Renormalisation group flows for gauge theories in axial gauges
Litim, Daniel F; Litim, Daniel F.; Pawlowski, Jan M.
2002-01-01
Gauge theories in axial gauges are studied using Exact Renormalisation Group flows. We introduce a background field in the infrared regulator, but not in the gauge fixing, in contrast to the usual background field gauge. It is shown how heat-kernel methods can be used to obtain approximate solutions to the flow and the corresponding Ward identities. Expansion schemes are discussed, which are not applicable in covariant gauges. As an application, we derive the one-loop effective action for covariantly constant field strength, and the one-loop beta-function for arbitrary regulator.
Massive Axial Gauge in the Exact Renormalization Group Approach
Panza, P.; Soldati, R.
The Exact Renormalization Group (ERG) approach to massive gauge theories in the axial gauge is studied and the smoothness of the massless limit is analysed for a formally gauge invariant quantity such as the Euclidean Wilson loop.
Scale Symmetry Breaking from the Dynamics of Maximal Rank Gauge Field Strengths
Guendelman, E. I.
2003-01-01
Scale invariant theories which contain maximal rank gauge field strengths (of $D$ indices in $D$ dimensions) are studied. The integration of the equations of motion of these gauge fields leads to the s.s.b. of scale invariance. The cases in study are: i) the spontaneous generation of $r^{-1}$ potentials in particle mechanics in a theory that contains only $r^{-2}$ potentials in the scale invariant phase, ii) mass generation in scalar field theories iii) generation of non trivial dilaton poten...
Diagrammatics of braided group gauge theory
Majid, S
1996-01-01
We develop a gauge theory or theory of bundles and connections on them at the level of braids and tangles. Extending recent algebraic work, we provide now a fully diagrammatic treatment of principal bundles, a theory of global gauge transformations, associated braided fiber bundles and covariant derivatives on them. We describe the local structure for a concrete Z_3-graded or `anyonic' realization of the theory.
Non-connected gauge groups and the plethystic program
Bourget, Antoine; Pini, Alessandro
2017-10-01
We present in the context of supersymmetric gauge theories an extension of the Weyl integration formula, first discovered by Robert Wendt [1], which applies to a class of non-connected Lie groups. This allows to count in a systematic way gauge-invariant chiral operators for these non-connected gauge groups. Applying this technique to O( n), we obtain, via the ADHM construction, the Hilbert series for certain instanton moduli spaces. We validate our general method and check our results via a Coulomb branch computation, using three-dimensional mirror symmetry.
Gauge theory of gravity and supergravity on a group manifold
Energy Technology Data Exchange (ETDEWEB)
Ne' eman, Y.; Regge, T.
1977-12-01
The natural arena for the physics of gravity, supergravity and their enlargements appears to be the group manifold of the Poincare group P, the graded Poincare group GP of supersymmetry, and the corresponding enlargements. The dynamics of these theories correspond to geometrical algorithms in P and GP. Differential geometry on Lie groups is reviewed and results applied to P and GP. Curvature, gauge transformations and factorization are introduced. Also reviewed is the general coordinate transformation group and a hybrid gauge transformation, the anholonomized G.C.T. gauge. A study is made of the construction of an action, including the introduction of a set of special 2 forms, the ''pseudo curvatures.'' The possibilities of factorization in supersymmetry are analyzed. The version of supergravity is present which has now become a completely geometrical theory.
Focus point gauge mediation in product group unification
Energy Technology Data Exchange (ETDEWEB)
Bruemmer, Felix [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ibe, Masahiro [Tokyo Univ., Kashiwa (Japan). Kavli IPMU, TODIAS; Tokyo Univ., Kashiwa (Japan). ICRR; Yanagida, Tsutomu T. [Tokyo Univ., Kashiwa (Japan). Kavli IPMU, TODIAS
2013-03-15
In certain models of gauge-mediated supersymmetry breaking with messenger fields in incomplete GUT multiplets, the radiative corrections to the Higgs potential cancel out during renormalization group running. This allows for relatively heavy superpartners and for a 125 GeV Higgs while the ne-tuning remains modest. In this paper, we show that such gauge mediation models with ''focus point'' behaviour can be naturally embedded into a model of SU(5) x U(3) product group unification.
Results of the Universidad Nacional de Colombia's Research Groups ranking
National Research Council Canada - National Science Library
Andrés Pavas
2016-01-01
... of the national scientic production. In previous editorial notes of Ingeniera e Investigacin (Narvez, 2014; Pavas, 2015), a revision of the research groups ranking in the Universidad Nacional de Colombia UN was presented for the last two years...
Tensor renormalization group methods for spin and gauge models
Zou, Haiyuan
The analysis of the error of perturbative series by comparing it to the exact solution is an important tool to understand the non-perturbative physics of statistical models. For some toy models, a new method can be used to calculate higher order weak coupling expansion and modified perturbation theory can be constructed. However, it is nontrivial to generalize the new method to understand the critical behavior of high dimensional spin and gauge models. Actually, it is a big challenge in both high energy physics and condensed matter physics to develop accurate and efficient numerical algorithms to solve these problems. In this thesis, one systematic way named tensor renormalization group method is discussed. The applications of the method to several spin and gauge models on a lattice are investigated. theoretically, the new method allows one to write an exact representation of the partition function of models with local interactions. E.g. O(N) models, Z2 gauge models and U(1) gauge models. Practically, by using controllable approximations, results in both finite volume and the thermodynamic limit can be obtained. Another advantage of the new method is that it is insensitive to sign problems for models with complex coupling and chemical potential. Through the new approach, the Fisher's zeros of the 2D O(2) model in the complex coupling plane can be calculated and the finite size scaling of the results agrees well with the Kosterlitz-Thouless assumption. Applying the method to the O(2) model with a chemical potential, new phase diagram of the models can be obtained. The structure of the tensor language may provide a new tool to understand phase transition properties in general.
Fermion Masses and Mixing in SUSY Grand Unified Gauge Models with Extended Gut Gauge Groups
Energy Technology Data Exchange (ETDEWEB)
Chou, Chih-Lung
2005-04-05
The authors discuss a class of supersymmetric (SUSY) grand unified gauge (GUT) models based on the GUT symmetry G x G or G x G x G, where G denotes the GUT group that has the Standard Model symmetry (SU(3){sub c} x SU(2){sub L} x U(1){sub Y}) embedded as a subgroup. As motivated from string theory, these models are constructed without introducing any Higgs field of rani two or higher. Thus all the Higgs fields are in the fundamental representations of the extended GUT symmetry or, when G = SO(10), in the spinorial representation. These Higgs fields, when acquiring their vacuum expectation values, would break the extended GUT symmetry down to the Standard Model symmetry. In this dissertation, they argue that the features required of unified models, such as the Higgs doublet-triplet splitting, proton stability, and the hierarchy of fermion masses and mixing angles, could have natural explanations in the framework of the extended SUSY GUTs. Furthermore, they argue that the frameworks used previously to construct SO(10) GUT models using adjoint Higgs fields can naturally arise from the SO(10) x SO(10) and SO(10) x SO(10) x SO(10) models by integrating out heavy fermions. This observation thus suggests that the traditional SUSY GUT SO(10) theories can be viewed as the low energy effective theories generated by breaking the extended GUT symmetry down to the SO(10) symmetry.
Duality, Gauge Symmetries, Renormalization Groups and the BKT Transition
José, Jorge V.
2017-03-01
In this chapter, I will briefly review, from my own perspective, the situation within theoretical physics at the beginning of the 1970s, and the advances that played an important role in providing a solid theoretical and experimental foundation for the Berezinskii-Kosterlitz-Thouless theory (BKT). Over this period, it became clear that the Abelian gauge symmetry of the 2D-XY model had to be preserved to get the right phase structure of the model. In previous analyses, this symmetry was broken when using low order calculational approximations. Duality transformations at that time for two-dimensional models with compact gauge symmetries were introduced by José, Kadanoff, Nelson and Kirkpatrick (JKKN). Their goal was to analyze the phase structure and excitations of XY and related models, including symmetry breaking fields which are experimentally important. In a separate context, Migdal had earlier developed an approximate Renormalization Group (RG) algorithm to implement Wilson’s RG for lattice gauge theories. Although Migdal’s RG approach, later extended by Kadanoff, did not produce a true phase transition for the XY model, it almost did asymptotically in terms of a non-perturbative expansion in the coupling constant with an essential singularity. Using these advances, including work done on instantons (vortices), JKKN analyzed the behavior of the spin-spin correlation functions of the 2D XY-model in terms of an expansion in temperature and vortex-pair fugacity. Their analysis led to a perturbative derivation of RG equations for the XY model which are the same as those first derived by Kosterlitz for the two-dimensional Coulomb gas. JKKN’s results gave a theoretical formulation foundation and justification for BKT’s sound physical assumptions and for the validity of their calculational approximations that were, in principle, strictly valid only at very low temperatures, away from the critical TBKT temperature. The theoretical predictions were soon tested
Tensor Networks for Lattice Gauge Theories with Continuous Groups
Directory of Open Access Journals (Sweden)
L. Tagliacozzo
2014-11-01
Full Text Available We discuss how to formulate lattice gauge theories in the tensor-network language. In this way, we obtain both a consistent-truncation scheme of the Kogut-Susskind lattice gauge theories and a tensor-network variational ansatz for gauge-invariant states that can be used in actual numerical computations. Our construction is also applied to the simplest realization of the quantum link models or gauge magnets and provides a clear way to understand their microscopic relation with the Kogut-Susskind lattice gauge theories. We also introduce a new set of gauge-invariant operators that modify continuously Rokhsar-Kivelson wave functions and can be used to extend the phase diagrams of known models. As an example, we characterize the transition between the deconfined phase of the Z_{2} lattice gauge theory and the Rokhsar-Kivelson point of the U(1 gauge magnet in 2D in terms of entanglement entropy. The topological entropy serves as an order parameter for the transition but not the Schmidt gap.
Five-loop quark mass and field anomalous dimensions for a general gauge group
Energy Technology Data Exchange (ETDEWEB)
Luthe, Thomas [Bielefeld Univ. (Germany). Faculty of Physics; Maier, Andreas [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Schroeder, York [Univ. del Bio-Bio, Chillan (Chile). Grupo de Fisica de Altas Energias
2016-12-15
We present analytical five-loop results for the quark mass and quark field anomalous dimensions, for a general gauge group and in the MS scheme. We confirm the values known for the gauge group SU(3) from an independent calculation, and find full agreement with results available from large-N{sub f} studies.
Existence of non-Abelian vortices with product gauge groups
Energy Technology Data Exchange (ETDEWEB)
Han, Xiaosen, E-mail: xiaosenhan@gmail.com [Institute of Contemporary Mathematics, School of Mathematics, Henan University, Kaifeng, Henan 475004 (China); Taida Institute for Mathematical Sciences, Center for Advanced Study in Theoretical Science, National Taiwan University, Taipei, 10617, Taiwan (China); Lin, Chang-Shou [Taida Institute for Mathematical Sciences, Center for Advanced Study in Theoretical Science, National Taiwan University, Taipei, 10617, Taiwan (China)
2014-01-15
In this paper we establish several sharp existence and uniqueness theorems for some non-Abelian vortex models arising in supersymmetric gauge field theories. We prove these results by studying a family of systems of elliptic equations with exponential nonlinear terms in both doubly periodic-domain and planar cases. In the doubly periodic-domain case we obtain some necessary and sufficient conditions, each explicitly expressed in terms of a single inequality interestingly relating the vortex numbers, to coupling parameters and size of the domain, for the existence of solutions to these systems. In the planar case we establish the existence results for any vortex numbers and coupling parameters. Sharp decay estimates for the planar solutions are also obtained. Furthermore, the solutions are unique, which give rise to the quantized integrals in all cases.
On Flux Quantization in F-Theory II: Unitary and Symplectic Gauge Groups
Collinucci, Andres
2012-01-01
We study the quantization of the M-theory G-flux on elliptically fibered Calabi-Yau fourfolds with singularities giving rise to unitary and symplectic gauge groups. We seek and find its relation to the Freed-Witten quantization of worldvolume fluxes on 7-branes in type IIB orientifold compactifications on Calabi-Yau threefolds. By explicitly constructing the appropriate four-cycles on which to calculate the periods of the second Chern class of the fourfolds, we find that there is a half-integral shift in the quantization of G-flux whenever the corresponding dual 7-brane is wrapped on a non-spin submanifold. This correspondence of quantizations holds for all unitary and symplectic gauge groups, except for SU(3), which behaves mysteriously. We also perform our analysis in the case where, in addition to the aforementioned gauge groups, there is also a 'flavor' U(1)-gauge group.
The geometry and physics of Abelian gauge groups in F-theory
Energy Technology Data Exchange (ETDEWEB)
Keitel, Jan
2015-07-14
In this thesis we study the geometry and the low-energy effective physics associated with Abelian gauge groups in F-theory compactifications. To construct suitable torus-fibered Calabi-Yau manifolds, we employ the framework of toric geometry. By identifying appropriate building blocks of Calabi-Yau manifolds that can be studied independently, we devise a method to engineer large numbers of manifolds that give rise to a specified gauge group and achieve a partial classification of toric gauge groups. Extending our analysis from gauge groups to matter spectra, we prove that the matter content of the most commonly studied F-theory set-ups is rather constrained. To circumvent such limitations, we introduce an algorithm to analyze torus-fibrations defined as complete intersections and present several novel kinds of F-theory compactifications. Finally, we show how torus-fibrations without section are linked to fibrations with multiple sections through a network of successive geometric transitions. In order to investigate the low-energy effective physics resulting from our compactifications, we apply M- to F-theory duality. After determining the effective action of F-theory with Abelian gauge groups in six dimensions, we compare the loop-corrected Chern-Simons terms to topological quantities of the compactification manifold to read off the massless matter content. Under certain assumptions, we show that all gravitational and mixed anomalies are automatically canceled in F-theory. Furthermore, we compute the low-energy effective action of F-theory compactifications without section and suggest that the absence of a section signals the presence of an additional massive Abelian gauge field. Adjusting our analysis to four dimensions, we show that remnants of this massive gauge field survive as discrete symmetries that impose selection rules on the Yukawa couplings of the effective theory.
Setchell, Joanna M; Wickings, E Jean; Knapp, Leslie A
2006-12-01
We assess life history from birth to death in male mandrills (Mandrillus sphinx) living in a semifree-ranging colony in Gabon, using data collected for 82 males that attained at least the age of puberty, including 33 that reached adulthood and 25 that died, yielding data for their entire lifespan. We describe patterns of mortality and injuries, dominance rank, group association, growth and stature, and secondary sexual character expression across the male lifespan. We examine relationships among these variables and investigate potential influences on male life history, including differences in the social environment (maternal rank and group demography) and early development, with the aim of identifying characteristics of successful males. Sons of higher-ranking females were more likely to survive to adulthood than sons of low-ranking females. Adolescent males varied consistently in the rate at which they developed, and this variation was related to a male's own dominance rank. Males with fewer peers and sons of higher-ranking and heavier mothers also matured faster. However, maternal variables were not significantly related to dominance rank during adolescence, the age at which males attained adult dominance rank, or whether a male became alpha male. Among adult males, behavior and morphological development were related to a male's own dominance rank, and sons of high-ranking females were larger than sons of low-ranking females. Alpha males were always the most social, and the most brightly colored males, but were not necessarily the largest males present. Finally, alpha male tenure was related to group demography, with larger numbers of rival adult males and maturing adolescent males reducing the time a male spent as alpha male. Tenure did not appear to be related to characteristics of the alpha male himself. 2006 Wiley-Liss, Inc.
Family replicated gauge groups and large mixing angle solar neutrino solution
Energy Technology Data Exchange (ETDEWEB)
Froggatt, C.D. E-mail: c.froggatt@physics.gla.ac.uk; Nielsen, H.B. E-mail: hbech@mail.desy.dehbech@nbi.dk; Takanishi, Y. E-mail: yasutaka@mail.desy.deyasutaka@nbi.dk
2002-06-03
We present a modification of our previous family replicated gauge group model, which now generates the Large Mixing Angle MSW solution rather than the experimentally disfavoured Small Mixing Angle MSW solution to the solar neutrino oscillation problem. The model is based on each family of quarks and leptons having its own set of gauge fields, each containing a replica of the Standard Model gauge fields plus a (B-L)-coupled gauge field. By a careful choice of the Higgs field gauge quantum numbers, we avoid our previous prediction that the solar neutrino mixing angle is equal order of magnitudewise to the Cabibbo angle, replacing it and the well-known Fritzsch relation with the relation {theta}{sub c}{approx}({theta}{sub [odot]}){sup -1/3} (m{sub d}/m{sub s}){sup 2/3}. At the same time we retain a phenomenologically successful structure for the charged quark and lepton mass matrices. A fit of all the seventeen quark-lepton mass and mixing angle observables, using just six new Higgs field vacuum expectation values, agrees with the experimental data within the theoretically expected uncertainty of about 64%, i.e., it fits perfectly order of magnitudewise.
Functional renormalisation group approach for tensorial group field theory: a rank-3 model
Energy Technology Data Exchange (ETDEWEB)
Benedetti, Dario [Max Planck Institute for Gravitational Physics, Albert Einstein Institute,Am Mühlenberg 1, Potsdam, 14476 (Germany); Geloun, Joseph Ben [Max Planck Institute for Gravitational Physics, Albert Einstein Institute,Am Mühlenberg 1, Potsdam, 14476 (Germany); International Chair in Mathematical Physics and Applications, ICMPA-UNESCO Chair,University of Abomey-Calavi, Cotonou (Benin); Oriti, Daniele [Max Planck Institute for Gravitational Physics, Albert Einstein Institute,Am Mühlenberg 1, Potsdam, 14476 (Germany)
2015-03-17
We set up the Functional Renormalisation Group formalism for Tensorial Group Field Theory in full generality. We then apply it to a rank-3 model over U(1){sup 3}, endowed with a kinetic term linear in the momenta and with nonlocal interactions. The system of FRG equations turns out to be non-autonomous in the RG flow parameter. This feature is explained by the existence of a hidden scale, the radius of the group manifold. We investigate in detail the opposite regimes of large cut-off (UV) and small cut-off (IR) of the FRG equations, where the system becomes autonomous, and we find, in both case, Gaussian and non-Gaussian fixed points. We derive and interpret the critical exponents and flow diagrams associated with these fixed points, and discuss how the UV and IR regimes are matched. Finally, we discuss the evidence for a phase transition from a symmetric phase to a broken or condensed phase, from an RG perspective, finding that this seems to exist only in the approximate regime of very large radius of the group manifold, as to be expected for systems on compact manifolds.
Constraints on dark matter particles charged under a hidden gauge group from primordial black holes
Dai, De-Chang; Freese, Katherine; Stojkovic, Dejan
2009-06-01
In order to accommodate increasingly tighter observational constraints on dark matter, several models have been proposed recently in which dark matter particles are charged under some hidden gauge group. Hidden gauge charges are invisible for the standard model particles, hence such scenarios are very difficult to constrain directly. However black holes are sensitive to all gauge charges, whether they belong to the standard model or not. Here, we examine the constraints on the possible values of the dark matter particle mass and hidden gauge charge from the evolution of primordial black holes. We find that the existence of the primordial black holes with reasonable mass is incompatible with dark matter particles whose charge to mass ratio is of the order of one. For dark matter particles whose charge to mass ratio is much less than one, we are able to exclude only heavy dark matter in the mass range of 1011 GeV-1016 GeV. Finally, for dark matter particles whose charge to mass ratio is much greater than one, there are no useful limits coming from primordial black holes.
Constraints on dark matter particles charged under a hidden gauge group from primordial black holes
Energy Technology Data Exchange (ETDEWEB)
Dai, De-Chang; Stojkovic, Dejan [HEPCOS, Department of Physics, SUNY at Buffalo, 239 Fronczak Hall, Buffalo, NY 14260-1500 (United States); Freese, Katherine, E-mail: ddai@buffalo.edu, E-mail: ktfreese@umich.edu, E-mail: dss7@buffalo.edu [MCTP, Department of Physics, University of Michigan, 3444 Randall Lab, 450 Church Street, Ann Arbor, MI 48109 (United States)
2009-06-01
In order to accommodate increasingly tighter observational constraints on dark matter, several models have been proposed recently in which dark matter particles are charged under some hidden gauge group. Hidden gauge charges are invisible for the standard model particles, hence such scenarios are very difficult to constrain directly. However black holes are sensitive to all gauge charges, whether they belong to the standard model or not. Here, we examine the constraints on the possible values of the dark matter particle mass and hidden gauge charge from the evolution of primordial black holes. We find that the existence of the primordial black holes with reasonable mass is incompatible with dark matter particles whose charge to mass ratio is of the order of one. For dark matter particles whose charge to mass ratio is much less than one, we are able to exclude only heavy dark matter in the mass range of 10{sup 11} GeV–10{sup 16} GeV. Finally, for dark matter particles whose charge to mass ratio is much greater than one, there are no useful limits coming from primordial black holes.
Curative Factor Rankings for Female Incest Survivor Groups: A Summary of Three Studies.
Randall, Donald A., Jr.
1995-01-01
Three studies of curative factor rankings for female incest survivor groups are summarized and compared with Yalom's (1975) study. A time-limited group is compared with two studies of long-term groups. Limitations, suggestions for future research, and clinical implications are addressed. (JBJ)
Quantum groups as generalized gauge symmetries in WZNW models. Part I. The classical model
Hadjiivanov, L.; Furlan, P.
2017-07-01
Wess-Zumino-Novikov-Witten (WZNW) models over compact Lie groups G constitute the best studied class of (two dimensional, 2 D) rational conformal field theories (RCFTs). A WZNW chiral state space is a finite direct sum of integrable representations of the corresponding affine (current) algebra, and the correlation functions of primary fields are monodromy invariant combinations of left times right sector conformal blocks solving the Knizhnik-Zamolodchikov equation. However, even in this very well understood case of 2 D RCFT, the "internal" (gauge) symmetry that governs the ensuing fusion rules remains unclear. On the other hand, the canonical approach to the classical chiral WZNW theory developed by Faddeev, Alekseev, Shatashvili, Gawedzki and Falceto reveals its Poisson-Lie symmetry. After a covariant quantization, the latter gives rise to an associated quantum group symmetry which naturally requires an extension of the state space. This paper contains a review of earlier work on the subject with a special emphasis, in the case G = SU( n), on the emerging chiral "WZNW zero modes" which provide an adequate algebraic description of the internal symmetry structure of the model. Combining further left and right zero modes, one obtains a specific dynamical quantum group, the structure of its Fock representation resembling the axiomatic approach to gauge theories in which a "restricted" quantum group plays the role of a generalized gauge symmetry.
Gauge- and Renormalization-Group-Invariant Formulation of the Higgs-Boson Resonance
Papavassiliou, J; Papavassiliou, Joannis; Pilaftsis, Apostolos
1998-01-01
A gauge- and renormalization-group- invariant approach implemented by the pinch technique is formulated for resonant transitions involving the Higgs boson. The lineshape of the Higgs boson is shown to consist of two distinct and physically meaningful contributions: a process-independent resonant part and a process-dependent non-resonant background, which are separately gauge independent, invariant under the renormalization group, satisfy naive, tree-level Ward identities, and respect the optical and equivalence theorem individually. The former process-independent quantity serves as the natural extension of the concept of the effective charge to the case of the Higgs scalar, and constitutes a common ingredient of every Born-improved amplitude. The difference in the phenomenological predictions obtained within our approach and those found with other methods is briefly discussed.
Evaluating user reputation in online rating systems via an iterative group-based ranking method
Gao, Jian; Zhou, Tao
2017-05-01
Reputation is a valuable asset in online social lives and it has drawn increased attention. Due to the existence of noisy ratings and spamming attacks, how to evaluate user reputation in online rating systems is especially significant. However, most of the previous ranking-based methods either follow a debatable assumption or have unsatisfied robustness. In this paper, we propose an iterative group-based ranking method by introducing an iterative reputation-allocation process into the original group-based ranking method. More specifically, the reputation of users is calculated based on the weighted sizes of the user rating groups after grouping all users by their rating similarities, and the high reputation users' ratings have larger weights in dominating the corresponding user rating groups. The reputation of users and the user rating group sizes are iteratively updated until they become stable. Results on two real data sets with artificial spammers suggest that the proposed method has better performance than the state-of-the-art methods and its robustness is considerably improved comparing with the original group-based ranking method. Our work highlights the positive role of considering users' grouping behaviors towards a better online user reputation evaluation.
Doubled Lattice Chern-Simons-Yang-Mills Theories with Discrete Gauge Group
Caspar, Stephan; Olesen, Therkel Z; Vlasii, Nadiia D; Wiese, Uwe-Jens
2016-01-01
We construct doubled lattice Chern-Simons-Yang-Mills theories with discrete gauge group $G$ in the Hamiltonian formulation. Here, these theories are considered on a square spatial lattice and the fundamental degrees of freedom are defined on pairs of links from the direct lattice and its dual, respectively. This provides a natural lattice construction for topologically-massive gauge theories, which are invariant under parity and time-reversal symmetry. After defining the building blocks of the doubled theories, paying special attention to the realization of gauge transformations on quantum states, we examine the dynamics in the group space of a single cross, which is spanned by a single link and its dual. The dynamics is governed by the single-cross electric Hamiltonian and admits a simple quantum mechanical analogy to the problem of a charged particle moving on a discrete space affected by an abstract electromagnetic potential. Such a particle might accumulate a phase shift equivalent to an Aharonov-Bohm pha...
Gauge Group Contraction of Electroweak Model and its Natural Energy Limits
Directory of Open Access Journals (Sweden)
Nikolai A. Gromov
2015-09-01
Full Text Available The low and higher energy limits of the Electroweak Model are obtained from first principles of gauge theory. Both limits are given by the same contraction of the gauge group, but for the different consistent rescalings of the field space. Mathematical contraction parameter in both cases is interpreted as energy. The very weak neutrino-matter interaction is explained by zero tending contraction parameter, which depends on neutrino energy. The second consistent rescaling corresponds to the higher energy limit of the Electroweak Model. At the infinite energy all particles lose masses, electroweak interactions become long-range and are mediated by the neutral currents. The limit model represents the development of the early Universe from the Big Bang up to the end of the first second.
Natural Limits of Electroweak Model as Contraction of its Gauge Group
Gromov, Nikolay A
2014-01-01
The low and higher energy limits of the Electroweak Model are obtained from first principles of gauge theory. Both limits are given by the same contraction of the gauge group, but for the different consistent rescalings of the field space. Mathematical contraction parameter in both cases is interpreted as energy. The very weak neutrino-matter interactions is explained by zero tending contraction parameter, which depend on neutrino energy. The second consistent rescaling corresponds to the higher energy limit of the Electroweak Model. At the infinite energy all particles lose masses, electroweak interactions become long-range and are mediated by the neutral currents. The limit model represents the development of the early Universe from the Big Bang up to the end of the first second.
Natural limits of electroweak model as contraction of its gauge group
Gromov, N. A.
2015-06-01
The low and higher energy limits of the electroweak model are obtained from the first principles of gauge theory. Both limits are given by the same contraction of the gauge group, but for the different consistent rescalings of the field space. Mathematical contraction parameter in both cases is interpreted as energy. Very weak neutrino-matter interactions are explained by zero tending contraction parameter, which depends on neutrino energy. The second consistent rescaling corresponds to the higher energy limit of the electroweak model. At the infinite energy all particles lose mass, electroweak interactions become long-range and are mediated by neutral currents. The limit model represents the development of the early Universe from the big bang up to the end of the first second.
K.G. Tijdens (Kea); D.H. de Vries (Daniel); S.M. Steinmetz
2013-01-01
textabstractBackground: This article represents the first attempt to explore remuneration in Human Resources for Health (HRH), comparing wage levels, ranking and dispersion of 16 HRH occupational groups in 20 countries (Argentina, Belarus, Belgium, Brazil, Chile, Colombia, the Czech Republic,
Tijdens, K.; de Vries, D.H.; Steinmetz, S.
2013-01-01
Background This article represents the first attempt to explore remuneration in Human Resources for Health (HRH), comparing wage levels, ranking and dispersion of 16 HRH occupational groups in 20 countries (Argentina, Belarus, Belgium, Brazil, Chile, Colombia, the Czech Republic, Finland, Germany,
Rank and grooming reciprocity among females in a mixed-sex group of captive hamadryas baboons
Leinfelder, I.; Vries, Han de; Deleu, R.; Nelissen, M.
2001-01-01
In a mixed-sex, captive group of hamadryas baboons (Papio hamadryas hamadryas) we investigated whether female grooming relationships are affected by their dominance ranks. Seyfarths [1977] grooming for support model and Barrett et al.s [1999] biological market model both predict that in primate
Renormalization group and phase transitions in spin, gauge, and QCD like theories
Liu, Yuzhi
In this thesis, we study several different renormalization group (RG) methods, including the conventional Wilson renormalization group, Monte Carlo renormalization group (MCRG), exact renormalization group (ERG, or sometimes called functional RG), and tensor renormalization group (TRG). We use the two dimensional nearest neighbor Ising model to introduce many conventional yet important concepts. We then generalize the model to Dyson's hierarchical model (HM), which has rich phase properties depending on the strength of the interaction. The partition function zeros (Fisher zeros) of the HM model in the complex temperature plane is calculated and their connection with the complex RG flows is discussed. The two lattice matching method is used to construct both the complex RG flows and calculate the discrete beta functions. The motivation of calculating the discrete beta functions for various HM models is to test the matching method and to show how physically relevant fixed points emerge from the complex domain. We notice that the critical exponents calculated from the HM depend on the blocking parameter b. This motivated us to analyze the connection between the discrete and continuous RG transformation. We demonstrate numerical calculations of the ERG equations. We discuss the relation between Litim and Wilson-Polchinski equation and the effect of the cut-off functions in the ERG calculation. We then apply methods developed in the spin models to more complicated and more physically relevant lattice gauge theories and lattice quantum chromodynamics (QCD) like theories. Finite size scaling (FSS) technique is used to analyze the Binder cumulant of the SU(2) lattice gauge model. We calculate the critical exponent nu and omega of the model and show that it is in the same universality class as the three dimensional Ising model. Motivated by the walking technicolor theory, we study the strongly coupled gauge theories with conformal or near conformal properties. We compare
Stratification of co-evolving genomic groups using ranked phylogenetic profiles
Directory of Open Access Journals (Sweden)
Tsoka Sophia
2009-10-01
Full Text Available Abstract Background Previous methods of detecting the taxonomic origins of arbitrary sequence collections, with a significant impact to genome analysis and in particular metagenomics, have primarily focused on compositional features of genomes. The evolutionary patterns of phylogenetic distribution of genes or proteins, represented by phylogenetic profiles, provide an alternative approach for the detection of taxonomic origins, but typically suffer from low accuracy. Herein, we present rank-BLAST, a novel approach for the assignment of protein sequences into genomic groups of the same taxonomic origin, based on the ranking order of phylogenetic profiles of target genes or proteins across the reference database. Results The rank-BLAST approach is validated by computing the phylogenetic profiles of all sequences for five distinct microbial species of varying degrees of phylogenetic proximity, against a reference database of 243 fully sequenced genomes. The approach - a combination of sequence searches, statistical estimation and clustering - analyses the degree of sequence divergence between sets of protein sequences and allows the classification of protein sequences according to the species of origin with high accuracy, allowing taxonomic classification of 64% of the proteins studied. In most cases, a main cluster is detected, representing the corresponding species. Secondary, functionally distinct and species-specific clusters exhibit different patterns of phylogenetic distribution, thus flagging gene groups of interest. Detailed analyses of such cases are provided as examples. Conclusion Our results indicate that the rank-BLAST approach can capture the taxonomic origins of sequence collections in an accurate and efficient manner. The approach can be useful both for the analysis of genome evolution and the detection of species groups in metagenomics samples.
Gauging the Full R-Symmetry Group in Five-dimensional, N = 2 Yang-Mills/Einstein/tensor Supergravity
Günaydin, M; Gunaydin, Murat; Zagermann, Marco
2001-01-01
We show that certain 5d, N=2 Yang-Mills/Einstein supergravity theories admit the gauging of the \\emph{full} R-symmetry group, $SU(2)_{R}$, of the underlying $\\mathcal{N}=2$ Poincar\\'{e} superalgebra. This generalizes the previously studied Abelian gaugings of $U(1)_{R}\\subset SU(2)_{R}$, and completes the construction of the most general vector and tensor field coupled $5d$, $\\mathcal{N}=2$ supergravity theories with gauge interactions. The gauging of $SU(2)_{R}$ turns out to be possible only in special cases, and leads to a new type of scalar potential. For a large class of these theories the potential does not have any critical points.
PyR@TE. Renormalization group equations for general gauge theories
Lyonnet, F.; Schienbein, I.; Staub, F.; Wingerter, A.
2014-03-01
Although the two-loop renormalization group equations for a general gauge field theory have been known for quite some time, deriving them for specific models has often been difficult in practice. This is mainly due to the fact that, albeit straightforward, the involved calculations are quite long, tedious and prone to error. The present work is an attempt to facilitate the practical use of the renormalization group equations in model building. To that end, we have developed two completely independent sets of programs written in Python and Mathematica, respectively. The Mathematica scripts will be part of an upcoming release of SARAH 4. The present article describes the collection of Python routines that we dubbed PyR@TE which is an acronym for “Python Renormalization group equations At Two-loop for Everyone”. In PyR@TE, once the user specifies the gauge group and the particle content of the model, the routines automatically generate the full two-loop renormalization group equations for all (dimensionless and dimensionful) parameters. The results can optionally be exported to LaTeX and Mathematica, or stored in a Python data structure for further processing by other programs. For ease of use, we have implemented an interactive mode for PyR@TE in form of an IPython Notebook. As a first application, we have generated with PyR@TE the renormalization group equations for several non-supersymmetric extensions of the Standard Model and found some discrepancies with the existing literature. Catalogue identifier: AERV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERV_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 924959 No. of bytes in distributed program, including test data, etc.: 495197 Distribution format: tar.gz Programming language: Python. Computer
Cabrera, Santiago; Hanany, Amihay; Zhong, Zhenghao
2017-11-01
Coulomb branches of a set of 3 d N = 4 supersymmetric gauge theories are closures of nilpotent orbits of the algebra so(n) . From the point of view of string theory, these quantum field theories can be understood as effective gauge theories describing the low energy dynamics of a brane configuration with the presence of orientifold planes [1]. The presence of the orientifold planes raises the question to whether the orthogonal factors of a the gauge group are indeed orthogonal O( N ) or special orthogonal SO( N ). In order to investigate this problem, we compute the Hilbert series for the Coulomb branch of T σ (SO( n)∨) theories, utilizing the monopole formula. The results for all nilpotent orbits from so(3) to so(10) which are special and normal are presented. A new relationship between the choice of SO/O( N ) factors in the gauge group and the Lusztig's Canonical Quotient \\overline{A}(O_{λ}) of the corresponding nilpotent orbit is observed. We also provide a new way of projecting several magnetic lattices of different SO( N ) gauge group factors by the diagonal action of a Z_2 group.
Rank Awareness in Group-Sparse Recovery of Multi-Echo MR Images
Directory of Open Access Journals (Sweden)
Rabab Ward
2013-03-01
Full Text Available This work addresses the problem of recovering multi-echo T1 or T2 weighted images from their partial K-space scans. Recent studies have shown that the best results are obtained when all the multi-echo images are reconstructed by simultaneously exploiting their intra-image spatial redundancy and inter-echo correlation. The aforesaid studies either stack the vectorised images (formed by row or columns concatenation as columns of a Multiple Measurement Vector (MMV matrix or concatenate them as a long vector. Owing to the inter-image correlation, the thus formed MMV matrix or the long concatenated vector is row-sparse or group-sparse respectively in a transform domain (wavelets. Consequently the reconstruction problem was formulated as a row-sparse MMV recovery or a group-sparse vector recovery. In this work we show that when the multi-echo images are arranged in the MMV form, the thus formed matrix is low-rank. We show that better reconstruction accuracy can be obtained when the information about rank-deficiency is incorporated into the row/group sparse recovery problem. Mathematically, this leads to a constrained optimization problem where the objective function promotes the signal’s groups-sparsity as well as its rank-deficiency; the objective function is minimized subject to data fidelity constraints. The experiments were carried out on ex vivo and in vivo T2 weighted images of a rat's spinal cord. Results show that this method yields considerably superior results than state-of-the-art reconstruction techniques.
Microseismic Event Grouping Based on PageRank Linkage at the Newberry Volcano Geothermal Site
Aguiar, A. C.; Myers, S. C.
2016-12-01
The Newberry Volcano DOE FORGE site in Central Oregon has been stimulated two times using high-pressure fluid injection to study the Enhanced Geothermal Systems (EGS) technology. Several hundred microseismic events were generated during the first stimulation in the fall of 2012. Initial locations of this microseismicity do not show well defined subsurface structure in part because event location uncertainties are large (Foulger and Julian, 2013). We focus on this stimulation to explore the spatial and temporal development of microseismicity, which is key to understanding how subsurface stimulation modifies stress, fractures rock, and increases permeability. We use PageRank, Google's initial search algorithm, to determine connectivity within the events (Aguiar and Beroza, 2014) and assess signal-correlation topology for the micro-earthquakes. We then use this information to create signal families and compare these to the spatial and temporal proximity of associated earthquakes. We relocate events within families (identified by PageRank linkage) using the Bayesloc approach (Myers et al., 2007). Preliminary relocations show tight spatial clustering of event families as well as evidence of events relocating to a different cluster than originally reported. We also find that signal similarity (linkage) at several stations, not just one or two, is needed in order to determine that events are in close proximity to one another. We show that indirect linkage of signals using PageRank is a reliable way to increase the number of events that are confidently determined to be similar to one another, which may lead to efficient and effective grouping of earthquakes with similar physical characteristics, such as focal mechanisms and stress drop. Our ultimate goal is to determine whether changes in the state of stress and/or changes in the generation of subsurface fracture networks can be detected using PageRank topology as well as aid in the event relocation to obtain more accurate
Fuzzy Group Decision Making Approach for Ranking Work Stations Based on Physical Pressure
Directory of Open Access Journals (Sweden)
Hamed Salmanzadeh
2014-06-01
Full Text Available This paper proposes a Fuzzy Group Decision Making approach for ranking work stations based on physical pressure. Fuzzy group decision making approach allows experts to evaluate different ergonomic factors using linguistic terms such as very high, high, medium, low, very low, rather than precise numerical values. In this way, there is no need to measure parameters and evaluation can be easily made in a group. According to ergonomics much work contents and situations, accompanied with multiple parameters and uncertainties, fuzzy group decision making is the best way to evaluate such a chameleon of concept. A case study was down to utilize the approach and illustrate its application in ergonomic assessment and ranking the work stations based on work pressure and found that this approach provides flexibility, practicality, efficiency in making decision around ergonomics areas. The normalized defuzzification numbers which are resulted from this method are compared with result of quantitative assessment of Automotive Assembly Work Sheet auto, it’s demonstrated that the proposed method result is 10% less than Automotive Assembly Work Sheet, approximately.
Level one algebraic cusp forms of classical groups of small rank
Chenevier, Gaëtan
2015-01-01
The authors determine the number of level 1, polarized, algebraic regular, cuspidal automorphic representations of \\mathrm{GL}_n over \\mathbb Q of any given infinitesimal character, for essentially all n \\leq 8. For this, they compute the dimensions of spaces of level 1 automorphic forms for certain semisimple \\mathbb Z-forms of the compact groups \\mathrm{SO}_7, \\mathrm{SO}_8, \\mathrm{SO}_9 (and {\\mathrm G}_2) and determine Arthur's endoscopic partition of these spaces in all cases. They also give applications to the 121 even lattices of rank 25 and determinant 2 found by Borcherds, to level o
Identifying drug risk perceptions in Danish youths: Ranking exercises in focus groups
DEFF Research Database (Denmark)
Demant, Jakob; Ravn, Signe
2010-01-01
and provides a relatively efficient way of investigating normative risk perceptions at a national or subcultural level. The paper develops this methodology in relation to a Danish case with 12 focus group interviews with youths aged from 17 to 22. Results: The analysis identifies five discourses articulated...... not. As such, this approach can become an efficient policy tool. Methods: Focus groups are used to investigate risk perceptions. We develop a specific methodology that combines a ranking exercise with discourse theory as an analytical approach. This methodology produces detailed information......Abstract: Background: This paper develops an analytical approach for understanding the perceptions of risks associated with drugs among youths in general. These perceptions are central in order to understand how certain drugs become popular, leading to increasing prevalence of use, while others do...
A novel functional renormalization group framework for gauge theories and gravity
Energy Technology Data Exchange (ETDEWEB)
Codello, Alessandro
2010-07-01
In this thesis we develop further the functional renormalization group (RG) approach to quantum field theory (QFT) based on the effective average action (EAA) and on the exact flow equation that it satisfies. The EAA is a generalization of the standard effective action that interpolates smoothly between the bare action for k{yields}{infinity} and the standard effective action for k{yields}0. In this way, the problem of performing the functional integral is converted into the problem of integrating the exact flow of the EAA from the UV to the IR. The EAA formalism deals naturally with several different aspects of a QFT. One aspect is related to the discovery of non-Gaussian fixed points of the RG flow that can be used to construct continuum limits. In particular, the EAA framework is a useful setting to search for Asymptotically Safe theories, i.e. theories valid up to arbitrarily high energies. A second aspect in which the EAA reveals its usefulness are non-perturbative calculations. In fact, the exact flow that it satisfies is a valuable starting point for devising new approximation schemes. In the first part of this thesis we review and extend the formalism, in particular we derive the exact RG flow equation for the EAA and the related hierarchy of coupled flow equations for the proper-vertices. We show how standard perturbation theory emerges as a particular way to iteratively solve the flow equation, if the starting point is the bare action. Next, we explore both technical and conceptual issues by means of three different applications of the formalism, to QED, to general non-linear sigma models (NL{sigma}M) and to matter fields on curved spacetimes. In the main part of this thesis we construct the EAA for non-abelian gauge theories and for quantum Einstein gravity (QEG), using the background field method to implement the coarse-graining procedure in a gauge invariant way. We propose a new truncation scheme where the EAA is expanded in powers of the curvature or
Wang, Juven C; Gu, Zheng-Cheng; Wen, Xiao-Gang
2015-01-23
The challenge of identifying symmetry-protected topological states (SPTs) is due to their lack of symmetry-breaking order parameters and intrinsic topological orders. For this reason, it is impossible to formulate SPTs under Ginzburg-Landau theory or probe SPTs via fractionalized bulk excitations and topology-dependent ground state degeneracy. However, the partition functions from path integrals with various symmetry twists are universal SPT invariants, fully characterizing SPTs. In this work, we use gauge fields to represent those symmetry twists in closed spacetimes of any dimensionality and arbitrary topology. This allows us to express the SPT invariants in terms of continuum field theory. We show that SPT invariants of pure gauge actions describe the SPTs predicted by group cohomology, while the mixed gauge-gravity actions describe the beyond-group-cohomology SPTs. We find new examples of mixed gauge-gravity actions for U(1) SPTs in (4+1)D via the gravitational Chern-Simons term. Field theory representations of SPT invariants not only serve as tools for classifying SPTs, but also guide us in designing physical probes for them. In addition, our field theory representations are independently powerful for studying group cohomology within the mathematical context.
Risks identification and ranking using AHP and group decision making technique: Presenting “R index”
Directory of Open Access Journals (Sweden)
Safar Fazli
2013-02-01
Full Text Available One of the primary concerns in project development is to detect all sorts of risks associated with a particular project. The main objective of this article is to identify the risks in the construction project and to grade them based on their importance on the project. The designed indicator in this paper is the combinational model of the Analytical Hierarchal Process (AHP method and the group decision – making applied for risks measurement and ranking. This indicator is called "R" which includes three main steps: creating the risks broken structure (RBS, obtaining each risk weight and efficacy, and finally performing the model to rank the risks. A questionnaire is used for gathering data. Based on the results of this survey, there are important risks associated with construction projects. There we need to use some guidelines to reduce the inherent risks including recognition of the common risks beside the political risks; suggestion of a simple, understandable, and practical model; and using plenty of the experts and specialists' opinions through applying step. After analyzing data, the final result from applying R index showed that the risk “economic changes / currency rate and inflation change" has the most importance for the analysis. In the other words, if these risks occur, the project may face with the more threats and it is suggested that an organization should centralize its equipment, personnel, cost, and time on the risk more than ever. The most obvious issue in this paper is a tremendous difference between an importance of the financial risks and the other risks.
The relationship of the Laplacian gauge to the Landau gauge
Mandula, Jeffrey E.
2002-03-01
The Laplacian gauge for gauge group SU( N) is discussed in perturbation theory. It is shown that to the lowest non-trivial order ( O( g1), configurations in the Laplacian automatically satisfy the (finite difference) Landau gauge condition. Laplacian gauge fixed configurations are examined numerically and it is seen that to O( g2) they do not remain in the Landau gauge.
Tijdens, K.; de Vries, D.H.
2011-01-01
This article focuses on remuneration in the Human Resources for Health (HRH), comparing wage levels, ranking and dispersion of 16 HRH occupations in 20 countries (Argentina, Belarus, Belgium, Brazil, Chile, Colombia, Czech Republic, Finland, Germany, India, Mexico, Netherlands, Poland, Russian
Ranking Cognitive Flexibility in a Group Setting of Rhesus Monkeys with a Set-Shifting Procedure.
Shnitko, Tatiana A; Allen, Daicia C; Gonzales, Steven W; Walter, Nicole A R; Grant, Kathleen A
2017-01-01
Attentional set-shifting ability is an executive function underling cognitive flexibility in humans and animals. In humans, this function is typically observed during a single experimental session where dimensions of playing cards are used to measure flexibility in the face of changing rules for reinforcement (i.e., the Wisconsin Card Sorting Test (WCST)). In laboratory animals, particularly non-human primates, variants of the WCST involve extensive training and testing on a series of dimensional discriminations, usually in social isolation. In the present study, a novel experimental approach was used to assess attentional set-shifting simultaneously in 12 rhesus monkeys. Specifically, monkeys living in individual cages but in the same room were trained at the same time each day in a set-shifting task in the same housing environment. As opposed to the previous studies, each daily session began with a simple single-dimension discrimination regardless of the animal's performance on the previous session. A total of eight increasingly difficult, discriminations (sets) were possible in each daily 45 min session. Correct responses were reinforced under a second-order schedule of flavored food pellet delivery, and criteria for completing a set was 12 correct trials out of a running total of 15 trials. Monkeys progressed through the sets at their own pace and abilities. The results demonstrate that all 12 monkeys acquired the simple discrimination (the first set), but individual differences in the ability to progress through all eight sets were apparent. A performance index (PI) that encompassed progression through the sets, errors and session duration was calculated and used to rank each monkey's performance in relation to each other. Overall, this version of a set-shifting task results in an efficient assessment of reliable differences in cognitive flexibility in a group of monkeys.
Tang, Chang; Cao, Lijuan; Chen, Jiajia; Zheng, Xiao
2017-05-01
In this work, a non-local weighted group low-rank representation (WGLRR) model is proposed for speckle noise reduction in optical coherence tomography (OCT) images. It is based on the observation that the similarity between patches within the noise-free OCT image leads to a high correlation between them, which means that the data matrix grouped by these similar patches is low-rank. Thus, the low-rank representation (LRR) is used to recover the noise-free group data matrix. In order to maintain the fidelity of the recovered image, the corrupted probability of each pixel is integrated into the LRR model as a weight to regularize the error term. Considering that each single patch might belong to several groups, and multiple estimates of this patch can be obtained, different estimates of each patch is aggregated to obtain its denoised result. The aggregating weights are exploited depending on the rank of each group data matrix, which can assign higher weights to those better estimates. Both qualitative and quantitative experimental results on real OCT images show the superior performance of the WGLRR model compared with other state-of-the-art speckle removal techniques.
de Wild Propitius, M.; Bais, F.A.; Semenoff, G.; Vinet, L.
1999-01-01
In these lectures, we present a self-contained treatment of planar gauge theories broken down to some finite residual gauge group $H$ via the Higgs mechanism. The main focus is on the discrete $H$ gauge theory describing the long distance physics of such a model. The spectrum features global $H$
Vasenev, Alexandr; Montoya, L.; Ceccarelli, Andrea; Le, Anhtuan; Ionita, Dan
Deriving value judgements about threat rankings for large and entangled systems, such as those of urban smart grids, is a challenging task. Suitable approaches should account for multiple threat events posed by different classes of attackers who target system components. Given the complexity of the
Renormalization Group and Phase Transitions in Spin, Gauge, and QCD Like Theories
Energy Technology Data Exchange (ETDEWEB)
Liu, Yuzhi [Univ. of Iowa, Iowa City, IA (United States)
2013-08-01
In this thesis, we study several different renormalization group (RG) methods, including the conventional Wilson renormalization group, Monte Carlo renormalization group (MCRG), exact renormalization group (ERG, or sometimes called functional RG), and tensor renormalization group (TRG).
Does the Peer Group matter? The Effect of Relative Rank on Educational Choice
DEFF Research Database (Denmark)
Skov, Peter Rohde
as a point of comparison. I investigate this theory using a school-by-grade fixed effects model and comprehensive administrative data. I examine the non-linear relationships between peers educational achievement on choice of secondary education. I show that the relative rank in the classroom have......In this paper I investigate whether a social contrast mechanism affects the choice of secondary schooling. Based on a theory of relative deprivation, a strand of research in social inequality of educational attainment shows that, controlling for the students ability, students who attends schools...
The relationship of the Laplacian gauge to the Landau gauge
Energy Technology Data Exchange (ETDEWEB)
Mandula, Jeffrey E
2002-03-01
The Laplacian gauge for gauge group SU(N) is discussed in perturbation theory. It is shown that to the lowest non-trivial order O(g{sup 1}), configurations in the Laplacian automatically satisfy the (finite difference) Landau gauge condition. Laplacian gauge fixed configurations are examined numerically and it is seen that to O(g{sup 2}) they do not remain in the Landau gauge.
Perceived Leadership Rankings of Males and Females in Small Task Groups.
Tyndall, Jeffry H.; And Others
1978-01-01
Supports the hypothesis that male leaders will receive higher ratings of alpha behavior than female leaders in mixed-sex groups, regardless of the females' ratings in same-sex groups. Points to linear male leadership patterns, while female patterns vary depending on the composition of the group. (RL)
Anomaly cancellation and gauge group of the standard model in NCG
Alvarez, Enrique; Martín, C P; Alvarez, Enrique
1995-01-01
It is well known that anomaly cancellation {\\it almost} determines the hypercharges in the standard model. A related (and somewhat more stronger) phenomenon takes place in Connes' NCG framework: unimodularity (a technical condition on elements of the algebra) is {\\it strictly} equivalent to anomaly cancellation (in the absence of right-handed neutrinos); and this in turn reduces the symmetry group of the theory to the standard SU(3)\\times SU(2) \\times U(1).
Directory of Open Access Journals (Sweden)
GIURCA IOAN
2013-08-01
Full Text Available In this paper we analyze the way of choosing the technical solutions concerning the supply of thermal energyfor residential groups of buildings, using the Multicriterial Ordinal Ranking Model, the Relative Distance Comparisonmodel in relation with the maximum performance and the Relative Distance Comparison model in relation with theaverage performance. The paper ends with the presentation of the numerical results and a few conclusions. Themodels proposed may be used in practice in case of feasibility studies, for master degree theses as well as for Ph.D.theses.
To Make Good Decision: A Group DSS for Multiple Criteria Alternative Rank and Selection
Chen-Shu Wang; Heng-Li Yang; Shiang-Lin Lin
2015-01-01
Decision making is a recursive process and usually involves multiple decision criteria. However, such multiple criteria decision making may have a problem in which partial decision criteria may conflict with each other. An information technology, such as the decision support system (DSS) and group DSS (GDSS), emerges to assist decision maker for decision-making process. Both the DSS and GDSS should integrate with a symmetrical approach to assist decision maker to take all decision criteria in...
Itzykson, C
1978-01-01
Some background on the theory of gauge fields, a subject of increasing popularity among particle physicists, is provided. The aim will be to stress those aspects which suggest that gauge fields may play some role in a future theory of strong interactions. (8 refs).
On Painlevé/gauge theory correspondence
Bonelli, Giulio; Lisovyy, Oleg; Maruyoshi, Kazunobu; Sciarappa, Antonio; Tanzini, Alessandro
2017-09-01
We elucidate the relation between Painlevé equations and four-dimensional rank one N = 2 theories by identifying the connection associated with Painlevé isomonodromic problems with the oper limit of the flat connection of the Hitchin system associated with gauge theories and by studying the corresponding renormalization group flow. Based on this correspondence, we provide long-distance expansions at various canonical rays for all Painlevé τ -functions in terms of magnetic and dyonic Nekrasov partition functions for N = 2 SQCD and Argyres-Douglas theories at self-dual Omega background ɛ _1 + ɛ _2 = 0 or equivalently in terms of c=1 irregular conformal blocks.
Mirror Symmetry in Three Dimensions via Gauged Linear Quivers
Dey, Anindya; Koroteev, Peter; Mekareeya, Noppadol
2014-01-01
Starting from mirror pairs consisting only of linear (framed A-type) quivers, we demonstrate that a wide class of three-dimensional quiver gauge theories with N=4 supersymmetry and their mirror duals can be obtained by suitably gauging flavor symmetries. Infinite families of mirror pairs including various quivers of D and E-type and their affine extensions, star-shaped quivers, and quivers with symplectic gauge groups may be generated in this fashion. We present two different computational strategies to perform the aforementioned gauging procedure - one of them involves N=2* classical parameter space description, while the other one uses partition functions of the N=4 theories on S^3. The partition function, in particular, turns out to be an extremely efficient tool for implementing this gauging procedure as it readily generalizes to arbitrary size of the quiver and arbitrary rank of the gauge group at each node. For most examples of mirror pairs obtained via this procedure, we perform additional checks of mi...
Erdtman, Elias; Jönsson, Carl
2012-01-01
This master's thesis addresses numerical methods of computing the typical ranks of tensors over the real numbers and explores some properties of tensors over finite fields. We present three numerical methods to compute typical tensor rank. Two of these have already been published and can be used to calculate the lowest typical ranks of tensors and an approximate percentage of how many tensors have the lowest typical ranks (for some tensor formats), respectively. The third method was developed...
Gershenson, Carlos
Studies of rank distributions have been popular for decades, especially since the work of Zipf. For example, if we rank words of a given language by use frequency (most used word in English is 'the', rank 1; second most common word is 'of', rank 2), the distribution can be approximated roughly with a power law. The same applies for cities (most populated city in a country ranks first), earthquakes, metabolism, the Internet, and dozens of other phenomena. We recently proposed ``rank diversity'' to measure how ranks change in time, using the Google Books Ngram dataset. Studying six languages between 1800 and 2009, we found that the rank diversity curves of languages are universal, adjusted with a sigmoid on log-normal scale. We are studying several other datasets (sports, economies, social systems, urban systems, earthquakes, artificial life). Rank diversity seems to be universal, independently of the shape of the rank distribution. I will present our work in progress towards a general description of the features of rank change in time, along with simple models which reproduce it
Balconi, Michela; Pagani, Silvia
2014-06-22
The perception and interpretation of social hierarchies are a key part of our social life. In the present research we considered the activation of cortical areas, mainly the prefrontal cortex, related to social ranking perception in conjunction with some personality components (BAS - Behavioral Activation System - and BIS - Behavioral Inhibition System). In two experiments we manipulated the perceived superior/inferior status during a competitive cognitive task. Indeed, we created an explicit and strongly reinforced social hierarchy based on incidental rating in an attentional task. Specifically, a peer group comparison was undertaken and improved (Experiment 1) or decreased (Experiment 2) performance was artificially manipulated by the experimenter. For each experiment two groups were compared, based on a BAS and BIS dichotomy. Alpha band modulation in prefrontal cortex, behavioral measures (performance: error rate, ER; response times, RTs), and self-perceived ranking were considered. Repeated measures ANOVAs and regression analyses showed in Experiment 1 a significant improved cognitive performance (decreased ER and RTs) and higher self-perceived ranking in high-BAS participants. Moreover, their prefrontal activity was increased within the left side (alpha band decreasing). Conversely, in Experiment 2 a significant decreased cognitive performance (increased ER and RTs) and lower self-perceived ranking was observed in higher-BIS participants. Their prefrontal right activity was increased in comparison with higher BAS. The regression analyses confirmed the significant predictive role of alpha band modulation with respect of subjects' performance and self-perception of social ranking, differently for BAS/BIS components. The present results suggest that social status perception is directly modulated by cortical activity and personality correlates. Copyright © 2014 Elsevier Inc. All rights reserved.
Relativistic gauge invariant potentials
Energy Technology Data Exchange (ETDEWEB)
Gonzalez, J.J. (Valladolid Univ. (Spain). Dept. de Fisica Teorica); Negro, J. (Valladolid Univ. (Spain). Dept. de Fisica Teorica); Olmo, M.A. del (Valladolid Univ. (Spain). Dept. de Fisica Teorica)
1995-01-01
A global method characterizing the invariant connections on an abelian principal bundle under a group of transformations is applied in order to get gauge invariant electromagnetic (elm.) potentials in a systematic way. So, we have classified all the elm. gauge invariant potentials under the Poincare subgroups of dimensions 4, 5, and 6, up to conjugation. It is paid attention in particular to the situation where these subgroups do not act transitively on the space-time manifold. We have used the same procedure for some galilean subgroups to get nonrelativistic potentials and study the way they are related to their relativistic partners by means of contractions. Some conformal gauge invariant potentials have also been derived and considered when they are seen as consequence of an enlargement of the Poincare symmetries. (orig.)
Gauge invariants and correlators in flavoured quiver gauge theories
Energy Technology Data Exchange (ETDEWEB)
Mattioli, Paolo, E-mail: p.mattioli@qmul.ac.uk; Ramgoolam, Sanjaye, E-mail: s.ramgoolam@qmul.ac.uk
2016-10-15
In this paper we study the construction of holomorphic gauge invariant operators for general quiver gauge theories with flavour symmetries. Using a characterisation of the gauge invariants in terms of equivalence classes generated by permutation actions, along with representation theory results in symmetric groups and unitary groups, we give a diagonal basis for the 2-point functions of holomorphic and anti-holomorphic operators. This involves a generalisation of the previously constructed Quiver Restricted Schur operators to the flavoured case. The 3-point functions are derived and shown to be given in terms of networks of symmetric group branching coefficients. The networks are constructed through cutting and gluing operations on the quivers.
Mangiarotti, L
1998-01-01
This book presents in a unified way modern geometric methods in analytical mechanics based on the application of fibre bundles, jet manifold formalism and the related concept of connection. Non-relativistic mechanics is seen as a particular field theory over a one-dimensional base. In fact, the concept of connection is the major link throughout the book. In the gauge scheme of mechanics, connections appear as reference frames, dynamic equations, and in Lagrangian and Hamiltonian formalisms. Inertial forces, energy conservation laws and other phenomena related to reference frames are analyzed;
Directory of Open Access Journals (Sweden)
Guillermo García Fernández
2017-02-01
The result follows from strong antiscreening of the running coupling for those larger groups (with an appropriately small number of flavors together with scaling properties of the Dyson–Schwinger equation for the fermion mass.
A Propellant Mass Gauge Project
National Aeronautics and Space Administration — Advanced Technologies Group, Inc. proposes the development of a Liquid-Oxygen Mass Gauge, (LMG) for In-Space cryogenic storage capable of continuous monitoring of...
Gounaris, George J; Zeppenfeld, Dieter; Ajaltouni, Ziad J; Arhrib, A; Bella, G; Berends, F A; Bilenky, S M; Blondel, A; Busenitz, J K; Choudhury, D; Clarke, P; Conboy, J E; Diehl, M; Fassouliotis, D; Frère, J M; Georgiopoulos, C H; Gibbs, M; Grünewald, M W; Hansen, J B; Hartmann, C; Jin, B N; Jousset, J; Kalinowski, Jan; Kocian, M L; Lahanas, Athanasios B; Layssac, J; Lieb, E H; Markou, C; Matteuzzi, C; Mättig, P; Moreno, J M; Moultaka, G; Nippe, A; Orloff, J; Papadopoulos, C G; Paschalis, J; Petridou, C; Phillips, H; Podlyski, F; Pohl, M; Renard, F M; Rossignol, J M; Rylko, R; Sekulin, R L; Van Sighem, A; Simopoulou, Errietta; Skillman, A; Spanos, V C; Tonazzo, A; Tytgat, M H G; Tzamarias, S; Verzegnassi, Claudio; Vlachos, N D; Zevgolatakos, E
1996-01-01
We present the results obtained by the "Triple Gauge Couplings" working group during the LEP2 Workshop (1994-1995). The report concentrates on the measurement of WW\\gamma and WWZ couplings in e^-e^+\\to W^-W^+ or, more generally, four-fermion production at LEP2. In addition the detection of new interactions in the bosonic sector via other production channels is discussed.
Higher-rank fields and currents
Energy Technology Data Exchange (ETDEWEB)
Gelfond, O.A. [Institute of System Research of Russian Academy of Sciences,Nakhimovsky prospect 36-1, 117218, Moscow (Russian Federation); I.E.Tamm Department of Theoretical Physics, Lebedev Physical Institute,Leninsky prospect 53, 119991, Moscow (Russian Federation); Vasiliev, M.A. [I.E.Tamm Department of Theoretical Physics, Lebedev Physical Institute,Leninsky prospect 53, 119991, Moscow (Russian Federation)
2016-10-13
Sp(2M) invariant field equations in the space M{sub M} with symmetric matrix coordinates are classified. Analogous results are obtained for Minkowski-like subspaces of M{sub M} which include usual 4d Minkowski space as a particular case. The constructed equations are associated with the tensor products of the Fock (singleton) representation of Sp(2M) of any rank r. The infinite set of higher-spin conserved currents multilinear in rank-one fields in M{sub M} is found. The associated conserved charges are supported by (rM−((r(r−1))/2))-dimensional differential forms in M{sub M}, that are closed by virtue of the rank-2r field equations. The cohomology groups H{sup p}(σ{sub −}{sup r}) with all p and r, which determine the form of appropriate gauge fields and their field equations, are found both for M{sub M} and for its Minkowski-like subspace.
Vervaecke, H.; Vries, Han de; Elsacker, Linda van
2000-01-01
We investigated dyadic grooming relationships in a captive group of bonobos (Pan paniscus) and questioned what social function grooming fulfils in the market of services and favors. Hereto we examined which of two theoretical models - grooming for support (Seyfarth, 1977, 1980) or grooming
Qu, Jianhua; Meng, Xianlin; You, Hong
2016-06-05
Due to the increasing number of unexpected water source pollution events, selection of the most appropriate disposal technology for a specific pollution scenario is of crucial importance to the security of urban water supplies. However, the formulation of the optimum option is considerably difficult owing to the substantial uncertainty of such accidents. In this research, a multi-stage technical screening and evaluation tool is proposed to determine the optimal technique scheme, considering the areas of pollutant elimination both in drinking water sources and water treatment plants. In stage 1, a CBR-based group decision tool was developed to screen available technologies for different scenarios. Then, the threat degree caused by the pollution was estimated in stage 2 using a threat evaluation system and was partitioned into four levels. For each threat level, a corresponding set of technique evaluation criteria weights was obtained using Group-G1. To identify the optimization alternatives corresponding to the different threat levels, an extension of TOPSIS, a multi-criteria interval-valued trapezoidal fuzzy decision making technique containing the four arrays of criteria weights, to a group decision environment was investigated in stage 3. The effectiveness of the developed tool was elaborated by two actual thallium-contaminated scenarios associated with different threat levels. Copyright © 2016 Elsevier B.V. All rights reserved.
Gauge Theories in the Twentieth Century
2001-01-01
By the end of the 1970s, it was clear that all the known forces of nature (including, in a sense, gravity) were examples of gauge theories , characterized by invariance under symmetry transformations chosen independently at each position and each time. These ideas culminated with the finding of the W and Z gauge bosons (and perhaps also the Higgs boson). This important book brings together the key papers in the history of gauge theories, including the discoveries of: the role of gauge transformations in the quantum theory of electrically charged particles in the 1920s; nonabelian gauge groups
Renormalization of nonabelian gauge theories with tensor matter fields
Energy Technology Data Exchange (ETDEWEB)
Lemes, Vitor; Renan, Ricardo [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Sorella, Silvio Paolo [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica
1996-03-01
The renormalizability of a nonabelian model describing the coupling between antisymmetric second rank tensor matter fields and Yang-Mills gauge fields is discussed within the BRS algebraic framework. (author). 12 refs.
DEFF Research Database (Denmark)
Möllers, Jan; Ørsted, Bent; Zhang, Genkai
2016-01-01
on the nilpotent radicals $N$ and $N_1$ of the minimal parabolics in $G$ and $G_1$, respectively. The groups $N$ and $N_1$ are of H-type and we construct explicitly invariant differential operators between $N$ and $N_1$. These operators induce the projections onto the discrete components. Our construction...... of the invariant differential operators is carried out uniformly in the framework of H-type groups and also works for those H-type groups which do not occur as nilpotent radical of a parabolic subgroup in a semisimple group....
A lattice formulation of chiral gauge theories
Energy Technology Data Exchange (ETDEWEB)
Bodwin, G.T. [Argonne National Lab., IL (United States). High Energy Physics Div.
1995-12-01
The authors present a method for formulating gauge theories of chiral fermions in lattice field theory. The method makes use of a Wilson mass to remove doublers. Gauge invariance is then restored by modifying the theory in two ways: the magnitude of the fermion determinant is replaced with the square root of the determinant for a fermion with vector-like couplings to the gauge field; a double limit is taken in which the lattice spacing associated with the fermion field is taken to zero before the lattice spacing associated with the gauge field. The method applies only to theories whose fermions are in an anomaly-free representation of the gauge group. They also present a related technique for computing matrix elements of operators involving fermion fields. Although the analyses of these methods are couched in weak-coupling perturbation theory, it is argued that computational prescriptions are gauge invariant in the presence of a nonperturbative gauge-field configuration.
Thermistor Pressure Gauge Design
Flanick, A. P.; Ainsworth, J. E.
1961-01-01
Thermistor pressure gauges are characterized by large pressure range, good accuracy and stability, fast measurement, insensitivity to over-pressure, negligible out-gassing, ease in cleaning, and physical and electrical simplicity and ruggedness. A number of excellent papers have been published describing these gauges. However, a detailed account of design procedure and characteristics for a specific gauge would eliminate much of the trial and error encountered in designing a gauge having prescribed range, sensitivity, and stability.
Alonso, R.; Gavela, M.B.; Grinstein, B.; Merlo, L.; Quilez, P.
2016-12-22
The gauging of the lepton flavour group is considered in the Standard Model context and in its extension with three right-handed neutrinos. The anomaly cancellation conditions lead to a Seesaw mechanism as underlying dynamics for all leptons; requiring in addition a phenomenologically viable setup leads to Majorana masses for the neutral sector: the type I Seesaw Lagrangian in the Standard Model case and the inverse Seesaw in the extended model. Within the minimal extension of the scalar sector, the Yukawa couplings are promoted to scalar fields in the bifundamental of the flavour group. The resulting low-energy Yukawa couplings are proportional to inverse powers of the vacuum expectation values of those scalars; the protection against flavour changing neutral currents differs from that of Minimal Flavor Violation. In all cases, the $\\mu-\\tau$ flavour sector exhibits rich and promising phenomenological signals.
An introduction to gauge theories
Cabibbo, Nicola; Benhar, Omar
2017-01-01
Written by three of the world's leading experts on particle physics and the standard model, including an award-winning former director general of CERN, this book provides a completely up-to-date account of gauge theories. Starting from Feynman’s path integrals, Feynman rules are derived, gauge fixing and Faddeev-Popov ghosts are discussed, and renormalization group equations are derived. Several important applications to quantum electrodynamics and quantum chromodynamics (QCD) are discussed, including the one-loop derivation of asymptotic freedom for QCD.
Infrared behaviors of SU(2 gauge theory
Directory of Open Access Journals (Sweden)
Tuominen Kimmo
2017-01-01
Full Text Available We will discuss some recent results in the determination of the location of the conformal window in SU(2 gauge theory with Nf fermions in the fundamental representation of the gauge group. In particular, we will demonstrate that the long distance behavior of the continuum theory with Nf = 6 is governed by an infrared stable fixed point.
Spacetime Metrics from Gauge Potentials
Directory of Open Access Journals (Sweden)
Ettore Minguzzi
2014-03-01
Full Text Available I present an approach to gravity in which the spacetime metric is constructed from a non-Abelian gauge potential with values in the Lie algebra of the group U(2 (or the Lie algebra of quaternions. If the curvature of this potential vanishes, the metric reduces to a canonical curved background form reminiscent of the Friedmann S3 cosmological metric.
Gauge Theories of Vector Particles
Glashow, S. L.; Gell-Mann, M.
1961-04-24
The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.
Lewandowski, Dirk
2015-01-01
Purpose: This paper discusses ranking factors suitable for library materials and shows that ranking in general is a complex process and that ranking for library materials requires a variety of techniques. Design/methodology/approach: The relevant literature is reviewed to provide a systematic overview of suitable ranking factors. The discussion is based on an overview of ranking factors used in Web search engines. Findings: While there are a wide variety of ranking factors appl...
Gauge symmetry from decoupling
Directory of Open Access Journals (Sweden)
C. Wetterich
2017-02-01
Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.
DEFF Research Database (Denmark)
2016-01-01
The invention relates to a strain gauge of a carrier layer and a meandering measurement grid positioned on the carrier layer, wherein the strain gauge comprises two reinforcement members positioned on the carrier layer at opposite ends of the measurement grid in the axial direction. The reinforce......The invention relates to a strain gauge of a carrier layer and a meandering measurement grid positioned on the carrier layer, wherein the strain gauge comprises two reinforcement members positioned on the carrier layer at opposite ends of the measurement grid in the axial direction....... The reinforcement members are each placed within a certain axial distance to the measurement grid with the axial distance being equal to or smaller than a factor times the grid spacing. The invention further relates to a multi-axial strain gauge such as a bi-axial strain gauge or a strain gauge rosette where each...... of the strain gauges comprises reinforcement members. The invention further relates to a method for manufacturing a strain gauge as mentioned above....
Energy Technology Data Exchange (ETDEWEB)
Bartholomew, M. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2016-01-01
To improve the quantitative description of precipitation processes in climate models, the Atmospheric Radiation Measurement (ARM) Climate Research Facility deployed rain gauges located near disdrometers (DISD and VDIS data streams). This handbook deals specifically with the rain gauges that make the observations for the RAIN data stream. Other precipitation observations are made by the surface meteorology instrument suite (i.e., MET data stream).
MS-on-shell quark mass relation up to four loops in QCD and a general SU(N) gauge group
Energy Technology Data Exchange (ETDEWEB)
Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Smirnov, Alexander V. [Moscow State Univ. (Russian Federation). Research Computing Center; Smirnov, Vladimir A. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics; Steinhauser, Matthias; Wellmann, David [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik
2016-06-15
In this paper we compute the relation between heavy quark masses defined in the modified minimal subtraction and on-shell scheme. Detailed results are presented for all coefficients of the SU(N{sub c}) colour factors. The reduction of the four-loop on-shell integrals is performed for a general QCD gauge parameter. Some of the about 380 master integrals are computed analytically, others with high numerical precision based on Mellin-Barnes representations, and the rest numerically with the help of FIESTA. We discuss in detail the precise numerical evaluation of the four-loop master integrals. Updated relations between various short-distance masses and the MS quark mass to next-to-next-to-next-to-leading order accuracy are provided for the charm, bottom and top quark. We discuss the dependence on the renormalization and factorization scale.
Gauge origin of discrete flavor symmetries in heterotic orbifolds
Directory of Open Access Journals (Sweden)
Florian Beye
2014-09-01
Full Text Available We show that non-Abelian discrete symmetries in orbifold string models have a gauge origin. This can be understood when looking at the vicinity of a symmetry enhanced point in moduli space. At such an enhanced point, orbifold fixed points are characterized by an enhanced gauge symmetry. This gauge symmetry can be broken to a discrete subgroup by a nontrivial vacuum expectation value of the Kähler modulus T. Using this mechanism it is shown that the Δ(54 non-Abelian discrete symmetry group originates from a SU(3 gauge symmetry, whereas the D4 symmetry group is obtained from a SU(2 gauge symmetry.
DEFF Research Database (Denmark)
Johansen, Søren
2008-01-01
The reduced rank regression model is a multivariate regression model with a coefficient matrix with reduced rank. The reduced rank regression algorithm is an estimation procedure, which estimates the reduced rank regression model. It is related to canonical correlations and involves calculating e...... eigenvalues and eigenvectors. We give a number of different applications to regression and time series analysis, and show how the reduced rank regression estimator can be derived as a Gaussian maximum likelihood estimator. We briefly mention asymptotic results......The reduced rank regression model is a multivariate regression model with a coefficient matrix with reduced rank. The reduced rank regression algorithm is an estimation procedure, which estimates the reduced rank regression model. It is related to canonical correlations and involves calculating...
SU(3)-Equivariant Quiver Gauge Theories and Nonabelian Vortices
Lechtenfeld, Olaf; Szabo, Richard J
2008-01-01
We consider SU(3)-equivariant dimensional reduction of Yang-Mills theory on Kaehler manifolds of the form M x SU(3)/H, with H = SU(2) x U(1) or H = U(1) x U(1). The induced rank two quiver gauge theories on M are worked out in detail for representations of H which descend from a generic irreducible SU(3)-representation. The reduction of the Donaldson-Uhlenbeck-Yau equations on these spaces induces nonabelian quiver vortex equations on M, which we write down explicitly. When M is a noncommutative deformation of the space C^d, we construct explicit BPS and non-BPS solutions of finite energy for all cases. We compute their topological charges in three different ways and propose a novel interpretation of the configurations as states of D-branes. Our methods and results generalize from SU(3) to any compact Lie group.
Asymptotically Free Gauge Theories. I
Wilczek, Frank; Gross, David J.
1973-07-01
Asymptotically free gauge theories of the strong interactions are constructed and analyzed. The reasons for doing this are recounted, including a review of renormalization group techniques and their application to scaling phenomena. The renormalization group equations are derived for Yang-Mills theories. The parameters that enter into the equations are calculated to lowest order and it is shown that these theories are asymptotically free. More specifically the effective coupling constant, which determines the ultraviolet behavior of the theory, vanishes for large space-like momenta. Fermions are incorporated and the construction of realistic models is discussed. We propose that the strong interactions be mediated by a "color" gauge group which commutes with SU(3)xSU(3). The problem of symmetry breaking is discussed. It appears likely that this would have a dynamical origin. It is suggested that the gauge symmetry might not be broken, and that the severe infrared singularities prevent the occurrence of non-color singlet physical states. The deep inelastic structure functions, as well as the electron position total annihilation cross section are analyzed. Scaling obtains up to calculable logarithmic corrections, and the naive lightcone or parton model results follow. The problems of incorporating scalar mesons and breaking the symmetry by the Higgs mechanism are explained in detail.
Gauge theory by canonical transformations
Koenigstein, Adrian; Kirsch, Johannes; Stoecker, Horst; Struckmeier, Juergen; Vasak, David; Hanauske, Matthias
2016-06-01
Electromagnetism, the strong and the weak interactions are commonly formulated as gauge theories in a Lagrangian description. In this paper, we present an alternative formal derivation of U(1)-gauge theory in a manifestly covariant Hamilton formalism. We make use of canonical transformations as our guiding tool to formalize the gauging procedure. The introduction of the gauge field, its transformation behavior and a dynamical gauge field Lagrangian/Hamiltonian are unavoidable consequences of this formalism, whereas the form of the free gauge Lagrangian/Hamiltonian depends on the selection of the gauge dependence of the canonically conjugate gauge fields.
Gauge Fields as Composite Boundary Excitations
Ferrara, Sergio; Ferrara, Sergio; Fronsdal, Christian
1998-01-01
We investigate representations of the conformal group that describe "massless" particles in the interior and at the boundary of anti-de Sitter space. It turns out that massless gauge excitations in anti-de Sitter are gauge "current" operators at the boundary. Conversely, massless excitations at the boundary are topological singletons in the interior. These representations lie at the threshold of two "unitary bounds" that apply to any conformally invariant field theory. Gravity and Yang-Mills gauge symmetry in anti-De Sitter is translated to global translational symmetry and continuous R-symmetry of the boundary superconformal field theory.
Geometrical origin of supersymmetric gauge theories
Energy Technology Data Exchange (ETDEWEB)
Caicedo, S.; Gambini, R.
1989-01-15
We show that the kinematical properties of any supersymmetric gauge theory may be obtained by mapping a geometric group structure of loops in superspace into some particular Lie group. The underlying group structure of the usual constrained supergauge theories turns out to be the group of even (bosonic) loops.
National Aeronautics and Space Administration — Cog-Gauge is a portable hand-held game that can be used by astronauts and crew members during space exploration missions to assess their cognitive workload...
Ranking Operations Management conferences
Steenhuis, H.J.; de Bruijn, E.J.; Gupta, Sushil; Laptaned, U
2007-01-01
Several publications have appeared in the field of Operations Management which rank Operations Management related journals. Several ranking systems exist for journals based on , for example, perceived relevance and quality, citation, and author affiliation. Many academics also publish at conferences
Viscous conformal gauge theories
DEFF Research Database (Denmark)
Toniato, Arianna; Sannino, Francesco; Rischke, Dirk H.
2017-01-01
We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories.......We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories....
A Gauge Invariant Regulator for the ERG
Arnone, S.; Kubyshin, Yu. A.; Morris, T. R.; Tighe, J. F.
A gauge invariant regularisation for dealing with pure Yang-Mills theories within the exact renormalization group approach is proposed. It is based on the regularisation via covariant higher derivatives and includes auxiliary Pauli-Villars fields which amounts to a spontaneously broken SU(N|N) super-gauge theory. We demonstrate perturbatively that the extended theory is ultra-violet finite in four dimensions and argue that it has a sensible limit when the regularization cutoff is removed.
Formulation of lattice gauge theories for quantum simulations
DEFF Research Database (Denmark)
Zohar, Erez; Burrello, Michele
2015-01-01
. This formulation allows for a natural scheme to achieve a consistent truncation of the Hilbert space for continuous groups, and provides helpful tools to study the connections of gauge theories with topological quantum double and string-net models for discrete groups. Several examples, including the case......We examine the Kogut-Susskind formulation of lattice gauge theories under the light of fermionic and bosonic degrees of freedom that provide a description useful to the development of quantum simulators of gauge-invariant models. We consider both discrete and continuous gauge groups and adopt...... a realistic multicomponent Fock space for the definition of matter degrees of freedom. In particular, we express the Hamiltonian of the gauge theory and the Gauss law in terms of Fock operators. The gauge fields are described in two different bases based on either group elements or group representations...
Sparse structure regularized ranking
Wang, Jim Jing-Yan
2014-04-17
Learning ranking scores is critical for the multimedia database retrieval problem. In this paper, we propose a novel ranking score learning algorithm by exploring the sparse structure and using it to regularize ranking scores. To explore the sparse structure, we assume that each multimedia object could be represented as a sparse linear combination of all other objects, and combination coefficients are regarded as a similarity measure between objects and used to regularize their ranking scores. Moreover, we propose to learn the sparse combination coefficients and the ranking scores simultaneously. A unified objective function is constructed with regard to both the combination coefficients and the ranking scores, and is optimized by an iterative algorithm. Experiments on two multimedia database retrieval data sets demonstrate the significant improvements of the propose algorithm over state-of-the-art ranking score learning algorithms.
Gauge invariance for a whole Abelian model
Chauca, J.; Doria, R.; Soares, W.
2012-10-01
Light invariance is a fundamental principle for physics be done. It generates Maxwell equations, relativity, Lorentz group. However there is still space for a fourth picture be developed which is to include fields with same Lorentz nature. It brings a new room for field theory. It says that light invariance does not work just to connect space and time but it also associates different fields with same nature. Thus for the (1/2,1/2) representation there is a fields family {AμI} to be studied. This means that given such fields association one should derive its corresponding gauge theory. This is the effort at this work. Show that there is a whole gauge theory to cover these fields relationships. Considering the abelian case, prove its gauge invariance. It yields the kinetic, massive, trilinear and quadrilinear gauge invariant terms.
Gauge invariance for a whole Abelian model
Energy Technology Data Exchange (ETDEWEB)
Chauca, J.; Doria, R.; Soares, W. [CBPF, Rio de Janeiro (Brazil); Aprendanet, Petropolis, 25600 (Brazil)
2012-09-24
Light invariance is a fundamental principle for physics be done. It generates Maxwell equations, relativity, Lorentz group. However there is still space for a fourth picture be developed which is to include fields with same Lorentz nature. It brings a new room for field theory. It says that light invariance does not work just to connect space and time but it also associates different fields with same nature. Thus for the ((1/2),(1/2)) representation there is a fields family {l_brace}A{sub {mu}I}{r_brace} to be studied. This means that given such fields association one should derive its corresponding gauge theory. This is the effort at this work. Show that there is a whole gauge theory to cover these fields relationships. Considering the abelian case, prove its gauge invariance. It yields the kinetic, massive, trilinear and quadrilinear gauge invariant terms.
Non-linear Abelian gauge model
Chauca, J.; Doria, R.; Soares, W.
2012-10-01
Based on the principle that nature acts together one proposes the presence of N-potential fields rotating under a same group. It introduces a new performance for the gauge approach. It yields a set of N-fields where each one is associated to a proper polynomial gauge transformation. As consequence, a non-linear abelian gauge model is obtained. It derives an abelian Lagrangian that beyond the usual case contains a longitudinal kinetic sector plus massive and interactive terms. This work establishes their gauge invariant conditions and writes the so-called Global Maxwell's equations and associated Global Lorentz force. Beyond Faraday lines, it yields physical lines of force in terms of potential fields.
Henneaux, Marc; Vasiliev, Mikhail A
2017-01-01
Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...
Gerbier, Fabrice; Goldman, Nathan; Lewenstein, Maciej; Sengstock, Klaus
2013-07-01
-orbit coupling (Rashba and Dresselhaus couplings), familiar from AMO and condensed matter physics. They lead to yet another variety of fascinating phenomena such as the quantum spin Hall effect, three-dimensional topological insulators, topological superconductors and superfluids of various kinds. One also expects here the appearance of excitations in a form of topological edge states that can support robust transport, or entangled Majorana fermions in the case of topological superconductors or superfluids. Again, while many kinds of topological insulators have been realized in condensed matter systems, a controlled way of creating them in AMO systems and studying quantum phase transitions between various kinds of them is obviously very appealing and challenging. The various systems listed so far correspond to static gauge fields, which are externally imposed by the experimentalists. Even more fascinating is the possibility of generating synthetically dynamical gauge fields, i.e. gauge fields that evolve in time according to an interacting gauge theory, e.g., a full lattice gauge theory (LGT). These dynamical gauge fields can also couple to matter fields, allowing the quantum simulation of such complex systems (notoriously hard to simulate using 'traditional' computers), which are particularly relevant for modern high-energy physics. So far, most of the theoretical proposals concern the simulation of Abelian gauge theories, however, several groups have recently proposed extensions to the non-Abelian scenarios. The scope of the present focused issue of Journal of Physics B is to cover all of these developments, with particular emphasis on the non-Abelian gauge fields. The 14 papers in this issue include contributions from the leading theory groups working in this field; we believe that this collection will provide the reference set for quantum simulations of gauge fields. Although the special issue contains exclusively theoretical proposals and studies, it should be stressed that
Accelerating abelian gauge dynamics
Adler, Stephen Louis
1991-01-01
In this paper, we suggest a new acceleration method for Abelian gauge theories based on linear transformations to variables which weight all length scales equally. We measure the autocorrelation time for the Polyakov loop and the plaquette at β=1.0 in the U(1) gauge theory in four dimensions, for the new method and for standard Metropolis updates. We find a dramatic improvement for the new method over the Metropolis method. Computing the critical exponent z for the new method remains an important open issue.
Maximum Waring ranks of monomials
Holmes, Erik; Plummer, Paul; Siegert, Jeremy; Teitler, Zach
2013-01-01
We show that monomials and sums of pairwise coprime monomials in four or more variables have Waring rank less than the generic rank, with a short list of exceptions. We asymptotically compare their ranks with the generic rank.
Ghigiarelli, Jamie J
2011-05-01
Several studies have documented the normative data for football combine performance measures in college and professional players. The primary purpose of this study was to examine the anthropometric and combine performance differences between highly recruited and recruited high school football players. A secondary purpose was to provide a historical basis of descriptive data for elite high school football players from 2001 to 2009. Height, weight, 40-yd sprint time, 20-yd shuttle time, vertical jump height, angle drive drill time, and broad jump distance were extracted for 2,560 players from a commercially available website. Mean scores across star value and playing positions were compared using analysis of variance (ANOVA) and 1-way ANOVAs. Statistical significance was found between highly recruited (5 and 4 stars) and recruited players (3 and 2 stars) for height (highly recruited = 1.878 ± 0.06 m, recruited 1.85 ± 0.11 m), weight (highly recruited = 99.77 ± 4.76 kg, recruited = 97.54 ± 4.84 kg), 40-yd sprint (highly recruited = 4.76 ± 0.327 seconds, recruited = 4.84 ± 0.142 seconds), and vertical jump (highly recruited = 0.775 ± 0.11 m, recruited = 0.750 ± 0.121 m). Ten backward stepwise regression models were calculated (position × variables) with statistical significance set at the p highly recruited high school football players. Sprinting ability and physical size are the most consistent predictors of subjective ranking. The results may help strength and conditioning specialists better understand the anthropometric and physical attributes that distinguish highly recruited from recruited players and which attributes are likely to predict higher star value scores.
Gauge theory and renormalization
Hooft, G. 't
1996-01-01
Early developments leading to renormalizable non-Abelian gauge theories for the weak, electromagnetic and strong interactions, are discussed from a personal viewpoint. They drastically improved our view of the role of field theory, symmetry and topology, as well as other branches of mathematics, in
Modesto, Leonardo; Piva, Marco; Rachwał, Lesław
2016-07-01
We explicitly compute the one-loop exact beta function for a nonlocal extension of the standard gauge theory, in particular, Yang-Mills and QED. The theory, made of a weakly nonlocal kinetic term and a local potential of the gauge field, is unitary (ghost-free) and perturbatively super-renormalizable. Moreover, in the action we can always choose the potential (consisting of one "killer operator") to make zero the beta function of the running gauge coupling constant. The outcome is a UV finite theory for any gauge interaction. Our calculations are done in D =4 , but the results can be generalized to even or odd spacetime dimensions. We compute the contribution to the beta function from two different killer operators by using two independent techniques, namely, the Feynman diagrams and the Barvinsky-Vilkovisky traces. By making the theories finite, we are able to solve also the Landau pole problems, in particular, in QED. Without any potential, the beta function of the one-loop super-renormalizable theory shows a universal Landau pole in the running coupling constant in the ultraviolet regime (UV), regardless of the specific higher-derivative structure. However, the dressed propagator shows neither the Landau pole in the UV nor the singularities in the infrared regime (IR).
Bradshaw, Corey J A; Brook, Barry W
2016-01-01
There are now many methods available to assess the relative citation performance of peer-reviewed journals. Regardless of their individual faults and advantages, citation-based metrics are used by researchers to maximize the citation potential of their articles, and by employers to rank academic track records. The absolute value of any particular index is arguably meaningless unless compared to other journals, and different metrics result in divergent rankings. To provide a simple yet more objective way to rank journals within and among disciplines, we developed a κ-resampled composite journal rank incorporating five popular citation indices: Impact Factor, Immediacy Index, Source-Normalized Impact Per Paper, SCImago Journal Rank and Google 5-year h-index; this approach provides an index of relative rank uncertainty. We applied the approach to six sample sets of scientific journals from Ecology (n = 100 journals), Medicine (n = 100), Multidisciplinary (n = 50); Ecology + Multidisciplinary (n = 25), Obstetrics & Gynaecology (n = 25) and Marine Biology & Fisheries (n = 25). We then cross-compared the κ-resampled ranking for the Ecology + Multidisciplinary journal set to the results of a survey of 188 publishing ecologists who were asked to rank the same journals, and found a 0.68-0.84 Spearman's ρ correlation between the two rankings datasets. Our composite index approach therefore approximates relative journal reputation, at least for that discipline. Agglomerative and divisive clustering and multi-dimensional scaling techniques applied to the Ecology + Multidisciplinary journal set identified specific clusters of similarly ranked journals, with only Nature & Science separating out from the others. When comparing a selection of journals within or among disciplines, we recommend collecting multiple citation-based metrics for a sample of relevant and realistic journals to calculate the composite rankings and their relative uncertainty windows.
SU(3) gauge theory of nuclear rotations
Rosensteel, G.; Sparks, N.
2017-09-01
The legacy Bohr-Mottelson model of collective rotational modes has a hidden differential geometric structure that enables its natural generalization to a nuclear model that has the mathematical structure of Yang-Mills theory. The essential differential geometry ingredients for Yang-Mills are a base manifold, a gauge group, and a connection or covariant derivative. In this letter, the base manifold is the space of nuclear orientations and quadrupole-monopole deformations, the gauge group is either SO(3) or SU(3), and the covariant derivative determines a new gauge-invariant “magnetic-type” interaction. The high-lying energy states of the legacy irrotational flow model enter, as a direct result of gauge coupling, the domain of low-energy yrast rotational bands, as observed by experiment. Although the relevant SU(3) representation for a deformed nucleus is the same as the Elliott model, the non-Abelian SU(3) gauge group's physical interpretation is very different and concerns the Kelvin circulation.
Simplicial gauge theory and quantum gauge theory simulation
Energy Technology Data Exchange (ETDEWEB)
Halvorsen, Tore Gunnar, E-mail: toregha@gmail.com [Department of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway); Sorensen, Torquil Macdonald, E-mail: t.m.sorensen@matnat.uio.no [Centre of Mathematics for Applications, University of Oslo, NO-0316 Oslo (Norway)
2012-01-01
We propose a general formulation of simplicial lattice gauge theory inspired by the finite element method. Numerical tests of convergence towards continuum results are performed for several SU(2) gauge fields. Additionally, we perform simplicial Monte Carlo quantum gauge field simulations involving measurements of the action as well as differently sized Wilson loops as functions of {beta}.
Gauge symmetry breaking in gauge theories -- in search of clarification
Friederich, Simon
2013-01-01
The paper investigates the spontaneous breaking of gauge symmetries in gauge theories from a philosophical angle, taking into account the fact that the notion of a spontaneously broken local gauge symmetry, though widely employed in textbook expositions of the Higgs mechanism, is not supported by
Weighing Rain Gauge Recording Charts
National Oceanic and Atmospheric Administration, Department of Commerce — Weighing rain gauge charts record the amount of precipitation that falls at a given location. The vast majority of the Weighing Rain Gauge Recording Charts...
Academic rankings: an approach to a Portuguese ranking
Bernardino, Pedro; Marques,Rui
2009-01-01
The academic rankings are a controversial subject in higher education. However, despite all the criticism, academic rankings are here to stay and more and more different stakeholders use rankings to obtain information about the institutions’ performance. The two most well-known rankings, The Times and the Shanghai Jiao Tong University rankings have different methodologies. The Times ranking is based on peer review, whereas the Shanghai ranking has only quantitative indicators and is mainly ba...
Safety of hydrogen pressure gauges.
Voth, R. O.
1972-01-01
Study of the relative safety afforded an operator by various hydrogen-pressure gauge case designs. It is shown that assurance of personnel safety, should a failure occur, requires careful selection of available gauge designs, together with proper mounting. Specific gauge case features and mounting requirements are recommended.
Weisz, Peter; Majumdar, Pushan
2012-03-01
Lattice gauge theory is a formulation of quantum field theory with gauge symmetries on a space-time lattice. This formulation is particularly suitable for describing hadronic phenomena. In this article we review the present status of lattice QCD. We outline some of the computational methods, discuss some phenomenological applications and a variety of non-perturbative topics. The list of references is severely incomplete, the ones we have included are text books or reviews and a few subjectively selected papers. Kronfeld and Quigg (2010) supply a reasonably comprehensive set of QCD references. We apologize for the fact that have not covered many important topics such as QCD at finite density and heavy quark effective theory adequately, and mention some of them only in the last section "In Brief". These topics should be considered in further Scholarpedia articles.
Ranking Economic History Journals
DEFF Research Database (Denmark)
Di Vaio, Gianfranco; Weisdorf, Jacob Louis
This study ranks - for the first time - 12 international academic journals that have economic history as their main topic. The ranking is based on data collected for the year 2007. Journals are ranked using standard citation analysis where we adjust for age, size and self-citation of journals. We...... also compare the leading economic history journals with the leading journals in economics in order to measure the influence on economics of economic history, and vice versa. With a few exceptions, our results confirm the general idea about what economic history journals are the most influential...
Ranking economic history journals
DEFF Research Database (Denmark)
Di Vaio, Gianfranco; Weisdorf, Jacob Louis
2010-01-01
This study ranks-for the first time-12 international academic journals that have economic history as their main topic. The ranking is based on data collected for the year 2007. Journals are ranked using standard citation analysis where we adjust for age, size and self-citation of journals. We also...... compare the leading economic history journals with the leading journals in economics in order to measure the influence on economics of economic history, and vice versa. With a few exceptions, our results confirm the general idea about what economic history journals are the most influential for economic...
Recurrent fuzzy ranking methods
Hajjari, Tayebeh
2012-11-01
With the increasing development of fuzzy set theory in various scientific fields and the need to compare fuzzy numbers in different areas. Therefore, Ranking of fuzzy numbers plays a very important role in linguistic decision-making, engineering, business and some other fuzzy application systems. Several strategies have been proposed for ranking of fuzzy numbers. Each of these techniques has been shown to produce non-intuitive results in certain case. In this paper, we reviewed some recent ranking methods, which will be useful for the researchers who are interested in this area.
Energy Technology Data Exchange (ETDEWEB)
Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ahn, Sungsoo [Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of); Shin, Jinwoo [Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of)
2017-05-25
Computing partition function is the most important statistical inference task arising in applications of Graphical Models (GM). Since it is computationally intractable, approximate methods have been used to resolve the issue in practice, where meanfield (MF) and belief propagation (BP) are arguably the most popular and successful approaches of a variational type. In this paper, we propose two new variational schemes, coined Gauged-MF (G-MF) and Gauged-BP (G-BP), improving MF and BP, respectively. Both provide lower bounds for the partition function by utilizing the so-called gauge transformation which modifies factors of GM while keeping the partition function invariant. Moreover, we prove that both G-MF and G-BP are exact for GMs with a single loop of a special structure, even though the bare MF and BP perform badly in this case. Our extensive experiments, on complete GMs of relatively small size and on large GM (up-to 300 variables) confirm that the newly proposed algorithms outperform and generalize MF and BP.
Dirac Gauginos, Gauge Mediation and Unification
Benakli, K
2010-01-01
We investigate the building of models with Dirac gauginos and perturbative gauge coupling unification. Here, in contrast to the MSSM, additional fields are required for unification, and these can naturally play the role of the messengers of supersymmetry breaking. We present a framework within which such models can be constructed, including the constraints that the messenger sector must satisfy; and the renormalisation group equations for the soft parameters, which differ from those of the MSSM. For illustration, we provide the spectrum at the electroweak scale for explicit models whose gauge couplings unify at the scale predicted by heterotic strings.
Potential and mass-matrix in gauged N = 4 supergravity
Roo, Mess de; Westra, Dennis B.; Panda, Sudhakar; Trigiante, Mario
2003-01-01
We discuss the potential and mass-matrix of gauged N = 4 matter coupled supergravity for the case of six matter multiplets, extending previous work by considering the dependence on all scalars. We consider all semi-simple gauge groups and analyse the potential and its first and second derivatives in
Confinement criterion for gauge theories with matter fields
Greensite, Jeff; Matsuyama, Kazue
2017-11-01
A generalization of the Wilson loop area-law criterion, which is applicable to gauge theories with matter in the fundamental representation of the gauge group, is proposed. This new criterion, like the area law, is stronger than the statement that asymptotic particle states are massive color singlets, which holds even for theories described by the Brout-Englert-Higgs mechanism.
Energy Technology Data Exchange (ETDEWEB)
Monsef-Mirzai, P.; McWhinnie, W.R.; Perry, M.C.; Burchill, P. [Aston University, Birmingham (United Kingdom). Dept. of Chemical Engineering and Applied Chemistry
1995-05-01
Experiments with both model compounds (substituted phenols) and with 11 coals (nine British and two American) have established that microwave heating will greatly accelerate silylation reactions of the phenolic -OH groups, e.g. for Creswell coal complete silylation of -OH groups occurs in 35 min in the microwave oven, whereas 24 h is required using a bench reflux technique. Microwave reaction times for coals vary from 35 min to 3 h for more dense coals such as Cortonwood. The above observations have allowed the development of a `one pot` silylation of coal, followed by an in situ analysis of the added Me{sub 3}Si- groups by quantitative {sup 29}Si magic angle spinning nuclear magnetic resonance (MAS n.m.r.) spectroscopy. The development of a quantitative n.m.r. method required the determination of {sup 29}Si spin lattice relaxation times, T{sub 1}, e.g. for silylated coals T{sub 1} {approximately} 8s; for silylated phenols, T{sub 1} {approximately} 25s; for the synthetic smectite clay laponite, T{sub 1} {approximately} 25 s; and for Ph{sub 3}SiH, T{sub 1} {approximately} 64 s. Inert laponite was selected as the standard. The requirement to wait for five T{sub 1 max} between pulses, together with the relatively low natural abundance of {sup 29}Si (4.71%), results in rather long accumulation times to obtain spectra of analytical quality (8-48 h). However, in comparison with other methods, even in the most unfavourable case, the total time from commencement of analysis to result may be described as `rapid`. The results for O{sub OH}/O{sub total} obtained are compared with other literature data. Comparison with ketene data, for example, shows agreement to vary from excellent (Creswell) through satisfactory (Cortonwood) to poor (Pittsburgh). Even in cases where agreement with ketene data is less good, the silylation results may be close to estimates made via other acetylation methods. Possible reasons for the variations observed are discussed. 18 refs., 2 figs., 7 tabs.
Lattice Gauge Field Theory and Prismatic Sets
DEFF Research Database (Denmark)
Akyar, Bedia; Dupont, Johan Louis
as and in particular the latter we use to study lattice gauge theory in the sense of Phillips and Stone. Thus for a Lie group and a set of parallel transport functions defining the transition over faces of the simplices, we define a classifying map from the prismatic star to a prismatic version of the classifying...
Gauge fields and infinite chains of dualities
Energy Technology Data Exchange (ETDEWEB)
Boulanger, Nicolas [Service de Mécanique et Gravitation, Université de Mons - UMONS,20 place du Parc, B-7000 Mons (Belgium); Sundell, Per [Departamento de Ciencias Físicas, Universidad Andres Bello - UNAB,Av. República 252, Santiago (Chile); West, Peter [Department of Mathematics, King’s College,London WC2R 2LS (United Kingdom)
2015-09-28
We show that the particle states of Maxwell’s theory, in D dimensions, can be represented in an infinite number of ways by using different gauge fields. Using this result we formulate the dynamics in terms of an infinite set of duality relations which are first order in space-time derivatives. We derive a similar result for the three form in eleven dimensions where such a possibility was first observed in the context of E{sub 11}. We also give an action formulation for some of the gauge fields. In this paper we give a pedagogical account of the Lorentz and gauge covariant formulation of the irreducible representations of the Poincaré group, used previously in higher spin theories, as this plays a key role in our constructions. It is clear that our results can be generalised to any particle.
Asset ranking manager (ranking index of components)
Energy Technology Data Exchange (ETDEWEB)
Maloney, S.M.; Engle, A.M.; Morgan, T.A. [Applied Reliability, Maracor Software and Engineering (United States)
2004-07-01
The Ranking Index of Components (RIC) is an Asset Reliability Manager (ARM), which itself is a Web Enabled front end where plant database information fields from several disparate databases are combined. That information is used to create a specific weighted number (Ranking Index) relating to that components health and risk to the site. The higher the number, the higher priority that any work associated with that component receives. ARM provides site Engineering, Maintenance and Work Control personnel with a composite real time - (current condition) look at the components 'risk of not working' to the plant. Information is extracted from the existing Computerized Maintenance management System (CMMS) and specific site applications and processed nightly. ARM helps to ensure that the most important work is placed into the workweeks and the non value added work is either deferred, frequency changed or deleted. This information is on the web, updated each night, and available for all employees to use. This effort assists the work management specialist when allocating limited resources to the most important work. The use of this tool has maximized resource usage, performing the most critical work with available resources. The ARM numbers are valued inputs into work scoping for the workweek managers. System and Component Engineers are using ARM to identify the components that are at 'risk of failure' and therefore should be placed into the appropriate work week schedule.
Topological gauge theory, Cartan geometry, and gravity
Wise, Derek Keith
2007-12-01
We investigate the geometry of general relativity, and of related topological gauge theories, using Cartan geometry. Cartan geometry---an 'infinitesimal' version of Klein's Erlanger Programm---allows us to view physical spacetime as tangentially approximated by a homogeneous 'model spacetime', such as de Sitter or anti de Sitter spacetime. This idea leads to a common geometric foundation for 3d Chern-Simons gravity, as studied by Witten, and 4d MacDowell-Mansouri gravity. We describe certain topological gauge theories, including BF theory---a natural generalization of 3d gravity to higher dimensions---as 'Cartan gauge theories' in which the gauge field is replaced by a 'Cartan connection' modeled on some Klein geometry G/H. Cartan-type BF theory has solutions that say spacetime is locally isometric to G/H itself; in this case Cartan geometry reduces to the theory of 'geometric structures'. This leads to generalizations of 3d gravity based on other 3d Klein geometries, including those in Thurston's classification of 3d Riemannian model geometries. In 4d gravity, we generalize MacDowell-Mansouri gravity to other Cartan geometries. For BF theory in n-dimensional spacetime, we also describe codimension-2 'branes' as topological defects. These branes---particles in 3d spacetime, strings in 4d, and so on---are shown to be classified by conjugacy classes in the gauge group G of the theory. They also obey 'exotic statistics' which are neither Bose-Einstein nor Fermi-Dirac, but are governed by representations of generalizations of the braid group known as 'motion groups'. These representations come from a natural action of the motion group on the moduli space of flat G-bundles on space. We study this in particular detail in the case of strings in 4d BF theory, where Lin has called the motion group the 'loop braid group', LBn. This makes 4d BF theory with strings into a 'loop braided quantum field theory'. We also use ideas from 'higher gauge theory' to study particles as
Gauging the Commitment of Clandestine Group Members
2006-03-01
than continue to use the family business as their only source of income, a few members have elected to only support the family business part-time and...human intelligence, or by national technical means. For example, the individual that remains in the family business even though it is obviously not
Local gauge coupling running in supersymmetric gauge theories on orbifolds
Energy Technology Data Exchange (ETDEWEB)
Hillenbach, M.
2007-11-21
By extending Feynman's path integral calculus to fields which respect orbifold boundary conditions we provide a straightforward and convenient framework for loop calculations on orbifolds. We take advantage of this general method to investigate supersymmetric Abelian and non-Abelian gauge theories in five, six and ten dimensions where the extra dimensions are compactified on an orbifold. We consider hyper and gauge multiplets in the bulk and calculate the renormalization of the gauge kinetic term which in particular allows us to determine the gauge coupling running. The renormalization of the higher dimensional theories in orbifold spacetimes exhibits a rich structure with three principal effects: Besides the ordinary renormalization of the bulk gauge kinetic term the loop effects may require the introduction of both localized gauge kinetic terms at the fixed points/planes of the orbifold and higher dimensional operators. (orig.)
Directory of Open Access Journals (Sweden)
Arda Halu
Full Text Available Many complex systems can be described as multiplex networks in which the same nodes can interact with one another in different layers, thus forming a set of interacting and co-evolving networks. Examples of such multiplex systems are social networks where people are involved in different types of relationships and interact through various forms of communication media. The ranking of nodes in multiplex networks is one of the most pressing and challenging tasks that research on complex networks is currently facing. When pairs of nodes can be connected through multiple links and in multiple layers, the ranking of nodes should necessarily reflect the importance of nodes in one layer as well as their importance in other interdependent layers. In this paper, we draw on the idea of biased random walks to define the Multiplex PageRank centrality measure in which the effects of the interplay between networks on the centrality of nodes are directly taken into account. In particular, depending on the intensity of the interaction between layers, we define the Additive, Multiplicative, Combined, and Neutral versions of Multiplex PageRank, and show how each version reflects the extent to which the importance of a node in one layer affects the importance the node can gain in another layer. We discuss these measures and apply them to an online multiplex social network. Findings indicate that taking the multiplex nature of the network into account helps uncover the emergence of rankings of nodes that differ from the rankings obtained from one single layer. Results provide support in favor of the salience of multiplex centrality measures, like Multiplex PageRank, for assessing the prominence of nodes embedded in multiple interacting networks, and for shedding a new light on structural properties that would otherwise remain undetected if each of the interacting networks were analyzed in isolation.
Halu, Arda; Mondragón, Raúl J; Panzarasa, Pietro; Bianconi, Ginestra
2013-01-01
Many complex systems can be described as multiplex networks in which the same nodes can interact with one another in different layers, thus forming a set of interacting and co-evolving networks. Examples of such multiplex systems are social networks where people are involved in different types of relationships and interact through various forms of communication media. The ranking of nodes in multiplex networks is one of the most pressing and challenging tasks that research on complex networks is currently facing. When pairs of nodes can be connected through multiple links and in multiple layers, the ranking of nodes should necessarily reflect the importance of nodes in one layer as well as their importance in other interdependent layers. In this paper, we draw on the idea of biased random walks to define the Multiplex PageRank centrality measure in which the effects of the interplay between networks on the centrality of nodes are directly taken into account. In particular, depending on the intensity of the interaction between layers, we define the Additive, Multiplicative, Combined, and Neutral versions of Multiplex PageRank, and show how each version reflects the extent to which the importance of a node in one layer affects the importance the node can gain in another layer. We discuss these measures and apply them to an online multiplex social network. Findings indicate that taking the multiplex nature of the network into account helps uncover the emergence of rankings of nodes that differ from the rankings obtained from one single layer. Results provide support in favor of the salience of multiplex centrality measures, like Multiplex PageRank, for assessing the prominence of nodes embedded in multiple interacting networks, and for shedding a new light on structural properties that would otherwise remain undetected if each of the interacting networks were analyzed in isolation.
Ranking of Rankings: Benchmarking Twenty-Five Higher Education Ranking Systems in Europe
Stolz, Ingo; Hendel, Darwin D.; Horn, Aaron S.
2010-01-01
The purpose of this study is to evaluate the ranking practices of 25 European higher education ranking systems (HERSs). Ranking practices were assessed with 14 quantitative measures derived from the Berlin Principles on Ranking of Higher Education Institutions (BPs). HERSs were then ranked according to their degree of congruence with the BPs.…
Anomalous Gauge Boson Interactions
Energy Technology Data Exchange (ETDEWEB)
Barklow, Timothy L
2003-06-16
We discuss the direct measurement of the trilinear vector boson couplings in present and future collider experiments. The major goals of such experiments will be the confirmation of the Standard Model (SM) predictions and the search for signals of new physics. We review our current theoretical understanding of anomalous trilinear gauge-boson self interactions. If the energy scale of the new physics is {approx} 1 TeV, these low energy anomalous couplings are expected to be no larger than {Omicron}(10{sup -2}). Constraints from high precision measurements at LEP and low energy charged and neutral current processes are critically reviewed.
Anomalous gauge boson interactions
Energy Technology Data Exchange (ETDEWEB)
Aihara, H. [Lawrence Berkeley Lab., CA (United States); Barklow, T. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Baur, U. [State Univ. of New York, Buffalo, NY (United States). Dept. of Physics]|[Florida State Univ., Tallahassee, FL (United States). Dept. of Physics] [and others
1995-03-01
We discuss the direct measurement of the trilinear vector boson couplings in present and future collider experiments. The major goals of such experiments will be the confirmation of the Standard Model (SM) predictions and the search for signals of new physics. We review our current theoretical understanding of anomalous trilinear gauge-boson self interactions. If the energy scale of the new physics is {approximately} 1 TeV, these low energy anomalous couplings are expected to be no larger than {Omicron}(10{sup {minus}2}). Constraints from high precision measurements at LEP and low energy charged and neutral current processes are critically reviewed.
DEFF Research Database (Denmark)
2017-01-01
The invention relates to a strain gauge of a carrier layer and a meandering measurement grid (101) positioned on the carrier layer, wherein the measurement grid comprises a number of measurement grid sections placed side by side with gaps in between, and a number of end loops (106) interconnecting...... the measurement grid sections at their ends. The end loops at both ends of the measurement grid extend a length (L, 500) in the axial direction in millimetres of a factor times a ratio between a width of a grid section and the gap distance, wherein the factor is larger or equal to 1.5. The invention further...
Universal emergence of PageRank
Energy Technology Data Exchange (ETDEWEB)
Frahm, K M; Georgeot, B; Shepelyansky, D L, E-mail: frahm@irsamc.ups-tlse.fr, E-mail: georgeot@irsamc.ups-tlse.fr, E-mail: dima@irsamc.ups-tlse.fr [Laboratoire de Physique Theorique du CNRS, IRSAMC, Universite de Toulouse, UPS, 31062 Toulouse (France)
2011-11-18
The PageRank algorithm enables us to rank the nodes of a network through a specific eigenvector of the Google matrix, using a damping parameter {alpha} Element-Of ]0, 1[. Using extensive numerical simulations of large web networks, with a special accent on British University networks, we determine numerically and analytically the universal features of the PageRank vector at its emergence when {alpha} {yields} 1. The whole network can be divided into a core part and a group of invariant subspaces. For {alpha} {yields} 1, PageRank converges to a universal power-law distribution on the invariant subspaces whose size distribution also follows a universal power law. The convergence of PageRank at {alpha} {yields} 1 is controlled by eigenvalues of the core part of the Google matrix, which are extremely close to unity, leading to large relaxation times as, for example, in spin glasses. (paper)
Ward identities and gauge independence in general chiral gauge theories
Anselmi, Damiano
2015-07-01
Using the Batalin-Vilkovisky formalism, we study the Ward identities and the equations of gauge dependence in potentially anomalous general gauge theories, renormalizable or not. A crucial new term, absent in manifestly nonanomalous theories, is responsible for interesting effects. We prove that gauge invariance always implies gauge independence, which in turn ensures perturbative unitarity. Precisely, we consider potentially anomalous theories that are actually free of gauge anomalies thanks to the Adler-Bardeen theorem. We show that when we make a canonical transformation on the tree-level action, it is always possible to re-renormalize the divergences and re-fine-tune the finite local counterterms, so that the renormalized Γ functional of the transformed theory is also free of gauge anomalies, and is related to the renormalized Γ functional of the starting theory by a canonical transformation. An unexpected consequence of our results is that the beta functions of the couplings may depend on the gauge-fixing parameters, although the physical quantities remain gauge independent. We discuss nontrivial checks of high-order calculations based on gauge independence and determine how powerful they are.
Directory of Open Access Journals (Sweden)
Almeida DRP
2016-01-01
Full Text Available David RP Almeida,1 Eric K Chin,2,3 Shaival S Shah,3 Benjamin Bakall,3 Karen M Gehrs,3 H Culver Boldt,3 Stephen R Russell,3 James C Folk,3 Vinit B Mahajan3,41VitreoRetinal Surgery PA, Minneapolis, MN, 2Retina Consultants of Southern California, Riverside, CA, 3Vitreoretinal Service, Department of Ophthalmology and Visual Sciences, 4Omics Laboratory, University of Iowa, Iowa City, IA, USABackground: The role of pars plana vitrectomy (PPV for endophthalmitis has evolved over recent decades but the literature is lacking on comparisons between small-gauge and 20-gauge vitrectomy.Objective: To evaluate evolving etiological and microbiological trends in patients undergoing vitrectomy for endophthalmitis and to compare culture-positive rates and visual outcomes between small-gauge (23- and 25-gauge and 20-gauge instrumentation during vitrectomy for endophthalmitis.Methods: Ten-year retrospective comparative case series and prospective laboratory in vitro testing. Tertiary care academic referral center. Patients who underwent PPV for endophthalmitis between 2003 and 2013. Vitreous biopsies were obtained in all cases. The effect of vitrectomy gauge (20-, 23-, and 25-gauge and vitreous cutting rate (1,500 and 5,000 cuts per minute on the viability of bacterial culture was evaluated in an in vitro prospective laboratory investigation.Main outcome measures: Comparison of etiology, microbiology culture-positive rates, and visual outcomes between small-gauge and 20-gauge instrumentation in patients undergoing PPV for infectious endophthalmitis.Results: A total of 61 cases of vitrectomy for endophthalmitis were identified over a 10-year period; of these, 34 were treated with small-gauge (23- and 25-gauge vitrectomy and 27 were treated with 20-gauge vitrectomy. In the small-gauge group, 12 cases (35.3% yielded culture-positive results versus 20 cases (74.1% with culture positivity in the 20-gauge cohort (P=0.002. The most common cause of endophthalmitis was
Kirch, Darrell G; Prescott, John E
2013-08-01
Since the 1980s, school ranking systems have been a topic of discussion among leaders of higher education. Various ranking systems are based on inadequate data that fail to illustrate the complex nature and special contributions of the institutions they purport to rank, including U.S. medical schools, each of which contributes uniquely to meeting national health care needs. A study by Tancredi and colleagues in this issue of Academic Medicine illustrates the limitations of rankings specific to primary care training programs. This commentary discusses, first, how each school's mission and strengths, as well as the impact it has on the community it serves, are distinct, and, second, how these schools, which are each unique, are poorly represented by overly subjective ranking methodologies. Because academic leaders need data that are more objective to guide institutional development, the Association of American Medical Colleges (AAMC) has been developing tools to provide valid data that are applicable to each medical school. Specifically, the AAMC's Medical School Admissions Requirements and its Missions Management Tool each provide a comprehensive assessment of medical schools that leaders are using to drive institutional capacity building. This commentary affirms the importance of mission while challenging the leaders of medical schools, teaching hospitals, and universities to use reliable data to continually improve the quality of their training programs to improve the health of all.
Gauge-independent Higgs mechanism and the implications for quark confinement
Directory of Open Access Journals (Sweden)
Kondo Kei-Ichi
2017-01-01
Full Text Available We propose a gauge-invariant description for the Higgs mechanism by which a gauge boson acquires the mass. We do not need to assume spontaneous breakdown of gauge symmetry signaled by a non-vanishing vacuum expectation value of the scalar field. In fact, we give a manifestly gauge-invariant description of the Higgs mechanism in the operator level, which does not rely on spontaneous symmetry breaking. For concreteness, we discuss the gauge-Higgs models with U(1 and SU(2 gauge groups explicitly. This enables us to discuss the confinement-Higgs complementarity from a new perspective.
Alternate Gauge Electroweak Model
Dalton, Bill
2010-01-01
We describe an alternate gauge electroweak model that permits neutrinos with mass, and at the same time explains why right-handed neutrinos do not appear in weak interactions. This is a local gauge theory involving a space [V ] of three scalar functions. The standard Lagrangian density for the Yang-Mills field part and Higgs doublet remain invariant. A ma jor change is made in the transformation and corresponding Lagrangian density parts involving the right-handed leptons. A picture involving two types of right-handed leptons emerges. A dichotomy of matter on the [V ] space corresponds to coupled and uncoupled right-handed Leptons. Here, we describe a covariant dipole-mode solution in which the neutral bosons A{\\mu} and Z{\\mu} produce precessions on [V ]. The W {\\pm} {\\mu} bosons provide nutations on [V ], and consequently, provide transitions between the coupled and uncoupled regions. To elucidate the [V ] space matter dichotomy, and to generate the boson masses, we also provide an alternate potential Lagran...
Gravitation and Gauge Symmetries
Stewart, J
2002-01-01
The purpose of this book (I quote verbatim from the back cover) is to 'shed light upon the intrinsic structure of gravity and the principle of gauge invariance, which may lead to a consistent unified field theory', a very laudable aim. The content divides fairly clearly into four sections (and origins). After a brief introduction, chapters 2-6 review the 'Structure of gravity as a theory based on spacetime gauge symmetries'. This is fairly straightforward material, apparently based on a one-semester graduate course taught at the University of Belgrade for about two decades, and, by implication, this is a reasonably accurate description of its level and assumed knowledge. There follow two chapters of new material entitled 'Gravity in flat spacetime' and 'Nonlinear effects in gravity'. The final three chapters, entitled 'Supersymmetry and supergravity', 'Kaluza-Klein theory' and 'String theory' have been used for the basis of a one-semester graduate course on the unification of fundamental interactions. The boo...
More about discrete gauge anomalies
Ibáñez, L E
1993-01-01
I discuss and extend several results concerning the cancellation of discrete gauge anomalies. I show how heavy fermions do not decouple in the presence of discrete gauge anomalies. As a consequence, in general, cancellation of discrete gauge anomalies cannot be described merely in terms of low energy operators involving only the light fermions. I also discuss cancellation of discrete gauge anomalies through a discrete version of the Green-Schwarz (GS) mechanism as well as the possibility of discrete gauge R-symmetries and their anomalies. Finally, some phenomenological applications are discussed. This includes symmetries guaranteeing absence of FCNC in two-Higgs models and generalized matter parities stabilizing the proton in the supersymmetric standard model. In the presence of a discrete GS mechanism or/and gauge R-symmetries, new possibilities for anomaly free such symmetries are found.
DEFF Research Database (Denmark)
Frandsen, Gudmund Skovbjerg; Frandsen, Peter Frands
2009-01-01
We consider maintaining information about the rank of a matrix under changes of the entries. For n×n matrices, we show an upper bound of O(n1.575) arithmetic operations and a lower bound of Ω(n) arithmetic operations per element change. The upper bound is valid when changing up to O(n0.575) entries...... in a single column of the matrix. We also give an algorithm that maintains the rank using O(n2) arithmetic operations per rank one update. These bounds appear to be the first nontrivial bounds for the problem. The upper bounds are valid for arbitrary fields, whereas the lower bound is valid for algebraically...... closed fields. The upper bound for element updates uses fast rectangular matrix multiplication, and the lower bound involves further development of an earlier technique for proving lower bounds for dynamic computation of rational functions....
ARWU vs. Alternative ARWU Ranking: What are the Consequences for Lower Ranked Universities?
Directory of Open Access Journals (Sweden)
Milica Maričić
2017-05-01
Full Text Available The ARWU ranking has been a source of academic debate since its development in 2003, but the same does not account for the Alternative ARWU ranking. Namely, the Alternative ARWU ranking attempts to reduce the influence of the prestigious indicators Alumni and Award which are based on the number of received Nobel Prizes and Fields Medals by alumni or university staff. However, the consequences of the reduction of the two indicators have not been scrutinized in detail. Therefore, we propose a statistical approach to the comparison of the two rankings and an in-depth analysis of the Alternative ARWU groups. The obtained results, which are based on the official data, can provide new insights into the nature of the Alternative ARWU ranking. The presented approach might initiate further research on the Alternative ARWU ranking and on the impact of university ranking’s list length. JEL Classification: C10, C38, I23
Operator Gauge Symmetry in QED
Directory of Open Access Journals (Sweden)
Siamak Khademi
2006-01-01
Full Text Available In this paper, operator gauge transformation, first introduced by Kobe, is applied to Maxwell's equations and continuity equation in QED. The gauge invariance is satisfied after quantization of electromagnetic fields. Inherent nonlinearity in Maxwell's equations is obtained as a direct result due to the nonlinearity of the operator gauge transformations. The operator gauge invariant Maxwell's equations and corresponding charge conservation are obtained by defining the generalized derivatives of the first and second kinds. Conservation laws for the real and virtual charges are obtained too. The additional terms in the field strength tensor are interpreted as electric and magnetic polarization of the vacuum.
Gauges for fine and high vacuum
Jousten, K
2007-01-01
Vacuum gauges for use in accelerators have to cover about 17 decades of pressure, from 10–12 Pa to 105 Pa. In this article we describe the history, measurement mode, design, accuracy and calibration of the gauges used down to 10–5 Pa. We focus on commercially available types of gauges, i.e., mechanical gauges, piezoresistive and capacitance diaphragm gauges, thermal conductivity gauges, and spinning rotor gauges.
Pulling Rank: A Plan to Help Students with College Choice in an Age of Rankings
Thacker, Lloyd
2008-01-01
Colleges and universities are "ranksteering"--driving under the influence of popular college rankings systems like "U.S. News and World Report's" Best Colleges. This article examines the criticisms of college rankings and describes how a group of education leaders is honing a plan to end the tyranny of the ratings game and better help students and…
Diversifying customer review rankings.
Krestel, Ralf; Dokoohaki, Nima
2015-06-01
E-commerce Web sites owe much of their popularity to consumer reviews accompanying product descriptions. On-line customers spend hours and hours going through heaps of textual reviews to decide which products to buy. At the same time, each popular product has thousands of user-generated reviews, making it impossible for a buyer to read everything. Current approaches to display reviews to users or recommend an individual review for a product are based on the recency or helpfulness of each review. In this paper, we present a framework to rank product reviews by optimizing the coverage of the ranking with respect to sentiment or aspects, or by summarizing all reviews with the top-K reviews in the ranking. To accomplish this, we make use of the assigned star rating for a product as an indicator for a review's sentiment polarity and compare bag-of-words (language model) with topic models (latent Dirichlet allocation) as a mean to represent aspects. Our evaluation on manually annotated review data from a commercial review Web site demonstrates the effectiveness of our approach, outperforming plain recency ranking by 30% and obtaining best results by combining language and topic model representations. Copyright © 2015 Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Müller, Emmanuel; Assent, Ira; Steinhausen, Uwe
2008-01-01
Outlier detection is an important data mining task for consistency checks, fraud detection, etc. Binary decision making on whether or not an object is an outlier is not appropriate in many applications and moreover hard to parametrize. Thus, recently, methods for outlier ranking have been proposed...
DEFF Research Database (Denmark)
Mojaza, Matin; Pica, Claudio; Sannino, Francesco
2010-01-01
in such a way that the theory develops a perturbative stable infrared fixed point at zero temperature. Due to large distance conformality we trade the coupling constant with its fixed point value and define a reduced free energy which depends only on the number of flavors, colors and matter representation. We...... show that the reduced free energy changes sign, at the second, fifth and sixth order in the coupling, when decreasing the number of flavors from the upper end of the conformal window. If the change in sign is interpreted as signal of an instability of the system then we infer a critical number...... of flavors. Surprisingly this number, if computed to the order g^2, agrees with previous predictions for the lower boundary of the conformal window for nonsupersymmetric gauge theories. The higher order results tend to predict a higher number of critical flavors. These are universal properties, i...
A property of electric and magnetic flux in non-abelian gauge theories
Hooft, G. 't
1979-01-01
Pure non-Abelian gauge models with gauge group SU(N) are considered in a box with periodic boundary conditions at various temperatures −1. Electric and magnetic flux are defined in a gauge-invariant way. The free energy of the system satisfies an exact duality equation, following from Euclidean
Unification of gauge couplings in radiative neutrino mass models
DEFF Research Database (Denmark)
Hagedorn, Claudia; Ohlsson, Tommy; Riad, Stella
2016-01-01
), none of the models leads to gauge coupling unification. Regarding the scale of unification, we find values between 1014 GeV and 1016 GeV for models belonging to class (I) without dark matter, whereas models in class (I) with dark matter as well as models of class (II) prefer values in the range 5......We investigate the possibility of gauge coupling unification in various radiative neutrino mass models, which generate neutrino masses at one- and/or two-loop level. Renormalization group running of gauge couplings is performed analytically and numerically at one- and two-loop order, respectively...... masses at one-loop level and (III) models with particles in the adjoint representation of SU(3). In class (I), gauge couplings unify in a few models and adding dark matter amplifies the chances for unification. In class (II), about a quarter of the models admits gauge coupling unification. In class (III...
Rank rigidity for CAT(0) cube complexes
Caprace, Pierre-Emmanuel; Sageev, Michah
2010-01-01
We prove that any group acting essentially without a fixed point at infinity on an irreducible finite-dimensional CAT(0) cube complex contains a rank one isometry. This implies that the Rank Rigidity Conjecture holds for CAT(0) cube complexes. We derive a number of other consequences for CAT(0) cube complexes, including a purely geometric proof of the Tits Alternative, an existence result for regular elements in (possibly non-uniform) lattices acting on cube complexes, and a characterization ...
Improving Ranking Using Quantum Probability
Melucci, Massimo
2011-01-01
The paper shows that ranking information units by quantum probability differs from ranking them by classical probability provided the same data used for parameter estimation. As probability of detection (also known as recall or power) and probability of false alarm (also known as fallout or size) measure the quality of ranking, we point out and show that ranking by quantum probability yields higher probability of detection than ranking by classical probability provided a given probability of ...
Krishnan, Chethan; Raju, Avinash
2017-08-01
We argue that in the tensionless phase of string theory where the stringy gauge symmetries are unbroken, (at least some) cosmological singularities can be understood as gauge artefacts. We present two conceptually related, but distinct, pieces of evidence: one relying on spacetime and the other on worldsheet.
Energy Technology Data Exchange (ETDEWEB)
Bandos, Igor A. [Department of Theoretical Physics, University of the Basque Country UPV/EHU,P.O. Box 644, 48080 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science,Maria Diaz de Haro 3, 6 floor, 48013 Bilbao, Bizkaia (Spain); Ortín, Tomás [Instituto de Física Teórica UAM/CSIC,C/ Nicolás Cabrera, 13-15, C.University Cantoblanco, E-28049 Madrid (Spain)
2016-08-23
We review and investigate different aspects of scalar fields in supergravity theories both when they parametrize symmetric spaces and when they parametrize spaces of special holonomy which are not necessarily symmetric (Kähler and Quaternionic-Kähler spaces): their rôle in the definition of derivatives of the fermions covariant under the R-symmetry group and (in gauged supergravities) under some gauge group, their dualization into (d−2)-forms, their role in the supersymmetry transformation rules (via fermion shifts, for instance) etc. We find a general definition of momentum map that applies to any manifold admitting a Killing vector and coincides with those of the holomorphic and tri-holomorphic momentum maps in Kähler and quaternionic-Kähler spaces and with an independent definition that can be given in symmetric spaces. We show how the momentum map occurs ubiquitously: in gauge-covariant derivatives of fermions, in fermion shifts, in the supersymmetry transformation rules of (d−2)-forms etc. We also give the general structure of the Noether-Gaillard-Zumino conserved currents in theories with fields of different ranks in any dimension.
Optical Abelian lattice gauge theories
Energy Technology Data Exchange (ETDEWEB)
Tagliacozzo, L., E-mail: luca.tagliacozzo@icfo.es [ICFO The Institute of Photonic Sciences, Av. Carl Friedrich Gauss, num. 3, E-08860 Castelldefels (Barcelona) (Spain); Celi, A., E-mail: alessio.celi@gmail.com [ICFO The Institute of Photonic Sciences, Av. Carl Friedrich Gauss, num. 3, E-08860 Castelldefels (Barcelona) (Spain); Zamora, A. [ICFO The Institute of Photonic Sciences, Av. Carl Friedrich Gauss, num. 3, E-08860 Castelldefels (Barcelona) (Spain); Lewenstein, M. [ICFO The Institute of Photonic Sciences, Av. Carl Friedrich Gauss, num. 3, E-08860 Castelldefels (Barcelona) (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona (Spain)
2013-03-15
We discuss a general framework for the realization of a family of Abelian lattice gauge theories, i.e., link models or gauge magnets, in optical lattices. We analyze the properties of these models that make them suitable for quantum simulations. Within this class, we study in detail the phases of a U(1)-invariant lattice gauge theory in 2+1 dimensions, originally proposed by P. Orland. By using exact diagonalization, we extract the low-energy states for small lattices, up to 4 Multiplication-Sign 4. We confirm that the model has two phases, with the confined entangled one characterized by strings wrapping around the whole lattice. We explain how to study larger lattices by using either tensor network techniques or digital quantum simulations with Rydberg atoms loaded in optical lattices, where we discuss in detail a protocol for the preparation of the ground-state. We propose two key experimental tests that can be used as smoking gun of the proper implementation of a gauge theory in optical lattices. These tests consist in verifying the absence of spontaneous (gauge) symmetry breaking of the ground-state and the presence of charge confinement. We also comment on the relation between standard compact U(1) lattice gauge theory and the model considered in this paper. - Highlights: Black-Right-Pointing-Pointer We study the quantum simulation of dynamical gauge theories in optical lattices. Black-Right-Pointing-Pointer We focus on digital simulation of abelian lattice gauge theory. Black-Right-Pointing-Pointer We rediscover and discuss the puzzling phase diagram of gauge magnets. Black-Right-Pointing-Pointer We detail the protocol for time evolution and ground-state preparation in any phase. Black-Right-Pointing-Pointer We provide two experimental tests to validate gauge theory quantum simulators.
Fractional cointegration rank estimation
DEFF Research Database (Denmark)
Lasak, Katarzyna; Velasco, Carlos
We consider cointegration rank estimation for a p-dimensional Fractional Vector Error Correction Model. We propose a new two-step procedure which allows testing for further long-run equilibrium relations with possibly different persistence levels. The fi…rst step consists in estimating the parame......We consider cointegration rank estimation for a p-dimensional Fractional Vector Error Correction Model. We propose a new two-step procedure which allows testing for further long-run equilibrium relations with possibly different persistence levels. The fi…rst step consists in estimating...... to control for stochastic trend estimation effects from the first step. The critical values of the tests proposed depend only on the number of common trends under the null, p - r, and on the interval of the cointegration degrees b allowed, but not on the true cointegration degree b0. Hence, no additional...
Kröger, J; Ferrari, P; Jenab, M; Bamia, C; Touvier, M; Bueno-de-Mesquita, H B; Fahey, M T; Benetou, V; Schulz, M; Wirfält, E; Boeing, H; Hoffmann, K; Schulze, M B; Orfanos, P; Oikonomou, E; Huybrechts, I; Rohrmann, S; Pischon, T; Manjer, J; Agren, A; Navarro, C; Jakszyn, P; Boutron-Ruault, M C; Niravong, M; Khaw, K T; Crowe, F; Ocké, M C; van der Schouw, Y T; Mattiello, A; Bellegotti, M; Engeset, D; Hjartåker, A; Egeberg, R; Overvad, K; Riboli, E; Bingham, S; Slimani, N
2009-11-01
To identify combinations of food groups that explain as much variation in absolute intakes of 23 key nutrients and food components as possible within the country-specific populations of the European Prospective Investigation into Cancer and Nutrition (EPIC). The analysis covered single 24-h dietary recalls (24-HDR) from 36,034 subjects (13,025 men and 23,009 women), aged 35-74 years, from all 10 countries participating in the EPIC study. In a set of 39 food groups, reduced rank regression (RRR) was used to identify those combinations (RRR factors) that explain the largest proportion of variation in intake of 23 key nutrients and food components, namely, proteins, saturated fatty acids, monounsaturated fatty acids, polyunsaturated fatty acids, cholesterol, sugars (sum of mono- and disaccharides), starch, fibre, alcohol, calcium, iron, potassium, phosphorus, magnesium, vitamin D, beta-carotene, retinol and vitamins E, B1, B2, B6, B12 and C (RRR responses). Analyses were performed at the country level and for all countries combined. In the country-specific analyses, the first RRR factor explained a considerable proportion of the total nutrient intake variation in all 10 countries (27.4-37.1%). The subsequent RRR factors were much less important in explaining the variation (nutrients ranged between these extremes. A combination of food groups was identified that explained a considerable proportion of the nutrient intake variation in 24-HDRs in every country-specific EPIC population in a similar manner. This indicates that, despite the large variability in food and nutrient intakes reported in the EPIC, the variance of intake of important nutrients is explained, to a large extent, by similar food group combinations across countries.
Ranking the Online Documents Based on Relative Credibility Measures
Directory of Open Access Journals (Sweden)
Ahmad Dahlan
2009-05-01
Full Text Available Information searching is the most popular activity in Internet. Usually the search engine provides the search results ranked by the relevance. However, for a certain purpose that concerns with information credibility, particularly citing information for scientific works, another approach of ranking the search engine results is required. This paper presents a study on developing a new ranking method based on the credibility of information. The method is built up upon two well-known algorithms, PageRank and Citation Analysis. The result of the experiment that used Spearman Rank Correlation Coefficient to compare the proposed rank (generated by the method with the standard rank (generated manually by a group of experts showed that the average Spearman 0 < rS < critical value. It means that the correlation was proven but it was not significant. Hence the proposed rank does not satisfy the standard but the performance could be improved.
Ranking the Online Documents Based on Relative Credibility Measures
Directory of Open Access Journals (Sweden)
Ahmad Dahlan
2013-09-01
Full Text Available Information searching is the most popular activity in Internet. Usually the search engine provides the search results ranked by the relevance. However, for a certain purpose that concerns with information credibility, particularly citing information for scientific works, another approach of ranking the search engine results is required. This paper presents a study on developing a new ranking method based on the credibility of information. The method is built up upon two well-known algorithms, PageRank and Citation Analysis. The result of the experiment that used Spearman Rank Correlation Coefficient to compare the proposed rank (generated by the method with the standard rank (generated manually by a group of experts showed that the average Spearman 0 < rS < critical value. It means that the correlation was proven but it was not significant. Hence the proposed rank does not satisfy the standard but the performance could be improved.
Global Low-Rank Image Restoration With Gaussian Mixture Model.
Zhang, Sibo; Jiao, Licheng; Liu, Fang; Wang, Shuang
2017-06-27
Low-rank restoration has recently attracted a lot of attention in the research of computer vision. Empirical studies show that exploring the low-rank property of the patch groups can lead to superior restoration performance, however, there is limited achievement on the global low-rank restoration because the rank minimization at image level is too strong for the natural images which seldom match the low-rank condition. In this paper, we describe a flexible global low-rank restoration model which introduces the local statistical properties into the rank minimization. The proposed model can effectively recover the latent global low-rank structure via nuclear norm, as well as the fine details via Gaussian mixture model. An alternating scheme is developed to estimate the Gaussian parameters and the restored image, and it shows excellent convergence and stability. Besides, experiments on image and video sequence datasets show the effectiveness of the proposed method in image inpainting problems.
Dark Matter and Gauged Flavor Symmetries
Bishara, Fady; Kamenik, Jernej F; Stamou, Emmanuel; Zupan, Jure
2015-01-01
We investigate the phenomenology of flavored dark matter (DM). DM stability is guaranteed by an accidental ${\\mathcal Z}_3$ symmetry, a subgroup of the standard model (SM) flavor group that is not broken by the SM Yukawa interactions. We consider an explicit realization where the quark part of the SM flavor group is fully gauged. If the dominant interactions between DM and visible sector are through flavor gauge bosons, as we show for Dirac fermion flavored DM, then the DM mass is bounded between roughly $0.5$ TeV and $5$ TeV if the DM multiplet mass is split only radiatively. In general, however, no such relation exists. We demonstrate this using scalar flavored DM where the main interaction with the SM is through the Higgs portal. For both cases we derive constraints from flavor, cosmology, direct and indirect DM detection, and collider searches.
NAMMA SENEGAL RAIN GAUGE NETWORK V1
National Aeronautics and Space Administration — The NAMMA Senegal Rain Gauge Network consisted of 40 rain gauge sites (AMMA 1-40) located in various places throughout Senegal, West Africa. The Rain Gauge Network...
Energy Technology Data Exchange (ETDEWEB)
Bharucha, Aoife [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Technische Univ. Muenchen, Garching (Germany). Physik-Dept. T31; Goudelis, Andreas [Savoie Univ., CNRS, Annecy-le-Vieux (France). LAPTh; McGarrie, Moritz [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-10-15
The discovery of a 125.5 GeV Higgs with standard model-like couplings and naturalness considerations motivate gauge extensions of the MSSM. We analyse two variants of such an extension and carry out a phenomenological study of regions of the parameter space statisfying current direct and indirect constraints, employing state-of-the-art two-loop RGE evolution and GMSB boundary conditions. We find that due to the appearance of non-decoupled D-terms it is possible to obtain a 125.5 GeV Higgs with stops below 2 TeV, while the uncolored sparticles could still lie within reach of the LHC. We compare the contributions of the stop sector and the non-decoupled D-terms to the Higgs mass, and study their effect on the Higgs couplings. We further investigate the nature of the next-to lightest supersymmetric particle, in light of the GMSB motivated searches currently being pursued by ATLAS and CMS.
Dynamical Messengers for Gauge Mediation
Energy Technology Data Exchange (ETDEWEB)
Hook, Anson; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.
2011-08-17
We construct models of indirect gauge mediation where the dynamics responsible for breaking supersymmetry simultaneously generates a weakly coupled subsector of messengers. This provides a microscopic realization of messenger gauge mediation where the messenger and hidden sector fields are unified into a single sector. The UV theory is SQCD with massless and massive quarks plus singlets, and at low energies it flows to a weakly coupled quiver gauge theory. One node provides the primary source of supersymmetry breaking, which is then transmitted to the node giving rise to the messenger fields. These models break R-symmetry spontaneously, produce realistic gaugino and sfermion masses, and give a heavy gravitino.
Covariant gauges at finite temperature
Landshoff, P V; Rebhan, A
1992-01-01
A prescription is presented for real-time finite-temperature perturbation theory in covariant gauges, in which only the two physical degrees of freedom of the gauge-field propagator acquire thermal parts. The propagators for the unphysical degrees of freedom of the gauge field, and for the Faddeev-Popov ghost field, are independent of temperature. This prescription is applied to the calculation of the one-loop gluon self-energy and the two-loop interaction pressure, and is found to be simpler...
Can College Rankings Be Believed?
Directory of Open Access Journals (Sweden)
Meredith Davis
Full Text Available The article summarizes literature on college and university rankings worldwide and the strategies used by various ranking organizations, including those of government and popular media. It traces the history of national and global rankings, indicators used by ranking systems, and the effect of rankings on academic programs and their institutions. Although ranking systems employ diverse criteria and most weight certain indicators over others, there is considerable skepticism that most actually measure educational quality. At the same time, students and their families increasingly consult these evaluations when making college decisions, and sponsors of faculty research consider reputation when forming academic partnerships. While there are serious concerns regarding the validity of ranking institutions when so little data can support differences between one institution and another, college rankings appear to be here to stay.
Gauge Freedom in Astrodynamics
Efroimsky, Michael
2006-11-01
incompatible. Similarly, in spin dynamics the Andoyer elements come out non-osculating under angularvelocity-dependent perturbation (a switch to a noninertial frame being one such case). Amendment of the dynamical equations only with extra terms in the Hamiltonian makes the equations render nonosculating Andoyer elements. To make them osculating, more terms must enter the equations (and the equations will no longer be canonical). It is often convenient to deliberately deviate from osculation by substituting the Lagrange constraint with an arbitrary condition that gives birth to a family of nonosculating elements. The freedom in choosing this condition is analogous to the gauge freedom. Calculations in nonosculating variables are mathematically valid and sometimes highly advantageous, but their physical interpretation is nontrivial. For example, nonosculating orbital elements parameterise instantaneous conics not tangent to the orbit, so the nonosculating inclination will be different from the real inclination of the physical orbit. We present examples of situations in which ignoring of the gauge freedom (and of the unwanted loss of osculation) leads to oversights.
Ranking Baltic States Researchers
Directory of Open Access Journals (Sweden)
Gyula Mester
2017-10-01
Full Text Available In this article, using the h-index and the total number of citations, the best 10 Lithuanian, Latvian and Estonian researchers from several disciplines are ranked. The list may be formed based on the h-index and the total number of citations, given in Web of Science, Scopus, Publish or Perish Program and Google Scholar database. Data for the first 10 researchers are presented. Google Scholar is the most complete. Therefore, to define a single indicator, h-index calculated by Google Scholar may be a good and simple one. The author chooses the Google Scholar database as it is the broadest one.
2015-04-28
eigenvector of the associated Laplacian matrix (i.e., the Fiedler vector) matches that of the variables. In other words, this approach (reminiscent of...S1), i.e., Dii = ∑n j=1Gi,j is the degree of node i in the measurement graph G. 3: Compute the Fiedler vector of S (eigenvector corresponding to the...smallest nonzero eigenvalue of LS). 4: Output the ranking induced by sorting the Fiedler vector of S, with the global ordering (increasing or decreasing
A Hybrid Distance-Based Ideal-Seeking Consensus Ranking Model
Tavana, Madjid; LoPinto, Frank; Smither, James W.
2007-01-01
Ordinal consensus ranking problems have received much attention in the management science literature. A problem arises in situations where a group of k decision makers (DMs) is asked to rank order n alternatives. The question is how to combine the DM rankings into one consensus ranking. Several different approaches have been suggested to aggregate DM responses into a compromise or consensus ranking; however, the similarity of consensus rankings generated by the differe...
A Model of Direct Gauge Mediation of Supersymmetry Breaking
Energy Technology Data Exchange (ETDEWEB)
Murayama, H. [Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)]|[Department of Physics, University of California, Berkeley, California 94720 (United States)
1997-07-01
We present the first phenomenologically viable model of gauge meditation of supersymmetry breaking without a messenger sector or gauge singlet fields. The standard model gauge groups couple directly to the sector which breaks supersymmetry dynamically. Despite the direct coupling, it can preserve perturbative gauge unification thanks to the inverted hierarchy mechanism. There is no dangerous negative contribution to m{sup 2}{sub {tilde q}} , m{sup 2}{sub {tilde l}} due to two-loop renormalization group equation. The potentially nonuniversal supergravity contribution to m{sup 2}{sub {tilde q}} and m{sup 2}{sub {tilde l}} can be suppressed enough. The model is completely chiral, and one does not need to forbid mass terms for the messenger fields by hand. Cosmology of the model is briefly discussed. {copyright} {ital 1997} {ital The American Physical Society}
Rankings from Fuzzy Pairwise Comparisons
van den Broek, P.M.; Noppen, J.A.R.; Mohammadian, M.
2006-01-01
We propose a new method for deriving rankings from fuzzy pairwise comparisons. It is based on the observation that quantification of the uncertainty of the pairwise comparisons should be used to obtain a better crisp ranking, instead of a fuzzified version of the ranking obtained from crisp pairwise
African Journals Online (AJOL)
maths/stats
INTRODUCTION. PageRank is Google's system for ranking web pages. A page with a higher PageRank is deemed more important and is more likely to be listed above a ... Felix U. Ogban, Department of Mathematics/Statistics and Computer Science, Faculty of Science, University of ..... probability, 2004, 41, (3): 721-734.
University Rankings and Social Science
Marginson, Simon
2014-01-01
University rankings widely affect the behaviours of prospective students and their families, university executive leaders, academic faculty, governments and investors in higher education. Yet the social science foundations of global rankings receive little scrutiny. Rankings that simply recycle reputation without any necessary connection to real…
Optical Rain Gauge Instrument Handbook
Energy Technology Data Exchange (ETDEWEB)
Bartholomew, Mary Jane [Brookhaven National Lab. (BNL), Upton, NY (United States)
2016-04-01
To improve the quantitative description of precipitation processes in climate models, the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility deploys several types of rain gauges (MET, RAIN, and optical rain gauge [ORG] datastreams) as well as disdrometers (DISD and VDIS datastreams) at the Southern Great Plains (SGP) Site. This handbook deals specifically with the independent analog ORG (i.e., the ORG datastream).
Sequential rank agreement methods for comparison of ranked lists
DEFF Research Database (Denmark)
Ekstrøm, Claus Thorn; Gerds, Thomas Alexander; Jensen, Andreas Kryger
2015-01-01
The comparison of alternative rankings of a set of items is a general and prominent task in applied statistics. Predictor variables are ranked according to magnitude of association with an outcome, prediction models rank subjects according to the personalized risk of an event, and genetic studies...... are illustrated using gene rankings, and using data from two Danish ovarian cancer studies where we assess the within and between agreement of different statistical classification methods.......The comparison of alternative rankings of a set of items is a general and prominent task in applied statistics. Predictor variables are ranked according to magnitude of association with an outcome, prediction models rank subjects according to the personalized risk of an event, and genetic studies...
General Aspects of Tree Level Gauge Mediation
Nardecchia, Marco; Ziegler, Robert
2009-01-01
Tree level gauge mediation (TGM) may be considered as the simplest way to communicate supersymmetry breaking: through the tree level renormalizable exchange of heavy gauge messengers. We study its general structure, in particular the general form of tree level sfermion masses and of one loop, but enhanced, gaugino masses. This allows us to set up general guidelines for model building and to identify the hypotheses underlying the phenomenological predictions. In the context of models based on the "minimal" gauge group SO(10), we show that only two "pure" embeddings of the MSSM fields are possible using $d< 120$ representations, each of them leading to specific predictions for the ratios of family universal sfermion masses at the GUT scale, $m^2_{\\bar{5}} = 2 m^2_{10}$ or $m^2_{\\bar{5}} = (3/4) m^2_{10}$ (in SU(5) notation). These ratios are determined by group factors and are peculiar enough to make this scheme testable at the LHC. We also discuss three possible approaches to the $\\mu$-problem, one of them ...
A Review of Ranking Models in Data Envelopment Analysis
Hosseinzadeh Lotfi, F.; Jahanshahloo, G.R.; M. Khodabakhshi; Rostamy-Malkhlifeh, M.; Moghaddas, Z.; Vaez-Ghasemi, M.
2013-01-01
In the course of improving various abilities of data envelopment analysis (DEA) models, many investigations have been carried out for ranking decision-making units (DMUs). This is an important issue both in theory and practice. There exist a variety of papers which apply different ranking methods to a real data set. Here the ranking methods are divided into seven groups. As each of the existing methods can be viewed from different aspects, it is possible that somewhat these groups have an ove...
Renormalizations in softly broken SUSY gauge theories
Avdeev, L. V.; Kazakov, D. I.; Kondrashuk, I. N.
1998-01-01
The supergraph technique for calculations in supersymmetric gauge theories where supersymmetry is broken in a "soft" way (without introducing quadratic divergencies) is reviewed. By introducing an external spurion field the set of Feynman rules is formulated and explicit connections between the UV counterterms of a softly broken and rigid SUSY theories are found. It is shown that the renormalization constants of softly broken SUSY gauge theory also become external superfields depending on the spurion field. Their explicit form repeats that of the constants of a rigid theory with the redefinition of the couplings. The method allows us to reproduce all known results on the renormalization of soft couplings and masses in a softly broken theory. As an example the renormalization group functions for soft couplings and masses in the Minimal Supersymmetric Standard Model up to the three-loop level are calculated.
Renormalizations in softly broken SUSY gauge theories
Energy Technology Data Exchange (ETDEWEB)
Avdeev, L.V.; Kazakov, D.I.; Kondrashuk, I.N. [Joint Inst. for Nuclear Research, Dubna (Russian Federation). Lab. of Theoretical Physics
1998-01-19
The supergraph technique for calculations in supersymmetric gauge theories where supersymmetry is broken in a ``soft`` way (without introducing quadratic divergencies) is reviewed. By introducing an external spurion field the set of Feynman rules is formulated and explicit connections between the UV counterterms of a softly broken and rigid SUSY theories are found. It is shown that the renormalization constants of softly broken SUSY gauge theory also become external superfields depending on the spurion field. Their explicit form repeats that of the constants of a rigid theory with the redefinition of the couplings. The method allows us to reproduce all known results on the renormalization of soft couplings and masses in a softly broken theory. As an example the renormalization group functions for soft couplings and masses in the minimal supersymmetric standard model up to the three-loop level are calculated. (orig.). 16 refs.
From 6D superconformal field theories to dynamic gauged linear sigma models
Apruzzi, Fabio; Hassler, Falk; Heckman, Jonathan J.; Melnikov, Ilarion V.
2017-09-01
Compactifications of six-dimensional (6D) superconformal field theories (SCFTs) on four- manifolds generate a large class of novel two-dimensional (2D) quantum field theories. We consider in detail the case of the rank-one simple non-Higgsable cluster 6D SCFTs. On the tensor branch of these theories, the gauge group is simple and there are no matter fields. For compactifications on suitably chosen Kähler surfaces, we present evidence that this provides a method to realize 2D SCFTs with N =(0 ,2 ) supersymmetry. In particular, we find that reduction on the tensor branch of the 6D SCFT yields a description of the same 2D fixed point that is described in the UV by a gauged linear sigma model (GLSM) in which the parameters are promoted to dynamical fields, that is, a "dynamic GLSM" (DGLSM). Consistency of the model requires the DGLSM to be coupled to additional non-Lagrangian sectors obtained from reduction of the antichiral two-form of the 6D theory. These extra sectors include both chiral and antichiral currents, as well as spacetime filling noncritical strings of the 6D theory. For each candidate 2D SCFT, we also extract the left- and right-moving central charges in terms of data of the 6D SCFT and the compactification manifold.
Search for new heavy charged gauge bosons
Energy Technology Data Exchange (ETDEWEB)
Magass, Carsten Martin
2007-11-02
The TEVATRON proton-antiproton collider at FERMILAB (near Chicago/USA) is operating at a center-of-mass energy of {radical}(s)=1.96 TeV since March 2001. This analysis uses data taken with the DOe detector until February 2006 corresponding to an integrated luminosity of about {integral}Ldt=1 fb{sup -1}. Using this dataset, a search for a new heavy charged gauge boson W{sup '} and its subsequent decay into an electron and a neutrino is performed: p anti p{yields}W{sup '}+X{yields}e{nu}+X. Additional gauge bosons (including the equivalent to the Z, the Z{sup '}) are introduced in many extensions to the Standard Model of particle physics. Assuming the most general case, the new gauge group can comprise a new mixing angle and new couplings. Here, the Altarelli Reference Model is considered which represents a generalization of the Manifest Left-Right Symmetric Model with light right-handed neutrinos. This model makes the assumptions that the new gauge boson W{sup '} has the same couplings as the Standard Model W boson and that there is no mixing. Hence, the W{sup '} is a heavy copy of the Standard Model W boson. The clear decay signature (in analogy to the decay of the W) contains an isolated electron with extreme high energy which is important for triggering. The neutrino can not be detected, but it gives rise to missing energy in the detector. The Jacobian peak in the transverse mass distribution stemming from the W decay is used for calibration, whereas the tail of the transverse mass distribution is searched for a possible W{sup '} signal. The data agrees with the expectation from background processes. For instance, in the data 37 events are reconstructed with transverse masses above 300 GeV compared to a prediction of 37.1{+-}2.1(stat){sup +6.0}{sub -3.7}(sys) background events. Since no significant excess is found in the data, an upper limit is set on the production cross section for heavy charged gauge bosons decaying into electron
Tosi, Gian Marco; Malandrini, Alex; Cevenini, Gabriele; Neri, Giovanni; Marigliani, Davide; Cerruto, Arianna; Virgili, Gianni
2017-10-01
To study the patterns of vitreous incarceration at sclerotomy sites by ultrasound biomicroscopy in patients subjected to valved or nonvalved small-gauge pars plana vitrectomy. A prospective comparative study of 88 eyes affected by epiretinal membrane and macular hole. Patients were divided into four groups: valved or nonvalved 23-gauge (16 eyes each) and valved or nonvalved 25-gauge (20 eyes each); their vitreal disposition was compared by ultrasound biomicroscopy. Vitreal disposition was also assessed in 16 eyes of 16 patients subjected to valved 27-gauge pars plana vitrectomy. Three vitreal patterns were identified: P0 (vitreous not visible or vitreous strand distant from the sclerotomy site), P1 (vitreous strand parallel to and in contact with the sclerotomy site), and P2 (vitreous strand entrapped in the sclerotomy site). The effect of valved trocar use on vitreous incarceration seemed to be somewhat beneficial, but no statistically significant effect could be shown (odds ratio: 0.85, 95% confidence interval: 0.42-1.74, P = 0.657). Similarly, no differences in vitreous incarceration were shown among vitrectomy gauges (23, 25, or 27) both in a model including valved trocars only (P = 0.858) and in a model with all available data (P = 0.935). In 23- and 25-gauge macular surgeries, postoperative vitreous incarceration does not seem to be reduced using valved cannulas and was similar to that observed in 27-gauge surgery.
2010-10-01
... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.43 Gauge siphon. The steam gauge supply pipe shall have a siphon on it of ample capacity to prevent steam from entering the gauge. The supply pipe shall directly enter the boiler and be maintained steam...
Pulling Rank: Military Rank Affects Hormone Levels and Fairness in an Allocation Experiment
Directory of Open Access Journals (Sweden)
Benjamin Siart
2016-11-01
Full Text Available Status within social hierarchies has great effects on the lives of socially organized mammals. Its effects on human behavior and related physiology however is relatively little studied. The present study investigated the impact of military rank on fairness and behavior in relation to salivary cortisol (C and testosterone (T levels in male soldiers. For this purpose 180 members of the Austrian Armed Forces belonging to two distinct rank groups participated in two variations of a computer-based guard duty allocation experiment. The rank groups were 1 warrant officers (High Rank, HR and 2 enlisted men (Low Rank, LR. One soldier from each rank group participated in every experiment. At the beginning of the experiment, one participant was assigned to start standing guard and the other participant at rest. The participant who started at rest could choose if and when to relieve his fellow soldier and therefore had control over the experiment. In order to trigger perception of unfair behavior, an additional experiment was conducted which was manipulated by the experimenter. In the manipulated version both soldiers started in the standing guard position and were never relieved, believing that their opponent was at rest, not relieving them. Our aim was to test whether unfair behavior causes a physiological reaction. Saliva samples for hormone analysis were collected at regular intervals throughout the experiment.We found that in the un-manipulated setup high-ranking soldiers spent less time standing guard than lower ranking individuals. Rank was a significant predictor for C but not for T levels during the experiment. C levels in the HR group were higher than in LR group. C levels were also elevated in the manipulated experiment compared to the un-manipulated experiment, especially in LR. We assume that the elevated C levels in HR were caused by HR feeling their status challenged by the situation of having to negotiate with an individual of lower military
Pulling Rank: Military Rank Affects Hormone Levels and Fairness in an Allocation Experiment.
Siart, Benjamin; Pflüger, Lena S; Wallner, Bernard
2016-01-01
Status within social hierarchies has great effects on the lives of socially organized mammals. Its effects on human behavior and related physiology, however, is relatively little studied. The present study investigated the impact of military rank on fairness and behavior in relation to salivary cortisol (C) and testosterone (T) levels in male soldiers. For this purpose 180 members of the Austrian Armed Forces belonging to two distinct rank groups participated in two variations of a computer-based guard duty allocation experiment. The rank groups were (1) warrant officers (high rank, HR) and (2) enlisted men (low rank, LR). One soldier from each rank group participated in every experiment. At the beginning of the experiment, one participant was assigned to start standing guard and the other participant at rest. The participant who started at rest could choose if and when to relieve his fellow soldier and therefore had control over the experiment. In order to trigger perception of unfair behavior, an additional experiment was conducted which was manipulated by the experimenter. In the manipulated version both soldiers started in the standing guard position and were never relieved, believing that their opponent was at rest, not relieving them. Our aim was to test whether unfair behavior causes a physiological reaction. Saliva samples for hormone analysis were collected at regular intervals throughout the experiment. We found that in the un-manipulated setup high-ranking soldiers spent less time standing guard than lower ranking individuals. Rank was a significant predictor for C but not for T levels during the experiment. C levels in the HR group were higher than in the LR group. C levels were also elevated in the manipulated experiment compared to the un-manipulated experiment, especially in LR. We assume that the elevated C levels in HR were caused by HR feeling their status challenged by the situation of having to negotiate with an individual of lower military rank
Ranking nodes in growing networks: When PageRank fails.
Mariani, Manuel Sebastian; Medo, Matúš; Zhang, Yi-Cheng
2015-11-10
PageRank is arguably the most popular ranking algorithm which is being applied in real systems ranging from information to biological and infrastructure networks. Despite its outstanding popularity and broad use in different areas of science, the relation between the algorithm's efficacy and properties of the network on which it acts has not yet been fully understood. We study here PageRank's performance on a network model supported by real data, and show that realistic temporal effects make PageRank fail in individuating the most valuable nodes for a broad range of model parameters. Results on real data are in qualitative agreement with our model-based findings. This failure of PageRank reveals that the static approach to information filtering is inappropriate for a broad class of growing systems, and suggest that time-dependent algorithms that are based on the temporal linking patterns of these systems are needed to better rank the nodes.
Cosmology from a gauge induced gravity
Falciano, F. T.; Sadovski, G.; Sobreiro, R. F.; Tomaz, A. A.
2017-09-01
The main goal of the present work is to analyze the cosmological scenario of the induced gravity theory developed in previous works. Such a theory consists on a Yang-Mills theory in a four-dimensional Euclidian spacetime with { SO}(m,n) such that m+n=5 and m\\in {0,1,2} as its gauge group. This theory undergoes a dynamical gauge symmetry breaking via an Inönü-Wigner contraction in its infrared sector. As a consequence, the { SO}(m,n) algebra is deformed into a Lorentz algebra with the emergency of the local Lorentz symmetries and the gauge fields being identified with a vierbein and a spin connection. As a result, gravity is described as an effective Einstein-Cartan-like theory with ultraviolet correction terms and a propagating torsion field. We show that the cosmological model associated with this effective theory has three different regimes. In particular, the high curvature regime presents a de Sitter phase which tends towards a Λ CDM model. We argue that { SO}(m,n) induced gravities are promising effective theories to describe the early phase of the universe.
Cosmology from a gauge induced gravity
Falciano, F T; Sobreiro, R F; Tomaz, A A
2015-01-01
The main goal of the present work is to analyze the cosmological scenario of the induced gravity theory developed in previous works. Such a theory consists on a Yang-Mills theory in a four-dimensional Euclidian spacetime with $SO(m,n)$ such that $m+n=5$ and $m\\in\\{0,1,2\\}$ as its gauge group. This theory undergoes a dynamical gauge symmetry breaking via an In\\"on\\"u-Wigner contraction in its infrared sector. As a consequence, the $SO(m,n)$ algebra is deformed into a Lorentz algebra with the emergency of the local Lorentz symmetries and the gauge fields being identified with a vierbein and a spin connection. As a result, gravity is described as an effective Einstein-Cartan-like theory with ultraviolet correction terms and a propagating torsion field. We show that the cosmological model associated with this effective theory has three different regimes. In particular, the high curvature regime presents a de Sitter phase which tends towards a $\\Lambda$CDM model. We argue that $SO(m,n)$ induced gravities are promi...
Gauge coupling unification with hidden photon, and minicharged dark matter
Daido, Ryuji; Takahashi, Fuminobu; Yokozaki, Norimi
2017-05-01
We show that gauge coupling unification is realized with a greater accuracy in the presence of a massless hidden photon which has a large kinetic mixing with hypercharge. We solve the renormalization group equations at two-loop level and find that the GUT unification scale is around 1016.5GeV which sufficiently suppresses the proton decay rate, and that the unification is essentially determined by the kinetic mixing only, and it is rather insensitive to the hidden gauge coupling or the presence of vector-like matter fields charged under U(1)H and/or SU(5). Matter fields charged under the unbroken hidden U(1)H are stable and they contribute to dark matter. Interestingly, they become minicharged dark matter which carries a small but non-zero electric charge, if the hidden gauge coupling is tiny. The minicharged dark matter is a natural outcome of the gauge coupling unification with a hidden photon.
Green-Schwarz superstring on doubled-yet-gauged spacetime
Energy Technology Data Exchange (ETDEWEB)
Park, Jeong-Hyuck [Department of Physics, Sogang University,35 Baekbeom-ro, Mapo-gu, Seoul 04107 (Korea, Republic of); B.W. Lee Center for Fields, Gravity and Strings, Institute for Basic Science,Daejeon 34047 (Korea, Republic of)
2016-11-02
We construct a world-sheet action for Green-Schwarz superstring in terms of doubled-yet-gauged spacetime coordinates. For an arbitrarily curved NS-NS background, the action possesses O(10,10) T-duality, Spin(1,9)×Spin(9,1) Lorentz symmetry, coordinate gauge symmetry, spacetime doubled-yet-gauged diffeomorphisms, world-sheet diffeomorphisms and Weyl symmetry. Further, restricted to flat backgrounds, it enjoys maximal spacetime supersymmetry and kappa-symmetry. After the auxiliary coordinate gauge symmetry potential being integrated out, our action can consistently reduce to the original undoubled Green-Schwarz action. Thanks to the twofold spin groups, the action is unique: it is specific choices of the NS-NS backgrounds that distinguish IIA or IIB, as well as lead to non-Riemannian or non-relativistic superstring a la Gomis-Ooguri which might deserve the nomenclature, type IIC.
String field theory in the Siegel gauge
Energy Technology Data Exchange (ETDEWEB)
Bochicchio, M.
1987-04-16
We specialize the gauge-fixing procedure for the Witten action of the open bosonic string, given in a preceding paper, choosing the Siegel gauge. We find that the BRST-invariant gauge-fixed action is the gauge invariant one with ghost number unrestricted plus a gauge-fixing term. The BRST invariance of the measure in the functional integral is briefly discussed. As a technical tool the Hodge dual of a string functional is defined.
Neophilia Ranking of Scientific Journals
Packalen, Mikko; Bhattacharya, Jay
2017-01-01
The ranking of scientific journals is important because of the signal it sends to scientists about what is considered most vital for scientific progress. Existing ranking systems focus on measuring the influence of a scientific paper (citations)—these rankings do not reward journals for publishing innovative work that builds on new ideas. We propose an alternative ranking based on the proclivity of journals to publish papers that build on new ideas, and we implement this ranking via a text-based analysis of all published biomedical papers dating back to 1946. In addition, we compare our neophilia ranking to citation-based (impact factor) rankings; this comparison shows that the two ranking approaches are distinct. Prior theoretical work suggests an active role for our neophilia index in science policy. Absent an explicit incentive to pursue novel science, scientists underinvest in innovative work because of a coordination problem: for work on a new idea to flourish, many scientists must decide to adopt it in their work. Rankings that are based purely on influence thus do not provide sufficient incentives for publishing innovative work. By contrast, adoption of the neophilia index as part of journal-ranking procedures by funding agencies and university administrators would provide an explicit incentive for journals to publish innovative work and thus help solve the coordination problem by increasing scientists' incentives to pursue innovative work. PMID:28713181
Supersymmetry, quantum gauge anomalies and generalized Chern-Simons terms in chiral gauge theory
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Torsten
2009-05-13
The purpose of this thesis is to investigate the interplay of anomaly cancellation and generalized Chern-Simons terms in four-dimensional chiral gauge theory. We start with a detailed discussion of generalized Chern-Simons terms with the canellation of anomalies via the Green-Schwarz mechanism. With this at hand, we investigate the situation in general N=1 supersymmetric field theories with generalized Chern-Simons terms. Two simple consistency conditions are shown to encode strong constraints on the allowed anomalies for different types of gauge groups. In one major part of this thesis we are going to display to what extent one has to modify the existing formalism in order to allow for the cancellation of quantum gauge anomalies via the Green-Schwarz mechanism. At the end of this thesis we comment on a puzzle in the literature on supersymmetric field theories with massive tensor fields. The potential contains a term that does not arise from eliminating an auxiliary field. We clarify the origin of this term and display the relation to standard D-term potential. In an appendix it is explicitly shown how these low energy effective actions might be connected to the formulation of four-dimensional gauge theories discussed at earlier stages of this thesis. (orig.)
Geometric phase and gauge connection in polyatomic molecules.
Wittig, Curt
2012-05-14
Geometric phase is an interesting topic that is germane to numerous and varied research areas: molecules, optics, quantum computing, quantum Hall effect, graphene, and so on. It exists only when the system of interest interacts with something it perceives as exterior. An isolated system cannot display geometric phase. This article addresses geometric phase in polyatomic molecules from a gauge field theory perspective. Gauge field theory was introduced in electrodynamics by Fock and examined assiduously by Weyl. It yields the gauge field A(μ), particle-field couplings, and the Aharonov-Bohm phase, while Yang-Mills theory, the cornerstone of the standard model of physics, is a template for non-Abelian gauge symmetries. Electronic structure theory, including nonadiabaticity, is a non-Abelian gauge field theory with matrix-valued covariant derivative. Because the wave function of an isolated molecule must be single-valued, its global U(1) symmetry cannot be gauged, i.e., products of nuclear and electron functions such as χ(n)ψ(n) are forbidden from undergoing local phase transformation on R, where R denotes nuclear degrees of freedom. On the other hand, the synchronous transformations (first noted by Mead and Truhlar): ψ(n)→ψ(n)e(iζ) and simultaneously χ(n)→χ(n)e(-iζ), preserve single-valuedness and enable wave functions in each subspace to undergo phase transformation on R. Thus, each subspace is compatible with a U(1) gauge field theory. The central mathematical object is Berry's adiabatic connection i, which serves as a communication link between the two subsystems. It is shown that additions to the connection according to the gauge principle are, in fact, manifestations of the synchronous (e(iζ)/e(-iζ)) nature of the ψ(n) and χ(n) phase transformations. Two important U(1) connections are reviewed: qA(μ) from electrodynamics and Berry's connection. The gauging of SU(2) and SU(3) is reviewed and then used with molecules. The largest gauge group
The M-theory origin of global properties of gauge theories
Directory of Open Access Journals (Sweden)
Antonio Amariti
2015-12-01
Full Text Available We show that global properties of gauge groups can be understood as geometric properties in M-theory. Different wrappings of a system of N M5-branes on a torus reduce to four-dimensional theories with AN−1 gauge algebra and different unitary groups. The classical properties of the wrappings determine the global properties of the gauge theories without the need to impose any quantum conditions. We count the inequivalent wrappings as they fall into orbits of the modular group of the torus, which correspond to the S-duality orbits of the gauge theories.
Phase diagrams of exceptional and supersymmetric lattice gauge theories
Energy Technology Data Exchange (ETDEWEB)
Wellegehausen, Bjoern-Hendrik
2012-07-10
In this work different strongly-coupled gauge theories with and without fundamental matter have been studied on the lattice with an emphasis on the confinement problem and the QCD phase diagram at nonvanishing net baryon density as well as on possible supersymmetric extensions of the standard model of particle physics. In gauge theories with a non-trivial centre symmetry, as for instance SU(3)-Yang-Mills theory, confinement is intimately related to the centre of the gauge group, and the Polyakov loop serves as an order parameter for confinement. In QCD, this centre symmetry is explicitly broken by quarks in the fundamental representation of the gauge group. But still quarks and gluons are confined in mesons, baryons and glueballs at low temperatures and small densities, suggesting that centre symmetry is not responsible for the phenomenon of confinement. Therefore it is interesting to study pure gauge theories without centre symmetry. In this work this has been done by replacing the gauge group SU(3) of the strong interaction with the exceptional Lie group G{sub 2}, that has a trivial centre. To investigate G{sub 2} gauge theory on the lattice, a new and highly efficient update algorithm has been developed, based on a local HMC algorithm. Employing this algorithm, the proposed and already investigated first order phase transition from a confined to a deconfined phase has been confirmed, showing that indeed a first order phase transition without symmetry breaking or an order parameter is possible. In this context, also the deconfinement phase transition of the exceptional Lie groups F4 and E6 in three spacetime dimensions has been studied. It has been shown that both theories also possess a first order phase transition.
An evaluation and critique of current rankings
Federkeil, Gero; Westerheijden, Donald F.; van Vught, Franciscus A.; Ziegele, Frank
2012-01-01
This chapter raises the question of whether university league tables deliver relevant information to one of their key target groups – students. It examines the inherent biases and weaknesses in the methodologies of the major rankings and argues that the concentration on a single indicator of
Gauge bosons production and properties
Rebassoo, Finn O'neill
2015-01-01
Studies of the production and decay of gauge bosons are an important probe of the electroweak sector of the standard model. Anomalies in these processes could be a sign of new physics, and are an indirect search for physics beyond the scale that can be directly measured at accelerators. The sensitivity to new physics depends on both the experimental uncertainty and standard model theoretical uncertainty, so reducing both of these is important for any discovery of new physics. This article will focus on the experimental measurements of these processes and specifically on results from the last year at the Tevatron and LHC, though relevant earlier measurements will be referenced. In addition to being sensitive to new physics, gauge boson production is a background to a lot of new physics models and Higgs measurements. Thus, measuring these processes precisely is of the utmost importance. Gauge boson production is also an important way to constrain parton distribution functions (pdfs), and test perturbative and n...
Introduzione alle teorie di gauge
Cabibbo, Nicola; Benhar, Omar
2016-01-01
"Introduzione alle Teorie di Gauge" completa la serie di tre volumi basati sulle lezioni dei corsi di Meccanica Quantistica Relativistica, Interazioni Elettrodeboli e Teorie di Gauge, impartite dagli autori agli studenti delle Lauree Magistrali in Fisica e Astronomia & Astrofisica dell'Universita "La Sapienza" di Roma, nell'arco di qualche decennio. L'obiettivo principale del volume è di introdurre i concetti di base della rinormalizzazione nella teoria quantistica dei campi e i fondamenti delle moderne teorie di Gauge. Anche se collegato ai volumi precedenti, il libro si presta ad una lettura indipendente, che presume solo conoscenze generali di relativita speciale, della seconda quantizzazione e della fenomenologia delle interazioni elettrodeboli. Lo strumento di base è l'integrale sui cammini di Feynman, introdotto nei capitoli iniziali e sistematicamente impiegato nel seguito. L'esposizione segue un percorso pedagogico, che parte dal caso semplice dell'ampiezza di transizione in meccanica quantistic...
Carbon nanotubes based vacuum gauge
Rudyk, N. N.; Il’in, O. I.; Il’ina, M. V.; Fedotov, A. A.; Klimin, V. S.; Ageev, O. A.
2017-11-01
We have created an ionization type Vacuum gauge with sensor element based on an array of vertically aligned carbon nanotubes. Obtained asymmetrical current-voltage characteristics at different voltage polarity on the electrode with the CNTs. It was found that when applying a negative potential on an electrode with the CNTs, the current in the gap is higher than at a positive potential. In the pressure range of 1 ÷ 103 Torr vacuum gauge sensitivity was 6 mV/Torr (at a current of 4.5·10-5 A) and in the range of 10-5 ÷ 1 Torr was 10 mV/Torr (at a current of 1.3·10-5 A). It is shown that the energy efficiency of vacuum gauge can be increased in the case where electrode with CNT operates as an emitter of electrons.
Air Gauge Characteristics Linearity Improvement
Directory of Open Access Journals (Sweden)
Cz. J. Jermak
2016-01-01
Full Text Available This paper discusses calibration uncertainty and linearity issues of the typical back-pressure air gauge. In this sort of air gauge, the correlation between the measured dimension (represented by the slot width and the air pressure in the measuring chamber is used in a proportional range. However, when high linearity is required (e.g., nonlinearity less than 1%, the measuring range should be shortened. In the proposed method, based on knowledge of the static characteristics of air gauges, the measuring range is kept unchanged but the nonlinearity is decreased. The static characteristics may be separated into two sections, each of them approximated with a different linear function. As a result, the nonlinearity is reduced from 5% down to 1% and even below.
Wikipedia ranking of world universities
Lages, José; Patt, Antoine; Shepelyansky, Dima L.
2016-03-01
We use the directed networks between articles of 24 Wikipedia language editions for producing the wikipedia ranking of world Universities (WRWU) using PageRank, 2DRank and CheiRank algorithms. This approach allows to incorporate various cultural views on world universities using the mathematical statistical analysis independent of cultural preferences. The Wikipedia ranking of top 100 universities provides about 60% overlap with the Shanghai university ranking demonstrating the reliable features of this approach. At the same time WRWU incorporates all knowledge accumulated at 24 Wikipedia editions giving stronger highlights for historically important universities leading to a different estimation of efficiency of world countries in university education. The historical development of university ranking is analyzed during ten centuries of their history.
Energy Technology Data Exchange (ETDEWEB)
Weber, G. F.; Laudal, D. L.
1989-01-01
This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).
Gauge theory and variational principles
Bleecker, David
2005-01-01
This text provides a framework for describing and organizing the basic forces of nature and the interactions of subatomic particles. A detailed and self-contained mathematical account of gauge theory, it is geared toward beginning graduate students and advanced undergraduates in mathematics and physics. This well-organized treatment supplements its rigor with intuitive ideas.Starting with an examination of principal fiber bundles and connections, the text explores curvature; particle fields, Lagrangians, and gauge invariance; Lagrange's equation for particle fields; and the inhomogeneous field
Dynamics of gauge field inflation
Energy Technology Data Exchange (ETDEWEB)
Alexander, Stephon; Jyoti, Dhrubo [Center for Cosmic Origins and Department of Physics and Astronomy, 6127 Wilder Laboratory, Dartmouth College, Hanover, NH 03755 (United States); Kosowsky, Arthur [Department of Physics and Astronomy, University of Pittsburgh, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); Marcianò, Antonino, E-mail: stephon.alexander@dartmouth.edu, E-mail: dhrubo.jyoti@dartmouth.edu, E-mail: kosowsky@pitt.edu, E-mail: marciano@fudan.edu.cn [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 220 Handan Road, Shanghai (China)
2015-05-01
We analyze the existence and stability of dynamical attractor solutions for cosmological inflation driven by the coupling between fermions and a gauge field. Assuming a spatially homogeneous and isotropic gauge field and fermion current, the interacting fermion equation of motion reduces to that of a free fermion up to a phase shift. Consistency of the model is ensured via the Stückelberg mechanism. We prove the existence of exactly one stable solution, and demonstrate the stability numerically. Inflation arises without fine tuning, and does not require postulating any effective potential or non-standard coupling.
Dynamics of gauge field inflation
Energy Technology Data Exchange (ETDEWEB)
Alexander, Stephon; Jyoti, Dhrubo [Center for Cosmic Origins and Department of Physics and Astronomy, 6127 Wilder Laboratory, Dartmouth College, Hanover, NH 03755 (United States); Kosowsky, Arthur [Department of Physics and Astronomy, University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States); Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (Pitt-PACC), 420 Allen Hall, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States); Marcianò, Antonino [Center for Field Theory and Particle Physics & Department of Physics, Fudan University, 220 Handan Road, Shanghai (China)
2015-05-05
We analyze the existence and stability of dynamical attractor solutions for cosmological inflation driven by the coupling between fermions and a gauge field. Assuming a spatially homogeneous and isotropic gauge field and fermion current, the interacting fermion equation of motion reduces to that of a free fermion up to a phase shift. Consistency of the model is ensured via the Stückelberg mechanism. We prove the existence of exactly one stable solution, and demonstrate the stability numerically. Inflation arises without fine tuning, and does not require postulating any effective potential or non-standard coupling.
Dark Coupling and Gauge Invariance
Gavela, M B; Mena, O; Rigolin, S
2010-01-01
We study a coupled dark energy-dark matter model in which the energy-momentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data.
Stream Gauges and Satellite Measurements
Alsdorf, D. E.
2010-12-01
Satellite measurements should not be viewed as a replacement for stream gauges. However, occasionally it is suggested that because satellite-based measurements can provide river discharge, a motivation for satellite approaches is an increasing lack of stream gauges. This is an argument for more stream gauges, but not necessarily for satellite measurements. Rather, in-situ and spaceborne methods of estimating discharge are complementary. Stream gauges provide frequent measurements at one point in the river reach whereas satellites have the potential to measure throughout all reaches but at orbital repeat intervals of days to weeks. The Surface Water and Ocean Topography satellite mission (SWOT) is an opportunity to further develop these complements. The motivation for SWOT, and indeed for any satellite based method of estimating discharge, should not be as a replacement for stream gauges. Scientific and application uses should motivate the measurements. For example, understanding floods with their dynamic water surfaces are best sampled from remote platforms that provide water surface elevations throughout the floodwave. As another example, today’s water and energy balance models are giving outputs at increasing spatial resolution and are making use of water surface elevations throughout the modeled basin. These models require a similar resolution in the calibrating and validating observations. We should also be aware of practical limitations. In addition to providing spatially distributed hydrodynamic measurements on rivers, SWOT will be able to measure storage changes in the estimated 30 million lakes in the world that are larger than a hectare. Knowing the storage changes in these lakes is especially important in certain regions such as the Arctic but gauging even a small fraction of these is impractical. Another motivator for satellite methods is that even in the presence of stream gauges, discharge data is not always well shared throughout all countries
Some observations on interpolating gauges and non-covariant gauges
Indian Academy of Sciences (India)
tion that are not normally taken into account in the BRST formalism that ignores the ε-term, and that they are characteristic of the way the singularities in propagators are handled. We argue that a prescription, in general, will require renormalization; if at all it is to be viable. Keywords. Non-covariant gauges; interpolating ...
Statistical methods for ranking data
Alvo, Mayer
2014-01-01
This book introduces advanced undergraduate, graduate students and practitioners to statistical methods for ranking data. An important aspect of nonparametric statistics is oriented towards the use of ranking data. Rank correlation is defined through the notion of distance functions and the notion of compatibility is introduced to deal with incomplete data. Ranking data are also modeled using a variety of modern tools such as CART, MCMC, EM algorithm and factor analysis. This book deals with statistical methods used for analyzing such data and provides a novel and unifying approach for hypotheses testing. The techniques described in the book are illustrated with examples and the statistical software is provided on the authors’ website.
DEFF Research Database (Denmark)
Bombin Palomo, Hector
2015-01-01
Color codes are topological stabilizer codes with unusual transversality properties. Here I show that their group of transversal gates is optimal and only depends on the spatial dimension, not the local geometry. I also introduce a generalized, subsystem version of color codes. In 3D they allow...
Ranking nodes in growing networks: When PageRank fails
Mariani, Manuel Sebastian; Medo, Matúš; Zhang, Yi-Cheng
2015-11-01
PageRank is arguably the most popular ranking algorithm which is being applied in real systems ranging from information to biological and infrastructure networks. Despite its outstanding popularity and broad use in different areas of science, the relation between the algorithm’s efficacy and properties of the network on which it acts has not yet been fully understood. We study here PageRank’s performance on a network model supported by real data, and show that realistic temporal effects make PageRank fail in individuating the most valuable nodes for a broad range of model parameters. Results on real data are in qualitative agreement with our model-based findings. This failure of PageRank reveals that the static approach to information filtering is inappropriate for a broad class of growing systems, and suggest that time-dependent algorithms that are based on the temporal linking patterns of these systems are needed to better rank the nodes.
Search for gauge extensions of the MSSM at the LHC
Energy Technology Data Exchange (ETDEWEB)
Ali, Ahmed [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Demir, Durmus A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Izmir Institute of Technology, IZTECH, Izmir (Turkey). Dept. of Physics; Frank, Mariana; Turan, Ismail [Montreal Univ., PQ (Canada). Dept. of Physics
2009-02-15
The extensions of the minimal supersymmetric model (MSSM), driving mainly from the need to solve the {mu} problem, involve novel matter species and gauge groups. These extended MSSM models can be searched for at the LHC via the effects of the gauge and Higgs bosons or their fermionic partners. Traditionally, the focus has been on the study of the extra forces induced by the new gauge and Higgs bosons present in such models. An alternative way of studying such effects is through the superpartners of matter species and the gauge forces. We thus consider a U(1)' gauge extension of the MSSM, and perform an extensive study of the signatures of the model through the production and decays of the scalar quarks and gluino, which are expected to be produced copiously at the LHC. After a detailed study of the distinctive features of such models with regard to the signatures at the LHC, we carry out a detailed Monte Carlo analysis of the signals from the process pp{yields}n leptons+m jets+E{sub T}, and compare the resulting distributions with those predicted by the MSSM. Our results show that the searches for the extra gauge interactions in the supersymmetric framework can proceed not only through the forces mediated by the gauge and Higgs bosons but also through the superpartner forces mediated by the gauge and Higgs fermions. Analysis of the events induced by the squark/gluino decays presented here is complementary to the direct Z' searches at the LHC. (orig.)
M-theory and U-duality on $T^{d}$ with gauge backgrounds
Obers, N A; Rabinovici, Eliezer
1998-01-01
The full U-duality symmetry of toroidally compactified M-theory can be displayed by allowing non-rectangular tori with expectation values of the gauge fields. We derive the couplings in the Matrix gauge theory due to expectation values of the M-theory three-form C. An E_d(Z) U-duality invariant mass formula incorporating nonvanishing gauge backgrounds is also obtained, and is found to agree with these couplings. We show that the conjectured extended U-duality symmetry of Matrix theory on T^d in the Discrete Light-Cone Quantization has an implementation as an action of E_{d+1}(Z) on the BPS spectrum. Some implications for the proper interpretation of the rank N of the Matrix gauge theory are discussed.
On Wilsonian Flows in Gauge Theories
Pawlowski, Jan M.
An Exact Renormalisation Group (ERG) approach to non-Abelian gauge theories is discussed. We focus on the derivation of universal beta-functions and the choice of the initial effective action, the latter being a key input in the approach. To that end we establish the map between Gell-Mann-Low scaling of the full theory and the scaling in an ERG approach. Then this map is used to derive the 2-loop β-function within a simple straightforward calculation. The implications for the choice of the initial effective action are discussed.
Spontaneous symmetry breaking in gauge theories.
Kibble, T W B
2015-01-13
The aim of this historical article is to describe the development of the idea of spontaneous symmetry breaking in gauge theories as seen from my perspective as a member of Abdus Salam's group at Imperial College London, UK. Beginning with an account of particle physics in the years after the Second World War, I describe early attempts at constructing a unified theory of weak and electromagnetic interactions, the obstacles encountered and how they were eventually overcome with the mass-generating mechanism incorporating the idea of spontaneous symmetry breaking, one of whose features is the now-famous Higgs boson.
Quantum gauge freedom in very special relativity
Directory of Open Access Journals (Sweden)
Sudhaker Upadhyay
2017-02-01
Full Text Available We demonstrate Yokoyama gaugeon formalism for the Abelian one-form gauge (Maxwell as well as for Abelian two-form gauge theory in the very special relativity (VSR framework. In VSR scenario, the extended action due to introduction of gaugeon fields also possesses form invariance under quantum gauge transformations. It is observed that the gaugeon field together with gauge field naturally acquire mass, which is different from the conventional Higgs mechanism. The quantum gauge transformation implements a shift in gauge parameter. Further, we analyze the BRST symmetric gaugeon formalism in VSR which embeds only one subsidiary condition rather than two.
Quantum gauge freedom in very special relativity
Energy Technology Data Exchange (ETDEWEB)
Upadhyay, Sudhaker, E-mail: sudhakerupadhyay@gmail.com [Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal (India); Panigrahi, Prasanta K., E-mail: pprasanta@iiserkol.ac.in [Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal (India)
2017-02-15
We demonstrate Yokoyama gaugeon formalism for the Abelian one-form gauge (Maxwell) as well as for Abelian two-form gauge theory in the very special relativity (VSR) framework. In VSR scenario, the extended action due to introduction of gaugeon fields also possesses form invariance under quantum gauge transformations. It is observed that the gaugeon field together with gauge field naturally acquire mass, which is different from the conventional Higgs mechanism. The quantum gauge transformation implements a shift in gauge parameter. Further, we analyze the BRST symmetric gaugeon formalism in VSR which embeds only one subsidiary condition rather than two.
2011-01-01
Background Ultrasound-guided diagnostic breast biopsy technology represents the current standard of care for the evaluation of indeterminate and suspicious lesions seen on diagnostic breast ultrasound. Yet, there remains much debate as to which particular method of ultrasound-guided diagnostic breast biopsy provides the most accurate and optimal diagnostic information. The aim of the current study was to compare and contrast the 8-gauge vacuum-assisted biopsy approach and the spring-loaded 14-gauge core biopsy approach. Methods A retrospective analysis was done of all ultrasound-guided diagnostic breast biopsy procedures performed by either the 8-gauge vacuum-assisted biopsy approach or the spring-loaded 14-gauge core biopsy approach by a single surgeon from July 2001 through June 2009. Results Among 1443 ultrasound-guided diagnostic breast biopsy procedures performed, 724 (50.2%) were by the 8-gauge vacuum-assisted biopsy technique and 719 (49.8%) were by the spring-loaded 14-gauge core biopsy technique. The total number of false negative cases (i.e., benign findings instead of invasive breast carcinoma) was significantly greater (P = 0.008) in the spring-loaded 14-gauge core biopsy group (8/681, 1.2%) as compared to in the 8-gauge vacuum-assisted biopsy group (0/652, 0%), with an overall false negative rate of 2.1% (8/386) for the spring-loaded 14-gauge core biopsy group as compared to 0% (0/148) for the 8-gauge vacuum-assisted biopsy group. Significantly more (P biopsy group (81/719, 11.3%) than in the 8-gauge vacuum-assisted biopsy group (18/724, 2.5%) were recommended for further diagnostic surgical removal of additional tissue from the same anatomical site of the affected breast in an immediate fashion for indeterminate/inconclusive findings seen on the original ultrasound-guided diagnostic breast biopsy procedure. Significantly more (P biopsy group (54/719, 7.5%) than in the 8-gauge vacuum-assisted biopsy group (9/724, 1.2%) personally requested further
Homological characterisation of Lambda-ranks
Howson, Susan
1999-01-01
If G is a pro-p, p-adic, Lie group and if $\\Lambda(G)$ denotes the Iwasawa algebra of G then we present a formula for determining the $\\Lambda(G)$-rank of a finitely generated $\\Lambda(G)$-module. This is given in terms of the G homology groups of the module. We explore some consequences of this for the structure of $\\Lambda(G)$-modules.
Gauged multisoliton baby Skyrme model
Samoilenka, A.; Shnir, Ya.
2016-03-01
We present a study of U (1 ) gauged modification of the 2 +1 -dimensional planar Skyrme model with a particular choice of the symmetry breaking potential term which combines a short-range repulsion and a long-range attraction. In the absence of the gauge interaction, the multisolitons of the model are aloof, as they consist of the individual constituents which are well separated. A peculiar feature of the model is that there are usually several different stable static multisoliton solutions of rather similar energy in a topological sector of given degree. We investigate the pattern of the solutions and find new previously unknown local minima. It is shown that coupling of the aloof planar multi-Skyrmions to the magnetic field strongly affects the pattern of interaction between the constituents. We analyze the dependency of the structure of the solutions, their energies, and magnetic fluxes on the strength of the gauge coupling. It is found that, generically, in the strong coupling limit, the coupling to the gauge field results in effective recovery of the rotational invariance of the configuration.
University Rankings in Critical Perspective
Pusser, Brian; Marginson, Simon
2013-01-01
This article addresses global postsecondary ranking systems by using critical-theoretical perspectives on power. This research suggests rankings are at once a useful lens for studying power in higher education and an important instrument for the exercise of power in service of dominant norms in global higher education. (Contains 1 table and 1…
University Ranking as Social Exclusion
Amsler, Sarah S.; Bolsmann, Chris
2012-01-01
In this article we explore the dual role of global university rankings in the creation of a new, knowledge-identified, transnational capitalist class and in facilitating new forms of social exclusion. We examine how and why the practice of ranking universities has become widely defined by national and international organisations as an important…
On magnetohydrodynamic gauge field theory
Webb, G. M.; Anco, S. C.
2017-06-01
Clebsch potential gauge field theory for magnetohydrodynamics is developed based in part on the theory of Calkin (1963 Can. J. Phys. 41 2241-51). It is shown how the polarization vector {P} in Calkin’s approach naturally arises from the Lagrange multiplier constraint equation for Faraday’s equation for the magnetic induction {B} , or alternatively from the magnetic vector potential form of Faraday’s equation. Gauss’s equation, (divergence of {B} is zero) is incorporated in the variational principle by means of a Lagrange multiplier constraint. Noether’s theorem coupled with the gauge symmetries is used to derive the conservation laws for (a) magnetic helicity, (b) cross helicity, (c) fluid helicity for non-magnetized fluids, and (d) a class of conservation laws associated with curl and divergence equations which applies to Faraday’s equation and Gauss’s equation. The magnetic helicity conservation law is due to a gauge symmetry in MHD and not due to a fluid relabelling symmetry. The analysis is carried out for the general case of a non-barotropic gas in which the gas pressure and internal energy density depend on both the entropy S and the gas density ρ. The cross helicity and fluid helicity conservation laws in the non-barotropic case are nonlocal conservation laws that reduce to local conservation laws for the case of a barotropic gas. The connections between gauge symmetries, Clebsch potentials and Casimirs are developed. It is shown that the gauge symmetry functionals in the work of Henyey (1982 Phys. Rev. A 26 480-3) satisfy the Casimir determining equations.
PageRank tracker: from ranking to tracking.
Gong, Chen; Fu, Keren; Loza, Artur; Wu, Qiang; Liu, Jia; Yang, Jie
2014-06-01
Video object tracking is widely used in many real-world applications, and it has been extensively studied for over two decades. However, tracking robustness is still an issue in most existing methods, due to the difficulties with adaptation to environmental or target changes. In order to improve adaptability, this paper formulates the tracking process as a ranking problem, and the PageRank algorithm, which is a well-known webpage ranking algorithm used by Google, is applied. Labeled and unlabeled samples in tracking application are analogous to query webpages and the webpages to be ranked, respectively. Therefore, determining the target is equivalent to finding the unlabeled sample that is the most associated with existing labeled set. We modify the conventional PageRank algorithm in three aspects for tracking application, including graph construction, PageRank vector acquisition and target filtering. Our simulations with the use of various challenging public-domain video sequences reveal that the proposed PageRank tracker outperforms mean-shift tracker, co-tracker, semiboosting and beyond semiboosting trackers in terms of accuracy, robustness and stability.
How Do European Pharmacy Students Rank Competences for Practice?
Atkinson, Jeffrey; De Paepe, Kristien; Sánchez Pozo, Antonio; Rekkas, Dimitrios; Volmer, Daisy; Hirvonen, Jouni; Bozic, Borut; Skowron, Agnieska; Mircioiu, Constantin; Marcincal, Annie; Koster, Andries; Wilson, Keith; van Schravendijk, Chris; Hočevar, Sandra
2016-01-01
European students (n = 370), academics (n = 241) and community pharmacists (n = 258) ranked 13 clusters of 68 personal and patient care competences for pharmacy practice. The results show that ranking profiles for all three groups as a rule were similar. This was especially true of the comparison
Type-IIA flux compactifications and N=4 gauged supergravities
Dall'Agata, Gianguido; Zwirner, Fabio
2009-01-01
We establish the precise correspondence between Type-IIA flux compactifications preserving an exact or spontaneously broken N=4 supersymmetry in four dimensions, and gaugings of their effective N=4 supergravities. We exhibit the explicit map between fluxes and Bianchi identities in the higher-dimensional theory and generalized structure constants and Jacobi identities in the reduced theory, also detailing the origin of gauge groups embedded at angles in the duality group. We present AdS4 solutions of the massive Type-IIA theory with spontaneous breaking to N=1, at small string coupling and large volume, and discuss their dual CFT3.
NAMMA SENEGAL RAIN GAUGE NETWORK V1
National Aeronautics and Space Administration — The NAMMA Senegal Rain Gauge Network consisted of 40 rain gauge sites (AMMA 1-40) located in various places throughout Senegal, West Africa. These data files were...
Calibration of pressure gauge for Cherenkov detector
Saponjic, Nevena
2013-01-01
Solartron/Hamilton pressure gauges are used to monitor the gas pressure in the particle beam detectors installed in the experimental areas. Here is description of the test bench for the calibration of these gauges in Labview.
Gauge theory: form Physics to Geometry
Bruzzo, Ugo
2010-01-01
Maxwell theory may be regarded as a prototype of gauge theory and generalized to nonabelian gauge theory. We briefly sketch the history of gauge theories, from Maxwell to Yang-Mills theory, and the identification of gauge fields with connections on fibre bundles. We introduce the notion of instanton and consider the moduli spaces of such objects. Finally, we discuss some modern techniques for studying the topology of these moduli spaces.
Theorems for asymptotic safety of gauge theories
Bond, Andrew D.; Litim, Daniel F.
2017-06-01
We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasised. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated.
Universal scaling in sports ranking
Deng, Weibing; Li, Wei; Cai, Xu; Bulou, Alain; Wang, Qiuping A.
2012-09-01
Ranking is a ubiquitous phenomenon in human society. On the web pages of Forbes, one may find all kinds of rankings, such as the world's most powerful people, the world's richest people, the highest-earning tennis players, and so on and so forth. Herewith, we study a specific kind—sports ranking systems in which players' scores and/or prize money are accrued based on their performances in different matches. By investigating 40 data samples which span 12 different sports, we find that the distributions of scores and/or prize money follow universal power laws, with exponents nearly identical for most sports. In order to understand the origin of this universal scaling we focus on the tennis ranking systems. By checking the data we find that, for any pair of players, the probability that the higher-ranked player tops the lower-ranked opponent is proportional to the rank difference between the pair. Such a dependence can be well fitted to a sigmoidal function. By using this feature, we propose a simple toy model which can simulate the competition of players in different matches. The simulations yield results consistent with the empirical findings. Extensive simulation studies indicate that the model is quite robust with respect to the modifications of some parameters.
Universal scaling in sports ranking
Deng, Weibing; Cai, Xu; Bulou, Alain; Wang, Qiuping A
2011-01-01
Ranking is a ubiquitous phenomenon in the human society. By clicking the web pages of Forbes, you may find all kinds of rankings, such as world's most powerful people, world's richest people, top-paid tennis stars, and so on and so forth. Herewith, we study a specific kind, sports ranking systems in which players' scores and prize money are calculated based on their performances in attending various tournaments. A typical example is tennis. It is found that the distributions of both scores and prize money follow universal power laws, with exponents nearly identical for most sports fields. In order to understand the origin of this universal scaling we focus on the tennis ranking systems. By checking the data we find that, for any pair of players, the probability that the higher-ranked player will top the lower-ranked opponent is proportional to the rank difference between the pair. Such a dependence can be well fitted to a sigmoidal function. By using this feature, we propose a simple toy model which can simul...
Split Dimensional Regularization for the Temporal Gauge
Chen, Yaw-Hwang; Hsieh, Ron-Jou; Lin, Chilong
1996-01-01
A split dimensional regularization, which was introduced for the Coulomb gauge by Leibbrandt and Williams, is used to regularize the spurious singularities of Yang-Mills theory in the temporal gauge. Typical one-loop split dimensionally regularized temporal gauge integrals, and hence the renormalization structure of the theory are shown to be the same as those calculated with some nonprincipal-value prescriptions.
Chiral gauge theories with domain wall fermions
Golterman, M.; Jansen, K.; Petcher, D.; Vink, J.
1993-01-01
We have investigated a proposal to construct chiral gauge theories on the lattice using domain wall fermions. The model contains two opposite chirality zeromodes, which live on two domain walls. We couple only one of them to a gauge field, but find that mirror fermions which also couple to the gauge field always seem to exist.
On-shell gauge invariant three-point amplitudes
Sun, Zhengdi; Xu, Hui; Cheung, Yeuk-Kwan E.
2017-12-01
Assuming locality, Lorentz invariance and parity conservation we obtain a set of differential equations governing the 3-point interactions of massless bosons, which in turn determines the polynomial ring of these amplitudes. We derive all possible 3-point interactions for tensor fields with polarisations that have total symmetry and mixed symmetry under permutations of Lorentz indices. Constraints on the existence of gauge-invariant cubic vertices for totally symmetric fields are obtained in general spacetime dimensions and are compared with existing results obtained in the covariant and light-cone approaches. Expressing our results in spinor helicity formalism we reproduce the perhaps mysterious mismatch between the covariant approach and the light cone approach in 4 dimensions. Our analysis also shows that there exists a mismatch, in the 3-point gauge invariant amplitudes corresponding to cubic self-interactions, between a scalar field ϕ and an antisymmetric rank-2 tensor field A μν . Despite the well-known fact that in 4 dimensions rank-2 anti-symmetric fields are dual to scalar fields in free theories, such duality does not extend to interacting theories.
The fate of unstable gauge flux compactifications
Energy Technology Data Exchange (ETDEWEB)
Burgess, C.P. [McMaster Univ., Hamilton, ON (Canada). Dept. of Physics and Astronomy]|[Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Parameswaran, S.L. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Zavala, I. [Bonn Univ. (Germany). Bethe Center for Theoretical Physics and Physikalisches Inst.
2008-12-15
Fluxes are widely used to stabilise extra dimensions, but the supporting monopolelike configurations are often unstable, particularly if they arise as gauge flux within a non-abelian gauge sector. We here seek the endpoint geometries to which this instability leads, focussing on the simplest concrete examples: sphere-monopole compactifications in six dimensions. Without gravity most monopoles in non-abelian gauge groups are unstable, decaying into the unique stable monopole in the same topological class. We show that the same is true in Einstein-YM systems, with the new twist that the decay leads to a shrinkage in the size of the extra dimensions and curves the non-compact directions: in D dimensions a Mink{sub D-2} x S{sub 2} geometry supported by an unstable monopole relaxes to AdS{sub D-2} x S{sub 2}, with the endpoint sphere smaller than the initial one. For supergravity the situation is more complicated because the dilaton obstructs such a simple evolution. The endpoint instead acquires a dilaton gradient, thereby breaking some of the spacetime symmetries. For 6D supergravity we argue that it is the 4D symmetries that break, and examine several candidates for the endpoint geometry. By using the trick of dimensional oxidation it is possible to recast the supergravity system as a higher-dimensional Einstein-YM monopole, allowing understanding of this system to guide us to the corresponding endpoint. The result is a Kasner-like geometry conformal to Mink{sub 4} times S{sub 2}, with nontrivial conformal factor and dilaton breaking the maximal 4D symmetry and generating a singularity. Yet the resulting configuration has a lower potential energy than did the initial one, and is perturbatively stable, making it a sensible candidate endpoint for the evolution. (orig.)
Scattering amplitudes in gauge theories
Henn, Johannes M
2014-01-01
At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...
Differential renormalization of gauge theories
Energy Technology Data Exchange (ETDEWEB)
Aguila, F. del; Perez-Victoria, M. [Dept. de Fisica Teorica y del Cosmos, Universidad de Granada, Granada (Spain)
1998-10-01
The scope of constrained differential renormalization is to provide renormalized expressions for Feynman graphs, preserving at the same time the Ward identities of the theory. It has been shown recently that this can be done consistently at least to one loop for Abelian and non-Abelian gauge theories. We briefly review these results, evaluate as an example the gluon self energy in both coordinate and momentum space, and comment on anomalies. (author) 9 refs, 1 fig., 1 tab
On Magnetohydrodynamic Gauge Field Theory
Webb, G. M.; Anco, S. C.
2017-01-01
Clebsch potential gauge field theory for magnetohydrodynamics is developed based in part on the theory of Calkin (1963). It is shown how the polarization vector ${\\bf P}$ in Calkin's approach, naturally arises from the Lagrange multiplier constraint equation for Faraday's equation for the magnetic induction ${\\bf B}$, or alternatively from the magnetic vector potential form of Faraday's equation. Gauss's equation, (divergence of ${\\bf B}$ is zero), is incorporated in the variational principle...
Navarro, Rodrigo M.; Machado, Leonardo M.; Maia, Ossires; Wu, Lihteh; Farah, Michel E.; Magalhaes, Octaviano; Arevalo, J. Fernando; Maia, Mauricio
2015-01-01
Purpose. To determine the efficacy of 23-gauge pars plana vitrectomy (PPV) for symptomatic posterior vitreous detachment (PVD) on visual acuity (VA) and quality after multifocal intraocular lenses (IOLs). Methods. In this prospective case series, patients who developed symptomatic PVD and were not satisfied with visual quality due to floaters and halos after multifocal IOL implantation underwent PPV. Examinations included LogMAR uncorrected visual acuity (UCVA), intraocular pressure, biomicroscopy, and indirect ophthalmoscopy at baseline and 1, 7, 30, and 180 days postoperatively. Ultrasonography and aberrometry were performed. The Visual Functioning Questionnaire 25 (VFQ-25) was administered preoperatively and at 30 days postoperatively. Both the postoperative UCVA and questionnaire results were compared to preoperative findings using the Wilcoxon test. Results. Sixteen eyes of 8 patients were included. VA significantly improved from 0.17 to 0.09 postoperatively (P = 0.017). All patients reported improvement of halos, glare, and floaters. VFQ-25 scores significantly improved in general vision (P = 0.023), near activities (P = 0.043), distance activities (P = 0.041), mental health (P = 0.011), role difficulties (P = 0.042), and driving (P = 0.016). Conclusion. PPV may increase UCVA and quality of vision in patients with bilateral multifocal IOLs and symptomatic PVD. Larger studies are advised. PMID:26504590
Frahm, K. M.; Chepelianskii, A. D.; Shepelyansky, D. L.
2012-10-01
We up a directed network tracing links from a given integer to its divisors and analyze the properties of the Google matrix of this network. The PageRank vector of this matrix is computed numerically and it is shown that its probability is approximately inversely proportional to the PageRank index thus being similar to the Zipf law and the dependence established for the World Wide Web. The spectrum of the Google matrix of integers is characterized by a large gap and a relatively small number of nonzero eigenvalues. A simple semi-analytical expression for the PageRank of integers is derived that allows us to find this vector for matrices of billion size. This network provides a new PageRank order of integers.
Gauge fixing and the gibbs phenomenon
Mandula, Jeffrey E.
1999-03-01
We address the question of why global gauge fixing, specifically to the lattice Landau gauge, becomes an extremely lengthy process for large lattices. We construct an artificial "gauge-fixing" problem which has the essential features encountered in actuality. In the limit in which the size of the system to be gauge fixed becomes infinite, the problem becomes equivalent to finding a series expansion in functions which are related to the Jacobi polynomials. The series converges slowly, as expected. It also converges non-uniformly, which is an observed characteristic of gauge fixing. In the limiting example, the non-uniformity arises through the Gibbs phenomenon.
Gauge fixing and the gibbs phenomenon
Energy Technology Data Exchange (ETDEWEB)
Mandula, Jeffrey E
1999-03-01
We address the question of why global gauge fixing, specifically to the lattice Landau gauge, becomes an extremely lengthy process for large lattices. We construct an artificial 'gauge-fixing' problem which has the essential features encountered in actuality. In the limit in which the size of the system to be gauge fixed becomes infinite, the problem becomes equivalent to finding a series expansion in functions which are related to the Jacobi polynomials. The series converges slowly, as expected. It also converges non-uniformly, which is an observed characteristic of gauge fixing. In the limiting example, the non-uniformity arises through the Gibbs phenomenon.
Ranking in evolving complex networks
Liao, Hao; Mariani, Manuel Sebastian; Medo, Matúš; Zhang, Yi-Cheng; Zhou, Ming-Yang
2017-05-01
Complex networks have emerged as a simple yet powerful framework to represent and analyze a wide range of complex systems. The problem of ranking the nodes and the edges in complex networks is critical for a broad range of real-world problems because it affects how we access online information and products, how success and talent are evaluated in human activities, and how scarce resources are allocated by companies and policymakers, among others. This calls for a deep understanding of how existing ranking algorithms perform, and which are their possible biases that may impair their effectiveness. Many popular ranking algorithms (such as Google's PageRank) are static in nature and, as a consequence, they exhibit important shortcomings when applied to real networks that rapidly evolve in time. At the same time, recent advances in the understanding and modeling of evolving networks have enabled the development of a wide and diverse range of ranking algorithms that take the temporal dimension into account. The aim of this review is to survey the existing ranking algorithms, both static and time-aware, and their applications to evolving networks. We emphasize both the impact of network evolution on well-established static algorithms and the benefits from including the temporal dimension for tasks such as prediction of network traffic, prediction of future links, and identification of significant nodes.
Strong Coupling Gauge Theories in LHC ERA
Fukaya, H.; Harada, M.; Tanabashi, M.; Yamawaki, K.
2011-01-01
conformal Higgs / Kazumoto Haba, Shinya Matsuzaki and Koichi Yamawaki -- Phase structure of topologically massive gauge theory with fermion / Yuichi Hoshino -- New regularization in extra dimensional model and renormalization group flow of the cosmological constant / Shoichi Ichinose -- Spectral analysis of dense two-color QCD / T. Kanazawa, T. Wettig and N. Yamamoto -- NJL model with dimensional regularization at finite temperature / T. Fujihara ... [et al.] -- A new method of evaluating the dynamical chiral symmetry breaking scale and the chiral restoration temperature in general gauge theories by using the non-perturbative renormalization group analyses with general 4-Fermi effective interaction space / Ken-Ichi Aoki, Daisuke Sato and Kazuhiro Miyashita -- The effective chiral Lagrangian with vector mesons and hadronic [symbol] decays / D. Kimura ... [et al.] -- Spontaneous SUSY breaking with anomalous U(1) symmetry in metastable vacua and moduli stabilization / Hiroyuki Nishino -- A new description of the lattice Yang-Mills theory and non-abelian magnetic monopole dominance in the string tension / Akihiro Shibata -- Thermodynamics with unbroken center symmetry in two-flavor QCD / S. Takemoto, M. Harada and C. Sasaki -- Masses of vector bosons in two-color QCD based on the hidden local symmetry / T. Yamaoka, M. Harada and C. Nonaka -- Walking dynamics from string duals / Maurizio Piai -- The quark mass dependence of the nucleon mass in AdS/QCD / Hyo Chul Ahn -- Structure of thermal quasi-fermion in QED/QCD from the Dyson-Schwinger equation / Hisao Nakkagawa -- Critical behaviors of sigma-mode and pion in holographic superconductors / Cheonsoo Park.
A gauge-invariant reorganization of thermal gauge theory
Energy Technology Data Exchange (ETDEWEB)
Su, Nan
2010-07-01
This dissertation is devoted to the study of thermodynamics for quantum gauge theories. The poor convergence of quantum field theory at finite temperature has been the main obstacle in the practical applications of thermal QCD for decades. In this dissertation I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to the thermodynamics of QED and Yang-Mills theory to three-loop order. For the Abelian case, I present a calculation of the free energy of a hot gas of electrons and photons by expanding in a power series in m{sub D}/T, m{sub f}/T and e{sup 2}, where m{sub D} and m{sub f} are the photon and electron thermal masses, respectively, and e is the coupling constant. I demonstrate that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e {proportional_to} 2. For the non-Abelian case, I present a calculation of the free energy of a hot gas of gluons by expanding in a power series in m{sub D}/T and g{sup 2}, where m{sub D} is the gluon thermal mass and g is the coupling constant. I show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T {proportional_to} 2 - 3 T{sub c}. The results suggest that HTLpt provides a systematic framework that can be used to calculate static and dynamic quantities for temperatures relevant at LHC. (orig.)
Linear sigma model for multiflavor gauge theories
Meurice, Y.
2017-12-01
We consider a linear sigma model describing 2 Nf2 bosons (σ , a0 , η' and π ) as an approximate effective theory for a S U (3 ) local gauge theory with Nf Dirac fermions in the fundamental representation. The model has a renormalizable U (Nf)L⊗U (Nf)R invariant part, which has an approximate O (2 Nf2) symmetry, and two additional terms, one describing the effects of a S U (Nf)V invariant mass term and the other the effects of the axial anomaly. We calculate the spectrum for arbitrary Nf. Using preliminary and published lattice results from the LatKMI collaboration, we found combinations of the masses that vary slowly with the explicit chiral symmetry breaking and Nf. This suggests that the anomaly term plays a leading role in the mass spectrum and that simple formulas such as Mσ2≃(2 /Nf-Cσ)Mη' 2 should apply in the chiral limit. Lattice measurements of Mη'2 and of approximate constants such as Cσ could help in locating the boundary of the conformal window. We show that our calculation can be adapted for arbitrary representations of the gauge group and in particular to the minimal model with two sextets, where similar patterns are likely to apply.
On gaugino condensation with field-dependent gauge couplings
Burgess, C P; Quevedo, Fernando; Quirós, Mariano
1996-01-01
We study in detail gaugino condensation in globally and locally supersymmetric Yang-Mills theories. We focus on models for which gauge-neutral matter couples to the gauge bosons only through nonminimal gauge kinetic terms, for the cases of one and several condensing gauge groups. Using only symmetry arguments, the low-energy expansion, and general properties of supersymmetry, we compute the low energy Wilson action, as well as the (2PI) effective action for the composite {\\it classical} superfield U\\equiv\\langle \\Tr\\WW \\rangle, with W_\\alpha the supersymmetric gauge field strength. The 2PI effective action provides a firmer foundation for the approach of Veneziano and Yankielowicz, who treated the composite superfield, U, as a quantum degree of freedom. We show how to rederive the Wilson action by minimizing the 2PI action with respect to U. We determine, in both formulations and for global and local supersymmetry, the effective superpotential, W, the non-perturbative contributions to the low-energy K\\"ahler ...
Bubuianu, Laurenţiu; Irwin, Klee; Vacaru, Sergiu I.
2017-04-01
Heterotic supergravity with (1 + 3)-dimensional domain wall configurations and (warped) internal, six dimensional, almost-Kähler manifolds {{}6}\\text{X} are studied. Considering ten dimensional spacetimes with nonholonomic distributions and conventional double fibrations, 2 + 2 + ... = 2 + 2 + 3 + 3, and associated SU(3) structures on internal space, we generalize for real, internal, almost symplectic gravitational structures the constructions with gravitational and gauge instantons of tanh-kink type [1, 2]. They include the first {α\\prime} corrections to the heterotic supergravity action, parameterized in a form to imply nonholonomic deformations of the Yang-Mills sector and corresponding Bianchi identities. We show how it is possible to construct a variety of solutions depending on the type of nonholonomic distributions and deformations of ‘prime’ instanton configurations characterized by two real supercharges. This corresponds to N=1/2 supersymmetric, nonholonomic manifolds from the four dimensional point of view. Our method provides a unified description of embedding nonholonomically deformed tanh-kink-type instantons into half-BPS solutions of heterotic supergravity. This allows us to elaborate new geometric methods of constructing exact solutions of motion equations, with first order {α\\prime} corrections to the heterotic supergravity. Such a formalism is applied for general and/or warped almost-Kähler configurations, which allows us to generate nontrivial (1 + 3)-d domain walls and black hole deformations determined by quasiperiodic internal space structures. This formalism is utilized in our associated publication [3] in order to construct and study generic off-diagonal nonholonomic deformations of the Kerr metric, encoding contributions from heterotic supergravity.
GMOR-like relation in IR-conformal gauge theories
Patella, Agostino
2011-01-01
A generalization of the GMOR relation to the case of infrared-conformal gauge theories is discussed. The starting point is the chiral Ward identity connecting the isovector pseudoscalar susceptibility to the chiral condensate, in a mass-deformed theory. A renormalization-group analysis shows that the pseudoscalar susceptibility is not saturated by the lightest state, but a contribution from the continuum part of the spectrum survives in the chiral limit. The computation also shows how infrared-conformal gauge theories behave differently, depending on whether the anomalous dimension of the chiral condensate be smaller or larger than 1.
RANK and RANK ligand expression in primary human osteosarcoma
Directory of Open Access Journals (Sweden)
Daniel Branstetter
2015-09-01
Our results demonstrate RANKL expression was observed in the tumor element in 68% of human OS using IHC. However, the staining intensity was relatively low and only 37% (29/79 of samples exhibited≥10% RANKL positive tumor cells. RANK expression was not observed in OS tumor cells. In contrast, RANK expression was clearly observed in other cells within OS samples, including the myeloid osteoclast precursor compartment, osteoclasts and in giant osteoclast cells. The intensity and frequency of RANKL and RANK staining in OS samples were substantially less than that observed in GCTB samples. The observation that RANKL is expressed in OS cells themselves suggests that these tumors may mediate an osteoclastic response, and anti-RANKL therapy may potentially be protective against bone pathologies in OS. However, the absence of RANK expression in primary human OS cells suggests that any autocrine RANKL/RANK signaling in human OS tumor cells is not operative, and anti-RANKL therapy would not directly affect the tumor.
UV and IR Zeros of Gauge Theories at The Four Loop Order and Beyond
DEFF Research Database (Denmark)
Pica, Claudio; Sannino, Francesco
2010-01-01
We unveil the general features of the phase diagram for any gauge theory with fermions transforming according to distinct representations of the underlying gauge group, at the four-loop order. We classify and analyze the zeros of the perturbative beta function and discover the existence of a rich...
Higher Loop Corrections to the Infrared Evolution of Fermionic Gauge Theories in the RI' Scheme
DEFF Research Database (Denmark)
Ryttov, Thomas
2014-01-01
We study the evolution of the gauge coupling and the anomalous dimension of the mass towards an infrared fixed point for non-supersymmetric gauge theories in the modified regularization invariant, RI', scheme. This is done at the three loop level where all the renormalization group functions have...
The basis of the physical Hilbert space of lattice gauge theories
Energy Technology Data Exchange (ETDEWEB)
Burgio, G. E-mail: burgio@parma.infn.it; De Pietri, R.; Morales-Tecotl, H.A.; Urrutia, L.F.; Vergara, J.D
2000-02-07
Non-linear Fourier analysis on compact groups is used to construct an orthonormal basis of the physical (gauge invariant) Hilbert space of Hamiltonian lattice gauge theories. In particular, the matrix elements of the Hamiltonian operator involved are explicitly computed. Finally, some applications and possible developments of the formalism are discussed.
Running coupling in SU(2) gauge theory with two adjoint fermions
DEFF Research Database (Denmark)
Rantaharju, Jarno; Rantalaiho, Teemu; Rummukainen, Kari
2016-01-01
We study SU(2) gauge theory with two Dirac fermions in the adjoint representation of the gauge group on the lattice. Using clover improved Wilson fermion action with hypercubic truncated stout smearing we perform simulations at larger coupling than before. We measure the evolution of the coupling...
A Review of Ranking Models in Data Envelopment Analysis
Directory of Open Access Journals (Sweden)
F. Hosseinzadeh Lotfi
2013-01-01
Full Text Available In the course of improving various abilities of data envelopment analysis (DEA models, many investigations have been carried out for ranking decision-making units (DMUs. This is an important issue both in theory and practice. There exist a variety of papers which apply different ranking methods to a real data set. Here the ranking methods are divided into seven groups. As each of the existing methods can be viewed from different aspects, it is possible that somewhat these groups have an overlapping with the others. The first group conducts the evaluation by a cross-efficiency matrix where the units are self- and peer-evaluated. In the second one, the ranking units are based on the optimal weights obtained from multiplier model of DEA technique. In the third group, super-efficiency methods are dealt with which are based on the idea of excluding the unit under evaluation and analyzing the changes of frontier. The fourth group involves methods based on benchmarking, which adopts the idea of being a useful target for the inefficient units. The fourth group uses the multivariate statistical techniques, usually applied after conducting the DEA classification. The fifth research area ranks inefficient units through proportional measures of inefficiency. The sixth approach involves multiple-criteria decision methodologies with the DEA technique. In the last group, some different methods of ranking units are mentioned.
Generalised Scherk-Schwarz reductions from gauged supergravity
Inverso, Gianluca
2017-12-01
A procedure is described to construct generalised Scherk-Schwarz uplifts of gauged supergravities. The internal manifold, fluxes, and consistent truncation Ansatz are all derived from the embedding tensor of the lower-dimensional theory. We first describe the procedure to construct generalised Leibniz parallelisable spaces where the vector components of the frame are embedded in the adjoint representation of the gauge group, as specified by the embedding tensor. This allows us to recover the generalised Scherk-Schwarz reductions known in the literature and to prove a no-go result for the uplift of ω-deformed SO( p, q) gauged maximal supergravities. We then extend the construction to arbitrary generalised Leibniz parallelisable spaces, which turn out to be torus fibrations over manifolds in the class above.
Knot operators in Chern-Simons gauge theory
Energy Technology Data Exchange (ETDEWEB)
Labastida, J.M.F.; Llatas, P.M. (European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.); Ramallo, A.V. (Universidad de Santiago de Compostela (Spain). Dept. de Particulas Elementales)
1991-01-21
The operator formalism for Chern-Simons gauge theory with gauge group SU(N) is presented. The connection with rational conformal field theory is shown explicitly by identifying a basis for the Hilbert space of the theory with the set of characters corresponding to a Wess-Zumino-Witten model for SU(N). Knot operators are constructed performing the calculation of matrix elements of Wilson line operators on this Hilbert space. Using these operators a representation of the Verlinde operators in the context of Chern-Simons gauge theory is obtained. As an application of the use of these operators to knot theory, the Jones polynomial for toral knots is explicitly computed. (orig.).
Ranking structures and Rank-Rank Correlations of Countries. The FIFA and UEFA cases
Ausloos, Marcel; Gadomski, Adam; Vitanov, Nikolay K
2014-01-01
Ranking of agents competing with each other in complex systems may lead to paradoxes according to the pre-chosen different measures. A discussion is presented on such rank-rank, similar or not, correlations based on the case of European countries ranked by UEFA and FIFA from different soccer competitions. The first question to be answered is whether an empirical and simple law is obtained for such (self-) organizations of complex sociological systems with such different measuring schemes. It is found that the power law form is not the best description contrary to many modern expectations. The stretched exponential is much more adequate. Moreover, it is found that the measuring rules lead to some inner structures, in both cases.
Ranking structures and rank-rank correlations of countries: The FIFA and UEFA cases
Ausloos, Marcel; Cloots, Rudi; Gadomski, Adam; Vitanov, Nikolay K.
2014-04-01
Ranking of agents competing with each other in complex systems may lead to paradoxes according to the pre-chosen different measures. A discussion is presented on such rank-rank, similar or not, correlations based on the case of European countries ranked by UEFA and FIFA from different soccer competitions. The first question to be answered is whether an empirical and simple law is obtained for such (self-) organizations of complex sociological systems with such different measuring schemes. It is found that the power law form is not the best description contrary to many modern expectations. The stretched exponential is much more adequate. Moreover, it is found that the measuring rules lead to some inner structures in both cases.
Directory of Open Access Journals (Sweden)
E. Ireson
2016-01-01
Full Text Available In this work we extend the results of previous derivations of Seiberg-like dualities (level-rank duality between gauged Wess–Zumino–Witten theories. The arguments in use to identify a potential dual for the supersymmetric WZW theory based on the coset U(N+MkU(Nk can be extended to be applied to a wider variety of gauge groups, notably USp(2N+2M2kUSp(2N2k and SO(2N+2M2kSO(2N2k, which will be dealt with briefly. Most interestingly, non-supersymmetric versions of the latter theories can also be shown to have duals in a similar fashion. These results are supported by several pieces of evidence, string phenomenological interpretations of Seiberg duality, even in non-supersymmetric backgrounds, are helpful to justify the formulation, then, from field theory, quantities such as central charges or Witten indices are shown to match exactly. The stability of these non-supersymmetric models is also discussed and shown to be consistent.
University Ranking Systems; Criteria and Critiques
Saka, Yavuz; YAMAN, Süleyman
2011-01-01
The purpose of this paper is to explore international university ranking systems. As a compilation study this paper provides specific criteria that each ranking system uses and main critiques regarding these ranking systems. Since there are many ranking systems in this area of research, this study focused on only most cited and referred ranking systems. As there is no consensus in terms of the criteria that these systems use, this paper has no intention of identifying the best ranking system ...
Association between Metabolic Syndrome and Job Rank.
Mehrdad, Ramin; Pouryaghoub, Gholamreza; Moradi, Mahboubeh
2018-01-01
The occupation of the people can influence the development of metabolic syndrome. To determine the association between metabolic syndrome and its determinants with the job rank in workers of a large car factory in Iran. 3989 male workers at a large car manufacturing company were invited to participate in this cross-sectional study. Demographic and anthropometric data of the participants, including age, height, weight, and abdominal circumference were measured. Blood samples were taken to measure lipid profile and blood glucose level. Metabolic syndrome was diagnosed in each participant based on ATPIII 2001 criteria. The workers were categorized based on their job rank into 3 groups of (1) office workers, (2) workers with physical exertion, and (3) workers with chemical exposure. The study characteristics, particularly the frequency of metabolic syndrome and its determinants were compared among the study groups. The prevalence of metabolic syndrome in our study was 7.7% (95% CI 6.9 to 8.5). HDL levels were significantly lower in those who had chemical exposure (p=0.045). Diastolic blood pressure was significantly higher in those who had mechanical exertion (p=0.026). The frequency of metabolic syndrome in the office workers, workers with physical exertion, and workers with chemical exposure was 7.3%, 7.9%, and 7.8%, respectively (p=0.836). Seemingly, there is no association between metabolic syndrome and job rank.
A generalization of gauge invariance
Grigore, Dan-Radu
2017-08-01
We consider perturbative quantum field theory in the causal framework. Gauge invariance is, in this framework, an identity involving chronological products of the interaction Lagrangian; it expresses the fact that the scattering matrix must leave invariant the sub-space of physical states. We are interested in generalizations of such identity involving Wick sub-monomials of the interaction Lagrangian. The analysis can be performed by direct computation in the lower orders of perturbation theory; guided by these computations, we conjecture a generalization for arbitrary orders.
Classification of rank 2 cluster varieties
DEFF Research Database (Denmark)
Mandel, Travis
We classify rank 2 cluster varieties (those whose corresponding skew-form has rank 2) according to the deformation type of a generic fiber U of their X-spaces, as defined by Fock and Goncharov. Our approach is based on the work of Gross, Hacking, and Keel for cluster varieties and log Calabi......-Yau surfaces. We find, for example, that U is "positive" (i.e., nearly affine) and either finite-type or non-acyclic (in the cluster sense) if and only if the monodromy of the tropicalization of U is one of Kodaira's matrices for the monodromy of an ellpitic fibration. In the positive cases, we also describe...... the action of the cluster modular group on the tropicalization of U....
Trachomatous Scar Ranking: A Novel Outcome for Trachoma Studies.
Baldwin, Angela; Ryner, Alexander M; Tadesse, Zerihun; Shiferaw, Ayalew; Callahan, Kelly; Fry, Dionna M; Zhou, Zhaoxia; Lietman, Thomas M; Keenan, Jeremy D
2017-06-01
AbstractWe evaluated a new trachoma scarring ranking system with potential use in clinical research. The upper right tarsal conjunctivas of 427 individuals from Ethiopian villages with hyperendemic trachoma were photographed. An expert grader first assigned a scar grade to each photograph using the 1981 World Health Organization (WHO) grading system. Then, all photographs were ranked from least (rank = 1) to most scarring (rank = 427). Photographic grading found 79 (18.5%) conjunctivae without scarring (C0), 191 (44.7%) with minimal scarring (C1), 105 (24.6%) with moderate scarring (C2), and 52 (12.2%) with severe scarring (C3). The ranking method demonstrated good internal validity, exhibiting a monotonic increase in the median rank across the levels of the 1981 WHO grading system. Intrarater repeatability was better for the ranking method (intraclass correlation coefficient = 0.84, 95% CI = 0.74-0.94). Exhibiting better internal and external validity, this ranking method may be useful for evaluating the difference in scarring between groups of individuals.
Ranking species in mutualistic networks.
Domínguez-García, Virginia; Muñoz, Miguel A
2015-02-02
Understanding the architectural subtleties of ecological networks, believed to confer them enhanced stability and robustness, is a subject of outmost relevance. Mutualistic interactions have been profusely studied and their corresponding bipartite networks, such as plant-pollinator networks, have been reported to exhibit a characteristic "nested" structure. Assessing the importance of any given species in mutualistic networks is a key task when evaluating extinction risks and possible cascade effects. Inspired in a recently introduced algorithm--similar in spirit to Google's PageRank but with a built-in non-linearity--here we propose a method which--by exploiting their nested architecture--allows us to derive a sound ranking of species importance in mutualistic networks. This method clearly outperforms other existing ranking schemes and can become very useful for ecosystem management and biodiversity preservation, where decisions on what aspects of ecosystems to explicitly protect need to be made.
University rankings in computer science
DEFF Research Database (Denmark)
Ehret, Philip; Zuccala, Alesia Ann; Gipp, Bela
2017-01-01
This is a research-in-progress paper concerning two types of institutional rankings, the Leiden and QS World ranking, and their relationship to a list of universities’ ‘geo-based’ impact scores, and Computing Research and Education Conference (CORE) participation scores in the field of computer...... science. A ‘geo-based’ impact measure examines the geographical distribution of incoming citations to a particular university’s journal articles for a specific period of time. It takes into account both the number of citations and the geographical variability in these citations. The CORE participation...... score is calculated on the basis of the number of weighted proceedings papers that a university has contributed to either an A*, A, B, or C conference as ranked by the Computing Research and Education Association of Australasia. In addition to calculating the correlations between the distinct university...
Ranking Practice Variability in the Medical Student Performance Evaluation: So Bad, It's "Good".
Boysen Osborn, Megan; Mattson, James; Yanuck, Justin; Anderson, Craig; Tekian, Ara; Fox, John Christian; Harris, Ilene B
2016-11-01
To examine the variability among medical schools in ranking systems used in medical student performance evaluations (MSPEs). The authors reviewed MSPEs from U.S. MD-granting medical schools received by the University of California, Irvine emergency medicine and internal medicine residency programs during 2012-2013 and 2014-2015. They recorded whether the school used a ranking system, the type of ranking system used, the size and description of student categories, the location of the ranking statement and category legend, and whether nonranking schools used language suggestive of rank. Of the 134 medical schools in the study sample, the majority (n = 101; 75%) provided ranks for students in the MSPE. Most of the ranking schools (n = 63; 62%) placed students into named category groups, but the number and size of groups varied. The most common descriptors used for these 63 schools' top, second, third, and lowest groups were "outstanding," "excellent," "very good," and "good," respectively, but each of these terms was used across a broad range of percentile ranks. Student ranks and school category legends were found in various locations. Many of the 33 schools that did not rank students included language suggestive of rank. There is extensive variation in ranking systems used in MSPEs. Program directors may find it difficult to use MSPEs to compare applicants, which may diminish the MSPE's value in the residency application process and negatively affect high-achieving students. A consistent approach to ranking students would benefit program directors, students, and student affairs officers.
Unification of gauge and gravity Chern-Simons theories in 3-D space-time
Saghir, Chireen A.; Shamseddine, Laurence W.
2017-11-01
Chamseddine and Mukhanov showed that gravity and gauge theories could be unified in one geometric construction provided that a metricity condition is imposed on the vielbein. In this paper we are going to show that by enlarging the gauge group we are able to unify Chern-Simons gauge theory and Chern-Simons gravity in 3-D space-time. Such a unification leads to the quantization of the coefficients for both Chern-Simons terms for compact groups but not for non-compact groups. Moreover, it leads to a topological invariant quantity of the 3-dimensional space-time manifold on which they are defined.
Scattering amplitudes in gauge theories
Energy Technology Data Exchange (ETDEWEB)
Henn, Johannes M. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Plefka, Jan C. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik
2014-03-01
First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.
Altered Maxwell equations in the length gauge
Reiss, H R
2013-01-01
The length gauge uses a scalar potential to describe a laser field, thus treating it as a longitudinal field rather than as a transverse field. This distinction is revealed in the fact that the Maxwell equations that relate to the length gauge are not the same as those for transverse fields. In particular, a source term is necessary in the length-gauge Maxwell equations, whereas the Coulomb-gauge description of plane waves possesses the basic property of transverse fields that they propagate with no source terms at all. This difference is shown to be importantly consequential in some previously unremarked circumstances; and it explains why the G\\"oppert-Mayer gauge transformation does not provide the security that might be expected of full gauge equivalence.
Entanglement of Distillation for Lattice Gauge Theories.
Van Acoleyen, Karel; Bultinck, Nick; Haegeman, Jutho; Marien, Michael; Scholz, Volkher B; Verstraete, Frank
2016-09-23
We study the entanglement structure of lattice gauge theories from the local operational point of view, and, similar to Soni and Trivedi [J. High Energy Phys. 1 (2016) 1], we show that the usual entanglement entropy for a spatial bipartition can be written as the sum of an undistillable gauge part and of another part corresponding to the local operations and classical communication distillable entanglement, which is obtained by depolarizing the local superselection sectors. We demonstrate that the distillable entanglement is zero for pure Abelian gauge theories at zero gauge coupling, while it is in general nonzero for the non-Abelian case. We also consider gauge theories with matter, and show in a perturbative approach how area laws-including a topological correction-emerge for the distillable entanglement. Finally, we also discuss the entanglement entropy of gauge fixed states and show that it has no relation to the physical distillable entropy.
Electroweak Measurements with Multiple Gauge Boson Interactions
Sood, A; The ATLAS collaboration
2014-01-01
This talk presents measurements from ATLAS and CMS that are sensitive interactions between EW gauge bosons. Included analyses sensitive to triple gauge couplings are EW $Z$ production, and $VV^{\\prime}$ cross sections where $V=W/Z$ and $V^{\\prime}=W/Z/\\gamma$, while $\\gamma\\gamma\\rightarrow WW$, $WV\\gamma$ where $V=W/Z$, and $W^{\\pm}W^{\\pm}jj$ production are present as probes of quartic gauge couplings.
Alpha-particle Gas Pressure Gauge
Buehler, M. G.; Bell, L. D.; Hecht, M. H.
1995-01-01
Described are preliminary results obtained on a novel gas pressure gauge that operates between 0.1 and 1000 mb. This gauge uses a 1- micron Ci alpha particle source to ionize the gas in a small chamber with an electric field imposed between anode and cathode electrodes that drives positive ions to the cathode where they are collected electronically. This gauge could make Martian pressure measurements.
Microminiature temperature-compensated magnetoelastic strain gauge
Arms, Steven W.; Townsend, Christopher P.
2002-07-01
Our objective was to demonstrate a microminiature magnetoelastic strain gauge that provides both strain and temperature signals without additional sensors. Iron based magnetoelastic materials were embedded within superelastic nickel/titanium (NiTi) tubing. NiTi stress was transferred to the ferrite, causing a permeability change sensed by a tiny coil. The coil/bridge was excited (70 KHz AC), synchronously demodulated, and amplified to produce a voltage output proportional to coil/ferrite impedance. A DC voltage was also applied and separately conditioned to provide an output proportional to coil resistance; this signal was used to provide thermal compensation. Controlled strains were applied and 6 Hz cyclic outputs recorded simultaneously from the magnetoelastic strain gauge and conventional foil strain gauges. The magnetoelastic strain gauge tracked the foil gauge with minimal hysteresis and good linearity over 600 microstrain; repeatability was approximately 1.5 microstrain. The magnetoelastic strain gauge's gauge factor was computed from delta inductance/original inductance under static strain conditions. Temperatures of 25-140 deg C resulted in an uncompensated shift of 15 microstrain/deg C, and compensated shift of 1.0 microstrain/deg C. A sensitive micro-magnetoelastic strain gauge was demonstrated using the same sensor to detect stress and temperature with no moving parts, high gauge factor, and good thermal stability.
Reducible gauge theories in very special relativity
Energy Technology Data Exchange (ETDEWEB)
Upadhyay, Sudhaker, E-mail: sudhakerupadhyay@gmail.com [Department of Physics, Indian Institute of Technology Kanpur, 208016, Kanpur (India)
2015-12-14
In this paper we analyze the tensor field (reducible gauge) theories in the context of very special relativity (VSR). Particularly, we study the VSR gauge symmetry as well as VSR BRST symmetry of Kalb–Ramond and Abelian 3-form fields involving a fixed null vector. We observe that the Kalb–Ramond and Abelian 3-form fields and corresponding ghosts get masses in the VSR framework. The effective action in VSR-type axial gauge is greatly simplified compared with the VSR-type Lorenz gauge. Further, we quantize these models using a Batalin–Vilkovisy (BV) formulation in VSR.
Reducible gauge theories in very special relativity
Energy Technology Data Exchange (ETDEWEB)
Upadhyay, Sudhaker [Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India)
2015-12-15
In this paper we analyze the tensor field (reducible gauge) theories in the context of very special relativity (VSR). Particularly, we study the VSR gauge symmetry as well as VSR BRST symmetry of Kalb-Ramond and Abelian 3-form fields involving a fixed null vector. We observe that the Kalb-Ramond and Abelian 3-form fields and corresponding ghosts get masses in the VSR framework. The effective action in VSR-type axial gauge is greatly simplified compared with the VSR-type Lorenz gauge. Further, we quantize these models using a Batalin-Vilkovisy (BV) formulation in VSR. (orig.)
Gauge invariance and equations of motion for closed string modes
Directory of Open Access Journals (Sweden)
B. Sathiapalan
2014-12-01
Full Text Available We continue earlier discussions on loop variables and the exact renormalization group on the string world sheet for closed and open string backgrounds. The world sheet action with a UV regulator is written in a generally background covariant way by introducing a background metric. It is shown that the renormalization group gives background covariant equations of motion – this is the gauge invariance of the graviton. Interaction is written in terms of gauge invariant and generally covariant field strength tensors. The basic idea is to work in Riemann normal coordinates and covariantize the final equation. It turns out that the equations for massive modes are gauge invariant only if the space–time curvature of the (arbitrary background is zero. The exact RG equations give quadratic equations of motion for all the modes including the physical graviton. The level (2,2¯ massive field equations are used to illustrate the techniques. At this level there are mixed symmetry tensors. Gauge invariant interacting equations can be written down. In flat space an action can also be written for the free theory.
Money and happiness: rank of income, not income, affects life satisfaction.
Boyce, Christopher J; Brown, Gordon D A; Moore, Simon C
2010-04-01
Does money buy happiness, or does happiness come indirectly from the higher rank in society that money brings? We tested a rank-income hypothesis, according to which people gain utility from the ranked position of their income within a comparison group. The rank hypothesis contrasts with traditional reference-income hypotheses, which suggest that utility from income depends on comparison to a social reference-group norm. We found that the ranked position of an individual's income predicts general life satisfaction, whereas absolute income and reference income have no effect. Furthermore, individuals weight upward comparisons more heavily than downward comparisons. According to the rank hypothesis, income and utility are not directly linked: Increasing an individual's income will increase his or her utility only if ranked position also increases and will necessarily reduce the utility of others who will lose rank.
Review of non-nuclear density gauges as possible replacements for ITD's nuclear density gauges.
2015-01-01
This report examines the possibility of replacing nuclear density gauges (NDGs) with non-nuclear density gauges (NNDGs) to : measure density of hot mix asphalt (HMA) and unbound pavement layers in the field. The research team evaluated the : effectiv...
Social ranking effects on tooth-brushing behaviour.
Maltby, John; Paterson, Kevin; Day, Liz; Jones, Ceri; Kinnear, Hayley; Buchanan, Heather
2016-05-01
A tooth-brushing social rank hypothesis is tested suggesting tooth-brushing duration is influenced when individuals position their behaviour in a rank when comparing their behaviour with other individuals. Study 1 used a correlation design, Study 2 used a semi-experimental design, and Study 3 used a randomized intervention design to examine the tooth-brushing social rank hypothesis in terms of self-reported attitudes, cognitions, and behaviour towards tooth-brushing duration. Study 1 surveyed participants to examine whether the perceived health benefits of tooth-brushing duration could be predicted from the ranking of each person's tooth-brushing duration. Study 2 tested whether manipulating the rank position of the tooth-brushing duration influenced participant-perceived health benefits of tooth-brushing duration. Study 3 used a longitudinal intervention method to examine whether messages relating to the rank positions of tooth-brushing durations causally influenced the self-report tooth-brushing duration. Study 1 demonstrates that perceptions of the health benefits from tooth-brushing duration are predicted by the perceptions of how that behaviour ranks in comparison to other people's behaviour. Study 2 demonstrates that the perceptions of the health benefits of tooth-brushing duration can be manipulated experimentally by changing the ranked position of a person's tooth-brushing duration. Study 3 experimentally demonstrates the possibility of increasing the length of time for which individuals clean their teeth by focusing on how they rank among their peers in terms of tooth-brushing duration. The effectiveness of interventions using social-ranking methods relative to those that emphasize comparisons made against group averages or normative guidelines are discussed. What is already known on this subject? Individual make judgements based on social rank information. Social rank information has been shown to influence positive health behaviours such as exercise
Rank distributions: Frequency vs. magnitude.
Velarde, Carlos; Robledo, Alberto
2017-01-01
We examine the relationship between two different types of ranked data, frequencies and magnitudes. We consider data that can be sorted out either way, through numbers of occurrences or size of the measures, as it is the case, say, of moon craters, earthquakes, billionaires, etc. We indicate that these two types of distributions are functional inverses of each other, and specify this link, first in terms of the assumed parent probability distribution that generates the data samples, and then in terms of an analog (deterministic) nonlinear iterated map that reproduces them. For the particular case of hyperbolic decay with rank the distributions are identical, that is, the classical Zipf plot, a pure power law. But their difference is largest when one displays logarithmic decay and its counterpart shows the inverse exponential decay, as it is the case of Benford law, or viceversa. For all intermediate decay rates generic differences appear not only between the power-law exponents for the midway rank decline but also for small and large rank. We extend the theoretical framework to include thermodynamic and statistical-mechanical concepts, such as entropies and configuration.
Rankings Methodology Hurts Public Institutions
Van Der Werf, Martin
2007-01-01
In the 1980s, when the "U.S. News & World Report" rankings of colleges were based solely on reputation, the nation's public universities were well represented at the top. However, as soon as the magazine began including its "measures of excellence," statistics intended to define quality, public universities nearly disappeared from the top. As the…
Let Us Rank Journalism Programs
Weber, Joseph
2014-01-01
Unlike law, business, and medical schools, as well as universities in general, journalism schools and journalism programs have rarely been ranked. Publishers such as "U.S. News & World Report," "Forbes," "Bloomberg Businessweek," and "Washington Monthly" do not pay them much mind. What is the best…
2d Affine XY-Spin Model/4d Gauge Theory Duality and Deconfinement
Energy Technology Data Exchange (ETDEWEB)
Anber, Mohamed M.; Poppitz, Erich; /Toronto U.; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept. /San Francisco State U.
2012-08-16
We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2) = Z{sub 2} gauge theories, compactified on a small spatial circle R{sup 1,2} x S{sup 1}, and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on R{sup 2} x T{sup 2}. Similarly, thermal gauge theories of higher rank are dual to new families of 'affine' XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU(N{sub c}) gauge theories with n{sub f} {ge} 1 adjoint Weyl fermions.
Deformations, moduli stabilisation and gauge couplings at one-loop
Energy Technology Data Exchange (ETDEWEB)
Honecker, Gabriele; Koltermann, Isabel [PRISMA Cluster of Excellence, MITP & Institut für Physik (WA THEP),Johannes Gutenberg-Universität,Staudingerweg 9, 55128 Mainz (Germany); Staessens, Wieland [Instituto de Física Teórica UAM-CSIC, Universidad Autónoma de Madrid Cantoblanco,Calle de Nicolás Cabrera 13-15, 28049 Madrid (Spain); Departamento de Física Teórica, Universidad Autónoma de Madrid Cantoblanco,Calle de Nicolás Cabrera 13-15, 28049 Madrid (Spain)
2017-04-05
We investigate deformations of ℤ{sub 2} orbifold singularities on the toroidal orbifold T{sup 6}/(ℤ{sub 2}×ℤ{sub 6}) with discrete torsion in the framework of Type IIA orientifold model building with intersecting D6-branes wrapping special Lagrangian cycles. To this aim, we employ the hypersurface formalism developed previously for the orbifold T{sup 6}/(ℤ{sub 2}×ℤ{sub 2}) with discrete torsion and adapt it to the (ℤ{sub 2}×ℤ{sub 6}×ΩR) point group by modding out the remaining ℤ{sub 3} subsymmetry and the orientifold projection ΩR. We first study the local behaviour of the ℤ{sub 3}×ΩR invariant deformation orbits under non-zero deformation and then develop methods to assess the deformation effects on the fractional three-cycle volumes globally. We confirm that D6-branes supporting USp(2N) or SO(2N) gauge groups do not constrain any deformation, while deformation parameters associated to cycles wrapped by D6-branes with U(N) gauge groups are constrained by D-term supersymmetry breaking. These features are exposed in global prototype MSSM, Left-Right symmetric and Pati-Salam models first constructed in (DOI: 10.1016/j.nuclphysb.2015.10.009; 10.1002/prop.201400066), for which we here count the number of stabilised moduli and study flat directions changing the values of some gauge couplings. Finally, we confront the behaviour of tree-level gauge couplings under non-vanishing deformations along flat directions with the one-loop gauge threshold corrections at the orbifold point and discuss phenomenological implications, in particular on possible LARGE volume scenarios and the corresponding value of the string scale M{sub string}, for the same global D6-brane models.
Multiple graph regularized protein domain ranking
Directory of Open Access Journals (Sweden)
Wang Jim
2012-11-01
Full Text Available Abstract Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
Multiple graph regularized protein domain ranking
Wang, Jim Jing-Yan
2012-11-19
Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.
The Globalization of College and University Rankings
Altbach, Philip G.
2012-01-01
In the era of globalization, accountability, and benchmarking, university rankings have achieved a kind of iconic status. The major ones--the Academic Ranking of World Universities (ARWU, or the "Shanghai rankings"), the QS (Quacquarelli Symonds Limited) World University Rankings, and the "Times Higher Education" World…
Time evolution of Wikipedia network ranking
Eom, Young-Ho; Frahm, Klaus M.; Benczúr, András; Shepelyansky, Dima L.
2013-12-01
We study the time evolution of ranking and spectral properties of the Google matrix of English Wikipedia hyperlink network during years 2003-2011. The statistical properties of ranking of Wikipedia articles via PageRank and CheiRank probabilities, as well as the matrix spectrum, are shown to be stabilized for 2007-2011. A special emphasis is done on ranking of Wikipedia personalities and universities. We show that PageRank selection is dominated by politicians while 2DRank, which combines PageRank and CheiRank, gives more accent on personalities of arts. The Wikipedia PageRank of universities recovers 80% of top universities of Shanghai ranking during the considered time period.
Multichoice logit: modeling incomplete preference rankings of classical concerts
van Ophem, J.C.M.; Stam, P.J.A.; van Praag, B.M.S.
1999-01-01
In this article we develop an econometric model to analyze data on incomplete information on preferences. The available information consists of groups of alternatives that are preferred to other groups of alternatives. Only for the most preferred group is a full ranking observed. The resulting model
Gauge Trimming of Neutrino Masses
Energy Technology Data Exchange (ETDEWEB)
Chen, Mu-Chun; /Fermilab /UC, Irvine; de Gouvea, Andre; /Northwestern U. /Fermilab; Dobrescu, Bogdan A.; /Fermilab
2006-12-01
We show that under a new U(1) gauge symmetry, which is non-anomalous in the presence of one ''right-handed neutrino'' per generation and consistent with the standard model Yukawa couplings, the most general fermion charges are determined in terms of four rational parameters. This generalization of the B-L symmetry with generation-dependent lepton charges leads to neutrino masses induced by operators of high dimensionality. Neutrino masses are thus naturally small without invoking physics at energies above the TeV scale, whether neutrinos are Majorana or Dirac fermions. This ''Leptocratic'' Model predicts the existence of light quasi-sterile neutrinos with consequences for cosmology, and implies that collider experiments may reveal the origin of neutrino masses.
Ranking independent timber investments by alternative investment criteria
Thomas J. Mills; Gary E. Dixon
1982-01-01
A sample of 231 independent timber investments were ranked by internal rate of return, present net worth per acre and the benefit cost ratioâthe last two discounted by 3, 6.4. 7.5. and 10 percentâto determine if the different criteria had a practical influence on timber investment ranking. The samples in this study were drawn from a group of timber investments...
Gauge choice in conformal gravity
Sultana, Joseph; Kazanas, Demosthenes
2017-04-01
In a recent paper, K. Horne examined the effect of a conformally coupled scalar field (referred to as Higgs field) on the Mannheim-Kazanas metric gμν, i.e. the static spherically symmetric metric within the context of conformal gravity, and studied its effect on the rotation curves of galaxies. He showed that for a Higgs field of the form S(r) = S0a/(r + a), where a is a radial length-scale, the equivalent Higgs-frame Mannheim-Kazanas metric \\tilde{g}_{μ ν } = Ω ^2 g_{μ ν }, with Ω = S(r)/S0, lacks the linear γr term, which has been employed in the fitting of the galactic rotation curves without the need to invoke dark matter. In this brief note, we point out that the representation of the Mannheim-Kazanas metric in a gauge, where it lacks the linear term, has already been presented by others, including Mannheim and Kazanas themselves, without the need to introduce a conformally coupled Higgs field. Furthermore, Horne argues that the absence of the linear term resolves the issue of light bending in the wrong direction, i.e. away from the gravitating mass, if γr > 0 in the Mannheim-Kazanas metric, a condition necessary to resolve the galactic dynamics in the absence of dark matter. In this case, we also point out that the elimination of the linear term is not even required because the sign of the γr term in the metric can be easily reversed by a simple gauge transformation, and also that the effects of this term are indeed too small to be observed.
Gauge symmetry, T-duality and doubled geometry
Energy Technology Data Exchange (ETDEWEB)
Hull, C.M. [Imperial College London (United Kingdom). Inst. for Mathematical Sciences]|[Imperial College London (United Kingdom). Blackett Laboratory; Reid-Edwards, R.A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2007-11-15
String compactifications with T-duality twists are revisited and the gauge algebra of the dimensionally reduced theories calculated. These reductions can be viewed as string theory on T-fold backgrounds, and can be formulated in a 'doubled space' in which each circle is supplemented by a T-dual circle to construct a geometry which is a doubled torus bundle over a circle. We discuss a conjectured extension to include T-duality on the base circle, and propose the introduction of a dual base coordinate, to give a doubled space which is locally the group manifold of the gauge group. Special cases include those in which the doubled group is a Drinfel'd double. This gives a framework to discuss backgrounds that are not even locally geometric. (orig.)
Directory of Open Access Journals (Sweden)
Johannes Sorz
2015-08-01
Full Text Available Backround. University rankings are getting very high international media attention, this holds particularly true for the Times Higher Education Ranking (THE and the Shanghai Jiao Tong University’s Academic Ranking of World Universities Ranking (ARWU. We therefore aimed to investigate how reliable the rankings are, especially for universities with lower ranking positions, that often show inconclusive year-to-year fluctuations in their rank, and if these rankings are thus a suitable basis for management purposes.Methods. We used the public available data from the web pages of the THE and the ARWU ranking to analyze the dynamics of change in score and ranking position from year to year, and we investigated possible causes for inconsistent fluctuations in the rankings by the means of regression analyses.Results. Regression analyses of results from the THE and ARWU from 2010–2014 show inconsistent fluctuations in the rank and score for universities with lower rank positions (below position 50 which lead to inconsistent “up and downs” in the total results, especially in the THE and to a lesser extent also in the ARWU. In both rankings, the mean year-to-year fluctuation of universities in groups of 50 universities aggregated by descending rank increases from less than 10% in the group of the 50 highest ranked universities to up to 60% in the group of the lowest ranked universities. Furthermore, year-to-year results do not correspond in THES- and ARWU-Rankings for universities below rank 50.Discussion. We conclude that the observed fluctuations in the THE do not correspond to actual university performance and ranking results are thus of limited conclusiveness for the university management of universities below a rank of 50. While the ARWU rankings seems more robust against inconsistent fluctuations, its year to year changes in the scores are very small, so essential changes from year to year could not be expected. Furthermore, year
Sorz, Johannes; Wallner, Bernard; Seidler, Horst; Fieder, Martin
2015-01-01
Backround. University rankings are getting very high international media attention, this holds particularly true for the Times Higher Education Ranking (THE) and the Shanghai Jiao Tong University's Academic Ranking of World Universities Ranking (ARWU). We therefore aimed to investigate how reliable the rankings are, especially for universities with lower ranking positions, that often show inconclusive year-to-year fluctuations in their rank, and if these rankings are thus a suitable basis for management purposes. Methods. We used the public available data from the web pages of the THE and the ARWU ranking to analyze the dynamics of change in score and ranking position from year to year, and we investigated possible causes for inconsistent fluctuations in the rankings by the means of regression analyses. Results. Regression analyses of results from the THE and ARWU from 2010-2014 show inconsistent fluctuations in the rank and score for universities with lower rank positions (below position 50) which lead to inconsistent "up and downs" in the total results, especially in the THE and to a lesser extent also in the ARWU. In both rankings, the mean year-to-year fluctuation of universities in groups of 50 universities aggregated by descending rank increases from less than 10% in the group of the 50 highest ranked universities to up to 60% in the group of the lowest ranked universities. Furthermore, year-to-year results do not correspond in THES- and ARWU-Rankings for universities below rank 50. Discussion. We conclude that the observed fluctuations in the THE do not correspond to actual university performance and ranking results are thus of limited conclusiveness for the university management of universities below a rank of 50. While the ARWU rankings seems more robust against inconsistent fluctuations, its year to year changes in the scores are very small, so essential changes from year to year could not be expected. Furthermore, year-to-year results do not correspond
27 CFR 19.319 - Production gauge.
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Production gauge. 19.319... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Production § 19.319 Production gauge. (a) General... production is completed. Except as otherwise specifically provided in this section, quantities may be...
Gauged matter coupling in N = 4 supergravity
Roo, M. de; Wagemans, P.
1985-01-01
Gauged N = 4 supergravity with an arbitrary number of matter multiplets is constructed from a superconformal starting point. It includes both the SO(4) and SU(4) symmetric N = 4 supergravity theories, and all their gaugings. Noncompact Yang-Mills symmetries may mix the matter and supergravity vector
Measuring Fluctuating Pressures With Recessed Gauges
Parrott, Tony L.; Jones, Michael G.
1993-01-01
Report discusses use of pressure gauges mounted in recesses in interior wall of model scramjet engine. Consists of brief memorandum plus excerpts from NASA Technical Paper 3189, "Unsteady Pressure Loads In A Generic High-Speed Engine Model." Focuses mainly on factors affecting accuracy of gauge readings.
Remarks on a gauge theory for continuous spin particles
Energy Technology Data Exchange (ETDEWEB)
Rivelles, Victor O. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil)
2017-07-15
We discuss in a systematic way the gauge theory for a continuous spin particle proposed by Schuster and Toro. We show that it is naturally formulated in a cotangent bundle over Minkowski spacetime where the gauge field depends on the spacetime coordinate x{sup μ} and on a covector η{sub μ}. We discuss how fields can be expanded in η{sub μ} in different ways and how these expansions are related to each other. The field equation has a derivative of a Dirac delta function with support on the η-hyperboloid η{sup 2} + 1 = 0 and we show how it restricts the dynamics of the gauge field to the η-hyperboloid and its first neighbourhood. We then show that on-shell the field carries one single irreducible unitary representation of the Poincare group for a continuous spin particle. We also show how the field can be used to build a set of covariant equations found by Wigner describing the wave function of one-particle states for a continuous spin particle. Finally we show that it is not possible to couple minimally a continuous spin particle to a background abelian gauge field, and we make some comments about the coupling to gravity. (orig.)
Gauge-Invariant Formulation of Circular Dichroism.
Raimbault, Nathaniel; de Boeij, Paul L; Romaniello, Pina; Berger, J A
2016-07-12
Standard formulations of magnetic response properties, such as circular dichroism spectra, are plagued by gauge dependencies, which can lead to unphysical results. In this work, we present a general gauge-invariant and numerically efficient approach for the calculation of circular dichroism spectra from the current density. First we show that in this formulation the optical rotation tensor, the response function from which circular dichroism spectra can be obtained, is independent of the origin of the coordinate system. We then demonstrate that its trace is independent of the gauge origin of the vector potential. We also show how gauge invariance can be retained in practical calculations with finite basis sets. As an example, we explain how our method can be applied to time-dependent current-density-functional theory. Finally, we report gauge-invariant circular dichroism spectra obtained using the adiabatic local-density approximation. The circular dichroism spectra we thus obtain are in good agreement with experiment.
GEANT simulation of the $\\gamma$ nuclear gauge
Ouardi, A; Benchekroun, D; Hoummada, A
2003-01-01
The gamma nuclear gauging technique used for monitoring the sediment load suspended in water, is based on the detection of gamma rays emitted by a radioactive source. The GEANT321 Monte Carlo simulation tool, originally developed at CERN for high energy physics experiments, is used for the evaluation and calibration of gamma nuclear gauges. A set of parameters, principally the source energy, the source-detector separation, the lead block thickness and the energy threshold below which the sediments elemental composition affects the measurement or the energy corresponding to the Compton and photoelectric windows separation, are discussed and evaluated in the case of the gamma scattering gauge. For the gamma transmission gauge, the GEANT321 code has been used to define the optimal source detector distance interval, particularly for the Moroccan sediment samplers, and to check the influence of the radionuclide existing in the suspension, on the gauge response accuracy. Experimental calibration was also carried ou...
Electrically tunable artificial gauge potential for polaritons
Lim, Hyang-Tag; Togan, Emre; Kroner, Martin; Miguel-Sanchez, Javier; Imamoğlu, Atac
2017-02-01
Neutral particles subject to artificial gauge potentials can behave as charged particles in magnetic fields. This fascinating premise has led to demonstrations of one-way waveguides, topologically protected edge states and Landau levels for photons. In ultracold neutral atoms, effective gauge fields have allowed the emulation of matter under strong magnetic fields leading to realization of Harper-Hofstadter and Haldane models. Here we show that application of perpendicular electric and magnetic fields effects a tunable artificial gauge potential for two-dimensional microcavity exciton polaritons. For verification, we perform interferometric measurements of the associated phase accumulated during coherent polariton transport. Since the gauge potential originates from the magnetoelectric Stark effect, it can be realized for photons strongly coupled to excitations in any polarizable medium. Together with strong polariton-polariton interactions and engineered polariton lattices, artificial gauge fields could play a key role in investigation of non-equilibrium dynamics of strongly correlated photons.
Validating rankings in soccer championships
Directory of Open Access Journals (Sweden)
Annibal Parracho Sant'Anna
2012-08-01
Full Text Available The final ranking of a championship is determined by quality attributes combined with other factors which should be filtered out of any decision on relegation or draft for upper level tournaments. Factors like referees' mistakes and difficulty of certain matches due to its accidental importance to the opponents should have their influence reduced. This work tests approaches to combine classification rules considering the imprecision of the number of points as a measure of quality and of the variables that provide reliable explanation for it. Two home-advantage variables are tested and shown to be apt to enter as explanatory variables. Independence between the criteria is checked against the hypothesis of maximal correlation. The importance of factors and of composition rules is evaluated on the basis of correlation between rank vectors, number of classes and number of clubs in tail classes. Data from five years of the Brazilian Soccer Championship are analyzed.
Minkowski metrics in creating universal ranking algorithms
Directory of Open Access Journals (Sweden)
Andrzej Ameljańczyk
2014-06-01
Full Text Available The paper presents a general procedure for creating the rankings of a set of objects, while the relation of preference based on any ranking function. The analysis was possible to use the ranking functions began by showing the fundamental drawbacks of commonly used functions in the form of a weighted sum. As a special case of the ranking procedure in the space of a relation, the procedure based on the notion of an ideal element and generalized Minkowski distance from the element was proposed. This procedure, presented as universal ranking algorithm, eliminates most of the disadvantages of ranking functions in the form of a weighted sum.[b]Keywords[/b]: ranking functions, preference relation, ranking clusters, categories, ideal point, universal ranking algorithm
Combined Reduced-Rank Transform
Directory of Open Access Journals (Sweden)
Anatoli Torokhti
2006-04-01
Full Text Available We propose and justify a new approach to constructing optimal nonlinear transforms of random vectors. We show that the proposed transform improves such characteristics of {rank-reduced} transforms as compression ratio, accuracy of decompression and reduces required computational work. The proposed transform ${mathcal T}_p$ is presented in the form of a sum with $p$ terms where each term is interpreted as a particular rank-reduced transform. Moreover, terms in ${mathcal T}_p$ are represented as a combination of three operations ${mathcal F}_k$, ${mathcal Q}_k$ and ${oldsymbol{varphi}}_k$ with $k=1,ldots,p$. The prime idea is to determine ${mathcal F}_k$ separately, for each $k=1,ldots,p$, from an associated rank-constrained minimization problem similar to that used in the Karhunen--Lo`{e}ve transform. The operations ${mathcal Q}_k$ and ${oldsymbol{varphi}}_k$ are auxiliary for f/inding ${mathcal F}_k$. The contribution of each term in ${mathcal T}_p$ improves the entire transform performance. A corresponding unconstrained nonlinear optimal transform is also considered. Such a transform is important in its own right because it is treated as an optimal filter without signal compression. A rigorous analysis of errors associated with the proposed transforms is given.
Iacovacci, Jacopo; Rahmede, Christoph; Arenas, Alex; Bianconi, Ginestra
2016-10-01
Recently it has been recognized that many complex social, technological and biological networks have a multilayer nature and can be described by multiplex networks. Multiplex networks are formed by a set of nodes connected by links having different connotations forming the different layers of the multiplex. Characterizing the centrality of the nodes in a multiplex network is a challenging task since the centrality of the node naturally depends on the importance associated to links of a certain type. Here we propose to assign to each node of a multiplex network a centrality called Functional Multiplex PageRank that is a function of the weights given to every different pattern of connections (multilinks) existent in the multiplex network between any two nodes. Since multilinks distinguish all the possible ways in which the links in different layers can overlap, the Functional Multiplex PageRank can describe important non-linear effects when large relevance or small relevance is assigned to multilinks with overlap. Here we apply the Functional Page Rank to the multiplex airport networks, to the neuronal network of the nematode C. elegans, and to social collaboration and citation networks between scientists. This analysis reveals important differences existing between the most central nodes of these networks, and the correlations between their so-called pattern to success.
Ranking Support Vector Machine with Kernel Approximation.
Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi
2017-01-01
Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.
Early LHC bound on the W{sup Prime} boson mass in the nonuniversal gauge interaction model
Energy Technology Data Exchange (ETDEWEB)
Kim, Yeong Gyun [Department of Science Education, Gwangju National University of Education, Gwangju 500-703 (Korea, Republic of); Lee, Kang Young, E-mail: kylee14214@gmail.com [Division of Quantum Phases and Devices, School of Physics, Konkuk University, Seoul 143-701 (Korea, Republic of)
2012-01-05
We study the phenomenology of the heavy charged gauge boson and obtain the lower bounds on its mass with the early LHC data at 7 TeV center-of-mass energy in the nonuniversal gauge interaction model, in which the electroweak SU(2) gauge group depends upon the fermion family. We found that the direct bound with the early data of the LHC is already better than the indirect bound on the mass of the W{sup Prime} boson.
A document clustering and ranking system for exploring MEDLINE citations.
Lin, Yongjing; Li, Wenyuan; Chen, Keke; Liu, Ying
2007-01-01
A major problem faced in biomedical informatics involves how best to present information retrieval results. When a single query retrieves many results, simply showing them as a long list often provides poor overview. With a goal of presenting users with reduced sets of relevant citations, this study developed an approach that retrieved and organized MEDLINE citations into different topical groups and prioritized important citations in each group. A text mining system framework for automatic document clustering and ranking organized MEDLINE citations following simple PubMed queries. The system grouped the retrieved citations, ranked the citations in each cluster, and generated a set of keywords and MeSH terms to describe the common theme of each cluster. Several possible ranking functions were compared, including citation count per year (CCPY), citation count (CC), and journal impact factor (JIF). We evaluated this framework by identifying as "important" those articles selected by the Surgical Oncology Society. Our results showed that CCPY outperforms CC and JIF, i.e., CCPY better ranked important articles than did the others. Furthermore, our text clustering and knowledge extraction strategy grouped the retrieval results into informative clusters as revealed by the keywords and MeSH terms extracted from the documents in each cluster. The text mining system studied effectively integrated text clustering, text summarization, and text ranking and organized MEDLINE retrieval results into different topical groups.
Aggregate Interview Method of ranking orthopedic applicants predicts future performance.
Geissler, Jacqueline; VanHeest, Ann; Tatman, Penny; Gioe, Terence
2013-07-01
This article evaluates and describes a process of ranking orthopedic applicants using what the authors term the Aggregate Interview Method. The authors hypothesized that higher-ranking applicants using this method at their institution would perform better than those ranked lower using multiple measures of resident performance. A retrospective review of 115 orthopedic residents was performed at the authors' institution. Residents were grouped into 3 categories by matching rank numbers: 1-5, 6-14, and 15 or higher. Each rank group was compared with resident performance as measured by faculty evaluations, the Orthopaedic In-Training Examination (OITE), and American Board of Orthopaedic Surgery (ABOS) test results. Residents ranked 1-5 scored significantly better on patient care, behavior, and overall competence by faculty evaluation (Porthopedic resident candidates who scored highly on the Accreditation Council for Graduate Medical Education resident core competencies as measured by faculty evaluations, performed above the national average on the OITE, and passed the ABOS part 1 examination at rates exceeding the national average. Copyright 2013, SLACK Incorporated.
49 CFR 230.42 - Location of gauges.
2010-10-01
..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.42 Location of gauges. Every boiler shall have at least one steam gauge which will...
GPM GROUND VALIDATION RAIN GAUGES NASA ACHIEVE IPHEX V1
National Aeronautics and Space Administration — The GPM Ground Validation Rain Gauges NASA ACHIEVE IPHEx dataset includes data from the OSi Optical Rain Gauge (ORG815), and a standard tipping bucket rain gauge....
2010-10-01
... connections, gauge cocks, and pressure gauges (modifies PG-60). 52.01-110 Section 52.01-110 Shipping COAST... § 52.01-110 Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure.... (Modifies PG-60.3.) Gage glasses and gage cocks shall be connected directly to the head or shell of a boiler...
Fusion basis for lattice gauge theory and loop quantum gravity
Delcamp, Clement; Dittrich, Bianca; Riello, Aldo
2017-02-01
We introduce a new basis for the gauge-invariant Hilbert space of lattice gauge theory and loop quantum gravity in (2 + 1) dimensions, the fusion basis. In doing so, we shift the focus from the original lattice (or spin-network) structure directly to that of the magnetic (curvature) and electric (torsion) excitations themselves. These excitations are classified by the irreducible representations of the Drinfel'd double of the gauge group, and can be readily "fused" together by studying the tensor product of such representations. We will also describe in detail the ribbon operators that create and measure these excitations and make the quasi-local structure of the observable algebra explicit. Since the fusion basis allows for both magnetic and electric excitations from the onset, it turns out to be a precious tool for studying the large scale structure and coarse-graining flow of lattice gauge theories and loop quantum gravity. This is in neat contrast with the widely used spin-network basis, in which it is much more complicated to account for electric excitations, i.e. for Gauß constraint violations, emerging at larger scales. Moreover, since the fusion basis comes equipped with a hierarchical structure, it readily provides the language to design states with sophisticated multi-scale structures. Another way to employ this hierarchical structure is to encode a notion of subsystems for lattice gauge theories and (2 + 1) gravity coupled to point particles. In a follow-up work, we have exploited this notion to provide a new definition of entanglement entropy for these theories.
Fusion basis for lattice gauge theory and loop quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Delcamp, Clement [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Department of Physics Astronomy and Guelph-Waterloo Physics Institute, University of Waterloo,Waterloo, Ontario N2L 3G1 (Canada); Dittrich, Bianca; Riello, Aldo [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada)
2017-02-10
We introduce a new basis for the gauge-invariant Hilbert space of lattice gauge theory and loop quantum gravity in (2+1) dimensions, the fusion basis. In doing so, we shift the focus from the original lattice (or spin-network) structure directly to that of the magnetic (curvature) and electric (torsion) excitations themselves. These excitations are classified by the irreducible representations of the Drinfel’d double of the gauge group, and can be readily “fused” together by studying the tensor product of such representations. We will also describe in detail the ribbon operators that create and measure these excitations and make the quasi-local structure of the observable algebra explicit. Since the fusion basis allows for both magnetic and electric excitations from the onset, it turns out to be a precious tool for studying the large scale structure and coarse-graining flow of lattice gauge theories and loop quantum gravity. This is in neat contrast with the widely used spin-network basis, in which it is much more complicated to account for electric excitations, i.e. for Gauß constraint violations, emerging at larger scales. Moreover, since the fusion basis comes equipped with a hierarchical structure, it readily provides the language to design states with sophisticated multi-scale structures. Another way to employ this hierarchical structure is to encode a notion of subsystems for lattice gauge theories and (2+1) gravity coupled to point particles. In a follow-up work, we have exploited this notion to provide a new definition of entanglement entropy for these theories.
Conformal Gauge Transformations in Thermodynamics
Directory of Open Access Journals (Sweden)
Alessandro Bravetti
2015-09-01
Full Text Available In this work, we show that the thermodynamic phase space is naturally endowed with a non-integrable connection, defined by all of those processes that annihilate the Gibbs one-form, i.e., reversible processes. We argue that such a connection is invariant under re-scalings of the connection one-form, whilst, as a consequence of the non-integrability of the connection, its curvature is not and, therefore, neither is the associated pseudo-Riemannian geometry. We claim that this is not surprising, since these two objects are associated with irreversible processes. Moreover, we provide the explicit form in which all of the elements of the geometric structure of the thermodynamic phase space change under a re-scaling of the connection one-form. We call this transformation of the geometric structure a conformal gauge transformation. As an example, we revisit the change of the thermodynamic representation and consider the resulting change between the two metrics on the thermodynamic phase space, which induce Weinhold’s energy metric and Ruppeiner’s entropy metric. As a by-product, we obtain a proof of the well-known conformal relation between Weinhold’s and Ruppeiner’s metrics along the equilibrium directions. Finally, we find interesting properties of the almost para-contact structure and of its eigenvectors, which may be of physical interest.
Kroeger, J.; Ferrari, P.; Jenab, M.; Bamia, C.; Touvier, M.; Bueno-de-Mesquita, H. B.; Fahey, M. T.; Benetou, V.; Schulz, M.; Wirfalt, E.; Boeing, H.; Hoffmann, K.; Schulze, M. B.; Orfanos, P.; Oikonomou, E.; Huybrechts, I.; Rohrmann, S.; Pischon, T.; Manjer, J.; Agren, A.; Navarro, C.; Jakszyn, P.; Boutron-Ruault, M. C.; Niravong, M.; Khaw, K. T.; Crowe, F.; Ocke, M. C.; van der Schouw, Y. T.; Mattiello, A.; Bellegotti, M.; Engeset, D.; Hjartaker, A.; Egeberg, R.; Overvad, K.; Riboli, E.; Bingham, S.; Slimani, N.
2009-01-01
Objective: To identify combinations of food groups that explain as much variation in absolute intakes of 23 key nutrients and food components as possible within the country-specific populations of the European Prospective Investigation into Cancer and Nutrition (EPIC). Subjects/Methods: The analysis
Lattice gauge theories and spin models
Mathur, Manu; Sreeraj, T. P.
2016-10-01
The Wegner Z2 gauge theory-Z2 Ising spin model duality in (2 +1 ) dimensions is revisited and derived through a series of canonical transformations. The Kramers-Wannier duality is similarly obtained. The Wegner Z2 gauge-spin duality is directly generalized to SU(N) lattice gauge theory in (2 +1 ) dimensions to obtain the SU(N) spin model in terms of the SU(N) magnetic fields and their conjugate SU(N) electric scalar potentials. The exact and complete solutions of the Z2, U(1), SU(N) Gauss law constraints in terms of the corresponding spin or dual potential operators are given. The gauge-spin duality naturally leads to a new gauge invariant magnetic disorder operator for SU(N) lattice gauge theory which produces a magnetic vortex on the plaquette. A variational ground state of the SU(2) spin model with nearest neighbor interactions is constructed to analyze SU(2) gauge theory.
Gauge field entanglement in Kitaev's honeycomb model
Dóra, Balázs; Moessner, Roderich
2018-01-01
A spin fractionalizes into matter and gauge fermions in Kitaev's spin liquid on the honeycomb lattice. This follows from a Jordan-Wigner mapping to fermions, allowing for the construction of a minimal entropy ground-state wave function on the cylinder. We use this to calculate the entanglement entropy by choosing several distinct partitionings. First, by partitioning an infinite cylinder into two, the -ln2 topological entanglement entropy is reconfirmed. Second, the reduced density matrix of the gauge sector on the full cylinder is obtained after tracing out the matter degrees of freedom. This allows for evaluating the gauge entanglement Hamiltonian, which contains infinitely long-range correlations along the symmetry axis of the cylinder. The matter-gauge entanglement entropy is (Ny-1 )ln2 , with Ny the circumference of the cylinder. Third, the rules for calculating the gauge sector entanglement of any partition are determined. Rather small correctly chosen gauge partitions can still account for the topological entanglement entropy in spite of long-range correlations in the gauge entanglement Hamiltonian.
Perturbative unitarity constraints on gauge portals
El Hedri, Sonia; Shepherd, William; Walker, Devin G. E.
2017-12-01
Dark matter that was once in thermal equilibrium with the Standard Model is generally prohibited from obtaining all of its mass from the electroweak phase transition. This implies a new scale of physics and mediator particles to facilitate dark matter annihilation. In this work, we focus on dark matter that annihilates through a generic gauge boson portal. We show how partial wave unitarity places upper bounds on the dark gauge boson, dark Higgs and dark matter masses. Outside of well-defined fine-tuned regions, we find an upper bound of 9 TeV for the dark matter mass when the dark Higgs and dark gauge bosons both facilitate the dark matter annihilations. In this scenario, the upper bound on the dark Higgs and dark gauge boson masses are 10 TeV and 16 TeV, respectively. When only the dark gauge boson facilitates dark matter annihilations, we find an upper bound of 3 TeV and 6 TeV for the dark matter and dark gauge boson, respectively. Overall, using the gauge portal as a template, we describe a method to not only place upper bounds on the dark matter mass but also on the new particles with Standard Model quantum numbers. We briefly discuss the reach of future accelerator, direct and indirect detection experiments for this class of models.
Expanding the Bethe/Gauge dictionary
Bullimore, Mathew; Kim, Hee-Cheol; Lukowski, Tomasz
2017-11-01
We expand the Bethe/Gauge dictionary between the XXX Heisenberg spin chain and 2d N = (2, 2) supersymmetric gauge theories to include aspects of the algebraic Bethe ansatz. We construct the wave functions of off-shell Bethe states as orbifold defects in the A-twisted supersymmetric gauge theory and study their correlation functions. We also present an alternative description of off-shell Bethe states as boundary conditions in an effective N = 4 supersymmetric quantum mechanics. Finally, we interpret spin chain R-matrices as correlation functions of Janus interfaces for mass parameters in the supersymmetric quantum mechanics.
Constraints on Gauge Field Production during Inflation
DEFF Research Database (Denmark)
Nurmi, Sami; Sloth, Martin Snoager
2014-01-01
In order to gain new insights into the gauge field couplings in the early universe, we consider the constraints on gauge field production during inflation imposed by requiring that their effect on the CMB anisotropies are subdominant. In particular, we calculate systematically the bispectrum...... of the primordial curvature perturbation induced by the presence of vector gauge fields during inflation. Using a model independent parametrization in terms of magnetic non-linearity parameters, we calculate for the first time the contribution to the bispectrum from the cross correlation between the inflaton...
Origin of gauge invariance in string theory
Horowitz, G. T.; Strominger, A.
1986-01-01
A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.
Electroweak Measurements with Multiple Gauge Boson Interactions
Sood, Alexander; The ATLAS collaboration
2014-01-01
These proceedings present measurements from ATLAS and CMS using proton-proton collisions with center-of-mass energies of 7 TeV and 8 TeV at the LHC that are sensitive to interactions between EW gauge bosons. Included analyses sensitive to triple gauge couplings are EW Z production, and $VV^{\\prime}$ cross sections where $V=W,Z$ and $V^{\\prime}=W,Z,γ$, while $\\gamma\\gamma \\rightarrow WW$, $WV\\gamma$ where $V=W,Z$, and $W^{\\pm}W^{\\pm}jj$ production are presented as probes of quartic gauge couplings.
The Privilege of Ranking: Google Plays Ball.
Wiggins, Richard
2003-01-01
Discussion of ranking systems used in various settings, including college football and academic admissions, focuses on the Google search engine. Explains the PageRank mathematical formula that scores Web pages by connecting the number of links; limitations, including authenticity and accuracy of ranked Web pages; relevancy; adjusting algorithms;…
Methodology, Meaning and Usefulness of Rankings
Williams, Ross
2008-01-01
University rankings are having a profound effect on both higher education systems and individual universities. In this paper we outline these effects, discuss the desirable characteristics of a good ranking methodology and document existing practice, with an emphasis on the two main international rankings (Shanghai Jiao Tong and THES-QS). We take…
Gauge invariance and Weyl-polymer quantization
Strocchi, Franco
2016-01-01
The book gives an introduction to Weyl non-regular quantization suitable for the description of physically interesting quantum systems, where the traditional Dirac-Heisenberg quantization is not applicable. The latter implicitly assumes that the canonical variables describe observables, entailing necessarily the regularity of their exponentials (Weyl operators). However, in physically interesting cases -- typically in the presence of a gauge symmetry -- non-observable canonical variables are introduced for the description of the states, namely of the relevant representations of the observable algebra. In general, a gauge invariant ground state defines a non-regular representation of the gauge dependent Weyl operators, providing a mathematically consistent treatment of familiar quantum systems -- such as the electron in a periodic potential (Bloch electron), the Quantum Hall electron, or the quantum particle on a circle -- where the gauge transformations are, respectively, the lattice translations, the magne...
77 FR 31894 - Portable Gauge Licenses
2012-05-30
... Gauge Licenses.'' The document has been updated to include safety culture, security of radioactive... and Environmental Management Programs; U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001... Materials and Environmental Management Programs. BILLING CODE 7590-01-P ...
Quantum Critical Behaviour of Semisimple Gauge Theories
DEFF Research Database (Denmark)
Kamuk Esbensen, Jacob; Ryttov, Thomas A.; Sannino, Francesco
2016-01-01
We study the perturbative phase diagram of semi-simple fermionic gauge theories resembling the Standard Model. We investigate an $SU(N)$ gauge theory with $M$ Dirac flavors where we gauge first an $SU(M)_L$ and then an $SU(2)_L \\subset SU(M)_L$ of the original global symmetry $SU(M)_L\\times SU......(M)_R \\times U(1) $ of the theory. To avoid gauge anomalies we add lepton-like particles. At the two-loops level an intriguing phase diagram appears. We uncover phases in which one, two or three fixed points exist and discuss the associated flows of the coupling constants. We discover a phase featuring...
Toward a gauge field theory of gravity.
Yilmaz, H.
Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.
Algebraic formulation of higher gauge theory
Zucchini, Roberto
2017-06-01
In this paper, we present a purely algebraic formulation of higher gauge theory and gauged sigma models based on the abstract theory of graded commutative algebras and their morphisms. The formulation incorporates naturally Becchi - Rouet -Stora - Tyutin (BRST) symmetry and is also suitable for Alexandrov - Kontsevich - Schwartz-Zaboronsky (AKSZ) type constructions. It is also shown that for a full-fledged Batalin-Vilkovisky formulation including ghost degrees of freedom, higher gauge and gauged sigma model fields must be viewed as internal smooth functions on the shifted tangent bundle of a space-time manifold valued in a shifted L∞-algebroid encoding symmetry. The relationship to other formulations where the L∞-algebroid arises from a higher Lie groupoid by Lie differentiation is highlighted.
Tool for Ranking Research Options
Ortiz, James N.; Scott, Kelly; Smith, Harold
2005-01-01
Tool for Research Enhancement Decision Support (TREDS) is a computer program developed to assist managers in ranking options for research aboard the International Space Station (ISS). It could likely also be adapted to perform similar decision-support functions in industrial and academic settings. TREDS provides a ranking of the options, based on a quantifiable assessment of all the relevant programmatic decision factors of benefit, cost, and risk. The computation of the benefit for each option is based on a figure of merit (FOM) for ISS research capacity that incorporates both quantitative and qualitative inputs. Qualitative inputs are gathered and partly quantified by use of the time-tested analytical hierarchical process and used to set weighting factors in the FOM corresponding to priorities determined by the cognizant decision maker(s). Then by use of algorithms developed specifically for this application, TREDS adjusts the projected benefit for each option on the basis of levels of technical implementation, cost, and schedule risk. Based partly on Excel spreadsheets, TREDS provides screens for entering cost, benefit, and risk information. Drop-down boxes are provided for entry of qualitative information. TREDS produces graphical output in multiple formats that can be tailored by users.
Issue Management Risk Ranking Systems
Energy Technology Data Exchange (ETDEWEB)
Novack, Steven David; Marshall, Frances Mc Clellan; Stromberg, Howard Merion; Grant, Gary Michael
1999-06-01
Thousands of safety issues have been collected on-line at the Idaho National Engineering and Environmental Laboratory (INEEL) as part of the Issue Management Plan. However, there has been no established approach to prioritize collected and future issues. The authors developed a methodology, based on hazards assessment, to identify and risk rank over 5000 safety issues collected at INEEL. This approach required that it was easily applied and understandable for site adaptation and commensurate with the Integrated Safety Plan. High-risk issues were investigated and mitigative/preventive measures were suggested and ranked based on a cost-benefit scheme to provide risk-informed safety measures. This methodology was consistent with other integrated safety management goals and tasks providing a site-wide risk informed decision tool to reduce hazardous conditions and focus resources on high-risk safety issues. As part of the issue management plan, this methodology was incorporated at the issue collection level and training was provided to management to better familiarize decision-makers with concepts of safety and risk. This prioritization methodology and issue dissemination procedure will be discussed. Results of issue prioritization and training efforts will be summarized. Difficulties and advantages of the process will be reported. Development and incorporation of this process into INEELs lessons learned reporting and the site-wide integrated safety management program will be shown with an emphasis on establishing self reliance and ownership of safety issues.
Bethe/gauge correspondence on curved spaces
Energy Technology Data Exchange (ETDEWEB)
Nekrasov, Nikita [Simons Center for Geometry and Physics,Stony Brook, NY 11794-3636 (United States); Shatashvili, Samson [Simons Center for Geometry and Physics,Stony Brook, NY 11794-3636 (United States); Hamilton Mathematical Institute, Trinity College,Dublin 2 (Ireland); School of Mathematics, Trinity College,Dublin 2 (Ireland)
2015-01-20
Bethe/gauge correspondence identifies supersymmetric vacua of massive gauge theories invariant under the two dimensional N=2 Poincare supersymmetry with the stationary states of some quantum integrable system. The supersymmetric theory can be twisted in a number of ways, producing a topological field theory. For these theories we compute the handle gluing operator H. We also discuss the Gaudin conjecture on the norm of Bethe states and its connection to H.
Gauge anomalies in Lorentz-violating QED
Santos, Tiago R. S.; Sobreiro, Rodrigo F.
2016-12-01
In this work we study the issue of gauge anomalies in Lorentz-violating QED. To do so, we opt to use the Becchi-Rouet-Stora-Tyutin formalism within the algebraic renormalization approach, reducing our study to a cohomology problem. Since this approach is independent of the renormalization scheme, the results obtained here are expected to be general. We find that the Lorentz-violating QED is free of gauge anomalies to all orders in perturbation theory.
Supersymmetry of Bianchi attractors in gauged supergravity
Chakrabarty, Bidisha; Inbasekar, Karthik; Samanta, Rickmoy
2017-09-01
Bianchi attractors are near horizon geometries with homogeneous symmetries in spatial directions. We construct supersymmetric Bianchi attractors in N =2 ,d =4 , 5 gauged supergravity. In d =4 , we consider gauged supergravity coupled to vector and hypermultiplets. In d =5 , we consider gauged supergravity coupled to vector multiplets with a generic gauging of symmetries of the scalar manifold and the U (1 )R gauging of the R -symmetry. Analyzing the gaugino conditions, we show that when the fermionic shifts do not vanish, there are no supersymmetric Bianchi attractors. This is analogous to the known condition that for maximally supersymmetric solutions, all of the fermionic shifts must vanish. When the central charge satisfies an extremization condition, some of the fermionic shifts vanish and supersymmetry requires that the symmetries of the scalar manifold are not gauged. This allows supersymmetric Bianchi attractors sourced by massless gauge fields and a cosmological constant. In five dimensions in the Bianchi I class, we show that the anisotropic AdS3×R2 solution is 1 /2 BPS (Bogomol'nyi-Prasad-Sommerfield). We also construct a new class of 1 /2 BPS Bianchi III geometries labeled by the central charge. When the central charge takes a special value, the Bianchi III geometry reduces to the known AdS3×H2 solution. For the Bianchi V and VII classes, the radial spinor breaks all of supersymmetry. We briefly discuss the conditions for possible massive supersymmetric Bianchi solutions by generalizing the matter content to include tensor, hypermultiplets, and a generic gauging on the R -symmetry.
Nernst branes with Lifshitz asymptotics in N=2 gauged supergravity
Energy Technology Data Exchange (ETDEWEB)
Cardoso, G.L. [Center for Mathematical Analysis, Geometry and Dynamical Systems,Instituto Superior Técnico, Universidade de Lisboa,Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Haack, M. [Arnold Sommerfeld Center for Theoretical Physics,Ludwig-Maximilians-Universität München,Theresienstrasse 37, 80333 München (Germany); Nampuri, S. [Center for Mathematical Analysis, Geometry and Dynamical Systems,Instituto Superior Técnico, Universidade de Lisboa,Av. Rovisco Pais, 1049-001 Lisboa (Portugal)
2016-06-23
We discuss two classes of non-supersymmetric interpolating solutions in N=2, D=4 gauged supergravity, that flow from either a z=2 Lifshitz geometry or a conformal AdS background to the near-horizon geometry of a Nernst brane. We obtain these solutions by constructing a z=2 supersymmetric Lifshitz solution in the STU model from a first-order rewriting of the action, then lifting it up to a five-dimensional background and subsequently modifying this five-dimensional solution by a two-parameter family of deformations. Under reduction, these give four-dimensional non-supersymmetric Nernst brane solutions. This is a step towards resolving the Lifshitz tidal force singularity in the context of N=2 gauged supergravity and suggests an approach to encoding the Nernst brane in terms of the Schrödinger symmetry group of the holographically dual field theory.
Three Instanton Computations In Gauge Theory And String Theory
Beasley, C E
2005-01-01
We employ a variety of ideas from geometry and topology to perform three new instanton computations in gauge theory and string theory. First, we consider supersymmetric QCD with gauge group SU( Nc) and with Nf flavors. In this theory, it is well known that instantons generate a superpotential if Nf = Nc − 1 and deform the moduli space of supersymmetric vacua if Nf = Nc. We extend these results to supersymmetric QCD with Nf > Nc flavors, for which we show that instantons generate a hierarchy of new, multi- fermion F-terms in the effective action. Second, we revisit the question of which Calabi-Yau compactifications of the heterotic string are stable under worldsheet instanton corrections to the effective space-time superpotential. For instance, compactifications described by (0, 2) linear sigma models are believed to be stable, suggesting a remarkable cancellation among the instanton effects in these theories. We show that this cancellation follows directly from a residue theorem, whose proof relie...
Energy Technology Data Exchange (ETDEWEB)
Lee, Kanghoon [Quantum Universe Center, Korea Institute for Advanced Study, Seoul (Korea, Republic of); Strickland-Constable, Charles [Institut de Physique Theorique, Universite Paris Saclay, CEA, CNRS, Gif-sur-Yvette (France); Waldram, Daniel [Department of Physics, Imperial College London (United Kingdom); Berkeley Center for Theoretical Physics, University of California, Berkeley, CA (United States)
2017-10-15
We discuss the possible realisation in string/M theory of the recently discovered family of four-dimensional maximal SO(8) gauged supergravities, and of an analogous family of seven-dimensional half-maximal SO(4) gauged supergravities. We first prove a no-go theorem that neither class of gaugings can be realised via a compactification that is locally described by ten- or eleven-dimensional supergravity. In the language of Double Field Theory and its M theory analogue, this implies that the section condition must be violated. Introducing the minimal number of additional coordinates possible, we then show that the standard S{sup 3} and S{sup 7} compactifications of ten- and eleven-dimensional supergravity admit a new class of section-violating generalised frames with a generalised Lie derivative algebra that reproduces the embedding tensor of the SO(4) and SO(8) gaugings respectively. The physical meaning, if any, of these constructions is unclear. They highlight a number of the issues that arise when attempting to apply the formalism of Double Field Theory to non-toroidal backgrounds. Using a naive brane charge quantisation to determine the periodicities of the additional coordinates restricts the SO(4) gaugings to an infinite discrete set and excludes all the SO(8) gaugings other than the standard one. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Gauge theory loop operators and Liouville theory
Energy Technology Data Exchange (ETDEWEB)
Drukker, Nadav [Humboldt Univ. Berlin (Germany). Inst. fuer Physik; Gomis, Jaume; Okuda, Takuda [Perimeter Inst. for Theoretical Physics, Waterloo, ON (Canada); Teschner, Joerg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2009-10-15
We propose a correspondence between loop operators in a family of four dimensional N=2 gauge theories on S{sup 4} - including Wilson, 't Hooft and dyonic operators - and Liouville theory loop operators on a Riemann surface. This extends the beautiful relation between the partition function of these N=2 gauge theories and Liouville correlators found by Alday, Gaiotto and Tachikawa. We show that the computation of these Liouville correlators with the insertion of a Liouville loop operator reproduces Pestun's formula capturing the expectation value of a Wilson loop operator in the corresponding gauge theory. We prove that our definition of Liouville loop operators is invariant under modular transformations, which given our correspondence, implies the conjectured action of S-duality on the gauge theory loop operators. Our computations in Liouville theory make an explicit prediction for the exact expectation value of 't Hooft and dyonic loop operators in these N=2 gauge theories. The Liouville loop operators are also found to admit a simple geometric interpretation within quantum Teichmueller theory as the quantum operators representing the length of geodesics. We study the algebra of Liouville loop operators and show that it gives evidence for our proposal as well as providing definite predictions for the operator product expansion of loop operators in gauge theory. (orig.)
Novel circuits for energizing manganin stress gauges
Tasker, Douglas G.
2017-01-01
This paper describes the design of a novel MOSFET pulsed constant current supplies for low impedance Manganin stress gauges. The design emphasis has been on high accuracy, low noise, simple, low cost, disposable supplies that can be used to energize multiple gauges in explosive or shock experiments. The Manganin gauges used to measure stresses in detonating explosive experiments have typical resistances of 50 mΩ and are energized with pulsed currents of 50 A. Conventional pulsed, constant current supplies for these gauges are high voltage devices with outputs as high as 500 V. Common problems with the use of high voltage supplies at explosive firing sites are: erroneous signals caused by ground loops; overdrive of oscilloscopes on gauge failure; gauge signal crosstalk; cost; and errors due to changing load impedances. The new circuit corrects these issues. It is an 18-V circuit, powered by 9-V alkaline batteries, and features an optically isolated trigger, and single-point grounding. These circuits have been successfully tested at the Los Alamos National Laboratory in explosive experiments. [LA-UR-15-24819
A new antisymmetric bilinear map for type-I gauge theories
Esposito, Giampiero; Stornaiolo, Cosimo
2007-01-01
In the case of gauge theories, which are ruled by an infinite-dimensional invariance group, various choices of antisymmetric bilinear maps on field functionals are indeed available. This paper proves first that, within this broad framework, the Peierls map (not yet the bracket) is a member of a larger family. At that stage, restriction to gauge-invariant functionals of the fields, with the associated Ward identities and geometric structure of the space of histories, make it possible to prove ...
Infrared Fixed Point Physics in ${\\rm SO}(N_c)$ and ${\\rm Sp}(N_c)$ Gauge Theories
DEFF Research Database (Denmark)
Ryttov, Thomas A.; Shrock, Robert
2017-01-01
We study properties of asymptotically free vectorial gauge theories with gauge groups $G={\\rm SO}(N_c)$ and $G={\\rm Sp}(N_c)$ and $N_f$ fermions in a representation $R$ of $G$, at an infrared (IR) zero of the beta function, $\\alpha_{IR}$, in the non-Abelian Coulomb phase. The fundamental, adjoint...
Non-perturbatively gauge-fixed compact U(1) lattice gauge theory
De, Asit K.; Sarkar, Mugdha
2017-10-01
An extensive study of the compact U(1) lattice gauge theory with a higher derivative gauge-fixing term and a suitable counter-term has been undertaken to determine the nature of the possible continuum limits for a wide range of the parameters, especially at strong gauge couplings ( g > 1), adding to our previous study at a single gauge coupling g = 1 .3 [1]. Our major conclusion is that a continuum limit of free massless photons(with the redundant pure gauge degrees of freedom decoupled) is achieved at any gauge coupling, not necessarily small, provided the coefficient \\tilde{κ} of the gauge-fixing term is sufficiently large. In fact, the region of continuous phase transition leading to the above physics in the strong gauge coupling region is found to be analytically connected to the point g = 0 and \\tilde{κ}\\to ∞ where the classical action has a global unique minimum, around which weak coupling perturbation theory in bare parameters is defined, controlling the physics of the whole region. A second major conclusion is that, local algorithms like Multihit Metropolis fail to produce faithful field configurations with large values of the coefficient \\tilde{κ} of the higher derivative gauge-fixing term and at large lattice volumes. A global algorithm like Hybrid Monte Carlo, although at times slow to move out of metastabilities, generally is able to produce faithful configurations and has been used extensively in the current study.
Comparing the Rξ gauge and the unitary gauge for the standard model: An example
Directory of Open Access Journals (Sweden)
Tai Tsun Wu
2017-01-01
Full Text Available For gauge theory, the matrix element for any physical process is independent of the gauge used. However, since this is a formal statement, it does not guarantee this gauge independence in every case. An example is given here where, for a physical process in the standard model, the matrix elements calculated with two different gauge – the Rξ gauge and the unitary gauge – are explicitly verified to be different. This is accomplished by subtracting one matrix element from the other. This non-zero difference turns out to have a subtle origin. Two simple operators are found not to commute with each other: in one gauge these two operations are carried out in one order, while in the other gauge these same two operations are carried out in the opposite order. Because of this result, a series of question are raised such that the answers to these question may lead to a deeper understanding of the Yang–Mills non-Abelian gauge theory in general and the standard model in particular.
de Andrés, J; Bellver, J; Bolinches, R
1994-12-01
One hundred and twenty-eight ASA I-III patients less than 40 yr of age, undergoing orthopaedic or trauma lower limb surgery, were allocated randomly to receive either continuous spinal anaesthesia (CSA) using a 32-gauge polyimide microcatheter with a permanent stylet (Rusch/TFX Medical, Duluth, GA, USA) or single-dose spinal anaesthesia (SDSA) with a 24-gauge x 103-mm Sprotte spinal needle (Pajunk, Germany). Plain bupivacaine (0.5%) was used as the local anaesthetic. The initial doses were 1 ml (5 mg) of CSA and 3 ml (15 mg) of SDSA, while the re-injection doses were 1 ml (5 mg) in the CSA group. SDSA was quicker to perform: mean 4.4 (SD 1.6) min compared with 6.2 (2.6) min for CSA (P SDSA group (P SDSA group (T9 (T11-T5)) (P SDSA with a small gauge atraumatic needle.
Intergenerational Educational Rank Mobility in 20th Century United States
DEFF Research Database (Denmark)
Karlson, Kristian Bernt
2015-01-01
in the overall schooling distribution both over time and among population groups defined by race and gender.METHODS & DATA: To analyze educational rank mobility, I use quantile transition matrices known from studies on intergenerational income mobility. However, because schooling distributions are quite lumpy......BACKGROUND: Studies of educational mobility in the United States report widespread persistence in the association between parental and offspring schooling over most of the 20th century. Despite this apparent persistency, many other studies report substantial improvements in the educational...... performance of historically disadvantaged groups. To reconcile these diverging trends, I propose examining educational mobility in terms of percentile ranks in the respective schooling distributions of parents and offspring. Using a novel estimator of educational rank, I compare patterns of mobility...
Two-dimensional ranking of Wikipedia articles
Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.
2010-10-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
The Vacua of 5d, N=2 Gauged Yang-Mills/Einstein/Tensor Supergravity Abelian Case
Günaydin, M; Gunaydin, Murat; Zagermann, Marco
2000-01-01
We give a detailed study of the critical points of the potentials of thesimplest non-trivial N=2 gauged Yang-Mills/Einstein supergravity theories withtensor multiplets. The scalar field target space of these examples isSO(1,1)XSO(2,1)/SO(2). The possible gauge groups are SO(2)XU(1)_R andSO(1,1)XU(1)_R, where U(1)_R is a subgroup of the R-symmetry group SU(2)_R, andSO(2) and SO(1,1) are subgroups of the isometry group of the scalar manifold.The scalar potentials of these theories consist of a contribution from theU(1)_R gauging and a contribution that is due to the presence of the tensorfields. We find that the latter contribution can change the form of thesupersymmetric extrema from maxima to saddle points. In addition, it leads tonovel critical points not present in the corresponding gaugedYang-Mills/Einstein supergravity theories without the tensor multiplets. Forthe SO(2)XU(1)_R gauged theory these novel critical points correspond toanti-de Sitter ground states. For the non-compact SO(1,1)XU(1)_R gauging, ...
Plasma instabilities and turbulence in non-Abelian gauge theories
Energy Technology Data Exchange (ETDEWEB)
Scheffler, Sebastian Herwig Juergen
2010-02-17
Several aspects of the thermalisation process in non-Abelian gauge theories are investigated. Both numerical simulations in the classical statistical approximation and analytical computations in the framework of the two-particle-irreducible effective action are carried out and their results are compared to each other. The physical quantities of central importance are the correlation functions of the gauge field in Coulomb and temporal axial gauge as well as the gauge invariant energy-momentum tensor. Following a general introduction, the theoretical framework of the ensuing investigations is outlined. In doing so, the range of validity of the employed approximation schemes is discussed as well. The first main part of the thesis is concerned with the early stage of the thermalisation process where particular emphasis is on the role of plasma instabilities. These investigations are relevant to the phenomenological understanding of present heavy ion collision experiments. First, an ensemble of initial conditions motivated by the ''colour glass condensate'' is developed which captures characteristic properties of the plasma created in heavy ion collisions. Here, the strong anisotropy and the large occupation numbers of low-momentum degrees of freedom are to be highlighted. Numerical calculations demonstrate the occurrence of two kinds of instabilities. Primary instabilities result from the specific initial conditions. Secondary instabilities are caused by nonlinear fluctuation effects of the preceding primary instabilities. The time scale associated with the instabilities is of order 1 fm/c. It is shown that the plasma instabilities isotropize the initially strongly anisotropic ensemble in the domain of low momenta (
27 CFR 19.454 - Gauge for denaturation.
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Gauge for denaturation. 19... Denaturation § 19.454 Gauge for denaturation. The proprietor shall gauge spirits before denaturation and after denaturation and record each gauge on the record of denaturation as prescribed in § 19.752(b). However, spirits...
Directory of Open Access Journals (Sweden)
Nikos Irges
2017-11-01
Full Text Available We perform an old school, one-loop renormalization of the Abelian–Higgs model in the Unitary and Rξ gauges, focused on the scalar potential and the gauge boson mass. Our goal is to demonstrate in this simple context the validity of the Unitary gauge at the quantum level, which could open the way for an until now (mostly avoided framework for loop computations. We indeed find that the Unitary gauge is consistent and equivalent to the Rξ gauge at the level of β-functions. Then we compare the renormalized, finite, one-loop Higgs potential in the two gauges and we again find equivalence. This equivalence needs not only a complete cancellation of the gauge fixing parameter ξ from the Rξ gauge potential but also requires its ξ-independent part to be equal to the Unitary gauge result. We follow the quantum behavior of the system by plotting Renormalization Group trajectories and Lines of Constant Physics, with the former the well known curves and with the latter, determined by the finite parts of the counter-terms, particularly well suited for a comparison with non-perturbative studies.
A Hybrid Distance-Based Ideal-Seeking Consensus Ranking Model
Directory of Open Access Journals (Sweden)
Madjid Tavana
2007-01-01
Full Text Available Ordinal consensus ranking problems have received much attention in the management science literature. A problem arises in situations where a group of k decision makers (DMs is asked to rank order n alternatives. The question is how to combine the DM rankings into one consensus ranking. Several different approaches have been suggested to aggregate DM responses into a compromise or consensus ranking; however, the similarity of consensus rankings generated by the different algorithms is largely unknown. In this paper, we propose a new hybrid distance-based ideal-seeking consensus ranking model (DCM. The proposed hybrid model combines parts of the two commonly used consensus ranking techniques of Beck and Lin (1983 and Cook and Kress (1985 into an intuitive and computationally simple model. We illustrate our method and then run a Monte Carlo simulation across a range of k and n to compare the similarity of the consensus rankings generated by our method with the best-known method of Borda and Kendall (Kendall 1962 and the two methods proposed by Beck and Lin (1983 and Cook and Kress (1985. DCM and Beck and Lin's method yielded the most similar consensus rankings, whereas the Cook-Kress method and the Borda-Kendall method yielded the least similar consensus rankings.
Confinement in Polyakov gauge and the QCD phase diagram
Energy Technology Data Exchange (ETDEWEB)
Marhauser, Marc Florian
2009-10-14
We investigate Quantum Chromodynamics (QCD) in the framework of the functional renormalisation group (fRG). Thereby describing the phase transition from the phase with confined quarks into the quark-gluon-plasma phase. We focus on a physical gauge in which the mechanism driving the phase transition is discernible. We find results compatible with lattice QCD data, as well as with functional methods applied in different gauges. The phase transition is of the expected order and we computed critical exponents. Extensions of the model are discussed. When investigating the QCD phase diagram, we compute the effects of dynamical quarks at finite density on the running of the gauge coupling. Additionally, we calculate how these affect the deconfinement phase transition, also, dynamical quarks allow for the inclusion of a finite chemical potential. Concluding the investigation of the phase diagram, we establish a relation between confinement and chiral symmetry breaking, which is tied to the dynamical generation of hadron masses. In the investigations, we often encounter scale dependent fields. We investigate a footing on which these can be dealt with in a uniform way. (orig.)
Buyens, Boye; Montangero, Simone; Haegeman, Jutho; Verstraete, Frank; Van Acoleyen, Karel
2017-05-01
It has been established that matrix product states can be used to compute the ground state and single-particle excitations and their properties of lattice gauge theories at the continuum limit. However, by construction, in this formalism the Hilbert space of the gauge fields is truncated to a finite number of irreducible representations of the gauge group. We investigate quantitatively the influence of the truncation of the infinite number of representations in the Schwinger model, one-flavor QED2 , with a uniform electric background field. We compute the two-site reduced density matrix of the ground state and the weight of each of the representations. We find that this weight decays exponentially with the quadratic Casimir invariant of the representation which justifies the approach of truncating the Hilbert space of the gauge fields. Finally, we compute the single-particle spectrum of the model as a function of the electric background field.
Evaluation of 25-gauge Quincke and 24 — gauge Gertie Marx ...
African Journals Online (AJOL)
Objective: To compare the insertion characteristics and rate of complications between 25-gauge Quincke and 24-gauge Gertie Marx needles. Design: Prospective, randomized. Setting: University of Benin Teaching Hospital; a university-affiliated tertiary centre. Subjects: Parturients (ASA 1 and 2) scheduled for elective ...
Examination Malpractice in Nigeria: Rank-ordering the Types ...
African Journals Online (AJOL)
Although 'giraffing' and carrying of prepared materials into the examination hall were the most common forms of examination malpractice, bribery (ranked 4.5) was the anchor. Students, peer group and parents were the worst malpractitioners in a decreasing order of culpability. Overvaluing of certificates and teachers' ...
Entanglement entropy in lattice gauge theories
Buividovich, . P. V.
We report on the recent progress in theoretical and numerical studies of entanglement entropy in lattice gauge theories. It is shown that the concept of quantum entanglement between gauge fields in two complementary regions of space can only be introduced if the Hilbert space of physical states is extended in a certain way. In the extended Hilbert space, the entanglement entropy can be partially interpreted as the classical Shannon entropy of the flux of the gauge fields through the boundary between the two regions. Such an extension leads to a reduction procedure which can be easily implemented in lattice simulations by constructing lattices with special topology. This enables us to measure the entanglement entropy in lattice Monte-Carlo simulations. On the simplest example of Z2 lattice gauge theory in (2 + 1) dimensions we demonstrate the relation between entanglement entropy and the classical entropy of the field flux. For SU (2) lattice gauge theory in four dimensions, we find a signature of non-analytic dependence of the entanglement entropy on the size of the region. We also comment on the holographic interpretation of the entanglement entropy.
A gauge-theoretic approach to gravity
Krasnov, Kirill
2012-01-01
Einstein's general relativity (GR) is a dynamical theory of the space–time metric. We describe an approach in which GR becomes an SU(2) gauge theory. We start at the linearized level and show how a gauge-theoretic Lagrangian for non-interacting massless spin two particles (gravitons) takes a much more simple and compact form than in the standard metric description. Moreover, in contrast to the GR situation, the gauge theory Lagrangian is convex. We then proceed with a formulation of the full nonlinear theory. The equivalence to the metric-based GR holds only at the level of solutions of the field equations, that is, on-shell. The gauge-theoretic approach also makes it clear that GR is not the only interacting theory of massless spin two particles, in spite of the GR uniqueness theorems available in the metric description. Thus, there is an infinite-parameter class of gravity theories all describing just two propagating polarizations of the graviton. We describe how matter can be coupled to gravity in this formulation and, in particular, how both the gravity and Yang–Mills arise as sectors of a general diffeomorphism-invariant gauge theory. We finish by outlining a possible scenario of the ultraviolet completion of quantum gravity within this approach. PMID:22792040
Family gauge boson production at the LHC
Directory of Open Access Journals (Sweden)
Yoshio Koide
2015-11-01
Full Text Available Family gauge boson production at the LHC is investigated according to a U(3 family gauge model with twisted family number assignment. In the model we study, a family gauge boson with the lowest mass, A11, interacts only with the first generation leptons and the third generation quarks. (The family numbers are assigned, for example, as (e1,e2,e3=(e−,μ−,τ− and (d1,d2,d3=(b,d,s [or (d1,d2,d3=(b,s,d]. In the model, the family gauge coupling constant is fixed by relating to the electroweak gauge coupling constant. Thus measurements of production cross sections and branching ratios of A11 clearly confirm or rule out the model. We calculate the cross sections of inclusive A11 production and bb¯(tt¯ associated A11 production at s=14 TeV and 100 TeV. With the dielectron production cross section, we discuss the determination of diagonalizing matrix of quark mass matrix, Uu and Ud, respectively.
Gauge theories in anti-selfdual variables
Bochicchio, Marco; Pilloni, Alessandro
2013-09-01
Some years ago the Nicolai map, viewed as a change of variables from the gauge connection in a fixed gauge to the anti-selfdual part of the curvature, has been extended by the first named author to pure Yang-Mills from its original definition in = 1 supersymmetric Yang-Mills. We study here the perturbative one-particle irreducible effective action in the anti-selfdual variables of any gauge theory, in particular pure Yang-Mills, QCD and = 1 supersymmetric Yang-Mills. We prove that the one-loop one-particle irreducible effective action of a gauge theory mapped to the anti-selfdual variables in any gauge is identical to the one of the original theory. This is due to the conspiracy between the Jacobian of the change to the anti-selfdual variables and an extra functional determinant that arises from the non-linearity of the coupling of the anti-selfdual curvature to an external source in the Legendre transform that defines the one-particle irreducible effective action. Hence we establish the one-loop perturbative equivalence of the mapped and original theories on the basis of the identity of the one-loop one-particle irreducible effective actions. Besides, we argue that the identity of the perturbative one-particle irreducible effective actions extends order by order in perturbation theory.
MHD Gauge Fields: Helicities and Casimirs
Hu, Q.; Webb, G. M.; Zank, G. P.; Anco, S.
2016-12-01
Clebsch potential gauge field theory for magnetohydrodynamics is developed based in part on the theory of Calkin (1963). It is shown how the polarization vector P in Calkin's approach, naturally arises from the Lagrange multiplier constraint equation for Faraday's equation for the magnetic induction B, or alternatively from the magnetic vector potential form of Faraday's equation. Gauss's equation, (divergence of Bis zero), is incorporated in the variational principle by means of a Lagrange multiplier constraint. Noether's theorem, and gauge symmetries are used to derive the conservation laws for (a) magnetic helicity (b) cross helicity, (c) fluid helicity for non-magnetized fluids, and (d) a class of conservation laws associated with curl and divergence equations, which applies to Faraday's equation and Gauss's equation. The magnetic helicity conservation law is due to a gauge symmetry in MHD and not due to a fluid relabelling symmetry. The analysis is carried out for a non-barotropic gas. The cross helicity and fluid helicity conservation are nonlocal conservation laws, that reduce to local conservation laws for the case of a barotropic gas. The connections between gauge symmetries, Clebsch potentials and Casimirs are developed. It is shown that the gauge symmetry functionals in the work of Henyey (1982) satisfy the Casimir equations.
Rank Modulation for Translocation Error Correction
Farnoud, Farzad; Milenkovic, Olgica
2012-01-01
We consider rank modulation codes for flash memories that allow for handling arbitrary charge drop errors. Unlike classical rank modulation codes used for correcting errors that manifest themselves as swaps of two adjacently ranked elements, the proposed \\emph{translocation rank codes} account for more general forms of errors that arise in storage systems. Translocations represent a natural extension of the notion of adjacent transpositions and as such may be analyzed using related concepts in combinatorics and rank modulation coding. Our results include tight bounds on the capacity of translocation rank codes, construction techniques for asymptotically good codes, as well as simple decoding methods for one class of structured codes. As part of our exposition, we also highlight the close connections between the new code family and permutations with short common subsequences, deletion and insertion error-correcting codes for permutations and permutation arrays.
Dynamics of Ranking Processes in Complex Systems
Blumm, Nicholas; Ghoshal, Gourab; Forró, Zalán; Schich, Maximilian; Bianconi, Ginestra; Bouchaud, Jean-Philippe; Barabási, Albert-László
2012-09-01
The world is addicted to ranking: everything, from the reputation of scientists, journals, and universities to purchasing decisions is driven by measured or perceived differences between them. Here, we analyze empirical data capturing real time ranking in a number of systems, helping to identify the universal characteristics of ranking dynamics. We develop a continuum theory that not only predicts the stability of the ranking process, but shows that a noise-induced phase transition is at the heart of the observed differences in ranking regimes. The key parameters of the continuum theory can be explicitly measured from data, allowing us to predict and experimentally document the existence of three phases that govern ranking stability.
Error analysis of stochastic gradient descent ranking.
Chen, Hong; Tang, Yi; Li, Luoqing; Yuan, Yuan; Li, Xuelong; Tang, Yuanyan
2013-06-01
Ranking is always an important task in machine learning and information retrieval, e.g., collaborative filtering, recommender systems, drug discovery, etc. A kernel-based stochastic gradient descent algorithm with the least squares loss is proposed for ranking in this paper. The implementation of this algorithm is simple, and an expression of the solution is derived via a sampling operator and an integral operator. An explicit convergence rate for leaning a ranking function is given in terms of the suitable choices of the step size and the regularization parameter. The analysis technique used here is capacity independent and is novel in error analysis of ranking learning. Experimental results on real-world data have shown the effectiveness of the proposed algorithm in ranking tasks, which verifies the theoretical analysis in ranking error.
Ranking in Swiss system chess team tournaments
Csató, László
2015-01-01
The paper uses paired comparison-based scoring procedures for ranking the participants of a Swiss system chess team tournament. We present the main challenges of ranking in Swiss system, the features of individual and team competitions as well as the failures of official lexicographical orders. The tournament is represented as a ranking problem, our model is discussed with respect to the properties of the score, generalized row sum and least squares methods. The proposed procedure is illustra...
Ausloos, Marcel
2016-01-01
A mere hyperbolic law, like the Zipf's law power function, is often inadequate to describe rank-size relationships. An alternative theoretical distribution is proposed based on theoretical physics arguments starting from the Yule-Simon distribution. A modeling is proposed leading to a universal form. A theoretical suggestion for the "best (or optimal) distribution", is provided through an entropy argument. The ranking of areas through the number of cities in various countries and some sport competition ranking serves for the present illustrations.
A new DEA approach to rank alternatives in MCDA
Directory of Open Access Journals (Sweden)
Majid Darehmiraki
2013-04-01
Full Text Available One of the principal subjects in multiple criteria decision analysis is ranking alternatives. Here, we present a new method to rank alternatives by using data envelopment analysis. In this paper, one ranking method is proposed based on applying an artificial alternative called aggregate alternative. The method is based on the fact that one efficient alternative with a better performance has stronger effects on the group of other alternatives. That means its deletion forces the remaining alternatives to get smaller efficiency. The described idea in this paper is inspired of Lotfi and et al. (2011. One feature of the proposed method is that it does not need to determine the weight of the prior. Two examples are used to illustrate how the proposed method works in actual practices, and the results are compared with those obtained from the TOPSIS method.
Lattice Gauge Theories Have Gravitational Duals
Energy Technology Data Exchange (ETDEWEB)
Hellerman, Simeon
2002-09-05
In this paper we examine a certain threebrane solution of type IIB string theory whose long-wavelength dynamics are those of a supersymmetric gauge theory in 2+1 continuous and 1 discrete dimension, all of infinite extent. Low-energy processes in this background are described by dimensional deconstruction, a strict limit in which gravity decouples but the lattice spacing stays finite. Relating this limit to the near-horizon limit of our solution we obtain an exact, continuum gravitational dual of a lattice gauge theory with nonzero lattice spacing. H-flux in this translationally invariant background encodes the spatial discreteness of the gauge theory, and we relate the cutoff on allowed momenta to a giant graviton effect in the bulk.
Renormalization of gauge theories without cohomology
Energy Technology Data Exchange (ETDEWEB)
Anselmi, Damiano [Universita di Pisa, Dipartimento di Fisica ' ' Enrico Fermi' ' , Pisa (Italy); INFN, Sezione di Pisa (Italy)
2013-07-15
We investigate the renormalization of gauge theories without assuming cohomological properties. We define a renormalization algorithm that preserves the Batalin-Vilkovisky master equation at each step and automatically extends the classical action till it contains sufficiently many independent parameters to reabsorb all divergences into parameter-redefinitions and canonical transformations. The construction is then generalized to the master functional and the field-covariant proper formalism for gauge theories. Our results hold in all manifestly anomaly-free gauge theories, power-counting renormalizable or not. The extension algorithm allows us to solve a quadratic problem, such as finding a sufficiently general solution of the master equation, even when it is not possible to reduce it to a linear (cohomological) problem. (orig.)
Gauge field theories an introduction with applications
Guidry, Mike
1991-01-01
Acquaints readers with the main concepts and literature of elementary particle physics and quantum field theory. In particular, the book is concerned with the elaboration of gauge field theories in nuclear physics; the possibility of creating fundamental new states of matter such as an extended quark-gluon plasma in ultra-relativistic heavy ion collisions; and the relation of gauge theories to the creation and evolution of the universe. Divided into three parts, it opens with an introduction to the general principles of relativistic quantum field theory followed by the essential ingredients of gauge fields for weak and electromagnetic interactions, quantum chromodynamics and strong interactions. The third part is concerned with the interface between modern elementary particle physics and "applied disciplines" such as nuclear physics, astrophysics and cosmology. Includes references and numerous exercises
Light higgsino for gauge coupling unification
Energy Technology Data Exchange (ETDEWEB)
Jeong, Kwang Sik, E-mail: ksjeong@pusan.ac.kr
2017-06-10
We explore gauge coupling unification and dark matter in high scale supersymmetry where the scale of supersymmetry breaking is much above the weak scale. The gauge couplings unify as precisely as in low energy supersymmetry if the higgsinos, whose mass does not break supersymmetry, are much lighter than those obtaining masses from supersymmetry breaking. The dark matter of the universe can then be explained by the neutral higgsino or the gravitino. High scale supersymmetry with light higgsinos requires a large Higgs mixing parameter for electroweak symmetry breaking to take place. It is thus naturally realized in models where superparticle masses are generated at loop level while the Higgs mixing parameter is induced at tree level, like in anomaly and gauge mediation of supersymmetry breaking.
Light higgsino for gauge coupling unification
Directory of Open Access Journals (Sweden)
Kwang Sik Jeong
2017-06-01
Full Text Available We explore gauge coupling unification and dark matter in high scale supersymmetry where the scale of supersymmetry breaking is much above the weak scale. The gauge couplings unify as precisely as in low energy supersymmetry if the higgsinos, whose mass does not break supersymmetry, are much lighter than those obtaining masses from supersymmetry breaking. The dark matter of the universe can then be explained by the neutral higgsino or the gravitino. High scale supersymmetry with light higgsinos requires a large Higgs mixing parameter for electroweak symmetry breaking to take place. It is thus naturally realized in models where superparticle masses are generated at loop level while the Higgs mixing parameter is induced at tree level, like in anomaly and gauge mediation of supersymmetry breaking.
Methodology for ranking restoration options
Energy Technology Data Exchange (ETDEWEB)
Hedemann Jensen, Per
1999-04-01
The work described in this report has been performed as a part of the RESTRAT Project FI4P-CT95-0021a (PL 950128) co-funded by the Nuclear Fission Safety Programme of the European Commission. The RESTRAT project has the overall objective of developing generic methodologies for ranking restoration techniques as a function of contamination and site characteristics. The project includes analyses of existing remediation methodologies and contaminated sites, and is structured in the following steps: characterisation of relevant contaminated sites; identification and characterisation of relevant restoration techniques; assessment of the radiological impact; development and application of a selection methodology for restoration options; formulation of generic conclusions and development of a manual. The project is intended to apply to situations in which sites with nuclear installations have been contaminated with radioactive materials as a result of the operation of these installations. The areas considered for remedial measures include contaminated land areas, rivers and sediments in rivers, lakes, and sea areas. Five contaminated European sites have been studied. Various remedial measures have been envisaged with respect to the optimisation of the protection of the populations being exposed to the radionuclides at the sites. Cost-benefit analysis and multi-attribute utility analysis have been applied for optimisation. Health, economic and social attributes have been included and weighting factors for the different attributes have been determined by the use of scaling constants. (au)
Ranking documents with a thesaurus.
Rada, R; Bicknell, E
1989-09-01
This article reports on exploratory experiments in evaluating and improving a thesaurus through studying its effect on retrieval. A formula called DISTANCE was developed to measure the conceptual distance between queries and documents encoded as sets of thesaurus terms. DISTANCE references MeSH (Medical Subject Headings) and assesses the degree of match between a MeSH-encoded query and document. The performance of DISTANCE on MeSH is compared to the performance of people in the assessment of conceptual distance between queries and documents, and is found to simulate with surprising accuracy the human performance. The power of the computer simulation stems both from the tendency of people to rely heavily on broader-than (BT) relations in making decisions about conceptual distance and from the thousands of accurate BT relations in MeSH. One source for discrepancy between the algorithms' measurement of closeness between query and document and people's measurement of closeness between query and document is occasional inconsistency in the BT relations. Our experiments with adding non-BT relations to MeSH showed how these non-BT non-BT relations to MeSH showed how these non-BT relations could improve document ranking, if DISTANCE were also appropriately revised to treat these relations differently from BT relations.
Communities in Large Networks: Identification and Ranking
DEFF Research Database (Denmark)
Olsen, Martin
2008-01-01
We study the problem of identifying and ranking the members of a community in a very large network with link analysis only, given a set of representatives of the community. We define the concept of a community justified by a formal analysis of a simple model of the evolution of a directed graph. ...... and its immediate surroundings. The members are ranked with a “local” variant of the PageRank algorithm. Results are reported from successful experiments on identifying and ranking Danish Computer Science sites and Danish Chess pages using only a few representatives....
Citation graph based ranking in Invenio
Marian, Ludmila; Rajman, Martin; Vesely, Martin
2010-01-01
Invenio is the web-based integrated digital library system developed at CERN. Within this framework, we present four types of ranking models based on the citation graph that complement the simple approach based on citation counts: time-dependent citation counts, a relevancy ranking which extends the PageRank model, a time-dependent ranking which combines the freshness of citations with PageRank and a ranking that takes into consideration the external citations. We present our analysis and results obtained on two main data sets: Inspire and CERN Document Server. Our main contributions are: (i) a study of the currently available ranking methods based on the citation graph; (ii) the development of new ranking methods that correct some of the identified limitations of the current methods such as treating all citations of equal importance, not taking time into account or considering the citation graph complete; (iii) a detailed study of the key parameters for these ranking methods. (The original publication is ava...
Gauge symmetries and structure of proteins
Directory of Open Access Journals (Sweden)
Molochkov Alexander
2017-01-01
Full Text Available We discuss the gauge field theory approach to protein structure study, which allows a natural way to introduce collective degrees of freedom and nonlinear topological structures. Local symmetry of proteins and its breaking in the medium is considered, what allows to derive Abelian Higgs model of protein backbone, correct folding of which is defined by gauge symmetry breaking due hydrophobic forces. Within this model structure of protein backbone is defined by superposition of one-dimensional topological solitons (kinks, what allows to reproduce the three-dimensional structure of the protein backbone with precision up to 1A and to predict its dynamics.
Uplifting non-compact gauged supergravities
Energy Technology Data Exchange (ETDEWEB)
Baron, Walter H.; Dall’Agata, Gianguido [Dipartimento di Fisica e Astronomia “Galileo Galilei”,Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN - Sezione di Padova Via Marzolo 8, 35131 Padova (Italy)
2015-02-02
We provide the M-theory uplift of de Sitter vacua of SO(5,3) and SO(4,4) gaugings of maximal supergravity in 4 dimensions. We find new non-compact backgrounds that are squashed hyperboloids with non-trivial flux for the 3-form potential. The uplift requires a new non-linear ansatz for the 11-dimensional metric and for the 3-form potential that reduces to the known one leading to the 7-sphere solution in the case of the SO(8) gauging.
Jarzynski's theorem for lattice gauge theory
Caselle, Michele; Nada, Alessandro; Panero, Marco; Toniato, Arianna
2016-01-01
Jarzynski's theorem is a well-known equality in statistical mechanics, which relates fluctuations in the work performed during a non-equilibrium transformation of a system, to the free-energy difference between two equilibrium states. In this article, we extend Jarzynski's theorem to lattice gauge theory, and present examples of applications for two challenging computational problems, namely the calculation of interface free energies and the determination of the equation of state. We conclude with a discussion of further applications of interest in QCD and in other strongly coupled gauge theories, in particular for the Schroedinger functional and for simulations at finite density using reweighting techniques.
Maximal Abelian gauge and a generalized BRST transformation
Directory of Open Access Journals (Sweden)
Shinichi Deguchi
2016-05-01
Full Text Available We apply a generalized Becchi–Rouet–Stora–Tyutin (BRST formulation to establish a connection between the gauge-fixed SU(2 Yang–Mills (YM theories formulated in the Lorenz gauge and in the Maximal Abelian (MA gauge. It is shown that the generating functional corresponding to the Faddeev–Popov (FP effective action in the MA gauge can be obtained from that in the Lorenz gauge by carrying out an appropriate finite and field-dependent BRST (FFBRST transformation. In this procedure, the FP effective action in the MA gauge is found from that in the Lorenz gauge by incorporating the contribution of non-trivial Jacobian due to the FFBRST transformation of the path integral measure. The present FFBRST formulation might be useful to see how Abelian dominance in the MA gauge is realized in the Lorenz gauge.
F-theory vacua with Z3 gauge symmetry
Directory of Open Access Journals (Sweden)
Mirjam Cvetič
2015-09-01
Full Text Available Discrete gauge groups naturally arise in F-theory compactifications on genus-one fibered Calabi–Yau manifolds. Such geometries appear in families that are parameterized by the Tate–Shafarevich group of the genus-one fibration. While the F-theory compactification on any element of this family gives rise to the same physics, the corresponding M-theory compactifications on these geometries differ and are obtained by a fluxed circle reduction of the former. In this note, we focus on an element of order three in the Tate–Shafarevich group of the general cubic. We discuss how the different M-theory vacua and the associated discrete gauge groups can be obtained by Higgsing of a pair of five-dimensional U(1 symmetries. The Higgs fields arise from vanishing cycles in I2-fibers that appear at certain codimension two loci in the base. We explicitly identify all three curves that give rise to the corresponding Higgs fields. In this analysis the investigation of different resolved phases of the underlying geometry plays a crucial rôle.
F-theory vacua with $\\mathbb Z_3$ gauge symmetry
Cvetič, Mirjam; Klevers, Denis; Piragua, Hernan; Poretschkin, Maximilian
2015-01-01
Discrete gauge groups naturally arise in F-theory compactifications on genus-one fibered Calabi-Yau manifolds. Such geometries appear in families that are parameterized by the Tate-Shafarevich group of the genus-one fibration. While the F-theory compactification on any element of this family gives rise to the same physics, the corresponding M-theory compactifications on these geometries differ and are obtained by a fluxed circle reduction of the former. In this note, we focus on an element of order three in the Tate-Shafarevich group of the general cubic. We discuss how the different M-theory vacua and the associated discrete gauge groups can be obtained by Higgsing of a pair of five-dimensional U(1) symmetries. The Higgs fields arise from vanishing cycles in $I_2$-fibers that appear at certain codimension two loci in the base. We explicitly identify all three curves that give rise to the corresponding Higgs fields. In this analysis the investigation of different resolved phases of the underlying geometry pla...
Bloch Waves in Minimal Landau Gauge and the Infinite-Volume Limit of Lattice Gauge Theory.
Cucchieri, Attilio; Mendes, Tereza
2017-05-12
By exploiting the similarity between Bloch's theorem for electrons in crystalline solids and the problem of Landau gauge fixing in Yang-Mills theory on a "replicated" lattice, we show that large-volume results can be reproduced by simulations performed on much smaller lattices. This approach, proposed by Zwanziger [Nucl. Phys. B412, 657 (1994)NUPBBO0550-321310.1016/0550-3213(94)90396-4], corresponds to taking the infinite-volume limit for Landau-gauge field configurations in two steps: first for the gauge transformation alone, while keeping the lattice volume finite, and second for the gauge-field configuration itself. The solutions to the gauge-fixing condition are then given in terms of Bloch waves. Applying the method to data from Monte Carlo simulations of pure SU(2) gauge theory in two and three space-time dimensions, we are able to evaluate the Landau-gauge gluon propagator for lattices of linear extent up to 16 times larger than that of the simulated lattice. This approach is reminiscent of the Fisher-Ruelle construction of the thermodynamic limit in classical statistical mechanics.
Bloch Waves in Minimal Landau Gauge and the Infinite-Volume Limit of Lattice Gauge Theory
Cucchieri, Attilio; Mendes, Tereza
2017-05-01
By exploiting the similarity between Bloch's theorem for electrons in crystalline solids and the problem of Landau gauge fixing in Yang-Mills theory on a "replicated" lattice, we show that large-volume results can be reproduced by simulations performed on much smaller lattices. This approach, proposed by Zwanziger [Nucl. Phys. B412, 657 (1994), 10.1016/0550-3213(94)90396-4], corresponds to taking the infinite-volume limit for Landau-gauge field configurations in two steps: first for the gauge transformation alone, while keeping the lattice volume finite, and second for the gauge-field configuration itself. The solutions to the gauge-fixing condition are then given in terms of Bloch waves. Applying the method to data from Monte Carlo simulations of pure SU(2) gauge theory in two and three space-time dimensions, we are able to evaluate the Landau-gauge gluon propagator for lattices of linear extent up to 16 times larger than that of the simulated lattice. This approach is reminiscent of the Fisher-Ruelle construction of the thermodynamic limit in classical statistical mechanics.
Ranking the risk of wildlife species hazardous to military aircraft
Zakrajsek, E.J.; Bissonette, J.A.
2005-01-01
Collisions between birds and aircraft (birdstrikes) pose a major threat to aviation safety. Different species pose different levels of threat; thus, identification of the most hazardous species can help managers identify the level of hazard and prioritize mitigation efforts. Dolbeer et al. (2000) assessed the hazard posed by birds to civilian aircraft by analyzing data from the Federal Aviation Administration's (FAA) Wildlife Strike Database to rank the hazardous species and species groups. A similar analysis has not been done for the military but would be useful and necessary. Military flight characteristics differ from those of civilian flights. During the period 1985-1998, birdstrikes cost the United States Air Force (USAF) an average of $35 million/year in damage. Using the USAF Birdstrike Database, we selected and evaluated each species or species group by the number of strikes recorded in each of 3 damage categories. We weighted damage categories to reflect extent and cost of damage. The USAF Birdstrike Database contained 25,519 records of wildlife strikes in the United States. During the period 1985-1998, 22 (mean = 1.6/year) Class-A birdstrikes (>$1,000,000 damage, loss of aircraft, loss of life, or permanent total disability) were sustained, accounting for 80% of total monetary losses caused by birds. Vultures (Cathartes aura, Coragyps atratus, Caracara cheriway) were ranked the most hazardous species group (Hazard Index Rank [HIR] = 127) to USAF aircraft, followed by geese (Branta canadensis, Chen caerulescens, HIR = 76), pelicans (Pelecanus erythrorhynchos, P. occidentalis, HIR = 47), and buteos (Buteo sp., HIR = 30). Of the smaller flocking birds, blackbirds and starlings (mostly Agelaius phoeniceus, Euphagus cyanocephalus, Molothrus ater, Sturnus vulgaris, HIR = 46), horned larks (Eremophila alpestris, HIR = 24), and swallows (Families Hirundinidae, Apodidae, HIR = 23) were species groups ranked highest. Coupling these results with local bird census
Renormalization in the gauge theories with spontaneously broken supersymmetry
Kazakov, D I; Velizhanin, V N; Kondrashuk, I N
2001-01-01
A review of recent results on renormalizations in gauge theories with spontaneously broken supersymmetry is given. It is shown that the renormalizations in a broken theory are completely defined by those in a rigid theory and may be obtained with the help of expansion over the Grassmannian variables. New exact as well as suitable approximate analytic solutions of the renormalization group equations are obtained in some particular models: the Minimal Supersymmetric Standard Model, supersymmetric Grand Unified Theories, softly broken finite theories, and N=2 supersymmetric Seiberg-Witten theory
Performance of stem flow gauges in greenhouse and desert environments
Energy Technology Data Exchange (ETDEWEB)
Levitt, D.G. [Reynolds Electrical and Engineering Co., Inc., Las Vegas, NV (United States); Simpson, J.R. [California Univ., Davis, CA (United States). Dept. of Environmental Horticulture; Tipton, J.L. [Arizona Univ., Tucson, AZ (United States). Dept. of Plant Sciences
1995-06-01
This study was conducted to evaluate the accuracy and general performance of a heat balance method for estimating transpirational sap flow through plant stems on two tree species in greenhouse and field experiments in Tucson, Arizona. Sap flow through 20-mm diameter stems of oak (Quercus virginiana `Heritage`) and mesquite (Prosopis alba `Colorado`.) trees in containers was measured using stem flow gauges and a precision balance, from January to October, 1991. Overall gauge accuracy, and the effects of gauge location on the tree stem, gauge ventilation, gauge insulation, sheath conductance factor (Ksh) selection method, and increased numbers of vertical thermocouple pairs on gauge performance were evaluated.
Ranked Conservation Opportunity Areas for Region 7 (ECO_RES.RANKED_OAS)
U.S. Environmental Protection Agency — The RANKED_OAS are all the Conservation Opportunity Areas identified by MoRAP that have subsequently been ranked by patch size, landform representation, and the...
Ranking scientific publications: the effect of nonlinearity.
Yao, Liyang; Wei, Tian; Zeng, An; Fan, Ying; Di, Zengru
2014-10-17
Ranking the significance of scientific publications is a long-standing challenge. The network-based analysis is a natural and common approach for evaluating the scientific credit of papers. Although the number of citations has been widely used as a metric to rank papers, recently some iterative processes such as the well-known PageRank algorithm have been applied to the citation networks to address this problem. In this paper, we introduce nonlinearity to the PageRank algorithm when aggregating resources from different nodes to further enhance the effect of important papers. The validation of our method is performed on the data of American Physical Society (APS) journals. The results indicate that the nonlinearity improves the performance of the PageRank algorithm in terms of ranking effectiveness, as well as robustness against malicious manipulations. Although the nonlinearity analysis is based on the PageRank algorithm, it can be easily extended to other iterative ranking algorithms and similar improvements are expected.
Ranking scientific publications: the effect of nonlinearity
Yao, Liyang; Wei, Tian; Zeng, An; Fan, Ying; di, Zengru
2014-10-01
Ranking the significance of scientific publications is a long-standing challenge. The network-based analysis is a natural and common approach for evaluating the scientific credit of papers. Although the number of citations has been widely used as a metric to rank papers, recently some iterative processes such as the well-known PageRank algorithm have been applied to the citation networks to address this problem. In this paper, we introduce nonlinearity to the PageRank algorithm when aggregating resources from different nodes to further enhance the effect of important papers. The validation of our method is performed on the data of American Physical Society (APS) journals. The results indicate that the nonlinearity improves the performance of the PageRank algorithm in terms of ranking effectiveness, as well as robustness against malicious manipulations. Although the nonlinearity analysis is based on the PageRank algorithm, it can be easily extended to other iterative ranking algorithms and similar improvements are expected.
Entity Ranking using Wikipedia as a Pivot
R. Kaptein; P. Serdyukov; A.P. de Vries (Arjen); J. Kamps
2010-01-01
htmlabstractIn this paper we investigate the task of Entity Ranking on the Web. Searchers looking for entities are arguably better served by presenting a ranked list of entities directly, rather than a list of web pages with relevant but also potentially redundant information about
Entity ranking using Wikipedia as a pivot
Kaptein, R.; Serdyukov, P.; de Vries, A.; Kamps, J.; Huang, X.J.; Jones, G.; Koudas, N.; Wu, X.; Collins-Thompson, K.
2010-01-01
In this paper we investigate the task of Entity Ranking on the Web. Searchers looking for entities are arguably better served by presenting a ranked list of entities directly, rather than a list of web pages with relevant but also potentially redundant information about these entities. Since
Biplots in Reduced-Rank Regression
Braak, ter C.J.F.; Looman, C.W.N.
1994-01-01
Regression problems with a number of related response variables are typically analyzed by separate multiple regressions. This paper shows how these regressions can be visualized jointly in a biplot based on reduced-rank regression. Reduced-rank regression combines multiple regression and principal
Mining Feedback in Ranking and Recommendation Systems
Zhuang, Ziming
2009-01-01
The amount of online information has grown exponentially over the past few decades, and users become more and more dependent on ranking and recommendation systems to address their information seeking needs. The advance in information technologies has enabled users to provide feedback on the utilities of the underlying ranking and recommendation…
Using centrality to rank web snippets
Jijkoun, V.; de Rijke, M.; Peters, C.; Jijkoun, V.; Mandl, T.; Müller, H.; Oard, D.W.; Peñas, A.; Petras, V.; Santos, D.
2008-01-01
We describe our participation in the WebCLEF 2007 task, targeted at snippet retrieval from web data. Our system ranks snippets based on a simple similarity-based centrality, inspired by the web page ranking algorithms. We experimented with retrieval units (sentences and paragraphs) and with the
Generating and ranking of Dyck words
Kasa, Zoltan
2010-01-01
A new algorithm to generate all Dyck words is presented, which is used in ranking and unranking Dyck words. We emphasize the importance of using Dyck words in encoding objects related to Catalan numbers. As a consequence of formulas used in the ranking algorithm we can obtain a recursive formula for the nth Catalan number.
Progress gauge symmetry breaking in SU(6) x SU(2) sub R model
Hayashi, T; Matsuda, M; Matsuoka, T
2003-01-01
In the SU(6) x SU(2) sub R string-inspired model, we describe the evolution of the couplings and the masses down from the string scale M sub s using the renormalization group equations and minimize the effective potential. This model possesses the flavor symmetry, including the binary dihedral group D tilde sub 4. We show that the scalar mass squared of the gauge non-singlet matter field possibly becomes negative slightly below the string scale. As a consequence, the precocious radiative breaking of the gauge symmetry down to the standard model gauge group can be realized. In the present model, the large Yukawa coupling, which plays an important role in the symmetry breaking, is identical to the colored Higgs coupling related to the longevity of the proton. (author)
Loop calculus for lattice gauge theories
Energy Technology Data Exchange (ETDEWEB)
Gambini, R.; Leal, L.; Trias, A.
1989-05-15
Hamiltonian calculations are performed using a loop-labeled basis where the full set of identities for the SU(/ital N/) gauge models has been incorporated. The loops are classified as clusterlike structures and the eigenvalue problem leads to a linear set of finite-difference equations easily amenable to numerical treatment. Encouraging results are reported for SU(2) at spatial dimension 2.
Cellular-based sea level gauge
Digital Repository Service at National Institute of Oceanography (India)
Desai, R.G.P.; Joseph, A.
, is mounted within a cylindrical protective housing, which in turn is rigidly held within a mechanical structure. This structure is secured to a jetty. The gauge is powered by a battery, which is charged by solar panels. Battery, electronics, solar panels...
Н(1) Gauge theory as quantum hydrodynamics
Indian Academy of Sciences (India)
January 2004 physics pp. 101-114. Н(1) Gauge theory as quantum hydrodynamics. GIRIsH s sETLUR ... there is work by Ceperley [4] using quantum Monte Carlo. The main point of this article is to highlight the ..... Fermi liquid theory break down in two or three dimensions?' In two dimensions, for the interaction νХ = const.
National Computational Infrastructure for Lattice Gauge Theory
Energy Technology Data Exchange (ETDEWEB)
Brower, Richard C.
2014-04-15
SciDAC-2 Project The Secret Life of Quarks: National Computational Infrastructure for Lattice Gauge Theory, from March 15, 2011 through March 14, 2012. The objective of this project is to construct the software needed to study quantum chromodynamics (QCD), the theory of the strong interactions of sub-atomic physics, and other strongly coupled gauge field theories anticipated to be of importance in the energy regime made accessible by the Large Hadron Collider (LHC). It builds upon the successful efforts of the SciDAC-1 project National Computational Infrastructure for Lattice Gauge Theory, in which a QCD Applications Programming Interface (QCD API) was developed that enables lattice gauge theorists to make effective use of a wide variety of massively parallel computers. This project serves the entire USQCD Collaboration, which consists of nearly all the high energy and nuclear physicists in the United States engaged in the numerical study of QCD and related strongly interacting quantum field theories. All software developed in it is publicly available, and can be downloaded from a link on the USQCD Collaboration web site, or directly from the github repositories with entrance linke http://usqcd-software.github.io
Hydrodynamic Gradient Expansion in Gauge Theory Plasmas,
Heller, M.P.; Janik, R.A.; Witaszczyk, P
2013-01-01
We utilize the fluid-gravity duality to investigate the large order behavior of hydrodynamic gradient expansion of the dynamics of a gauge theory plasma system. This corresponds to the inclusion of dissipative terms and transport coefficients of very high order. Using the dual gravity description,
Recent advances in lattice gauge theories
Indian Academy of Sciences (India)
Recent progress in the ﬁeld of lattice gauge theories is brieﬂy reviewed for a nonspecialist audience. While the emphasis is on the latest and more deﬁnitive results that have emerged prior to this symposium, an effort has been made to provide them with minimal technicalities.
Supersymmetry search via gauge boson fusion
Indian Academy of Sciences (India)
Abstract. We propose a novel method for the search of supersymmetry, especially for the elec- troweak gauginos at the large hadron collider (LHC). Gauge boson fusion technique was shown to be useful for heavy and intermediate mass Higgs bosons. In this article, we have shown that this method can also be applied to ...
Gauge concepts in theoretical applied physics
Tan, Seng Ghee; Jalil, Mansoor B. A.
2016-01-01
Gauge concept evolves in the course of nearly one century from Faraday’s rather obscure electrotonic state of matter to the physically significant Yang-Mills that underpin today’s standard model. As gauge theories improve, links are established with modern observations, e.g. in the Aharonov-Bohm effect, the Pancharatnam-Berry’s phase, superconductivity, and quantum Hall effects. In this century, emergent gauge theory is formulated in numerous fields of applied physics like topological insulators, spintronics, and graphene. We will show in this paper the application of gauge theory in two particularly useful spin-based phenomena, namely the spin orbit spin torque and the spin Hall effect. These are important fields of study in the engineering community due to great commercial interest in the technology of magnetic memory (MRAM), and magnetic field sensors. Both spin orbit torque and spin Hall perform magnetic switching at low power and high speed. Furthermore, spin Hall is also a promising source of pure spin current, as well as a reliable form of detection mechanism for the magnetic state of a material.
Gauge coupling renormalization in Ads5
Indian Academy of Sciences (India)
diverges depending linearly on cut-off A and 1 g20a and 1 g2πa diverges logarithmically. One-loop correction to the low energy gauge coupling also contains conventional logarithmic running in 4D effective theory and calculable threshold corrections from matching 5D theory to 4D effective theory. We parametrize them by.
Supersymmetry search via gauge boson fusion
Indian Academy of Sciences (India)
We propose a novel method for the search of supersymmetry, especially for the electroweak gauginos at the large hadron collider (LHC). Gauge boson fusion technique was shown to be useful for heavy and intermediate mass Higgs bosons. In this article, we have shown that this method can also be applied to ﬁnd the ...
Gauge Physics of Finance: simple introduction
Ilinski, Kirill N
1998-01-01
In this paper we state the fundamental principles of the gauge approach to financial economics and demonstrate the ways of its application. In particular, modelling of realistic price processes is considered for an example of S&P500 market index. Derivative pricing and portfolio theory are also briefly discussed.
Nanocomposite Strain Gauges Having Small TCRs
Gregory, Otto; Chen, Ximing
2009-01-01
Ceramic strain gauges in which the strain-sensitive electrically conductive strips made from nanocomposites of noble metal and indium tin oxide (ITO) are being developed for use in gas turbine engines and other power-generation systems in which gas temperatures can exceed 1,500 F (about 816 C). In general, strain gauges exhibit spurious thermally induced components of response denoted apparent strain. When temperature varies, a strain-gauge material that has a nonzero temperature coefficient of resistance (TCR) exhibits an undesired change in electrical resistance that can be mistaken for the change in resistance caused by a change in strain. It would be desirable to formulate straingauge materials having TCRs as small as possible so as to minimize apparent strain. Most metals exhibit positive TCRs, while most semiconductors, including ITO, exhibit negative TCRs. The present development is based on the idea of using the negative TCR of ITO to counter the positive TCRs of noble metals and of obtaining the benefit of the ability of both ITO and noble metals to endure high temperatures. The noble metal used in this development thus far has been platinum. Combinatorial libraries of many ceramic strain gauges containing nanocomposites of various proportions of ITO and platinum were fabricated by reactive co-sputtering from ITO and platinum targets onto alumina- and zirconia-based substrates mounted at various positions between the targets.
QCD perturbation theory in the temporal gauge
Leroy, J. P.; Micheli, J.; Rossi, G. C.; Yoshida, K.
1990-12-01
In this paper we present a non-trivial check of the consistency of the quantization of a gauge theory with fermions (QCD) in the temporal gauge. We use the approach based on the finite time Feynman propagation kernel, in which the Gauss law is imposed as a constraint on the states by means of a functional integration over all the time independent gauge transformations acting on the boundary values of the fields. We spell out in detail the “Feynman rules” when fermions are present and we compute, as an example, the gauge invariant correlation function 10052_2005_Article_BF01614701_TeX2GIFE1.gif begin{gathered} G(t) = left< {bar ψ (0,t)(γ _5 γ _0 ){1 - γ _0 }/2P} right. \\ left. { \\cdot exp left( {igintlimits_0^t {A_0 (0,t')dt'} } right)(γ _5 γ _0 )^ + (0,0)} rightrangle \\ up to order g 2, obtaining the expected result.
Gauge theory and renormalization (Erice, August 1994)
Hooft, G. 't
1994-01-01
Early developments leading to renormalizable non-Abelian gauge theories for the weak, electromagnetic and strong interactions, are discussed from a personal viewpoint. They drastically improved our view of the role of field theory, symmetry and topology, as well as other branches of mathematics, in the world of elementary particles.
Pure gauge spin-orbit couplings
Shikakhwa, M. S.
2017-01-01
Planar systems with a general linear spin-orbit interaction (SOI) that can be cast in the form of a non-Abelian pure gauge field are investigated using the language of non-Abelian gauge field theory. A special class of these fields that, though a 2×2 matrix, are Abelian are seen to emerge and their general form is given. It is shown that the unitary transformation that gauges away these fields induces at the same time a rotation on the wave function about a fixed axis but with a space-dependent angle, both of which being characteristics of the SOI involved. The experimentally important case of equal-strength Rashba and Dresselhaus SOI (R+D SOI) is shown to fall within this special class of Abelian gauge fields, and the phenomenon of persistent spin helix (PSH) that emerges in the presence of this latter SOI in a plane is shown to fit naturally within the general formalism developed. The general formalism is also extended to the case of a particle confined to a ring. It is shown that the Hamiltonian on a ring in the presence of equal-strength R+D SOI is unitarily equivalent to that of a particle subject to only a spin-independent but θ-dependent potential with the unitary transformation relating the two being again the space-dependent rotation operator characteristic of R+D SOI.
2010-04-01
... storage or processing account at the plant where produced; (2) Packaging of spirits or wine filled from a... formula number of denatured spirits; (f) Proof of distillation (not required for denatured spirits... gauge details, proof, and wine gallons; (2) Cooperage identification (“C” for charred, “REC” for...
Flavor Gauge Models Below the Fermi Scale
Energy Technology Data Exchange (ETDEWEB)
Babu, K. S. [Oklahoma State U.; Friedland, A. [SLAC; Machado, P. A.N. [Madrid, IFT; Mocioiu, I. [Penn State U.
2017-05-04
The mass and weak interaction eigenstates for the quarks of the third generation are very well aligned, an empirical fact for which the Standard Model offers no explanation. We explore the possibility that this alignment is due to an additional gauge symmetry in the third generation. Specifically, we construct and analyze an explicit, renormalizable model with a gauge boson, $X$, corresponding to the $B-L$ symmetry of the third family. Having a relatively light (in the MeV to multi-GeV range), flavor-nonuniversal gauge boson results in a variety of constraints from different sources. By systematically analyzing 20 different constraints, we identify the most sensitive probes: kaon, $D^+$ and Upsilon decays, $D-\\bar{D}^0$ mixing, atomic parity violation, and neutrino scattering and oscillations. For the new gauge coupling $g_X$ in the range $(10^{-2} - 10^{-4})$ the model is shown to be consistent with the data. Possible ways of testing the model in $b$ physics, top and $Z$ decays, direct collider production and neutrino oscillation experiments, where one can observe nonstandard matter effects, are outlined. The choice of leptons to carry the new force is ambiguous, resulting in additional phenomenological implications, such as non-universality in semileptonic bottom decays. The proposed framework provides interesting connections between neutrino oscillations, flavor and collider physics.
Alberto Baccini; Antono Banfi; Giuseppe De Nicolao; Paola Galimberti
2015-01-01
University rankings represent a controversial issue in the debate about higher education policy. One of the best known university ranking is the Quacquarelli Symonds World University Rankings (QS), published annually since 2004 by Quacquarelli Symonds ltd, a company founded in 1990 and headquartered in London. QS provides a ranking based on a score calculated by weighting six different indicators. The 2015 edition, published in October 2015, introduced major methodological innovations and, as...
Comparing classical and quantum PageRanks
Loke, T.; Tang, J. W.; Rodriguez, J.; Small, M.; Wang, J. B.
2017-01-01
Following recent developments in quantum PageRanking, we present a comparative analysis of discrete-time and continuous-time quantum-walk-based PageRank algorithms. Relative to classical PageRank and to different extents, the quantum measures better highlight secondary hubs and resolve ranking degeneracy among peripheral nodes for all networks we studied in this paper. For the discrete-time case, we investigated the periodic nature of the walker's probability distribution for a wide range of networks and found that the dominant period does not grow with the size of these networks. Based on this observation, we introduce a new quantum measure using the maximum probabilities of the associated walker during the first couple of periods. This is particularly important, since it leads to a quantum PageRanking scheme that is scalable with respect to network size.
Reliability of journal impact factor rankings
Greenwood, Darren C
2007-01-01
Background Journal impact factors and their ranks are used widely by journals, researchers, and research assessment exercises. Methods Based on citations to journals in research and experimental medicine in 2005, Bayesian Markov chain Monte Carlo methods were used to estimate the uncertainty associated with these journal performance indicators. Results Intervals representing plausible ranges of values for journal impact factor ranks indicated that most journals cannot be ranked with great precision. Only the top and bottom few journals could place any confidence in their rank position. Intervals were wider and overlapping for most journals. Conclusion Decisions placed on journal impact factors are potentially misleading where the uncertainty associated with the measure is ignored. This article proposes that caution should be exercised in the interpretation of journal impact factors and their ranks, and specifically that a measure of uncertainty should be routinely presented alongside the point estimate. PMID:18005435
Reliability of journal impact factor rankings
Directory of Open Access Journals (Sweden)
Greenwood Darren C
2007-11-01
Full Text Available Abstract Background Journal impact factors and their ranks are used widely by journals, researchers, and research assessment exercises. Methods Based on citations to journals in research and experimental medicine in 2005, Bayesian Markov chain Monte Carlo methods were used to estimate the uncertainty associated with these journal performance indicators. Results Intervals representing plausible ranges of values for journal impact factor ranks indicated that most journals cannot be ranked with great precision. Only the top and bottom few journals could place any confidence in their rank position. Intervals were wider and overlapping for most journals. Conclusion Decisions placed on journal impact factors are potentially misleading where the uncertainty associated with the measure is ignored. This article proposes that caution should be exercised in the interpretation of journal impact factors and their ranks, and specifically that a measure of uncertainty should be routinely presented alongside the point estimate.
Cointegration rank testing under conditional heteroskedasticity
DEFF Research Database (Denmark)
Cavaliere, Giuseppe; Rahbek, Anders Christian; Taylor, Robert M.
2010-01-01
(martingale difference) innovations. We first demonstrate that the limiting null distributions of the rank statistics coincide with those derived by previous authors who assume either independent and identically distributed (i.i.d.) or (strict and covariance) stationary martingale difference innovations. We...... then propose wild bootstrap implementations of the cointegrating rank tests and demonstrate that the associated bootstrap rank statistics replicate the first-order asymptotic null distributions of the rank statistics. We show that the same is also true of the corresponding rank tests based on the i.......i.d. bootstrap of Swensen (2006, Econometrica 74, 1699-1714). The wild bootstrap, however, has the important property that, unlike the i.i.d. bootstrap, it preserves in the resampled data the pattern of heteroskedasticity present in the original shocks. Consistent with this, numerical evidence suggests that...
Rastogi, Anju; Mishra, Manisha; Goel, Yashpal; Thacker, Prolima; Kamlesh
2017-01-06
To compare 25- and 20-gauge pars plana vitrectomy (PPV) for the management of pediatric cataract. 20 eyes of 15 patients were randomly divided into two groups to undergo pars plana capsulotomy and vitrectomy by either 25-gauge (group A) or 20-gauge (group B) PPV after lens aspiration and IOL implantation. The two groups were compared for total surgical time, time taken in doing pars plana capsulotomy and vitrectomy, and the size of posterior capsulotomy. Post-operative astigmatism was compared at 3 months. The mean total surgical time in group A was 49.2 ± 6.7 min, while mean total surgical time in group B was 62.5 + 5.48 min (p = 0.001). The mean time taken for pars plana capsulotomy and vitrectomy was 4.1 ± 1.19 min in group A and 5.0 ± 0.73 min (p = 0.03) in group B. The mean size of the PCCC in group A was 3.3 ± 0.34 mm, while in group B it was 4.0 ± 0.33 mm (p = 0.001). The mean astigmatism at 3 months in group A was 0.65 ± 0.31 diopters, while in group B it was 1.45 ± 0.92 diopters (p = 0.019). 25-gauge transconjunctival sutureless PPV can be an attractive alternative to 20-gauge system in the management of pediatric cataracts.
PageRank and rank-reversal dependence on the damping factor
Son, S.-W.; Christensen, C.; Grassberger, P.; Paczuski, M.
2012-12-01
PageRank (PR) is an algorithm originally developed by Google to evaluate the importance of web pages. Considering how deeply rooted Google's PR algorithm is to gathering relevant information or to the success of modern businesses, the question of rank stability and choice of the damping factor (a parameter in the algorithm) is clearly important. We investigate PR as a function of the damping factor d on a network obtained from a domain of the World Wide Web, finding that rank reversal happens frequently over a broad range of PR (and of d). We use three different correlation measures, Pearson, Spearman, and Kendall, to study rank reversal as d changes, and we show that the correlation of PR vectors drops rapidly as d changes from its frequently cited value, d0=0.85. Rank reversal is also observed by measuring the Spearman and Kendall rank correlation, which evaluate relative ranks rather than absolute PR. Rank reversal happens not only in directed networks containing rank sinks but also in a single strongly connected component, which by definition does not contain any sinks. We relate rank reversals to rank pockets and bottlenecks in the directed network structure. For the network studied, the relative rank is more stable by our measures around d=0.65 than at d=d0.
PageRank and rank-reversal dependence on the damping factor.
Son, S-W; Christensen, C; Grassberger, P; Paczuski, M
2012-12-01
PageRank (PR) is an algorithm originally developed by Google to evaluate the importance of web pages. Considering how deeply rooted Google's PR algorithm is to gathering relevant information or to the success of modern businesses, the question of rank stability and choice of the damping factor (a parameter in the algorithm) is clearly important. We investigate PR as a function of the damping factor d on a network obtained from a domain of the World Wide Web, finding that rank reversal happens frequently over a broad range of PR (and of d). We use three different correlation measures, Pearson, Spearman, and Kendall, to study rank reversal as d changes, and we show that the correlation of PR vectors drops rapidly as d changes from its frequently cited value, d_{0}=0.85. Rank reversal is also observed by measuring the Spearman and Kendall rank correlation, which evaluate relative ranks rather than absolute PR. Rank reversal happens not only in directed networks containing rank sinks but also in a single strongly connected component, which by definition does not contain any sinks. We relate rank reversals to rank pockets and bottlenecks in the directed network structure. For the network studied, the relative rank is more stable by our measures around d=0.65 than at d=d_{0}.
A tilting approach to ranking influence
Genton, Marc G.
2014-12-01
We suggest a new approach, which is applicable for general statistics computed from random samples of univariate or vector-valued or functional data, to assessing the influence that individual data have on the value of a statistic, and to ranking the data in terms of that influence. Our method is based on, first, perturbing the value of the statistic by ‘tilting’, or reweighting, each data value, where the total amount of tilt is constrained to be the least possible, subject to achieving a given small perturbation of the statistic, and, then, taking the ranking of the influence of data values to be that which corresponds to ranking the changes in data weights. It is shown, both theoretically and numerically, that this ranking does not depend on the size of the perturbation, provided that the perturbation is sufficiently small. That simple result leads directly to an elegant geometric interpretation of the ranks; they are the ranks of the lengths of projections of the weights onto a ‘line’ determined by the first empirical principal component function in a generalized measure of covariance. To illustrate the generality of the method we introduce and explore it in the case of functional data, where (for example) it leads to generalized boxplots. The method has the advantage of providing an interpretable ranking that depends on the statistic under consideration. For example, the ranking of data, in terms of their influence on the value of a statistic, is different for a measure of location and for a measure of scale. This is as it should be; a ranking of data in terms of their influence should depend on the manner in which the data are used. Additionally, the ranking recognizes, rather than ignores, sign, and in particular can identify left- and right-hand ‘tails’ of the distribution of a random function or vector.
Test rank of an abelian product of a free Lie algebra and a free ...
Indian Academy of Sciences (India)
Introduction. The notions test set, test rank and test elements are interesting for groups and Lie algebras. Examples of test elements of free Lie algebras of rank two were given by Mikhalev and. Yu [10]. Other examples of test elements were considered by Mikhalev, Umirbaev and Yu. [11], Temizyurek and Ekici [13] and ...
O'Connell, Catherine; Saunders, Murray
2013-01-01
This study explores responses to rankings from a group of staff working as education partnership facilitators for a professional intermediary organisation, the British Council. The study adopts an activity systems perspective from which to view the contexts in which rankings are encountered and the range of practices used to reduce tensions…
CogGauge (A Cognitive Assessment Tool) Project
National Aeronautics and Space Administration — The Cognitive Gauge (CogGauge) tool aims to develop a portable gaming application that assesses cognitive state of astronaut crew members with the goal of...
Directory of Open Access Journals (Sweden)
Alberto Baccini
2015-10-01
Full Text Available University rankings represent a controversial issue in the debate about higher education policy. One of the best known university ranking is the Quacquarelli Symonds World University Rankings (QS, published annually since 2004 by Quacquarelli Symonds ltd, a company founded in 1990 and headquartered in London. QS provides a ranking based on a score calculated by weighting six different indicators. The 2015 edition, published in October 2015, introduced major methodological innovations and, as a consequence, many universities worldwide underwent major changes of their scores and ranks. Ben Sowter, head of division of intelligence unit of Quacquarelli Symonds, responds to 15 questions about the new QS methodology.
On a common generalization of Shelah's 2-rank, dp-rank, and o-minimal dimension
Guingona, Vincent; Hill, Cameron Donnay
2013-01-01
In this paper, we build a dimension theory related to Shelah's 2-rank, dp-rank, and o-minimal dimension. We call this dimension op-dimension. We exhibit the notion of the n-multi-order property, generalizing the order property, and use this to create op-rank, which generalizes 2-rank. From this we build op-dimension. We show that op-dimension bounds dp-rank, that op-dimension is sub-additive, and op-dimension generalizes o-minimal dimension in o-minimal theories.
Directory of Open Access Journals (Sweden)
Pedro Bernardino
2010-03-01
Full Text Available The academic rankings are a controversial subject in higher education. However, despite all the criticism, academic rankings are here to stay and more and more different stakeholders use rankings to obtain information about the institutions' performance. The two most well-known rankings, The Times and the Shanghai Jiao Tong University rankings have different methodologies. The Times ranking is based on peer review, whereas the Shanghai ranking has only quantitative indicators and is mainly based on research outputs. In Germany, the CHE ranking uses a different methodology from the traditional rankings, allowing the users to choose criteria and weights. The Portuguese higher education institutions are performing below their European peers, and the Government believes that an academic ranking could improve both performance and competitiveness between institutions. The purpose of this paper is to analyse the advantages and problems of academic rankings and provide guidance to a new Portuguese ranking.Los rankings académicos son un tema muy contradictorio en la enseñanza superior. Todavía, además de todas las críticas los rankings están para quedarse entre nosotros. Y cada vez más, diferentes stakeholders utilizan los rankings para obtener información sobre el desempeño de las instituciones. Dos de los rankings más conocidos, el The Times y el ranking de la universidad de Shangai Jiao Tong tienen métodos distintos. El The Times se basa en la opinión de expertos mientras el ranking de la universidad de Shangai presenta solamente indicadores cuantitativos y mayoritariamente basados en los resultados de actividades de investigación. En Alemania el ranking CHE usa un método distinto permitiendo al utilizador elegir los criterios y su importancia. Las instituciones de enseñanza superior portuguesas tienen un desempeño abajo de las europeas y el gobierno cree que un ranking académico podría contribuir para mejorar su desempeño y
Adiabatic quantum algorithm for search engine ranking.
Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A
2012-06-08
We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in "q-sampling" protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.
Ranking Adverse Drug Reactions With Crowdsourcing
Gottlieb, Assaf
2015-03-23
Background: There is no publicly available resource that provides the relative severity of adverse drug reactions (ADRs). Such a resource would be useful for several applications, including assessment of the risks and benefits of drugs and improvement of patient-centered care. It could also be used to triage predictions of drug adverse events. Objective: The intent of the study was to rank ADRs according to severity. Methods: We used Internet-based crowdsourcing to rank ADRs according to severity. We assigned 126,512 pairwise comparisons of ADRs to 2589 Amazon Mechanical Turk workers and used these comparisons to rank order 2929 ADRs. Results: There is good correlation (rho=.53) between the mortality rates associated with ADRs and their rank. Our ranking highlights severe drug-ADR predictions, such as cardiovascular ADRs for raloxifene and celecoxib. It also triages genes associated with severe ADRs such as epidermal growth-factor receptor (EGFR), associated with glioblastoma multiforme, and SCN1A, associated with epilepsy. Conclusions: ADR ranking lays a first stepping stone in personalized drug risk assessment. Ranking of ADRs using crowdsourcing may have useful clinical and financial implications, and should be further investigated in the context of health care decision making.
Adiabatic Quantum Algorithm for Search Engine Ranking
Garnerone, Silvano; Zanardi, Paolo; Lidar, Daniel A.
2012-06-01
We propose an adiabatic quantum algorithm for generating a quantum pure state encoding of the PageRank vector, the most widely used tool in ranking the relative importance of internet pages. We present extensive numerical simulations which provide evidence that this algorithm can prepare the quantum PageRank state in a time which, on average, scales polylogarithmically in the number of web pages. We argue that the main topological feature of the underlying web graph allowing for such a scaling is the out-degree distribution. The top-ranked log(n) entries of the quantum PageRank state can then be estimated with a polynomial quantum speed-up. Moreover, the quantum PageRank state can be used in “q-sampling” protocols for testing properties of distributions, which require exponentially fewer measurements than all classical schemes designed for the same task. This can be used to decide whether to run a classical update of the PageRank.
Ranking adverse drug reactions with crowdsourcing.
Gottlieb, Assaf; Hoehndorf, Robert; Dumontier, Michel; Altman, Russ B
2015-03-23
There is no publicly available resource that provides the relative severity of adverse drug reactions (ADRs). Such a resource would be useful for several applications, including assessment of the risks and benefits of drugs and improvement of patient-centered care. It could also be used to triage predictions of drug adverse events. The intent of the study was to rank ADRs according to severity. We used Internet-based crowdsourcing to rank ADRs according to severity. We assigned 126,512 pairwise comparisons of ADRs to 2589 Amazon Mechanical Turk workers and used these comparisons to rank order 2929 ADRs. There is good correlation (rho=.53) between the mortality rates associated with ADRs and their rank. Our ranking highlights severe drug-ADR predictions, such as cardiovascular ADRs for raloxifene and celecoxib. It also triages genes associated with severe ADRs such as epidermal growth-factor receptor (EGFR), associated with glioblastoma multiforme, and SCN1A, associated with epilepsy. ADR ranking lays a first stepping stone in personalized drug risk assessment. Ranking of ADRs using crowdsourcing may have useful clinical and financial implications, and should be further investigated in the context of health care decision making.
Augmenting the Deliberative Method for Ranking Risks.
Susel, Irving; Lasley, Trace; Montezemolo, Mark; Piper, Joel
2016-01-01
The Department of Homeland Security (DHS) characterized and prioritized the physical cross-border threats and hazards to the nation stemming from terrorism, market-driven illicit flows of people and goods (illegal immigration, narcotics, funds, counterfeits, and weaponry), and other nonmarket concerns (movement of diseases, pests, and invasive species). These threats and hazards pose a wide diversity of consequences with very different combinations of magnitudes and likelihoods, making it very challenging to prioritize them. This article presents the approach that was used at DHS to arrive at a consensus regarding the threats and hazards that stand out from the rest based on the overall risk they pose. Due to time constraints for the decision analysis, it was not feasible to apply multiattribute methodologies like multiattribute utility theory or the analytic hierarchy process. Using a holistic approach was considered, such as the deliberative method for ranking risks first published in this journal. However, an ordinal ranking alone does not indicate relative or absolute magnitude differences among the risks. Therefore, the use of the deliberative method for ranking risks is not sufficient for deciding whether there is a material difference between the top-ranked and bottom-ranked risks, let alone deciding what the stand-out risks are. To address this limitation of ordinal rankings, the deliberative method for ranking risks was augmented by adding an additional step to transform the ordinal ranking into a ratio scale ranking. This additional step enabled the selection of stand-out risks to help prioritize further analysis. © 2015 Society for Risk Analysis.
Gauge Fixing on the Lattice and the Gibbs Phenomenon
Mandula, Jeffrey E.
1999-01-01
We discuss global gauge fixing on the lattice, specifically to the lattice Landau gauge, with the goal of understanding the question of why the process becomes extremely slow for large lattices. We construct an artificial "gauge-fixing" problem which has the essential features encountered in actuality. In the limit in which the size of the system to be gauge fixed becomes infinite, the problem becomes equivalent to finding a series expansion in functions which are related to the Jacobi polyno...
New Methods in Supersymmetric Theories and Emergent Gauge Symmetry
CERN. Geneva
2014-01-01
It is remarkable that light or even massless spin 1 particles can be composite. Consequently, gauge invariance is not fundamental but emergent. This idea can be realized in detail in supersymmetric gauge theories. We will describe the recent development of non-perturbative methods that allow to test this idea. One finds that the emergence of gauge symmetry is linked to some results in contemporary mathematics. We speculate on the possible applications of the idea of emergent gauge symmetry to realistic models.
A gauge field theory of fermionic continuous-spin particles
Directory of Open Access Journals (Sweden)
X. Bekaert
2016-09-01
Full Text Available In this letter, we suggest a local covariant action for a gauge field theory of fermionic Continuous-Spin Particles (CSPs. The action is invariant under gauge transformations without any constraint on both the gauge field and the gauge transformation parameter. The Fang–Fronsdal equations for a tower of massless fields with all half-integer spins arise as a particular limit of the equation of motion of fermionic CSPs.
Low-temperature strain gauges based on silicon whiskers
Directory of Open Access Journals (Sweden)
Druzhinin A. A.
2008-08-01
Full Text Available To create low-temperature strain gauges based on p-type silicon whiskers tensoresistive characteristics of these crystals in 4,2—300 K temperature range were studied. On the basis of p-type Si whiskers with different resistivity the strain gauges for different materials operating at cryogenic temperatures with extremely high gauge factor at 4,2 K were developed, as well as strain gauges operating at liquid helium temperatures in high magnetic fields.
Duality in two-dimensional (2,2) supersymmetric non-Abelian gauge theories
Hori, Kentaro
2013-10-01
We study the low energy behaviour of supersymmetric gauge theories in 1 + 1 dimensions, with orthogonal and symplectic gauge groups and matters in the fundamental representation. We observe supersymmetry breaking in super-Yang-Mills theory and in theories with small numbers of flavors. For larger numbers of flavors, we discover duality between regular theories with different gauge groups and matter contents, where regularity refers to absence of quantum Coulomb branch. The result is applied to study families of superconformal field theories that can be used for superstring compactifications, with corners corresponding to three-dimensional Calabi-Yau manifolds. This work is motivated by recent development in mathematics concerning equivalences of derived categories.
The ADHM-like constructions for instantons on CP2 and three-dimensional gauge theories
Directory of Open Access Journals (Sweden)
Noppadol Mekareeya
2015-02-01
Full Text Available We study the moduli spaces of self-dual instantons on CP2 in a simple group G. When G is a classical group, these instanton solutions can be realized using ADHM-like constructions which can be naturally embedded into certain three-dimensional quiver gauge theories with four supercharges. The topological data for such instanton bundles and their relations to the quiver gauge theories are described. Based on such gauge theory constructions, we compute the Hilbert series of the moduli spaces of instantons that correspond to various configurations. The results turn out to be equal to the Hilbert series of their counterparts on C2 upon an appropriate mapping. We check the former against the Hilbert series derived from the blowup formula for the Hirzebruch surface F1 and find an agreement. The connection between the moduli spaces of instantons on such two spaces is explained in detail.
Evaluation of treatment effects by ranking
DEFF Research Database (Denmark)
Halekoh, U; Kristensen, K
2008-01-01
In crop experiments measurements are often made by a judge evaluating the crops' conditions after treatment. In the present paper an analysis is proposed for experiments where plots of crops treated differently are mutually ranked. In the experimental layout the crops are treated on consecutive...... plots usually placed side by side in one or more rows. In the proposed method a judge ranks several neighbouring plots, say three, by ranking them from best to worst. For the next observation the judge moves on by no more than two plots, such that up to two plots will be re-evaluated again...
Higher rank ABJM Wilson loops from matrix models
Energy Technology Data Exchange (ETDEWEB)
Cookmeyer, Jonathan [Haverford College,370 Lancaster Avenue, Haverford, PA, 19041 (United States); Liu, James T. [Michigan Center for Theoretical Physics, Department of Physics, University of Michigan,450 Church Street, Ann Arbor, MI, 48109 (United States); Zayas, Leopoldo A. Pando [The Abdus Salam International Centre for Theoretical Physics,Strada Costiera 11, Trieste, 34014 (Italy)
2016-11-21
We compute the vacuum expectation values of 1/6 supersymmetric Wilson loops in higher dimensional representations of the gauge group in ABJM theory. We present results for the m-symmetric and m-antisymmetric representations by exploiting standard matrix model techniques. At leading order, in the saddle point approximation, our expressions reproduce holographic results from both D6 and D2 branes corresponding to the antisymmetric and symmetric representations, respectively. We also compute 1/N corrections to the leading saddle point results.
46 CFR 153.979 - Gauging with a sounding tube.
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Gauging with a sounding tube. 153.979 Section 153.979... Procedures § 153.979 Gauging with a sounding tube. (a) No person may remove the cover of a sounding tube... cargo transfer may not authorize removal of the cover from a sounding tube gauge unless all tank...
46 CFR 151.15-10 - Cargo gauging devices.
2010-10-01
..., sonic depth gauge (without penetration of tank shell), pipe flow meter. (e) All gauging devices and... devices. (h) For pressure-vessel type tanks, each automatic float, continuous reading tape or similar type... tank, is used, a fixed tube gauge set in the range of 85 percent to 90 percent of the water capacity of...
21 CFR 870.4310 - Cardiopulmonary bypass coronary pressure gauge.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass coronary pressure gauge... Cardiopulmonary bypass coronary pressure gauge. (a) Identification. A cardiopulmonary bypass coronary pressure gauge is a device used in cardiopulmonary bypass surgery to measure the pressure of the blood perfusing...
Approximate Noether gauge symmetries of the Bardeen model
Energy Technology Data Exchange (ETDEWEB)
Camci, U. [Akdeniz University, Department of Physics, Faculty of Science, Antalya (Turkey)
2014-12-01
We investigate the approximate Noether gauge symmetries of the geodesic Lagrangian for the Bardeen spacetime model. This is accommodated by a set of new approximate Noether gauge symmetry relations for the perturbed geodesic Lagrangian in the spacetime. A detailed analysis of the spacetime of the Bardeen model up to third-order approximate Noether gauge symmetries is presented. (orig.)
Conserved currents and gauge invariance in Yang-Mills theory
Energy Technology Data Exchange (ETDEWEB)
Barnich, G. [Universite Libre de Bruxelles (Belgium). Faculte des Sciences; Brandt, F. [Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands). Sectie H; Henneaux, M. [Universite Libre de Bruxelles (Belgium). Faculte des Sciences
1994-12-31
It is shown that in the absence of free abelian gauge fields, the conserved currents of (classical) Yang-Mills gauge models coupled to matter fields can be always redefined so as to be gauge invariant. This is a direct consequence of the general analysis of the Wess-Zumino consistency condition for Yang-Mills theory that we have provided recently. (orig.).
Improving CBIR Systems Using Automated Ranking
Directory of Open Access Journals (Sweden)
B. D. Reljin
2012-11-01
Full Text Available The most common way of searching images on the Internet and in private collections is based on a similarity measuring of a series of text words that are assigned to each image with users query series. This method imposes strong constraints (the number of words to describe the image, the time necessary to thoroughly describe the subjective experience of images, the level of details in the picture, language barrier, etc., and is therefore very inefficient. Modern researches in this area are focused on the contentbased searching images (CBIR. In this way, all described disadvantages are overcome and the quality of searching results is improved. This paper presents a solution for CBIR systems where the search procedure is enhanced using sophisticated extraction and ranking of extracted images. The searching procedure is based on extraction and preprocessing of a large number of low level image features. Thus, when the user defines a query image, the proposed algorithm based on artificial intelligence, shows to the user a group of images which are most similar to a query image by content. The proposed algorithm is iterative, so the user can direct the searching procedure to an expected outcome and get a set of images that are more similar to the query one.
Rank perception and self-evaluation in eating disorders.
Cardi, Valentina; Di Matteo, Rosalia; Gilbert, Paul; Treasure, Janet
2014-07-01
Heightened sensitivity to social comparison and negative self-evaluation have been implicated in the development and maintenance of eating disorders (EDs). This study used behavioral tasks, as well as self-report measures, to examine processing of social rank-related cues and implicit self-concept in participants with EDs. Fifty healthy participants (HCs), 46 people with an ED, and 22 people recovered from an ED (REC) undertook an attentional bias task using social rank-related cues and an implicit self-evaluation task. In addition, they completed self-report measures of social comparison, submissive behavior, and shame. People with EDs showed vigilance toward social rank-related stimuli and lower implicit positive self-evaluation than HCs. Self-report data confirmed the behavioral findings and showed that people with EDs had higher levels of unfavorable social comparison, submissive behaviors, and external and internal shame than HCs. People who had recovered from an ED showed an intermediate profile between the two groups. People with EDs have heightened sensitivity to social rank-related cues and impaired self-evaluation at an automatic level of processing. Some of these biases remain in people who have recovered. Interventions which aim to remediate social threat sensitivity and negative bias about self and others might be of benefit in EDs. © 2014 Wiley Periodicals, Inc.
Generalized Attractor Points in Gauged Supergravity
Energy Technology Data Exchange (ETDEWEB)
Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC; Kallosh, Renata; /Stanford U., Phys. Dept.; Shmakova, Marina; /KIPAC, Menlo Park /SLAC /Stanford U., Phys. Dept.
2011-08-15
The attractor mechanism governs the near-horizon geometry of extremal black holes in ungauged 4D N=2 supergravity theories and in Calabi-Yau compactifications of string theory. In this paper, we study a natural generalization of this mechanism to solutions of arbitrary 4D N=2 gauged supergravities. We define generalized attractor points as solutions of an ansatz which reduces the Einstein, gauge field, and scalar equations of motion to algebraic equations. The simplest generalized attractor geometries are characterized by non-vanishing constant anholonomy coefficients in an orthonormal frame. Basic examples include Lifshitz and Schroedinger solutions, as well as AdS and dS vacua. There is a generalized attractor potential whose critical points are the attractor points, and its extremization explains the algebraic nature of the equations governing both supersymmetric and non-supersymmetric attractors.
Conceptual Aspects of Gauge/Gravity Duality
De Haro, Sebastian; Mayerson, Daniel R.; Butterfield, Jeremy N.
2016-11-01
We give an introductory review of gauge/gravity duality, and associated ideas of holography, emphasising the conceptual aspects. The opening sections gather the ingredients, viz. anti-de Sitter spacetime, conformal field theory and string theory, that we need for presenting, in Sect. 5, the central and original example: Maldacena's AdS/CFT correspondence. Sections 6 and 7 develop the ideas of this example, also in applications to condensed matter systems, QCD, and hydrodynamics. Sections 8 and 9 discuss the possible extensions of holographic ideas to de Sitter spacetime and to black holes. Section 10 discusses the bearing of gauge/gravity duality on two philosophical topics: the equivalence of physical theories, and the idea that spacetime, or some features of it, are emergent.
Search for new heavy charged gauge bosons
Energy Technology Data Exchange (ETDEWEB)
Magass, Carsten Martin [RWTH Aachen Univ. (Germany)
2007-11-02
Additional gauge bosons are introduced in many theoretical extensions to the Standard Model. A search for a new heavy charged gauge boson W' decaying into an electron and a neutrino is presented. The data used in this analysis was taken with the D0 detector at the Fermilab proton-antiproton collider at a center-of-mass energy of 1.96 TeV and corresponds to an integrated luminosity of about 1 fb^{-1}. Since no significant excess is observed in the data, an upper limit is set on the production cross section times branching fraction σ_{W'}xBr (W' → ev). Using this limit, a W' boson with mass below ~1 TeV can be excluded at the 95% confidence level assuming that the new boson has the same couplings to fermions as the Standard Model W boson.
Integrability in N=2 superconformal gauge theorie
Energy Technology Data Exchange (ETDEWEB)
Pomoni, Elli [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group; National Technical Univ. of Athens (Greece). Physics Div.
2013-10-15
Any N=2 superconformal gauge theory (including N=4 SYM) contains a set of local operators made only out of fields in the N=2 vector multiplet that is closed under renormalization to all loops, namely the SU(2,1 vertical stroke 2) sector. For planar N=4 SYM the spectrum of local operators can be obtained by mapping the problem to an integrable model (a spin chain in perturbation theory), in principle for any value of the coupling constant. We present a diagrammatic argument that for any planar N=2 superconformal gauge theory the SU(2,1 vertical stroke 2) Hamiltonian acting on infinite spin chains is identical to all loops to that of N=4 SYM, up to a redefinition of the coupling constant. Thus, this sector is integrable and anomalous dimensions can be, in principle, read off from the N=4 ones up to this redefinition.
Topological resolution of gauge theory singularities
Energy Technology Data Exchange (ETDEWEB)
Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo
2013-08-21
Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric S U ( 2 ) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.
Local gauge symmetry on optical lattices?
Liu, Yuzhi; Tsai, Shan-Wen
2012-01-01
The versatile technology of cold atoms confined in optical lattices allows the creation of a vast number of lattice geometries and interactions, providing a promising platform for emulating various lattice models. This opens the possibility of letting nature take care of sign problems and real time evolution in carefully prepared situations. Up to now, experimentalists have succeeded to implement several types of Hubbard models considered by condensed matter theorists. In this proceeding, we discuss the possibility of extending this effort to lattice gauge theory. We report recent efforts to establish the strong coupling equivalence between the Fermi Hubbard model and SU(2) pure gauge theory in 2+1 dimensions by standard determinantal methods developed by Robert Sugar and collaborators. We discuss the possibility of using dipolar molecules and external fields to build models where the equivalence holds beyond the leading order in the strong coupling expansion.
Supersymmetry Breaking, Gauge Mediation, and the LHC
Energy Technology Data Exchange (ETDEWEB)
Shih, David [Rutgers Univ., New Brunswick, NJ (United States)
2015-04-14
Gauge mediated SUSY breaking (GMSB) is a promising class of supersymmetric models that automatically satisfies the precision constraints. Prior work of Meade, Seiberg and Shih in 2008 established the full, model-independent parameter space of GMSB, which they called "General Gauge Mediation" (GGM). During the first half of 2010-2015, Shih and his collaborators thoroughly explored the parameter space of GGM and established many well-motivated benchmark models for use by the experimentalists at the LHC. Through their work, the current constraints on GGM from LEP, the Tevatron and the LHC were fully elucidated, together with the possible collider signatures of GMSB at the LHC. This ensured that the full discovery potential for GGM could be completely realized at the LHC.
Constrained Gauge Fields from Spontaneous Lorentz Violation
Chkareuli, J L; Jejelava, J G; Nielsen, H B
2008-01-01
Spontaneous Lorentz violation realized through a nonlinear vector field constraint of the type $A_{\\mu}^{2}=M^{2}$ ($M$ is the proposed scale for Lorentz violation) is shown to generate massless vector Goldstone bosons, gauging the starting global internal symmetries in arbitrary relativistically invariant theories. The gauge invariance appears in essence as a necessary condition for these bosons not to be superfluously restricted in degrees of freedom, apart from the constraint due to which the true vacuum in a theory is chosen by the Lorentz violation. In the Abelian symmetry case the only possible theory proves to be QED with a massless vector Goldstone boson naturally associated with the photon, while the non-Abelian symmetry case results in a conventional Yang-Mills theory. These theories, both Abelian and non-Abelian, look essentially nonlinear and contain particular Lorentz (and $CPT$) violating couplings when expressed in terms of the pure Goldstone vector modes. However, they do not lead to physical ...
Approximate gauge symemtry of composite vector bosons
Energy Technology Data Exchange (ETDEWEB)
Suzuki, Mahiko
2010-06-01
It can be shown in a solvable field theory model that the couplings of the composite vector mesons made of a fermion pair approach the gauge couplings in the limit of strong binding. Although this phenomenon may appear accidental and special to the vector bosons made of a fermion pair, we extend it to the case of bosons being constituents and find that the same phenomenon occurs in more an intriguing way. The functional formalism not only facilitates computation but also provides us with a better insight into the generating mechanism of approximate gauge symmetry, in particular, how the strong binding and global current conservation conspire to generate such an approximate symmetry. Remarks are made on its possible relevance or irrelevance to electroweak and higher symmetries.
Constrained gauge fields from spontaneous Lorentz violation
DEFF Research Database (Denmark)
Chkareuli, J. L.; Froggatt, C. D.; Jejelava, J. G.
2008-01-01
Spontaneous Lorentz violation realized through a nonlinear vector field constraint of the type AµAµ=M2 (M is the proposed scale for Lorentz violation) is shown to generate massless vector Goldstone bosons, gauging the starting global internal symmetries in arbitrary relativistically invariant...... theories. The gauge invariance appears in essence as a necessary condition for these bosons not to be superfluously restricted in degrees of freedom, apart from the constraint due to which the true vacuum in a theory is chosen by the Lorentz violation. In the Abelian symmetry case the only possible theory...... proves to be QED with a massless vector Goldstone boson naturally associated with the photon, while the non-Abelian symmetry case results in a conventional Yang-Mills theory. These theories, both Abelian and non-Abelian, look essentially nonlinear and contain particular Lorentz (and CPT) violating...
Cosmic Gauge-Field Dark Energy
Devulder, Christopher; Caldwell, Robert
2017-01-01
We present a cosmological model in which dark energy consists of a cosmic gauge field. At early times it behaves like radiation; at late times it drives cosmic acceleration. By varying the number of fields, their coupling strength and handedness, a wide range of behavior is shown to emerge. Joint constraints on the model from SNe, BAO and CMB data are presented. We discuss the possibility that the gauge field may seed a spectrum of primordial gravitational waves with a distinct imprint on the power spectrum, as well as act like a dissipative medium for high frequency gravitational waves. We show that this model could have an impact on the B-mode polarization pattern in the CMB, as well as future probes that use standard sirens to constrain the energy budget of the Universe.
Block models and personalized PageRank
National Research Council Canada - National Science Library
Kloumann, Isabel M; Ugander, Johan; Kleinberg, Jon
2017-01-01
...? We start from the observation that the most widely used techniques for this problem, personalized PageRank and heat kernel methods, operate in the space of "landing probabilities" of a random walk...
Who's bigger? where historical figures really rank
Skiena, Steven
2014-01-01
Is Hitler bigger than Napoleon? Washington bigger than Lincoln? Picasso bigger than Einstein? Quantitative analysts are rapidly finding homes in social and cultural domains, from finance to politics. What about history? In this fascinating book, Steve Skiena and Charles Ward bring quantitative analysis to bear on ranking and comparing historical reputations. They evaluate each person by aggregating the traces of millions of opinions, just as Google ranks webpages. The book includes a technical discussion for readers interested in the details of the methods, but no mathematical or computational background is necessary to understand the rankings or conclusions. Along the way, the authors present the rankings of more than one thousand of history's most significant people in science, politics, entertainment, and all areas of human endeavor. Anyone interested in history or biography can see where their favorite figures place in the grand scheme of things.
Ranking Forestry Investments With Parametric Linear Programming
Paul A. Murphy
1976-01-01
Parametric linear programming is introduced as a technique for ranking forestry investments under multiple constraints; it combines the advantages of simple tanking and linear programming as capital budgeting tools.
Superfund Hazard Ranking System Training Course
The Hazard Ranking System (HRS) training course is a four and ½ day, intermediate-level course designed for personnel who are required to compile, draft, and review preliminary assessments (PAs), site inspections (SIs), and HRS documentation records/packag
A cognitive model for aggregating people's rankings
National Research Council Canada - National Science Library
Lee, Michael D; Steyvers, Mark; Miller, Brent
2014-01-01
.... Applications of the model to 23 data sets, dealing with general knowledge and prediction tasks, show that the model performs well in producing an aggregate ranking that is often close to the ground...
A better gauge of corporate performance.
Weber, D O
2001-01-01
Traditional methods of measuring organizational value aren't working very well. Instead, an organization's viability should be gauged from four perspectives, according to Robert S. Kaplan and David P. Norton, co-creators of the Balanced Scorecard. These perspectives--financial strength, customer service and satisfaction, internal operating efficiency, and learning and growth--become the underpinnings of a "balanced" tool with which leaders can assess corporate performance in the knowledge-based marketplace.
Holographic complexity in gauge/string superconductors
Directory of Open Access Journals (Sweden)
Davood Momeni
2016-05-01
Full Text Available Following a methodology similar to [1], we derive a holographic complexity for two dimensional holographic superconductors (gauge/string superconductors with backreactions. Applying a perturbation method proposed by Kanno in Ref. [2], we study behaviors of the complexity for a dual quantum system near critical points. We show that when a system moves from the normal phase (T>Tc to the superconductor phase (T
Neutrino and Z gauge boson physics
Energy Technology Data Exchange (ETDEWEB)
Larios, F. [Departamento de Fisica Aplicada, CINVESTAV-Merida, A.P. 73, 97310 Merida, Yucatan (Mexico); Perez, M. A. [Departamento de Fisica, CINVESTAV, A.P. 14-740, 07000, Mexico D.F (Mexico)
2013-06-12
We present a short review of the physics of neutrino-photon interactions and the rare decays of the Z and Z Prime gauge bosons. In particular, we emphasize on processes induced by the anomalous trilinear and quartic vertices VVV and VVVV, where V=Z,Z Prime or a photon, within the Standard Model (SM), the 331 model and some extensions of the SM. We also include the phenomenological and experimental limits reported for these couplings.
The Dyon Charge in Noncommutative Gauge Theories
Directory of Open Access Journals (Sweden)
L. Cieri
2008-01-01
Full Text Available We construct a dyon solution for the noncommutative version of the Yang-Mills-Higgs model with a ϑ-term. Extending the Noether method to the case of a noncommutative gauge theory, we analyze the effect of CP violation induced both by the ϑ-term and by noncommutativity proving that the Witten effect formula for the dyon charge remains the same as in ordinary space.
Lattice Gauge Fields and Noncommutative Geometry
Balachandran, A. P.; Bimonte, G.; Landi, G.; Lizzi, F.; Teotonio-Sobrinho, P.
1996-01-01
Conventional approaches to lattice gauge theories do not properly consider the topology of spacetime or of its fields. In this paper, we develop a formulation which tries to remedy this defect. It starts from a cubical decomposition of the supporting manifold (compactified spacetime or spatial slice) interpreting it as a finite topological approximation in the sense of Sorkin. This finite space is entirely described by the algebra of cochains with the cup product. The methods of Connes and Lo...
Subleading soft photons and large gauge transformations
Campiglia, Miguel; Laddha, Alok
2016-01-01
Lysov, Pasterski and Strominger have shown how Low's subleading soft photon theorem can be understood as Ward identities of new symmetries of massless QED. In this paper we offer a different perspective and show that there exists a class of large $U(1)$ gauge transformations such that (i) the associated (electric and magnetic) charges can be computed from first principles (ii) their Ward identities are equivalent to Low's theorem. Our framework paves the way to analyze the sub-subleading theo...
The. delta. expansion and local gauge invariance
Energy Technology Data Exchange (ETDEWEB)
Bender, C.M. (Department of Physics, Washington University, St. Louis, Missouri 63130 (US)); Cooper, F. (Department of Physics, Brown University, Providence, Rhode Island 02912 Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexic o 87545); Milton, K.A. (Department of Physics, The Ohio State University, Columbus, Ohio 43210 Department of Physics and Astronomy, University of Oklahoma, Norman, Oklaho ma 73019)
1989-08-15
A recently proposed approximation method, called the {delta} expansion, was introduced in the context of a self-interacting scalar field theory. This approximation method offers the hope of obtaining nonperturbative information about a quantum field theory using perturbative techniques. In this paper we extend formally the {delta}-expansion methods to field theories having local gauge symmetry. We then compute the anomaly in the Schwinger model.
Noncommutative Geometric Gauge Theory from Superconnections
Lee, Chang-Yeong
1996-01-01
Noncommutative geometric gauge theory is reconstructed based on the superconnection concept. The bosonic action of the Connes-Lott model including the symmetry breaking Higgs sector is obtained by using a new generalized derivative, which consists of the usual 1-form exterior derivative plus an extra element called the matrix derivative, for the curvatures. We first derive the matrix derivative based on superconnections and then show how the matrix derivative can give rise to spontaneous symm...
From physical symmetries to emergent gauge symmetries
Energy Technology Data Exchange (ETDEWEB)
Barceló, Carlos [Instituto de Astrofísica de Andalucía (IAA-CSIC),Glorieta de la Astronomía, 18008 Granada (Spain); Carballo-Rubio, Raúl [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Laboratory for Quantum Gravity & Strings,Department of Mathematics & Applied Mathematics, University of Cape Town,Private Bag, Rondebosch 7701 (South Africa); Di Filippo, Francesco [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Dipartamento di Scienze Fisiche “E.R. Caianiello”, Università di Salerno,I-84081 Fisciano (Italy); Garay, Luis J. [Departamento de Física Teórica II, Universidad Complutense de Madrid, 28040 Madrid (Spain); Instituto de Estructura de la Materia (IEM-CSIC), Serrano 121, 28006 Madrid (Spain)
2016-10-17
Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent gravity program, such as the Weinberg-Witten theorem, are discussed.
The electromagnetic potentials without the gauge transformations
Energy Technology Data Exchange (ETDEWEB)
Espinoza, Augusto; Chubykalo, Andrey; Rodriguez, Alejandro Gutierrez; Hernandez, Maria de los Angeles [Universidad Autonoma de Zacatecas (Mexico). Unidad Academica de Fisica
2011-07-01
In this note we show that the use of the Helmholtz theorem lead to derivation of uniquely determined electromagnetic potentials without making use of the gauge transformation. These potentials correspond to the potentials obtained by imposing so-called Coulomb condition (gauge) in the traditional approach. We show that the electromagnetic field comprises two components, one of which is characterized by its instantaneous action at a distance, whereas another one propagates in the retarded form with the velocity of light. One of the theoretical consequences of this new definition is that the electromagnetic potentials are real physical quantities as well as the electric and magnetic fields. We show that the reality of the electromagnetic potentials in quantum-mechanics is also a property of these potentials in the classical electrodynamics. Equations for potentials obtained in our approach are already separated with respect to vector and scalar potentials, so there is no necessity in using the gauge transformations and, accordingly, in making use of either Lorentz or Coulomb condition. The vector potential and scalar potential introduced thus are uniquely defined. The scalar potential is a generator of the so called instantaneous action at a distance, whereas the solenoidal vector potential can propagate with the velocity of light and it is responsible for the retarded action of the electromagnetic field. (author)
An Improved Single-Plaquette Gauge Action
Banerjee, Debasish; Holland, Kieran; Niedermayer, Ferenc; Pepe, Michele; Wenger, Urs; Wiese, Uwe-Jens
2015-01-01
We describe and test a nonperturbatively improved single-plaquette lattice action for 4-d SU(2) and SU(3) pure gauge theory, which suppresses large fluctuations of the plaquette, without requiring the naive continuum limit for smooth fields. We tune the action parameters based on torelon masses in moderate cubic physical volumes, and investigate the size of cut-off effects in other physical quantities, including torelon masses in asymmetric spatial volumes, the static quark potential, and gradient flow observables. In 2-d O(N) models similarly constructed nearest-neighbor actions have led to a drastic reduction of cut-off effects, down to the permille level, in a wide variety of physical quantities. In the gauge theories, we find significant reduction of lattice artifacts, and for some observables, the coarsest lattice result is very close to the continuum value. We estimate an improvement factor of 40 compared to using the Wilson gauge action to achieve the same statistical accuracy and suppression of cut-of...
The Light-Cone Gauge without Prescriptions
Suzuki, A. T.; Schmidt, A. G. M.
2000-05-01
Feynman integrals in the physical light-cone gauge are more difficult to solve than their covariant counterparts. The difficulty is associated with the presence of unphysical singularities due to the inherent residual gauge freedom in the intermediate boson propagators constrained within this gauge choice. In order to circumvent these non-physical singularities, the headlong approach has always been to call for mathematical devices --- prescriptions --- some successful and others not. A more elegant approach is to consider the propagator from its physical point of view, that is, an object obeying basic principles such as causality. Once this fact is realized and carefully taken into account, the crutch of prescriptions can be avoided altogether. An alternative, third approach, which for practical computations could dispense with prescriptions as well as avoiding the necessity of careful stepwise consideration of causality, would be of great advantage. And this third option is realizable within the context of negative dimensions, or as it has been coined, the negative dimensional integration method (NDIM).
Effects of non-Abelian gauge potentials
Energy Technology Data Exchange (ETDEWEB)
Jacob, Andreas; Santos, Luis [Institut fuer Theoretische Physik, Leibniz Universitaet, Hannover (Germany); Merkl, Michael; Zimmer, Frank; Oehberg, Patrik [SUPA, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh (United Kingdom)
2009-07-01
Artificial electromagnetism may be created for neutral atoms, e.g. by rotating the gas. Other forms of inducing artificial electromagnetism are possible, including ways of generating non-Abelian vector potentials. In this talk, we first discuss simple laser setups that allow the creation of non-Abelian gauge potentials for atoms with a tripod level scheme. We comment on specific experimental implementations in e.g. {sup 4}He{sup *} and {sup 87}Rb. In particular we discuss a simple laser arrangement that generates a non-Abelian vector potential proportional to the Pauli matrices. This gauge potential induces a quasi-relativistic physics for cold gases similar to that in graphene, including the possibility of observation of metamaterial phenomena as Veselago lensing. We shall discuss in particular the effects of this gauge potential in the linear and nonlinear atom optics of condensates, including the possibility of creating regions of negative mass in the dispersion relation which allow for bright solitons in the presence of repulsive interactions.
Block models and personalized PageRank.
Kloumann, Isabel M; Ugander, Johan; Kleinberg, Jon
2017-01-03
Methods for ranking the importance of nodes in a network have a rich history in machine learning and across domains that analyze structured data. Recent work has evaluated these methods through the "seed set expansion problem": given a subset [Formula: see text] of nodes from a community of interest in an underlying graph, can we reliably identify the rest of the community? We start from the observation that the most widely used techniques for this problem, personalized PageRank and heat kernel methods, operate in the space of "landing probabilities" of a random walk rooted at the seed set, ranking nodes according to weighted sums of landing probabilities of different length walks. Both schemes, however, lack an a priori relationship to the seed set objective. In this work, we develop a principled framework for evaluating ranking methods by studying seed set expansion applied to the stochastic block model. We derive the optimal gradient for separating the landing probabilities of two classes in a stochastic block model and find, surprisingly, that under reasonable assumptions the gradient is asymptotically equivalent to personalized PageRank for a specific choice of the PageRank parameter [Formula: see text] that depends on the block model parameters. This connection provides a formal motivation for the success of personalized PageRank in seed set expansion and node ranking generally. We use this connection to propose more advanced techniques incorporating higher moments of landing probabilities; our advanced methods exhibit greatly improved performance, despite being simple linear classification rules, and are even competitive with belief propagation.
NUCLEAR POWER PLANTS SAFETY IMPROVEMENT PROJECTS RANKING
Григорян, Анна Сергеевна; Тигран Георгиевич ГРИГОРЯН; Квасневский, Евгений Анатольевич
2013-01-01
The ranking nuclear power plants safety improvement projects is the most important task for ensuring the efficiency of NPP project management office work. Total amount of projects in NPP portfolio may reach more than 400. Features of the nuclear power plants safety improvement projects ranking in NPP portfolio determine the choice of the decision verbal analysis as a method of decision-making, as it allows to quickly compare the number of alternatives that are not available at the time of con...
Ranking Music Data by Relevance and Importance
DEFF Research Database (Denmark)
Ruxanda, Maria Magdalena; Nanopoulos, Alexandros; Jensen, Christian Søndergaard
2008-01-01
Due to the rapidly increasing availability of audio files on the Web, it is relevant to augment search engines with advanced audio search functionality. In this context, the ranking of the retrieved music is an important issue. This paper proposes a music ranking method capable of flexibly fusing...... the relevance and importance of music. The proposed method may support users with diverse needs when searching for music....
Asymptotic geometry in higher products of rank one Hadamard spaces
Link, Gabriele
2013-01-01
Given a product X of locally compact rank one Hadamard spaces, we study asymptotic properties of certain discrete isometry groups. First we give a detailed description of the structure of the geometric limit set and relate it to the limit cone; moreover, we show that the action of the group on a quotient of the regular geometric boundary of X is minimal and proximal. This is completely analogous to the case of Zariski dense discrete subgroups of semi-simple Lie groups acting on the associated...
Rank distributions: A panoramic macroscopic outlook
Eliazar, Iddo I.; Cohen, Morrel H.
2014-01-01
This paper presents a panoramic macroscopic outlook of rank distributions. We establish a general framework for the analysis of rank distributions, which classifies them into five macroscopic "socioeconomic" states: monarchy, oligarchy-feudalism, criticality, socialism-capitalism, and communism. Oligarchy-feudalism is shown to be characterized by discrete macroscopic rank distributions, and socialism-capitalism is shown to be characterized by continuous macroscopic size distributions. Criticality is a transition state between oligarchy-feudalism and socialism-capitalism, which can manifest allometric scaling with multifractal spectra. Monarchy and communism are extreme forms of oligarchy-feudalism and socialism-capitalism, respectively, in which the intrinsic randomness vanishes. The general framework is applied to three different models of rank distributions—top-down, bottom-up, and global—and unveils each model's macroscopic universality and versatility. The global model yields a macroscopic classification of the generalized Zipf law, an omnipresent form of rank distributions observed across the sciences. An amalgamation of the three models establishes a universal rank-distribution explanation for the macroscopic emergence of a prevalent class of continuous size distributions, ones governed by unimodal densities with both Pareto and inverse-Pareto power-law tails.
Hierarchical Rank Aggregation with Applications to Nanotoxicology.
Patel, Trina; Telesca, Donatello; Rallo, Robert; George, Saji; Xia, Tian; Nel, André E
2013-06-01
The development of high throughput screening (HTS) assays in the field of nanotoxicology provide new opportunities for the hazard assessment and ranking of engineered nanomaterials (ENMs). It is often necessary to rank lists of materials based on multiple risk assessment parameters, often aggregated across several measures of toxicity and possibly spanning an array of experimental platforms. Bayesian models coupled with the optimization of loss functions have been shown to provide an effective framework for conducting inference on ranks. In this article we present various loss-function-based ranking approaches for comparing ENM within experiments and toxicity parameters. Additionally, we propose a framework for the aggregation of ranks across different sources of evidence while allowing for differential weighting of this evidence based on its reliability and importance in risk ranking. We apply these methods to high throughput toxicity data on two human cell-lines, exposed to eight different nanomaterials, and measured in relation to four cytotoxicity outcomes. This article has supplementary material online.
Gauge invariance properties and singularity cancellations in a modified PQCD
Cabo-Montes de Oca, Alejandro; Cabo, Alejandro; Rigol, Marcos
2006-01-01
The gauge-invariance properties and singularity elimination of the modified perturbation theory for QCD introduced in previous works, are investigated. The construction of the modified free propagators is generalized to include the dependence on the gauge parameter $\\alpha $. Further, a functional proof of the independence of the theory under the changes of the quantum and classical gauges is given. The singularities appearing in the perturbative expansion are eliminated by properly combining dimensional regularization with the Nakanishi infrared regularization for the invariant functions in the operator quantization of the $\\alpha$-dependent gauge theory. First-order evaluations of various quantities are presented, illustrating the gauge invariance-properties.
Development of the full range vange vacuum gauge
Energy Technology Data Exchange (ETDEWEB)
Oh, B. H.; In, S. R.; Jung, K. S.; Jeong, S. H
2001-01-01
The pirani, enning end full range gauges developed during this study had made good characteristics compared with the measured results of customized other gauges, and this results show the possibility of developing the gauges by ourselves in Korea. In order to make a competition with the customized gauges of other countries, it is necessary to upgrade several points to have good characteristics over the large range of the pressure. The new effort will be made in developing the full scale gauge in the next year.
Development of the Pirani and penning vacuum gauges
Energy Technology Data Exchange (ETDEWEB)
Oh, B. H.; In, S. R.; Yoon, B. J.; Yoon, J. S
2000-02-01
The Pirani and penning gauges developed during this study had made good characteristics compared with the measured results of customized other gauges, and this results show the possibility of developing the gauges by ourselves in Korea. In order to make a competition with the customized gauges of other countries, it is necessary to upgrade several points to have good characteristics over the large range of the pressure. The new efforts will be made in developing the full scale gauge in the next year. (author)