and 12.8% respectively. • A maximum shaft power of 361.0 W is obtained under the heat source temperature of 95 °C. • The small pumpless ORC system has characteristics of the high efficiency.

  19. The SCSTPE organic Rankine engine

    Science.gov (United States)

    Boda, F. P.

    1980-01-01

    The organic Rankine cycle engine under consideration for a solar thermal system being developed is described. Design parameters, method of control, performance and cost data are provided for engine power levels up to 80 kWe; efficiency is shown as a function of turbine inlet temperature in the range of 149 C to 427 C.

  20. Experimental study on energy performance of a split air-conditioner by using variable thickness evaporative cooling pads coupled to the condenser

    International Nuclear Information System (INIS)

    Martínez, P.; Ruiz, J.; Cutillas, C.G.; Martínez, P.J.; Kaiser, A.S.; Lucas, M.

    2016-01-01

    A well known strategy for improving the performance of air conditioning systems when using air-condensed units is to decrease the ambient inlet airflow temperature by means of an evaporative cooling pad. In this work experiments are conducted in a split air-conditioning system where the condensing unit is modified by coupling different evaporative cooling pads with variable thickness. The impact of the different cooling pads on the overall performance of the air-conditioning system is experimentally determined by measuring the airflow conditions and the energy consumption of the overall air conditioning system, including both the condenser fan and the feedwater recirculation pump of the cooling pads. The aim is to determine the energy efficiency improvement achieved by pre-cooling the ambient airflow compared to a common air-condensed unit and to calculate the optimal pad thickness that maximize the overall COP of the system. Experimental results indicate that the best overall COP is obtained by adding a cooling pad thickness of about 100 mm. At that point the compressor power consumption is reduced by 11.4%, the cooling capacity is increased by 1.8% and finally the overall COP is increased by 10.6%.

  1. Compressors. These little things that improve the operation of air conditioners. Danfoss-Turbocor: magnetic bearings for a centrifugal compressor. Copeland: the group stresses on the Digital power variation; Dossier compresseurs. Ces petits plus qui ameliorent le fonctionnement des climatiseurs. Danfoss-Turbocor: des paliers magnetiques pour un compresseur centrifuge. Copeland: le groupe met l'accent sur la variation de puissance Digital

    Energy Technology Data Exchange (ETDEWEB)

    Nicolas, J.

    2005-09-01

    This dossier about compressors for air conditioners comprises three articles dealing with: the improvements made by manufacturers of air-conditioning systems to increase the coefficient of performance and the lifetime of compressors, to reduce the refrigerant leaks and to reduce the power consumption; the electromagnetic bearings, the speed variation and the double stage compression used in the Danfoss-Turbocor centrifugal compressor; and the 'Digital' mechanical power variation system used by Copeland which does not change the motor velocity nor the operation limits of the compressor. (J.S.)

  2. Shuttle APS propellant thermal conditioner study

    Science.gov (United States)

    Pearson, W. E.

    1971-01-01

    A study program was performed to allow selection of thermal conditioner assemblies for superheating O2 and H2 at supercritical pressures. The application was the auxiliary propulsion system (APS) for the space shuttle vehicle. The O2/H2 APS propellant feed system included propellant conditioners, of which the thermal conditioner assemblies were a part. Cryogens, pumped to pressures above critical, were directed to the thermal conditioner assembly included: (1) a gas generator assembly with ignition system and bipropellant valves, which burned superheated O2 and H2 at rich conditions; (2) a heat exchanger assembly for thermal conditioning of the cryogenic propellant; and (3) a dump nozzle for heat exchanger exhaust.

  3. Rankine cycle system and method

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-09-09

    A Rankine cycle waste heat recovery system uses a receiver with a maximum liquid working fluid level lower than the minimum liquid working fluid level of a sub-cooler of the waste heat recovery system. The receiver may have a position that is physically lower than the sub-cooler's position. A valve controls transfer of fluid between several of the components in the waste heat recovery system, especially from the receiver to the sub-cooler. The system may also have an associated control module.

  4. Conditioner for a helically transported electron beam

    International Nuclear Information System (INIS)

    Wang, Changbiao.

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically transported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron's relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value

  5. Conditioner for a helically transported electron beam

    International Nuclear Information System (INIS)

    Wang, C.

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically imported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron's relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value

  6. Space shuttle aps propellant thermal conditioner study

    Science.gov (United States)

    Fulton, D. L.

    1973-01-01

    An analytical and experimental effort was completed to evaluate a baffle type thermal conditioner for superheating O2 and H2 at supercritical pressures. The thermal conditioner consisted of a heat exchanger and an integral reactor (gas generator) operating on O2/H2 propellants. Primary emphasis was placed on the hydrogen conditioner with some effort on the oxygen conditioner and a study completed of alternate concepts for use in conditioning oxygen. A hydrogen conditioner was hot fire tested under a range of conditions to establish ignition, heat exchange and response parameters. A parallel technology task was completed to further evaluate the integral reactor and heat exchanger with the side mounted electrical spark igniter.

  7. Bifurcated SEN with Fluid Flow Conditioners

    Directory of Open Access Journals (Sweden)

    F. Rivera-Perez

    2014-01-01

    Full Text Available This work evaluates the performance of a novel design for a bifurcated submerged entry nozzle (SEN used for the continuous casting of steel slabs. The proposed design incorporates fluid flow conditioners attached on SEN external wall. The fluid flow conditioners impose a pseudosymmetric pattern in the upper zone of the mold by inhibiting the fluid exchange between the zones created by conditioners. The performance of the SEN with fluid flow conditioners is analyzed through numerical simulations using the CFD technique. Numerical results were validated by means of physical simulations conducted on a scaled cold water model. Numerical and physical simulations confirmed that the performance of the proposed SEN is superior to a traditional one. Fluid flow conditioners reduce the liquid free surface fluctuations and minimize the occurrence of vortexes at the free surface.

  8. Formulation of humic-based soil conditioners

    Science.gov (United States)

    Amanova, M. A.; Mamytova, G. A.; Mamytova, B. A.; Kydralieva, K. A.; Jorobekova, Sh. J.

    2009-04-01

    The goal of the study is to prepare soil conditioners (SC) able to carry out the following functions: (i) the chemical conditioning of soil mainly comprising the adjustment of pH, (ii) the balancing of inorganic nutrients, (iii) the physical conditioning of soil mainly comprising the improvement of water permeability, air permeability and water retention properties, and (iv) improvement of the ecological system concerning of useful microorganisms activity in the soil. The SC was made of a mixture of inorganic ingredients, a chemical composition and physical and chemical properties of which promoted improvement of physical characteristic of soil and enrichment by its mineral nutritious elements. In addition to aforesaid ingredients, this soil conditioner contains agronomical-valued groups of microorganisms having the function promoting the growth of the crop. As organic component of SC humic acids (HA) was used. HA serve many major functions that result in better soil and plant health. In soil, HA can increase microbial and mycorrhizal activity while enhancing nutrient uptake by plant roots. HA work as a catalyst by stimulating root and plant growth, it may enhance enzymatic activity that in turn accelerates cell division which can lead to increased yields. HA can help to increase crop yields, seed germination, and much more. In short, humic acids helps keep healthy plants health. The first stage goal was to evaluate mineral and organic ingredients for formulation of SC. Soil conditioners assessed included ash and slag. The use of slags has been largelly used in agriculture as a source of lime and phosphoric acid. The silicic acid of slags reduces Al-acitivity thus, promoting a better assimilation of P-fertilizer by plants. Additionally, silicic acid is also known to improve soil moisture capacity, thus enhancing soil water availability to plants. Physico-chemical characteristics of ash and slag were determined, as a total - about 20 samples. Results include

  9. Organic Rankine Cycles. Old wine in new bottles; Organic Rankine Cycles. Oude wijn in nieuwe zakken

    Energy Technology Data Exchange (ETDEWEB)

    Den Hartog, T.L.B. [Cumae, Arnhem (Netherlands)

    2007-05-15

    An overview is given of the renewed interest for the Organic Rankine Cycle technology and new developments with regard to this power generating technology. [Dutch] Een overzicht wordt gegeven van de hernieuwde belangstelling voor de Organic Rankine Cycle (ORC) technologie en nieuwe ontwikkeling m.b.t. deze vorm van elektriciteitopwekking.

  10. 78 FR 37220 - Proposed Information Collection Request; Comment Request; EPA-ICR No. 1774.05-Mobile Air...

    Science.gov (United States)

    2013-06-20

    .... Regulations promulgated under SNAP require that Motor Vehicle Air Conditioners (MVACs) retrofitted to use a... respondents: 294 (total). Frequency of response: Once per retrofit of a motor vehicle air conditioner. Total... Request; Comment Request; EPA-ICR No. 1774.05--Mobile Air Conditioner Retrofitting Program AGENCY...

  11. Experimental Study of a Low-Temperature Power Generation System in an Organic Rankine Cycle

    DEFF Research Database (Denmark)

    Mu, Yongchao; Zhang, Yufeng; Deng, Na

    2015-01-01

    This paper presents a new power generation system under the principle of organic Rankine cycle which can generate power with a low-temperature heat source. A prototype was built to investigate the proposed system. In the prototype, an air screw compressor was converted into an expander and used...... as the engine of the power generator. The style of the preheater was a shell and tube heat exchanger, which could provide a long path for the working fluid. A flooded heat exchanger with a high heat transfer coefficient was taken as the evaporator. R134a was used as working fluid for the Rankine cycle......, the average isentropic efficiency of the screw expander was 68%, and the efficiency of power generation varies from 1.2 to 4.56%. The highest value of thermodynamical perfectness was 29.06%. It can be concluded that organic Rankine cycle could be competitive for recovering low-temperature heat source...

  12. Turbomachinery design for Rankine cycles in waste heat recovery applications

    OpenAIRE

    Agromayor Otero, Roberto

    2017-01-01

    Rankine Cycles are an effective and efficient manner to convert waste thermal energy into power. Numerous fluids can be used in Rankine cycles, including water, hydrocarbons, hydrofluorocarbons, siloxanes, alcohols or even mixtures of fluids. The performance of Rankine cycles is highly dependent on the optimization of the operating conditions and the design of its components. The expander is, perhaps, the most important component of the Rankine cycle, as it is the device where the energy of t...

  13. Photovoltaic array: Power conditioner interface characteristics

    Science.gov (United States)

    Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.

    1982-01-01

    The electrical output (power, current, and voltage) of flat plate solar arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as dc-to-ac power conditioners must be capable of accommodating widely varying input levels while maintaining operation at or near the maximum power point of the array. The array operating characteristics and extreme output limits necessary for the systematic design of array load interfaces under a wide variety of climatic conditions are studied. A number of interface parameters are examined, including optimum operating voltage, voltage energy, maximum power and current limits, and maximum open circuit voltage. The effect of array degradation and I-V curve fill factor or the array power conditioner interface is also discussed. Results are presented as normalized ratios of power conditioner parameters to array parameters, making the results universally applicable to a wide variety of system sizes, sites, and operating modes.

  14. Rankine cycle waste heat recovery system

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-08-12

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  15. Cascaded organic rankine cycles for waste heat utilization

    Science.gov (United States)

    Radcliff, Thomas D [Vernon, CT; Biederman, Bruce P [West Hartford, CT; Brasz, Joost J [Fayetteville, NY

    2011-05-17

    A pair of organic Rankine cycle systems (20, 25) are combined and their respective organic working fluids are chosen such that the organic working fluid of the first organic Rankine cycle is condensed at a condensation temperature that is well above the boiling point of the organic working fluid of the second organic Rankine style system, and a single common heat exchanger (23) is used for both the condenser of the first organic Rankine cycle system and the evaporator of the second organic Rankine cycle system. A preferred organic working fluid of the first system is toluene and that of the second organic working fluid is R245fa.

  16. Process integration of organic Rankine cycle

    International Nuclear Information System (INIS)

    Desai, Nishith B.; Bandyopadhyay, Santanu

    2009-01-01

    An organic Rankine cycle (ORC) uses an organic fluid as a working medium within a Rankine cycle power plant. ORC offers advantages over conventional Rankine cycle with water as the working medium, as ORC generates shaft-work from low to medium temperature heat sources with higher thermodynamic efficiency. The dry and the isentropic fluids are most preferred working fluid for the ORC. The basic ORC can be modified by incorporating both regeneration and turbine bleeding to improve its thermal efficiency. In this paper, 16 different organic fluids have been analyzed as a working medium for the basic as well as modified ORCs. A methodology is also proposed for appropriate integration and optimization of an ORC as a cogeneration process with the background process to generate shaft-work. It has been illustrated that the choice of cycle configuration for appropriate integration with the background process depends on the heat rejection profile of the background process (i.e., the shape of the below pinch portion of the process grand composite curve). The benefits of integrating ORC with the background process and the applicability of the proposed methodology have been demonstrated through illustrative examples.

  17. Ventilation influence upon indoor air radon level

    International Nuclear Information System (INIS)

    Tian Deyuan

    1995-01-01

    Levels of indoor radon in air are studied by a continuous electrostatic radon monitor under normal living conditions to evaluate the influence of air conditioned ventilation on indoor air radon level. Results show that the indoor air radon concentrations are not much more than those without household conditioner living condition, although using household conditioner requires a sealed room which should lead to a higher radon level. Turning on air conditioner helps lower indoor radon level. Therefore, the total indoor air Rn levels are normal > ventilation > exhaust or in-draft > exhaust plus in-draft

  18. A hybrid Rankine cycle (HyRC) with ambient pressure combustion (APC)

    International Nuclear Information System (INIS)

    Wu, Lijun; Thimsen, David; Clements, Bruce; Zheng, Ligang; Pomalis, Richard

    2014-01-01

    The main losses in thermal power generation include heat in exhaust flue gas, heat rejected through steam condensation of low-pressure turbine, and exergy destruction in heat exchange process etc. To the extent that the heat losses are significantly greater in temperature than either air or water coolant resources, these losses also represent exergy losses which might be exploited to improve plant capacity and efficiency. This paper presents a hybrid Rankine cycle (HyRC) with an ambient pressure combustion (APC) boiler to address the recovery potential of these losses within the steam Rankine cycle (SRC). The APC–HyRC concept employs an organic Rankine cycle (ORC) to supplement SRC and to reduce cycle energy losses to the atmosphere since organic fluids are capable of lowering cycle condensation temperature when a very low temperature heat sink is available. The case studies based on a 399 MW SRC unit show that the APC–HyRC configurations have better thermodynamic performance than its base case SRC at a cycle condensation temperature of 30 °C and below. The best APC–HyRC configuration generates up to 14% more power than the baseline steam cycle which is a 5.45% increase in overall gross efficiency with a cycle condensation temperature at 4 °C. - Highlights: • A hybrid Rankine cycle with water and organic fluid is presented. • Heat losses in exhaust flue gas and exhaust steam are reduced. • Exergy losses in regeneration process are reduced. • Efficiency improvements are made to the conventional steam Rankine cycle. • Issues in design/construction of greenfield and repowering project are discussed

  19. Organic rankine cycle waste heat applications

    Science.gov (United States)

    Brasz, Joost J.; Biederman, Bruce P.

    2007-02-13

    A machine designed as a centrifugal compressor is applied as an organic rankine cycle turbine by operating the machine in reverse. In order to accommodate the higher pressures when operating as a turbine, a suitable refrigerant is chosen such that the pressures and temperatures are maintained within established limits. Such an adaptation of existing, relatively inexpensive equipment to an application that may be otherwise uneconomical, allows for the convenient and economical use of energy that would be otherwise lost by waste heat to the atmosphere.

  20. Rankine bottoming cycle safety analysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, G.A.

    1980-02-01

    Vector Engineering Inc. conducted a safety and hazards analysis of three Rankine Bottoming Cycle Systems in public utility applications: a Thermo Electron system using Fluorinal-85 (a mixture of 85 mole % trifluoroethanol and 15 mole % water) as the working fluid; a Sundstrand system using toluene as the working fluid; and a Mechanical Technology system using steam and Freon-II as the working fluids. The properties of the working fluids considered are flammability, toxicity, and degradation, and the risks to both plant workers and the community at large are analyzed.

  1. Toluene stability Space Station Rankine power system

    Science.gov (United States)

    Havens, V. N.; Ragaller, D. R.; Sibert, L.; Miller, D.

    1987-01-01

    A dynamic test loop is designed to evaluate the thermal stability of an organic Rankine cycle working fluid, toluene, for potential application to the Space Station power conversion unit. Samples of the noncondensible gases and the liquid toluene were taken periodically during the 3410 hour test at 750 F peak temperature. The results obtained from the toluene stability loop verify that toluene degradation will not lead to a loss of performance over the 30-year Space Station mission life requirement. The identity of the degradation products and the low rates of formation were as expected from toluene capsule test data.

  2. Effects of natural and synthetic soil conditioners on soil moisture ...

    African Journals Online (AJOL)

    The efficacy of a natural soil conditioner, Coco-Peat (C-P), and synthetic soil conditioners, Terawet (T-200) and Teraflow (T-F), in improving soil moisture content were examined on five Ghanaian soil series (Akroso, Akuse, Amo, Hake and Oyarifa). In general, the water retention of T-200 and C-P treated soils were similar ...

  3. Effects of a non-rinse conditioner on the enamel of primary teeth

    Directory of Open Access Journals (Sweden)

    Fava Marcelo

    2003-01-01

    Full Text Available The aim of this in vitro study was to evaluate by scanning electron microscopy the morphological aspects of the enamel of primary teeth after etching with 36% phosphoric acid or a non-rinse conditioner. Ten naturally exfoliated anterior primary teeth were selected. The samples were subjected to prophylaxis with pumice paste and water using a low-speed hand piece. Etching was done on the buccal surface. Specimens were divided into 2 groups: G1 (n=10: etching with 36% phosphoric acid gel - Conditioner 36 (Dentsply for 20 s, followed by water rinse for 15 s; G2 (n=10: etching with NRC - Non Rinse Conditioner (Dentsply for 20 s, followed by air drying for 15 s. The samples were dehydrated, mounted on metal stubs, coated with gold and observed with Jeol JSM-6100 scanning electron microscope. Electron-micrographic analysis showed that both etching agents were effective for etching the enamel of primary teeth causing the formation of microporosities on the enamel surface, although the etching pattern was more effective with the use of 36% phosphoric acid gel.

  4. Analysis of a combined Rankine-vapour-compression refrigeration cycle

    International Nuclear Information System (INIS)

    Aphornratana, Satha; Sriveerakul, Thanarath

    2010-01-01

    This paper describes a theoretical analysis of a heat-powered refrigeration cycle, a combined Rankine-vapour-compression refrigeration cycle. This refrigeration cycle combines an Organic Rankine Cycle and a vapour-compression cycle. The cycle can be powered by low grade thermal energy as low as 60 deg. C and can produce cooling temperature as low as -10 deg. C. In the analysis, two combined Rankine-vapour-compression refrigeration cycles were investigated: the system with R22 and the system with R134a. Calculated COP values between 0.1 and 0.6 of both the systems were found.

  5. 企业创新悖论与两栖组织模式——基于海尔空调产品开发团队案例的研究%Innovation paradox and ambidextrous organization: A case study on development teams of air conditioner in Haier

    Institute of Scientific and Technical Information of China (English)

    王凤彬; 江鸿

    2009-01-01

    新产品开发作为企业自主创新活动的一种重要形式,是知识探索与知识利用有机结合的过程.在对二者悖论关系及其处理方略进行系统文献综述的基础上,将两栖组织的定义从"二元结构"、"二面性结构"伸展到"两栖能力",试图在较低的组织层次上回答如何辩证地解决二者看似矛盾实则可统一的关系.在对海尔空调开发团队的成员构成及异质性知识组合案例分析后,得出的结论是,"两栖"不仅是组织层面的构念,而且可以是团队乃至像"型号经理"这样的个体员工层面的构念.%While knowledge exploration and exploitation represent two distinct activities requiring corresponding organizational arrangements, new product development calls for a dynamic combination of the two. Based on a systematic review of the paradox between knowledge exploration and exploitation and various resolving strategies, this research extends the construct of organizational ambidexterity from dual structure to ambidextrous capabilities, and suggests a dialectical method for reconciling this paradox at lower organizational levels. Based on a case study on the development teams of air conditioner in Haier, we find that ambidexterity is a multi-level construct existing not only at the organization level but also at lower levels such as teams and individuals like model managers.

  6. Energy efficiency program through exchange of air conditioners in residential sector of Manaus city: a concrete experience; Programa de eficiencia energetica atraves da troca de condicionadores de ar no setor residencial de Manaus: uma experiencia concreta

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Fabricio Rodrigues; Goncalves, Ana Catarina Lima Chaves; Cartaxo, Elizabeth Ferreira; Gomes, Hugo Miguel Oliveira; Nascimento, Nilton Correa; Inui, Raul Eiji; Guedes, Ricardo Augusto de Morais; Benchaya, Roberto Tavares [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil)

    2004-07-01

    The present review attempts to evaluate the importance of efficient equipment diffusion in reducing energy consumption, based upon the Study-case of an air conditioned exchange program in Manaus city of Amazonas. In spite of the existence, in the actual market, of efficient technology, it has been, yet, badly diffused, mostly due to economical and informative laps. Therefore, once tried to demonstrate the potential benefits, in technical gains, of energy efficiency offered by efficient Air conditioned equipment, through a plan that favors the consumer's participation as an active contributor in the dissemination process of efficient technology, and a following program for efficiency evaluation, beside a tributary evaluation proposal, so that technology becomes accessible to the general population, attempting its benefices. In addition, the environmental benefits of that specific proposal are analyzed, trough the developed recycling program. (author)

  7. Power conditioner without isolation transformer; Toransuresu power conditioner no shohin kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Okado, C; Itami, T; Kimoto, K [Toshiba Corp., Tokyo (Japan)

    1996-10-27

    A light-weight downsized and high efficiency transformer-less type 4 kW power conditioner (inverter) has been developed. This power conditioner insures the system interconnection protection by monitoring the voltage of two single-phase three-line circuits. The power conditioner has weight of 17.5 kg and efficiency of 94%. Potential fluctuation of photovoltaic cells due to the switching of power devices at the inverter was reduced. Output capacity was reduced in the low input voltage range. Outflow of DC component was prevented in high accuracy by usually correcting the zero point drift of detector, and by using the current detector with excellent linearity. To detect the DC ground fault, and to trip the output side breaker locating at the ground fault current pass, a zero phase converter detection circuit has been developed, by which the DC component can be detected at the DC input side. As a result of performance verification, the efficiency, power factor, EMI level, protection of outflow of DC component, protection of ground fault, protection of single operation detection, and noise level were satisfied. This system is prospective for the diffusion of photovoltaic power generation in the future. 3 refs., 8 figs., 1 tab.

  8. Development of residential solar air conditioning system for electricity power peak cut 3

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Gwon Jong [Korea Inst. of Energy and Resources, Daeduk (Korea, Republic of)

    1995-12-31

    In this research, the converter rectifier unit of the inverter air conditioner is substituted into the bidirectional PWM converter. The DC/DC power converter is established on the DC link between the photovoltaic array and the inverter air conditioner, and the photovoltaic air conditioning system which can be parallel driven which utility is developed. (author). 35 ref., 112 figs.

  9. Organic Rankine cycle - review and research directions in engine applications

    Science.gov (United States)

    Panesar, Angad

    2017-11-01

    Waste heat to power conversion using Organic Rankine Cycles (ORC) is expected to play an important role in CO2 reductions from diesel engines. Firstly, a review of automotive ORCs is presented focusing on the pure working fluids, thermal architectures and expanders. The discussion includes, but is not limited to: R245fa, ethanol and water as fluids; series, parallel and cascade as architectures; dry saturated, superheated and supercritical as expansion conditions; and scroll, radial turbine and piston as expansion machines. Secondly, research direction in versatile expander and holistic architecture (NOx + CO2) are proposed. Benefits of using the proposed unconventional approaches are quantified using Ricardo Wave and Aspen HYSYS for diesel engine and ORC modelling. Results indicate that, the implementation of versatile piston expander tolerant to two-phase and using cyclopentane can potentially increase the highway drive cycle power by 8%. Furthermore, holistic architecture offering complete utilisation of charge air and exhaust recirculation heat increased the performance noticeably to 5% of engine power at the design point condition.

  10. Lemongrass-Incorporated Tissue Conditioner Against Candida albicans Culture

    Science.gov (United States)

    Amornvit, Pokpong; Srithavaj, Theerathavaj

    2014-01-01

    Background: Tissue conditioner is applied popularly with dental prosthesis during wound healing process but it becomes a reservoir of oral microbiota, especially Candida species after long-term usage. Several antifungal drugs have been mixed with this material to control fungal level. In this study, lemongrass essential oil was added into COE-COMFORT tissue conditioner before being determined for anti-Candida efficacy. Materials and Methods: Lemongrass (Cymbopogon citratus) essential oil was primarily determined for antifungal activity against C. albicans American type culture collection (ATCC) 10231 and MIC (minimum inhibitory concentration) value by agar disk diffusion and broth microdilution methods, respectively. COE-COMFORT tissue conditioner was prepared as recommended by the manufacturer after a fixed volume of the oil at its MIC or higher concentrations were mixed thoroughly in its liquid part. Antifungal efficacy of the tissue conditioner with/without herb was finally analyzed. Results: Lemongrass essential oil displayed potent antifungal activity against C. albicans ATCC 10231and its MIC value was 0.06% (v/v). Dissimilarly, the tissue conditioner containing the oil at MIC level did not cease the growth of the tested fungus. Both reference and clinical isolates of C. albicans were completely inhibited after exposed to the tissue conditioner containing at least 0.25% (v/v) of the oil (approximately 4-time MIC). The tissue conditioner without herb or with nystatin was employed as negative or positive control, respectively. Conclusion: COE-COMFORT tissue conditioner supplemented with lemongrass essential oil obviously demonstrated another desirable property as in vitro anti-Candida efficacy to minimize the risk of getting Candidal infection. PMID:25177638

  11. An outbreak of Serratia marcescens infection in a special-care baby unit of a community hospital in United Arab Emirates: the importance of the air conditioner duct as a nosocomial reservoir.

    Science.gov (United States)

    Uduman, S A; Farrukh, A S; Nath, K N R; Zuhair, M Y H; Ifrah, A; Khawla, A D; Sunita, P

    2002-11-01

    We report an outbreak of Serratia marcescens infection in a special-care baby unit (SCBU) of a university-affiliated community hospital in the United Arab Emirates. The outbreak involved 36 infants and lasted for 20 weeks. Seven of the colonized infants developed invasive illnesses in the form of bacteraemia (four cases), bacteraemic meningitis (two) and clinical sepsis (one). Three other term infants had purulent conjunctivitis. There were five deaths with an overall mortality of 14%. S. marcescens was cultured from airflow samples from the air conditioning (AC) which was the reservoir of infection in this outbreak. Elimination of the nosocomial source and outbreak containment were eventually achieved by specialized robotic cleaning of the entire AC duct system of the SCBU. Strict adherence to the infection control policies was reinforced to prevent transmission of cross-infection. Copyright 2002 The Hospital Infection Society

  12. Life Cycle Assessment of Residential Heating and Cooling Systems in Minnesota A comprehensive analysis on life cycle greenhouse gas (GHG) emissions and cost-effectiveness of ground source heat pump (GSHP) systems compared to the conventional gas furnace and air conditioner system

    Science.gov (United States)

    Li, Mo

    Ground Source Heat Pump (GSHP) technologies for residential heating and cooling are often suggested as an effective means to curb energy consumption, reduce greenhouse gas (GHG) emissions and lower homeowners' heating and cooling costs. As such, numerous federal, state and utility-based incentives, most often in the forms of financial incentives, installation rebates, and loan programs, have been made available for these technologies. While GSHP technology for space heating and cooling is well understood, with widespread implementation across the U.S., research specific to the environmental and economic performance of these systems in cold climates, such as Minnesota, is limited. In this study, a comparative environmental life cycle assessment (LCA) is conducted of typical residential HVAC (Heating, Ventilation, and Air Conditioning) systems in Minnesota to investigate greenhouse gas (GHG) emissions for delivering 20 years of residential heating and cooling—maintaining indoor temperatures of 68°F (20°C) and 75°F (24°C) in Minnesota-specific heating and cooling seasons, respectively. Eight residential GSHP design scenarios (i.e. horizontal loop field, vertical loop field, high coefficient of performance, low coefficient of performance, hybrid natural gas heat back-up) and one conventional natural gas furnace and air conditioner system are assessed for GHG and life cycle economic costs. Life cycle GHG emissions were found to range between 1.09 × 105 kg CO2 eq. and 1.86 × 10 5 kg CO2 eq. Six of the eight GSHP technology scenarios had fewer carbon impacts than the conventional system. Only in cases of horizontal low-efficiency GSHP and hybrid, do results suggest increased GHGs. Life cycle costs and present value analyses suggest GSHP technologies can be cost competitive over their 20-year life, but that policy incentives may be required to reduce the high up-front capital costs of GSHPs and relatively long payback periods of more than 20 years. In addition

  13. Influence of working fluids on Organic Rankine Cycle for waste heat recovery applications

    Energy Technology Data Exchange (ETDEWEB)

    Struzyna, Ralf; Eifler, Wolfgang; Steinmill, Jens [Bochum Univ. (Germany). Lehrstuhl fuer Verbrennungsmotoren

    2012-11-01

    More than 50% of the energy contained in fuel is lost due to the loss of heat content to the exhaust gas, the cooling water or the charge air cooler medium. Therefore, one of the most promising attempts to further increase the efficiency of internal combustion engines is waste heat recovery by means of a combined process. The Organic Rankine Cycle (ORC) is a promising process for waste heat recovery systems. The main purpose is to identify suitable working fluids to achieve best system performance. Therefore an analysis of the influence of different working fluids on system output is required. (orig.)

  14. PROSPECTS FOR THE DEVELOPMENT OF TECHNOLOGY AIR CONDITIONING

    Directory of Open Access Journals (Sweden)

    O. V. Chernyshova

    2008-03-01

    Full Text Available In the article the evaporation cooling and spray (aqueous and air-to-water types of the air-conditioning systems are considered, their merits and demerits are analyzed; the new scheme of a conditioner is offered.

  15. Embedding quantum into classical: contextualization vs conditionalization.

    Directory of Open Access Journals (Sweden)

    Ehtibar N Dzhafarov

    Full Text Available We compare two approaches to embedding joint distributions of random variables recorded under different conditions (such as spins of entangled particles for different settings into the framework of classical, Kolmogorovian probability theory. In the contextualization approach each random variable is "automatically" labeled by all conditions under which it is recorded, and the random variables across a set of mutually exclusive conditions are probabilistically coupled (imposed a joint distribution upon. Analysis of all possible probabilistic couplings for a given set of random variables allows one to characterize various relations between their separate distributions (such as Bell-type inequalities or quantum-mechanical constraints. In the conditionalization approach one considers the conditions under which the random variables are recorded as if they were values of another random variable, so that the observed distributions are interpreted as conditional ones. This approach is uninformative with respect to relations between the distributions observed under different conditions because any set of such distributions is compatible with any distribution assigned to the conditions.

  16. Ocean Thermal Energy Conversion Using Double-Stage Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Yasuyuki Ikegami

    2018-03-01

    Full Text Available Ocean Thermal Energy Conversion (OTEC using non-azeotropic mixtures such as ammonia/water as working fluid and the multistage cycle has been investigated in order to improve the thermal efficiency of the cycle because of small ocean temperature differences. The performance and effectiveness of the multistage cycle are barely understood. In addition, previous evaluation methods of heat exchange process cannot clearly indicate the influence of the thermophysical characteristics of the working fluid on the power output. Consequently, this study investigated the influence of reduction of the irreversible losses in the heat exchange process on the system performance in double-stage Rankine cycle using pure working fluid. Single Rankine, double-stage Rankine and Kalina cycles were analyzed to ascertain the system characteristics. The simple evaluation method of the temperature difference between the working fluid and the seawater is applied to this analysis. From the results of the parametric performance analysis it can be considered that double-stage Rankine cycle using pure working fluid can reduce the irreversible losses in the heat exchange process as with the Kalina cycle using an ammonia/water mixture. Considering the maximum power efficiency obtained in the study, double-stage Rankine and Kalina cycles can improve the power output by reducing the irreversible losses in the cycle.

  17. Analysis of Low Temperature Organic Rankine Cycles for Solar Applications

    Science.gov (United States)

    Li, Yunfei

    The present work focuses on Organic Rankine Cycle (ORC) systems and their application to low temperature waste heat recovery, combined heat and power as well as off-grid solar power generation applications. As CO_2 issues come to the fore front and fossil fuels become more expensive, interest in low grade heat recovery has grown dramatically in the past few years. Solar energy, as a clean, renewable, pollution-free and sustainable energy has great potential for the use of ORC systems. Several ORC solutions have been proposed to generate electricity from low temperature sources. The ORC systems discussed here can be applied to fields such as solar thermal, biological waste heat, engine exhaust gases, small-scale cogeneration, domestic boilers, etc. The current work presents a thermodynamic and economic analysis for the use of ORC systems to convert solar energy or low exergy energy to generate electrical power. The organic working fluids investigated here were selected to investigate the effect of the fluid saturation temperature on the performance of ORCs. The working fluids under investigation are R113, R245fa, R123, with boiling points between 40°C and 200°C at pressures from 10 kPa to 10 MPa. Ambient temperature air at 20oC to 30oC is utilized as cooling resource, and allowing for a temperature difference 10°C for effective heat transfer. Consequently, the working fluids are condensed at 40°C. A combined first- and second-law analysis is performed by varying some system independent parameters at various reference temperatures. The present work shows that ORC systems can be viable and economical for the applications such as waste heat use and off-grid power generation even though they are likely to be more expensive than grid power.

  18. 76 FR 18105 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Central Air...

    Science.gov (United States)

    2011-04-01

    ... the lab-added transformer. Id. Under this proposal, the instrument used to measure the electrical... the low-voltage transformer used when testing coil-only residential central air conditioners and heat... the Low-Voltage Transformer Used When Testing Coil- Only Central Air Conditioners and Heat Pumps and...

  19. Spectra of conditionalization and typicality in the multiverse

    Science.gov (United States)

    Azhar, Feraz

    2016-02-01

    An approach to testing theories describing a multiverse, that has gained interest of late, involves comparing theory-generated probability distributions over observables with their experimentally measured values. It is likely that such distributions, were we indeed able to calculate them unambiguously, will assign low probabilities to any such experimental measurements. An alternative to thereby rejecting these theories, is to conditionalize the distributions involved by restricting attention to domains of the multiverse in which we might arise. In order to elicit a crisp prediction, however, one needs to make a further assumption about how typical we are of the chosen domains. In this paper, we investigate interactions between the spectra of available assumptions regarding both conditionalization and typicality, and draw out the effects of these interactions in a concrete setting; namely, on predictions of the total number of species that contribute significantly to dark matter. In particular, for each conditionalization scheme studied, we analyze how correlations between densities of different dark matter species affect the prediction, and explicate the effects of assumptions regarding typicality. We find that the effects of correlations can depend on the conditionalization scheme, and that in each case atypicality can significantly change the prediction. In doing so, we demonstrate the existence of overlaps in the predictions of different "frameworks" consisting of conjunctions of theory, conditionalization scheme and typicality assumption. This conclusion highlights the acute challenges involved in using such tests to identify a preferred framework that aims to describe our observational situation in a multiverse.

  20. Emissions-critical charge cooling using an organic rankine cycle

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-07-15

    The disclosure provides a system including a Rankine power cycle cooling subsystem providing emissions-critical charge cooling of an input charge flow. The system includes a boiler fluidly coupled to the input charge flow, an energy conversion device fluidly coupled to the boiler, a condenser fluidly coupled to the energy conversion device, a pump fluidly coupled to the condenser and the boiler, an adjuster that adjusts at least one parameter of the Rankine power cycle subsystem to change a temperature of the input charge exiting the boiler, and a sensor adapted to sense a temperature characteristic of the vaporized input charge. The system includes a controller that can determine a target temperature of the input charge sufficient to meet or exceed predetermined target emissions and cause the adjuster to adjust at least one parameter of the Rankine power cycle to achieve the predetermined target emissions.

  1. 21 CFR 872.3750 - Bracket adhesive resin and tooth conditioner.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bracket adhesive resin and tooth conditioner. 872... SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3750 Bracket adhesive resin and tooth conditioner. (a) Identification. A bracket adhesive resin and tooth conditioner is a device...

  2. Absorption generator for solar-powered air-conditioner

    Science.gov (United States)

    Lowen, D. J.; Murray, J. G.

    1977-01-01

    Device passes solar-heated water through coils. Hot lithium Bromide/Water solution leaves through central stand-pipe, and water vapor leaves through refrigerant outlet at top. Matching generation temperature to collector efficiency helps cut costs.

  3. Penggunaan Air Conditioner sebagai Aspek Pencegahan terhadap Kerusakan Bahan Pustaka

    Directory of Open Access Journals (Sweden)

    Irvan Muliyadi

    2013-12-01

    Full Text Available Penggunaan AC di perpustakaan dapat mengurangi kerusakan buku dan manuskrip yang disebabkan oleh panas. Secara praktis AC dapat mengontrol temperatur dan kelembaban serta membersihkan udara. Ada 4 fungsi dari AC yaitu fentilasi, filterasi, pengontrolan temperatur, dan pengontrolan kelembaban.

  4. Climate neutral with the air-conditioners on.

    NARCIS (Netherlands)

    Van den Dobbelsteen, A.; Verdult, E.; Van Dijk, T.

    Supermarkets that transfer their heat to homes and indoor swimming pools that help heat office buildings. Thanks to this type of energy exchange, Rotterdam aims to render some of its neighbourhoods CO2 neutral. Easy to do, they say in the port city.

  5. Electronics Controls Assessment for the PATRIOT Air Conditioner System. Revision

    Science.gov (United States)

    1986-04-28

    Design, Febru- 3ary 1980. 8. "Solid State Motor Control Gives Smooth Starting", David J. Bak, Design News, April 1981. 9. "The Effect Of Voltage...Sgroi and Don Fetterman it wasE questioned whether or not this data applied to the compressor motor in the TECS units supplied to MTI. Another report No

  6. New concepts for organic Rankine cycle power systems

    NARCIS (Netherlands)

    Casati, E.I.M.

    2014-01-01

    Energy provision is one of the major challenges for the Human Society, and it is increasingly clear that the current production/consumption model is not sustainable. The envisaged energy system is smarter, more decentralised and integrated. Energy conversion systems based on the organic Rankine

  7. K-Rankine systems for piloted and cargo Mars missions

    International Nuclear Information System (INIS)

    Mills, J.C.; Rovang, R.D.; Johnson, G.A.

    1992-03-01

    Studies are performed to demonstrate the attractiveness of potassium-Rankine (K-Rankine) nuclear electric propulsion (NEP) systems for both piloted and cargo Mars missions. The key results of the piloted mission study are that a full-up piloted mission can be accomplished with a trip time of less than 390 days with an attractive initial mass in low earth orbit (IMLEO) of 700 metric tons. This is achieved by coupling two advanced cermet fuel reactors (1550 K outlet temperature) to K-Rankine power-conversion systems to produce the 46 MWe needed to power advanced ion engines. This design approach offers an alternative to a more risky split-sprint mission where comparable trip times and IMLEO can be achieved with a nearer-term reactor (SP-100 at 1350 K outlet temperature) technology. The results of the cargo-mission study indicate that a lower-power K-Rankine system (5.5 MWe) operating at SP-100 reactor conditions would best perform a representative Mars cargo transport. A round-trip mission (480 days outbound; 600 day return) to Mars requires only 225 metric tons IMLEO and permit possible system reuse. 6 refs

  8. Organic Rankine Cycle with Solar Heat Storage in Paraffin Way

    Directory of Open Access Journals (Sweden)

    Constantin LUCA

    2015-06-01

    Full Text Available The paper presents an electricity generation system based on an Organic Rankine Cycle and proposed storing the amount of the heat produced by the solar panels using large volume of paraffin wax. The proposed working fluid is R-134a refrigerant. The cycle operates at very low temperatures. A efficiency of 6,55% was obtained.

  9. Increasing thermal efficiency of Rankine cycles by using refrigeration cycles: A theoretical analysis

    International Nuclear Information System (INIS)

    Sarr, Joachim-André Raymond; Mathieu-Potvin, François

    2016-01-01

    Highlights: • A new stratagem is proposed to improve thermal efficiency of Rankine cycles. • Three new configurations are optimized by means of numerical simulations. • The Rankine-1SCR design is advantageous for 1338 different fluid combinations. • The Rankine-2SCR design is advantageous for 772 different fluid combinations. • The Rankine-3SCR design is advantageous for 768 different fluid combinations. - Abstract: In this paper, three different modifications of the basic Rankine thermodynamic cycle are proposed. The objective is to increase the thermal efficiency of power systems based on Rankine cycles. The three new systems are named “Rankine-1SCR”, “Rankine-2SCR”, and “Rankine-3SCR” cycles, and they consist of linking a refrigeration cycle to the basic Rankine cycle. The idea is to use the refrigeration cycle to create a low temperature heat sink for the Rankine cycle. These three new power plant configurations are modeled and optimized with numerical tools, and then they are compared with the basic Rankine cycle. The objective function is the thermal efficiency of the systems (i.e., net power output (kW) divided by heat rate (kW) entering the system), and the design variables are the operating temperatures within the systems. Among the 84 × 84 (i.e., 7056) possible combinations of working and cooling fluids investigated in this paper, it is shown that: (i) the Rankine-1SCR system is advantageous for 1338 different fluid combinations, (ii) the Rankine-2SCR system is advantageous for 772 different fluid combinations, and (iii) the Rankine-3SCR system is advantageous for 768 different fluid combinations.

  10. Preliminary thermodynamic study for an efficient turbo-blower external combustion Rankine cycle

    Science.gov (United States)

    Romero Gómez, Manuel; Romero Gómez, Javier; Ferreiro Garcia, Ramón; Baaliña Insua, Álvaro

    2014-08-01

    This research paper presents a preliminary thermodynamic study of an innovative power plant operating under a Rankine cycle fed by an external combustion system with turbo-blower (TB). The power plant comprises an external combustion system for natural gas, where the combustion gases yield their thermal energy, through a heat exchanger, to a carbon dioxide Rankine cycle operating under supercritical conditions and with quasi-critical condensation. The TB exploits the energy from the pressurised exhaust gases for compressing the combustion air. The study is focused on the comparison of the combustion system's conventional technology with that of the proposed. An energy analysis is carried out and the effect of the flue gas pressure on the efficiency and on the heat transfer in the heat exchanger is studied. The coupling of the TB results in an increase in efficiency and of the convection coefficient of the flue gas with pressure, favouring a reduced volume of the heat exchanger. The proposed innovative system achieves increases in efficiency of around 12 % as well as a decrease in the heat exchanger volume of 3/5 compared with the conventional technology without TB.

  11. Adhesive bonding of super-elastic titanium-nickel alloy castings with a phosphate metal conditioner and an acrylic adhesive.

    Science.gov (United States)

    Matsumura, H; Tanoue, N; Yanagida, H; Atsuta, M; Koike, M; Yoneyama, T

    2003-06-01

    The purpose of the current study was to evaluate the bonding characteristics of super-elastic titanium-nickel (Ti-Ni) alloy castings. Disk specimens were cast from a Ti-Ni alloy (Ti-50.85Ni mol%) using an arc centrifugal casting machine. High-purity titanium and nickel specimens were also prepared as experimental references. The specimens were air-abraded with alumina, and bonded with an adhesive resin (Super-Bond C & B). A metal conditioner containing a phosphate monomer (Cesead II Opaque Primer) was also used for priming the specimens. Post-thermocycling average bond strengths (MPa) of the primed groups were 41.5 for Ti-Ni, 30.4 for Ti and 19.5 for Ni, whereas those of the unprimed groups were 21.6 for Ti, 19.3 for Ti-Ni and 9.3 for Ni. Application of the phosphate conditioner elevated the bond strengths of all alloy/metals (P elastic Ti-Ni alloy castings can be achieved with a combination of a phosphate metal conditioner and a tri-n-butylborane-initiated adhesive resin.

  12. Thermionic reactor power conditioner design for nuclear electric propulsion.

    Science.gov (United States)

    Jacobsen, A. S.; Tasca, D. M.

    1971-01-01

    Consideration of the effects of various thermionic reactor parameters and requirements upon spacecraft power conditioning design. A basic spacecraft is defined using nuclear electric propulsion, requiring approximately 120 kWe. The interrelationships of reactor operating characteristics and power conditioning requirements are discussed and evaluated, and the effects on power conditioner design and performance are presented.

  13. Evaluation of ERINA Plus as a coat conditioner in canines

    Directory of Open Access Journals (Sweden)

    Srivastava

    Full Text Available Coat conditioning, deodorant and cleansing properties of ERINA Plus were evaluated in fifty-one dogs of different breeds. More than 80% of dogs showed good to excellent conditioning, deodorant and cleansing effects supported ERINA Plus as safe conditioner shampoo. [Vet. World 2008; 1(12.000: 361-362

  14. Transforming PC Power Supplies into Smart Car Battery Conditioners

    Science.gov (United States)

    Rodriguez-Ascariz, J. M.; Boquete-Vazquez, L.

    2011-01-01

    This paper describes a laboratory project consisting of a PC power supply modification into an intelligent car-battery conditioner with both wireless and wired networking capabilities. Adding a microcontroller to an average PC power supply transforms it into a flexible, intelligent device that can be configured and that is suitable to keep car…

  15. Antifungal Effect of a Dental Tissue Conditioner Containing Nystatin-Loaded Alginate Microparticles.

    Science.gov (United States)

    Kim, Hyun-Jin; Son, Jun Sik; Kwon, Tae-Yub

    2018-02-01

    In this in vitro study, nystatin-alginate microparticles were successfully fabricated to control the release of nystatin from a commercial dental tissue conditioner. These nystatin-alginate microparticles were spherical and had a slightly rough surface. The microparticles incorporated into the tissue conditioner were distributed homogeneously throughout the tissue conditioner matrix. The incorporation of the microparticles did not deteriorate the mechanical properties of the original material. The agar diffusion test results showed that the tissue conditioner containing the microparticles had a good antifungal effect against Candida albicans. The nystatin-alginate microparticles efficiently controlled the release of nystatin from the tissue conditioner matrix over the experimental period of 14 days. Moreover, the nystatin-alginate microparticles incorporated in the tissue conditioner showed effective antifungal function even at lower concentrations of nystatin. The current study suggests that the tissue conditioner containing the nystatin-alginate microparticle carrier system has potential as an effective antifungal material.

  16. R744 air conditioner with stop/start air conditioning, parking air conditioning and heat pump function in the ''COMET'' test car; R744-Klimaanlage mit Stopp/Start- und Standklimatisierung sowie Waermepumpenfunktion im Versuchstraeger ''COMET''

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, H.; Horstmann, P.; Kneifel, M.; Hohl, R. [Robert Bosch GmbH, Schwieberdingen (Germany)

    2006-07-01

    Within a several years development project Robert Bosch GmbH has setup a test vehicle to investigate an integral energy management concept (COMET - Control of Mechanical, Electrical and Thermal Power). Key feature of the COMET vehicle concept is the hybrid drive train comprising the standard combustion engine and two electrical motors - each with 8 kW - being integrated in the power splitting Dual-E gearbox. Directly via the gearbox the compressor of the CO{sub 2} A/C system is driven so that an electrically parking and start-stop air condition and heating function using a CO{sub 2} heat pump can be realized. System setup, Cool down and heating up tests are shown and discussed. (orig.)

  17. Rankine-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  18. Exergy analysis of biomass organic Rankine cycle for power generation

    Science.gov (United States)

    Nur, T. B.; Sunoto

    2018-02-01

    The study examines proposed small biomass-fed Organic Rankine Cycle (ORC) power plant through exergy analysis. The system consists of combustion burner unit to utilize biomass as fuel, and organic Rankine cycle unit to produce power from the expander. The heat from combustion burner was transfered by thermal oil heater to evaporate ORC working fluid in the evaporator part. The effects of adding recuperator into exergy destruction were investigated. Furthermore, the results of the variations of system configurations with different operating parameters, such as the evaporating pressures, ambient temperatures, and expander pressures were analyzed. It was found that the largest exergy destruction occurs during processes are at combustion part, followed by evaporator, condenser, expander, and pump. The ORC system equipped with a recuperator unit exhibited good operational characteristics under wide range conditions compared to the one without recuperator.

  19. Organic Rankine cycle unit for waste heat recovery on ships (PilotORC)

    DEFF Research Database (Denmark)

    Haglind, Fredrik; Montagud, Maria E. Mondejar; Andreasen, Jesper Graa

    The project PilotORC was aimed at evaluating the technical and economic feasibility of the use of organic Rankine cycle (ORC) units to recover low-temperature waste heat sources (i.e. exhaust gases, scavenge air, engine cooling system, and lubricant oil system) on container vessels. The project...... included numerical simulations and experimental tests on a 125 kW demonstration ORC unit that utilizes the waste heat of the main engine cooling system on board one of Mærsk's container vessels. During the design of the demonstration ORC unit, different alternatives for the condenser were analyzed in order...... of using ORC units for maritime applications, and the relevance of this technology for new-building projects. Firstly, an evaluation of the waste heat resources available on board Mærsk containers fleet, and an estimation of the potential energy recovery by means of the ORC technology was performed...

  20. New concepts for organic Rankine cycle power systems

    OpenAIRE

    Casati, E.I.M.

    2014-01-01

    Energy provision is one of the major challenges for the Human Society, and it is increasingly clear that the current production/consumption model is not sustainable. The envisaged energy system is smarter, more decentralised and integrated. Energy conversion systems based on the organic Rankine thermodynamic cycle (ORC) have the potential to play a major role in this framework, being one of the most proven solutions for the exploitation of external thermal sources in the power-output range fr...

  1. Energy recovery system using an organic rankine cycle

    Science.gov (United States)

    Ernst, Timothy C

    2013-10-01

    A thermodynamic system for waste heat recovery, using an organic rankine cycle is provided which employs a single organic heat transferring fluid to recover heat energy from two waste heat streams having differing waste heat temperatures. Separate high and low temperature boilers provide high and low pressure vapor streams that are routed into an integrated turbine assembly having dual turbines mounted on a common shaft. Each turbine is appropriately sized for the pressure ratio of each stream.

  2. Pb-H2O Thermogravimetric Plants. The Rankine Cycle

    International Nuclear Information System (INIS)

    Arosio, S.; Carlevaro, R.

    2000-01-01

    An economic evaluation concerning Pb-H 2 O thermogravimetric systems with an electric power in the range 200-1.000 kW has been done. Moreover, plant and running costs for a thermogravimetric and a Rankine cycle, 1 MW power, have been compared. Basically due to the lead charge, the plant cost of the former is higher: nevertheless such amount can be recuperated in less than three years, being higher the running cost of the latter [it

  3. Experimental demonstrations of organic Rankine cycle waste heat rejection systems

    Science.gov (United States)

    Bland, Timothy J.; Lacey, P. Douglas

    Two phase fluid management is an important factor in the successful design of organic Rankine cycle (ORC) power conversion systems for space applications. The evolution of the heat rejection system approach from a jet condenser, through a rotary jet condenser, to a rotary fluid management device (RFMD) with a surface condenser has been described in a previous paper. Some of the test programs that were used to prove the validity of the selected approach are described.

  4. Exergoeconomic comparison of TLC (trilateral Rankine cycle), ORC (organic Rankine cycle) and Kalina cycle using a low grade heat source

    International Nuclear Information System (INIS)

    Yari, M.; Mehr, A.S.; Zare, V.; Mahmoudi, S.M.S.; Rosen, M.A.

    2015-01-01

    Recently, the TLC (trilateral power cycle) has attracted significant interest as it provides better matching between the temperature profiles in the evaporator compared to conventional power cycles. This article investigates the performance of this cycle and compares it with those for the ORC (organic Rankine cycle) and the Kalina cycle, from the viewpoints of thermodynamics and thermoeconomics. A low-grade heat source with a temperature of 120 °C is considered for all the three systems. Parametric studies are performed for the systems for several working fluids in the ORC and TLC. The systems are then optimized for either maximum net output power or minimum product cost, using the EES (engineering equation solver) software. The results for the TLC indicate that an increase in the expander inlet temperature leads to an increase in net output power and a decrease in product cost for this power plant, whereas this is not the case for the ORC system. It is found that, although the TLC can achieve a higher net output power compared with the ORC and Kalina (KCS11 (Kalina cycle system 11)) systems, its product cost is greatly affected by the expander isentropic efficiency. It is also revealed that using n-butane as the working fluid can result in the lowest product cost in the ORC and the TLC. In addition, it is observed that, for both the ORC and Kalina systems, the optimum operating condition for maximum net output power differs from that for minimum product cost. - Highlights: • Exergoeconomic analysis of trilateral Rankine cycle is performed. • The system performance is compared with Organic Rankine and Kalina cycles. • Net power from trilateral Rankine cycle is higher than the other power systems. • Superiority of trilateral cycle depends on its expander isentropic efficiency

  5. Exergy and economic analysis of organic rankine cycle hybrid system utilizing biogas and solar energy in rural area of China

    DEFF Research Database (Denmark)

    Zhao, Chunhua; Zheng, Siyu; Zhang, Ji

    2017-01-01

    circuits. The cogeneration supplied the power to the air-condition in summer condition and hot water, which is heated in the condenser, in winter condition. The system performance under the subcritical pressures has been assessed according to the energy-exergy and economic analysis with the organic working......℃. The exergy efficiency of organic Rankine cycle (ORC) system increases from 35.2% to 38.2%. Moreover, an economic analysis of the system is carried out. The results demonstrate that the profits generated from the reduction of biogas fuel and electricity consumption can lead to a significant saving, resulting...

  6. Effect of conditioner load on the polishing pad surface during chemical mechanical planarization process

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Cheol Min; Qin, Hong Yi; Hong, Seok Jun; Jeon, Sang Hyuk; Kulkarni, Atul; Kim, Tae Sun [Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-12-15

    During the Chemical mechanical planarization (CMP), the pad conditioning process can affect the pad surface characteristics. Among many CMP process parameters, the improper applied load on the conditioner arm may have adverse effects on the polyurethane pad. In this work, we evaluated the pad surface properties under the various conditioner arm applied during pad conditioning process. The conditioning pads were evaluated for surface topography, surface roughness parameters such as Rt and Rvk and Material removal rate (MRR) and within-wafer non-uniformity after wafer polishing. We observed that, the pad asperities were collapsed in the direction of conditioner rotation and blocks the pad pores applied conditioner load. The Rvk value and MRR were founded to be in relation with 4 > 1 > 7 kgF conditioner load. Hence, this study shows that, 4 kgF applied load by conditioner is most suitable for the pad conditioning during CMP.

  7. Smart Sensors Enable Smart Air Conditioning Control

    Directory of Open Access Journals (Sweden)

    Chin-Chi Cheng

    2014-06-01

    Full Text Available In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants’ information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans’ intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It’s also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection.

  8. Inverted Unified Power Quality Conditioner to compensate overvoltage

    Directory of Open Access Journals (Sweden)

    Yeison Alberto Garcés Gómez

    2017-07-01

    Full Text Available Introduction: The use of unified power quality conditioners UPQC in the electric systems can correct waveform distortions in a steady state, like harmonics, flicker, and the power factor. Objective: This paper presents a novel approach for active compensation of overvoltage with a UPQC in dual topology or iUPQC. Methodology: The study it is presented in five stages, the section I shows an introduction and the state of the art, section II presents the unified power quality conditioner UPQC, section III describes the generalized reactive power theory applied to the iUPQC (dual topology, section IV shows the numerical simulations and the results and section V presents the conclusions of the study. Results: The results for the application of the iUPQC to the compensation of overvoltage are proved and compared with the more representative theory related to compensation of harmonics and low power factor. Conclusions: The control algorithm presented for the unified power quality conditioner in dual topology allows to compensate the overvoltage in three-phase systems as well as voltage and current harmonics and the low power factor.

  9. Number theory and modular forms papers in memory of Robert A Rankin

    CERN Document Server

    Ono, Ken

    2003-01-01

    Robert A. Rankin, one of the world's foremost authorities on modular forms and a founding editor of The Ramanujan Journal, died on January 27, 2001, at the age of 85. Rankin had broad interests and contributed fundamental papers in a wide variety of areas within number theory, geometry, analysis, and algebra. To commemorate Rankin's life and work, the editors have collected together 25 papers by several eminent mathematicians reflecting Rankin's extensive range of interests within number theory. Many of these papers reflect Rankin's primary focus in modular forms. It is the editors' fervent hope that mathematicians will be stimulated by these papers and gain a greater appreciation for Rankin's contributions to mathematics. This volume would be an inspiration to students and researchers in the areas of number theory and modular forms.

  10. Selection of cooling fluid for an organic Rankine cycle unit recovering heat on a container ship sailing in the Arctic region

    DEFF Research Database (Denmark)

    Suárez de la Fuente, Santiago; Larsen, Ulrik; Pierobon, Leonardo

    2017-01-01

    As Arctic sea ice coverage declines it is expected that marine traffic could increase in this northern region due to shorter routes. Navigating in the Arctic offers opportunities and challenges for waste heat recovery systems (WHRS). Lower temperatures require larger heating power on board, hence...... air as coolant. This paper explores the use of two different coolants, air and seawater, for an organic Rankine cycle (ORC) unit using the available waste heat in the scavenge air system of a container ship navigating in Arctic Circle. Using a two-step single objective optimisation process, detailed...

  11. U-Pb zircon age for a volcanic suite in the Rankin Inlet Group, Rankin Inlet map area, District of Keewatin, Northwest Territories

    Energy Technology Data Exchange (ETDEWEB)

    Tella, S; Roddick, J C; VanBreemen, O [Geological Survey of Canada, Ottawa, ON (Canada)

    1997-12-31

    U-Pb zircon analyses from a felsic band within dominantly mafic volcanics of the Rankin Inlet Group yields a U-Pb upper concordia intercept age of 2663 {+-} 3 Ma. These supracrustals at Rankin Inlet appear to be 15-20 Ma younger than volcanics of the Kaminak Group in the Tavani area, 70 km to the southwest. The 2.68-2.66 Ga volcanism in the Tavani and Rankin Inlet areas coincided with the last stage of the main phase of magmatism in the Slave Structural Province. (author). 16 refs., 1 tab., 3 figs.

  12. U-Pb zircon age for a volcanic suite in the Rankin Inlet Group, Rankin Inlet map area, District of Keewatin, Northwest Territories

    International Nuclear Information System (INIS)

    Tella, S.; Roddick, J.C.; VanBreemen, O.

    1996-01-01

    U-Pb zircon analyses from a felsic band within dominantly mafic volcanics of the Rankin Inlet Group yields a U-Pb upper concordia intercept age of 2663 ± 3 Ma. These supracrustals at Rankin Inlet appear to be 15-20 Ma younger than volcanics of the Kaminak Group in the Tavani area, 70 km to the southwest. The 2.68-2.66 Ga volcanism in the Tavani and Rankin Inlet areas coincided with the last stage of the main phase of magmatism in the Slave Structural Province. (author). 16 refs., 1 tab., 3 figs

  13. Analysis and assessment of a new organic Rankine based heat engine system with/without cogeneration

    International Nuclear Information System (INIS)

    Hogerwaard, Janette; Dincer, Ibrahim; Zamfirescu, Calin

    2013-01-01

    A low-temperature heat driven heat engine is proposed as a cost-effective system for power and heat production for small scale applications. The external heat source allows flexibility in the design; the system may be coupled with various available renewable sources including biomass/biofuel/biogas combustion, geothermal heat, concentrated solar radiation, and industrial waste heat, by selecting appropriate off-the-shelf components from the HVAC (heating, ventilation, and air conditioning), refrigeration, and automotive industries for use in an ORC (organic Rankine cycle). A theoretical analysis and an experimental study are carried out for an ORC with R134a as the working fluid, utilizing a low-temperature heat source (T source < 150 °C), with focus on the expansion and boiling processes. The complete ORC model is comprised of models for the expander, working fluid pump, boiler, and condenser. Thermodynamic and heat transfer models are developed to calculate the local and averaged heat transfer coefficient of the working fluid throughout the boiling process, based on the geometry of the selected heat exchanger. Data collected for the experimental ORC test bench are used to validate the expander and boiler models. A case study is performed for the proposed ORC, for cogeneration of power and heat in a residential application. The results of the case study analysis for the proposed ORC system indicate a cycle efficiency of 0.05, exergy efficiency of 0.17, and energy and exergy cogeneration efficiency of 0.87, and 0.35, respectively. - Highlights: • Development and investigation of a scroll based Rankine heat engine operating with R134a. • Thermodynamic analyses of the system and its components. • Heat transfer analyses of boiler and condenser. • Dynamic analysis of expander. • Model validation through performed experiments on an ORC test bench

  14. Nuclear alkali metal Rankine power systems for space applications

    International Nuclear Information System (INIS)

    Moyers, J.C.; Holcomb, R.S.

    1986-08-01

    Nucler power systems utilizing alkali metal Rankine power conversion cycles offer the potential for high efficiency, lightweight space power plants. Conceptual design studies are being carried out for both direct and indirect cycle systems for steady state space power applications. A computational model has been developed for calculating the performance, size, and weight of these systems over a wide range of design parameters. The model is described briefly and results from parametric design studies, with descriptions of typical point designs, are presented in this paper

  15. Nuclear alkali metal Rankine power systems for space applications

    International Nuclear Information System (INIS)

    Moyers, J.C.; Holcomb, R.S.

    1986-01-01

    Nuclear power systems utilizing alkali metal Rankine power conversion cycles offer the potential for high efficiency, lightweight space power plants. Conceptual design studies are being carried out for both direct and indirect cycle systems for steady state space power applications. A computational model has been developed for calculating the performance, size, and weight of these systems over a wide range of design parameters. The model is described briefly and results from parametric design studies, with descriptions of typical point designs, are presented in this paper

  16. Status of the organic Rankine cycle for space applications

    Science.gov (United States)

    Bland, T. J.; Lacey, P. D.; Sorensen, G. L.

    The Organic Rankine Cycle (ORC) has been under continuous development and evaluation since the 1960s for both terrestrial and space power applications. Recent activities (Bland et al, 1987) have focused primarily on the Space Station's solar dynamic power system and Dynamic Isotope Power Systems (DIPS) applications. This paper addresses ORC-DIPS system level trade studies conducted during the past year and a half. Two companion papers (Bland and Pearson) present more detailed data on specific ORC-DIPS technology issues and testing conducted during the same period.

  17. A thermodynamic analysis of waste heat recovery from reciprocating engine power plants by means of Organic Rankine Cycles

    International Nuclear Information System (INIS)

    Uusitalo, Antti; Honkatukia, Juha; Turunen-Saaresti, Teemu; Larjola, Jaakko

    2014-01-01

    Organic Rankine Cycle (ORC) is a Rankine cycle using organic fluid as the working fluid instead of water and steam. The ORC process is a feasible choice in waste heat recovery applications producing electricity from relatively low-temperature waste heat sources or in applications having a rather low power output. Utilizing waste heat from a large high-efficiency reciprocating engine power plant with ORC processes is studied by means of computations. In addition to exhaust gas heat recovery, this study represents and discusses an idea of directly replacing the charge air cooler (CAC) of a large turbocharged engine with an ORC evaporator to utilize the charge air heat in additional power production. A thermodynamic analysis for ORCs was carried out with working fluids toluene, n-pentane, R245fa and cyclohexane. The effect of different ORC process parameters on the process performance are presented and analyzed in order to investigate the heat recovery potential from the exhaust gas and charge air. A simplified feasibility consideration is included by comparing the ratio of the theoretical heat transfer areas needed and the obtained power output from ORC processes. The greatest potential is related to the exhaust gas heat recovery, but in addition also the lower temperature waste heat streams could be utilized to boost the electrical power of the engine power plant. A case study for a large-scale gas-fired engine was carried out showing that the maximum power increase of 11.4% was obtained from the exhaust gas and 2.4% from the charge air heat. - Highlights: • Waste heat recovery potential of reciprocating engines was studied. • Thermodynamic optimization for ORCs was carried out with different fluids. • The utilization of exhaust gas and charge air heat is presented and discussed. • Simplified economic feasibility study was included in the analysis. • Power increase of 11.4% was obtained from exhaust gas and 2.4% from charge air

  18. Locally produced natural conditioners for dewatering of faecal sludge.

    Science.gov (United States)

    Gold, Moritz; Dayer, Pauline; Faye, Marie Christine Amie Sene; Clair, Guillaume; Seck, Alsane; Niang, Seydou; Morgenroth, Eberhard; Strande, Linda

    2016-11-01

    In urban areas of low-income countries, treatment of faecal sludge (FS) is insufficient or non-existent. This results in large amounts of FS being dumped into the environment. Existing treatment technologies for FS, such as settling-thickening tanks and drying beds, are land intensive which is limiting in urban areas. Enhanced settling and dewatering by conditioning was evaluated in order to reduce the treatment footprint (or increase treatment capacity). Conventional wastewater conditioners, such as commercially available lime and polymers, are expensive, and commonly rely on complex supply chains for use in low-income countries. Therefore, the treatment performance of five conditioners which could be produced locally was evaluated: Moringa oleifera seeds and press cake, Jatropha curcas seeds, Jatropha Calotropis leaves and chitosan. M. oleifera seeds and press cake, and chitosan improved settling and dewatering and had a similar performance compared to lime and polymers. Optimal dosages were 400-500 kg M. oleifera/t TS, 300-800 kg lime/t TS and 25-50 kg polymer solution/t TS. In comparison, chitosan required 1.5-3.75 kg/t TS. These dosages are comparable to those recommended for wastewater (sludge). The results indicate that conditioning of FS can reduce total suspended solids (TSS) in the effluent of settling-thickening tanks by 22-81% and reduce dewatering time with drying beds by 59-97%. This means that the area of drying beds could be reduced by 59-97% with end-use as soil conditioner, or 9-26% as solid fuel. Least expensive options and availability will depend on the local context. In Dakar, Senegal, chitosan produced from shrimp waste appears to be most promising.

  19. Integrated biomass pyrolysis with organic Rankine cycle for power generation

    Science.gov (United States)

    Nur, T. B.; Syahputra, A. W.

    2018-02-01

    The growing interest on Organic Rankine Cycle (ORC) application to produce electricity by utilizing biomass energy sources are increasingly due to its successfully used to generate power from waste heat available in industrial processes. Biomass pyrolysis is one of the thermochemical technologies for converting biomass into energy and chemical products consisting of liquid bio-oil, solid biochar, and pyrolytic gas. In the application, biomass pyrolysis can be divided into three main categories; slow, fast and flash pyrolysis mainly aiming at maximizing the products of bio-oil or biochar. The temperature of synthesis gas generated during processes can be used for Organic Rankine Cycle to generate power. The heat from synthesis gas during pyrolysis processes was transfer by thermal oil heater to evaporate ORC working fluid in the evaporator unit. In this study, the potential of the palm oil empty fruit bunch, palm oil shell, and tree bark have been used as fuel from biomass to generate electricity by integrated with ORC. The Syltherm-XLT thermal oil was used as the heat carrier from combustion burner, while R245fa was used as the working fluid for ORC system. Through Aspen Plus, this study analyses the influences on performance of main thermodynamic parameters, showing the possibilities of reaching an optimum performance for different working conditions that are characteristics of different design parameters.

  20. Solar thermal organic rankine cycle for micro-generation

    Science.gov (United States)

    Alkahli, N. A.; Abdullah, H.; Darus, A. N.; Jalaludin, A. F.

    2012-06-01

    The conceptual design of an Organic Rankine Cycle (ORC) driven by solar thermal energy is developed for the decentralized production of electricity of up to 50 kW. Conventional Rankine Cycle uses water as the working fluid whereas ORC uses organic compound as the working fluid and it is particularly suitable for low temperature applications. The ORC and the solar collector will be sized according to the solar flux distribution in the Republic of Yemen for the required power output of 50 kW. This will be a micro power generation system that consists of two cycles, the solar thermal cycle that harness solar energy and the power cycle, which is the ORC that generates electricity. As for the solar thermal cycle, heat transfer fluid (HTF) circulates the cycle while absorbing thermal energy from the sun through a parabolic trough collector and then storing it in a thermal storage to increase system efficiency and maintains system operation during low radiation. The heat is then transferred to the organic fluid in the ORC via a heat exchanger. The organic fluids to be used and analyzed in the ORC are hydrocarbons R600a and R290.

  1. Shampoo and Conditioners: What a Dermatologist Should Know?

    Science.gov (United States)

    D'Souza, Paschal; Rathi, Sanjay K

    2015-01-01

    Dermatologists many a times encounter questions from patients and even colleagues asking about how to keep their hair looking clean, healthy and beautiful. Therefore, familiarity and a basic knowledge of the available hair care products will help them to guide their patients properly. A shampoo not only provides the cleaning of the scalp skin and hair as its primary function, but in addition also serves to condition and beautify hair and acts as an adjunct in the management of various scalp disorders. To achieve this, various ingredients in the correct proportion are mixed to provide a shampoo which is suitable for individuals having different hair types and hair need. Among the ingredients that go into the making of a shampoo are detergents, conditioners, thickeners, sequestering agents, pH adjusters, preservatives and specialty additives. Hair conditioners are designed to improve hair manageability, decrease hair static electricity and add luster. They are used in several ways depending upon the state of hair and requirement of the individual. This article attempts to put forward the basic and practical aspects regarding use of these products.

  2. Shampoo and conditioners: What a dermatologist should know?

    Directory of Open Access Journals (Sweden)

    Paschal D′Souza

    2015-01-01

    Full Text Available Dermatologists many a times encounter questions from patients and even colleagues asking about how to keep their hair looking clean, healthy and beautiful. Therefore, familiarity and a basic knowledge of the available hair care products will help them to guide their patients properly. A shampoo not only provides the cleaning of the scalp skin and hair as its primary function, but in addition also serves to condition and beautify hair and acts as an adjunct in the management of various scalp disorders. To achieve this, various ingredients in the correct proportion are mixed to provide a shampoo which is suitable for individuals having different hair types and hair need. Among the ingredients that go into the making of a shampoo are detergents, conditioners, thickeners, sequestering agents, pH adjusters, preservatives and specialty additives. Hair conditioners are designed to improve hair manageability, decrease hair static electricity and add luster. They are used in several ways depending upon the state of hair and requirement of the individual. This article attempts to put forward the basic and practical aspects regarding use of these products.

  3. Integration between a thermophotovoltaic generator and an Organic Rankine Cycle

    International Nuclear Information System (INIS)

    De Pascale, Andrea; Ferrari, Claudio; Melino, Francesco; Morini, Mirko; Pinelli, Michele

    2012-01-01

    Highlights: ► A new energy system comprising a Thermo-Photo-Voltaic and Organic Rankine Cycle. ► An analytical model to calculate the performance of the system is introduced. ► The system shows promising results in terms of CHP performance. -- Abstract: The constant increase in energy need and the growing attention to the related environmental impact have given a boost to the development of new strategies in order to reduce the primary energy consumption and to improve its utilization. One of the possible strategies for achieving this aim is Combined Heat and Power (CHP) specially if coupled with the concept of on-site generation (also known as distributed generation). These approaches allow the reduction of fuel consumption and pollutant emissions and the increase of security in energy supply. This paper introduces the Thermophotovoltaic Organic Rankine Cycle Integrated System (TORCIS), an energy system integrating a ThermoPhotoVoltaic generator (TPV) and an Organic Rankine Cycle (ORC). This study represents the start-up of a research program which involves three research teams from IMEM – National Research Council, ENDIF – University of Ferrara and DIEM – University of Bologna. The aim of this research is the complete definition and the pre-prototyping characterization of this system covering all the unresolved issues in this field. More specifically, TPV is a system to convert the radiation emitted from an artificial heat source (i.e. the combustion of fuel) into electrical energy by the use of photovoltaic cells. In this system, the produced electrical power is strictly connected to the thermal one as their ratio is almost constant and cannot be changed without severe loss in performance. The coupling between TPV and ORC allows this limitation to be overcome by the realization of a CHP system which can be regulated with a large degree of freedom changing the ratio between the produced electrical and thermal power. In this study a thermodynamic

  4. Solar-powered Rankine heat pump for heating and cooling

    Science.gov (United States)

    Rousseau, J.

    1978-01-01

    The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.

  5. RANKINE-HUGONIOT RELATIONS IN RELATIVISTIC COMBUSTION WAVES

    International Nuclear Information System (INIS)

    Gao Yang; Law, Chung K.

    2012-01-01

    As a foundational element describing relativistic reacting waves of relevance to astrophysical phenomena, the Rankine-Hugoniot relations classifying the various propagation modes of detonation and deflagration are analyzed in the relativistic regime, with the results properly degenerating to the non-relativistic and highly relativistic limits. The existence of negative-pressure downstream flows is noted for relativistic shocks, which could be of interest in the understanding of the nature of dark energy. Entropy analysis for relativistic shock waves is also performed for relativistic fluids with different equations of state (EoS), denoting the existence of rarefaction shocks in fluids with adiabatic index Γ < 1 in their EoS. The analysis further shows that weak detonations and strong deflagrations, which are rare phenomena in terrestrial environments, are expected to exist more commonly in astrophysical systems because of the various endothermic reactions present therein. Additional topics of relevance to astrophysical phenomena are also discussed.

  6. Organic Rankine Kilowatt Isotope Power System. Final phase I report

    International Nuclear Information System (INIS)

    1978-01-01

    On 1 August 1975 under Department of Energy Contract EN-77-C-02-4299, Sundstrand Energy Systems commenced development of a Kilowatt Isotope Power System (KIPS) directed toward satisfying the higher power requirements of satellites of the 1980s and beyond. The KIPS is a 238 PuO 2 fueled organic Rankine cycle turbine power system which will provide design output power in the range of 500 to 2000 W/sub (e)/ with a minimum of system changes. The principal objectives of the Phase 1 development effort were to: conceptually design a flight system; design a Ground Demonstration System (GDS) that is prototypic of the flight system in order to prove the feasibility of the flight system design; fabricate and assemble the GDS; and performance and endurance test the GDS using electric heaters in lieu of the isotope heat source. Results of the work performed under the Phase 1 contract to 1 July 1978 are presented

  7. Energy analysis of Organic Rankine Cycles for biomass applications

    Directory of Open Access Journals (Sweden)

    Algieri Angelo

    2015-01-01

    Full Text Available The present paper aims at analysing the performances of Organic Rankine Cycles (ORCs adopted for the exploitation of the biomass resulting from the pruning residues in a 3000 hectares district in Southern Italy. A parametric energy analysis has been carried out to define the influence of the main plant operating conditions. To this purpose, both subcritical and transcritical power plants have been examined and saturated and superheated conditions at the turbine inlet have been imposed. Moreover, the effect of the working fluid, condensation temperature, and internal regeneration on system performances has been investigated. The results show that ORC plants represent an interesting and sustainable solution for decentralised and small-scale power production. Furthermore, the analysis highlights the significant impact of the maximum temperature and the noticeable effect of internal regeneration on the performances of the biomass power plants.

  8. Optimal integration of organic Rankine cycles with industrial processes

    International Nuclear Information System (INIS)

    Hipólito-Valencia, Brígido J.; Rubio-Castro, Eusiel; Ponce-Ortega, José M.; Serna-González, Medardo; Nápoles-Rivera, Fabricio; El-Halwagi, Mahmoud M.

    2013-01-01

    Highlights: • An optimization approach for heat integration is proposed. • A new general superstructure for heat integration is proposed. • Heat process streams are simultaneously integrated with an organic Rankine cycle. • Better results can be obtained respect to other previously reported methodologies. - Abstract: This paper presents a procedure for simultaneously handling the problem of optimal integration of regenerative organic Rankine cycles (ORCs) with overall processes. ORCs may allow the recovery of an important fraction of the low-temperature process excess heat (i.e., waste heat from industrial processes) in the form of mechanical energy. An integrated stagewise superstructure is proposed for representing the interconnections and interactions between the HEN and ORC for fixed data of process streams. Based on the integrated superstructure, the optimization problem is formulated as a mixed integer nonlinear programming problem to simultaneously account for the capital and operating costs including the revenue from the sale of the shaft power produced by the integrated system. The application of this method is illustrated with three example problems. Results show that the proposed procedure provides significantly better results than an earlier developed method for discovering optimal integrated systems using a sequential approach, due to the fact that it accounts simultaneously for the tradeoffs between the capital and operating costs as well as the sale of the produced energy. Also, the proposed method is an improvement over the previously reported methods for solving the synthesis problem of heat exchanger networks without the option of integration with an ORC (i.e., stand-alone heat exchanger networks)

  9. Affordable Rankine Cycle Waste Heat Recovery for Heavy Duty Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Swami Nathan [Eaton Corporation

    2017-06-30

    Nearly 30% of fuel energy is not utilized and wasted in the engine exhaust. Organic Rankine Cycle (ORC) based waste heat recovery (WHR) systems offer a promising approach on waste energy recovery and improving the efficiency of Heavy-Duty diesel engines. Major barriers in the ORC WHR system are the system cost and controversial waste heat recovery working fluids. More than 40% of the system cost is from the additional heat exchangers (recuperator, condenser and tail pipe boiler). The secondary working fluid loop designed in ORC system is either flammable or environmentally sensitive. The Eaton team investigated a novel approach to reduce the cost of implementing ORC based WHR systems to Heavy-Duty (HD) Diesel engines while utilizing safest working fluids. Affordable Rankine Cycle (ARC) concept aimed to define the next generation of waste energy recuperation with a cost optimized WHR system. ARC project used engine coolant as the working fluid. This approach reduced the need for a secondary working fluid circuit and subsequent complexity. A portion of the liquid phase engine coolant has been pressurized through a set of working fluid pumps and used to recover waste heat from the exhaust gas recirculation (EGR) and exhaust tail pipe exhaust energy. While absorbing heat, the mixture is partially vaporized but remains a wet binary mixture. The pressurized mixed-phase engine coolant mixture is then expanded through a fixed-volume ratio expander that is compatible with two-phase conditions. Heat rejection is accomplished through the engine radiator, avoiding the need for a separate condenser. The ARC system has been investigated for PACCAR’s MX-13 HD diesel engine.

  10. Parametric investigation of working fluids for organic Rankine cycle applications

    International Nuclear Information System (INIS)

    Brown, J. Steven; Brignoli, Riccardo; Quine, Timothy

    2015-01-01

    This paper investigates working fluids for organic Rankine cycle (ORC) applications with a goal of identifying “ideal” working fluids for five renewable/alternative energy sources. It employs a methodology for screening and comparing with good engineering accuracy the thermodynamic performance potential of ORC operating with working fluids that are not well characterized experimentally or by high-accuracy equations of state. A wide range of “theoretical” working fluids are investigated with the goals to identify potential alternative working fluids and to guide future research and development efforts of working fluids. The “theoretical” working fluids investigated are described in terms of critical state properties, acentric factor, and ideal gas specific heat capacity at constant pressure and are obtained by parametrically varying each of these parameters. The performances of these “theoretical” working fluids are compared to the performances of several “real” working fluids. The study suggests a working fluid's critical temperature and its critical ideal gas molar heat capacity have the largest impact on the cycle efficiency and volumetric work output, with “ideal” working fluids for high efficiency possessing critical temperatures on the order of 100%–150% of the source temperature and possessing intermediate values of critical ideal gas molar heat capacity. - Highlights: • “Ideal” working fluids are investigated for organic Rankine cycles (ORC). • The thermodynamic space of “ideal” working fluids is parametrically investigated. • Five low- and high-temperature ORC applications are investigated. • 1620 “ideal” and several “real” working fluids per application are investigated.

  11. Theoretical thermodynamic analysis of Rankine power cycle with thermal driven pump

    International Nuclear Information System (INIS)

    Lakew, Amlaku Abie; Bolland, Olav; Ladam, Yves

    2011-01-01

    Highlights: → The work is focused on theoretical aspects of thermal driven pump (TDP) Rankine cycle. → The mechanical pump is replaced by thermal driven pump. → Important parameters of thermal driven pump Rankine cycle are investigated. → TDP Rankine cycle produce more power but it requires additional low grade heat. - Abstract: A new approach to improve the performance of supercritical carbon dioxide Rankine cycle which uses low temperature heat source is presented. The mechanical pump in conventional supercritical carbon dioxide Rankine cycle is replaced by thermal driven pump. The concept of thermal driven pump is to increase the pressure of a fluid in a closed container by supplying heat. A low grade heat source is used to increase the pressure of the fluid instead of a mechanical pump, this increase the net power output and avoid the need for mechanical pump which requires regular maintenance and operational cost. The thermal driven pump considered is a shell and tube heat exchanger where the working fluid is contained in the tube, a tube diameter of 5 mm is chosen to reduce the heating time. The net power output of the Rankine cycle with thermal driven pump is compared to that of Rankine cycle with mechanical pump and it is observed that the net power output is higher when low grade thermal energy is used to pressurize the working fluid. The thermal driven pump consumes additional heat at low temperature (60 o C) to pressurize the working fluid.

  12. Thermo-economic analysis and selection of working fluid for solar organic Rankine cycle

    International Nuclear Information System (INIS)

    Desai, Nishith B.; Bandyopadhyay, Santanu

    2016-01-01

    Highlights: • Concentrating solar power plant with organic Rankine cycle. • Thermo-economic analysis of solar organic Rankine cycle. • Performance evaluation for different working fluids. • Comparison diagram to select appropriate working fluid. - Graphical Abstract: Display Omitted - Abstract: Organic Rankine cycle (ORC), powered by line-focusing concentrating solar collectors (parabolic trough collector and linear Fresnel reflector), is a promising option for modular scale. ORC based power block, with dry working fluids, offers higher design and part-load efficiencies compared to steam Rankine cycle (SRC) in small-medium scale, with temperature sources up to 400 °C. However, the cost of ORC power block is higher compared to the SRC power block. Similarly, parabolic trough collector (PTC) system has higher optical efficiency and higher cost compared to linear Fresnel reflector (LFR) system. The thermodynamic efficiencies and power block costs also vary with working fluids of the Rankine cycle. In this paper, thermo-economic comparisons of organic Rankine and steam Rankine cycles powered by line-focusing concentrating solar collectors are reported. A simple selection methodology, based on thermo-economic analysis, and a comparison diagram for working fluids of power generating cycles are also proposed. Concentrating solar power plants with any collector technology and any power generating cycle can be compared using the proposed methodology.

  13. Potential application of Rankine and He-Brayton cycles to sodium fast reactors

    International Nuclear Information System (INIS)

    Perez-Pichel, G.D.; Linares, J.I.; Herranz, L.E.; Moratilla, B.Y.

    2011-01-01

    Highlights: → This paper has been focused on thermal efficiency of several Rankine and Brayton cycles for SFR. → A sub-critical Rankine configuration could reach a thermal efficiency higher than 43%. → It could be increased to almost 45% using super-critical configurations. → Brayton cycles thermal performance can be enhanced by adding a super-critical organic fluid Rankine cycle. → The moderate coolant temperature at the reactor makes Brayton configurations have poorer. - Abstract: Traditionally all the demos and/or prototypes of the sodium fast reactor (SFR) technology with power output, have used a steam sub-critical Rankine cycle. Sustainability requirement of Gen. IV reactors recommends exploring alternate power cycle configurations capable of reaching high thermal efficiency. By adopting the anticipated working parameters of next SFRs, this paper investigates the potential of some Rankine and He-Brayton layouts to reach thermal efficiencies as high as feasible, so that they could become alternates for SFR reactor balance of plant. The assessment has encompassed from sub-critical to super-critical Rankine cycles and combined cycles based on He-Brayton gas cycles of different complexity coupled to Organic Rankine Cycles. The sub-critical Rankine configuration reached at thermal efficiency higher than 43%, which has been shown to be a superior performance than any of the He-Brayton configurations analyzed. By adopting a super-critical Rankine arrangement, thermal efficiency would increase less than 1.5%. In short, according to the present study a sub-critical layout seems to be the most promising configuration for all those upcoming prototypes to be operated in the short term (10-15 years). The potential of super-critical CO 2 -Brayton cycles should be explored for future SFRs to be deployed in a longer run.

  14. Current Evaluation Procedures for Fertilizers and Soil Conditioners Used in Organic Agriculture. Proceedings of a workshop held April 29–30, 2004 at Emerson College, Great Britain

    OpenAIRE

    Canali, Stefano; Stopes, Christopher; Schmid, Otto; Speiser, Bernhard

    2005-01-01

    Table of Contents Fertilizers and soil conditioners in organic farming in Austria Alexandra Hozzank and Wilfried Hartl Fertilizers and soil conditioners in organic farming in the Czech Republic Anamarija Slabe Fertilizers and soil conditioners in organic farming in Denmark Rasmus Ørnberg Eriksen and Erik Steen Kristensen Fertilizers and soil conditioners in organic farming in France Marie-Christine Monnier Fertilizers and soil conditioners in organic fa...

  15. Optimization of organic Rankine cycle power systems considering multistage axial turbine design

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Persico, Giacomo

    2018-01-01

    Organic Rankine cycle power systems represent a viable and efficient solution for the exploitation of medium-to-low temperature heat sources. Despite the large number of commissioned units, there is limited literature on the design and optimization of organic Rankine cycle power systems considering...... multistage turbine design. This work presents a preliminary design methodology and working fluid selection for organic Rankine cycle units featuring multistage axial turbines. The method is then applied to the case of waste heat recovery from a large marine diesel engine. A multistage axial turbine model...

  16. Analysis of hot spots in boilers of organic Rankine cycle units during transient operation

    DEFF Research Database (Denmark)

    Benato, A.; Kærn, Martin Ryhl; Pierobon, Leonardo

    2015-01-01

    This paper is devoted to the investigation of critical dynamic events causing thermochemical decompositionof the working fluid in organic Rankine cycle power systems. The case study is the plant of an oiland gas platform where one of the three gas turbines is combined with an organic Rankine cycle...... and fluid decomposition. It is demonstrated thatthe use of a spray attemperator can mitigate the problems of local overheating of the organic compound.As a practical consequence, this paper provides guidelines for safe and reliable operation of organicRankine cycle power modules on offshore installations....

  17. Optimization of organic Rankine cycle power systems considering multistage axial turbine design

    DEFF Research Database (Denmark)

    Meroni, Andrea; Andreasen, Jesper Graa; Persico, Giacomo

    2017-01-01

    Organic Rankine cycle power systems represent a viable and efficient solution for the exploitation of medium-to-low temperature heat sources. Despite the large number of commissioned units, there is limited literature on the design and optimization of organic Rankine cycle power systems considering...... multistage turbine design. This work presents a preliminary design methodology and working fluid selection for organic Rankine cycle units featuring multistage axial turbines. The method is then applied to the case of waste heat recovery from a large marine diesel engine. A multistage axial turbine model...

  18. FLUOROETHERS AS A WORKING FLUIDS FOR LOW TEMPERATURE ORGANIC RANKINE CYCLE

    Directory of Open Access Journals (Sweden)

    Artemenko S.V

    2014-12-01

    Full Text Available Hydrofluoroethers as a new class of working fluids for the organic Rankine cycle have been considered to utilize the low-potential waste heat. Temperature range 300…400 K was chosen to provide energy conversion of waste heat from fuel cells. The direct assessment of the efficiency criteria for the Rankine cycle via artificial neural networks (ANN was used. To create ANN the critical parameters of substance and normal boiling temperature as input were chosen. The forecast of efficiency criteria for the Rankine cycle as output parameter which reproduces the coefficient of performance with high accuracy and without thermodynamic property calculations was presented.

  19. Computational analysis of the flow field downstream of flow conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Erdal, Asbjoern

    1997-12-31

    Technological innovations are essential for maintaining the competitiveness for the gas companies and here metering technology is one important area. This thesis shows that computational fluid dynamic techniques can be a valuable tool for examination of several parameters that may affect the performance of a flow conditioner (FC). Previous design methods, such as screen theory, could not provide fundamental understanding of how a FC works. The thesis shows, among other things, that the flow pattern through a complex geometry, like a 19-hole plate FC, can be simulated with good accuracy by a k-{epsilon} turbulence model. The calculations illuminate how variations in pressure drop, overall porosity, grading of porosity across the cross-section and the number of holes affects the performance of FCs. These questions have been studied experimentally by researchers for a long time. Now an understanding of the important mechanisms behind efficient FCs emerges from the predictions. 179 ref., 110 figs., 8 tabs.

  20. Radio decontamination of hair conditioner for capillary ammniotherapy

    International Nuclear Information System (INIS)

    Romay, Z.; Otero, I.; Chavez, A.; Torriente, I.

    1996-01-01

    The Hair conditioner, which belongs to the group of cosmetic products Dr Miyares Cao, was artificially contaminated, kept at different values of temperature (-20 oC , 0 oC and +20 oC ) and irradiated to different doses (6, 10, 12, 15, 20, 25 and 30 kGy) and 25 oC for studying the effect of gamma radiation on it and the possibility of use of this technology for its decontamination. The radiobiological parameters of the contaminator and the quality of irradiated products were determined. Was conclude that the product maintain its organolepthics characteristics and others quality parameters after irradiated to 20 kGy and +20 oC of temperature before irradiation. Finally, the decontamination of studied product was obtained by means its irradiation to 16.2 kGy

  1. Exergy optimization for a novel combination of organic Rankine cycles, Stirling cycle and direct expander turbines

    Science.gov (United States)

    Moghimi, Mahdi; Khosravian, Mohammadreza

    2018-06-01

    In this paper, a novel combination of organic Rankine cycles (ORCs), Stirling cycle and direct expander turbines is modeled and optimized using the genetic algorithm. The Exergy efficiency is considered as an objective function in the genetic algorithm. High efficiency is the main advantage of Stirling cycle, however, it needs nearly isothermal compressor and turbine. Therefore, an argon ORC and a R14 ORC are placed before and after the Striling cycle along with two expander turbines at the end of the line. Each component and cycle of the proposed plant in this article is verified by the previous works available in the literature and good agreement is achieved. The obtained results reveal that 27.98%, 20.86% and 12.90% of the total cold exergy are used by argon ORC, Stirling cycle and R14 ORC, respectively. Therefore, utilization of the Stirling cycle is a good idea for the LNG line cold exergy. The maximum exergy destruction occurs in the heat exchanger after the argon ORC (85.786 kJ/s per one kg/s LNG) due to the wasted cold exergy, which can be used for air conditioning systems in the plant. Finally, it would be shown that the maximum efficiency of the proposed plant is 54.25% and the maximum output power is 355.72 kW.

  2. Organic Rankine cycle – review and research directions in engine applications

    Directory of Open Access Journals (Sweden)

    Panesar Angad

    2017-01-01

    Full Text Available Waste heat to power conversion using Organic Rankine Cycles (ORC is expected to play an important role in CO2 reductions from diesel engines. Firstly, a review of automotive ORCs is presented focusing on the pure working fluids, thermal architectures and expanders. The discussion includes, but is not limited to: R245fa, ethanol and water as fluids; series, parallel and cascade as architectures; dry saturated, superheated and supercritical as expansion conditions; and scroll, radial turbine and piston as expansion machines. Secondly, research direction in versatile expander and holistic architecture (NOx + CO2 are proposed. Benefits of using the proposed unconventional approaches are quantified using Ricardo Wave and Aspen HYSYS for diesel engine and ORC modelling. Results indicate that, the implementation of versatile piston expander tolerant to two-phase and using cyclopentane can potentially increase the highway drive cycle power by 8%. Furthermore, holistic architecture offering complete utilisation of charge air and exhaust recirculation heat increased the performance noticeably to 5% of engine power at the design point condition.

  3. Low-order models of a single-screw expander for organic Rankine cycle applications

    Science.gov (United States)

    Ziviani, D.; Desideri, A.; Lemort, V.; De Paepe, M.; van den Broek, M.

    2015-08-01

    Screw-type volumetric expanders have been demonstrated to be a suitable technology for organic Rankine cycle (ORC) systems because of higher overall effectiveness and good part-load behaviour over other positive displacement machines. An 11 kWe single-screw expander (SSE) adapted from an air compressor has been tested in an ORC test-rig operating with R245fa as working fluid. A total of 60 steady-steady points have been obtained at four different rotational speeds of the expander in the range between 2000 rpm and 3300 rpm. The maximum electrical power output and overall isentropic effectiveness measured were 7.3 kW and 51.9%, respectively. In this paper, a comparison between two low-order models is proposed in terms of accuracy of the predictions, the robustness of the model and the computational time. The first model is the Pacejka equation-based model and the second is a semi-empirical model derived from a well-known scroll expander model and modified to include the geometric aspects of a single screw expander. The models have been calibrated with the available steady-state measurement points by identifying the proper parameters.

  4. Exergy optimization for a novel combination of organic Rankine cycles, Stirling cycle and direct expander turbines

    Science.gov (United States)

    Moghimi, Mahdi; Khosravian, Mohammadreza

    2018-01-01

    In this paper, a novel combination of organic Rankine cycles (ORCs), Stirling cycle and direct expander turbines is modeled and optimized using the genetic algorithm. The Exergy efficiency is considered as an objective function in the genetic algorithm. High efficiency is the main advantage of Stirling cycle, however, it needs nearly isothermal compressor and turbine. Therefore, an argon ORC and a R14 ORC are placed before and after the Striling cycle along with two expander turbines at the end of the line. Each component and cycle of the proposed plant in this article is verified by the previous works available in the literature and good agreement is achieved. The obtained results reveal that 27.98%, 20.86% and 12.90% of the total cold exergy are used by argon ORC, Stirling cycle and R14 ORC, respectively. Therefore, utilization of the Stirling cycle is a good idea for the LNG line cold exergy. The maximum exergy destruction occurs in the heat exchanger after the argon ORC (85.786 kJ/s per one kg/s LNG) due to the wasted cold exergy, which can be used for air conditioning systems in the plant. Finally, it would be shown that the maximum efficiency of the proposed plant is 54.25% and the maximum output power is 355.72 kW.

  5. Organic Rankine cycle saves energy and reduces gas emissions for cement production

    International Nuclear Information System (INIS)

    Wang, Huarong; Xu, Jinliang; Yang, Xufei; Miao, Zheng; Yu, Chao

    2015-01-01

    We investigated ORCs (organic Rankine cycles) integrated with typical China cement production line. The dry air at the kiln cooler outlet with the temperature of 220 °C was the waste heat. The fluids of hexane, isohexane, R601, R123 and R245fa were selected for ORCs based on the critical temperature criterion. The developed ORC verified the thermodynamics analysis. The NPV (net present value) and PBP (payback period) methods were applied to evaluate the economic performance. The LCA (life cycle assessment) was applied to evaluate the environment impacts. ORCs could generate 67,85,540–81,21,650 kWh electricity per year, equivalent to save 2035–2436 tons standard coal and reduce 7743–9268 tons CO 2 emission, for a 4000 t/d cement production line. ORCs reduced gas emissions of CO 2 by 0.62–0.74%, SO 2 by 3.83–4.59% and NO x by 1.36–1.63%. The PBP (payback period) was 2.74–3.42 years. The ORCs had the reduction ratios of EIL (environment impact load) by 1.49–1.83%, GWP (global warming potential) by 0.74–0.92%, AP (acidification potential) by 2.34–2.84%, EP (eutrophication potential) by 0.96–1.22% and HTP (human toxicity potential) by 2.38–2.89%. The ORC with R601 as the fluid had the best economic performance and significant gas emission reductions. ORCs had good economic performance and reduce the gas emissions. - Highlights: • Organic Rankine Cycles were integrated with the cement production line. • Five organic fluids were used as the working fluids for ORCs. • Thermal, economic and gas emission performances were analyzed. • R601 was the best fluid for ORC with the heat source temperature of 220 °C. • ORCs had good economic and gas emission reduction performances

  6. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part A: Turbine Model

    Directory of Open Access Journals (Sweden)

    Andrea Meroni

    2016-04-01

    Full Text Available Axial-flow turbines represent a well-established technology for a wide variety of power generation systems. Compactness, flexibility, reliability and high efficiency have been key factors for the extensive use of axial turbines in conventional power plants and, in the last decades, in organic Rankine cycle power systems. In this two-part paper, an overall cycle model and a model of an axial turbine were combined in order to provide a comprehensive preliminary design of the organic Rankine cycle unit, taking into account both cycle and turbine optimal designs. Part A presents the preliminary turbine design model, the details of the validation and a sensitivity analysis on the main parameters, in order to minimize the number of decision variables in the subsequent turbine design optimization. Part B analyzes the application of the combined turbine and cycle designs on a selected case study, which was performed in order to show the advantages of the adopted methodology. Part A presents a one-dimensional turbine model and the results of the validation using two experimental test cases from literature. The first case is a subsonic turbine operated with air and investigated at the University of Hannover. The second case is a small, supersonic turbine operated with an organic fluid and investigated by Verneau. In the first case, the results of the turbine model are also compared to those obtained using computational fluid dynamics simulations. The results of the validation suggest that the model can predict values of efficiency within ± 1.3%-points, which is in agreement with the reliability of classic turbine loss models such as the Craig and Cox correlations used in the present study. Values similar to computational fluid dynamics simulations at the midspan were obtained in the first case of validation. Discrepancy below 12 % was obtained in the estimation of the flow velocities and turbine geometry. The values are considered to be within a

  7. Recent research trends in organic Rankine cycle technology: A bibliometric approach

    DEFF Research Database (Denmark)

    Imran, Muhammad; Haglind, Fredrik; Asim, Muhammad

    2018-01-01

    This work describes the contribution of researchers around the world in the field of the organic Rankine cycle in the period 2000–2016. A bibliometric approach was applied to analyze the scientific publications in the field using the Scopus Elsevier database, together with Science Citation Index...... of active countries, institutes, authors, and journals in the organic Rankine cycle technology field. From 2000 to 2016, there were 2120 articles published by 3443 authors from 997 research institutes scattered over 71 countries. The total number of citations and impact factor are 36,739 and 4597...... are the leading countries in organic Rankine cycle research and account for 64% of the total number of publications. The core research activities in the field are mainly focused on applications of the organic Rankine cycle technology, working fluids selection/performance, cycle architecture, and design...

  8. Prospects of the use of nanofluids as working fluids for organic Rankine cycle power systems

    DEFF Research Database (Denmark)

    Mondejar, Maria E.; Andreasen, Jesper G.; Regidor, Maria

    2017-01-01

    The search of novel working fluids for organic Rankine cycle power systems is driven by the recent regulations imposing additional phase-out schedules for substances with adverse environmental characteristics. Recently, nanofluids (i.e. colloidal suspensions of nanoparticles in fluids) have been...... suggested as potential working fluids for organic Rankine cycle power systems due to their enhanced thermal properties, potentially giving advantages with respect to the design of the components and the cycle performance. Nevertheless, a number of challenges concerning the use of nanofluids must...... the prospects of using nanofluids as working fluids for organic Rankine cycle power systems. As a preliminary study, nanofluids consisting of a homogenous and stable mixture of different nanoparticles types and a selected organic fluid are simulated on a case study organic Rankine cycle unit for waste heat...

  9. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part B

    DEFF Research Database (Denmark)

    La Seta, Angelo; Meroni, Andrea; Andreasen, Jesper Graa

    2016-01-01

    Organic Rankine cycle (ORC) power systems have recently emerged as promising solutions for waste heat recovery in low- and medium-size power plants. Their performance and economic feasibility strongly depend on the expander. The design process and efficiency estimation are particularly challenging...... due to the peculiar physical properties of the working fluid and the gas-dynamic phenomena occurring in the machine. Unlike steam Rankine and Brayton engines, organic Rankine cycle expanders combine small enthalpy drops with large expansion ratios. These features yield turbine designs with few highly...... is the preliminary design of an organic Rankine cycle turbogenerator to increase the overall energy efficiency of an offshore platform. For an increase in expander pressure ratio from 10 to 35, the results indicate up to 10% point reduction in expander performance. This corresponds to a relative reduction in net...

  10. Experimental study on Rankine cycle evaporator efficiency intended for exhaust waste heat recovery of a diesel engine

    Directory of Open Access Journals (Sweden)

    Milkov Nikolay

    2017-01-01

    Full Text Available The paper pressents an experimental study of Rankine cycle evaporator efficiency. Water was chosen as the working fluid in the system. The experimental test was conducted on a test bench equipped with a burner charged by compressed fresh air. Generated exhaust gases parameters were previously determined over the diesel engine operating range (28 engine operating points were studied. For each test point the working fluid parameters (flow rate and evaporating pressure were varied. Thus, the enthalpy flow through the heat exchanger was determined. Heat exchanger was designed as 23 helical tubes are inserted. On the basis of the results, it was found out that efficiency varies from 25 % to 51,9 %. The optimal working fluid pressure is 20 bar at most of the operating points while the optimum fluid mass flow rate varies from 2 g/s to 10 g/s.

  11. Structural optimisation of a high speed Organic Rankine Cycle generator using a genetic algorithm and a finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Palko, S. [Machines Division, ABB industry Oy, Helsinki (Finland)

    1997-12-31

    The aim in this work is to design a 250 kW high speed asynchronous generator using a genetic algorithm and a finite element method for Organic Rankine Cycle. The characteristics of the induction motors are evaluated using two-dimensional finite element method (FEM) The movement of the rotor and the non-linearity of the iron is included. In numerical field problems it is possible to find several local extreme for an optimisation problem, and therefore the algorithm has to be capable of determining relevant changes, and to avoid trapping to a local minimum. In this work the electromagnetic (EM) losses at the rated point are minimised. The optimisation includes the air gap region. Parallel computing is applied to speed up optimisation. (orig.) 2 refs.

  12. Rankin-Selberg methods for closed string amplitudes

    CERN Document Server

    Pioline, Boris

    2014-01-01

    After integrating over supermoduli and vertex operator positions, scattering amplitudes in superstring theory at genus $h\\leq 3$ are reduced to an integral of a Siegel modular function of degree $h$ on a fundamental domain of the Siegel upper half plane. A direct computation is in general unwieldy, but becomes feasible if the integrand can be expressed as a sum over images under a suitable subgroup of the Siegel modular group: if so, the integration domain can be extended to a simpler domain at the expense of keeping a single term in each orbit -- a technique known as the Rankin-Selberg method. Motivated by applications to BPS-saturated amplitudes, Angelantonj, Florakis and I have applied this technique to one-loop modular integrals where the integrand is the product of a Siegel-Narain theta function times a weakly, almost holomorphic modular form. I survey our main results, and take some steps in extending this method to genus greater than one.

  13. Quasi-dynamic model for an organic Rankine cycle

    International Nuclear Information System (INIS)

    Bamgbopa, Musbaudeen O.; Uzgoren, Eray

    2013-01-01

    Highlights: • Study presents a simplified transient modeling approach for an ORC under variable heat input. • The ORC model is presented as a synthesis of its models of its sub-components. • The model is compared to benchmark numerical simulations and experimental data at different stages. - Abstract: When considering solar based thermal energy input to an organic Rankine cycle (ORC), intermittent nature of the heat input does not only adversely affect the power output but also it may prevent ORC to operate under steady state conditions. In order to identify reliability and efficiency of such systems, this paper presents a simplified transient modeling approach for an ORC operating under variable heat input. The approach considers that response of the system to heat input variations is mainly dictated by the evaporator. Consequently, overall system is assembled using dynamic models for the heat exchangers (evaporator and condenser) and static models of the pump and the expander. In addition, pressure drop within heat exchangers is neglected. The model is compared to benchmark numerical and experimental data showing that the underlying assumptions are reasonable for cases where thermal input varies in time. Furthermore, the model is studied on another configuration and mass flow rates of both the working fluid and hot water and hot water’s inlet temperature to the ORC unit are shown to have direct influence on the system’s response

  14. ALKASYS, Rankine-Cycle Space Nuclear Power System

    International Nuclear Information System (INIS)

    2001-01-01

    1 - Description of program or function: The program ALKASYS is used for the creation of design concepts of multimegawatt space power systems that employ potassium Rankine power conversion cycles. 2 - Method of solution: ALKASYS calculates performance and design characteristics and mass estimates for the major subsystems composing the total power system. Design and engineering performance characteristics are determined by detailed engineering procedures rather than by empirical algorithms. Mass estimates are developed using basic design principles augmented in some cases by empirical coefficients determined from the literature. The reactor design is based on a fast spectrum, metallic-clad rod fuel element containing UN pellets. 3 - Restrictions on the complexity of the problem: ALKASYS was developed primarily for the analysis of systems with electric power in the range from 1,000 to 25,000 kW(e) and full-power life from 1 to 10 years. The program should be used with caution in systems that are limited by heat flux (which might indicate need for extended surfaces on fuel elements) or criticality (which might indicate the need for other geometries or moderators)

  15. Rankine cycle generators using geothermal fluids. Final progress report

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The Rankine Cycle generator was delivered and installed at Gila Hot Springs. Trial runs were made at that time, using Freon 12 as the expansion fluid. These tests showed that the boiler capacity was inadequate. It could not extract enough heat to generate sufficient volumes of Freon gas at the heat and pressure necessary to operate the system at an acceptable level. Increasing and decreasing the flow of hot water had a direct influence on efficiency, but it was not a linear relationship. Added amounts of hot water increased the power very little, but raised the water temperature at the discharge point. This implied that the heat exchange capacity of the boiler was saturated. The reverse was found in the condenser system. There was little increase in pressure of the condenser when we switched from static to run mode. Efficiency was maintained even when the cold water flow was reduced as much as 40%. The tests using Freon 12 resulted in the conclusion that the boiler volume needs to be increased and/or the configuration changed to radically increase its efficiency.

  16. Performance analysis of organic Rankine cycles using different working fluids

    Directory of Open Access Journals (Sweden)

    Zhu Qidi

    2015-01-01

    Full Text Available Low-grade heat from renewable or waste energy sources can be effectively recovered to generate power by an organic Rankine cycle (ORC in which the working fluid has an important impact on its performance. The thermodynamic processes of ORCs using different types of organic fluids were analyzed in this paper. The relationships between the ORC’s performance parameters (including evaporation pressure, condensing pressure, outlet temperature of hot fluid, net power, thermal efficiency, exergy efficiency, total cycle irreversible loss, and total heat-recovery efficiency and the critical temperatures of organic fluids were established based on the property of the hot fluid through the evaporator in a specific working condition, and then were verified at varied evaporation temperatures and inlet temperatures of the hot fluid. Here we find that the performance parameters vary monotonically with the critical temperatures of organic fluids. The values of the performance parameters of the ORC using wet fluids are distributed more dispersedly with the critical temperatures, compared with those of using dry/isentropic fluids. The inlet temperature of the hot fluid affects the relative distribution of the exergy efficiency, whereas the evaporation temperature only has an impact on the performance parameters using wet fluid.

  17. Utilisation of diesel engine waste heat by Organic Rankine Cycle

    International Nuclear Information System (INIS)

    Kölsch, Benedikt; Radulovic, Jovana

    2015-01-01

    In this paper, three different organic liquids were investigated as potential working fluids in an Organic Rankine Cycle. Performance of Methanol, Toluene and Solkatherm SES36 was modelled in an ORC powered by a diesel engine waste heat. The ORC model consists of a preheater, evaporator, superheater, turbine, pump and two condensers. With variable maximum cycle temperatures and high cycle pressures, the thermal efficiency, net power output and overall heat transfer area have been evaluated. Methanol was found to have the best thermal performance, but also required the largest heat transfer area. While Toluene achieved lower thermal efficiency, it showed great work potential at high pressures and relatively low temperatures. Our model identified the risks associated with employing these fluids in an ORC: methanol condensing during the expansion and toluene not sufficiently superheated at the turbine inlet, which can compromise the cycle operation. The best compromise between the size of heat exchanger and thermodynamic performance was found for Methanol ORC at intermediate temperatures and high pressures. Flammability and toxicity, however, remain the obstacles for safe implementation of both fluids in ORC systems. - Highlights: • ORC powered by diesel-engine waste heat was developed. • Methanol, Toluene and Solkatherm were considered as working fluids. • Methanol was selected due to the best overall thermal performance. • Optimal cycle operating parameters and heat exchanger area were evaluated

  18. Bottoming micro-Rankine cycles for micro-gas turbines

    International Nuclear Information System (INIS)

    Invernizzi, Costante; Iora, Paolo; Silva, Paolo

    2007-01-01

    This paper investigates the possibility of enhancing the performances of micro-gas turbines through the addition of a bottoming organic Rankine cycle which recovers the thermal power of the exhaust gases typically available in the range of 250-300 o C. The ORC cycles are particularly suitable for the recovery of heat from sources at variable temperatures, and for the generation of medium to small electric power. With reference to a micro-gas turbine with a size of about 100 kWe, a combined configuration could increase the net electric power by about 1/3, yielding an increase of the electrical efficiency of up to 40%. A specific analysis of the characteristics of different classes of working fluids is carried out in order to define a procedure to select the most appropriate fluid, capable of satisfying both environmental (ozone depletion potential, global warming potential) and technical (flammability, toxicity, fluid critical temperature and molecular complexity) concerns. Afterwards, a thermodynamic analysis is performed to ascertain the most favourable cycle thermodynamic conditions, from the point of view of heat recovery. Furthermore, a preliminary design of the ORC turbine (number of stages, outer diameter and rotational speed) is carried out

  19. Internal Combustion Engine (ICE) bottoming with Organic Rankine Cycles (ORCs)

    International Nuclear Information System (INIS)

    Vaja, Iacopo; Gambarotta, Agostino

    2010-01-01

    This paper describes a specific thermodynamic analysis in order to efficiently match a vapour cycle to that of a stationary Internal Combustion Engine (ICE). Three different working fluids are considered to represent the main classes of fluids, with reference to the shape of the vapour lines in the T-s diagram: overhanging, nearly isoentropic and bell shaped. First a parametric analysis is conducted in order to determine optimal evaporating pressures for each fluid. After which three different cycles setups are considered: a simple cycle with the use of only engine exhaust gases as a thermal source, a simple cycle with the use of exhaust gases and engine cooling water and a regenerated cycle. A second law analysis of the cycles is performed, with reference to the available heat sources. This is done in order to determine the best fluid and cycle configuration to be employed, the main parameters of the thermodynamic cycles and the overall efficiency of the combined power system. The analysis demonstrates that a 12% increase in the overall efficiency can be achieved with respect to the engine with no bottoming; nevertheless it has been observed that the Organic Rankine Cycles (ORCs) can recover only a small fraction of the heat released by the engine through the cooling water.

  20. Efficiency optimization potential in supercritical Organic Rankine Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, A.; Aumann, R. [Technische Universitaet Muenchen Institute of Energy Systems Boltzmannstr. 15, 85748 Garching (Germany); Karellas, S. [National Technical University of Athens Laboratory of Steam Boilers and Thermal Plants Heroon Polytechniou 9, 15780 Athens (Greece)

    2010-02-15

    Nowadays, the use of Organic Rankine Cycle (ORC) in decentralised applications is linked with the fact that this process allows the use of low temperature heat sources and offers an advantageous efficiency in small-scale concepts. Many state-of-the-art and innovative applications can successfully use the ORC process. In this process, according to the heat source level, special attention must be drawn to the choice of the appropriate working fluid, which is a factor that affects the thermal and exergetic efficiency of the cycle. The investigation of supercritical parameters of various working fluids in ORC applications seems to bring promising results concerning the efficiency of the application. This paper presents the results from a simulation of the ORC and the optimization potential of the process when using supercritical parameters. In order to optimize the process, various working fluids are considered and compared concerning their thermal efficiency and the usable percentage of heat. The reduction of exergy losses is discussed based on the need of surplus heat exchanger surface. (author)

  1. Thermodynamic analysis of a simple Organic Rankine Cycle

    International Nuclear Information System (INIS)

    Javanshir, Alireza; Sarunac, Nenad

    2017-01-01

    Thermodynamic performance (thermal efficiency and net power output) of a simple subcritical and supercritical Organic Rankine Cycle (ORC) was analyzed over a range of operating conditions for a number of working fluids to determine the effect of operating parameters on cycle performance and select the best working fluid. The results show that for an ORC operating with a dry working fluid, thermal efficiency decreases with an increase in the turbine inlet temperature (TIT) due to the convergence of the isobaric lines with temperature. The results also show that efficiency of an ORC operating with isentropic working fluids is higher compared to the dry and wet fluids, and working fluids with higher specific heat capacity provide higher cycle net power output. New expressions for thermal efficiency of a subcritical and supercritical simple ORC are proposed. For a subcritical ORC without the superheat, thermal efficiency is expressed as a function of the Figure of Merit (FOM), while for the superheated subcritical ORC thermal efficiency is given in terms of the modified Jacob number. For the supercritical ORC, thermal efficiency is expressed as a function of dimensionless temperature. - Highlights: • Analyzing thermodynamic performance of ORC over a range of operating conditions. • Selecting the best working fluid suitable for a simple ORC. • Proposing new expressions for thermal efficiency of a simple ORC.

  2. Performance of an organic Rankine cycle with multicomponent mixtures

    International Nuclear Information System (INIS)

    Chaitanya Prasad, G.S.; Suresh Kumar, C.; Srinivasa Murthy, S.; Venkatarathnam, G.

    2015-01-01

    There is a renewed interest in ORC (organic Rankine cycle) systems for power generation using solar thermal energy. Many authors have studied the performance of ORC with different pure fluids as well as binary zeotropic mixtures in order to improve the thermal efficiency. It has not been well appreciated that zeotropic mixtures can also be used to reduce the size and cost of an ORC system. The main objective of this paper is to present mixtures that help reduce the cost while maintaining high thermal efficiency. The proposed method also allows us to design an optimum mixture for a given expander. This new approach is particularly beneficial for designing mixtures for small ORC systems operating with solar thermal energy. A number of examples are presented to demonstrate this concept. - Highlights: • The performance of an ORC operating with different zeotropic multicomponent mixtures is presented. • A thermodynamic method is proposed for the design of multicomponent mixtures for ORC power plants. • High exergy efficiency as well as high volumetric expander work can be achieved with appropriate mixtures. • The method allows design of mixtures that can be used with off-the-shelf positive displacement expanders

  3. Biogas Engine Waste Heat Recovery Using Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Alberto Benato

    2017-03-01

    Full Text Available Italy is a leading country in the biogas sector. Energy crops and manure are converted into biogas using anaerobic digestion and, then, into electricity using internal combustion engines (ICEs. Therefore, there is an urgent need for improving the efficiency of these engines taking the real operation into account. To this purpose, in the present work, the organic Rankine cycle (ORC technology is used to recover the waste heat contained in the exhaust gases of a 1 MWel biogas engine. The ICE behavior being affected by the biogas characteristics, the ORC unit is designed, firstly, using the ICE nameplate data and, then, with data measured during a one-year monitoring activity. The optimum fluid and the plant configuration are selected in both cases using an “in-house” optimization tool. The optimization goal is the maximization of the net electric power while the working fluid is selected among 115 pure fluids and their mixtures. Results show that a recuperative ORC designed using real data guarantees a 30% higher net electric power than the one designed with ICE nameplate conditions.

  4. Determination of benzene, toluene, ethyl benzene and xylene in administration room′s air of hospitals using solid phase micro extraction/gas chromatography/flame ionization detector

    Directory of Open Access Journals (Sweden)

    Maryam Kheirmand

    2014-01-01

    Conclusion: The accounting unit showed highest concentrations of BTEX that its possible due to usage of the numerous numbers of electronic devices (computers, printer and copier, official supply (ink varnish, adhesive, etc. and the air-conditioner.

  5. Organic Rankine cycle for power recovery of exhaust flue gas

    International Nuclear Information System (INIS)

    Guo, Cong; Du, Xiaoze; Yang, Lijun; Yang, Yongping

    2015-01-01

    To study the effects of different working fluids on the performance of organic Rankine cycle (ORC), three working fluids, a mixture that matches with heat source, a mixture that matches with heat sink and a pure working fluid, are selected in this paper. Thermodynamic models were built in Matlab together with REFPROP, with which, the physical properties of the selected working fluids can be acquired. Heat source of the ORC system is the exhaust flue gas of boiler in a 240 MW pulverized coal-fired power plant. Some indicators such as thermal efficiency, inlet temperature of expander, superheat degree, mass flow, volumetric flow, and exergy destruction distribution, as well as the influence of recuperator are studied. The analytical results show that the mixture that matches with heat sink has the greatest efficiency and the mixture that matches with heat source has the lowest superheat degree. The rate of heat exchanged in recuperator to that in evaporator has a maximum value with evaporating pressure. There exists no optimal working fluid for all indicators (thermal efficiency, heat exchanger area, mass flow and volumetric flow etc.). An appropriate working fluid should be chosen by taking both investment cost and power generating benefits into account. The cost-benefit ratio of the proposed ORC plant was evaluated either. - Highlights: • Three types of working fluids are selected for ORC using exhaust flue gas. • The mixture that matches with heat sink has the greatest efficiency. • The mixture that matches with heat source has the lowest superheat degree. • There does not exist a working fluid that satisfies all the indicators

  6. Hybrid gas turbine–organic Rankine cycle for seawater desalination by reverse osmosis in a hydrocarbon production facility

    International Nuclear Information System (INIS)

    Eveloy, Valérie; Rodgers, Peter; Qiu, Linyue

    2015-01-01

    Highlights: • Seawater reverse osmosis driven by hybrid gas turbine–organic Rankine power cycle. • High ambient air and seawater temperatures, and high seawater salinity. • Energy–exergy analysis of power and desalination systems for six organic fluids. • Economic viability of waste heat recovery in subsidized utility pricing context. - Abstract: Despite water scarcity, the use of industrial waste heat for seawater desalination has been limited in the Middle East to date. This study evaluates the technical and economic feasibility of integrating on-site gas turbine power generation and reverse osmosis equipment for the production of both electricity and fresh water in a coastal hydrocarbon production facility. Gas turbine exhaust gas waste heat is recovered using an intermediate heat transfer fluid and fed to an organic Rankine cycle evaporator, to generate mechanical power to drive the reverse osmosis high pressure pump. Six candidate organic working fluids are evaluated, namely toluene, benzene, cyclohexane, cyclopentane, n-pentane and R245fa. Thermodynamic and desalination performance are assessed in the harsh climatic and salinity conditions of the Arabian Gulf. The performance metrics considered incorporate electric power and permeate production, thermal and exergy efficiency, specific energy consumption, system size, and permeate quality. Using toluene in the bottoming power cycle, a gain in power generation efficiency of approximately 12% is achieved relative to the existing gas turbine cycle, with an annual average of 2260 m"3/h of fresh water produced. Depending upon the projected evolution of local water prices, the investment becomes profitable after two to four years, with an end-of-life net present value of 220–380 million USD, and internal rate of return of 26–48%.

  7. Preliminary analysis of compound systems based on high temperature fuel cell, gas turbine and Organic Rankine Cycle

    Science.gov (United States)

    Sánchez, D.; Muñoz de Escalona, J. M.; Monje, B.; Chacartegui, R.; Sánchez, T.

    This article presents a novel proposal for complex hybrid systems comprising high temperature fuel cells and thermal engines. In this case, the system is composed by a molten carbonate fuel cell with cascaded hot air turbine and Organic Rankine Cycle (ORC), a layout that is based on subsequent waste heat recovery for additional power production. The work will credit that it is possible to achieve 60% efficiency even if the fuel cell operates at atmospheric pressure. The first part of the analysis focuses on selecting the working fluid of the Organic Rankine Cycle. After a thermodynamic optimisation, toluene turns out to be the most efficient fluid in terms of cycle performance. However, it is also detected that the performance of the heat recovery vapour generator is equally important, what makes R245fa be the most interesting fluid due to its balanced thermal and HRVG efficiencies that yield the highest global bottoming cycle efficiency. When this fluid is employed in the compound system, conservative operating conditions permit achieving 60% global system efficiency, therefore accomplishing the initial objective set up in the work. A simultaneous optimisation of gas turbine (pressure ratio) and ORC (live vapour pressure) is then presented, to check if the previous results are improved or if the fluid of choice must be replaced. Eventually, even if system performance improves for some fluids, it is concluded that (i) R245fa is the most efficient fluid and (ii) the operating conditions considered in the previous analysis are still valid. The work concludes with an assessment about safety-related aspects of using hydrocarbons in the system. Flammability is studied, showing that R245fa is the most interesting fluid also in this regard due to its inert behaviour, as opposed to the other fluids under consideration all of which are highly flammable.

  8. Residential Pre-Cooling: Mechanical Cooling and Air-Side Economizers:

    OpenAIRE

    Turner, William J.N; Walker, Iain S.; Roux, Jordan

    2012-01-01

    This study used an advanced airflow, energy and humidity modeling tool to evaluate residential air-side economizers and mechanical pre-cooling strategies using the air conditioner, in all US DOE Climate Zones for a typical new home with ASHRAE Standard 62.2 compliant ventilation. A residential air-side economizer is a large supply fan used for night ventilation. Mechanical pre-cooling used the building air conditioner operating at lower than usual set before the peak demand period. The simula...

  9. Preliminary report of a gas conditioner to improve operational reliability of cryotherapy in developing countries

    Directory of Open Access Journals (Sweden)

    Broekhuizen Fredrik

    2006-02-01

    Full Text Available Abstract Background Cryotherapy is a safe, affordable, and effective method of treatment for cervical intraepithelial neoplasia. In some low-resource settings, environmental conditions or qualities of the refrigerant gas can lead to blockage of cryotherapy equipment, terminating treatment. A prototype of a gas conditioner to prevent operational failure was designed, built, and field tested. Methods The prototype conditioner device consists of an expansion chamber that filters and dries the refrigerant gas. Users in Peru and Kenya reported on their experience with the prototype conditioner. In Ghana, simulated cryotherapy procedures were used to test the effects of the prototype conditioner, as well as the commonly used "cough technique." Results Anecdotal reports from field use of the device were favorable. During simulated cryotherapy, the prevalence of blockage during freezing were 0% (0/25 with the device alone, 23.3% (7/30 with the cough technique alone, 5.9% (1/17 with both, and 55.2% (16/29 with neither (Pearson's Chi square = 26.6, df = 3, p Conclusion This prototype design of a cryotherapy gas conditioner is a potential solution for low-resource settings that are experiencing cryotherapy device malfunction.

  10. 76 FR 76762 - Notice of Lodging of Consent Decree Under the Clean Air Act

    Science.gov (United States)

    2011-12-08

    ... recovery at no additional cost; (2) no longer accept small appliances, motor vehicle air conditioners... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Under the Clean Air Act Notice is hereby.... Environmental Protection Agency (``U.S. EPA''), sought penalties and injunctive relief under the Clean Air Act...

  11. 76 FR 57764 - Notice of Lodging of Consent Decree Under the Clean Air Act

    Science.gov (United States)

    2011-09-16

    ... recovery at no additional cost; (2) no longer accept small appliances, motor vehicle air conditioners... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Under the Clean Air Act Notice is hereby... Agency (``U.S. EPA''), sought penalties and injunctive relief under the Clean Air Act (``CAA'') against...

  12. 77 FR 23278 - Notice of Lodging of Consent Decree Under the Clean Air Act

    Science.gov (United States)

    2012-04-18

    ... accept small appliances, motor vehicle air conditioners (``MVACs''), or MVAC- like appliances with cut... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Under the Clean Air Act Notice is hereby... Agency (``U.S. EPA''), sought penalties and injunctive relief under the Clean Air Act (``CAA'') against...

  13. Thermodynamic Optimization of a Geothermal- Based Organic Rankine Cycle System Using an Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Osman Özkaraca

    2017-10-01

    Full Text Available Geothermal energy is a renewable form of energy, however due to misuse, processing and management issues, it is necessary to use the resource more efficiently. To increase energy efficiency, energy systems engineers carry out careful energy control studies and offer alternative solutions. With this aim, this study was conducted to improve the performance of a real operating air-cooled organic Rankine cycle binary geothermal power plant (GPP and its components in the aspects of thermodynamic modeling, exergy analysis and optimization processes. In-depth information is obtained about the exergy (maximum work a system can make, exergy losses and destruction at the power plant and its components. Thus the performance of the power plant may be predicted with reasonable accuracy and better understanding is gained for the physical process to be used in improving the performance of the power plant. The results of the exergy analysis show that total exergy production rate and exergy efficiency of the GPP are 21 MW and 14.52%, respectively, after removing parasitic loads. The highest amount of exergy destruction occurs, respectively, in condenser 2, vaporizer HH2, condenser 1, pumps 1 and 2 as components requiring priority performance improvement. To maximize the system exergy efficiency, the artificial bee colony (ABC is applied to the model that simulates the actual GPP. Under all the optimization conditions, the maximum exergy efficiency for the GPP and its components is obtained. Two of these conditions such as Case 4 related to the turbine and Case 12 related to the condenser have the best performance. As a result, the ABC optimization method provides better quality information than exergy analysis. Based on the guidance of this study, the performance of power plants based on geothermal energy and other energy resources may be improved.

  14. An Innovative Application of a Solar Storage Wall Combined with the Low-Temperature Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Tzu-Chen Hung

    2014-01-01

    Full Text Available The objective of this study is to collect energy on the waste heat from air produced by solar ventilation systems. This heat used for electricity generation by an organic Rankine cycle (ORC system was implemented. The advantages of this method include the use of existing building’s wall, and it also provides the region of energy scarcity for reference. This is also an innovative method, and the results will contribute to the efforts made toward improving the design of solar ventilation in the field of solar thermal engineering. In addition, ORC system would help generate electricity and build a low-carbon building. This study considered several critical parameters such as length of the airflow channel, intensity of solar radiation, pattern of the absorber plate, stagnant air layer, and operating conditions. The simulation results show that the highest outlet temperature and heat collecting efficiency of solar ventilation system are about 120°C and 60%, respectively. The measured ORC efficiency of the system was 6.2%. The proposed method is feasible for the waste heat from air produced by ventilation systems.

  15. Air

    International Nuclear Information System (INIS)

    Gugele, B.; Scheider, J.; Spangl, W.

    2001-01-01

    In recent years several regulations and standards for air quality and limits for air pollution were issued or are in preparation by the European Union, which have severe influence on the environmental monitoring and legislation in Austria. This chapter of the environmental control report of Austria gives an overview about the legal situation of air pollution control in the European Union and in specific the legal situation in Austria. It gives a comprehensive inventory of air pollution measurements for the whole area of Austria of total suspended particulates, ozone, volatile organic compounds, nitrogen oxides, sulfur dioxide, carbon monoxide, heavy metals, benzene, dioxin, polycyclic aromatic hydrocarbons and eutrophication. For each of these pollutants the measured emission values throughout Austria are given in tables and geographical charts, the environmental impact is discussed, statistical data and time series of the emission sources are given and legal regulations and measures for an effective environmental pollution control are discussed. In particular the impact of fossil-fuel power plants on the air pollution is analyzed. (a.n.)

  16. A review of the use of organic Rankine cycle power systems for maritime applications

    DEFF Research Database (Denmark)

    Mondejar, M. E.; Andreasen, J. G.; Pierobon, L.

    2018-01-01

    combustion, geothermal reservoirs, and waste heat from industrial processes. However, its economic feasibility has not yet been demonstrated for marine applications. This paper aims at evaluating the potential of using organic Rankine cycle systems for waste heat recovery aboard ships. The suitable vessels......Diesel engines are by far the most common means of propulsion aboard ships. It is estimated that around half of their fuel energy consumption is dissipated as low-grade heat. The organic Rankine cycle technology is a well-established solution for the energy conversion of thermal power from biomass...... in order to tackle the challenges limiting a widespread use of this technology in currently operating vessels and new-buildings. The results indicate that organic Rankine cycle units recovering heat from the exhaust gases of engines using low-sulfur fuels could yield fuel savings between 10% and 15%....

  17. Computer Model to Estimate Reliability Engineering for Air Conditioning Systems

    International Nuclear Information System (INIS)

    Afrah Al-Bossly, A.; El-Berry, A.; El-Berry, A.

    2012-01-01

    Reliability engineering is used to predict the performance and optimize design and maintenance of air conditioning systems. Air conditioning systems are expose to a number of failures. The failures of an air conditioner such as turn on, loss of air conditioner cooling capacity, reduced air conditioning output temperatures, loss of cool air supply and loss of air flow entirely can be due to a variety of problems with one or more components of an air conditioner or air conditioning system. Forecasting for system failure rates are very important for maintenance. This paper focused on the reliability of the air conditioning systems. Statistical distributions that were commonly applied in reliability settings: the standard (2 parameter) Weibull and Gamma distributions. After distributions parameters had been estimated, reliability estimations and predictions were used for evaluations. To evaluate good operating condition in a building, the reliability of the air conditioning system that supplies conditioned air to the several The company's departments. This air conditioning system is divided into two, namely the main chilled water system and the ten air handling systems that serves the ten departments. In a chilled-water system the air conditioner cools water down to 40-45 degree F (4-7 degree C). The chilled water is distributed throughout the building in a piping system and connected to air condition cooling units wherever needed. Data analysis has been done with support a computer aided reliability software, this is due to the Weibull and Gamma distributions indicated that the reliability for the systems equal to 86.012% and 77.7% respectively. A comparison between the two important families of distribution functions, namely, the Weibull and Gamma families was studied. It was found that Weibull method performed for decision making.

  18. Power generation and heating performances of integrated system of ammonia–water Kalina–Rankine cycle

    International Nuclear Information System (INIS)

    Zhang, Zhi; Guo, Zhanwei; Chen, Yaping; Wu, Jiafeng; Hua, Junye

    2015-01-01

    Highlights: • Integrated system of ammonia–water Kalina–Rankine cycle (AWKRC) is investigated. • Ammonia–water Rankine cycle is operated for cogenerating room heating-water in winter. • Kalina cycle with higher efficiency is operated for power generation in other seasons. • Power recovery efficiency accounts thermal efficiency and waste heat absorbing ratio. • Heating water with 70 °C and capacity of 55% total reclaimed heat load is cogenerated. - Abstract: An integrated system of ammonia–water Kalina–Rankine cycle (AWKRC) for power generation and heating is introduced. The Kalina cycle has large temperature difference during evaporation and small one during condensation therefore with high thermal efficiency for power generation, while the ammonia–water Rankine cycle has large temperature difference during condensation as well as evaporation, thus it can be adopted to generate heating-water as a by-product in winter. The integrated system is based on the Kalina cycle and converted to the Rankine cycle with a set of valves. The performances of the AWKRC system in different seasons with corresponding cycle loops were studied and analyzed. When the temperatures of waste heat and cooling water are 300 °C and 25 °C respectively, the thermal efficiency and power recovery efficiency of Kalina cycle are 20.9% and 17.4% respectively in the non-heating seasons, while these efficiencies of the ammonia–water Rankine cycle are 17.1% and 13.1% respectively with additional 55.3% heating recovery ratio or with comprehensive efficiency 23.7% higher than that of the Kalina cycle in heating season

  19. High efficiency and long life of a three-phase power conditioner via interleave control

    Directory of Open Access Journals (Sweden)

    Kenji Amei

    2016-01-01

    Full Text Available This study describes the high efficiency and long life of three-phase power conditioners of a photovoltaic (PV system. The current PV system, which is widely spread, has two problems. The first problem is the lifetime of a power conditioner, whereas the other problem is the drop in the efficiency of the conversion because of the characteristics of the solar cell. For those problems, the solar panel and boost chopper circuit were divided into a plurality to configure a power conditioner, and an electrolytic capacitor-less driver with interleave control was realized. The drop in the current generated by the solar cell was suppressed, and an improvement in power generation efficiency was expected. The configuration and principle of a proposed circuit were explained, and results of simulation and experiment were reported.

  20. Power system stabilization by SMES using current-fed pwm power conditioner

    International Nuclear Information System (INIS)

    Ishikawa, T.; Akita, S.; Taniguchi, H.; Kosho, S.; Tanaka, T.

    1988-01-01

    A superconducting magnetic energy storage (SMES) unit, consisted of superconducting coil and AC/DC power conditioner, can be used to suppress various kinds of instability that may cause service interruption in electric power system as it has high controllability of input/output electric power. Power system stabilizing ability of SMES has been examined experimentally by using model power system and small SMES unit. Current-fed PWM power conditioner was used to obtain maximum stabilizing effect by controlling active and reactive power simultaneously and independently. Power conditioner configuration, operating characteristics and control scheme for power system stabilization are also described. Results from experiments show the effectiveness of SMES on power system stabilization

  1. Characterization of the coal derived humic acids from Mukah, Sarawak as soil conditioner

    Directory of Open Access Journals (Sweden)

    Fong Sim Siong

    2006-01-01

    Full Text Available In Malaysia, abundant coal resources were found in Sarawak and Sabah. The utilization of coal resources, to date, is emphasized on the energy productions. The non-energy utilization as soil conditioner is unexplored. Therefore, this study attempted to characterize the coal humic acids extracted from Mukah coal and to evaluate its properties as soil conditioner. The coal humic acids from the regenerated sample were also assessed. The results revealed that different extractants and concentrations influenced the properties of humic acids. The extraction with KOH at 0.5 mol L-1 produced humic acids with low ash content and high acidic functional groups, which are substantial as soil conditioner. However, the yield was low. Regeneration of coal sample with 10% nitric acids improved the yield to an average of 83.45%. The acidic functional groups of nitrohumic acids were improved with the ash content remained at a low level.

  2. Equation of State Selection for Organic Rankine Cycle Modeling Under Uncertainty

    DEFF Research Database (Denmark)

    Frutiger, Jerome; O'Connell, John; Abildskov, Jens

    In recent years there has been a great interest in the design and selection of working fluids for low-temperature Organic Rankine Cycles (ORC), to efficiently produce electrical power from waste heat from chemical engineering applications, as well as from renewable energy sources such as biomass...... cycle, all influence the model output uncertainty. The procedure is highlighted for an ORC for with a low-temperature heat source from exhaust gas from a marine diesel engine.[1] Saleh B, Koglbauer G, Wendland M, Fischer J. Working fluids for lowtemperature organic Rankine cycles. Energy 2007...

  3. Optimal design of compact organic Rankine cycle units for domestic solar applications

    DEFF Research Database (Denmark)

    Barbazza, Luca; Pierobon, Leonardo; Mirandola, Alberto

    2014-01-01

    criteria, i.e., compactness, high performance and safe operation, are targeted by adopting a multi-objective optimization approach modeled with the genetic algorithm. Design-point thermodynamic variables, e.g., evaporating pressure, the working fluid, minimum allowable temperature differences......Organic Rankine cycle turbogenerators are a promising technology to transform the solar radiation harvested by solar collectors into electric power. The present work aims at sizing a small-scale organic Rankine cycle unit by tailoring its design for domestic solar applications. Stringent design...

  4. Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part A

    DEFF Research Database (Denmark)

    Meroni, Andrea; La Seta, Angelo; Andreasen, Jesper Graa

    2016-01-01

    Axial-flow turbines represent a well-established technology for a wide variety of power generation systems. Compactness, flexibility, reliability and high efficiency have been key factors for the extensive use of axial turbines in conventional power plants and, in the last decades, in organic...... Rankine cycle power systems. In this two-part paper, an overall cycle model and a model of an axial turbine were combined in order to provide a comprehensive preliminary design of the organic Rankine cycle unit, taking into account both cycle and turbine optimal designs. Part A presents the preliminary...

  5. Numerical study of the flow conditioner for the IFMIF liquid lithium target

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, S., E-mail: sergej.gordeev@kit.edu [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute for Thechnology, Campus North, Hermann v. Helmholtz Platz 1, D76344, Eggenstein-Leopoldshafen (Germany); Gröschel, F. [KIT Fusion Program, Karlsruhe Institute for Thechnology, Campus North, Hermann v. Helmholtz Platz 1, D76344, Eggenstein-Leopoldshafen (Germany); Heinzel, V.; Hering, W.; Stieglitz, R. [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute for Thechnology, Campus North, Hermann v. Helmholtz Platz 1, D76344, Eggenstein-Leopoldshafen (Germany)

    2014-10-15

    Highlights: • A detailed numerical analysis of the flow conditioner efficiency has been performed. • The calculations show that the present design of the flow conditioner cannot suppress swirl motions emerging from the bend. • The transient simulation reveals flow instabilities between the separation zone and the accelerated outer region. • Calculation shows that pitched guide vanes upstream the elbow reduces a generation of backflow areas downstream. - Abstract: IFMIF (International Fusion Materials Irradiation Facility) is an accelerator-based deuteron–lithium (D–Li) neutron source to simulate the neutron irradiation field in a fusion reactor. The target assembly of the IFMIF consists of the flow conditioners and the nozzle, which has to form a stable lithium jet. This work focuses on a numerical study of the flow conditioner efficiency, in which two different types of flow conditioners are compared by means of a detailed numerical analysis with respect to specific hydraulic effects in the pipe elbow and the inflow conditioners. The adequateness of three different turbulence models to simulate a flow through a 90° bend of circular cross section has been examined. The calculations show that a honeycomb-screen combination is not capable to suppress effectively large scale swirl motions emerging from the bend. An increasing number of screens improves the flow uniformity downstream, but increases the pressure drop. In order to detect any transient effects in the separation area a flow straightener configuration consisting of a honeycomb with a subsequent screen has been analyzed by means of a detached eddy simulation (DES). A frequency analysis of the normalized static pressure amplitude conducted by means of a detached eddy simulation (DES) reveals instabilities in the shear layer between the separation zone and the accelerated outer region, which additionally increase the inhomogeneity of the axial velocity distribution. A set of six circumferentially

  6. Active power line conditioners design, simulation and implementation for improving power quality

    CERN Document Server

    Revuelta, Patricio Salmeron; Litrán, Salvador Pérez

    2015-01-01

    Active Power Line Conditioners: Design, Simulation and Implementation for Improving Power Quality presents a rigorous theoretical and practical approach to active power line conditioners, one of the subjects of most interest in the field of power quality. Its broad approach offers a journey that will allow power engineering professionals, researchers, and graduate students to learn more about the latest landmarks on the different APLC configurations for load active compensation. By introducing the issues and equipment needs that arise when correcting the lack of power quality in power grids

  7. Air conditioning for data processing system areas

    Directory of Open Access Journals (Sweden)

    Hernando Camacho García

    1996-09-01

    Full Text Available The appropiate selection of air conditioners for data processing system areas requires the knowledge of the environmental desing conditions, the air conditioning systems succssfully used computer and the cooling loads to handle. This work contains information about a wide variety of systems designed for computer room applications. a complete example of calculation to determine the amount of heat to be removed for satisfactory operation, is also included.

  8. A CSMP commutation model for design study of a brushless dc motor power conditioner for a cruise missile fin control actuator

    Science.gov (United States)

    MacMillan, P. N.

    1985-06-01

    Recent improvements in rare earth magnets have made it possible to construct strong, lightweight, high horsepower dc motors. This has occasioned a reassessment of electromechanical actuators as alternatives to comparable pneumatic and hydraulic systems for use as flight control actuators for tactical missiles. A dynamic equivalent circuit model for the analysis of a small four pole brushless dc motor fed by a transistorized power conditioner utilizing high speed switching power transistors as final elements is presented. The influence of electronic commutation on instantaneous dynamic motor performance is particularly demonstrated and good correlation between computer simulation and typical experimentally obtained performance data is achieved. The model is implemented in CSMP language and features more accurate air gap flux representation over previous work. Hall effect sensor rotor position feedback is simulated. Both constant and variable air gap flux is modeled and the variable flux model treats the flux as a fundamental and one harmonic.

  9. Fungal colonization of air-conditioning systems

    Directory of Open Access Journals (Sweden)

    Ljaljević-Grbić Milica

    2008-01-01

    Full Text Available Fungi have been implicated as quantitatively the most important bioaerosol component of indoor air associated with contaminated air-conditioning systems. rarely, indoor fungi may cause human infections, but more commonly allergenic responses ranging from pneumonitis to asthma-like symptoms. From all air conditioner filters analyzed, 16 fungal taxa were isolated and identified. Aspergillus fumigatus causes more lethal infections worldwide than any other mold. Air-conditioning filters that adsorb moisture and volatile organics appear to provide suitable substrates for fungal colonization. It is important to stress that fungal colonization of air-conditioning systems should not be ignored, especially in hospital environments.

  10. Multiple regression models for the prediction of the maximum obtainable thermal efficiency of organic Rankine cycles

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Pierobon, Leonardo; Wronski, Jorrit

    2014-01-01

    Much attention is focused on increasing the energy efficiency to decrease fuel costs and CO2 emissions throughout industrial sectors. The ORC (organic Rankine cycle) is a relatively simple but efficient process that can be used for this purpose by converting low and medium temperature waste heat ...

  11. Constrained multi-objective optimization of radial expanders in organic Rankine cycles by firefly algorithm

    International Nuclear Information System (INIS)

    Bahadormanesh, Nikrouz; Rahat, Shayan; Yarali, Milad

    2017-01-01

    Highlights: • A multi-objective optimization for radial expander in Organic Rankine Cycles is implemented. • By using firefly algorithm, Pareto front based on the size of turbine and thermal efficiency is produced. • Tension and vibration constrains have a significant effect on optimum design points. - Abstract: Organic Rankine Cycles are viable energy conversion systems in sustainable energy systems due to their compatibility with low-temperature heat sources. In the present study, one dimensional model of radial expanders in conjunction with a thermodynamic model of organic Rankine cycles is prepared. After verification, by defining thermal efficiency of the cycle and size parameter of a radial turbine as the objective functions, a multi-objective optimization was conducted regarding tension and vibration constraints for 4 different organic working fluids (R22, R245fa, R236fa and N-Pentane). In addition to mass flow rate, evaporator temperature, maximum pressure of cycle and turbo-machinery design parameters are selected as the decision variables. Regarding Pareto fronts, by a little increase in size of radial expanders, it is feasible to reach high efficiency. Moreover, by assessing the distribution of decision variables, the variables that play a major role in trending between the objective functions are found. Effects of mechanical and vibration constrains on optimum decision variables are investigated. The results of optimization can be considered as an initial values for design of radial turbines for Organic Rankine Cycles.

  12. Technical and economical feasibility of the Rankine compression gas turbine (RCG)

    NARCIS (Netherlands)

    Ouwerkerk, H.; Lange, de H.C.

    2006-01-01

    The Rankine compression gas turbine (RCG) is a new type of combined cycle, i.e. combined steam and gas turbine installation, that returns all shaft power on one free power turbine. The novelty of the RCG is that the steam turbine drives the compressor of the gas turbine cycle. This way, the turbine

  13. Performance analysis of different organic Rankine cycle configurations on board liquefied natural gas-fuelled vessels

    DEFF Research Database (Denmark)

    Baldasso, Enrico; Andreasen, Jesper Graa; Meroni, Andrea

    2017-01-01

    Gas-fuelled shipping is expected to increase significantly in the coming years. Similarly, much effort is devoted to the study of waste heat recovery systems to be implemented on board ships. In this context, the organic Rankine cycle (ORC) technology is considered one of the most promising...

  14. A thermodynamic study of waste heat recovery from GT-MHR using organic Rankine cycles

    International Nuclear Information System (INIS)

    Yari, Mortaza; Mahmoudi, S.M.S.

    2011-01-01

    This paper presents an investigation on the utilization of waste heat from a gas turbine-modular helium reactor (GT-MHR) using different arrangements of organic Rankine cycles (ORCs) for power production. The considered organic Rankine cycles were: simple organic Rankine cycle (SORC), ORC with internal heat exchanger (HORC) and regenerative organic Rankine cycle (RORC). The performances of the combined cycles were studied from the point of view of first and second-laws of thermodynamics. Individual models were developed for each component and the effects of some important parameters such as compressor pressure ratio, turbine inlet temperature, and evaporator and environment temperatures on the efficiencies and on the exergy destruction rate were studied. Finally the combined cycles were optimized thermodynamically using the EES (Engineering Equation Solver) software. Based on the identical operating conditions for the GT-MHR cycle, a comparison between the three combined cycles and a simple GT-MHR cycle is also were made. This comparison was also carried out from the point of view of economics. The GT-MHR/SORC combined cycle proved to be the best among all the cycles from the point of view of both thermodynamics and economics. The efficiency of this cycle was about 10% higher than that of GT-MHR alone. (orig.)

  15. Design of organic Rankine cycle power systems accounting for expander performance

    DEFF Research Database (Denmark)

    La Seta, Angelo; Andreasen, Jesper Graa; Pierobon, Leonardo

    2015-01-01

    Organic Rankine cycle power systems have recently emerged as promising solutions for waste heat recovery in low- and medium-size power plants. Their performance and economic feasibility strongly depend on the expander. Its design process and efficiency estimation are particularly challenging due...

  16. Working fluid charge oriented off-design modeling of a small scale Organic Rankine Cycle system

    International Nuclear Information System (INIS)

    Liu, Liuchen; Zhu, Tong; Ma, Jiacheng

    2017-01-01

    Highlights: • Organic Rankine Cycle model considering working fluid charge has been established. • Overall solution algorithm of system off-design performance is proposed. • Variation trend of different zones in both heat exchangers can be observed. • Optimal working fluid charge volume for different output work has been estimated. - Abstract: Organic Rankine Cycle system is one of the most widely used technique for low-grade waste heat recovery. Developing of dynamic Organic Rankine Cycle models played an increasingly important part in system performance prediction. The present paper developed a working fluid charge oriented model for an small scale Organic Rankine Cycle to calculate the theoretical value of working fluid charge level for the system under rated condition. The two heat exchangers are divided into three different zones and related heat transfer correlations are employed to estimate the length variation of each zones. Steady state models have been applied to describe the performance of pump and expander. Afterwards, an overall solution algorithm based on the established model has been proposed in order to exact simulate the system’s off-design performance. Additionally, the impact of different working fluid charge volumes has also been discussed. Simulation results clearly shows the variation trend of different zones in both heat exchangers, as well as the variation trend of system operating parameters under various expander output work. Furthermore, the highest thermal efficiency can be reached 6.37% under rated conditions with a working fluid charge volume of 34.6 kg.

  17. Simulation Models of Leaf Area Index and Yield for Cotton Grown with Different Soil Conditioners.

    Directory of Open Access Journals (Sweden)

    Lijun Su

    Full Text Available Simulation models of leaf area index (LAI and yield for cotton can provide a theoretical foundation for predicting future variations in yield. This paper analyses the increase in LAI and the relationships between LAI, dry matter, and yield for cotton under three soil conditioners near Korla, Xinjiang, China. Dynamic changes in cotton LAI were evaluated using modified logistic, Gaussian, modified Gaussian, log normal, and cubic polynomial models. Universal models for simulating the relative leaf area index (RLAI were established in which the application rate of soil conditioner was used to estimate the maximum LAI (LAIm. In addition, the relationships between LAIm and dry matter mass, yield, and the harvest index were investigated, and a simulation model for yield is proposed. A feasibility analysis of the models indicated that the cubic polynomial and Gaussian models were less accurate than the other three models for simulating increases in RLAI. Despite significant differences in LAIs under the type and amount of soil conditioner applied, LAIm could be described by aboveground dry matter using Michaelis-Menten kinetics. Moreover, the simulation model for cotton yield based on LAIm and the harvest index presented in this work provided important theoretical insights for improving water use efficiency in cotton cultivation and for identifying optimal application rates of soil conditioners.

  18. Air conditioning system

    Science.gov (United States)

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  19. The Signal Validation method of Digital Process Instrumentation System on signal conditioner for SMART

    International Nuclear Information System (INIS)

    Moon, Hee Gun; Park, Sang Min; Kim, Jung Seon; Shon, Chang Ho; Park, Heui Youn; Koo, In Soo

    2005-01-01

    The function of PIS(Process Instrumentation System) for SMART is to acquire the process data from sensor or transmitter. The PIS consists of signal conditioner, A/D converter, DSP(Digital Signal Process) and NIC(Network Interface Card). So, It is fully digital system after A/D converter. The PI cabinet and PDAS(Plant Data Acquisition System) in commercial plant is responsible for data acquisition of the sensor or transmitter include RTD, TC, level, flow, pressure and so on. The PDAS has the software that processes each sensor data and PI cabinet has the signal conditioner, which is need for maintenance and test. The signal conditioner has the potentiometer to adjust the span and zero for test and maintenance. The PIS of SMART also has the signal conditioner which has the span and zero adjust same as the commercial plant because the signal conditioner perform the signal condition for AD converter such as 0∼10Vdc. But, To adjust span and zero is manual test and calibration. So, This paper presents the method of signal validation and calibration, which is used by digital feature in SMART. There are I/E(current to voltage), R/E(resistor to voltage), F/E(frequency to voltage), V/V(voltage to voltage). Etc. In this paper show only the signal validation and calibration about I/E converter that convert level, pressure, flow such as 4∼20mA into signal for AD conversion such as 0∼10Vdc

  20. Comparative scanning electron microscopic study of the effect of different dental conditioners on dentin micromorphology

    Directory of Open Access Journals (Sweden)

    Alexandre Henrique Susin

    2008-04-01

    Full Text Available This study evaluated comparatively by scanning electron microscopy (SEM the effect of different dental conditioners on dentin micromorphology, when used according to the same protocol. Forty dentin sticks were obtained from 20 caries-free third human molars and were assigned to 4 groups corresponding to 3 conditioners (phosphoric acid 37%, Clearfil SE Bond and iBond and an untreated control group. After application of the conditioners, the specimens were immersed in 50% ethanol solution during 10 s, chemically fixed and dehydrated to prepare them to SEM analysis. In the control group, dentin surface was completely covered by smear layer and all dentinal tubules were occluded. In the phosphoric acid-etched group, dentin surface was completely clean and presented exposed dentinal tubule openings; this was the only group in which the tubules exhibited the funnel-shaped aspect. In the groups conditioned with Clearfil SE Bond primer and iBond, which are less acidic than phosphoric acid, tubule openings were occluded or partially occluded, though smear layer removal was observed. SE Bond was more efficient in removing the smear layer than iBond. In the Clearfil SE Bond group, the cuff-like aspect of peritubular dentin was more evident. It may be concluded all tested conditioners were able to change dentin morphology. However, it cannot be stated that the agent aggressiveness was the only cause of the micromorphological alterations because a single morphological pattern was not established for each group, but rather an association of different aspects, according to the aggressiveness of the tested conditioner.

  1. A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships

    Directory of Open Access Journals (Sweden)

    Jesper Graa Andreasen

    2017-04-01

    Full Text Available This paper presents a comparison of the conventional dual pressure steam Rankine cycle process and the organic Rankine cycle process for marine engine waste heat recovery. The comparison was based on a container vessel, and results are presented for a high-sulfur (3 wt % and low-sulfur (0.5 wt % fuel case. The processes were compared based on their off-design performance for diesel engine loads in the range between 25% and 100%. The fluids considered in the organic Rankine cycle process were MM(hexamethyldisiloxane, toluene, n-pentane, i-pentane and c-pentane. The results of the comparison indicate that the net power output of the steam Rankine cycle process is higher at high engine loads, while the performance of the organic Rankine cycle units is higher at lower loads. Preliminary turbine design considerations suggest that higher turbine efficiencies can be obtained for the ORC unit turbines compared to the steam turbines. When the efficiency of the c-pentane turbine was allowed to be 10% points larger than the steam turbine efficiency, the organic Rankine cycle unit reaches higher net power outputs than the steam Rankine cycle unit at all engine loads for the low-sulfur fuel case. The net power production from the waste heat recovery units is generally higher for the low-sulfur fuel case. The steam Rankine cycle unit produces 18% more power at design compared to the high-sulfur fuel case, while the organic Rankine cycle unit using MM produces 33% more power.

  2. A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Meroni, Andrea; Haglind, Fredrik

    2017-01-01

    %) fuel case. The processes were compared based on their off-design performance for diesel engine loads in the range between 25% and 100%. The fluids considered in the organic Rankine cycle process were MM(hexamethyldisiloxane), toluene, n-pentane, i-pentane and c-pentane. The results of the comparison....... The net power production from the waste heat recovery units is generally higher for the low-sulfur fuel case. The steam Rankine cycle unit produces 18% more power at design compared to the high-sulfur fuel case, while the organic Rankine cycle unit using MM produces 33% more power....

  3. Passive air conditioning methods for different climates, special ...

    African Journals Online (AJOL)

    One of the most important parameters to be considered in life's style and life's situations of human is the comfort. The usual tools for making thermal comfort are traditional mechanical air conditioners. The disadvantage of them is using much energy and also being dangerous for environment ecological system. Therefore ...

  4. A comparative analysis of rankine and absorption power cycles from exergoeconomic viewpoint

    International Nuclear Information System (INIS)

    Shokati, Naser; Ranjbar, Faramarz; Yari, Mortaza

    2014-01-01

    Highlights: • The Rankine and absorption power cycles are compared from exergoeconomic viewpoint. • The LiBr–H 2 O cycle has the highest unit cost of electricity produced by turbine. • The LiBr–H 2 O cycle has the lowest exergy destruction cost rate. • In LiBr–H 2 O cycle, the generator has the maximum value regarding (C-dot) D,k +(C-dot) L,k +(Z-dot) k . - Abstract: In this paper LiBr–H 2 O and NH 3 –H 2 O absorption power cycles and Rankine cycle which produce 1 MW electrical power in same conditions of heat sources are compared from exergoeconomic point of view. Exergoeconomic analysis is performed using the specific exergy costing (SPECO) method. The results show that among these cycles, although the LiBr–H 2 O cycle has the highest first law efficiency, but unit cost of electricity produced by turbine for LiBr–H 2 O cycle is more than that for Rankine cycle. This value is lowest for the NH 3 –H 2 O cycle. Moreover, the NH 3 –H 2 O cycle has the highest and the LiBr–H 2 O cycle has the lowest exergy destruction cost rate. The generator, the absorber and the boiler in all considered cycles have the maximum value of sum of cost rate associated with capital investment, operating and maintenance, exergy destruction and exergy losses. Therefore, these components should be taken into consideration from exergoeconomic viewpoint. In parametric study, it is observed that in the constant generator temperature, as the generator pressure increases, unit cost of power produced by turbine for LiBr–H 2 O and Rankine cycles decreases. This value for Rankine cycle is lower than for LiBr–H 2 O cycle whereas Rankine cycle efficiency is less than the efficiency of LiBr–H 2 O cycle. Also, in LiBr–H 2 O cycle, at constant temperature of the generator, the value of exergy destruction cost rate is minimized and exergoeconomic factor is maximized at particular values of generator pressure and the more absorber pressure results the minimum value of

  5. Future air conditioning energy consumption in developing countries and what can be done about it: the potential of efficiency in the residential sector

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Michael A.; Letschert, Virginie E. [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory (United States)

    2007-07-01

    The dynamics of air conditioning are of particular interest to energy analysts, both because of the high energy consumption of this product, but also its disproportionate impact on peak load. This paper addresses the special role of this end use as a driver of residential electricity consumption in rapidly developing economies. Recent history has shown that air conditioner ownership grows more rapidly than economic growth in warm-climate countries. In 1990, less than a percent of urban Chinese households owned an air conditioner; by 2003 this number rose to 62 %. The evidence suggests a similar explosion of air conditioner use in many other countries is not far behind. Room air conditioner purchases in India are currently growing at 20 % per year, with about half of these purchases attributed to the residential sector. This paper draws on two distinct methodological elements to assess future residential air conditioner 'business as usual' electricity consumption by country/region and to consider specific alternative 'high efficiency' scenarios. The first component is an econometric ownership and use model based on household income, climate and demographic parameters. The second combines ownership forecasts and stock accounting with geographically specific efficiency scenarios within a unique analysis framework (BUENAS) developed by LBNL. The efficiency scenario module considers current efficiency baselines, available technologies, and achievable timelines for development of market transformation programs, such as minimum efficiency performance standards (MEPS) and labeling programs. The result is a detailed set of consumption and emissions scenarios for residential air conditioning.

  6. Modelling the Influence of Climate on the Performance of the Organic Rankine Cycle for Industrial Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Ivan Korolija

    2016-05-01

    Full Text Available This paper describes a study of the relative influences of different system design decisions upon the performance of an organic Rankine cycle (ORC used to generate electricity from foundry waste heat. The design choices included concern the working fluid, whether to use a regenerator and the type of condenser. The novelty of the research lies in its inclusion of the influence of both the ORC location and the auxiliary electricity used by the pumps and fans in the ORC power system. Working fluids suitable for high temperature applications are compared, including three cyclic siloxanes, four linear siloxanes and three aromatic fluids. The ORC is modelled from first principles and simulation runs carried out using weather data for 106 European locations and a heat input profile that was derived from empirical data. The impact of design decisions upon ORC nominal efficiency is reported followed by the impact upon annual system efficiency in which variations in heat input and the condition of outdoor air over a year are considered. The main conclusion is that the location can have a significant impact upon the efficiency of ORC systems due to the influence of climate upon the condenser and auxiliary electricity requirements.

  7. Thermodynamic performance assessment of an integrated geothermal powered supercritical regenerative organic Rankine cycle and parabolic trough solar collectors

    International Nuclear Information System (INIS)

    Cakici, Duygu Melek; Erdogan, Anil; Colpan, Can Ozgur

    2017-01-01

    In this study, the thermodynamic performance of an integrated geothermal powered supercritical regenerative organic Rankine cycle (ORC) and parabolic trough solar collectors (PTSC) is assessed. A thermal model based on the principles of thermodynamics (mass, energy, and exergy balances) and heat transfer is first developed for the components of this integrated system. This model gives the performance assessment parameters of the system such as the electrical and exergetic efficiencies, total exergy destruction and loss, productivity lack, fuel depletion ratio, and improvement potential rate. To validate this model, the data of an existing geothermal power plant based on a supercritical ORC and literature data for the PTSC are used. After validation, parametric studies are conducted to assess the effect of some of the important design and operating parameters on the performance of the system. As a result of these studies, it is found that the integration of ORC and PTSC systems increases the net power output but decreases the electrical and exergetic efficiencies of the integrated system. It is also shown that R134a is the most suitable working fluid type for this system; and the PTSCs and air cooled condenser are the main sources of the exergy destructions. - Highlights: • A geothermal power plant integrated with PTSC is investigated. • Different approaches for defining the exergetic efficiency are used. • The PTSCs and ACC are the main sources of the exergy destructions. • R134a gives the highest performance for any number of collectors studied.

  8. Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling, heating and power production

    Science.gov (United States)

    Al-Sulaiman, Fahad A.; Dincer, Ibrahim; Hamdullahpur, Feridun

    The study examines a novel system that combined a solid oxide fuel cell (SOFC) and an organic Rankine cycle (ORC) for cooling, heating and power production (trigeneration) through exergy analysis. The system consists of an SOFC, an ORC, a heat exchanger and a single-effect absorption chiller. The system is modeled to produce a net electricity of around 500 kW. The study reveals that there is 3-25% gain on exergy efficiency when trigeneration is used compared with the power cycle only. Also, the study shows that as the current density of the SOFC increases, the exergy efficiencies of power cycle, cooling cogeneration, heating cogeneration and trigeneration decreases. In addition, it was shown that the effect of changing the turbine inlet pressure and ORC pump inlet temperature are insignificant on the exergy efficiencies of the power cycle, cooling cogeneration, heating cogeneration and trigeneration. Also, the study reveals that the significant sources of exergy destruction are the ORC evaporator, air heat exchanger at the SOFC inlet and heating process heat exchanger.

  9. Thermodynamic and design considerations of organic Rankine cycles in combined application with a solar thermal gas turbine

    Science.gov (United States)

    Braun, R.; Kusterer, K.; Sugimoto, T.; Tanimura, K.; Bohn, D.

    2013-12-01

    Concentrated Solar Power (CSP) technologies are considered to provide a significant contribution for the electric power production in the future. Different kinds of technologies are presently in operation or under development, e.g. parabolic troughs, central receivers, solar dish systems and Fresnel reflectors. This paper takes the focus on central receiver technologies, where the solar radiation is concentrated by a field of heliostats in a receiver on the top of a tall tower. To get this CSP technology ready for the future, the system costs have to reduce significantly. The main cost driver in such kind of CSP technologies are the huge amount of heliostats. To reduce the amount of heliostats, and so the investment costs, the efficiency of the energy conversion cycle becomes an important issue. An increase in the cycle efficiency results in a decrease of the solar heliostat field and thus, in a significant cost reduction. The paper presents the results of a thermodynamic model of an Organic Rankine Cycle (ORC) for combined cycle application together with a solar thermal gas turbine. The gas turbine cycle is modeled with an additional intercooler and recuperator and is based on a typical industrial gas turbine in the 2 MW class. The gas turbine has a two stage radial compressor and a three stage axial turbine. The compressed air is preheated within a solar receiver to 950°C before entering the combustor. A hybrid operation of the gas turbine is considered. In order to achieve a further increase of the overall efficiency, the combined operation of the gas turbine and an Organic Rankine Cycle is considered. Therefore an ORC has been set up, which is thermally connected to the gas turbine cycle at two positions. The ORC can be coupled to the solar-thermal gas turbine cycle at the intercooler and after the recuperator. Thus, waste heat from different cycle positions can be transferred to the ORC for additional production of electricity. Within this investigation

  10. Working fluid selection for the Organic Rankine Cycle (ORC) exhaust heat recovery of an internal combustion engine power plant

    Science.gov (United States)

    Douvartzides, S.; Karmalis, I.

    2016-11-01

    Organic Rankine cycle technology is capable to efficiently convert low-grade heat into useful mechanical power. In the present investigation such a cycle is used for the recovery of heat from the exhaust gases of a four stroke V18 MAN 51/60DF internal combustion engine power plant operating with natural gas. Design is focused on the selection of the appropriate working fluid of the Rankine cycle in terms of thermodynamic, environmental and safety criteria. 37 candidate fluids have been considered and all Rankine cycles examined were subcritical. The thermodynamic analysis of all fluids has been comparatively undertaken and the effect of key operation conditions such as the evaporation pressure and the superheating temperature was taken into account. By appropriately selecting the working fluid and the Rankine cycle operation conditions the overall plant efficiency was improved by 5.52% and fuel consumption was reduced by 12.69%.

  11. Investigations on the application of zeotropic fluid mixtures in the organic rankine cycle for the geothermal power generation; Untersuchung zum Einsatz von zeotropen Fluidgemischen im Organic Rankine Cycle fuer die geothermische Stromerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Heberle, Florian

    2013-04-01

    The organic rankine cycle is a thermodynamic cycle process which uses an organic fluid working fluid instead of water in comparison to the commercial rankine process. The organic rankine cycle facilitates sufficiently high pressures at moderate temperatures. The organic rankine cycle significantly expands the technically possible and economically feasible ranges of application of such heat and power processes. The geothermal power is a very attractive field of application. Thermal water with a temperature of nearly 100 Celsius can be used for the power generation by means of the organic rankine cycle. Especially zeotropic mixtures are interesting as a working fluid. This is due to a non-isothermal phase change to a temperature glide which adapts very well to the temperature progress of the heat source. The author of the book under consideration reports on the application of different mixtures in the organic rankine cycle. The evaluation is based on a thermodynamic analysis and considers also toxicological, ecologic, technical as well as economic aspects.

  12. Comparative thermodynamic performance of some Rankine/Brayton cycle configurations for a low-temperature energy application

    Science.gov (United States)

    Lansing, F. L.

    1977-01-01

    Various configurations combining solar-Rankine and fuel-Brayton cycles were analyzed in order to find the arrangement which has the highest thermal efficiency and the smallest fuel share. A numerical example is given to evaluate both the thermodynamic performance and the economic feasibility of each configuration. The solar-assisted regenerative Rankine cycle was found to be leading the candidates from both points of energy utilization and fuel conservation.

  13. Effects of Natural and Synthetic Soil Conditioners on Soil Moisture ...

    African Journals Online (AJOL)

    USER

    The field investigation was a 4 × 5 factorial pot-experiment with maize as the test crop. ... The soil samples were air-dried to about 20% (v v–1) moisture content, pounded and passed through a 2- ..... properties of gel-amended container media.

  14. Studi Variasi Flowrate Refrigerant pada Sistem Organic Rankine Cycle dengan Fluida Kerja R-123

    Directory of Open Access Journals (Sweden)

    Aria Halim Pamungkas

    2013-09-01

    Full Text Available Saat ini kelangkaan sumber energi fosil telah menjadi isu utama di seluruh dunia. Hal tersebut memberikan dampak yang signifikan di setiap aspek kehidupan dan salah satunya adalah di bidang pembangkit listrik. Salah satu sistem pembangkit listrik yang tidak menggunakan energi fosil adalah Organic rankine cycle (ORC. Pada penelitian ini dilakukan dengan metode eksperimental pada suatu sistem Organic rankine cycle yang telah dibangun. Penelitian ini yang divariasikan adalah flowrate dari fluida kerja dalam hal ini R-123. Variasi flowrate yang digunakan yaitu 3-1 GPM (Galon per menit dengan penurunan 0,5 GPM setiap pengambilan data. Hasil yang didapatkan dari penelitian ini berupa grafik–grafik daya pada turbin, kondensor, pompa dan evaporator, efisiensi siklus dan back work ratio  fungsi flowrate fluida kerja. Efisiensi siklus tertinggi adalah 5,86% yang terjadi pada flowrate 3 GPM dan efisiensi siklus terendah adalah 4,32% yang terjadi pada flowrate 1 GPM.

  15. A review of the use of organic Rankine cycle power systems for maritime applications

    DEFF Research Database (Denmark)

    Mondejar, M. E.; Andreasen, J. G.; Pierobon, L.

    2018-01-01

    Diesel engines are by far the most common means of propulsion aboard ships. It is estimated that around half of their fuel energy consumption is dissipated as low-grade heat. The organic Rankine cycle technology is a well-established solution for the energy conversion of thermal power from biomass...... combustion, geothermal reservoirs, and waste heat from industrial processes. However, its economic feasibility has not yet been demonstrated for marine applications. This paper aims at evaluating the potential of using organic Rankine cycle systems for waste heat recovery aboard ships. The suitable vessels...... and engine heat sources are identified by estimating the total recoverable energy. Different cycle architectures, working fluids, components, and control strategies are analyzed. The economic feasibility and integration on board are also evaluated. A number of research and development areas are identified...

  16. Study of toluene stability for an Organic Rankine Cycle (ORC) space-based power system

    Science.gov (United States)

    Havens, Vance; Ragaller, Dana

    1988-01-01

    The design, fabrication, assembly, and endurance operation of a dynamic test loop, built to evaluate the thermal stability of a proposed Organic Rankine Cycle (ORC) working fluid, is discussed. The test fluid, toluene, was circulated through a heater, simulated turbine, regenerator, condenser and pump to duplicate an actual ORC system. The maximum nominal fluid temperature, 750 F, was at the turbine simulator inlet. Samples of noncondensible gases and liquid toluene were taken periodically during the test. The samples were analyzed to identify the degradation products formed and the quantity of these products. From these data it was possible to determine the degradation rate of the working fluid and the generation rate of noncondensible gases. A further goal of this work was to relate the degradation observed in the dynamic operating loop to degradation obtained in isothermal capsule tests. This relationship was the basis for estimating the power loop degradation in the Space Station Organic Rankine Cycle system.

  17. Modeling and analysis of scroll compressor conversion into expander for Rankine cycles

    Energy Technology Data Exchange (ETDEWEB)

    Oralli, E.; Dincer, I.; Zamfirescu, C. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (Canada)], E-mail: Emre.Oralli@uoit.ca, email: Ibrahim.Dincer@uoit.ca, email: Calin.Zamfirescu@uoit.ca

    2011-07-01

    With the current push towards the use of sustainable energies, low power heat generation systems are shifting towards sustainable heat sources such as geothermal, solar, industrial waste and cogeneration energy. The aim of this paper is to investigate the use of a scroll expander for power generation using the Rankine cycle. A parametric study was carried out on a refrigeration scroll compressor to determine the impact of geometry, working fluid, and operating conditions on the efficiency of the Rankine heat engine. In addition modifications were made to the expander to optimize its operation. Results showed that organic fluids should be used at saturated conditions, that decreasing the temperature of the condenser leads to an increased thermal efficiency of ORC and that the designed radius is an optimum value. This study highlighted the impacts of geometric and thermodynamic parameters on scroll expanders.

  18. Performance Estimation of Organic Rankine Cycle by Using Soft Computing Technics

    Directory of Open Access Journals (Sweden)

    Tuğba Kovacı

    2017-10-01

    Full Text Available In this study, the thermal efficiency values of Organic Rankine cycle system were estimated depending on the condenser temperature and the evaporator temperatures values by adaptive network fuzzy interference system (ANFIS and artificial neural networks system (ANN. Organic Rankine cycle (ORC fluids of R365-mfc and SES32 were chosen to evaluate as the system fluid. The performance values of ANN and ANFIS models are compared with actual values. The R2 values are determined between 0.97 and 0.99 for SES36 and R365-mfc, and this is satisfactory. Although it was observed that both ANN and ANFIS models obtained a good statistical prediction performance through coefficient of determination variance, the accuracies of ANN predictions were usually imperceptible better than those of ANFIS predictions.

  19. Instability of a two-step Rankine vortex in a reduced gravity QG model

    Energy Technology Data Exchange (ETDEWEB)

    Perrot, Xavier [Laboratoire de Météorologie Dynamique, Ecole Normale Supérieure, 24 rue Lhomond, F-75005 Paris (France); Carton, Xavier, E-mail: xperrot@lmd.ens.fr, E-mail: xcarton@univ-brest.fr [Laboratoire de Physique des Océans, Université de Bretagne Occidentale, 6 avenue Le Gorgeu, F-29200 Brest (France)

    2014-06-01

    We investigate the stability of a steplike Rankine vortex in a one-active-layer, reduced gravity, quasi-geostrophic model. After calculating the linear stability with a normal mode analysis, the singular modes are determined as a function of the vortex shape to investigate short-time stability. Finally we determine the position of the critical layer and show its influence when it lies inside the vortex. (papers)

  20. System and method for regulating EGR cooling using a rankine cycle

    Science.gov (United States)

    Ernst, Timothy C.; Morris, Dave

    2015-12-22

    This disclosure relates to a waste heat recovery (WHR) system and method for regulating exhaust gas recirculation (EGR) cooling, and more particularly, to a Rankine cycle WHR system and method, including a recuperator bypass arrangement to regulate EGR exhaust gas cooling for engine efficiency improvement and thermal management. This disclosure describes other unique bypass arrangements for increased flexibility in the ability to regulate EGR exhaust gas cooling.

  1. Parametric Adjustments to the Rankine Vortex Wind Model for Gulf of Mexico Hurricanes

    Science.gov (United States)

    2012-11-01

    2012 4. TITLE AND SUBTITLE Parametric Adjustments to the Rankine Vortex Wind Model for Gulf of Mexico Hurricanes 5a. CONTRACT NUMBER 5b. GRANT ...may be used to construct spatially varying wind fields for the GOM region (e.g., Thompson and Cardone [12]), but this requires using a complicated...Storm Damage Reduc- tion, and Dredging Operations and Environmental Research (DOER). The USACE Headquarters granted permission to publish this paper

  2. Energy and exergy analysis of integrated system of ammonia–water Kalina–Rankine cycle

    International Nuclear Information System (INIS)

    Chen, Yaping; Guo, Zhanwei; Wu, Jiafeng; Zhang, Zhi; Hua, Junye

    2015-01-01

    The integrated system of AWKRC (ammonia–water Kalina–Rankine cycle) is a novel cycle operated on KC (Kalina cycle) for power generation in non-heating seasons and on AWRC (ammonia–water Rankine cycle) for cogeneration of power and heating water in winter. The influences of inlet temperatures of both heat resource and cooling water on system efficiencies were analyzed based on the first law and the second law of thermodynamics. The calculation is based on following conditions that the heat resource temperature keeps 300 °C, the cooling water temperature for the KC or AWRC is respectively 25 °C or 15 °C; and the temperatures of heating water and backwater are respectively 90 °C and 40 °C. The results show that the evaluation indexes of the power recovery efficiency and the exergy efficiency of KC were respectively 18.2% and 41.9%, while the composite power recovery efficiency and the composite exergy efficiency of AWRC are respectively 21.1% and 43.0% accounting both power and equivalent power of cogenerated heating capacity, including 54.5% heating recovery ratio or 12.4% heating water exergy efficiency. The inventory flow diagrams of both energy and exergy gains and losses of the components operating on KC or AWRC are also demonstrated. - Highlights: • An integrated system of AWKRC (ammonia–water Kalina–Rankine cycle) is investigated. • NH_3–H_2O Rankine cycle is operated for cogenerating power and heating-water in winter. • Heating water with 90 °C and capacity of 54% total reclaimed heat load is cogenerated. • Kalina cycle is operated for power generation in other seasons with high efficiency. • Energy and exergy analysis draw similar results in optimizing the system parameters.

  3. Stand-Alone Solar Organic Rankine Cycle Water Pumping System and Its Economic Viability in Nepal

    OpenAIRE

    Suresh Baral; Kyung Chun Kim

    2015-01-01

    The current study presents the concept of a stand-alone solar organic Rankine cycle (ORC) water pumping system for rural Nepalese areas. Experimental results for this technology are presented based on a prototype. The economic viability of the system was assessed based on solar radiation data of different Nepalese geographic locations. The mechanical power produced by the solar ORC is coupled with a water pumping system for various applications, such as drinking and irrigation. The thermal ef...

  4. Thermo- economical consideration of Regenerative organic Rankine cycle coupling with the absorption chiller systems incorporated in the trigeneration system

    International Nuclear Information System (INIS)

    Anvari, Simin; Taghavifar, Hadi; Parvishi, Alireza

    2017-01-01

    Highlights: • A new trigeneration cycle was studied from a new viewpoint of exergoeconomic and thermodynamic. • Organic Rankine and refrigeration cycles are used for recovery waste heat of cogeneration system. • Application of trigeneration cycles is advantageous in economical and thermodynamic aspects. - Abstract: In this paper, a combined cooling, heating and power cycle is proposed consisting of three sections of gas turbine and heat recovery steam generator cycle, Regenerative organic Rankine cycle, and absorption refrigeration cycle. This trigeneration cycle is subjected to a thorough thermodynamic and exergoeconomic analysis. The principal goal followed in the investigation is to address the thermodynamic and exergoeconomic of a trigeneration cycle from a new prospective such that the economic and thermodynamic viability of incorporating Regenerative organic Rankine cycle, and absorption refrigeration cycle to the gas turbine and heat recovery steam generator cycle is being investigated. Thus, the cost-effectiveness of the introduced method can be studied and further examined. The results indicate that adding Regenerative organic Rankine cycle to gas turbine and heat recovery steam generator cycle leads to 2.5% increase and the addition of absorption refrigeration cycle to the gas turbine and heat recovery steam generator/ Regenerative Organic Rankine cycle would cause 0.75% increase in the exergetic efficiency of the entire cycle. Furthermore, from total investment cost of the trigeneration cycle, only 5.5% and 0.45% results from Regenerative organic Rankine cycle and absorption refrigeration cycles, respectively.

  5. Thermodynamic analysis of high-temperature regenerative organic Rankine cycles using siloxanes as working fluids

    International Nuclear Information System (INIS)

    Fernandez, F.J.; Prieto, M.M.; Suarez, I.

    2011-01-01

    A recent novel adjustment of the Span-Wagner equation of state for siloxanes, used as working fluids in high-temperature organic Rankine cycles, is applied in a mathematical model to solve cycles under several working conditions. The proposed scheme includes a thermo-oil intermediate heat circuit between the heat source and the organic Rankine cycle. Linear and cyclic siloxanes are assayed in saturated, superheated and supercritical cycles. The cycle includes an internal heat exchanger (regenerative cycle), although a non-regenerative scheme is also solved. In the first part of the study, a current of combustion gases cooled to close to their dew point temperature is taken as the reference heat source. In the second part, the outlet temperature of the heat source is varied over a wide range, determining appropriate fluids and schemes for each thermal level. Simple linear (MM, MDM) siloxanes in saturated regenerative schemes show good efficiencies and ensure thermal stability of the working fluid. -- Highlights: → Organic Rankine cycles with polymethylsiloxanes as working fluids were modelled. → The cycle scheme is regenerative and includes an intermediate heat transfer fluid. → The fluid properties were calculated by means of the Span-Wagner equation of state. → Vapour conditions to the expander and source thermal level were analysed. → Siloxanes MM, MDM and D 4 under saturated conditions were the best options.

  6. Design of a Rankine cycle operating with a passive turbine multi fluid

    Energy Technology Data Exchange (ETDEWEB)

    Placco, Guilherme M., E-mail: guilhermeplacco@gmail.com [Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, SP (Brazil); Guimarães, Lamartine N.F., E-mail: guimarae@ieav.cta.br [Instituto de Estudo Avançados (CTA/IEAV), São José dos Campos, SP, (Brazil); Santos, Gabriela S. B., E-mail: siqueira.gsb@gmail.com [Universidade Paulista (UNIP), São José dos Campos, SP (Brazil)

    2017-07-01

    The Institute of Advanced Studies - IEAv, has been conducting a project called TERRA - 'Fast Advanced Reactors Technology', which aims to study the effects on the working of a Rankine cycle operating with a Multi Fluid Passive Turbine - TPMF. This turbine has the main characteristic operate bladeless using discs arranged in parallel along a rotating axis. After a thorough literature search, we have not found a previous operating Rankine cycle with this kind of turbine. Thus, the work presented here, began its development with few guidelines to follow. It will be presented, of a sucint way, of the design of the parts that makes up a Rankine cycle; the boundary conditions of the cycle; Data acquisition system; the development schedule; assembly of the components; some associated costs and project management. Experimental results thermal conduction through the cycle; the results of net power generated by the turbine and a comparison between thermal energy to mechanical energy in the turbine (efficiency curve). (author)

  7. Design of a Rankine cycle operating with a passive turbine multi fluid

    International Nuclear Information System (INIS)

    Placco, Guilherme M.; Guimarães, Lamartine N.F.; Santos, Gabriela S. B.

    2017-01-01

    The Institute of Advanced Studies - IEAv, has been conducting a project called TERRA - 'Fast Advanced Reactors Technology', which aims to study the effects on the working of a Rankine cycle operating with a Multi Fluid Passive Turbine - TPMF. This turbine has the main characteristic operate bladeless using discs arranged in parallel along a rotating axis. After a thorough literature search, we have not found a previous operating Rankine cycle with this kind of turbine. Thus, the work presented here, began its development with few guidelines to follow. It will be presented, of a sucint way, of the design of the parts that makes up a Rankine cycle; the boundary conditions of the cycle; Data acquisition system; the development schedule; assembly of the components; some associated costs and project management. Experimental results thermal conduction through the cycle; the results of net power generated by the turbine and a comparison between thermal energy to mechanical energy in the turbine (efficiency curve). (author)

  8. On the Rankin-Selberg method for higher genus string amplitudes

    CERN Document Server

    Florakis, Ioannis

    2017-01-01

    Closed string amplitudes at genus $h\\leq 3$ are given by integrals of Siegel modular functions on a fundamental domain of the Siegel upper half-plane. When the integrand is of rapid decay near the cusps, the integral can be computed by the Rankin-Selberg method, which consists of inserting an Eisenstein series $E_h(s)$ in the integrand, computing the integral by the orbit method, and finally extracting the residue at a suitable value of $s$. String amplitudes, however, typically involve integrands with polynomial or even exponential growth at the cusps, and a renormalization scheme is required to treat infrared divergences. Generalizing Zagier's extension of the Rankin-Selberg method at genus one, we develop the Rankin-Selberg method for Siegel modular functions of degree 2 and 3 with polynomial growth near the cusps. In particular, we show that the renormalized modular integral of the Siegel-Narain partition function of an even self-dual lattice of signature $(d,d)$ is proportional to a residue of the Langla...

  9. Performance analysis of double organic Rankine cycle for discontinuous low temperature waste heat recovery

    International Nuclear Information System (INIS)

    Wang Dongxiang; Ling Xiang; Peng Hao

    2012-01-01

    This research proposes a double organic Rankine cycle for discontinuous waste heat recovery. The optimal operation conditions of several working fluids have been calculated by a procedure employing MATLAB and REFPROP. The influence of outlet temperature of heat source on the net power output, thermal efficiency, power consumption, mass flow rate, expander outlet temperature, cycle irreversibility and exergy efficiency at a given pinch point temperature difference (PPTD) has been analyzed. Pinch point analysis has also been employed to obtain a thermodynamic understanding of the ORC performance. Of all the working fluids investigated, some performances between each working fluid are rather similar. For a fixed low temperature heat source, the optimal operation condition should be mainly determined by the heat carrier of the heat source, and working fluids have limited influence. Lower outlet temperature of heat source does not always mean more efficient energy use. Acetone exhibits the least exergy destruction, while R245fa possesses the maximal exergy efficiency at a fixed PPTD. Wet fluids exhibit lower thermal efficiency than the others with the increasing of PPTD at a fixed outlet temperature of heat source. Dry and isentropic fluids offer attractive performance. - Highlights: ► We propose a double organic Rankine cycle for discontinuous waste heat recovery. ► Performance of organic Rankine cycle (ORC) is analyzed by pinch point analysis. ► The heat carrier of the heat source determines ORC optimal operation condition. ► Design of ORC heat exchangers prefers lower pinch point temperature difference.

  10. Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

    Directory of Open Access Journals (Sweden)

    Bing Hu

    2014-01-01

    Full Text Available To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m−2 and 7.61 kg m−2 day−1 at the generation temperature of 140°C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker.

  11. Technical and economic study of Stirling and Rankine cycle bottoming systems for heavy truck diesel engines

    Science.gov (United States)

    Kubo, I.

    1987-01-01

    Bottoming cycle concepts for heavy duty transport engine applications were studied. In particular, the following tasks were performed: (1) conceptual design and cost data development for Stirling systems; (2) life-cycle cost evaluation of three bottoming systems - organic Rankine, steam Rankine, and Stirling cycles; and (3) assessment of future directions in waste heat utilization research. Variables considered for the second task were initial capital investments, fuel savings, depreciation tax benefits, salvage values, and service/maintenance costs. The study shows that none of the three bottoming systems studied are even marginally attractive. Manufacturing costs have to be reduced by at least 65%. As a new approach, an integrated Rankine/Diesel system was proposed. It utilizes one of the diesel cylinders as an expander and capitalizes on the in-cylinder heat energy. The concept eliminates the need for the power transmission device and a sophisticated control system, and reduces the size of the exhaust evaporator. Results of an economic evaluation indicate that the system has the potential to become an attractive package for end users.

  12. A LVDT conditioner for the beam profile monitors of the AmPS

    International Nuclear Information System (INIS)

    Es, J.T. van; Trigt, J.H. van.

    1991-01-01

    A LVDT (Linear Variable Differential Transformer) is a transducer for localization. Because of its applied materials, its construction and the absence of bearings etc. the instrument is suitable to be applied in locations where radioactive radiation is present. In order to obtain information about the position of the iron core in the transducer, a conditioner is needed. In 1977 by Digel a conditioner has been developed for the beam profile monitors (moving wire) of MEA because the 'market' could not meet the requirements then. Nowadays the 'market' offers i.c.'s which can take over the work of the Eurocard developed then. Digel has investigated them in order to see if they are applicable for the beam profile monitors of AmPS. (author). 5 refs.; 7 figs.; 13 tabs

  13. Dynamic modeling of brushless dc motor-power conditioner unit for electromechanical actuator application

    Science.gov (United States)

    Demerdash, N. A.; Nehl, T. W.

    1979-01-01

    A comprehensive digital model for the analysis of the dynamic-instantaneous performance of a power conditioner fed samarium-cobalt permanent magnet brushless DC motor is presented. The particular power conditioner-machine system at hand, for which this model was developed, is a component of an actual prototype electromechanical actuator built for NASA-JSC as a possible alternative to hydraulic actuators as part of feasibility studies for the shuttle orbiter applications. Excellent correlation between digital simulated and experimentally obtained performance data was achieved for this specific prototype. This is reported on in this paper. Details of one component of the model, its applications and the corresponding results are given in this paper.

  14. Effect of Agri-SC as a soil conditioner on runoff, soil loss and crust ...

    African Journals Online (AJOL)

    This study was carried out to determine the effect of Agri-SC as a soil conditioner at different doses (0, 18.50, 37.00, 55.50 and 74.00 l ha-1) on water erosion and crust strengths under laboratory conditions with three replicates. The Agri-SC solutions were sprayed and two consecutive simulated rainfalls (60 mm h-1) were ...

  15. Different Modeling Aspects and Energy Systems of Unified Power Quality Conditioner (UPQC): An Overview

    OpenAIRE

    Deshpande, Payal; Shrivastava, Amit; Khare, Anula

    2016-01-01

    Abstract: This paper highlights the classification of Unified Power Quality Conditioner (UPQC) to enhance the electric power quality at distribution levels. It aims to present a broad overview on the different possible UPQC system configurations for single-phase (two-wire) and three-phase (three-wire and four-wire) networks, different modeling approaches and backup energy storages, and recent developments in the field. It is noticed that several researchers have used different names for the U...

  16. Capacity enhancement and flexible operation of unified power quality conditioner in smart and microgrid network

    OpenAIRE

    Khadem, Shafiuzzaman Khan; Basu, Malabika; Conlon, Michael F.

    2018-01-01

    This paper presents a new approach to design Unified Power Quality Conditioner (UPQC), termed as distributed UPQC (D-UPQC), for smart or microgrid network where capacity enhancement and flexible operation of UPQC are the important issues. This paper shows the possibility of capacity enhancement and operational flexibility of UPQC through a coordinated control of existing resources. This UPQC consists of a single unit series active power filter (APFse) and multiple shunt APF (APFsh) units in a...

  17. Physical Properties of Sandy Soil Affected by Soil Conditioner Under Wetting and Drying cycles

    Directory of Open Access Journals (Sweden)

    M.I. Choudhary

    1998-06-01

    Full Text Available Information on the effectiveness of soil conditioners over a prolonged period is scarce. A laboratory experiment was undertaken to evaluate the effectiveness of a polyacrylamide (Broadleaf P4 soil conditioner on the physical properties of sandy soil subjected to wetting and drying cycles. Four concentrations of Broadleaf P4 0, 0.2, 0.4, and 0.6% on dry weight basis were uniformly mixed with a calcareous sandy soil. Addition of Broadleaf P4 to sandy soil increased the water holding capacity, decreased the bulk density, and increased the porosity and void ratio at 0 and 16 wetting and drying cycles. The coefficient of linear extensibility increased considerably with increasing concentrations of the polymer. The addition of polymer at 0 and 16 cycles increased considerably the retention and availability of water in sandy soil. Saturated hydraulic conductivity decreased with increasing concentrations of Broadleaf P4 whereas unsaturated hydraulic conductivity at 0 and 16 cycles showed an increase with increasing soil moisture contents. After I6 wetting and drying cycles, the capacity of the soil to hold water was lost on average by 15.8% when compared to the 0 wetting and drying cycle. The effectiveness of the soil conditioner on bulk density, coefficient of linear extensibility, available water and saturated hydraulic conductivity was reduced on average by 14.1, 24.5, 21.l and 53.7% respectively. The significant changes in soil properties between 0 and 16 cycles suggested that the effectiveness of the conditioner decreased with the application of wetting and drying cycles. However, its effect was still considerable when compared to untreated soil under laboratory conditions.

  18. Band extension in digital methods of transfer function determination – signal conditioners asymmetry error corrections

    Directory of Open Access Journals (Sweden)

    Zbigniew Staroszczyk

    2014-12-01

    Full Text Available [b]Abstract[/b]. In the paper, the calibrating method for error correction in transfer function determination with the use of DSP has been proposed. The correction limits/eliminates influence of transfer function input/output signal conditioners on the estimated transfer functions in the investigated object. The method exploits frequency domain conditioning paths descriptor found during training observation made on the known reference object.[b]Keywords[/b]: transfer function, band extension, error correction, phase errors

  19. The effect of sealer and water storage on permanent deformation of a tissue conditioner

    Directory of Open Access Journals (Sweden)

    Rafael Leonardo Xediek Consani

    2008-01-01

    Full Text Available When they are used to treat inflamed, irritated, or distorted tissues or in implant therapy, tissue conditioners are required to function over relatively long time periods. Purpose: This in vitro study evaluated the effect of sealer and water storage on permanent deformation one tissue conditioner. Material and methods: Sixty cylindrically-shaped specimens (12.7-mm diameter 3 19.0-mm height were used for the deformation tests. Specimens were divided into 6 test groups (n=10, according to surface treatment (sealer application and water storage (1 hour, 1 week and 2 weeks. Permanent deformation, expressed as a percent (%, was determined using ADA specification no. 18. Data were examined a analysis of variance and a Mann-Whitney test (a= 0.05. Results: Significant differences were observed only after 1 week of water storage, for both groups. The surface treated group presented the highest permanent deformation percentage. Conclusions: This in vitro study indicated that the tissue conditioner evaluated is only useful for 1 week. After this period, the material must be replaced.

  20. Starting and stopping control on power conditioner in photovoltaic power system; Taiyoko hatsuden system ni okeru power conditioner no kido teishi seigyo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, M.; Ishihara, Y.; Todaka, T.; Harada, K. [Doshisha University, Kyoto (Japan); Oshiro, H.; Nakamura, H. [Japan Quality Assurance Organization, Tokyo (Japan)

    1997-11-25

    Studies are made about the control of the power conditioner over the maximum power point tracking (MPPT) function in a photovoltaic power generation system. The analysis is conducted by means of computer simulation into the effect of a start/stop function added to the control of MPPT and the effect on the generation of power of the setting of parameters in the start/stop function. The reduction in output power due to difference between the actual operation point and the optimum operation point is evaluated by use of a load matching correction factor. In this simulation, it is assumed that the solar cell array consists of 13 rows in 5 parallel columns, is capable of a normal output of 3.149kW, has a panel tilted at 30 degrees, and faces due south. The power conditioner is assumed to be a system rated at 3kVA, equipped with system interconnection and back flow features. As a result, it is learned that the stop voltage should be set at 180V or lower and the steady voltage near 185.5V for a good result and that there is not much need after all for the start/stop technique. 2 refs., 8 figs., 2 tabs.

  1. An Application of Green Quality Function Deployment to Designing an Air Conditioner

    OpenAIRE

    Peetam Kumar Dehariya; Dr. Devendra Singh Verma

    2015-01-01

    The paper tackles a systematic and operational approach to Green Quality Function Deployment (GQFD), a customer oriented survey based quality management system with regular improvement in product development. GQFD shows balance between product development and environmental protection. GQFD is not used to determine their attributes and their levels. GQFD captures what product developers “think” would best satisfy customer needs considering Environmental factor. This research used A...

  2. Thermodynamic, economic and thermo-economic optimization of a new proposed organic Rankine cycle for energy production from geothermal resources

    International Nuclear Information System (INIS)

    Kazemi, Neda; Samadi, Fereshteh

    2016-01-01

    Highlights: • A new cycle was designed to improve basic organic Rankine cycle performance. • Peng Robinson equation of state was used to obtain properties of working fluids. • Operating parameters were optimized with three different objective functions. • Efficiency of new organic Rankine cycle is higher than other considered cycles. • Return on investment of new cycle for Iran is more than France and America. - Abstract: The main goal of this study is to propose and investigate a new organic Rankine cycle based on three considered configurations: basic organic Rankine cycle, regenerative organic Rankine cycle and two-stage evaporator organic Rankine cycle in order to increase electricity generation from geothermal sources. To analyze the considered cycles’ performance, thermodynamic (energy and exergy based on the first and second laws of thermodynamics) and economic (specific investment cost) models are investigated. Also, a comparison of cycles modeling results is carried out in optimum conditions according to different optimization which consist thermodynamic, economic and thermo-economic objective functions for maximizing exergy efficiency, minimizing specific investment cost and applying a multi-objective function in order to maximize exergy efficiency and minimize specific investment cost, respectively. Optimized operating parameters of cycles include evaporators and regenerative temperatures, pinch point temperature difference of evaporators and degree of superheat. Furthermore, Peng Robinson equation of state is used to obtain thermodynamic properties of isobutane and R123 which are selected as dry and isentropic working fluids, respectively. The results of optimization indicate that, thermal and exergy efficiencies increase and exergy destruction decrease especially in evaporators for both working fluids in new proposed organic Rankine cycle compared to the basic organic Rankine cycle. Moreover, the amount of specific investment cost in new

  3. Air Force Research Laboratory Success Stories. A Review of 2003

    Science.gov (United States)

    2003-01-01

    or non-NBC mode. The ECU can act as either a heater or an air conditioner and can be operated with a remote control. Compared to previous models...separation system, PSC is developing a motorized activation mechanism. Once completed, this will allow for virtually unlimited testing of the actual...stories in this book or on the CD-ROM, or for other technical activities in the Air Force Research Laboratory, contact TECH CONNECT at (800) 203-6451

  4. Sodium fast reactors energy conversion systems. Na-CO2 interaction. Comparison with Na-water interaction of conventional water Rankine cycle

    International Nuclear Information System (INIS)

    Latge, Christian; Simon, Nicole

    2006-01-01

    The Sodium Fast Reactor is a very promising candidate for the development of Fast Neutron Reactors. It is well known owing to its wide development since the 1950's, throughout all countries involved in the development of nuclear power plants. The development of Sodium-cooled fast neutron reactors is possible due to its very attractive sodium, nuclear, physical and even some of its chemical properties. Nevertheless, the operational feedback has shown that the concept has several drawbacks: difficulties for In-Service Inspection and Repair operations due to the sodium opacity and possible detrimental effects of its reactivity with air and water when the heat conversion is performed with a conventional Rankine cycle. Moreover, the various design projects have shown some difficulties in enhancing its competitiveness with regards to existing NPPs without any new innovative options, i.e. the possibility of suppressing the intermediate circuits and/or the development of an optimized energy conversion system. The Supercritical CO 2 Brayton Cycle option for the energy conversion has been widely suggested because of its high thermodynamic efficiency (over 40%), its potential compactness of the Balance Of Plant equipment due to the small-sized turbo machinery system, and for its applicability to both Direct or Indirect Cycle (Na, PbBi, He) assuming the hypothesis that the Supercritical CO 2 -Na interaction has less serious potential consequences than sodium-water consequences in the conventional Rankine cycle. Within the framework of the SMFR (Small Modular Fast Reactor) project, developed jointly by Argonne National Laboratory (ANL-USA), the 'Commissariat a l'Energie Atomique' (CEA) and Japan Atomic Energy Agency (JAEA, formerly Japan Nuclear Cycle development), this option has been selected and investigated. This paper deals with the study of the interaction between Na and CO 2 , based on a literature review: the result of this study will allow the definition of R and D

  5. Comparison between regenerative organic Rankine cycle (RORC) and basic organic Rankine cycle (BORC) based on thermoeconomic multi-objective optimization considering exergy efficiency and levelized energy cost (LEC)

    International Nuclear Information System (INIS)

    Feng, Yongqiang; Zhang, Yaning; Li, Bingxi; Yang, Jinfu; Shi, Yang

    2015-01-01

    Highlights: • The thermoeconomic comparison of regenerative RORC and BORC is investigated. • The Pareto frontier solution with bi-objective compares with the corresponding single-objective solutions. • The three-objective optimization of the RORC and BORC is studied. • The RORC owns 8.1% higher exergy efficiency and 21.1% more LEC than the BORC under the Pareto-optimal solution. - Abstract: Based on the thermoeconomic multi-objective optimization by using non-dominated sorting genetic algorithm (NSGA-II), considering both thermodynamic performance and economic factors, the thermoeconomic comparison of regenerative organic Rankine cycles (RORC) and basic organic Rankine cycles (BORC) are investigated. The effects of five key parameters including evaporator outlet temperature, condenser temperature, degree of superheat, pinch point temperature difference and degree of supercooling on the exergy efficiency and levelized energy cost (LEC) are examined. Meanwhile, the Pareto frontier solution with bi-objective for maximizing exergy efficiency and minimizing LEC is obtained and compared with the corresponding single-objective solutions. Research demonstrates that there is a significant negative correlation between thermodynamic performance and economic factors. And the optimum exergy efficiency and LEC for the Pareto-optimal solution of the RORC are 55.97% and 0.142 $/kW h, respectively, which are 8.1% higher exergy efficiency and 21.1% more LEC than that of the BORC under considered condition. Highest exergy and thermal efficiencies are accompanied with lowest net power output and worst economic performance. Furthermore, taking the net power output into account, detailed investigation on the three-objective optimization for maximizing exergy efficiency, maximizing net power output and minimizing LEC is discussed

  6. Performance improvement of air-cooled refrigeration system by using evaporatively cooled air condenser

    Energy Technology Data Exchange (ETDEWEB)

    Hajidavalloo, E.; Eghtedari, H. [Mechanical Engineering Department, Shahid Chamran University, Golestan St., Ahvaz (Iran)

    2010-08-15

    Increasing the coefficient of performance of air conditioner with air-cooled condenser is a challenging problem especially in area with very hot weather conditions. Application of evaporatively cooled air condenser instead of air-cooled condenser is proposed in this paper as an efficient way to solve the problem. An evaporative cooler was built and coupled to the existing air-cooled condenser of a split-air-conditioner in order to measure its effect on the cycle performance under various ambient air temperatures up to 49 C. Experimental results show that application of evaporatively cooled air condenser has significant effect on the performance improvement of the cycle and the rate of improvement is increased as ambient air temperature increases. It is also found that by using evaporatively cooled air condenser in hot weather conditions, the power consumption can be reduced up to 20% and the coefficient of performance can be improved around 50%. More improvements can be expected if a more efficient evaporative cooler is used. (author)

  7. Parametric analysis of blade configurations for a small-scale nitrogen axial expander with hybrid open-Rankine cycle

    International Nuclear Information System (INIS)

    Khalil, Khalil M.; Mahmoud, S.; Al- Dadah, R.K.; AL-Mousawi, Fadhel

    2017-01-01

    Highlights: • Develop cryogenic energy storage and efficient recovery technologies. • Integrate small scale closed and cryogenic open-Rankine cycles. • Investigate blade configuration on small-scale axial expander performance. • Use mean line and 3D CFD simulation for expander robust design procedure. • Predict effects of expander efficiency on hybrid open-Rankine cycle efficiency. - Abstract: During the last few decades, low-grade energy sources such as solar energy and wind energy have enhanced the efficiency of the advanced renewable technologies such as the combined Rankine. Furthermore, these heat sources have contributed to a reduction in CO2 emissions. To address the problem of the intermittent nature of such renewable sources, energy storage technologies have been used to balance the power demand and smooth out energy production. In this study, the direct expansion cycle (open Rankine cycle) is combined with a closed loop Rankine cycle to generate power more efficiently and address the problem of discontinuous renewable sources. The topping cycle of this system is a closed looped Rankine cycle and propane is used as a hydrocarbon fluid, while the direct expansion cycle is considered to be the bottoming cycle utilizing nitrogen as cryogen fluid. Small-scale expanders are the most important parts in many thermal power cycles, such as the Rankine cycle, due to the significant impact on the overall cycle’s efficiency. This work investigated the effect of using a number of blade configurations on the cycle’s performance using a small-scale axial expander. A three-dimensional Computational Fluid Dynamic (CFD) simulation was used to examine four proposed blade configurations (lean, sweep, twist, bowl) with three hub- tip ratios (0.83, 0.75, 0.66). In addition, a numerical simulation model of the hybrid open expansion- Rankine cycle was designed and modeled in order to estimate the cycle’s performance. The results show that when the expander

  8. Proposal of a combined heat and power plant hybridized with regeneration organic Rankine cycle: Energy-Exergy evaluation

    International Nuclear Information System (INIS)

    Anvari, Simin; Jafarmadar, Samad; Khalilarya, Shahram

    2016-01-01

    Highlights: • A new thermodynamic cogeneration system is proposed. • Energy and exergy analysis of the considered cycle were performed. • An enhancement of 2.6% in exergy efficiency compared to that of baseline cycle. - Abstract: Among Rankine cycles (simple, reheat and regeneration), regeneration organic Rankine cycle demonstrates higher efficiencies compared to other cases. Consequently, in the present work a regeneration organic Rankine cycle has been utilized to recuperate gas turbine’s heat using heat recovery steam generator. At first, this cogeneration system was subjected to energy and exergy analysis and the obtained results were compared with that of investigated cogeneration found in literature (a cogeneration system in which a reheat organic Rankine cycle for heat recuperation of gas turbine cycle was used with the aid of heat recovery steam generator). Results indicated that the first and second thermodynamic efficiencies in present cycle utilizing regeneration cycle instead of reheat cycle has increased 2.62% and 2.6%, respectively. In addition, the effect of thermodynamic parameters such as combustion chamber’s inlet temperature, gas turbine inlet temperature, evaporator and condenser temperature on the energetic and exergetic efficiencies of gas turbine-heat recovery steam generator cycle and gas turbine-heat recovery steam generator cycle with regeneration organic Rankine cycle was surveyed. Besides, parametric analysis shows that as gas turbine and combustion chamber inlet temperatures increase, energetic and exergetic efficiencies tend to increase. Moreover, once condenser and evaporator temperature raise, a slight decrement in energetic and exergetic efficiency is expected.

  9. Exergy analysis and parameter study on a novel auto-cascade Rankine cycle

    International Nuclear Information System (INIS)

    Bao, Junjiang; Zhao, Li

    2012-01-01

    A novel auto-cascade Rankine cycle (ARC) is proposed to reduce thermodynamics irreversibility and improve energy utilization. Like the Kalina cycle, the working fluid for the ARC is zeotropic mixture, which can improve the system efficiency due to the temperature slip that zeotropic mixtures exhibit during phase change. Unlike the Kalina cycle, two expanders are included in the ARC rather than a expander and a throttling valve in the Kalina cycle, which means more work can be obtained. Using the exhaust gas as the heat source and water as the heat sink, a program is written by Matlab 2010a to carry out exergy analysis and parameter study on the ARC. Results show that the R245fa mass fraction in the primary circuit exists an optimum value with respect to the minimum total cycle irreversibility. The largest exergy loss occurs in evaporator, followed by the superheater, condenser, regenerator and IHE (Internal heat exchanger). As the R245fa mass fraction increases, the exergy losses of different components vary diversely. With the evaporation pressure rises, the total cycle irreversibility decreases and work output increases. Separator temperature has a greater influence on the system performance than superheating temperature. Compared with ORC (organic Rankine cycle) and Kalina cycle in the literature, the ARC has proven to be thermodynamically better. -- Highlights: ► We have proposed a novel auto-cascade Rankine cycle (ARC) system. ► The zeotropic mixture Isopentane/R245fa is employed in this system. ► Exergy analysis and parameter study on the ARC are presented. ► Compared with ORC and Kalina cycle in the literature, the ARC has proven to be thermodynamically better.

  10. A synthesis/design optimization algorithm for Rankine cycle based energy systems

    International Nuclear Information System (INIS)

    Toffolo, Andrea

    2014-01-01

    The algorithm presented in this work has been developed to search for the optimal topology and design parameters of a set of Rankine cycles forming an energy system that absorbs/releases heat at different temperature levels and converts part of the absorbed heat into electricity. This algorithm can deal with several applications in the field of energy engineering: e.g., steam cycles or bottoming cycles in combined/cogenerative plants, steam networks, low temperature organic Rankine cycles. The main purpose of this algorithm is to overcome the limitations of the search space introduced by the traditional mixed-integer programming techniques, which assume that possible solutions are derived from a single superstructure embedding them all. The algorithm presented in this work is a hybrid evolutionary/traditional optimization algorithm organized in two levels. A complex original codification of the topology and the intensive design parameters of the system is managed by the upper level evolutionary algorithm according to the criteria set by the HEATSEP method, which are used for the first time to automatically synthesize a “basic” system configuration from a set of elementary thermodynamic cycles. The lower SQP (sequential quadratic programming) algorithm optimizes the objective function(s) with respect to cycle mass flow rates only, taking into account the heat transfer feasibility constraint within the undefined heat transfer section. A challenging example of application is also presented to show the capabilities of the algorithm. - Highlights: • Energy systems based on Rankine cycles are used in many applications. • A hybrid algorithm is proposed to optimize the synthesis/design of such systems. • The topology of the candidate solutions is not limited by a superstructure. • Topology is managed by the genetic operators of the upper level algorithm. • The effectiveness of the algorithm is proved in a complex test case

  11. Thermal and economic analyses of a compact waste heat recovering system for the marine diesel engine using transcritical Rankine cycle

    International Nuclear Information System (INIS)

    Yang, Min-Hsiung

    2015-01-01

    Graphical abstract: Schematic diagram of the CWHRS for a marine diesel engine. - Highlights: • The economic optimization of a CWHRS of a marine engine is investigated. • The environmental protection refrigerant, R1234yf is used as the working fluid of the TRC system. • The optimal analysis and comparison of three models for waste heat recovering have been carried out. • The optimization of payback periods, CO_2 emission reducing and diesel oil saving are reported. - Abstract: The aim of this study is to investigate the economic performance of a novel compact waste heat recovering system for the marine diesel engine. The transcritical Rankine cycle is employed to convert the waste heat resources to useful work with R1234yf. To evaluate the utilizing efficiency and economic performance of waste heat resources, which are exhaust gas, cylinder cooling water and scavenge air cooling water, three operating models of the system are investigated and compared. The levelized energy cost, which represents the total cost per kilo-watt power, is employed to evaluate the economic performance of the system. The economic optimization and its corresponding optimal parameters of each operating model in the compact waste heat recovering system are obtained theoretically. The results show that the minimal levelized energy cost of the proposed system operated in Model I is the lowest of the three models, and then are Model II and Model III, which are 2.96% and 9.36% lower for, respectively. Similarly, the CO_2 emission reduction is the highest for Model I of the three models, and 21.6% and 30.1% lower are obtained for Model II and Model III, respectively. The compact waste heat recovering system operated in Model I has superiority on the payback periods and heavy diesel oil saving over the others. Finally, the correlations using specific work of working fluid and condensation temperature as parameters are proposed to assess the optimal conditions in economic performance

  12. Thermodynamic analysis of a novel dual-loop organic Rankine cycle for engine waste heat and LNG cold

    International Nuclear Information System (INIS)

    Sung, Taehong; Kim, Kyung Chun

    2016-01-01

    Highlights: • A novel dual ORC system is designed for engine waste heat and LNG cold. • Exhaust gas and jacket cooling water are considered as heat sources. • LNG and boil-off gas are considered as heat sinks. • ORC loops are optimized to produce the maximum net work output. - Abstract: The marine sector produces a large portion of total air pollution, so the emissions of the engines used must be improved. This can be achieved using a new eco-friendly engine and waste-heat recovery system. A dual-fuel (DF) engine has been introduced for LNG carriers that is eco-friendly and has high thermal efficiency since it uses natural gas as fuel. The thermal efficiency could be further improved with the organic Rankine cycle (ORC). A novel dual-loop ORC system was designed for DF engines. The upper ORC loop recovers waste heat from the exhaust gas, and the bottom ORC loop recovers waste heat from the jacket cooling water and LNG cold. Both ORC loops were optimized to produce the maximum net work output. The optimum simple dual-loop ORC with n-pentane and R125 as working fluids produces an additional power output of 729.1 kW, which is 4.15% of the original engine output. Further system improvement studies were conducted using a recuperator and preheater, and the feasibility of using boil-off gas as a heat sink was analyzed. Optimization of the system configuration revealed that the preheater and recuperator with n-pentane and R125 as working fluids increase the maximum net work output by 906.4 kW, which is 5.17% of the original engine output.

  13. Numerical Analysis of an Organic Rankine Cycle with Adjustable Working Fluid Composition, a Volumetric Expander and a Recuperator

    Directory of Open Access Journals (Sweden)

    Peter Collings

    2017-03-01

    Full Text Available Conventional Organic Rankine Cycles (ORCs using ambient air as their coolant cannot fully utilize the greater temperature differential available to them during the colder months. However, changing the working fluid composition so its boiling temperature matches the ambient temperature as it changes has been shown to have potential to increase year-round electricity generation. Previous research has assumed that the cycle pressure ratio is able to vary without a major loss in the isentropic efficiency of the turbine. This paper investigates if small scale ORC systems that normally use positive-displacement expanders with fixed expansion ratios could also benefit from this new concept. A numerical model was firstly established, based on which a comprehensive analysis was then conducted. The results showed that it can be applied to systems with positive-displacement expanders and improve their year-round electricity generation. However, such an improvement is less than that of the systems using turbine expanders with variable expansion ratios. Furthermore, such an improvement relies on heat recovery via the recuperator. This is because expanders with a fixed expansion ratio have a relatively constant pressure ratio between their inlet and outlet. The increase of pressure ratio between the evaporator and condenser by tuning the condensing temperature to match colder ambient condition in winter cannot be utilised by such expanders. However, with the recuperator in place, the higher discharging temperature of the expander could increase the heat recovery and consequently reduce the heat input at the evaporator, increasing the thermal efficiency and the specific power. The higher the amount of heat energy transferred in the recuperator, the higher the efficiency improvement.

  14. Fluid selection for a low-temperature solar organic Rankine cycle

    International Nuclear Information System (INIS)

    Tchanche, Bertrand Fankam; Papadakis, George; Lambrinos, Gregory; Frangoudakis, Antonios

    2009-01-01

    Theoretical performances as well as thermodynamic and environmental properties of few fluids have been comparatively assessed for use in low-temperature solar organic Rankine cycle systems. Efficiencies, volume flow rate, mass flow rate, pressure ratio, toxicity, flammability, ODP and GWP were used for comparison. Of 20 fluids investigated, R134a appears as the most suitable for small scale solar applications. R152a, R600a, R600 and R290 offer attractive performances but need safety precautions, owing to their flammability.

  15. Panel cutting method: new approach to generate panels on a hull in Rankine source potential approximation

    Directory of Open Access Journals (Sweden)

    Hee-Jong Choi

    2011-12-01

    Full Text Available In the present study, a new hull panel generation algorithm, namely panel cutting method, was developed to predict flow phenomena around a ship using the Rankine source potential based panel method, where the iterative method was used to satisfy the nonlinear free surface condition and the trim and sinkage of the ship was taken into account. Numerical computations were performed to investigate the validity of the proposed hull panel generation algorithm for Series 60 (CB=0.60 hull and KRISO container ship (KCS, a container ship designed by Maritime and Ocean Engineering Research Institute (MOERI. The computational results were validated by comparing with the existing experimental data.

  16. Panel cutting method: new approach to generate panels on a hull in Rankine source potential approximation

    Science.gov (United States)

    Choi, Hee-Jong; Chun, Ho-Hwan; Park, Il-Ryong; Kim, Jin

    2011-12-01

    In the present study, a new hull panel generation algorithm, namely panel cutting method, was developed to predict flow phenomena around a ship using the Rankine source potential based panel method, where the iterative method was used to satisfy the nonlinear free surface condition and the trim and sinkage of the ship was taken into account. Numerical computations were performed to investigate the validity of the proposed hull panel generation algorithm for Series 60 (CB=0.60) hull and KRISO container ship (KCS), a container ship designed by Maritime and Ocean Engineering Research Institute (MOERI). The computational results were validated by comparing with the existing experimental data.

  17. Design and optimization of a novel organic Rankine cycle with improved boiling process

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Larsen, U.; Knudsen, Thomas

    2015-01-01

    to improve the boiling process. Optimizations are carried out for eight hydrocarbon mixtures for hot fluid inlet temperatures at 120 °C and 90 °C, using a genetic algorithm to determine the cycle conditions for which the net power output is maximized. The most promising mixture is an isobutane....../pentane mixture which, for the 90 °C hot fluid inlet temperature case, achieves a 14.5% higher net power output than an optimized organic Rankine cycle using the same mixture. Two parameter studies suggest that optimum conditions for the organic split-cycle are when the temperature profile allows the minimum...

  18. Applying the principles of thermoeconomics to the organic Rankine Cycle for low temperature waste heat recovery

    International Nuclear Information System (INIS)

    Xiao, F.; Lilun, Q.; Changsun, S.

    1989-01-01

    In this paper, thermoeconomic principle is used to study the selection of working fluids and the option of the cycle parameters in the organic Rankine cycle of low temperature waste heat recovery. The parameter ξ, the product of the ratio of waste heat recovery and real cycle thermal efficiency, is suggested as a unified thermodynamic criterion for the selection of the working fluids. The mathematical expressions are developed to determine the optimal boiling temperature and the optimal pin point temperature difference in the heat recovery exchanger by way of thermoeconomic principle

  19. A study of organic working fluids of an organic Rankine cycle for solar concentrating power plant

    International Nuclear Information System (INIS)

    Saifaoui, D.; Elmaanaoui, Y.; Faik, A.

    2014-01-01

    This work is a comparative study between four different configurations of an organic Rankine cycle (ORC) in order to find the configuration that gives the best performances. This study also made a comparison between seven organic fluids used as working fluids in the four ORC configurations. These fluids are all hydrocarbons. Then we made a parametric analysis of the results obtained in this first part. In a second part, we developed the binary mixtures of the seven pure hydrocarbons with the NIST software REFPROP 9 and we used them in our four ORC configurations. The obtained results are given and discussed. (author)

  20. Advanced Rankine and Brayton cycle power systems: Materials needs and opportunities

    Science.gov (United States)

    Grisaffe, S. J.; Guentert, D. C.

    1974-01-01

    Conceptual advanced potassium Rankine and closed Brayton power conversion cycles offer the potential for improved efficiency over steam systems through higher operating temperatures. However, for utility service of at least 100,000 hours, materials technology advances will be needed for such high temperature systems. Improved alloys and surface protection must be developed and demonstrated to resist coal combustion gases as well as potassium corrosion or helium surface degradation at high temperatures. Extensions in fabrication technology are necessary to produce large components of high temperature alloys. Long time property data must be obtained under environments of interest to assure high component reliability.

  1. Advanced Rankine and Brayton cycle power systems - Materials needs and opportunities

    Science.gov (United States)

    Grisaffe, S. J.; Guentert, D. C.

    1974-01-01

    Conceptual advanced potassium Rankine and closed Brayton power conversion cycles offer the potential for improved efficiency over steam systems through higher operating temperatures. However, for utility service of at least 100,000 hours, materials technology advances will be needed for such high temperature systems. Improved alloys and surface protection must be developed and demonstrated to resist coal combustion gases as well as potassium corrosion or helium surface degradation at high temperatures. Extensions in fabrication technology are necessary to produce large components of high temperature alloys. Long-time property data must be obtained under environments of interest to assure high component reliability.

  2. Model based control for waste heat recovery rankine cycle system in heavy duty trucks

    OpenAIRE

    Grelet, Vincent; Dufour, Pascal; Nadri, Madiha; Lemort, Vincent; Reiche, Thomas

    2015-01-01

    Driven by future emissions legislations and increase in fuel prices engine, gas heat recovering has recently attracted a lot of interest. In the past few years, a high number of studies have shown the interest of energy recovery Rankine based systems for heavy duty trucks engine compounding. Recent studies have brought a significant potential for such a system in a Heavy Duty (HD) vehicle, which can lead to a decrease in fuel consumption of about 5% [Wang et al. (2011)] and reduce engine emis...

  3. Experimental Comparison Of Working Fluids For Organic Rankine Cycle With Single-Screw Expander

    OpenAIRE

    Gusev, Sergei; Ziviani, Davide; Bell, Ian; De Paepe, Michel; van den Broek, Martijn

    2014-01-01

    This paper describes the behavior of an Organic Rankine Cycle (ORC) fed by a heat source with adaptable temperature and mass flow. For a suitable choice of working fluid, the setting of its evaporation pressure is crucial for the performance of an ORC installation. The higher the evaporation pressure, the higher the cycle efficiency on the one hand, but the lower the energy recovered from the heat source due to a higher outlet temperature on the other hand. An optimum has to be found to achie...

  4. A Novel Organic Rankine Cycle System with Improved Thermal Stability and Low Global Warming Fluids

    Directory of Open Access Journals (Sweden)

    Panesar Angad S

    2014-07-01

    Full Text Available This paper proposes a novel Organic Rankine Cycle (ORC system for long haul truck application. Rather than typical tail pipe heat recovery configurations, the proposed setup exploits the gaseous streams that are already a load on the engine cooling module. The system uses dual loops connected only by the Exhaust Gas Recirculation (EGR stream. A water blend study is conducted to identify suitable mixtures for the High Temperature (HT loop, while the Low Temperature (LT loop utilises a Low Global Warming (GWP Hydrofluoroether.

  5. Technology for industrial waste heat recovery by organic Rankine cycle systems

    Science.gov (United States)

    Cain, W. G.; Drake, R. L.; Prisco, C. J.

    1984-10-01

    The recovery of industrial waste heat and the conversion thereof to useful electric power by use of Rankine cycle systems is studied. Four different aspects of ORC technology were studied: possible destructive chemical reaction between an aluminum turbine wheel and R-113 working fluid under wheel-to-rotor rub conditions; possible chemical reaction between stainless steel or carbon steel and any of five different ORC working fluids under rotor-stator rub conditions; effects on electric generator properties of extended exposure to an environment of saturated R-113 vapor/fluid; and operational proof tests under laboratory conditions of two 1070 kW, ORC, R-113 hermetic turbogenerator power module systems.

  6. Conceptual design and analysis of a Dish-Rankine solar thermal power system

    Science.gov (United States)

    Pons, R. L.

    1980-08-01

    A Point Focusing Distributed Receiver (PFDR) solar thermal electric system which employs small Organic Rankine Cycle (ORC) engines is examined with reference to its projected technical/economic performance. With mass-produced power modules (about 100,000 per year), the projected life-cycle energy cost for an optimized no-storage system is estimated at 67 mills/kWh (Levelized Busbar Energy Cost) without the need for advanced development of any of its components. At moderate production rates (about 50 MWe/yr) system energy costs are competitive with conventional power generation systems in special remote-site types of applications.

  7. Thermal energy storage for organic Rankine cycle solar dynamic space power systems

    Science.gov (United States)

    Heidenreich, G. R.; Parekh, M. B.

    An organic Rankine cycle-solar dynamic power system (ORC-SDPS) comprises a concentrator, a radiator, a power conversion unit, and a receiver with a thermal energy storage (TES) subsystem which charges and discharges energy to meet power demands during orbital insolation and eclipse periods. Attention is presently given to the criteria used in designing and evaluating an ORC-SDPS TES, as well as the automated test facility employed. It is found that a substantial data base exists for the design of an ORC-SDPS TES subsystem.

  8. Multi-Objective Optimization of Organic Rankine Cycle Power Plants Using Pure and Mixed Working Fluids

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Kærn, Martin Ryhl; Pierobon, Leonardo

    2016-01-01

    , which is beneficial for cycle performance. On the other hand, larger heat transfer surface areas are typically required for evaporation and condensation when zeotropic mixtures are used as working fluids. In order to assess the feasibility of using zeotropic mixtures, it is, therefore, important......For zeotropic mixtures, the temperature varies during phase change, which is opposed to the isothermal phase change of pure fluids. The use of such mixtures as working fluids in organic Rankine cycle power plants enables a minimization of the mean temperature difference of the heat exchangers...

  9. Multi-objective optimization of organic Rankine cycle power plants using pure and mixed working fluids

    DEFF Research Database (Denmark)

    Andreasen, Jesper Graa; Kærn, Martin Ryhl; Pierobon, Leonardo

    2015-01-01

    For zeotropic mixtures, the temperature varies during phase change, which is opposed to the isothermalphase change of pure fluids. The use of such mixtures as working fluids in organic Rankine cyclepower plants enables a minimization of the mean temperature difference of the heat exchangers whenthe...... minimum pinch point temperature difference is kept fixed. A low mean temperature differencemeans low heat transfer irreversibilities, which is beneficial for cycle performance, but it also results inlarger heat transfer surface areas. Moreover, the two-phase heat transfer coefficients for zeotropic...

  10. Production and exploitation of thermoelectric air conditioning systems for vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Dudnik, Vladimir [Conditioner Ltd, Gagarin (Russian Federation); Skipidarov, Sergey [SCTB NORD, Moskau (Russian Federation); Rapp, Axel [Quick-Ohm Kupper und Co. GmbH, Wuppertal-Cronenberg (Germany)

    2011-07-01

    In the paper more than 10-year experience of thermoelectric devices batch manufacturing is described for the field of their obvious advantages. This field of application includes thermoelectric air conditioning systems which have shown their competitive advantage when used in vehicles of elevated vibration where compressor equipment application is difficult because of leakage of refrigerant. Energy characteristics of air conditioners for tractors, excavators, tanks, locomotive driver's cabins and cranes are described. Thermoelectric (TE) air conditioners mechanical test data as well as operation experience in vehicles are presented. It is shown that consumption of tellurium, which is a strategic component for thermoelectric materials manufacturing, may be lowered to 40 grams per 1 kW of cooling. (orig.)

  11. The system of thermoelectric air conditioning based on permeable thermoelements

    Directory of Open Access Journals (Sweden)

    Cherkez R. G.

    2009-04-01

    Full Text Available There is thermoelectric air conditioner unit on the basis of permeable cooling thermoelements presented. In thermoelectric air conditioner unit the thermoelectric effects and the Joule–Thomson effect have been used for the air stream cooling. There have been described the method of temperature distribution analysis, the determinations of energy conversion power characteristics and design style of permeable thermoelement with maximum coefficient of performance described. The results of computer analysis concerning the application of the thermoelement legs material on the basis of Bi2Te3 have shown the possibility of coefficient of performance increase by a factor of 1,6—1,7 as compared with conventional thermoelectric systems.

  12. Thermodynamic analysis of an integrated gasification solid oxide fuel cell plant combined with an organic Rankine cycle

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Rokni, Masoud; Larsen, Ulrik

    2013-01-01

    into a fixed bed gasification plant to produce syngas which fuels the combined solid oxide fuel cells e organic Rankine cycle system to produce electricity. More than a hundred fluids are considered as possible alternative for the organic cycle using non-ideal equations of state (or state-of-the-art equations......A 100 kWe hybrid plant consisting of gasification system, solid oxide fuel cells and organic Rankine cycle is presented. The nominal power is selected based on cultivation area requirement. For the considered output a land of around 0.5 km2 needs to be utilized. Woodchips are introduced...... achieved by simple and double stage organic Rankine cycle plants and around the same efficiency of a combined gasification, solid oxide fuel cells and micro gas turbine plant. © 2013 Elsevier Ltd. All rights reserved....

  13. Thermodynamic performance analysis of a coupled transcritical and subcritical organic Rankine cycle system for waste heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xi Wu [Zhejiang Ocean University, Zhejian (China); Wang, Xiao Qiong; Li, You Rong; Wu, Chun Mei [Chongqing University, Chongqing (China)

    2015-07-15

    We present a novel coupled organic Rankine cycle (CORC) system driven by the low-grade waste heat, which couples a transcritical organic Rankine cycle with a subcritical organic Rankine cycle. Based on classical thermodynamic theory, a detailed performance analysis on the novel CORC system was performed. The results show that the pressure ratio of the expander is decreased in the CORC and the selection of the working fluids becomes more flexible and abundant. With the increase of the pinch point temperature difference of the internal heat exchanger, the net power output and thermal efficiency of the CORC all decrease. With the increase of the critical temperature of the working fluid, the system performance of the CORC is improved. The net power output and thermal efficiency of the CORC with isentropic working fluids are higher than those with dry working fluids.

  14. Design of a signal conditioner for the Fermilab Magnet Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Giannelli, Pietro [Turin Polytechnic

    2012-01-01

    This thesis describes the design of a remotely-programmable signal conditioner for the harmonic measurement of accelerator magnets. A 10-channel signal conditioning circuit featuring bucking capabilities was designed from scratch and implemented to the level of the printed circuit board layout. Other system components were chosen from those available on the market. Software design was started with the definition of routine procedures. This thesis is part of an upgrade project for replacing obsolescent automated test equipment belonging to the Fermilab Magnet Test Facility. The design started with a given set of requirements. Using a top-down approach, all the circuits were designed and their expected performances were theoretically predicted and simulated. A limited prototyping phase followed. The printed circuit boards were laid out and routed using a CAD software and focusing the design on maximum electromagnetic interference immunity. An embedded board was selected for controlling and interfacing the signal conditioning circuitry with the instrumentation network. Basic low level routines for hardware access were defined. This work covered the entire design process of the signal conditioner, resulting in a project ready for manufacturing. The expected performances are in line with the requirements and, in the cases where this was not possible, approval of trade-offs was sought and received from the end users. Part I deals with the global structure of the signal conditioner and the subdivision in functional macro-blocks. Part II treats the hardware design phase in detail, covering the analog and digital circuits, the printed circuit layouts, the embedded controller and the power supply selection. Part III deals with the basic hardware-related routines to be implemented in the final software.

  15. Evaluation of a clay-based acidic bedding conditioner for dairy cattle bedding.

    Science.gov (United States)

    Proietto, R L; Hinckley, L S; Fox, L K; Andrew, S M

    2013-02-01

    This study investigated the effects of a clay-based acidic bedding conditioner on sawdust bedding pH, dry matter (DM), environmental pathogen counts, and environmental bacterial counts on teat ends of lactating dairy cows. Sixteen lactating Holstein cows were paired based on parity, days in milk, milk yield, and milk somatic cell count, and were negative for the presence of an intramammary pathogen. Within each pair, cows were randomly assigned to 1 of 2 treatments with 3-wk periods in a crossover design. Treatment groups consisted of 9 freestalls per group bedded with either untreated sawdust or sawdust with a clay-based acidic bedding conditioner, added at 3- to 4-d intervals over each 21-d period. Bedding and teat ends were aseptically sampled on d 0, 1, 2, 7, 14, and 21 for determination of environmental bacterial counts. At the same time points, bedding was sampled for DM and pH determination. The bacteria identified in the bedding material were total gram-negative bacteria, Streptococcus spp., and coliform bacteria. The bacteria identified on the teat ends were Streptococcus spp., coliform bacteria, and Klebsiella spp. Teat end score, milk somatic cell count, and intramammary pathogen presence were measured weekly. Bedding and teat cleanliness, environmental high and low temperatures, and dew point data were collected daily. The bedding conditioner reduced the pH, but not the DM, of the sawdust bedding compared with untreated sawdust. Overall environmental bacterial counts in bedding were lower for treated sawdust. Total bacterial counts in bedding and on teat ends increased with time over both periods. Compared with untreated sawdust, the treated bedding had lower counts of total gram-negative bacteria and streptococci, but not coliform counts. Teat end bacterial counts were lower for cows bedded on treated sawdust for streptococci, coliforms, and Klebsiella spp. compared with cows bedded on untreated sawdust. The clay-based acidic bedding conditioner

  16. CONVERTER SOLAR RADIATION INTO ELECTRICITY TO SUPPLY THE AUTOMOTIVE SEMICONDUCTOR THERMOELECTRIC AIR CONDITIONING

    Directory of Open Access Journals (Sweden)

    T. A. Ismailov

    2015-01-01

    Full Text Available The article considers the possibility to increase the efficiency of converters of solar radiation into electricity by combining constructive photoelectric effect, See-beck thermoeffect and semiconductor solar cells, which will create integrated device to provide power semiconductor thermoelectric automobile air conditioner

  17. Assessing the Potential of Using Biochar as a Soil Conditioner

    Science.gov (United States)

    Glazunova, D. M.; Kuryntseva, P. A.; Selivanovskaya, S. Y.; Galitskaya, P. Y.

    2018-01-01

    Biochar is a product of pyrolysis of biomass such as plant tissues, manures, sewage sludge, organic fraction of municipal solid wastes etc. Nowadays, biochar is being discussed as an alternative fertilizer that improves the air and water balance of the soil and provides soil microbiota with slow releasing biogenic elements. Many factors such as initial substrate properties, pyrolysis temperature and regime may influence biochar characteristics. In this study, characteristics of the two biochars prepared from chicken manure (ChM) and sewage sludge (SS) at 550 °C were analyzed in order to reveal their agricultural potential. It was found, that the ChM biochar had a pH value of 5.80±0.21, which was 1.6 lower than the pH of the SS sample. The electrical conductivity of the ChM sample was 6 times higher than that of the SS sample, being 6.42±0.30 mS cm-1 and 1.02±0.10 mS·cm-1, respectively. The cation exchange capacity was estimated to be 7.6±0.26 and 45±0.14 cmol·kg-1 in the ChM and SS samples, respectively. In the ChM sample total organic carbon content was 24.93±3.2%, which is nearly twice as large as that in the SS sample (12.36±4.1%), whereas total nitrogen content was estimated to be 0.33±0.03% and 0.10±0.01% for ChM and SS samples, respectively. Using scanning electronic microscopy and laser particle size distribution analysis, it was shown that the SS sample was more homogeneous in its structure and consisted of particles having a lower size of 1 to 200μm with particles of 10 to 100μm being the most frequent, while the ChM sample was nonhomogeneous and its particle size varied between 2 and 2000 μm. To observe the influence on plants, 1% of biochar was added to soil, and wheat seeds were planted. The germination index estimated for soil treated by SS biochar was estimated to be 97%, while that of soil treated by ChM biochar was lower at about 78%.

  18. Application of solar energy to air conditioning systems

    Science.gov (United States)

    Nash, J. M.; Harstad, A. J.

    1976-01-01

    The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.

  19. High-Efficiency Small-Scale Combined Heat and Power Organic Binary Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Costante Mario Invernizzi

    2018-04-01

    Full Text Available Small-CHP (Combined Heat and Power systems are generally considered a valuable technological option to the conventional boilers, in a technology developed context. If small-CHP systems are associated with the use of renewable energies (biomass, for example they could play an important role in distributed generation even in developing countries or, in any case, where there are no extensive electricity networks. Traditionally the considered heat engines for micro- or mini-CHP are: the gas engine, the gas turbine (with internal combustion, the steam engine, engine working according to the Stirling and to the Rankine cycles, the last with organic fluids. In principle, also fuel cells could be used. In this paper, we focus on small size Rankine cycles (10–15 k W with organic working fluids. The assumed heat source is hot combustion gases at high temperature (900–950 ∘ C and we assume to use only single stages axial turbines. The need to work at high temperatures, limits the choice of the right organic working fluids. The calculation results show the limitation in the performances of simple cycles and suggest the opportunity to resort to complex (binary cycle configurations to achieve high net conversion efficiencies (15–16%.

  20. Off-design performance analysis of a solar-powered organic Rankine cycle

    International Nuclear Information System (INIS)

    Wang, Jiangfeng; Yan, Zhequan; Zhao, Pan; Dai, Yiping

    2014-01-01

    Highlights: • Solar-powered organic Rankine cycle with CPC and thermal storage unit is studied. • Off-design performances encountering the changes of key parameters are examined. • Off-design performance is analyzed over a whole day and in different months. - Abstract: Performance evaluation of a thermodynamic system under off-design conditions is very important for reliable and cost-effective operation. In this study, an off-design model of an organic Rankine cycle driven by solar energy is established with compound parabolic collector (CPC) to collect the solar radiation and thermal storage unit to achieve the continuous operation of the overall system. The system off-design behavior is examined under the change in environment temperature, as well as thermal oil mass flow rates of vapor generator and CPC. In addition, the off-design performance of the system is analyzed over a whole day and in different months. The results indicate that a decrease in environment temperature, or the increases in thermal oil mass flow rates of vapor generator and CPC could improve the off-design performance. The system obtains the maximum average exergy efficiency in December and the maximum net power output in June or in September. Both the net power output and the average exergy efficiency reach minimum values in August