WorldWideScience

Sample records for ranging error time-delay

  1. Extended Lock Range Zero-Crossing Digital Phase-Locked Loop with Time Delay

    Directory of Open Access Journals (Sweden)

    Nasir Qassim

    2005-01-01

    Full Text Available The input frequency limit of the conventional zero-crossing digital phase-locked loop (ZCDPLL is due to the operating time of the digital circuitry inside the feedback loop. A solution that has been previously suggested is the introduction of a time delay in the feedback path of the loop to allow the digital circuits to complete their sample processing before the next sample is received. However, this added delay will limit the stable operation range and hence lock range of the loop. The objective of this work is to extend the lock range of ZCDPLL with time delay by using a chaos control. The tendency of the loop to diverge is measured and fed back as a form of linear stabilization. The lock range extension has been confirmed through the use of a bifurcation diagram, and Lyapunov exponent.

  2. Time Delay and Long-Range Connection Induced Synchronization Transitions in Newman-Watts Small-World Neuronal Networks

    Science.gov (United States)

    Qian, Yu

    2014-01-01

    The synchronization transitions in Newman-Watts small-world neuronal networks (SWNNs) induced by time delay and long-range connection (LRC) probability have been investigated by synchronization parameter and space-time plots. Four distinct parameter regions, that is, asynchronous region, transition region, synchronous region, and oscillatory region have been discovered at certain LRC probability as time delay is increased. Interestingly, desynchronization is observed in oscillatory region. More importantly, we consider the spatiotemporal patterns obtained in delayed Newman-Watts SWNNs are the competition results between long-range drivings (LRDs) and neighboring interactions. In addition, for moderate time delay, the synchronization of neuronal network can be enhanced remarkably by increasing LRC probability. Furthermore, lag synchronization has been found between weak synchronization and complete synchronization as LRC probability is a little less than 1.0. Finally, the two necessary conditions, moderate time delay and large numbers of LRCs, are exposed explicitly for synchronization in delayed Newman-Watts SWNNs. PMID:24810595

  3. Communication system features dual mode range acquisition plus time delay measurement

    Science.gov (United States)

    Atwood, S. W.; Kline, A. W., Jr.; Welter, N. E.

    1968-01-01

    Communication system combines range acquisition system and time measurement system for tracking high velocity aircraft and spacecraft. The range acquisition system uses a pseudonoise code to determine range and the time measurement system reduces uncontrolled phase variations in the demodulated signal.

  4. Adaptive Fuzzy Fault-Tolerant Output Feedback Tracking Control of Uncertain Stochastic Nonlinear Systems with Unknown Time-Delay and Tracking Error Constrained

    Directory of Open Access Journals (Sweden)

    Shuai Sui

    2014-01-01

    Full Text Available The problem of tracking error constrained adaptive fuzzy output feedback control is investigated for a class of single-input and single-output (SISO stochastic nonlinear systems with actuator faults, unknown time-delay, and unmeasured states. The considered faults are modeled as both loss of effectiveness and lock-in-place. The fuzzy logic systems are used to approximate the unknown nonlinear functions, and a fuzzy adaptive observer is designed for estimating the unmeasured states. By transforming the tracking errors into new virtual error variables and based on backstepping recursive design technique, a new fuzzy adaptive output feedback control method is developed. It is shown that all the signals of the resulting closed-loop system are bounded in probability and the tracking error remains an adjustable neighborhood of the origin within the prescribed bounds. The simulation results are provided to show the effectiveness of the proposed approach.

  5. Time Delay of CGM Sensors

    Science.gov (United States)

    Schmelzeisen-Redeker, Günther; Schoemaker, Michael; Kirchsteiger, Harald; Freckmann, Guido; Heinemann, Lutz; del Re, Luigi

    2015-01-01

    Background: Continuous glucose monitoring (CGM) is a powerful tool to support the optimization of glucose control of patients with diabetes. However, CGM systems measure glucose in interstitial fluid but not in blood. Rapid changes in one compartment are not accompanied by similar changes in the other, but follow with some delay. Such time delays hamper detection of, for example, hypoglycemic events. Our aim is to discuss the causes and extent of time delays and approaches to compensate for these. Methods: CGM data were obtained in a clinical study with 37 patients with a prototype glucose sensor. The study was divided into 5 phases over 2 years. In all, 8 patients participated in 2 phases separated by 8 months. A total number of 108 CGM data sets including raw signals were used for data analysis and were processed by statistical methods to obtain estimates of the time delay. Results: Overall mean (SD) time delay of the raw signals with respect to blood glucose was 9.5 (3.7) min, median was 9 min (interquartile range 4 min). Analysis of time delays observed in the same patients separated by 8 months suggests a patient dependent delay. No significant correlation was observed between delay and anamnestic or anthropometric data. The use of a prediction algorithm reduced the delay by 4 minutes on average. Conclusions: Prediction algorithms should be used to provide real-time CGM readings more consistent with simultaneous measurements by SMBG. Patient specificity may play an important role in improving prediction quality. PMID:26243773

  6. Time-Delay Interferometry

    Directory of Open Access Journals (Sweden)

    Massimo Tinto

    2014-08-01

    Full Text Available Equal-arm detectors of gravitational radiation allow phase measurements many orders of magnitude below the intrinsic phase stability of the laser injecting light into their arms. This is because the noise in the laser light is common to both arms, experiencing exactly the same delay, and thus cancels when it is differenced at the photo detector. In this situation, much lower level secondary noises then set the overall performance. If, however, the two arms have different lengths (as will necessarily be the case with space-borne interferometers, the laser noise experiences different delays in the two arms and will hence not directly cancel at the detector. In order to solve this problem, a technique involving heterodyne interferometry with unequal arm lengths and independent phase-difference readouts has been proposed. It relies on properly time-shifting and linearly combining independent Doppler measurements, and for this reason it has been called time-delay interferometry (TDI. This article provides an overview of the theory, mathematical foundations, and experimental aspects associated with the implementation of TDI. Although emphasis on the application of TDI to the Laser Interferometer Space Antenna (LISA mission appears throughout this article, TDI can be incorporated into the design of any future space-based mission aiming to search for gravitational waves via interferometric measurements. We have purposely left out all theoretical aspects that data analysts will need to account for when analyzing the TDI data combinations.

  7. PRECISION TIME-DELAY GENERATOR

    Science.gov (United States)

    Carr, B.J.; Peckham, V.D.

    1959-06-16

    A precision time-delay generator circuit with low jitter is described. The first thyratron has a series resonant circuit and a diode which is connected to the second thyratron. The first thyratron is triggered at the begin-ning of a time delay and a capacitor is discharged through the first thyratron and the diode, thereby, triggering the second thyratron. (T.R.H.) l6l9O The instrument described can measure pressures between sea level and 300,000 ft. The pressure- sensing transducer of the instrument is a small cylindrical tube with a thin foil of titanium-tritium fastened around the inside of the tube. Output is a digital signal which can be used for storage or telemetering more conveniently than an analog signal. (W.D.M.) l6l9l An experimental study was made on rolling contacts in the temperature range of 550 to 1000 deg F. Variables such as material composition, hardness, and operating conditions were investigated in a rolling test stand. Ball bearing tests were run to determine the effect of design parameters, bearing materials, lubricants, and operating conditions. (auth)

  8. Time Delay in Molecular Photoionization

    CERN Document Server

    Hockett, P; Villeneuve, D M; Corkum, P B

    2015-01-01

    Time-delays in the photoionization of molecules are investigated. As compared to atomic ionization, the time-delays expected from molecular ionization present a much richer phenomenon, with a strong spatial dependence due to the anisotropic nature of the molecular scattering potential. We investigate this from a scattering theory perspective, and make use of molecular photoionization calculations to examine this effect in representative homonuclear and hetronuclear diatomic molecules, nitrogen and carbon monoxide. We present energy and angle-resolved maps of the Wigner delay time for single-photon valence ionization, and discuss the possibilities for experimental measurements.

  9. LiDAR-IMU Time Delay Calibration Based on Iterative Closest Point and Iterated Sigma Point Kalman Filter.

    Science.gov (United States)

    Liu, Wanli

    2017-03-08

    The time delay calibration between Light Detection and Ranging (LiDAR) and Inertial Measurement Units (IMUs) is an essential prerequisite for its applications. However, the correspondences between LiDAR and IMU measurements are usually unknown, and thus cannot be computed directly for the time delay calibration. In order to solve the problem of LiDAR-IMU time delay calibration, this paper presents a fusion method based on iterative closest point (ICP) and iterated sigma point Kalman filter (ISPKF), which combines the advantages of ICP and ISPKF. The ICP algorithm can precisely determine the unknown transformation between LiDAR-IMU; and the ISPKF algorithm can optimally estimate the time delay calibration parameters. First of all, the coordinate transformation from the LiDAR frame to the IMU frame is realized. Second, the measurement model and time delay error model of LiDAR and IMU are established. Third, the methodology of the ICP and ISPKF procedure is presented for LiDAR-IMU time delay calibration. Experimental results are presented that validate the proposed method and demonstrate the time delay error can be accurately calibrated.

  10. Time Delay for Aerial Ammonia Concentration Measurements in Livestock Buildings

    OpenAIRE

    Rom; Zhang

    2010-01-01

    Correct measurements of ammonia concentration in air still present considerable challenges. The high water solubility and polarity can cause it to adsorb on surfaces in the entire sampling system, including sampling lines, filters, valves, pumps and instruments, causing substantial measuring errors and time delays. To estimate time delay characteristics of a Photo Acoustic Multi Gas Monitor 1312 and a Multi Point Sampler continuous measurement of aerial ammonia concentrations at different lev...

  11. Computation of the Different Errors in the Ballistic Missiles Range

    OpenAIRE

    Abd El-Salam, F. A.; Abd El-Bar, S. E.

    2011-01-01

    The ranges of the ballistic missile trajectories are very sensitive to any kind of errors. Most of the missile trajectory is a part of an elliptical orbit. In this work, the missile problem is stated. The variations in the orbital elements are derived using Lagrange planetary equations. Explicit expressions for the errors in the missile range due to the in-orbit plane changes are derived. Explicit expressions for the errors in the missile range due to the out-of-orbit plane changes are derive...

  12. Synchronizing time delay systems using variable delay in coupling

    Energy Technology Data Exchange (ETDEWEB)

    Ambika, G., E-mail: g.ambika@iiserpune.ac.in [Indian Institute of Science Education and Research, Pune 411 021 (India); Amritkar, R.E., E-mail: amritkar@prl.res.in [Physical Research Laboratory, Ahmedabad 380 009 (India)

    2011-11-15

    Highlights: > Delay and anticipation in coupling function varies with system dynamics. > Delay or anticipation of the synchronized state is independent of system delay. > Stability analysis developed is quite general. > We demonstrate enhanced security in communication. > Generalized synchronization possible over a wide range of parameter mismatch. - Abstract: We present a mechanism for synchronizing time delay systems using one way coupling with a variable delay in coupling that is reset at finite intervals. We present the analysis of the error dynamics that helps to isolate regions of stability of the synchronized state in the parameter space of interest for single and multiple delays. We supplement this by numerical simulations in a standard time delay system like Mackey Glass system. This method has the advantage that it can be adjusted to be delay or anticipatory in synchronization with a time which is independent of the system delay. We demonstrate the use of this method in communication using the bi channel scheme. We show that since the synchronizing channel carries information from transmitter only at intervals of reset time, it is not susceptible to an easy reconstruction.

  13. Telepresence, time delay, and adaptation

    Science.gov (United States)

    Held, Richard; Durlach, Nathaniel

    1989-01-01

    Displays are now being used extensively throughout the society. More and more time is spent watching television, movies, computer screens, etc. Furthermore, in an increasing number of cases, the observer interacts with the display and plays the role of operator as well as observer. To a large extent, the normal behavior in the normal environment can also be thought of in these same terms. Taking liberties with Shakespeare, it might be said, all the world's a display and all the individuals in it are operators in and on the display. Within this general context of interactive display systems, a discussion is began with a conceptual overview of a particular class of such systems, namely, teleoperator systems. The notion is considered of telepresence and the factors that limit telepresence, including decorrelation between the: (1) motor output of the teleoperator as sensed directly via the kinesthetic/tactual system, and (2) the motor output of the teleoperator as sensed indirectly via feedback from the slave robot, i.e., via a visual display of the motor actions of the slave robot. Finally, the deleterious effect of time delay (a particular decorrelation) on sensory-motor adaptation (an important phenomenon related to telepresence) is examined.

  14. Memorized discrete systems and time-delay

    CERN Document Server

    Luo, Albert C J

    2017-01-01

    This book examines discrete dynamical systems with memory—nonlinear systems that exist extensively in biological organisms and financial and economic organizations, and time-delay systems that can be discretized into the memorized, discrete dynamical systems. It book further discusses stability and bifurcations of time-delay dynamical systems that can be investigated through memorized dynamical systems as well as bifurcations of memorized nonlinear dynamical systems, discretization methods of time-delay systems, and periodic motions to chaos in nonlinear time-delay systems. The book helps readers find analytical solutions of MDS, change traditional perturbation analysis in time-delay systems, detect motion complexity and singularity in MDS; and determine stability, bifurcation, and chaos in any time-delay system.

  15. Dynamics of Nonlinear Time-Delay Systems

    CERN Document Server

    Lakshmanan, Muthusamy

    2010-01-01

    Synchronization of chaotic systems, a patently nonlinear phenomenon, has emerged as a highly active interdisciplinary research topic at the interface of physics, biology, applied mathematics and engineering sciences. In this connection, time-delay systems described by delay differential equations have developed as particularly suitable tools for modeling specific dynamical systems. Indeed, time-delay is ubiquitous in many physical systems, for example due to finite switching speeds of amplifiers in electronic circuits, finite lengths of vehicles in traffic flows, finite signal propagation times in biological networks and circuits, and quite generally whenever memory effects are relevant. This monograph presents the basics of chaotic time-delay systems and their synchronization with an emphasis on the effects of time-delay feedback which give rise to new collective dynamics. Special attention is devoted to scalar chaotic/hyperchaotic time-delay systems, and some higher order models, occurring in different bran...

  16. On Tuning PI Controllers for Integrating Plus Time Delay Systems

    Directory of Open Access Journals (Sweden)

    David Di Ruscio

    2010-10-01

    Full Text Available Some analytical results concerning PI controller tuning based on integrator plus time delay models are worked out and presented. A method for obtaining PI controller parameters, Kp=alpha/(k*tau, and, Ti=beta*tau, which ensures a given prescribed maximum time delay error, dtau_max, to time delay, tau, ratio parameter delta=dau_max/tau, is presented. The corner stone in this method, is a method product parameter, c=alpha*beta. Analytical relations between the PI controller parameters, Ti, and, Kp, and the time delay error parameter, delta, is presented, and we propose the setting, beta=c/a*(delta+1, and, alpha=a/(delta+1, which gives, Ti=c/a*(delta+1*tau, and Kp=a/((delta+1*k*tau, where the parameter, a, is constant in the method product parameter, c=alpha*beta. It also turns out that the integral time, Ti, is linear in, delta, and the proportional gain, Kp, inversely proportional to, delta+1. For the original Ziegler Nichols (ZN method this parameter is approximately, c=2.38, and the presented method may e.g., be used to obtain new modified ZN parameters with increased robustness margins, also documented in the paper.

  17. Monolithic Time Delay Integrated APD Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of the proposed program by Epitaxial Technologies is to develop monolithic time delay integrated avalanche photodiode (APD) arrays with sensitivity...

  18. Atmospheric Error Correction of the Laser Beam Ranging

    Directory of Open Access Journals (Sweden)

    J. Saydi

    2014-01-01

    Full Text Available Atmospheric models based on surface measurements of pressure, temperature, and relative humidity have been used to increase the laser ranging accuracy by ray tracing. Atmospheric refraction can cause significant errors in laser ranging systems. Through the present research, the atmospheric effects on the laser beam were investigated by using the principles of laser ranging. Atmospheric correction was calculated for 0.532, 1.3, and 10.6 micron wavelengths through the weather conditions of Tehran, Isfahan, and Bushehr in Iran since March 2012 to March 2013. Through the present research the atmospheric correction was computed for meteorological data in base of monthly mean. Of course, the meteorological data were received from meteorological stations in Tehran, Isfahan, and Bushehr. Atmospheric correction was calculated for 11, 100, and 200 kilometers laser beam propagations under 30°, 60°, and 90° rising angles for each propagation. The results of the study showed that in the same months and beam emission angles, the atmospheric correction was most accurate for 10.6 micron wavelength. The laser ranging error was decreased by increasing the laser emission angle. The atmospheric correction with two Marini-Murray and Mendes-Pavlis models for 0.532 nm was compared.

  19. Time delay for aerial ammonia concentration measurements in livestock buildings.

    Science.gov (United States)

    Rom, Hans Benny; Zhang, Guo-Qiang

    2010-01-01

    Correct measurements of ammonia concentration in air still present considerable challenges. The high water solubility and polarity can cause it to adsorb on surfaces in the entire sampling system, including sampling lines, filters, valves, pumps and instruments, causing substantial measuring errors and time delays. To estimate time delay characteristics of a Photo Acoustic Multi Gas Monitor 1312 and a Multi Point Sampler continuous measurement of aerial ammonia concentrations at different levels was performed. In order to obtain reproducible data, a wind tunnel was used to generate selected concentrations inside and a background concentration representing the air inlet of the tunnel. Four different concentration levels (0.8 ppm, 6.2 ppm, 9.7 ppm and 13.7 ppm) were used in the experiments, with an additional outdoor concentration level as background. The results indicated a substantial time delay when switching between the measuring positions with high and low concentration and vice versa. These properties may course serious errors for estimation of e.g. gas emissions whenever more than one measuring channel is applied. To reduce the measurement errors, some suggestions regarding design of the measurement setup and measuring strategies were presented.

  20. Time Delay for Aerial Ammonia Concentration Measurements in Livestock Buildings

    Directory of Open Access Journals (Sweden)

    Hans Benny Rom

    2010-05-01

    Full Text Available Correct measurements of ammonia concentration in air still present considerable challenges. The high water solubility and polarity can cause it to adsorb on surfaces in the entire sampling system, including sampling lines, filters, valves, pumps and instruments, causing substantial measuring errors and time delays. To estimate time delay characteristics of a Photo Acoustic Multi Gas Monitor 1312 and a Multi Point Sampler continuous measurement of aerial ammonia concentrations at different levels was performed. In order to obtain reproducible data, a wind tunnel was used to generate selected concentrations inside and a background concentration representing the air inlet of the tunnel. Four different concentration levels (0.8 ppm, 6.2 ppm, 9.7 ppm and 13.7 ppm were used in the experiments, with an additional outdoor concentration level as background. The results indicated a substantial time delay when switching between the measuring positions with high and low concentration and vice versa. These properties may course serious errors for estimation of e.g. gas emissions whenever more than one measuring channel is applied. To reduce the measurement errors, some suggestions regarding design of the measurement setup and measuring strategies were presented.

  1. Time Delay Estimation Algoritms for Echo Cancellation

    Directory of Open Access Journals (Sweden)

    Boris Simak

    2011-01-01

    Full Text Available The following case study describes how to eliminate echo in a VoIP network using delay estimation algorithms. It is known that echo with long transmission delays becomes more noticeable to users. Thus, time delay estimation, as a part of echo cancellation, is an important topic during transmission of voice signals over packetswitching telecommunication systems. An echo delay problem associated with IP-based transport networks is discussed in the following text. The paper introduces the comparative study of time delay estimation algorithm, used for estimation of the true time delay between two speech signals. Experimental results of MATLab simulations that describe the performance of several methods based on cross-correlation, normalized crosscorrelation and generalized cross-correlation are also presented in the paper.

  2. Compact optically-fed microwave true-time delay using liquid crystal photonic bandgap fiber device

    DEFF Research Database (Denmark)

    Wei, Lei; Xue, Weiqi; Chen, Yaohui

    2009-01-01

    Electrically tunable liquid crystal photonic bandgap fiber device based optically-fed microwave true-time delay is demonstrated. A maximum ~60° phase shift and an averaged ~7.2ps true time delay are obtained over the modulation frequency range 1GHz-19GHz.......Electrically tunable liquid crystal photonic bandgap fiber device based optically-fed microwave true-time delay is demonstrated. A maximum ~60° phase shift and an averaged ~7.2ps true time delay are obtained over the modulation frequency range 1GHz-19GHz....

  3. STRONGLY LENSED JETS, TIME DELAYS, AND THE VALUE OF H {sub 0}

    Energy Technology Data Exchange (ETDEWEB)

    Barnacka, Anna; Geller, Margaret J.; Benbow, Wystan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-20, Cambridge, MA 02138 (United States); Dell' Antonio, Ian P., E-mail: abarnacka@cfa.harvard.edu [Department of Physics, Brown University, Box 1843, Providence, RI 02912 (United States)

    2015-01-20

    In principle, the most straightforward method of estimating the Hubble constant relies on time delays between mirage images of strongly lensed sources. It is a puzzle, then, that the values of H {sub 0} obtained with this method span a range from ∼50-100 km s{sup –1}Mpc{sup –1}. Quasars monitored to measure these time delays are multi-component objects. The variability may arise from different components of the quasar or may even originate from a jet. Misidentifying a variable-emitting region in a jet with emission from the core region may introduce an error in the Hubble constant derived from a time delay. Here, we investigate the complex structure of the sources as the underlying physical explanation of the wide spread in values of the Hubble constant based on gravitational lensing. Our Monte Carlo simulations demonstrate that the derived value of the Hubble constant is very sensitive to the offset between the center of the emission and the center of the variable emitting region. Therefore, we propose using the value of H {sub 0} known from other techniques to spatially resolve the origin of the variable emission once the time delay is measured. We particularly advocate this method for gamma-ray astronomy, where the angular resolution of detectors reaches approximately 0.°1; lensed blazars offer the only route for identify the origin of gamma-ray flares. Large future samples of gravitationally lensed sources identified with Euclid, SKA, and LSST will enable a statistical determination of H {sub 0}.

  4. dependent time-delay: Stability and stabilizability

    Directory of Open Access Journals (Sweden)

    E. K. Boukas

    2002-01-01

    Full Text Available This paper considers stochastic stability and stochastic stabilizability of linear discrete-time systems with Markovian jumps and mode-dependent time-delays. Linear matrix inequality (LMI techniques are used to obtain sufficient conditions for the stochastic stability and stochastic stabilizability of this class of systems. A control design algorithm is also provided. A numerical example is given to demonstrate the effectiveness of the obtained theoretical results.

  5. Photoemission and photoionization time delays and rates

    Directory of Open Access Journals (Sweden)

    L. Gallmann

    2017-11-01

    Full Text Available Ionization and, in particular, ionization through the interaction with light play an important role in fundamental processes in physics, chemistry, and biology. In recent years, we have seen tremendous advances in our ability to measure the dynamics of photo-induced ionization in various systems in the gas, liquid, or solid phase. In this review, we will define the parameters used for quantifying these dynamics. We give a brief overview of some of the most important ionization processes and how to resolve the associated time delays and rates. With regard to time delays, we ask the question: how long does it take to remove an electron from an atom, molecule, or solid? With regard to rates, we ask the question: how many electrons are emitted in a given unit of time? We present state-of-the-art results on ionization and photoemission time delays and rates. Our review starts with the simplest physical systems: the attosecond dynamics of single-photon and tunnel ionization of atoms in the gas phase. We then extend the discussion to molecular gases and ionization of liquid targets. Finally, we present the measurements of ionization delays in femto- and attosecond photoemission from the solid–vacuum interface.

  6. Chirped-pulse programming of optical coherent transient true-time delays.

    Science.gov (United States)

    Merkel, K D; Babbitt, W R

    1998-04-01

    Programming an optical coherent transient true-time delay device with two frequency-chirped pulses provides a novel means of performing broadband (> >GHz) true-time delay with a wide dynamic range of delays with fine temporal resolution. We have demonstrated true-time delays exceeding 2micros with sub-100-ps resolution. Chirped-pulse programming has the advantages over the previously proposed brief pulse programming [Opt. Lett. 21 1102 (1996)] of reduced instantaneous power requirements and the ability to control the true-time delay by frequency shifting the programming pulses.

  7. Complex Time-Delay Systems Theory and Applications

    CERN Document Server

    Atay, Fatihcan M

    2010-01-01

    Time delays in dynamical systems arise as an inevitable consequence of finite speeds of information transmission. Realistic models increasingly demand the inclusion of delays in order to properly understand, analyze, design, and control real-life systems. The goal of this book is to present the state-of-the-art in research on time-delay dynamics in the framework of complex systems and networks. While the mathematical theory of delay equations is quite mature, its application to the particular problems of complex systems and complexity is a newly emerging field, and the present volume aims to play a pioneering role in this perspective. The chapters in this volume are authored by renowned experts and cover both theory and applications in a wide range of fields, with examples extending from neuroscience and biology to laser physics and vehicle traffic. Furthermore, all chapters include sufficient introductory material and extensive bibliographies, making the book a self-contained reference for both students and ...

  8. Time Delay Estimation in Room Acoustic Environments: An Overview

    Directory of Open Access Journals (Sweden)

    Benesty Jacob

    2006-01-01

    Full Text Available Time delay estimation has been a research topic of significant practical importance in many fields (radar, sonar, seismology, geophysics, ultrasonics, hands-free communications, etc.. It is a first stage that feeds into subsequent processing blocks for identifying, localizing, and tracking radiating sources. This area has made remarkable advances in the past few decades, and is continuing to progress, with an aim to create processors that are tolerant to both noise and reverberation. This paper presents a systematic overview of the state-of-the-art of time-delay-estimation algorithms ranging from the simple cross-correlation method to the advanced blind channel identification based techniques. We discuss the pros and cons of each individual algorithm, and outline their inherent relationships. We also provide experimental results to illustrate their performance differences in room acoustic environments where reverberation and noise are commonly encountered.

  9. Improving time-delay cosmography with spatially resolved kinematics

    Science.gov (United States)

    Shajib, Anowar J.; Treu, Tommaso; Agnello, Adriano

    2018-01-01

    Strongly gravitational lensed quasars can be used to measure the so-called time-delay distance DΔt, and thus the Hubble constant H0 and other cosmological parameters. Stellar kinematics of the deflector galaxy play an essential role in this measurement by: (i) helping break the mass-sheet degeneracy; (ii) determining in principle the angular diameter distance Dd to the deflector and thus further improving the cosmological constraints. In this paper we simulate observations of lensed quasars with integral field spectrographs and show that spatially resolved kinematics of the deflector enables further progress by helping break the mass-anisotropy degeneracy. Furthermore, we use our simulations to obtain realistic error estimates with current/upcoming instruments like OSIRIS on Keck and NIRSPEC on the James Webb Space Telescope for both distances (typically ∼6 per cent on DΔt and ∼10 per cent on Dd). We use the error estimates to compute cosmological forecasts for the sample of nine lenses that currently have well-measured time delays and deep Hubble Space Telescope images and for a sample of 40 lenses that is projected to be available in a few years through follow-up of candidates found in ongoing wide field surveys. We find that H0 can be measured with 2 per cent (1 per cent) precision from nine (40) lenses in a flat Λcold dark matter cosmology. We study several other cosmological models beyond the flat Λcold dark matter model and find that time-delay lenses with spatially resolved kinematics can greatly improve the precision of the cosmological parameters measured by cosmic microwave background data.

  10. Error sensitivity analysis in 10-30-day extended range forecasting by using a nonlinear cross-prediction error model

    Science.gov (United States)

    Xia, Zhiye; Xu, Lisheng; Chen, Hongbin; Wang, Yongqian; Liu, Jinbao; Feng, Wenlan

    2017-06-01

    Extended range forecasting of 10-30 days, which lies between medium-term and climate prediction in terms of timescale, plays a significant role in decision-making processes for the prevention and mitigation of disastrous meteorological events. The sensitivity of initial error, model parameter error, and random error in a nonlinear crossprediction error (NCPE) model, and their stability in the prediction validity period in 10-30-day extended range forecasting, are analyzed quantitatively. The associated sensitivity of precipitable water, temperature, and geopotential height during cases of heavy rain and hurricane is also discussed. The results are summarized as follows. First, the initial error and random error interact. When the ratio of random error to initial error is small (10-6-10-2), minor variation in random error cannot significantly change the dynamic features of a chaotic system, and therefore random error has minimal effect on the prediction. When the ratio is in the range of 10-1-2 (i.e., random error dominates), attention should be paid to the random error instead of only the initial error. When the ratio is around 10-2-10-1, both influences must be considered. Their mutual effects may bring considerable uncertainty to extended range forecasting, and de-noising is therefore necessary. Second, in terms of model parameter error, the embedding dimension m should be determined by the factual nonlinear time series. The dynamic features of a chaotic system cannot be depicted because of the incomplete structure of the attractor when m is small. When m is large, prediction indicators can vanish because of the scarcity of phase points in phase space. A method for overcoming the cut-off effect ( m > 4) is proposed. Third, for heavy rains, precipitable water is more sensitive to the prediction validity period than temperature or geopotential height; however, for hurricanes, geopotential height is most sensitive, followed by precipitable water.

  11. Dynamical Performances of a Vibration Absorber for Continuous Structure considering Time-Delay Coupling

    Directory of Open Access Journals (Sweden)

    Xiuting Sun

    2016-01-01

    Full Text Available The nonlinear effect incurred by time delay in vibration control is investigated in this study via a vibration absorber coupled with a continuous beam structure. The stability of the vibration absorber coupled structure system with time-delay coupling is firstly studied, which provides a general guideline for the potential time delay to be introduced to the system. Then it is shown that there is a specific region for the time delay which can bring bifurcation modes to the dynamic response of the coupling system, and the vibration energy at low frequencies can be transferred or absorbed due to the bifurcation mode and the vibration in the corresponding frequency range is thus suppressed. The nonlinear mechanism of this vibration suppression incurred by the coupling time delay is discussed in detail, which provides a novel and alternative approach to the analysis, design, and control of vibration absorbers in engineering practice.

  12. Controlling flow time delays in flexible manufacturing cells

    NARCIS (Netherlands)

    Slomp, J.; Caprihan, R.; Bokhorst, J. A. C.

    2009-01-01

    Flow time delays in Flexible Manufacturing Cells (FMCs) are caused by transport and clamping/reclamping activities. This paper shows how dynamic scheduling parameters may control the flow times of jobs and the available task windows for flow time delays.

  13. First-order, worldwide, ionospheric, time-delay algorithm. Air force surveys in geophysics

    Energy Technology Data Exchange (ETDEWEB)

    Klobuchar, J.A.

    1975-09-25

    A first-order model algorithm designed to reduce ionospheric time-delay errors by approximately 50% rms on a world-wide basis for single frequency users of the Global Positioning Systen/NAVSTAR is described. The algorithm was designed for greatest accuracy during times of day when ionospheric time-delay errors are expected to be largest. The algorithm is available in several options, from one which requires only a monthly mean solar-flux value to one which requires 9 daily or monthly update coefficients. Several approximations also are made in the geometry calculations to reduce further operational user computer storage and running time requirements. (auth)

  14. Cosmological Constraints from Gravitational Lens Time Delays

    Science.gov (United States)

    Coe, Dan; Moustakas, Leonidas A.

    2009-11-01

    Future large ensembles of time delay (TD) lenses have the potential to provide interesting cosmological constraints complementary to those of other methods. In a flat universe with constant w including a Planck prior, The Large Synoptic Survey Telescope TD measurements for ~4000 lenses should constrain the local Hubble constant h to ~0.007 (~1%), Ω de to ~0.005, and w to ~0.026 (all 1σ precisions). Similar constraints could be obtained by a dedicated gravitational lens observatory (OMEGA) which would obtain precise TD and mass model measurements for ~100 well-studied lenses. We compare these constraints (as well as those for a more general cosmology) to the "optimistic Stage IV" constraints expected from weak lensing, supernovae, baryon acoustic oscillations, and cluster counts, as calculated by the Dark Energy Task Force. TDs yield a modest constraint on a time-varying w(z), with the best constraint on w(z) at the "pivot redshift" of z ≈ 0.31. Our Fisher matrix calculation is provided to allow TD constraints to be easily compared to and combined with constraints from other experiments. We also show how cosmological constraining power varies as a function of numbers of lenses, lens model uncertainty, TD precision, redshift precision, and the ratio of four-image to two-image lenses.

  15. Correction of motion measurement errors beyond the range resolution of a synthetic aperture radar

    Science.gov (United States)

    Doerry, Armin W [Albuquerque, NM; Heard, Freddie E [Albuquerque, NM; Cordaro, J Thomas [Albuquerque, NM

    2008-06-24

    Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.

  16. Noether Theorem for Nonholonomic Systems with Time Delay

    Directory of Open Access Journals (Sweden)

    Shi-Xin Jin

    2015-01-01

    Full Text Available The paper focuses on studying the Noether theorem for nonholonomic systems with time delay. Firstly, the differential equations of motion for nonholonomic systems with time delay are established, which is based on the Hamilton principle with time delay and the Lagrange multiplier rules. Secondly, based upon the generalized quasi-symmetric transformations for nonconservative systems with time delay, the Noether theorem for corresponding holonomic systems is given. Finally, we obtain the Noether theorem for the nonholonomic nonconservative systems with time delay. At the end of the paper, an example is given to illustrate the application of the results.

  17. Multipath error in range rate measurement by PLL-transponder/GRARR/TDRS

    Science.gov (United States)

    Sohn, S. J.

    1970-01-01

    Range rate errors due to specular and diffuse multipath are calculated for a tracking and data relay satellite (TDRS) using an S band Goddard range and range rate (GRARR) system modified with a phase-locked loop transponder. Carrier signal processing in the coherent turn-around transponder and the GRARR reciever is taken into account. The root-mean-square (rms) range rate error was computed for the GRARR Doppler extractor and N-cycle count range rate measurement. Curves of worst-case range rate error are presented as a function of grazing angle at the reflection point. At very low grazing angles specular scattering predominates over diffuse scattering as expected, whereas for grazing angles greater than approximately 15 deg, the diffuse multipath predominates. The range rate errors at different low orbit altutudes peaked between 5 and 10 deg grazing angles.

  18. Systematic identification and robust control design for uncertain time delay processes

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Poulsen, Niels Kjølstad; Jørgensen, Sten Bay

    be effectively rejected. We proposed a model predictive control implementation with a dead-band on the penalty of the tracking error as a mean to achieve good closed loop performance on time delay system. We have in simulation tested our controller on a SISO system of an industrial furnace and a MIMO system...

  19. Time-delayed chameleon: Analysis, synchronization and FPGA implementation

    Science.gov (United States)

    Rajagopal, Karthikeyan; Jafari, Sajad; Laarem, Guessas

    2017-12-01

    In this paper we report a time-delayed chameleon-like chaotic system which can belong to different families of chaotic attractors depending on the choices of parameters. Such a characteristic of self-excited and hidden chaotic flows in a simple 3D system with time delay has not been reported earlier. Dynamic analysis of the proposed time-delayed systems are analysed in time-delay space and parameter space. A novel adaptive modified functional projective lag synchronization algorithm is derived for synchronizing identical time-delayed chameleon systems with uncertain parameters. The proposed time-delayed systems and the synchronization algorithm with controllers and parameter estimates are then implemented in FPGA using hardware-software co-simulation and the results are presented.

  20. Order and chaos in quantum irregular scattering Wigner's time delay

    CERN Document Server

    Eckhardt, B

    1993-01-01

    Abstract: Recent developments in the semiclassical analysis of chaotic systems are reviewed and illustrated for Wigner's time delay in elastic scattering of a point particle from three disks in the plane. The convergence of the cycle expanded periodic orbit expression for Wigners time delay is demonstrated. Different regimes in form factor (the Fourier transform of the two point correlation function) of the semiclassical time delay are identified and their relation to Berry's semiclassical theory of the spectral rigidity are discussed.

  1. Periodic flows to chaos in time-delay systems

    CERN Document Server

    Luo, Albert C J

    2017-01-01

    This book for the first time examines periodic motions to chaos in time-delay systems, which exist extensively in engineering. For a long time, the stability of time-delay systems at equilibrium has been of great interest from the Lyapunov theory-based methods, where one cannot achieve the ideal results. Thus, time-delay discretization in time-delay systems was used for the stability of these systems. In this volume, Dr. Luo presents an accurate method based on the finite Fourier series to determine periodic motions in nonlinear time-delay systems. The stability and bifurcation of periodic motions are determined by the time-delayed system of coefficients in the Fourier series and the method for nonlinear time-delay systems is equivalent to the Laplace transformation method for linear time-delay systems. Facilitates discovery of analytical solutions of nonlinear time-delay systems; Illustrates bifurcation trees of periodic motions to chaos; Helps readers identify motion complexity and singularity; Explains pro...

  2. Time Delay Evolution of Five Active Galactic Nuclei

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 36; Issue 4. Time Delay Evolution of Five ... Here we investigate light curves of the continuum and emission lines of five type 1 active galactic nuclei (AGN) from our monitoring campaign, to test time-evolution of their time delays. Using both modeled and ...

  3. Using Constant Time Delay to Teach Braille Word Recognition

    Science.gov (United States)

    Hooper, Jonathan; Ivy, Sarah; Hatton, Deborah

    2014-01-01

    Introduction: Constant time delay has been identified as an evidence-based practice to teach print sight words and picture recognition (Browder, Ahlbrim-Delzell, Spooner, Mims, & Baker, 2009). For the study presented here, we tested the effectiveness of constant time delay to teach new braille words. Methods: A single-subject multiple baseline…

  4. Angle-resolved time delay in photoemission of neon

    CERN Document Server

    Wätzel, J; Pavlyukh, Y; Berakdar, J

    2013-01-01

    We investigate theoretically the relative time delay of photoelectrons originating from the different subshells (2s and 2p) of neon. This quantity was measured via attosecond streaking and studied theoretically by Schultze et al. [Science 328, 1658 (2010)]. A substantial discrepancy was found between the measured and the calculated values of the relative time delay. Several theoretical studies has been put forward to resolve this issue, e.g. by including correlation effects. In the present paper we explore the directional dependence of the photoelectron emission and the consequences for the inferred time delay. Our quantum mechanical calculations for an electron subject to laser fields and an effective single particle potential show that the time delay is indeed strongly angular dependent. Compared to strict forward emission we find that accounting for emission within a cone of 45 deg aperture, leads to a substantially increase of the relative time delay.

  5. Photonic Circuits with Time Delays and Quantum Feedback.

    Science.gov (United States)

    Pichler, Hannes; Zoller, Peter

    2016-03-04

    We study the dynamics of photonic quantum circuits consisting of nodes coupled by quantum channels. We are interested in the regime where the time delay in communication between the nodes is significant. This includes the problem of quantum feedback, where a quantum signal is fed back on a system with a time delay. We develop a matrix product state approach to solve the quantum stochastic Schrödinger equation with time delays, which accounts in an efficient way for the entanglement of nodes with the stream of emitted photons in the waveguide, and thus the non-Markovian character of the dynamics. We illustrate this approach with two paradigmatic quantum optical examples: two coherently driven distant atoms coupled to a photonic waveguide with a time delay, and a driven atom coupled to its own output field with a time delay as an instance of a quantum feedback problem.

  6. Consensus-based distributed estimation in multi-agent systems with time delay

    Science.gov (United States)

    Abdelmawgoud, Ahmed

    During the last years, research in the field of cooperative control of swarm of robots, especially Unmanned Aerial Vehicles (UAV); have been improved due to the increase of UAV applications. The ability to track targets using UAVs has a wide range of applications not only civilian but also military as well. For civilian applications, UAVs can perform tasks including, but not limited to: map an unknown area, weather forecasting, land survey, and search and rescue missions. On the other hand, for military personnel, UAV can track and locate a variety of objects, including the movement of enemy vehicles. Consensus problems arise in a number of applications including coordination of UAVs, information processing in wireless sensor networks, and distributed multi-agent optimization. We consider a widely studied consensus algorithms for processing sensed data by different sensors in wireless sensor networks of dynamic agents. Every agent involved in the network forms a weighted average of its own estimated value of some state with the values received from its neighboring agents. We introduced a novelty of consensus-based distributed estimation algorithms. We propose a new algorithm to reach a consensus given time delay constraints. The proposed algorithm performance was observed in a scenario where a swarm of UAVs measuring the location of a ground maneuvering target. We assume that each UAV computes its state prediction and shares it with its neighbors only. However, the shared information applied to different agents with variant time delays. The entire group of UAVs must reach a consensus on target state. Different scenarios were also simulated to examine the effectiveness and performance in terms of overall estimation error, disagreement between delayed and non-delayed agents, and time to reach a consensus for each parameter contributing on the proposed algorithm.

  7. Adaptive control for time-delay teleoperation systems with uncertain dynamics

    Science.gov (United States)

    Liu, Shan; Zhang, Xia; Zheng, Wenfeng; Yang, Bo

    2017-08-01

    In most teleoperation systems, the dynamics are uncertain and the communications exhibit time delays. In order to confront these problems, this paper reports a position error-based bilateral adaptive controller, in which the unknown operator dynamical parameters and environmental dynamical parameters are included in the unknown vector of the system to be evaluated, adaptive estimate laws are compensated by estimate errors and dissipation by time delays are compensated. By using Lyapunov-Krasovskii stability theorem, it is proved that both position errors and velocities of the teleoperation system asymptotically convergent to zero. Simulations are performed to compare the performance of the proposed controller with the traditional adaptive controller and to demonstrate the efficiency of the developed teleoperation control system.

  8. Time delays for attosecond streaking in photoionization of neon

    CERN Document Server

    Feist, Johannes; Nagele, Stefan; Pazourek, Renate; Burgdörfer, Joachim; Guan, Xiaoxu; Bartschat, Klaus; Schneider, Barry I

    2014-01-01

    We revisit the time-resolved photoemission in neon atoms as probed by attosecond streaking. We calculate streaking time shifts for the emission of 2p and 2s electrons and compare the relative delay as measured in a recent experiment by Schultze et al. [Science 328, 1658 (2010)]. The B-spline R-matrix method is employed to calculate accurate Eisenbud-Wigner-Smith time delays from multi- electron dipole transition matrix elements for photoionization. The additional laser field-induced time shifts in the exit channel are obtained from separate, time-dependent simulations of a full streaking process by solving the time-dependent Schr\\"odinger equation on the single-active-electron level. The resulting accurate total relative streaking time shifts between 2s and 2p emission lie well below the experimental data. We identify the presence of unresolved shake-up satellites in the experiment as a potential source of error in the determination of streaking time shifts.

  9. Probing the cosmic distance duality relation using time delay lenses

    Science.gov (United States)

    Rana, Akshay; Jain, Deepak; Mahajan, Shobhit; Mukherjee, Amitabha; Holanda, R. F. L.

    2017-07-01

    The construction of the cosmic distance-duality relation (CDDR) has been widely studied. However, its consistency with various new observables remains a topic of interest. We present a new way to constrain the CDDR η(z) using different dynamic and geometric properties of strong gravitational lenses (SGL) along with SNe Ia observations. We use a sample of 102 SGL with the measurement of corresponding velocity dispersion σ0 and Einstein radius θE. In addition, we also use a dataset of 12 two image lensing systems containing the measure of time delay Δ t between source images. Jointly these two datasets give us the angular diameter distance DAol of the lens. Further, for luminosity distance, we use the 740 observations from JLA compilation of SNe Ia. To study the combined behavior of these datasets we use a model independent method, Gaussian Process (GP). We also check the efficiency of GP by applying it on simulated datasets, which are generated in a phenomenological way by using realistic cosmological error bars. Finally, we conclude that the combined bounds from the SGL and SNe Ia observation do not favor any deviation of CDDR and are in concordance with the standard value (η=1) within 2σ confidence region, which further strengthens the theoretical acceptance of CDDR.

  10. Precision cosmology with time delay lenses: High resolution imaging requirements

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiao -Lei [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Treu, Tommaso [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Agnello, Adriano [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Auger, Matthew W. [Univ. of Cambridge, Cambridge (United Kingdom); Liao, Kai [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Marshall, Philip J. [Stanford Univ., Stanford, CA (United States)

    2015-09-28

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρtot∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive

  11. Optimal Control with Time Delays via the Penalty Method

    Directory of Open Access Journals (Sweden)

    Mohammed Benharrat

    2014-01-01

    Full Text Available We prove necessary optimality conditions of Euler-Lagrange type for a problem of the calculus of variations with time delays, where the delay in the unknown function is different from the delay in its derivative. Then, a more general optimal control problem with time delays is considered. Main result gives a convergence theorem, allowing us to obtain a solution to the delayed optimal control problem by considering a sequence of delayed problems of the calculus of variations.

  12. Time delay systems theory, numerics, applications, and experiments

    CERN Document Server

    Ersal, Tulga; Orosz, Gábor

    2017-01-01

    This volume collects contributions related to selected presentations from the 12th IFAC Workshop on Time Delay Systems, Ann Arbor, June 28-30, 2015. The included papers present novel techniques and new results of delayed dynamical systems. The topical spectrum covers control theory, numerical analysis, engineering and biological applications as well as experiments and case studies. The target audience primarily comprises research experts in the field of time delay systems, but the book may also be beneficial for graduate students alike. .

  13. The estimation and compensation of processes with time delays

    OpenAIRE

    O'Dwyer, Aidan

    1996-01-01

    The estimation and compensation of processes with time delays have been of interest to academics and practitioners for several decades. A full review of the literature for both model parameter and time delay estimation is presented. Gradient methods of parameter estimation, in open loop, in the time and frequency domains are subsequently considered in detail. Firstly, an algorithm is developed, using an appropriate gradient algorithm, for the estimation of all the parameters of an appropriate...

  14. Extreme events in time-delayed nonlinear optics.

    Science.gov (United States)

    Dal Bosco, Andreas Karsaklian; Wolfersberger, Delphine; Sciamanna, Marc

    2013-03-01

    We report experimentally on extreme events in the pulsating dynamics of an optical time-delayed system, i.e., a diode laser subject to a phase-conjugate feedback. We study the effect of the feedback strength on extreme events' properties. We show a transition to non-Gaussian statistics of the pulse intensity and an increased number of extreme events as the mirror reflectivity increases. The extreme event pulse is anticipated and followed by smaller pulses with time-delay periodicity.

  15. Solar oscillation time delay measurement assisted celestial navigation method

    Science.gov (United States)

    Ning, Xiaolin; Gui, Mingzhen; Zhang, Jie; Fang, Jiancheng; Liu, Gang

    2017-05-01

    Solar oscillation, which causes the sunlight intensity and spectrum frequency change, has been studied in great detail, both observationally and theoretically. In this paper, owing to the existence of solar oscillation, the time delay between the sunlight coming from the Sun directly and the sunlight reflected by the other celestial body such as the satellite of planet or asteroid can be obtained with two optical power meters. Because the solar oscillation time delay is determined by the relative positions of the spacecraft, reflective celestial body and the Sun, it can be adopted as the navigation measurement to estimate the spacecraft's position. The navigation accuracy of single solar oscillation time delay navigation system depends on the time delay measurement accuracy, and is influenced by the distance between spacecraft and reflective celestial body. In this paper, we combine it with the star angle measurement and propose a solar oscillation time delay measurement assisted celestial navigation method for deep space exploration. Since the measurement model of time delay is an implicit function, the Implicit Unscented Kalman Filter (IUKF) is applied. Simulations demonstrate the effectiveness and superiority of this method.

  16. Novel interrogation technique for Tilted Fiber Bragg Gratings sensors based on single wavelength time delay measurements

    Science.gov (United States)

    Pisco, M.; Ricciardi, A.; Campopiano, S.; Caucheteur, C.; Mégret, P.; Cutolo, A.; Cusano, A.

    2009-10-01

    A novel interrogation scheme for Tilted Fiber Bragg Gratings (TFBGs) sensors is here proposed based on single wavelength time delay measurements. To this aim, the group delay of a weakly tilted TFBG has been characterized by direct time domain measurement. The experimental characterization shows the capability of TFBGs to enable superluminal and subluminal propagation of an optical pulse in optical fibers. The sharp group delay features of the TFBGs are exploited for refractometric applications to detect the SRI variations by single wavelength time delay measurements. The obtained preliminary results demonstrate the possibility to detect SRI changes by means of single wavelength time delay measurements with a sensitivity enhanced in the range 1.33-1.40 with respect to previously reported interrogation techniques.

  17. Precision and shortcomings of yaw error estimation using spinner-based light detection and ranging

    DEFF Research Database (Denmark)

    Kragh, Knud Abildgaard; Hansen, Morten Hartvig; Mikkelsen, Torben

    2013-01-01

    When extracting energy from the wind using horizontal axis wind turbines, the ability to align the rotor axis with the mean wind direction is crucial. In previous work, a method for estimating the yaw error based on measurements from a spinner mounted light detection and ranging (LIDAR) device......, the shortcomings of using a spinner mounted LIDAR for yaw error estimation are discussed. The extended simulation study shows that with the applied method, the yaw error can be estimated with a precision of a few degrees, even in highly turbulent flows. Applying the method to experimental data reveals an average...... yaw error of approximately 9° during a period of 2 h, and good correlation is seen between LIDAR-based estimates and met-mast data. The final discussion suggests a number of challenges of the method when applied to measurements in complex flow. Copyright © 2012 John Wiley & Sons, Ltd....

  18. The radio-gamma time delay of the Crab pulsar.

    Science.gov (United States)

    Masnou, J. L.; Agrinier, B.; Barouch, E.; Comte, R.; Costa, E.; Christy, J. C.; Cusumano, G.; Gerardi, G.; Lemoine, D.; Mandrou, P.; Massaro, E.; Matt, G.; Mineo, T.; Niel, M.; Olive, J. F.; Parlier, B.; Sacco, B.; Salvati, M.; Scarsi, L.

    1994-10-01

    Gamma-ray observations of the pulsar of the Crab nebula, PSR0531+21, have been performed in the low energy range (0.15-4.0 MeV) with FIGARO II, a large area balloon borne NaI(Tl) detector, during two flights performed on 1986 July 11 and 1990 July 9. A Kernel estimator built from the phases of the individual gamma-ray arrival times has allowed an accurate derivation of the radio-gamma time delay from those short duration gamma-ray observations. The gamma-ray pulse is found ahead of the radio pulse by 600+/-145μs and 375+/-148μs for the 1986 and 1990 observations respectively. Both radio-gamma delays could be attributed to variability of the interstellar dispersion since dispersion measures are available from radio measurements respectively two months before the 1986 flight and six days after the 1990 flight. An alternative explanation, particularly from the 1990 observation, could be that maximum gamma-ray and radio emissions originate from spatially different regions of the magnetosphere, distant by about 100 km.

  19. Suspected time errors along the satellite laser ranging network and impact on the reference frame

    Science.gov (United States)

    Belli, Alexandre; Exertier, Pierre; Lemoine, Frank; Zelensky, Nikita

    2017-04-01

    Systematic errors in the laser ranging technologies must be considered when considering the GGOS objective to maintain a network with an accuracy of 1 mm and a stability of 0.1 mm per year for the station ground coordinates in the ITRF. Range and Time biases are identified to be part of these systematic errors, for a major part, and are difficult to detect. Concerning the range bias, analysts and working groups estimate their values from LAGEOS-1 & 2 observations (c.f. Appleby et al. 2016). On the other hand, time errors are often neglected (they are presumed to be USO) frequency model, in order to take care of the frequency instabilities caused by the space environment. The integration provides a model which becomes an "on-orbit" time realization which can be connected to each of the SLR stations by the ground to space laser link. We estimated time biases per station, with a repeatability of 3 - 4 ns, for 25 stations which observe T2L2 regularly. We investigated the effect on LAGEOS and Starlette orbits and we discuss the impact of time errors on the station coordinates. We show that the effects on the global POD are negligible (< 1 mm) but are at the level of 4 - 6 mm for the coordinates. We conclude and propose to introduce time errors in the future analyses (IDS and ILRS) that would lead to the computation of improved reference frame solutions.

  20. Time-Delay Estimation in Dispersed Spectrum Cognitive Radio Systems

    Directory of Open Access Journals (Sweden)

    Celebi Hasari

    2010-01-01

    Full Text Available Time-delay estimation is studied for cognitive radio systems, which facilitate opportunistic use of spectral resources. A two-step approach is proposed to obtain accurate time-delay estimates of signals that occupy multiple dispersed bands simultaneously, with significantly lower computational complexity than the optimal maximum likelihood (ML estimator. In the first step of the proposed approach, an ML estimator is used for each band of the signal in order to estimate the unknown parameters of the signal occupying that band. Then, in the second step, the estimates from the first step are combined in various ways in order to obtain the final time-delay estimate. The combining techniques that are used in the second step are called optimal combining, signal-to-noise ratio (SNR combining, selection combining, and equal combining. It is shown that the performance of the optimal combining technique gets very close to the Cramer-Rao lower bound at high SNRs. These combining techniques provide various mechanisms for diversity combining for time-delay estimation and extend the concept of diversity in communications systems to the time-delay estimation problem in cognitive radio systems. Simulation results are presented to evaluate the performance of the proposed estimators and to verify the theoretical analysis.

  1. Time-Delay System Identification Using Genetic Algorithm

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Seested, Glen Thane

    2013-01-01

    Due to the unknown dead-time coefficient, the time-delay system identification turns to be a non-convex optimization problem. This paper investigates the identification of a simple time-delay system, named First-Order-Plus-Dead-Time (FOPDT), by using the Genetic Algorithm (GA) technique. The qual......Due to the unknown dead-time coefficient, the time-delay system identification turns to be a non-convex optimization problem. This paper investigates the identification of a simple time-delay system, named First-Order-Plus-Dead-Time (FOPDT), by using the Genetic Algorithm (GA) technique....... The quality and performance of the GA-based identification are compared with those based on extended Least-Mean-Square (LMS) methods, subject to the consideration of different types of time-delay systems, excitation signals, Signal-to-Noise Ratios, and different evaluation criteria. The obtained results...... exhibit that the GA technique has a very promising capability in handling this type of non-convex system identification problem....

  2. Wigner time delay and spin-orbit activated confinement resonances

    Science.gov (United States)

    Keating, D. A.; Deshmukh, P. C.; Manson, S. T.

    2017-09-01

    A study of the photoionization of spin-orbit split subshells of high-Z atoms confined in C60 has been performed using the relativistic-random-phase approximation. Specifically, Hg@C60 5p, Rn@C60 6p and Ra@C60 5d were investigated and the near-threshold confinement resonances in the j = l - 1/2 channels were found to engender structures in the j = l + 1/2 cross sections via correlation in the form of interchannel coupling. These structures are termed spin-orbit induced confinement resonances and they are found to profoundly influence the Wigner time delay spectrum resulting in time delays of tens or hundreds of attoseconds along with dramatic swings in time delay over small energy intervals. Pronounced relativistic effects in time delay are also found. These structures, including their manifestation in time delay spectra, are expected to be general phenomena in the photoionization of spin-orbit doublets in confined high-Z atoms.

  3. Optically fed microwave true-time delay based on a compact liquid-crystal hotonic-bandgap-fiber device

    DEFF Research Database (Denmark)

    Wei, Lei; Xue, Weiqi; Chen, Yaohui

    2009-01-01

    An electrically tunable liquid-crystal, photonic-bandgap-fiber-device-based, optically fed microwave true-time delay is demonstrated with the response time in the millisecond range. A maximum electrically controlled phase shift of around 70° at 15GHz and an averaged 12.9ps true time delay over...... the whole modulation frequency range of 1-15GHz are obtained....

  4. Modified active disturbance rejection control for time-delay systems.

    Science.gov (United States)

    Zhao, Shen; Gao, Zhiqiang

    2014-07-01

    Industrial processes are typically nonlinear, time-varying and uncertain, to which active disturbance rejection control (ADRC) has been shown to be an effective solution. The control design becomes even more challenging in the presence of time delay. In this paper, a novel modification of ADRC is proposed so that good disturbance rejection is achieved while maintaining system stability. The proposed design is shown to be more effective than the standard ADRC design for time-delay systems and is also a unified solution for stable, critical stable and unstable systems with time delay. Simulation and test results show the effectiveness and practicality of the proposed design. Linear matrix inequality (LMI) based stability analysis is provided as well. © 2013 ISA Published by ISA All rights reserved.

  5. Active stabilization of error field penetration via control field and bifurcation of its stable frequency range

    Science.gov (United States)

    Inoue, S.; Shiraishi, J.; Takechi, M.; Matsunaga, G.; Isayama, A.; Hayashi, N.; Ide, S.

    2017-11-01

    An active stabilization effect of a rotating control field against an error field penetration is numerically studied. We have developed a resistive magnetohydrodynamic code ‘AEOLUS-IT’, which can simulate plasma responses to rotating/static external magnetic field. Adopting non-uniform flux coordinates system, the AEOLUS-IT simulation can employ high magnetic Reynolds number condition relevant to present tokamaks. By AEOLUS-IT, we successfully clarified the stabilization mechanism of the control field against the error field penetration. Physical processes of a plasma rotation drive via the control field are demonstrated by the nonlinear simulation, which reveals that the rotation amplitude at a resonant surface is not a monotonic function of the control field frequency, but has an extremum. Consequently, two ‘bifurcated’ frequency ranges of the control field are found for the stabilization of the error field penetration.

  6. Comparing range data across the slow-time dimension to correct motion measurement errors beyond the range resolution of a synthetic aperture radar

    Science.gov (United States)

    Doerry, Armin W.; Heard, Freddie E.; Cordaro, J. Thomas

    2010-08-17

    Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.

  7. Partial state estimation for linear systems with output and input time delays.

    Science.gov (United States)

    Ha, Q P; That, Nguyen D; Nam, Phan T; Trinh, H

    2014-03-01

    This paper deals with the problem of partial state observer design for linear systems that are subject to time delays in the measured output as well as the control input. By choosing a set of appropriate augmented Lyapunov-Krasovskii functionals with a triple-integral term and using the information of both the delayed output and input, a novel approach to design a minimal-order observer is proposed to guarantee that the observer error is ε-convergent with an exponential rate. Existence conditions of such an observer are derived in terms of matrix inequalities for the cases with time delays in both the output and input and with output delay only. Constructive design algorithms are introduced. Numerical examples are provided to illustrate the design procedure, practicality and effectiveness of the proposed observer. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Dynamic Programming based Time-Delay Estimation (TDE) Technique for Analysis of Time-varying Time-delay

    CERN Document Server

    Gupta, Deepak K; Fonck, Raymond R

    2008-01-01

    A new time-delay estimation (TDE) technique based on dynamic programming is developed, to measures the time-varying time-delay between two signals. Dynamic programming based TDE technique provides a frequency response 5 to 10 times higher than previously known TDE techniques, namely those based on time-lag cross-correlation or wavelet analysis. Effects of frequency spectrum, signal-to-noise ratio and amplitude of time-delay on response (represented as transfer function) of TDE technique is studied using simulated data signals. Transfer function for the technique decreases with increase in noise in signal; however it is independent of signal spectrum shape. Dynamic programming based TDE technique is applied to the Beam-Emission-Spectroscopy (BES) diagnostic data to measure poloidal velocity fluctuations, which led to the observation of theoretically predicted zonal flows in high-temperature tokamak plasmas.

  9. Lag synchronization of chaotic systems with time-delayed linear ...

    Indian Academy of Sciences (India)

    ... delayed chaotic systems. Numerical simulations on time-delayed Lorenz and hyperchaotic Chen systems are also carried out to show the effectiveness of the proposed scheme. Note that under the scheme the chaotic system is controlled only at discrete time instants, and so it reduces the control cost in real applications.

  10. Time-delayed chameleon: Analysis, synchronization and FPGA ...

    Indian Academy of Sciences (India)

    A novel adaptive modified functional projective lag synchronization algorithm is derived for synchronizing identical time-delayed chameleon systems with uncertain ... Centre for Nonlinear Dynamics, Department of Electrical and Communication Engineering, The PNG University of Technology, Lae, Papua New Guinea ...

  11. Calibrating a spatially encoded time delay for transient absorption spectroscopy

    Science.gov (United States)

    Wilson, Kelly S.; Wong, Cathy Y.

    2017-08-01

    A novel spectroscopy termed single shot transient absorption (SSTA) is presented that can collect a transient absorption spectrum in 6 ms by using laser pulses with tilted wavefronts to spatially encode the delay between pump and probe pulse arrival times at the sample. The transient absorption technique determines the change in sample transmission that results from sample photoexcitation, and tracks this change as a function of the time delay between the arrival of the pump pulse and the probe pulse. Typically, these time delays are generated using a retroreflecting mirror mounted on a motorized translation stage, with a measurement collected at each translation stage position. Because these measurements must be performed in series, data collection requires a significant amount of time. This limits transient absorption to the measurement of systems that are static for the duration of the experiment. SSTA overcomes this restriction by employing pump and probe pulses which are each focused into a line and tilted with respect to each other to spatially encode time delays within the sample. Here, we describe the SSTA technique and instrumentation, demonstrate the principle of this spectroscopy, and present a method for calibrating the spatially encoded time delay by autocorrelation. This instrument will broaden the scop

  12. Microlensing makes lensed quasar time delays significantly time variable

    Science.gov (United States)

    Tie, S. S.; Kochanek, C. S.

    2018-01-01

    The time delays of gravitationally lensed quasars are generally believed to be unique numbers whose measurement is limited only by the quality of the light curves and the models for the contaminating contribution of gravitational microlensing to the light curves. This belief is incorrect - gravitational microlensing also produces changes in the actual time delays on the ∼day(s) light-crossing time-scale of the emission region. This is due to a combination of the inclination of the disc relative to the line of sight and the differential magnification of the temperature fluctuations producing the variability. We demonstrate this both mathematically and with direct calculations using microlensing magnification patterns. Measuring these delay fluctuations can provide a physical scale for microlensing observations, removing the need for priors on either the microlens masses or the component velocities. That time delays in lensed quasars are themselves time variable likely explains why repeated delay measurements of individual lensed quasars appear to vary by more than their estimated uncertainties. This effect is also a new important systematic problem for attempts to use time delays in lensed quasars for cosmology or to detect substructures (satellites) in lens galaxies.

  13. Stability Criteria for Differential Equations with Variable Time Delays

    Science.gov (United States)

    Schley, D.; Shail, R.; Gourley, S. A.

    2002-01-01

    Time delays are an important aspect of mathematical modelling, but often result in highly complicated equations which are difficult to treat analytically. In this paper it is shown how careful application of certain undergraduate tools such as the Method of Steps and the Principle of the Argument can yield significant results. Certain delay…

  14. Introduction to time-delay systems analysis and control

    CERN Document Server

    Fridman, Emilia

    2014-01-01

    The beginning of the 21st century can be characterized as the ”time-delay boom” leading to numerous important results. The purpose of this book is two-fold, to familiarize the non-expert reader with time-delay systems and to provide a systematic treatment of modern ideas and techniques for experts. This book is based on the course ”Introduction to time-delay systems” for graduate students in Engineering and Applied Mathematics that the author taught in Tel Aviv University in 2011-2012 and 2012-2013 academic years. The sufficient background to follow most of the material are the undergraduate courses in mathematics and an introduction to control. The book leads the reader from some basic classical results on time-delay systems to recent developments on Lyapunov-based analysis and design with applications to the hot topics of sampled-data and network-based control. The objective is to provide useful tools that will allow the reader not only to apply the existing methods, but also to develop new ones. It...

  15. A time-delayed method for controlling chaotic maps

    Energy Technology Data Exchange (ETDEWEB)

    Chen Maoyin [Department of Automation, Tsinghua University, Beijing 100084 (China)]. E-mail: maoyinchen@163.com; Zhou Donghua [Department of Automation, Tsinghua University, Beijing 100084 (China); Shang Yun [College of Mathematics and Information Science, Shaanxi Normal University, Xi' an 710062 (China)

    2005-12-19

    Combining the repetitive learning strategy and the optimality principle, this Letter proposes a time-delayed method to control chaotic maps. This method can effectively stabilize unstable periodic orbits within chaotic attractors in the sense of least mean square. Numerical simulations of some chaotic maps verify the effectiveness of this method.

  16. Time Delay Estimation in Two-Phase Flow Investigation Using the γ-Ray Attenuation Technique

    Directory of Open Access Journals (Sweden)

    Robert Hanus

    2014-01-01

    Full Text Available Time delay estimation is an important research question having many applications in a range of technologies. Measurement of a two-phase flow in a pipeline or an open channel using radioisotopes is an example of such application. For instance, the determination of velocity of dispersed phase in that case is based on estimation of the time delay between two stochastic signals provided by scintillation probes. The proper analysis of such signals, usually in presence of noise, requires the use of advanced statistical signal processing. In this paper, the simulation studies of time delay estimation were carried out with the use of the following differential methods: average magnitude difference function, and average square difference function and proposed combined methods comprising the above-mentioned differential and cross-correlation functions are presented. Attached simulations have been carried out for models of stochastic signals corresponding to the signals obtained in gamma-ray absorption measurements of gas-liquid flow in a horizontal pipeline. The standard uncertainties of time delay estimations have been determined for each of the methods. Improved metrological properties have been stated in the combined methods in comparison with the classical cross-correlation procedure.

  17. Detection of time delays and directional interactions based on time series from complex dynamical systems

    Science.gov (United States)

    Ma, Huanfei; Leng, Siyang; Tao, Chenyang; Ying, Xiong; Kurths, Jürgen; Lai, Ying-Cheng; Lin, Wei

    2017-07-01

    Data-based and model-free accurate identification of intrinsic time delays and directional interactions is an extremely challenging problem in complex dynamical systems and their networks reconstruction. A model-free method with new scores is proposed to be generally capable of detecting single, multiple, and distributed time delays. The method is applicable not only to mutually interacting dynamical variables but also to self-interacting variables in a time-delayed feedback loop. Validation of the method is carried out using physical, biological, and ecological models and real data sets. Especially, applying the method to air pollution data and hospital admission records of cardiovascular diseases in Hong Kong reveals the major air pollutants as a cause of the diseases and, more importantly, it uncovers a hidden time delay (about 30-40 days) in the causal influence that previous studies failed to detect. The proposed method is expected to be universally applicable to ascertaining and quantifying subtle interactions (e.g., causation) in complex systems arising from a broad range of disciplines.

  18. Microcontroller based system for electrical breakdown time delay measurement in gas-filled devices.

    Science.gov (United States)

    Pejović, Milić M; Denić, Dragan B; Pejović, Momčilo M; Nešić, Nikola T; Vasović, Nikola

    2010-10-01

    This paper presents realization of a digital embedded system for measuring electrical breakdown time delay. The proposed system consists of three major parts: dc voltage supply, analog subsystem, and a digital subsystem. Any dc power source with the range from 100 to 1000 V can be used in this application. The analog subsystem should provide fast and accurate voltage switching on the testing device as well as transform the signals that represent the voltage pulse on the device and the device breakdown into the form suitable for detection by a digital subsystem. The insulated gate bipolar transistor IRG4PH40KD driven by TC429 MOSFET driver is used for high voltage switching on the device. The aim of a digital subsystem is to detect the signals from the analog subsystem and to measure the elapsed time between their occurrences. Moreover, the digital subsystem controls various parameters that influence time delay and provides fast data storage for a large number of measured data. For this propose, we used the PIC18F4550 microcontroller with a full-speed compatible universal serial bus (USB) engine. Operation of this system is verified on different commercial and custom made gas devices with different structure and breakdown mechanisms. The electrical breakdown time delay measurements have been carried out as a function of several parameters, which dominantly influence electrical breakdown time delay. The obtained results have been verified using statistical methods, and they show good agreement with the theory. The proposed system shows good repeatability, sensitivity, and stability for measuring the electrical breakdown time delay.

  19. Dynamical Analysis of the Hindmarsh-Rose Neuron With Time Delays.

    Science.gov (United States)

    Lakshmanan, S; Lim, C P; Nahavandi, S; Prakash, M; Balasubramaniam, P

    2017-08-01

    This brief is mainly concerned with a series of dynamical analyses of the Hindmarsh-Rose (HR) neuron with state-dependent time delays. The dynamical analyses focus on stability, Hopf bifurcation, as well as chaos and chaos control. Through the stability and bifurcation analysis, we determine that increasing the external current causes the excitable HR neuron to exhibit periodic or chaotic bursting/spiking behaviors and emit subcritical Hopf bifurcation. Furthermore, by choosing a fixed external current and varying the time delay, the stability of the HR neuron is affected. We analyze the chaotic behaviors of the HR neuron under a fixed external current through time series, bifurcation diagram, Lyapunov exponents, and Lyapunov dimension. We also analyze the synchronization of the chaotic time-delayed HR neuron through nonlinear control. Based on an appropriate Lyapunov-Krasovskii functional with triple integral terms, a nonlinear feedback control scheme is designed to achieve synchronization between the uncontrolled and controlled models. The proposed synchronization criteria are derived in terms of linear matrix inequalities to achieve the global asymptotical stability of the considered error model under the designed control scheme. Finally, numerical simulations pertaining to stability, Hopf bifurcation, periodic, chaotic, and synchronized models are provided to demonstrate the effectiveness of the derived theoretical results.

  20. GPS (Global Positioning System) Error Budgets, Accuracy and Applications Considerations for Test and Training Ranges.

    Science.gov (United States)

    1982-12-01

    October 1974, Johns Hopkins University, Applied Physics Laboratory, Silver Spring, Maryland. 25. J. A. Klobuchar , M. A. and J. A. Pearson, A Preliminary...Aerospace Cor., Los Angeles, Calif. 26. J. A. Klobuchar , Ionospheric Time Delay Corrections for Advanced Satellite Rancing Systems, Air Force Geophysics...Laboratory, Hanscom AFB, MA. 27. J. A. Klobuchar and J. M. Johnson, Correlation Distance of Mean Daytime Electron Content, AFGL-TR-77-0185, Air Force

  1. Lagrange time delay estimation for scanning electron microscope image magnification.

    Science.gov (United States)

    Sim, K-S; Thong, L W; Ting, H Y; Tso, C P

    2010-02-01

    Interpolation techniques that are used for image magnification to obtain more useful details of the surface such as morphology and mechanical contrast usually rely on the signal information distributed around edges and areas of sharp changes and these signal information can also be used to predict missing details from the sample image. However, many of these interpolation methods tend to smooth or blur out image details around the edges. In the present study, a Lagrange time delay estimation interpolator method is proposed and this method only requires a small filter order and has no noticeable estimation bias. Comparing results with the original scanning electron microscope magnification and results of various other interpolation methods, the Lagrange time delay estimation interpolator is found to be more efficient, more robust and easier to execute.

  2. Nonlinear optical generation of time-delayed entanglement

    Energy Technology Data Exchange (ETDEWEB)

    McRae, Terry G; Bowen, Warwick P, E-mail: wbowen@physics.uq.edu.au [Centre for Engineered Quantum Systems, School of Mathematics and Physics, University of Queensland, St Lucia, Brisbane, QLD 4072 (Australia)

    2011-05-14

    A model is presented of nth order nonlinear processes in whispering gallery mode resonators, with scattering coherently coupling degenerate counter propagating modes. It is shown that such systems generate strong squeezing and time-delayed entanglement. The model can be generally applied to any pair of nonlinear coherently coupled cavities and is of particular relevance to whispering gallery mode resonators. A feature of the entanglement is that, by tuning the coherent coupling rate the peak entanglement can be tuned to occur away from the carrier frequency. This has technological significance allowing low frequency noise sources around the carrier frequency to be avoided. All-optical time-delayed entanglement has many applications, such as an all-optical quantum memory.

  3. Truncated predictor feedback for time-delay systems

    CERN Document Server

    Zhou, Bin

    2014-01-01

    This book provides a systematic approach to the design of predictor based controllers for (time-varying) linear systems with either (time-varying) input or state delays. Differently from those traditional predictor based controllers, which are infinite-dimensional static feedback laws and may cause difficulties in their practical implementation, this book develops a truncated predictor feedback (TPF) which involves only finite dimensional static state feedback. Features and topics: A novel approach referred to as truncated predictor feedback for the stabilization of (time-varying) time-delay systems in both the continuous-time setting and the discrete-time setting is built systematically Semi-global and global stabilization problems of linear time-delay systems subject to either magnitude saturation or energy constraints are solved in a systematic manner Both stabilization of a single system and consensus of a group of systems (multi-agent systems) are treated in a unified manner by applying the truncated pre...

  4. Discussion on 'State feedback control with time delay'

    Science.gov (United States)

    Araújo, José M.

    2018-01-01

    This note is a short discussion on the paper 'State feedback control with time delay', in which an a posteriori analysis on the primary closed-loop eigenvalues is proposed to ensure that the chosen location is accurately achieved by state feedback. The goal is twofold. First, a qualitative evaluation of closed-loop stability can be carried out by using classical control techniques, as systems margins or Nyquist plot, without the necessity of evaluating the primary closed-loop eigenvalues; and second, the well-known Padé approximants for time delay in frequency domain is shown to be as accurate as that the truncation of the Taylor exponential expansion proposed in that work.

  5. Low-complexity controllers for time-delay systems

    CERN Document Server

    Özbay, Hitay; Bonnet, Catherine; Mounier, Hugues

    2014-01-01

    This volume in the newly established series Advances in Delays and Dynamics (ADD@S) provides a collection of recent results on the design and analysis of Low Complexity Controllers for Time Delay Systems. A widely used indirect method to obtain low order controllers for time delay systems is to design a controller for the reduced order model of the plant. In the dual indirect approach, an infinite dimensional controller is designed first for the original plant model; then, the controller is approximated by keeping track of the degradation in performance and stability robustness measures. The present volume includes new techniques used at different stages of the indirect approach. It also includes new direct design methods for fixed structure and low order controllers. On the other hand, what is meant by low complexity controller is not necessarily low order controller. For example, Smith predictor or similar type of controllers include a copy of the plant internally in the controller, so they are technically ...

  6. The generalized Burgers equation with and without a time delay

    Directory of Open Access Journals (Sweden)

    Nejib Smaoui

    2004-01-01

    Full Text Available We consider the generalized Burgers equation with and without a time delay when the boundary conditions are periodic with period 2π. For the generalized Burgers equation without a time delay, that is, ut=vuxx−uux+u+h(x, 00, u(0,t=u(2π,t, u(x,0=u0(x, a Lyapunov function method is used to show boundedness and uniqueness of a steady state solution and global stability of the equation. As for the generalized time-delayed Burgers equation, that is, ut(x,t=vuxx(x,t−u(x,t−τux(x,t+u(x,t, 00, u(0,t=u(2π,t, t>0, u(x,s=u0(x,s, 0

  7. Systematic identification and robust control design for uncertain time delay processes

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Poulsen, Niels Kjølstad; Jørgensen, Sten Bay

    2011-01-01

    A systematic procedure is proposed to handle the standard process control problem. The considered standard problem involves infrequent step disturbances to processes with large delays and measurement noise. The process is modeled as an ARX model and extended with a suitable noise model in order...... to reject unmeasured step disturbances and unavoidable model errors. This controller is illustrated to perform well for both set point tracking and a disturbance rejection for a SISO process example of a furnace which has a time delay which is significantly longer than the dominating time constant....

  8. Robust H∞ Filtering for Uncertain Neutral Stochastic Systems with Markovian Jumping Parameters and Time Delay

    Directory of Open Access Journals (Sweden)

    Yajun Li

    2015-01-01

    Full Text Available This paper deals with the robust H∞ filter design problem for a class of uncertain neutral stochastic systems with Markovian jumping parameters and time delay. Based on the Lyapunov-Krasovskii theory and generalized Finsler Lemma, a delay-dependent stability condition is proposed to ensure not only that the filter error system is robustly stochastically stable but also that a prescribed H∞ performance level is satisfied for all admissible uncertainties. All obtained results are expressed in terms of linear matrix inequalities which can be easily solved by MATLAB LMI toolbox. Numerical examples are given to show that the results obtained are both less conservative and less complicated in computation.

  9. Time-Delay LPV System Control and Its Application in Chatter Suppression of the Milling Process

    Directory of Open Access Journals (Sweden)

    Dazhong Wang

    2015-01-01

    Full Text Available This paper proposed a methodology for the control of model following control system (MFCS approach to time-delay linear parameter-varying (LPV system. The method incorporates a state control law which makes the output error zero, the bounded property of the internal states for the control is given, and the utility of this control design is guaranteed. Numerical example is given to demonstrate the effectiveness and less conservativeness of the proposed methods. The proposed control methodology is demonstrated on chatter suppression in the milling process.

  10. Measurement of time delay for a prospectively gated CT simulator

    Science.gov (United States)

    Goharian, M.; Khan, R. F. H.

    2010-01-01

    For the management of mobile tumors, respiratory gating is the ideal option, both during imaging and during therapy. The major advantage of respiratory gating during imaging is that it is possible to create a single artifact-free CT data-set during a selected phase of the patient's breathing cycle. The purpose of the present work is to present a simple technique to measure the time delay during acquisition of a prospectively gated CT. The time delay of a Philips Brilliance BigBore™ (Philips Medical Systems, Madison, WI) scanner attached to a Varian Real-Time Position Management™ (RPM) system (Varian Medical Systems, Palo Alto, CA) was measured. Two methods were used to measure the CT time delay: using a motion phantom and using a recorded data file from the RPM system. In the first technique, a rotating wheel phantom was altered by placing two plastic balls on its axis and rim, respectively. For a desired gate, the relative positions of the balls were measured from the acquired CT data and converted into corresponding phases. Phase difference was calculated between the measured phases and the desired phases. Using period of motion, the phase difference was converted into time delay. The Varian RPM system provides an external breathing signal; it also records transistor-transistor logic (TTL) ‘X-Ray ON’ status signal from the CT scanner in a text file. The TTL ‘X-Ray ON’ indicates the start of CT image acquisition. Thus, knowledge of the start time of CT acquisition, combined with the real-time phase and amplitude data from the external respiratory signal, provides time-stamping of all images in an axial CT scan. The TTL signal with time-stamp was used to calculate when (during the breathing cycle) a slice was recorded. Using the two approaches, the time delay between the prospective gating signal and CT simulator has been determined to be 367 ± 40 ms. The delay requires corrections both at image acquisition and while setting gates for the treatment

  11. Measurement of time delay for a prospectively gated CT simulator

    Directory of Open Access Journals (Sweden)

    Goharian M

    2010-01-01

    Full Text Available For the management of mobile tumors, respiratory gating is the ideal option, both during imaging and during therapy. The major advantage of respiratory gating during imaging is that it is possible to create a single artifact-free CT data-set during a selected phase of the patient′s breathing cycle. The purpose of the present work is to present a simple technique to measure the time delay during acquisition of a prospectively gated CT. The time delay of a Philips Brilliance BigBore™ (Philips Medical Systems, Madison, WI scanner attached to a Varian Real-Time Position Management™ (RPM system (Varian Medical Systems, Palo Alto, CA was measured. Two methods were used to measure the CT time delay: using a motion phantom and using a recorded data file from the RPM system. In the first technique, a rotating wheel phantom was altered by placing two plastic balls on its axis and rim, respectively. For a desired gate, the relative positions of the balls were measured from the acquired CT data and converted into corresponding phases. Phase difference was calculated between the measured phases and the desired phases. Using period of motion, the phase difference was converted into time delay. The Varian RPM system provides an external breathing signal; it also records transistor-transistor logic (TTL ′X-Ray ON′ status signal from the CT scanner in a text file. The TTL ′X-Ray ON′ indicates the start of CT image acquisition. Thus, knowledge of the start time of CT acquisition, combined with the real-time phase and amplitude data from the external respiratory signal, provides time-stamping of all images in an axial CT scan. The TTL signal with time-stamp was used to calculate when (during the breathing cycle a slice was recorded. Using the two approaches, the time delay between the prospective gating signal and CT simulator has been determined to be 367 ± 40 ms. The delay requires corrections both at image acquisition and while setting gates for

  12. Robust L2-L∞ Filtering of Time-Delay Jump Systems with Respect to the Finite-Time Interval

    Directory of Open Access Journals (Sweden)

    Shuping He

    2011-01-01

    Full Text Available This paper studied the problem of stochastic finite-time boundedness and disturbance attenuation for a class of linear time-delayed systems with Markov jumping parameters. Sufficient conditions are provided to solve this problem. The L2-L∞ filters are, respectively, designed for time-delayed Markov jump linear systems with/without uncertain parameters such that the resulting filtering error dynamic system is stochastically finite-time bounded and has the finite-time interval disturbance attenuation γ for all admissible uncertainties, time delays, and unknown disturbances. By using stochastic Lyapunov-Krasovskii functional approach, it is shown that the filter designing problem is in terms of the solutions of a set of coupled linear matrix inequalities. Simulation examples are included to demonstrate the potential of the proposed results.

  13. Robust Stability of Fractional Order Time-Delay Control Systems: A Graphical Approach

    Directory of Open Access Journals (Sweden)

    Radek Matušů

    2015-01-01

    Full Text Available The paper deals with a graphical approach to investigation of robust stability for a feedback control loop with an uncertain fractional order time-delay plant and integer order or fractional order controller. Robust stability analysis is based on plotting the value sets for a suitable range of frequencies and subsequent verification of the zero exclusion condition fulfillment. The computational examples present the typical shapes of the value sets of a family of closed-loop characteristic quasipolynomials for a fractional order plant with uncertain gain, time constant, or time-delay term, respectively, and also for combined cases. Moreover, the practically oriented example focused on robust stability analysis of main irrigation canal pool controlled by either classical integer order PID or fractional order PI controller is included as well.

  14. Linear parameter-varying and time-delay systems analysis, observation, filtering & control

    CERN Document Server

    Briat, Corentin

    2015-01-01

    This book provides an introduction to the analysis and control of Linear Parameter-Varying Systems and Time-Delay Systems and their interactions. The purpose is to give the readers some fundamental theoretical background on these topics and to give more insights on the possible applications of these theories. This self-contained monograph is written in an accessible way for readers ranging from undergraduate/PhD students to engineers and researchers willing to know more about the fields of time-delay systems, parameter-varying systems, robust analysis, robust control, gain-scheduling techniques in the LPV fashion and LMI based approaches. The only prerequisites are basic knowledge in linear algebra, ordinary differential equations and (linear) dynamical systems. Most of the results are proved unless the proof is too complex or not necessary for a good understanding of the results. In the latter cases, suitable references are systematically provided. The first part pertains on the representation, analysis and ...

  15. Multiplicity counting from fission detector signals with time delay effects

    Science.gov (United States)

    Nagy, L.; Pázsit, I.; Pál, L.

    2018-03-01

    In recent work, we have developed the theory of using the first three auto- and joint central moments of the currents of up to three fission chambers to extract the singles, doubles and triples count rates of traditional multiplicity counting (Pázsit and Pál, 2016; Pázsit et al., 2016). The objective is to elaborate a method for determining the fissile mass, neutron multiplication, and (α, n) neutron emission rate of an unknown assembly of fissile material from the statistics of the fission chamber signals, analogous to the traditional multiplicity counting methods with detectors in the pulse mode. Such a method would be an alternative to He-3 detector systems, which would be free from the dead time problems that would be encountered in high counting rate applications, for example the assay of spent nuclear fuel. A significant restriction of our previous work was that all neutrons born in a source event (spontaneous fission) were assumed to be detected simultaneously, which is not fulfilled in reality. In the present work, this restriction is eliminated, by assuming an independent, identically distributed random time delay for all neutrons arising from one source event. Expressions are derived for the same auto- and joint central moments of the detector current(s) as in the previous case, expressed with the singles, doubles, and triples (S, D and T) count rates. It is shown that if the time-dispersion of neutron detections is of the same order of magnitude as the detector pulse width, as they typically are in measurements of fast neutrons, the multiplicity rates can still be extracted from the moments of the detector current, although with more involved calibration factors. The presented formulae, and hence also the performance of the proposed method, are tested by both analytical models of the time delay as well as with numerical simulations. Methods are suggested also for the modification of the method for large time delay effects (for thermalised neutrons).

  16. Transmission ultrasonography. [time delay spectrometry for soft tissue transmission imaging

    Science.gov (United States)

    Heyser, R. C.; Le Croissette, D. H.

    1973-01-01

    Review of the results of the application of an advanced signal-processing technique, called time delay spectrometry, in obtaining soft tissue transmission images by transmission ultrasonography, both in vivo and in vitro. The presented results include amplitude ultrasound pictures and phase ultrasound pictures obtained by this technique. While amplitude ultrasonographs of tissue are closely analogous to X-ray pictures in that differential absorption is imaged, phase ultrasonographs represent an entirely new source of information based on differential time of propagation. Thus, a new source of information is made available for detailed analysis.

  17. Robust H∞ Filtering for a Class of Uncertain Markovian Jump Systems with Time Delays

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2013-01-01

    Full Text Available This paper studies the problem of robust H∞ filtering for a class of uncertain time-delay systems with Markovian jumping parameters. The system under consideration is subject to norm-bounded time-varying parameter uncertainties. The problem to be addressed is the design of a Markovian jump filter such that the filter error dynamics are stochastically stable and a prescribed bound on the ℒ2-induced gain from the noise signals to the filter error is guaranteed for all admissible uncertainties. A sufficient condition for the existence of the desired robust H∞ filter is given in terms of two sets of coupled algebraic Riccati inequalities. When these algebraic Riccati inequalities are feasible, the expression of a desired H∞ filter is also presented. Finally, an illustrative numerical example is provided.

  18. Time Delay for the Initiation of an Emergency Shutdown at the Peruvian Nuclear Reactor RP-10

    Energy Technology Data Exchange (ETDEWEB)

    Ramon, A.; Ovalle, E.; Canaza, D.; Salazar, A.; Zapata, A.; Felix, J.; Arrieta, R.; Vela, M. [Instituto Peruano de Energia Nuclear, Av. Canada 1470, San Borja, Lima (Peru)

    2008-07-01

    In this paper we show the measurement of the time delay for the initiation of an emergency shutdown state at the RP-10 Reactor. This time delay is the one corresponding to the delay between the detection of a signal of any fixed limit and the start of a protective action to get the reactor in a safety state. The experimental method used is based on monitoring two signals in an oscilloscope, one signal is the elected initiate event and the other is the de-energizing of electromagnets of the security bars. The time delay for each safety and control rods, was measured for seven energizing current values in a range of 36 - 52 mA. The results showed that the minimum value is (84 {+-} 1.26) ms and the maximum is (108 {+-} 1.60) ms. In all cases it is noted that, the delay time is less than the limit values prefixed down in the reactor safety report. (authors)

  19. Stochastic resonance enhancement of small-world neural networks by hybrid synapses and time delay

    Science.gov (United States)

    Yu, Haitao; Guo, Xinmeng; Wang, Jiang

    2017-01-01

    The synergistic effect of hybrid electrical-chemical synapses and information transmission delay on the stochastic response behavior in small-world neuronal networks is investigated. Numerical results show that, the stochastic response behavior can be regulated by moderate noise intensity to track the rhythm of subthreshold pacemaker, indicating the occurrence of stochastic resonance (SR) in the considered neural system. Inheriting the characteristics of two types of synapses-electrical and chemical ones, neural networks with hybrid electrical-chemical synapses are of great improvement in neuron communication. Particularly, chemical synapses are conducive to increase the network detectability by lowering the resonance noise intensity, while the information is better transmitted through the networks via electrical coupling. Moreover, time delay is able to enhance or destroy the periodic stochastic response behavior intermittently. In the time-delayed small-world neuronal networks, the introduction of electrical synapses can significantly improve the signal detection capability by widening the range of optimal noise intensity for the subthreshold signal, and the efficiency of SR is largely amplified in the case of pure chemical couplings. In addition, the stochastic response behavior is also profoundly influenced by the network topology. Increasing the rewiring probability in pure chemically coupled networks can always enhance the effect of SR, which is slightly influenced by information transmission delay. On the other hand, the capacity of information communication is robust to the network topology within the time-delayed neuronal systems including electrical couplings.

  20. Dynamical Behaviors in Complex-Valued Love Model With or Without Time Delays

    Science.gov (United States)

    Deng, Wei; Liao, Xiaofeng; Dong, Tao

    2017-12-01

    In this paper, a novel version of nonlinear model, i.e. a complex-valued love model with two time delays between two individuals in a love affair, has been proposed. A notable feature in this model is that we separate the emotion of one individual into real and imaginary parts to represent the variation and complexity of psychophysiological emotion in romantic relationship instead of just real domain, and make our model much closer to reality. This is because love is a complicated cognitive and social phenomenon, full of complexity, diversity and unpredictability, which refers to the coexistence of different aspects of feelings, states and attitudes ranging from joy and trust to sadness and disgust. By analyzing associated characteristic equation of linearized equations for our model, it is found that the Hopf bifurcation occurs when the sum of time delays passes through a sequence of critical value. Stability of bifurcating cyclic love dynamics is also derived by applying the normal form theory and the center manifold theorem. In addition, it is also shown that, for some appropriate chosen parameters, chaotic behaviors can appear even without time delay.

  1. Development of Algorithms and Error Analyses for the Short Baseline Lightning Detection and Ranging System

    Science.gov (United States)

    Starr, Stanley O.

    1998-01-01

    NASA, at the John F. Kennedy Space Center (KSC), developed and operates a unique high-precision lightning location system to provide lightning-related weather warnings. These warnings are used to stop lightning- sensitive operations such as space vehicle launches and ground operations where equipment and personnel are at risk. The data is provided to the Range Weather Operations (45th Weather Squadron, U.S. Air Force) where it is used with other meteorological data to issue weather advisories and warnings for Cape Canaveral Air Station and KSC operations. This system, called Lightning Detection and Ranging (LDAR), provides users with a graphical display in three dimensions of 66 megahertz radio frequency events generated by lightning processes. The locations of these events provide a sound basis for the prediction of lightning hazards. This document provides the basis for the design approach and data analysis for a system of radio frequency receivers to provide azimuth and elevation data for lightning pulses detected simultaneously by the LDAR system. The intent is for this direction-finding system to correct and augment the data provided by LDAR and, thereby, increase the rate of valid data and to correct or discard any invalid data. This document develops the necessary equations and algorithms, identifies sources of systematic errors and means to correct them, and analyzes the algorithms for random error. This data analysis approach is not found in the existing literature and was developed to facilitate the operation of this Short Baseline LDAR (SBLDAR). These algorithms may also be useful for other direction-finding systems using radio pulses or ultrasonic pulse data.

  2. Long-range temporal correlations in resting-state α oscillations predict human timing-error dynamics

    NARCIS (Netherlands)

    Smit, D.J.A.; Linkenkaer-Hansen, K.; de Geus, E.J.C.

    2013-01-01

    Human behavior is imperfect. This is notably clear during repetitive tasks in which sequences of errors or deviations from perfect performance result. These errors are not random, but show patterned fluctuations with long-range temporal correlations that are well described using power-law spectra

  3. Effect of Magnetic Activity on Ionospheric Time Delay at Low ...

    Indian Academy of Sciences (India)

    The ionospheric refraction remains a major error source in Global Positioning ... spheric error. This error is negative for carrier phase pseudoranges and positive for the code pseudoranges (Komjathy 1997). The ionospheric delay is ... cause significant changes in the ionospheric morphology, producing large delays of.

  4. Complex-Vector Time-Delay Control of Power Converters

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Loh, P. C.; Tang, Y.

    2008-01-01

    to develop dynamically fast and accurate current controllers is even more intensive with more features expected to be embedded within a single control module. Believing in its continual importance, this paper contributes by proposing a complex-vector time-delay control scheme that can achieve high tracking......Precise controlling of current produced by power converters is an important topic that has attracted interests over the last few decades. With the recent proliferation of grid-tied converters where the control of power flow is indirectly governed by the accuracy of current tracking, motivation...... a set of load-matching control characteristics that are less sensitive to external noise interferences. These added features, complementing the basic requirement of fast and accurate fundamental positive-sequence tracking, render the proposed scheme as an attractive alternative for high-end converter...

  5. Extended time-delay autosynchronization for the buck converter

    CERN Document Server

    Batlle, C; Olivar, G

    1996-01-01

    Time-delay autosynchronization (TDAS) can be used to stabilize unstable periodic orbits in dynamical systems. The technique involves continuous feedback of signals delayed by the orbit's period. One variant, ETDAS, uses information further in the past. In both cases, the feedback signal vanishes on the target periodic orbit and hence the stabilized periodic orbit is one of the original dynamical system. Furthermore, this control method only requires the knowledge of the period of the unstable orbit. The amount of feedback gain needed to achieve stabilization varies with the bifurcation parameter(s) of the system, resulting in a domain of control. In this paper we compute the domain of control of the unstable periodic orbits of the \\textit{buck} converter. We obtain a closed analytical expression for the curve $g:S^1 \\rightarrow\\C$ whose index determines the stability, and this index is then numerically computed. We run several simulations of the controlled system and discuss the results.

  6. Stabilizing unstable steady states using extended time-delay autosynchronization.

    Science.gov (United States)

    Chang, Austin; Bienfang, Joshua C.; Hall, G. Martin; Gardner, Jeff R.; Gauthier, Daniel J.

    1998-12-01

    We describe a method for stabilizing unstable steady states in nonlinear dynamical systems using a form of extended time-delay autosynchronization. Specifically, stabilization is achieved by applying a feedback signal generated by high-pass-filtering in real time the dynamical state of the system to an accessible system parameter or variables. Our technique is easy to implement, does not require knowledge of the unstable steady state coordinates in phase space, automatically tracks changes in the system parameters, and is more robust to broadband noise than previous schemes. We demonstrate the controller's efficacy by stabilizing unstable steady states in an electronic circuit exhibiting low-dimensional temporal chaos. The simplicity and robustness of the scheme suggests that it is ideally suited for stabilizing unstable steady states in ultra-high-speed systems. (c) 1998 American Institute of Physics.

  7. Control of unstable processes with time delays via ADRC.

    Science.gov (United States)

    Fu, Caifen; Tan, Wen

    2017-11-01

    Active disturbance rejection control (ADRC) treats the external disturbance and internal uncertainties as a general disturbance, and uses an extended state observer (ESO) to estimate it in real-time and feeds it back in the control loop, thus can achieve good disturbance rejection performance. However, ADRC is not quite suitable for unstable delayed processes due to its inherent structure. In this paper, a two-degree-of-freedom (2DOF) control structure is proposed for unstable time- delayed systems. Set-point tracking and disturbance rejection are separated in this structure and ADRC is solely responsible for disturbance rejection. A method to tune the ADRC parameters using all the information of the system is proposed, and robustness and performance of the proposed method are analyzed. Simulation examples show that 2DOF-ADRC can achieve good tracking and disturbance rejection performance. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Hopf Bifurcation in a Cobweb Model with Discrete Time Delays

    Directory of Open Access Journals (Sweden)

    Luca Gori

    2014-01-01

    Full Text Available We develop a cobweb model with discrete time delays that characterise the length of production cycle. We assume a market comprised of homogeneous producers that operate as adapters by taking the (expected profit-maximising quantity as a target to adjust production and consumers with a marginal willingness to pay captured by an isoelastic demand. The dynamics of the economy is characterised by a one-dimensional delay differential equation. In this context, we show that (1 if the elasticity of market demand is sufficiently high, the steady-state equilibrium is locally asymptotically stable and (2 if the elasticity of market demand is sufficiently low, quasiperiodic oscillations emerge when the time lag (that represents the length of production cycle is high enough.

  9. On the time delay between ultra-relativistic particles

    Directory of Open Access Journals (Sweden)

    Pierre Fleury

    2016-09-01

    Full Text Available The time delay between the receptions of ultra-relativistic particles emitted simultaneously is a useful observable for both fundamental physics and cosmology. The expression of the delay when the particles travel through an arbitrary spacetime has been derived recently by Fanizza et al., using a particular coordinate system and self-consistent assumptions. The present article shows that this formula enjoys a simple physical interpretation: the relative velocity between two ultra-relativistic particles is constant. This result reveals an interesting kinematical property of general relativity, namely that the tidal forces experienced by ultra-relativistic particles in the direction of their motion are much smaller than those experienced orthogonally to their motion.

  10. Time delay between cardiac and brain activity during sleep transitions

    Science.gov (United States)

    Long, Xi; Arends, Johan B.; Aarts, Ronald M.; Haakma, Reinder; Fonseca, Pedro; Rolink, Jérôme

    2015-04-01

    Human sleep consists of wake, rapid-eye-movement (REM) sleep, and non-REM (NREM) sleep that includes light and deep sleep stages. This work investigated the time delay between changes of cardiac and brain activity for sleep transitions. Here, the brain activity was quantified by electroencephalographic (EEG) mean frequency and the cardiac parameters included heart rate, standard deviation of heartbeat intervals, and their low- and high-frequency spectral powers. Using a cross-correlation analysis, we found that the cardiac variations during wake-sleep and NREM sleep transitions preceded the EEG changes by 1-3 min but this was not the case for REM sleep transitions. These important findings can be further used to predict the onset and ending of some sleep stages in an early manner.

  11. Control by time delayed feedback near a Hopf bifurcation point

    Directory of Open Access Journals (Sweden)

    Sjoerd Verduyn Lunel

    2017-12-01

    Full Text Available In this paper we study the stabilization of rotating waves using time delayed feedback control. It is our aim to put some recent results in a broader context by discussing two different methods to determine the stability of the target periodic orbit in the controlled system: 1 by directly studying the Floquet multipliers and 2 by use of the Hopf bifurcation theorem. We also propose an extension of the Pyragas control scheme for which the controlled system becomes a functional differential equation of neutral type. Using the observation that we are able to determine the direction of bifurcation by a relatively simple calculation of the root tendency, we find stability conditions for the periodic orbit as a solution of the neutral type equation.

  12. Introduction to Focus Issue: Time-delay dynamics

    Science.gov (United States)

    Erneux, Thomas; Javaloyes, Julien; Wolfrum, Matthias; Yanchuk, Serhiy

    2017-11-01

    The field of dynamical systems with time delay is an active research area that connects practically all scientific disciplines including mathematics, physics, engineering, biology, neuroscience, physiology, economics, and many others. This Focus Issue brings together contributions from both experimental and theoretical groups and emphasizes a large variety of applications. In particular, lasers and optoelectronic oscillators subject to time-delayed feedbacks have been explored by several authors for their specific dynamical output, but also because they are ideal test-beds for experimental studies of delay induced phenomena. Topics include the control of cavity solitons, as light spots in spatially extended systems, new devices for chaos communication or random number generation, higher order locking phenomena between delay and laser oscillation period, and systematic bifurcation studies of mode-locked laser systems. Moreover, two original theoretical approaches are explored for the so-called Low Frequency Fluctuations, a particular chaotical regime in laser output which has attracted a lot of interest for more than 30 years. Current hot problems such as the synchronization properties of networks of delay-coupled units, novel stabilization techniques, and the large delay limit of a delay differential equation are also addressed in this special issue. In addition, analytical and numerical tools for bifurcation problems with or without noise and two reviews on concrete questions are proposed. The first review deals with the rich dynamics of simple delay climate models for El Nino Southern Oscillations, and the second review concentrates on neuromorphic photonic circuits where optical elements are used to emulate spiking neurons. Finally, two interesting biological problems are considered in this Focus Issue, namely, multi-strain epidemic models and the interaction of glucose and insulin for more effective treatment.

  13. Mathematical model of tuberculosis epidemic with recovery time delay

    Science.gov (United States)

    Iskandar, Taufiq; Chaniago, Natasya Ayuningtia; Munzir, Said; Halfiani, Vera; Ramli, Marwan

    2017-12-01

    Tuberculosis (TB) is a contagious disease which can cause death. The disease is caused by Mycobacterium Tuberculosis which generally affects lungs and other organs such as lymph gland, intestine, kidneys, uterus, bone, and brain. The spread of TB occurs through the bacteria-contaminated air which is inhaled into the lungs. The symptoms of the TB patients are cough, chest pain, shortness of breath, appetite lose, weight lose, fever, cold, and fatigue. World Health Organization (WHO) reported that Indonesia placed the second in term of the most TB cases after India which has 23 % cases while China is reported to have 10 % cases in global. TB has become one of the greatest death threats in global. One way to countermeasure TB disease is by administering vaccination. However, a medication is needed when one has already infected. The medication can generally take 6 months of time which consists of two phases, inpatient and outpatient. Mathematical models to analyze the spread of TB have been widely developed. One of them is the SEIR type model. In this model the population is divided into four groups, which are suspectible (S), exposed (S), infected (I), recovered (R). In fact, a TB patient needs to undergo medication with a period of time in order to recover. This article discusses a model of TB spread with considering the term of recovery (time delay). The model is developed in SIR type where the population is divided into three groups, suspectible (S), infected (I), and recovered (R). Here, the vaccine is given to the susceptible group and the time delay is considered in the group undergoing the medication.

  14. Start time delays in operating room: Different perspectives

    Directory of Open Access Journals (Sweden)

    Babita Gupta

    2011-01-01

    Full Text Available Background: Healthcare expenditure is a serious concern, with escalating costs failing to meet the expectations of quality care. The treatment capacities are limited in a hospital setting and the operating rooms (ORs. Their optimal utilization is vital in efficient hospital management. Starting late means considerable wait time for staff, patients and waste of resources. We planned an audit to assess different perspectives of the residents in surgical specialities and anesthesia and OR staff nurses so as to know the causative factors of operative delay. This can help develop a practical model to decrease start time delays in operating room (ORs. Aims: An audit to assess different perspectives of the Operating room (OR staff with respect to the varied causative factors of operative delay in the OR. To aid in the development of a practical model to decrease start time delays in ORs and facilitate on-time starts at Jai Prakash Narayan Apex Trauma centre (JPNATC, All India Institute of Medical Sciences (AIIMS, New Delhi. Methods: We prepared a questionnaire seeking the five main reasons of delay as per their perspective. Results: The available data was analysed. Analysis of the data demonstrated the common causative factors in start time operative delays as: a lack of proper planning, deficiencies in team work, communication gap and limited availability of trained supporting staff. Conclusions: The preparation of the equipment and required material for the OR cases must be done well in advance. Utilization of newer technology enables timely booking and scheduling of cases. Improved inter-departmental coordination and compliance with preanesthetic instructions needs to be ensured. It is essential that the anesthesiologists perform their work promptly, well in time . and supervise the proceedings as the OR manager. This audit is a step forward in defining the need of effective OR planning for continuous quality improvement.

  15. Start time delays in operating room: Different perspectives.

    Science.gov (United States)

    Gupta, Babita; Agrawal, Pramendra; D'souza, Nita; Soni, Kapil Dev

    2011-07-01

    Healthcare expenditure is a serious concern, with escalating costs failing to meet the expectations of quality care. The treatment capacities are limited in a hospital setting and the operating rooms (ORs). Their optimal utilization is vital in efficient hospital management. Starting late means considerable wait time for staff, patients and waste of resources. We planned an audit to assess different perspectives of the residents in surgical specialities and anesthesia and OR staff nurses so as to know the causative factors of operative delay. This can help develop a practical model to decrease start time delays in operating room (ORs). An audit to assess different perspectives of the Operating room (OR) staff with respect to the varied causative factors of operative delay in the OR. To aid in the development of a practical model to decrease start time delays in ORs and facilitate on-time starts at Jai Prakash Narayan Apex Trauma centre (JPNATC), All India Institute of Medical Sciences (AIIMS), New Delhi. We prepared a questionnaire seeking the five main reasons of delay as per their perspective. The available data was analysed. Analysis of the data demonstrated the common causative factors in start time operative delays as: a lack of proper planning, deficiencies in team work, communication gap and limited availability of trained supporting staff. The preparation of the equipment and required material for the OR cases must be done well in advance. Utilization of newer technology enables timely booking and scheduling of cases. Improved inter-departmental coordination and compliance with preanesthetic instructions needs to be ensured. It is essential that the anesthesiologists perform their work promptly, well in time . and supervise the proceedings as the OR manager. This audit is a step forward in defining the need of effective OR planning for continuous quality improvement.

  16. Time delay along a chained lumped-circuits: for the physical analogy of half-wavelength power transmission lines

    Science.gov (United States)

    Zhan, Rongrong; Li, Yurong; Jiao, Chongqing; Yu, Yue; Meng, Jiangwen; Wang, Bei

    2017-09-01

    Half-wavelength AC power transmission (HWACT) technology is a kind of three-phase AC transmission technology, which can transmit electric power over a distance close to half power-frequency wavelength, i.e. 3000 km (50Hz) or 2500 km (60 Hz). In order to implement physical analogy of HWACT lines, in general, the equivalent lumped-circuits consisting of some chained π-type circuits or T-type circuits are used in laboratory. The number of the chained circuits is the most key parameter to establish good equivalence between the lumped-circuits and the transmission line. In this paper, the time delay of the chained circuits, which is defined as the time of a sine wave propagating from the sending end to the receiving end of the chained circuits, is calculated for different number of the chained circuits and different wave frequencies. Good equivalence requires the time delay equal to 10ms (the time of electromagnetic waves propagating along 3000km). It is shown that the time delay is dependent on the number of the chained circuits, as well as the wave frequency. For 50Hz, 4 chained π-type circuits can ensure that the relative error of the time delay is less than 2.6% and the sending-to-receiving voltage ratio is approximately 1. For frequencies below 400Hz, 30 chained π-type or T-type circuits can ensure that the relative error of the time delay is less than 3.2% and the sending-to-receiving voltage ratio is approximately 1. These works are instructive for the physical analogy of HWACT lines.

  17. Face to phase: pitfalls in time delay estimation from coherency phase

    NARCIS (Netherlands)

    Campfens, S.F.; van der Kooij, Herman; Schouten, Alfred Christiaan

    2014-01-01

    Coherency phase is often interpreted as a time delay reflecting a transmission delay between spatially separated neural populations. However, time delays estimated from corticomuscular coherency are conflicting and often shorter than expected physiologically. Recent work suggests that

  18. Multi-scale approach for simulating time-delay biochemical reaction systems.

    Science.gov (United States)

    Niu, Yuanling; Burrage, Kevin; Zhang, Chengjian

    2015-02-01

    This study presents a multi-scale approach for simulating time-delay biochemical reaction systems when there are wide ranges of molecular numbers. The authors construct a new efficient approach based on partitioning into slow and fast subsets in conjunction with predictor-corrector methods. This multi-scale approach is shown to be much more efficient than existing methods such as the delay stochastic simulation algorithm and the modified next reaction method. Numerical testing on several important problems in systems biology confirms the accuracy and computational efficiency of this approach.

  19. Dithered Time Delays and Chaos Synchronization in Lasers with Multiple Feedbacks

    OpenAIRE

    Shahverdiev, E. M.; Shore, K. A.

    2009-01-01

    By studying laser systems with multiple time delays, we demonstrate that the signatures of time delays in the autocorrelation coefficient and the mutual information of the laser output can be erased for systems with variable time delays. This property makes such laser systems highly suitable for secure chaos-based communication systems. We also present the first report on chaos synchronization in both unidirectionally and bidirectionally coupled variable multiple time delay laser diodes with ...

  20. Wind shear proportional errors in the horizontal wind speed sensed by focused, range gated lidars

    DEFF Research Database (Denmark)

    Lindelöw, Per Jonas Petter; Courtney, Michael; Parmentier, R.

    2008-01-01

    The 10-minute average horizontal wind speeds sensed with lidar and mast mounted cup anemometers, at 60 to 116 meters altitude at Hovsore, are compared. The lidar deviation from the cup value as a function of wind velocity and wind shear is studied in a 2-parametric regression analysis which reveals...... an altitude dependent relation between the lidar error and the wind shear. A likely explanation for this relation is an error in the intended sensing altitude. At most this error is estimated to 9 in which induced errors in the horizontal wind velocity of up to 0.5 m/s as compared to a cup at the intended...... for wind velocity and wind shear dependent errors are discussed. The 2-parametric regression analysis described in this paper is proven to be a better approach when acceptance testing and calibrating lidars....

  1. Correction of a phase dependent error in a time-of-flight range sensor

    Science.gov (United States)

    Seiter, Johannes; Hofbauer, Michael; Davidovic, Milos; Zimmermann, Horst

    2013-04-01

    Time-of-Flight (TOF) 3D cameras determine the distance information by means of a propagation delay measurement. The delay value is acquired by correlating the sent and received continuous wave signals in discrete phase delay steps. To reduce the measurement time as well as the resources required for signal processing, the number of phase steps can be decreased. However, such a change results in the arising of a crucial systematic distance dependent distance error. In the present publication we investigate this phase dependent error systematically by means of a fiber based measurement setup. Furthermore, the phase shift is varied with an electrical delay line device rather than by moving an object in front of the camera. This procedure allows investigating the above mentioned phase dependent error isolated from other error sources, as, e.g., the amplitude dependent error. In other publications this error is corrected by means of a look-up table stored in a memory device. In our paper we demonstrate an analytical correction method that dramatically minimizes the demanded memory size. For four phase steps, this approach reduces the error dramatically by 89.4 % to 13.5 mm at a modulation frequency of 12.5 MHz. For 20.0 MHz, a reduction of 86.8 % to 11.5 mm could be achieved.

  2. Reliable filtering with strict dissipativity for T-S fuzzy time-delay systems.

    Science.gov (United States)

    Su, Xiaojie; Shi, Peng; Wu, Ligang; Basin, Michael V

    2014-12-01

    In this paper, the problem of reliable filter design with strict dissipativity has been investigated for a class of discrete-time T-S fuzzy time-delay systems. Our attention is focused on the design of a reliable filter to ensure a strictly dissipative performance for the filtering error system. Based on the reciprocally convex approach, firstly, a sufficient condition of reliable dissipativity analysis is proposed for T-S fuzzy systems with time-varying delays and sensor failures. Then, a reliable filter with strict dissipativity is designed by solving a convex optimization problem, which can be efficiently solved by standard numerical algorithms. Finally, numerical examples are provided to illustrate the effectiveness of the developed techniques.

  3. Applications of stability criteria to time delay systems

    Directory of Open Access Journals (Sweden)

    D. Popescu

    2004-08-01

    Full Text Available Stability and stabilization of time delay systems (even of the linear ones is again in the mainstream of the research. A most recent example is the stability analysis of feedback control loops containing a first order controlled object with pure delay and a standard PID controller, thus generating a system with a second degree quasi-polynomial as characteristic equation. Since the classical memoir of Čebotarev and Meiman (1949 up to the more recent monographs by Stepan (1989 and Górecki et al (1989 several approaches to this problem have been given, aiming to find the most complete Routh-Hurwitz type conditions for this case. In fact the main problem is here a missing case in the original memoir of Čebotarev and Meiman and its significance within the framework of the most recent analysis of Górecki et al. The present paper aims to a fairly complete analysis of the problem combined with some hints for the nonlinear case (Aizerman problem. State feedback stabilization based on Artstein reduction of a system with input delay to a system without delay is also considered.

  4. Time-delayed subsidies: interspecies population effects in salmon.

    Directory of Open Access Journals (Sweden)

    Michelle C Nelson

    Full Text Available Cross-boundary nutrient inputs can enhance and sustain populations of organisms in nutrient-poor recipient ecosystems. For example, Pacific salmon (Oncorhynchus spp. can deliver large amounts of marine-derived nutrients to freshwater ecosystems through their eggs, excretion, or carcasses. This has led to the question of whether nutrients from one generation of salmon can benefit juvenile salmon from subsequent generations. In a study of 12 streams on the central coast of British Columbia, we found that the abundance of juvenile coho salmon was most closely correlated with the abundance of adult pink salmon from previous years. There was a secondary role for adult chum salmon and watershed size, followed by other physical characteristics of streams. Most of the coho sampled emerged in the spring, and had little to no direct contact with spawning salmon nutrients at the time of sampling in the summer and fall. A combination of techniques suggest that subsidies from spawning salmon can have a strong, positive, time-delayed influence on the productivity of salmon-bearing streams through indirect effects from previous spawning events. This is the first study on the impacts of nutrients from naturally-occurring spawning salmon on juvenile population abundance of other salmon species.

  5. Time-delay control of ionic polymer metal composite actuator

    Science.gov (United States)

    Lee, Joon Hwan; Kim, Byung Jo; Kim, Jin Seong; Song, Dae Seok; Lee, Min Gyu; Jho, Jae Young; Kim, Dong Min; Rhee, Kyehan; Lee, Soo Jin

    2015-04-01

    This paper presents the control of an ionic polymer metal composite (IPMC) strip, which is an electro-active polymer actuator. IPMC can produce mechanical bending motion in response to an electrical excitation. Although IPMC has many beneficial properties, such as low power consumption, large deformation, and bi-directional actuation, it is very challenging to control because of its time-varying and nonlinear properties. Time-delay control (TDC) was applied to an IPMC strip in order to obtain a robust and precise tracking performance. The TDC scheme has shown good tracking performance with exceptional robustness in many other applications, in addition to having a simple and efficient structure and design process. A first-order filter was applied to the control input to reduce the sensor noise. An anti-windup scheme was also used because of its inherent integral effect. The simulation and experimental results of an IPMC strip controlled by TDC showed good performance in the steady state and transient responses. Furthermore, the control output responses tracked the desired model even when the IPMC parameters varied in repetitive experiments. In addition, it was shown through Nyquist analysis that the stability of the IPMC strip controlled by TDC is always maintained with the time-varying parameters. These results demonstrate that the TDC law applied to a time-varying and nonlinear IPMC provides robustness in performance and stability, while yielding precise transient and steady state tracking performance.

  6. A Time Delay Estimation Method Based on Wavelet Transform and Speech Envelope for Distributed Microphone Arrays

    Directory of Open Access Journals (Sweden)

    YIN, F.

    2013-08-01

    Full Text Available A time delay estimation method based on wavelet transform and speech envelope is proposed for distributed microphone arrays. This method first extracts the speech envelopes of the signals processed with multi-level discrete wavelet transform, and then makes use of the speech envelopes to estimate a coarse time delay. Finally it searches for the accurate time delay near the coarse time delay by the cross-correlation function calculated in time domain. The simulation results illustrate that the proposed method can accurately estimate the time delay between two distributed microphone array signals.

  7. Combination synchronization of time-delay chaotic system via robust ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 88; Issue 6 ... is drawn for the stability of error dynamics based on Lyapunov stability theory. ... The complexity of this methodology is useful to strengthen the security of communication.

  8. Collaborative Tracking Control of Dual Linear Switched Reluctance Machines Over Communication Network With Time Delays.

    Science.gov (United States)

    Qiu, Li; Shi, Yang; Pan, Jianfei; Zhang, Bo; Xu, Gang

    2017-12-01

    This paper investigates the collaborative tracking control for dual linear switched reluctance machines (LSRMs) over a communication network with random time delays. Considering the spatio-temporal constraint relationship of the dual LSRMs in complex industrial processes, the collaborative tracking control scheme is proposed based on the networked motion control method. The stability conditions and the controller design method for the networked dual LSRMs are obtained from the two motors relative position error by using Lyapunov theory and delay systems approach. Four different allocation schemes combined with two kinds of external control signals are applied onto the collaborative tracking control experiment platform of the dual LSRMs to validate the effectiveness of the proposed method. The maximum steady-state relative position error within 0.104 mm can be achieved under the constant absolute position reference input signal of 3 mm, and the maximum absolute relative position error within ±0.46 mm can be achieved under the sinusoidal reference of 8 mm amplitude and 0.2 Hz.

  9. Enhanced IMC based PID controller design for non-minimum phase (NMP) integrating processes with time delays.

    Science.gov (United States)

    Ghousiya Begum, K; Seshagiri Rao, A; Radhakrishnan, T K

    2017-05-01

    Internal model control (IMC) with optimal H2 minimization framework is proposed in this paper for design of proportional-integral-derivative (PID) controllers. The controller design is addressed for integrating and double integrating time delay processes with right half plane (RHP) zeros. Blaschke product is used to derive the optimal controller. There is a single adjustable closed loop tuning parameter for controller design. Systematic guidelines are provided for selection of this tuning parameter based on maximum sensitivity. Simulation studies have been carried out on various integrating time delay processes to show the advantages of the proposed method. The proposed controller provides enhanced closed loop performances when compared to recently reported methods in the literature. Quantitative comparative analysis has been carried out using the performance indices, Integral Absolute Error (IAE) and Total Variation (TV). Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Cross-correlation analysis and time delay estimation of a homologous micro-seismic signal based on the Hilbert-Huang transform

    Science.gov (United States)

    Sun, Hong-Mei; Jia, Rui-Sheng; Du, Qian-Qian; Fu, You

    2016-06-01

    A micro-seismic signal's transient features are non-stationary. The traditional weighted generalized cross-correlation (GCC) algorithm is based on the cross-power spectrum density. This algorithm diminishes the performance of the time delay estimation for homologous micro-seismic signals. This paper analyzed the influence of calculation error on the cross-power spectrum density of a non-stationary signal and proposed a new cross-correlation analysis and time delay estimation method for homologous micro-seismic signals based on the Hilbert-Huang transform (HHT). First, the original signals are decomposed into intrinsic mode function (IMF) components using empirical mode decomposition (EMD) for de-noising. Subsequently, the IMF components and the original signals are analyzed using a cross-correlation analysis. The IMF components are subsequently remodeled at different scales using the Hilbert transform. The marginal spectrum density is obtained via a time integration of the remodeled components. The cross-marginal spectrum density of the two signals can also be obtained. Finally, the cross-marginal spectrum density is used in the weighted GCC algorithm for time delay estimation instead of the cross-power spectrum density. The time delay estimation is determined by searching for the weighted GCC function peak. The experiments demonstrated the superior time delay estimation performance of the new method for non-stationary transient signals. Therefore, a new time delay estimation method for non-stationary random signals is presented in this paper.

  11. Investigation of the effects of bandwidth and time delay on helicopter roll-axis handling qualities

    Science.gov (United States)

    Pausder, Heinz-Juergen; Blanken, Chris L.

    1993-01-01

    Several years of cooperative research conducted under the U.S./German Memorandum of Understanding (MOU) in helicopter flight control has recently resulted in a successful handling qualities study. The focus of this cooperative research has been the effects on handling qualities due to time delays in combination with a high bandwidth vehicle. The jointly performed study included the use of U.S. ground-based simulation and German in-flight simulation facilities. The NASA-Ames Vertical Motion Simulator (VMS) was used to develop a high bandwidth slalom tracking task which took into consideration the constraints of the facilities. The VMS was also used to define a range of the test parameters and to perform initial handling qualities evaluations. The flight tests were conducted using DLR's variable-stability BO 105 S3 Advanced Technology Testing Helicopter System (ATTHeS). Configurations included a rate command and an attitude command response system with added time delays up to 160 milliseconds over the baseline and bandwidth values between 1.5 and 4.5 rad/sec. Sixty-six evaluations were performed in about 25 hours of flight time during ten days of testing. The results indicate a need to more tightly constrain the allowable roll axis phase delay for the Level 1 and Level 2 requirements in the U.S. Army's specification for helicopter handling qualities, ADS-33C.

  12. Stability and Time Delay Tolerance Analysis Approach for Networked Control Systems

    Directory of Open Access Journals (Sweden)

    Ashraf F. Khalil

    2015-01-01

    Full Text Available Networked control system is a research area where the theory is behind practice. Closing the feedback loop through shared network induces time delay and some of the data could be lost. So the network induced time delay and data loss are inevitable in networked control Systems. The time delay may degrade the performance of control systems or even worse lead to system instability. Once the structure of a networked control system is confirmed, it is essential to identify the maximum time delay allowed for maintaining the system stability which, in turn, is also associated with the process of controller design. Some studies reported methods for estimating the maximum time delay allowed for maintaining system stability; however, most of the reported methods are normally overcomplicated for practical applications. A method based on the finite difference approximation is proposed in this paper for estimating the maximum time delay tolerance, which has a simple structure and is easy to apply.

  13. Vehicle Position Estimation Based on Magnetic Markers: Enhanced Accuracy by Compensation of Time Delays

    Directory of Open Access Journals (Sweden)

    Yeun-Sub Byun

    2015-11-01

    Full Text Available The real-time recognition of absolute (or relative position and orientation on a network of roads is a core technology for fully automated or driving-assisted vehicles. This paper presents an empirical investigation of the design, implementation, and evaluation of a self-positioning system based on a magnetic marker reference sensing method for an autonomous vehicle. Specifically, the estimation accuracy of the magnetic sensing ruler (MSR in the up-to-date estimation of the actual position was successfully enhanced by compensating for time delays in signal processing when detecting the vertical magnetic field (VMF in an array of signals. In this study, the signal processing scheme was developed to minimize the effects of the distortion of measured signals when estimating the relative positional information based on magnetic signals obtained using the MSR. In other words, the center point in a 2D magnetic field contour plot corresponding to the actual position of magnetic markers was estimated by tracking the errors between pre-defined reference models and measured magnetic signals. The algorithm proposed in this study was validated by experimental measurements using a test vehicle on a pilot network of roads. From the results, the positioning error was found to be less than 0.04 m on average in an operational test.

  14. Tuning PD and PID Controllers for Double Integrating Plus Time Delay Systems

    OpenAIRE

    Ruscio, David Luigi Di; Dalen, Christer

    2017-01-01

    An existing method for tuning a PI controller for an integrating plus time delay plant are extended to be used for the design of a PD controller for a double integrating plus time delay plant. The PD controller is extended with integral action and an ideal PID controller is suggested in order to achieve optimality of the closed loop responses. Furthermore, some analytical results concerning the proposed PD and PID controller algorithm regarding the relative time-delay margin are worked out an...

  15. Synchronization of Different Fractional Order Time-Delay Chaotic Systems Using Active Control

    OpenAIRE

    Jianeng Tang

    2014-01-01

    Chaos synchronization of different fractional order time-delay chaotic systems is considered. Based on the Laplace transform theory, the conditions for achieving synchronization of different fractional order time-delay chaotic systems are analyzed by use of active control technique. Then numerical simulations are provided to verify the effectiveness and feasibility of the developed method. At last, effects of the fraction order and the time delay on synchronization are further researched.

  16. Synchronization of Different Fractional Order Time-Delay Chaotic Systems Using Active Control

    Directory of Open Access Journals (Sweden)

    Jianeng Tang

    2014-01-01

    Full Text Available Chaos synchronization of different fractional order time-delay chaotic systems is considered. Based on the Laplace transform theory, the conditions for achieving synchronization of different fractional order time-delay chaotic systems are analyzed by use of active control technique. Then numerical simulations are provided to verify the effectiveness and feasibility of the developed method. At last, effects of the fraction order and the time delay on synchronization are further researched.

  17. Combined influence of CT random noise and HU-RSP calibration curve nonlinearities on proton range systematic errors

    Science.gov (United States)

    Brousmiche, S.; Souris, K.; Orban de Xivry, J.; Lee, J. A.; Macq, B.; Seco, J.

    2017-11-01

    Proton range random and systematic uncertainties are the major factors undermining the advantages of proton therapy, namely, a sharp dose falloff and a better dose conformality for lower doses in normal tissues. The influence of CT artifacts such as beam hardening or scatter can easily be understood and estimated due to their large-scale effects on the CT image, like cupping and streaks. In comparison, the effects of weakly-correlated stochastic noise are more insidious and less attention is drawn on them partly due to the common belief that they only contribute to proton range uncertainties and not to systematic errors thanks to some averaging effects. A new source of systematic errors on the range and relative stopping powers (RSP) has been highlighted and proved not to be negligible compared to the 3.5% uncertainty reference value used for safety margin design. Hence, we demonstrate that the angular points in the HU-to-RSP calibration curve are an intrinsic source of proton range systematic error for typical levels of zero-mean stochastic CT noise. Systematic errors on RSP of up to 1% have been computed for these levels. We also show that the range uncertainty does not generally vary linearly with the noise standard deviation. We define a noise-dependent effective calibration curve that better describes, for a given material, the RSP value that is actually used. The statistics of the RSP and the range continuous slowing down approximation (CSDA) have been analytically derived for the general case of a calibration curve obtained by the stoichiometric calibration procedure. These models have been validated against actual CSDA simulations for homogeneous and heterogeneous synthetical objects as well as on actual patient CTs for prostate and head-and-neck treatment planning situations.

  18. Stability analysis of fractional-order Hopfield neural networks with time delays.

    Science.gov (United States)

    Wang, Hu; Yu, Yongguang; Wen, Guoguang

    2014-07-01

    This paper investigates the stability for fractional-order Hopfield neural networks with time delays. Firstly, the fractional-order Hopfield neural networks with hub structure and time delays are studied. Some sufficient conditions for stability of the systems are obtained. Next, two fractional-order Hopfield neural networks with different ring structures and time delays are developed. By studying the developed neural networks, the corresponding sufficient conditions for stability of the systems are also derived. It is shown that the stability conditions are independent of time delays. Finally, numerical simulations are given to illustrate the effectiveness of the theoretical results obtained in this paper. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Study on the Business Cycle Model with Fractional-Order Time Delay under Random Excitation

    Directory of Open Access Journals (Sweden)

    Zifei Lin

    2017-07-01

    Full Text Available Time delay of economic policy and memory property in a real economy system is omnipresent and inevitable. In this paper, a business cycle model with fractional-order time delay which describes the delay and memory property of economic control is investigated. Stochastic averaging method is applied to obtain the approximate analytical solution. Numerical simulations are done to verify the method. The effects of the fractional order, time delay, economic control and random excitation on the amplitude of the economy system are investigated. The results show that time delay, fractional order and intensity of random excitation can all magnify the amplitude and increase the volatility of the economy system.

  20. Stabilization and PID tuning algorithms for second-order unstable processes with time-delays.

    Science.gov (United States)

    Seer, Qiu Han; Nandong, Jobrun

    2017-03-01

    Open-loop unstable systems with time-delays are often encountered in process industry, which are often more difficult to control than stable processes. In this paper, the stabilization by PID controller of second-order unstable processes, which can be represented as second-order deadtime with an unstable pole (SODUP) and second-order deadtime with two unstable poles (SODTUP), is performed via the necessary and sufficient criteria of Routh-Hurwitz stability analysis. The stability analysis provides improved understanding on the existence of a stabilizing range of each PID parameter. Three simple PID tuning algorithms are proposed to provide desired closed-loop performance-robustness within the stable regions of controller parameters obtained via the stability analysis. The proposed PID controllers show improved performance over those derived via some existing methods. Copyright © 2017. Published by Elsevier Ltd.

  1. Research on UWB Beamforming Using Direct Time Delay Compensation Based on Hermite Interpolation Filter

    Directory of Open Access Journals (Sweden)

    Du Qiang

    2013-09-01

    Full Text Available Beamforming of Ultra Wide Band (UWB signals is a crucial technology in UWB radar. Conventional beamforming methods have limitations in instantaneous bandwidth, scanning range, beam pattern deviation and a mainlobe distortion. Direct Time Delay (DTD compensation is an effective way to avoid above problems. In this paper, a DTD compensation based on Hermite interpolation filters is presented to implement beamforming of UWB signals. Theoretical analysis and simulation results show that the magnitude responses and group delay of the proposed filters are better than those based on Lagrange and Radial basis methods. The demonstration of the UWB Linear-Frequency modulated (LFM signal also shows excellent performances on the UWB beamforming of the proposed method.

  2. Wavefronts in time-delayed reaction-diffusion systems. Theory and comparison to experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fort, Joaquim [Departament de Fisica, Universitat de Girona, Girona (Spain)]. E-mail: joaquim.fort@udg.es; Mendez, Vicenc [Facultat de Ciencies de la Salut, Universitat Internacional de Catalunya, Ssant Cugat del Valles (Spain)]. E-mail: vmendez@csc.unica.edu

    2002-06-01

    We review the recent theoretical progress in the formulation and solution of the front speed problem for time-delayed reaction-diffusion systems. Most of the review is focused on hyperbolic equations. They have been widely used in recent years, because they allow for analytical solutions and yield a realistic description of some relevant phenomena. The theoretical methods are applied to a range of applications, including population dynamics, forest fire models, bistable systems and combustion wavefronts. We also present a detailed account of successful predictions of the models, as assessed by comparison to experimental data for some biophysical systems, without making use of any free parameters. Areas where the work reviewed may contribute to future progress are discussed. (author)

  3. Time-delay polynomial networks and rates of approximation

    Directory of Open Access Journals (Sweden)

    Irwin W. Sandberg

    1998-01-01

    Full Text Available We consider a large family of finite memory causal time-invariant maps G from an input set S to a set of ℝ-valued functions, with the members of both sets of functions defined on the nonnegative integers, and we give an upper bound on the error in approximating a G using a two-stage structure consisting of a tapped delay line and a static polynomial network N . This upper bound depends on the degree of the multivariable polynomial that characterizes N. Also given is a lower bound on the worst-case error in approximating a G using polynomials of a fixed maximum degree. These upper and lower bounds differ only by a multiplicative constant. We also give a corresponding result for the approximation of not-necessarily-causal input–output maps with inputs and outputs that may depend on more than one variable. This result is of interest, for example, in connection with image processing.

  4. Tuning of an optimal fuzzy PID controller with stochastic algorithms for networked control systems with random time delay.

    Science.gov (United States)

    Pan, Indranil; Das, Saptarshi; Gupta, Amitava

    2011-01-01

    An optimal PID and an optimal fuzzy PID have been tuned by minimizing the Integral of Time multiplied Absolute Error (ITAE) and squared controller output for a networked control system (NCS). The tuning is attempted for a higher order and a time delay system using two stochastic algorithms viz. the Genetic Algorithm (GA) and two variants of Particle Swarm Optimization (PSO) and the closed loop performances are compared. The paper shows that random variation in network delay can be handled efficiently with fuzzy logic based PID controllers over conventional PID controllers. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Sensorless SPMSM Position Estimation Using Position Estimation Error Suppression Control and EKF in Wide Speed Range

    Directory of Open Access Journals (Sweden)

    Zhanshan Wang

    2014-01-01

    Full Text Available The control of a high performance alternative current (AC motor drive under sensorless operation needs the accurate estimation of rotor position. In this paper, one method of accurately estimating rotor position by using both motor complex number model based position estimation and position estimation error suppression proportion integral (PI controller is proposed for the sensorless control of the surface permanent magnet synchronous motor (SPMSM. In order to guarantee the accuracy of rotor position estimation in the flux-weakening region, one scheme of identifying the permanent magnet flux of SPMSM by extended Kalman filter (EKF is also proposed, which formed the effective combination method to realize the sensorless control of SPMSM with high accuracy. The simulation results demonstrated the validity and feasibility of the proposed position/speed estimation system.

  6. Human Robotic Systems (HRS): Controlling Robots over Time Delay Element

    Data.gov (United States)

    National Aeronautics and Space Administration — This element involves the development of software that enables easier commanding of a wide range of NASA relevant robots through the Robot Application Programming...

  7. Effect of Magnetic Activity on Ionospheric Time Delay at Low Latitude

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 29; Issue 1-2 ... The purpose of this work is to investigate the effect of magnetic activity on ionospheric time delay at low latitude Station Bhopal (geom. lat. ... We also study the ionospheric time delay during magnetic storm conditions for the same period.

  8. Fokker-Planck equations for globally coupled many body systems with time delays

    NARCIS (Netherlands)

    Frank, T.D.; Beek, P.J.

    2005-01-01

    A Fokker-Planck description for globally coupled many-body systems with time delays was developed by integrating previously derived Fokker-Planck equations for many-body systems and for time-delayed systems. By means of the Fokker-Planck description developed, we examined the dependence of the

  9. Time-delay effects on dynamics of a two-actor conflict model

    Science.gov (United States)

    Rojas-Pacheco, A.; Obregón-Quintana, B.; Liebovitch, L. S.; Guzmán-Vargas, L.

    2013-02-01

    We present a study of time-delay effects on a two-actor conflict model based on nonlinear differential equations. The state of each actor depends on its own state in isolation, its previous state, its inertia to change, the positive or negative feedback and a time delay in the state of the other actor. We use both theoretical and numerical approaches to characterize the evolution of the system for several values of time delays. We find that, under particular conditions, a time delay leads to the appearance of oscillations in the states of the actors. Besides, phase portraits for the trajectories are presented to illustrate the evolution of the system for different time delays. Finally, we discuss our results in the context of social conflict models.

  10. Generalized synchronization-based multiparameter estimation in modulated time-delayed systems

    Science.gov (United States)

    Ghosh, Dibakar; Bhattacharyya, Bidyut K.

    2011-09-01

    We propose a nonlinear active observer based generalized synchronization scheme for multiparameter estimation in time-delayed systems with periodic time delay. A sufficient condition for parameter estimation is derived using Krasovskii-Lyapunov theory. The suggested tool proves to be globally and asymptotically stable by means of Krasovskii-Lyapunov method. With this effective method, parameter identification and generalized synchronization of modulated time-delayed systems with all the system parameters unknown, can be achieved simultaneously. We restrict our study for multiple parameter estimation in modulated time-delayed systems with single state variable only. Theoretical proof and numerical simulation demonstrate the effectiveness and feasibility of the proposed technique. The block diagram of electronic circuit for multiple time delay system shows that the method is easily applicable in practical communication problems.

  11. Dissipativity and stability analysis of fractional-order complex-valued neural networks with time delay.

    Science.gov (United States)

    Velmurugan, G; Rakkiyappan, R; Vembarasan, V; Cao, Jinde; Alsaedi, Ahmed

    2017-02-01

    As we know, the notion of dissipativity is an important dynamical property of neural networks. Thus, the analysis of dissipativity of neural networks with time delay is becoming more and more important in the research field. In this paper, the authors establish a class of fractional-order complex-valued neural networks (FCVNNs) with time delay, and intensively study the problem of dissipativity, as well as global asymptotic stability of the considered FCVNNs with time delay. Based on the fractional Halanay inequality and suitable Lyapunov functions, some new sufficient conditions are obtained that guarantee the dissipativity of FCVNNs with time delay. Moreover, some sufficient conditions are derived in order to ensure the global asymptotic stability of the addressed FCVNNs with time delay. Finally, two numerical simulations are posed to ensure that the attention of our main results are valuable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Electrical Activity in a Time-Delay Four-Variable Neuron Model under Electromagnetic Induction

    Directory of Open Access Journals (Sweden)

    Keming Tang

    2017-11-01

    Full Text Available To investigate the effect of electromagnetic induction on the electrical activity of neuron, the variable for magnetic flow is used to improve Hindmarsh–Rose neuron model. Simultaneously, due to the existence of time-delay when signals are propagated between neurons or even in one neuron, it is important to study the role of time-delay in regulating the electrical activity of the neuron. For this end, a four-variable neuron model is proposed to investigate the effects of electromagnetic induction and time-delay. Simulation results suggest that the proposed neuron model can show multiple modes of electrical activity, which is dependent on the time-delay and external forcing current. It means that suitable discharge mode can be obtained by selecting the time-delay or external forcing current, which could be helpful for further investigation of electromagnetic radiation on biological neuronal system.

  13. Visual prediction: psychophysics and neurophysiology of compensation for time delays.

    Science.gov (United States)

    Nijhawan, Romi

    2008-04-01

    A necessary consequence of the nature of neural transmission systems is that as change in the physical state of a time-varying event takes place, delays produce error between the instantaneous registered state and the external state. Another source of delay is the transmission of internal motor commands to muscles and the inertia of the musculoskeletal system. How does the central nervous system compensate for these pervasive delays? Although it has been argued that delay compensation occurs late in the motor planning stages, even the earliest visual processes, such as phototransduction, contribute significantly to delays. I argue that compensation is not an exclusive property of the motor system, but rather, is a pervasive feature of the central nervous system (CNS) organization. Although the motor planning system may contain a highly flexible compensation mechanism, accounting not just for delays but also variability in delays (e.g., those resulting from variations in luminance contrast, internal body temperature, muscle fatigue, etc.), visual mechanisms also contribute to compensation. Previous suggestions of this notion of "visual prediction" led to a lively debate producing re-examination of previous arguments, new analyses, and review of the experiments presented here. Understanding visual prediction will inform our theories of sensory processes and visual perception, and will impact our notion of visual awareness.

  14. Wideband RF beamforming: architectures, time-delays and cmos implementations

    NARCIS (Netherlands)

    Garakoui, S.K.

    2015-01-01

    A phased array antenna is a kind of antenna which is electronically reconfigurable to realize different antenna beam patterns. Delay blocks are an essential part of phased array antenna systems. Their delay-range, noise, nonlinearity, bandwidth, size, cost and power consumption have a dominant

  15. COMPARISON OF PI CONTROLLER PERFORMANCE FOR FIRST ORDER SYSTEMS WITH TIME DELAY

    Directory of Open Access Journals (Sweden)

    RAMAKOTESWARA RAO ALLA

    2017-04-01

    Full Text Available Delays appear often in all real world engineering systems. Delay systems have the property that the rate of variation in the system state depends on the previous states also. They are frequently a source of instability and poor system performance. In order to get the required performance from the delay system controller design plays a vital role. Because of the robust nature, easy structure Proportional Integral Derivative (PID controllers are extensively used in many industrial loops. Parameter tuning of the PID controller is an essential task. Numerous industrial processes, whose transfer function is of first order, can be easily controlled with PI controllers. This paper presents the comparative analysis of an approach based on Lambert W function for PI controller design for first order systems with time delay among Smith predictor (SP and ZeiglerNichols (ZN methods of design. Performance of the considered methods in terms of various performance specifications through simulation results has been illustrated. Results demonstrate that the Lambert W function based PI tuning results in adequate performance compared to other methods with respect to parameters settling time, overshoot, errors, etc.

  16. Signal restoration method for restraining the range walk error of Geiger-mode avalanche photodiode lidar in acquiring a merged three-dimensional image.

    Science.gov (United States)

    Xu, Lu; Zhang, Yu; Zhang, Yong; Wu, Long; Yang, Chenghua; Yang, Xu; Zhang, Zijing; Zhao, Yuan

    2017-04-10

    The fluctuation in the number of signal photoelectrons will cause a range walk error in a Geiger-mode avalanche photodiode (Gm-APD) lidar, which significantly depends on the target intensity. For a nanosecond-pulsed laser, the range walk error of traditional time-of-flight will cause deterioration. A new signal restoration method, based on the Poisson probability response model and the center-of-mass algorithm, is proposed to restrain the range walk error. We obtain a high-precision depth and intensity merged 3D image using this method. The range accuracy is 0.6 cm, and the intensity error is less than 3%.

  17. The Influence of Gene Expression Time Delays on Gierer–Meinhardt Pattern Formation Systems

    KAUST Repository

    Seirin Lee, S.

    2010-03-23

    There are numerous examples of morphogen gradients controlling long range signalling in developmental and cellular systems. The prospect of two such interacting morphogens instigating long range self-organisation in biological systems via a Turing bifurcation has been explored, postulated, or implicated in the context of numerous developmental processes. However, modelling investigations of cellular systems typically neglect the influence of gene expression on such dynamics, even though transcription and translation are observed to be important in morphogenetic systems. In particular, the influence of gene expression on a large class of Turing bifurcation models, namely those with pure kinetics such as the Gierer-Meinhardt system, is unexplored. Our investigations demonstrate that the behaviour of the Gierer-Meinhardt model profoundly changes on the inclusion of gene expression dynamics and is sensitive to the sub-cellular details of gene expression. Features such as concentration blow up, morphogen oscillations and radical sensitivities to the duration of gene expression are observed and, at best, severely restrict the possible parameter spaces for feasible biological behaviour. These results also indicate that the behaviour of Turing pattern formation systems on the inclusion of gene expression time delays may provide a means of distinguishing between possible forms of interaction kinetics. Finally, this study also emphasises that sub-cellular and gene expression dynamics should not be simply neglected in models of long range biological pattern formation via morphogens. © 2010 Society for Mathematical Biology.

  18. Synchronisation of fractional-order time delayed chaotic systems with ring connection

    Science.gov (United States)

    He, S.; Sun, K.; Wang, H.

    2016-02-01

    In this paper, synchronisation of fractional-order time delayed chaotic systems in ring networks is investigated. Based on Lyapunov stability theory, a new generic synchronisation criterion for N-coupled chaotic systems with time delay is proposed. The synchronisation scheme is applied to N-coupled fractional-order time delayed simplified Lorenz systems, and the Adomian decomposition method (ADM) is developed for solving these chaotic systems. Performance analysis of the synchronisation network is carried out. Numerical experiments demonstrate that synchronisation realises in both state variables and intermediate variables, which verifies the effectiveness of the proposed method.

  19. Spatial Patterns of a Predator-Prey System of Leslie Type with Time Delay.

    Directory of Open Access Journals (Sweden)

    Caiyun Wang

    Full Text Available Time delay due to maturation time, capturing time or other reasons widely exists in biological systems. In this paper, a predator-prey system of Leslie type with diffusion and time delay is studied based on mathematical analysis and numerical simulations. Conditions for both delay induced and diffusion induced Turing instability are obtained by using bifurcation theory. Furthermore, a series of numerical simulations are performed to illustrate the spatial patterns, which reveal the information of density changes of both prey and predator populations. The obtained results show that the interaction between diffusion and time delay may give rise to rich dynamics in ecosystems.

  20. Tuning PD and PID Controllers for Double Integrating Plus Time Delay Systems

    Directory of Open Access Journals (Sweden)

    David Di Ruscio

    2017-04-01

    Full Text Available An existing method for tuning a PI controller for an integrating plus time delay plant are extended to be used for the design of a PD controller for a double integrating plus time delay plant. The PD controller is extended with integral action and an ideal PID controller is suggested in order to achieve optimality of the closed loop responses. Furthermore, some analytical results concerning the proposed PD and PID controller algorithm regarding the relative time-delay margin are worked out and presented. The algorithm and an existing method are successfully compared against each other on some examples, e.g. the planar movement control of a mariner vessel.

  1. Growth of Errors and Uncertainties in Medium Range Ensemble Forecasts of U.S. East Coast Cool Season Extratropical Cyclones

    Science.gov (United States)

    Zheng, Minghua

    Cool-season extratropical cyclones near the U.S. East Coast often have significant impacts on the safety, health, environment and economy of this most densely populated region. Hence it is of vital importance to forecast these high-impact winter storm events as accurately as possible by numerical weather prediction (NWP), including in the medium-range. Ensemble forecasts are appealing to operational forecasters when forecasting such events because they can provide an envelope of likely solutions to serve user communities. However, it is generally accepted that ensemble outputs are not used efficiently in NWS operations mainly due to the lack of simple and quantitative tools to communicate forecast uncertainties and ensemble verification to assess model errors and biases. Ensemble sensitivity analysis (ESA), which employs a linear correlation and regression between a chosen forecast metric and the forecast state vector, can be used to analyze the forecast uncertainty development for both short- and medium-range forecasts. The application of ESA to a high-impact winter storm in December 2010 demonstrated that the sensitivity signals based on different forecast metrics are robust. In particular, the ESA based on the leading two EOF PCs can separate sensitive regions associated with cyclone amplitude and intensity uncertainties, respectively. The sensitivity signals were verified using the leave-one-out cross validation (LOOCV) method based on a multi-model ensemble from CMC, ECMWF, and NCEP. The climatology of ensemble sensitivities for the leading two EOF PCs based on 3-day and 6-day forecasts of historical cyclone cases was presented. It was found that the EOF1 pattern often represents the intensity variations while the EOF2 pattern represents the track variations along west-southwest and east-northeast direction. For PC1, the upper-level trough associated with the East Coast cyclone and its downstream ridge are important to the forecast uncertainty in cyclone

  2. Effects of Noise and Time Delay Upon Active Control of Combustion Instabilities

    National Research Council Canada - National Science Library

    Zinn, Ben

    2001-01-01

    To improve the performance of practical active control system (ACS) for unstable combustors, the effects of system noise and ACS time delay upon combustion instabilities and the ACS performance were studied...

  3. Integrated High-Speed Digital Optical True-Time-Delay Modules for Synthetic Aperture Radars Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Crystal Research, Inc. proposes an integrated high-speed digital optical true-time-delay module for advanced synthetic aperture radars. The unique feature of this...

  4. Nonlinear Dynamical Analysis on Four Semi-Active Dynamic Vibration Absorbers with Time Delay

    Directory of Open Access Journals (Sweden)

    Yongjun Shen

    2013-01-01

    Full Text Available In this paper four semi-active dynamic vibration absorbers (DVAs are analytically studied, where the time delay induced by measurement and execution in control procedure is included in the system. The first-order approximate analytical solutions of the four semi-active DVAs are established by the averaging method, based on the illustrated phase difference of the motion parameters. The comparisons between the analytical and the numerical solutions are carried out, which verify the correctness and satisfactory precision of the approximate analytical solutions. Then the effects of the time delay on the dynamical responses are analyzed, and it is found that the stability conditions for the steady-state responses of the primary systems are all periodic functions of time delay, with the same period as the excitation one. At last the effects of time delay on control performance are discussed.

  5. Time domain passivity controller for 4-channel time-delay bilateral teleoperation.

    Science.gov (United States)

    Rebelo, Joao; Schiele, Andre

    2015-01-01

    This paper presents an extension of the time-domain passivity control approach to a four-channel bilateral controller under the effects of time delays. Time-domain passivity control has been used successfully to stabilize teleoperation systems with position-force and position-position controllers; however, the performance with such control architectures is sub-optimal both with and without time delays. This work extends the network representation of the time-domain passivity controller to the four-channel architecture, which provides perfect transparency to the user without time delay. The proposed architecture is based on modelling the controllers as dependent voltage sources and using only series passivity controllers. The obtained results are shown on a one degree-of-freedom setup and illustrate the stabilization behaviour of the proposed controller when time delay is present in the communication channel.

  6. Insensitivity of synchronization to network structure in chaotic pendulum systems with time-delay coupling

    Science.gov (United States)

    Yao, Chenggui; Zhan, Meng; Shuai, Jianwei; Ma, Jun; Kurths, Jürgen

    2017-12-01

    It has been generally believed that both time delay and network structure could play a crucial role in determining collective dynamical behaviors in complex systems. In this work, we study the influence of coupling strength, time delay, and network topology on synchronization behavior in delay-coupled networks of chaotic pendulums. Interestingly, we find that the threshold value of the coupling strength for complete synchronization in such networks strongly depends on the time delay in the coupling, but appears to be insensitive to the network structure. This lack of sensitivity was numerically tested in several typical regular networks, such as different locally and globally coupled ones as well as in several complex networks, such as small-world and scale-free networks. Furthermore, we find that the emergence of a synchronous periodic state induced by time delay is of key importance for the complete synchronization.

  7. Time Delay: A Technique to Increase Language Use and Facilitate Generalization in Retarded Children.

    Science.gov (United States)

    Halle, James W.; And Others

    1979-01-01

    Institutional breakfast serving procedures were manipulated with regard to time delay to assess the effects of such changes on language use (requests for food) in six severely retarded children (ages 11 to 15 years). (Author/DLS)

  8. Secure Communication Based on Hyperchaotic Chen System with Time-Delay

    Science.gov (United States)

    Ren, Hai-Peng; Bai, Chao; Huang, Zhan-Zhan; Grebogi, Celso

    An experimental secure communication method based on the Chen system with time-delay is being proposed in this paper. The Chen system with time-delay is an infinite-dimensional system having more than one positive Lyapunov exponent. The message to be transmitted is encrypted using an hyperchaotic signal generated by the Chen system with time-delay and multishift cipher function. This encryption makes difficult for an eavesdropper to reconstruct the attractor by using time-delay embedding techniques, return map reconstruction, or spectral analysis, consequently, improving the security. Simulations and experiments on TI TMS320C6713 Digital Signal Processor (DSP) show improved resilience against attack and the feasibility of the proposed scheme.

  9. Integrated Backstepping Design of Missile Guidance andControl with Time delay Adaptive Scheme

    Science.gov (United States)

    2016-03-30

    Guidance and Control with Time-delay Adaptive Scheme Seong-Min Hong 1 , Min-Guk Seo 1 , Chang-Hun Lee 2 and Min-Jea Tahk 1 1 Department...engagement kinematics are merged. Control input for the overall system is derived by backstepping approach. The stability of control logic is proved...estimated by using a time-delay adaptive control law. The performance of designed controller is investigated by numerical simulation. Keywords

  10. Adaptive Synchronization of Fractional Neural Networks with Unknown Parameters and Time Delays

    Directory of Open Access Journals (Sweden)

    Weiyuan Ma

    2014-12-01

    Full Text Available In this paper, the parameters identification and synchronization problem of fractional-order neural networks with time delays are investigated. Based on some analytical techniques and an adaptive control method, a simple adaptive synchronization controller and parameter update laws are designed to synchronize two uncertain complex networks with time delays. Besides, the system parameters in the uncertain network can be identified in the process of synchronization. To demonstrate the validity of the proposed method, several illustrative examples are presented.

  11. Modeling and Bifurcation Research of a Worm Propagation Dynamical System with Time Delay

    OpenAIRE

    Yao, Yu; Zhang, Zhao; Xiang, Wenlong; Yang, Wei; Gao, Fuxiang

    2014-01-01

    Both vaccination and quarantine strategy are adopted to control the Internet worm propagation. By considering the interaction infection between computers and external removable devices, a worm propagation dynamical system with time delay under quarantine strategy is constructed based on anomaly intrusion detection system (IDS). By regarding the time delay caused by time window of anomaly IDS as the bifurcation parameter, local asymptotic stability at the positive equilibrium and local Hopf bi...

  12. Loss of time-delay signature in chaotic semiconductor ring lasers.

    Science.gov (United States)

    Nguimdo, Romain Modeste; Verschaffelt, Guy; Danckaert, Jan; Van der Sande, Guy

    2012-07-01

    We investigate the possibility of concealing the time-delay signatures in semiconductor ring lasers (SRLs) with external feedback. Through the autocorrelation and delayed mutual information, we report different scenarios leading to simultaneous time-delay concealment both in the intensity and the phase dynamics of such systems. In particular, the fact that such delay signatures can be eliminated in a SRL subject to short feedback constitutes a step toward the possibility of implementing secure communication schemes and random number generators on chip.

  13. Numerical test for hyperbolicity in chaotic systems with multiple time delays

    Science.gov (United States)

    Kuptsov, Pavel V.; Kuznetsov, Sergey P.

    2018-03-01

    We develop an extension of the fast method of angles for hyperbolicity verification in chaotic systems with an arbitrary number of time-delay feedback loops. The adopted method is based on the theory of covariant Lyapunov vectors and provides an efficient algorithm applicable for systems with high-dimensional phase space. Three particular examples of time-delay systems are analyzed and in all cases the expected hyperbolicity is confirmed.

  14. Preamble-aided time delay estimation in frequency selective channels for wireless OFDM systems

    Directory of Open Access Journals (Sweden)

    Qun Yu

    2014-08-01

    Full Text Available In this Letter, an improved method for estimating the time delay in preamble-aided orthogonal frequency division multiplexing systems is presented. It uses a conventional preamble structure and combines cross-correlation techniques to achieve estimations of time delay and the number of multipaths without any additional overhead. Computer simulations results show that the proposed method is of near-ideal property in frequency-selected channels.

  15. Lyapunov matrices approach to the parametric optimization of time-delay systems

    Directory of Open Access Journals (Sweden)

    Duda Józef

    2015-09-01

    Full Text Available In the paper a Lyapunov matrices approach to the parametric optimization problem of time-delay systems with a P-controller is presented. The value of integral quadratic performance index of quality is equal to the value of Lyapunov functional for the initial function of the time-delay system. The Lyapunov functional is determined by means of the Lyapunov matrix

  16. Local Stability of AIDS Epidemic Model Through Treatment and Vertical Transmission with Time Delay

    Science.gov (United States)

    Novi W, Cascarilla; Lestari, Dwi

    2016-02-01

    This study aims to explain stability of the spread of AIDS through treatment and vertical transmission model. Human with HIV need a time to positively suffer AIDS. The existence of a time, human with HIV until positively suffer AIDS can be delayed for a time so that the model acquired is the model with time delay. The model form is a nonlinear differential equation with time delay, SIPTA (susceptible-infected-pre AIDS-treatment-AIDS). Based on SIPTA model analysis results the disease free equilibrium point and the endemic equilibrium point. The disease free equilibrium point with and without time delay are local asymptotically stable if the basic reproduction number is less than one. The endemic equilibrium point will be local asymptotically stable if the time delay is less than the critical value of delay, unstable if the time delay is more than the critical value of delay, and bifurcation occurs if the time delay is equal to the critical value of delay.

  17. A Fast Time-Delay Calculation Method in Through-Wall-Radar Detection Scenario

    Directory of Open Access Journals (Sweden)

    Zhang Qi

    2016-01-01

    Full Text Available In TWR (Through Wall Radar signal processing procedure, time delay estimation is one of the key steps in target localization and high resolution imaging. In time domain imaging procedure such as back projection imaging algorithm, round trip propagation time delay at the path of “transmitter-target-receiver” needs to be calculated for each pixel in imaging region. In typical TWR scenario, transmitter and receiver are at one side and targets at the other side of a wall. Based on two-dimensional searching algorithm or solving two variables equation of four times, traditional time delay calculation algorithms are complex and time consuming, and cannot be used to real-time imaging procedure. In this paper, a new fast time-delay (FTD algorithm is presented. Because of that incident angle at one side equals to refracting angle at the other side, an equation of lateral distance through the wall can be established. By solving this equation, the lateral distance can be obtained and total propagation time delay can be calculated subsequently. Through processing simulation data, the result shows that new algorithm can be applied effectively to real-time time-delay calculation in TWR signal processing.

  18. Stochastic modeling of biochemical systems with multistep reactions using state-dependent time delay

    Science.gov (United States)

    Wu, Qianqian; Tian, Tianhai

    2016-08-01

    To deal with the growing scale of molecular systems, sophisticated modelling techniques have been designed in recent years to reduce the complexity of mathematical models. Among them, a widely used approach is delayed reaction for simplifying multistep reactions. However, recent research results suggest that a delayed reaction with constant time delay is unable to describe multistep reactions accurately. To address this issue, we propose a novel approach using state-dependent time delay to approximate multistep reactions. We first use stochastic simulations to calculate time delay arising from multistep reactions exactly. Then we design algorithms to calculate time delay based on system dynamics precisely. To demonstrate the power of proposed method, two processes of mRNA degradation are used to investigate the function of time delay in determining system dynamics. In addition, a multistep pathway of metabolic synthesis is used to explore the potential of the proposed method to simplify multistep reactions with nonlinear reaction rates. Simulation results suggest that the state-dependent time delay is a promising and accurate approach to reduce model complexity and decrease the number of unknown parameters in the models.

  19. Exponential H(infinity) synchronization of general discrete-time chaotic neural networks with or without time delays.

    Science.gov (United States)

    Qi, Donglian; Liu, Meiqin; Qiu, Meikang; Zhang, Senlin

    2010-08-01

    This brief studies exponential H(infinity) synchronization of a class of general discrete-time chaotic neural networks with external disturbance. On the basis of the drive-response concept and H(infinity) control theory, and using Lyapunov-Krasovskii (or Lyapunov) functional, state feedback controllers are established to not only guarantee exponential stable synchronization between two general chaotic neural networks with or without time delays, but also reduce the effect of external disturbance on the synchronization error to a minimal H(infinity) norm constraint. The proposed controllers can be obtained by solving the convex optimization problems represented by linear matrix inequalities. Most discrete-time chaotic systems with or without time delays, such as Hopfield neural networks, cellular neural networks, bidirectional associative memory networks, recurrent multilayer perceptrons, Cohen-Grossberg neural networks, Chua's circuits, etc., can be transformed into this general chaotic neural network to be H(infinity) synchronization controller designed in a unified way. Finally, some illustrated examples with their simulations have been utilized to demonstrate the effectiveness of the proposed methods.

  20. True-time delay line with separate carrier tuning using dual-parallel MZM and stimulated Brillouin scattering-induced slow light.

    Science.gov (United States)

    Li, Wei; Zhu, Ning Hua; Wang, Li Xian; Wang, Jia Sheng; Liu, Jian Guo; Liu, Yu; Qi, Xiao Qiong; Xie, Liang; Chen, Wei; Wang, Xin; Han, Wei

    2011-06-20

    We experimentally demonstrate a novel tunable true-time delay line with separate carrier tuning using dual-parallel Mach-Zehnder modulator and stimulated Brillouin scattering-induced slow light. The phase of the optical carrier can be continuously and precisely controlled by simply adjusting the dc bias of the dual-parallel Mach-Zehnder modulator. In addition, both the slow light and single-sideband modulation can be simultaneously achieved in the stimulated Brillouin scattering process with three types of configuration. Finally, the true-time delay technique is clearly verified by a two-tap incoherent microwave photonic filter as the free spectral range of the filter is changed.

  1. Optimal tuning of a control system for a second-order plant with time delay

    Science.gov (United States)

    Golinko, I. M.

    2014-07-01

    An engineering method for optimizing the parameters of PI and PID controllers for a second-order controlled plant with time delay is considered. An integral quality criterion involving minimization of the control output is proposed for optimizing the control system, which differs from the existing ones in that the effect the control output has on the technological process is taken into account in a correct way. The use of such control makes it possible to minimize the expenditure of material and/or energy resources, to limit the wear, and to increase the service life of the control devices. The unimodal nature of the proposed quality criterion for solving optimal controller tuning problems is numerically confirmed using the optimization theory. A functional correlation between the optimal controller parameters and dynamic properties of a controlled plant is determined for a single-loop control system with the use of calculation methods. The results from simulating the transients in the control system using the proposed and existing functional dependences are compared. The proposed calculation formulas differ from the existing ones by having simple structure, high accuracy of searching for the optimal controller parameters; they allow efficient control to be obtained and can be used for tuning automatic control systems in a wide range of controlled plant dynamic properties. The obtained calculation formulas are recommended for being used by engineers specializing in automation for designing new and optimizing the existing control systems.

  2. Simplified stochastic models with time delay for studying the degradation process of mRNA molecules.

    Science.gov (United States)

    Tian, Tianhai

    2014-01-01

    Message RNA (mRNA) is the template for protein synthesis. It carries information from DNA in the nucleus to the ribosome sites of protein synthesis in the cell. The turnover process of mRNA is a chemical event with multiple small step reactions and the degradation of mRNA molecules is an important step in gene expression. A number of mathematical models have been proposed to study the dynamics of mRNA turnover, ranging from a one-step first order reaction model to the linear multi-component models. Although the linear multi-component models provide detailed dynamics of mRNA degradation, the simple first-order reaction model has been widely used in mathematical modelling of genetic regulatory networks. To illustrate the difference between these models, we first considered a stochastic model based on the multi-component model. Then a simpler stochastic model was proposed to approximate the linear multi-component model. We also discussed the delayed one-step reaction models with different types of time delay, including the constant delay, exponentially distributed delay and Erlang distributed delay. The comparison study suggested that the one-step reaction models failed to realise the dynamics of mRNA turnover accurately. Therefore, more sophisticated one-step reaction models are needed to study the dynamics of mRNA degradation.

  3. Influence of time delay on fractional-order PI-controlled system for a second-order oscillatory plant model with time delay

    Directory of Open Access Journals (Sweden)

    Sadalla Talar

    2017-12-01

    Full Text Available The paper aims at presenting the influence of an open-loop time delay on the stability and tracking performance of a second-order open-loop system and continuoustime fractional-order PI controller. The tuning method of this controller is based on Hermite- Biehler and Pontryagin theorems, and the tracking performance is evaluated on the basis of two integral performance indices, namely IAE and ISE. The paper extends the results and methodology presented in previous work of the authors to analysis of the influence of time delay on the closed-loop system taking its destabilizing properties into account, as well as concerning possible application of the presented results and used models.

  4. The Effects of Constant Time Delay Embedded into Teaching Activities for Teaching the Names of Clothes for Preschool Children with Developmental Disabilities

    Science.gov (United States)

    Odluyurt, Serhat

    2011-01-01

    The general purpose of this study was to examine the effectiveness of constant time delay embedded in activities for teaching clothes name for preschool children with developmental disabilities. This study included four participants having Down syndrome with an age range of 43-46 months. All experimental sessions were conducted in one to one…

  5. True-time delay by slow light in a semiconductor waveguide with alternating amplifying and absorbing sections

    DEFF Research Database (Denmark)

    Öhman, Filip; Mørk, Jesper

    2006-01-01

    Modeling of slow light in a semiconductor waveguide with alternating gain and absorption sections demonstrate an increase in time delay by concatenating segments. A true-time delay is predicted over a large bandwidth at high frequency.......Modeling of slow light in a semiconductor waveguide with alternating gain and absorption sections demonstrate an increase in time delay by concatenating segments. A true-time delay is predicted over a large bandwidth at high frequency....

  6. Modelling biochemical networks with intrinsic time delays: a hybrid semi-parametric approach

    Directory of Open Access Journals (Sweden)

    Oliveira Rui

    2010-09-01

    Full Text Available Abstract Background This paper presents a method for modelling dynamical biochemical networks with intrinsic time delays. Since the fundamental mechanisms leading to such delays are many times unknown, non conventional modelling approaches become necessary. Herein, a hybrid semi-parametric identification methodology is proposed in which discrete time series are incorporated into fundamental material balance models. This integration results in hybrid delay differential equations which can be applied to identify unknown cellular dynamics. Results The proposed hybrid modelling methodology was evaluated using two case studies. The first of these deals with dynamic modelling of transcriptional factor A in mammalian cells. The protein transport from the cytosol to the nucleus introduced a delay that was accounted for by discrete time series formulation. The second case study focused on a simple network with distributed time delays that demonstrated that the discrete time delay formalism has broad applicability to both discrete and distributed delay problems. Conclusions Significantly better prediction qualities of the novel hybrid model were obtained when compared to dynamical structures without time delays, being the more distinctive the more significant the underlying system delay is. The identification of the system delays by studies of different discrete modelling delays was enabled by the proposed structure. Further, it was shown that the hybrid discrete delay methodology is not limited to discrete delay systems. The proposed method is a powerful tool to identify time delays in ill-defined biochemical networks.

  7. A CS Recovery Algorithm for Model and Time Delay Identification of MISO-FIR Systems

    Directory of Open Access Journals (Sweden)

    Yanjun Liu

    2015-09-01

    Full Text Available This paper considers identifying the multiple input single output finite impulse response (MISO-FIR systems with unknown time delays and orders. Generally, parameters, orders and time delays of an MISO system are separately identified from different algorithms. In this paper, we aim to perform the model identification and time delay estimation simultaneously from a limited number of observations. For an MISO-FIR system with many inputs and unknown input time delays, the corresponding identification model contains a large number of parameters, requiring a great number of observations for identification and leading to a heavy computational burden. Inspired by the compressed sensing (CS recovery theory, a threshold orthogonal matching pursuit algorithm (TH-OMP is presented to simultaneously identify the parameters, the orders and the time delays of the MISO-FIR systems. The proposed algorithm requires only a small number of sampled data compared to the conventional identification methods, such as the least squares method. The effectiveness of the proposed algorithm is verified by simulation results.

  8. Symmetry, Hopf bifurcation, and the emergence of cluster solutions in time delayed neural networks

    Science.gov (United States)

    Wang, Zhen; Campbell, Sue Ann

    2017-11-01

    We consider the networks of N identical oscillators with time delayed, global circulant coupling, modeled by a system of delay differential equations with ZN symmetry. We first study the existence of Hopf bifurcations induced by the coupling time delay and then use symmetric Hopf bifurcation theory to determine how these bifurcations lead to different patterns of symmetric cluster oscillations. We apply our results to a case study: a network of FitzHugh-Nagumo neurons with diffusive coupling. For this model, we derive the asymptotic stability, global asymptotic stability, absolute instability, and stability switches of the equilibrium point in the plane of coupling time delay (τ) and excitability parameter (a). We investigate the patterns of cluster oscillations induced by the time delay and determine the direction and stability of the bifurcating periodic orbits by employing the multiple timescales method and normal form theory. We find that in the region where stability switching occurs, the dynamics of the system can be switched from the equilibrium point to any symmetric cluster oscillation, and back to equilibrium point as the time delay is increased.

  9. Required time delay from (99m)Tc-HMPAO injection to SPECT data acquisition: healthy subjects and patients with rCBF pattern

    DEFF Research Database (Denmark)

    Thomsen, G.; de, Nijs R.; Hogh-Rasmussen, E.

    2008-01-01

    Procedure Guidelines for Brain Perfusion SPET using (99m)Tc-labeled Radiopharmaceuticals recommend a time delay of 90 min between injection of (99m)Tc-HMPAO and data acquisition. This time delay is difficult to comply within the daily routine and present a problem, particularly with the elderly or demented...... patients. This study investigates in patients with perfusion deficits and in healthy subjects if the quality of the SPECT image is affected by lowering the time delay between (99m)Tc-HMPAO injection and data acquisition to 30 or 60 min. METHODS: Thirty-seven healthy subjects (17 females; mean age 65; range...... proportion of the total variance explained by the first principal component was 99.5% (range 98.9-99.6) for the healthy subjects and 99.4% (range 98.5-99.8) for the patients. CONCLUSION: The time delay from injection of (99m)Tc-HMPAO to the start of the SPECT data acquisition can be reduced from 90 to 30 min...

  10. Modeling and Bifurcation Research of a Worm Propagation Dynamical System with Time Delay

    Directory of Open Access Journals (Sweden)

    Yu Yao

    2014-01-01

    Full Text Available Both vaccination and quarantine strategy are adopted to control the Internet worm propagation. By considering the interaction infection between computers and external removable devices, a worm propagation dynamical system with time delay under quarantine strategy is constructed based on anomaly intrusion detection system (IDS. By regarding the time delay caused by time window of anomaly IDS as the bifurcation parameter, local asymptotic stability at the positive equilibrium and local Hopf bifurcation are discussed. Through theoretical analysis, a threshold τ0 is derived. When time delay is less than τ0, the worm propagation is stable and easy to predict; otherwise, Hopf bifurcation occurs so that the system is out of control and the containment strategy does not work effectively. Numerical analysis and discrete-time simulation experiments are given to illustrate the correctness of theoretical analysis.

  11. Time delay estimation in a reverberant environment by low rate sampling of impulsive acoustic sources

    KAUST Repository

    Omer, Muhammad

    2012-07-01

    This paper presents a new method of time delay estimation (TDE) using low sample rates of an impulsive acoustic source in a room environment. The proposed method finds the time delay from the room impulse response (RIR) which makes it robust against room reverberations. The RIR is considered a sparse phenomenon and a recently proposed sparse signal reconstruction technique called orthogonal clustering (OC) is utilized for its estimation from the low rate sampled received signal. The arrival time of the direct path signal at a pair of microphones is identified from the estimated RIR and their difference yields the desired time delay. Low sampling rates reduce the hardware and computational complexity and decrease the communication between the microphones and the centralized location. The performance of the proposed technique is demonstrated by numerical simulations and experimental results. © 2012 IEEE.

  12. Design of the Congestion Control for TCP/AQM Network with Time-Delay

    Directory of Open Access Journals (Sweden)

    Dazhong Wang

    2014-01-01

    Full Text Available The purpose of this paper is to design congestion controller for TCP/AQM (transmission control protocol/active queue management networks using model following control; the equilibrium of a class of TCP/AQM networks with time-delay is investigated, and the effect of communication time-delay on the stability is addressed. The features of this design method are bounded property of the internal states of the control system being given and the utility of this control. Such design exhibits important attributes including fast convergence with high accuracy to a desired queue length. Simulation results show that the time-delay nonlinear behavior of the system can be controlled by this method.

  13. Stochastic nonlinear time series forecasting using time-delay reservoir computers: performance and universality.

    Science.gov (United States)

    Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo

    2014-07-01

    Reservoir computing is a recently introduced machine learning paradigm that has already shown excellent performances in the processing of empirical data. We study a particular kind of reservoir computers called time-delay reservoirs that are constructed out of the sampling of the solution of a time-delay differential equation and show their good performance in the forecasting of the conditional covariances associated to multivariate discrete-time nonlinear stochastic processes of VEC-GARCH type as well as in the prediction of factual daily market realized volatilities computed with intraday quotes, using as training input daily log-return series of moderate size. We tackle some problems associated to the lack of task-universality for individually operating reservoirs and propose a solution based on the use of parallel arrays of time-delay reservoirs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Regression model for tuning the PID controller with fractional order time delay system

    Directory of Open Access Journals (Sweden)

    S.P. Agnihotri

    2014-12-01

    Full Text Available In this paper a regression model based for tuning proportional integral derivative (PID controller with fractional order time delay system is proposed. The novelty of this paper is that tuning parameters of the fractional order time delay system are optimally predicted using the regression model. In the proposed method, the output parameters of the fractional order system are used to derive the regression function. Here, the regression model depends on the weights of the exponential function. By using the iterative algorithm, the best weight of the regression model is evaluated. Using the regression technique, fractional order time delay systems are tuned and the stability parameters of the system are maintained. The effectiveness and feasibility of the proposed technique is demonstrated through the MATLAB/Simulink platform, as well as testing and comparison using the classical PID controller, Ziegler–Nichols tuning method, Wang tuning method and curve fitting technique base tuning method.

  15. Asset Price Dynamics in a Chartist-Fundamentalist Model with Time Delays: A Bifurcation Analysis

    Directory of Open Access Journals (Sweden)

    Loretti I. Dobrescu

    2016-01-01

    Full Text Available This paper studies the dynamic behavior of asset prices using a chartist-fundamentalist model with two speculative markets. To this effect, we employ a differential system with delays à la Dibeh (2007 to describe the price dynamics and we assume that the two markets are coupled via diffusive coupling terms. We study two different time delay cases, namely, when both markets experience the same time delay and when the time delay is different across markets. First, we theoretically determine that the equilibrium exists and investigate its stability. Second, we establish the general conditions for the existence of local Hopf bifurcations and analyze their direction and stability. The common conclusion from both the delay scenarios we consider is that coupled speculative markets with heterogeneous agents in each, but with different price dynamics, can be synchronized through diffusive coupling. Finally, we provide some numerical illustrations to confirm our theoretical findings.

  16. Time delay control of power converters: Mixed frame and stationary-frame variants

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Loh, P.C.; Tang, Y.

    2008-01-01

    In this paper, a mixed-frame and a stationary-frame time delay current controller are proposed for high precision reference tracking and disturbance rejection of power converters. In particular, the controllers use a proportional-resonant regulator in the stationary frame for regulating...... the positive and negative-sequence fundamental currents, which are known to directly influence the flow of active and reactive power in most energy conversion systems. Moreover, for the tracking or compensation of harmonics, the controllers include a time delay control path in either the synchronous...... or stationary frame, whose inherent feedback and feedforward structure can be proven to resemble a bank of resonant filters in either reference frames. Unlike other existing controllers, the proposed time delay controllers function by introducing multiple resonant peaks at only those harmonic frequencies...

  17. Robust H∞ Control of Neutral System with Time-Delay for Dynamic Positioning Ships

    Directory of Open Access Journals (Sweden)

    Dawei Zhao

    2015-01-01

    Full Text Available Due to the input time-delay existing in most thrust systems of the ships, the robust H∞ controller is designed for the ship dynamic positioning (DP system with time-delay. The input delay system is turned to a neutral time-delay system by a state-derivative control law. The less conservative result is derived for the neutral system with state-derivative feedback by the delay-decomposition approach and linear matrix inequality (LMI. Finally, the numerical simulations demonstrate the asymptotic stability and robustness of the controller and verify that the designed DP controller is effective in the varying environment disturbances of wind, waves, and ocean currents.

  18. Instability in time-delayed switched systems induced by fast and random switching

    Science.gov (United States)

    Guo, Yao; Lin, Wei; Chen, Yuming; Wu, Jianhong

    2017-07-01

    In this paper, we consider a switched system comprising finitely or infinitely many subsystems described by linear time-delayed differential equations and a rule that orchestrates the system switching randomly among these subsystems, where the switching times are also randomly chosen. We first construct a counterintuitive example where even though all the time-delayed subsystems are exponentially stable, the behaviors of the randomly switched system change from stable dynamics to unstable dynamics with a decrease of the dwell time. Then by using the theories of stochastic processes and delay differential equations, we present a general result on when this fast and random switching induced instability should occur and we extend this to the case of nonlinear time-delayed switched systems as well.

  19. Digital decoupling controller design for multiple time-delay continuous-time transfer function matrices

    Science.gov (United States)

    Xie, L. B.; Wu, C. Y.; Shieh, L. S.; Tsai, J. S. H.

    2015-03-01

    This paper presents an extended adjoint decoupling method to conduct the digital decoupling controller design for the continuous-time transfer function matrices with multiple (integer/fractional) time delays in both the denominator and the numerator matrix. First, based on the sampled unit-step response data of the afore-mentioned multiple time-delay system, the conventional balanced model-reduction method is utilised to construct an approximated discrete-time model of the original (known/unknown) multiple time-delay continuous-time transfer function matrix. Then, a digital decoupling controller is designed by utilising the extended adjoint decoupling method together with the conventional discrete-time root-locus method. An illustrative example is given to demonstrate the effectiveness of the proposed method.

  20. Economy with the time delay of information flow—The stock market case

    Science.gov (United States)

    Miśkiewicz, Janusz

    2012-02-01

    Any decision process requires information about the past and present state of the system, but in an economy acquiring data and processing it is an expensive and time-consuming task. Therefore, the state of the system is often measured over some legal interval, analysed after the end of well defined time periods and the results announced much later before any strategic decision is envisaged. The various time delay roles have to be crucially examined. Here, a model of stock market coupled with an economy is investigated to emphasise the role of the time delay span on the information flow. It is shown that the larger the time delay the more important the collective behaviour of agents since one observes time oscillations in the absolute log-return autocorrelations.

  1. Cucker-Smale model with normalized communication weights and time delay

    KAUST Repository

    Choi, Young-Pil

    2017-03-06

    We study a Cucker-Smale-type system with time delay in which agents interact with each other through normalized communication weights. We construct a Lyapunov functional for the system and provide sufficient conditions for asymptotic flocking, i.e., convergence to a common velocity vector. We also carry out a rigorous limit passage to the mean-field limit of the particle system as the number of particles tends to infinity. For the resulting Vlasov-type equation we prove the existence, stability and large-time behavior of measure-valued solutions. This is, to our best knowledge, the first such result for a Vlasov-type equation with time delay. We also present numerical simulations of the discrete system with few particles that provide further insights into the flocking and oscillatory behaviors of the particle velocities depending on the size of the time delay.

  2. Adaptive Constrained Control for Uncertain Nonlinear Time-Delay System with Application to Unmanned Helicopter

    Directory of Open Access Journals (Sweden)

    Rong Li

    2018-01-01

    Full Text Available This paper investigates a class of nonlinear time-delayed systems with output prescribed performance constraint. The neural network and DOB (disturbance observer are designed to tackle the uncertainties and external disturbance, and prescribed performance function is constructed for the output prescribed performance constrained problem. Then the robust controller is designed by using adaptive backstepping method, and the stability analysis is considered by using Lyapunov-Krasovskii. Furthermore, the proposed method is employed into the unmanned helicopter system with time-delay aerodynamic uncertainty. Finally, the simulation results illustrate that the proposed robust prescribed performance control system achieved a good control performance.

  3. Hybrid Projective Synchronization of Fractional-Order Chaotic Systems with Time Delay

    Directory of Open Access Journals (Sweden)

    Li-xin Yang

    2013-01-01

    Full Text Available The hybrid projective synchronization for fractional-order chaotic systems with time delay is investigated in this paper. On the basis of stability analysis of fractional-order systems and pole placement technique, a novel and general approach is proposed. The hybrid projective synchronization of fractional-order chaotic and hyperchaotic systems with time delay is achieved via designing an appropriate controller. Corresponding numerical results are presented to demonstrate the effectiveness of the proposed synchronization scheme. Furthermore, the influence of the fractional order on the synchronization process is discussed. The result reveals that the fractional order has a significant effect on the synchronization speed.

  4. Hydrodynamic Cucker-Smale model with normalized communication weights and time delay

    KAUST Repository

    Choi, Young-Pil

    2017-07-17

    We study a hydrodynamic Cucker-Smale-type model with time delay in communication and information processing, in which agents interact with each other through normalized communication weights. The model consists of a pressureless Euler system with time delayed non-local alignment forces. We resort to its Lagrangian formulation and prove the existence of its global in time classical solutions. Moreover, we derive a sufficient condition for the asymptotic flocking behavior of the solutions. Finally, we show the presence of a critical phenomenon for the Eulerian system posed in the spatially one-dimensional setting.

  5. Graphical Evaluation of Time-Delay Compensation Techniques for Digitally Controlled Converters

    DEFF Research Database (Denmark)

    Lu, Minghui; Wang, Xiongfei; Loh, Poh Chiang

    2018-01-01

    A main design constraint of the digitally controlled power electronics converters is the time delay of control systems, which may lead to the reduced control loop bandwidth and even unstable dynamics. Numerous time-delay compensation methods have been developed, of which the model-free schemes...... are independent to model accuracy whereas the model-based alternatives are sensitive to system modeling. This paper first presents a graphical illustration of four model-free delay compensation techniques, where their principles and performances are intuitively elaborated and compared by means of the impulse area....... Simulations and experimental test results validate the effectiveness of the graphical comparisons and the proposed approach....

  6. Statistics of time delay and scattering correlation functions in chaotic systems. I. Random matrix theory

    Science.gov (United States)

    Novaes, Marcel

    2015-06-01

    We consider the statistics of time delay in a chaotic cavity having M open channels, in the absence of time-reversal invariance. In the random matrix theory approach, we compute the average value of polynomial functions of the time delay matrix Q = - iħS†dS/dE, where S is the scattering matrix. Our results do not assume M to be large. In a companion paper, we develop a semiclassical approximation to S-matrix correlation functions, from which the statistics of Q can also be derived. Together, these papers contribute to establishing the conjectured equivalence between the random matrix and the semiclassical approaches.

  7. SYNCHRONIZATION IN NETWORKS OF COUPLED HARMONIC OSCILLATORS WITH STOCHASTIC PERTURBATION AND TIME DELAYS

    Directory of Open Access Journals (Sweden)

    Yilun Shang

    2012-07-01

    Full Text Available In this paper, we investigate the leader-follower synchronization ofcoupled second-order linear harmonic oscillators with the presence ofrandom noises and time delays. The interaction topology is modeledby a weighted directed graph and the weights are perturbed by whitenoise. On the basis of stability theory of stochastic differential delayequations, algebraic graph theory and matrix theory, we show that thecoupled harmonic oscillators can be synchronized almost surely withrandom perturbation and time delays. Numerical examples are presentedto illustrate our theoretical results.

  8. Statistics of time delay and scattering correlation functions in chaotic systems. I. Random matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Novaes, Marcel [Instituto de Física, Universidade Federal de Uberlândia, Ave. João Naves de Ávila, 2121, Uberlândia, MG 38408-100 (Brazil)

    2015-06-15

    We consider the statistics of time delay in a chaotic cavity having M open channels, in the absence of time-reversal invariance. In the random matrix theory approach, we compute the average value of polynomial functions of the time delay matrix Q = − iħS{sup †}dS/dE, where S is the scattering matrix. Our results do not assume M to be large. In a companion paper, we develop a semiclassical approximation to S-matrix correlation functions, from which the statistics of Q can also be derived. Together, these papers contribute to establishing the conjectured equivalence between the random matrix and the semiclassical approaches.

  9. Analytic Root Locus and Lambert W Function in Control of a Process with Time Delay

    Science.gov (United States)

    Cogan, Brian; de Paor, Annraoi M.

    2011-11-01

    Recently, the Lambert W function has arisen in the analysis of many systems including a restricted class of time-delay systems. An alternative approach to this analysis, based on the well-established root locus method, is shown here to contain the Lambert W function as a special case. As a purely illustrative example of the equivalence between the Lambert W function and analytic root locus a system comprising a Proportional controller with a time-delay process is analysed. Controller designs based on rightmost eigenvalue location and the dominant eigenvalue method are described.

  10. The Application of Time-Delay Dependent H∞ Control Model in Manufacturing Decision Optimization

    Directory of Open Access Journals (Sweden)

    Haifeng Guo

    2015-01-01

    Full Text Available This paper uses a time-delay dependent H∞ control model to analyze the effect of manufacturing decisions on the process of transmission from resources to capability. We establish a theoretical framework of manufacturing management process based on three terms: resource, manufacturing decision, and capability. Then we build a time-delay H∞ robust control model to analyze the robustness of manufacturing management. With the state feedback controller between manufacturing resources and decision, we find that there is an optimal decision to adjust the process of transmission from resources to capability under uncertain environment. Finally, we provide an example to prove the robustness of this model.

  11. ANOMALY NETWORK INTRUSION DETECTION SYSTEM BASED ON DISTRIBUTED TIME-DELAY NEURAL NETWORK (DTDNN

    Directory of Open Access Journals (Sweden)

    LAHEEB MOHAMMAD IBRAHIM

    2010-12-01

    Full Text Available In this research, a hierarchical off-line anomaly network intrusion detection system based on Distributed Time-Delay Artificial Neural Network is introduced. This research aims to solve a hierarchical multi class problem in which the type of attack (DoS, U2R, R2L and Probe attack detected by dynamic neural network. The results indicate that dynamic neural nets (Distributed Time-Delay Artificial Neural Network can achieve a high detection rate, where the overall accuracy classification rate average is equal to 97.24%.

  12. On Couple-Group Consensus of Multiagent Networks with Communication and Input Time Delays

    Directory of Open Access Journals (Sweden)

    Liang-hao Ji

    2016-01-01

    Full Text Available This paper investigated the couple-group consensus problems of the multiagent networks with the influence of communication and input time delays. Based on the frequency-domain theory, some algebraic criteria are addressed analytically. From the results, it is found that the input time delays and the coupling strengths between agents of the systems play a crucial role in reaching group consensus. The convergence of the system is independent of the communication delays, but it will affect the convergence rate of the system. Finally, several simulated examples are provided to verify the validity and correctness of our theoretical results.

  13. Delay-range-dependent chaos synchronization approach under varying time-lags and delayed nonlinear coupling.

    Science.gov (United States)

    Zaheer, Muhammad Hamad; Rehan, Muhammad; Mustafa, Ghulam; Ashraf, Muhammad

    2014-11-01

    This paper proposes a novel state feedback delay-range-dependent control approach for chaos synchronization in coupled nonlinear time-delay systems. The coupling between two systems is esteemed to be nonlinear subject to time-lags. Time-varying nature of both the intrinsic and the coupling delays is incorporated to broad scope of the present study for a better-quality synchronization controller synthesis. Lyapunov-Krasovskii (LK) functional is employed to derive delay-range-dependent conditions that can be solved by means of the conventional linear matrix inequality (LMI)-tools. The resultant control approach for chaos synchronization of the master-slave time-delay systems considers non-zero lower bound of the intrinsic as well as the coupling time-delays. Further, the delay-dependent synchronization condition has been established as a special case of the proposed LK functional treatment. Furthermore, a delay-range-dependent condition, independent of the delay-rate, has been provided to address the situation when upper bound of the delay-derivative is unknown. A robust state feedback control methodology is formulated for synchronization of the time-delay chaotic networks against the L2 norm bounded perturbations by minimizing the L2 gain from the disturbance to the synchronization error. Numerical simulation results are provided for the time-delay chaotic networks to show effectiveness of the proposed delay-range-dependent chaos synchronization methodologies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  14. H∞ Filtering for Discrete Markov Jump Singular Systems with Mode-Dependent Time Delay Based on T-S Fuzzy Model

    Directory of Open Access Journals (Sweden)

    Cheng Gong

    2014-01-01

    Full Text Available This paper investigates the H∞ filtering problem of discrete singular Markov jump systems (SMJSs with mode-dependent time delay based on T-S fuzzy model. First, by Lyapunov-Krasovskii functional approach, a delay-dependent sufficient condition on H∞-disturbance attenuation is presented, in which both stability and prescribed H∞ performance are required to be achieved for the filtering-error systems. Then, based on the condition, the delay-dependent H∞ filter design scheme for SMJSs with mode-dependent time delay based on T-S fuzzy model is developed in term of linear matrix inequality (LMI. Finally, an example is given to illustrate the effectiveness of the result.

  15. Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics

    DEFF Research Database (Denmark)

    Öhman, Filip; Yvind, Kresten; Mørk, Jesper

    2007-01-01

    We have investigated the slowand fast light properties of a semiconductor waveguide device employing concatenated gain and absorber sections. This letter presents the experimental results as well as theoretical modeling. A large phase shift of 110 and a true-time delay of more than 150 ps...

  16. The hyperbolic step potential: Anti-bound states, SUSY partners and Wigner time delays

    Energy Technology Data Exchange (ETDEWEB)

    Gadella, M. [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain); Kuru, Ş. [Department of Physics, Faculty of Science, Ankara University, 06100 Ankara (Turkey); Negro, J., E-mail: jnegro@fta.uva.es [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain)

    2017-04-15

    We study the scattering produced by a one dimensional hyperbolic step potential, which is exactly solvable and shows an unusual interest because of its asymmetric character. The analytic continuation of the scattering matrix in the momentum representation has a branch cut and an infinite number of simple poles on the negative imaginary axis which are related with the so called anti-bound states. This model does not show resonances. Using the wave functions of the anti-bound states, we obtain supersymmetric (SUSY) partners which are the series of Rosen–Morse II potentials. We have computed the Wigner reflection and transmission time delays for the hyperbolic step and such SUSY partners. Our results show that the more bound states a partner Hamiltonian has the smaller is the time delay. We also have evaluated time delays for the hyperbolic step potential in the classical case and have obtained striking similitudes with the quantum case. - Highlights: • The scattering matrix of hyperbolic step potential is studied. • The scattering matrix has a branch cut and an infinite number of poles. • The poles are associated to anti-bound states. • Susy partners using antibound states are computed. • Wigner time delays for the hyperbolic step and partner potentials are compared.

  17. Using Time-Delay to Improve Social Play Skills with Peers for Children with Autism

    Science.gov (United States)

    Liber, Daniella B.; Frea, William D.; Symon, Jennifer B. G.

    2008-01-01

    Interventions that teach social communication and play skills are crucial for the development of children with autism. The time delay procedure is effective in teaching language acquisition, social use of language, discrete behaviors, and chained activities to individuals with autism and developmental delays. In this study, three boys with autism,…

  18. Detecting Probable Cheating during Online Assessments Based on Time Delay and Head Pose

    Science.gov (United States)

    Chuang, Chia Yuan; Craig, Scotty D.; Femiani, John

    2017-01-01

    This study investigated the ability of test takers' behaviors during online assessments to detect probable cheating incidents. Specifically, this study focused on the role of time delay and head pose for detection of cheating incidences in a lab-based online testing session. The analysis of a test taker's behavior indicated that not only time…

  19. Absolute stability of nonlinear systems with time delays and applications to neural networks

    Directory of Open Access Journals (Sweden)

    Xinzhi Liu

    2001-01-01

    Full Text Available In this paper, absolute stability of nonlinear systems with time delays is investigated. Sufficient conditions on absolute stability are derived by using the comparison principle and differential inequalities. These conditions are simple and easy to check. In addition, exponential stability conditions for some special cases of nonlinear delay systems are discussed. Applications of those results to cellular neural networks are presented.

  20. Impacts of Wake Effect and Time Delay on the Dynamic Analysis of Wind Farms Models

    Science.gov (United States)

    El-Fouly, Tarek H. M.; El-Saadany, Ehab F.; Salama, Magdy M. A.

    2008-01-01

    This article investigates the impacts of proper modeling of the wake effects and wind speed delays, between different wind turbines' rows, on the dynamic performance accuracy of the wind farms models. Three different modeling scenarios were compared to highlight the impacts of wake effects and wind speed time-delay models. In the first scenario,…

  1. The time delay of patients presenting with symptoms of TB at TC ...

    African Journals Online (AJOL)

    Tuberculosis (TB) is a major health problem in South Africa. The early detection and treatment of TB cases are essential. The impression of senior staff working at the TC Newman Community Health Centre (TCN), Paarl was that there often is an unnecessary time delay between the presentation of TB symptoms and the ...

  2. The relaxation time of processes in a FitzHugh-Nagumo neural system with time delay

    Energy Technology Data Exchange (ETDEWEB)

    Gong Ailing; Zeng Chunhua [Faculty of Science, Kunming University of Science and Technology, Kunming 650093 (China); Wang Hua, E-mail: zchh2009@126.com [Province Engineering Research Center of Industrial Energy Conservation and New Technology, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China)

    2011-08-01

    In this paper, we study the relaxation time (RT) of the steady-state correlation function in a FitzHugh-Nagumo neural system under the presence of multiplicative and additive white noises and time delay. The noise correlation parameter {lambda} can produce a critical behavior in the RT as functions of the multiplicative noise intensity D, the additive noise intensity Q and the time delay {tau}. That is, the RT decreases as the noise intensities D and Q increase, and increases as the time delay {tau} increases below the critical value of {lambda}. However, above the critical value, the RT first increases, reaches a maximum, and then decreases as D, Q and {tau} increase, i.e. a noise intensity D or Q and a time delay {tau} exist, at which the time scales of the relaxation process are at their largest. In addition, the additive noise intensity Q can also produce a critical behavior in the RT as a function of {lambda}. The noise correlation parameter {lambda} first increases the RT of processes, then decreases it below the critical value of Q. Above the critical value, {lambda} increases it.

  3. Existence and Stability of Traveling Waves for Degenerate Reaction-Diffusion Equation with Time Delay

    Science.gov (United States)

    Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue

    2018-01-01

    This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0 . Furthermore, we prove the global existence and uniqueness of C^{α ,β } -solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1 -space. The exponential convergence rate is also derived.

  4. Using GeneReg to construct time delay gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Qian Ziliang

    2010-05-01

    Full Text Available Abstract Background Understanding gene expression and regulation is essential for understanding biological mechanisms. Because gene expression profiling has been widely used in basic biological research, especially in transcription regulation studies, we have developed GeneReg, an easy-to-use R package, to construct gene regulatory networks from time course gene expression profiling data; More importantly, this package can provide information about time delays between expression change in a regulator and that of its target genes. Findings The R package GeneReg is based on time delay linear regression, which can generate a model of the expression levels of regulators at a given time point against the expression levels of their target genes at a later time point. There are two parameters in the model, time delay and regulation coefficient. Time delay is the time lag during which expression change of the regulator is transmitted to change in target gene expression. Regulation coefficient expresses the regulation effect: a positive regulation coefficient indicates activation and negative indicates repression. GeneReg was implemented on a real Saccharomyces cerevisiae cell cycle dataset; more than thirty percent of the modeled regulations, based entirely on gene expression files, were found to be consistent with previous discoveries from known databases. Conclusions GeneReg is an easy-to-use, simple, fast R package for gene regulatory network construction from short time course gene expression data. It may be applied to study time-related biological processes such as cell cycle, cell differentiation, or causal inference.

  5. Modeling and Output Feedback Control of Networked Control Systems with Both Time Delays; and Packet Dropouts

    Directory of Open Access Journals (Sweden)

    Li Qiu

    2013-01-01

    Full Text Available This paper is concerned with the problem of modeling and output feedback controller design for a class of discrete-time networked control systems (NCSs with time delays and packet dropouts. A Markovian jumping method is proposed to deal with random time delays and packet dropouts. Different from the previous studies on the issue, the characteristics of networked communication delays and packet dropouts can be truly reflected by the unified model; namely, both sensor-to-controller (S-C and controller-to-actuator (C-A time delays, and packet dropouts are modeled and their history behavior is described by multiple Markov chains. The resulting closed-loop system is described by a new Markovian jump linear system (MJLS with Markov delays model. Based on Lyapunov stability theory and linear matrix inequality (LMI method, sufficient conditions of the stochastic stability and output feedback controller design method for NCSs with random time delays and packet dropouts are presented. A numerical example is given to illustrate the effectiveness of the proposed method.

  6. Computation of stabilizing PI and PID controllers for processes with time delay.

    Science.gov (United States)

    Tan, Nusret

    2005-04-01

    In this paper, a new method for the computation of all stabilizing PI controllers for processes with time delay is given. The proposed method is based on plotting the stability boundary locus in the (kp, ki) plane and then computing the stabilizing values of the parameters of a PI controller for a given time delay system. The technique presented does not need to use Pade approximation and does not require sweeping over the parameters and also does not use linear programming to solve a set of inequalities. Thus it offers several important advantages over existing results obtained in this direction. Beyond stabilization, the method is used to compute stabilizing PI controllers which achieve user specified gain and phase margins. The proposed method is also used to design PID controllers for control systems with time delay. The limiting values of a PID controller which stabilize a given system with time delay are obtained in the (kp, ki) plane, (kp, kd) plane, and (ki, kd) plane. Examples are given to show the benefits of the method presented.

  7. Travelling Waves of an n-Species Food Chain Model with Spatial Diffusion and Time Delays

    OpenAIRE

    Fei Hu; Yuyin Xu; Z. Wang; Wei Ding

    2014-01-01

    We investigate an n-species food chain model with spatial diffusion and time delays. By using Schauder’s fixed point theorem, we obtain the result about the existence of the travelling wave solutions of the food chain model with reaction term satisfying the partial quasimonotonicity conditions.

  8. Travelling Waves of an n-Species Food Chain Model with Spatial Diffusion and Time Delays

    Directory of Open Access Journals (Sweden)

    Fei Hu

    2014-01-01

    Full Text Available We investigate an n-species food chain model with spatial diffusion and time delays. By using Schauder’s fixed point theorem, we obtain the result about the existence of the travelling wave solutions of the food chain model with reaction term satisfying the partial quasimonotonicity conditions.

  9. Symmetric bifurcation analysis of synchronous states of time-delayed coupled Phase-Locked Loop oscillators

    Science.gov (United States)

    Ferruzzo Correa, Diego Paolo; Wulff, Claudia; Piqueira, José Roberto Castilho

    2015-05-01

    In recent years there has been an increasing interest in studying time-delayed coupled networks of oscillators since these occur in many real life applications. In many cases symmetry patterns can emerge in these networks, as a consequence a part of the system might repeat itself, and properties of this subsystem are representative of the dynamics on the whole phase space. In this paper an analysis of the second order N-node time-delay fully connected network is presented which is based on previous work: synchronous states in time-delay coupled periodic oscillators: a stability criterion. Correa and Piqueira (2013), for a 2-node network. This study is carried out using symmetry groups. We show the existence of multiple eigenvalues forced by symmetry, as well as the existence of Hopf bifurcations. Three different models are used to analyze the network dynamics, namely, the full-phase, the phase, and the phase-difference model. We determine a finite set of frequencies ω , that might correspond to Hopf bifurcations in each case for critical values of the delay. The Sn map is used to actually find Hopf bifurcations along with numerical calculations using the Lambert W function. Numerical simulations are used in order to confirm the analytical results. Although we restrict attention to second order nodes, the results could be extended to higher order networks provided the time-delay in the connections between nodes remains equal.

  10. Implementation of High Time Delay Accuracy of Ultrasonic Phased Array Based on Interpolation CIC Filter

    Directory of Open Access Journals (Sweden)

    Peilu Liu

    2017-10-01

    Full Text Available In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter’s pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA. In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection.

  11. Generation of time delays: simplified models of intracellular signaling in cerebellar Purkinje cells

    NARCIS (Netherlands)

    Steuber, V.; Willshaw, D.; van Ooyen, A.

    2006-01-01

    In many neuronal systems, information is encoded in temporal spike patterns. The recognition and storage of temporal patterns requires the generation and modulation of time delays between inputs and outputs. In cerebellar Purkinje cells, stimulation of metabotropic glutamate receptors (mGluRs)

  12. Time delays prior to movement alter the drawing kinematics of elderly adults

    NARCIS (Netherlands)

    Romero, D.H.; Gemmert, A.W.A. van; Adler, C.H.; Bekkering, H.; Stelmach, G.E.

    2003-01-01

    Position sense has been found to decay as a function of the time delay the limb remains in a static position prior to movement onset. Position sense has also been found to deteriorate as a function of aging, with increased reliance on vision by the elderly. This study investigated whether the

  13. Time delays prior to movement alter the drawing kinematics of elderly adults

    NARCIS (Netherlands)

    Romero, DH; Van Gemmert, AWA; Adler, CH; Bekkering, H; Stelmach, GE

    Position sense has been found to decay as a function of the time delay the limb remains in a static position prior to movement onset. Position sense has also been found to deteriorate as a function of aging, with increased reliance on vision by the elderly. This study investigated whether the

  14. Multiagent System-Based Distributed Coordinated Control for Radial DC Microgrid Considering Transmission Time Delays

    DEFF Research Database (Denmark)

    Dou, Chun-Xia; Yue, Dong; Guerrero, Josep M.

    2017-01-01

    This paper focuses on a multi-agent based distributed coordinated control for radial DC microgrid considering trans-mission time delays. Firstly, a two-level multi-agent system is constructed, where local control is formulated based on local states and executed by means of the first-level agent...

  15. Development of a Marx-coupled trigger generator with high voltages and low time delay

    Science.gov (United States)

    Hu, Yixiang; Zeng, Jiangtao; Sun, Fengju; Cong, Peitian; Su, Zhaofeng; Yang, Shi; Zhang, Xinjun; Qiu, Ai'ci

    2016-10-01

    Coupled by the Marx of the "JianGuang-I" facility, a high voltage, low time-delay trigger generator was developed. Working principles of this trigger generator and its key issues were described in detail. Structures of this generator were also carefully designed and optimized. Based on the "JianGuang-I" Marx generator, a test stand was established. And a series of experiment tests were carried out to the study performance of this trigger generator. Experiment results show that the output voltage of this trigger generator can be continuously adjusted from 58 kV to 384 kV. The time delay (from the beginning of the Marx-discharging pulse to the time that the output pulse of the trigger generator arises) of this trigger pulse is about 200 ns and its peak time (0%˜100%) is less than 50 ns. Experiment results also indicate that the time-delay jitter of trigger voltages decreases rapidly with the increase in the peak voltage of trigger pulses. When the trigger voltage is higher than 250 kV, the time-delay jitters (the standard deviation) are less than 7.7 ns.

  16. Nonlinear transition dynamics in a time-delayed vibration isolator under combined harmonic and stochastic excitations

    Science.gov (United States)

    Yang, Tao; Cao, Qingjie

    2017-04-01

    Based on the quasi-zero stiffness vibration isolation (QZS-VI) system, nonlinear transition dynamics have been investigated coupled with both time-delayed displacement and velocity feedbacks. Using a delayed nonlinear Langevin approach, we discuss a new mechanism for the transition of a vibration isolator in which the energy originates from harmonic and noise excitations. For this stochastic process, the effective displacement potential, stationary probability density function and the escape ratio are obtained. We investigate a variety of noise-induced behaviors affecting the transitions between system equilibria states. The results indicate that the phenomena of transition, resonant activation and delay-enhanced stability may emerge in the QZS-VI system. Moreover, we also show that the time delay, delay feedback intensities, and harmonic excitation play significant roles in the resonant activation and delay-enhanced stability phenomena. Finally, a quantitative measure for amplitude response has been carried out to evaluate the isolation performance of the controlled QZS-VI system. The results show that with properly designed feedback parameters, time delay and displacement feedback intensity can play the role of a damping force. This research provides instructive ideas on the application of the time-delayed control in practical engineering.

  17. The WS transform for the Kuramoto model with distributed amplitudes, phase lag and time delay

    Science.gov (United States)

    Lohe, M. A.

    2017-12-01

    We apply the Watanabe–Strogatz (WS) transform to a generalized Kuramoto model with distributed parameters describing the amplitude of oscillation, phase lag, and time delay at each node of the system. The model has global coupling and identical frequencies, but allows for repulsive interactions at arbitrary nodes leading to conformist-contrarian phenomena together with variable amplitude and time-delay effects. We show how to determine the initial values of the WS system for any initial conditions for the Kuramoto system, and investigate the asymptotic behaviour of the WS variables. For the case of zero time delay the possible asymptotic configurations are determined by the sign of a single parameter μ which measures whether or not the attractive nodes dominate the repulsive nodes. If μ>0 the system completely synchronizes from general initial conditions, whereas if μ<0 one of two types of phase-locked synchronization occurs, depending on the initial values, while for μ=0 periodic solutions can occur. For the case of arbitrary non-uniform time delays we derive a stability condition for completely synchronized solutions.

  18. Using a Constant Time Delay Procedure to Teach Foundational Swimming Skills to Children with Autism

    Science.gov (United States)

    Rogers, Laura; Hemmeter, Mary Louise; Wolery, Mark

    2010-01-01

    The purpose of this study was to evaluate the effectiveness of using a constant time delay procedure to teach foundational swimming skills to three children with autism. The skills included flutter kick, front-crawl arm strokes, and head turns to the side. A multiple-probe design across behaviors and replicated across participants was used.…

  19. The Impact of a Time Delay on the Depleted Proportion of the Viral ...

    African Journals Online (AJOL)

    Journal of the Nigerian Association of Mathematical Physics ... activity, the inclusion of a time delay which mimics the African culture of diverse health inhibiting belief system is a new numerical simulation perspective of solving the mathematical problem and the health policy dimension of HIV/AIDS intervention strategy.

  20. Small-Signal Analysis of the Microgrid Secondary Control Considering a Communication Time Delay

    DEFF Research Database (Denmark)

    Coelho, Ernane Antônio Alves; Wu, Dan; Guerrero, Josep M.

    2016-01-01

    , and an external power controller based on frequency and voltage droops. The frequency restoration function is implemented at the secondary control level, which executes a consensus algorithm that consists of a load-frequency control and a single time delay communication network. The consensus network consists...

  1. Lens Model and Time Delay Predictions for the Sextuply Lensed Quasar SDSS J2222+2745*

    Science.gov (United States)

    Sharon, Keren; Bayliss, Matthew B.; Dahle, Hakon; Florian, Michael K.; Gladders, Michael D.; Johnson, Traci L.; Paterno-Mahler, Rachel; Rigby, Jane R.; Whitaker, Katherine E.; Wuyts, Eva

    2017-01-01

    SDSS J2222+2745 is a galaxy cluster at z = 0.49, strongly lensing a quasar at z = 2.805 into six widely separated images. In recent Hubble Space Telescope imaging of the field, we identify additional multiply lensed galaxies and confirm the sixth quasar image that was identified by Dahle et al. We used the Gemini-North telescope to measure a spectroscopic redshift of z = 4.56 of one of the lensed galaxies. These data are used to refine the lens model of SDSS J2222+2745, compute the time delay and magnifications of the lensed quasar images, and reconstruct the source image of the quasar host and a lensed galaxy at z = 2.3. This galaxy also appears in absorption in our Gemini spectra of the lensed quasar, at a projected distance of 34 kpc. Our model is in agreement with the recent time delay measurements of Dahle et al., who found T(sub AB) = 47.7 +/- 6.0 days and T(sub AC) = 722 +/- 24 days. We use the observed time delays to further constrain the model, and find that the model-predicted time delays of the three faint images of the quasar are T(sub AD) = 502+/- 68 days, T( sub AE) = 611 +/- 75 days, and T(sub AF) = 415 +/- 72 days. We have initiated a follow-up campaign to measure these time delays with Gemini North. Finally, we present initial results from an X-ray monitoring program with Swift, indicating the presence of hard X-ray emission from the lensed quasar, as well as extended X-ray emission from the cluster itself, which is consistent with the lensing mass measurement and the cluster velocity dispersion.

  2. Effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks.

    Science.gov (United States)

    Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen

    2017-05-01

    In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay pdelay, whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.

  3. Adaptive Fuzzy Tracking Control for Uncertain Nonlinear Time-Delay Systems with Unknown Dead-Zone Input

    Directory of Open Access Journals (Sweden)

    Chiang-Cheng Chiang

    2013-01-01

    Full Text Available The tracking control problem of uncertain nonlinear time-delay systems with unknown dead-zone input is tackled by a robust adaptive fuzzy control scheme. Because the nonlinear gain function and the uncertainties of the controlled system including matched and unmatched uncertainties are supposed to be unknown, fuzzy logic systems are employed to approximate the nonlinear gain function and the upper bounded functions of these uncertainties. Moreover, the upper bound of the uncertainty caused by the fuzzy modeling error is also estimated. According to these learning fuzzy models and some feasible adaptive laws, a robust adaptive fuzzy tracking controller is developed in this paper without constructing the dead-zone inverse. Based on the Lyapunov stability theorem, the proposed controller not only guarantees that the robust stability of the whole closed-loop system in the presence of uncertainties and unknown dead-zone input can be achieved, but it also obtains that the output tracking error can converge to a neighborhood of zero exponentially. Some simulation results are provided to demonstrate the effectiveness and performance of the proposed approach.

  4. Erasure of Time Delay Signatures in the Output of an Optoelectronic Feedback Laser with Modulated Delays and Chaos Synchronization

    OpenAIRE

    Shahverdiev, E. M.; Shore, K. A.

    2009-01-01

    By studying the autocorrelation function of the optoelectronic feedback semiconductor laser output we establish that the signatures of time delays can be erased in systems incorporating modulated feedback time delays. This property is of importance for the suitability of such laser systems for secure chaos-based communication systems. We also make the first report on chaos synchronization in both unidirectionally and bidirectionally coupled multiple time delay chaotic semiconductor lasers wit...

  5. An optimal PID controller via LQR for standard second order plus time delay systems.

    Science.gov (United States)

    Srivastava, Saurabh; Misra, Anuraag; Thakur, S K; Pandit, V S

    2016-01-01

    An improved tuning methodology of PID controller for standard second order plus time delay systems (SOPTD) is developed using the approach of Linear Quadratic Regulator (LQR) and pole placement technique to obtain the desired performance measures. The pole placement method together with LQR is ingeniously used for SOPTD systems where the time delay part is handled in the controller output equation instead of characteristic equation. The effectiveness of the proposed methodology has been demonstrated via simulation of stable open loop oscillatory, over damped, critical damped and unstable open loop systems. Results show improved closed loop time response over the existing LQR based PI/PID tuning methods with less control effort. The effect of non-dominant pole on the stability and robustness of the controller has also been discussed. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Finite-Time Stability for Fractional-Order Bidirectional Associative Memory Neural Networks with Time Delays

    Science.gov (United States)

    Xu, Chang-Jin; Li, Pei-Luan; Pang, Yi-Cheng

    2017-02-01

    This paper is concerned with fractional-order bidirectional associative memory (BAM) neural networks with time delays. Applying Laplace transform, the generalized Gronwall inequality and estimates of Mittag-Leffler functions, some sufficient conditions which ensure the finite-time stability of fractional-order bidirectional associative memory neural networks with time delays are obtained. Two examples with their simulations are given to illustrate the theoretical findings. Our results are new and complement previously known results. Supported by National Natural Science Foundation of China under Grant Nos.~61673008, 11261010, 11101126, Project of High-Level Innovative Talents of Guizhou Province ([2016]5651), Natural Science and Technology Foundation of Guizhou Province (J[2015]2025 and J[2015]2026), 125 Special Major Science and Technology of Department of Education of Guizhou Province ([2012]011) and Natural Science Foundation of the Education Department of Guizhou Province (KY[2015]482)

  7. Exponential Stability of the Monotubular Heat Exchanger Equation with Time Delay in Boundary Observation

    Directory of Open Access Journals (Sweden)

    Xue-Lian Jin

    2017-01-01

    Full Text Available The exponential stability of the monotubular heat exchanger equation with boundary observation possessing a time delay and inner control was investigated. Firstly, the close-loop system was translated into an abstract Cauchy problem in the suitable state space. A uniformly bounded C0-semigroup generated by the close-loop system, which implies that the unique solution of the system exists, was shown. Secondly, the spectrum configuration of the closed-loop system was analyzed and the eventual differentiability and the eventual compactness of the semigroup were shown by the resolvent estimates on some resolvent sets. This implies that the spectrum-determined growth assumption holds. Finally, a sufficient condition, which is related to the physical parameters in the system and is independent of the time delay, of the exponential stability of the closed-loop system was given.

  8. Robustness analysis of uncertain dynamical neural networks with multiple time delays.

    Science.gov (United States)

    Senan, Sibel

    2015-10-01

    This paper studies the problem of global robust asymptotic stability of the equilibrium point for the class of dynamical neural networks with multiple time delays with respect to the class of slope-bounded activation functions and in the presence of the uncertainties of system parameters of the considered neural network model. By using an appropriate Lyapunov functional and exploiting the properties of the homeomorphism mapping theorem, we derive a new sufficient condition for the existence, uniqueness and global robust asymptotic stability of the equilibrium point for the class of neural networks with multiple time delays. The obtained stability condition basically relies on testing some relationships imposed on the interconnection matrices of the neural system, which can be easily verified by using some certain properties of matrices. An instructive numerical example is also given to illustrate the applicability of our result and show the advantages of this new condition over the previously reported corresponding results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Path Tracking Control of Automatic Parking Cloud Model considering the Influence of Time Delay

    Directory of Open Access Journals (Sweden)

    Yiding Hua

    2017-01-01

    Full Text Available This paper establishes the kinematic model of the automatic parking system and analyzes the kinematic constraints of the vehicle. Furthermore, it solves the problem where the traditional automatic parking system model fails to take into account the time delay. Firstly, based on simulating calculation, the influence of time delay on the dynamic trajectory of a vehicle in the automatic parking system is analyzed under the transverse distance Dlateral between different target spaces. Secondly, on the basis of cloud model, this paper utilizes the tracking control of an intelligent path closer to human intelligent behavior to further study the Cloud Generator-based parking path tracking control method and construct a vehicle path tracking control model. Moreover, tracking and steering control effects of the model are verified through simulation analysis. Finally, the effectiveness and timeliness of automatic parking controller in the aspect of path tracking are tested through a real vehicle experiment.

  10. Sliding-Mode Synchronization Control for Uncertain Fractional-Order Chaotic Systems with Time Delay

    Directory of Open Access Journals (Sweden)

    Haorui Liu

    2015-06-01

    Full Text Available Specifically setting a time delay fractional financial system as the study object, this paper proposes a single controller method to eliminate the impact of model uncertainty and external disturbances on the system. The proposed method is based on the stability theory of Lyapunov sliding-mode adaptive control and fractional-order linear systems. The controller can fit the system state within the sliding-mode surface so as to realize synchronization of fractional-order chaotic systems. Analysis results demonstrate that the proposed single integral, sliding-mode control method can control the time delay fractional power system to realize chaotic synchronization, with strong robustness to external disturbance. The controller is simple in structure. The proposed method was also validated by numerical simulation.

  11. Observer-based approximate optimal tracking control for time-delay systems with external disturbances

    Science.gov (United States)

    Su, Hao; Tang, Gong-You

    2016-09-01

    This paper proposes a successive approximation design approach of observer-based optimal tracking controllers for time-delay systems with external disturbances. To solve a two-point boundary value problem with time-delay and time-advance terms and obtain the optimal tracking control law, two sequences of vector differential equations are constructed first. Second, the convergence of the sequences of the vector differential equations is proved to guarantee the existence and uniqueness of the control law. Third, a design algorithm of the optimal tracking control law is presented and the physically realisable problem is addressed by designing a disturbance state observer and a reference input state observer. An example of an industrial electric heater is given to demonstrate the efficiency of the proposed approach.

  12. Signal Subspace Smoothing Technique for Time Delay Estimation Using MUSIC Algorithm.

    Science.gov (United States)

    Sun, Meng; Wang, Yide; Le Bastard, Cédric; Pan, Jingjing; Ding, Yuehua

    2017-12-10

    In civil engineering, Time Delay Estimation (TDE) is one of the most important tasks for the media structure and quality evaluation. In this paper, the MUSIC algorithm is applied to estimate the time delay. In practice, the backscattered echoes are highly correlated (even coherent). In order to apply the MUSIC algorithm, an adaptation of signal subspace smoothing is proposed to decorrelate the correlation between echoes. Unlike the conventional sub-band averaging techniques, we propose to directly use the signal subspace, which can take full advantage of the signal subspace and reduce the influence of noise. Moreover, the proposed method is adapted to deal with any radar pulse shape. The proposed method is tested on both numerical and experimental data. Both results show the effectiveness of the proposed method.

  13. Dynamical analysis in a bioeconomic phytoplankton zooplankton system with double time delays and environmental stochasticity

    Science.gov (United States)

    Liu, Chao; Wang, Luping; Zhang, Qingling; Yan, Yun

    2017-09-01

    This paper presents a double delayed bioeconomic phytoplankton zooplankton system with commercial harvesting on zooplankton and environmental stochasticity. Maturation delay for toxin producing phytoplankton and gestation delay for zooplankton are considered. Environmental stochasticity is incorporated into the proposed system in form of Gaussian white noises. Some sufficient conditions are derived to show that the proposed system has a unique global positive solution. In absence of double time delays, stochastic stability and existence of stochastic Hopf bifurcation are studied based on invariant measure theory and singular boundary theory of diffusion process for the proposed system. In presence of double time delays, asymptotic behaviors of the interior equilibrium are discussed by constructing some appropriate Lyapunov functions.

  14. Discontinuous attractor dimension at the synchronization transition of time-delayed chaotic systems.

    Science.gov (United States)

    Zeeb, Steffen; Dahms, Thomas; Flunkert, Valentin; Schöll, Eckehard; Kanter, Ido; Kinzel, Wolfgang

    2013-04-01

    The attractor dimension at the transition to complete synchronization in a network of chaotic units with time-delayed couplings is investigated. In particular, we determine the Kaplan-Yorke dimension from the spectrum of Lyapunov exponents for iterated maps and for two coupled semiconductor lasers. We argue that the Kaplan-Yorke dimension must be discontinuous at the transition and compare it to the correlation dimension. For a system of Bernoulli maps, we indeed find a jump in the correlation dimension. The magnitude of the discontinuity in the Kaplan-Yorke dimension is calculated for networks of Bernoulli units as a function of the network size. Furthermore, the scaling of the Kaplan-Yorke dimension as well as of the Kolmogorov entropy with system size and time delay is investigated.

  15. Application of fuzzy adaptive control to a MIMO nonlinear time-delay pump-valve system.

    Science.gov (United States)

    Lai, Zhounian; Wu, Peng; Wu, Dazhuan

    2015-07-01

    In this paper, a control strategy to balance the reliability against efficiency is introduced to overcome the common off-design operation problem in pump-valve systems. The pump-valve system is a nonlinear multi-input-multi-output (MIMO) system with time delays which cannot be accurately measured but can be approximately modeled using Bernoulli Principle. A fuzzy adaptive controller is applied to approximate system parameters and achieve the control of delay-free model since the system model is inaccurate and the direct feedback linearization method cannot be applied. An extended Smith predictor is introduced to compensate time delays of the system using the inaccurate system model. The experiment is carried out to verify the effectiveness of the control strategy whose results show that the control performance is well achieved. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Robust Adaptive Time Delay Estimation for Speaker Localization in Noisy and Reverberant Acoustic Environments

    Directory of Open Access Journals (Sweden)

    Simon Doclo

    2003-10-01

    Full Text Available Two adaptive algorithms are presented for robust time delay estimation (TDE in acoustic environments with a large amount of background noise and reverberation. Recently, an adaptive eigenvalue decomposition (EVD algorithm has been developed for TDE in highly reverberant acoustic environments. In this paper, we extend the adaptive EVD algorithm to noisy and reverberant acoustic environments, by deriving an adaptive stochastic gradient algorithm for the generalized eigenvalue decomposition (GEVD or by prewhitening the noisy microphone signals. We have performed simulations using a localized and a diffuse noise source for several SNRs, showing that the time delays can be estimated more accurately using the adaptive GEVD algorithm than using the adaptive EVD algorithm. In addition, we have analyzed the sensitivity of the adaptive GEVD algorithm with respect to the accuracy of the noise correlation matrix estimate, showing that its performance may be quite sensitive, especially for low SNR scenarios.

  17. Spectral enhancement of single attosecond pulses by time-delayed control field

    CERN Document Server

    Chu, Wei-Chun

    2012-01-01

    An optical coherent control scheme has been proposed where an extreme ultraviolet single attosecond pulse (SAP) propagates through a dense helium gas dressed by a time-delayed femtosecond laser pulse. The laser pulse couples the 2s2p(^1P) and 2s^2(^1S) autoionizing states when the SAP excites the 2s2p state. After going through the gas, the spectral and temporal profiles of the SAP are strongly distorted. A narrowed but enhanced spike in the spectrum shows up for specific intensities and time delays of the laser, which exemplifies the control of a broadband photon wave packet by an ultrashort dressing field for the first time. We analyze the photon and electron dynamics and conclude on the dressing condition that maximizes this enhancement. The result demonstrates new possibilities of attosecond optical control.

  18. Model Predictive Load Frequency Control of two-area Interconnected Time Delay Power System with TCSC

    Science.gov (United States)

    Deng, Yan; Liu, Wenze

    2017-05-01

    In order to reduce the influence of non-linear constraint and time delay on load frequency control of interconnected power system, this paper, based on Model Predictive Control (MPC), designed a load frequency control scheme for two-area interconnected power system with TCSC device. First, considering the Generation Rate Constraint (GRC) and time delay, this paper builds the dynamics model of two-area interconnected power system with Thyristor Controlled Series Compensation device (TCSC). Then the whole system is decomposed into two subsystems. And each subsystem has its own local area MPC controller. Second, collaborative control is implemented by integrating the control information (measurement value, predictive value, etc.) of subsystems’ MPC controllers into the local control goal. In the end, under consideration of physical constraints, the Matlab simulation is conducted. The calculation results showed that the MPC strategy has better dynamic performance and robustness compared to the traditional PI control.

  19. Internet based gripper teleoperation with random time delay by using haptic feedback and SEMG

    Science.gov (United States)

    Xu, Xiaonong; Song, Aiguo; Zhang, Huatao; Ji, Peng

    2016-10-01

    Random time delay may cause instability in the internet based teleoperation system. Transparency and intuitiveness are also very important for operator to control the system to accurately perform the desired action, especially for the gripper teleoperation system. This paper presents a new grip force control method of gripper teleoperation system with haptic feedback. The system employs the SEMG signal as the control parameter in order to enhance the intuitive control experience for operator. In order to eliminate the impacts on the system stability caused by random time delay, a non-time based teleoperation method is applied to the control process. Besides, neural network and designed fuzzy logic controller is also utilized to improve this control method. The effectiveness of the proposed method is demonstrated by experiment results.

  20. Does a deformation of special relativity imply energy dependent photon time delays?

    Science.gov (United States)

    Carmona, J. M.; Cortés, J. L.; Relancio, J. J.

    2018-01-01

    Theoretical arguments in favor of energy dependent photon time delays from a modification of special relativity (SR) have met with recent gamma ray observations that put severe constraints on the scale of such deviations. We review the case of the generality of this theoretical prediction in the case of a deformation of SR and find that, at least in the simple model based on the analysis of photon worldlines which is commonly considered, there are many scenarios compatible with a relativity principle which do not contain a photon time delay. This will be the situation for any modified dispersion relation which reduces to E=\\vert p\\vert for photons, independently of the quantum structure of spacetime. This fact opens up the possibility of a phenomenologically consistent relativistic generalization of SR with a new mass scale many orders of magnitude below the Planck mass.

  1. Time-delayed transition of normal-to-abnormal glow in pin-to-water discharge

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, S.-Y.; Byeon, Y.-S.; Yoo, S.; Hong, E. J.; Kim, S. B.; Yoo, S. J.; Ryu, S., E-mail: smryu@nfri.re.kr [Plasma Technology Research Center of National Fusion Research Institute, 37, Dongjangsan-ro, Gunsan-si, Jeollabuk-do, Gunsan 54004 (Korea, Republic of)

    2016-08-15

    Time-delayed transition of normal-to-abnormal glow was investigated in discharge between spoke-like pins and ultrapure water by applying AC-driven power at a frequency of 14.3 kHz at atmospheric pressure. The normal-to-abnormal transition can be recognized from the slope changes of current density, gas temperature, electrode temperature, and OH density. The slope changes took place in tens of minutes rather than just after discharge, in other words, the transition was delayed. The time-delay of the transition was caused by the interaction between the plasma and water. The plasma affected water properties, and then the water affected plasma properties.

  2. Global properties of vector-host disease models with time delays.

    Science.gov (United States)

    Cai, Li-Ming; Li, Xue-Zhi; Fang, Bin; Ruan, Shigui

    2017-05-01

    Since there exist extrinsic and intrinsic incubation periods of pathogens in the feedback interactions between the vectors and hosts, it is necessary to consider the incubation delays in vector-host disease transmission dynamics. In this paper, we propose vector-host disease models with two time delays, one describing the incubation period in the vector population and another representing the incubation period in the host population. Both distributed and discrete delays are used. By constructing suitable Liapunov functions, we obtain sufficient conditions for the global stability of the endemic equilibria of these models. The analytic results reveal that the global dynamics of such vector-host disease models with time delays are completely determined by the basic reproduction number. Some specific cases with discrete delay are studied and the corresponding results are improved.

  3. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. XVI. Time delays for the quadruply imaged quasar DES J0408-5354 with high-cadence photometric monitoring

    Science.gov (United States)

    Courbin, F.; Bonvin, V.; Buckley-Geer, E.; Fassnacht, C. D.; Frieman, J.; Lin, H.; Marshall, P. J.; Suyu, S. H.; Treu, T.; Anguita, T.; Motta, V.; Meylan, G.; Paic, E.; Tewes, M.; Agnello, A.; Chao, D. C.-Y.; Chijani, M.; Gilman, D.; Rojas, K.; Williams, P.; Hempel, A.; Kim, S.; Lachaume, R.; Rabus, M.; Abbott, T. M. C.; Allam, S.; Annis, J.; Banerji, M.; Bechtol, K.; Benoit-Lévy, A.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; DePoy, D. L.; Desai, S.; Flaugher, B.; Fosalba, P.; García-Bellido, J.; Gaztanaga, E.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; McMahon, R. G.; Menanteau, F.; Miquel, R.; Nord, B.; Plazas, A. A.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Tucker, D. L.; Walker, A. R.; Wester, W.

    2018-01-01

    We present time-delay measurements for the new quadruple imaged quasar DES J0408-5354, the first quadruple imaged quasar found in the Dark Energy Survey (DES). Our result is made possible by implementing a new observational strategy using almost daily observations with the MPIA 2.2 m telescope at La Silla observatory and deep exposures reaching a signal-to-noise ratio of about 1000 per quasar image. This data qualityallows us to catch small photometric variations (a few mmag rms) of the quasar, acting on temporal scales much shorter than microlensing, and hence making the time delay measurement very robust against microlensing. In only seven months we very accurately measured one of the time delays in DES J0408-5354: Δt(AB) = -112.1 ± 2.1 days (1.8%) using only the MPIA 2.2 m data. In combination with data taken with the 1.2 m Euler Swiss telescope, we also measured two delays involving the D component of the system Δt(AD) = -155.5 ± 12.8 days (8.2%) and Δt(BD) = -42.4 ± 17.6 days (41%), where all the error bars include systematics. Turning these time delays into cosmological constraints will require deep Hubble Space Telescope (HST) imaging or ground-based adaptive optics (AO), and information on the velocity field of the lensing galaxy. Lightcurves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A71

  4. An Analysis of Cost Overruns and Time Delays of INDOT Projects

    OpenAIRE

    Bordat, Claire; McCullouch, Bob G.; Labi, Samuel; Sinha, Kumares C.

    2004-01-01

    A commonality among state Departments of Transportation is the inability to complete projects on time and within budget. This project assessed the extent of the problem of cost overruns, time delays, and change orders associated with Indiana Department of Transportation (INDOT) construction projects, identified the reasons for such problems, and finally developed a set of recommendations aimed at their future reduction. For comparison purposes, data from other states were collected and studie...

  5. Existence of Solutions of a Partial Integrodifferential Equation with Thermostat and Time Delay

    Directory of Open Access Journals (Sweden)

    Carlo Bianca

    2014-01-01

    Full Text Available This paper deals with the mathematical analysis of a retarded partial integrodifferential equation that belongs to the class of thermostatted kinetic equations with time delay. Specifically, the paper is devoted to the proof of the existence and uniqueness of mild solutions of the related Cauchy problem. The main result is obtained by employing integration along the characteristic curves and successive approximations sequence arguments. Applications and perspective are also discussed within the paper.

  6. A systematic molecular circuit design method for gene networks under biochemical time delays and molecular noises

    Directory of Open Access Journals (Sweden)

    Chang Yu-Te

    2008-11-01

    Full Text Available Abstract Background Gene networks in nanoscale are of nonlinear stochastic process. Time delays are common and substantial in these biochemical processes due to gene transcription, translation, posttranslation protein modification and diffusion. Molecular noises in gene networks come from intrinsic fluctuations, transmitted noise from upstream genes, and the global noise affecting all genes. Knowledge of molecular noise filtering and biochemical process delay compensation in gene networks is crucial to understand the signal processing in gene networks and the design of noise-tolerant and delay-robust gene circuits for synthetic biology. Results A nonlinear stochastic dynamic model with multiple time delays is proposed for describing a gene network under process delays, intrinsic molecular fluctuations, and extrinsic molecular noises. Then, the stochastic biochemical processing scheme of gene regulatory networks for attenuating these molecular noises and compensating process delays is investigated from the nonlinear signal processing perspective. In order to improve the robust stability for delay toleration and noise filtering, a robust gene circuit for nonlinear stochastic time-delay gene networks is engineered based on the nonlinear robust H∞ stochastic filtering scheme. Further, in order to avoid solving these complicated noise-tolerant and delay-robust design problems, based on Takagi-Sugeno (T-S fuzzy time-delay model and linear matrix inequalities (LMIs technique, a systematic gene circuit design method is proposed to simplify the design procedure. Conclusion The proposed gene circuit design method has much potential for application to systems biology, synthetic biology and drug design when a gene regulatory network has to be designed for improving its robust stability and filtering ability of disease-perturbed gene network or when a synthetic gene network needs to perform robustly under process delays and molecular noises.

  7. A mathematical theory of stochastic microlensing. I. Random time delay functions and lensing maps

    Science.gov (United States)

    Petters, A. O.; Rider, B.; Teguia, A. M.

    2009-07-01

    Stochastic microlensing is a central tool in probing dark matter on galactic scales. From first principles, we initiate the development of a mathematical theory of stochastic microlensing. Beginning with the random time delay function and associated lensing map, we determine exact expressions for the mean and variance of these transformations. In addition, we derive the probability density function (pdf) of a random point-mass potential, which form the constituent of a stochastic microlens potential. We characterize the exact pdf of a normalized random time delay function at the origin, showing that it is a shifted gamma distribution, which also holds at leading order in the limit of a large number of point masses if the normalized time delay function was at a general point of the lens plane. For the large number of point-mass limit, we also prove that the asymptotic pdf of the random lensing map under a specified scaling converges to a bivariate normal distribution. We show analytically that the pdf of the random scaled lensing map at leading order depends on the magnitude of the scaled bending angle due purely to point masses as well as demonstrate explicitly how this radial symmetry is broken at the next order. Interestingly, we found at leading order a formula linking the expectation and variance of the normalized random time delay function to the first Betti number of its domain. We also determine an asymptotic pdf for the random bending angle vector and find an integral expression for the probability of a lens plane point being near a fixed point. Lastly, we show explicitly how the results are affected by location in the lens plane. The results of this paper are relevant to the theory of random fields and provide a platform for further generalizations as well as analytical limits for checking astrophysical studies of stochastic microlensing.

  8. Basins of attraction of the bistable region of time-delayed cutting dynamics

    Science.gov (United States)

    Yan, Yao; Xu, Jian; Wiercigroch, Marian

    2017-09-01

    This paper investigates the effects of bistability in a nonsmooth time-delayed dynamical system, which is often manifested in science and engineering. Previous studies on cutting dynamics have demonstrated persistent coexistence of chatter and chatter-free responses in a bistable region located in the linearly stable zone. As there is no widely accepted definition of basins of attraction for time-delayed systems, bistable regions are coined as unsafe zones (UZs). Hence, we have attempted to define the basins of attraction and stability basins for a typical delayed system to get insight into the bistability in systems with time delays. Special attention was paid to the influences of delayed initial conditions, starting points, and states at time zero on the long-term dynamics of time-delayed systems. By using this concept, it has been confirmed that the chatter is prone to occur when the waviness frequency in the workpiece surface coincides with the effective natural frequency of the cutting process. Further investigations unveil a thin "boundary layer" inside the UZ in the immediate vicinity of the stability boundary, in which we observe an extremely fast growth of the chatter basin stability. The results reveal that the system is more stable when the initial cutting depth is smaller. The physics of the tool deflection at the instant of the tool-workpiece engagement is used to evaluate the cutting safety, and the safe level could be zero when the geometry of tool engagement is unfavorable. Finally, the basins of attraction are used to quench the chatter by a single strike, where the resultant "islands" offer an opportunity to suppress the chatter even when the cutting is very close to the stability boundary.

  9. Distribution of residence times in bistable noisy systems with time-delayed feedback

    OpenAIRE

    Curtin, D.

    2004-01-01

    We analyze theoretically and experimentally the residence time distribution of bistable systems in the presence of noise and time-delayed feedback. We explain various nonexponential features of the residence time distribution using a two-state model and obtain a quantitative agreement with an experiment based on a Schmitt trigger. The limitations of the two-state model are also analyzed theoretically and experimentally using a semiconductor laser with optoelectronic feedback.

  10. Photonic-Enabled RF Canceller with Tunable Time-Delay Taps

    Science.gov (United States)

    2016-12-05

    reducing this SI in the analog domain, before the receiver’s low- noise amplifier (LNA), sat- uration can be avoided and spurious signals minimized in order...communications C-band, 191.50 to 196.25 THz, and had +10 dBm of output power . Our initial design utilized 20 such lasers, which resulted in 20 RF canceller...Photonic-Enabled RF Canceller with Tunable Time-Delay Taps Kenneth E. Kolodziej, Sivasubramaniam Yegnanarayanan, Bradley T. Perry MIT Lincoln

  11. Angular anisotropy of time delay in XUV/IR photoionization of H$_2^+$

    CERN Document Server

    Serov, Vladislav V

    2016-01-01

    We develop a novel technique for modeling of atomic and molecular ionization in superposition of XUV and IR fields with characteristics typical for attosecond streaking and RABBITT experiments. The method is based on solving the time-dependent Schr\\"odinger equation in the coordinate frame expanding along with the photoelectron wave packet. The efficiency of the method is demonstrated by calculating angular anisotropy of photoemission time delay of the H$_2^+$ ion in a field configuration of recent RABBITT experiments.

  12. Adaptive Neural Control for a Class of Outputs Time-Delay Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Ruliang Wang

    2012-01-01

    Full Text Available This paper considers an adaptive neural control for a class of outputs time-delay nonlinear systems with perturbed or no. Based on RBF neural networks, the radius basis function (RBF neural networks is employed to estimate the unknown continuous functions. The proposed control guarantees that all closed-loop signals remain bounded. The simulation results demonstrate the effectiveness of the proposed control scheme.

  13. Adaptive Asymptotical Synchronization for Stochastic Complex Networks with Time-Delay and Markovian Switching

    Directory of Open Access Journals (Sweden)

    Xueling Jiang

    2014-01-01

    Full Text Available The problem of adaptive asymptotical synchronization is discussed for the stochastic complex dynamical networks with time-delay and Markovian switching. By applying the stochastic analysis approach and the M-matrix method for stochastic complex networks, several sufficient conditions to ensure adaptive asymptotical synchronization for stochastic complex networks are derived. Through the adaptive feedback control techniques, some suitable parameters update laws are obtained. Simulation result is provided to substantiate the effectiveness and characteristics of the proposed approach.

  14. Power-Level Control for MHTGRs with Time-Delay in Helium Temperature Measurement

    Science.gov (United States)

    Dong, Zhe

    2014-06-01

    The modular high temperature gas-cooled reactor (MHTGR), which has the inherent safety feature, high thermal efficiency and satisfactory economic feasibility, can be applied for electricity and process heat production. Power-level control is an important technique for providing both the stable operation and load-following performance. Since the coolant temperature sensors of an MHTGR are usually installed near the primary side of the corresponding steam generator, there must be time-delay effect in the feedback loop of the coolant temperatures. Moreover, the measurement signal transducing may also induce time-delay effect. Therefore, it is meaningful to give the power-level control design method by considering this time-delay effect. In this paper, a simple output-feedback power-level control is proposed for the MHTGRs by using the delayed measurement signal of average reactor coolant temperature. In the aspect of theoretical analysis, a sufficient condition, under which it is well guaranteed that this newly-built power-level control is a globally asymptotic stabilizer, is firstly given. In the aspect of verification, numerical simulation results not only verify the feasibility of the theoretical results but also show the relationship between the performance and values of parameters of this novel power-level controller. The meaning of this work lies in two aspects. The first one is deeply revealing the relationship between the closed-loop stability and values of the controller parameters. The second one is giving the approach of designing a simple and effective power-level control strategy to suppress the negative influence induced by the time-delay in the feedback loop of the coolant temperatures.

  15. Stabilization of a Wireless Networked Control System with Packet Loss and Time Delay: An ADS Approach

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2012-01-01

    Full Text Available The stabilization problem of a wireless networked control system is considered in this paper. Both time delay and packet loss exist simultaneously in the wireless network. The system is modeled as an asynchronous dynamic system (ADS with unstable subsystems. A sufficient condition for the system to be stable is presented. A numerical example is given to demonstrate the effectiveness of the proposed approach.

  16. Observer Design for a Time Delay System via the Razumikhin Approach

    Czech Academy of Sciences Publication Activity Database

    Rehák, Branislav

    2017-01-01

    Roč. 19, č. 6 (2017), s. 2226-2231 ISSN 1561-8625 R&D Projects: GA ČR GA13-02149S Institutional support: RVO:67985556 Keywords : observer * time-delay system * input-to-state stability * quantization Subject RIV: BC - Control Systems Theory Impact factor: 1.421, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/asjc.1507/full

  17. Pulse Compression of Phase-matched High Harmonic Pulses from a Time-Delay Compensated Monochromator

    Directory of Open Access Journals (Sweden)

    Ito Motohiko

    2013-03-01

    Full Text Available Pulse compression of single 32.6-eV high harmonic pulses from a time-delay compensated monochromator was demonstrated down to 11±3 fs by compensating the pulse front tilt. The photon flux was intensified up to 5.7×109 photons/s on target by implementing high harmonic generation under a phase matching condition in a hollow fiber used for increasing the interaction length.

  18. Time Delay Measurements for the Cluster-lensed Sextuple Quasar SDSS J2222+2745

    Science.gov (United States)

    Dahle, H.; Gladders, M. D.; Sharon, K.; Bayliss, M. B.; Rigby, J. R.

    2015-11-01

    We report first results from an ongoing monitoring campaign to measure time delays between the six images of the quasar SDSS J2222+2745, gravitationally lensed by a galaxy cluster. The time delay between A and B, the two most highly magnified images, is measured to be {τ }{{AB}}=47.7+/- 6.0 days (95% confidence interval), consistent with previous model predictions for this lens system. The strong intrinsic variability of the quasar also allows us to derive a time delay value of {τ }{{CA}}=722+/- 24 days between image C and A, in spite of modest overlap between their light curves in the current data set. Image C, which is predicted to lead all the other lensed quasar images, has undergone a sharp, monotonic flux increase of 60%-75% during 2014. A corresponding brightening is firmly predicted to occur in images A and B during 2016. The amplitude of this rise indicates that time delays involving all six known images in this system, including those of the demagnified central images D-F, will be obtainable from further ground-based monitoring of this system during the next few years. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, and including observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnologi´a e Innovación Productiva (Argentina).

  19. Continuous neural identifier for uncertain nonlinear systems with time delays in the input signal.

    Science.gov (United States)

    Alfaro-Ponce, M; Argüelles, A; Chairez, I

    2014-12-01

    Time-delay systems have been successfully used to represent the complexity of some dynamic systems. Time-delay is often used for modeling many real systems. Among others, biological and chemical plants have been described using time-delay terms with better results than those models that have not consider them. However, getting those models represented a challenge and sometimes the results were not so satisfactory. Non-parametric modeling offered an alternative to obtain suitable and usable models. Continuous neural networks (CNN) have been considered as a real alternative to provide models over uncertain non-parametric systems. This article introduces the design of a specific class of non-parametric model for uncertain time-delay system based on CNN considering the so-called delayed learning laws analysis. The convergence analysis as well as the learning laws were produced by means of a Lyapunov-Krasovskii functional. Three examples were developed to demonstrate the effectiveness of the modeling process forced by the identifier proposed in this study. The first example was a simple nonlinear model used as benchmark example. The second example regarded the human immunodeficiency virus dynamic behavior is used to show the performance of the suggested non-parametric identifier based on CNN for no fictitious neither academic models. Finally, a third example describing the evolution of hepatitis B virus served to test the identifier presented in this study and was also useful to provide evidence of its superior performance against a non-delayed identifier based on CNN. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Leader-Following Consensus of Multi-agent in Switching Networks with Time-Delay

    OpenAIRE

    Hui Yu; Gaoyang Liu; Yi Zhang

    2013-01-01

    This paper is devoted to the study of multi-agent consensus with a time-varying reference state in directed networks with both switching topology and constant time delay. Stability analysis is performed based on a proposed Lyapunov–Krasovskii function. Sufficient conditions based on linear matrix inequalities (LMIs) are given to guarantee multi-agent consensus on a time-vary reference state under arbitrary switching of the network topology even if the network communication is affected by time...

  1. Tuning of IMC based PID controllers for integrating systems with time delay.

    Science.gov (United States)

    Kumar, D B Santosh; Padma Sree, R

    2016-07-01

    Design of Proportional Integral and Derivative (PID) controllers based on IMC principles for various types of integrating systems with time delay is proposed. PID parameters are given in terms of process model parameters and a tuning parameter. The tuning parameter is IMC filter time constant. In the present work, the IMC filter (Q) is chosen in such a manner that the order of the denominator of IMC controller is one less than the order of the numerator. The IMC filter time constant (λ) is tuned in such a way that a good compromise is made between performance and robustness for both servo and regulatory problems. To improve servo response of the controller a set point filter is designed such that the closed loop response is similar to that of first order plus time delay system. The proposed controller design method is applied to various transfer function models and to the non-linear model equations of jacketed CSTR to demonstrate its applicability and effectiveness. The performance of the proposed controller is compared with the recently reported methods in terms of IAE and ITAE. The smooth functioning of the controller is determined in terms of total variation and compared with recently reported methods. Simulation studies are carried out on various integrating systems with time delay to show the effectiveness and superiority of the proposed controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Effect of time delay on recognition memory for pictures: the modulatory role of emotion.

    Directory of Open Access Journals (Sweden)

    Bo Wang

    Full Text Available This study investigated the modulatory role of emotion in the effect of time delay on recognition memory for pictures. Participants viewed neutral, positive and negative pictures, and took a recognition memory test 5 minutes, 24 hours, or 1 week after learning. The findings are: 1 For neutral, positive and negative pictures, overall recognition accuracy in the 5-min delay did not significantly differ from that in the 24-h delay. For neutral and positive pictures, overall recognition accuracy in the 1-week delay was lower than in the 24-h delay; for negative pictures, overall recognition in the 24-h and 1-week delay did not significantly differ. Therefore negative emotion modulates the effect of time delay on recognition memory, maintaining retention of overall recognition accuracy only within a certain frame of time. 2 For the three types of pictures, recollection and familiarity in the 5-min delay did not significantly differ from that in the 24-h and the 1-week delay. Thus emotion does not appear to modulate the effect of time delay on recollection and familiarity. However, recollection in the 24-h delay was higher than in the 1-week delay, whereas familiarity in the 24-h delay was lower than in the 1-week delay.

  3. Nonlinear stabilization for a class of time delay systems via inverse optimality approach.

    Science.gov (United States)

    Ordaz, Patricio; Santos-Sánchez, Omar-Jacobo; Rodríguez-Guerrero, Liliam; González-Facundo, Alberto

    2017-03-01

    This paper is devoted to obtain a stabilizing optimal nonlinear controller based on the well known Control Lyapunov-Krasovskii Functional (CLKF) approach, aimed to solve the inverse optimality problem for a class of nonlinear time delay systems. To determine sufficient conditions for the Bellman's equation solution of the system under consideration, the CLKF and the inverse optimality approach are considered in this paper. In comparison with previous results, this scheme allows us to obtain less conservative controllers, implying energy saving (in terms of average power consumption for a specific thermo-electrical process). Sufficient delay-independent criteria in terms of CLKF is obtained such that the closed-loop nonlinear time-delay system is guaranteed to be local Asymptotically Stable. To illustrate the effectiveness of the theoretical results, a comparative study with an industrial PID controller tuned by the Ziegler-Nichols methodology (Z-N) and a Robust-PID tuned by using the D-partition method is presented by online experimental tests for an atmospheric drying process with time delay in its dynamics. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Simulation of hard X-ray time delays in solar flares

    Directory of Open Access Journals (Sweden)

    Yuri E. Charikov

    2015-06-01

    The spectra were derived from HXR integral over the active region. They were interpreted on the basis of a model of kinetics of accelerated electrons propagating in the flaring loop with the given plasma concentration distribution and magnetic field configuration. The kinetics in question is governed by the processes of Coulomb scattering, reflecting in the converging magnetic field, and with the return current factored in. Solving the time-dependent relativistic Fokker–Planck equation for the given initial conditions allowed to find the time-dependent electron distribution function along the loop. The brightness distribution of the bremsstrahlung of HXR derived from the electron distribution functions was calculated for different quantum energies along the flaring loop and used to plot the time-delays spectra. The calculated data showed that decreasing time-delay spectra were tractable assuming regions of electrons acceleration and injection were separated. The distinction between time-delays spectra from the looptop and footpoints was established. Hence the measurements with high resolving power may produce comprehensive data on the processes of electron transport and acceleration during solar flares.

  5. Shared control on lunar spacecraft teleoperation rendezvous operations with large time delay

    Science.gov (United States)

    Ya-kun, Zhang; Hai-yang, Li; Rui-xue, Huang; Jiang-hui, Liu

    2017-08-01

    Teleoperation could be used in space on-orbit serving missions, such as object deorbits, spacecraft approaches, and automatic rendezvous and docking back-up systems. Teleoperation rendezvous and docking in lunar orbit may encounter bottlenecks for the inherent time delay in the communication link and the limited measurement accuracy of sensors. Moreover, human intervention is unsuitable in view of the partial communication coverage problem. To solve these problems, a shared control strategy for teleoperation rendezvous and docking is detailed. The control authority in lunar orbital maneuvers that involves two spacecraft as rendezvous and docking in the final phase was discussed in this paper. The predictive display model based on the relative dynamic equations is established to overcome the influence of the large time delay in communication link. We discuss and attempt to prove via consistent, ground-based simulations the relative merits of fully autonomous control mode (i.e., onboard computer-based), fully manual control (i.e., human-driven at the ground station) and shared control mode. The simulation experiments were conducted on the nine-degrees-of-freedom teleoperation rendezvous and docking simulation platform. Simulation results indicated that the shared control methods can overcome the influence of time delay effects. In addition, the docking success probability of shared control method was enhanced compared with automatic and manual modes.

  6. Effects of time delay on the stochastic resonance in small-world neuronal networks.

    Science.gov (United States)

    Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile; Liu, Chen

    2013-03-01

    The effects of time delay on stochastic resonance in small-world neuronal networks are investigated. Without delay, an intermediate intensity of additive noise is able to optimize the temporal response of the neural system to the subthreshold periodic signal imposed on all neurons constituting the network. The time delay in the coupling process can either enhance or destroy stochastic resonance of neuronal activity in the small-world network. In particular, appropriately tuned delays can induce multiple stochastic resonances, which appear intermittently at integer multiples of the oscillation period of weak external forcing. It is found that the delay-induced multiple stochastic resonances are most efficient when the forcing frequency is close to the global-resonance frequency of each individual neuron. Furthermore, the impact of time delay on stochastic resonance is largely independent of the small-world topology, except for resonance peaks. Considering that information transmission delays are inevitable in intra- and inter-neuronal communication, the presented results could have important implications for the weak signal detection and information propagation in neural systems.

  7. Effect of Time Delay on Recognition Memory for Pictures: The Modulatory Role of Emotion

    Science.gov (United States)

    Wang, Bo

    2014-01-01

    This study investigated the modulatory role of emotion in the effect of time delay on recognition memory for pictures. Participants viewed neutral, positive and negative pictures, and took a recognition memory test 5 minutes, 24 hours, or 1 week after learning. The findings are: 1) For neutral, positive and negative pictures, overall recognition accuracy in the 5-min delay did not significantly differ from that in the 24-h delay. For neutral and positive pictures, overall recognition accuracy in the 1-week delay was lower than in the 24-h delay; for negative pictures, overall recognition in the 24-h and 1-week delay did not significantly differ. Therefore negative emotion modulates the effect of time delay on recognition memory, maintaining retention of overall recognition accuracy only within a certain frame of time. 2) For the three types of pictures, recollection and familiarity in the 5-min delay did not significantly differ from that in the 24-h and the 1-week delay. Thus emotion does not appear to modulate the effect of time delay on recollection and familiarity. However, recollection in the 24-h delay was higher than in the 1-week delay, whereas familiarity in the 24-h delay was lower than in the 1-week delay. PMID:24971457

  8. The giant acoustic atom - a single quantum system with a deterministic time delay

    Science.gov (United States)

    Guo, Lingzhen; Grimsmo, Arne; Frisk Kockum, Anton; Pletyukhov, Mikhail; Johansson, Göran

    2017-04-01

    We investigate the quantum dynamics of a single transmon qubit coupled to surface acoustic waves (SAWs) via two distant connection points. Since the acoustic speed is five orders of magnitude slower than the speed of light, the travelling time between the two connection points needs to be taken into account. Therefore, we treat the transmon qubit as a giant atom with a deterministic time delay. We find that the spontaneous emission of the system, formed by the giant atom and the SAWs between its connection points, initially follows a polynomial decay law instead of an exponential one, as would be the case for a small atom. We obtain exact analytical results for the scattering properties of the giant atom up to two-phonon processes by using a diagrammatic approach. The time delay gives rise to novel features in the reflection, transmission, power spectra, and second-order correlation functions of the system. Furthermore, we find the short-time dynamics of the giant atom for arbitrary drive strength by a numerically exact method for open quantum systems with a finite-time-delay feedback loop. L. G. acknowledges financial support from Carl-Zeiss Stiftung (0563-2.8/508/2).

  9. Effect of time delay on recognition memory for pictures: the modulatory role of emotion.

    Science.gov (United States)

    Wang, Bo

    2014-01-01

    This study investigated the modulatory role of emotion in the effect of time delay on recognition memory for pictures. Participants viewed neutral, positive and negative pictures, and took a recognition memory test 5 minutes, 24 hours, or 1 week after learning. The findings are: 1) For neutral, positive and negative pictures, overall recognition accuracy in the 5-min delay did not significantly differ from that in the 24-h delay. For neutral and positive pictures, overall recognition accuracy in the 1-week delay was lower than in the 24-h delay; for negative pictures, overall recognition in the 24-h and 1-week delay did not significantly differ. Therefore negative emotion modulates the effect of time delay on recognition memory, maintaining retention of overall recognition accuracy only within a certain frame of time. 2) For the three types of pictures, recollection and familiarity in the 5-min delay did not significantly differ from that in the 24-h and the 1-week delay. Thus emotion does not appear to modulate the effect of time delay on recollection and familiarity. However, recollection in the 24-h delay was higher than in the 1-week delay, whereas familiarity in the 24-h delay was lower than in the 1-week delay.

  10. Lens Model and Time Delay Predictions for the Sextuply Lensed Quasar SDSS J2222+2745

    Science.gov (United States)

    Sharon, Keren; Bayliss, Matthew B.; Dahle, Håkon; Florian, Michael K.; Gladders, Michael D.; Johnson, Traci L.; Paterno-Mahler, Rachel; Rigby, Jane R.; Whitaker, Katherine E.; Wuyts, Eva

    2017-01-01

    SDSS J2222+2745 is a galaxy cluster at z = 0.49, strongly lensing a quasar at z = 2.805 into six widely separated images. In recent Hubble Space Telescope imaging of the field, we identify additional multiply lensed galaxies and confirm the sixth quasar image that was identified by Dahle et al. We used the Gemini-North telescope to measure a spectroscopic redshift of z = 4.56 of one of the lensed galaxies. These data are used to refine the lens model of SDSS J2222+2745, compute the time delay and magnifications of the lensed quasar images, and reconstruct the source image of the quasar host and a lensed galaxy at z = 2.3. This galaxy also appears in absorption in our Gemini spectra of the lensed quasar, at a projected distance of 34 kpc. Our model is in agreement with the recent time delay measurements of Dahle et al., who found τAB = 47.7 ± 6.0 days and τAC = -722 ± 24 days. We use the observed time delays to further constrain the model, and find that the model-predicted time delays of the three faint images of the quasar are τAD = 502 ± 68 days, τAE = 611 ± 75 days, and τAF = 415 ± 72 days. We have initiated a follow-up campaign to measure these time delays with Gemini North. Finally, we present initial results from an X-ray monitoring program with Swift, indicating the presence of hard X-ray emission from the lensed quasar, as well as extended X-ray emission from the cluster itself, which is consistent with the lensing mass measurement and the cluster velocity dispersion. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-13337.

  11. Time delay and duration of ionospheric total electron content responses to geomagnetic disturbances

    Directory of Open Access Journals (Sweden)

    J. Liu

    2010-03-01

    Full Text Available Although positive and negative signatures of ionospheric storms have been reported many times, global characteristics such as the time of occurrence, time delay and duration as well as their relations to the intensity of the ionospheric storms have not received enough attention. The 10 years of global ionosphere maps (GIMs of total electron content (TEC retrieved at Jet Propulsion Laboratory (JPL were used to conduct a statistical study of the time delay of the ionospheric responses to geomagnetic disturbances. Our results show that the time delays between geomagnetic disturbances and TEC responses depend on season, magnetic local time and magnetic latitude. In the summer hemisphere at mid- and high latitudes, the negative storm effects can propagate to the low latitudes at post-midnight to the morning sector with a time delay of 4–7 h. As the earth rotates to the sunlight, negative phase retreats to higher latitudes and starts to extend to the lower latitude toward midnight sector. In the winter hemisphere during the daytime and after sunset at mid- and low latitudes, the negative phase appearance time is delayed from 1–10 h depending on the local time, latitude and storm intensity compared to the same area in the summer hemisphere. The quick response of positive phase can be observed at the auroral area in the night-side of the winter hemisphere. At the low latitudes during the dawn-noon sector, the ionospheric negative phase responses quickly with time delays of 5–7 h in both equinoctial and solsticial months. Our results also manifest that there is a positive correlation between the intensity of geomagnetic disturbances and the time duration of both the positive phase and negative phase. The durations of both negative phase and positive phase have clear latitudinal, seasonal and magnetic local time (MLT dependence. In the winter hemisphere, long durations for the positive phase are 8–11 h and 12–14 h during the daytime at middle

  12. Time delay and duration of ionospheric total electron content responses to geomagnetic disturbances

    Directory of Open Access Journals (Sweden)

    J. Liu

    2010-03-01

    Full Text Available Although positive and negative signatures of ionospheric storms have been reported many times, global characteristics such as the time of occurrence, time delay and duration as well as their relations to the intensity of the ionospheric storms have not received enough attention. The 10 years of global ionosphere maps (GIMs of total electron content (TEC retrieved at Jet Propulsion Laboratory (JPL were used to conduct a statistical study of the time delay of the ionospheric responses to geomagnetic disturbances. Our results show that the time delays between geomagnetic disturbances and TEC responses depend on season, magnetic local time and magnetic latitude. In the summer hemisphere at mid- and high latitudes, the negative storm effects can propagate to the low latitudes at post-midnight to the morning sector with a time delay of 4–7 h. As the earth rotates to the sunlight, negative phase retreats to higher latitudes and starts to extend to the lower latitude toward midnight sector. In the winter hemisphere during the daytime and after sunset at mid- and low latitudes, the negative phase appearance time is delayed from 1–10 h depending on the local time, latitude and storm intensity compared to the same area in the summer hemisphere. The quick response of positive phase can be observed at the auroral area in the night-side of the winter hemisphere. At the low latitudes during the dawn-noon sector, the ionospheric negative phase responses quickly with time delays of 5–7 h in both equinoctial and solsticial months.

    Our results also manifest that there is a positive correlation between the intensity of geomagnetic disturbances and the time duration of both the positive phase and negative phase. The durations of both negative phase and positive phase have clear latitudinal, seasonal and magnetic local time (MLT dependence. In the winter hemisphere, long durations for the positive phase are 8–11 h and 12–14 h during the daytime at

  13. Analysis of the effects of time delay in clock recovery circuits based on Phase-locked loops

    DEFF Research Database (Denmark)

    Zibar, Darko; Oxenløwe, Leif Katsuo; Clausen, Anders

    2004-01-01

    Influence of time delay in a balanced optical phase-locked loops (OPLL) with a proportional integrator (Pl) filter is investigated using a delayed differential equation (DDE) is investigated. The limitations, which a time delay imposes on the Pl filter bandwidth, at increasing values of loop gain...

  14. Procedural Adaptations for Use of Constant Time Delay to Teach Highly Motivating Words to Beginning Braille Readers

    Science.gov (United States)

    Ivy, Sarah E.; Guerra, Jennifer A.; Hatton, Deborah D.

    2017-01-01

    Introduction: Constant time delay is an evidence-based practice to teach sight word recognition to students with a variety of disabilities. To date, two studies have documented its effectiveness for teaching braille. Methods: Using a multiple-baseline design, we evaluated the effectiveness of constant time delay to teach highly motivating words to…

  15. An Evaluation of Constant Time Delay and Simultaneous Prompting Procedures in Skill Acquisition for Young Children with Autism

    Science.gov (United States)

    Brandt, Julie A. Ackerlund; Weinkauf, Sara; Zeug, Nicole; Klatt, Kevin P.

    2016-01-01

    Previous research has shown that various prompting procedures are effective in teaching skills to children and adults with developmental disabilities. Simultaneous prompting includes proving a prompt immediately following an instruction; whereas constant time-delay procedures include a set time delay (i.e., 5 s or 10 s) prior to delivering a…

  16. Chaos and Hopf bifurcation control in a fractional-order memristor-based chaotic system with time delay

    Science.gov (United States)

    Ding, Dawei; Qian, Xin; Hu, Wei; Wang, Nian; Liang, Dong

    2017-11-01

    In this paper, a time-delayed feedback controller is proposed in order to control chaos and Hopf bifurcation in a fractional-order memristor-based chaotic system with time delay. The associated characteristic equation is established by regarding the time delay as a bifurcation parameter. A set of conditions which ensure the existence of the Hopf bifurcation are gained by analyzing the corresponding characteristic equation. Then, we discuss the influence of feedback gain on the critical value of fractional order and time delay in the controlled system. Theoretical analysis shows that the controller is effective in delaying the Hopf bifurcation critical value via decreasing the feedback gain. Finally, some numerical simulations are presented to prove the validity of our theoretical analysis and confirm that the time-delayed feedback controller is valid in controlling chaos and Hopf bifurcation in the fractional-order memristor-based system.

  17. Joint Maximum Likelihood Time Delay Estimation of Unknown Event-Related Potential Signals for EEG Sensor Signal Quality Enhancement

    Directory of Open Access Journals (Sweden)

    Kyungsoo Kim

    2016-06-01

    Full Text Available Electroencephalograms (EEGs measure a brain signal that contains abundant information about the human brain function and health. For this reason, recent clinical brain research and brain computer interface (BCI studies use EEG signals in many applications. Due to the significant noise in EEG traces, signal processing to enhance the signal to noise power ratio (SNR is necessary for EEG analysis, especially for non-invasive EEG. A typical method to improve the SNR is averaging many trials of event related potential (ERP signal that represents a brain’s response to a particular stimulus or a task. The averaging, however, is very sensitive to variable delays. In this study, we propose two time delay estimation (TDE schemes based on a joint maximum likelihood (ML criterion to compensate the uncertain delays which may be different in each trial. We evaluate the performance for different types of signals such as random, deterministic, and real EEG signals. The results show that the proposed schemes provide better performance than other conventional schemes employing averaged signal as a reference, e.g., up to 4 dB gain at the expected delay error of 10°.

  18. Precise alignment method of time-delayed integration charge-coupled device charge shifting direction in aerial panoramic camera

    Science.gov (United States)

    Zhang, Jian; Ding, Yalin; Zhang, Linghua; Tian, Haiying; Yuan, Guoqin

    2016-12-01

    A time-delayed integration charge-coupled device (TDI CCD) in an aerial panoramic camera compensates the sweep image motion correctly on the premise that the TDI charge shifting direction is coincident with that of the sweep image motion. The coordinate transformation method is used to find out how the included angle between the two directions originated. Then the precise alignment method of the TDI charge shifting direction is proposed to eliminate the included angle. TDI CCD is operated in area mode, nodding the scan mirror, the trajectory of the image point is derived to be a hyperbola, which could be equivalent to an obliquely straight line. The tilt angle of the line is exactly the included angle between the two directions. Meanwhile, the tilt angle can be calculated by the least square method. Then the scan head or the focal plane assembly is precisely rotated to eliminate the included angle between the two directions. The assembling error after precise alignment is calculated at -16.4 s, which could hardly influence the MTF of TDI CCD. The panoramic imaging experiment and the flight test show that the precise alignment method is feasible and completely satisfies the operating requirement of the aerial panoramic camera.

  19. Adaptive Control for Autonomous Navigation of Mobile Robots Considering Time Delay and Uncertainty

    Science.gov (United States)

    Armah, Stephen Kofi

    Autonomous control of mobile robots has attracted considerable attention of researchers in the areas of robotics and autonomous systems during the past decades. One of the goals in the field of mobile robotics is development of platforms that robustly operate in given, partially unknown, or unpredictable environments and offer desired services to humans. Autonomous mobile robots need to be equipped with effective, robust and/or adaptive, navigation control systems. In spite of enormous reported work on autonomous navigation control systems for mobile robots, achieving the goal above is still an open problem. Robustness and reliability of the controlled system can always be improved. The fundamental issues affecting the stability of the control systems include the undesired nonlinear effects introduced by actuator saturation, time delay in the controlled system, and uncertainty in the model. This research work develops robustly stabilizing control systems by investigating and addressing such nonlinear effects through analytical, simulations, and experiments. The control systems are designed to meet specified transient and steady-state specifications. The systems used for this research are ground (Dr Robot X80SV) and aerial (Parrot AR.Drone 2.0) mobile robots. Firstly, an effective autonomous navigation control system is developed for X80SV using logic control by combining 'go-to-goal', 'avoid-obstacle', and 'follow-wall' controllers. A MATLAB robot simulator is developed to implement this control algorithm and experiments are conducted in a typical office environment. The next stage of the research develops an autonomous position (x, y, and z) and attitude (roll, pitch, and yaw) controllers for a quadrotor, and PD-feedback control is used to achieve stabilization. The quadrotor's nonlinear dynamics and kinematics are implemented using MATLAB S-function to generate the state output. Secondly, the white-box and black-box approaches are used to obtain a linearized

  20. A Comparison of Floating Car vs. Loop Detector Estimated Freeway Travel Time Delay

    Directory of Open Access Journals (Sweden)

    Zhongren Wang, Ph.D. P.E. T.E.

    2012-06-01

    Full Text Available Floating car- and loop detector-based methods are two different types of methods frequently used to collect travel time delay information across a freeway network. Sometimes, it is necessary to use them jointly to achieve the necessary freeway network coverage, due to the high labor costs for the floating car-based method and the indispensability of sufficient network instrumentation for the loop detector-based method. For example, both floating car- and loop detector-based methods were once used in the Highway Congestion Monitoring Program in the California Department of Transportation. It is therefore necessary to evaluate whether these two types of methods estimate similarly in terms of total travel time delay. To this end, corresponding delay information estimated using both types of methods from 37 freeway segments in the Greater Sacramento Area were collected and compared. It was found that these two types of methods do not estimate similarly in terms of total segment travel time delay. The mean absolute relative difference (MARD can be as high as 78%, especially when delay is defined using a lower reference speed, such as 56 km/h. However, in terms of total segment travel time, the loop detector and the modified floating car method estimated similarly. The MARD is 19%. It was also found that the estimation from the different methods did correlate fairly well, which provides a means of conversion when different methods are used to monitor the total delay across a freeway network. As a spin-off, it was also found that a 1.5 km spacing of loop detectors is sufficient to achieve the 19% MARD as compared with the modified floating car method in terms of total travel time estimation.

  1. Mathematical model describing the thyroids-pituitary axis with distributed time delays in hormone transportation

    Science.gov (United States)

    Neamţu, Mihaela; Stoian, Dana; Navolan, Dan Bogdan

    2014-12-01

    In the present paper we provide a mathematical model that describe the hypothalamus-pituitary-thyroid axis in autoimmune (Hashimoto's) thyroiditis. Since there is a spatial separation between thyroid and pituitary gland in the body, time is needed for transportation of thyrotropin and thyroxine between the glands. Thus, the distributed time delays are considered as both weak and Dirac kernels. The delayed model is analyzed regarding the stability and bifurcation behavior. The last part contains some numerical simulations to illustrate the effectiveness of our results and conclusions.

  2. Synchronization in a neural network of phase oscillators with time delayed coupling

    Science.gov (United States)

    Luzyanina, T. B.

    1994-08-01

    We investigate a neural network model designed as a system of the central oscillator and peripheral oscillators interacting with a time delay τ in a phase-locking loop. The delay corresponds to the finite velocity of signal propagation along nerve fibers. We study the synchronization under various values of τ. It is shown that under some conditions for a finite delay time there exist a multitude of synchronization frequencies in contrast to the case without delay where one has at most one solution. The criteria for the existence of multiple solutions and their stability are found. The asymptotic behavior under increasing connection strengths is analyzed.

  3. Protecting and accelerating adiabatic passage with time-delayed pulse sequences

    CERN Document Server

    Sampedro, Pablo; Sola, Ignacio R

    2016-01-01

    Using numerical simulations of two-photon electronic absorption with femtosecond pulses in Na$_2$ we show that: i) it is possible to avoid the characteristic saturation or dumped Rabi oscillations in the yield of absorption by time-delaying the laser pulses; ii) it is possible to accelerate the onset of adiabatic passage by using the vibrational coherence starting in a wave packet; and iii) it is possible to prepare the initial wave packet in order to achieve full state-selective transitions with broadband pulses. The findings can be used, for instance, to achieve ultrafast adiabatic passage by light-induced potentials and understand its intrinsic robustness.

  4. Energy harvesting of nonlinear damping system under time delayed feedback gain

    Directory of Open Access Journals (Sweden)

    Bichri A.

    2016-01-01

    Full Text Available This paper presents the application of delayed feedback velocity for optimizing the harvested power in cubic nonlinear damper system. We consider a harvester consisting of a nonlinear single degree of freedom system (spring-masse-damper subjected to a base excitation near the primary resonance. Analytical investigation using the multiple scales method is performed to obtain approximation of the amplitude response. This amplitude can be used to extract the average power. Results show that for appropriate values of the feedback gain, energy harvesting is more efficient at resonance compared to the cubic nonlinear damper system without time delay.

  5. Projective Exponential Synchronization for a Class of Complex PDDE Networks with Multiple Time Delays

    Directory of Open Access Journals (Sweden)

    Chengdong Yang

    2015-10-01

    Full Text Available This paper addresses the problem of projective exponential synchronization for a class of complex spatiotemporal networks with multiple time delays satisfying the homogeneous Neumann boundary conditions, where the network is modeled by coupled partial differential-difference equations (PDDEs. A distributed proportional-spatial derivative (P-sD controller is designed by employing Lyapunov’s direct method and Kronecker product. The controller ensures the projective exponential synchronization of the PDDE network. The main result of this paper is presented in terms of standard linear matrix inequality (LMI. A numerical example is provided to show the effectiveness of the proposed design method.

  6. Stochastic multiresonance for a fractional linear oscillator with time-delayed kernel and quadratic noise

    Science.gov (United States)

    Guo, Feng; Wang, Xue-Yuan; Zhu, Cheng-Yin; Cheng, Xiao-Feng; Zhang, Zheng-Yu; Huang, Xu-Hui

    2017-12-01

    The stochastic resonance for a fractional oscillator with time-delayed kernel and quadratic trichotomous noise is investigated. Applying linear system theory and Laplace transform, the system output amplitude (SPA) for the fractional oscillator is obtained. It is found that the SPA is a periodical function of the kernel delayed-time. Stochastic multiplicative phenomenon appears on the SPA versus the driving frequency, versus the noise amplitude, and versus the fractional exponent. The non-monotonous dependence of the SPA on the system parameters is also discussed.

  7. Quasipolynomial Approach to Simultaneous Robust Control of Time-Delay Systems

    Directory of Open Access Journals (Sweden)

    Nikolaj Semenič

    2014-01-01

    Full Text Available A control law for retarded time-delay systems is considered, concerning infinite closed-loop spectrum assignment. An algebraic method for spectrum assignment is presented with a unique optimization algorithm for minimization of spectral abscissa and effective shaping of the chains of infinitely many closed-loop poles. Uncertainty of plant delays of a certain structure is considered in a sense of a robust simultaneous stabilization. Robust performance is achieved using mixed sensitivity design, which is incorporated into the addressed control law.

  8. Pattern Formation in a Predator-Prey Model with Both Cross Diffusion and Time Delay

    Directory of Open Access Journals (Sweden)

    Boli Xie

    2014-01-01

    Full Text Available A predator-prey model with both cross diffusion and time delay is considered. We give the conditions for emerging Turing instability in detail. Furthermore, we illustrate the spatial patterns via numerical simulations, which show that the model dynamics exhibits a delay and diffusion controlled formation growth not only of spots and stripe-like patterns, but also of the two coexist. The obtained results show that this system has rich dynamics; these patterns show that it is useful for the diffusive predation model with a delay effect to reveal the spatial dynamics in the real model.

  9. Discovery of time-delayed gene regulatory networks based on temporal gene expression profiling

    Directory of Open Access Journals (Sweden)

    Guo Zheng

    2006-01-01

    Full Text Available Abstract Background It is one of the ultimate goals for modern biological research to fully elucidate the intricate interplays and the regulations of the molecular determinants that propel and characterize the progression of versatile life phenomena, to name a few, cell cycling, developmental biology, aging, and the progressive and recurrent pathogenesis of complex diseases. The vast amount of large-scale and genome-wide time-resolved data is becoming increasing available, which provides the golden opportunity to unravel the challenging reverse-engineering problem of time-delayed gene regulatory networks. Results In particular, this methodological paper aims to reconstruct regulatory networks from temporal gene expression data by using delayed correlations between genes, i.e., pairwise overlaps of expression levels shifted in time relative each other. We have thus developed a novel model-free computational toolbox termed TdGRN (Time-delayed Gene Regulatory Network to address the underlying regulations of genes that can span any unit(s of time intervals. This bioinformatics toolbox has provided a unified approach to uncovering time trends of gene regulations through decision analysis of the newly designed time-delayed gene expression matrix. We have applied the proposed method to yeast cell cycling and human HeLa cell cycling and have discovered most of the underlying time-delayed regulations that are supported by multiple lines of experimental evidence and that are remarkably consistent with the current knowledge on phase characteristics for the cell cyclings. Conclusion We established a usable and powerful model-free approach to dissecting high-order dynamic trends of gene-gene interactions. We have carefully validated the proposed algorithm by applying it to two publicly available cell cycling datasets. In addition to uncovering the time trends of gene regulations for cell cycling, this unified approach can also be used to study the complex

  10. Exploring super-gaussianity towards robust information-theoretical time delay estimation

    DEFF Research Database (Denmark)

    Petsatodis, Theodoros; Talantzis, Fotios; Boukis, Christos

    2013-01-01

    Time delay estimation (TDE) is a fundamental component of speaker localization and tracking algorithms. Most of the existing systems are based on the generalized cross-correlation method assuming gaussianity of the source. It has been shown that the distribution of speech, captured with far...... the effect upon TDE when modeling the source signal with different speech-based distributions. An information theoretical TDE method indirectly encapsulating higher order statistics (HOS) formed the basis of this work. The underlying assumption of Gaussian distributed source has been replaced...

  11. State feedback controller design for the synchronization of Boolean networks with time delays

    Science.gov (United States)

    Li, Fangfei; Li, Jianning; Shen, Lijuan

    2018-01-01

    State feedback control design to make the response Boolean network synchronize with the drive Boolean network is far from being solved in the literature. Motivated by this, this paper studies the feedback control design for the complete synchronization of two coupled Boolean networks with time delays. A necessary condition for the existence of a state feedback controller is derived first. Then the feedback control design procedure for the complete synchronization of two coupled Boolean networks is provided based on the necessary condition. Finally, an example is given to illustrate the proposed design procedure.

  12. TIMEDELN: A programme for the detection and parametrization of overlapping resonances using the time-delay method

    Science.gov (United States)

    Little, Duncan A.; Tennyson, Jonathan; Plummer, Martin; Noble, Clifford J.; Sunderland, Andrew G.

    2017-06-01

    TIMEDELN implements the time-delay method of determining resonance parameters from the characteristic Lorentzian form displayed by the largest eigenvalues of the time-delay matrix. TIMEDELN constructs the time-delay matrix from input K-matrices and analyses its eigenvalues. This new version implements multi-resonance fitting and may be run serially or as a high performance parallel code with three levels of parallelism. TIMEDELN takes K-matrices from a scattering calculation, either read from a file or calculated on a dynamically adjusted grid, and calculates the time-delay matrix. This is then diagonalized, with the largest eigenvalue representing the longest time-delay experienced by the scattering particle. A resonance shows up as a characteristic Lorentzian form in the time-delay: the programme searches the time-delay eigenvalues for maxima and traces resonances when they pass through different eigenvalues, separating overlapping resonances. It also performs the fitting of the calculated data to the Lorentzian form and outputs resonance positions and widths. Any remaining overlapping resonances can be fitted jointly. The branching ratios of decay into the open channels can also be found. The programme may be run serially or in parallel with three levels of parallelism. The parallel code modules are abstracted from the main physics code and can be used independently.

  13. T-S Fuzzy Model-Based Approximation and Filter Design for Stochastic Time-Delay Systems with Hankel Norm Criterion

    Directory of Open Access Journals (Sweden)

    Yanhui Li

    2014-01-01

    Full Text Available This paper investigates the Hankel norm filter design problem for stochastic time-delay systems, which are represented by Takagi-Sugeno (T-S fuzzy model. Motivated by the parallel distributed compensation (PDC technique, a novel filtering error system is established. The objective is to design a suitable filter that guarantees the corresponding filtering error system to be mean-square asymptotically stable and to have a specified Hankel norm performance level γ. Based on the Lyapunov stability theory and the Itô differential rule, the Hankel norm criterion is first established by adopting the integral inequality method, which can make some useful efforts in reducing conservativeness. The Hankel norm filtering problem is casted into a convex optimization problem with a convex linearization approach, which expresses all the conditions for the existence of admissible Hankel norm filter as standard linear matrix inequalities (LMIs. The effectiveness of the proposed method is demonstrated via a numerical example.

  14. Detection of travel time delay caused by dilation of an artificial fracture due to pressurization; Jinko chika kiretsu kaatsu ni tomonau toka danseiha denpa jikan henka no kenshutsu

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K.; Moriya, H.; Asanuma, H.; Niitsuma, H. [Tohoku University, Sendai (Japan). Faculty of Engineering

    1996-10-01

    By revealing the relation between dilation of a subsurface fracture due to pressurization and travel time delay, it may be possible to measure the information as to the subsurface fracture system as a geothermal reservoir. In this study, field experiment was conducted to clarify the relation between the travel time delay of elastic waves and the dilation of fracture, pressure, and incident angles. The travel time delay of P-wave and S-wave tended to increase with the pressurization. When incident angle was about 90{degree} against the fracture, the increase was ranging between 0 and 0.2 ms. The magnitude of this delay could not be explained only by the opening of main fracture. It was considered that there were micro-crack zones around the main fracture. The difference of P-S delay depended on the pressurization and change of the pressure. The delay depended on the incident angle against the fracture. The delay of S-wave showed the polarized wave direction dependency. However, the obtained results might greatly depend on the analytical method and parameters. 4 refs., 10 figs.

  15. The dynamics of the HIV infection: a time-delay differential equation approach

    CERN Document Server

    Bacelar, Flora S; Santos, Rita M Zorzenon dos

    2010-01-01

    In this work we introduce a differential equation model with time-delay that describes the three-stage dynamics and the two time scales observed in HIV infection. Assuming that the virus has high mutation and rapid reproduction rates that stress the immune system throughout the successive activation of new responses to new undetectable strains, the delay term describes the time interval necessary to mount new specific immune responses. This single term increases the number of possible solutions and changes the phase space dynamics if compared to the model without time delay. We observe very slow transits near the unstable fixed point, corresponding to a healthy state, and long time decay to the stable fixed point that corresponds to the infected state. In contrast to the results obtained for models using regular ODE, which only allow for partial descriptions of the course of the infection, our model describes the entire course of infection observed in infected patients: the primary infection, the latency peri...

  16. Test of the FLRW Metric and Curvature with Strong Lens Time Delays

    Science.gov (United States)

    Liao, Kai; Li, Zhengxiang; Wang, Guo-Jian; Fan, Xi-Long

    2017-04-01

    We present a new model-independent strategy for testing the Friedmann-Lemaître-Robertson-Walker (FLRW) metric and constraining cosmic curvature, based on future time-delay measurements of strongly lensed quasar-elliptical galaxy systems from the Large Synoptic Survey Telescope and supernova observations from the Dark Energy Survey. The test only relies on geometric optics. It is independent of the energy contents of the universe and the validity of the Einstein equation on cosmological scales. The study comprises two levels: testing the FLRW metric through the distance sum rule (DSR) and determining/constraining cosmic curvature. We propose an effective and efficient (redshift) evolution model for performing the former test, which allows us to concretely specify the violation criterion for the FLRW DSR. If the FLRW metric is consistent with the observations, then on the second level the cosmic curvature parameter will be constrained to ˜0.057 or ˜0.041 (1σ), depending on the availability of high-redshift supernovae, which is much more stringent than current model-independent techniques. We also show that the bias in the time-delay method might be well controlled, leading to robust results. The proposed method is a new independent tool for both testing the fundamental assumptions of homogeneity and isotropy in cosmology and for determining cosmic curvature. It is complementary to cosmic microwave background plus baryon acoustic oscillation analyses, which normally assume a cosmological model with dark energy domination in the late-time universe.

  17. Impact of time delay on the dynamics of SEIR epidemic model using cellular automata

    Science.gov (United States)

    Sharma, Natasha; Gupta, Arvind Kumar

    2017-04-01

    The delay of an infectious disease is significant when aiming to predict its strength and spreading patterns. In this paper the SEIR ​(susceptible-exposed-infected-recovered) epidemic spread with time delay is analyzed through a two-dimensional cellular automata model. The time delay corresponding to the infectious span, predominantly, includes death during the latency period in due course of infection. The advancement of whole system is described by SEIR transition function complemented with crucial factors like inhomogeneous population distribution, birth and disease independent mortality. Moreover, to reflect more realistic population dynamics some stochastic parameters like population movement and connections at local level are also considered. The existence and stability of disease free equilibrium is investigated. Two prime behavioral patterns of disease dynamics is found depending on delay. The critical value of delay, beyond which there are notable variations in spread patterns, is computed. The influence of important parameters affecting the disease dynamics on basic reproduction number is also examined. The results obtained show that delay plays an affirmative role to control disease progression in an infected host.

  18. Numerical simulation of time delay interferometry for NGO/eLISA

    CERN Document Server

    Wang, Gang

    2012-01-01

    NGA/eLISA is a new mission proposal with arm length 106 km and one interferometer down-scaled from LISA (http://elisa-ngo.org/). Just like LISA and ASTROD-GW, in order to attain the requisite sensitivity for NGO/eLISA, laser frequency noise must be suppressed below the secondary noises such as the optical path noise, acceleration noise etc. In previous papers, we have used the CGC 2.7 ephemeris to numerically simulate the time delay interferometry for LISA and ASTROD-GW with one arm dysfunctional and found that they are both well below their respective limits under which the laser frequency noise is required to be suppressed. In this paper, we follow the same procedure to simulate the time delay interferometry numerically. To do this, we work out a set of 1000-day optimized mission orbits of NGO/eLISA spacecraft starting at January 1st, 2021 using the CGC 2.7 ephemeris framework. We then use this numerical solution to calculate the residual optical path differences in the second-generation solutions of our pr...

  19. Time-delay control of a magnetic levitated linear positioning system

    Science.gov (United States)

    Tarn, J. H.; Juang, K. Y.; Lin, C. E.

    1994-01-01

    In this paper, a high accuracy linear positioning system with a linear force actuator and magnetic levitation is proposed. By locating a permanently magnetized rod inside a current-carrying solenoid, the axial force is achieved by the boundary effect of magnet poles and utilized to power the linear motion, while the force for levitation is governed by Ampere's Law supplied with the same solenoid. With the levitation in a radial direction, there is hardly any friction between the rod and the solenoid. The high speed motion can hence be achieved. Besides, the axial force acting on the rod is a smooth function of rod position, so the system can provide nanometer resolution linear positioning to the molecule size. Since the force-position relation is highly nonlinear, and the mathematical model is derived according to some assumptions, such as the equivalent solenoid of the permanently magnetized rod, so there exists unknown dynamics in practical application. Thus 'robustness' is an important issue in controller design. Meanwhile the load effect reacts directly on the servo system without transmission elements, so the capability of 'disturbance rejection; is also required. With the above consideration, a time-delay control scheme is chosen and applied. By comparing the input-output relation and the mathematical model, the time-delay controller calculates an estimation of unmodeled dynamics and disturbances and then composes the desired compensation into the system. Effectiveness of the linear positioning system and control scheme are illustrated with simulation results.

  20. A discrete event simulation model for evaluating time delays in a pipeline network

    Energy Technology Data Exchange (ETDEWEB)

    Spricigo, Deisi; Muggiati, Filipe V.; Lueders, Ricardo; Neves Junior, Flavio [Federal University of Technology of Parana (UTFPR), Curitiba, PR (Brazil)

    2009-07-01

    Currently in the oil industry the logistic chain stands out as a strong candidate to obtain highest profit, since recent studies have pointed out to a cost reduction by adoption of better policies for distribution of oil derivatives, particularly those where pipelines are used to transport products. Although there are models to represent transfers of oil derivatives in pipelines, they are quite complex and computationally burden. In this paper, we are interested on models that are less detailed in terms of fluid dynamics but provide more information about operational decisions in a pipeline network. We propose a discrete event simulation model in ARENA that allows simulating a pipeline network based on average historical data. Time delays for transferring different products can be evaluated through different routes. It is considered that transport operations follow a historical behavior and average time delays can thus be estimated within certain bounds. Due to its stochastic nature, time quantities are characterized by average and dispersion measures. This allows comparing different operational scenarios for product transportation. Simulation results are compared to data obtained from a real world pipeline network and different scenarios of production and demand are analyzed. (author)

  1. Emergent bimodality and switch induced by time delays and noises in a synthetic gene circuit

    Science.gov (United States)

    Zhang, Chun; Du, Liping; Xie, Qingshuang; Wang, Tonghuan; Zeng, Chunhua; Nie, Linru; Duan, Weilong; Jia, Zhenglin; Wang, Canjun

    2017-10-01

    Based on the kinetic model for obtaining emergent bistability proposed by Tan et al. (2009), the effects of the fluctuations of protein synthesis rate and maximum dilution rate, the cross-correlation between two noises, and the time delay and the strength of the feedback loop in the synthetic gene circuit have been investigated through theoretical analysis and numerical simulation. Our results show that: (i) the fluctuations of protein synthesis rate and maximum dilution rate enhance the emergent bimodality of the probability distribution phenomenon, while the cross-correlation between two noises(λ), the time delay(τ) and the strength of the feedback loop(K) cause it to disappear; and (ii) the mean first passage time(MFPT) as functions of the noise strengths exhibits a maximum, this maximum is called noise-delayed switching (NDS) of the high concentration state. The NDS phenomenon shows that the noise can modify the stability of a metastable system in a counterintuitive way, the system remains in the metastable state for a longer time compared to the deterministic case. And the τ and the K enhances the stability of the ON state. The physical mechanisms for the switch between the ON and OFF states can be explained from the point of view of the effective potential.

  2. Predictor-based control for an inverted pendulum subject to networked time delay.

    Science.gov (United States)

    Ghommam, J; Mnif, F

    2017-03-01

    The inverted pendulum is considered as a special class of underactuated mechanical systems with two degrees of freedom and a single control input. This mechanical configuration allows to transform the underactuated system into a nonlinear system that is referred to as the normal form, whose control design techniques for stabilization are well known. In the presence of time delays, these control techniques may result in inadequate behavior and may even cause finite escape time in the controlled system. In this paper, a constructive method is presented to design a controller for an inverted pendulum characterized by a time-delayed balance control. First, the partial feedback linearization control for the inverted pendulum is modified and coupled with a state predictor to compensate for the delay. Several coordinate transformations are processed to transform the estimated partial linearized system into an upper-triangular form. Second, nested saturation and backstepping techniques are combined to derive the control law of the transformed system that would complete the design of the whole control input. The effectiveness of the proposed technique is illustrated by numerical simulations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Inference of biological pathway from gene expression profiles by time delay boolean networks.

    Directory of Open Access Journals (Sweden)

    Tung-Hung Chueh

    Full Text Available One great challenge of genomic research is to efficiently and accurately identify complex gene regulatory networks. The development of high-throughput technologies provides numerous experimental data such as DNA sequences, protein sequence, and RNA expression profiles makes it possible to study interactions and regulations among genes or other substance in an organism. However, it is crucial to make inference of genetic regulatory networks from gene expression profiles and protein interaction data for systems biology. This study will develop a new approach to reconstruct time delay boolean networks as a tool for exploring biological pathways. In the inference strategy, we will compare all pairs of input genes in those basic relationships by their corresponding p-scores for every output gene. Then, we will combine those consistent relationships to reveal the most probable relationship and reconstruct the genetic network. Specifically, we will prove that O(log n state transition pairs are sufficient and necessary to reconstruct the time delay boolean network of n nodes with high accuracy if the number of input genes to each gene is bounded. We also have implemented this method on simulated and empirical yeast gene expression data sets. The test results show that this proposed method is extensible for realistic networks.

  4. A Lyapunov-Razumikhin approach for stability analysis of logistics networks with time-delays

    Science.gov (United States)

    Dashkovskiy, Sergey; Karimi, Hamid Reza; Kosmykov, Michael

    2012-05-01

    Logistics network represents a complex system where different elements that are logistic locations interact with each other. This interaction contains delays caused by time needed for delivery of the material. Complexity of the system, time-delays and perturbations in a customer demand may cause unstable behaviour of the network. This leads to the loss of the customers and high inventory costs. Thus the investigation of the network on stability is desired during its design. In this article we consider local input-to-state stability of such logistics networks. Their behaviour is described by a functional differential equation with a constant time-delay. We are looking for verifiable conditions that guarantee stability of the network under consideration. Lyapunov-Razumikhin functions and the local small gain condition are utilised to obtain such conditions. Our stability conditions for the logistics network are based on the information about the interconnection properties between logistic locations and their production rates. Finally, numerical results are provided to demonstrate the proposed approach.

  5. Nonlinear Control and Synchronization with Time Delays of Multiagent Robotic Systems

    Directory of Open Access Journals (Sweden)

    Yassine Bouteraa

    2011-01-01

    Full Text Available We investigate the cooperative control and global asymptotic synchronization Lagrangian system groups, such as industrial robots. The proposed control approach works to accomplish multirobot systems synchronization under an undirected connected communication topology. The control strategy is to synchronize each robot in position and velocity to others robots in the network with respect to the common desired trajectory. The cooperative robot network only requires local neighbor-to-neighbor information exchange between manipulators and does not assume the existence of an explicit leader in the team. It is assumed that network robots have the same number of joints and equivalent joint work spaces. A combination of the lyapunov-based technique and the cross-coupling method has been used to establish the multirobot system asymptotic stability. The developed control combines trajectory tracking and coordination algorithms. To address the time-delay problem in the cooperative network communication, the suggested synchronization control law is shown to synchronize multiple robots as well as to track given trajectory, taking into account the presence of the time delay. To this end, Krasovskii functional method has been used to deal with the delay-dependent stability problem.

  6. The Time Delay Filtering Method for Cancelling Vibration on Overhead Transportation Systems Modelled as a Physical Pendulum

    Directory of Open Access Journals (Sweden)

    G. Peláez

    2007-01-01

    Full Text Available An investigation of the response of a physical pendulum to time delay filtered inputs was conducted. It was shown that the physical pendulum model is more accurate than the simple pendulum for modelling the dynamic response of overhead cranes with loads hanging from hooks. Based on the physical pendulum model a Specified Time Delay filter for an experimental mini overhead crane was synthesized. While somewhat limited in the scope by the hardware conditions placed in the system, the results provide basic insights into the successful application of the Time Delay Filtering method to overhead cranes.

  7. Stability and Hopf Bifurcation of Fractional-Order Complex-Valued Single Neuron Model with Time Delay

    Science.gov (United States)

    Wang, Zhen; Wang, Xiaohong; Li, Yuxia; Huang, Xia

    2017-12-01

    In this paper, the problems of stability and Hopf bifurcation in a class of fractional-order complex-valued single neuron model with time delay are addressed. With the help of the stability theory of fractional-order differential equations and Laplace transforms, several new sufficient conditions, which ensure the stability of the system are derived. Taking the time delay as the bifurcation parameter, Hopf bifurcation is investigated and the critical value of the time delay for the occurrence of Hopf bifurcation is determined. Finally, two representative numerical examples are given to show the effectiveness of the theoretical results.

  8. Assessment of long-range kinematic GPS positioning errors by comparison with airborne laser altimetry and satellite altimetry

    DEFF Research Database (Denmark)

    Zhang, X.H.; Forsberg, René

    2007-01-01

    Long-range airborne laser altimetry and laser scanning (LIDAR) or airborne gravity surveys in, for example, polar or oceanic areas require airborne kinematic GPS baselines of many hundreds of kilometers in length. In such instances, with the complications of ionospheric biases, it can be a real c...

  9. Adaptive PSF fitting - a highly performing photometric method and light curves of the GLS H1413+117: time delays and micro-lensing effects

    Science.gov (United States)

    Akhunov, T. A.; Wertz, O.; Elyiv, A.; Gaisin, R.; Artamonov, B. P.; Dudinov, V. N.; Nuritdinov, S. N.; Delvaux, C.; Sergeyev, A. V.; Gusev, A. S.; Bruevich, V. V.; Burkhonov, O.; Zheleznyak, A. P.; Ezhkova, O.; Surdej, J.

    2017-03-01

    We present new photometric observations of H1413+117 acquired during seasons between 2001 and 2008 in order to estimate the time delays between the lensed quasar images and to characterize at best the on-going micro-lensing events. We propose a highly performing photometric method called the adaptive point spread function fitting and have successfully tested this method on a large number of simulated frames. This has enabled us to estimate the photometric error bars affecting our observational results. We analysed the V- and R-band light curves and V-R colour variations of the A-D components which show short- and long-term brightness variations correlated with colour variations. Using the χ2 and dispersion methods, we estimated the time delays on the basis of the R-band light curves over the seasons between 2003 and 2006. We have derived the new values: ΔtAB = -17.4 ± 2.1, ΔtAC = -18.9 ± 2.8 and ΔtAD = 28.8 ± 0.7 d using the χ2 method (B and C are leading, D is trailing) with 1σ confidence intervals. We also used available observational constraints (resp. the lensed image positions, the flux ratios in mid-IR and two sets of time delays derived in the present work) to update the lens redshift estimation. We obtained z_l = 1.95^{+0.06}_{-0.10} which is in good agreement with previous estimations. We propose to characterize two kinds of micro-lensing events: micro-lensing for the A, B, C components corresponds to typical variations of ∼10-4 mag d-1 during all the seasons, while the D component shows an unusually strong micro-lensing effect with variations of up to ∼10-3 mag d-1 during 2004 and 2005.

  10. Kalman Filters for Time Delay of Arrival-Based Source Localization

    Directory of Open Access Journals (Sweden)

    Klee Ulrich

    2006-01-01

    Full Text Available In this work, we propose an algorithm for acoustic source localization based on time delay of arrival (TDOA estimation. In earlier work by other authors, an initial closed-form approximation was first used to estimate the true position of the speaker followed by a Kalman filtering stage to smooth the time series of estimates. In the proposed algorithm, this closed-form approximation is eliminated by employing a Kalman filter to directly update the speaker's position estimate based on the observed TDOAs. In particular, the TDOAs comprise the observation associated with an extended Kalman filter whose state corresponds to the speaker's position. We tested our algorithm on a data set consisting of seminars held by actual speakers. Our experiments revealed that the proposed algorithm provides source localization accuracy superior to the standard spherical and linear intersection techniques. Moreover, the proposed algorithm, although relying on an iterative optimization scheme, proved efficient enough for real-time operation.

  11. Memory State Feedback RMPC for Multiple Time-Delayed Uncertain Linear Systems with Input Constraints

    Directory of Open Access Journals (Sweden)

    Wei-Wei Qin

    2014-01-01

    Full Text Available This paper focuses on the problem of asymptotic stabilization for a class of discrete-time multiple time-delayed uncertain linear systems with input constraints. Then, based on the predictive control principle of receding horizon optimization, a delayed state dependent quadratic function is considered for incorporating MPC problem formulation. By developing a memory state feedback controller, the information of the delayed plant states can be taken into full consideration. The MPC problem is formulated to minimize the upper bound of infinite horizon cost that satisfies the sufficient conditions. Then, based on the Lyapunov-Krasovskii function, a delay-dependent sufficient condition in terms of linear matrix inequality (LMI can be derived to design a robust MPC algorithm. Finally, the digital simulation results prove availability of the proposed method.

  12. Time-delayed beam splitting with energy separation of x-ray channels

    Energy Technology Data Exchange (ETDEWEB)

    Stetsko, Yuri P.; Shvyd' ko, Yuri V.; Brian Stephenson, G. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2013-10-21

    We introduce a time-delayed beam splitting method based on the energy separation of x-ray photon beams. It is implemented and theoretically substantiated on an example of an x-ray optical scheme similar to that of the classical Michelson interferometer. The splitter/mixer uses Bragg-case diffraction from a thin diamond crystal. Another two diamond crystals are used as back-reflectors. Because of energy separation and a minimal number (three) of optical elements, the split-delay line has high efficiency and is simple to operate. Due to the high transparency of diamond crystal, the split-delay line can be used in a beam sharing mode at x-ray free-electron laser facilities.

  13. A new delay-independent condition for global robust stability of neural networks with time delays.

    Science.gov (United States)

    Samli, Ruya

    2015-06-01

    This paper studies the problem of robust stability of dynamical neural networks with discrete time delays under the assumptions that the network parameters of the neural system are uncertain and norm-bounded, and the activation functions are slope-bounded. By employing the results of Lyapunov stability theory and matrix theory, new sufficient conditions for the existence, uniqueness and global asymptotic stability of the equilibrium point for delayed neural networks are presented. The results reported in this paper can be easily tested by checking some special properties of symmetric matrices associated with the parameter uncertainties of neural networks. We also present a numerical example to show the effectiveness of the proposed theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Bifurcations and chaos of time delay Lorenz system with dimension 2n+1

    Science.gov (United States)

    Mahmoud, Gamal M.; Arafa, Ayman A.; Mahmoud, Emad E.

    2017-11-01

    The aim of this paper is to introduce a generalized form of the Lorenz system with time delay. Instead of considering each state variable of the Lorenz system belonging to R, the paper considers two of them belonging to Rn. Hence the Lorenz system has (2 n+1) dimension. This system appears in several applied sciences such as engineering, physics and networks. The stability of the trivial and nontrivial fixed points and the existence of Hopf bifurcations are studied analytically. Using the normal form theory and center manifold argument, the direction and the stability of the bifurcating periodic solutions are determined. Finally, numerical simulations are calculated to confirm our theoretical results. The paper concludes that the dynamics of this system are rich. Additionally, the values of the delay parameter at which chaotic and hyperchaotic solutions exist for different values of n using Lyapunov exponents and Kolmogorov-Sinai entropy are calculated numerically.

  15. Time Delayed Stage-Structured Predator-Prey Model with Birth Pulse and Pest Control Tactics

    Directory of Open Access Journals (Sweden)

    Mei Yan

    2014-01-01

    Full Text Available Normally, chemical pesticides kill not only pests but also their natural enemies. In order to better control the pests, two-time delayed stage-structured predator-prey models with birth pulse and pest control tactics are proposed and analyzed by using impulsive differential equations in present work. The stability threshold conditions for the mature prey-eradication periodic solutions of two models are derived, respectively. The effects of key parameters including killing efficiency rate, pulse period, the maximum birth effort per unit of time of natural enemy, and maturation time of prey on the threshold values are discussed in more detail. By comparing the two threshold values of mature prey-extinction, we provide the fact that the second control tactic is more effective than the first control method.

  16. Event-Triggered Faults Tolerant Control for Stochastic Systems with Time Delays

    Directory of Open Access Journals (Sweden)

    Ling Huang

    2016-01-01

    Full Text Available This paper is concerned with the state-feedback controller design for stochastic networked control systems (NCSs with random actuator failures and transmission delays. Firstly, an event-triggered scheme is introduced to optimize the performance of the stochastic NCSs. Secondly, stochastic NCSs under event-triggered scheme are modeled as stochastic time-delay systems. Thirdly, some less conservative delay-dependent stability criteria in terms of linear matrix inequalities for the codesign of both the controller gain and the trigger parameters are obtained by using delay-decomposition technique and convex combination approach. Finally, a numerical example is provided to show the less sampled data transmission and less conservatism of the proposed theory.

  17. Decomposition approach to the stability of recurrent neural networks with asynchronous time delays in quaternion field.

    Science.gov (United States)

    Zhang, Dandan; Kou, Kit Ian; Liu, Yang; Cao, Jinde

    2017-10-01

    In this paper, the global exponential stability for recurrent neural networks (QVNNs) with asynchronous time delays is investigated in quaternion field. Due to the non-commutativity of quaternion multiplication resulting from Hamilton rules: ij=-ji=k, jk=-kj=i, ki=-ik=j, ijk=i(2)=j(2)=k(2)=-1, the QVNN is decomposed into four real-valued systems, which are studied separately. The exponential convergence is proved directly accompanied with the existence and uniqueness of the equilibrium point to the consider systems. Combining with the generalized ∞-norm and Cauchy convergence property in the quaternion field, some sufficient conditions to guarantee the stability are established without using any Lyapunov-Krasovskii functional and linear matrix inequality. Finally, a numerical example is given to demonstrate the effectiveness of the results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Act-and-wait time-delayed feedback control of autonomous systems

    Science.gov (United States)

    Pyragas, Viktoras; Pyragas, Kestutis

    2018-02-01

    Recently an act-and-wait modification of time-delayed feedback control has been proposed for the stabilization of unstable periodic orbits in nonautonomous dynamical systems (Pyragas and Pyragas, 2016 [30]). The modification implies a periodic switching of the feedback gain and makes the closed-loop system finite-dimensional. Here we extend this modification to autonomous systems. In order to keep constant the phase difference between the controlled orbit and the act-and-wait switching function an additional small-amplitude periodic perturbation is introduced. The algorithm can stabilize periodic orbits with an odd number of real unstable Floquet exponents using a simple single-input single-output constraint control.

  19. Cluster synchronization of community network with distributed time delays via impulsive control

    Science.gov (United States)

    Leng, Hui; Wu, Zhao-Yan

    2016-11-01

    Cluster synchronization is an important dynamical behavior in community networks and deserves further investigations. A community network with distributed time delays is investigated in this paper. For achieving cluster synchronization, an impulsive control scheme is introduced to design proper controllers and an adaptive strategy is adopted to make the impulsive controllers unified for different networks. Through taking advantage of the linear matrix inequality technique and constructing Lyapunov functions, some synchronization criteria with respect to the impulsive gains, instants, and system parameters without adaptive strategy are obtained and generalized to the adaptive case. Finally, numerical examples are presented to demonstrate the effectiveness of the theoretical results. Project supported by the National Natural Science Foundation of China (Grant No. 61463022), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20161BAB201021), and the Natural Science Foundation of Jiangxi Educational Committee, China (Grant No. GJJ14273).

  20. Application of Time Delay Consideration on Bridge Vibration Control Method with Active Tendons

    Directory of Open Access Journals (Sweden)

    Lezin Seba MINSILI

    2010-12-01

    Full Text Available For many years bridge structures have been designed or constructed as passive structures that rely on their mass and solidity to resist external forces, while being incapable of adapting to the dynamics of an ever-changing environment. When the rigidity assumption is not met in particular for high-rise structures like bridge towers, a proper dynamic model should be established and conclusions made on the differential vibration of the tower when it is investigated out of the bridge system. The present work outlines a vibration control method by tendons on the tower of cable supported structures considering time delay effects, based on the discrete-time Linearization of the Feedback Gain Matrix. The efficiency of this vibration control method first proposed on the design process of a local bridge in Cameroon, is more compatible to the control of civil structures and is of great interest in accordance with simulation results.

  1. Predictor-based stabilization for chained form systems with input time delay

    Directory of Open Access Journals (Sweden)

    Mnif Faïçal

    2016-12-01

    Full Text Available This note addresses the stabilization problem of nonlinear chained-form systems with input time delay. We first employ the so-called σ-process transformation that renders the feedback system under a linear form. We introduce a particular transformation to convert the original system into a delay-free system. Finally, we apply a state feedback control, which guarantees a quasi-exponential stabilization to all the system states, which in turn converge exponentially to zero. Then we employ the so-called -type control to achieve a quasi-exponential stabilization of the subsequent system. A simulation example illustrated on the model of a wheeled mobile robot is provided to demonstrate the effectiveness of the proposed approach.

  2. Robust time delay estimation for speech signals using information theory: A comparison study

    Directory of Open Access Journals (Sweden)

    Wen Fei

    2011-01-01

    Full Text Available Abstract Time delay estimation (TDE is a fundamental subsystem for a speaker localization and tracking system. Most of the traditional TDE methods are based on second-order statistics (SOS under Gaussian assumption for the source. This article resolves the TDE problem using two information-theoretic measures, joint entropy and mutual information (MI, which can be considered to indirectly include higher order statistics (HOS. The TDE solutions using the two measures are presented for both Gaussian and Laplacian models. We show that, for stationary signals, the two measures are equivalent for TDE. However, for non-stationary signals (e.g., noisy speech signals, maximizing MI gives more consistent estimate than minimizing joint entropy. Moreover, an existing idea of using modified MI to embed information about reverberation is generalized to the multiple microphones case. From the experimental results for speech signals, this scheme with Gaussian model shows the most robust performance in various noisy and reverberant environments.

  3. Enhanced PID Controllers Design Based on Modified Smith Predictor Control for Unstable Process with Time Delay

    Directory of Open Access Journals (Sweden)

    Chengqiang Yin

    2014-01-01

    Full Text Available A two-degree-of-freedom control structure is proposed for a class of unstable processes with time delay based on modified Smith predictor control; the superior performance of disturbance rejection and good robust stability are gained for the system. The set-point tracking controller is designed using the direct synthesis method; the IMC-PID controller for disturbance rejection is designed based on the internal mode control design principle. The controller for set-point response and the controller for disturbance rejection can be adjusted and optimized independently. Meanwhile, the two controllers are designed in the form of PID, which is convenient for engineering application. Finally, simulation examples demonstrate the validity of the proposed control scheme.

  4. Stability and Stabilization of Networked Control System with Forward and Backward Random Time Delays

    Directory of Open Access Journals (Sweden)

    Ye-Guo Sun

    2012-01-01

    Full Text Available This paper deals with the problem of stabilization for a class of networked control systems (NCSs with random time delay via the state feedback control. Both sensor-to-controller and controller-to-actuator delays are modeled as Markov processes, and the resulting closed-loop system is modeled as a Markovian jump linear system (MJLS. Based on Lyapunov stability theorem combined with Razumikhin-based technique, a new delay-dependent stochastic stability criterion in terms of bilinear matrix inequalities (BMIs for the system is derived. A state feedback controller that makes the closed-loop system stochastically stable is designed, which can be solved by the proposed algorithm. Simulations are included to demonstrate the theoretical result.

  5. Time delay in Robertson McVittie spacetime and its application to increase of astronomical unit

    Science.gov (United States)

    Arakida, Hideyoshi

    2009-04-01

    We investigated the light propagation by means of the Robertson-McVittie solution which is considered to be the spacetime around the gravitating body embedded in the FLRW (Friedmann-Lemaître-Robertson-Walker) background metric. We concentrated on the time delay and derived the correction terms with respect to the Shapiro's formula. To relate with the actual observation and its reduction process, we also took account of the time transformations; coordinate time to proper one, and conversely, proper time to coordinate one. We applied these results to the problem of increase of astronomical unit reported by Krasinsky and Brumberg [Krasinsky, G.A., Brumberg, V.A., 2004. Celest. Mech. Dyn. Astrn. 90, 267]. However, we found the influence of the cosmological expansion on the light propagation does not give an explanation of observed value, dAU/dt=15±4 [m/century] in the framework of Robertson-McVittie metric.

  6. Two-dimensional dissipative rogue waves due to time-delayed feedback in cavity nonlinear optics.

    Science.gov (United States)

    Tlidi, Mustapha; Panajotov, Krassimir

    2017-01-01

    We demonstrate a way to generate two-dimensional rogue waves in two types of broad area nonlinear optical systems subject to time-delayed feedback: in the generic Lugiato-Lefever model and in the model of a broad-area surface-emitting laser with saturable absorber. The delayed feedback is found to induce a spontaneous formation of rogue waves. In the absence of delayed feedback, spatial pulses are stationary. The rogue waves are exited and controlled by the delay feedback. We characterize their formation by computing the probability distribution of the pulse height. The long-tailed statistical contribution, which is often considered as a signature of the presence of rogue waves, appears for sufficiently strong feedback. The generality of our analysis suggests that the feedback induced instability leading to the spontaneous formation of two-dimensional rogue waves is a universal phenomenon.

  7. Polarization-resolved time-delay signatures of chaos induced by FBG-feedback in VCSEL.

    Science.gov (United States)

    Zhong, Zhu-Qiang; Li, Song-Sui; Chan, Sze-Chun; Xia, Guang-Qiong; Wu, Zheng-Mao

    2015-06-15

    Polarization-resolved chaotic emission intensities from a vertical-cavity surface-emitting laser (VCSEL) subject to feedback from a fiber Bragg grating (FBG) are numerically investigated. Time-delay (TD) signatures of the feedback are examined through various means including self-correlations of intensity time-series of individual polarizations, cross-correlation of intensities time-series between both polarizations, and permutation entropies calculated for the individual polarizations. The results show that the TD signatures can be clearly suppressed by selecting suitable operation parameters such as the feedback strength, FBG bandwidth, and Bragg frequency. Also, in the operational parameter space, numerical maps of TD signatures and effective bandwidths are obtained, which show regions of chaotic signals with both wide bandwidths and weak TD signatures. Finally, by comparing with a VCSEL subject to feedback from a mirror, the VCSEL subject to feedback from the FBG generally shows better concealment of the TD signatures with similar, or even wider, bandwidths.

  8. Effects of increasing time delays on pitch-matching accuracy in trained singers and untrained individuals.

    Science.gov (United States)

    Estis, Julie M; Coblentz, Joana K; Moore, Robert E

    2009-07-01

    Trained singers (TS) generally demonstrate accurate pitch matching, but this ability varies within the general population. Pitch-matching accuracy, given increasing silence intervals of 5, 15, and 25 seconds between target tones and vocal matches, was investigated in TS and untrained individuals. A relationship between pitch discrimination and pitch matching was also examined. Thirty-two females (20-30 years) were grouped based on individual vocal training and performance in an immediate pitch-matching task. Participants matched target pitches following time delays, and completed a pitch discrimination task, which required the classification of two tones as same or different. TS and untrained accurate participants performed comparably on all pitch-matching tasks, while untrained inaccurate participants performed significantly less accurately than the other two groups. Performances declined across groups as intervals of silence increased, suggesting degradation of pitch matching as pitch memory was taxed. A significant relationship between pitch discrimination and pitch matching was revealed across participants.

  9. Optimal robust stabilizer design based on UPFC for interconnected power systems considering time delay

    Directory of Open Access Journals (Sweden)

    Koofigar Hamid Reza

    2017-09-01

    Full Text Available A robust auxiliary wide area damping controller is proposed for a unified power flow controller (UPFC. The mixed H2 / H∞ problem with regional pole placement, resolved by linear matrix inequality (LMI, is applied for controller design. Based on modal analysis, the optimal wide area input signals for the controller are selected. The time delay of input signals, due to electrical distance from the UPFC location is taken into account in the design procedure. The proposed controller is applied to a multi-machine interconnected power system from the IRAN power grid. It is shown that the both transient and dynamic stability are significantly improved despite different disturbances and loading conditions.

  10. A Heterogeneous Agent Model of Asspet Price with Three Time Delays

    Directory of Open Access Journals (Sweden)

    Akio Matsumoto

    2016-09-01

    Full Text Available This paper considers a continuous-time heterogeneous agent model ofa ...nancial market with one risky asset, two types of agents (i.e., thefundamentalists and the chartists, and three time delays. The chartistdemand is determined through a nonlinear function of the di¤erence be-tween the current price and a weighted moving average of the delayedprices whereas the fundamentalist demand is governed by the di¤erencebetween the current price and the fundamental value. The asset price dy-namics is described by a nonlinear delay di¤erential equation. Two mainresults are analytically and numerically shown:(i the delay destabilizes the market price and generates cyclic oscillationsaround the equilibrium;(ii under multiple delays, stability loss and gain repeatedly occurs as alength of the delay increases.

  11. Market-based control strategy for long-span structures considering the multi-time delay issue

    Science.gov (United States)

    Li, Hongnan; Song, Jianzhu; Li, Gang

    2017-01-01

    To solve the different time delays that exist in the control device installed on spatial structures, in this study, discrete analysis using a 2 N precise algorithm was selected to solve the multi-time-delay issue for long-span structures based on the market-based control (MBC) method. The concept of interval mixed energy was introduced from computational structural mechanics and optimal control research areas, and it translates the design of the MBC multi-time-delay controller into a solution for the segment matrix. This approach transforms the serial algorithm in time to parallel computing in space, greatly improving the solving efficiency and numerical stability. The designed controller is able to consider the issue of time delay with a linear controlling force combination and is especially effective for large time-delay conditions. A numerical example of a long-span structure was selected to demonstrate the effectiveness of the presented controller, and the time delay was found to have a significant impact on the results.

  12. Observational selection biases in time-delay strong lensing and their impact on cosmography

    Science.gov (United States)

    Collett, Thomas E.; Cunnington, Steven D.

    2016-11-01

    Inferring cosmological parameters from time-delay strong lenses requires a significant investment of telescope time; it is therefore tempting to focus on the systems with the brightest sources, the highest image multiplicities and the widest image separations. We investigate if this selection bias can influence the properties of the lenses studied and the cosmological parameters inferred. Using an ellipsoidal power-law deflector population, we build a sample of double- and quadruple-image systems. Assuming reasonable thresholds on image separation and flux, based on current lens monitoring campaigns, we find that the typical density profile slopes of monitorable lenses are significantly shallower than the input ensemble. From a sample of quads, we find that this selection function can introduce a 3.5 per cent bias on the inferred time-delay distances if the properties of the input ensemble are (incorrectly) used as priors on the lens model. This bias remains at the 2.4 per cent level when high-resolution imaging of the quasar host is used to precisely infer the properties of individual lenses. We also investigate if the lines of sight for monitorable strong lenses are biased. The expectation value for the line-of-sight convergence is increased by 0.009 (0.004) for quads (doubles) implying a 0.9 per cent (0.4 per cent) bias on H0. We therefore conclude that whilst the properties of typical quasar lenses and their lines of sight do deviate from the global population, the total magnitude of this effect is likely to be a subdominant effect for current analyses, but has the potential to be a major systematic for samples of ˜25 or more lenses.

  13. Mortality in patients with TIMI 3 flow after PCI in relation to time delay to reperfusion.

    Science.gov (United States)

    Vichova, Teodora; Maly, Marek; Ulman, Jaroslav; Motovska, Zuzana

    2016-03-01

    Percutaneous coronary intervention (PCI) performed within 12 h from symptom onset enables complete blood flow restoration in infarct-related artery in 90% of patients. Nevertheless, even with complete restoration of epicardial blood flow in culprit vessel (postprocedural Thrombolysis in Myocardial Infarction (TIMI) flow grade 3), myocardial perfusion at tissue level may be insufficient. We hypothesized that the outcome of patients with STEMI/bundle branch block (BBB)-myocardial infarction and post-PCI TIMI 3 flow is related to the time to reperfusion. Observational study based on a retrospective analysis of population of 635 consecutive patients with STEMI/BBB-MI and post-PCI TIMI 3 flow from January 2009 to December 2011 (mean age 63 years, 69.6% males). Mortality of patients was evaluated in relation to the time from symptom onset to reperfusion. A total of 83 patients (13.07%) with postprocedural TIMI 3 flow after PCI had died at 1-year follow-up. Median TD in patients who survived was 3.92 h (iqr 5.43), in patients who died 6.0 h (iqr 11.42), P = 0.004. Multiple logistic regression analysis identified time delay ≥ 9 h as significantly related to 1-year mortality of patients with STEMI/BBB-MI and post-PCI TIMI 3 flow (OR 1.958, P = 0.026). Other significant variables associated with mortality in multivariate regression analysis were: left ventricle ejection fraction 65 years (P 2 (P <0.001), female gender (P = 0.019), and creatinine clearance < 30 mL/min (P < 0.001). Time delay to reperfusion is significantly related to 1-year mortality of patients with STEMI/BBB-MI and complete restoration of epicardial blood flow in culprit vessel after PCI.

  14. Longitudinal Outcomes of Start Time Delay on Sleep, Behavior, and Achievement in High School

    Science.gov (United States)

    Thacher, Pamela V.; Onyper, Serge V.

    2016-01-01

    Study Objectives: To establish whether sleep, health, mood, behavior, and academics improved after a 45-minute delay in high school start time, and whether changes persisted longitudinally. Methods: We collected data from school records and student self-report across a number of domains at baseline (May 2012) and at two follow-up time points (November 2012 and May 2013), at a public high school in upstate New York. Students enrolled during academic years (AY) 2011–2012 and 2012–2013 completed the Pittsburgh Sleep Quality Index; the DASS-21; the “Owl-Lark” Scale; the Daytime Sleepiness Index; and a brief self-report of health. Reports from school records regarding attendance, tardiness, disciplinary violations, and academic performance were collected for AY 2010–2011 through 2013–2014. Results: Students delayed but did not extend their sleep period; we found lasting improvements in tardiness and disciplinary violations after the start-time delay, but no changes to other variables. At the first follow-up, students reported 20 minutes longer sleep, driven by later rise times and stable bed times. At the second follow-up, students maintained later rise times but delayed bedtimes, returning total sleep to baseline levels. A delay in rise time, paralleling the delay in the start time that occurred, resulted in less tardiness and decreased disciplinary incidents, but larger improvements to sleep patterns may be necessary to affect health, attendance, sleepiness, and academic performance. Conclusions: Later start times improved tardiness and disciplinary issues at this school district. A delay in start time may be a necessary but not sufficient means to increase sleep time and may depend on preexisting individual differences. Commentary: A commentary on this article appears in this issue on page 267. Citation: Thacher PV, Onyper SV. Longitudinal outcomes of start time delay on sleep, behavior, and achievement in high school. SLEEP 2016;39(2):271–281. PMID

  15. Performance of GCC- and AMDF-Based Time-Delay Estimation in Practical Reverberant Environments

    Directory of Open Access Journals (Sweden)

    Benesty Jacob

    2005-01-01

    Full Text Available Recently, there has been an increased interest in the use of the time-delay estimation (TDE technique to locate and track acoustic sources in a reverberant environment. Typically, the delay estimate is obtained through identifying the extremum of the generalized cross-correlation (GCC function or the average magnitude difference function (AMDF. These estimators are well studied and their statistical performance is well understood for single-path propagation situations. However, fewer efforts have been reported to show their performance behavior in real reverberation conditions. This paper reexamines the GCC- and AMDF-based TDE techniques in real room reverberant and noisy environments. Our contribution is threefold. First, we propose a weighted cross-correlation (WCC estimator in which the GCC function is weighted by the reciprocal of AMDF. This new method can sharpen the peak of the GCC function, which corresponds to the true time delay and thus leads to a better estimation performance as compared to the conventional GCC estimator. Second, we propose a modified version of the AMDF (MAMDF estimator in which the delay is determined by jointly considering the AMDF and the average magnitude sum function (AMSF. Third, we compare the performance of the GCC, AMDF, WCC, and MAMDF estimators in real reverberant and noisy environments. It is shown that the AMDF estimator can yield better performance in favorable noise conditions and is slightly more resilient to reverberation than the GCC method. The GCC approach, however, is found to outperform the AMDF method in strong noisy environments. Weighting the correlation function by the reciprocal of AMDF can improve the performance of the GCC estimator in reverberation conditions, yet its improvement in noisy environments is limited. The MAMDF algorithm can enhance the AMDF estimator in both reverberant and noisy environments.

  16. Synthesis of RF Circuits with Negative Time Delay by Using LNA

    Directory of Open Access Journals (Sweden)

    B. Ravelo

    2013-07-01

    Full Text Available A demonstration of the negative time-delay by using active circuit topologies with negative group delay (NGD is described in this paper. This negative time delay is realized with two different topologies operating in base band and modulated frequencies. The first NGD topology is composed of an RL-network in feedback with an RF/microwave amplifier. Knowing the characteristics of the amplifier, a synthesis method of this circuit in function of the desired NGD values and the expected time advance is established. The feasibility of this extraordinary physical effect is illustrated with frequency- and time-domain analyses. It is shown in this paper that by considering an arbitrary waveform signal, output in advance of about 7 ns is observed compared to the corresponding input. It is stated that such an effect is not in contradiction with the causality. The other NGD topology is comprised of a microwave amplifier associated with an RLC-series resonant. The theoretical approach illustrating the functioning of this NGD circuit is established by considering the amplifier S-parameters. Then, synthesis relations enabling to choose the NGD device parameters according to the desired NGD and gain values are also established. To demonstrate the relevance of the theoretic concept, a microwave device exhibiting NGD function of about -1.5 ns at around 1.19 GHz was designed and analyzed. The NGD device investigated in this paper presents advantages on its faculty to exhibit positive transmission gain, the implementation of the bias network and matching in the considered NGD frequency band.

  17. Performance evaluation of ionospheric time delay forecasting models using GPS observations at a low-latitude station

    Science.gov (United States)

    Sivavaraprasad, G.; Venkata Ratnam, D.

    2017-07-01

    Ionospheric delay is one of the major atmospheric effects on the performance of satellite-based radio navigation systems. It limits the accuracy and availability of Global Positioning System (GPS) measurements, related to critical societal and safety applications. The temporal and spatial gradients of ionospheric total electron content (TEC) are driven by several unknown priori geophysical conditions and solar-terrestrial phenomena. Thereby, the prediction of ionospheric delay is challenging especially over Indian sub-continent. Therefore, an appropriate short/long-term ionospheric delay forecasting model is necessary. Hence, the intent of this paper is to forecast ionospheric delays by considering day to day, monthly and seasonal ionospheric TEC variations. GPS-TEC data (January 2013-December 2013) is extracted from a multi frequency GPS receiver established at K L University, Vaddeswaram, Guntur station (geographic: 16.37°N, 80.37°E; geomagnetic: 7.44°N, 153.75°E), India. An evaluation, in terms of forecasting capabilities, of three ionospheric time delay models - an Auto Regressive Moving Average (ARMA) model, Auto Regressive Integrated Moving Average (ARIMA) model, and a Holt-Winter's model is presented. The performances of these models are evaluated through error measurement analysis during both geomagnetic quiet and disturbed days. It is found that, ARMA model is effectively forecasting the ionospheric delay with an accuracy of 82-94%, which is 10% more superior to ARIMA and Holt-Winter's models. Moreover, the modeled VTEC derived from International Reference Ionosphere, IRI (IRI-2012) model and new global TEC model, Neustrelitz TEC Model (NTCM-GL) have compared with forecasted VTEC values of ARMA, ARIMA and Holt-Winter's models during geomagnetic quiet days. The forecast results are indicating that ARMA model would be useful to set up an early warning system for ionospheric disturbances at low latitude regions.

  18. Orbit optimization and time delay interferometry for inclined ASTROD-GW formation with half-year precession-period

    CERN Document Server

    Wang, Gang

    2014-01-01

    ASTROD-GW (ASTROD [Astrodynamical Space Test of Relativity using Optical Devices] optimized for Gravitational Wave detection) is a gravitational-wave mission with the aim of detecting gravitational waves from massive black holes, extreme mass ratio inspirals (EMRIs) and galactic compact binaries, together with testing relativistic gravity and probing dark energy and cosmology. Mission orbits of the 3 spacecrafts forming a nearly equilateral triangular array are chosen to be near the Sun-Earth Lagrange points L3, L4 and L5. The 3 spacecrafts range interferometrically with one another with arm length about 260 million kilometers. For 260 times longer arm length, the detection sensitivity of ASTROD-GW is 260 fold better than that of eLISA/NGO in the lower frequency region by assuming the same acceleration noise. Therefore, ASTROD-GW will be a better cosmological probe. In previous papers, we have worked out the time delay interferometry (TDI) for the ecliptic formation. To resolve the reflection ambiguity about ...

  19. Odour-tracking capability of a silkmoth driving a mobile robot with turning bias and time delay.

    Science.gov (United States)

    Ando, N; Emoto, S; Kanzaki, R

    2013-03-01

    The reconstruction of mechanisms behind odour-tracking behaviours of animals is expected to enable the development of biomimetic robots capable of adaptive behaviour and effectively locating odour sources. However, because the behavioural mechanisms of animals have not been extensively studied, their behavioural capabilities cannot be verified. In this study, we have employed a mobile robot driven by a genuine insect (insect-controlled robot) to evaluate the behavioural capabilities of a biological system implemented in an artificial system. We used a male silkmoth as the 'driver' and investigated its behavioural capabilities to imposed perturbations during odour tracking. When we manipulated the robot to induce the turning bias, it located the odour source by compensatory turning of the on-board moth. Shifting of the orientation paths to the odour plume boundaries and decreased orientation ability caused by covering the visual field suggested that the moth steered with bilateral olfaction and vision to overcome the bias. An evaluation of the time delays of the moth and robot movements suggested an acceptable range for sensory-motor processing when the insect system was directly applied to artificial systems. Further evaluations of the insect-controlled robot will provide a 'blueprint' for biomimetic robots and strongly promote the field of biomimetics.

  20. The immediate effects of ankle balance taping with kinesiology tape on ankle active range of motion and performance in the Balance Error Scoring System.

    Science.gov (United States)

    Lee, Sun-Min; Lee, Jung-Hoon

    2017-05-01

    This study investigated the changes in ankle active range of motion (AROM) and performance on the Balance Error Scoring System (BESS) in cases in which no tape, placebo taping or ankle balance taping (ABT) with kinesiology tape was used. Randomized cross-over trial. University laboratory. Fifteen physically active individuals (7 men, 8 women). Postural control was assessed based on performances on the BESS. Active ankle flexibility was assessed by measuring the ankle AROM of both ankles under each taping condition in a random order at 1-week intervals. The ankle AROM among the taping conditions were not significantly different. There were no significant differences in the error scores of single-leg and tandem stances on a firm surface among the taping conditions. Compared to those obtained in the absence of taping, the error scores of the single-leg and tandem stances on a foam surface were significantly lower with ABT, but they did not significantly differ from the placebo taping scores. This study showed that ABT with kinesiology tape immediately improved postural control on unstable surfaces without changes in ankle AROM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. True-time-delay photonic beamformer for an L-band phased array radar

    Science.gov (United States)

    Zmuda, Henry; Toughlian, Edward N.; Payson, Paul M.; Malowicki, John E.

    1995-10-01

    The problem of obtaining a true-time-delay photonic beamformer has recently been a topic of great interest. Many interesting and novel approaches to this problem have been studied. This paper examines the design, construction, and testing of a dynamic optical processor for the control of a 20-element phased array antenna operating at L-band (1.2-1.4 GHz). The approach taken here has several distinct advantages. The actual optical control is accomplished with a class of spatial light modulator known as a segmented mirror device (SMD). This allows for the possibility of controlling an extremely large number (tens of thousands) of antenna elements using integrated circuit technology. The SMD technology is driven by the HDTV and laser printer markets so ultimate cost reduction as well as technological improvements are expected. Optical splitting is efficiently accomplished using a diffractive optical element. This again has the potential for use in antenna array systems with a large number of radiating elements. The actual time delay is achieved using a single acousto-optic device for all the array elements. Acousto-optic device technologies offer sufficient delay as needed for a time steered array. The topological configuration is an optical heterodyne system, hence high, potentially millimeter wave center frequencies are possible by mixing two lasers of slightly differing frequencies. Finally, the entire system is spatially integrated into a 3D glass substrate. The integrated system provides the ruggedness needed in most applications and essentially eliminates the drift problems associated with free space optical systems. Though the system is presently being configured as a beamformer, it has the ability to operate as a general photonic signal processing element in an adaptive (reconfigurable) transversal frequency filter configuration. Such systems are widely applicable in jammer/noise canceling systems, broadband ISDN, and for spread spectrum secure communications

  2. Time delay and profit accumulation effect on a mine-based uranium market clearing model

    Energy Technology Data Exchange (ETDEWEB)

    Auzans, Aris [Institute of Physics, University of Tartu, Ostwaldi 1, EE-50411 Tartu (Estonia); Teder, Allan [School of Economics and Business Administration, University of Tartu, Narva mnt 4, EE-51009 Tartu (Estonia); Tkaczyk, Alan H., E-mail: alan@ut.ee [Institute of Physics, University of Tartu, Ostwaldi 1, EE-50411 Tartu (Estonia)

    2016-12-15

    Highlights: • Improved version of a mine-based uranium market clearing model for the front-end uranium market and enrichment industries is proposed. • A profit accumulation algorithm and time delay function provides more realistic uranium mine decision making process. • Operational decision delay increased uranium market price volatility. - Abstract: The mining industry faces a number of challenges such as market volatility, investment safety, issues surrounding employment and productivity. Therefore, computer simulations are highly relevant in order to reduce financial risks associated with these challenges. In the mining industry, each firm must compete with other mines and the basic target is profit maximization. The aim of this paper is to evaluate the world uranium (U) supply by simulating financial management challenges faced by an individual U mine that are caused by a variety of regulation issues. In this paper front-end nuclear fuel cycle tool is used to simulate market conditions and the effects they have on the stability of U supply. An individual U mine’s exit or entry in the market might cause changes in the U supply side which can increase or decrease the market price. In this paper we offer a more advanced version of a mine-based U market clearing model. The existing U market model incorporates the market of primary U from uranium mines with secondary uranium (depleted uranium DU), enriched uranium (HEU) and enrichment services. In the model each uranium mine acts as an independent agent that is able to make operational decisions based on the market price. This paper introduces a more realistic decision making algorithm of individual U mine that adds constraints to production decisions. The authors added an accumulated profit model, which allows for the profits accumulated to cover any possible future economic losses and the time-delay algorithm to simulate delayed process of reopening a U mine. The U market simulation covers time period 2010

  3. Teleseismic attenuation, time delays, and raypath bending, and local reflected phases at Uturuncu volcano, Bolivia

    Science.gov (United States)

    Farrell, A. K.; McNutt, S. R.

    2016-12-01

    A set of 13 teleseismic earthquakes sourced to the NW (4, Japan Subduction Zone), SE (5, South Sandwich Subduction Zone), and SW (4, Kermadec-Tonga Subduction Zones) was studied to determine how wave propagation was affected by a presumed magma body beneath Uturuncu. The number of events is small but the events have good signal-to-noise ratios and very similar waveforms for each event so that reliable measurements could be made of arrival times and amplitudes. Attenuation of amplitudes occurs in a NW-SE trend beneath the volcano, 14 by 33 km, with calculated values of quality factor Qas low as 1.7, suggesting strong seismic attenuation. Relative time delays (between the theoretical and observed travel times) of up to 0.8 sec were also observed. The pattern of attenuation and relative time delays together showed four trends: fast and not attenuated (normal crust), slow and attenuated (partial melt), fast and attenuated (likely high fracture density), and slow but not attenuated (possible deep low Vp structure). Results suggest partial melt as high as 16-60% in a region of low Bouguer gravity, high Vp/Vs, persistent seismicity, and overlapping a locus of uplift. Realistically, percent partial melt values above 30% are unlikely and therefore, to account for this, the anomaly would need to have a greater thickness along the raypath for the stations showing 30% or more, thus giving a mean partial melt zone thickness of 24.7 km for an assumed uniform percent partial melt value of 20%. Additionally, there is evidence of reflected phases from some local earthquakes interacting with the top of the mid-crustal magma body. These can be used to reduce depth uncertainty in earthquake locations as well as to determine parameters of the magma body itself, such as determining whether the contact with the country rock is sharp or gradual, resolving the presence and direction of anisotropy, and estimating whether the surface of the magma body is flat or irregular.

  4. Time delay of baroreflex control and oscillatory pattern of sympathetic activity in patients with metabolic syndrome and obstructive sleep apnea.

    Science.gov (United States)

    Toschi-Dias, Edgar; Trombetta, Ivani C; Dias da Silva, Valdo J; Maki-Nunes, Cristiane; Cepeda, Felipe X; Alves, Maria-Janieire N N; Drager, Luciano F; Lorenzi-Filho, Geraldo; Negrao, Carlos E; Rondon, Maria Urbana P B

    2013-04-01

    The incidence and strength of muscle sympathetic nerve activity (MSNA) depend on the magnitude (gain) and latency (time delay) of the arterial baroreflex control (ABR). However, the impact of metabolic syndrome (MetS) and obstructive sleep apnea (OSA) on oscillatory pattern of MSNA and time delay of the ABR of sympathetic activity is unknown. We tested the hypothesis that MetS and OSA would impair the oscillatory pattern of MSNA and the time delay of the ABR of sympathetic activity. Forty-three patients with MetS were allocated into two groups according to the presence of OSA (MetS + OSA, n = 21; and MetS - OSA, n = 22). Twelve aged-paired healthy controls (C) were also studied. OSA (apnea-hypopnea index > 15 events/h) was diagnosed by polysomnography. We recorded MSNA (microneurography), blood pressure (beat-to-beat basis), and heart rate (EKG). Oscillatory pattern of MSNA was evaluated by autoregressive spectral analysis and the ABR of MSNA (ABRMSNA, sensitivity and time delay) by bivariate autoregressive analysis. Patients with MetS + OSA had decreased oscillatory pattern of MSNA compared with MetS - OSA (P pattern of MSNA compared with C (P pattern of MSNA and the magnitude of the ABRMSNA. OSA exacerbates these autonomic dysfunctions and further increases the time delay of the baroreflex response of MSNA.

  5. Fault Diagnosis and Fault Tolerant Control for Non-Gaussian Singular Time-Delayed Stochastic Distribution Systems with Disturbance Based on the Rational Square-Root Model

    Directory of Open Access Journals (Sweden)

    Yuancheng Sun

    2016-01-01

    Full Text Available For the non-Gaussian singular time-delayed stochastic distribution control (SDC system with unknown external disturbance where the output probability density function (PDF is approximated by the rational square-root B-spline basis function, a robust fault diagnosis and fault tolerant control algorithm is presented. A full-order observer is constructed to estimate the exogenous disturbance and an adaptive observer is used to estimate the fault size. A fault tolerant tracking controller is designed using the feedback of distribution tracking error, fault, and disturbance estimation to let the postfault output PDF still track desired distribution. Finally, a simulation example is included to illustrate the effectiveness of the proposed algorithms and encouraging results have been obtained.

  6. The Trade-Off Mechanism in Mammalian Circadian Clock Model with Two Time Delays

    Science.gov (United States)

    Yan, Jie; Kang, Xiaxia; Yang, Ling

    Circadian clock is an autonomous oscillator which orchestrates the daily rhythms of physiology and behaviors. This study is devoted to explore how a positive feedback loop affects the dynamics of mammalian circadian clock. We simplify an experimentally validated mathematical model in our previous work, to a nonlinear differential equation with two time delays. This simplified mathematical model incorporates the pacemaker of mammalian circadian clock, a negative primary feedback loop, and a critical positive auxiliary feedback loop, Rev-erbα/Cry1 loop. We perform analytical studies of the system. Delay-dependent conditions for the asymptotic stability of the nontrivial positive steady state of the model are investigated. We also prove the existence of Hopf bifurcation, which leads to self-sustained oscillation of mammalian circadian clock. Our theoretical analyses show that the oscillatory regime is reduced upon the participation of the delayed positive auxiliary loop. However, further simulations reveal that the auxiliary loop can enable the circadian clock gain widely adjustable amplitudes and robust period. Thus, the positive auxiliary feedback loop may provide a trade-off mechanism, to use the small loss in the robustness of oscillation in exchange for adaptable flexibility in mammalian circadian clock. The results obtained from the model may gain new insights into the dynamics of biological oscillators with interlocked feedback loops.

  7. L∞-gain adaptive fuzzy fault accommodation control design for nonlinear time-delay systems.

    Science.gov (United States)

    Wu, Huai-Ning; Qiang, Xiao-Hong; Guo, Lei

    2011-06-01

    In this paper, an adaptive fuzzy fault accommodation (FA) control design with a guaranteed L(∞)-gain performance is developed for a class of nonlinear time-delay systems with persistent bounded disturbances. Using the Lyapunov technique and the Razumikhin-type lemma, the existence condition of the L(∞) -gain adaptive fuzzy FA controllers is provided in terms of linear matrix inequalities (LMIs). In the proposed FA scheme, a fuzzy logic system is employed to approximate the unknown term in the derivative of the Lyapunov function due to the unknown fault function; a continuous-state feedback control strategy is adopted for the control design to avoid the undesirable chattering phenomenon. The resulting FA controllers can ensure that every response of the closed-loop system is uniformly ultimately bounded with a guaranteed L(∞)-gain performance in the presence of a fault. Moreover, by the existing LMI optimization technique, a suboptimal controller is obtained in the sense of minimizing an upper bound of the L(∞)-gain. Finally, the achieved simulation results on the FA control of a continuous stirred tank reactor (CSTR) show the effectiveness of the proposed design procedure.

  8. A time-delay neural network for solving time-dependent shortest path problem.

    Science.gov (United States)

    Huang, Wei; Yan, Chunwang; Wang, Jinsong; Wang, Wei

    2017-06-01

    This paper concerns the time-dependent shortest path problem, which is difficult to come up with global optimal solution by means of classical shortest path approaches such as Dijkstra, and pulse-coupled neural network (PCNN). In this study, we propose a time-delay neural network (TDNN) framework that comes with the globally optimal solution when solving the time-dependent shortest path problem. The underlying idea of TDNN comes from the following mechanism: the shortest path depends on the earliest auto-wave (from start node) that arrives at the destination node. In the design of TDNN, each node on a network is considered as a neuron, which comes in the form of two units: time-window unit and auto-wave unit. Time-window unit is used to generate auto-wave in each time window, while auto-wave unit is exploited here to update the state of auto-wave. Whether or not an auto-wave leaves a node (neuron) depends on the state of auto-wave. The evaluation of the performance of the proposed approach was carried out based on online public Cordeau instances and New York Road instances. The proposed TDNN was also compared with the quality of classical approaches such as Dijkstra and PCNN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A system for gas electrical breakdown time delay measurements based on a microcontroller

    Science.gov (United States)

    Todorović, Miomir; Vasović, Nikola D.; Ristić, Goran S.

    2012-01-01

    A new system, called gasmem v1.0, for the measurements of gas electrical breakdown time delay (td), with significantly better characteristics than older systems, has been developed and realized. It is based on the PIC 18F4550 microcontroller and could measure the minimal td of about 1.5 μs with the resolution of 83.33 ns. The relaxation (afterglow) period (τ) could vary from 1 to 232 ms (≈50 days). The successive series of td measurements with various τ could be performed, giving very reliable td data that are stored on the personal computer (PC) hard drive via the USB interface. The td and τ values enable the drawing of memory curves (langtdrang = f(τ)) and the analysis of memory effects in the gases. The randomness of td values measured by the gasmem system for more τ values was tested using the nonparametric Wald-Wolfowitz test showing the stochastic nature of obtained results. The memory curves obtained by this system have shown very high reproducibility. In addition, the system has a capability of operating as a stand-alone system (independently of a PC), with the possibility for the implementation of a touch screen for controlling the system and additional memory (e.g. memory card) for data storage.

  10. Analysis of a Dynamical Cournot Duopoly Game with Distributed Time Delay

    Directory of Open Access Journals (Sweden)

    SÎrghi Nicoleta

    2015-03-01

    Full Text Available The aim of the paper is to analyze the dynamic model of the Cournot duopoly game with bounded rationality associated to two firms. We consider the cost function of the first firm as nonlinear and for the second firm as linear. The players do not have a complete knowledge of the market and they follow a bounded rationality adjustment process based on the estimation of the marginal profit. Also, the distributed time delay is introduced, because the decisions at the current time depend on the average past decisions. The mathematical model is described by a distributed delay differential system with two nonlinear equations. The study for the local stability of the Nash equilibrium point is carried out in the case of two types of kernels: weak (exponential and Dirac. A change in local stability of the equilibrium point, from stable to unstable, implies a Hopf bifurcation. The delays are considered as bifurcation parameters. In some conditions of the parameters of the model, we have proved that a family of periodic solutions bifurcates from the equilibrium point when the bifurcation parameter passes through a critical value. Numerical simulations are performed to illustrate the effectiveness of our results. Finally, conclusions and future researches are provided.

  11. Negative X-ray reverberation time delays from MCG-6-30-15 and Mrk 766

    Science.gov (United States)

    Emmanoulopoulos, D.; McHardy, I. M.; Papadakis, I. E.

    2011-09-01

    We present an X-ray time lag analysis, as a function of Fourier frequency, for MCG-6-30-15 and Mrk 766 using long-term XMM-Newton light curves in the 0.5-1.5 and the 2-4 keV energy bands, together with some physical modelling of the corresponding time lag spectra. Both the time lag spectra of MCG-6-30-15 and Mrk 766 show negative values (i.e. soft band variations lag behind the corresponding hard band variations) at high frequencies, around 10-3 Hz, similar to those previously observed from 1H 0707-495. The remarkable morphological resemblance between the time lag spectra of MCG-6-30-15 and Mrk 766 indicate that the physical processes responsible for the observed soft time delays are very similar in the two sources, favouring a reflection scenario from material situated very nearby to the central black hole. a The effective observing time, i.e. light curve duration, after the reduction of the raw data. b For the pn, MOS 1 and MOS 2, respectively. sw: small window, lw: large window and fw: fast uncompressed. c The mean count rate and the standard deviation of the light curve in the 0.5-4 keV energy band.

  12. Entrenched time delays versus accelerating opinion dynamics: are advanced democracies inherently unstable?

    Science.gov (United States)

    Gros, Claudius

    2017-11-01

    Modern societies face the challenge that the time scale of opinion formation is continuously accelerating in contrast to the time scale of political decision making. With the latter remaining of the order of the election cycle we examine here the case that the political state of a society is determined by the continuously evolving values of the electorate. Given this assumption we show that the time lags inherent in the election cycle will inevitable lead to political instabilities for advanced democracies characterized both by an accelerating pace of opinion dynamics and by high sensibilities (political correctness) to deviations from mainstream values. Our result is based on the observation that dynamical systems become generically unstable whenever time delays become comparable to the time it takes to adapt to the steady state. The time needed to recover from external shocks grows in addition dramatically close to the transition. Our estimates for the order of magnitude of the involved time scales indicate that socio-political instabilities may develop once the aggregate time scale for the evolution of the political values of the electorate falls below 7-15 months.

  13. Time-delay neural network for audio monitoring of road traffic and vehicle classification

    Science.gov (United States)

    Nooralahiyan, Amir Y.; Lopez, Louis; Mckewon, Denis; Ahmadi, Masoud

    1997-02-01

    The aim of this research is to investigate the feasibility of developing a cost effective traffic monitoring detector for the purpose of reliable on-line vehicle classification to aid traffic management systems. The detector used was a directional microphone connected to a DAT recorder. The digital signal was preprocessed by LPC (Linear Predictive Coding) parameter conversion based on autocorrelation analysis. A Time Delay Neural Network (TDNN) was chosen to classify individual travelling vehicles based on their speed-independent acoustic signature. The network was trained and tested with real data for four types of vehicles. The paper provides a description of the TDNN architecture and training algorithm and an overview of the LPC pre-processing and feature extraction technique as applied to audio monitoring of road traffic. The performance of TDNN vehicle classification, convergence and accuracy for the training patterns are fully illustrated. In generalizing to a limited number of test patterns available, 100% accuracy in classification was achieved. The net was also robust to changes in the starting position of the acoustic waveforms with 86% accuracy for the same test data set.

  14. Focal plane resolution and overlapped array time delay and integrate imaging

    Science.gov (United States)

    Grycewicz, Thomas J.; Cota, Stephen A.; Lomheim, Terrence S.; Kalman, Linda S.

    2010-06-01

    In this paper we model sub-pixel image registration for a generic earth-observing satellite system with a focal plane using two offset time delay and integrate (TDI) arrays in the focal plane to improve the achievable ground resolution over the resolution achievable with a single array. The modeling process starts with a high-resolution image as ground truth. The Parameterized Image Chain Analysis & Simulation Software (PICASSO) modeling tool is used to degrade the images to match the optical transfer function, sampling, and noise characteristics of the target system. The model outputs a pair of images with a separation close to the nominal half-pixel separation between the overlapped arrays. A registration estimation algorithm is used to measure the offset for image reconstruction. The two images are aligned and summed on a grid with twice the capture resolution. We compare the resolution in images between the inputs before overlap, the reconstructed image, and a simulation for the image which would have been captured on a focal plane with twice the resolution. We find the performance to always be better than the lower resolution baseline, and to approach the performance of the high-resolution array in the ideal case. We show that the overlapped array imager significantly outperforms both the conventional high- and low-resolution imagers in conditions with high image smear.

  15. Dynamical analysis of rumor spreading model with impulse vaccination and time delay

    Science.gov (United States)

    Huo, Liang'an; Ma, Chenyang

    2017-04-01

    Rumor cause unnecessary conflicts and confusion by misleading the cognition of the public, its spreading has largely influence on human affairs. All kinds of rumors and people's suspicion are often caused by the lack of official information. Hence, the official should take a variety of channels to deny the rumors. The promotion of scientific knowledge is implemented to improve the quality of the whole nation, reduce the harm caused by rumor spreading. In this paper, regarding the process of the science education that official deny the rumor many times as periodic impulse, we propose a XWYZ rumor spreading model with impulse vaccination and time delay, and analyze the global dynamics behaviors of the model. By using the discrete dynamical system determined by the comparison theory and Floquet theorem, we show that there exists a rumor-free periodic solution. Further, we show that the rumor-free periodic solution is globally attractive under appropriate conditions. We also obtain a sufficient condition for the permanence of model. Finally, with the numerical simulation, our results indicate that large vaccination rate, short impulse period or long latent period is sufficient condition for the extinction of the rumors.

  16. Emergent central pattern generator behavior in chemical coupled two-compartment models with time delay

    Science.gov (United States)

    Li, Shanshan; Zhang, Guoshan; Wang, Jiang; Chen, Yingyuan; Deng, Bin

    2018-02-01

    This paper proposes that modified two-compartment Pinsky-Rinzel (PR) neural model can be used to develop the simple form of central pattern generator (CPG). The CPG is called as 'half-central oscillator', which constructed by two inhibitory chemical coupled PR neurons with time delay. Some key properties of PR neural model related to CPG are studied and proved to meet the requirements of CPG. Using the simple CPG network, we first study the relationship between rhythmical output and key factors, including ambient noise, sensory feedback signals, morphological character of single neuron as well as the coupling delay time. We demonstrate that, appropriate intensity noise can enhance synchronization between two coupled neurons. Different output rhythm of CPG network can be entrained by sensory feedback signals. We also show that the morphology of single neuron has strong effect on the output rhythm. The phase synchronization indexes decrease with the increase of morphology parameter's difference. Through adjusting coupled delay time, we can get absolutely phase synchronization and antiphase state of CPG. Those results of simulation show the feasibility of PR neural model as a valid CPG as well as the emergent behaviors of the particularly CPG.

  17. Identifying The Effective Factors for Cost Overrun and Time Delay in Water Construction Projects

    Directory of Open Access Journals (Sweden)

    D. Mirzai Matin

    2016-08-01

    Full Text Available Water construction projects in Iran frequently face problems which cause cost overrun and time delay, the two most common issues in construction projects in general. The objective of this survey is to identify and quantify these problems and thus help in avoiding them. This survey represents a collection of the most significant problems found in the literature, classified into 11 groups according to their source. The questionnaire form used contains 84 questions which were answered by random engineers who work in water construction projects. The Relative Importance Weight (RIW method is used to weight the importance of each one of the 84 problems. The focus of this survey is on overall top ten issues which are: bureaucracy in bidding method, inflation, economical condition of the government, not enough information gathered and surveys done before design, monthly payment difficulties, material cost changes, law changes by the government, financial difficulties, mode of financing and payment for completed work and changes made by the owner. A section for each of these issues provides additional information about them. In the full text of this survey the same weighting method is used to classify the main groups, and the results show that issues related to the groups of government, owner and consultant has the most significant impact. The last part of this survey describes the point of view of the engineers who took part in this survey and the recommendations they made.

  18. Force-linearization closure for non-Markovian Langevin systems with time delay

    Science.gov (United States)

    Loos, Sarah A. M.; Klapp, Sabine H. L.

    2017-07-01

    This paper is concerned with the Fokker-Planck (FP) description of classical stochastic systems with discrete time delay. The non-Markovian character of the corresponding Langevin dynamics naturally leads to a coupled infinite hierarchy of FP equations for the various n -time joint distribution functions. Here, we present an approach to close the hierarchy at the one-time level based on a linearization of the deterministic forces in all members of the hierarchy starting from the second one. This leads to a closed equation for the one-time probability density in the steady state. Considering two generic nonlinear systems, a colloidal particle in a sinusoidal or bistable potential supplemented by a linear delay force, we demonstrate that our approach yields a very accurate representation of the density as compared to quasiexact numerical results from direct solution of the Langevin equation. Moreover, the results are significantly improved against those from a small-delay approximation and a perturbation-theoretical approach. We also discuss the possibility of accessing transport-related quantities, such as escape times, based on an additional Kramers approximation. Our approach applies to a wide class of models with nonlinear deterministic forces.

  19. Stochastic resonance in a tumor-immune system subject to bounded noises and time delay

    Science.gov (United States)

    Guo, Wei; Mei, Dong-Cheng

    2014-12-01

    Immunotherapy is one of the most recent approaches in cancer therapy. A mathematical model of tumor-immune interaction, subject to a periodic immunotherapy treatment (imitated by a periodic signal), correlative and bounded stochastic fluctuations and time delays, is investigated by numerical simulations for its signal power amplification (SPA). Within the tailored parameter regime, the synchronous response of tumor growth to the immunotherapy, stochastic resonance (SR), versus both the noises and delays is obtained. The details are as follows (i) the peak values of SPA versus the noise intensity (A) in the proliferation term of tumor cells decrease as the frequency of periodic signal increases, i.e. an increase of the frequency restrains the SR; (ii) an increase of the amplitude of periodic signal restrains the SR versus A, but boosts up the SR versus the noise intensity B in the immune term; (iii) there is an optimum cross-correlated degree between the two bounded noises, at which the system exhibits the strongest SR versus the delay time τα(the reaction time of tumor cell population to their surrounding environment constraints); (iv) upon increasing the delay time τα, double SR versus the delay time τβ (the time taken by both the tumor antigen identification and tumor-stimulated proliferation of effectors) emerges. These results may be helpful for an immunotherapy treatment for the sufferer.

  20. Inference of time-delayed gene regulatory networks based on dynamic Bayesian network hybrid learning method.

    Science.gov (United States)

    Yu, Bin; Xu, Jia-Meng; Li, Shan; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Zhang, Yan; Wang, Ming-Hui

    2017-10-06

    Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli, and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs.

  1. Dynamic Analysis for a Kaldor–Kalecki Model of Business Cycle with Time Delay and Diffusion Effect

    Directory of Open Access Journals (Sweden)

    Wenjie Hu

    2018-01-01

    Full Text Available The dynamics behaviors of Kaldor–Kalecki business cycle model with diffusion effect and time delay under the Neumann boundary conditions are investigated. First the conditions of time-independent and time-dependent stability are investigated. Then, we find that the time delay can give rise to the Hopf bifurcation when the time delay passes a critical value. Moreover, the normal form of Hopf bifurcations is obtained by using the center manifold theorem and normal form theory of the partial differential equation, which can determine the bifurcation direction and the stability of the periodic solutions. Finally, numerical results not only validate the obtained theorems, but also show that the diffusion coefficients play a key role in the spatial pattern. With the diffusion coefficients increasing, different patterns appear.

  2. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics

    Science.gov (United States)

    Liu, Yan; Liu, Li-Guang; Wang, Hang

    2012-06-01

    The small-world network model represented by a set of evolution equations with time delay is used to investigate the nonlinear dynamics of networks, and the nature of instability phenomena in traffic, namely, congestion and bursting in the networks, are studied and explained from bifurcation analysis. Then, the governing equation in the vector field is further reduced into a map, and the ensuing period-doubling bifurcation, sequence of period-doubling bifurcation and period-3 are studied intuitively. The existence of chaos is verified numerically. In particular, the influences of time delay on the nonlinear dynamics are presented. The results show that there are a rich variety of nonlinear dynamics related to the intermittency of the traffic flows in the system, and the results can gain a fundamental understanding of the instability in the networks, and the time delay can be used as a key parameter in the control of the systems.

  3. Channel noise-induced temporal coherence transitions and synchronization transitions in adaptive neuronal networks with time delay

    Science.gov (United States)

    Gong, Yubing; Xie, Huijuan

    2017-09-01

    Using spike-timing-dependent plasticity (STDP), we study the effect of channel noise on temporal coherence and synchronization of adaptive scale-free Hodgkin-Huxley neuronal networks with time delay. It is found that the spiking regularity and spatial synchronization of the neurons intermittently increase and decrease as channel noise intensity is varied, exhibiting transitions of temporal coherence and synchronization. Moreover, this phenomenon depends on time delay, STDP, and network average degree. As time delay increases, the phenomenon is weakened, however, there are optimal STDP and network average degree by which the phenomenon becomes strongest. These results show that channel noise can intermittently enhance the temporal coherence and synchronization of the delayed adaptive neuronal networks. These findings provide a new insight into channel noise for the information processing and transmission in neural systems.

  4. A Control Method to Balance the Efficiency and Reliability of a Time-Delayed Pump-Valve System

    Directory of Open Access Journals (Sweden)

    Zhounian Lai

    2016-01-01

    Full Text Available The efficiency and reliability of pumps are highly related to their operation conditions. The concept of the optimization pump operation conditions is to adjust the operation point of the pump to obtain higher reliability at the cost of lower system efficiency using a joint regulation of valve and frequency convertor. This paper realizes the control of the fluid conveying system based on the optimization results. The system is a nonlinear Multi-Input Multioutput (MIMO system with time delays. In this paper, the time delays are separated from the system. The delay-free system is linearized using input-output linearization and controlled using a sliding mode method. A modified Smith predictor is used to compensate time delays of the system. The control strategy is validated to be effective on the test bench. The comparison of energy consumption and operation point deviation between conventional speed regulation and the new method is presented.

  5. Strong-field Breit–Wheeler pair production in two consecutive laser pulses with variable time delay

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Martin J.A.; Müller, Carsten, E-mail: c.mueller@tp1.uni-duesseldorf.de

    2017-03-10

    Photoproduction of electron–positron pairs by the strong-field Breit–Wheeler process in an intense laser field is studied. The laser field is assumed to consist of two consecutive short pulses, with a variable time delay in between. By numerical calculations within the framework of scalar quantum electrodynamics, we demonstrate that the time delay exerts a strong impact on the pair-creation probability. For the case when both pulses are identical, the effect is traced back to the relative quantum phase of the interfering S-matrix amplitudes and explained within a simplified analytical model. Conversely, when the two laser pulses differ from each other, the pair-creation probability depends not only on the time delay but, in general, also on the temporal order of the pulses.

  6. Experimental study of time-delay signature of chaos in mutually coupled vertical-cavity surface-emitting lasers subject to polarization optical injection.

    Science.gov (United States)

    Hong, Yanhua

    2013-07-29

    Time-delay signature of chaos in mutually coupled vertical-cavity surface-emitting lasers subject to polarization rotated optical injection has been investigated experimentally. Autocorrelation function and permutation entropy are used to quantitatively identify the time-delay signature of chaos. The experiment results show that the time-delay signature is sensitive to the polarization rotated angle. Minimum time-delay signature has been observed in the intermediate polarization rotated angle for the lower bias current. This is in good agreement with the theoretical prediction. At higher bias currents, the lower time-delay signature has been obtained with parallel optical injection.

  7. Longitudinal Outcomes of Start Time Delay on Sleep, Behavior, and Achievement in High School.

    Science.gov (United States)

    Thacher, Pamela V; Onyper, Serge V

    2016-02-01

    To establish whether sleep, health, mood, behavior, and academics improved after a 45-minute delay in high school start time, and whether changes persisted longitudinally. We collected data from school records and student self-report across a number of domains at baseline (May 2012) and at two follow-up time points (November 2012 and May 2013), at a public high school in upstate New York. Students enrolled during academic years (AY) 2011-2012 and 2012-2013 completed the Pittsburgh Sleep Quality Index; the DASS-21; the "Owl-Lark" Scale; the Daytime Sleepiness Index; and a brief self-report of health. Reports from school records regarding attendance, tardiness, disciplinary violations, and academic performance were collected for AY 2010-2011 through 2013-2014. Students delayed but did not extend their sleep period; we found lasting improvements in tardiness and disciplinary violations after the start-time delay, but no changes to other variables. At the first follow-up, students reported 20 minutes longer sleep, driven by later rise times and stable bed times. At the second follow-up, students maintained later rise times but delayed bedtimes, returning total sleep to baseline levels. A delay in rise time, paralleling the delay in the start time that occurred, resulted in less tardiness and decreased disciplinary incidents, but larger improvements to sleep patterns may be necessary to affect health, attendance, sleepiness, and academic performance. Later start times improved tardiness and disciplinary issues at this school district. A delay in start time may be a necessary but not sufficient means to increase sleep time and may depend on preexisting individual differences. A commentary on this article appears in this issue on page 267. © 2016 Associated Professional Sleep Societies, LLC.

  8. Astrometric meaning and interpretation of high-precision time delay integration CCD data

    Science.gov (United States)

    Bastian, U.; Biermann, M.

    2005-08-01

    We investigate the astrometric content of CCD charge images of stars collected in time delay integration (TDI) mode with a scanning (rotating) telescope. We focus on the ESA astrometric space mission Gaia, but the results are valid for other scanning telescopes too. The physical attitude of the telescope is shown to be unobservable. Instead, an effective astrometric attitude is observed which represents an average over the TDI exposure time. The effective astrometric attitudes “seen” by different instruments (in case of Gaia: Astro, Spectro, Astro with gates) differ in a non-trivial way. If e.g. the high-precision Astro attitude would be used for the astrometric exploitation of the Spectro data, the Spectro CCDs would be “seen” to float around on the focal plane by several milli-arcseconds. In addition we find that the TDI mode produces an attitude jitter with the period of TDI clocking. We prove that this is negligibly small in the case of Gaia. We point out that the effective instant of observation is not the instant of charge read-out from the CCDs, but about half an exposure time (i.e. up to a few seconds) earlier. This is particularly important for the astrometry of solar-system objects and for the photometry of rapidly varying objects. It is also relevant for all other objects because of the time dependence of aberration. It is not clear whether the differences between the astrometric attitudes of different instruments require separate attitude reconstructions, but an approximate transformation from Astro to Spectro probably will be sufficient.

  9. Gravitational lens system SDSS J1339+1310: microlensing factory and time delay

    Science.gov (United States)

    Goicoechea, L. J.; Shalyapin, V. N.

    2016-12-01

    We spectroscopically re-observed the gravitational lens system SDSS J1339+1310 using OSIRIS on the GTC. We also monitored the r-band variability of the two quasar images (A and B) with the LT over 143 epochs in the period 2009-2016. These new data in both the wavelength and time domains have confirmed that the system is an unusual microlensing factory. The C iv emission line is remarkably microlensed, since the microlensing magnification of B relative to that for A, μBA, reaches a value of 1.4 ( 0.4 mag) for its core. Moreover, the B image shows a red wing enhancement of C iv flux (relative to A), and μBA = 2 (0.75 mag) for the C iv broad-line emission. Regarding the nuclear continuum, we find a chromatic behaviour of μBA, which roughly varies from 5 (1.75 mag) at 7000 Å to 6 (1.95 mag) at 4000 Å. We also detect significant microlensing variability in the r band, and this includes a number of microlensing events on timescales of 50-100 d. Fortunately, the presence of an intrinsic 0.7 mag dip in the light curves of A and B, permitted us to measure the time delay between both quasar images. This delay is ΔtAB = 47 d (1σ confidence interval; A is leading), in good agreement with predictions of lens models. Tables 1-3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A77

  10. Systematic errors in the measurement of adsorption isotherms by frontal analysis Impact of the choice of column hold-up volume, range and density of the data points.

    Science.gov (United States)

    Gritti, Fabrice; Guiochon, Georges

    2005-12-02

    Besides the accuracy and the precision of the measurements of the data points, several important parameters affect the accuracy of the adsorption isotherms that are derived from the data acquired by frontal analysis (FA). The influence of these parameters is discussed. First, the effects of the width of the concentration range within which the adsorption data are measured and of the distribution of the data points in this range are investigated. Systematic elimination of parts of the data points before the calculation of the nonlinear regression of the data to the model illustrates the importance of the numbers of data points (1) within the linear range and (2) at high concentrations. The influence of the inaccuracy of the estimate of the column hold-up volume on each adsorption data point, on the selection of the isotherm model, and on the best estimates of the adsorption isotherm parameters is also stressed. Depending on the method used to measure it, the hold-up time can vary by more than 10%. The high concentration part of the adsorption isotherm is particularly sensitive to errors made on t(0,exp) and as a result, when the isotherm follows bi-Langmuir isotherm behavior, the equilibrium constant of the low-energy sites may change by a factor 2. This study shows that the agreement between calculated and experimental overloaded band profiles is a necessary condition to validate the choice of an adsorption model and the calculation of its numerical parameters but that this condition is not sufficient.

  11. Fractional-Order Controller Design for Oscillatory Fractional Time-Delay Systems Based on the Numerical Inverse Laplace Transform Algorithms

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2015-01-01

    Full Text Available Fractional-order time-delay system is thought to be a kind of oscillatory complex system which could not be controlled efficaciously so far because it does not have an analytical solution when using inverse Laplace transform. In this paper, a type of fractional-order controller based on numerical inverse Laplace transform algorithm INVLAP was proposed for the mentioned systems by searching for the optimal controller parameters with the objective function of ITAE index due to the verified nature that fractional-order controllers were the best means of controlling fractional-order systems. Simulations of step unit tracking and load-disturbance responses of the proposed fractional-order optimal PIλDμ controller (FOPID and corresponding conventional optimal PID (OPID controller have been done on three typical kinds of fractional time-delay system with different ratio between time delay (L and time constant (T and a complex high-order fractional time delay system to verify the availability of the presented control method.

  12. Performance investigation of stochastic resonance in bistable systems with time-delayed feedback and three types of asymmetries

    Science.gov (United States)

    Liu, Jian; Wang, Youguo

    2018-03-01

    The simultaneous influence of potential asymmetries and time-delayed feedback on stochastic resonance (SR) subject to both periodic force and additive Gaussian white noise is investigated by using two-state theory and small-delay approximation, where three types of asymmetries include well-depth, well-width, and both well-depth and well-width asymmetries, respectively. The asymmetric types and time-delayed feedback determine the behaviors of SR, especially output signal-to-noise ratio (SNR) peaks, optimal additive noise intensity and feedback intensity. Moreover, the largest SNR in asymmetric SR is found to be relatively larger than symmetric one in some cases, whereas in other cases the symmetric SR is superior to asymmetric one, which is of dependence on time delay and feedback intensity. In addition, the SR with well-width asymmetry can suppress stronger noise than that with well-depth asymmetry under the action of same time delay, which is beneficial to weak signal detection.

  13. The Effects of Constant Time Delay and Instructive Feedback on the Acquisition of English and Spanish Sight Words

    Science.gov (United States)

    Appelman, Michelle; Vail, Cynthia O.; Lieberman-Betz, Rebecca G.

    2014-01-01

    The authors of this study evaluated the acquisition of instructive feedback information presented to four kindergarten children with mild delays taught in dyads using a constant time delay (CTD) procedure. They also assessed the learning of observational (dyadic partner) information within this instructional arrangement. A multiple probe design…

  14. Estimation of time delay and wavelength shift for highly nonlinear multilayer waveguide by using time transformation approach

    Science.gov (United States)

    Chatterjee, Roshmi; Basu, Mousumi

    2018-02-01

    The well known time transformation method is used here to derive the temporal and spectral electric field distribution at the output end of a multilayer waveguide which consists of different layers of Kerr nonlinear media. A highly nonlinear CS 3-68 glass is considered as one of the materials of the waveguide which mainly comprises of different chalcogenide glass layers. The results indicate that there is sufficient time delay as well as frequency shift between the input and output pulses which is associated with the phenomenon of adiabatic wavelength conversion (AWC). Depending on different arrangements of materials, the time delay and frequency shift can be changed. As a result an input pulse in visible green region can be blue-shifted or red-shifted according to the choices of refractive index of the non-dispersive Kerr nonlinear media. The results show that under certain conditions the input pulse is broadened or compressed for different combinations of materials. This process of AWC also includes the variation of temporal and spectral phase, time delay, temporal peak power etc. For different input pulse shapes the change in time delay is also presented. The study may be useful to find applications of AWC in optical resonators or optical signal processing to be applicable to different photonic devices.

  15. A Control Method to Balance the Efficiency and Reliability of a Time-Delayed Pump-Valve System

    National Research Council Canada - National Science Library

    Lai, Zhounian; Wu, Peng; Yang, Shuai; Wu, Dazhuan

    2016-01-01

    .... A modified Smith predictor is used to compensate time delays of the system. The control strategy is validated to be effective on the test bench. The comparison of energy consumption and operation point deviation between conventional speed regulation and the new method is presented.

  16. Effects of time delay and random rewiring on the stochastic resonance in excitable small-world neuronal networks.

    Science.gov (United States)

    Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile; Liu, Chen

    2013-05-01

    The effects of time delay and rewiring probability on stochastic resonance and spatiotemporal order in small-world neuronal networks are studied in this paper. Numerical results show that, irrespective of the pacemaker introduced to one single neuron or all neurons of the network, the phenomenon of stochastic resonance occurs. The time delay in the coupling process can either enhance or destroy stochastic resonance on small-world neuronal networks. In particular, appropriately tuned delays can induce multiple stochastic resonances, which appear intermittently at integer multiples of the oscillation period of the pacemaker. More importantly, it is found that the small-world topology can significantly affect the stochastic resonance on excitable neuronal networks. For small time delays, increasing the rewiring probability can largely enhance the efficiency of pacemaker-driven stochastic resonance. We argue that the time delay and the rewiring probability both play a key role in determining the ability of the small-world neuronal network to improve the noise-induced outreach of the localized subthreshold pacemaker.

  17. On second-order consensus in multi-agent dynamical systems with directed topologies and time delays

    NARCIS (Netherlands)

    Yu, Wenwu; Chen, Guanrong; Cao, Ming

    2009-01-01

    This paper establishes some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems with directed topologies and time delays. First, theoretical analysis is carried out for the basic, but fundamentally important case where agents’ second-order dynamics are

  18. Effects of Constant Time Delay Procedure on the Halliwick's Method of Swimming Rotation Skills for Children with Autism

    Science.gov (United States)

    Yilmaz, Ilker; Konukman, Ferman; Birkan, Binyamin; Ozen, Arzu; Yanardag, Mehmet; Camursoy, Ilhan

    2010-01-01

    Effects of a constant time delay procedure on the Halliwick's method of swimming rotation skills (i.e., vertical and lateral rotation) for children with autism were investigated. A single subject multiple baseline model across behaviors with probe conditions was used. Participants were three boys, 8-9 years old. Data were collected over a 10-week…

  19. About Robust Stability of Dynamic Systems with Time Delays through Fixed Point Theory

    Directory of Open Access Journals (Sweden)

    2009-02-01

    Full Text Available This paper investigates the global asymptotic stability independent of the sizes of the delays of linear time-varying systems with internal point delays which possess a limiting equation via fixed point theory. The error equation between the solutions of the limiting equation and that of the current one is considered as a perturbation equation in the fixed- point and stability analyses. The existence of a unique fixed point which is later proved to be an asymptotically stable equilibrium point is investigated. The stability conditions are basically concerned with the matrix measure of the delay-free matrix of dynamics to be negative and to have a modulus larger than the contribution of the error dynamics with respect to the limiting one. Alternative conditions are obtained concerned with the matrix dynamics for zero delay to be negative and to have a modulus larger than an appropriate contributions of the error dynamics of the current dynamics with respect to the limiting one. Since global stability is guaranteed under some deviation of the current solution related to the limiting one, which is considered as nominal, the stability is robust against such errors for certain tolerance margins.

  20. Stability Analysis and H∞ Model Reduction for Switched Discrete-Time Time-Delay Systems

    Directory of Open Access Journals (Sweden)

    Zheng-Fan Liu

    2014-01-01

    Full Text Available This paper is concerned with the problem of exponential stability and H∞ model reduction of a class of switched discrete-time systems with state time-varying delay. Some subsystems can be unstable. Based on the average dwell time technique and Lyapunov-Krasovskii functional (LKF approach, sufficient conditions for exponential stability with H∞ performance of such systems are derived in terms of linear matrix inequalities (LMIs. For the high-order systems, sufficient conditions for the existence of reduced-order model are derived in terms of LMIs. Moreover, the error system is guaranteed to be exponentially stable and an H∞ error performance is guaranteed. Numerical examples are also given to demonstrate the effectiveness and reduced conservatism of the obtained results.

  1. TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach

    Directory of Open Access Journals (Sweden)

    Morganella Sandro

    2010-03-01

    Full Text Available Abstract Background One of main aims of Molecular Biology is the gain of knowledge about how molecular components interact each other and to understand gene function regulations. Using microarray technology, it is possible to extract measurements of thousands of genes into a single analysis step having a picture of the cell gene expression. Several methods have been developed to infer gene networks from steady-state data, much less literature is produced about time-course data, so the development of algorithms to infer gene networks from time-series measurements is a current challenge into bioinformatics research area. In order to detect dependencies between genes at different time delays, we propose an approach to infer gene regulatory networks from time-series measurements starting from a well known algorithm based on information theory. Results In this paper we show how the ARACNE (Algorithm for the Reconstruction of Accurate Cellular Networks algorithm can be used for gene regulatory network inference in the case of time-course expression profiles. The resulting method is called TimeDelay-ARACNE. It just tries to extract dependencies between two genes at different time delays, providing a measure of these dependencies in terms of mutual information. The basic idea of the proposed algorithm is to detect time-delayed dependencies between the expression profiles by assuming as underlying probabilistic model a stationary Markov Random Field. Less informative dependencies are filtered out using an auto calculated threshold, retaining most reliable connections. TimeDelay-ARACNE can infer small local networks of time regulated gene-gene interactions detecting their versus and also discovering cyclic interactions also when only a medium-small number of measurements are available. We test the algorithm both on synthetic networks and on microarray expression profiles. Microarray measurements concern S. cerevisiae cell cycle, E. coli SOS pathways and a

  2. TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach.

    Science.gov (United States)

    Zoppoli, Pietro; Morganella, Sandro; Ceccarelli, Michele

    2010-03-25

    One of main aims of Molecular Biology is the gain of knowledge about how molecular components interact each other and to understand gene function regulations. Using microarray technology, it is possible to extract measurements of thousands of genes into a single analysis step having a picture of the cell gene expression. Several methods have been developed to infer gene networks from steady-state data, much less literature is produced about time-course data, so the development of algorithms to infer gene networks from time-series measurements is a current challenge into bioinformatics research area. In order to detect dependencies between genes at different time delays, we propose an approach to infer gene regulatory networks from time-series measurements starting from a well known algorithm based on information theory. In this paper we show how the ARACNE (Algorithm for the Reconstruction of Accurate Cellular Networks) algorithm can be used for gene regulatory network inference in the case of time-course expression profiles. The resulting method is called TimeDelay-ARACNE. It just tries to extract dependencies between two genes at different time delays, providing a measure of these dependencies in terms of mutual information. The basic idea of the proposed algorithm is to detect time-delayed dependencies between the expression profiles by assuming as underlying probabilistic model a stationary Markov Random Field. Less informative dependencies are filtered out using an auto calculated threshold, retaining most reliable connections. TimeDelay-ARACNE can infer small local networks of time regulated gene-gene interactions detecting their versus and also discovering cyclic interactions also when only a medium-small number of measurements are available. We test the algorithm both on synthetic networks and on microarray expression profiles. Microarray measurements concern S. cerevisiae cell cycle, E. coli SOS pathways and a recently developed network for in vivo

  3. Segmented Spiral Waves and Anti-phase Synchronization in a Model System with Two Identical Time-Delayed Coupled Layers

    Science.gov (United States)

    Yuan, Guo-Yong; Yang, Shi-Ping; Wang, Guang-Rui; Chen, Shi-Gang

    2008-01-01

    In this paper, we consider a model system with two identical time-delayed coupled layers. Synchronization and anti-phase synchronization are exhibited in the reactive system without diffusion term. New segmented spiral waves, which are constituted by many thin trips, are found in each layer of two identical time-delayed coupled layers, and are different from the segmented spiral waves in a water-in-oil aerosol sodium bis(2-ethylhexyl) sulfosuccinate (AOT) micro-emulsion (ME) (BZ-AOT system), which consists of many small segments. "Anti-phase spiral wave synchronization" can be realized between the first layer and the second one. For different excitable parameters, we also give the minimum values of the coupling strength to generate segmented spiral waves and the tip orbits of spiral waves in the whole bilayer.

  4. Robust Guaranteed Cost Observer Design for Singular Markovian Jump Time-Delay Systems with Generally Incomplete Transition Probability

    Directory of Open Access Journals (Sweden)

    Yanbo Li

    2014-01-01

    Full Text Available This paper is devoted to the investigation of the design of robust guaranteed cost observer for a class of linear singular Markovian jump time-delay systems with generally incomplete transition probability. In this singular model, each transition rate can be completely unknown or only its estimate value is known. Based on stability theory of stochastic differential equations and linear matrix inequality (LMI technique, we design an observer to ensure that, for all uncertainties, the resulting augmented system is regular, impulse free, and robust stochastically stable with the proposed guaranteed cost performance. Finally, a convex optimization problem with LMI constraints is formulated to design the suboptimal guaranteed cost filters for linear singular Markovian jump time-delay systems with generally incomplete transition probability.

  5. Effect of double-pulse-laser polarization and time delay on laser-assisted etching of fused silica

    Science.gov (United States)

    Chu, Dongkai; Sun, Xiaoyan; Dong, Xinran; Yin, Kai; Luo, Zhi; Chen, Guowei; Duan, Ji-An; Hu, Youwang; Zhao, Xinyu

    2017-11-01

    High-aspect-ratio microchannels were fabricated by femtosecond-double-pulse-laser-assisted polarization-selective etching. The etching rate and uniformity of the microchannels were mainly determined by the double-pulse polarization and time delay. We found that when the two sub-pulses had a different polarization (one linear, the other circular), the microchannel etching rate increased by a factor of 10 compared to when both sub-pulses were linearly polarized. The maximum etching rate was obtained when the polarization combination was circular for the first sub-pulse and vertical for the second one. In this case, the etching rate was independent from the time delay. Laser confocal microscopy images showed that when the polarization was circular, the area modified by the laser was larger than when the polarization was linear, explaining the higher etching rate value obtained after irradiation with circularly polarized laser light.

  6. The effects of time delay on the stochastic resonance in feed-forward-loop neuronal network motifs

    Science.gov (United States)

    Liu, Chen; Wang, Jiang; Yu, Haitao; Deng, Bin; Tsang, K. M.; Chan, W. L.; Wong, Y. K.

    2014-04-01

    The dependence of stochastic resonance in the feed-forward-loop neuronal network motifs on the noise and time delay are studied in this paper. By computational modeling, Izhikevich neuron model with the chemical coupling is used to build the triple-neuron feed-forward-loop motifs with all possible motif types. Numerical results show that the correlation between the periodic subthreshold signal's frequency and the dynamical response of the network motifs is resonantly dependent on the intensity of additive spatiotemporal noise. Interestingly, the excitatory intermediate neuron could induce intermittent stochastic resonance, whereas the inhibitory one weakens its influence on the intermittent mode. More importantly, it is found that the increasing delays can induce the intermittent appearance of regions of stochastic resonance. Based on the effects of the time delay on the stochastic resonance, the reasons and conditions of such intermittent resonance phenomenon are analyzed.

  7. Multivariable predictive control considering time delay for load-frequency control in multi-area power systems

    Directory of Open Access Journals (Sweden)

    Daniar Sabah

    2016-12-01

    Full Text Available In this paper, a multivariable model based predictive control (MPC is proposed for the solution of load frequency control (LFC in a multi-area interconnected power system. The proposed controller is designed to consider time delay, generation rate constraint and multivariable nature of the LFC system, simultaneously. A new formulation of the MPC is presented to compensate time delay. The generation rate constraint is considered by employing a constrained MPC and economic allocation of the generation is further guaranteed by an innovative modification in the predictive control objective function. The effectiveness of proposed scheme is verified through time-based simulations on the standard 39-bus test system and the responses are then compared with the proportional-integral controller. The evaluation of the results reveals that the proposed control scheme offers satisfactory performance with fast responses.

  8. Analysis and Design of Adaptive Synchronization of a Complex Dynamical Network with Time-Delayed Nodes and Coupling Delays

    Directory of Open Access Journals (Sweden)

    Yu Miao

    2017-01-01

    Full Text Available This paper is devoted to the study of synchronization problems in uncertain dynamical networks with time-delayed nodes and coupling delays. First, a complex dynamical network model with time-delayed nodes and coupling delays is given. Second, for a complex dynamical network with known or unknown but bounded nonlinear couplings, an adaptive controller is designed, which can ensure that the state of a dynamical network asymptotically synchronizes at the individual node state locally or globally in an arbitrary specified network. Then, the Lyapunov-Krasovskii stability theory is employed to estimate the network coupling parameters. The main results provide sufficient conditions for synchronization under local or global circumstances, respectively. Finally, two typical examples are given, using the M-G system as the nodes of the ring dynamical network and second-order nodes in the dynamical network with time-varying communication delays and switching communication topologies, which illustrate the effectiveness of the proposed controller design methods.

  9. Robust H∞ Filtering for a Class of Complex Networks with Stochastic Packet Dropouts and Time Delays

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2014-01-01

    such that the estimation error converges to zero exponentially in the mean square, while the disturbance rejection attenuation is constrained to a given level by means of the H∞ performance index. By constructing the proper Lyapunov-Krasovskii functional, we acquire sufficient conditions to guarantee the stability of the state detection observer for the discrete systems, and the observer gain is also derived by solving linear matrix inequalities. Finally, an illustrative example is provided to show the usefulness and effectiveness of the proposed design method.

  10. Unified Approach to Analog and Digital Two-Degree-of-Freedom PI Controller Tuning for Integrating Plants with Time Delay

    Directory of Open Access Journals (Sweden)

    Miluše Vítečková

    2011-11-01

    Full Text Available The article describes the unified approach to the tuning of the analog and digital PI controller with two-degree-of-freedomby the multiple dominant pole method for integrating plants with a time delay on the basis of D-transform. The approach is fullyanalytical and it enables so tuning that the servo and regulatory responses are non-oscillatory without overshoots. The uses areshown in the example.

  11. Fractional-Order Controller Design for Oscillatory Fractional Time-Delay Systems Based on the Numerical Inverse Laplace Transform Algorithms

    OpenAIRE

    Lu Liu; Feng Pan; Dingyu Xue

    2015-01-01

    Fractional-order time-delay system is thought to be a kind of oscillatory complex system which could not be controlled efficaciously so far because it does not have an analytical solution when using inverse Laplace transform. In this paper, a type of fractional-order controller based on numerical inverse Laplace transform algorithm INVLAP was proposed for the mentioned systems by searching for the optimal controller parameters with the objective function of ITAE index due to the verified natu...

  12. Angle-resolved Wigner time delay in atomic photoionization: The 4 d subshell of free and confined Xe

    Science.gov (United States)

    Mandal, A.; Deshmukh, P. C.; Kheifets, A. S.; Dolmatov, V. K.; Manson, S. T.

    2017-11-01

    The angular dependence of photoemission time delay for the inner n d3 /2 and n d5 /2 subshells of free and confined Xe is studied in the dipole relativistic random phase approximation. A finite spherical annular well potential is used to model the confinement due to fullerene C60 cage. Near cancellations in a variety of the dipole amplitudes, Cooper-like minima, are found. The effects of confinement on the angular dependence, primarily confinement resonances, are demonstrated and detailed.

  13. Rolling bearing fault diagnosis based on time-delayed feedback monostable stochastic resonance and adaptive minimum entropy deconvolution

    Science.gov (United States)

    Li, Jimeng; Li, Ming; Zhang, Jinfeng

    2017-08-01

    Rolling bearings are the key components in the modern machinery, and tough operation environments often make them prone to failure. However, due to the influence of the transmission path and background noise, the useful feature information relevant to the bearing fault contained in the vibration signals is weak, which makes it difficult to identify the fault symptom of rolling bearings in time. Therefore, the paper proposes a novel weak signal detection method based on time-delayed feedback monostable stochastic resonance (TFMSR) system and adaptive minimum entropy deconvolution (MED) to realize the fault diagnosis of rolling bearings. The MED method is employed to preprocess the vibration signals, which can deconvolve the effect of transmission path and clarify the defect-induced impulses. And a modified power spectrum kurtosis (MPSK) index is constructed to realize the adaptive selection of filter length in the MED algorithm. By introducing the time-delayed feedback item in to an over-damped monostable system, the TFMSR method can effectively utilize the historical information of input signal to enhance the periodicity of SR output, which is beneficial to the detection of periodic signal. Furthermore, the influence of time delay and feedback intensity on the SR phenomenon is analyzed, and by selecting appropriate time delay, feedback intensity and re-scaling ratio with genetic algorithm, the SR can be produced to realize the resonance detection of weak signal. The combination of the adaptive MED (AMED) method and TFMSR method is conducive to extracting the feature information from strong background noise and realizing the fault diagnosis of rolling bearings. Finally, some experiments and engineering application are performed to evaluate the effectiveness of the proposed AMED-TFMSR method in comparison with a traditional bistable SR method.

  14. Simulation and optimization of optical performance of time-delay-integration complementary metal-oxide-semiconductor image sensor based on hybrid charge-digital accumulation architecture

    Science.gov (United States)

    Gao, Jing; Huang, Rui; Nie, Kaiming; Xu, Jiangtao; Li, Yi

    2017-08-01

    An analytical model of hybrid accumulation architecture based on charge-domain and digital-domain time-delay-integration complementary metal-oxide-semiconductor image sensor (TDI-CIS) in the scanning direction is proposed. Optical performance of signal-noise-ratio, dynamic range, and modulation transfer function of the charge-domain, digital-domain, and hybrid accumulation scheme is simulated and analyzed. The synthetical evaluation target (SET) is defined to obtain the best performance under different distribution methods of the charge-domain and digital-domain at a fixed TDI stage for a hybrid accumulation scheme. According to the simulation results, the hybrid accumulation scheme whose charge-domain accumulation stage is 8 and digital-domain accumulation stage is 16 has the optimal SET, which is 12.99% higher than a 128-stage digital-domain accumulation scheme and 25% higher than the 128-stage charge-domain accumulation scheme.

  15. 1090 nm infrared radiation at close to threshold dose induces cataract with a time delay.

    Science.gov (United States)

    Yu, Zhaohua; Schulmeister, Karl; Talebizadeh, Nooshin; Kronschläger, Martin; Söderberg, Per G

    2015-03-01

    To investigate whether infrared radiation (IRR)-induced cataract is instant or is associated with a time delay between the exposure and the onset of lens light scattering after an exposure to just above threshold dose. Six-weeks-old albino Sprague-Dawley female rats were unilaterally exposed to 197 W/cm2 IRR at 1090 nm within the dilated pupil. In the first experiment, the animals were exposed with four exposure times of 5, 8, 13 and 20 second, respectively. At 24 hr after exposure, the light scattering in both exposed and contralateral not exposed lenses was measured. Based on the first experiment, four postexposure time groups were exposed unilaterally to 1090 nm IRR of 197 W/cm2 for 8 second. At 6, 18, 55 and 168 hr after exposure, the light scattering in both lenses was measured. A 197 W/cm2 IRR-induced light scattering in the lens with exposures of at least 8 second. Further, after exposure to IRR of 197 W/cm2 for 8 second, the light-scattering increase in the lens was delayed approximately 16 hr after the exposure. There is a time delay between the exposure and the onset of cataract after exposure to close to threshold dose implicating that either near IRR cataract is photochemical or there is a time delay in the biological expression of thermally induced damage. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  16. Position and time-delay calibration of transducer elements in a sparse array for underwater ultrasound imaging.

    Science.gov (United States)

    Li, Yue

    2006-08-01

    This paper describes a novel method for the calibration of the position and time delay of transducer elements in a large, sparse array used for underwater, high-resolution ultrasound imaging. This method is based on the principles used in the global positioning system (GPS). However, unlike GPS, in which the wave propagation speed is generally assumed known, the sound propagation speed in the water usually is unknown and it is calibrated simultaneously in this method to achieve high calibration accuracy. In this method, a high-precision positioning system is used to scan a single hydrophone (used for transmission) in the imaging field of the array. The hydrophone transmits pulses at selected positions, and the transducer elements in the sparse array receive the transmitted signals. Time of flight (TOF) values between transducer elements and hydrophone positions then are measured. From a series of measured TOF values, the position and time delay values for each transducer element as well as the propagation speed can be calibrated. The performances of the calibration algorithm are theoretically analyzed and evaluated with numerical calculations and simulation studies. It is found that this method is capable of calibrating the positions and time delays of transducer elements with high accuracy.

  17. The Max-Min High-Order Dynamic Bayesian Network for Learning Gene Regulatory Networks with Time-Delayed Regulations.

    Science.gov (United States)

    Li, Yifeng; Chen, Haifen; Zheng, Jie; Ngom, Alioune

    2016-01-01

    Accurately reconstructing gene regulatory network (GRN) from gene expression data is a challenging task in systems biology. Although some progresses have been made, the performance of GRN reconstruction still has much room for improvement. Because many regulatory events are asynchronous, learning gene interactions with multiple time delays is an effective way to improve the accuracy of GRN reconstruction. Here, we propose a new approach, called Max-Min high-order dynamic Bayesian network (MMHO-DBN) by extending the Max-Min hill-climbing Bayesian network technique originally devised for learning a Bayesian network's structure from static data. Our MMHO-DBN can explicitly model the time lags between regulators and targets in an efficient manner. It first uses constraint-based ideas to limit the space of potential structures, and then applies search-and-score ideas to search for an optimal HO-DBN structure. The performance of MMHO-DBN to GRN reconstruction was evaluated using both synthetic and real gene expression time-series data. Results show that MMHO-DBN is more accurate than current time-delayed GRN learning methods, and has an intermediate computing performance. Furthermore, it is able to learn long time-delayed relationships between genes. We applied sensitivity analysis on our model to study the performance variation along different parameter settings. The result provides hints on the setting of parameters of MMHO-DBN.

  18. Matrix measure strategies for stability and synchronization of inertial BAM neural network with time delays.

    Science.gov (United States)

    Cao, Jinde; Wan, Ying

    2014-05-01

    A single inertial BAM neural network with time-varying delays and external inputs is concerned in this paper. First, by choosing suitable variable substitution, the original system can be transformed into first-order differential equations. Then, we present several sufficient conditions for the global exponential stability of the equilibrium by using matrix measure and Halanay inequality, these criteria are simple in form and easy to verify in practice. Furthermore, when employing an error-feedback control term to the response neural network, parallel criteria regarding to the exponential synchronization of the drive-response neural network are also generated. Finally, some examples are given to illustrate our theoretical results. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Channel Modeling and Time Delay Estimation for Clock Synchronization Among Seaweb Nodes

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, P; Rice, J; Clark, G A

    2012-07-08

    From simulations, tracking of the impulse response is feasible. Potential to benefit other functions such as ranging between two nodes. Potential to combine the features of different protocols to create a new and more realistic clock-synchronization protocol.

  20. The Effects of Time Delay and Increasing Prompt Hierarchy Strategies on the Acquisition of Purchasing Skills by Students with Severe Handicaps.

    Science.gov (United States)

    McDonnell, John

    1987-01-01

    Two teaching strategies (constant time delay and increasing prompt hierarchy assistance) were compared in teaching four severely handicapped high school students to purchase snack items at a convenience store and fast food restaurant. Results indicated the time delay procedure was more effective. (DB)

  1. Comparing Teacher-Directed and Computer-Assisted Constant Time Delay for Teaching Functional Sight Words to Students with Moderate Intellectual Disability

    Science.gov (United States)

    Coleman, Mari Beth; Hurley, Kevin J.; Cihak, David F.

    2012-01-01

    The purpose of this study was to compare the effectiveness and efficiency of teacher-directed and computer-assisted constant time delay strategies for teaching three students with moderate intellectual disability to read functional sight words. Target words were those found in recipes and were taught via teacher-delivered constant time delay or…

  2. Time Delay and Accretion Disk Size Measurements in the Lensed Quasar SBS 0909+532 from Multiwavelength Microlensing Analysis

    Science.gov (United States)

    Hainline, Laura J.; Morgan, Christopher W.; MacLeod, Chelsea L.; Landaal, Zachary D.; Kochanek, C. S.; Harris, Hugh C.; Tilleman, Trudy; Goicoechea, L. J.; Shalyapin, V. N.; Falco, Emilio E.

    2013-09-01

    We present three complete seasons and two half-seasons of Sloan Digital Sky Survey (SDSS) r-band photometry of the gravitationally lensed quasar SBS 0909+532 from the U.S. Naval Observatory, as well as two seasons each of SDSS g-band and r-band monitoring from the Liverpool Robotic Telescope. Using Monte Carlo simulations to simultaneously measure the system's time delay and model the r-band microlensing variability, we confirm and significantly refine the precision of the system's time delay to \\Delta t_{AB} = 50^{+2}_{-4}\\,{days}, where the stated uncertainties represent the bounds of the formal 1σ confidence interval. There may be a conflict between the time delay measurement and a lens consisting of a single galaxy. While models based on the Hubble Space Telescope astrometry and a relatively compact stellar distribution can reproduce the observed delay, the models have somewhat less dark matter than we would typically expect. We also carry out a joint analysis of the microlensing variability in the r and g bands to constrain the size of the quasar's continuum source at these wavelengths, obtaining log {(r s, r /cm)[cos i/0.5]1/2} = 15.3 ± 0.3 and log {(r s, g /cm)[cos i/0.5]1/2} = 14.8 ± 0.9, respectively. Our current results do not formally constrain the temperature profile of the accretion disk but are consistent with the expectations of standard thin disk theory.

  3. Correction of misleading information in prescription drug television advertising: The roles of advertisement similarity and time delay.

    Science.gov (United States)

    Aikin, Kathryn J; Southwell, Brian G; Paquin, Ryan S; Rupert, Douglas J; O'Donoghue, Amie C; Betts, Kevin R; Lee, Philip K

    Prescription drug television advertisements containing potentially consequential misinformation sometimes appear in the United States. When that happens, the U.S. Food and Drug Administration can request that companies distribute corrective advertisements to address misinformation and inaccurate claims. Previous research has demonstrated effectiveness in corrective advertising for various products. The present article builds on that work with a randomized experimental study (n = 6454) of corrective advertising investigating the extent to which visual similarity matters between violative and corrective ads and the extent to which time delay matters between violative and corrective advertisement exposure. Our study sample included overweight or obese U.S. adults recruited from an existing online consumer panel representative of the U.S. adult population. We created a brand for a fictitious prescription weight-loss drug and produced corresponding direct-to-consumer (DTC) television ads. All participants viewed the same violative ad, but were randomly assigned to view corrective ads with different levels of visual similarity and exposure time delay using a 4 × 4 between-subjects factorial design. Results suggest corrective ad exposure can influence consumer perceptions of drug efficacy, risks, and benefits previously established by violative ads that overstated drug efficacy, broadened drug indication, and omitted important risk information. Corrective ads also can weaken consumer intentions to consider and investigate a drug. However, ad similarity does not appear to affect consumer perceptions and preferences. Although we found that the effects of violative ad exposure tend to diminish over time, the length of the delay between violative and corrective ad exposure has limited influence. An exception to this was observed with regard to recall of drug benefits and risks, where the impact of corrective ad exposure increases with greater time delay. These results

  4. Neural Network Based Finite-Time Stabilization for Discrete-Time Markov Jump Nonlinear Systems with Time Delays

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2013-01-01

    Full Text Available This paper deals with the finite-time stabilization problem for discrete-time Markov jump nonlinear systems with time delays and norm-bounded exogenous disturbance. The nonlinearities in different jump modes are parameterized by neural networks. Subsequently, a linear difference inclusion state space representation for a class of neural networks is established. Based on this, sufficient conditions are derived in terms of linear matrix inequalities to guarantee stochastic finite-time boundedness and stochastic finite-time stabilization of the closed-loop system. A numerical example is illustrated to verify the efficiency of the proposed technique.

  5. Stability and Global Hopf Bifurcation Analysis on a Ratio-Dependent Predator-Prey Model with Two Time Delays

    Directory of Open Access Journals (Sweden)

    Huitao Zhao

    2013-01-01

    Full Text Available A ratio-dependent predator-prey model with two time delays is studied. By means of an iteration technique, sufficient conditions are obtained for the global attractiveness of the positive equilibrium. By comparison arguments, the global stability of the semitrivial equilibrium is addressed. By using the theory of functional equation and Hopf bifurcation, the conditions on which positive equilibrium exists and the quality of Hopf bifurcation are given. Using a global Hopf bifurcation result of Wu (1998 for functional differential equations, the global existence of the periodic solutions is obtained. Finally, an example for numerical simulations is also included.

  6. All-PD control of pure Integrating Plus Time-Delay processes with gain and phase-margin specifications.

    Science.gov (United States)

    Chakraborty, Sudipta; Ghosh, Sandip; Naskar, Asim Kumar

    2017-05-01

    It is well known that PD controller, though yields good servo response, fails to provide satisfactory regulatory response for Integrating Plus Time-Delay (IPTD) processes. On the other hand, using an integral control action generally leads to large overshoot or settling time. To achieve good servo as well as regulatory response, a new all-PD control structure is proposed for IPTD processes in this paper. Design formulas are derived in terms of gain-margin and phase-margin specifications. Numerical examples on the design methodology are presented and experimentally validated on a temperature control process. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Output Feedback Adaptive Dynamic Surface Control of Permanent Magnet Synchronous Motor with Uncertain Time Delays via RBFNN

    Directory of Open Access Journals (Sweden)

    Shaohua Luo

    2014-01-01

    Full Text Available This paper focuses on an adaptive dynamic surface control based on the Radial Basis Function Neural Network for a fourth-order permanent magnet synchronous motor system wherein the unknown parameters, disturbances, chaos, and uncertain time delays are presented. Neural Network systems are used to approximate the nonlinearities and an adaptive law is employed to estimate accurate parameters. Then, a simple and effective controller has been obtained by introducing dynamic surface control technique on the basis of first-order filters. Asymptotically tracking stability in the sense of uniformly ultimate boundedness is achieved in a short time. Finally, the performance of the proposed control has been illustrated through simulation results.

  8. Determination of all feasible robust PID controllers for open-loop unstable plus time delay processes with gain margin and phase margin specifications.

    Science.gov (United States)

    Wang, Yuan-Jay

    2014-03-01

    This paper proposes a novel alternative method to graphically compute all feasible gain and phase margin specifications-oriented robust PID controllers for open-loop unstable plus time delay (OLUPTD) processes. This method is applicable to general OLUPTD processes without constraint on system order. To retain robustness for OLUPTD processes subject to positive or negative gain variations, the downward gain margin (GM(down)), upward gain margin (GM(up)), and phase margin (PM) are considered. A virtual gain-phase margin tester compensator is incorporated to guarantee the concerned system satisfies certain robust safety margins. In addition, the stability equation method and the parameter plane method are exploited to portray the stability boundary and the constant gain margin (GM) boundary as well as the constant PM boundary. The overlapping region of these boundaries is graphically determined and denotes the GM and PM specifications-oriented region (GPMSOR). Alternatively, the GPMSOR characterizes all feasible robust PID controllers which achieve the pre-specified safety margins. In particular, to achieve optimal gain tuning, the controller gains are searched within the GPMSOR to minimize the integral of the absolute error (IAE) or the integral of the squared error (ISE) performance criterion. Thus, an optimal PID controller gain set is successfully found within the GPMSOR and guarantees the OLUPTD processes with a pre-specified GM and PM as well as a minimum IAE or ISE. Consequently, both robustness and performance can be simultaneously assured. Further, the design procedures are summarized as an algorithm to help rapidly locate the GPMSOR and search an optimal PID gain set. Finally, three highly cited examples are provided to illustrate the design process and to demonstrate the effectiveness of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Ti/C-3Ni/Al as a Replacement Time Delay Composition

    Science.gov (United States)

    2013-11-07

    phase reactions, that are typically used in combus- tion synthesis (e.g. , Ti/C or Ni/Al) are of interest as replace- ments due to their wide range...Microchannels · Critical diameter · Stability · Combustion synthesis [a] E. J. Miklaszewski, S. F. Son, L. J. Groven School of Mechanical Engineering Purdue...technic composition composed of 65wt.-% Zr, 25wt.-% Fe2O3 and 10wt.-% diatomaceous earth. Specifications can be found in Table 1. Approximately 1.0 mm of

  10. Analytical design of fractional-order proportional-integral controllers for time-delay processes.

    Science.gov (United States)

    Vu, Truong Nguyen Luan; Lee, Moonyong

    2013-09-01

    A new design method of fractional-order proportional-integral controllers is proposed based on fractional calculus and Bode's ideal transfer function for a first-order-plus-dead-time process model. It can be extended to be applied to various dynamic models. Tuning rules were analytically derived to cope with both set-point tracking and disturbance rejection problems. Simulations of a broad range of processes are reported, with each simulated controller being tuned to have a similar degree of robustness in terms of resonant peak to other reported controllers. The proposed controller consistently showed improved performance over other similar controllers and established integer PI controllers. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Impact analysis of the transponder time delay on radio-tracking observables

    Science.gov (United States)

    Bertone, Stefano; Le Poncin-Lafitte, Christophe; Rosenblatt, Pascal; Lainey, Valéry; Marty, Jean-Charles; Angonin, Marie-Christine

    2018-01-01

    Accurate tracking of probes is one of the key points of space exploration. Range and Doppler techniques are the most commonly used. In this paper we analyze the impact of the transponder delay, i . e . the processing time between reception and re-emission of a two-way tracking link at the satellite, on tracking observables and on spacecraft orbits. We show that this term, only partially accounted for in the standard formulation of computed space observables, can actually be relevant for future missions with high nominal tracking accuracies or for the re-processing of old missions. We present several applications of our formulation to Earth flybys, the NASA GRAIL and the ESA BepiColombo missions.

  12. Physiologically motivated time-delay model to account for mechanisms underlying enterohepatic circulation of piroxicam in human beings.

    Science.gov (United States)

    Tvrdonova, Martina; Dedik, Ladislav; Mircioiu, Constantin; Miklovicova, Daniela; Durisova, Maria

    2009-01-01

    The study was conducted to formulate a physiologically motivated time-delay (PM TD) mathematical model for human beings, which incorporates disintegration of a drug formulation, dissolution, discontinuous gastric emptying and enterohepatic circulation (EHC) of a drug. Piroxicam, administered to 24 European, healthy individuals in 20 mg capsules Feldene Pfizer, was used as a model drug. Plasma was analysed for piroxicam by a validated high-performance liquid chromatography method. The PM TD mathematical model was developed using measured plasma piroxicam concentration-time profiles of the individuals and tools of a computationally efficient mathematical analysis and modeling, based on the theory of linear dynamic systems. The constructed model was capable of (i) quantifying different fractions of the piroxicam dose sequentially disposable for absorption and (ii) estimating time delays between time when the piroxicam dose reaches stomach and time when individual of fractions of the piroxicam dose is disposable for absorption. The model verification was performed through a formal proof, based on comparisons of observed and model-predicted plasma piroxicam concentration-time profiles. The model verification showed an adequate model performance and agreement between the compared profiles. Accordingly, it confirmed that the developed model was an appropriate representative of the piroxicam fate in the individuals enrolled. The presented model provides valuable information on factors that control dynamic mechanisms of EHC, that is, information unobtainable with the models proposed for the EHC analysis previously.

  13. A continuous time delay-difference type model (CTDDM) applied to stock assessment of the southern Atlantic albacore Thunnus alalunga

    Science.gov (United States)

    Liao, Baochao; Liu, Qun; Zhang, Kui; Baset, Abdul; Memon, Aamir Mahmood; Memon, Khadim Hussain; Han, Yanan

    2016-09-01

    A continuous time delay-diff erence model (CTDDM) has been established that considers continuous time delays of biological processes. The southern Atlantic albacore ( Thunnus alalunga) stock is the one of the commercially important tuna population in the marine world. The age structured production model (ASPM) and the surplus production model (SPM) have already been used to assess the albacore stock. However, the ASPM requires detailed biological information and the SPM lacks the biological realism. In this study, we focus on applying a CTDDM to the southern Atlantic albacore ( T. alalunga) species, which provides an alternative method to assess this fishery. It is the first time that CTDDM has been provided for assessing the Atlantic albacore ( T. alalunga) fishery. CTDDM obtained the 80% confidence interval of MSY (maximum sustainable yield) of (21 510 t, 23 118t). The catch in 2011 (24 100 t) is higher than the MSY values and the relative fishing mortality ratio ( F 2011/ F MSY) is higher than 1.0. The results of CTDDM were analyzed to verify the proposed methodology and provide reference information for the sustainable management of the southern Atlantic albacore stock. The CTDDM treats the recruitment, the growth, and the mortality rates as all varying continuously over time and fills gaps between ASPM and SPM in this stock assessment.

  14. A New Local Bipolar Autoassociative Memory Based on External Inputs of Discrete Recurrent Neural Networks With Time Delay.

    Science.gov (United States)

    Zhou, Caigen; Zeng, Xiaoqin; Luo, Chaomin; Zhang, Huaguang

    In this paper, local bipolar auto-associative memories are presented based on discrete recurrent neural networks with a class of gain type activation function. The weight parameters of neural networks are acquired by a set of inequalities without the learning procedure. The global exponential stability criteria are established to ensure the accuracy of the restored patterns by considering time delays and external inputs. The proposed methodology is capable of effectively overcoming spurious memory patterns and achieving memory capacity. The effectiveness, robustness, and fault-tolerant capability are validated by simulated experiments.In this paper, local bipolar auto-associative memories are presented based on discrete recurrent neural networks with a class of gain type activation function. The weight parameters of neural networks are acquired by a set of inequalities without the learning procedure. The global exponential stability criteria are established to ensure the accuracy of the restored patterns by considering time delays and external inputs. The proposed methodology is capable of effectively overcoming spurious memory patterns and achieving memory capacity. The effectiveness, robustness, and fault-tolerant capability are validated by simulated experiments.

  15. Global synchronization in finite time for fractional-order neural networks with discontinuous activations and time delays.

    Science.gov (United States)

    Peng, Xiao; Wu, Huaiqin; Song, Ka; Shi, Jiaxin

    2017-10-01

    This paper is concerned with the global Mittag-Leffler synchronization and the synchronization in finite time for fractional-order neural networks (FNNs) with discontinuous activations and time delays. Firstly, the properties with respect to Mittag-Leffler convergence and convergence in finite time, which play a critical role in the investigation of the global synchronization of FNNs, are developed, respectively. Secondly, the novel state-feedback controller, which includes time delays and discontinuous factors, is designed to realize the synchronization goal. By applying the fractional differential inclusion theory, inequality analysis technique and the proposed convergence properties, the sufficient conditions to achieve the global Mittag-Leffler synchronization and the synchronization in finite time are addressed in terms of linear matrix inequalities (LMIs). In addition, the upper bound of the setting time of the global synchronization in finite time is explicitly evaluated. Finally, two examples are given to demonstrate the validity of the proposed design method and theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The comparison of ground reaction forces and lower limb muscles correlation and activation time delay between forward and backward walking.

    Science.gov (United States)

    Mahaki, Mohammadreza; De Sá E Souza, Gustavo Souto; Mimar, Raghad; Vieira, Marcus Fraga

    2017-10-01

    This study aimed to compare the ground reaction forces (GRF) and lower limb muscles correlation and activation time delay between Forward (FW) and Backward (BW) walking. Twenty-four male students participated in this research. Electromyogram activities of gluteus medius, biceps femoris, medial gastrocnemius, soleus and anterior tibialis muscles along with GRFs were measured. Each participant performed two FW and two BW trials bare foot. Statistical parametric mapping (SPM) analysis was performed over anterior-posterior and vertical GRFs time series. The paired t-test was used in SPM analysis. Cross-correlation analysis compared similarity in shape and time delay of EMG pattern. SPM analysis of GRFs showed that these two walking modes have asymmetrical kinetic behavior during most parts of stance phase. Based on cross-correlation analysis, the shape of EMG activation profiles differed, where a phase shift in the muscle activation pattern of approximately 60% occurred. This shift may indicate different control mechanisms, at the spinal level, underpin FW and BW walking modalities. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Anti-Swing Control of Gantry and Tower Cranes Using Fuzzy and Time-Delayed Feedback with Friction Compensation

    Directory of Open Access Journals (Sweden)

    H.M. Omar

    2005-01-01

    Full Text Available We designed a feedback controller to automate crane operations by controlling the load position and its swing. First, a PD tracking controller is designed to follow a prescribed trajectory. Then, another controller is added to the control loop to damp the load swing. The anti-swing controller is designed based on two techniques: a time-delayed feedback of the load swing angle and an anti-swing fuzzy logic controller (FLC. The rules of the FLC are generated by mapping the performance of the time-delayed feedback controller. The same mapping method used for generating the rules can be applied to mimic the performance of an expert operator. The control algorithms were designed for gantry cranes and then extended to tower cranes by considering the coupling between the translational and rotational motions. Experimental results show that the controller is effective in reducing load oscillations and transferring the load in a reasonable time. To experimentally validate the theory, we had to compensate for friction. To this end, we estimated the friction and then applied a control action to cancel it. The friction force was estimated by assuming a mathematical model and then estimating the model coefficients using an off-line identification technique, the method of least squares (LS.

  18. Robust Moving Horizon H∞ Control of Discrete Time-Delayed Systems with Interval Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    F. Yıldız Tascikaraoglu

    2014-01-01

    Full Text Available In this study, design of a delay-dependent type moving horizon state-feedback control (MHHC is considered for a class of linear discrete-time system subject to time-varying state delays, norm-bounded uncertainties, and disturbances with bounded energies. The closed-loop robust stability and robust performance problems are considered to overcome the instability and poor disturbance rejection performance due to the existence of parametric uncertainties and time-delay appeared in the system dynamics. Utilizing a discrete-time Lyapunov-Krasovskii functional, some delay-dependent linear matrix inequality (LMI based conditions are provided. It is shown that if one can find a feasible solution set for these LMI conditions iteratively at each step of run-time, then we can construct a control law which guarantees the closed-loop asymptotic stability, maximum disturbance rejection performance, and closed-loop dissipativity in view of the actuator limitations. Two numerical examples with simulations on a nominal and uncertain discrete-time, time-delayed systems, are presented at the end, in order to demonstrate the efficiency of the proposed method.

  19. Required time delay from 99mTc-HMPAO injection to SPECT data acquisition: healthy subjects and patients with rCBF pattern

    DEFF Research Database (Denmark)

    Thomsen, Gerda; de Nijs, Robin; Hogh-Rasmussen, Esben

    2008-01-01

    Procedure Guidelines for Brain Perfusion SPET using (99m)Tc-labeled Radiopharmaceuticals recommend a time delay of 90 min between injection of (99m)Tc-HMPAO and data acquisition. This time delay is difficult to comply within the daily routine and present a problem, particularly with the elderly or demented...... patients. This study investigates in patients with perfusion deficits and in healthy subjects if the quality of the SPECT image is affected by lowering the time delay between (99m)Tc-HMPAO injection and data acquisition to 30 or 60 min....

  20. An analytical method for PID controller tuning with specified gain and phase margins for integral plus time delay processes.

    Science.gov (United States)

    Hu, Wuhua; Xiao, Gaoxi; Li, Xiumin

    2011-04-01

    In this paper, an analytical method is proposed for proportional-integral/proportional-derivative/proportional-integral-derivative (PI/PD/PID) controller tuning with specified gain and phase margins (GPMs) for integral plus time delay (IPTD) processes. Explicit formulas are also obtained for estimating the GPMs resulting from given PI/PD/PID controllers. The proposed method indicates a general form of the PID parameters and unifies a large number of existing rules as PI/PD/PID controller tuning with various GPM specifications. The GPMs realized by existing PID tuning rules are computed and documented as a reference for control engineers to tune the PID controllers. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Limited and time-delayed internal resource allocation generates oscillations and chaos in the dynamics of citrus crops

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Xujun, E-mail: yexujun@cc.hirosaki-u.ac.jp [College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058 (China); Faculty of Agriculture and Life Sciences, Hirosaki University, Aomori 036-8561 (Japan); Sakai, Kenshi, E-mail: ken@cc.tuat.ac.jp [Environmental and Agricultural Engineering Department, Tokyo University of Agriculture and Technology, Tokyo 183-8509 (Japan)

    2013-12-15

    Alternate bearing or masting is a yield variability phenomenon in perennial crops. The complex dynamics in this phenomenon have stimulated much ecological research. Motivated by data from an eight-year experiment with forty-eight individual trees, we explored the mechanism inherent to these dynamics in Satsuma mandarin (Citrus unshiu Marc.). By integrating high-resolution imaging technology, we found that the canopy structure and reproduction output of individual citrus crops are mutually dependent on each other. Furthermore, it was revealed that the mature leaves in early season contribute their energy to the fruiting of the current growing season, whereas the younger leaves show a delayed contribution to the next growing season. We thus hypothesized that the annual yield variability might be caused by the limited and time-delayed resource allocation in individual plants. A novel lattice model based on this hypothesis demonstrates that this pattern of resource allocation will generate oscillations and chaos in citrus yield.

  2. pth moment exponential stability of stochastic memristor-based bidirectional associative memory (BAM) neural networks with time delays.

    Science.gov (United States)

    Wang, Fen; Chen, Yuanlong; Liu, Meichun

    2018-02-01

    Stochastic memristor-based bidirectional associative memory (BAM) neural networks with time delays play an increasingly important role in the design and implementation of neural network systems. Under the framework of Filippov solutions, the issues of the pth moment exponential stability of stochastic memristor-based BAM neural networks are investigated. By using the stochastic stability theory, Itô's differential formula and Young inequality, the criteria are derived. Meanwhile, with Lyapunov approach and Cauchy-Schwarz inequality, we derive some sufficient conditions for the mean square exponential stability of the above systems. The obtained results improve and extend previous works on memristor-based or usual neural networks dynamical systems. Four numerical examples are provided to illustrate the effectiveness of the proposed results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Centralized Data-Sampling Approach for Global Ot-α Synchronization of Fractional-Order Neural Networks with Time Delays

    Directory of Open Access Journals (Sweden)

    Jin-E Zhang

    2017-01-01

    Full Text Available In this paper, the global O(t-α synchronization problem is investigated for a class of fractional-order neural networks with time delays. Taking into account both better control performance and energy saving, we make the first attempt to introduce centralized data-sampling approach to characterize the O(t-α synchronization design strategy. A sufficient criterion is given under which the drive-response-based coupled neural networks can achieve global O(t-α synchronization. It is worth noting that, by using centralized data-sampling principle, fractional-order Lyapunov-like technique, and fractional-order Leibniz rule, the designed controller performs very well. Two numerical examples are presented to illustrate the efficiency of the proposed centralized data-sampling scheme.

  4. Fast Spectral Collocation Method for Solving Nonlinear Time-Delayed Burgers-Type Equations with Positive Power Terms

    Directory of Open Access Journals (Sweden)

    A. H. Bhrawy

    2013-01-01

    Full Text Available Since the collocation method approximates ordinary differential equations, partial differential equations, and integral equations in physical space, it is very easy to implement and adapt to various problems, including variable coefficient and nonlinear differential equations. In this paper, we derive a Jacobi-Gauss-Lobatto collocation method (J-GL-C to solve numerically nonlinear time-delayed Burgers-type equations. The proposed technique is implemented in two successive steps. In the first one, we apply nodes of the Jacobi-Gauss-Lobatto quadrature which depend upon the two general parameters , and the resulting equations together with the two-point boundary conditions constitute a system of ordinary differential equations (ODEs in time. In the second step, the implicit Runge-Kutta method of fourth order is applied to solve a system of ODEs of second order in time. We present numerical results which illustrate the accuracy and flexibility of these algorithms.

  5. A high-order full-discretization method using Hermite interpolation for periodic time-delayed differential equations

    Science.gov (United States)

    Liu, Yilong; Fischer, Achim; Eberhard, Peter; Wu, Baohai

    2015-06-01

    A high-order full-discretization method (FDM) using Hermite interpolation (HFDM) is proposed and implemented for periodic systems with time delay. Both Lagrange interpolation and Hermite interpolation are used to approximate state values and delayed state values in each discretization step. The transition matrix over a single period is determined and used for stability analysis. The proposed method increases the approximation order of the semidiscretization method and the FDM without increasing the computational time. The convergence, precision, and efficiency of the proposed method are investigated using several Mathieu equations and a complex turning model as examples. Comparison shows that the proposed HFDM converges faster and uses less computational time than existing methods.

  6. System Identification of a Nonlinear Multivariable Steam Generator Power Plant Using Time Delay and Wavelet Neural Networks

    Directory of Open Access Journals (Sweden)

    Laila Khalilzadeh Ganjali-khani

    2013-01-01

    Full Text Available One of the most effective strategies for steam generator efficiency enhancement is to improve the control system. For such an improvement, it is essential to have an accurate model for the steam generator of power plant. In this paper, an industrial steam generator is considered as a nonlinear multivariable system for identification. An important step in nonlinear system identification is the development of a nonlinear model. In recent years, artificial neural networks have been successfully used for identification of nonlinear systems in many researches. Wavelet neural networks (WNNs also are used as a powerful tool for nonlinear system identification. In this paper we present a time delay neural network model and a WNN model in order to identify an industrial steam generator. Simulation results show the effectiveness of the proposed models in the system identification and demonstrate that the WNN model is more precise to estimate the plant outputs.

  7. Stochastic Stability for Time-Delay Markovian Jump Systems with Sector-Bounded Nonlinearities and More General Transition Probabilities

    Directory of Open Access Journals (Sweden)

    Dan Ye

    2013-01-01

    Full Text Available This paper is concerned with delay-dependent stochastic stability for time-delay Markovian jump systems (MJSs with sector-bounded nonlinearities and more general transition probabilities. Different from the previous results where the transition probability matrix is completely known, a more general transition probability matrix is considered which includes completely known elements, boundary known elements, and completely unknown ones. In order to get less conservative criterion, the state and transition probability information is used as much as possible to construct the Lyapunov-Krasovskii functional and deal with stability analysis. The delay-dependent sufficient conditions are derived in terms of linear matrix inequalities to guarantee the stability of systems. Finally, numerical examples are exploited to demonstrate the effectiveness of the proposed method.

  8. Effects of a lag schedule of reinforcement with progressive time delay on topographical mand variability in children with autism.

    Science.gov (United States)

    Silbaugh, Bryant C; Falcomata, Terry S; Ferguson, Raechal H

    2017-09-28

    Evaluate the effects of a Lag 1 schedule of reinforcement and progressive time delay (TD) on topographical mand variability in children with autism. Using single-subject design methodology, a multiple baseline across behaviors with embedded reversal design was employed. During Lag 0, reinforcement was delivered contingent on any independent instances of manding. During Lag 1 + TD, prompts were faded and reinforcement was delivered contingent on independent or prompted variant mand topographies. Higher levels of topographical mand variability were observed during Lag 1 + TD for both participants. A Lag 1 schedule of reinforcement with progressive TD increased variability across functionally equivalent vocal mand topographies for both participants. This finding extends prior literature by providing a novel model for studying reinforced mand variability in children, and by demonstrating how practitioners could use prompts and differential reinforcement to increase topographical mand variability in children with autism.

  9. H2 consensus control of time-delayed multi-agent systems: A frequency-domain method.

    Science.gov (United States)

    Ye, Fei; Zhang, Weidong; Ou, Linlin

    2017-01-01

    An analytical H2 controller design approach of homogeneous multi-agent systems with time delays is presented to improve consensus performance. Firstly, a closed-loop multi-input multi-output framework in frequency domain is introduced, and a consensus tracking condition is given. Secondly, the decomposition method is utilized to simplify the analysis of internal stability and H2 performance index of the whole system to a set of independent optimization problems. Finally, the H2 optimal controller can be computed from all the stabilizing controllers. The contributions of the new approach are that the design procedure is conducted analytically for arbitrary delayed multi-agent systems, and a simple quantitative tuning way is developed to trade off the nominal performance and robustness. The simulation examples show the effectiveness of the proposed control strategy. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Improved PID controller design for unstable time delay processes based on direct synthesis method and maximum sensitivity

    Science.gov (United States)

    Vanavil, B.; Krishna Chaitanya, K.; Seshagiri Rao, A.

    2015-06-01

    In this paper, a proportional-integral-derivative controller in series with a lead-lag filter is designed for control of the open-loop unstable processes with time delay based on direct synthesis method. Study of the performance of the designed controllers has been carried out on various unstable processes. Set-point weighting is considered to reduce the undesirable overshoot. The proposed scheme consists of only one tuning parameter, and systematic guidelines are provided for selection of the tuning parameter based on the peak value of the sensitivity function (Ms). Robustness analysis has been carried out based on sensitivity and complementary sensitivity functions. Nominal and robust control performances are achieved with the proposed method and improved closed-loop performances are obtained when compared to the recently reported methods in the literature.

  11. Mixed H-Infinity and Passive Filtering for Discrete Fuzzy Neural Networks With Stochastic Jumps and Time Delays.

    Science.gov (United States)

    Shi, Peng; Zhang, Yingqi; Chadli, Mohammed; Agarwal, Ramesh K

    2016-04-01

    In this brief, the problems of the mixed H-infinity and passivity performance analysis and design are investigated for discrete time-delay neural networks with Markovian jump parameters represented by Takagi-Sugeno fuzzy model. The main purpose of this brief is to design a filter to guarantee that the augmented Markovian jump fuzzy neural networks are stable in mean-square sense and satisfy a prescribed passivity performance index by employing the Lyapunov method and the stochastic analysis technique. Applying the matrix decomposition techniques, sufficient conditions are provided for the solvability of the problems, which can be formulated in terms of linear matrix inequalities. A numerical example is also presented to illustrate the effectiveness of the proposed techniques.

  12. An active balance board system with real-time control of stiffness and time-delay to assess mechanisms of postural stability.

    Science.gov (United States)

    Cruise, Denise R; Chagdes, James R; Liddy, Joshua J; Rietdyk, Shirley; Haddad, Jeffrey M; Zelaznik, Howard N; Raman, Arvind

    2017-07-26

    Increased time-delay in the neuromuscular system caused by neurological disorders, concussions, or advancing age is an important factor contributing to balance loss (Chagdes et al., 2013, 2016a,b). We present the design and fabrication of an active balance board system that allows for a systematic study of stiffness and time-delay induced instabilities in standing posture. Although current commercial balance boards allow for variable stiffness, they do not allow for manipulation of time-delay. Having two controllable parameters can more accurately determine the cause of balance deficiencies, and allows us to induce instabilities even in healthy populations. An inverted pendulum model of human posture on such an active balance board predicts that reduced board rotational stiffness destabilizes upright posture through board tipping, and limit cycle oscillations about the upright position emerge as feedback time-delay is increased. We validate these two mechanisms of instability on the designed balance board, showing that rotational stiffness and board time-delay induced the predicted postural instabilities in healthy, young adults. Although current commercial balance boards utilize control of rotational stiffness, real-time control of both stiffness and time-delay on an active balance board is a novel and innovative manipulation to reveal balance deficiencies and potentially improve individualized balance training by targeting multiple dimensions contributing to standing balance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Time Delay Estimation

    Science.gov (United States)

    1976-04-09

    proportion is due to a residual or nonlinear operation. In general, the power spectrum of the optimum output Gv v (f> = lHn(f>i2G*x<f> (2ඇ> yoyo ...or substituting (2-1), (2-2) and (2-45) into (2-63) yields G (f) = G (f)C (f) . (2-64) yoyo yy xy This important result (Carter and

  14. Local and global synchronization transitions induced by time delays in small-world neuronal networks with chemical synapses.

    Science.gov (United States)

    Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile

    2015-02-01

    Effects of time delay on the local and global synchronization in small-world neuronal networks with chemical synapses are investigated in this paper. Numerical results show that, for both excitatory and inhibitory coupling types, the information transmission delay can always induce synchronization transitions of spiking neurons in small-world networks. In particular, regions of in-phase and out-of-phase synchronization of connected neurons emerge intermittently as the synaptic delay increases. For excitatory coupling, all transitions to spiking synchronization occur approximately at integer multiples of the firing period of individual neurons; while for inhibitory coupling, these transitions appear at the odd multiples of the half of the firing period of neurons. More importantly, the local synchronization transition is more profound than the global synchronization transition, depending on the type of coupling synapse. For excitatory synapses, the local in-phase synchronization observed for some values of the delay also occur at a global scale; while for inhibitory ones, this synchronization, observed at the local scale, disappears at a global scale. Furthermore, the small-world structure can also affect the phase synchronization of neuronal networks. It is demonstrated that increasing the rewiring probability can always improve the global synchronization of neuronal activity, but has little effect on the local synchronization of neighboring neurons.

  15. Time delay signature elimination of chaos in a semiconductor laser by dispersive feedback from a chirped FBG.

    Science.gov (United States)

    Wang, Daming; Wang, Longsheng; Zhao, Tong; Gao, Hua; Wang, Yuncai; Chen, Xianfeng; Wang, Anbang

    2017-05-15

    Time delay signature (TDS) of a semiconductor laser subject to dispersive optical feedback from a chirped fibre Bragg grating (CFBG) is investigated experimentally and numerically. Different from mirror, CFBG provides additional frequency-dependent delay caused by dispersion, and thus induces external-cavity modes with irregular mode separation rather than a fixed separation induced by mirror feedback. Compared with mirror feedback, the CFBG feedback can greatly depress and even eliminate the TDS, although it leads to a similar quasi-period route to chaos with increases of feedback. In experiments, by using a CFBG with dispersion of 2000ps/nm, the TDS is decreased by 90% to about 0.04 compared with mirror feedback. Furthermore, both numerical and experimental results show that the TDS evolution is quite different: the TDS decreases more quickly down to a lower plateau (even background noise level of autocorrelation function) and never rises again. This evolution tendency is also different from that of FBG feedback, of which the TDS first decreases to a minimal value and then increases again as feedback strength increases. In addition, the CFBG feedback has no filtering effects and does not require amplification for feedback light.

  16. Gene regulatory network inference and validation using relative change ratio analysis and time-delayed dynamic Bayesian network.

    Science.gov (United States)

    Li, Peng; Gong, Ping; Li, Haoni; Perkins, Edward J; Wang, Nan; Zhang, Chaoyang

    2014-12-01

    The Dialogue for Reverse Engineering Assessments and Methods (DREAM) project was initiated in 2006 as a community-wide effort for the development of network inference challenges for rigorous assessment of reverse engineering methods for biological networks. We participated in the in silico network inference challenge of DREAM3 in 2008. Here we report the details of our approach and its performance on the synthetic challenge datasets. In our methodology, we first developed a model called relative change ratio (RCR), which took advantage of the heterozygous knockdown data and null-mutant knockout data provided by the challenge, in order to identify the potential regulators for the genes. With this information, a time-delayed dynamic Bayesian network (TDBN) approach was then used to infer gene regulatory networks from time series trajectory datasets. Our approach considerably reduced the searching space of TDBN; hence, it gained a much higher efficiency and accuracy. The networks predicted using our approach were evaluated comparatively along with 29 other submissions by two metrics (area under the ROC curve and area under the precision-recall curve). The overall performance of our approach ranked the second among all participating teams.

  17. Eliminating the influence of source spectrum of white light scanning interferometry through time-delay estimation algorithm

    Science.gov (United States)

    Zhou, Yunfei; Cai, Hongzhi; Zhong, Liyun; Qiu, Xiang; Tian, Jindong; Lu, Xiaoxu

    2017-05-01

    In white light scanning interferometry (WLSI), the accuracy of profile measurement achieved with the conventional zero optical path difference (ZOPD) position locating method is closely related with the shape of interference signal envelope (ISE), which is mainly decided by the spectral distribution of illumination source. For a broadband light with Gaussian spectral distribution, the corresponding shape of ISE reveals a symmetric distribution, so the accurate ZOPD position can be achieved easily. However, if the spectral distribution of source is irregular, the shape of ISE will become asymmetric or complex multi-peak distribution, WLSI cannot work well through using ZOPD position locating method. Aiming at this problem, we propose time-delay estimation (TDE) based WLSI method, in which the surface profile information is achieved by using the relative displacement of interference signal between different pixels instead of the conventional ZOPD position locating method. Due to all spectral information of interference signal (envelope and phase) are utilized, in addition to revealing the advantage of high accuracy, the proposed method can achieve profile measurement with high accuracy in the case that the shape of ISE is irregular while ZOPD position locating method cannot work. That is to say, the proposed method can effectively eliminate the influence of source spectrum.

  18. Periodic protein adsorption at the gold/biotin aqueous solution interface: evidence of kinetics with time delay

    Science.gov (United States)

    Neff, H.; Laborde, H. M.; Lima, A. M. N.

    2016-11-01

    An oscillatory molecular adsorption pattern of the protein neutravidin from aqueous solution onto gold, in presence of a pre-deposited self assembled mono-molecular biotin film, is reported. Real time surface Plasmon resonance sensing was utilized for evaluation of the adsorption kinetics. Two different fractions were identified: in the initial phase, protein molecules attach irreversibly onto the Biotin ligands beneath towards the jamming limit, forming a neutravidin-biotin fraction. Afterwards, the growth rate exhibits distinct, albeit damped adsorption-desorption oscillations over an extended time span, assigned to a quasi reversibly bound fraction. These findings agree with, and firstly confirm a previously published model, proposing macro-molecular adsorption with time delay. The non-linear dynamic model is applicable to and also resembles non-damped oscillatory binding features of the hetero-catalytic oxidation of carbon monoxide molecules on platinum in the gas phase. An associated surface residence time can be linked to the dynamics and time scale required for self-organization.

  19. Hopf Bifurcation Analysis of a Gene Regulatory Network Mediated by Small Noncoding RNA with Time Delays and Diffusion

    Science.gov (United States)

    Li, Chengxian; Liu, Haihong; Zhang, Tonghua; Yan, Fang

    2017-12-01

    In this paper, a gene regulatory network mediated by small noncoding RNA involving two time delays and diffusion under the Neumann boundary conditions is studied. Choosing the sum of delays as the bifurcation parameter, the stability of the positive equilibrium and the existence of spatially homogeneous and spatially inhomogeneous periodic solutions are investigated by analyzing the corresponding characteristic equation. It is shown that the sum of delays can induce Hopf bifurcation and the diffusion incorporated into the system can effect the amplitude of periodic solutions. Furthermore, the spatially homogeneous periodic solution always exists and the spatially inhomogeneous periodic solution will arise when the diffusion coefficients of protein and mRNA are suitably small. Particularly, the small RNA diffusion coefficient is more robust and its effect on model is much less than protein and mRNA. Finally, the explicit formulae for determining the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are derived by employing the normal form theory and center manifold theorem for partial functional differential equations. Finally, numerical simulations are carried out to illustrate our theoretical analysis.

  20. Medication Errors

    Science.gov (United States)

    ... for You Agency for Healthcare Research and Quality: Medical Errors and Patient Safety Centers for Disease Control and ... Quality Chasm Series National Coordinating Council for Medication Error Reporting and Prevention ... Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & ...

  1. Error Patterns

    NARCIS (Netherlands)

    Hoede, C.; Li, Z.

    2001-01-01

    In coding theory the problem of decoding focuses on error vectors. In the simplest situation code words are $(0,1)$-vectors, as are the received messages and the error vectors. Comparison of a received word with the code words yields a set of error vectors. In deciding on the original code word,

  2. Mixed H∞ and passive projective synchronization for fractional-order memristor-based neural networks with time delays via adaptive sliding mode control

    Science.gov (United States)

    Song, Shuai; Song, Xiaona; Balsera, Ines Tejado

    2017-05-01

    This paper investigates the mixed H∞ and passive projective synchronization problem for fractional-order (FO) memristor-based neural networks with time delays. Our aim is to design a controller such that, though the unavoidable phenomena of time delay and external disturbances is fully considered, the resulting closed-loop system is stable with a mixed H∞ and passive performance level. By combining sliding mode control and adaptive control methods, a novel adaptive sliding mode control strategy is designed for the synchronization of time-delayed FO dynamic networks. Via the application of FO system stability theory, the projective synchronization conditions are addressed in terms of linear matrix inequalities. Based on the conditions, a desired controller which can guarantee the stability of the closed-loop system and also ensure a mixed H∞ and passive performance level is designed. Finally, two simulation examples are given to illustrate the effectiveness of the proposed method.

  3. Bifurcation structure of cavity soliton dynamics in a vertical-cavity surface-emitting laser with a saturable absorber and time-delayed feedback

    Science.gov (United States)

    Schelte, Christian; Panajotov, Krassimir; Tlidi, Mustapha; Gurevich, Svetlana V.

    2017-08-01

    We consider a wide-aperture surface-emitting laser with a saturable absorber section subjected to time-delayed feedback. We adopt the mean-field approach assuming a single longitudinal mode operation of the solitary vertical-cavity surface-emitting laser (VCSEL). We investigate cavity soliton dynamics under the effect of time-delayed feedback in a self-imaging configuration where diffraction in the external cavity is negligible. Using bifurcation analysis, direct numerical simulations, and numerical path-continuation methods, we identify the possible bifurcations and map them in a plane of feedback parameters. We show that for both the homogeneous and localized stationary lasing solutions in one spatial dimension, the time-delayed feedback induces complex spatiotemporal dynamics, in particular a period doubling route to chaos, quasiperiodic oscillations, and multistability of the stationary solutions.

  4. Application of time transfer function to McVittie spacetime: gravitational time delay and secular increase in astronomical unit

    Science.gov (United States)

    Arakida, Hideyoshi

    2011-08-01

    We attempt to calculate the gravitational time delay in a time-dependent gravitational field, especially in McVittie spacetime, which can be considered as the spacetime around a gravitating body such as the Sun, embedded in the FLRW (Friedmann-Lemaître-Robertson-Walker) cosmological background metric. To this end, we adopt the time transfer function method proposed by Le Poncin-Lafitte et al. (Class Quantum Gravity 21:4463, 2004) and Teyssandier and Le Poncin-Lafitte (Class Quantum Gravity 25:145020, 2008), which is originally related to Synge's world function Ω( x A , x B ) and enables to circumvent the integration of the null geodesic equation. We re-examine the global cosmological effect on light propagation in the solar system. The round-trip time of a light ray/signal is given by the functions of not only the spacial coordinates but also the emission time or reception time of light ray/signal, which characterize the time-dependency of solutions. We also apply the obtained results to the secular increase in the astronomical unit, reported by Krasinsky and Brumberg (Celest Mech Dyn Astron 90:267, 2004), and we show that the leading order terms of the time-dependent component due to cosmological expansion is 9 orders of magnitude smaller than the observed value of dAU/ dt, i.e., 15 ± 4 (m/century). Therefore, it is not possible to explain the secular increase in the astronomical unit in terms of cosmological expansion.

  5. Space Telescope and Optical Reverberation Mapping Project. III. Optical Continuum Emission and Broadband Time Delays in NGC 5548

    Science.gov (United States)

    Fausnaugh, M. M.; Denney, K. D.; Barth, A.J.; Bentz, M.C.; Bottorff, M.C.; Carini, M.T.; Croxall, K. V.; Rosa, G. De; Goad, M.R.; Gehrels, Cornelis; hide

    2016-01-01

    We present ground-based optical photometric monitoring data for NGC 5548, part of an extended multiwavelength reverberation mapping campaign. The light curves have nearly daily cadence from 2014 January to July in ninefilters (BVRI and ugriz). Combined with ultraviolet data from the Hubble Space Telescope and Swift, we confirm significant time delays between the continuum bands as a function of wavelength, extending the wavelength coverage from 1158 Angstrom to the z band (approximately 9160 angstrom). We find that the lags at wavelengths longer than the V band are equal to or greater than the lags of high-ionization-state emission lines (such as He pi lambdal1640 and lambda 4686), suggesting that the continuum-emitting source is of a physical size comparable to the inner broad-line region (BLR). The trend of lag with wavelength is broadly consistent with the prediction for continuum reprocessing by an accretion disk with (tau varies as lambda(exp 4/3)). However, the lags also imply a disk radius that is 3 times larger than the prediction from standardthin-disk theory, assuming that the bolometric luminosity is 10 percent of the Eddington luminosity (L 0.1L(sub Edd)).Using optical spectra from the Large Binocular Telescope, we estimate the bias of the interband continuum lagsdue to BLR emission observed in the filters. We find that the bias for filters with high levels of BLR contamination(20 percent) can be important for the shortest continuum lags and likely has a significant impact on the u and U bandsowing to Balmer continuum emission.

  6. Comparison of Prediction-Error-Modelling Criteria

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp; Jørgensen, Sten Bay

    2007-01-01

    Single and multi-step prediction-error-methods based on the maximum likelihood and least squares criteria are compared. The prediction-error methods studied are based on predictions using the Kalman filter and Kalman predictors for a linear discrete-time stochastic state space model, which...... is a realization of a continuous-discrete multivariate stochastic transfer function model. The proposed prediction error-methods are demonstrated for a SISO system parameterized by the transfer functions with time delays of a continuous-discrete-time linear stochastic system. The simulations for this case suggest...... to use the one-step-ahead prediction-error maximum-likelihood (or maximum a posteriori) estimator. It gives consistent estimates of all parameters and the parameter estimates are almost identical to the estimates obtained for long prediction horizons but with consumption of significantly less...

  7. MiNDSTEp differential photometry of the gravitationally lensed quasars WFI2033-4723 and HE0047-1756: Microlensing and a new time delay

    DEFF Research Database (Denmark)

    Giannini, E.; Schmidt, R. W.; Wambsganss, J.

    2017-01-01

    five years. We provide, for the first time, an estimate of the time delay of component B with respect to A of Δt = (7.6 ± 1.8) days for this object. We also find evidence for a secular evolution of the magnitude difference between components A and B in both filters, which we explain as due to a long...

  8. Decade-long time delays in nutrient and plant species dynamics during eutrophication and re-oligotrophication of Lake Fure 1900–2015

    DEFF Research Database (Denmark)

    Sand-Jensen, Kaj; Bruun, Hans Henrik; Båstrup-Spohr, Lars

    2017-01-01

    in species dominance takes longer than colonization by new species. Synthesis. Time delays of P concentrations, water clarity and macrophyte richness and composition were long and complex. Neglecting growth strategies of species makes application of extinction debt and colonization credit concepts dubious...

  9. Error Budgeting

    Energy Technology Data Exchange (ETDEWEB)

    Vinyard, Natalia Sergeevna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perry, Theodore Sonne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-04

    We calculate opacity from k (hn)=-ln[T(hv)]/pL, where T(hv) is the transmission for photon energy hv, p is sample density, and L is path length through the sample. The density and path length are measured together by Rutherford backscatter. Δk = $\\partial k$\\ $\\partial T$ ΔT + $\\partial k$\\ $\\partial (pL)$. We can re-write this in terms of fractional error as Δk/k = Δ1n(T)/T + Δ(pL)/(pL). Transmission itself is calculated from T=(U-E)/(V-E)=B/B0, where B is transmitted backlighter (BL) signal and B0 is unattenuated backlighter signal. Then ΔT/T=Δln(T)=ΔB/B+ΔB0/B0, and consequently Δk/k = 1/T (ΔB/B + ΔB$_0$/B$_0$ + Δ(pL)/(pL). Transmission is measured in the range of 0.2

  10. B0218+357 : Time Delays and New MERLIN/VLA 5GHz Maps of the Einstein Ring

    NARCIS (Netherlands)

    Biggs, A. D.; Browne, I. W. A.; Wilkinson, P. N.; Muxlow, T. W. B.; Helbig, P.; Koopmans, L. V. E.

    1999-01-01

    Abstract: This poster presents a new 5 GHz combined MERLIN/VLA map of B0218+357 which shows for the first time believable substructure in the Einstein ring. This will now be exploited for further constraints on the model which presently dominates the error on the estimate of H_0 derived from the

  11. Medical error

    African Journals Online (AJOL)

    QuickSilver

    Studies in the USA have shown that medical error is the 8th most common cause of death.2,3. The most common causes of medical error are:- administration of the wrong medication or wrong dose of the correct medication, using the wrong route of administration, giving a treatment to the wrong patient or at the wrong time.4 ...

  12. Refractive Errors

    Science.gov (United States)

    ... halos around bright lights, squinting, headaches, or eye strain. Glasses or contact lenses can usually correct refractive errors. Laser eye surgery may also be a possibility. NIH: National Eye ...

  13. Relationship Between Subjective Preference and the Alpha-Brain Wave in Relation to the Initial Time Delay Gap with Vocal Music

    Science.gov (United States)

    MOURI, K.; AKIYAMA, K.; ANDO, Y.

    2000-04-01

    Previously, it was reported that the most preferred initial time delay gap [Δt1]pand subsequent reverberation time are described by the minimum value of the effective duration (τe)minof the running autocorrelation function (ACF) of music signals (2 T=2·0 s) (Y. ANDO et al. 1989 Journal of Acoustical Society of America86, 644-649). This paper shows whether this result is supported or not by use of the electro-physiological method. Experiments were performed for sound fields changing the initial time delay gapΔt1 of a single reflection with vocal music as a source signal, which has large changes in runningτe . The results at the time interval when (τe)minof the music is observed reveal that the scale value of subjective preference is closely related to the value of τeof the alpha wave obtained from the left heimsphere.

  14. Transmission and time delay properties of an integrated system consisting of atomic vapor cladding on top of a micro ring resonator.

    Science.gov (United States)

    Stern, Liron; Levy, Uriel

    2012-12-17

    In this paper we analyze the transmission and time delay properties of light propagating through a microring resonator (MRR) consisting of a solid core waveguide surrounded by an atomic vapor cladding. Using the atomic effective susceptibility of Rubidium we derive the complex transmission spectrum of the integrated system. We show, that when the system is under-coupled, the transmission can exceed the standalone MRR's background transmission and is accompanied by enhanced positive time delay. It is shown that in this case the contrast of the atomic lines is greatly enhanced. This allows achieving high optical densities at short propagation length. Furthermore, owing to its features such as small footprint, high tunability, and high delay-transmission product, this system may become an attractive choice for chip scale manipulations of light.

  15. A possible time-delayed brightening of the Sgr A* accretion flow after the pericenter passage of the G2 cloud

    Science.gov (United States)

    Kawashima, Tomohisa; Matsumoto, Yosuke; Matsumoto, Ryoji

    2017-06-01

    A possibility of time-delayed radio brightenings of Sgr A* triggered by the pericenter passage of the G2 cloud is studied by carrying out global three-dimensional magnetohydrodynamic simulations, taking into account the radiative cooling of the tidal debris of the G2 cloud. Magnetic fields in the accretion flow are strongly perturbed and reorganized after the passage of G2. We have found that the magnetic energy in the accretion flow increased by a factor of 3-4 in 5-10 yr after the passage of G2 through a dynamo mechanism driven by the magneto-rotational instability. Since this B-field amplification enhances the synchrotron emission from the disk and the outflow, the radio and the infrared luminosity of Sgr A* are expected to increase some time, around 2020. The time delay of the radio brightening enables us to determine the rotation axis of the preexisting disk.

  16. Accuracy and Time Delay of Glucose Measurements of Continuous Glucose Monitoring and Bedside Artificial Pancreas During Hyperglycemic and Euglycemic Hyperinsulinemic Glucose Clamp Study.

    Science.gov (United States)

    Kuroda, Akio; Taniguchi, Satoshi; Akehi, Yuko; Mori, Hiroyasu; Tamaki, Motoyuki; Suzuki, Reiko; Otsuka, Yinhua; Matsuhisa, Munehide

    2017-11-01

    Glucose values of continuous glucose monitoring (CGM) have time delays compared with plasma glucose (PG) values. The artificial pancreas (STG-55, Nikkiso, Japan) (AP), which measures venous blood glucose directly, also has a time delay because of the long tubing lines from sampling vessel to the glucose sensor. We investigate accuracy and time delay of CGM and AP in comparison with PG values during 2-step glucose clamp study. Seven patients with type 2 diabetes and 2 healthy volunteers were included in this study. CGM (Enlite sensor, Medtronic, Northridge, CA, USA) was attached on the day before the experiment. Hyperglycemic (200 mg/dL) clamp was performed for 90 minutes, followed by euglycemic (100 mg/dL) hyperinsulinemic (100 μU/mL) clamp for 90-120 minutes using AP. CGM sensor glucose was calibrated just before and after the clamp study. AP and CGM values were compared with PG values. AP values were significantly lower than PG values at 5, 30 minute during hyperglycemic clamp. In comparison, CGM value at 0 minute was significantly higher, and its following values were almost significantly lower than PG values. The time delay of AP and CGM values to reach maximum glucose levels were 5.0 ± 22.3 (NS) and 28.6 ± 32.5 ( P < .05) min, respectively. Mean absolute rate difference of CGM was significantly higher than AP (24.0 ± 7.6 vs 15.3 ± 4.6, P < .05) during glucose rising period (0-45 min); however, there were no significant differences during other periods. Both CGM and AP failed to follow plasma glucose values during nonphysiologically rapid glucose rising, but indicated accurate values during physiological glucose change.

  17. The effects of time delay on the decline and propagation processes of population in the Malthus-Verhulst model with cross-correlated noises

    Science.gov (United States)

    Cai, J. C.; Mei, D. C.

    2009-12-01

    The effects of time delay on the decline and propagation processes of population in the Malthus-Verhulst model with cross-correlated noises are investigated separately. Through numerically computing and stochastically simulating, we find that: (i) inclusion of time delay in the decline process, increasing the delay time τ weakens the stability of population with short delay and strengthens it with long delay. The stability of population reduces monotonically as the cross-correlated intensity λ increasing. The population of a species goes to extinction with increasing τ and increasing λ; (ii) inclusion of time delay in the propagation process, the increasing τ strengthens the stability of population and the increasing λ weakens it. The increasing τ slows down the growth process of a species while the increasing λ speeds it up. That is, the increasing delay time does not affect roughly the stability of population with short delay but strengthens it with long delay, and the population of species is restricted in the lower level by the larger delay time. The stability of population is weakened and the replacement of old individuals with young ones is accelerated by the increasing cross-correlation intensity between two noises.

  18. A Reduced-Order Controller Considering High-Order Modal Information of High-Rise Buildings for AMD Control System with Time-Delay

    Directory of Open Access Journals (Sweden)

    Zuo-Hua Li

    2017-01-01

    Full Text Available Time-delays of control force calculation, data acquisition, and actuator response will degrade the performance of Active Mass Damper (AMD control systems. To reduce the influence, model reduction method is used to deal with the original controlled structure. However, during the procedure, the related hierarchy information of small eigenvalues will be directly discorded. As a result, the reduced-order model ignores the information of high-order mode, which will reduce the design accuracy of an AMD control system. In this paper, a new reduced-order controller based on the improved Balanced Truncation (BT method is designed to reduce the calculation time and to retain the abandoned high-order modal information. It includes high-order natural frequency, damping ratio, and vibration modal information of the original structure. Then, a control gain design method based on Guaranteed Cost Control (GCC algorithm is presented to eliminate the adverse effects of data acquisition and actuator response time-delays in the design process of the reduced-order controller. To verify its effectiveness, the proposed methodology is applied to a numerical example of a ten-storey frame and an experiment of a single-span four-storey steel frame. Both numerical and experimental results demonstrate that the reduced-order controller with GCC algorithm has an excellent control effect; meanwhile it can compensate time-delays effectively.

  19. Single- and double-difference algorithms for position and time-delay calibration of transducer-elements in a sparse array.

    Science.gov (United States)

    Li, Yue; Sharp, Ian; Hedley, Mark; Ho, Phil; Guo, Y Jay

    2007-06-01

    A method for the calibration of the position and time delay of transducer elements in a large, sparse array used for underwater, high-resolution, ultrasound imaging has been described in a previous work. This algorithm is based on the direct algorithm used in the global positioning system (GPS), but the wave propagation speed is treated as one of the to-be-calibrated parameters. In this article, the performance of two other commonly used GPS algorithms, namely the single-difference algorithm and the double-difference algorithm, is evaluated. The calibration of the propagation speed also is integrated into these two algorithms. Furthermore, a novel, least-squares method is proposed to calibrate the time delay associated with each transducer element for these two algorithms. The performances of these algorithms are theoretically analyzed and evaluated using numerical analysis and simulation study. The performance of the direct algorithm, the single-difference algorithm, and the double-difference algorithm is compared. It was found that the single-difference algorithm has the best performance among the three algorithms for the current application, and it is capable of calibrating the position and time delay of transducer elements to an accuracy of one-tenth of a wavelength.

  20. Refractive errors.

    Science.gov (United States)

    Schiefer, Ulrich; Kraus, Christina; Baumbach, Peter; Ungewiß, Judith; Michels, Ralf

    2016-10-14

    All over the world, refractive errors are among the most frequently occuring treatable distur - bances of visual function. Ametropias have a prevalence of nearly 70% among adults in Germany and are thus of great epidemiologic and socio-economic relevance. In the light of their own clinical experience, the authors review pertinent articles retrieved by a selective literature search employing the terms "ametropia, "anisometropia," "refraction," "visual acuity," and epidemiology." In 2011, only 31% of persons over age 16 in Germany did not use any kind of visual aid; 63.4% wore eyeglasses and 5.3% wore contact lenses. Refractive errors were the most common reason for consulting an ophthalmologist, accounting for 21.1% of all outpatient visits. A pinhole aperture (stenopeic slit) is a suitable instrument for the basic diagnostic evaluation of impaired visual function due to optical factors. Spherical refractive errors (myopia and hyperopia), cylindrical refractive errors (astigmatism), unequal refractive errors in the two eyes (anisometropia), and the typical optical disturbance of old age (presbyopia) cause specific functional limitations and can be detected by a physician who does not need to be an ophthalmologist. Simple functional tests can be used in everyday clinical practice to determine quickly, easily, and safely whether the patient is suffering from a benign and easily correctable type of visual impairment, or whether there are other, more serious underlying causes.

  1. Percutaneous coronary intervention-related time delay, patient's risk profile, and survival benefits of primary angioplasty vs lytic therapy in ST-segment elevation myocardial infarction.

    Science.gov (United States)

    De Luca, Giuseppe; Cassetti, Ettore; Marino, Paolo

    2009-07-01

    Previous reports have suggested an impact of patient's risk profile and percutaneous coronary intervention (PCI)-related time delay on the benefits of primary angioplasty as compared with fibrinolysis. However, several factors, such as inappropriate interpretation and definition of delays, missing currently available trials, and arguable risk-benefit analysis, limit the value of these reports. Thus, the aim of the current review is to assess whether the prognostic impact of PCI-related time delay may vary according to patient's risk profile, presentation delay, and type of lytic therapy. We obtained results from all randomized trials comparing fibrinolysis and primary angioplasty in ST-segment elevation myocardial infarction. The literature was scanned by formal searches of electronic databases (MEDLINE and CENTRAL) for papers published from January 1990 to April 2007. The following key words were used: randomized trial, myocardial infarction, reperfusion, primary angioplasty, rescue angioplasty, fibrinolysis, thrombolysis, duteplase, reteplase, tenecteplase, and alteplase. Major clinical end point assessed was mortality at 30-day follow-up. The relationship between mortality benefits from primary angioplasty, patient's risk profile, and PCI-related time delay was evaluated by using a weighted least-square regression in which results from each trial were weighted by the square root of the number of patients of each trial. A total of 27 trials were finally included, with 4399 patients randomized to primary angioplasty and 4474 patients randomized to fibrinolysis. The relationship between the benefits from primary angioplasty and PCI-related time changed according to risk profile. The higher the risk profile, the larger the reduction in mortality benefits from primary angioplasty as compared with fibrinolysis per each 10 minutes of PCI-related time delay (0.75%, 0.45%, and 0%, in high-, medium-, and low-risk patients, respectively). Furthermore, the impact was

  2. High-Speed Photonic Reservoir Computing Using a Time-Delay-Based Architecture: Million Words per Second Classification

    Science.gov (United States)

    Larger, Laurent; Baylón-Fuentes, Antonio; Martinenghi, Romain; Udaltsov, Vladimir S.; Chembo, Yanne K.; Jacquot, Maxime

    2017-01-01

    Reservoir computing, originally referred to as an echo state network or a liquid state machine, is a brain-inspired paradigm for processing temporal information. It involves learning a "read-out" interpretation for nonlinear transients developed by high-dimensional dynamics when the latter is excited by the information signal to be processed. This novel computational paradigm is derived from recurrent neural network and machine learning techniques. It has recently been implemented in photonic hardware for a dynamical system, which opens the path to ultrafast brain-inspired computing. We report on a novel implementation involving an electro-optic phase-delay dynamics designed with off-the-shelf optoelectronic telecom devices, thus providing the targeted wide bandwidth. Computational efficiency is demonstrated experimentally with speech-recognition tasks. State-of-the-art speed performances reach one million words per second, with very low word error rate. Additionally, to record speed processing, our investigations have revealed computing-efficiency improvements through yet-unexplored temporal-information-processing techniques, such as simultaneous multisample injection and pitched sampling at the read-out compared to information "write-in".

  3. Fault detection and diagnosis for non-Gaussian stochastic distribution systems with time delays via RBF neural networks.

    Science.gov (United States)

    Yi, Qu; Zhan-ming, Li; Er-chao, Li

    2012-11-01

    A new fault detection and diagnosis (FDD) problem via the output probability density functions (PDFs) for non-gausian stochastic distribution systems (SDSs) is investigated. The PDFs can be approximated by radial basis functions (RBFs) neural networks. Different from conventional FDD problems, the measured information for FDD is the output stochastic distributions and the stochastic variables involved are not confined to Gaussian ones. A (RBFs) neural network technique is proposed so that the output PDFs can be formulated in terms of the dynamic weighings of the RBFs neural network. In this work, a nonlinear adaptive observer-based fault detection and diagnosis algorithm is presented by introducing the tuning parameter so that the residual is as sensitive as possible to the fault. Stability and Convergency analysis is performed in fault detection and fault diagnosis analysis for the error dynamic system. At last, an illustrated example is given to demonstrate the efficiency of the proposed algorithm, and satisfactory results have been obtained. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  4. High-Speed Photonic Reservoir Computing Using a Time-Delay-Based Architecture: Million Words per Second Classification

    Directory of Open Access Journals (Sweden)

    Laurent Larger

    2017-02-01

    Full Text Available Reservoir computing, originally referred to as an echo state network or a liquid state machine, is a brain-inspired paradigm for processing temporal information. It involves learning a “read-out” interpretation for nonlinear transients developed by high-dimensional dynamics when the latter is excited by the information signal to be processed. This novel computational paradigm is derived from recurrent neural network and machine learning techniques. It has recently been implemented in photonic hardware for a dynamical system, which opens the path to ultrafast brain-inspired computing. We report on a novel implementation involving an electro-optic phase-delay dynamics designed with off-the-shelf optoelectronic telecom devices, thus providing the targeted wide bandwidth. Computational efficiency is demonstrated experimentally with speech-recognition tasks. State-of-the-art speed performances reach one million words per second, with very low word error rate. Additionally, to record speed processing, our investigations have revealed computing-efficiency improvements through yet-unexplored temporal-information-processing techniques, such as simultaneous multisample injection and pitched sampling at the read-out compared to information “write-in”.

  5. Correction of the recording artifacts and detection of the functional deviations in ECG by means of syndrome decoding with an automatic burst error correction of the cyclic codes using periodograms for determination of code component spectral range

    Directory of Open Access Journals (Sweden)

    Evgenie D. Adamoviс

    2016-05-01

    Full Text Available Aims This paper describes a novel approach to the analysis of electrocardiographic data based on the consideration of the repetitive P, Q, R, S, T sequences as cyclic codes. In Part I we introduce a principle similar to the syndrome decoding using the control numbers, which allows correcting the noise combinations. Materials and methods We propose to apply the burst-error-correcting algorithms for automatic detection of the ECG artifacts and the functional abnormalities, including those compared to the reference model. Our approach is compared to the symbolic dynamics methods in cardiology practice. During the automated search of the code components (i.e. point values and spectral ranges one-to-one corresponding to P, Q, R, S, T considered in Part II, the authors apply the Lomb-Scargle periodogram method with the phase control which allows to determine the code components not only from the main harmonics, but also using the sidebands, avoiding the phase errors. Results The results of the method testing on rats with the heart failure using a simplified telemetric recording from the implantable chips are given in Part III. A complete independence of the results of the determination of the code points (fingerprints from the variables for which the calculation is performed is shown. We also prove the robustness of the above approach with respect to the most types of the non-adaptive filtration. Conclusion The above method can be useful not only for experimental medicine, but also for veterinary and clinical diagnostic practice. This method is adequately reproducable both on animals and human ECG, except for some constant values.

  6. Correction of the recording artifacts and detection of the functional deviations in ECG by means of syndrome decoding with an automatic burst error correction of the cyclic codes using periodograms for determination of code component spectral range

    Directory of Open Access Journals (Sweden)

    Evgenie D. Adamoviс

    2015-05-01

    Full Text Available Aims This paper describes a novel approach to the analysis of electrocardiographic data based on the consideration of the repetitive P, Q, R, S, T sequences as cyclic codes. In Part I we introduce a principle similar to the syndrome decoding using the control numbers, which allows correcting the noise combinations. Materials and methods We propose to apply the burst-error-correcting algorithms for automatic detection of the ECG artifacts and the functional abnormalities, including those compared to the reference model. Our approach is compared to the symbolic dynamics methods. During the automated search of the code components (i.e. point values and spectral ranges one-to-one corresponding to P, Q, R, S, T considered in Part II, the authors apply the Lomb-Scargle periodogram method with the phase control which allows to determine the code components not only from the main harmonics, but also using the sidebands, avoiding the phase errors. Results The results of the method testing on rats with the heart failure using a simplified telemetric recording from the implantable chips are given in Part III. A complete independence of the results of the determination of the code points (fingerprints from the variables for which the calculation is performed is shown. We also prove the robustness of the above approach with respect to the most types of the non-adaptive filtration. Conclusion The above method can be useful not only for experimental medicine, but also for veterinary and clinical diagnostic practice. This method is adequately reproduced both on animals and human ECG, except for some constant values.

  7. Clinical Epidemiology of Buruli Ulcer from Benin (2005-2013: Effect of Time-Delay to Diagnosis on Clinical Forms and Severe Phenotypes.

    Directory of Open Access Journals (Sweden)

    Carlos Capela

    Full Text Available Buruli Ulcer (BU is a neglected infectious disease caused by Mycobacterium ulcerans that is responsible for severe necrotizing cutaneous lesions that may be associated with bone involvement. Clinical presentations of BU lesions are classically classified as papules, nodules, plaques and edematous infiltration, ulcer or osteomyelitis. Within these different clinical forms, lesions can be further classified as severe forms based on focality (multiple lesions, lesions' size (>15 cm diameter or WHO Category (WHO Category 3 lesions. There are studies reporting an association between delay in seeking medical care and the development of ulcerative forms of BU or osteomyelitis, but the effect of time-delay on the emergence of lesions classified as severe has not been addressed. To address both issues, and in a cohort of laboratory-confirmed BU cases, 476 patients from a medical center in Allada, Benin, were studied. In this laboratory-confirmed cohort, we validated previous observations, demonstrating that time-delay is statistically related to the clinical form of BU. Indeed, for non-ulcerated forms (nodule, edema, and plaque the median time-delay was 32.5 days (IQR 30.0-67.5, while for ulcerated forms it was 60 days (IQR 20.0-120.0 (p = 0.009, and for bone lesions, 365 days (IQR 228.0-548.0. On the other hand, we show here that time-delay is not associated with the more severe phenotypes of BU, such as multi-focal lesions (median 90 days; IQR 56-217.5; p = 0.09, larger lesions (diameter >15 cm (median 60 days; IQR 30-120; p = 0.92 or category 3 WHO classification (median 60 days; IQR 30-150; p = 0.20, when compared with unifocal (median 60 days; IQR 30-90, small lesions (diameter ≤15 cm (median 60 days; IQR 30-90, or WHO category 1+2 lesions (median 60 days; IQR 30-90, respectively. Our results demonstrate that after an initial period of progression towards ulceration or bone involvement, BU lesions become stable regarding size and focal

  8. Clinical Epidemiology of Buruli Ulcer from Benin (2005-2013): Effect of Time-Delay to Diagnosis on Clinical Forms and Severe Phenotypes

    Science.gov (United States)

    Capela, Carlos; Sopoh, Ghislain E.; Houezo, Jean G.; Fiodessihoué, René; Dossou, Ange D.; Costa, Patrício; Fraga, Alexandra G.; Menino, João F.; Silva-Gomes, Rita; Ouendo, Edgard M.

    2015-01-01

    Buruli Ulcer (BU) is a neglected infectious disease caused by Mycobacterium ulcerans that is responsible for severe necrotizing cutaneous lesions that may be associated with bone involvement. Clinical presentations of BU lesions are classically classified as papules, nodules, plaques and edematous infiltration, ulcer or osteomyelitis. Within these different clinical forms, lesions can be further classified as severe forms based on focality (multiple lesions), lesions’ size (>15cm diameter) or WHO Category (WHO Category 3 lesions). There are studies reporting an association between delay in seeking medical care and the development of ulcerative forms of BU or osteomyelitis, but the effect of time-delay on the emergence of lesions classified as severe has not been addressed. To address both issues, and in a cohort of laboratory-confirmed BU cases, 476 patients from a medical center in Allada, Benin, were studied. In this laboratory-confirmed cohort, we validated previous observations, demonstrating that time-delay is statistically related to the clinical form of BU. Indeed, for non-ulcerated forms (nodule, edema, and plaque) the median time-delay was 32.5 days (IQR 30.0–67.5), while for ulcerated forms it was 60 days (IQR 20.0–120.0) (p = 0.009), and for bone lesions, 365 days (IQR 228.0–548.0). On the other hand, we show here that time-delay is not associated with the more severe phenotypes of BU, such as multi-focal lesions (median 90 days; IQR 56–217.5; p = 0.09), larger lesions (diameter >15cm) (median 60 days; IQR 30–120; p = 0.92) or category 3 WHO classification (median 60 days; IQR 30–150; p = 0.20), when compared with unifocal (median 60 days; IQR 30–90), small lesions (diameter ≤15cm) (median 60 days; IQR 30–90), or WHO category 1+2 lesions (median 60 days; IQR 30–90), respectively. Our results demonstrate that after an initial period of progression towards ulceration or bone involvement, BU lesions become stable regarding size and

  9. Wideband slow-light modes for time delay of ultrashort pulses in symmetrical metal-cladding optical waveguide.

    Science.gov (United States)

    Zheng, Yuanlin; Yuan, Wen; Chen, Xianfeng; Cao, Zhuangqi

    2012-04-23

    A widebandwidth optical delay line is a useful device for various fascinating applications, such as optical buffering and processing of ultrafast signal. Here, we experimentally demonstrated effective slow light of sub-picosecond signal over 10 THz frequency range by employing the wide slow light modes in thick symmetrical metal-cladding optical waveguide (SMCOW). Ultrahigh-order guided modes travelling as slow light in waveguide together with strong confinement provided by metal-cladding makes this scheme nearly material dispersion independent and compatible with wide bandwidth operation. © 2012 Optical Society of America

  10. Haemodynamic vector personalization of a quadripolar left ventricular lead used for cardiac resynchronization therapy: use of surface electrocardiogram and interventricular time delays.

    Science.gov (United States)

    Trolese, Luca; Biermann, Juergen; Hartmann, Maximilian; Schluermann, Fabienne; Faber, Thomas S; Bode, Christoph; Asbach, Stefan

    2014-10-01

    The choice of left ventricular pacing configurations (LVPCs) of quadripolar leads used for cardiac resynchronization therapy (CRT) affects haemodynamic response and thus may be a tool for device optimization. The value of surface electrocardiograms and interventricular time delays (IVDs) for optimization is unknown. Sixteen patients implanted with a CRT device with a quadripolar LV lead underwent invasive testing of LV dP/dt. QRS durations at baseline (bl) and during biventricular pacing (biv) were measured using different LVPCs (total of 141 LVPCs; 8.8 per patient). Variations in QRS duration during biv were calculated for each patient (ΔQRS) and, when compared with intrinsic QRS duration, for all LVPCs (ΔQRSLVPC). Interventricular time delays between the poles of the LV lead were obtained from intracardiac electrograms. ΔIVD was calculated as IVDmax - IVDmin. Parameters were correlated with LV dP/dt. ΔQRS and ΔQRSLVPC both significantly correlated with LV dP/dt (P 168 ms (P personalization in the individual. Reductions in QRS width, but not IVDs, correlate with acute haemodynamic response. Intraindividually, in 75% of patients, the LVPC with the shortest QRS duration gives equal or superior haemodynamic results when compared with the LVPC with longest QRS duration. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  11. Nuclear molecule formation and time delay in collisions of nuclei with Z{sub 1} + Z{sub 2} ≥ 110

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, S.; Beliuskina, O. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); Comas, V.; Ackermann, D.; Kindler, B.; Lommel, B.; Mann, R.; Maurer, J. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Devaraja, H.M. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Manipal University, Manipal Centre for Natural Sciences, Kamataka (India); Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Heinz, C.; Morherr, F. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, Giessen (Germany); Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Goethe-Universitaet Frankfurt, Institut fuer Physik, Frankfurt (Germany); Kozulin, E. [JINR, Flerov Laboratory of Nuclear Reactions, Dubna, Moscow Region (Russian Federation); Muenzenberg, G. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Manipal University, Manipal Centre for Natural Sciences, Kamataka (India); Hessberger, F.P. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Helmholtz Institut Mainz, Mainz (Germany)

    2015-11-15

    We investigated the formation of nuclear molecules and the occurrence of time delays in reactions of the superheavy systems {sup 64}Ni + {sup 207}Pb (Z{sub 1} + Z{sub 2} = 110), {sup 132}Xe + {sup 208}Pb (Z{sub 1} + Z{sub 2} = 136) and {sup 238}U + {sup 238}U (Z{sub 1} + Z{sub 2} = 184). In deep inelastic binary reactions of Ni + Pb and Xe + Pb we observed clear signatures for the formation of long-living molecule-like nuclear systems which rotate by large angles of 180 degree. The evolution of the nuclear molecules was accompanied by large energy dissipation and a strong deformation of the nuclear system. The results from the giant system U + U revealed striking similarities to the ones from Ni + Pb and Xe + Pb, showing that significant time delays still occur in the heaviest accessible systems. The experiments were performed at the velocity filter SHIP at GSI and at the VAMOS spectrometer at GANIL. (orig.)

  12. Fractional-Order Control of a Nonlinear Time-Delay System: Case Study in Oxygen Regulation in the Heart-Lung Machine

    Directory of Open Access Journals (Sweden)

    S. J. Sadati

    2012-01-01

    Full Text Available A fractional-order controller will be proposed to regulate the inlet oxygen into the heart-lung machine. An analytical approach will be explained to satisfy some requirements together with practical implementation of some restrictions for the first time. Primarily a nonlinear single-input single-output (SISO time-delay model which was obtained previously in the literature is introduced for the oxygen generation process in the heart-lung machine system and we will complete it by adding some new states to control it. Thereafter, the system is linearized using the state feedback linearization approach to find a third-order time-delay dynamics. Consequently classical PID and fractional order controllers are gained to assess the quality of the proposed technique. A set of optimal parameters of those controllers are achieved through the genetic algorithm optimization procedure through minimizing a cost function. Our design method focuses on minimizing some famous performance criterions such as IAE, ISE, and ITSE. In the genetic algorithm, the controller parameters are chosen as a random population. The best relevant values are achieved by reducing the cost function. A time-domain simulation signifies the performance of controller with respect to a traditional optimized PID controller.

  13. Advanced Time-Delayed Coincidence Studies of $^{31,32}$Mg from the $\\beta$-decays of $^{31,32}$Na

    CERN Multimedia

    Marechal, F; Plociennik, W A

    2002-01-01

    It is proposed to study the lifetime of the 2$_{1}^{+}$ 885.4 keV state in $^{32}$Mg by means of Advanced Time-Delayed $\\beta \\gamma \\gamma$(t) method with the precision in the half-life value of about $\\pm$ 1.5 ps. This would be an independent verification of the B(E2; 0$_{1}^{+} \\rightarrow$ 2$_{1}^{+}$) values obtained so far in a few studies using Coulomb excitations at intermediate beam energies. The advantage of time-delayed coincidence measurements is that they are free of corrections used in the Coulex studies, which strongly affect the deduced B(E2) results. In addition, we propose to study the lifetimes or lifetime limits of other states in nuclei populated in the decays of $^{31}$Na and $^{32}$Na, specifically focusing on the intruder negative parity band in $^{31}$Mg. As a side benefit to this investigation we expect high-quality $\\gamma \\gamma$ coincidences to reveal new excited states in both $^{31}$Mg and $^{32}$Mg. Our results from a brief test-measurement yield a lifetime of T$_{1/2}$ = 10.5(...

  14. Time-delayed intensity-interferometry of the emission from ultracold atoms in a steady-state magneto-optical trap

    CERN Document Server

    K., Muhammed Shafi; Suryabrahmam, Buti; Girish, B S; Ramachandran, Hema

    2015-01-01

    An accurate measurement of the bunching of photons in the fluorescent emission from an ultracold ensemble of thermal 87Rb atoms in a steady-state magneto-optical trap is presented. Time-delayed-intensity-interferometry (TDII) performed with a 5-nanosecond time resolution yielded a second-order intensity correlation function that has the ideal value of 2 at zero delay, and that shows coherent Rabi oscillations of upto 5 full periods - much longer than the spontaneous emission lifetime of the excited state of Rb. The oscillations are damped out by ~150ns, and thereafter, as expected from a thermal source, an exponential decay is observed, enabling the determination of the temperature of the atomic ensemble. Values so obtained compare well with those determined by standard techniques. TDII thus enables a quantitative study of the coherent and incoherent dynamics, even of a large thermal ensemble of atomic emitters.

  15. Stochastic dynamics of N bistable elements with global time-delayed interactions: towards an exact solution of the master equations for finite N.

    Science.gov (United States)

    Kimizuka, M; Munakata, T; Rosinberg, M L

    2010-10-01

    We consider a network of N noisy bistable elements with global time-delayed couplings. In a two-state description, where elements are represented by Ising spins, the collective dynamics is described by an infinite hierarchy of coupled master equations which was solved at the mean-field level in the thermodynamic limit. When the number of elements is finite, as is the case in actual laser networks, an analytical description was deemed so far intractable and numerical studies seemed to be necessary. In this paper we consider the case of two interacting elements and show that a partial analytical description of the stationary state is possible if the stochastic process is time symmetric. This requires some relationship between the transition rates to be satisfied.

  16. A PD-Like Protocol With a Time Delay to Average Consensus Control for Multi-Agent Systems Under an Arbitrarily Fast Switching Topology.

    Science.gov (United States)

    Dong Wang; Ning Zhang; Jianliang Wang; Wei Wang

    2017-04-01

    This paper is concerned with the problem of average consensus control for multi-agent systems with linear and Lipschitz nonlinear dynamics under a switching topology. First, a proportional and derivative-like consensus algorithm for linear cases with a time delay is designed to address such a problem. By a system transformation, such a problem is converted to the stability problem of a switched delay system. The stability analysis is performed based on a proposed Lyapunov-Krasoversusii functional including a triple-integral term and sufficient conditions are obtained to guarantee the average consensus for multi-agent systems under arbitrary switching. Second, extensions to the Lipschitz nonlinear cases are further presented. Finally, numerical examples are given to illustrate the effectiveness of the results.

  17. Doubly-excited state effects on two-photon double ionization of helium by time-delayed, oppositely circularly-polarized attosecond pulses

    Science.gov (United States)

    Ngoko Djiokap, J. M.; Starace, Anthony F.

    2017-12-01

    We study two-photon double ionization (TPDI) of helium by a pair of time-delayed (non-overlapping), oppositely circularly-polarized attosecond pulses whose carrier frequencies are resonant with 1P o doubly-excited states. All of our TPDI results are obtained by numerical solution of the two-electron time-dependent Schrödinger equation for the six-dimensional case of circularly-polarized attosecond pulses, and they are analyzed using perturbation theory (PT). As compared with the corresponding nonresonant TPDI process, we find that the doubly-excited states change the character of vortex patterns in the two-electron momentum distributions for the case of back-to-back detection of the two ionized electrons in the polarization plane. The doubly-excited states also completely change the structure of fixed-energy, two-electron angular distributions. Moreover, both the fixed-energy and energy-integrated angular distributions, as well as the two-electron energy distributions, exhibit a periodicity with time delay τ between the two attosecond pulses of about 69 as, i.e. the beat period between the (2s2p){}1{{{P}}}o doubly-excited state and the He ground state. Using PT we derive an expression for an angle-integrated energy distribution that is sensitive to the slower beat period ∼1.2 fs between different doubly-excited states as well as to the long timescale ∼17 fs of autoionization lifetimes. However, with our current computer codes we are only able to study numerically the time-dependent phenomena occurring on an attosecond time scale.

  18. Distribution of spectral linear statistics on random matrices beyond the large deviation function—Wigner time delay in multichannel disordered wires

    Science.gov (United States)

    Grabsch, Aurélien; Texier, Christophe

    2016-11-01

    An invariant ensemble of N × N random matrices can be characterised by a joint distribution for eigenvalues P({λ }1,\\cdots ,{λ }N). The distribution of linear statistics, i.e. of quantities of the form L=(1/N){\\sum }if({λ }i) where f(x) is a given function, appears in many physical problems. In the N\\to ∞ limit, L scales as L˜ {N}η , where the scaling exponent η depends on the ensemble and the function f(x). Its distribution can be written in the form {P}N(s={N}-η L)≃ {A}N,β (s)\\exp \\{-(β {N}2/2){{Φ }}(s)\\}, where β \\in \\{1,2,4\\} is the Dyson index. The Coulomb gas technique naturally provides the large deviation function {{Φ }}(s), which can be efficiently obtained thanks to a ‘thermodynamic identity’ introduced earlier. We conjecture the pre-exponential function {A}N,β (s). We check our conjecture on several well controlled cases within the Laguerre and the Jacobi ensembles. Then we apply our main result to a situation where the large deviation function has no minimum (and L has infinite moments): this arises in the statistical analysis of the Wigner time delay for semi-infinite multichannel disordered wires (Laguerre ensemble). The statistical analysis of the Wigner time delay then crucially depends on the pre-exponential function {A}N,β (s), which ensures the decay of the distribution for large argument.

  19. Storage characteristics, nutritive value, and fermentation characteristics of alfalfa packaged in large-round bales and wrapped in stretch film after extended time delays.

    Science.gov (United States)

    Coblentz, W K; Coffey, K P; Chow, E A

    2016-05-01

    The production of baled silage is attractive to producers because it offers advantages over dry hay, particularly by limiting risks associated with wet or unstable weather conditions. Our objectives were to test the effects of delayed wrapping on silage fermentation, storage characteristics, and the nutritive value of baled alfalfa silages. To accomplish this, large-round bales of alfalfa were wrapped in plastic film within 4h of baling (d 0), or after delays of 1, 2, or 3 d. A secondary objective was to evaluate a prototype bale wrap containing an O2-limiting barrier (OB) against an identical polyethylene wrap without the O2 barrier (SUN). Sixty-four 1.19×1.25-m bales of alfalfa were made from 4 field blocks at a mean moisture concentration of 59.1±4.3% with a mean initial wet bale weight of 473±26.4kg. Two bales per field block were assigned to each combination of bale wrap (SUN or OB) and wrapping time (0, 1, 2, or 3 d postbaling), and one bale of each pair was fitted with a thermocouple placed in the geometric center of each bale. All bales were sampled after a 97-d storage period. Internal bale temperatures, recorded at the time bales were wrapped, were greater for all bales with wrapping delays compared with bales wrapped on d 0 (54.9 vs. 34.9°C), and increased to a maximum of 63.9°C after a 3-d delay exhibiting a linear effect of time delay. Total silage fermentation acids (lactic, acetic, propionic, butyric, and isobutyric) were greatest when bales were wrapped on d 0 compared with all bales wrapped with time delays (4.64 vs. 2.26% of DM), and declined with linear and quadratic effects of wrapping delay. Total fermentation acids also were related quadratically to internal bale temperature by regression [y (% of DM)=0.0042x(2) - 0.50x + 17.1; R(2)=0.725]. Similar responses were observed for lactic acid, except that trends were linear, both for orthogonal contrasts evaluating length of wrapping delay, and in regressions on internal bale temperature [y

  20. Modeling coherent errors in quantum error correction

    Science.gov (United States)

    Greenbaum, Daniel; Dutton, Zachary

    2018-01-01

    Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.